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Abstract. Widespread use of pervasive devices has resulted in secu-
rity problems which can not be solved by conventional algorithms and
approaches. These devices are not only extremely resource-constrained,
but most of them also require high performance – with respect to avail-
able resources – in terms of security, speed and latency. Especially for
authenticated encryption, such performance can not be achieved with a
standard encryption-hash algorithm pair or even a “block cipher mode
of operation” approach. New ideas such as permutation-based authenti-
cated encryption have to be explored. This scheme has been made pos-
sible by the introduction of sponge functions. Implementation feasibility
of such an approach has yet to be explored. In this study, we make such
an attempt by implementing the new SpongeWrap authenticated en-
cryption schemes on all existing sponge functions and show that it is
possible to realize a low-latency scheme in less than 6K gate equivalents
at a throughput of 5 Gbps with a 128-bit claimed security level.

Keywords: Pervasive computing, data security, authenticated encryp-
tion, sponge functions, Keccak, Photon, Quark, Spongent.

1 Introduction

Pervasive computing is everywhere. We have, for quite sometime, got used to the
idea of using all sorts of computing devices almost in every moment of our lives.
These devices range from smart phones to smart cards with varying levels of
computing power and usability [1]. A smart card on an ATM card may be used
only as a means to draw cash from an ATM. On the other hand, a smart phone
may be used to perform complex image processing in unprecedented speeds
compared to the most powerful desktop computers of a decade ago. While more
pervasive devices are introduced for new applications, these devices themselves
also introduce more and more new application areas autonomously. However,
it is not just new application areas they introduce, but unforeseen problems as
well. Among these problems, security, perhaps, is the most important one, not
just from an engineering point of view, but also from the user perspective.

Security of data has to be guaranteed in various levels: During computation
from outside observers (also known as side-channel attackers [2]), during commu-
nication from third parties, and during storage from unauthorized users. Looking

S. Mangard (Ed.): CARDIS 2012, LNCS 7771, pp. 141–157, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



142 T. Yalçın and E.B. Kavun

at the specific example of smart cards, one may consider them to be the most
pervasive computing platform. We carry several cards in our wallets for various
applications such as banking, identification, access control, mobile phones, loy-
alty schemes [3]. All of these applications rely on personal and sometimes even
critical data of the user (health information, pin codes, biometric information,
etc.), which is not only a security nightmare to the user but even worse for the
designers of such systems.

Data stored on such systems has to be secured via an encryption algorithm.
There are several algorithms and standards designed and extensively analyzed
for this purpose. The internationally accepted Advanced Encryption Standard,
AES, is perhaps the most widely used encryption algorithm. It is very well-
analyzed, tested, and proved to be secure – not just for today, but for the coming
decades as well. Moreover, it has been implemented on countless number of plat-
forms for almost all imaginable performance targets. While a high performance
version of AES can process 55.5 Gbps of data on tens of thousands of ASIC
gates [4], a lightweight version of it can fit into only about 2 thousands gates at
reduced performance of a few tens of Kbps.

However, encryption alone is not sufficient. Another important operation that
has to be performed on the secure data is authentication. As in the case of en-
cryption, authentication is also very well-established and standardized as Secure
Hash Algorithms, SHA-1 and SHA-2 by NIST. Competition for a third stan-
dard, SHA-3, is underway.

Authenticated encryption is a technique, which combines both authentication
and encryption in order to provide confidentiality, integrity and authenticity
of the data, simultaneously. While, the same functionality can be achieved via
an encryption algorithm and an authentication algorithm running in parallel,
it is not always the preferred solution, especially on resource-limited devices.
Therefore, authenticated encryption is introduced as a block cipher mode of
operation, where the same cipher block performs both functionalities. The most
commonly used (also standardized) modes are CCM, CWC, OCB, EAX and
GCM.

