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Preface

This volume contains the papers that were selected for the 11th Conference on
Smart Card Research and Applications (CARDIS 2012). Since 1994, CARDIS
has been the foremost international conference dedicated to the security of smart
cards and embedded systems. The conference was held every two years until
2010. Since then, the conference has been taking place every year owing to the
fast evolution of the security research on smart cards and embedded systems.
The conference brings together people from academia and industry to present
and discuss new results on a wide range of security topics that include hardware
architectures, operating systems, cryptography, application development as well
as all kinds of physical attacks and corresponding countermeasures.

This year, CARDIS was held during November 28-30, 2012, in Graz, Austria.
It was organized by the Institute for Applied Information Processing and Com-
munications (IAIK) of Graz University of Technology. The Program Committee
with its 30 members selected 18 papers out of 48 submissions for presentation
at the conference and for inclusion in these proceedings. Each submission was
reviewed by at least three reviewers.

In addition to the presentations of the papers, there were two invited talks at
the conference. The first talk was given by N. Asokan and was entitled “Mobile
Platform Security.” The talk compared different approaches for platform security
architectures as they are used in today’s smart phones. The second talk, “De-
fensive Leakage Camouflage,” was given by David Naccache. A paper version of
this talk is also part of this volume.

Many people deserve credit for spending their time and energy to make this
conference such a successful event. I would first like to thank all the members
of the Program Committee and the 74 external reviewers for their hard work in
evaluating and discussing the submissions. A big thank-you also goes to Jörn-
Marc Schmidt and his team at IAIK, who did a great job in organizing the
conference. Furthermore, I am very grateful to the CARDIS Steering Committee
for their support and for giving me the opportunity to serve as Program Chair at
such a recognized conference. The financial support of the gold sponsor Infineon
Technologies, the silver sponsor NXP Semiconductors, the city of Graz, and the
province of Styria was highly appreciated and allowed us to provide student
stipends. Finally and most importantly, my thanks go to all the authors who
submitted their work to CARDIS 2012 as well as to the invited speakers.

December 2012 Stefan Mangard
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Mario Lamberger
Marc Le Guin
John Lyle
Benjamin Martin
Tania Martin
Dominik Merli
Oliver Mischke
Bruce Murray
Dmitry Nedospasov
Ventzi Nikov
Michael Østergaard

Pedersen
Andrew Paverd

Roel Peeters
Pedro Peris-Lopez
Thomas Plos
Jürgen Pulkus
Thomas Pöppelmann
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Petr Sušil and Serge Vaudenay

Side-Channel Attacks II

Improving Side-Channel Analysis with Optimal Linear Transforms . . . . . 219
David Oswald and Christof Paar

SCA with Magnitude Squared Coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Sebastien Tiran and Philippe Maurine

Strengths and Limitations of High-Resolution Electromagnetic Field
Measurements for Side-Channel Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

Johann Heyszl, Dominik Merli, Benedikt Heinz,
Fabrizio De Santis, and Georg Sigl

Efficient Template Attacks Based on Probabilistic Multi-class Support
Vector Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

Timo Bartkewitz and Kerstin Lemke-Rust



Table of Contents XI

Invited Talk

Defensive Leakage Camouflage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
Eric Brier, Fortier Quentin, Roman Korkikian, K.W. Magld,
David Naccache, Guilherme Ozari de Almeida, Adrien Pommellet,
A.H. Ragab, and Jean Vuillemin

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297



Towards the Hardware Accelerated Defensive

Virtual Machine – Type and Bound Protection

Michael Lackner1, Reinhard Berlach1, Johannes Loinig2,
Reinhold Weiss1, and Christian Steger1

1 Institute for Technical Informatics,
Graz University of Technology, Graz, Austria

{michael.lackner,reinhard.berlach,rweiss,steger}@tugraz.at
2 NXP Semiconductors Austria GmbH, Gratkorn, Austria

johannes.loinig@nxp.com

Abstract. Currently, security checks on Java Card applets are per-
formed by a static verification process before executing an applet. A
verified and later unmodified applet is not able to break the Java Card
sand-box model. Unfortunately, this static verification process is not a
countermeasure against physical run-time attacks corrupting the con-
trol or data flow of an applet. In this piece of work, designs for Java
Card Virtual Machines are investigated in relation to their ability to
perform run-time security checks. These security checks are accelerated
by hardware units and performed in parallel to CPU instructions that
are executing concurrently. Attacks on the Java operand stack and lo-
cal variables, which are elementary components for the Virtual Machine,
are thwarted by type and bound protection. To enable these hardware
checks, different designs of a defensive Java Card Virtual Machine are
compared to their overheads on a prototype platform.

Keywords: Java Card, Defensive Virtual Machine, Hardware Counter-
measure, Fault Attack, Logical Attack.

1 Introduction

Current applied static verification of Java Card applets provides insufficient se-
curity protection against run-time Fault Attacks. This is especially a problem in
the field of multi-application Java Cards. In this field, cards are used in a wide
range of applications (e.g., passport, e-money) and have the ability to perform
post-issuance loading of new applets. An adversary provoking a Logical Attack
by changing the bytecode or internal representation of an uploaded Java applet
can get access to security related data from other applets or the Java Card Vir-
tual Machine (JCVM) [12]. To thwart Logical Attacks, verification of applets is
performed either off-card or on-card. This verification procedure is currently a
static process performed once before an applet is executed. One of the most time
and memory consuming checks performed is the bytecode verification [9,15].

Java Card applets are stored into non-volatile memories such as EEPROM.
With the help of physical Fault Attacks it is possible for a JCVM to read out

S. Mangard (Ed.): CARDIS 2012, LNCS 7771, pp. 1–15, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 M. Lackner et al.

incorrect values from these memories or skip CPU instructions. Therefore, it
is possible to change the bytecode of stored applets to execute ill-formed Java
instructions. Knowledge about these attack possibilities is used in [3] to create
a new class of attacks called Combined Attacks. To perform Combined Attacks,
applets which pass the verification process are used and become malicious in
combination with a Fault Attack. Combined Attacks are used to bypass the Java
Card sand-box, mounted by the static verification process, JCVM and Java Card
Runtime Environment [11].

To guard the Java Card against run-time attacks, a so called defensive JCVM
is needed [4]. This defensive JCVM can be reached by performing all checks done
by the static verification process during run-time. However, this is currently not
achievable because of the constrained hardware resources of today’s Java Cards.
In this work specific security checks, extracted from the Java Card specification
[12], are performed on the executing bytecode during run-time. In this specifi-
cation the data flow is exactly defined for every bytecode with some additional
constraints which must be fulfilled.

To speed up bytecode checking during run-time, new hardware protection
units are introduced in this work to speed up the checks performed on every
bytecode. These hardware checks can be performed in parallel while the CPU
performs its operations. Therefore hardware checks are a good solution for run-
time checks that are performed very often, in contrast to software checks. Soft-
ware checks slow down the whole system if they are performed on the same
CPU that the standard operations are performed on. Beside this benefit, hard-
ware checks also have the advantage of being more immune against additional
fault injects onto the Java Card. This is due to the fact that software checks
[13,5,2] are vulnerable to skipping them by additional Fault Attacks. This threat
of skipping software security operations leads Vertanen in [16] to the conclusion
that hardware assisted run-time checks are mandatory for enhancing run-time
security for Java Cards.

This work introduces a hardware accelerated defensive JCVM which performs
selected security checks on the executing bytecodes by hardware with a low
computational overhead. These checks are also part of the verification process
which is done statically before executing a Java applet. As far as we know, such
a hardware accelerated defensive JCVM has not been introduced in literature
before.

The contribution of this work is the definition of a run-time security policy
extracted from the Java Card specification [12] to ensure that the executing
bytecode performs valid operations. This run-time policy prevents type confu-
sion and overflow/underflow attacks on the operand stack (OS) and local variable
(LV) memory inside the JCVM. With this policy it is not possible for an adver-
sary to perform type confusion between values of type integralData and object
references on the OS and LV. Furthermore, two hardware accelerated defensive
JCVM designs are presented with their main parts, such as additional hard-
ware protection units and new CPU instructions. The new CPU instructions are
used inside the JCVM to process bytecodes and communicate directly with the
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hardware protection units leading to a very low computational overhead. This
communication is depicted in Figure 1.

Section 2 gives an overview of attacks on Java Cards, bytecodes violating the
Java frame bounds and how to enable a defensive JCVM. Section 3 describes the
security policy and the design of all defensive JCVMs introduced in this work.
Section 4 presents the prototype implementation of these designs on a SystemC
8051 derivate. Section 5 analyses the run-time costs on execution speed and
hardware changes needed to activate our JCVM designs. Finally, conclusions
and future work are drawn in Section 6.

Java Card VM

Local
Variables

Operand
Stack

Bytecode

execute

Hardware
Security Checksaccess

Type + Bound Protection
Memory

Fig. 1. In this work the operand stack and the local variables are protected during
run-time by hardware accelerated security checks

2 Related Work

In this section an overview of possible attacks on the Java Card is given with
focus on run-time fault attacks. Following this, previous work on run-time coun-
termeasures and an overview of defensive JCVMs are presented.

2.1 Attack Overview

Attack scenarios on Java Cards are manifold [18,19]. Side Channel Attacks are
used to draw conclusions of internal operations by studying physical phenomena
of the chip. Invasive Attacks are used for optical or measurement analysis of
internal components. Fault Attacks (FA) change the physical environment of the
chip under attack [1]. These are for example, temperature changes, additional
light of a laser or spikes in the power supply or clock source. These FA lead to
an undefined behavior of the chip by skipping instructions or read/write errors
to memory like the EEPROM. This is especially a problem for post-issuance
loaded applets due to the fact that they are mostly installed in non-volatile
memory. Therefore, a FA during the fetch process of a JCVM can lead to ill-
formed applets even if a static verification was performed. This ill-formed code
enables an adversary to circumvent the Java Card security model and enables an
applet to have access to unauthorized resources. This security problem of FA to
verified applets is well known in literature and is used to enable different attack
paths [10,3,17,14].
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2.2 Frame Bound Violation Attacks

Generally, inside every Java Frame, specific memory areas are reserved for OS,
LV and internal frame data. Every time a new Java method is invoked, the JCVM
creates a new frame and pushes it onto the Java stack. Specific implementation
details for the Java Frame are not provided by Java Card specification. Therefore,
the specific frame data depends on the particular implementation. In general the
frame data contains a return address so that it is possible to return to the code
of the old frame. The size needed for a frame and all its containing elements
(e.g., OS, LV) is ascertained when the method is invoked and is not changing
during method execution.

Ill formed bytecode can now access illegal memory regions by performing an
OS or LV out of bound access as illustrated in Figure 2. In [5] an attack called
EMAN2 was performed. There an invalid LV index was used by an ill formed
bytecode sstore to access the memory region of the frame data where the return
address of the current frame is stored. With the help of this ill formed bytecode,
an adversary can set the return address to any value. In their attack the return
address was set to the address of an array which leads to the security threat
of executing adversary definable data. This illegal execution of data opens new
security issues not treated here in detail. The threats of OS overflow/underflow
and bytecodes using invalid LV index are thwarted by the run-time policy of
this work.

Undefined Data Undefined DataLocal Variables Operand Stack
Frame Data

return
address

internal
data

Bytecodes Overflow OS Bytecodes Underflow OS

Bytecodes use Invalid LV index (EMAN2)

Actual Java Frame

Change return
address to any value

Fig. 2. OS overflow and underflow leads to illegal memory access outside the reserved
OS memory space. An adversary who uses bytecode with invalid LV index can overwrite
the return address of the current active frame [5].

2.3 Enabling a Defensive Virtual Machine

Currently the Java Card research community concentrates on finding attack
paths to bypass the Java Card security model by FAs and Combined Attacks.
[3,10,17,14]. Also a lot of effort is invested in exploiting and thwarting Side
Channel Attacks [8]. In contrast to these big research topics, the question of
how to enable a defensive JCVM is a research topic with little public attention.
However, in the Java Card industry the know-how to enable defensive JCVM
designs is of course available. This fact is proven by different works bringing
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the defensive nature of current available industrial Java Card products to light
[10,7]. Techniques and knowledge that provide such a defensive design are of
course not freely available. Currently research related to FA countermeasures is
focussed on static verification of an applet and checking that the exact verified
code is executed. This can be done by code integrity and control flow checks
in software (SW) during run-time [13,5]. The annotations that enable these
checks are stored in an additional component of a verified CAP-file. Research was
also done to check the OS integrity against FA by performing double reads by
SW [2].

This work focuses on a hardware accelerated defensive JCVM performing
security checks during run-time. Based on a policy it checks if the executing
bytecode is behaving correctly. Compared to current countermeasures in litera-
ture the approach in this work does not just check the integrity of the bytecode
or OS, it performs checks based on a policy. This approach stops either manip-
ulated applets loaded onto the card or run-time FA from violating this policy.
Furthermore, performing these checks in hardware makes it more resistant to
additional FA which are also able to skip additional software checks.

3 Design of the Defensive Virtual Machine

In this section the run-time security policies for all defensive JCVM designs in
this work are shown. This is followed by our method of reducing all Java data
types to two main types.

3.1 Defensive Run-Time Policy

The OS and LV, located in the Java Frame, are main parts of the JCVM. The
JCVM is a stack machine and performs most operations on the OS. Therefore,
securing these parts of the JCVM are the first steps to hampering or stopping
Fault Attacks during run-time. The following two main policies for the OS and
LV are retained by our defensive designs during run-time:

– Frame Type Policy: All bytecodes which access the OS or LV must use
the right main data type (integralData or reference) which is expected by
the bytecode during its execution. In this work all numerical types are com-
bined (boolean, byte, short) to the main data type integralData. All object
references (e.g., short array, byte array, Class A) are combined to the main
data type reference.

– Frame Bound Policy: Bytecodes operating on the OS or LV are not al-
lowed to access data outside the frame bounds. This means that bytecodes
are not allowed to overflow or underflow the OS. Furthermore, all bytecodes
accessing the LV must be inside the borders of the reserved LV memory area.

Policy Creation: The two policies above were extracted from the JCVM spec-
ification [12] where for every bytecode a textual description of the operation is
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given. In this specification it is for every bytecode defined from which JCVM
component needed operands are taken and results are written back. Also the
type information is specified for every operand and result value. Such a byte-
code specification for the sstore instruction is listed below. This bytecode consists
of two bytes, the opcode (0x29) and an index referencing to an item of the LV.

”The index is an unsigned byte that must be a valid index into the local
variables of the current frame (Section 3.5, ”Frames”). The value on top
of the operand stack must be of type short. It is popped from the operand
stack, and the value of the local variable at index is set to value.” [12]

The requirement that bytecodes perform no OS stack overflow/underflow, access
the right LV index and operate with the right types on the OS and LV is crucial
for the security concept of the Java Card and therefore checked by all defensive
JCVM designs of this work.

3.2 Design of the Defensive JCVMs

In this section we introduce two designs for a defensive JCVM which fulfill
the security policies defined in the previous section. A general overview of the
defensive JCVM designs is shown in Figure 3 and described how they are used
in more detail below. Note that our defensive JCVM designs are not able to
thwart all sort of attacks on a Java Card. Examples of such undetected attacks
are control flow changes (skipping a branch instruction) or data corruption (read
corrupted values from the RAM).

Standard Java Card VM

Type Storing Java Card VM Type Separating Java Card VM

Operand 
Stack Types

Local 
Variables Types

Operand 
Stack 

Type 1

Operand 
Stack 

Type N

….

Local 
Variables

Type 1

Local 
Variables

Type N

Operand 
Stack 

Local 
Variables

….
Type 

Security Checks

Security Checks

Bound

Defensive Designs of 
this Work!

Bound

Fig. 3. In this work two designs are used to fulfill the run-time security policy
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– Type Storing: Every entry on the OS or LV is extended with type infor-
mation in order to distinguish between integralData and reference during
run-time. During run-time it is now possible to check if the expected type
for the bytecode is on the OS or LV which is the obvious defensive approach
to enable a Defensive JCVM. A disadvantage of this approach is the addi-
tional memory needed for type storing and the computational overhead to
perform type checking.

– Type Separating: Every Java main data type (integralData and reference)
operates on its own OS and LV memory area. No general OS and LV area
where all data types occur exists. Type confusion between the two main data
types is therefore no longer possible during run-time because every bytecode
always receives the right type. A disadvantage of the Type Separating design
is that an attack is only detected by its security related side effects on the
current frame. Such a side effect is for example an OS underflow for a specific
type.

3.3 Two Types for Type Storing and Type Separating

In this section we introduce our approach for separating the Java Card types into
two main data types to enable the Type Storing and Type Separating JCVM
that was presented in the previous chapter. Java bytecodes are highly typed. This
means that based on the data type different opcodes exist for the same operation
[12, Table 3-1]. For example, only the sstore bytecode is allowed to push integral
data types (boolean, byte, short) into the LV. Another Java bytecode is used
to store an element of type reference, pointing to an object, into the LV. It is
therefore possible to differentiate between two main data types and distinguish
them just by looking at the bytecode. In this work they are called integralData
and reference:

– integralData. These are the primitive constant data types that represent
the numerical values of the JCVM: boolean, byte, short. Elements of this data
type can be deliberately created by executing the bytecode sconst 1. This
bytecode pushes an integral value 1 with type short on the OS.

– reference. These are all kinds of references to objects and the returnAddress
type to enable sub-routines. An applet programmer can only indirectly create
elements of type reference. For example the bytecode new array pushes the
reference of a newly created array object onto the OS. This address can have
any logical structure and does not have to correlate with physical addresses
of objects stored on the card. For example the JCVM can create a random
number and a look up table maps this number to a real memory address.

By separating these two main data types it is no longer possible for an adversary
to create object references with a defined value by confusing integralData and
reference. It is also not possible for an adversary to get deeper insight into
how the JCVM represents references. For this insight an adversary would have
to perform type confusion between reference and integralData by sending the
reference out of the card from the APDU buffer. The APDU class is responsible
for receiving and sending data to off-card applications.
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Thwarted Threats in Literature. This sort of type confusion between inte-
gral data and object references is well known and often used as the first step of
an attack path [16,10,7,5,17]. This attack path can enable an adversary creating
self mutable code by executing data from a Java array [7,5] or even gain access
to forbidden methods of objects [17].

Note that type confusion between different objects such as short array and
Class A object is not detected by the defensive JCVM designs in this work. This
is because all object references are assigned to the reference main data type and
cannot be distinguished. This determination also applies to the main data type
integralData where it is not possible to detect type confusion between byte and
short.

4 Prototype Implementation

In this work five different prototype JCVMs were implemented in C and assem-
bly language. The JCVMs are based on the Classic Edition of the Java Card
specification [12]. The hardware (HW) platform on which they run is an 8-bit
Smart Card model written in SystemC [6]. This model is memory and instruction
cycle accurate. Into this HW platform new typed CPU instructions were imple-
mented. Furthermore, additional HW protection units were added to enable HW
accelerated security checks for bytecodes accessing the OS and LV memory area.

4.1 Additional CPU Instructions

The information decoded into the new CPU instructions is illustrated in Figure 4.
New typed CPU instructions are used by our JCVMs to process the bytecodes
and perform access to the OS and LV memory regions. These decoded pieces of
information are the access type (Read, Write), the destination of the accessing
memory (OS, LV) and the type which should be written/read (integralData,
reference, untyped). With the help of these pieces of information the protection
units are able to check if the new CPU instruction doesn’t perform a security
policy violation during run-time. Such a violation is for example a LV element
address which is outside the actual LV memory bounds.

Two examples of how to use these new instructions inside the JCVM pro-
gram code in order to process the Java bytecodes is outlined in Figure 5. The
sadd bytecode first reads two values from the OS by the new CPU instruction
Read OS integralData. The result of the addition of these values is then written
back by the instruction Write OS integralData. Another example is the byte-
code astore 0. This bytecode uses the CPU instruction Read OS reference to
read a reference value from the OS and stores it into the LV by the instruction
Write LV reference. The big advantage in the sense of computational overhead
of the new typed CPU instructions is that the JCVM can communicate very
effectively with the HW protection units by using the new CPU instructions.
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Java Card Virtual
Machine

new CPU
instructions CPU

Access      to          Memory Area       with      Data Type

Read
Write

Protection
Units

Operand Stack 
Local Variables

integralData
reference
untyped

Main Memory

Operand Stack

Local Variables

Fig. 4. The prototype JCVMs proposed in this work uses new assembly instructions
to access the run-time protected OS and LV memory regions

sadd:                            //Add two short values on the OS
   short VAR1, VAR2, SUM;        //Create variables for sadd
   VAR1 = Read_OS_integralData;  //Read first operand from OS
   VAR2 = Read_OS_integralData;  //Read second operand from OS
   SUM  = VAR1 + VAR2;           //Sum the two operands
   Write_OS_integralData = SUM;  //Write the sum back onto the OS
 
astore_0:                        //Store reference from OS to LV
   short REF1;                   //Create variables for astore_0
   REF1 = Read_OS_reference;     //Read reference from OS
   Write_LV_reference(0) = REF1; //Write reference into LV element 0

Fig. 5. Pseudocode example of the two bytecodes sadd and astore, processed by the
JCVM. The JCVM uses our new CPU instructions to access the OS and LV memory.

4.2 Additional Hardware Protection Units

An overview of the new CPU instructions and the protection units needed to
activate the Type Storing and Type Separating JCVM is presented in Figure 6.
Based on the new CPU instructions introduced in the previous section, our HW
protection units restrict the access to the security critical memory regions of the
OS and LV. The Type Storing JCVM needs a type protection unit to check if
the type expected by the bytecode is also available on the OS or LV.

– Bound Protection Unit (BPU): This unit is responsible for thwarting
attacks performing an OS overflow or underflow. Furthermore, all bytecodes
accessing the LV using a wrong index are detected. The BPU is used by the
Type Storing and Type Separating JCVM prototype.

– Type Protection Unit (TPU): The TPU is responsible for checking that
the bytecodes that are accessing the OS and LV are operating with the right
data type. The TPU is only needed to enable the Type Storing JCVM.
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4.3 Type Storing JCVM Implementation Details

To enable a Type Storing JCVM, the TPU must store additional type informa-
tion for every element held by the OS and LV. Due to the fact that these two
parts are located in RAM, one additional type bit was added to every 8-bit word.
This bit enables the distinction between the two main data types integralData
and reference.

Read

Write

Operand
Stack
Local

Variables

to with
Access Memory Area Data Type

Bound
Protection

Bound
Protection

Type
Protection

OS

LV

OS integralData

LV reference

OS reference

LV integralData

Type Storing JCVM Type Separating JCVM

Hardware Protection Unit

used by defensive JCVM designs
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VM
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Fig. 6. Implementation overview of the two JCVM prototypes. Hardware protection
units perform run-time checks on the OS and LV.

4.4 Type Separating JCVM Implementation Details

In this section we give insight into the detail of how the Type Separating JCVM
was implemented and describe a tool chain to enable it. The Type Separating
JCVM performs all bytecode operations on the right typed OS and LV. This
Type Separating approach avoids type confusion. The type checking problem is
reduced to a bound checking problem.

Most bytecodes work well with our run-time type separating approach to two
main data types (integalData, reference). An exception are the bytecodes oper-
ating with undefined types on the OS: pop, pop2, dup, dup2, dup x and swap x.
In this paper we call them untyped bytecodes. For these untyped bytecodes the
JCVM does not know on which of the two separated OS, specific operations are
performed during run-time.

As a solution for this problem the missing type information was added di-
rectly into the bytecode by using unused bytecodes which are not defined in
the Java Card specification. For example, the pop instruction is either convert
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to pop reference or pop integralData. The JCVM now knows right after fetching
a new bytecode, which typed OS it must operate on. Therefore, no execution
speed is wasted searching for the type information in additional components up-
loaded on the card. In the JCVM specification [12] only 185 (0x00 to 0xb8) of
all available 8-bit bytecodes are specified. The unused bytecodes from 0xb9 to
0xfd can be used to decode the operand stack type information that is needed
directly into the instruction.

To perform the exchange of untyped bytecodes with new typed bytecodes we
propose a static replacement process performed once for every method. To speed
up this process, type information obtained during the bytecode verification pro-
cess can be used to exchange the untyped bytecodes with typed ones. However,
in this work the replacement process for the untyped bytecodes is not looked at
in detail.

5 Prototype Results and Discussion

In this section we show the computational overhead coming from full software
(SW) implementations compared to running our HW accelerated prototypes.
The SW implementations perform the same security checks that are performed
by the HW protection units. Furthermore, the additional hardware overhead is
compared between all prototypes.

5.1 Computational Overhead

Performing all security checks in SW increases the computational overhead sig-
nificantly for frequently executed bytecodes, as illustrated in Figure 7. For ex-
ample the sload bytecode executed by a Type Storing prototype in SW has a
computational overhead of around 107% caused by the following run-time SW
operations:

– Check if the index parameter to the LV is valid.
– Check if the element at the LV index is of type integralData.
– Check if pushing a value from the LV index to the OS provokes an overflow.
– Store the fact that the new value on the OS is of type integralData.

If the sload bytecode is executed on a HW accelerated prototype the overhead
decreases to 5%. In Table 1 different groups of bytecodes are compared to their
computational overhead. As expected, the HW accelerated prototypes consume
much less computational overhead compared to prototypes which implement the
checks in SW.

5.2 Hardware Overhead

In this section we give an overview of the HW modifications used to activate
our HW accelerated prototypes, as depicted in Table 2. The instruction set of
a standard 8051 microcontroller consists of 255 opcodes. Adding our new CPU
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Fig. 7. Run-time measurement for specific bytecodes and the overall time of all imple-
mented bytecodes for different JCVM implementations. Measurements are normalized
to a JCVM without any run-time security checks.

Table 1. Computational overhead for all prototypes, normalized to a JCVM without
performing run-time security checks

Type Storing Type Separating

Bytecode Groups HW SW HW SW

1: Arithmetic/Logic +7% +123% +7% +47%
2: Local Variable Access +5% +152% +9% +52%
3: Operand Stack Manipulation +5% +119% +3% +54%
4: Control Transfer +8% +77% +9% +23%
5: Array Creation/Manipulation +6% +111% +9% +59%

Overall +6% +107% +8% +38%

Table 2. HW modifications needed to activate the HW accelerated run-time security
checks of the prototypes

Additional Hardware Type Storing Type Separating

New 8051 CPU Instructions 9 (+3,5%) 8 (+3,1%)
New 8-bit Control Registers (SFRs) 11 (+52,4%) 15 (+71,4%)
New Bound Protection Unit (BPU) Yes Yes
New Type Protection Unit (TPU) Yes No
Extend RAM word with type bit Yes No

instructions means an overall CPU instruction increase of around only 3,5%.
Another important hardware modification is that the RAM module of the HW
accelerated Type Storing JCVM was extended with an additional type bit for
every memory word in order to differ between the main data types integralData
und reference. Therefore, overall RAM memory size increases to 12,5%.

5.3 Type Confusion Attack Example

An example of a run-time attack on the Java Card prototypes in order to per-
form type confusion between integralData and reference is illustrated in Figure 8.
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There, a run-time attack changes the bspush code 0x10 0x19 to 0x00 0x19. The
JCVM interprets 0x00 as NOP instruction and performs no action. The following
byte 0x19 is interpreted as the bytecode aload 1 which pushes an array reference
onto the OS. The sreturn instruction would now take the array reference and
push it back to the calling function. An adversary is now able to use the array
reference as an integralData which enables different attack paths such as exe-
cuting the data inside the array [16,10,7,5,17]. Both defensive JCVMs designs
from this work are able to thwart this type confusion attack on the OS between
integralData and reference.

00: 19    aload_1
01: 03    sconst_0
02: 04    sconst_1
03: 38    bastore
04: 10 19 bspush
06: 78    sreturn

00: 19    aload_1
01: 03    sconst_0
02: 04    sconst_1
03: 38    bastore
04: 00    NOP
05: 19    aload_1
06: 78    sreturn

{ref}
{ref,int}
{ref,int,int}
{}
{}
{ref}

{ref}
{ref}
{ref}
{}
{}
{ref}
{ref}

{}
{int}
{int,int}
{}
{}
{}

integralData reference

public short dummy{byte[] array}
{
   array[0] = 0x01;
   return 0x19;
}

Type Storing JCVM Type Separating JCVM
Run-time Attack

bytecode: Java code:

malicious bytecode:

Type Confusion Attack Thwarted by
Type Storing and Type Separating JCVM!

Underflow!Wrong Type!

OS impact

compile

int...integralData
ref...reference

Fig. 8. Run-time type confusion attack on the OS to receive the address of an array.
All defensive JCVM implementations of this work are able to thwart this attack.

Type Storing: By using the new typed CPU instructions, it is decoded inside
the JCVM code that the sreturn instruction expects a value of type integralData
on the OS. The previously executed instruction aload 1 pushed the reference of
an array with type reference on the OS. Therefore, the TPU hardware module
finds the wrong type for the sreturn bytecode on the OS and throws a security
exception.

Type Separating: Both main data types have their own OS and LV mem-
ory areas during run-time. Therefore, the malicious instruction aload 1 pushes
an array reference onto the reference OS containing all values from type refer-
ence. The sreturn bytecode tries to pop data from the integralData OS which is
empty. The return operation is now aborted by a security exception because an
underflow on the integralData OS is detected by the BPU hardware module.
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6 Conclusion and Future Work

This work presents Java Card Virtual Machine (JCVM) designs to counter dif-
ferent Fault Attacks. This is done by performing run-time security checks based
on a security policy for each bytecode. These policies ensure that each bytecode
which operates on the operand stack or the local variables memory area uses
the right data type (integralData or reference). Furthermore bytecodes which
overflow or underflow the OS or LV are detected. These run-time checks are
accelerated by hardware protection units to make it harder to skip these checks
with additional Fault Attacks. Furthermore, the defensive JCVM designs are
profiting from the parallel execution of the hardware checks by having very low
computational overhead.

In this work the design of a Type Storing and Type Separating JCVM were
shown. Both designs were implemented on a Java Card prototype platform with
several additional hardware changes. The requirements of the hardware to enable
run-time checking by hardware protection units were listed for both defensive
JCVM designs. We measured that these hardware accelerated prototypes con-
sume 6% and 8% more execution time overall compared to a JCVM without
any additional run-time security checks. This overhead is very low compared
to prototypes which perform all run-time security checks in software and con-
sume around 107% and 38% more execution time. Therefore, we have shown
that our approach of performing additional security checks during run-time by
using hardware units is feasible especially in the case of resource constrained
Java Cards.

For future work we will focus on the bytecode replacement process of untyped
bytecodes required by the defensive Type Separating approach. This transfor-
mation is needed to give the JCVM type information needed during run-time to
process untyped bytecodes like pop. Furthermore, we are working on increasing
the number of separated main types so that it is also possible to detect type
confusion between integralData like short and byte.
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Śl ↪ezak, D. (eds.) FGIT 2010. LNCS, vol. 6485, pp. 459–468. Springer, Heidelberg
(2010)

14. Sere, A., Iguchi-Cartigny, J., Lanet, J.L.: Evaluation of Countermeasures Against
Fault Attacks on Smart Cards. International Journal of Security and Its Applica-
tions 5(2), 49–61 (2011)

15. Sun Microsystems Inc.: Java Card 2.2 Off-card Verifier. White Paper (June 2002)
16. Vertanen, O.: Java Type Confusion and Fault Attacks. In: Breveglieri, L., Koren,

I., Naccache, D., Seifert, J.-P. (eds.) FDTC 2006. LNCS, vol. 4236, pp. 237–251.
Springer, Heidelberg (2006)

17. Vetillard, E., Ferrari, A.: Combined Attacks and Countermeasures. In: Goll-
mann, D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.) CARDIS 2010. LNCS, vol. 6035,
pp. 133–147. Springer, Heidelberg (2010)

18. Witteman, M.: Advances in Smartcard Security. Information Security Bulletin,
11–22 (July 2002)

19. Witteman, M.: Java Card Security. Information Security Bulletin, 291–298 (July
2003)



Dynamic Fault Injection Countermeasure

A New Conception of Java Card Security

Guillaume Barbu, Philippe Andouard, and Christophe Giraud

Oberthur Technologies
Security Group

4, allée du Doyen Georges Brus, 33 600 Pessac, France
{g.barbu,p.andouard,c.giraud}@oberthur.com

Abstract. Nowadays Fault Injection is the main threat for any sensitive
applications being executed on embedded devices. Indeed, such an attack
allows one to efficiently recover any secret or to gain unauthorized priv-
ileges if no appropriate countermeasure is implemented. In the context
of Java Card applications, the main method to counteract Fault Injec-
tion consists in adding redundancy for sensitive operations and integrity
verification for sensitive variables. While being efficient from a security
point of view, such a method substantially impacts the performance of
the application. In this article we introduce a new pragmatic approach
to counteract Fault Injection by dynamically increasing the security level
of the application. This methodology, based on upgrading the Java Card
Virtual Machine, allows us to optimize the performance of sensitive ap-
plications in every day life while providing a strong security level as soon
as an attacker tries to disturb their executions.

Keywords: Java Card, Fault Injection, Countermeasures.

1 Introduction

1996 was an amazing year for attacks in the embedded environment. Indeed, the
concepts of Side-Channel Analysis (SCA) and Fault Injection (FI) were pub-
lished that year and they allow an attacker to recover secrets stored in embedded
devices even if they are protected by very strong cryptography.

The first kind of attacks have been published by Kocher in [1] where he noticed
that the difference of time when executing an application could depend on the
secrets manipulated by the device. This attack was then extended by using the
power consumption or the electromagnetic radiation of the device as side-channel
leakage instead of the execution timing [2,3]. SCA is now reinforced by numerous
new attacks and countermeasures every year.

The second kind of attacks revealed in 1996 were published through a press
release by the company Bellcore [4]. Three researchers of this company noticed
that if the execution of a cryptographic implementation can be disturbed, then
the analysis of the corresponding faulty output can lead to the disclosure of the
secret key. The announcement of this new way of attacking embedded devices
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aroused enthusiasm amongst the cryptographic community and a dozen articles
dealing with this subject were published in the few weeks after the Bellcore’s
announcement. As for SCA, a very large amount of new attacks and counter-
measures are published every year to extend the domain of FI which now applies
not only to cryptographic algorithms but to each and every kind of application
being executed on embedded devices.

These new attacks have been a major breakthrough for the smart card in-
dustry. Indeed, at the beginning of 1996, the security of embedded applications
relied on the theoretical security of the cryptography which was implemented
and on their resistance to Logical Attacks (LA) which were known for years
and for which the countermeasures were well-known. One year later, basing the
security of an application on these two factors only was hopeless. The develop-
ers had then had to invent and to implement ingenious side-channel and fault
countermeasures which must have the lowest impact on the performances of the
application.

At that time, another breakthrough occurred in the smart card environment:
the first Java enabled smart card was produced [5]. Java Cards allow the de-
veloper to implement an application independently from the device on which
it is going to be executed. Such an abstraction layer is provided by the Java
Card Virtual Machine (JCVM) which interprets the Java basic instructions,
called bytecodes, and executes the corresponding instructions for a specific de-
vice. Therefore, executing a brand new Java Card application on each and every
Java Card on the market costs only one development, leading to the very fast
deployment of such an application which cannot be achieved when using native
products. Originally used in the mobile environment, Java Cards are now widely
used in banking and identity environments where the constraints in terms of
security are very strong. Therefore Java Card applications, called applets, pos-
sibly together with the JCVM, must implement logical, side-channel and fault
countermeasures to prevent them from being tampered with.

In this work we present a new way of counteracting FI attacks in the context
of Java Cards. Up to now, securing an applet against fault attacks means mainly
adding redundancy on sensitive operations and verifying the integrity of the sen-
sitive objects at the applet level. Although being efficient against FI, this leads
to a very important overhead in terms of performance and memory consump-
tion. This approach faces its limit when the application has strong constraints
in terms of performances which is always the case for contactless applications
for instance. Moreover, our new solution also aims at another problematic: why
would honest customers (which are the vast majority) have to pay for the dis-
honest ones? For instance, why would they have to wait 400μs to perform a
transaction whereas the same application could run twice as fast if fault coun-
termeasures were removed? Our concept is based on upgrading the JCVM in
order to dynamically enforce the security level of an application when detecting
an attack. This allows the device to execute by default an application with crit-
ical countermeasures only, being thus very fast, and to activate the maximum
security level as soon as an attack is detected.
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The rest of this paper is organised as follows. In Section 2 we recall some
generalities about fault attacks on Java Cards as well as a brief description
of the main corresponding countermeasures. In Section 3 we present our new
protection concept and we describe two different ways of applying it in practice.
We also discuss the benefits and drawbacks of our proposals versus the traditional
way of securing an application by adding redundancy and integrity verifications.
Finally, Section 4 concludes the paper.

2 Fault Injection Attacks and Common Countermeasures

FI attacks and the analysis of their consequences are well-known in the context
of embedded cryptography [6]. However, as stated in [7] and [8], such attacks are
absolutely not restricted to arithmetic computations or cryptographic algorithms
and are then likely to target any part of an embedded system.

In this section, we briefly present the most common FI attacks against Java
Card platform and how they have been combined with LA to bypass specific Java
Card security mechanisms. Secondly, we present the usual countermeasures to
prevent such attacks.

2.1 Attacks against Java Card Platforms

The first attacks that have been mounted against Java Card platforms were
LA. These are usually based on the corruption of the binary representation of a
Java Card application (.cap or .class file) into a so-called ill-formed application
before it is loaded on-card [9]. Such modifications aim at circumventing certain
controls enforced by the JCVM. However in most cases, they also make the
application illegal with regards to the Java Card specifications. Therefore the
modified application should not be able to pass static analysis tools such as
the Java bytecode verifier. The bytecode verification being a costly process, it
is generally executed off-card on Java Card 2.2.2 and earlier, as a part of the
application development tool chain. The usual philosophy of LA is then to skip
this step and to directly load unverified applications on platforms allowing it.

On the other hand, FI has been mainly used on Java Card applications to
disrupt conditional branching instructions to force a jump in a given branch,
favorable to the attacker [10]. For instance, let us observe the piece of code
depicted in Listings 1 and 2 which update the balance of an electronic wallet
depending on whether there is a purchase or a refund.

Although the test if is performed on a boolean variable, one may note that
there is no boolean type at the bytecode level. The Java compiler produces
only bytecodes manipulating values of type int when processing operations on
boolean variables. Therefore the Java specifications mandate that any value dif-
ferent from 0 will be considered as true. From this remark, an attacker disturbing
b when performing a purchase will obtain a credit of her e-wallet instead of a
debit.
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Listing 1. Standard if-then-else state-
ment

// assume b i s a boo lean .
i f ( b ) {

// e−wa l l e t c r e d i t
}
else {

// e−wa l l e t d e b i t
}

Listing 2. Standard if-then-else state-
ment (bytecode sequence)

i l o a d 1
i f e q L1
// e−wa l l e t c r e d i t
goto L2

L1 : // e−wa l l e t d e b i t
L2 : . . .

FI have also been used to disturb values returned by methods of the APIs.
For instance, the arrayCompare()method returns 0 if the two buffers provided
as input are identical. If such a method is used to compare a PIN (Personal
Identification Number) or a MAC (Message Authentication Code), an attacker
presenting a wrong value can force its acceptance by sticking at 0 the corre-
sponding return value.

Moreover, it is now common to assume that attackers with high attack
potential are able to perform two faults during the execution of the same com-
mand [11]. This statement has a strong impact on the cost of the countermeasures
as it will be shown in Section 2.2.

To conclude this brief overview of attacks on Java Card platforms, we recall
that recently the use of FI to provoke incorrect behaviours within a malicious
but well-formed application appeared as a possible solution to attack Java Card
platforms where the bytecode verification is mandatory [12, 13]. In these pub-
lications, FI is used to bypass certain security mechanisms in order to allow a
LA. The so-called Combined Attacks allow then to take benefits of both FI and
LA. Indeed, they are more realistic than LA since they do not rely on an unveri-
fied application loading and potentially more powerful than FI attacks since the
malicious application can make permanent changes and act like a Trojan inside
the card [14].

2.2 Common Countermeasures and Main Drawbacks

As presented above, FI is a real threat for sensitive applications being executed
on a Java Card platform. To counteract such attacks, applet developers must
implement specific countermeasures to detect any incoherence during the ap-
plet execution. As FI mainly focuses on disturbing conditional branchings and
methods execution, one of the most efficient way to detect a disturbance is to
add redundancy for each and every sensitive conditional branching and call to
a sensitive method. For instance, if we want to protect the if used in the code
of Listing 1 against double fault attacks, one has to add redundancy testing in
the branch favorable to the attacker such as depicted in Listings 3 and 4.
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Listing 3. 2nd-order-secured if-then-else
statement

// assume b i s a boo lean .
i f ( ! b ) {

// e−wa l l e t d e b i t
}
else i f ( b ) {

i f ( ! b ) {
ISOException . throwIt (

ATT DET SW) ;
}
else i f ( b ) {

// e−wa l l e t c r e d i t
}
else {

ISOException . throwIt (
ATT DET SW) ;

}
}
else {

ISOException . throwIt (
ATT DET SW) ;

}

Listing 4. 2nd-order-secured if-then-else
statement (bytecode sequence)

i l o a d 1
i f n e L1
// e−wa l l e t d e b i t
goto L2

L1 : i l o a d 1
i f e q L3
i l o a d 1
i f n e L4
bipush 18 <ATT DET SW>
i n v o k e s t a t i c #6 <throwIt>
goto L2

L4 : i l o a d 1
i f e q L5
// e−wa l l e t c r e d i t
goto L2

L5 : bipush 18 <ATT DET SW>
i n v o k e s t a t i c #6 <throwIt>
goto L2

L3 : bipush 18 <ATT DET SW>
i n v o k e s t a t i c #6 <throwIt>

L2 : . . .

As one can easily observe by comparing Listings 1 and 3, the cost of such a
countermeasure is very important. Table 1 illustrates the size and the execution
time of both the unsecured and secured versions of the previous sample code.

In order to overcome any specific platform implementation, and therefore
specific optimizations, the extra execution time is expressed in terms of number
of executed instructions multiplied by tins where tins is the average execution
time for an instruction.

Table 1. Compared size and execution time overhead of unsecured and 2nd-order-
secured if-then-else statement

Mnemonic Listing Size (byte) Timing

Unsecured 2 0 0

2nd-order-secured 4 30 6 · tins

Such an approach is also valid to protect disturbance of methods execution,
for instance by executing three times the method arrayCompare() and checking
that the three different outputs are coherent. This will therefore multiply by a
factor 3 the time required to compare two buffers.
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To ensure the security of an application, it is of common sense to implement
protections against the most efficient practical attacks which are currently double
fault attacks. However, even for the best attackers, it is impossible to achieve
such attacks the first time round. Indeed, the attacker will have a few failures
before succeeding in bypassing a double conditional testing for instance. From
this observation, an obvious solution would be to deactivate all security sensitive
applications if the card is under attack. However, such an option cannot be
applied in some contexts where the provider wants to keep the functionality
alive as long as possible (e.g. in the context of Secure Elements or SIM cards).
In the next section, we present a new security concept for Java Card platforms.
This new methodology is based on modifying the JCVM in such a way that it
can dynamically increase the security level of the application when an attack
attempt is detected.

3 Dynamic Fault Injection Countermeasure: A Generic
Concept Available in Different Flavours

As stated in Section 2, common countermeasures against FI strongly penalize
the performance of Java Card applications on a permanent basis. However, ap-
plications deployed on the field do not always have to face a real attacker. This
section describes how the security of Java Card applications can be modulated by
the JCVM without loss of security insurance and details two particular methods
to implement this dynamic security concept.

3.1 The Dynamic Security Concept

The execution of an application within the JCVM relies on the interpretation
of the bytecode instructions it is made of. Typically, we can consider that the
JCVM interpreter associates a given bytecode value to a given function, imple-
menting the Java instruction, according to the JCVM specification [15]. The
interpretation of an application is then operated according to a fetch-decode-
execute sequence, similarly to most real machines (by opposition to virtual
machines), where:

fetch corresponds to the reading of the instruction value in the bytecode array
of the current method;

decode corresponds to the translation from the read integer value to the func-
tion implementing the corresponding bytecode instruction in the underlying
machine’s language;

execute corresponds to the execution of the selected function.

Having hands on this sequence, the JCVM can dynamically alter these different
steps in order to modify the behaviour of an application on the fly. The generic
concept we describe here consists in using this capacity to adapt the security
level of a given application to the threats it actually faces. That is to say that the
JCVM initially enforces a given security level which will be raised if an attack is
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detected. As a result, the performance of the application are preserved for honest
users whereas attackers will have to deal with the augmented security level.

The security insurance of our concept relies on the state of fact that a few
attempts at least are necessary before achieving a successful FI attack. After the
detection of a first attack, potentially all countermeasures are activated and the
security of the application is ensured in a traditional way.

A prerequisite to the implementation of our concept is then to be able to
categorize the different countermeasures ensuring the security of the application
into different groups, so that the first group of countermeasures would be always
activated, whereas the other group(s) would be activated only after an attack
has been detected, according to our concept.

Several options can be adopted to achieve such a discrimination, either based
on the attacker’s fault injection capabilities or on the data to protect.

Fault attack order. First, we can categorize the countermeasures according
to the order of the fault attack they are meant to counteract. That is to
say that countermeasures against 1st-order attacks (i.e. single fault attacks)
would be always activated, 2nd-order attack would only be activated if an
attack is detected, etc.

Standardized asset hierarchy. Second, we can categorize the countermea-
sures according to the sensitivity of the assets they protect. For instance
in the scope of a banking application, countermeasures protecting primary
assets, such as the PIN and the DES and RSA secret keys, would be always
activated, whereas countermeasures protecting secondary assets, such as the
PTC (PIN Try Counter) and the CRM (Card Risk Management), would
only be activated if an attack is detected.

Custom asset hierarchy. Similarly, we can imagine to let application devel-
opers define and organize the assets by using dedicated annotations for in-
stance.

In the following sections, we propose different solutions to implement the dy-
namic security concept and we discuss their relative advantages.

3.2 Vanilla: Inhibiting Security Bytecode Instructions

To save memory in resource constrained devices like smart cards, Java Card
bytecode run by the JCVM uses an encoding optimized for size. As a design
tradeoff, Java Card bytecodes are coded on one byte. Nevertheless, only 186
bytecodes are standardized in the context of the JCVM [15], thus leaving free
70 possible proprietary bytecodes.

Bourbon Vanilla: Inhibiting Instructions. Our first proposition is to take
advantage of the unused bytecodes by completing the standard instruction set
with some security-specific instructions. These new security-specific bytecodes
will be recognized by the JCVM and not executed (i.e. inhibited) while no attack
has been detected.
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On the other hand, once an attack is detected, the execution of these bytecodes
will be disinhibited and the extra security will be enabled for the next execu-
tions. Those bytecodes (the inhib * below) would implement classical counter-
measures, such as:

– executing a software desynchronization function (e.g. inhib desynchro).
– verifying the integrity of the currently executing application (e.g.

inhib appcrc).
– verifying the types of the current local variables (e.g. inhib typesafe).
– redundant check of a previous if* instruction (e.g. inhib if*red).

Based on unused opcodes and classical countermeasures previously described,
one is now able to fill up the Java Card instruction set. Table 2 gives one example
of this concept.

Table 2. Filling up the instruction set

Bytecodes 0x00 0x01 . . . 0xB8 0xB9

Instructions nop aconst null . . . putfield i this inhib desynchro

Bytecodes . . . 0xBC . . . 0xFE 0xFF

Instructions . . . inhib typesafe . . . impdep1 impdep2

The next step consists in adding those new bytecodes in the code of an applet.
One way to achieve this is to perform a post processing on the .class file from
custom rules that add security bytecodes when needed. For instance, each time
the function OwnerPIN.check is invoked, the inhib desynchro bytecode could
be added just before the invocation. Listings 5 and 6 show how this can be
applied to the if statement used so far as example.

Such insertion, as well as the numerous modifications on either the .class
or .cap file it implies can be easily achieved by using public tools such as
BCEL [16], or CapMap [17].

Listing 5. Initial source code

// assume b i s a boo lean .
i f ( ! b ) {

// e−wa l l e t d e b i t
}
else i f ( b ) {

// e−wa l l e t c r e d i t
}
else {

ISOException . throwIt (
ATT DET SW) ;

}

Listing 6. Bourbon Vanilla-secured
bytecode

i l o a d 1
i f n e L1
// e−wa l l e t d e b i t
goto L2

L1 : inh ib desynchro
i l o a d 1
i f e q L3
i n h i b i f e q r e d L3
// e−wa l l e t c r e d i t
goto L2

L3 : bipush 18 <ATT DET SW>
i n v o k e s t a t i c #6 <throwIt>

L2 : . . .
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From now on, by using a dedicated flag of a state machine that indicates
whether an attack has been detected or not, the JCVM can enable or disable
the security-specific instructions freshly added in the instruction set. Listing 7
describes a way to achieve this goal by modifying the interpreter routine.

This proposition is based on a tradeoff between reaching a high-level of secu-
rity without impacting the performances when it is not necessary. The solution
presented above can be fully automated which implies that no human interven-
tion is required in the process of applet protection.

Still exploiting the concept of inhibiting instructions, we propose another
approach which involves the developer in the process of applet protection. The
next section introduces such a concept and develops how it could be deployed.

Tahitian Vanilla: Inhibiting Sequences of Instructions. The idea devel-
oped above is based on dedicated bytecodes that, when they will be interpreted
by the JCVM, will trigger specific countermeasures implemented by the plat-
form. Another embodiment of the previous concept is to leave the choice to the
developer to inhibit certain portions of his code, in order to increase the applet

Listing 7. Inhibition of security-specific bytecodes

// The i n s t r u c t i o n i s read from memory
i n s t r u c t i o n = f e t ch ( ) ;

// Test I n h i b i t i n g or not the i n s t r u c t i o n
i f ( i s S e c u r i t y S p e c i f i c ( i n s t r u c t i o n ) ) {

i f ( ! f l agAt tack ) {
i f ( f l agAt tack ) {

// Faul t d e t e c t ed
}
// No at tack , no execu t i on o f s e c u r i t y i n s t r u c t i o n

}
else {

i f ( ! f l agAt tack ) {
// Faul t d e t e c t ed

}
// An a t t a c k has been de t e c t ed
execute ( decode ( i n s t r u c t i o n ) ) ;

}
}
else {

// Pro tec t i on aga i n s t f a u l t a t t a c k s
i f ( ! i s S e c u r i t y S p e c i f i c ( i n s t r u c t i o n ) ) {

// No a t t a c k has been de t e c t ed
execute ( decode ( i n s t r u c t i o n ) ) ;

}
}
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security when needed. So, one solution is that the JCVM conditionally triggers
the execution of bytecode instructions. This mechanism can be implemented in
two stages.

First, specific methods in the applet code delimit the part corresponding
to the extra security added by the developer (e.g. Protection.begin() and
Protection.end()) as depicted in Listing 9. These two methods are static and
are defined via a proprietary API which implementation allow to activate/in-
hibit the instructions living between the static methods markups. In order to
perform the activation/inhibition, again the interpreter routine must be modi-
fied as exposed in Listing 8 for instance.

Finally, two scenarii are possible:

– no attack has been detected and the JCVM does not execute the instructions
comprised between the invokestatic #X and invokestatic #Y bytecodes
where #X (resp. #Y) corresponds to the method that enable (resp. disable)
the security (see Listing 10).

Listing 8. Inhibition of blocks of bytecodes

// The i n s t r u c t i o n i s read from memory
i n s t r u c t i o n = f e t ch ( ) ;

// Test I n h i b i t i n g or not the i n s t r u c t i o n
i f ( openMarkup && ! isCloseMarkup ( i n s t r u c t i o n ) ) {

i f ( ! f l agAt tack ) {
i f ( f l agAt tack ) {

// Faul t Attack de t e c t ed
}
// No at tack , no execu t i on o f s e c u r i t y i n s t r u c t i o n
// excep t to c l o s e markup

}
else {

i f ( ! f l agAt tack ) {
// Faul t d e t e c t ed

}
// An a t t a c k has been de t e c t ed
execute ( decode ( i n s t r u c t i o n ) ) ;

}
}
else {

// Pro tec t i on aga i n s t f a u l t a t t a c k
i f ( ! openMarkup | | isCloseMarkup ( i n s t r u c t i o n ) ) {

// No a t t a c k has been de t e c t ed
execute ( decode ( i n s t r u c t i o n ) ) ;

}
}



26 G. Barbu, P. Andouard, and C. Giraud

– an attack has been detected and the JCVM executes all the bytecodes cor-
responding to the extra security added between the invokestatic #X and
invokestatic #Y bytecodes.

Discussion. Ensuring that an applet can trigger tuned levels of security coun-
termeasures only when specific threats are detected can be done via an enrich-
ment of the language recognized by the JCVM. Our first proposition consists
in defining new bytecodes in the JCVM. Thus, those security bytecodes can be
added anywhere in the .class file and are not executed while a specific flag is
not raised. Our second proposition makes use of static methods as markups, to
inhibit the non-crucial countermeasures until an attack is detected.

Table 3 presents the overhead for both propositions in terms of memory foot-
print and execution time when no attack has been detected compared to the
traditional way of securing an applet. As exposed in Listings 7 and 8, an addi-
tional if is executed within the interpreter routine in order to determine whether
an instruction should be first decoded and then executed or not.

Such instructions, at the native level, do not take more than a couple of cy-
cles to be executed. Therefore their impact is limited, although it should not be

Listing 9. Source code with security
markups

// assume b i s a boo lean .
i f ( ! b) {

// e−wa l l e t d e b i t
}
else {

i f (b) {
Protec t ion . begin ( ) ;
i f ( ! b ) {

ISOException . throwIt (
ATT DET SW) ;

}
else i f (b ) {

Protec t ion . end ( ) ;
//e−wa l l e t c r e d i t

}
else {

ISOException . throwIt (
ATT DET SW) ;

}
}
else {

ISOException . throwIt (
ATT DET SW) ;

}
}

Listing 10. Bytecode with security
markups

i l o a d 1
i f n e L1
// e−wa l l e t d e b i t
goto L2

L1 : i l o a d 1
i f e q L3
i n v ok e s t a t i c #7 <begin>
i l o a d 1
i f n e L4
bipush 18 <ATT DET SW>
i n v o k e s t a t i c #6 <throwIt>
goto L2

L4 : i l o a d 1
i f e q L6
i n v ok e s t a t i c #8 <end>
// e−wa l l e t c r e d i t
goto L2

L6 : bipush 18 <ATT DET SW>
i n v o k e s t a t i c #6 <throwIt>
goto L2

L3 : bipush 18 <ATT DET SW>
i n v o k e s t a t i c #6 <throwIt>

L2 : . . .
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completely omitted. Consequently, the execution time of an instruction, ex-
pressed as tins = tfetch + tdecode + texecute becomes t′ins = tfetch + 2 · tif +
tdecode + texecute. Subsequently, we denote by ncred the number of instructions
for the credit operation.

Both these solutions afford a better time/security tradeoff than the common
countermeasure. However, we observe that the Bourbon Vanilla implementation
also allows to reduce the size of the applet. This is due to the fact that the security
mechanisms are deported within the JCVM in this case. On the other hand,
Tahitian Vanilla is equivalent to the traditional method in terms of memory
footprint, only the markups being added.

However, these two solutions require modifications of both the applet and the
JCVM. The main impact of this approach is that the applet loses its portability.

In the following we propose another approach where the applet is not modified
to keep its portability feature.

3.3 Strawberry : Inhibiting Secured Bytecode Implementations

The main design goals of the Java Card technology are portability and security.
Nevertheless, the protection mechanism presented in Section 3.2 is at the cost
of the portability: the “write once, run everywhere” principle does not hold
anymore.

On the other hand, one does not want a security mechanism that impacts
performances (in term of execution time or code size) when the applet is not
under attack.

Table 3. Compared size and execution time overhead of the 2nd-order-secured and
vanilla-secured if

Mnemonic Listing Size (byte) Timing

2nd-order-secured 4 30 6 · tins

Bourbon Vanilla 6 13
2 · tif · (5 + ncred)
+2 · (tfetch + 2 · tif )

Tahitian Vanilla 10 36
2 · (3 + ncred) · tif

+4 · tins′ + 7 · (tfetch + 2 · tif )

To circumvent this issue and keep the portability feature of an applet, an
approach consists in different interpretations of a bytecode depending on the
execution context (e.g. nominal or under attack). For instance one can implement
two different versions of bytecodes: a secure and a non-secure. Thus, by default
the JCVM executes the non-secure versions of the bytecodes while when an
attack is detected, the secure implementation is executed (see Listing 11).

As FI on Java Card mainly focuses on disturbing conditional branchings and
methods execution, it follows that not each and every bytecode in the applet
needs to be protected. So, it is sufficient to apply this principle only on bytecodes
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Listing 11. Inhibited secure bytecodes implementation

// The i n s t r u c t i o n i s read from memory
i n s t r u c t i o n = f e t ch ( ) ;

// Switch between non−secure or secure implementat ion
i f ( f l agAt tack ) {

// Execution o f the secure implementat ion
execute ( decodeSecure ( i n s t r u c t i o n ) ) ;

}
else {

// Pro tec t i on aga i n s t f a u l t a t t a c k s
i f ( ! f l agAt tack ) {

execute ( decode ( i n s t r u c t i o n ) ) ;
}
else {

// Faul t Attack de t e c t ed
}

}

that are sensitive to fault attacks (e.g. ifeq, ifne, sipush, etc.) and on sensitive
API methods (e.g. OwnerPIN.check, JCSystem.arrayCompare, etc.).

A secured ifeq implementation should, for instance, ensure the integrity of
the value read from the operand stack as well as that of the branch taken. The
integrity of the value pushed onto the operand stack is liable to a secured imple-
mentation of the sipush instruction or of the arrayCompare API for instance.

The if-then-else statement could then be written straightforwardly, as in
Listing 1, the security being dynamically ensured by the JCVM.

Discussion. Although coding two versions of bytecodes is a costly process that
increases the JCVM’s size, it nevertheless has several advantages.

Firstly, unlike the methods detailed in Section 3.2, this approach does not
need a modification of the applet. It follows that the applet does not break off
the portability paradigm and can be deployed on any standard JCVM.

Secondly, coding an applet while adding security requires a lot of experience
to obtain a good tradeoff between execution time, code size and security. So,
using that method, even a developer who is not familiar with the concept of FI
can develop an applet on a product that could be evaluated and certified.

Moreover, with that approach, there is no need to involve a third party to
perform a security proofreading of the applet.

Table 4 presents the additional cost for the Strawberry proposition in terms
of memory footprint and execution time when no attack has been detected. As
for the Vanilla methods, the execution time estimations take into account the
additional if added within the interpreter routine which is the only overhead
for this method, as exposed in Listing 11.
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Table 4. Compared size and execution time overhead of the 2nd-order-secured and
Strawberry-secured if

Mnemonic Listing Size (byte) Timing

2nd-order-secured 4 30 6 · tins

Strawberry 2 0 (2 · tif ) · (3 + ncred)

Anyway, all the solutions described in Sections 3.2 and 3.3 are not mutually
exclusive and can be used in a very flexible way. Indeed, depending on the
context, one can adopt a hybrid approach by combining the previous solutions
leading to a greater security for the product.

4 Conclusion

In this paper we presented a new approach to protect Java Card platform against
Fault Injection. This new methodology allows sensitive applications to run much
faster in every day life while providing a very high security level against fault
attacks. By modifying the JCVM, we showed how such a concept can be imple-
mented in practice in two different ways. The first one consists in adding dedi-
cated bytecodes which provides specific security features such as redundancy or
desynchronization. These bytecodes will be inhibited until a threat is detected.
The second solution consists in implementing some bytecodes twice: one im-
plementation being the standard one and the second implementation including
advanced fault countermeasures. The JCVM switches from the first implemen-
tation to the second one as soon as an attack is detected. We also compared
the advantages and drawbacks of each solution in order to provide all useful
information to Java Card developers allowing them to choose the best possible
solution depending on their context.

This new methodology is definitely more pragmatic than the traditional ap-
proach as it allows Java Card applications to fulfill performances requirements
more easily while successfully counteracting advanced fault injection attacks.
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CAP file manipulator, http://secinfo.msi.unilim.fr

http://commons.apache.org/bcel/
http://secinfo.msi.unilim.fr


Java Card Combined Attacks
with Localization-Agnostic Fault Injection

Julien Lancia

SERMA Technologies, CESTI, 30, avenue Gustave Eiffel
33600 Pessac, France
j.lancia@serma.com

Abstract. In this paper, we present a paradigm for combined attacks
on Java Cards that lowers the requirements on the localization precision
of the fault injection. The attack relies on educated objects allocation
to create favorable memory patterns that raise the chances of success
of the combined attack. In order to maximize the probability of suc-
cessful injection, we determine the optimal parameters depending on the
physical properties of the targeted platform. Finally, we demonstrate the
efficiency of our approach through fault injection simulation.

1 Introduction

Security in the smart card field is a main issue, due to the very nature of the
data stored on chips. Up to now, several attack paths have been explored to com-
promise the security of these platforms [6,10,13,16,1,11], leading to new counter
measures designed to prevent these attacks from succeeding [17,5,19,12]. In or-
der to strengthen the security of the embedded systems, the Java Card approach
is to rely on a strong-typed language and to factorize the security verifications
in the Java Card Virtual Machine (JCVM) abstraction layer. The JCVM pro-
vides several security services to the application layer: the firewall mechanism
enforces applets isolation, the JCVM checks for stack- and buffer-overflow in or-
der to prevent illegal memory accesses, and finally the bytecode verifier (BCV)
is responsible for guaranteeing the type safety of the executed programs.

Up to the 2.2.2 version of the Java Card specifications [23,24,22,25], the byte-
code verification is performed off-card, and is therefore optional. Many attacks on
the Java Card platforms [18,9,8] are based on manipulations of the binary repre-
sentation of the applet (the cap file) aiming a circumvention of the type system
of the virtual machine. Such attacks, called “logical attacks” have indeed huge im-
pacts on the overall security of the platform, but are irrelevant on industrial pro-
cesses where bytecode verification is mandatory. Moreover, in the last version of
the Java Card specifications (3.0 connected edition [26,27,28]), the bytecode ver-
ifier is embedded on card, making the bytecode verification process mandatory.

Recently, a new paradigm of attacks called “combined attacks” emerged [3,29,4].
These attacks combine logical attacks and physical attacks to bypass the protec-
tion mechanisms of the Java Card platform. Physical attacks on smart cards usu-
ally rely on laser beams[20], which have to be precisely tuned both in timing and
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localization for the combined attack to succeed. Therefore time and geographic
localizations are strong constraints on the success rate of the combined attacks.

In this paper, we propose a paradigm for combined attacks on smart cards
that allows an attacker to evade localization constraints of the hardware attack.
This paradigm, inspired from an attack aiming classical Java Virtual Machines
(JVM) [15], is based on specific memory patterns that are obtained through ob-
jects allocations by a malicious applet. These objects allocations, although legal
regarding the Java Card specifications and bytecode verifier, end up with a par-
ticular memory pattern that raises the chances of success of the fault injection,
regardless of the localization of the laser pulse.

The rest of this paper is structured as follows. In Section 2, we briefly present
the concepts of the original attack on a JVM, we explain why this attack can’t
succeed on modern JVCM implementations, and we expose our work to exploit
the original concept as part of a combined Java Card attack. In Section 3, we
present our experimental results. In Section 4, we discuss how to prevent such
attacks. In Section 5 we compare our work to existing approaches and conclude
on the contribution this work brings to the Java Card attacks field.

2 The Attack Concept

2.1 Exploitation of Memory Errors on a Java Virtual Machine

Although using physical fault injection on a system’s memory to evade software
security mechanisms has been practiced for a while now on smart cards, the idea
to induce memory errors likely in a PC’s SRAM through physical fault injection
has emerged recently. In [7], Govindavajhala and Appel present a concept of
attack that allows arbitrary memory error to produce type confusion in a classical
Virtual Machine.

Their attack applet declares the two classes A and B presented in Figure 1.
The applet fills the heap with many instances of class B and one instance of class
A named a. All the fields of all the B instances are initialized to point to the
unique A instance. Figure 2 represents an excerpt of the memory after object
initialization.

The algorithm of the applet loops through all A fields of all the objects in
memory and checks through Java pointer equality whether they still contain the
address of the A instance (noted x ). In case an error switches any A field’s value
(let’s say b31.a2), the original algorithm of the applet presented in Listing1.1
mutates into a two steps type confusion on the erroneous field reference.

Listing 1.1. Two steps type confusion on an erroneous field reference

1 A aObj ; B b31 ; B fakeB ;
2 aObj = b31 . a2 ; // type confus ion , step 1
3 fakeB = aObj . b ; // type confus ion , step 2
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c l a s s A {
A a1 ;
B b ;
i n t addr ;
A a4 ;

} ;

c l a s s B {
A a1 ;
A a2 ;
A a3 ;
A a4 ;

} ;

Fig. 1. Classes of the original applet

Figure 2 illustrates the memory operations performed by the virtual machine
during these two steps, with and without a fault injection. In step 1, the applet
dereferences the b31.a2 field in aObj. The memory error changes the content
of the aObj field, that normally contains the address x of the A instance, into
a new value x’=x+Δx, . In step 2, the applet dereferences the B field aObj.b.
Because the memory error induced a Δx bias of the aObj value, the resulting
reference is likely to contain an A reference as most of the memory is filled with
fields of type A. This produces a type confusion as the fakeB reference, that is
statically typed as a B object, references an object of type A.

Fig. 2. Realization of the type confusion on a Java Virtual Machine
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The exploitation of this confusion is very straightforward: the addr field of
the unique A instance is set to forge an A object reference at the address cus-
tom_address, accessible through fakeB.a3 (as addr is the third field of A). The
field fakeB.a3.addr sits in memory at the address custom_address+a3offset. All
the addressable memory is therefore accessible for reading and writing through
this field, with a constant memory offset equal to a3offset. The exploitation of
the type confusion is synthesized in Figure 3.

Fig. 3. Exploitation of the type confusion on a Java Virtual Machine

2.2 Specificity of Modern Java Card Virtual Machines

The attack presented in the previous subsection is dedicated to classical Java
virtual machines. It could not be led identically on Java Card virtual machines
because the embedded platforms they run on have very specific hardware con-
straints, that impacts the memory layout of the virtual machine instances and
the physical properties of the memory where these instances are stored.

More precisely, Java virtual machines run on standard computer architec-
tures, where object instances are allocated in RAM memory. Contrarily, in Java
Card virtual machines, instances are allocated in persistent memory (i.e. flash
or EEPROM).1

The physical properties of the persistent memories make it much more difficult
for an attacker to realize a bit flip through external means [21]. In opposite to
1 Java Card platform provides methods to create temporary (transient) arrays whose

content is stored in RAM, but their headers are still in persistent memory. Only the
objects stored in transient object arrays would have their headers in RAM memory.
These objects are mandatorily of type Object, and are consequently not subject to
type confusion.
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the attack presented in the previous section where the faults in RAM memory
are triggered using the heat of a portable light, errors in persistent memory
generally require laser or electromagnetic injections [2,20]. Moreover, because
of the scarcity of the resources in these embedded platforms, the amount of
persistent memory available for object instantiation is quite limited. The memory
layout of the objects used for the attack must therefore be optimized in order to
maximize the chances of success.

Another main difference between standard Java virtual machines and Java
Card virtual machines is the memory management. In standard Java virtual
machines, references are represented using a direct memory addressing, which
means that the physical memory address of the referenced instances are stored in
memory like traditional pointers. In modern implementations of Java Card vir-
tual machines, references are represented using an indirect memory addressing,
where references are represented as an index in a global instance pool managed
by the virtual machine. This difference between the Java and Java Card virtual
machines addressing mode is illustrated in Figure 4. Because the indirect mem-
ory representation of the instances is decorrelated from the physical address of
the instance, the attack presented in previous section can not apply on Java
Card virtual machines and must therefore be adapted for these platforms.

The use of indirect addressing mode in Java Card virtual machine has an-
other impact that concerns the exploitation of type confusion. A type confusion
between a short field and an instance field in a direct memory addressing mode
can easily be exploited by using the value of the short field as a pointer address
to scan the whole memory. In case of an indirect memory addressing mode, the
same type confusion gives access to an index in the global instance pool of the
virtual machine. Therefore, the exploitation of the type confusion to scan the
memory requires several additional operations. These operations are detailed
further in Section 2.3.

2.3 Combined Attack on a Java Card Virtual Machine

Realization of the Attack. Combined attacks aim at taking benefit from
hardware and logical attacks to create applets that are considered legitimate by
the Java Card virtual machine and the verifier, and whose attack load is activated
through fault injection. Our attack maximizes the chances of success of the fault
injection by creating favorable pattern in persistent memory through instances
allocation. As a result, almost any bit switch in persistent memory creates an
exploitable type confusion that is detected and signaled by the applet. This
combined attack is an adaptation of the attack presented in Section 2.1 to the
specificity of the embedded Java Card virtual machine highlighted in section 2.2.

The preparation of the attack is almost similar. Firstly, the attack applet
declares the two classes A and B presented in Figure 5. Secondly, the permanent
memory is filled with many instances of class B and a single instance of class
A. All the fields of all the B instances are initialized to point to the unique A
instance. Figure 6 represents the persistent memory state and the instance pool
after object initialization.
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Fig. 4. Java and Java Card virtual machines addressing mode

c l a s s A {
shor t s1 ;
shor t s2 ;
shor t s3 ;
shor t s4 ;
} ;

c l a s s B {
A a1 ;
A a2 ;
A a3 ;
A a4 ;

} ;

Fig. 5. Classes of our applet

The algorithm of the applet performs the following operations. The applet
loops through all A fields of all the objects in memory and checks whether they
still contain a reference to the unique A instance. When a perturbation (i.e. light
fault injection) flips a bit in persistent memory, it will likely change the internal
reference of a A field as the main part of the memory is filled with A field. These
internal references are indexes in the instance pool of the Java Card virtual
machine. Because all instances created by the applet are of type B except the
only A instance, the dereference of this erroneous index will return an instance
of class B provided it is inside the instance pool boundaries.

In opposite to the original attack, the type confusion is performed in a single
step (see Listing 1.2). When the attack success is detected through the Java
pointer equality test (let’s say on the b31.a2 field), the resulting dereferencing
produces a type confusion because the reference aObj is statically typed as an
object of type A, whereas it references an object of type B.

Listing 1.2. Single step type confusion on an erroneous field reference
A aObj ; B b31 ;
aObj = b31 . a2 ; // type con fu s ion
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It should be noted that the attack succeed when the fault injection flips any
bit of the instances allocated by our applet, except the B instances headers and
the only A instance. In consequence, the number of instances allocated by the
applet and the ratio between the object headers and the object fields have a
strong impact on the success rate of the attack. This aspect will be discussed
further in Section 3.

When the Java pointer equality test between an A field and the unique A
instance fails, the type confusion is successful. The applet exits the main loop
and outputs a specific status word to indicate the attack success. The type
confusion can then be exploited through the erroneous A field.

Fig. 6. Realization of type confusion on a Java Card virtual machine

Exploitation of the Type Confusion. The combined attack presented so
far produces a reference of type A (aObj) that references an instance of type B
(b32 in our previous example). The exploitation of the type confusion consists
in accessing the fields of the B instance through the aObj reference and through
the b32 reference.

However, when the fault injection switches the A field index, the new index
can reference any B instance on the card. It is therefore necessary to identify the
B instance that is referenced by the aObj reference. The easier way to obtain
this information would be to code the index of the B instance in a field of the
B object, but this approach has a major drawback. The bytes used to code the
index in B instances would not produce a type confusion if switched through
fault injection, thus lowering the chances of success of our attack.

The exploitation of the type confusion can be realized without impacting the
attack success rate by realizing a second, indirect type confusion. After the first
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type confusion has been successfully realized, the aObj variable references the
same object as the b32 variable which means that aObj.s1 and b32.a1 fields ref-
erence the same memory slot. In order to identify the B object that is referenced
by the aObj variable, we set the aObj.s1 field to an arbitrary value, which pro-
duces a new type confusion as the equivalent b32.a1 field doesn’t point to the
unique A instance anymore. The applet then loops through all A fields except
the one referenced by aObj and finds through Java pointer equality the one that
differs from the unique A instance. This A field belongs to the B instance we
can use to exploit our type confusion (b32 in our previous example).

Once the both references of type A and of type B that reference the same
instance have been identified, the type confusion can be exploited to provide
illegal access to the card memory. The exploitation of the type confusion is
synthesized in Figure 7. The aObj.s1 field is set to forge an index of the Vir-
tual machine instance pool. This index is dereferenced as an instance of type A
through the equivalent b32.a1 field. The short fields of this instance (b32.a1.s1
to b32.a1.s4) can then be accessed in reading and writing to dump and modify
arbitrary memory slots.

Fig. 7. Exploitation of type confusion on a Java Card virtual machine

3 The Practical Attack

3.1 Optimal Parameters

The goal of our attack is ultimately to raise the chances of success of the fault
injection part of a combined attack by evading the localization constraints of the
physical attack. This is made possible through a specific allocation of objects that
creates a favorable pattern in persistent memory. Therefore, as we’ve seen in the
section 2.3, the design of the classes have a strong impact on the success rate
of the attack. The optimal ratio is not trivial as two orthogonal factors must be
taken into account :
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– The number of instances, that produce overhead through their headers,
– The number of fields, that produce overhead through the applet code neces-

sary to test Java pointer equality.

In order to exploit the full possibilities of this attack, we determine the optimal
ratio between these two factors. In the remainder of this paper, we use the
following notation :

– A (constant) : allocated persistent memory space before applet loading, in
bytes,

– B (constant) : size of the bytecode necessary to test a single reference through
Java pointer equality, in bytes,

– C (constant) : size of the applet, except the bytecode necessary to test the
references, in bytes,

– D (constant) : total size of the persistent memory, in bytes,
– x : number of instances
– y : number of references per instance
– xy : total number of references in persistent memory

Using these notations, we define the probability of hitting a reference with a
random fault injection as the ratio between the size of references in memory and
the total size of memory (provided references are coded on two bytes):

p(hit) =
2xy

D
(1)

In addition, provided instance headers are coded on two bytes, we can decompose
the persistent memory as follows:

D = 2xy +A+ C +By + 2x (2)

As a result, we can express the number of instances in function of the number
of references per instance:

y =
D −A− C − 2x

2x+B
(3)

This gives us the probability of hitting a reference with a fault injection in
function of the number of instances:

p(hit) =
2x(D −A− C − 2x)

(2x+B)D
(4)

We apply our approach on a chip with 80 kBytes of flash persistent memory.
The size of our applet is 5005 bytes except the reference test bytecode, that
represents 17 bytes per reference. The allocated persistent memory before we
load the applet is 9567 bytes. We compute the optimal ratio between the number
of instances and the he number of fields using the following parameters :
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Fig. 8. Probability of hitting a reference with a fault injection in function of the number
of instances

– A = 9567 bytes
– B = 17 bytes
– C = 5005 bytes
– D = 80 kBytes

The resulting probability of hit is shown on figure 8. This function is maximal
for 519 instances. Using the formula 3, we determine that each instance should
have 61 reference fields. As a result, we obtain a probability of hitting a reference
with a random fault injection of 79%.

p(hit) = 0.79

3.2 Attack Simulation

In order to validate our approach, we have built a fault simulator as a plugin on
the reference implementation provided by Oracle. Our plugin generates errors
in the reference implementation’s representation of the persistent memory and
monitors the resulting behaviour of the applet. After the behaviour caused by the
fault injection has been analyzed, the persistent memory is restored and another
fault is generated. We consider only byte-fault models for the fault injection
simulation, and we generate faults according to two different models :

– Byte modification fault model : the byte affected by the fault is replaced by
an arbitrary hexadecimal value,

– Stuck-at fault model : the byte affected by the fault is replaced by either
0x00 or 0xFF hexadecimal value.

In addition, the fault simulator supports two fault localization model:

– Random localization model : the location of the fault is chosen randomly ,
– Scanning localization model : each byte of the memory is faulted one after

the other.
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We perform our attack simulation using the byte modification fault model. This
fault model produces a superset of the faults generated by a bit-flip fault model
which is representative of the effects of a fault injection on the persistent memory
during a read operation. The Figure 9 shows maps of the smartcard’s non-volatile
memory where successful injections are represented as grey dots. The Figure on
the left presents the simulation of an 8000 laser pulses campaign using a random
localization model and a byte modification fault model, while the Figure on the
right presents the simulation of a 64000 laser pulses campaign using a scanning
localization model and a byte modification fault model.

Fig. 9. EEPROM map of successful injections using a random localization model for
an 8000 laser pulses campaign (left) and a scanning localization model for a 64000 laser
pulses campaign (right)

The results obtained by simulation show that a large part of the non volatile
memory produces a type confusion when exposed to external perturbation. The
part of the non-volatile memory that does not produces type confusions is mainly
filled with the applet’s code (top white part of the graphic) and the virtual
machine’s persistent objects headers (white linear patterns). We can conclude
that the presented attack fully aims its objective as most of the fault injections
produce a type confusion, regardless of the localization of the laser pulse in the
non-volatile memory.