More recently, use of sponge-based hash functions as authenticated encryp-
tion primitives has been proposed [5]. With its arbitrarily long input and output
sizes, the sponge construction allows building various cryptographic primitives
such as a hash function, a stream cipher or a MAC [6], which, if properly com-
bined, can lead to a “Do-It-All-Cipher”. Although, sponge functions are still quite
young, already a few number of sponge-based hash functions have been intro-
duced. Among these, Photon, Quark and Spongent are mostly targeted for
lightweight applications, which Keccak, a SHA-3 finalist, though not specifi-
cally designed so, can be tweaked to operate in lightweight mode. Furthermore,
SpongeWrap modes of Keccak and Quark have also been presented to be
used as authenticated encryption primitives [7]. Especially, the MonkeyDu-
plex and DonkeySponge constructions show a lot of promise to be used in
lightweight applications.
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With its single round streaming mode, DonkeySponge construction can be
effectively used in data storage applications as a low-latency cipher at the penalty
of using a nonce in addition to the key, while MonkeyDuplex can perform the
same functionality without nonce at the expense of more rounds per encryption.
Even in that case, low-latency can be achieved by means of an unfolded design,
in a similar fashion as presented in [8]. But there are open questions: From a
mathematical point of view, these modes are yet to be extensively studied. The
number of rounds per each sponge function in the proposed modes have to be
determined together with their security claims, as done for Keccak. On the
other hand, from a hardware point of view, efficiency of each sponge function
in the target modes have to be determined. A new sponge-based proposal is
only acceptable if it offers more (or less – in terms of gate count and power
consumption) than the existing block cipher based systems.

In our study, we try to bring some answers, or more literally performance
figures to the second question. We implement both DonkeySponge and Mon-
keyDuplex constructions on the existing sponge functions – Keccak, Pho-
ton, Quark and Spongent. In our implementations, we target low-latency
data encryption, which is a realistic design target for pervasive applications, es-
pecially for data storage security. Furthermore, we choose data wordlength of
32 bits, which also is a realistic figure, considering data storage solutions on
pervasive devices. We then select variants of sponge functions that can provide
this data rate. These are Keccak-200, Photon-196, Quark-176 and Spon-
gent-176, all of which provide around 80 bits of generic security with a target
key length of 128 bits. Since the round numbers for MonkeyDuplex and Don-
keySponge duplex mode are given only for Keccak, we obtain round numbers
for other sponge functions by simple proportioning (i.e. with respect to the
original proposed round numbers). In all fairness, we present the performance
figures, for both these proportional round numbers and ones identical to those
of Keccak.

The rest of the paper is organized as follows. In the next section, we give a
brief introduction about sponge functions, which also includes specific details
of each of the target sponge functions. It is followed by MonkeyDuplex and
DonkeySponge constructions. In the following section, we present our imple-
mentations for both constructions together with performance figures on all hash
functions. In the last section, we summarize our results and propose future di-
rections for research.

2 Sponge Functions

Sponge functions can be used to generalize cryptographic hash functions to
more general functions with arbitrary output lengths. They are based on the
sponge construction, which is a repetitive construction to build a function F
with variable-length input and arbitrary-length output based on a fixed-length
permutation f operating on a fixed number of b bits, which is called the width.
The sponge construction operates on a state of b = r + c bits. r is called the
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bit rate and c is called the capacity. In the first step, the bits of the state are
all initialized to zero. Then, the input message is padded and cut into blocks of
r-bit. The construction consists of two phases, namely the absorbing phase and
the squeezing phase.

– In the absorbing phase, the r-bit input message blocks are XORed with the
first r-bit of the state, then interleaved with the function f . After processing
all of the message blocks, the squeezing phase begins.

– In the squeezing phase, the first r-bit of the state is returned as output
blocks, and then interleaved with the function f . The number of output
blocks is chosen by the user. The block diagram of the sponge construction
is shown in Figure 1.
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Fig. 1. Sponge construction

The existing sponge functions are summarized in the following subsections.

2.1 Keccak Sponge Function

Keccak [9] is a cryptographic hash function submitted to the NIST SHA-3
hash function competition. It is a family of hash functions based on the sponge
construction that is used as a building block of a permutation from a set of seven
permutations denoted by Keccak-f [b], where b ∈ 25, 50, 100, 200, 400, 800, 1600
is the width of the permutation. The width b of the permutation is also the
width of the state in the sponge construction. The state is organized as an array
of 5 × 5 lanes, each of length w bits, where w ∈ 1, 2, 4, 8, 16, 32, 64 (b = 25w).
Depending on the selected permutation width, the Keccak-f permutation con-
sists of a number of simple rounds with logical operations and bit permuta-
tions. The number of rounds nr depends on the permutation width which is
calculated by nr = 12 + 2l, where 2l = w. This yields 12, 14, 16, 18, 20, 22,
24 rounds for Keccak-f [25], Keccak-f [50], Keccak-f [100], Keccak-f [200],
Keccak-f [400], Keccak-f [800], Keccak-f [1600], respectively. The Keccak-
[r, c, d] sponge function can be obtained by applying the sponge construction to
Keccak-f [r+ c] with the parameters capacity c, bit rate r and diversifier d and
also padding the message input specifically.
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The Keccak iterated round function is explained in Algorithm 1, where all of
the operations on the indices are done in modulo 5. A denotes the complete per-
mutation state array, and A[x, y] denotes a particular lane in that state. B[x, y],
C[x], D[x] are intermediate variables, the constants r[x, y] are the rotation off-
sets and RC[i] are the round constants. ROT (w, r) is the bitwise cyclic shift
operation which moves the bit from position i into position i+ r, in the modulo
lane size.

Algorithm 1. Pseudo-code of Keccak-f

Keccak-f [b](A)

– for i in 0 . . . nr − 1
A = Round[b](A,RC[i])

– return A

Round[b](A,RC)

– θ step:
C[x] = A[x, 0]⊕ A[x, 1]⊕ A[x, 2]⊕ A[x, 3]⊕A[x, 4], ∀x in 0 . . . 4
D[x] = C[x− 1]⊕ROT (C[x+ 1], 1),∀x in 0 . . . 4
A[x, y] = A[x, y]⊕D[x], ∀(x, y) in (0 . . . 4, 0 . . . 4)

– ρ and π steps:
B[y, 2x+ 3y] = ROT (A[x, y], r[x, y]),∀(x, y) in (0 . . . 4, 0 . . . 4)

– χ step:
A[x, y] = B[x, y]⊕ ((NOTB[x+ 1, y]ANDB[x+ 2, y],∀(x, y) in (0 . . . 4, 0 . . . 4)

– χ step:
A[0, 0] = A[0, 0]⊕RC

– return A

2.2 Photon Sponge Function

Photon [10] is a sponge construction with an AES-like permutation. The in-
ternal state size t = (c + r) depends on the hash output size and can take five
distinct values. Therefore, internal permutation Pt is defined for each internal
state size. photon starts with the initialization phase where the message is
padded and cut into blocks of t bits. Then the t-bit state is processed by Pt

permutation in absorption phase. Finally, in the squeezing phase, the n-bit hash
value is returned.

The internal permutation Pt is an Nr-round transform of the t-bit state. Note
that the state organization is defined according to the hash output size. However,
the number of rounds is the same for all t values and the round function is iterated
as the number of rounds. The round function is similar to AES round function
as shown in Algorithm 2. It starts with an AddConstants step instead of the key
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addition of AES. Here, round constants and internal constants are XORed to
the state. Round constants are defined for each round and the internal constants
depend on the state organization. It is followed by SubCells and ShiftRows steps.
In the substitution layer, the Present Sbox is used in the case of 4-bit cells and
the AES Sbox is used in the case of 8-bit cells. In MixColumnsSerial step, the
final mixing layer is applied to each of the columns of the internal state. The
coefficients and the irreducible polynomials used in this step again depend on
the permutation type.