4 Countermeasures

4.1 Defensive Virtual Machines

The Java Card specifications ensure that well-typed code executes identically on
every implementation of the virtual machine. However, when it comes to ill-typed
code, the specifications leave a lot of freedom concerning the implementation of
dynamic checkings. Because ill-typed code is out of the scope of the Java Card
specifications, some virtual machines are much more defensive than others, and
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the behavior in presence of ill-typed code can vary a lot. An overview of possible
dynamic runtime checks is provided in [18]. Among the dynamic runtime checks
implemented in Java Card virtual machines, the firewall checks can provide a
defense against type confusion exploitation. These checks are enforced during
object dereferencing and prevent access to objects belonging to other contexts.

However, our experiments with ill-typed code on modern virtual machines
have shown that our attack can nevertheless grant illegal memory access. Indeed,
firewall context checks are usually performed on metadata stored in the object’s
header. When our fault injection succeeds, the header of an A instance is assigned
to an arbitrary memory slot whose data can be interpreted as the header of an
instance belonging to our applet or even to the JCRE. In this case, the memory
access is granted by the virtual machine.

When the defensive Java Card virtual machine enforces stronger defenses,
the type confusion can be exploited in another way. The class A and the class
B can be appended an additional field whose only purpose is to exploit the
type confusion once the fault injection has succeeded. For example, the modified
classes presented in Figure 10 allow the attacker to access the tabConfusion
byte array as a short array (which have been proven to be extremely harmful,
as presented in [14]). The type of this additional field can be chosen by the
attacker to defeat the defences implemented in the virtual machine. However,
this solution has a major drawback: the bytes used to code this additional field
would not produce a type confusion if switched through fault injection. These
bytes are only useful for the exploitation of the type confusion, and thus lower
the chances of success of the fault injection.

c l a s s A {
shor t s1 ;
shor t s2 ;
shor t s3 ;
shor t s4 ;
shor t [ ] tabConfusion ;
} ;

c l a s s B {
A a1 ;
A a2 ;
A a3 ;
A a4 ;
byte [ ] tabConfusion ;

} ;

Fig. 10. Classes of our applet modified to cope with defensive virtual machines

More generally, combined attacks are a mean of embedding malicious code
inside a legal applet whose attack load is activated by fault injection. Therefore,
our combined attack can not succeed on defensive virtual machines that enforce
efficient dynamic countermeasures against ill-typed code execution.

4.2 Memory Protection

Besides virtual machines countermeasures, some secured IC embed hardware
and software memory protections that allow detection of memory errors.
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These protections include redondant read operations in persistent memory to
detect inconsistencies, parity checking and error-correcting codes to detect and
correct errors in persitent memory.

When activated, such countermeasures are efficient at detecting and prevent-
ing the fault injections described in this paper.

5 Related Works and Conclusion

5.1 Related Works

Our work is an adaptation of the attack presented in [7] to the domain of smart
cards. The specificity of the Java Card applets embedded on smart cards have
already been presented in section 2.2. This specificity prevents exploitation of the
attack originally designed for classical virtual machines on state-of-the-art Java
Card virtual machines. In addition to adapt the original attack to the smart card
domain, we also prove the efficiency of our approach through fault simulation.

Other publications [29,4] present combined attacks that exploit both malicious
applets and fault injection to activate the attack load of the applet on-card,
thus luring the bytecode verifier. However, unlike the attack we present in this
paper, these attacks demand a high precision in the localization of the fault
injection. Inversely, our attack allows to evade the localization constraint of the
fault injection when performing the combined attack.

Finally, in [3], Barbu et. al. propose a combined attack that rely on the multi-
threading capacities of the Java Card 3.0 connected edition platform to interrupt
the virtual machine execution and thus evade the timing constraint in the fault
injection. Like our attack, their work eases the fault injection part of the com-
bined attack by lowering the precision requirements of the laser pulse. However
their attack targets a platform that is barely deployed nowadays, while ours tar-
gets the main stream Java Card 2 as well as the Java Card 3 standard edition
platforms.

5.2 Conclusion

The emergence of Java Card 3 standard edition platforms with embedded byte-
code verifier leads the security community to design new types of attacks that
combine both software and physical attacks. These attacks, called combined at-
tacks, inherit the constraints of the classical fault injection attacks: they require
a high degree of precision in the timing and the localization of the physical fault
injection.

As the smartcard market keeps growing, the security of the integrated cir-
cuits is getting more and more efficient. Upscale chips now embed a high range
of invasion sensors that prevent attackers to compromise the security of the
applications. Therefore, scanning the whole circuit is not an option anymore.

The combined attack paradigm presented in this paper allows to lower dras-
tically the requirements on the localization of the physical fault injection. As a
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result, the attacker can choose any physical zone that shows less security, with-
out trading the success rate of the combined attack. The resulting type confusion
have been proved to be extremely compromising for a large range of nowadays
Java Card platforms.
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Abstract. CRYPTOGPS has been promoted as a public-key technology suitable
for UHF RFID tag authentication. Since it is a classical commitment-challenge-
response (CCR) scheme, it can be converted into a signature scheme using the
transformation proposed by Fiat and Shamir. Previously this signature variant
has not been considered for RFID, but in this paper we show how to achieve
this transformation in a way that yields a compact and efficient scheme. Further,
the three-pass CCR scheme is turned into a regular challenge-response scheme
with the attendant protocol and implementation improvements. Since we use a
block cipher rather than a hash function for the transformation, we justify our
approach using results in the ideal cipher model and the net result is a variant of
CRYPTOGPS that offers asymmetric UHF tag authentication with reduced com-
munication and protocol complexity.

1 Introduction

The terms RFID, Internet of Things, sensor network, and pervasive computing are fre-
quently used to indicate the anticipated widespread deployment of computationally lim-
ited devices. The difficulty of providing (reasonable) security on such devices, in a way
that makes economic sense, is by now well-established.

The radio-frequency identification (RFID) tag is a particularly interesting case, with
billions of tags in deployment, and while it is an over-simplification, two main operating
frequencies are of particular interest. The short-range HF tag (13.56 MHz) is used, for
instance, in public-transport applications and underpins the area of Near Field Commu-
nication (NFC). However, tags that operate over UHF (860-960 MHz) [10] are cheaper,
smaller, and can be read at a distance and it is typically these devices that one has in
mind when discussing RFID and cryptography (since advanced standardised cryptog-
raphy on an HF tag is readily available). One particularly interesting application when
using cheap UHF tags is that of product authentication and there are many proposals to
use cheap UHF RFID tags as part of an anti-counterfeiting solution [1,25,27]. Among
the different approaches that might be used, it is dynamic cryptographic tag authenti-
cation that offers the greatest long-term promise. But since UHF tags are a demand-
ing implementation environment, it is not so straightforward to identify particularly
efficient cryptographic algorithms.

S. Mangard (Ed.): CARDIS 2012, LNCS 7771, pp. 46–61, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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2 Cryptography and RFID Tags

The challenging physical constraints posed by RFID tags have been a significant spur
to cryptographic research. Perhaps most success has been in the field of symmetric
cryptography where we now have a range of block ciphers including PRESENT [4] and
a range of stream ciphers [41] that might be suitable for UHF RFID deployment. Over
the years some of these may feature in products; indeed some such as PRESENT already
appear in ISO standards [23].

The field of asymmetric encryption is less clear. It could be that a symmetric-key
solution works well enough, but that the kind of supporting key infrastructure that is
required is somewhat at odds with the typical RFID model. Taking the supply chain
as an example, millions of tags will be attached to products by a manufacturer with
products being distributed to shops and customers worldwide. Ensuring the right key is
available to the right reader at the right time is not trivial.

There is therefore considerable interest in any asymmetric solution that might yield a
more flexible supporting key infrastructure. Unfortunately, since the typical algorithms
from Internet and PC applications are not at all suited to UHF RFID tags, there are
not so many alternatives. However, there has been some renewed interest in what are
termed commitment-challenge-response (CCR) schemes, since these allow lightweight
tag authentication. Among them is CRYPTOGPS.

2.1 CRYPTOGPS

The scheme CRYPTOGPS, due to Girault, Poupard, and Stern, is well-established in the
cryptographic literature [12,16,33,40]. Several variants feature in ISO/IEC 9798-5 [21]
while the most efficient variant, namely that based around elliptic-curves, is undergoing
standardisation in ISO/IEC 29192-4 [24] which is devoted to asymmetric lightweight
cryptography. Over the years several optimisations have been proposed [15,17] and the
performance of the scheme has been studied by implementors [14,28,29,38].

The essential form of CRYPTOGPS using the typical optimisations one might expect
to use is given in Figure 1. In implementation papers, the PRNG is typically instantiated
using the lightweight block cipher PRESENT [4] in an appropriate mode of use and the
most accurate (post-fabrication) implementation figures [38] show that all the on-tag
cryptographic components can be implemented in around1 2800 GE with a processing
time of around 720 cycles.

The small area required for CRYPTOGPS is due to one property and one optimisa-
tion. The property is that no modulo arithmetic is used on the tag. All integer com-
putations are regular addition and multiplication. The optimisation comes in the form
of coupons that contain the results of a pre-computation; this avoids the need to sup-
port elliptic curve operations on the tag. Certainly limited-use tokens are familiar in a
wide range of applications from pre-paid telephone cards to public transport ticketing.
However, their use is not to everyone’s taste and they are not suitable for all use-cases.

1 It is typical to use the gate equivalent (GE) to compare implementations. The physical area is
divided by the size of a nand gate to give a broadly technology-neutral estimate of its size.
While not perfect, it remains sufficiently useful.
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Tag Reader
PARAMETERS

Curve C, point P Curve C, point P

KEYS

Secret key (sk) s ∈R {0, 1}σ Public key (pk) V = −sP
Secret key k ∈R {0, 1}κ

COUPON PRE-COMPUTATION WITH PRNG

For 0 ≤ i ≤ n− 1
Let ri = PRNGk(i) where |ri| = ρ

Set xi = �HASH(riP )�t
Store coupon xi

PROTOCOL USING ON-TAG PRNG

At time i fetch xi
xi−−−−−→
ci←−−−−− Pick ci ∈R {0, 1}δ

Generate ri = PRNGk(i)

yi = ri + (s× ci)
yi−−−−−→ �HASH(yiP + ciV )�t ?

= xi

Fig. 1. The typical description of CRYPTOGPS using the most common implementation optimi-
sations, where PRNG is a pseudo-random generator, HASH is a hash function, and where σ, κ and
t and δ are security parameters that will be discussed further (see Section 5.1)

However, this is not the focus of the paper and issues around the use of coupons, a
topic that is broader than their use with CRYPTOGPS, are discussed in the Appendix.
Instead, we will be concerned with the well-known Fiat-Shamir conversion [11] of a
basic CCR scheme into a signature scheme. And our goal is to make this conversion, and
the resultant scheme, more computationally efficient than was previously recognised.

2.2 This Paper

It is well-known that an interactive identification scheme can be converted into a digital
signature scheme [11,31] and the security provided by this conversion was proved by
Pointcheval and Stern [36,37]. Indeed two signature variants of CRYPTOGPS have al-
ready been standardised within ISO/IEC; details are available in ISO/IEC 14888-2 [22].

Classically the tool to perform this conversion is a hash function HASH. In general
terms, the commitment xi from the original CCR scheme is combined with the message
m to be signed using a hash function, HASH(xi,m). The output from HASH(xi,m), or
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part of it, is then used as the challenge ci. Some previous work in the literature has tried
to establish the implementation profile of such a scheme when using CRYPTOGPS [30]
but this only confirms its unsuitability for UHF RFID tags, at least in this classical form.
To change this view we need something new.

As a first step we observe that ISO/IEC 14888-2 makes a distinction between two
types of signatures. The first is referred to as a transmissible signature; that is a digital
signature that can be verified by a third party at any time. The second type of signature
is referred to as a non-transmissible signature and is used solely in a dynamic setting.
Here the “message” to be signed comes from the verifier. The prover (or tag) computes
the signature on this message and returns the result. The verifier can set a time-limit,
or time-out, to fix the amount of time that is available for the tag to respond. If the tag
responds in time (with a valid signature) then the verifier is convinced that the tag is
genuine. However, the verifier would be unable to convince a third-party of this unless
he can further guarantee that the signature was computed within a certain time on a fresh
challenge. Nevertheless we have what we want; we have a dynamic tag authentication
scheme that means an interrogator can be certain a tag is genuine.

While helpful, we would still have a proposal that is too large for UHF RFID de-
ployment. The technical contribution of this paper, therefore, is to find a more efficient
(and secure) way of making the CCR-to-signature conversion. In this paper we outline
a full solution with preferred parameter sets. In fact it is only by replacing the func-
tion HASH that we can derive a practical scheme. This, along with the opportunity to
use pre-existing components on the tag, allows us to move to a new improved vari-
ant of CRYPTOGPS with only a moderate increase in area on the tag. And we reap
the operational advantage that the scheme now becomes challenge-response instead
of commitment-challenge-response, improving both the communication burden and the
system complexity.

To provide context, we note that various papers consider the practicability of imple-
menting elliptic curve schemes on RFID tags. These suggest that the area needed to
implement elliptic curve operations is in excess of 13 000 GE and the time to process
an operation requires several tens of thousands of cycles, e.g. [48,47]. These numbers
are markedly greater than what one could expect from an implementation of the non-
transmissible signature variant of CRYPTOGPS with the coupon optimization (see Ap-
pendix). This paper relies on the use of a hash function based around a block cipher.
This has been [45,46], and is likely to remain, an active area of research which may
have some future bearing on the work considered in this paper.

3 Moving to Non-transmissible Signatures

The classical CCR-signature conversion requires the use of a hash function. Yet typ-
ical2 hash functions are not at all suitable for UHF RFID tags [5]. Instead we would
like to instantiate the conversion using a block cipher, particularly since one already
implements PRESENT on the tag in support of CRYPTOGPS [38].

2 Some lightweight hash functions have been recently proposed [2,6,18] but they are new and
tend to have long processing times.
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Tag Reader
PARAMETERS

Curve C, point P Curve C, point P

KEYS

Secret key (sk) s ∈R {0, 1}σ Public key (pk) V = −sP
Secret key k ∈R {0, 1}κ

COUPON PRE-COMPUTATION WITH PRNG

For 0 ≤ i ≤ n− 1
Let ri = PRNGk(i) where |ri| = ρ

Set xi = �HASH(riP )�t
Store coupon xi

PROTOCOL USING ON-TAG PRNG

w←−−−−− Pick w ∈R {0, 1}δ
At time i fetch xi

Compute ci = F(xi, w)
Generate ri = PRNGk(i)

yi = ri + (s× ci)
yi, ci−−−−−−−→ Compute x′ = �HASH(yiP + ciV )�t

F(x′, w)
?
= ci

Fig. 2. The non-transmissible signature variant of CRYPTOGPS for dynamic authentication. We
propose that the function F be built around the block cipher PRESENT, see Section 3.1.

3.1 Choice of Conversion Function

The conversion of an three-pass identification scheme into a signature scheme has been
well-studied in the literature. The first proposals by Fiat and Shamir [11] remain the
foundation for this conversion and proofs of security followed when a more rigorous
theoretical foundation had been established [36].

Our essential requirement is that the output of the conversion function, which we will
denote F, is unpredictable for different inputs while the same inputs yield the same out-
put. A simple and elegant way to construct F, while respecting the preferred parameters
derived in Section 3.2 is to set

ci = F(xi, w) = ENCxi‖w(0
n)

where encryption is performed using the 128-bit key version of PRESENT [4].
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Digression. There might be some interest in understanding how we arrived at this
choice for F. Indeed, at first sight it is not clear that the same function F is required at
both the tag and the reader and we could consider a protocol as follows:

PROTOCOL USING ON-TAG PRNG

w←−−−−− Pick w ∈R {0, 1}δ
At time i fetch xi

Compute ci = F(xi, w)
Generate ri = PRNGk(i)

yi = ri + (s× ci)
yi, ci−−−−−−−→ Compute x′ = �HASH(yiP + ciV )�t

VERIF.(x′, w, ci)
?
= TRUE

In this case, some hypothetical candidates for F might include:

F(xi, w) VERIF.(x′, w, ci)
ci = ENCxi‖w(xi) DECx′‖w(ci) = x′

ci = ENCxi‖w(w) DECx′‖w(ci) = w
ci = ENCw(xi) DECw(ci) = x′

ci = ENCxi(w) DECx′(ci) = w

It can be easily seen that not all of these approaches are secure. Further, we concen-
trated our efforts on the simplest and most efficient-to-implement schemes. In turn, this
matched the theoretical analysis presented in Section 4. In the remainder of the paper,
therefore, F will refer to the following transformation:

ci = F(xi, w) = ENCxi‖w(0
n).

3.2 Setting Parameter Sizes

In this section we consider some attacks that help us better understand the trade-offs
between different parameters. As a baseline, however, we assume that all the secret keys
held on the tag, both for PRESENT and CRYPTOGPS, have a length that is intended to
provide 80-bit security.

For all challenge-response protocols there are some basic on-line attacks, i.e. with-
out any pre-processing. These attempts to fool the reader into accepting a fake tag as
genuine and have a certain probability of success at each run of the protocol.

1. The attacker chooses random yi and ci and sends these as a response. The proba-
bility that F(�HASH(yiP + ciV )�t, w) = ci, where w was sent by the verifier, is
given by 2−|ci| so the probability of success is related to the size of ci.

2. The attacker picks xi at random and computes ci on receiving w. The attacker then
randomly chooses yi and sends the response. He will be successful if �HASH(yiP+
ciV )�t = xi. The probability of success is 2−|xi| and is related to the coupon size.
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The net result of these attacks is to set |xi| = |ci| ≥ z if we are aiming for an imperson-
ation probability less than 2−z. This per-session forgery probability can be improved in
an obvious way using off-line pre-computation and storage. Essentially, one uses either
of the two techniques above to construct a valid and consistent {xi, w, ci, yi} quadru-
ple, though only w, ci, and yi need to be stored. Using the first approach, computing
d quadruples take an off-line work effort proportional to d2|ci| operations while the
second requires a work effort of d2|xi| operations. The probability of success for each
session then becomes d2−|w| since for d potential values of w the fake tag contains a
good response.

A related result stems from the phenomenon of u-collisions, explored by Girault and
Stern in two papers [13,17]. Since the coupons are constructed using a hash function
it is possible that �HASH(yiP + ciV )�t = �HASH(y′iP + c′iV )�t for two potentially
different sets of inputs. This is the familiar hash function collision and the probability
of finding a 2-collision is related to the birthday paradox. If we move to larger values
of u then, depending on the size of xi and the amount of computation devoted to an
off-line attack, an attacker can expect to find some xi for which u values of {yi, ci}
will hash to xi. In more detail, he fixes yi and searches over ci storing the resulting xi.
With a work effort of, say, 280 operations and coupons of size |x| = 64 he can expect
to have a 216-collision for a given value of xi and yi. This then means that 216 values
of ci will allow a forgery, and the probability of alighting on one of these values in
practice—when w is chosen at random by the verifier—is 216−|c|.

There are two complementary aspects to this observation. The first is that the size
of the coupons has an impact on the success probabilities of both on-line and off-line
attacks. The second is that, in practice, an attacker is unlikely to use 280 operations
to gain a per-session advantage. Since the same work effort can recover the long-term
secret CRYPTOGPS key, which was chosen to offer 80-bit security, this latter attack
would in fact be preferable. Indeed, since efforts to recover s are probabilistic [31],
even a work effort significantly less than 280 operations will have some probability of
yielding the long-term secret key (and fully compromising the tag). So the cost-benefit
for the attacker in devoting vast amounts of pre-computation to giving an advantage in
a single run of the authentication protocol is not clear.

Finally, we observe that a device impersonating a genuine passive UHF tag might
not, itself, be a passive UHF tag. It could be a tag that is connected via a relay to a
much more powerful device, or it could even be self-powered; if the “tag” is not vi-
sually inspected, e.g. because it is inside a crate, then it could be anything. So after
receiving w a false “tag” can choose/search xi and yi until finding values for which
�HASH(yiP + ciV )�t = xi. Whether or not this is likely to be accomplished within a
specified response time depends on the parameter values and the computational com-
plexity of the emulating/remote device.

4 Security Foundations

The previous section was concerned with the practical aspects of setting parameter
sizes. Here we consider the theoretical foundations of our preferred conversion method.
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A C
KEYGEN

pk sk

RESP
oracle

chal

res

ok

chal∗

res∗

Fig. 3. Soundness: A wins if Verif(pk, chal∗, res∗) = 1 and (chal∗, res∗) does not come from
the Res oracle

For this it might be helpful to consider the different components of an (RFID) authenti-
cation scheme.

– KEYGEN: on input a security parameter λ, KEYGEN generates key pair (pk, sk),
possibly certified by some certification authority CA.

– CHALL: the Reader generates a challenge chal, on input the public key pk of the
Tag.

– RESP: the Tag uses sk and the challenge chal to generate a string res.
– VERIF: on input pk, chal and res, the Reader outputs a bit 0/1 to denote either

reject or accept.

Clearly we require correctness, that is if (sk, pk) is output by KEYGEN and if res
is computed using both sk and chal = CHALL(pk), then VERIF(pk, chal, res) =
1 with overwhelming probability. The background to the security notion, soundness,
is illustrated in Figure 3. A challenger C is matched against A, an adversary against
soundness. A can receive legitimate challenge-response pairs but is then required to
reply to a previously unseen challenge. We say that an authentication scheme is secure
if, and only if, the probability that the adversary A can provide a good response is
negligible (in the security parameter).

The security of our proposal is substantiated in several steps.

From signature to authentication. Given a signature scheme, it is easy to design a 2-
pass authentication scheme. The reader sends a challenge chal and the tag produces the
response res as a signature on the message chal. The verification procedure is given
by signature verification. It is well known that such an authentication scheme is secure
(i.e. sound) if the used signature scheme is unforgeable.
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(In fact this can be seen from Figure 3 since the signature unforgeability experiment
is similar to that described in Figure 3 where the response res∗ is composed of both a
challenge message w∗ and the corresponding forged signature σ∗.)

The Fiat-Shamir transformation and the random oracle model. As we have seen before,
the Fiat-Shamir heuristic [11] consists in replacing the random challenge c by the output
of a hash function HASH taking as input the prover’s commitment xi and the message
w: c = HASH(xi, w). Pointcheval and Stern proved [36,37] that the resulting signature
scheme is unforgeable, assuming that the hash function HASH is a random oracle [3].
In a nutshell, a random oracle idealizes the hash function that behaves as a random
function that gives unpredictable outputs (but the same input always gives the same
output).

As said previously, hash functions are not suitable for UHF RFID tags and we should
instead find something more interesting.

ICM. The ideal cipher model (ICM) is an idealized model [42] in which a random
block cipher (seen as an ideal cipher) with an n-bit input/output and a κ-bit randomly-
chosen secret key is computationally indistinguishable from a randomly chosen n-bit
permutation. More formally, given an ideal cipher denoted ENC : {0, 1}κ×{0, 1}n −→
{0, 1}n, an adversary having the possibility to make both encryption and decryption
queries to the ideal block cipher, for any key, cannot distinguish a given output from
that of a randomly-chosen permutation. In such a case, we can consider the ideal cipher
ENC outputs as being those of a randomly chosen n-bit permutation.

As we want to use instead of a hash function the block cipher PRESENT, the use of
an ideal cipher may help us to obtain a (proven to be) secure construction.

The Fiat-Shamir heuristic and the ideal cipher. Luckily, Coron et al. proposed in [9] a
black-box transformation of any ideal cipher into a random oracle. Given an ideal cipher
ENC : {0, 1}κ × {0, 1}n −→ {0, 1}n and the message (w1‖ · · · ‖w�) to be hashed, the
construction works as follows:

– set y0 to 0n (or to any fixed IV);
– for i = 1 to � do yi = ENCwi(yi−1)⊕ yi−1;
– output y�.

With a single block w1 this corresponds to the computation y1 = ENCw1(0
n). Thus,

given an ideal cipher ENC, one can replace the hash function/random oracle of the Fiat-
Shamir transform by the above construction and the security proof immediately follows,
with a security parameter corresponding to the block size n used in ENC.

We can next use this construction within the Fiat-Shamir heuristic, which corre-
sponds to our construction, in the particular case of CRYPTOGPS.

Signatures and CRYPTOGPS. In fact, CRYPTOGPS was proven to be a secure zero-
knowledge proof [40,16]. Thus we can directly apply the above results. If, on input
w and commitment xi, the tag computes challenge c = ENCxi‖w(0

n) and response
y, then the signature σ = (c, y) is that of an unforgeable signature scheme and the
authentication scheme described in Figure 2 is also secure.
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5 Implementation Perspectives

While the conversion of an identification scheme to a signature scheme is well-known,
previous work on CRYPTOGPS has avoided this. The main reason is the additional
complexity of supporting the conversion function F.

However, in this paper we show that existing components can be re-used and we
instantiate the ideal cipher with the 128-bit key version of PRESENT. The cipher has
been analysed widely in the community [7,8,26,32,34,43,44] including under related-
key attacks [35]. So while the CCR-to-signature conversion necessarily implies some
overhead to the area that is required on the tag, these overheads are slight and can be
predicted with a reasonable level of confidence. In return, the gain is significant in terms
of system complexity as the three-pass CCR scheme is replaced by a simple challenge-
response protocol.

5.1 Preferred Parameter Sets

It is typical in environments where computational devices are quite constrained to aim
for a security level of “80 bits”. Of course, if a greater security level can be comfortably
accommodated then all the better. But this can compromise performance or even, in the
worst case, mean security cannot be implemented at all on a passive UHF tag.

For implementations of CRYPTOGPS there are two per-tag secrets and the loss of
either would entirely compromise the tag. The first is the secret CRYPTOGPS key. This
could be attacked using techniques to solve the elliptic curve problem and we can turn
to the established literature to establish an appropriate security level. Since any key is
specific to a single tag, it is unlikely that we would need to protect against a widely
distributed Internet-based effort. Thus the security level of 280 seems reasonable and is
attained using a CRYPTOGPS secret of length |s| = 160. Each tag also uses a PRNG
to regenerate ri. This requires a per-tag secret key and, again, an 80-bit key would be
appropriate. This fits well with the goal of using PRESENT in this role, though since we
aim to use PRESENT with 128-bit keys as the basis for the function F, we can either use
a 128-bit key with PRESENT-128 as the PRNG or we can use a padded 80-bit key. There
is no significant impact in performance for either choice.

Taking into account the security analysis given in Section 3.2, we propose to use
a reader-provided challenge w of size 64 bits, and to fix the size of the coupons xi

and the derived challenges ci to 64 bits. And, in turn, we can set |yi| = |ri| = ρ =
|s|+ |ci|+ 80 = 304.

Turning to wider considerations, the per-tag public key needs to be delivered to the
reader in an authenticated way. There are a variety of architectural ways that this might
be done. However, the conventional solution would be to sign the per-tag public key—
using a system-side signature algorithm—and the tag can deliver its public key and as-
sociated signature to the reader. The reader holds the signing verification key needed to
authenticate the per-tag public key. Unlike the per-tag public-private keys, the system-
wide signing key would be a single point of failure for a widely-deployed system and a
security level greater than 80-bit is likely to be preferred.
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5.2 Area, Time, and Complexity

There are many factors to consider when implementing cryptography on an RFID tag. In
this section we take the preferred parameter set outlined above and estimate the impact
of implementing the non-transmissible signature variant of CRYPTOGPS. Our calcu-
lations are best-effort, but since they are based on a wealth of data from synthesized
and fabricated versions of PRESENT and CRYPTOGPS we expect them to be reasonably
accurate.

The on-tag requirements for the CRYPTOGPS computation are PRESENT and an inte-
ger multiplication. There are numerous implementations of PRESENT with 80-bit keys,
some fabricated [38] but not so many with 128-bit keys. Instead we refer to [4] where
the same technology is used to synthesize both variants and requiring 1570 GE for
PRESENT-80 and 1886 GE for PRESENT-128. Both require the same time to complete
an encryption operation.

When we turn to the computation of y = r + sc, the most useful source of infor-
mation data is [39]. There, different strategies for implementing the computation of sc
are described and compared. More usefully, the implementations outlined in [39] give
area and time estimates for combining the multiplication operation with the regenera-
tion of r when using PRESENT. This is an important issue since the combined operation
can suffer from unexpected latencies unless optimisations to the two components are
done in a coherent manner. Happily, the results in [39] cover the case of using a 160-bit
secret s and a 64-bit challenge c and so there is no need to take any liberties in extrap-
olating from smaller parameters. The anticipated area and time requirements for the
non-transmissible signature variant of CRYPTOGPS, denoted CRYPTOGPS-NTS, are
given below for two different implementations strategies, denoted (A) and (B), which
give different area/time trade-offs.

CRYPTOGPS CRYPTOGPS-NTS
F - PRESENT-128

PRNG PRESENT-80 PRESENT-128
(A) (B) (A) (B)

estimated area (GE) 3 424 3 300 3 740 3 616
estimated time (cycles) 389 713 421 745

In short, the area overhead in moving to CRYPTOGPS-NTS could be as little as 316 GE.
However, during fabrication there are inevitable increases (typically of the order of 18-
20%) to the area that are not reflected in synthesis results. Further, we have an additional
complexity on the tag; namely the computation of ENCxi‖w(0

n). While this won’t add
too much in terms of area, there will be an additional complexity to the implementation
as the key for the PRESENT unit is swapped with the key k that is used to generate r.
This will be reflected in some increase to the control logic and some additional time.
The time for changing the key will not be significant; it consists merely of writing over
the key state with a new value and this will depend on the internal operand size. It will
likely remain a small fraction of the total processing time on the tag. For the increase in
the control logic, we note from [39] that the control logic for the implementation of the
computation r + sc consumes around 6-10% of the total area. Even a doubling of the
control logic, which is somewhat unlikely, would yield an additional overhead of 10%
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to the complete implementation, which is within the margin of error that this kind of
computation inevitably carries.

In terms of time for the on-tag computation, the computation of F will be an over-
head, but depending on the working unit for the computation it is likely to be 32 or
64 cycles. This additional cost will be more than compensated for by the fact that the
protocol is now challenge-response. The protocols used in RFID applications require
that the tag responds to the reader. To illustrate, for a CCR scheme we would expect
something like the following schema:

Reader Tag
start −→

←− send xi

send challenge c −→ compute yi
←− send yi

For the signature variant we would have

Reader Tag
send challenge w −→ compute ci = F(xi, w)

compute yi
←− send ci and yi

The amount of operational data sent would be the same in both cases, namely 432 bits3

for our preferred parameter sets. However, in a multi-tag (potentially multi-reader) envi-
ronment a single challenge-response interchange is easier and more reliable to maintain.
Further, each message sent between reader and tag has an operational overhead; there
is header information and trailing information that carries the results of a CRC com-
putation. Much depends on the specific formats of the commands and messages, but a
saving of around 40 bits in total is likely. This may not sound like a lot, but each bit
counts and suggests a reduction of around 10% in the total communication overhead.

To summarise, we estimate that the non-transmissible signature version of CRYP-
TOGPS can be implemented in around 4000 GE within around 800 cycles. Given the
increased reliability and simplicity when using a challenge-response protocol, it seems
likely that this variant of CRYPTOGPS will be of some interest in future prototyping.
Of course, it should be noted that we have concentrated on performance issues such
as area and processing time. In fact, the average and peak power consumption are also
crucial and while existing work on PRESENT and CRYPTOGPS are very promising in
this regard, this aspect of the scheme we have presented will be considered further in
future work.

6 Conclusions

In this paper we have considered a signature variant of the CRYPTOGPS commitment-
challenge-response (CCR) scheme. This variant has not been widely considered for
UHF RFID tag deployment, despite featuring as an ISO standard, since the classical

3 According to the parameters choice (see Section 5.1), |xi|+|ci|+|yi| = 64+64+304 = 432.
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conversion from CCR to signature scheme is too costly on the tag. However, we have
shown that it is possible to re-use the block cipher that is already required to support
CRYPTOGPS and to define a different conversion method. Fully supported by theo-
retical security arguments, the preferred parameter set for this variant of CRYPTOGPS
appears to be well-suited for UHF RFID deployment.
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anonymous referees for their interesting and useful comments.
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Appendix: On the Use of Coupons

As noted in the main text, CRYPTOGPS is ideally suited for use with coupons. A pre-
computed quantity that is used once and then discarded, coupons can be well-suited
to many RFID applications. Often we expect tags to be read 10 to 20 times and then
discarded or recommissioned. With a coupon of 64 bits, see Section 3.2, storing 10 or
even 20 coupons does not pose a significant incremental cost for many applications.



Improved (and Practical) Public-Key Authentication for UHF RFID Tags 61

However, the use of coupons is not to everyone’s taste and certainly they are not
suitable for all use-cases. Indeed some commentators are concerned that coupons could
be consumed in a denial-of-service attack, i.e. by an attacker that maliciously exhausts
coupons on a target RFID tag. This is true. But the benefit of such a time-consuming
attack, that needs to be repeated on a tag-by-tag basis, is rarely if ever articulated. Nev-
ertheless, in response to this concern there has been some work regarding on-the-tag
coupon regeneration [19,20] though this does not seem to be realistic in deployment.
Other more practical approaches have considered ways of reloading coupons and on
mechanisms to deliver coupons directly to the reader so that they don’t need to be car-
ried on the tag.

All in all, the suitability of coupons depends fundamentally on the use-case and the
kind of adversary we are likely to encounter.
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Abstract. Attribute-based credentials are cryptographic schemes de-
signed to enhance user privacy. These schemes can be used for con-
structing anonymous proofs of the ownership of personal attributes. The
attributes can represent any information about a user, e.g., age, citizen-
ship or birthplace. The ownership of these attributes can be anonymously
proven to verifiers without leaking any other information. The problem
of existing credential schemes is that they do not allow the practical
revocation of malicious or expired users when slow off-line devices (for
example, smart-cards) are used for storing attributes. This prevents ex-
isting systems from being used on eIDs (electronic ID cards), employees’
smart-cards or, for example, library access cards. In this paper, we pro-
pose a novel cryptographic scheme which allows both expired user revo-
cation and de-anonymization of malicious users on commercially avail-
able smart-cards. In addition to the full cryptographic specification of
the scheme, we also provide implementation results on .NET V2+ and
MultOS smart-card platform.

Keywords: Revocation, privacy, anonymity, smart-cards, credentials.

1 Introduction

Attribute-based credential schemes were proposed [9] to provide more privacy
during the verification of users’ attributes. By using attribute-based creden-
tials, users can anonymously prove their possession of some attributes. These at-
tributes can represent any personal data such as age, citizenship or valid driver’s
license. In contrast to classical authentication, the identity of attribute holders
is never released. Thus, the verification process is anonymous and with many ad-
ditional features protecting users’ privacy. By using attribute-based credentials
in eID (electronic ID cards), citizens would be able to prove their age, citizen-
ship or any other attribute without releasing their identity or any other private
information which might be abused by verifiers. With the increasing number of
electronic services, smart-card applications and the approaching European eID
cards, it is necessary to provide a cryptographic scheme with as many privacy-
enhancing features as possible. These features have been demanded in both
U.S. and EU official documents [22,18,21]. To preserve privacy, attribute-based
credential schemes should provide following features.
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– Anonymity: user’s identity stays hidden during the verification of attribute
ownership.

– Untraceability: attribute issuers are unable to trace issued attributes and
their owners.

– Unlinkability: verification sessions of a single user are mutually unlinkable.
This feature prevents from user profiling.

– Selective disclosure of attributes: users can selectively choose to disclose
only a subset of private attributes to verifiers. Only attributes necessary for
obtaining a service are disclosed.

– Non-transferability: lending of credentials is prevented.
– Revocation : invalid, lost, stolen or expired credentials are revocable.
– Malicious user identification : although proving attribute ownership is

an anonymous process, the identity of malicious users and attackers can be
revealed.

In particular, the last two items are very difficult to achieve using existing
schemes. In this paper, we present a scheme which supports all the features.

1.1 Example Scenario

In this paper, we use a sample demonstration scenario to provide a practical ex-
ample of using attribute-based credentials. Although many examples are avail-
able (e.g., proving age on a teenage webchat, proving citizenship on borders,
proving legal drinking age), we chose a municipal library scenario. In a munici-
pal library, users are required to pay quarterly fees to be allowed to borrow books.
A citizen can be issued an attribute attesting to the paid fee. The attribute is
stored on citizen’s eID card (a smart-card) and the card is able to compute a
proof of ownership of that attribute. By using the attribute-based credentials,
a user can use the eID card to rent books. He just simply waves his contactless
smart-card when he leaves the library with books. The first privacy-enhancing
feature, anonymity, assures that nobody can link the identity of the user to the
type of books he reads. This protects reader’s privacy because his reading habits
should be considered a private information. The untraceability feature prevents
even the library which issued the attribute from seeing what books are read by a
particular person. The unlinkability feature prevents from the profiling of users,
all visits of a single user at the library are mutually unlinkable and the library is
unable to get to know what books were read subsequently. In some scenarios, user
profile can be so specific that it allows de-anonymization. The unlinkability fea-
ture prevents user profiling and such de-anonymization. The selective disclosure
of attributes lets the user show only the attribute attesting to paid quarter fees.
No other information or attributes are released. The non-transferability feature
prevents readers from lending their cards to users who don‘t pay annual fees.
Finally, the revocation and malicious user identification features allow library
to expel and identify readers who violate the library’s rules (e.g., steal books).
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2 Current State in Revocation Techniques

To provide user privacy, the verification session must be totally anonymous, un-
linkable to other sessions and revealing no personal or traceable information. In
contrast to this requirement, some linking is required in situations where the eID
card is lost, stolen or destroyed. In these cases, the credential must be revoked
so that it cannot be used any time in future. Furthermore, if the user breaks the
rules of the library (e.g., steals some books or does not return books in time),
there must be a mechanism for the identification of such misbehaving users. The
problem of existing attribute-based credentials is that they do not support the
revocation of credentials and the identification of malicious users if off-line, com-
putationally weak devices (such as smart-cards) are used for storing attributes.
We provide a short overview of revocation techniques used in existing credential
systems together with reasons why we consider them impractical.

Blacklisting of Credential IDs
Some credential systems, for example U-Prove [20], use a credential identifier em-
bedded to each transaction. The identifier is a unique and unchangeable number
linked to the credential. This number can be used for revoking the credential
by putting it on a blacklist. Nevertheless, this approach destroys unlinkability
(the unique credential identifier creates a link among user’s verification sessions).
Furthermore, a credential can be revoked only if a verifier has already seen the
credential before and there is no mechanism for revoking credentials by their
issuers. That is why the issuer has no power to revoke invalid credentials.

Blacklisting of Secrets
The technique for blacklisting of secrets, used, for example, in [2], allows an in-
valid credential to be revoked by using the knowledge of secret keys used for its
construction. This technique can be used in cases where secret keys of users are
revealed and for example made public on the Internet. In that case, a revocation
authority can create a blacklist based on these keys to prevent verifiers from
accepting credentials based on leaked keys. Nevertheless, this technique works
only if the user secrets are revealed. But in most cases, the secret keys never
leave a protected device (like a smart-card), therefore they cannot be revoked.
Moreover, lost, stolen or expired credentials (e.g., stored on a smart-card) cannot
be revoked because their secret keys never become public.

Epochs of Lifetime
Epochs of lifetime are the official revocation technique of idemix [5]. Here, a
credential carries an epoch of validity as a special attribute. In this case, the
verifier can check whether the credential is fresh. The user is required to renew
his credential for every new epoch. The disadvantage of this mechanism is that
the revocation of credentials is never immediate, the revoker must wait until
their expiration and the issuer must stop issuing new credentials. The second
major disadvantage is that the user must periodically run the issuance protocol
with the issuer (or designated entity) to update his credential.
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Accumulator Proofs
The most recent technique, used for example in [6,16], allows both issuers and
verifiers to revoke credentials immediately by publishing so called whitelists. In
this technique, a user must provide a proof that his credential is included on a
list of valid credentials. This can be done anonymously and efficiently by using
so called accumulators which accumulate all non-revoked users. Most efficient
techniques are based on bilinear maps [16]. The disadvantage of these solutions
is that the user must update his secrets every time any other user is revoked from
the system. This is not a big problem when the user uses an online computer for
his verification. On the other hand, if the user uses only an offline device, like a
smart-card, then he is unable to update his secrets. Therefore, the user is unable
to use his credentials after some other users are revoked from the system. We
aim to provide a system which can be used for everyday verification in libraries,
pubs or hotels, therefore the smart-card implementation is crucial. That is the
reason why we consider the accumulator-based techniques impractical.

Verifiable Encryption of Secrets
The user identity or personal secrets can be encrypted inside the credential in
such a manner that only a trusted authority can do the revocation or identity
disclosure using decryption. In this case, the system might be considered insecure
from the perspective of a user who does not fully trust the authority. In fact,
this is likely a problem since users would not welcome a scheme where a fixed
third party can learn all information about their verification sessions, including
their identities. In practical scenarios, the user would have no choice from mul-
tiple trusted authorities. This even more degrades his trust in such a dictated
authority. Furthermore, there is a problem with unlinkability because the verifi-
able encryption must be randomized for each session, which might be inefficient.
Revocation by verifiable encryption is mentioned in specifications [5,20] without
further details and supporting infrastructure description.

2.1 Our Contribution

In this paper, we propose the first scheme with practical revocation and malicious
user identification which is deployable on off-line smart-cards. By adding the
support of smart-cards, we allow the application of attribute-based credentials to
eIDs. Furthermore, our scheme provides scalable revocation of particular privacy-
enhancing features. This allows not only the revocation of credentials but also
the revocation of untraceability and the revocation of anonymity of malicious
users.

– Revocation of Credentials:
• Immediate Revocation: there is no need to wait for the credential
lifetime expiration, credentials can be revoked immediately.

• Issuer and Verifier Driven Revocation: Revocation is available to
both attribute issuers and verifiers. Any of these entities can initiate the
revocation process.
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• Verifier Local Revocation (VLR)[4]: valid users do not have to up-
date their credentials or download any values after some other users are
revoked.

• Computationally Efficient Revocation: computational complexity
of the user’s part of verification protocol does not depend on the number
of revoked users.

• Off-line Verification: the verification session runs between the user
and verifier only. There is no need to contact other parties.

The revocation of credentials is an extremely important feature but in some cases
it is not enough just to revoke users from the system. In cases where damage was
done, the service providers need a technique for learning the identity of attackers
to make them responsible. We add more granularity to revocation in our scheme
by allowing the revocation of particular privacy-enhancing features.

– Revocation of Unlinkability: in non-critical policy breaches, the verifier
can inspect user’s past behavior by revoking unlinkability. All past sessions
of a particular user can be inspected without releasing his identity.

– Revocation of Anonymity: in critical policy breaches, it is possible to
revoke the anonymity of a user to make him responsible for his acts.

We acknowledge that these revocation features must be strongly protected against
a misuse. That is the reason why we spread the ability to do revocation over
more entities. In our system, the issuer, verifier and a third authority must co-
operate to revoke any privacy-enhancing feature. By such distribution, we limit
the probability of misusing the revocation by a single authority. To provide more
security (and user trust in our system), the third party can be distributed using
multi-party computations. Moreover, the user has the freedom to choose his own
attribute issuer among many commercial subjects, therefore he does not have
to trust a fixed designated revocation authority but rather liberally chooses an
entity he trusts most.

3 Proposed Attribute-Based Credential Scheme
Architecture

In this section, the novel scheme for attribute-based credentials is proposed. The
entities, general communication pattern and cryptographic design of underlying
protocols are described in this section. The security analysis of the scheme is
provided in Section 4.

3.1 Entities

There are four entities in the proposed scheme. Some of them are in possession of
secret keys. The cryptographic construction of keys and their usage are described
further in Chapter 3.4.
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– Issuer - I: the entity who issues personal attributes to Users. Issuers also
cooperate during the revocation of anonymity. All Issuer, Revocation Referee
and Verifier must cooperate to reveal the identity of a malicious user. Issuer
is equipped with a key KI .

– Revocation Referee - RR: a single entity who generates system param-
eters params, cooperates with the Issuer during the attribute issuance and
with Issuer and Verifier during the revocation of anonymity. RR works as a
privacy guarantee because he decides about the type of revocation (creden-
tial revocation, unlinkablity revocation or anonymity revocation) based on
the evidence provided by the Verifier. No entity is able to revoke without
RR, yet RR is not a fully trusted party. RR cannot revoke or reveal any
private information alone, only in cooperation with I and V. RR is equipped
with a secret key KRR.

– User - U: the entity who is in possession of a smart-card with issued at-
tributes. The user can anonymously prove the attribute ownership by using
the smart-card. Each smart-card has a secret master key KU unique for each
User needed for the attribute proof generation. Additionally, a secret session
key KS is generated for each verification session. The KS key randomizes
the sessions to make them completely unlinkable.

– Verifier - V: the entity who verifies User’s attribute ownership (sometimes
called relying party). Using the transcript of the verification session and the
evidence of a rule breach, Verifiers can ask RR for revocation. If RR decides
that revocation is rightful, User’s master key can be anonymously revoked or,
in more serious cases, identity of a malicious User can be disclosed. Verifiers
need only pre-shared system parameters. They do not communicate with
other parties during User verification (the process runs off-line).

3.2 General Overview of Proposed Scheme

The architecture of the proposed scheme, briefly introduced in [15], is depicted in
Figure 1. The scheme is composed of four protocols - Setup, IssueAtt, ProveAtt
and Revoke.

– (params,KRR,KI)←Setup(k, l,m): this algorithm is run by RR and Issuer.
Setup inputs security parameters (k, l,m) and outputs system parameters
params. RR’s private output of the protocol is the KRR key and I’s private
output is the KI key.

– KU ←IssueAtt(params,KI,KRR): the protocol outputs User’s master key
KU . The master key is needed by the User for creating the attribute own-
ership proof in the ProveAtt protocol. By using advanced cryptographic
techniques, the KU is generated in such a way that only User’s smart-card
learns it although both RR and Issuer must contribute data and collaborate
on KU creation.
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Fig. 1. Architecture of Proposed Scheme

– proof ←ProveAtt(params,KU): using public system parameters and the
KU generated by the IssueAtt protocol, it is possible to build attribute
proof using the ProveAtt. For each proof , a unique session key KS is gen-
erated by the User. The proof is anonymized and randomized by KS . The
protocol runs between the Verifier and User’s smart-card. By ProveAtt, the
User proves his ownership of attributes.

– rev ←Revoke(params, proof,KRR,KI): in special cases (e.g., smart-card
loss, theft or damage), the issued attributes can be revoked or even the ma-
licious Users can be de-anonymized. In that case, the proof transcript is sent
by the Verifier to the RR with adequate evidence for revocation. RR evalu-
ates the evidence and opens the proof transcript using his KRR. Depending
on the type of revocation chosen by RR, the RR can either blacklist the
attribute by publishing anonymous revocation information rev on a public
blacklist or provide the Issuer with information necessary for User identifi-
cation. The Issuer is then able to identify and charge the malicious User.

3.3 Used Cryptographic Primitives and Notation

The crucial building blocks of our scheme are: discrete logarithm commitments,
Σ-protocols [10] for proofs of discrete logarithm knowledge and representation
[8], proofs of discrete logarithm equivalence [8] and the Okamoto-Uchiyama trap-
door one-way function [19].

DL Commitments
To commit to a secret value w ∈ Zq, where q is a large prime, we use a sim-
ple computationally hiding and perfectly binding commitment. Let p : q|p − 1
be a large prime and g a generator of order q in Z

∗
p. Then, c = gw mod p is a

simple commitment scheme secure under the DL assumption. After publishing
c, the secret w is computationally hidden (hiding property) but the committer
is perfectly bound to his w (binding property) and unable to change w without
changing c.
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Σ-protocols
Σ-protocols [10] can be used for proving the knowledge of secrets and for prov-
ing the construction correctness without leaking additional information. We use
the protocols described in [8] to prove the knowledge of a discrete logarithm
(the protocol PK{α : c = gα}), discrete logarithm equivalence (the protocol
PK{α : c1 = gα1 ∧ c2 = gα2 }) and discrete logarithm representation with respect

to public generators (the protocol PK{(α, β, γ) : c = gα1 g
β
2 g

γ
3}). These protocols

can be translated to full zero-knowledge protocols [11] thus they can be proven
to leak no more information than intended. They can run non-interactively with
computational security using [14]. With some restrictions, the protocols can be
used in groups with hidden order by sending answers in Z [13]. Various types of
proofs of knowledge and a framework for creating proofs can be found in [8].

Okamoto-Uchiyama Trapdoor One-Way Function
Let n = r2s and r, s be large safe primes. Pick g ∈ Zn such that g mod r2 is
a primitive element of Z

∗
r2 . Then c = gx mod n is a trapdoor one-way func-

tion with r as a trapdoor [19]. Value x can be computed using the trapdoor as

x =
((cr−1 mod r2)− 1)/r

((gr−1 mod r2)− 1)/r
mod r. The function is secure if the factorization of

n is hard. Size recommendations for n are the same as for RSA.

Notation
For various proofs of knowledge or representation, we use the efficient notation
introduced by Camenisch and Stadler [8]. The protocol for proving the knowledge
of discrete logarithm of c with respect to g is denoted as PK{α : c = gα}. The
proof of discrete log equivalence with respect to different generators g1, g2 is
denoted as PK{α : c1 = gα1 ∧ c2 = gα2 }. A signature by a traditional PKI (e.g.,
RSA) scheme of a user U on some data is denoted as SigU(data). The symbol
“:” means “such that”, “|” means “divides”, “|x|” is the bitlength of x and
“x ∈R {0, 1}l” is a randomly chosen bitstring of maximum length l.

3.4 Cryptographic Specification of Protocols

(params,KRR,KI)←Setup(k, l,m) protocol: the goal of the protocol is to gen-
erate system parameters params, RR’s revocation key KRR and Issuer’s key
KI . The protocol inputs security parameters k, l,m (k is the length of the chal-
lenge/hash function used, l relates to the length of Users’ secrets, and m is the
verification error parameter). The Issuer generates a group H defined by a large
prime modulus p, generators h1, h2 of prime order q : |q| = 2l and q|p − 1. The
Revocation Referee RR generates group G for the Okamoto-Uchiyama Trap-
door One-Way Function. G is defined by the modulus n = r2s with r, s large
primes (|r| > 720, |r| > 4.5l, |n| ≥ 2048, r = 2r′ + 1, s = 2s′ + 1, r′, s′ are
primes), generator g1 ∈R Z

∗
n of order ord(g1 mod r2) = r(r − 1) in Z

∗
r2 and

ord(g1) = rr′s′ in Z
∗
n. RR also randomly chooses its secrets S1, S2, S3 : |S1| =

2.5l, |S2| = l, |S−1
3 mod φ(n)| = l and GCD(S1, φ(n)) = GCD(S2, φ(n)) =

GCD(S3, φ(n)) = 1. Finally, RR computes an attribute seed Aseed = gS1
1 mod n
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(public, common for all Users, linked to a specific personal data type, e.g. cit-
izenship) and values g2 = gS2

1 mod n, g3 = gS3
1 mod n. There might be more

types of attribute seeds (different Aseedi ’s and S1i ’s) related to different at-
tributes Users want to prove. In that case, each unique Aseedi represents one
attribute, e.g. nationality, driving permission or legal voting age.1 These seeds
can be aggregated together by multiplying modn. Thus, in general, the creden-
tial construction gathers more attributes. In the rest of the paper, we consider
for simplicity only one Aseed in credential, making attribute and credential the
same.

The values q, p, h1, h2, n, g1, g2, g3, Aseed are made public as system parameters
params, while r, s, S1, S2, S3 are securely stored at RR as KRR key. Addition-
ally, we use a traditional digital signature scheme (e.g., RSA). Issuers and Users
are equipped with a private/public key-pair for digital signatures. This can be
accomplished by existing techniques for PKI. The Issuer’s private key represents
the KI .

RR User Issuer

w1 ∈R {0, 1}2l−1, w2 ∈R {0, 1}l−1

CI = commit(w1, w2) = hw1
1 hw2

2 mod p

PK{w1, w2 : CI = hw1
1 hw2

2 }, SigU (CI)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Store (CI , SigU (CI))

SigI(CI)←−−−−−−−−−−−−−−−−−−−
A′

seed = gw1
1 gw2

2 mod n

A′
seed, CI , SigI(CI),

PK{(w1, w2) : CI = hw1
1 hw2

2 ∧ A′
seed = gw1

1 gw2
2 }

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
wRR : Aseed = gw1

1 gw2
2 gwRR

3 mod n−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
User master key for Aseed: KU = (w1, w2, wRR)

Fig. 2. IssueAtt Protocol

KU ←IssueAtt(params,KI,KRR) protocol: the first part of the IssueAtt

protocol runs between the User’s smart-card and the Issuer. The communication
is not anonymous here, thus the Issuer can physically check the identity of the
User, his other attributes etc. Then, User’s smart-card generates User’s contri-
bution to the master key (w1, w2) and commits to these values. The commitment
CI is digitally signed2 by the User and sent with an appropriate construction

1 A public list of attributes and their assigned Aseedi ’s is maintained by RR. Additional
Aseedi ’s can be computed and published dynamically, on demand from Issuers.

2 Here, we rely on already established PKI, e.g., RSA signatures.
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correctness proof PK{w1, w2 : CI = hw1
1 hw2

2 } to the Issuer. The Issuer checks
the proof, the signature and replies with his digital signature on the commit-
ment. In this phase, the User generated and committed to his key contribution.
It will be used in all his future attribute proofs. The Issuer approved a new User
by signing the committed key contribution.

The second part of the protocol runs between the User’s smart-card and
RR. In this phase, RR checks the signature of the Issuer on User’s commit-
ment CI and computes his contribution wRR to User’s master key such that
Aseed = gw1

1 gw2
2 gwRR

3 mod n holds. As a result, the User’s smart-card learns
all parts of the KU , namely User’s part (w1, w2) and RR’s part wRR. This
triplet forms the discrete logarithm representation of the seed Aseed such that
Aseed = gw1

1 gw2

2 gwRR

3 mod n. This representation can be computed only in coop-
eration with RR (who knows the factorization of n). Although Aseed is shared
among all Users as a system parameter, the triplet (w1, w2, wRR) is unique for
each user, since (w1, w2) is randomly generated by each User’s smart-card and
wRR is generated by RR. Due to the discrete logarithm assumption, Users are
stuck to their keys and they are unable to compute other valid keys without
knowing KRR. The master key KU never leaves the smart-card and is stored in
card’s hardware-protected memory. All operations involving (w1, w2, wRR) are
computed on the card.

The second part of the IssueAtt protocol can be repeated to obtain keys for
all demanded attributes. All attributes can be aggregated by multiplying mod n,
keys are aggregated using plain addition. For simplicity, we describe the proof
of only 1 attribute. The IssueAtt is depicted in Figure 2.

proof ←ProveAtt(params,KU) protocol: the protocol is used by User’s smart-
card to construct a proof about attribute ownership. In the protocol, the User
proves the knowledge of his master key KU = (w1, w2, wRR). The session is ran-
domized by a session key KS . User creates a commitment C2 to the session key
KS and proves its correctness. The protocol transcript forms the proof output.
The protocol is illustrated in Figure 3 in CS notation and in Figure 4 in full.

RR User Verifier

Aseed = gw1
1 gw2

2 gwRR
3 mod n

KS ∈R {0, 1}l
A = AKS

seed mod n

C1 = gKSwRR
3 mod n

C2 = gKS
3 mod n

PK{(KS,KSw1,KSw2,KSwRR) : A = gKSw1
1 gKSw2

2 gKSwRR
3

∧A = AKS

seed ∧ C1 = gKSwRR
3 ∧ C2 = gKS

3 }
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Fig. 3. ProveAtt Protocol in Camenisch-Stadler Notation
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User VerifierAseed = g
w1
1 g

w2
2 g

wRR
3 mod n

KS ∈R {0, 1}l

A = A
KS
seed mod n

C1 = g
KSwRR
3 mod n

C2 = g
KS
3 mod n

r1, r2 ∈R {0, 1}m+k+3l

r3 ∈R {0, 1}m+k+4.5l

rS ∈R {0, 1}m+k+l

¯Aseed = g
r1
1 g

r2
2 g

r3
3 mod n

Ā = A
rS
seed mod n

C̄1 = g
r3
3 mod n

C̄2 = g
rS
3 mod n A, Ā, ¯Aseed, C1, C2, C̄1, C̄2−−−−−−−−−−−−−−−−−−−−−−−−−−→

e ∈R {0, 1}k

←−−−−−−−−−−−−−−−−−−−−−−−−−z1 = r1 − eKSw1

z2 = r2 − eKSw2

z3 = r3 − eKSwRR

zS = rS − eKS z1, z2, z3, zS−−−−−−−−−−−−−−−−−−−−−−−−→
C1

?

	≡ Crev
2 mod n

¯Aseed
?≡ Aeg

z1
1 g

z2
2 g

z3
3 mod n

Ā
?≡ AeA

zS
seed mod n

C̄1
?≡ Ce

1g
z3
3 mod n

C̄2
?≡ Ce

2g
zS
3 mod n

Fig. 4. ProveAtt Protocol in detail

rev ←Revoke(params, proof,KRR,KI) protocol: the protocol is executed if a
User needs to be revoked from the system or if Verifier wants to reveal malicious
users (and has a strong evidence for doing so). The transcript of the ProveAtt

protocol can be forwarded to the RR entity in case of rule breaking. The RR
entity can decide about the type of revocation. Credential revocation, unlinka-
bility revocation or anonymity revocation are available.

Credential Revocation
RR knows the factorization of n thus he knows the trapdoor to the Okamoto-
Uchiyama trapdoor function. From C2, he learns the session key KS and from
C1, his contribution wRR to the User key KU . RR can publish revocation infor-
mation rev = wRR on a public blacklist. Then, each Verifier is able to check if

the User is blacklisted or not by checking C1
?≡ Crev

2 mod n. The equation holds
only for revoked Users. Using this type of revocation, no identity is revealed
and no valid users have to update their keys. The revocation does not influence
non-revoked users in any sense. Verifiers only need to periodically download the
blacklist with short rev values. Also Issuers can initiate the revocation, by send-
ing CI to RR who is able to link CI to wRR. The revocation information rev is
then published by RR in the same way as if revocation was initiated by Verifiers.

Unlinkability Revocation
RR can reveal wRR and w′

RR from two transcripts of the ProveAtt proto-
col. If wRR = w′

RR, then the session has been carried out by the same User.
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The revocation of unlinkability can be used by Verifiers to inspect past behavior
of a suspected User. Again, a strong evidence of rule breach must be provided
to RR who can either allow or reject unlinkability revocation.

Anonymity Revocation
Sometimes, it is necessary to identify malicious users. In that case, RR reveals
wRR and finds corresponding CI since both values are linked by the IssueAtt

protocol. CI is then forwarded to Issuer who can de-anonymize the User since
he has a database of digitally signed CI ’s. The identification is non-repudiable
since CI is digitally signed and perfectly binds the User to the key inside.

4 Security Analysis

The ProveAtt protocol assures that legitimate attribute owners are accepted
(completeness), dishonest Users are rejected (soundness) and that no additional
information about Users is released (zero-knowledge).

Completeness
The honest Users know a valid representation of Aseed in the form (w1, w2, wRR),
so they are almost always accepted. There is a small verification error probabil-
ity. Since a User does not know φ(n), he must send answers in proofs of knowl-
edge/representation in Z. Based on [1], to retain the zero-knowledge property,
answers must fit within a certain interval, which happens with high probability
P = 1− 2−m. Details in [1].

Soundness
The ProveAtt protocol is the parallel composition of a subprotocol denoted as
PK{α : c = gα} described in Section 3.3. We prove its soundness by following
the proof of the RSA variant of this protocol [7]. Our proof is adapted to the
Okamoto-Uchiyama group which we use. The environment, already specified in
sections devoted to setup and issuance, is following: n = r2s, r = 2r′ + 1, s =
2s′+1, g ∈R Z

∗
n : ord(g mod r2) in Z

∗
r2 is r(r− 1), ord(g) in Z

∗
n is rr′s′ and r′, s′

are random large primes such that r, s are also primes.

Theorem 1. Under the assumptions that factoring of n is hard and logg c is
unknown, given a modulus n, along with elements g, c, it is hard to compute
integers a, b such that

1 ≡ gacb mod n and (a �= 0 or b �= 0). (1)

Proof. Suppose there is an algorithm A that inputs n, g, c and outputs a, b valid
in (1). Then we can use A to either factor n or compute logg c, both violating

assumptions. The output (a, b) satisfies 1 ≡ gacb ≡ gagαb ≡ ga+αb mod n, there-
fore a+ αb ≡ 0 mod ord(g). We have two cases:
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Case 1. Let us consider a + αb = 0. Then discrete logarithm logg c can be ef-

ficiently computed as logg c = α = −a

b
. Case 1 violates the discrete logarithm

assumption.

Case 2. Let us consider a + αb �= 0. A can be used to factor n by choosing
α in random, inputting (n, g, gα) and getting the output (a, b). Using (a+ αb),
which is a non-zero multiple of φ(n)/4, the adversary can factor n. To efficiently
compute a proper factor of n, the adversary can use the technique originally
developed for RSA [3]. Case 2 violates the factorization assumption.

Using the Theorem 1, we can prove the soundness like in [7], thus by construct-
ing the knowledge extractor and assuming that the factorization of n is hard.
The extractor uses the standard rewinding technique, thus inputs two differ-
ent valid answers z, z̄ on two different challenges e, ē with the fixed first step
c̄. The verification equation must hold for both answers: c̄ ≡ gzce mod n and
c̄ ≡ gz̄cē mod n. From these two equations, we get 1 ≡ gz−z̄ce−ē mod n. From
the Theorem 1, the User must have used logg c, since the factorization of n is
unknown. Based on the Case 1 of Theorem 1, (e − ē) divides (z − z̄), therefore
the extractor can extract α = z−z̄

ē−e .

Zero-Knowledge
The subprotocol denoted PK{α : c = gα}, as well as the whole ProveAtt proto-
col is composed of classical proof of knowledge Σ-protocols. The zero-knowledge
protocol simulator can be constructed in the standard way [12], by choosing ran-
dom answers and computing the first steps of the protocol from the verification
equations. By constructing the Zero-Knowledge simulator, it is possible to prove
that no additional information leaks from the protocol. For simplicity, we used
challenge e from the Verifier in Figure 4, which would make the protocol secure
only against honest Verifiers. Nevertheless, the protocol can be easily modified
to become computationally secure against any Verifiers using [14] or fully secure
using [11]. In our implementation, we use the Fiar-Shamir heuristic [14] to make
the protocol non-interactive and computationally secure. By using a randomized
zero-knowledge protocol for each ProveAtt session, no other information than
the ownership validity is leaked. Thus, the User cannot be identified, traced or
profiled.

5 Implementation Results

User’s smart-card requires 9 modular exponentiations, 10 modular multiplica-
tions and 4 subtractions to construct an attribute proof. The scheme with 2048b
modulus n has been implemented on both PC platform and smart-card platform.
For PC implementation, we simulated the protocol in Mathematica software. A
batch of 500 000 ProveAtt sessions has been successfully evaluated with the time
of a single session under 61 ms (including both proof generation and verification)
on a middle-class computer (2.53GHz Intel X3440 processor).
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For the smart-card implementation, we chose .NET smart-cards and MultOS
smart-cards. Gemalto .NET V2+ cards do not allow direct access to modular
arithmetic operations [17], thus the time of verification is quite slow and compa-
rable to idemix implementation [2]. We are able to reach the time of verification
between 8 and 10 s which is impractical. Therefore, we implemented the scheme
on the MultOS ML2-80K-65 cards. These cards allow a hardware acceleration of
arithmetic operations through a cryptographic co-processor. With these cards,
we are able to run the ProveAtt protocol in cca 2 s. Recently, we have measured
only a proof-of-concept implementation. A major performance improvement is
expected if the code is optimized.

6 Conclusion

In this paper, we present a novel scheme for revocable anonymous credentials.
Using the scheme, a User can anonymously convince a Verifier about the posses-
sion of an attribute, typically about his age, citizenship or some authorization.
By staying anonymous and having the control over all released data, users can
protect their privacy during the verification process. Our scheme gathers all
required features, so far supported only individually. The proposal is the first
practical scheme implementable on off-line smart-cards.

Additionally, we add features unavailable before, mainly scalable off-line re-
vocation and malicious user identity revelation. Finally, we present smart-card
implementation results which show the scheme to be very practical and ready
for commercial application.

In the proposal, we rely on smart-cards’ tamper resistance during the genera-
tion and storing of User keys. This hardware-based protection against collusion
attacks is sufficient for small-to-medium scale deployment. Our future task is to
add cryptographic protection to make the scheme secure even on devices without
hardware protection.
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Abstract. At CHES 2011 Goubin and Martinelli described a new coun-
termeasure against side-channel analysis for AES based on Shamir’s
secret-sharing scheme. In the present paper, we exhibit a flaw in this
scheme and we show that it is always theoretically broken by a first-
order side-channel analysis. As a consequence of this attack, only a slight
adaptation of the scheme proposed by Ben-Or et al. at STOC in 1988
can securely process multiplications on data shared with Shamir’s tech-
nique. In the second part of this paper, we propose an improvement of
this scheme that leads to a complexity Õ(d2) instead of O(d3), where d
is the number of shares per data.

1 Introduction

The observation of a device during its execution (e.g. through power consumption
measurements) can give information on the internal values actually manipulated
by the device. Based on this idea, a powerful attack targeting symmetric cipher
implementations called Differential Power Analysis (DPA for short) has been
proposed by Kocher et al. in 1998 [14]. The main idea is to observe the device
during the manipulation of key-dependent data (called sensitive data in the
sequel), and to retrieve information about the key (and eventually the whole
key) from this observation.

Since the introduction of DPA, and more generally of Side Channel Analysis
(SCA for short), many works have focused either on the enhancement of such
attacks or on the search of sound countermeasures. In the latter area of research,
masking techniques are currently the most promising type of countermeasure.
The idea is to split any sensitive variable manipulated by the device into several
shares such that the knowledge of a subpart of the shares does not give infor-
mation on the sensitive value itself. When the number of shares is d + 1, the
countermeasure is usually called a dth-order masking scheme. In this case the
attacker has to retrieve information about the d + 1 shares — i.e. to observe
at least d+ 1 leakage points on the device — in order to gain knowledge about
the targeted sensitive variable. Such an attack is called a (d + 1)th-order SCA
attack and it has been shown that its complexity increases exponentially with
the order d [4]. While some 1st-order masking techniques have been proved to

S. Mangard (Ed.): CARDIS 2012, LNCS 7771, pp. 77–90, 2013.
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be secure against 1st-order SCA attacks (see for instance [2,16]), the practicality
of 2nd-order attacks has been also demonstrated [15,17,27]. The construction of
an efficient dth-order masking scheme thus became of great interest. The main
difficulty resides in the handling of d+1 shares of a unique intermediate variable
through a non-linear function (i.e. the cipher s-boxes and more precisely the in-
ternal multiplications that are not squarings). We call this issue the higher-order
masking problem.

State of the Art. The first scheme successfully dealing with the masking
problem for any order d has been specified by Ishai, Sahai and Wagner in [12]
for hardware implementations (where every internal operation is done over F2).
In [21], this seminal result has been generalized from F2 to any finite field in the
case of AES. It has subsequently been generalized to any block cipher in [3]. In
parallel, Kim, Hong and Lim presented in [13] an improvement of [21]’s scheme
which reduces, in the case of AES, the constant terms of the complexity for small
orders d; it is based on the tower-field approach from [23]. The complexity of all
those methods is O(d2) where d is the masking order.

A common property of those previously cited works is that a Boolean masking
is used to split the sensitive data. Namely, every sensitive variable A is assumed
to be represented under the form of a (d + 1)-tuple (A0, A1, · · · , Ad) such that
A = A0 ⊕ A1 ⊕ · · · ⊕ Ad. However, other masking techniques have recently
been investigated. On the one hand, Genelle, Prouff and Quisquater proposed
in [9] a higher-order scheme based on the alternate use of Boolean masking
and a multiplicative masking where the shares satisfy A0 · A1 · · · · · Ad = A. Its
complexity is still O(d2) but the constant terms are significantly reduced in the
case study of AES. On the other hand, Goubin and Martinelli [11] and Prouff
and Roche [20,22] have proposed to use Shamir’s secret-sharing scheme to split
the sensitive data. Starting from the same core observation as previous works
[6,8], the authors’ goal was to use a sharing technique with complex algebraic
structure, in order to reduce the amount of sensitive information provided by the
observation of the shares when involved e.g. in a correlation SCA. Additionally,
the authors of [20,22] have shown that this way of sharing data enables the
construction of masking schemes which thwart higher-order side-channel attacks
in the presence of hardware glitches. The security argumentation is essentially
based on a link which is established between the problematic of securing s-
box processings against SCA in the presence of glitches and the Multi-Party
Computation problematic. In both [11] and [20,22] the practical security gain is
achieved at the cost of a complexity overhead which is O(d3) instead of O(d2)
(for Boolean masking).

Our Contribution. In this paper, we first show that the secure multiplica-
tion scheme published in [11] is flawed and that a first-order SCA can always
be successfully performed against it. Then, we show that the single remaining
scheme to process secure multiplications between variables shared with Shamir’s
technique (namely the adaptation of [1] in the SCA context), can be improved to
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have complexity Õ(d2) instead of O(d3). This is essentially done by computing
polynomial evaluations with a DFT instead of a naive evaluation.

2 Goubin and Martinelli’s Schemes

2.1 Preliminaries

In this paper, random variables will be denoted by capital letters (e.g. A) and
they take their values (realisations) in GF (2�). Realisations of a random variable
will be denoted in small-case letters (e.g. a). Throughout this paper, we will
make the (common) assumption that the side-channel leakage emanating from
the manipulation of a variable can be rightfully modelled by a deterministic
function of this variable and the addition of an independent Gaussian noise.
Under this assumption, an implementation is said to be secure against dth-order
SCA attacks if it satisfies the following property [5,11,20,21,24].

Definition 1 (dth-order SCA security). The implementation of an algorithm
achieves dth-order SCA security if no family of at most d intermediate variables
is dependent on a sensitive variable.

If a family of j ≤ d intermediate variables depends on a sensitive variable, then
the implementation is said to have a jth-order flaw.

Sharing/Masking. To achieve dth-order security, a common countermeasure is
to specify the implementation such that every sensitive variable is manipulated
in a (d+1)th-order sharing form. A classical choice is the Boolean masking, but
other alternatives exist [9,11,20].

Masking Schemes. When the concept of (d + 1)th-order sharing is involved to
protect an algorithm implementation, so-called dth-order masking schemes are
specified for each elementary operation (e.g. affine transformations or field mul-
tiplications). They aim at specifying how to build the sharing of the operation
output from the sharing of the input(s), without introducing any jth-order flaw
with j ≤ d.

In this paper we focus on a particular higher-order sharing based on Shamir’s
secret sharing [25]. For this technique, two families of masking schemes have
been proposed in [11] and [20,22] respectively. We recall some of them along
with the outlines of the sharing process itself in the next section.

2.2 Shamir’s Secret Sharing Scheme

In a seminal paper [25], Shamir has introduced a simple and elegant way to split
a secret A ∈ GF (2�) into n shares such that no tuple of shares with cardinality
lower than a so-called threshold d < n depends on A. Shamir’s protocol consists
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in generating a degree-d polynomial with coefficients randomly generated in
GF (2�), except the constant term which is always fixed to A. In other terms,
Shamir proposes to associate A with a polynomial PA(X) defined such that

PA(X) = A +
∑d

i=1 uiX
i, where the ui denote random coefficients. Then, n

distinct non-zero elements α0, . . . , αn−1 are publicly chosen in GF (2�) and the
polynomial PA(X) is evaluated in the αi to construct a so-called (n, d)-sharing
(A0, A1, · · · , An−1) of A such that Ai = PA(αi) for every i ∈ [0;n− 1].

To re-construct A from its sharing, polynomial interpolation is first applied to
re-construct PA(X) from its n evaluations Ai. Then, the polynomial is evaluated
in 0. Those two steps indeed leads to the recovery of A since, by construction,
we have A = PA(0). Actually, using Lagrange’s interpolation formula, the two
steps can be combined in a single one thanks to the following equation:

A =

n−1∑
i=0

Ai · βi , (1)

where the constants βi are defined as follows:

βi :=

n−1∏
k=0,k 	=i

αk

αi + αk
.

Remark 1. The βi can be precomputed once for all and will hence be considered
as public values in the following.

Notation. The value βi will sometimes be considered as the evaluation in 0 of
the polynomial:

βi(x) :=

n−1∏
k=0,k 	=i

x+ αk

αi + αk
.

2.3 Multiplication of Shares

To define a dth-order masking scheme for a block cipher implementation where
each intermediate result is split with Shamir’s technique, one must specify a
secure method for the processing of field multiplications over GF (2�). Recently,
two papers have been published on this issue respectively by Goubin and Mar-
tinelli [11] and by Prouff and Roche [20]. Both of them start from a multiplication
protocol introduced by Ben-Or et al. in the context of the Multy-Party Compu-
tation Theory [1]. For this protocol to work, the number of shares n per variable
must be at least 2d+1 and for n = 2d+1, it is proved that it satisfies a security
property encompassing the dth-order SCA security. Whereas [20] is a straight-
forward rewriting of Ben-Or et al. (BGW) protocol for the SCA context, the
scheme in [11] may be viewed as an efficiency improvement attempt in the SCA
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context. It is called GM protocol in the following. We recall hereafter the two
solutions.

2.4 BGW Protocol in the SCA Context

Let us assume that A and B are two variables in GF (2�) that have been (n, d)-
shared into (Ai)i and (Bi)i respectively, by evaluating the secret polynomials
PA(X) = A +

∑
1≤j≤d ujX

j and PB(X) = B +
∑

1≤j≤d vjX
j in the public

points αi for 1 ≤ i ≤ n. We give hereafter the adaptation of [1] in the SCA
context as proposed in [20,22]1.

Algorithm 1. BGW’s Secure Multiplication
Input: two integers n and d such that n ≥ 2d+1, the (n, d)-sharings (Ai)i = (PA(αi))i
and (Bi)i = (PB(αi))i of A and B respectively.
Output: the (n, d)-sharing (PC(αi))i of C = A ·B.
Public: the n distinct points αi, the interpolation values (β0, · · · , βn−1)

1. for i = 1 to n

2. do Wi ← PA(αi) · PB(αi)

*** Compute a sharing (Qi(αj))j≤d of Wi with Qi(X) = Wi +
∑d

j=1 aj ·Xj

3. for j = 1 to d do aj ← rand(GF (2�))

4. for j = 1 to n do Qi(αj) ← Wi +
∑d

k=1 ak · αk
j

*** Compute the share Ci = PC(αi) for C = A · B
5. for i = 1 to n

6. do Ci ← ∑n
j=1 Qj(αi) · βj .

7. return (Ci)i

The completeness of Algorithm 1 is discussed in [1]. Its dth-order SCA security
can be straightforwardly deduced from the proof given by Ben-Or et al. in [1] in
the secure multi-party computation context. Eventually, for n = 2d + 1 (which
is the parameter choice which optimizes the security/efficiency overhead), the
complexity of Algorithm 1 in terms of additions and multiplications is O(d3).

2.5 GM Multiplication Protocol

The scheme proposed in [11] has the same asymptotic complexity as BGW but
with much smaller constant terms. Indeed, the functional condition n ≥ 2d+ 1
is replaced by the minimal one n ≥ d + 1 which enables to process the mul-
tiplication on (d + 1, d)-sharings of A and B (instead of (2d + 1, d)-sharings).

1 The protocol is an improved version of the protocol originally proposed by Ben-Or
et al. [1], due to Gennaro et al. in [10].
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We recall hereafter the proposal in [11] with the notations βj,k(X) standing for
the polynomials βj(X)·βk(X) truncated by removing the terms of degree strictly
greater than d.

Algorithm 2. Goubin and Martinelli’s Secure Multiplication
Input: the (d+ 1, d)-sharings (Ai)i and (Bi)i of A and B respectively.
Output: the (d+ 1, d)-sharing (Ci)i of C = A ·B.
Public: the public elements αi and the public polynomials βj,k(X).

1. for j = 0 to d

2. for k = 0 to d

3. do tj,k ← Aj ·Bk

4. for i = 0 to d

5. do Ci ←
d∑

j=1

j−1∑
k=0

(tj,k + tk,j) · βj,k(αi) +
d∑

j=0

tj,j · βj,j(αi)

6. return (Ci)i

The completeness of Algorithm 2 is argued in [11]. Here, we only point out
that the fifth step may be rewritten:

Ci =

d∑
j=0

d∑
k=0

tj,k · βj,k(αi) =

d∑
j=0

d∑
k=0

Aj · Bk · βj,k(αi) , (2)

in which the evaluation in αi of the degree-d part of the polynomial PC(X) =
PA(X) · PB(X) can be clearly recognized. Hence, (2) can be written:

Ci = (PA(X) · PB(X))|d (αi) , (3)

where the notation (·)|d stands for the polynomial truncation obtained by sup-
pressing all the monomials of degree strictly greater than d.