Algorithm 2. Pseudo-code of Photon

– for i = 1 to R do
State← AddConstant(State)
State← SubCells(State)
State← ShiftRows(State)
State←MixColumnsSerial(State)

– end for

2.3 Quark Sponge Function

Quark [11] uses the sponge construction and a b-bit permutation P . Three
different instances of Quark are specified. Each instance is parameterized by
a rate r, capacity c, and hash length n. The size of the internal state is b bits
(b = r+ c). The Quark sponge construction processes a message in three steps:
Initialization, absorption and squeezing. As in the case of Keccak, the message
is first padded and cut into r-bit blocks. These blocks are then XORed with
the last r bits of the state and interleaved with permutation (P ) applications.
In the end, the last r bits of the state are returned as output, interleaved with
permutation applications, until n bits are returned.

The permutation P is inspired by the stream cipher Grain [12] and the block
cipher KATAN [13] (see Figure 2). The internal state of P is viewed as three
feedback shift registers – two nonlinear and one linear. P proceeds in three
stages for a given b-bit input: Initialization of the internal state, status update
with f , g, and h functions, and finally the computation of the output similar
to initialization. Note that functions f , g, and h are defined separately for each
instance.

2.4 Spongent Sponge Function

Spongent [14] is a sponge construction based on a wide Present-type [15]
permutation. Spongent produces an n-bit hash value for a given finite number
of input bits – it is a simple iterated design that takes a variable-length input
and can produce an output of an arbitrary length based on a permutation πb
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operating on a state of b bits (where b = r + c ≥ n, r rate and c capacity).
Hashing starts with an initialization phase where the message is padded and
cut into blocks of r bits. In the following phase (absorption), the r-bit message
blocks are XORed with the first r bits of the state and then processed in πb

permutation. Finally, in the squeezing phase, the first r bits of the state are
returned as output, interleaved with applications of πb, until n bits are returned.

The permutation πb is an R-round transform of the b-bit state. The round
function is iterated as the number of rounds (R), which depends on the Spon-
gent variant used. It is similar to the Present round function, but a wider
version. Also, instead of key addition, a counter value depending on an LFSR
is added. The substitution and permutation layers are the same; however, they
are defined for larger states. Algorithm 3 shows the πb permutation.

Algorithm 3. Pseudo-code of Spongent

– for i = 1 to R do
State← lCounterreversed bit−order ⊕ State⊕ lCounter
State← sBoxLayer(State)
State← pLayer(State)

– end for

3 Permutation-Based Authenticated Encryption

Mainstream symmetric cryptography has been dominated by block ciphers, which
offer inverse function capability. However, an inverse cipher is only needed in
specific modes such as electronic codebook (ECB), cipher block chaining (CBC)
and offset codebook mode (OCB) in authenticated encryption. There are several
modes of operation where the cipher block is used in forward (encryption) mode
only. From a designer’s point of view, an n-bit block cipher is nothing but a
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b-bit permutation (b = n + |K|, |K| being the key size) with no diffusion from
data state to key state. A simple example of use of a block cipher in this mode
is the hashing via Davies-Meyer compression function. Since for hashing there
is no need to limit diffusion, one can use a block cipher in iterated permutation
mode, where the internal state is composed of both the left and right states as
shown in Figure 3.

This construction vanishes the need for separate key schedule and replaces
the n-bit block cipher by a b-bit permutation. This is, in fact, a block cipher
without inverse, which has the capability to perform not only encryption but
also message authentication – or simply, authenticated encryption (AE). In the
following subsections, we will see how sponge functions can be used to perform
resource-efficient and secure permutation-based authenticated encryption.

3.1 Authenticated Encryption Mode SpongeWrap

SpongeWrap [5] construction realizes authenticated encryption as shown in
Figure 4. Upon initialization, key, K, is loaded into the state. Next, padded
header A (also referred to as additional authentication data – AAD) is absorbed
into the state. This is followed by the encryption (or decryption) phase, which
is run in duplex mode, i.e. for each input data block (plaintext or ciphertext),
an output data block (ciphertext or plaintext, respectively) is generated. The
output (in case of encryption) or input (in case of decryption) ciphertext is also
absorbed into the state, thereby running hashing in parallel with encryption.
Upon completion of processing of all input data blocks, the sponge is run (with
zero input data) until all the l-bit tag, T is squeezed from internal the state. In
decryption mode, the squeezed tag is compared with the received tag in order
to check if the received tag is valid. In SpongeWrap mode, every key, header
and plain/cipher-text block is extended with a so-called frame bit.
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Fig. 4. SpongeWrap authenticated encryption