In [11], the authors assume that Algorithm 2 satisfies dth-order SCA security
and let the proof for future work. In the next section, we invalidates this as-
sumption by exhibiting a first-order flaw which occurs whatever the input order
d of the algorithm.

3 Attack against GM Protocol

Hereafter we show that Goubin and Martinelli’s Algorithm 2 always has a first-
order flaw whatever the masking order d. For clarity reasons, we first exhibit
the flaw for d = 1 and generalize it afterward. We moreover give, in Annex A,
an information theoretic evaluation of this first-order leakage for d = 1 and
d = 2.
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Attack Description for d = 1. In this case, (3) becomes:

Ci = A · B +A · V · αi +B · U · αi , (4)

where we denoted by U and V the random variables associated to the coefficients
of the non-constant monomials in PA and PB respectively. By construction, those
coefficients have been randomly generated and we hence assume that both U and
V have a uniform distribution.

When A = B = 0, it can be checked that Ci is always null. Otherwise, if
(A,B) �= (0, 0), say A �= 0 w.l.o.g., then the term A · V · αi is not null (since
αi �= 0 by construction) and it depends neither on B · U · αi nor on A · B. As
a consequence, Ci always follows an uniform distribution when (A,B) �= (0, 0).
We hence deduce that Ci leaks information on (A,B) (whether it is null or not)
and hence that the first-order countermeasure has a flaw.

More generally, we state in the following proposition that such first-order flaw
exists for any masking order d.

Proposition 1. Algorithm 2 always has a first-order flaw for any input param-
eter d.

Proof. The flaw in Algorithm 2 has already been exhibited for d = 1. In the rest
of the proof, we hence assume d > 1 and we show that, even in this case, a flaw
can be exhibited. By developing (3) we get:

Ci = A · B +
d∑

j=1

A · Vj · αj
i +

d∑
j=1

B · Uj · αj
i +

d−1∑
j=1

d−j∑
k=1

Uj · Vk · αj+k
i , (5)

where we denoted by Uj and Vk the random variables associated to the coeffi-
cients of the non-constant monomials in PA and PB respectively. Thanks to the

law of total probability, for every (a, b) ∈ GF (2�)
2
the probability Pr[Ci|A =

a,B = b] satisfies:

Pr[Ci|A = a,B = b] = 2−�d
∑

u∈GF (2�)d

Pr[Ci(a, b,u)] , (6)

whereCi(a, b,u) denotes (Ci |A = a,B = b,U = u) andU refers to (U1, · · · , Ud).
Let us focus on Ci(a, b,u). By definition, it satisfies:

Ci(a, b,u) = a · b+
d∑

j=1

b ·uj ·αj
i + a ·αd

i · Vd +
d−1∑
j=1

Vj ·αj
i · (a+

d−j∑
k=1

uk ·αk
i ) . (7)

It can hence be viewed as an affine combination of random variables Vj that all
have uniform distribution and are mutually independent (by construction of the
polynomial PA). This linear combination always contains the term αd

i · a · Vd

which is independent of the other ones and has an uniform distribution as long
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as a is non-zero (since αd
i itself is non-zero). Based on this observation, we can

split our analysis into two cases related to the condition a = 0.
If a �= 0, then Ci(a, b,u) has uniform distribution for every b and every u.

This implies that Pr[Ci|A = a,B = b] is an uniform distribution.
If a = 0, then a sufficient condition for Ci(a, b,u) to be uniform is that at

least one of the terms
∑d−j

k=1 uk · αk
i is non-zero when j ranges from 1 to d − 1

which is equivalent with (u1, · · · , ud−1) �= (0, · · · , 0) since the αj
i are all non-

zero (by construction). When this sufficient condition is not satisfied, i.e. when
(u1, · · · , ud−1) = (0, · · · , 0), then we have:

Pr[Ci|A = 0, B = b, u1 = 0, · · · , ud−1 = 0] = Pr[b · αd
i · Ud] .

We deduce that, if b �= 0, then Pr[Ci|A = 0, B = b, (u1, · · · , ud−1) �= (0, · · · , 0)]
and Pr[Ci|A = 0, B = b, (u1, · · · , ud−1) = (0, · · · , 0)] are both uniform, which
implies (due to the law of total probability2) that Pr[Ci|A = 0, B = b] is uni-
form. On the other hand, if b = 0, then the variable (Ci|A = 0, B = b, u1 =
0, · · · , ud−1 = 0) is constant and its distribution is the function which is zero
everywhere except in 0 where it takes the value 1. Eventually for (a, b) = (0, 0)
we get:

Pr[Ci = c|A = a,B = b] =

{ 1
2� −

1
2�d if c �= 0

1
2�

+ 2�−1
2�d

if c = 0
,

which implies that the distribution Pr[Ci|A = 0, B = 0] is non-uniform. This
concludes the proof since it shows that the distribution of Ci depends on the
value of the pair of sensitive variables A and B. �

Remark 2. It can be observed that the distance between the two distributions
that can take Ci decreases as the order increases and they actually merge when
the order tends to infinity.

4 Improvement Proposal

In this section we describe a simple improvement of Algorithm 1 so that the com-
plexity of the secure multiplication algorithm becomes Õ(d2) instead of O(d3).
In Algorithm 1, the O(d3) complexity comes from Step 4; namely this corre-
sponds to the evaluation of a polynomial of degree d at n points αi, which takes
O(n · d) times; since Step 4 is performed n times, the full complexity is then
O(n2 · d) = O(d3).

Thanks to the Discrete Fourier Transform (DFT), the evaluation of a polyno-
mial of degree d < n at n points can actually be computed in time Õ(n) instead
of O(n2). Therefore the full complexity of the algorithm becomes Õ(n2) = Õ(d2)
instead of O(d3).

2 Th law of total probability states that for any r.v. X and any tuple of n r.v. (Yi)i,
we have Pr[X] =

∑
i Pr[X | Yi] Pr[Yi].
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In the following we describe, in the context of our SCA secure multiplication
problematic, the fast evaluation algorithm based on the DFT. In the similar
context of Multi-Party Computation, such improvement was already known (see
e.g. [7]).

4.1 Fast Polynomial Evaluation Based on DFT

Let ω a primitive nth root of unity in GF (2�) with n = 2� − 1. The n points αi

are defined as αi = ωi for 0 ≤ i < n. For simplicity we restrict ourselves to a
finite field of characteristic 2; however the algorithm can be generalized to any
characteristic.

Given as input a polynomial

a(x) =

n−1∑
j=0

aj · xj , (8)

the algorithm described hereafter aims at efficiently process the values a(ωi) for
all 0 ≤ i < n. Noting that: a(ωi) = a(x) mod (x − ωi), the values a(ωi) can
be computed using a remainder tree. As illustrated in Figure 1, the polynomial
is progressively reduced modulo the polynomials ui,j(x), starting from the root
polynomial:

u�,0(x) = (x− 0) ·
n−1∏
i=0

(x− ωi) = x2� − x

downto the leaf polynomials (x− ωi).
The DFT polynomial evaluation can actually be still improved by optimizing

the ordering of the leafs ωi so that the intermediate remainder polynomials
ui,j(x) have a special form that enables fast modular reduction. It is shown
in [28, page 573] that there exists an ordering (β0, β1, . . . , β2�−1) of all the
elements of GF (2�), such that if u0j(x) := x− βj , and for 1 ≤ i ≤ �,

uij(x) = ui−1, 2j(x) · ui−1, 2j+1(x), 0 ≤ j < 2�−i,

then each polynomial ui0(x) is an ith-order linearized polynomial:

ui0(x) =

i∑
k=0

vik · x2k ,

and each polynomial uij(x), j �= 0, is an affine polynomial and is related to
ui0(x) by uij(x) = ui0(x) + cij , for some constants cij ∈ GF (2�). Since each
polynomial uij(x) has at most i+2 non-zero terms (instead of at most 2i+1 for
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a polynomial of degree 2i), modular reduction can be done in time quasi-linear
in the degree of uij(x), instead of quadratic time (see below).

Formally, the DFT computation is defined as follows:

a(x) [u�,0(x)]
�

a(x) [u�−1,0(x)] a(x) [u�−1,1(x)]

a(x) [u1,0(x)] a(x) [u1,2�−1
−1]

a(β0) a(β1) a(β2�−2) a(β2�−1)

Fig. 1. Remainder tree for the computation of a(βi), for 0 ≤ i < 2�

Algorithm 3. DFT Computation
Input: a polynomial a(x) =

∑n−1
i=0 ai · xi over GF (2�), where n = 2� − 1.

Output: the field elements a(βi), for 0 ≤ i < 2�

Public: the public polynomials uij(x)

1. Let a�0(x) ← a(x)

2. for λ from 	− 1 to 0

3. for j = 0 to 2�−λ − 1

4. for k = 0 to 1

5. do aλ, 2j+k(x) ← aλ+1, j(x) mod uλ, 2j+k(x)

6. Return a0, j for 0 ≤ j ≤ 2�

When applied to process the fourth step of Algorithm 1, the polynomial a(x) in
(8) corresponds toQi(x) (associating each coefficient of a(x) to the corresponding
coefficients inQi(x) and setting aj = 0 for all the indices j ∈ [d+1;n−1]) and the
n public points αj are assumed to be chosen equal to ωj . In such a setting, it can
then be checked that the leaf polynomials computed by the fast evaluationmethod
described here correspond to a(ωj) = Qi(αj) as expected (with the special case
a(0) which gives the already known value Wi at Step 4 of Algorithm 1).

4.2 Complexity Analysis and Parameters’ Choice

We note that the degree of the polynomials uλ,j is 2λ, which implies that the
degree of the polynomials aλ,j is at most 2λ − 1. Since the polynomials uλ,j

contain at most λ + 2 non-zero terms, every modular polynomial reduction at
Step 5 has complexity O(λ2λ) = O(�2λ). For a fixed level λ there are 2·2�−λ such
reductions, which gives a total complexity O(�2�) for a given level λ. Since there
are � levels the full complexity of Algorithm 3 is O(�2 · 2�). With n = 2�− 1, we
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obtain a complexity O(n · log2 n) = Õ(n) as required.3 Note that smaller values
of n are possible; namely it suffices that n|2� − 1. For example for AES with
GF (28), since 28 − 1 = 3 · 5 · 17, we can take n = 3, 5, 15, 17, 51, 85, 255.

To select a larger value of n for a fixed field size GF (2�), it suffices to work
in an extension field GF (2�·s) of GF (2�) for s > 1; then one can take n =
2�·s − 1. The complexity of Algorithm 3 is still O(n · log2 n) operations in the
extension field GF (2�·s). Each operation in GF (2�·s) can be computed with
O(s2) = O(log2 n) operations in GF (2�). Therefore the complexity of Algorithm
3 becomes O(n · log4 n), which is still Õ(n).

4.3 Security of the Improved Multiplication Algorithm

Since in Algorithm 1 this polynomial evaluation step is performed n times, the
full complexity becomes O(n2 · log4 n) = Õ(n2) instead of O(n3). In the multi-
party computation setting, the new algorithm is still secure against a coalition
of up to t < n/2 players; namely the polynomial evaluation step at Step 4 in Al-
gorithm 1 is performed locally by each player; therefore changing the polynomial
evaluation algorithm does not modify the security property of the algorithm. In
the context of side-channel analysis, with n = 2d+ 1, the algorithm is therefore
still secure against a d-th order attack.

5 Conclusion

Several works argued on the importance of identifying new sharing techniques that
minimize the amount of sensitive information extractable from the family of shares
in a SCAcontext. This is indeed of particular importance since such a sharing, com-
bined with noise, would be able to resist to any higher-order side-channel attack in
practice, even when parametrizedwith small sharing orders (e.g. 2 or 3). The poly-
nomial sharing introducedbyShamir is a promising candidate.However, it remains
to define efficient algorithms able to operate on data shared with this technique
without introducing key-dependent leakages of order lower than the sharing order.
Until this work, there were essentially two algorithmproposals to securely perform
a multiplication between two shared data: one proposed by Goubin andMartinelli
atCHES2011andoneadapted fromanalgorithmbyBen-Or et al.atSTOCin1988.
In the present paper, we showed that the first proposal is flawed (more precisely is
always broken by a first-order SCA) and we improved the complexity of the second
proposal fromO(d3) to Õ(d2), where d is the number of shares per data. We think
that those results are a first promising step toward efficient methods to process on
data shared with Shamir’s secret sharing in embedded systems.
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A Mutual Information Study of Goubin and Martinelli’s
Scheme 1st-Order Flaw

We have seen in Section 3 that Goubin and Martinelli’s proposal possesses a
first-order flaw whatever the masking order d of their scheme. For the study of
this flaw to be complete, we propose here an information theoretic evaluation of
the information leakage with respect to the noise standard deviation and d. We
moreover compare the quantity of sensitive information in the flaw with that
contained in the observation of the d+1 shares build thanks to Shamir’s sharing
for d = 1 and d = 2.

To quantify the amount of leaking information, we modelled the relationship
between the physical leakage and the value of the variable processed at the
time of the leakage. For such a purpose, we associated each (d + 1)-tuple of
shares (A0, · · · , Ad) with a (d + 1)-tuple of leakages L = (L0, · · · , Ld) s.t. Lj =
HW(Aj)+Nj , withNj an independent Gaussian noise with mean 0 and standard
deviation σ. We use the notation L←↩ (A0, · · · , Ad) to refer to this association. In
the case of the first-order flaw exhibited in Section 3, the leakage L is univariate
and satisfies L←↩ HW(Ci)+N with Ci being defined as in (3). In that case, the
sensitive information in the product C = (AB).

To evaluate the information revealed by each tuple of shares for the polyno-
mial masking technique, we computed the mutual information4 I(A,L) between

4 As shown in [26], the number of measurements required to achieve a given success-
rate in a maximum likelihood attack can be expressed as a function of the mutual
information evaluation and equals c×I(A,L)−1, where c is a constant related to the
chosen success-rate.
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the sensitive variable A and L. Similarly, in the case of Goubin and Martinelli’s
scheme, we computed the mutual information I(AB,L) between the sensitive
variable (AB) and L. We list hereafter the leakages we considered and the
underlying leaking variables:

(2, 1)-sharing leakage: L←↩ (PA(α1), PA(α2)) . (9)

(3, 2)-sharing leakage: L←↩ (PA(α1), PA(α2), PA(α3)) . (10)

Flaw in Alg. 2 for d = 1: L←↩ (Ci = (PA · PB)|1(αi)) . (11)

Flaw in Alg. 2 for d = 2: L←↩ (Ci = (PA · PB)|2(αi)) . (12)

Figure A summarizes the information theoretic evaluation for each leakage (9)
to (12). For d equal to 1 or 2, it can be observed that the amount of information
revealed by the d+ 1 sharing elements is greater than that revealed by the 1st-
order flaw up to a certain amount of noise. As a matter of fact, the first-order
flaw is less impacted by the noise than the 2nd-order and 3rd-order leakages.
Hence, for any choice of input parameter d in Algorithm 2 and for any Shamir’s
sharing order d′ > d, there exists a noise standard deviation σ s.t. the first-
order flaw leaks more sensitive information than the d′-tuple of Shamir’s shares.
For example, for d = 1, then the first-order flaw in Algorithm 2 leaks more
information than any d′th-order sharing with d′ > 1 as long as σ > 3.7. We
also emphasize that the traces’ resynchronization issue and the computational
complexity of the processings make higher-order SCA attacks much more difficult
to mount in practice than first-order ones. As a consequence, the first-order flaw
is even more important from a practical point of view than suggested in Fig. A.
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Abstract. The building blocks of several block ciphers involve arith-
metic operations, bitwise operations and non-linear functions given as
SBoxes. In the context of implementations secure against Side Channel
Analysis, these operations shall not leak information on secret data. To
this end, masking is a widely used protection technique. Propagating
the masks through non-linear functions is a necessary task to achieve a
sound and secure masked implementation. This paper describes an effi-
cient method to securely access N SBoxes when theN inputs are encoded
as a single word arithmetically masked. This problematic arises for in-
stance in a secure implementation of the standard block ciphers GOST
or SEED. A method using state of the art algorithms would be to first
perform an arithmetic to boolean mask conversion before independently
accessing the N SBoxes. Compared to this method, the algorithm pro-
posed in this paper needs less code, less random generation and no extra
memory. This makes our algorithm particularly suitable for very con-
strained devices. As a proof of concept, we compare an implementation
in 8051 assembly language of our algorithm to the existing solutions.

Keywords: Side Channel Analysis, Differential Power Analysis, Block
Cipher, SBox, Arithmetic Masking, Boolean Masking, Mask Conversion.

1 Introduction

During the execution of a cryptographic algorithm, power consumption, execu-
tion timings, or electro-magnetic radiation may give information on secret data.
The techniques using these leakages to attack cryptographic primitives are called
Side Channel Analysis (SCA). Different techniques appeared in the literature.
Among them, Differential Power Analysis (DPA) [15,5,17] turns out to be a pow-
erful tool to attack implementations [3,1,20]. To recover a small part k of a secret,
DPA consists in recording the power consumption – the leakage – of d moments
where a sensitive variable (i.e. a value depending on k and the input) is involved,
for a large number of different inputs. Then, an attacker makes predictions on
a combination of these leakages for all possible hypotheses on k according to
a well-chosen leakage model. Finally, the attacker outputs the hypothesis k̂ for
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which the prediction and the actual leakages are the most “similar”. This de-
gree of similarity is usually measured using statistical tools such as the Pearson
correlation coefficient [5]. The number d of moments denotes the order of the
DPA.

In parallel, countermeasures were soon developed to secure implementations
against DPA. In this specific context, a countermeasure aims at preventing all
sensitive data from leaking information, or more precisely making their leakages
independent of the secret. A commonly used countermeasure is to mask – or split
– a sensitive variable with one (resp. d) random value(s) [11,6]. This is called
first order masking (resp. d-th order masking). With this countermeasure, as the
random masks change at each execution, the leakage of the masked variable is
statistically independent of the secret. Only the combined leakages of the masked
variable and all the masks could reveal some information. Thus, a d+1-th order
DPA is necessary to attack a d-th order masked implementation.

Sensitive data shall then remain masked through every step of a cryptographic
algorithm. The critical task is to adapt the algorithm to keep this state, especially
for non-linear parts. In block ciphers, the use of highly non-linear functions (w.r.t.
bitwise addition) is mandatory to prevent classical cryptanalysis. One way to
represent such functions is to use a so-called SBox. SBoxes have been used to
design many symmetric encryption schemes such as the DES or the AES. Several
masking schemes have been developed for these functions to prevent DPA of the
first order [11,2,4,9] or higher order [25,24,23]. In general, for block ciphers built
upon SBoxes and linear layers, a masking scheme based on boolean masking is
chosen and an adapted secure SBox access [18,22] is implemented.

Some algorithms also use modular addition as a non-linear function. The block
cipher IDEA [16] is an example. For this kind of algorithm, boolean masking
is not always suitable. Indeed, a boolean mask propagates easily through linear
functions, but with modular addition, arithmetic masking is preferred. To switch
from one masking to another, a mask conversion is required. Several methods
have been proposed [10,7,19,8], and an application to IDEA is suggested for
instance in [19].

Finally, both modular addition and SBoxes may be used together as in the Ko-
rean standard block cipher SEED [26], or in the Russian standard block cipher
GOST 28147-89 [28]. In these algorithms, multiple small SBoxes are used simul-
taneously to compute the image of a larger input. More precisely, arithmetic op-
erations are performed on the large input before accessing these SBoxes. It is a
natural requirement to protect such algorithms against DPA. This paper focuses
on protecting this kind of block ciphers against first order DPA. More specifically,
given N SBoxes (� bits→ �′ bits), we need to securely access these SBoxes when
the N inputs are encoded as a single word of n = N � bits, arithmetically masked
– addition modulo 2n – with a random n-bit mask. Though, protecting an imple-
mentation usually comes with a cost, either in memory or in performances. Of-
ten, devices that are more likely to suffer Side Channel Analysis are also very con-
strained in terms of memory (smart-cards, embedded devices, . . . ). A method has
been proposed in [13] and applied to the SEED algorithm. The method is highly
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efficient but uses a non-negligible amount of RAM. It is then interesting to have
an alternative solution requiring lower memory resources.

Contributions. In this paper, we study the protection of block ciphers mixing
arithmetic operations, boolean operations and multiple SBoxes against first or-
der DPA. More specifically, we focus on the secure access to multiple SBoxes
when arithmetic masking is used. We propose a novel algorithm to perform this
operation. Compared to existing methods, our algorithm needs less memory, less
code and less random generation.

Organization of the Paper. This paper is organized as follows. In Sect. 2, we
give some notations and review existing algorithms to securely access one SBox.
We also give some useful background on masking conversion. In Sect. 3, we
present in detail the main concern of this paper, namely the problem of accessing
simultaneously N SBoxes with an arithmetically masked input. In this section
we also propose a first solution using state of the art techniques. In Sect. 4, we
present our new algorithm as well as a careful security analysis. We compare an
implementation of both solutions in Sect. 5. Section 6 concludes this article.

2 Background and Related Work

This paper deals with two kinds of masking:

– Boolean masking: a sensitive variable a ∈ IFn
2 is masked with a random value

m ∈ IFn
2 by computing ã = a⊕m, where ⊕ denotes bitwise exclusive or.

– Arithmetic masking: a sensitive variable a ∈ IFn
2 is masked with a random

value m ∈ IFn
2 by computing ã = a�m, where � denotes addition modulo

2n.

When the masking operation is not precised, we may use operators � and � to
denote either ⊕ or �. The unmasking operation for � is denoted by �−1. For
instance if � is �, then �−1 is �. If � is ⊕, then �−1 is also ⊕.

Sometimes, a value a ∈ IFn
2 is viewed as N chunks of � bits where n = N �. The

notation ai, 0 � i < N , is used to denote the i-th chunk where a0 is the least
significant chunk. Then, we use the notation a = aN−1‖ . . . ‖a0. If a modular
operation is performed on a small chunk, the operator is sub-scripted by the
corresponding bit-size. For instance, we write �� to denote the addition modulo
2�. If the operation is done on n bits, the subscript is omitted to ease reading.

2.1 Substitution Boxes

A non-linear function f : IFn
2 → IFp

2 is often described as an SBox. An SBox is a
table which gives for an n-bit index a the corresponding p-bit output f(a). If S is
an SBox, we use the notation S[a] to denote the image of a by the corresponding
function f .
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In a secure implementation context, it is necessary that a masked input ã
remains masked during the SBox access. Moreover, the output of the SBox shall
also be masked, possibly with a different mask. The input masking is denoted
by the operation � and the output masking is denoted by the operation �.

In [18], Messerges proposes to recompute a table corresponding to a masked
version of the SBox, that is, to compute an SBox T such that T [a�m] = S[a]�m′.
This method has been chosen in [2] to secure the DES and AES SBoxes. The
method is efficient but requires a large amount of memory (p · 2n bits). In a
context where memory is a limited resource, this method could be a bottleneck
if n is too large. In [22], the authors proposed an alternative method, more
suitable to such environment. The method does not require extra memory space.
We describe it in Alg. 1.

Algorithm 1. Secure SBox implementation [22]

Inputs: S : IFn
2 → IFp

2, ã = (a 
 m) ∈ IFn
2 , m ∈ IFn

2 , m′ ∈ IFp
2,


 : (IFn
2 × IFn

2 ) → IFn
2 , 
 : (IFp

2 × IFp
2) → IFp

2

Output: b̃ = S[a] 
m′

1: function SecureSBox(S, ã,m,m′, 
, 
)
2: for k = 0 to 2n − 1 do

3: cmp ← (k
?
= m) � if k and m are equal, cmp is 1, else 0

4: t ← ã 
−1 k � unmask ã with the loop index
5: Rcmp ← S[t] 
m′

6: end for
7: return R1

8: end function

Using Alg. 1, the real unmasking operation is dissimulated among 2n − 1
other dummy unmasking. Note that the masking type may be the same for both
the input and the output. In the rest of the paper, this method is preferred to
the table re-computation as we focus on implementation on memory-constrained
devices.

Remark 1. Contrary to this paper, the method proposed in [13] is built upon
the table re-computation algorithm of [18].

2.2 Masking Conversion

A sensitive variable has to remain masked throughout the cryptographic algo-
rithm. A boolean (resp. arithmetic) masking propagates easily through boolean
(resp. arithmetic) operations. When a specific algorithm mixes boolean opera-
tions (rotations, bitwise and/or, . . . ) and arithmetic operations (modular addi-
tion/subtraction), mask conversion is needed. An efficient method to perform
boolean to arithmetic masking conversion (BMtoAM) has been proposed by
Goubin in [10]. It uses a constant number of operations with respect to the bit-
size of the data. The converse operation (AMtoBM) is more costly to achieve.
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A first method has also been proposed in [10] but it requires a number of op-
erations linear in the bit-size. Later, Coron and Tchulkine introduced in [7] a
more efficient method which pre-computes a conversion table for “small” input
and output masks r and s (say λ bits over n), and processes the input by λ-bit
chunks. It appears that the method fails for some inputs because of a problem
in the carry propagation between the chunks [8]. In 2004, Neiße and Pulkus
proposed a sound and efficient method to perform AMtoBM conversion in [19].
Their method is similar to [7], as it also uses a conversion table for a smaller
λ-bit mask, but they handle the carries in a different way. A pre-computation
step first generates two uniformly distributed λ-bit masks r and s. Then, two
tables T and C are initialized. For every possible λ-bit inputs k (0 � k < 2λ) the
value (k �λ r) ⊕ s is stored in T [k]. The carry resulting from (k �λ r) is stored
in C[k]. The whole process is described in Alg. 2.

Algorithm 2. Secure AMtoBM implementation [19]: pre-computation

1: procedure AMtoBMPrecomp( )
2: r ← Random({0, . . . , 2λ})
3: s ← Random({0, . . . , 2λ})
4: for k = 0 to 2λ − 1 do
5: T [k] ← (k �λ r)⊕ s � subtraction may generate a carry
6: C[k] ← carry(step 5)
7: end for
8: end procedure

To convert the masking without leaking information, the authors use the
following useful property. For any u, v ∈ IFλ

2 , it holds that

¬(u�λ v) = ¬u �λ ¬v �λ 1 ,

where ¬x denotes the bitwise complement of x. Let (−1) be the value 2λ− 1 (all
λ bits are set to 1). Then, for any z ∈ {0, 1}, it holds that

(u�λ v)⊕ (−z) = (u⊕ (−z))�λ (v ⊕ (−z))�λ z . (1)

If the bit z is chosen uniformly at random for each execution, it can be used
to mask the propagating carries. Indeed, whenever u �λ v generates a carry,
¬u�λ ¬v �λ 1 does not, and conversely. The pre-computed tables T and C can
then be used to convert and propagate the carry by λ-bit chunks. This is the
purpose of the conversion algorithm from [19] described in Alg. 3.

Remark 2. The authors of [19] also propose several optimizations to their algo-
rithm such as storing C[k] in place of the least significant bit (LSB) of T [k] after
remarking that if the LSB of r and s are the same, the LSB of k and T [k] are
also the same (for 0 � k < 2λ). Then this bit does not need to be stored when
s is chosen accordingly, for instance when s = r.
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Algorithm 3. Secure AMtoBM implementation [19]: conversion

Inputs: ã = (a�m) ∈ IFn
2 , m ∈ IFn

2 , m
′ ∈ IFn

2

Output: b̃ = a⊕m′

1: function AMtoBM(ã,m,m′)
2: AMtoBMPrecomp( ) � only if not already done
3: z ← Random({0, 1})
4: f ← ã⊕ (−z) � complement (or not) the input
5: g ← (m⊕ (−z))� (r‖ . . . ‖r) � change mask to r‖ . . . ‖r
6: h ← ((s‖ . . . ‖s) ⊕ (−z))⊕m′ � change mask from s‖ . . . ‖s
7: c ← z
8: for i = 0 to N − 1 do
9: f ← f � gi � c
10: b̃i ← T [f0]⊕ hi

11: c ← C[f0]
12: f ← f  λ
13: end for
14: return b̃ = b̃N−1‖ . . . ‖b̃0
15: end function

Recently, Debraize proposed an alternative method in [8]. The method is sim-
ilar to [19], but the carry is protected by computing two sets of tables T (0), C(0)

and T (1), C(1). These tables can be described using table T and C of Alg. 2 by:

T (ρ)[i] = T [i] , T (ρ⊕1)[i] = T [i�λ 1] ,

C(ρ)[i] = C[i]⊕ ρ , C(ρ⊕1)[i] = C[i �λ 1]⊕ ρ ,

where ρ is a bit randomly chosen at each execution. Whether to access T (0)

or T (1) is decided according to the value of the input carry masked by ρ. The
output carry is masked again by ρ. This way, the input and output carries are
always blinded. Compared to Alg. 3, the resulting algorithm would require twice
the amount of memory. To suit our low-memory requirements, in the rest of this
paper Alg. 3 is preferred.

3 Multiple SBoxes

As described in Sect. 1, in some algorithms, several “small” SBoxes are used
simultaneously to compute a non-linear function on a “big” input. Let �,N ∈ IN
and let n = N �. Let a ∈ IFn

2 be an SBox input. It can be written as a =
aN−1‖ . . . ‖a0, where ai are elements of IF�

2, for 0 � i < N . Consider N SBoxes

S0, . . . , SN−1 which map � bits to �′ bits (IF�
2 → IF�′

2 ). We define S to be the
“SBox” mapping n bits to N �′ bits such that

S[a] = SN−1[aN−1]‖ . . . ‖S0[a0] .

For instance, the DES has N = 8 SBoxes with � = 6 and �′ = 4. For the sake of
clarity, in what follows, we assume that � = �′. Nevertheless, the results below
can be extended to the case � �= �′.
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Boolean Masking. When the input a of multiple SBoxes is masked with boolean
masking, the application of Alg. 1 to each small SBox is straightforward because
each part mi of a boolean mask m is a boolean mask for the corresponding part
ai of an input a:

ã = a⊕m = aN−1 ⊕mN−1‖ . . . ‖a0 ⊕m0 .

One may then securely compute S[a] using table re-computation or using Alg. 1
by computing

SecureSBox
(
SN−1, ãN−1,mN−1,m

′
N−1,⊕,⊕

)
‖ . . .

. . . ‖SecureSBox (S0, ã0,m0,m
′
0,⊕,⊕) , (2)

where the m′
i’s are �-bit parts of an output mask m′. This method is the one

used in [2] to secure the DES SBoxes with table re-computation. However, an
issue appears when the input is arithmetically masked.

3.1 Multiple SBoxes on Arithmetically Masked Input

In some algorithms, it can be necessary that the input of multiple SBoxes is
masked with an arithmetic mask. In Fig. 1, we give as an example the round
function of a typical block cipher. At round t, the current sub-key key(t) is added
to the state v(t) to constitute the N �-bit input a. The output b of the N = 4
SBoxes is then rotated to produce the next state v(t+1).

v(t)

key(t)

� Rot v(t+1)
a b

S0

S1

S2

S3

a0

a1

a2

a3

b0

b1

b2

b3

Fig. 1. A block cipher round using an arithmetic operation and multiple SBoxes

This kind of round function is used for instance in SEED where N = 4 and
� = 8, or in GOST 28147-89 where N = 8 and � = 4. In both cases, the input a
and the output b are 32-bit words.

To protect such a round against DPA, v(t), v(t+1) as well as the intermediate
values a and b should be masked. In this example, v(t) should be preferably
masked with modular addition to allow the mask to propagate through the
operation v(t)�key(t). As for b, it should be masked with a boolean mask which
easily propagates through the rotation. In these conditions, a simple solution as
in the boolean case cannot be achieved.
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When the input a is arithmetically masked with a mask m, the following
property holds:

ã = a�m = (aN−1 �� mN−1 �� cN−1) ‖ . . . ‖ (a0 �� m0 �� c0) , (3)

where c0 = 0 and for all i, 1 � i < N ,

ci =

{
1 if (ai−1 +mi−1 + ci−1) � 2�

0 otherwise
.

The value ci corresponds to the carry propagating through the modular addition
�. Because of this carry, the direct application of (2) is not possible. We have
then to address the following problem.

Problem 1. Given an arithmetically masked n-bit input ã = a�m, and N �-bit
SBoxes S = (S0, . . . , SN−1) such that n = N � as defined above, we want to

securely compute b̃ = b �m′ such that b = S[a], where m and m′ are uniformly
distributed n-bit masks, and � is either � or ⊕.

Assume that an algorithm called SecureMulSBox solves Prob. 1 with � = ⊕,
a secure implementation of the round function of Fig. 1 would be achieved in
Fig. 2. Our goal is then to find an implementation of SecureMulSBox.

(v(t) �m)

key(t)

� Rot (v(t+1) ⊕m′)
ã b̃

SecureMulSBox

Fig. 2. A masked block cipher round using an arithmetic operation and a secure im-
plementation of multiple SBoxes

3.2 A Solution Using Mask Conversion

We have seen that accessing N SBoxes when boolean masking is used can be
done independently. Then, an answer to Prob. 1 could be to first perform an
AMtoBM conversion and then apply N times Alg. 1 on each small SBox. This
process is described in Alg. 4.

The output of Alg. 4 is masked with boolean masking. To obtain an arithmetic
masking instead, a BMtoAM conversion could be added at the end. As mentioned
in Sect. 2.2, the conversion in this direction is not very costly. In particular, it
does not require extra memory. Thus, in the rest of this paper, we focus on
solving Prob. 1 with � = ⊕.
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Algorithm 4. Secure multiple SBox with AMtoBM implementation

Inputs: S = (S0, . . . , SN−1) ∈ (IF�
2 → IF�

2)
N , ã = (a�m) ∈ IFn

2 , m ∈ IFn
2 , m

′ ∈ IFn
2

Output: b̃ = S[a]⊕m′ = (SN−1[aN−1]⊕m′
N−1)‖ . . . ‖(S0[a0]⊕m′

0)
1: function SecureMulSBox(S, ã,m,m′)
2: t̃ ← AMtoBM(ã,m,m) � keep m as output mask
3: for i = 0 to N − 1 do
4: b̃i ← SecureSBox(Si, t̃i,mi,m

′
i,⊕,⊕)

5: end for
6: return b̃ = b̃N−1‖ . . . ‖b̃0
7: end function

Algorithm 4 needs to pre-compute 2λ elements in a table (to use AMtoBM
from [19]). A large value of λ ensures a faster conversion time, but to fit our
low memory requirements, λ would have to be quite small. This implies a more
expensive conversion. In the next section, we discuss a new solution which inte-
grates the conversion within the secure SBoxes computation.

4 Secure Multiple SBoxes with Arithmetic Masking

4.1 Algorithm

As pointed out in Sect. 2.2, the propagation of the carry coming from the arith-
metic masking is an issue. In the solution of Prob. 1 presented in Alg. 4, it is
carried out by the masking conversion algorithm. If one could turn an arithmetic
mask m on n = N � bits into N arithmetic masks on � bits for a given masked
input, then, similarly to (2), one could compute

SecureSBox
(
SN−1, ãN−1,mN−1,m

′
N−1,��,⊕

)
‖ . . .

. . . ‖SecureSBox (S0, ã0,m0,m
′
0,��,⊕) . (4)

We describe in Alg. 5 a naive, though non-secure algorithm to “remove carries”
from an arithmetic mask.

Algorithm 5 is insecure against DPA as it manipulates the sensitive variable
a (more precisely, parts ai of the sensitive variable) unmasked. This is done at
step 4 when the i-th input block ãi is unmasked to compute the carry for the i �-
th bit. However if we use (4), in the algorithm SecureSBox presented in Alg. 1
a loop for every possible masks is performed to securely access the i-th SBox.
The idea is to use this loop to dissimulate not only the unmasking operation,
but also the next carry computation.

Still, each output carry has to be masked. This may be performed using a
bit z as in the mask conversion algorithm from [19] described in Alg. 3. Indeed,
consider (3) when masked by a random bit z. It holds then that

ã⊕ (−z) = (a�m)⊕ (−z)
= (aN−1 �� mN−1 �� cN−1)⊕ (−z)‖ . . . ‖ (a0 �� m0 �� c0)⊕ (−z) .
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Algorithm 5. Non-secure removing of carries

Inputs: ã = (a�m) ∈ IFn
2 , m ∈ IFn

2

Output: b̃ = (aN−1 �� mN−1)‖ . . . ‖(a0 �� m0)
1: function RemoveCarries(ã,m)
2: c = 0 � C propagates the carries
3: for i = 0 to N − 1 do
4: t ← ãi �� mi �� c
5: c ← carry(step 4) � save next carry
6: bi ← t�� mi

7: end for
8: return b̃ = b̃N−1‖ . . . ‖b̃0
9: end function

For each i, 0 � i < N , let azi = ai ⊕ (−z) and mz
i = mi ⊕ (−z). Let czi =

ci ⊕ (−z) = ci ⊕ z, the i-th carry masked by the bit z. Then, according to (1),
we obtain that

ã⊕ (−z) =
(
azN−1 �� m

z
N−1 �� c

z
N−1

)
‖ . . . ‖ (az0 �� m

z
0 �� c

z
0) . (5)

Equation (5) together with Alg. 5 are used to derive the main algorithm of this
paper presented in Alg. 6.

To prove the correctness of Alg. 6, we study the internal variables when i = 0.
It can be noticed that only when k is equal to the mask chunk mz

0, step 12
becomes

R1 = S0[(ã
z
0 �� m

z
0 �� z)⊕ (−z)]⊕m′

0 .

Using (5), as ãz0 = az0 �� m
z
0 �� z, it holds that

R1 = S0[((a
z
0 �� m

z
0 �� z)�� m

z
0 �� z)⊕ (−z)]⊕m′

0

= S0[a
z
0 ⊕ (−z)]⊕m′

0

= S0[a0]⊕m′
0 .

At step 11, we also have

B1 = carry(step 10)

=

{
1 if (az0 +mz

0 + z) � 2�

0 otherwise
.

This corresponds to the next carry masked by the bit z:

B1 = c1 ⊕ z .

For i � 0, assume that B1 contains the current masked carry at the beginning
of step 8. For each i, 0 < i < N , it holds then that

R1 = Si[(ã
z
i �� m

z
i �� c

z
i )⊕ (−z)]⊕m′

i

= Si[((a
z
i �� m

z
i �� c

z
i )�� m

z
i �� c

z
i )⊕ (−z)]⊕m′

i

= Si[a
z
i ⊕ (−z)]⊕m′

i

= Si[ai]⊕m′
i .
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Algorithm 6. Secure multiple SBox with arithmetically masked input

Inputs: S = (S0, . . . , SN−1) ∈ (IF�
2 → IF�

2)
N , ã = (a�m) ∈ IFn

2 , m ∈ IFn
2 , m

′ ∈ IFn
2

Output: b̃ = S[a]⊕m′ = (SN−1[aN−1]⊕m′
N−1)‖ . . . ‖(S0[a0]⊕m′

0)
1: function SecureMulSBox(S, ã,m,m′)
2: z ← Random({0, 1})
3: ãz ← ã⊕ (−z)
4: mz ← m⊕ (−z)
5: B1 ← z � B1 propagates the correct carries
6: for i = 0 to N − 1 do
7: c ← B1

8: for k = 0 to 2� − 1 do

9: cmp ← (k
?
= mz

i ) � if k and m are equal, cmp is 1, else 0
10: t ← ãz

i �� k �� c
11: Bcmp ← carry(step10) � save next carry
12: Rcmp ← Si[t⊕ (−z)]⊕m′

i

13: end for
14: b̃i ← R1

15: end for
16: return b̃ = b̃N−1‖ . . . ‖b̃0
17: end function

Consequently, we also obtain

B1 = czi+1 = ci+1 ⊕ z ,

which is the next masked carry. At the end of Alg. 6, b̃i = Si[ai]⊕m′
i for each

i, 0 � i < N , which is the expected output.

4.2 Security Analysis

To achieve security against first order DPA, each step of our algorithm shall not
depend on any unmasked secret data. Before discussing the security in details,
we need to precisely define the attacker model.

Attacker: We assume that the attacker has full access to a device performing an
encryption using a block-cipher implementing Alg. 6 as a countermeasure in the
same context as Fig. 2. The attacker can choose any input to the block-cipher,
and we assume that she is able to predict the value of the input a of Alg. 6 for
any hypothesis on the secret key(t). The attacker can only perform first-order
DPA, meaning that only one moment of the execution can be targeted at each
execution. But, the attacker is able to acquire as many power traces as needed
for the targeted moment.

Leakage: We assume that the device is leaking information on the values in-
volved during every operation. This information may be their Hamming weight.
Every operation is assumed to leak similarly.
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Recall that a and S[a] are sensitive data. Algorithm 6 is secure against the
previously defined model only if each operation involved behaves as it was ma-
nipulating only random or constant values. No operation should involve both a
masked value and the corresponding mask at the same time. We analyze each
step of Alg. 6 involving a sensitive data in Table 1. Steps 2, 4, 5 and 9 are omit-
ted as they manipulate only constant or random value. The notation kz is used
to denote k ⊕ (−z).

Table 1. Sensitive values manipulated in Alg. 6

Step Instruction Manipulated value Sensitive value Mask(s)

3.1 t ← ã a�m a m
3.2 ãz ← t⊕ (−z) (a�m)⊕ (−z) a m, z

7 c ← B1 czi ci z

10.1 t ← ãz
i (ai �� mi �� ci)⊕ (−z) ai �� ci mi, z

10.2 t ← t�� k �� c ai ⊕ (−z)�� m
z
i �� k ai z, mz

i �� k

11 Bcmp ← carry(step10) czi+1 ci+1 z

12.1 t ← t⊕ (−z) ai �� mi �� k
z ai mi �� k

z

12.2 t ← Si[t] Si[ai �� mi �� k
z] ai mi �� k

z

12.3 Rcmp ← t⊕m′
i Si[ai �� mi �� k

z]⊕m′
i ai mi �� k

z, m′
i

14 b̃i ← R1 Si[ai]⊕m′
i Si[ai] m′

i

We further detail the steps presented in Table 1:

– Step 3 manipulates a masked variable, and the operation only adds another
independent random bit.

– Steps 7 and 14 are assignments of masked data: B1 is the next carry masked
by z and R1 is Si[ai] masked by m′

i.
– At steps 10 and 12, k is constant, then the masks mz

i �� k or mi �� k
z are

uniformly distributed on � bits. These steps are performed once for every
possible value of k. Next, the carry read at Step 11 is already masked by the
bit z and gives no information on the sensitive variable.

According to Table 1, each sensitive value is masked with a uniformly distributed
mask of at least as many bits as the sensitive value.

5 Implementation

We implemented our method (Alg. 6) as well as the method using the mask
conversion from [19], then the secure SBox algorithm of [22] (Alg. 4). The imple-
mentations were done in 8051 assembly with the same optimizations – favoring
small code size. The implemented example is N = 8 SBoxes of � = 4 bits input
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and output which are the parameters used in the GOST block-cipher. For Alg. 4,
we used λ ∈ {2, 4, 8} as chunk size for the AMtoBM conversion algorithm. In the
cases λ < 8, each element of precomputed tables T and C has been stored on
one byte. In the case λ = 8, we also used the optimization for Alg. 4 described
in Remark 2. We give in Table 5 a comparison between these methods regard-
ing several parameters. Our method has not been compared to methods based
on table re-computation because we targeted low memory devices. For these
parameters, such methods would require at least 64 extra bytes of memory.

Table 2. Comparison of 8051 implementations of Alg. 4 and Alg. 6

Alg. 4 ([19] + [22]) Alg. 6
λ = 2 λ = 4 λ = 8 (this paper)

rand. gen. (in bits) 3 5 9 1
pre-comp. time (in cy) 72 201 3349 ∅
algorithm time (in cy) 3013 2773 2633 3334

XRAM (in bytes) 4 16 256 0
Code (in bytes) 276 271 256 151

It can be noticed that our new algorithm outperforms the others in terms
of memory requirements (RAM and code). This makes it particularly suitable
on devices with limited resources. If only one call is needed, the execution time
of our algorithm is similar to the algorithms from [19] and [22] with λ = 2, a
bit slower with λ = 4, and better with λ = 8. Then, for the implementation
of a full block cipher, depending on the number of secure rounds needed, our
method may be less efficient than those using pre-computation, but still has the
advantage of using no extra memory. Furthermore, the random generation time
has not been taken into account in the provided timings. On a device where no
fast random is available, the cost of the additional random generation needed
by Alg. 4 may make it even slower.

6 Conclusion

We have introduced a new method that answers the problem of accessing so-
called multiple SBoxes with arithmetically masked input in the context of a
software implementation secure against first order DPA. One advantage of the
proposed solution is that no extra RAM is needed to securely compute the output
of the SBoxes. Besides, the code size of the proposed method is relatively low,
and the execution speed remains competitive with other methods when only
few computations are needed. All in all, our method is particularly suitable for
extremely constrained devices with tight requirements on memory (RAM and
ROM). We have demonstrated the security of our method against first-order
DPA. An extension of our algorithm to second-order masking as in [24] is the
next step of this work.
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14. Koç, Ç.K., Naccache, D., Paar, C. (eds.): CHES 2001. LNCS, vol. 2162. Springer,
Heidelberg (2001)

15. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener (ed.) [27],
pp. 388–397

16. Lai, X., Massey, J.L.: A proposal for a new block encryption standard. In: Damg̊ard,
I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 389–404. Springer, Heidelberg
(1991)

17. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks – Revealing the Secrets
of Smartcards. Springer (2007)

18. Messerges, T.S.: Securing the AES Finalists Against Power Analysis Attacks. In:
Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 150–164. Springer, Heidelberg
(2001)

19. Neiße, O., Pulkus, J.: Switching Blindings with a View Towards IDEA. In: Joye,
Quisquater (eds.) [12], pp. 230–239

http://csrc.nist.gov/encryption/aes/round1/conf2/aes2conf.htm


Secure Multiple SBoxes with Arithmetically Masked Input 105

20. Oswald, E., Mangard, S., Herbst, C., Tillich, S.: Practical Second-order DPA At-
tacks for Masked Smart Card Implementations of Block Ciphers. In: Pointcheval
(ed.) [21], pp. 192–207

21. Pointcheval, D. (ed.): CT-RSA 2006. LNCS, vol. 3860. Springer, Heidelberg (2006)
22. Prouff, E., Rivain, M.: A Generic Method for Secure SBox Implementation. In:

Kim, S., Yung, M., Lee, H.-W. (eds.) WISA 2007. LNCS, vol. 4867, pp. 227–244.
Springer, Heidelberg (2008)

23. Rivain, M., Prouff, E.: Provably Secure Higher-Order Masking of AES. In: Man-
gard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427.
Springer, Heidelberg (2010)

24. Rivain, M., Dottax, E., Prouff, E.: Block Ciphers Implementations Provably Secure
Against Second Order Side Channel Analysis. In: Nyberg, K. (ed.) FSE 2008.
LNCS, vol. 5086, pp. 127–143. Springer, Heidelberg (2008)

25. Schramm, K., Paar, C.: Higher Order Masking of the AES. In: Pointcheval (ed.)
[21], pp. 208–225

26. Telecommunications Technology Association: 128-bit symmetric block cipher
(SEED), Seoul, Korea (1998)

27. Wiener, M. (ed.): CRYPTO 1999. LNCS, vol. 1666. Springer, Heidelberg (1999)
28. Zabotin, I.A., Glazkov, G.P., Isaeva, V.B.: Cryptographic protection for informa-

tion processing systems, government standard of the USSR, GOST 28147-89. Gov-
ernment Committee of the USSR for Standards (1989)



Low-Cost Countermeasure against RPA

Jean-Luc Danger1,2, Sylvain Guilley1,2, Philippe Hoogvorst2,
Cédric Murdica1,2, and David Naccache3

1 Secure-IC S.A.S., 80 avenue des Buttes de Coësmes,
f-35700 Rennes, France

{jean-luc.danger,sylvain.guilley,cedric.murdica}@secure-ic.com
2 Département COMELEC, Institut TELECOM,
TELECOM ParisTech, CNRS LTCI, Paris, France

{jean-luc.danger,sylvain.guilley,philippe.hoogvorst,
cedric.murdica}@telecom-paristech.fr

3 École normale supérieure, Département d’informatique
45, rue d’Ulm, f-75230, Paris Cedex 05, France

david.naccache@ens.fr

Abstract. On smart-cards, Elliptic Curve Cryptosystems (ECC) can be
vulnerable to Side Channel Attacks such as the Refined Power Analysis
(RPA). This attack takes advantage of the apparition of special points
of the form (0, y). In this paper, we propose a new countermeasure based
on co-Z formulæ and an extension of the curve isomorphism counter-
measure. It permits to transform the base point P = (x, y) into a base
point P ′ = (0, y′), which, with −P ′, are the only points with a zero X-
coordinate. In such case, the RPA cannot be applied. Moreover, the cost
of this countermeasure is very low compared to other countermeasures
against RPA.

Keywords: Elliptic Curve Cryptosystem, Co-Z formulæ, Differential
Power Analysis, Refined Power Analysis.

1 Introduction

The use of elliptic curves for cryptographic applications has been introduced by
Koblitz [17] and Miller [23]. Elliptic Curve Cryptosystems (ECC) have gained
much importance in smart-cards devices because of their better speed and low
memory constraints compared to other asymmetric cryptosystems such as RSA.

The main operation on ECC is the computation of an elliptic curve scalar
multiplication (ECSM), that is the computation of [d]P for an integer d and a
point P on an elliptic curve. The cryptographic security of ECC is based on the
elliptic curve discrete logarithm problem (ECDLP), which asks to compute d
given Q = [d]P and P .

An ECSM is generally based on addition and doubling formulæ of points.
Meloni points that addition formulæ of two points of an elliptic curve is more
efficient if they share the same Z-coordinate [21]. He brought new formulæ, called

S. Mangard (Ed.): CARDIS 2012, LNCS 7771, pp. 106–122, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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co-Z formulæ, that can be used to perform an ECSM with addition chains and
Zeckendorf representation.

Meloni’s formulæ were adapted in [8,10,9] so that they might be usable with
traditional ECSM algorithms such as the right-to-left signed-digit method, the
Montgomery Powering Ladder [16], or the Joye’s double-add method [14].

In this paper, we are interested on the security against Side Channel Attacks.
We present alternative co-Z formulæ using an extension of the curve isomorphism
countermeasure [15]. The new co-Z formulæ allow to perform an ECSM that can
be secured against SPA [18], DPA [19] and RPA [7] attacks. We give a comparison
of different countermeasures against RPA. Our countermeasure has a very low
cost compared to the other countermeasures.

The rest of the paper is structured as follows. In Section 2, we describe some
properties on elliptic curves arithmetic and ECSM algorithms. In Section 3,
we recall on the different side channel attacks, especially the RPA. Section 3
also gives countermeasures against RPA. Section 4 describes our countermeasure
based on modified co-Z formulæ and an extension of the curve isomorphism
countermeasure. We give a comparison of different countermeasures against the
RPA in Section 5. Finally, we conclude in Section 6.

2 Elliptic Curve Arithmetic

In this paper, we are interested in elliptic curves based on field with characteristic
greater than 3, and the given elliptic curves are in the reduced Weierstraß form.

However, our proposed countermeasure transforms the curve given into an-
other one that is not in its short Weierstraß form. This is why we also give
the formulæ for elliptic curve in the general Weierstraß form to understand our
modified formulæ of Section 4.

2.1 Elliptic Curve Arithmetic in the Affine Coordinates System

In a finite field K, an elliptic curve can be described by its Weierstraß form:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 .

We denote by E(K) the set of points (x, y) ∈ K
2 satisfying the equation, plus the

point at infinity O. E(K) has an Abelian group structure. Let P = (x1, y1) �= O
and Q = (x2, y2) /∈ {O,−P} two points in E(K). The point R = (x3, y3) = P+Q
can be computed as:

x3 = λ2 + a1λ− a2 − x1 − x2

y3 = λ(x1 − x3)− y1 − a1x3 − a3
where λ =

{
y1−y2

x1−x2
if P �= Q,

3x2
1+2a2x1+a4−a1y1

2y1+a1x1+a3
if P = Q.

The inverse of the point P is −P = (x1,−y1 − a1x1 − a3).
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In a finite field Fp, with p a prime such that p > 3, an elliptic curve can be
described by its short Weierstraß form:

E : y2 = x3 + ax+ b .

The point R = (x3, y3) = P +Q can be computed as:

x3 = λ2 − x1 − x2

y3 = λ(x1 − x3)− y1
where λ =

{
y1−y2

x1−x2
if P �= Q,

3x2
1+a
2y1

if P = Q.

The inverse of the point P is −P = (x1,−y1).

2.2 Elliptic Curve Arithmetic in the Jacobian Projective
Coordinates System

To avoid costly inversions, one can use the Jacobian projective coordinates sys-
tem. The equation of an elliptic curve in the Jacobian projective coordinates
system in the reduced Weierstraß form is:

EJ : Y 2 = X3 + aXZ4 + bZ6 .

The point (X,Y, Z) corresponds to the affine point (X/Z2, Y/Z3).
We give addition (ecadd) and doubling (ecdbl) formulæ in the Jacobian

projective coordinates system. The formulæ are from [3].

Algorithm 1. ecdbl
Input: P = (X1, Y1, Z1) ∈ EJ (Fp)

Output: 2P

A ← X2
1 ; B ← Y 2

1
C ← B2; D ← Z2

1
S ← 2((X1 + B)2 − A − C)

M ← 3A + aD2

X3 ← M2 − 2S

Y3 ← M(S − X3) − 8C

Z3 ← (Y1 + Z1)
2 − B − D

return (X3, Y3, Z3)

Algorithm 2. ecadd
Input: P =(X1, Y1, Z1), Q=(X2, Y2, Z2) ∈ EJ (Fp)

Output: P + Q

A ← Z2
1 ; B ← Z2

2
U1 ← X1B; U2 ← X2A

S1 ← Y1Z2B; S2 ← Y2Z1A

H ← U2 − U1

I ← (2H)2

J ← HI; K ← 2(S2 − S1); V ← U1I

X3 ← K2 − J − 2V

Y3 ← K(V − X3) − 2S1J

Z3 ← ((Z1 + Z2)
2 − A − B)H

return (X3, Y3, Z3)

We denote by M,S the cost of field multiplication and field squaring respec-
tively. We neglect the cost of additions and subtractions. ecdbl can be per-
formed in 2M + 8S and ecadd can be performed in 11M +5S. Mixed addition
(mecadd) is the addition of a point in Jacobian coordinates with a point in
affine coordinates (Z2 = 1). mecadd can be performed in 7M + 4S [3].

2.3 Elliptic Curve Arithmetic Using co-Z Formulæ

We describe here addition formulæ with points sharing the same Z-coordinate.
Two procedures are presented. Addition and update in co-Z (zaddu) is the
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procedure to compute P + Q and update the point P to get the same Z-
coordinate. It was introduced in [21]. Conjugate addition in co-Z (zaddc) is
the procedure to compute P +Q and P −Q. It was introduced in [8].

Algorithm 3. co-Z addition and update
(zaddu)
Input: P =(X1, Y1, Z), Q=(X2, Y2, Z) ∈ EJ (Fp)

Output: (R, S) with R = P + Q and S =

(λ2X1, λ
3Y1, λZ) with λ = X1 − X2

C ← (X1 − X2)
2

W1 ← X1C; W2 ← X2C; Z3 ← Z(X1 − X2)

D ← (Y1 − Y2)
2; A1 ← Y1(W1 − W2)

X3 ← D − W1 − W2

Y3 ← (Y1 − Y2)(W1 − X3) − A1

X4 ← W1

Y4 ← A1

return ((X3, Y3, Z3), (X4, Y4, Z3))

Algorithm 4. conjugate co-Z addition
(zaddc)
Input: P =(X1, Y1, Z), Q=(X2, Y2, Z) ∈ EJ (Fp)

Output: (R,S) with R = P + Q, S = P − Q

C ← (X1 − X2)
2

W1 ← X1C; W2 ← X2C; Z3 ← Z(X1 − X2)

D1 ← (Y1 − Y2)
2; A1 ← Y1(W1 − W2)

X3 ← D1 − W1 − W2

Y3 ← (Y1 − Y2)(W1 − X3) − A1

D2 ← (Y1 + Y2)
2

X4 ← D2 − W1 − W2

Y4 ← (Y1 + Y2)(W1 − X4) − A1

return ((X3, Y3, Z3), (X4, Y4, Z3))

Goundar et al. proposed in [9] an optimisation by removing the useless com-
putation of the Z-coordinate. The formulæ are called the (X,Y )-only co-Z for-
mulæ (zacau’)1. zacau’ (algorithm 15 in appendix) is a procedure computing
the point 2P and P +Q. It can be performed in 8M + 6S [9].

2.4 Elliptic Curve Scalar Multiplication

In elliptic curve cryptography, one has to compute scalar multiplications, i.e.
compute [d]P , given the point P and a positive integer d.

The Montgomery Ladder is regular since the same operations are performed
at each iteration independently of the current bit. Therefore it can be used to
prevent the SPA. The Montgomery Ladder can be adapted with co-Z formulæ.

Algorithm 5. Montgomery Ladder

Input: P ∈ EJ (Fp), d=(dn−1, . . . , d0)2, dn−1=1

Output: [d]P

R0 ← P,R1 ← 2P

for i = n − 2 downto 0 do

R1−di
← ecadd(R1−di

, R1−di
)

Rdi
← ecdbl(Rdi

)
end for

return R0

Algorithm 6. add only Montgomery
Ladder using co-Z formulæ [8]
Input: P ∈ EJ (Fp), d=(dn−1, . . . , d0)2, dn−1=1

Output: [d]P

R0 ← P,R1 ← 2P

for i = n − 2 downto 0 do

(R1−di
, Rdi

) ← zaddc(Rdi
, R1−di

)
(Rdi

, R1−di
) ← zaddu(R1−di

, Rdi
)

end for

return R0

Remark 1. In algorithm 6, the output point Rdi of zaddc is always equal to
±P . Indeed, at the end of each iteration of the algorithm, R0 and R1 verify
R1 = R0 + P .
1 We use the same notation as in [9]: (’) stands for formulæ that does not involve the
Z-coordinate.
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Using zacau’, zaddc’ and zaddu’, the add only Montgomery Ladder using
co-Z formulæ can be improved. See [9] for the justification to recover the Z
coordinate.

Algorithm 7. Montgomery Ladder with (X,Y )-only co-Z formulæ [9]
Input: P ∈ EJ (Fp), d = (dn−1, . . . , d0)2, dn−1 = 1

Output: [d]P

R0 ← P,R1 ← 2P

C ← (XR0
− XR1

)2

for i = n − 2 downto 1 do

(Rdi
, R1−di

, C) ← zacau’(Rdi
, R1−di

, C)

end for

b ← d0; (R1−b, Rb) ← zaddc’(Rb, R1−b)

Z ← xP YRb
(XR0

− XR1
); λ ← yPXRb

(Rb, R1−b) ← zaddu’(R1−b, Rb)

return

((
λ
Z

)2
XR0

,
(

λ
Z

)3
YR0

)

3 Side Channel Attacks

We describe in this section passive attacks such as DPA, RPA and ZPA.

3.1 DPA Attack and Countermeasures

If the same scalar d is used several times, the implementation can be vulnerable
to the DPA [19]. The attacker recursively guesses the bits of the scalar and
simulates the computation.

The countermeasures given below can be used to prevent the DPA.

Random Projective Coordinates [6]. A point P = (X,Y, Z) in Jacobian
coordinates is equivalent to any point (r2X, r3Y, rZ), with r ∈ F

∗
p. One can ran-

domize the base point at the beginning of the ECSM by choosing a random r.

Random Curve Isomorphism [15]. A curve E defined by E : y2 = x3+ax+b
in affine coordinates is isomorphic to the curve E′ defined by E′ : y2 = x3 +
a′x + b′ if and only if there exists u ∈ F

∗
p such that u4a′ = a and u6b′ = b. The

isomorphism ϕ is defined as:

ϕ : E
∼−→ E′,

{
O → O

(x, y)→ (u−2x, u−3y)

The countermeasure consists of computing the ECSM on a random curve E′

instead of E.

Scalar Randomization [6]. Randomization of the scalar using d′ = d + r�E
is effective against DPA. r must be at least 32 bits, because attacks have been
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pointed out in [24] if r is small. For this reason, the ECSM is 32 iterations longer.

Random Scalar Split [5]. Random scalar splitting, such as computing Q =
[d1]P + [d2]P with d = d1 + d2, is effective against DPA. One can also use the
euclidian splitting method [5]: compute Q = [d1]P + [d2]S with d1 = d mod r,
d2 = �d/r� and S = [r]P with r a random integer a half size of d. Ciet and
Joye proposed in [5] to compute the point Q using a variant of Shamir’s trick
for efficiency (algorithm 13 in appendix). However, since they use four tempo-
rary points, they cannot use the co-Z formulæ. ecdbl and mecadd should be
used instead. For the computation of S = [r]P , one can also use the variant of
Shamir’s trick with one of the scalar being zero.

Point Blinding [6]. Computing Q = [d](P + R) instead of [d]P , with R a
pseudo-random point is effective against DPA. The chip returns Q− [d]R. R and
[d]R are computed from R0 and [d]R0 precomputed and stored in the chip, with
R0 a random point.

This countermeasure was improved in [11] and later in [20]. The authors pro-
posed to modify the ECSM for gradually subtract the random point R. The
Binary Expansion with Random Initial Point (BRIP) can be found in appendix
(algorithm 14). However, since they use three temporary points, they cannot use
the co-Z formulæ. ecdbl and mecadd should be used instead.

3.2 RPA Attack

The RPA [7] is based on the apparition of a special point of the form (0, y)
during the ECSM2.

Let P0 = (0, y) for some y. Suppose that the Montgomery Ladder (algorihm 5)
is used to compute an ECSM. Suppose that the attacker already knows the n−
i− 1 leftmost bits of the fixed scalar d = (dn−1, dn−2 . . . , di+1, di, di−1, . . . , d0)2.
He tries to recover the unknown bit di.

The attacker computes the point P = [(dn−1, dn−2, . . . , di+1, 0)
−1
2 mod �E]P0

and gives P to the targeted chip that computes [d]P . If di = 0, then the point
P0 will appear during the ECSM. If the attacker is able to recognize a zero value
in a register, he can then conclude whether his hypothesis (di = 0) was correct
or not.

3.3 ZPA Attack

The Zero-Value Point Attack (ZPA) [1] uses the same approach than the RPA,
except that the attack is not only interested in zero values in coordinates but
in intermediate registers when computing the double of a point, or during the
addition of two points. Such points are defined as zero-value points.
2 the point (x, 0) can also be used but a point of this form is of order 2. In ECC,

the order of the provided base point is checked and points of order 2 never appear
during an ECSM.
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Finding zero-value points for doubling formulæ consists in resolving polyno-
mial equations in x, y with low degree (less than 4).

Finding zero-value points for addition is more difficult. For the Montgomery
Ladder algorithm, suppose the attacker already knows the n − i − 1 leftmost
bits of the fixed scalar d = (dn−1, dn−2, . . . , d0)2 and try to recover di. With
c = (dn−1, dn−2 . . . , di+1, 0)2, he has to find a point P0 such that [c]P0 and
[c + 1]P0 are zero-value points. The only known procedure is using division
polynomials and solve equations in two variables with degree of order O(c2) [1].
At this day, when c is large, it is a hard problem. This problem was discussed
in [12] and [1].

Remark 2. The random projective coordinates and the random curve isomor-
phism countermeasures described in the previous subsection fail against RPA
and ZPA.

Some countermeasures to prevent RPA and ZPA are given below.

Isogeny Defence [25,2]. Computing an ECSM on a curve E′ isogenous to E
such that E′ does not contain any non-trivial zero-value point is effective against
the RPA and the ZPA.

Randomized Linearly Transformed Coordinates (RLC) [11]. This coun-
termeasure consists in modifying the addition and doubling formulæ such that
a zero value can never show up. A point P = (X,Y, Z) is transformed into
(Xμ, Y, Z, μ) with Xμ = X + μ, with μ a random field element. The poten-
tial zero value X is never manipulated alone. The countermeasure was given
in [11] with classical doubling and addition formulæ. We adapted the counter-
measure with the co-Z formulæ, because it is more efficient. We only modified
the formulæ to prevent RPA because of the remark of the difficulty of the ZPA
on addition formulæ. The countermeasure adapted with co-Z formulæ can be
found in appendix (algorithm 16).

Remark 3. The scalar randomisation, random scalar split and point blinding
countermeasures described in the previous subsection are also effective against
RPA and ZPA.

4 Our Proposed Countermeasure

We describe in this section our new co-Z formulæ that we can use to perform a
secured ECSM against the DPA and the RPA.

The main idea is to perform the ECSM with a base point P ′ = (0, y′). This
point and its opposite −P ′ are the only points with a zero X-coordinate. Using
the ECSM add only Montgomery Ladder using co-Z formulæ (algorithm 6) with
P ′ as the base point, we will show that the inputs of zaddc are never ±P ′

whatever the value of the scalar. So the RPA cannot be performed.
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The output point Rdi of zaddc is always equal to ±P ′ (see remark 1). So
±P ′ = (0,±y′) appears at the end of zaddc and therefore appears at the be-
ginning of zaddu. Algorithms 3 and 4 can be modified by removing the useless
multiplications and additions with the zero-value.

Algorithm 8. co-Z addition and update
with a zero value (zadduzero)
Input: P =(X1, Y1, Z), Q=(0, Y2, Z) ∈ EJ (Fp)

Output: (R, S) with R = P + Q and S =

(λ2X1, λ
3Y1, λZ) with λ = X1

C ← X2
1

W1 ← X1C; Z3 = ZX1

D ← (Y1 − Y2)
2; A1 ← Y1W1

X3 ← D − W1

Y3 ← (Y1 − Y2)(W1 − X3) − A1

X4 ← W1; Y4 ← A1

return ((X3, Y3, Z3), (X4, Y4, Z3))

Algorithm 9. conjugate co-Z addition
with a zero value (zaddczero)
Input: P = (X1, Y1, Z), Q=(X2, Y2, Z) ∈ EJ (Fp),

such that xP−Q=0

Output: (R,S) with R = P + Q, S = P − Q

C ← (X1 − X2)
2

W1 ← X1C; W2 ← X2C; Z3 ← Z(X1 − X2)

D ← (Y1 − Y2)
2; A1 = Y1(W1 − W2)

X3 ← D − W1 − W2

Y3 ← (Y1 − Y2)(W1 − X3) − A1

Y4 ← (Y1 + Y2)W1 − A1

return ((X3, Y3, Z3), (0, Y4, Z3))

zadduzero and zaddczero can be combined without the Z-coordinate: za-
cauzero’. The algorithm is given in appendix (algorithm 17). zacauzero’ requires
one multiplication and one square less compared to zacau’ (algorithm 15).

The main step is to find a method to transform any base point P = (x, y) of
any curve into a base point P ′ = (0, y′).

We present in this paper two methods of such a transformation. The first
method uses isogenies and was proposed in [2]. The second method is an exten-
sion of the random curve isomorphism countermeasure.

4.1 Transformation of the Base Point Using Isogenies

An isogeny between two elliptic curves E and E′ defined over Fp is a non-
constant morphism φ : E → E′. Every isogeny has a finite kernel and the size of
this kernel is called the degree of isogeny.

Brier and Joye introduced in [4] the use of isogenies for efficiency: they trans-
form an elliptic curve E : y2 = x3 + ax + b into an elliptic curve E′ : y2 =
x3 − 3x + b′. The parameter a′ = −3 brings better performance for doubling
formulæ.

Smart proposed in [25] to use isogenies as a countermeasure against the
RPA [7]. ECSMs are performed on an isogenous elliptic curve that does not
contain any special point of the form (0, y). Akishita and Takagi extended the
isogeny defense in [2] so it can also prevent the ZPA. They also use isogenies for
efficiency for binary ECSM methods. The given elliptic curve is transformed into
an isogenous curve where the base point G′ has the particular form G′ = (0, y′),
for that the addition with the point G′ is more efficient because of the zero value.

Finding isogenies for a given elliptic curve is not trivial. Isogenies of stan-
dardized curves are precomputed and stored in the chip. The base point given
also needs to be mapped in the isogenous curve. This transformation has a non
negligible cost which is discussed in [25].
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4.2 Transformation of the Base Point Using Isomorphism

We propose here a more practical method to transform the base point that can
work to any arbitrary curve. We extend the isomorphic curve countermeasure
proposed in [15]. We need the following corollary of the theorem [22, Theorem
2.2].

Corollary 1. Let Fp be a finite field with a prime p > 3. The elliptic curves
given by the Weierstraß equations

E : y2 = x3 + a4x+ a6
E′ : y2 = x3 + a′2x

2 + a′4x+ a′6
are isomorphic over Fp if and only if there exist u ∈ F

∗
p and r ∈ Fp such that the

change of variables

(x, y)→ (u−2(x− r), u−3y)

transforms equation E into equation E′. Such a transformation is referred to as
an admissible change of variables. Furthermore,⎧⎨⎩

u2a′2 = 3r
u4a′4 = a4 + 3r2

u6a′6 = a6 + ra4 + r3 .

Proof. The corollary is simply a particular case of the theorem [22, Theorem
2.2] with s = t = a1 = a2 = a3 = a′1 = a′3 = 0. ��

Remark 4. In the isomorphic curve countermeasure [15], the isomorphic curve E′

is also in its short short Weierstraß form for efficiency reason. Therefore a′2 = 0.
This implies r = 0. Only u is randomly chosen for the countermeasure.

The ECSM add only Montgomery Ladder using co-Z formulæ (algorithm 6) has
the following properties:

– the base point P or its opposite −P appears at each iteration
– a point doubling is never performed in the main loop

The goal is to perform an ECSM with a base point of the form P ′ = (0, yP ′).
If the base point given is P = (xP , yP ) on the elliptic curve E, one can choose
r = xP and a random u so that the isomorphism:

ϕ : E
∼−→ E′,

{
O → O

(x, y)→ (u−2(x − r), u−3y)

maps the point P = (xP , yP ) into the point P ′ = (0, u−3yP ). However, the ellip-
tic curve E′ is not in the short Weierstraß form: the parameter a′2 is non-zero.
Thanks to the add only Montgomery Ladder using co-Z formulæ (algorithm 6),
a doubling is never performed. Only the addition has to be modified. Using
Section 2 to see the modifications due to the non-zero a′2 parameter on co-Z
formulæ, we can give the modified co-Z formulæ.
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Algorithm 10. co-Z addition and up-
date with a zero value and a′

2 parameter
(zadduazero)

Input: P = (X1, Y1, Z), Q = (0, Y2, Z) ∈ E′J (Fp)

and Ta = a′
2Z

2

Output: (R, S, Ta) with R = P + Q, S =

(λ2X1, λ
3Y1, λZ) with λ = X1 and Ta = a′

2Z
2
3

C ← X2
1

W1 ← X1C; Z3 ← ZX1; Ta ← TaC

D ← (Y1 − Y2)
2; A1 ← Y1W1

X3 ← D − W1 − Ta

Y3 ← (Y1 − Y2)(W1 − X3) − A1

X4 ← W1; Y4 ← A1

return ((X3, Y3, Z3), (X4, Y4, Z3), Ta)

Algorithm 11. conjugate co-Z addi-
tion with a zero value and a′

2 parameter
(zaddcazero)
Input: P =(X1, Y1, Z), Q=(X2, Y2, Z) ∈ E′J (Fp),

such that xP−Q=0 and Ta =a′
2Z

2

Output: (R, S, Ta) with R = P +Q, S = P −Q and
Ta = a′

2Z
2
3

C ← (X1 − X2)
2

W1 ← X1C; W2 ← X2C; Z3 ← Z(X1 − X2)

Ta ← TaC

D ← (Y1 − Y2)
2; A1 ← Y1(W1 − W2)

X3 ← D − W1 − W2 − Ta

Y3 ← (Y1 − Y2)(W1 − X3) − A1

Y4 ← (Y1 + Y2)W1 − A1

return ((X3, Y3, Z3), (0, Y4, Z3), Ta)

The combination of the two formulæ without the Z-coordinate is given in
appendix (algorithm 18). We called it zacauazero’. zacauazero’ requires 9M +
5S. That is one multiplication more and one square less than zacau’.

The complete ECSM using the countermeasure and the modified co-Z formulæ
is given below.

Algorithm 12. (X,Y )-only add only Montgomery Ladder using modified co-Z for-
mulæ
Input: P ∈ EJ (Fp), d = (dn−1, . . . , d0)2, dn−1 = 1

Output: [d]P

u
R← F

∗
p

P ′ ← (0, u−3yP , 1) � isomorphism
Ta ← 3xP u−2 � Ta is the parameter a′

2 of the isomorphic curve E′
R0 ← P ′, R1 ← 2P ′ � R0 and R1 must share the same Z-coordinate
C ← (XR0

− XR1
)2 = X2

R1
for i = n − 2 downto 1 do

(Rdi
, R1−di

, C, Ta) ← zacauazero’(Rdi
, R1−di

, C, Ta)
end for

b ← d0; (R1−b, Rb, Ta) ← zaddcazero’(Rb, R1−b, Ta)

Z ← 3xP u−2YRb
(XR0

− XR1
); λ ← u−3yPTa � Z = a′

2YRb
(XR0

− XR1
), λ = u−3yP a′

2Z
2
R0

(Rb, R1−b, Ta) ← zadduazero’(R1−b, Rb, Ta)

(x′, y′) ←
((

λ
Z

)2
XR0

,
(

λ
Z

)3
YR0

)

(x, y) ← (u2x′ + xP , u3y) � isomorphism inverse

return (x, y)

4.3 Security Analysis of our Countermeasure

The security against RPA is based on the fact that the base point P ′ has a
x-zero coordinate. The only possible points having a x-zero coordinate are P ′

and −P ′. These two points can never appear as inputs of zacauazero’. Joye was
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the first to propose in [13] an extension of the random curve isomorphism coun-
termeasure to prevent the RPA. His countermeasure can be applied for elliptic
curves on binary fields of the form y2 + xy = x3 + a2x

2 + a6, so choosing a
random r for the isomorphism of theorem [22, Theorem 2.2] does not affect the
efficiency. In this paper, we introduced the extension of the random isomorphic
curve countermeasure on elliptic curve over field of large characteristic without
any efficiency loss.

SPA Security. Our ECSM is regular: the same operation zacauazero’ is per-
formed whatever the value of the current bit. The classical SPA where an attacker
is able to distinguish different patterns depending on the value of the current bit
cannot be applied.

DPA Security. The random parameter u gives the security against DPA. All
values and intermediates values in zacauazero’ (algorithm 18) are multiplica-
tively randomized by u.

RPA Security. The RPA security is provided by the following lemma.

Lemma 1. Suppose d satisfies 1 < d < ord(P ). The points R0 and R1 at the
beginning of each iteration 1 ≤ i ≤ n− 3 in algorithm 12 cannot take the values
±P ′.

Proof. Suppose the ECSM is performed with the scalar d = (dn−1, dn−2, . . . , d0)2
and the base point P ′. Let ci = (dn−1, dn−2 . . . , di+1)2. At the beginning of
iteration i with 1 ≤ i ≤ n − 3, the points R0, R1 verify R0 = ciP

′ and R1 =
[ci + 1]P ′.

– if R0 = [ci]P
′ = P ′, then [ci − 1]P ′ = O so the order of P ′ and P is (ci − 1),

which is impossible by the condition of d.
– if R0 = [ci]P

′ = −P ′, then [ci+1]P ′ = O so the order of P ′ and P is (ci+1),
which is impossible by the condition of d.

– if R1 = [ci+1]P ′ = P ′, then [ci]P
′ = O so the order of P ′ and P is ci, which

is impossible by the condition of d.
– if R1 = [ci + 1]P ′ = −P ′, then [ci + 2]P ′ = O so the order of P ′ and P is

(ci + 2), which is impossible by the condition of d.

By contradiction, we prove that the points R0, R1 cannot take the values P ′ or
−P ′. ��

An elliptic curve E′ : y2 = x3 + a′2x
2 + a′4x + a′6 contains at most two points

of the form (0, y′). Those points are P ′ = (0,
√
a′6) and −P ′ = (0,−

√
a′6). The

points P ′ and −P ′ are the only points with a zero x-coordinate. With the lemma,
we can state that an attacker is not able to perform a RPA attack because the
zero-value points never appear in outputs of zacauazero’.

ZPA Security. The ZPA security is not guaranteed. However, the ZPA remains
difficult because no doubling is performed during the ECSM. The attacker has
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to find zero-value points for addition which is a difficult problem [12,1]. This is
discussed in Section 3.

5 Comparison with Prior RPA Countermeasures

In this section, we compare different countermeasures against RPA described in
Section 3.