It is proven that the sponge and duplex constructions are secure against
generic attacks with complexity below 2c/2 [16]. However, when a sponge func-
tion or duplex object is used in conjunction with a key, more refined bounds can
be defined taking into account the data complexity. If the data complexity is
limited to 2a r-bit blocks, the keyed mode withstands generic attacks with time
complexity up to 2c−a calls of the underlying permutation. If a < c/2, this re-
sults in an increase of the security strength from c/2 to c−a. It should be noted
that when the memory requirements of a pervasive system are considered, a is
usually limited to 32 or less, which is in perfect agreement with the requirement
of a < c/2.

3.2 DonkeySponge Construction

DonkeySponge mode of operation [17] (shown in Figure 5) can be summarized
as follows:

– The b-bit state is initialized with the key and run through the round function,
f , ninit time, resulting in the secret state. The number of rounds, ninit must
be chosen such that all bits of the secret state depend on the MAC key.

– The b-bit blocks of the message are XORed into the secret state, interleaved
with nabsorb-round permutations. The number nabsorb must be chosen to
make the success probability of generating inner collisions negligible.

f
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f f f f f0
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crop

Z

ninit nabsorb nsqueeze

Fig. 5. DonkeySponge construction
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– The tag is obtained by applying an nsqueeze-round permutation to the secret
state and truncating the result to l bits. The number of rounds nsqueeze

should be high enough to prevent an adversary in reconstructing the inner
state from outputs observed for chosen inputs. The number b − l must be
large enough to prevent state reconstruction by exhaustive search, namely,
b− l ≥ k.

In [17], ninit = 3, nabsorb = 6 and nsqueeze = 12 are chosen for Keccak-f [200].
This choice of parameters are mainly influenced by propagation experiments.
Therefore, a realistic selection of these parameters for all other sponge functions
can only be possible after similar experiments and/or analyses.

3.3 MonkeyDuplex Construction

MonkeyDuplex mode of operation [17] (shown in Figure 6) is a modified
version of the authenticated encryption with associated data (AEAD) mode
SpongeWrap based on the duplex construction in [5]. The original version can
guarantee confidentiality if for the same key and different messages the asso-
ciated data is unique. In other words, the associated data should behave as a
nonce.

MonkeyDuplex mode removes this restriction by using a unique nonce,
which makes it more fragile. However, it results in a considerable security gain.
Furthermore, it allows data encryption in stream mode with nduplex = 1, result-
ing in extremely high rates.
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Fig. 6. MonkeyDuplex construction

4 Implementation Aspects

In this section, we summarize our implementation of the DonkeySponge and
MonkeyDuplex cores on which we evaluate our performance figures. We start
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by building a generic wrapper, into which any permutation function of a sponge,
can be embedded. As shown in Figure 7, the wrapper is build up of a key register,
data register, length registers (for header/AAD and data), and a state register.
In agreement with our initial design target, data register is a 32-bit register,
and the key register is a 192-bit register designed to collect 128-bit key and 64-
bit nonce read in 32-bit blocks from input. The length registers are also 32-bit
registers in order to support header and input data of up to 232 × 32 bits each.
The size of the state register depends on the state size of the chosen sponge
(permutation) function. The core module is the sponge permutation function,
f , module. Its input is determined depending on the phase of authenticated
encryption – key/nonce absorption (initialization), header absorption, duplex,
tag extraction.

The wrapper has two variants for DonkeySponge and MonkeyDuplex
modes, respectively. The main differences between the two variants are the
padding circuitry (which has negligible effect on the gate count) and the in-
put data size. The DonkeySponge wrapper is designed to support input data
width of up to 64 bits. However, in our designs, we run it in 32-bit mode. Both
wrappers are fully functional blocks including control circuitry, and their func-
tionalities have been verified by Modelsim SE v6.5b.