We can see that if the cost of a multiplication and a square is the same, our
countermeasure does not bring any additional cost. The isogeny defence does not
bring any additional cost as well but it does not work to any curve: the isogenous
curves have to be precomputed and stored in the chip. Moreover, the base point
given has to be mapped to the isogenous curve, so the countermeasure has an
extra cost. The cost of isogeny is approximatively 3l multiplications with l the
degree of isogeny [25].
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6 Conclusion

We presented in this paper a secured ECSM where the base point is of the form
P ′ = (0, y′). The base point P given is transformed into P ′ using an exten-
sion of the isomorphic curve countermeasure [15]. The ECSM is secured against
DPA [19] and RPA [7]. Moreover, thanks to co-Z formulæ, a doubling is never
performed during the main loop, so the ZPA [1] remains a hard problem. A com-
parison of different countermeasure against RPA is also given. Using modified
co-Z formulæ, the loss of efficiency is negligible, and our countermeasure is the
most efficient.
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Further work is to guarantee the security against the ZPA with either finding
formulæ with no zero-value point or calculating the cost of finding zero-value
points for addition. Also, a comparison of the memory cost of countermeasures
against RPA is missing.
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A Elliptic Curve Scalar Multiplication Algorithms

Algorithm 13. Variant of Shamir’s
trick [5]
Input: P, S ∈ EJ (Fp), k = (kn−1, . . . , k0)2,

d = (dn−1, . . . , d0)2 with (kn−1, dn−1) �= (0, 0)

Output: [k]P + [d]S

R1 ← P ; R2 ← S; R3 ← P + S; R4 ← P + S

c ← 2dn−1 + kn−1; R0 ← Rc

for i = n − 2 downto 0 do

R0 ← ecdbl(R0)
b ← ¬(ki ∨ di); c ← 2di + ki

R4b ← mecadd(R4b, Rc)

end for

return R0

Algorithm 14. BRIP [20]
Input: d = (dn−1, . . . , d0)2, P

Output: [d]P

R ← randompoint()

R0 ← R, R1 ← −R,R0 = P − R

for i = n − 1 downto 0 do
R0 ← ecdbl(R0)
R0 ← mecadd(R0, Rdi+1)

end for

return R0 + R1
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B co-Z Formulæ

Algorithm 15. (X,Y )-only co-Z conjugate-addition-addition with update (za-
cau’) [9]
Input: (X1, Y1), (X2, Y2), C with P = (X1, Y1, Z), Q = (X2, Y2, Z) ∈ EJ (Fp) and C = (X1 − X2)

2

Output: (X3, Y3), (X4, Y4), C with R = (X3, Y3, Z3), S = (X4, Y4, Z3) such that R = 2P, S = P + Q and
C = (X3 − X4)

2

W1 ← X1C; W2 ← X2C

D1 ← (Y1 − Y2)
2; A1 ← Y1(W1 − W2)

X′
1 ← D1 − W1 − W2; Y ′

1 ← (Y1 − Y2)(W1 − X′
1) − A1

D2 ← (Y1 + Y2)
2

X′
2 ← D2 − W1 − W2; Y ′

2 ← (Y1 + Y2)(W1 − X′
2) − A1

C′ ← (X′
1 − X′

2)
2

X4 ← X′
1C

′; W ′
2 ← X′

2C
′

D′ ← (Y ′
1 − Y ′

2)
2; Y4 ← Y ′

1 (X4 − W ′
2)

X3 ← D′ − X4 − W ′
2

C ← (X3 − X4)
2

Y3 ← (Y ′
1 − Y ′

2 + X4 − X3)
2 − D′ − C − 2Y4

X3 ← 4X3; Y3 ← 4Y3; X4 ← 4X4

Y4 ← 8Y4; C ← 16C

return (X3, Y3), (X4, Y4), C

Algorithm 16. (X,Y )-only co-Z conjugate-addition-addition with update using RLC
Input: (X1,μ, Y1), (X2,μ, Y2), C, μ with P = (X1, Y1, Z), Q = (X2, Y2, Z) ∈ EJ (Fp)

with X1,μ = X1 + μ,X2,μ = X2 + μ and C = (X1 − X2)
2

Output: (X3,μ, Y3), (X4,μ, Y4), C with R = (X3, Y3, Z3), S = (X4, Y4, Z3) such that R = 2P, S = P + Q

with X3,μ = X3 + μ,X4,μ = X4 + μ and C = (X3 − X4)
2

W1 ← X1,μC; W2 ← X2,μC

Cμ = μC

D ← (Y1 − Y2)
2; A1 ← Y1(W1 − W2)

X′
1,μ ← D − W1 − W2 + 2Cμ + μ; Y ′

1 ← (Y1 − Y2)(W1 − X′
1,μ + μ − 2Cμ) − A1

D̄ ← (Y1 + Y2)
2

X′
2,μ ← D̄ − W1 − W2 + 2Cμ + μ; Y ′

2 ← (Y1 + Y2)(W1 − X′
2,μ + μ − 2Cμ) − A1

C′ ← (X′
1,μ − X′

2,μ)2

C′
μ = μC′

X4,μ ← X′
1,μC′; W ′

2 ← X′
2,μC′

D′ ← (Y ′
1 − Y ′

2)
2; Y4 ← Y ′

1 (X4,μ − W ′
2 + μ − 2C′

μ)

X3,μ ← D′ − X4,μ − W ′
2 + 2C′

μ + μ

X4,μ ← X4,μ − C′
μ + μ

C ← (X3,μ − X4,μ)2

Y3 ← (Y ′
1 − Y ′

2 + X4,μ − X3,μ)2 − D′ − C − 2Y4

X3,μ ← 4X3,μ − 3μ; Y3 ← 4Y3; X4,μ ← 4X4,μ − 3μ

Y4 ← 8Y4; C ← 16C

return (X3,μ, Y3), (X4,μ, Y4), C
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Algorithm 17. (X,Y )-only co-Z conjugate-addition-addition with a zero value (za-
cauzero’)
Input: (X1, Y1), (X2, Y2), C with P = (X1, Y1, Z), Q = (X2, Y2, Z) ∈ E′J (Fp) such that xP−Q = 0 and

C = (X1 − X2)
2

Output: (X3, Y3), (X4, Y4), C with R = (X3, Y3, Z3), S = (X4, Y4, Z3) such that R = 2P, S = P + Q and
C = (X3 − X4)

2

W1 ← X1C; W2 ← X2C

D ← (Y1 − Y2)
2; A1 ← Y1(W1 − W2)

X′
1 ← D − W1 − W2; Y ′

1 ← (Y1 − Y2)(W1 − X′
1) − A1

Y ′
2 ← (Y1 + Y2)W1 − A1

C′ ← (X′
1 − X′

2)
2

X4 ← X′
1C

′
D′ ← (Y ′

1 − Y ′
2)

2; Y4 ← Y ′
1X4

X3 ← D′ − X4

C ← (X3 − X4)
2

Y3 ← (Y ′
1 − Y ′

2 + X4 − X3)
2 − D′ − C − 2Y4

X3 ← 4X3; Y3 ← 4Y3; X4 ← 4X4

Y4 ← 8Y4; C ← 16C

return (X3, Y3), (X4, Y4), C

Algorithm 18. (X,Y )-only co-Z conjugate-add-add with a zero value and a′
2 (za-

cauazero’)
Input: X1, Y1, X2, Ta, C with P =(X1, Y1, Z), Q = (X2, Y2, Z) ∈ E′J (Fp) such that xP−Q=0, Ta=a′

2Z
2

and C = (X1 − X2)
2

Output: (X3, Y3), (X4, Y4), Ta, C with R = (X3, Y3, Z3), S = (X4, Y4, Z3) such that R = 2P, S = P + Q,
Ta = a′

2Z
2
3 and C = (X3 − X4)

2

W1 ← X1C; W2 ← X2C; Ta ← TaC

D ← (Y1 − Y2)
2; A1 ← Y1(W1 − W2)

X′
1 ← D − W1 − W2 − Ta

Y ′
1 ← (Y1 − Y2)(W1 − X′

1) − A1; Y ′
2 ← (Y1 + Y2)W1 − A1

C′ ← (X′
1 − X′

2)
2

X4 ← X′
1C

′; Ta ← TaC′
D′ ← (Y ′

1 − Y ′
2)

2; Y4 ← Y ′
1X4

X3 ← D′ − X4 − Ta

C ← (X3 − X4)
2

Y3 ← (Y ′
1 − Y ′

2 + X4 − X3)
2 − D − C − 2Y4

X3 ← 4X3; Y3 ← 4Y3; X4 ← 4X4; Ta ← 4Ta; Y4 ← 8Y4; C ← 16C

return (X3, Y3), (X4, Y4), Ta, C
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Algorithm 19. (X,Y )-only co-Z conjugate-add-add with a zero value and a′
2 (za-

cauazero’) (register allocation)
������ (X1, Y1), (X2, Y2), Ta, C ���� P = (X1, Y1, Z), Q = (X2, Y2, Z) ���� ��� xP−Q = 0� Ta = a′

2Z
2 	�

C = (X1 −X2)
2

������� (X3, Y3), (X4, Y4), Ta, C ���� R = (X3, Y3, Z3)� S = (X4, Y4, Z3) ���� ��� R = 2P, S = P + Q�
Ta = a′

2Z
2
3 	� C = (X3 −X4)

2

T1 ← X1, T2 ← Y1, T3 ← C, T4 ← X2, T5 ← Y2

�� Ta ← Ta × T3 �a′
2Z

2
P+Q�

�� T6 ← T3 × T4 �W2�
�� T3 ← T3 × T1 �W1�
�� T1 ← T2 − T5 �Y1 − Y2�
�� T1 ← T 2

1 �D�
�� T1 ← T1 − Ta �D − a′

2Z
′2�

 � T1 ← T1 − T3 �D − a′
2Z

′2 −W1�
!� T1 ← T1 − T6 �X ′

1�
"� T6 ← T6 − T3 �W2 −W1�
�#� T6 ← T6 × T2 �−A1�
��� T2 ← T2 − T5 �Y1 − Y2�
��� T5 ← 2T5 �2Y2�
��� T5 ← T5 + T2 �Y1 + Y2�
��� T5 ← T5 × T3 �Y ′

2 +A1�
��� T5 ← T5 + T6 �Y ′

2�
��� T3 ← T3 − T1 �W1 −X ′

1�
� � T2 ← T2 × T3 �Y ′

1 +A1�
�!� T2 ← T2 + T6 �Y ′

1�
�"� T3 ← T 2

1 �C′�
�#� Ta ← Ta × T3 �a′

2Z
2
R�

��� T4 ← T1 × T3 �X4�
��� T3 ← T2 − T5 �Y ′

1 − Y ′
2�

��� T5 ← T2 × T4 �Y4�
��� T2 ← T 2

3 �D′�
��� T1 ← T2 − Ta �D′ − a′

2Z
′2�

��� T1 ← T1 − T4 �X3�
� � T6 ← T1 − T4 �X3 −X4�
�!� T3 ← T3 − T6 �Y ′

1 − Y ′
2 +X4 −X3�

�"� T3 ← T 2
3 �(Y ′

1 − Y ′
2 +X4 −X3)

2�
�#� T2 ← T3 − T2 �(Y ′

1 − Y ′
2 +X4 −X3)

2 −D′�
��� T3 ← T 2

6 �C�
��� T2 ← T2 −T3 �(Y ′

1 −Y ′
2 +X4 −X3)

2 −D′ −C�
��� T5 ← 2T5 �2Y4�
��� T2 ← T2 − T5 �Y3�
��� T1 ← 4T1 �4X3�
��� T2 ← 4T2 �4Y3�
� � T3 ← 16T3 �16C�
�!� T4 ← 4T4 �4X4�
�"� T5 ← 4T5 �8Y3�
�#� Ta ← 4Ta �4a′

2Z
2
3�

�	���� ((T1, T2), (T4, T5), Ta, T3)
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Abstract. Inserting random delays in cryptographic implementations is
often used as a countermeasure against side-channel attacks. Most previ-
ous works on the topic focus on improving the statistical distribution of
these delays. For example, efficient random delay generation algorithms
have been proposed at CHES 2009/2010. These solutions increase se-
curity against attacks that solve the lack of synchronization between
different leakage traces by integrating them. In this paper, we demon-
strate that integration may not be the best tool to evaluate random delay
insertions. For this purpose, we first describe different attacks exploiting
pattern-recognition techniques and Hidden Markov Models. Using these
tools and as a case study, we perform successful key recoveries against an
implementation of the CHES 2009/2010 proposal in an Atmel microcon-
troller, with the same data complexity as against an unprotected imple-
mentation of the AES Rijndael. In other words, we completely cancel the
countermeasure in this case. Next, we show that our cryptanalysis tools
are remarkably robust to attack improved variants of the countermea-
sure, e.g. with additional noise or irregular dummy operations. We also
exhibit that the attacks remain applicable in a non-profiled adversarial
scenario. These results suggest that the use of random delays may not
be effective for protecting small embedded devices against side-channel
leakage. They highlight the strength of Viterbi decoding against such
time-randomization countermeasures, in particular when combined with
a precise description of the target implementations, using large lattices.

1 Introduction

Protecting small embedded devices against side-channel attacks is a challeng-
ing task. Following the DPA book [17], masking and hiding are two popular
solutions to achieve this goal. Masking can be viewed as a type of data random-
ization technique, in which the sensitive (key dependent) intermediate values in
an implementation are split into different shares. One of its important outcomes
is that, under certain physical assumptions (e.g. that the leakage of the different
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shares can be considered as independent), the security of a masked implemen-
tation against side-channel attacks increases exponentially with the number of
shares [3]. On the drawbacks side, masking usually implies significant perfor-
mance overheads. In addition, the exponential security increase it theoretically
guarantees is only effective when the amount of noise in the measurements is suf-
ficient [24]. Hence, it is hardly useful as a standalone countermeasure for small
cryptographic devices, and is usually combined with hiding. Roughly speaking,
hiding aims at reducing the side-channel information by adding randomness to
the leakage signal (rather than to the data producing it) and can take advantage
of different methods. For example, the direct addition of physical noise, or the
design of dual-rail logic styles [26], are frequently considered options. Exploiting
time-randomization is another alternative, e.g. used to protect smart cards.

Among the different time-randomization techniques proposed in the literature,
e.g. [5,14,27], one can generally distinguish the software ones, e.g. based on Ran-
dom Delay Interrupts (RDIs), from the hardware ones, e.g. based on increasing
the clock jitter. Usually, the more hardware-flavored is the countermeasure, the
more signal-processing oriented are the solutions to overcome them [11,19,28]. In
this paper, we pay a particular attention to the software-based solutions exploit-
ing RDIs. In this setting, it is interesting to notice that most previous evaluations
of the countermeasures’ impact (e.g. [16]) pre-process the leakage traces by in-
tegrating them. Somewhat influenced by this evaluation technique, recent works
such as the ones of Coron and Kizhvatov at CHES 2009/2010 [6,7] mainly fo-
cused on how to improve the statistical distribution of the random delays, in
order for their integration to produce the most noisy traces. However, looking at
the source codes provided in these papers that alternate actual cipher computa-
tions with dummy operations, a natural question is to ask whether techniques
based on pattern-recognition could not be used to directly remove the delays. In
other words, could it happen that, at least in certain contexts, this countermea-
sure can be strongly mitigated, or even completely reversed?

We answer this question positively and show that, when implemented in an
Atmel 8-bit microcontroller, designs protected with the CHES 2009/2010 coun-
termeasures can be as easy to attack as unprotected ones. We start by observing
that simple tools based on correlation analysis can be used to detect different
types of patterns in leakage traces. For example, one can identify the structure
of random delays, or block cipher operations such as AddRoundKey, SubBytes
or MixColumn in the AES, opening the door to various attacks. On the one
hand, this suggests that omitting the possibility of random delay removal (e.g.
by only considering attacks that integrate the leakage traces) may not lead to
an adequate estimation of the security. On the other hand, heuristic tools based
on correlation analysis are inherently limited in more complex situations, where
the dummy operations are less regular than in [6,7], or when the random delays
exploit the hardware interrupt feature of the underlying microcontroller. For
this purpose, we propose to take advantage of Hidden Markov Model (HMM)
cryptanalysis, as a generic modeling tool to capture these variants of the RDI
countermeasure. As previously observed in [10,15], HMMs provide a very natural
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tool to deal with implementations in which some operations are randomized. We
show experimentally that by adequately modeling a protected AES implemen-
tation as a HMM, we are able to produce traces that exactly correspond to the
ones of an unprotected implementation, with very high probability. As it remains
that the addition of RDIs prevents the use of averaging to improve the quality
of an adversary’s measurements, we additionally evaluate the amount of noise
that should be added to our measurements, in order for the countermeasure to
become effective (i.e. to get closer to the security increases predicted using inte-
gration of the traces). It turns out the application of HMMs is remarkably robust
to noise addition. In particular, and compared to previous works, we show that
using a complete lattice of 6000 states to describe our target AES implemen-
tation allows a very resilient decoding of the random delays. We then conclude
the paper by discussing possible improvements of the countermeasure and their
limitations, as well as a non-profiled variant of our HMM-based cryptanalysis.

Related Work. In a recent and independent work, Strobel and Paar inves-
tigated the use of pattern matching for removing random delays in embedded
software. Their proposal can be viewed as an alternative to our correlation-based
techniques in Section 3. Namely, the work in [25] uses pattern matching in order
to detect each random delay independently and exploits hard information made
of a string of Hamming weights obtained from power measurements. By contrast,
our method in Section 4 models the complete assembly code of a protected AES
implementation as a HMM (i.e. considers all the delays jointly) and exploits
probabilistic information from the power traces. As a result, we obtain a bet-
ter robustness to noise and a more objective evaluation tool. In this respect, we
finally note that compared to this previous work, the amount of noise in our mea-
surements can be such that the direct identification of the operations fails with
high probability. In other words, it is the Viterbi decoding that allows dealing
with scenarios where Simple Power Analysis (SPA) attacks are unsuccessful.

2 Background: The CHES 2009/2010 Countermeasure

Overall, adding random delays in an implementation can be viewed as a trade-
off between the performance overheads (measured in code size and cycle count)
and the variance added to the position of a target operation in side-channel
measurement traces. In this section, we describe the countermeasure introduced
at CHES 2009 (and improved at CHES 2010) by Coron and Kizhvatov, highlight
their important characteristics and present our implementation. Note that these
references are used for illustration, as they correspond to the state-of-the-art
in RDI. However, the techniques we introduce would apply similarly to other
variants of such time-randomizations, as will be confirmed in Section 4.5.

Summarizing, both proposals focus on finding a good statistical distribution
for the (random) lengths of the delays. First, the CHES 2009 paper analyzes the
so-called floating-mean method. Its goal is to decrease the average total length
of random delays while increasing the variance they imply for the position of
side-channel attack target samples. Next, in the CHES 2010 paper, the authors
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remark that a bad choice of parameters for the floating-mean method can lead to
security weaknesses. As a result, they proposed an improved solution, together
with a new criterion to evaluate the security of RDI. In both cases, their imple-
mentations ran on an 8-bit Atmel AVR platform, similar to the one we consider
in this paper. In practice, the random delays were inserted at 10 places per AES
round: once before AddRoundKey, once before each 32-bit SubBytes block, once
before each 32-bit MixColumn block and once after the last MixColumn block.
Our implementation of the RDI countermeasure followed the same guidelines as
in [6,7] and was based on the AES-128 “furious” design, available as open source
in [1]. Note that, as our goal is to identify and remove the delays from the traces,
the actual distribution of their lengths has no incidence on our results. In other
words, our focus is on how the delays are inserted in the normal flow of the AES
instructions, not on how much delay is inserted at each step.

Algorithm 1. Random delay insertion function

randomdelay:

(1) rcall randombyte 3 cycles
(2) tst RND 1 cycle
(3) breq zero 1 cycle (2 if true)
(4) nop 1 cycle
(5) nop 1 cycle

dummyloop:

(6) dec RND 1 cycle
(7) brne dummyloop 2 cycles (1 if false)

zero:

(8) ret 4 cycles
randombyte:

(9) ld RND, X+ 2 cycles
(10) ret 4 cycles

More precisely, the code we used in our experimental evaluations is described
in Algorithm 1. It is essentially the same as the one presented in [6], with the
simplified randombyte function that only fetches some random numbers from
a register, and can be read as follows. Whenever a random delay needs to be
inserted, the randomdelay function is called. This function in turn calls (rcall)
the randombyte function that provides a value RND (that has to be carefully cho-
sen in order to get good statistical distribution for the delay lengths). Depending
on the value of RND, there are two possible cases: either RND = 0 and the function
directly terminates by calling zero and returning (ret) to the normal flow of
the AES instructions; or RND �= 0 and we enter the dummyloop. This loop simply
consists in decrementing (dec) RND until it reaches 0: the function terminates
afterwards. The right part of Algorithm 1 indicates the number of clock cycles
required by the different operations in our Atmel device. Summarizing, and not
considering the case where RND starts at 0, each delay is essentially constituted
of a header of 16 cycles, (RND− 1) dummy loops of 3 cycles, a final dummy loop
of 2 cycles, and at last a return (ret) instruction of 4 cycles.
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3 Pinpointing Useful Operation Leakages

The previous section described the RDI countermeasure and the source code that
we ran in an Atmel microcontroller. In this section, we show that the different
operations in this target device produce significantly different leakages that can
be detected with simple tools based on correlation analysis. Beforehand, we
briefly describe the setup we used to perform our experiments.

3.1 Measurement Setup and Pre-processing

Our target device is an Atmel ATMega644P. Its power consumption has been
measured at maximum clock frequency (i.e. 20MHz) and taken over a shunt re-
sistor inserted in the supply circuit of the microcontroller. Sampled data was
acquired with a Tektronix TDS7k oscilloscope. In order to facilitate our attack,
we applied a simple pre-processing step. Namely, we first split the traces into
consecutive clock cycles, using the Fast Fourier Transform to recover the rising
edges of the clock signal. This was achieved by filtering the frequency spectrum
around the clock frequency and its harmonics, then applying the inverse trans-
form on the filtered signal. This pre-processing provides a sequence of peaks
indicating where the rising edges of the clock signal are. Following, we were
able to work on a sequence of clock cycles instead of raw side-channel traces. It
reduced both the difficulty of the attack and its computational cost.

3.2 Correlation-Based Attacks

Let us first have a look at the power traces of an AES implementation protected
with the RDI countermeasure. As illustrated in Figure 1, a simple visual inspec-
tion allows determining the different parts of the code. In other words, there
are significant operation leakages that can be detected with SPA in this case.
Two main approaches can be considered for this purpose. On the one hand, one
can target the dummy operations, i.e. find the clock cycles during which the
dummyloop is executed. For example, random delays present a very distinctive

Fig. 1. AddRoundKey operation protected with the random delay countermeasure
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outlook, since they contain short repetitive patterns, each loop lasting only three
clock cycles. As a result, given that one can extract the pattern of this loop (in-
cluding its header or tail), it is possible to match this pattern to clock cycles
in the side-channel traces, by computing the cross-correlation between them.
Eventually, the adversary can filter the traces by removing any cycle which is
highly correlated with the delay pattern and attack the filtered traces, e.g. with
Correlation Power Analysis (CPA) [2]. On the other hand, the adversary can
also target the actual AES operations, instead of the delays. Indeed, while the
inserted delays are of variable length and their shape can be changed, the AES
operations are fixed and have to be executed by the program. It turns out that
this detection is specially easy when large sequences of operations are executed
without dummy operations. For example, AddRoundKey is rather distinctive
in the proposal of [6,7], as it consists in sixteen three-cycle loops surrounded
by RDI delays. Hence, if the part of the power trace that corresponds to this
sequence of operations can be extracted in a preliminary profiling, it can be
compared with other side-channel traces using cross-correlation, just as for the
detection of dummy operations. An exemplary result of this detection technique
is given in Figure 2. It highlights that significant information on the executed
operations is available in our measurements, and that integrating traces is not
the best approach for analyzing RDIs when such an information is available.

Fig. 2. Cross-correlation between an AddRoundKey pattern and one protected trace

These preliminary results are worth a few general words of discussion.

1. On improving the countermeasure. In the first place, the previous figures ad-
mittedly target the direct application of the CHES 2009/2010 countermeasures.
However, while the choice of dummy operations to execute has little or no im-
pact on “integrating” attacks, it is critical when playing with pattern matching
as we undertake in this paper. In particular, two simple improvements could be
implemented. First, one could use AES operations in the dummy cycles. Sec-
ond, the hardware interrupts of the target microcontroller could be exploited,
in order for the RDIs to occur at less predictable places (e.g. the guarantee that
AddRoundKey is executed as a single block would vanish in this case).

2. On the heuristic nature of the correlation-based approach. Second, it is worth
emphasizing that the previous exploitation of cross-correlation is essentially
heuristic. While it is intuitively useful to put forward a risk of attacks, it is
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also limited and hardly generic. In particular, if the aforementioned improve-
ments were implemented, cross-correlation-based attacks would become ineffec-
tive. This justifies the introduction of HMM cryptanalysis in the next section.
As will be discussed in Section 4.5, it allows exploiting the leakages of improved
countermeasures, for which correlation-based attacks become ineffective.

3. On the meaning of Kerckhoffs’ principles in implementation attacks. Even-
tually, the analysis of RDIs raises the question of what the adversary exactly
knows about his target implementation. In general, cryptographers like to con-
sider that most potential information (e.g. about the algorithms) is public and
that security only relies on the secrecy of a key. Straightforwardly translating
this principle in the physical world would imply that source codes are given to
the adversary, a condition that may not always be found in the field though. Such
a question directly relates to the question of profiled vs. non-profiled attacks as
well. For example, in the previous discussion of correlation-based attacks, is it
realistic that the adversary can build an approximate pattern for the dummy
operations or AES operations? In the following, we will first investigate the case
where the answer is yes and justify this choice with three main reasons.

1. In practice, the gap between profiled and non-profiled attacks and the lack of
knowledge about the underlying hardware and implementation can usually
be overcome in the long term. Examples of solutions to reduce this gap
include the use of non-profiled stochastic models [9,21], or techniques inspired
from side-channel attack reverse-engineering, e.g. discussed in [8,12,20].

2. In general in cryptography, security evaluation are looking for worst cases,
and this also applies to implementation attacks [23]. Hence, regardless the
practical relevance of certain adversarial scenarios, it is essential to consider
them as they provide a bound on what an actual adversary could achieve,
and a fair understanding of the security level provided by cryptographic
implementations. Security against specific attacks can of course be higher
than what is lower-bounded by worst-case evaluations.

3. Sound countermeasures should provide additional security even in the worst
cases. For example, if an adversary is given a masked implementation with an
accurate description of its design and source code (including the exact time
instants when the shares are manipulated), the analysis of Chari et al. [3]
still holds and the data complexity of an attack against this implementation
does still increase exponentially with the amount of shares.

Note that as an illustration of the first point (i.e. the sometimes small gap
between profiled and non-profiled attacks), we additionally provide a non-profiled
version of our proposed HMM cryptanalysis in Section 4.6.

4 Hidden Markov Model Cryptanalysis

Having justified the need of optimal evaluation tools, this section investigates
a new cryptanalysis of RDIs based on HMMs. We argue that it constitutes an
interesting generic tool to capture our problem. In particular, and contrary to
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the correlation-based techniques, it can easily deal with various types of dummy
operations and interrupt processes. As mentioned in introduction, this approach
follows previous works in the field of reverse-engineering and cryptanalysis of ran-
domized implementations, where similar principles have been used. For example,
the work of Karlov and Wagner is close to ours as it exploits HMMs to break
randomized exponentiation algorithms [15]. Yet, one important difference is the
size of the lattices that we consider to represent our AES implementation: while
this previous work exploits a state machine with 3 states, we build a complete
lattice of 6000 states to model the protected AES, which allows a very resilient
decoding. To a certain extent, removing random delays in side-channel traces
can also be seen as a simplified reverse-engineering problem. That is, Eisenbarth
et al. intend to build a disassembler, in order to extract an exact sequence of
unknown instructions being executed by a device [10]. We follow the same goal
in the case where the instructions are known, but the number of dummy loops
that are executed for each delay is unknown. In the following, we first explain
how to translate the RDI detection as a HMM problem. Next, we describe how
to actually remove the delays from side-channel leakage traces and present re-
sults of experimental attacks. Eventually, we discuss possible improvements of
the countermeasure as well as a non-profiled variant of the attack.

4.1 Building the HMM

A Markov model is a (memoryless) system with a finite number of states, for
which the probabilities of transition to the next state only depend on the current
state. It is thus constituted of a set of states πi’s and a transition probability
matrix T . T (i, j) is the (a priori) probability that the next state is πj if the
current state is πi. If we denote with st the current state of the system at time
t, T (i, j) = Pr(st+1 = πj |st = πi). In the case of a Hidden Markov model,
the sequence s = (s0, s1, ..., sn) of the states occupied by the system is not
known. However, the adversary has access to (at least) one observable that gives
partial information about this sequence. Namely, at each time step t, a random
vector lt is observed by the adversary. In addition to the transition probability
matrix, the HMM is then characterized by the emission probability functions
associated to each state πi, namely: ei(lt) = Pr(lt|st = πi). For our protected
AES implementation, the Markov model describes the encryption process, with
each state πi associated to an instruction (e.g. NOP, RET, ...). Some instructions
take only one clock cycle, but others require several clock cycles to be completed.
As each state should correspond to the same number of clock cycles, longer
instructions are split into different states, e.g. RCALL is split into three states
associated to RCALL 0, RCALL 1 and RCALL 2. We call instruction cycle the (part
of an) instruction associated with a state πi. The list of all the 26 instruction
cycles appearing in the code of the protected AES can be found in Table 1.
Note that the same instruction cycle can be used at multiple places in the AES
code, corresponding to different running states, e.g. π0 ↔ MOV 0, π1 ↔ EOR 0,
π2 ↔ MOV 0, . . .More precisely, the protected AES code can be divided into two
types of instruction sequences: the deterministic instruction sequences and the
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Table 1. List of instruction cycles occurring in the protected AES implementation

Index Cycle Index Cycle Index Cycle

0 NOP 0 9 RET 2 18 BRNE T 1
1 RCALL 0 10 RET 3 19 MOV 0
2 RCALL 1 11 TST 0 20 EOR 0
3 RCALL 2 12 BREQ F 0 21 LPM 0
4 LDI 0 13 BREQ T 0 22 LPM 1
5 LD 0 14 BREQ T 1 23 LPM 2
6 LD 1 15 DEC 0 24 RJMP 0
7 RET 0 16 BRNE F 0 25 RJMP 1
8 RET 1 17 BRNE T 0

dummy loops. In the deterministic sequences, the instruction cycle associated to
a state is fully determined by its position in the sequence. In order to model these
deterministic sequences, we can simply use one different state per successive cycle
in the sequence, with deterministic transition probabilities: T (i, i+1) = 1 (see the
top of Figure 3). By contrast, the non-deterministic dummy loops are constituted
of a branching (BRNE) and a decrement (DEC) instruction. This translates into
4 instruction cycles: BRNE T 0, BRNE T 1 and DEC 0 in the loop (i.e. while the
counter is decremented), and eventually BRNE F 0 to end the loop.

There are two main ways to encode these loops in a Markov model. The sim-
plest one consists in using 4 states, as presented in the middle part of Figure 3.
The transition probabilities at the output of the DEC state are p to restart an-
other loop, and 1−p to exit the loop. This representation uses a fixed probability
p, that cannot be changed based on the number of loops previously executed. It
is thus not possible to render the details of the probability distribution of the
delay lengths. Another way is to “unfold” the dummy loops by using 255× 3+1
states, as in the lower part of Figure 3 (255 being the maximum number of
dummy loops in one delay). It is then possible to fine tune the probabilities p1,
p2, ..., in order to match the probability distribution of the delay lengths as
closely as possible. The first representation is only perfectly accurate to model
delay lengths following a geometric distribution (which is not our case), but offers
better performances due to the lower number of states. The second representa-
tion is more precise and allows modeling more accurately different distributions
of random delay lengths, potentially leading to a better robustness against noisy
measurements. However, its larger number of states also implies a more complex
resolution phase. Experimental results described in the next section showed that
the compact representation (with p = 0.1, chosen empirically) was sufficient to
obtain successful attacks with low data complexity, even with delay lengths not
following a geometric distribution. Hence, we focus on this one in the rest of
the paper. Eventually, our Markov model for the protected AES implementation
has approximately 6000 states, each of them associated to one of the 26 different
instruction cycles given in Table 1. The corresponding transition matrix T is
very sparse, as the sequence of instructions is deterministic most of the time (in
which case T (i, i+ 1) = 1 is the only non-zero value of the ith line).
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Fig. 3. Parts of the Hidden Markov model. Above: beginning of the addRoundKey

operation (deterministic sequence). Middle and below: dummy loop.

4.2 Building the Templates

Given a Markov model for the protected AES, we still have to estimate the
emission probability functions ei(lt) = Pr(lt|st = πi) corresponding to each
state πi. We make two assumptions for this purpose:

1. The power trace l can be cut cycle by cycle: l = (l0, l1, ...). This is possible
using the FFT-based technique of Section 3.1. We denote with trace cycle
each part li of the power trace corresponding to one clock cycle. Trace cycles
are measured vectors of 25 values (obtained with the setup of Section 3.1).

2. The emission at time t, denoted as lt, only depends on the type of the
instruction executed at time t. This assumption is admittedly not entirely
accurate (because data dependencies, pipeline effects, . . . are neglected). But
it again turned out to be sufficiently respected for our attacks to succeed.

Estimating the emission probability functions is equivalent to building a tem-
plate for each state πi. But contrarily to standard side-channel template attacks,
where templates are built from a single instruction in order to distinguish the
data being processed (e.g. [4]), we build templates for the different instruction
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cycles in order to tell them apart. That is, as our Makov Model contains 6000
states, we could build up to 6000 templates. But thanks to our second assump-
tion, the same template can be used for every state πi associated to the same
instruction cycle from Table 1. Hence only 26 templates are required for the
6000 different states. Next, the emission probability functions are directly de-
termined by these templates: for an instruction cycle i, we have the function
ei(lt) = N (lt|μ̂i, Σ̂i). For each template, the mean vector μ̂i and correlation

matrix Σ̂i are estimated from a set of trace cycles lt corresponding to the same
instruction cycle i. In order to build these 26 templates, we thus need to find
sets of trace cycles lt corresponding to each possible instruction cycle. However,
due to the unknown lengths of the delays in a protected implementation, it is
impossible to directly match trace cycles to their corresponding instruction cy-
cles. As a result, we used a profiling phase for this purpose. That is, we built the
templates from a training device for which the length of the delays was fixed. In
addition, we used this profiling phase in order to efficiently reduce the dimen-
sionality of our traces cycles, using the Principal Component Analysis (PCA)
technique described in [22]. PCA consists in linearly projecting the data (i.e. the
trace cycles) on a lower dimensional subspace, in such a way that the variance
between the different instruction cycles is maximized. We kept 3 dimensions
per template, which appeared to be a good compromise between the amount of
variability we retain and the complexity of the parameters we need to evaluate.

4.3 Removing the Delays

Given properly profiled templates, all the parameters of our HMM are fixed: the
state vector π, the transition probability matrix T and the emission probability
functions ei. Hence, it only remains to identify the state sequence s = (s0, s1, ...)
that is the best match for a given observation sequence l = (l0, l1, ...). The Viterbi
algorithm can be launched for this purpose, as described with Algorithm 2 and
briefly explained as follows. Let us consider a HMM with Ns states, and a se-
quence of No observations. A probability table V ∈ R

Ns×No is first built, such
that each value V (i, j) is the probability of the most probable sequence of states
ending in state πi, given the sequence of observations (l0, ..., lj). The first column
of V is initialized with the probabilities for the different states to match the first
observation l0: V (i, 0) = pi · ei(l0) (where the pi’s are the initial a priori proba-
bilities that the system starts in state πi). Next, for each additional observation
lt in the sequence, the probabilities for the different states are determined by
V (i, t) = ei(lt) ·maxj(V (j, t− 1) · T (j, i)). These probabilities take into account
the emission probability of the current observation (i.e. ei(lt)), but also the most
probable sequences of length t − 1 (i.e. V (j, t − 1)), weighted by the transition
probabilities T (j, i)’s. A matrix I ∈ N

Ns×(No−1) is finally used to store, for each
step t ≥ 1 and each state i, the index j of the most probable state sequence of
length t − 1 that can lead to state i: I(i, t− 1) = argmaxj(V (j, t − 1) · T (j, i)).
Once the full sequence of observations is processed, the algorithm selects the
most probable ending state, and backtracks to the first observation using the
matrix I to select at each step the previous state in the most probable sequence.
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Algorithm 2. Viterbi algorithm

input: a HMM characterized by a set of Ns states πi, initial probabilities pi, a
transition probability matrix T and emission probability functions ei.
input: a sequence of No observations l = (l0, l1, ...).
output: the most probable sequence of states corresponding to the observations.
Define V a new matrix in R

Ns×No .
Define I a new matrix in N

Ns×(No−1).
//Initial probabilities.
for i = 0 to i = Ns − 1 do

V (i, 0) ← pi · ei(l0)
end for
//Computing the probabilities.
for t = 1 to t = No − 1 do

for i = 0 to i = Ns − 1 do
V (i, t) ← ei(lt) ·maxj(V (j, t− 1) · T (j, i))
I(i, t− 1) ← argmaxj(V (j, t− 1) · T (j, i))

end for
end for
//Backtracking to find the most probable path.
Define s a new vector of size No.
s(No − 1) ← argmaxj(V (j,No))
for t = no − 2 to t = 0 do

s(t) ← I(s(t+ 1), t)
end for
return s

4.4 Results of the HMM Method and Impact of the Noise

We evaluated the efficiency of the HMM method by using it against power traces
measured from a protected implementation of the AES on our 8-bit Atmel mi-
crocontroller. For comparison purposes, we also investigated the security of a
non-protected implementation running on the same platform, in order to eval-
uate the security improvement offered by RDIs. Since we are considering first-
order (standard) DPA attacks (as defined in [18]), we chose to run CPA to
illustrate the insecurity of these implementations. We used a simple Hamming
weight model for this purpose. As shown in Figure 4, the success rate of CPA
against the protected implementation with actual noise level (corresponding to
the curves with no additional simulated noise in the figure, i.e. σ∗ = 0) is nearly
the same as for the CPA against the unprotected implementation. Note that for
each curve, we estimated the first-order success rate defined in [23], from a set
of 100 independent experiments. In fact, the slight difference between protected
and unprotected implementations can be explained by the postprocessing of the
traces after removing the RDIs, because of slight imperfections of the cycles
cut. Otherwise, the actual removing of the delays was close to 100% success-
ful. As a result, both implementations can be broken after approximately 100
measurements. For comparison, the integration attack on the protected imple-
mentation in [6] requires approximately 45 000 power traces to succeed. The time



Efficient Removal of Random Delays 135

complexity due to the Viterbi algorithm amounts to less than 10 minutes per
power trace, which is quite high but still acceptable as long as the number of
traces to process is not too high (note that the computing time can be optimized,
e.g. by decoding only the beginning of the trace instead of the whole trace). We
conclude that (1) the HMM method is much more efficient than the integration
method to attack the RDI countermeasure, and (2) with the actual noise level of
an Atmel 8-bit microcontroller, the RDI countermeasure is completely reversible.
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Fig. 4. Success rate of a CPA attack in different scenarios. The plain lines correspond
to the attack on an unprotected implementation, the dashed lines correspond to the
attack on a protected implementation with RDI removed by the HMM method. σ∗ is
the standard deviation of the simulated Gaussian noise added to the traces, σ∗ = 0
corresponds to the real noise level. The delays are efficiently removed up to σ∗ = 0.1.