The operation of the authenticated encryption wrappers can be summarized
in five phases:

– Length/Key/Nonce Loading Phase. Upon reception of a start com-
mand, the wrapper requests for initialization data – lengths, key, and op-
tionally nonce – from the input interface. It then loads the corresponding
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registers with the received data, and instructs the internal sponge core to
start operation.

– Initialization. This is the phase where key/nonce is hashed to generate the
secret internal state of the sponge. This phase takes ninit rounds.

– Header Absorption. In this phase, the wrapper requests header data from
the input interface. Each received data word is padded with and loaded into
the data register, whose output is then processed by the internal sponge core
(absorbed into the state). In case, the header length is zero, this phase is
bypassed.

– Data Absorption. In this phase, the wrapper requests plaintext/ciphertext
data from the input interface. Again, each received data word is padded
with and loaded into the data register, whose output is then processed by
the internal sponge core (absorbed into the state). Additionally the leading
b bits of the new state is XORed with the input data word to generate the
corresponding ciphertext/plaintext, respectively. This mode of operation is
known as the duplex mode. The output word is written into the output
register which flags the readiness of the output with an “output enable” flag.
Processing of each word in this phase and the previous phase takes nabsorb

rounds, which is realized in a single clock cycle (via unfolding) in order to
guarantee low-latency operation.

– Tag Extraction. This is the final phase, where the sponge core is run with
zero input data in order to generate l-bit tag (where l can be 64 to 128 bits
wide). Depending on the target tag length, the internal sponge core can be
run several times, squeezing 32 bits of tag at every run. In DonkeySponge
wrapper, each run takes nsqueeze rounds, where number of clock cycles is
determined by the ratio of nsqueeze to nabsorb. For the MonkeyDuplex, the
core is run in duplex mode with zero input data; therefore nsqueeze = nabsorb.
As in the data absorption phase, the output tag words are loaded into the
output register and signaled with an “output enable” flag.

In the implementation of f -module, we refer to our initially set design targets. We
want to primarily achieve low-latency encryption of 32-bit words with (about)
80-bit generic security. Therefore, the rate, r, of the sponge function should be
at least (32 + 2) bits (including the padding); and the capacity, c, around 160
bits, resulting in total minimum state size of 194 bits. With these parameters
in mind, we choose Keccak-200, Photon-196, Quark-176 and Spongent-
176 variants, with the parameters summarized in Table 1. Although not all the
variants provide equal design parameters, we have to make a choice in order to
limit our design space. However, since we provide the performance figures for
different unfolding options, it is still possible to make realistic guesses with the
chosen variants.

4.1 Performance Comparison

For the performance evaluation, we run our syntheses using Cadence RTL Syn-
thesizer v08.10-s222 with Nangate 45 nm generic and UMC 90 nm low-leakage
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Table 1. Parameters for the chosen sponge functions

b c r Security (bits) Generic security (bits)
Function (bits) (bits) (bits) preimage 2nd preimage collision (keyed mode, a = 32)

(c− r) (c/2) (c/2) (c− a)
Keccak-200 200 164 36 128 82 82 132
Photon-196 196 160 36 124 80 80 128
Quark-176 176 160 16 144 80 80 128
Spongent-176 176 160 16 144 80 80 128

cell libraries. The gate counts are provided for both constrained and uncon-
strained syntheses, while power figures are only provided for 50 MHz constrained
syntheses.

Figure 8 shows the area comparison for 50 MHz constrained (left) and uncon-
strained (right) DonkeySponge wrapper designs, respectively. n in the figures
corresponds to the number of unfolded levels of permutations within the f -
block. In the case of Keccak, this corresponds to nabsorb. However, for all other
sponge functions, n’s are chosen arbitrarily in order to present illustrative num-
bers. For example, in the C-Quark proposal [7] (a Quark based SpongeWrap
instance), n is chosen to be 64. As a reference value, gate counts for Keccak
are 13.6 KGE and 15.4 KGE for 90 nm and 45 nm libraries, respectively.
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Fig. 8. Area comparison of DonkeySponge wrappers for 50 MHz constrained (left)
and unconstrained (right) cases

An important observation we can make from the figure is how close the gate
counts are for constrained and unconstrained cases. This means timing targets
are met even in the presence of several unfolded rounds, which is a major advan-
tage of permutation based encryption schemes over conventional block ciphers.

Figure 9 shows the power comparison for 50 MHz constrained wrapper designs
for the same values of n as in the area comparison. Power figures are provided
only for 90 nm library. It should also be noted that these are synthesized power
figures, and are not as much realistic as simulated figures. As a reference value,
average power consumption for Keccak is 13.6 mW .

Figure 10 shows the area comparison for 50 MHz constrained (left) and un-
constrained (right) MonkeyDuplex wrapper designs, respectively. Again, n in
the figures corresponds to the number of unfolded levels of permutations within
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Fig. 9. Power comparison of DonkeySponge wrappers (50 MHz constrained)

the f -block. In the case of Keccak, this corresponds to nduplex = 1. However,
for all other sponge functions, n’s are chosen arbitrarily in order to present il-
lustrative numbers. As a reference value, gate counts for Keccak are 5.9 KGE
and 7.4 KGE for 90 nm and 45 nm libraries (constrained), respectively.

In the case of MonkeyDuplex wrappers, Quark loses its area advantage
coming from its simple internal structure, since registers dominate the overall
area.
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Fig. 10. Area comparison of MonkeyDuplex wrappers for 50 MHz constrained (left)
and unconstrained (right) cases

Figure 11 shows the power comparison for 50 MHz constrained wrapper de-
signs for the same values of n as in the area comparison. Again, power figures
are provided only for 90 nm library, and they are synthesized power figures. As
a reference value, average power consumption for Keccak is 2.1 mW.

We furthermore present the gate counts corresponding to different values of
n for each design in separate graphs in Figure 12. For our synthesis ranges,
gate counts do not vary in the existence of timing constraint for 45 nm designs,
while it is not the case for other designs (except Quark). The gate counts
are presented for only MonkeyDuplex constructions. The differences between
DonkeySponge and MonkeyDuplex areas are negligible.

We have also checked the highest clock frequencies for all the designs in 90 nm
(for n = 1). These are 154.2, 154.1, 83.4, and 154.1 MHz for Keccak, Quark,
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Fig. 12. Area figures for Keccak (upper left), Photon (upper right), Quark (lower
left) and Spongent (lower right) MonkeyDuplex wrappers

Photon and Spongent, respectively. This means, except for Photon, sponge
permutations do not determine the critical delay path. Instead, the wrapper
around determines the overall speed of the design.
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With a 32-bit datapath (as in the current implementations), MonkeyDuplex
scheme can achieve authenticated encryption throughput of 4.9 Gbps at a gate
count of 5.9 KGE, in other words almost 1 Mbps/GE. This number is much
higher than any reported figure for existing block cipher based schemes.

5 Conclusion

In this study, we have implemented the newly proposed sponge-based Don-
keySponge and MonkeyDuplex authenticated encryption schemes for all
known sponge functions in the literature. We have demonstrated the simplicity
and effectiveness of these schemes in terms of resource usage and latency, both
of which are important design parameters for pervasive computing systems. Es-
pecially in data storage security, low-latency is of top priority. MonkeyDuplex
scheme achieves low-latency at an incredibly high throughput of 4.9 Gbps within
only 5.9 KGE area, with a 128-bit claimed security.

This is still a very new area of research. The security of these schemes have
yet to be studied in deep. On the other hand, the performance results we have
obtained shows the value of such research. As the next step, we will evaluate
these ciphers with different technologies and parameters (using different variants
of each sponge function). We will also provide simulated power figures, and
compare our results with block cipher based authenticated encryption schemes,
as well.
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