In view of the lack of security improvement of our RDI-protected implemen-
tation, we additionally investigated the impact of noise on the efficiency of the
HMM-based random delay removal. For this purpose, we added (before the di-
mensionality reduction step) a simulated random Gaussian noise with standard
deviation σ∗ to the (already noisy) traces, and we applied the HMM method to
the resulting traces. The corresponding signal-to-noise ratios are given in Table 2:
they correspond to the maximum ratio between the variance of the mean traces
corresponding to the 26 possible instruction cycles, and the noise variance, where
the maximum is taken over all the time samples in the traces, as defined in [16].
In addition, we also provided a Correct Classification Rate (CCR), defined as
the probability that an instruction cycle among the 26 possible ones in Table 1 is
correctly identified from its leakage. It essentially corresponds to the success rate
of a template-based SPA performed against the instruction cycles considered in-
dependently (the uniform probability without leakage is 1/26 ≈ 0.03). As can be
observed, our measurement noise can be increased such that the direct identifi-
cation of the random delays thanks to an SPA becomes unlikely. By contrast, it
turns out that when taking advantage of HMMs, it is still possible to efficiently
remove the delays with σ∗ = 0.1, which is one order of magnitude higher than
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the actual noise we observed in our measurements (i.e. σ = 8 × 10−3). In other
words, up to high noise levels, the adversary has more trouble estimating the
correlation coefficient of a CPA than removing the delays. This suggests that
Viterbi decoding allows removing RDIs jointly, even in situations where they
are hard to remove individually. More precisely, Figure 4 shows the success rates
of unprotected and protected implementations with σ∗ = 0.025, σ∗ = 0.1 and
σ∗ = 0.2. It confirms that removing the delays is still pretty accurate at σ∗ = 0.1
(the correct length is found for 95% of the delays in this case). However, when
σ∗ goes beyond 0.1, it becomes increasingly harder to correctly detect the de-
lay lengths. And by σ∗ = 0.2, the HMM method does not correctly identify
the delay lengths anymore. In conclusion, the RDI countermeasure has an im-
pact on security only when the noise level is high enough for a successful CPA
attack against the corresponding unprotected implementation to require more
than 10 000 traces. This unfortunately goes against the original goal of using
RDIs to emulate noise for small embedded (e.g. 8-bit) devices.

Table 2. SNR and CCR of target implementation with additive simulated noise σ∗

σ∗ = 0 σ∗ = 0.025 σ∗ = 0.1 σ∗ = 0.2

SNR 0.2 0.014 1.34 × 10−3 2.44 × 10−4

CCR 0.29 0.19 0.08 0.06

4.5 RDI Improvements

The HMM method is very efficient against the RDI countermeasure presented
in [6,7], in part due to the very regular pattern of the delays. It is thus natural to
think about possible methods to make the delays and actual AES computations
harder to tell apart. In this section, we discuss some proposals that could be
considered in order to achieve this goal. One straightforward idea is to use de-
lays with no regular pattern, e.g. delays made of random instructions. However,
implementing the RDI countermeasure in this case will still require (1) a specific
deterministic header containing the instructions needed to determine the delay
length, and (2) a loop ensuring that the delay stops after a given counter has
reached 0. Using the hardware interrupts of the Atmel microcontrollers would
not help in this respect, as dealing with these interrupts also gives rise to (4 or
5) very distinguishable cycles. In addition, even if the delays had a perfectly ran-
dom pattern, the AES operations would still have to be processed, and could be
identified with the Viterbi algorithm. For illustration, we ran experiments with
hypothetical simulated traces, where the delays only consisted in random instruc-
tions instead of dummy loops. That is, these simulated traces do not contain any
identifiable header or tail. We recall that this context is unrealistic as such head-
ers and tails are needed to implement the countermeasure and generally provide
useful information to the adversary. But even this minimum leakage could be
efficiently exploited. Namely, while the Viterbi algorithm was not always able to
accurately predict the instructions processed during the delays, it was still able
to correctly identify the position of the AES instructions. Hence, as illustrated in
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Appendix, Figure 5, such an idea is not sufficient to prevent successful attacks.
Yet, one can notice that it reduces the noise robustness of the HMM crypt-
analysis. Another proposal is to use delays that look like the surrounding AES
instructions. But this solution again faces the issue that the headers and tails
are still distinguishable, leading to similarly efficient attacks. Besides, an extreme
solution is to duplicate every AES computation n times, with one execution on
real data and the rest on dummy data. This way, the HMM method provides no
information on where are the delays, as the delays are totally indistinguishable
from the AES computations. Unfortunately, this countermeasure provides little
security at high cost: instead of attacking one time sample, the adversary will
have to integrate over n. Eventually, we conjecture that solutions to improve
the time-randomization of cryptographic implementations should combine RDIs
with other ideas, e.g. shuffling [13] or clock jitter. We leave the analysis of these
combined scenarios as an interesting scope for further research.

4.6 A Non-profiled Version of the HMM Method

The previous sections assumed that the adversary can perform a profiling phase
on a test device. Although justified in a security evaluation context, this assump-
tion may not always be verified in practice. In the following, we finally show that
even in a non-profiled context, it is possible to perform efficient HMM-based at-
tacks against an RDI-protected implementation, by exploiting “on-the-fly” char-
acterization of the target device, with a single leakage trace. The key observation
is that the encryption process cannot start with random instructions. Even if a
delay is inserted at the beginning of the code, there are always some determinis-
tic instructions in the delay header, where the length of the delay is determined.
In our case, the AES encryption starts with 40 deterministic cycles before the
first dummy loops take place. These deterministic cycles do not include all of the
26 instruction cycles for which we need a template, but only the first 12 of them
(in Table 1). Moreover, these 40 cycles are not enough to estimate very accurate
templates for all these 12 instruction cycles. Nevertheless, we can build 12 tem-
plates from these first 40 cycles and artificially increase their (noise) variance, as
we know that they are not perfectly accurate. For the remaining 14 templates,
we use a unique default template, built from the average of the cycles after the
first 40. As a result, we have 26 emission probability functions ei that we can
plug into a first HMM: HMM0. Using the Viterbi algorithm on the leakage trace
l with the model HMM0 gives the most probable sequence of states, according to
our (admittedly bad estimations of the) emission probability functions. For the
actual noise level we measured experimentally, between 50% and 70% of the ob-
servations are associated to the correct instruction cycle after this first iteration
of the Viterbi algorithm. Next, from this predicted sequence of states, we can
estimate new, more accurate templates (and emission probability functions) for
the 26 instruction cycles. Plugging these new templates into a second HMM (i.e.
HMM1), we can process the same power trace l again, hence obtaining a better
classification of the trace cyles. By iterating this procedure at most 10 times,
we get a correct estimation of the templates and a perfect identification of the
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delay lengths. It is thus possible to perform the profiling phase “on-the-fly”, by
using iterations of the Viterbi algorithm on the same power trace, provided that
we have some information to start with (e.g. the 12 not so accurate templates in
our experiment). As illustrated in Appendix, Figure 5, this non-profiled version
of the attack is robust to noise addition, up to quite low SNRs.

5 Conclusions

The investigations in this paper confirm that protections against side-channel
attacks based on time-randomizations are challenging to evaluate, as they may
easily provide a false sense of security, whenever they are reversible with the
appropriate signal processing / statistical / modeling tools. The case of RDIs is a
good illustration of this concern: we show that their implementation in a low-cost
microcontroller can be completely reversed and that making them effective is a
non-trivial task (e.g. software-based improvements are unlikely to be sufficient).
Hence, the study of other time-randomization techniques such as shuffling [13], or
the combination of RDIs with other hiding countermeasures against side-channel
attacks, are interesting research problems. Besides, RDIs are also considered as a
solution to prevent fault attacks. In this setting, it is an interesting open question
to determine whether the HMM-based cryptanalysis could be applied “on-the-
fly” during a fault attack, in order to help adversaries to insert faults precisely,
e.g. in the sensitive computations of randomized implementations.
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Fig. 5. Success rate of a CPA attack against traces processed using the HMM method
in different scenarios. The plain lines correspond to the attack on a protected imple-
mentation with the CHES version of the RDI. The dashed lines correspond to the
attack against the hypothetical (simulated) implementation of Section 4.5. The dotted
lines correspond to the non-profiled version of the attack described in Section 4.6.
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Abstract. Widespread use of pervasive devices has resulted in secu-
rity problems which can not be solved by conventional algorithms and
approaches. These devices are not only extremely resource-constrained,
but most of them also require high performance – with respect to avail-
able resources – in terms of security, speed and latency. Especially for
authenticated encryption, such performance can not be achieved with a
standard encryption-hash algorithm pair or even a “block cipher mode
of operation” approach. New ideas such as permutation-based authenti-
cated encryption have to be explored. This scheme has been made pos-
sible by the introduction of sponge functions. Implementation feasibility
of such an approach has yet to be explored. In this study, we make such
an attempt by implementing the new SpongeWrap authenticated en-
cryption schemes on all existing sponge functions and show that it is
possible to realize a low-latency scheme in less than 6K gate equivalents
at a throughput of 5 Gbps with a 128-bit claimed security level.

Keywords: Pervasive computing, data security, authenticated encryp-
tion, sponge functions, Keccak, Photon, Quark, Spongent.

1 Introduction

Pervasive computing is everywhere. We have, for quite sometime, got used to the
idea of using all sorts of computing devices almost in every moment of our lives.
These devices range from smart phones to smart cards with varying levels of
computing power and usability [1]. A smart card on an ATM card may be used
only as a means to draw cash from an ATM. On the other hand, a smart phone
may be used to perform complex image processing in unprecedented speeds
compared to the most powerful desktop computers of a decade ago. While more
pervasive devices are introduced for new applications, these devices themselves
also introduce more and more new application areas autonomously. However,
it is not just new application areas they introduce, but unforeseen problems as
well. Among these problems, security, perhaps, is the most important one, not
just from an engineering point of view, but also from the user perspective.

Security of data has to be guaranteed in various levels: During computation
from outside observers (also known as side-channel attackers [2]), during commu-
nication from third parties, and during storage from unauthorized users. Looking
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at the specific example of smart cards, one may consider them to be the most
pervasive computing platform. We carry several cards in our wallets for various
applications such as banking, identification, access control, mobile phones, loy-
alty schemes [3]. All of these applications rely on personal and sometimes even
critical data of the user (health information, pin codes, biometric information,
etc.), which is not only a security nightmare to the user but even worse for the
designers of such systems.

Data stored on such systems has to be secured via an encryption algorithm.
There are several algorithms and standards designed and extensively analyzed
for this purpose. The internationally accepted Advanced Encryption Standard,
AES, is perhaps the most widely used encryption algorithm. It is very well-
analyzed, tested, and proved to be secure – not just for today, but for the coming
decades as well. Moreover, it has been implemented on countless number of plat-
forms for almost all imaginable performance targets. While a high performance
version of AES can process 55.5 Gbps of data on tens of thousands of ASIC
gates [4], a lightweight version of it can fit into only about 2 thousands gates at
reduced performance of a few tens of Kbps.

However, encryption alone is not sufficient. Another important operation that
has to be performed on the secure data is authentication. As in the case of en-
cryption, authentication is also very well-established and standardized as Secure
Hash Algorithms, SHA-1 and SHA-2 by NIST. Competition for a third stan-
dard, SHA-3, is underway.

Authenticated encryption is a technique, which combines both authentication
and encryption in order to provide confidentiality, integrity and authenticity
of the data, simultaneously. While, the same functionality can be achieved via
an encryption algorithm and an authentication algorithm running in parallel,
it is not always the preferred solution, especially on resource-limited devices.
Therefore, authenticated encryption is introduced as a block cipher mode of
operation, where the same cipher block performs both functionalities. The most
commonly used (also standardized) modes are CCM, CWC, OCB, EAX and
GCM.

More recently, use of sponge-based hash functions as authenticated encryp-
tion primitives has been proposed [5]. With its arbitrarily long input and output
sizes, the sponge construction allows building various cryptographic primitives
such as a hash function, a stream cipher or a MAC [6], which, if properly com-
bined, can lead to a “Do-It-All-Cipher”. Although, sponge functions are still quite
young, already a few number of sponge-based hash functions have been intro-
duced. Among these, Photon, Quark and Spongent are mostly targeted for
lightweight applications, which Keccak, a SHA-3 finalist, though not specifi-
cally designed so, can be tweaked to operate in lightweight mode. Furthermore,
SpongeWrap modes of Keccak and Quark have also been presented to be
used as authenticated encryption primitives [7]. Especially, the MonkeyDu-
plex and DonkeySponge constructions show a lot of promise to be used in
lightweight applications.
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With its single round streaming mode, DonkeySponge construction can be
effectively used in data storage applications as a low-latency cipher at the penalty
of using a nonce in addition to the key, while MonkeyDuplex can perform the
same functionality without nonce at the expense of more rounds per encryption.
Even in that case, low-latency can be achieved by means of an unfolded design,
in a similar fashion as presented in [8]. But there are open questions: From a
mathematical point of view, these modes are yet to be extensively studied. The
number of rounds per each sponge function in the proposed modes have to be
determined together with their security claims, as done for Keccak. On the
other hand, from a hardware point of view, efficiency of each sponge function
in the target modes have to be determined. A new sponge-based proposal is
only acceptable if it offers more (or less – in terms of gate count and power
consumption) than the existing block cipher based systems.

In our study, we try to bring some answers, or more literally performance
figures to the second question. We implement both DonkeySponge and Mon-
keyDuplex constructions on the existing sponge functions – Keccak, Pho-
ton, Quark and Spongent. In our implementations, we target low-latency
data encryption, which is a realistic design target for pervasive applications, es-
pecially for data storage security. Furthermore, we choose data wordlength of
32 bits, which also is a realistic figure, considering data storage solutions on
pervasive devices. We then select variants of sponge functions that can provide
this data rate. These are Keccak-200, Photon-196, Quark-176 and Spon-
gent-176, all of which provide around 80 bits of generic security with a target
key length of 128 bits. Since the round numbers for MonkeyDuplex and Don-
keySponge duplex mode are given only for Keccak, we obtain round numbers
for other sponge functions by simple proportioning (i.e. with respect to the
original proposed round numbers). In all fairness, we present the performance
figures, for both these proportional round numbers and ones identical to those
of Keccak.

The rest of the paper is organized as follows. In the next section, we give a
brief introduction about sponge functions, which also includes specific details
of each of the target sponge functions. It is followed by MonkeyDuplex and
DonkeySponge constructions. In the following section, we present our imple-
mentations for both constructions together with performance figures on all hash
functions. In the last section, we summarize our results and propose future di-
rections for research.

2 Sponge Functions

Sponge functions can be used to generalize cryptographic hash functions to
more general functions with arbitrary output lengths. They are based on the
sponge construction, which is a repetitive construction to build a function F
with variable-length input and arbitrary-length output based on a fixed-length
permutation f operating on a fixed number of b bits, which is called the width.
The sponge construction operates on a state of b = r + c bits. r is called the
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bit rate and c is called the capacity. In the first step, the bits of the state are
all initialized to zero. Then, the input message is padded and cut into blocks of
r-bit. The construction consists of two phases, namely the absorbing phase and
the squeezing phase.

– In the absorbing phase, the r-bit input message blocks are XORed with the
first r-bit of the state, then interleaved with the function f . After processing
all of the message blocks, the squeezing phase begins.

– In the squeezing phase, the first r-bit of the state is returned as output
blocks, and then interleaved with the function f . The number of output
blocks is chosen by the user. The block diagram of the sponge construction
is shown in Figure 1.
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Fig. 1. Sponge construction

The existing sponge functions are summarized in the following subsections.

2.1 Keccak Sponge Function

Keccak [9] is a cryptographic hash function submitted to the NIST SHA-3
hash function competition. It is a family of hash functions based on the sponge
construction that is used as a building block of a permutation from a set of seven
permutations denoted by Keccak-f [b], where b ∈ 25, 50, 100, 200, 400, 800, 1600
is the width of the permutation. The width b of the permutation is also the
width of the state in the sponge construction. The state is organized as an array
of 5 × 5 lanes, each of length w bits, where w ∈ 1, 2, 4, 8, 16, 32, 64 (b = 25w).
Depending on the selected permutation width, the Keccak-f permutation con-
sists of a number of simple rounds with logical operations and bit permuta-
tions. The number of rounds nr depends on the permutation width which is
calculated by nr = 12 + 2l, where 2l = w. This yields 12, 14, 16, 18, 20, 22,
24 rounds for Keccak-f [25], Keccak-f [50], Keccak-f [100], Keccak-f [200],
Keccak-f [400], Keccak-f [800], Keccak-f [1600], respectively. The Keccak-
[r, c, d] sponge function can be obtained by applying the sponge construction to
Keccak-f [r+ c] with the parameters capacity c, bit rate r and diversifier d and
also padding the message input specifically.
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The Keccak iterated round function is explained in Algorithm 1, where all of
the operations on the indices are done in modulo 5. A denotes the complete per-
mutation state array, and A[x, y] denotes a particular lane in that state. B[x, y],
C[x], D[x] are intermediate variables, the constants r[x, y] are the rotation off-
sets and RC[i] are the round constants. ROT (w, r) is the bitwise cyclic shift
operation which moves the bit from position i into position i+ r, in the modulo
lane size.

Algorithm 1. Pseudo-code of Keccak-f

Keccak-f [b](A)

– for i in 0 . . . nr − 1
A = Round[b](A,RC[i])

– return A

Round[b](A,RC)

– θ step:
C[x] = A[x, 0]⊕ A[x, 1]⊕ A[x, 2]⊕ A[x, 3]⊕A[x, 4], ∀x in 0 . . . 4
D[x] = C[x− 1]⊕ROT (C[x+ 1], 1),∀x in 0 . . . 4
A[x, y] = A[x, y]⊕D[x], ∀(x, y) in (0 . . . 4, 0 . . . 4)

– ρ and π steps:
B[y, 2x+ 3y] = ROT (A[x, y], r[x, y]),∀(x, y) in (0 . . . 4, 0 . . . 4)

– χ step:
A[x, y] = B[x, y]⊕ ((NOTB[x+ 1, y]ANDB[x+ 2, y],∀(x, y) in (0 . . . 4, 0 . . . 4)

– χ step:
A[0, 0] = A[0, 0]⊕RC

– return A

2.2 Photon Sponge Function

Photon [10] is a sponge construction with an AES-like permutation. The in-
ternal state size t = (c + r) depends on the hash output size and can take five
distinct values. Therefore, internal permutation Pt is defined for each internal
state size. photon starts with the initialization phase where the message is
padded and cut into blocks of t bits. Then the t-bit state is processed by Pt

permutation in absorption phase. Finally, in the squeezing phase, the n-bit hash
value is returned.

The internal permutation Pt is an Nr-round transform of the t-bit state. Note
that the state organization is defined according to the hash output size. However,
the number of rounds is the same for all t values and the round function is iterated
as the number of rounds. The round function is similar to AES round function
as shown in Algorithm 2. It starts with an AddConstants step instead of the key
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addition of AES. Here, round constants and internal constants are XORed to
the state. Round constants are defined for each round and the internal constants
depend on the state organization. It is followed by SubCells and ShiftRows steps.
In the substitution layer, the Present Sbox is used in the case of 4-bit cells and
the AES Sbox is used in the case of 8-bit cells. In MixColumnsSerial step, the
final mixing layer is applied to each of the columns of the internal state. The
coefficients and the irreducible polynomials used in this step again depend on
the permutation type.

Algorithm 2. Pseudo-code of Photon

– for i = 1 to R do
State ← AddConstant(State)
State ← SubCells(State)
State ← ShiftRows(State)
State ← MixColumnsSerial(State)

– end for

2.3 Quark Sponge Function

Quark [11] uses the sponge construction and a b-bit permutation P . Three
different instances of Quark are specified. Each instance is parameterized by
a rate r, capacity c, and hash length n. The size of the internal state is b bits
(b = r+ c). The Quark sponge construction processes a message in three steps:
Initialization, absorption and squeezing. As in the case of Keccak, the message
is first padded and cut into r-bit blocks. These blocks are then XORed with
the last r bits of the state and interleaved with permutation (P ) applications.
In the end, the last r bits of the state are returned as output, interleaved with
permutation applications, until n bits are returned.

The permutation P is inspired by the stream cipher Grain [12] and the block
cipher KATAN [13] (see Figure 2). The internal state of P is viewed as three
feedback shift registers – two nonlinear and one linear. P proceeds in three
stages for a given b-bit input: Initialization of the internal state, status update
with f , g, and h functions, and finally the computation of the output similar
to initialization. Note that functions f , g, and h are defined separately for each
instance.

2.4 Spongent Sponge Function

Spongent [14] is a sponge construction based on a wide Present-type [15]
permutation. Spongent produces an n-bit hash value for a given finite number
of input bits – it is a simple iterated design that takes a variable-length input
and can produce an output of an arbitrary length based on a permutation πb
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operating on a state of b bits (where b = r + c ≥ n, r rate and c capacity).
Hashing starts with an initialization phase where the message is padded and
cut into blocks of r bits. In the following phase (absorption), the r-bit message
blocks are XORed with the first r bits of the state and then processed in πb

permutation. Finally, in the squeezing phase, the first r bits of the state are
returned as output, interleaved with applications of πb, until n bits are returned.

The permutation πb is an R-round transform of the b-bit state. The round
function is iterated as the number of rounds (R), which depends on the Spon-
gent variant used. It is similar to the Present round function, but a wider
version. Also, instead of key addition, a counter value depending on an LFSR
is added. The substitution and permutation layers are the same; however, they
are defined for larger states. Algorithm 3 shows the πb permutation.

Algorithm 3. Pseudo-code of Spongent

– for i = 1 to R do
State ← lCounterreversed bit−order ⊕ State⊕ lCounter
State ← sBoxLayer(State)
State ← pLayer(State)

– end for

3 Permutation-Based Authenticated Encryption

Mainstream symmetric cryptography has been dominated by block ciphers, which
offer inverse function capability. However, an inverse cipher is only needed in
specific modes such as electronic codebook (ECB), cipher block chaining (CBC)
and offset codebook mode (OCB) in authenticated encryption. There are several
modes of operation where the cipher block is used in forward (encryption) mode
only. From a designer’s point of view, an n-bit block cipher is nothing but a
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b-bit permutation (b = n + |K|, |K| being the key size) with no diffusion from
data state to key state. A simple example of use of a block cipher in this mode
is the hashing via Davies-Meyer compression function. Since for hashing there
is no need to limit diffusion, one can use a block cipher in iterated permutation
mode, where the internal state is composed of both the left and right states as
shown in Figure 3.

This construction vanishes the need for separate key schedule and replaces
the n-bit block cipher by a b-bit permutation. This is, in fact, a block cipher
without inverse, which has the capability to perform not only encryption but
also message authentication – or simply, authenticated encryption (AE). In the
following subsections, we will see how sponge functions can be used to perform
resource-efficient and secure permutation-based authenticated encryption.

3.1 Authenticated Encryption Mode SpongeWrap

SpongeWrap [5] construction realizes authenticated encryption as shown in
Figure 4. Upon initialization, key, K, is loaded into the state. Next, padded
header A (also referred to as additional authentication data – AAD) is absorbed
into the state. This is followed by the encryption (or decryption) phase, which
is run in duplex mode, i.e. for each input data block (plaintext or ciphertext),
an output data block (ciphertext or plaintext, respectively) is generated. The
output (in case of encryption) or input (in case of decryption) ciphertext is also
absorbed into the state, thereby running hashing in parallel with encryption.
Upon completion of processing of all input data blocks, the sponge is run (with
zero input data) until all the l-bit tag, T is squeezed from internal the state. In
decryption mode, the squeezed tag is compared with the received tag in order
to check if the received tag is valid. In SpongeWrap mode, every key, header
and plain/cipher-text block is extended with a so-called frame bit.
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Fig. 4. SpongeWrap authenticated encryption

It is proven that the sponge and duplex constructions are secure against
generic attacks with complexity below 2c/2 [16]. However, when a sponge func-
tion or duplex object is used in conjunction with a key, more refined bounds can
be defined taking into account the data complexity. If the data complexity is
limited to 2a r-bit blocks, the keyed mode withstands generic attacks with time
complexity up to 2c−a calls of the underlying permutation. If a < c/2, this re-
sults in an increase of the security strength from c/2 to c−a. It should be noted
that when the memory requirements of a pervasive system are considered, a is
usually limited to 32 or less, which is in perfect agreement with the requirement
of a < c/2.

3.2 DonkeySponge Construction

DonkeySponge mode of operation [17] (shown in Figure 5) can be summarized
as follows:

– The b-bit state is initialized with the key and run through the round function,
f , ninit time, resulting in the secret state. The number of rounds, ninit must
be chosen such that all bits of the secret state depend on the MAC key.

– The b-bit blocks of the message are XORed into the secret state, interleaved
with nabsorb-round permutations. The number nabsorb must be chosen to
make the success probability of generating inner collisions negligible.

f
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f f f f f0

pad pad

M

crop

Z

ninit nabsorb nsqueeze

Fig. 5. DonkeySponge construction
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– The tag is obtained by applying an nsqueeze-round permutation to the secret
state and truncating the result to l bits. The number of rounds nsqueeze

should be high enough to prevent an adversary in reconstructing the inner
state from outputs observed for chosen inputs. The number b − l must be
large enough to prevent state reconstruction by exhaustive search, namely,
b− l ≥ k.

In [17], ninit = 3, nabsorb = 6 and nsqueeze = 12 are chosen for Keccak-f [200].
This choice of parameters are mainly influenced by propagation experiments.
Therefore, a realistic selection of these parameters for all other sponge functions
can only be possible after similar experiments and/or analyses.

3.3 MonkeyDuplex Construction

MonkeyDuplex mode of operation [17] (shown in Figure 6) is a modified
version of the authenticated encryption with associated data (AEAD) mode
SpongeWrap based on the duplex construction in [5]. The original version can
guarantee confidentiality if for the same key and different messages the asso-
ciated data is unique. In other words, the associated data should behave as a
nonce.

MonkeyDuplex mode removes this restriction by using a unique nonce,
which makes it more fragile. However, it results in a considerable security gain.
Furthermore, it allows data encryption in stream mode with nduplex = 1, result-
ing in extremely high rates.
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Fig. 6. MonkeyDuplex construction

4 Implementation Aspects

In this section, we summarize our implementation of the DonkeySponge and
MonkeyDuplex cores on which we evaluate our performance figures. We start
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by building a generic wrapper, into which any permutation function of a sponge,
can be embedded. As shown in Figure 7, the wrapper is build up of a key register,
data register, length registers (for header/AAD and data), and a state register.
In agreement with our initial design target, data register is a 32-bit register,
and the key register is a 192-bit register designed to collect 128-bit key and 64-
bit nonce read in 32-bit blocks from input. The length registers are also 32-bit
registers in order to support header and input data of up to 232 × 32 bits each.
The size of the state register depends on the state size of the chosen sponge
(permutation) function. The core module is the sponge permutation function,
f , module. Its input is determined depending on the phase of authenticated
encryption – key/nonce absorption (initialization), header absorption, duplex,
tag extraction.

The wrapper has two variants for DonkeySponge and MonkeyDuplex
modes, respectively. The main differences between the two variants are the
padding circuitry (which has negligible effect on the gate count) and the in-
put data size. The DonkeySponge wrapper is designed to support input data
width of up to 64 bits. However, in our designs, we run it in 32-bit mode. Both
wrappers are fully functional blocks including control circuitry, and their func-
tionalities have been verified by Modelsim SE v6.5b.

The operation of the authenticated encryption wrappers can be summarized
in five phases:

– Length/Key/Nonce Loading Phase. Upon reception of a start com-
mand, the wrapper requests for initialization data – lengths, key, and op-
tionally nonce – from the input interface. It then loads the corresponding
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registers with the received data, and instructs the internal sponge core to
start operation.

– Initialization. This is the phase where key/nonce is hashed to generate the
secret internal state of the sponge. This phase takes ninit rounds.

– Header Absorption. In this phase, the wrapper requests header data from
the input interface. Each received data word is padded with and loaded into
the data register, whose output is then processed by the internal sponge core
(absorbed into the state). In case, the header length is zero, this phase is
bypassed.

– Data Absorption. In this phase, the wrapper requests plaintext/ciphertext
data from the input interface. Again, each received data word is padded
with and loaded into the data register, whose output is then processed by
the internal sponge core (absorbed into the state). Additionally the leading
b bits of the new state is XORed with the input data word to generate the
corresponding ciphertext/plaintext, respectively. This mode of operation is
known as the duplex mode. The output word is written into the output
register which flags the readiness of the output with an “output enable” flag.
Processing of each word in this phase and the previous phase takes nabsorb

rounds, which is realized in a single clock cycle (via unfolding) in order to
guarantee low-latency operation.

– Tag Extraction. This is the final phase, where the sponge core is run with
zero input data in order to generate l-bit tag (where l can be 64 to 128 bits
wide). Depending on the target tag length, the internal sponge core can be
run several times, squeezing 32 bits of tag at every run. In DonkeySponge
wrapper, each run takes nsqueeze rounds, where number of clock cycles is
determined by the ratio of nsqueeze to nabsorb. For the MonkeyDuplex, the
core is run in duplex mode with zero input data; therefore nsqueeze = nabsorb.
As in the data absorption phase, the output tag words are loaded into the
output register and signaled with an “output enable” flag.

In the implementation of f -module, we refer to our initially set design targets. We
want to primarily achieve low-latency encryption of 32-bit words with (about)
80-bit generic security. Therefore, the rate, r, of the sponge function should be
at least (32 + 2) bits (including the padding); and the capacity, c, around 160
bits, resulting in total minimum state size of 194 bits. With these parameters
in mind, we choose Keccak-200, Photon-196, Quark-176 and Spongent-
176 variants, with the parameters summarized in Table 1. Although not all the
variants provide equal design parameters, we have to make a choice in order to
limit our design space. However, since we provide the performance figures for
different unfolding options, it is still possible to make realistic guesses with the
chosen variants.

4.1 Performance Comparison

For the performance evaluation, we run our syntheses using Cadence RTL Syn-
thesizer v08.10-s222 with Nangate 45 nm generic and UMC 90 nm low-leakage
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Table 1. Parameters for the chosen sponge functions

b c r Security (bits) Generic security (bits)
Function (bits) (bits) (bits) preimage 2nd preimage collision (keyed mode, a = 32)

(c− r) (c/2) (c/2) (c− a)
Keccak-200 200 164 36 128 82 82 132
Photon-196 196 160 36 124 80 80 128
Quark-176 176 160 16 144 80 80 128
Spongent-176 176 160 16 144 80 80 128

cell libraries. The gate counts are provided for both constrained and uncon-
strained syntheses, while power figures are only provided for 50 MHz constrained
syntheses.

Figure 8 shows the area comparison for 50 MHz constrained (left) and uncon-
strained (right) DonkeySponge wrapper designs, respectively. n in the figures
corresponds to the number of unfolded levels of permutations within the f -
block. In the case of Keccak, this corresponds to nabsorb. However, for all other
sponge functions, n’s are chosen arbitrarily in order to present illustrative num-
bers. For example, in the C-Quark proposal [7] (a Quark based SpongeWrap
instance), n is chosen to be 64. As a reference value, gate counts for Keccak
are 13.6 KGE and 15.4 KGE for 90 nm and 45 nm libraries, respectively.
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Fig. 8. Area comparison of DonkeySponge wrappers for 50 MHz constrained (left)
and unconstrained (right) cases

An important observation we can make from the figure is how close the gate
counts are for constrained and unconstrained cases. This means timing targets
are met even in the presence of several unfolded rounds, which is a major advan-
tage of permutation based encryption schemes over conventional block ciphers.

Figure 9 shows the power comparison for 50 MHz constrained wrapper designs
for the same values of n as in the area comparison. Power figures are provided
only for 90 nm library. It should also be noted that these are synthesized power
figures, and are not as much realistic as simulated figures. As a reference value,
average power consumption for Keccak is 13.6 mW .

Figure 10 shows the area comparison for 50 MHz constrained (left) and un-
constrained (right) MonkeyDuplex wrapper designs, respectively. Again, n in
the figures corresponds to the number of unfolded levels of permutations within
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Fig. 9. Power comparison of DonkeySponge wrappers (50 MHz constrained)

the f -block. In the case of Keccak, this corresponds to nduplex = 1. However,
for all other sponge functions, n’s are chosen arbitrarily in order to present il-
lustrative numbers. As a reference value, gate counts for Keccak are 5.9 KGE
and 7.4 KGE for 90 nm and 45 nm libraries (constrained), respectively.

In the case of MonkeyDuplex wrappers, Quark loses its area advantage
coming from its simple internal structure, since registers dominate the overall
area.
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Fig. 10. Area comparison of MonkeyDuplex wrappers for 50 MHz constrained (left)
and unconstrained (right) cases

Figure 11 shows the power comparison for 50 MHz constrained wrapper de-
signs for the same values of n as in the area comparison. Again, power figures
are provided only for 90 nm library, and they are synthesized power figures. As
a reference value, average power consumption for Keccak is 2.1 mW.

We furthermore present the gate counts corresponding to different values of
n for each design in separate graphs in Figure 12. For our synthesis ranges,
gate counts do not vary in the existence of timing constraint for 45 nm designs,
while it is not the case for other designs (except Quark). The gate counts
are presented for only MonkeyDuplex constructions. The differences between
DonkeySponge and MonkeyDuplex areas are negligible.

We have also checked the highest clock frequencies for all the designs in 90 nm
(for n = 1). These are 154.2, 154.1, 83.4, and 154.1 MHz for Keccak, Quark,
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Photon and Spongent, respectively. This means, except for Photon, sponge
permutations do not determine the critical delay path. Instead, the wrapper
around determines the overall speed of the design.
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With a 32-bit datapath (as in the current implementations), MonkeyDuplex
scheme can achieve authenticated encryption throughput of 4.9 Gbps at a gate
count of 5.9 KGE, in other words almost 1 Mbps/GE. This number is much
higher than any reported figure for existing block cipher based schemes.

5 Conclusion

In this study, we have implemented the newly proposed sponge-based Don-
keySponge and MonkeyDuplex authenticated encryption schemes for all
known sponge functions in the literature. We have demonstrated the simplicity
and effectiveness of these schemes in terms of resource usage and latency, both
of which are important design parameters for pervasive computing systems. Es-
pecially in data storage security, low-latency is of top priority. MonkeyDuplex
scheme achieves low-latency at an incredibly high throughput of 4.9 Gbps within
only 5.9 KGE area, with a 128-bit claimed security.

This is still a very new area of research. The security of these schemes have
yet to be studied in deep. On the other hand, the performance results we have
obtained shows the value of such research. As the next step, we will evaluate
these ciphers with different technologies and parameters (using different variants
of each sponge function). We will also provide simulated power figures, and
compare our results with block cipher based authenticated encryption schemes,
as well.
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Abstract. The pervasive diffusion of electronic devices in security and
privacy sensitive applications has boosted research in cryptography. In
this context, the study of lightweight algorithms has been a very active
direction over the last years. In general, symmetric cryptographic prim-
itives are good candidates for low-cost implementations. For example,
several previous works have investigated the performance of block ci-
phers on various platforms. Motivated by the recent SHA3 competition,
this paper extends these studies to another family of cryptographic prim-
itives, namely hash functions. We implemented different algorithms on
an ATMEL AVR ATtiny45 8-bit microcontroller, and provide their per-
formance evaluation. All the implementations were carried out with the
goal of minimizing the code size and memory utilization, and are eval-
uated using a common interface. As part of our contribution, we make
all the corresponding source codes available on a web page, under an
open-source license. We hope that this paper provides a good basis for
researchers and embedded system designers who need to include more
and more functionalities in next generation smart devices.

1 Introduction

Whenever trying to compare different algorithms, such as in the currently run-
ning SHA3 competition for choosing a new standard hash function, compact
implementations in small embedded devices are an important piece of the puz-
zle. In particular, they usually reveal a part of the algorithms complexity that
does not directly appear in high-end devices, e.g., the need to share resources or
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to minimize memory. Besides, implementations in small embedded devices such
as smart cards, RFIDs and sensor nodes are also motivated by an increasing
number of applications. As a result, studying the performance of cryptographic
algorithms systematically in this challenging scenario is generally useful.

In a recent work, the implementation of 12 lightweight and standard block
ciphers in an ATMEL AVR ATtiny45 has been investigated [14]. In order to
increase the relevance of their work, the authors additionally provided open
source codes for all their implementations on a public web page. In this paper,
we extend this initiative towards hash functions. For this purpose, we consid-
ered three main types of algorithms. First, we targeted SHA256 and the SHA3
finalists. For the latter ones, we only focused on the candidates satisfying the
SHA3 security requirements for the 256-bit output length [23], i.e., providing at
least 2256 (second) preimage resistance and 2128 collision resistance. Second, we
selected a number of recently published lightweight hash functions, providing
both 280 and 2128 “flat” security levels1 [24]. Eventually, we also implemented
several block cipher based constructions, e.g., relying on the AES Rijndael. For
all these algorithms, we aimed for the same optimization criteria (namely small
source code size and limited memory use) and used a uniform interface (see
the details in Section 2). Resistance against physical (e.g., side-channel, fault)
attacks was explicitly excluded from the requirements. As the project involves
many different programmers, we naturally acknowledge possible biases in our
performance evaluation results, due to slightly different implementation choices
and interpretation of the guidelines. In order to mitigate these (usual) limita-
tions, we provide all our source codes on a public web page [1]. As a result, we
hope that this initiative can be used as a first step in better understanding the
performance of hash functions in a specific but meaningful class of devices.

Selected Algorithms. We investigated hash functions in three main cate-
gories. First, we considered SHA256 [22] and SHA3 candidates BLAKE-256 [4],
Grøstl-256 [18], JH-256 [34], Keccak[r=1088,c=512] [6,7] and Skein-512-256 [17].
Second, we evaluated the lightweight hash functions Quark (S and Q versions) [2],
PHOTON (160/36/36 and 256/32/32 versions) [19], SPONGENT (160/160/80
and 256/256/128 versions) [9] and Keccak (i.e. low-cost alternatives to the stan-
dard version). Eventually, we also focused on block cipher based constructions
such as Rogaway-Steingberger [27], Hirose [20], Davies-Meyer and Shrimpton-
Stam [29], based on NOEKEON [10], AES-256, Rijndael 256 [11] and SEA-
192 [30]. More details on these algorithms are given in the extended paper [5].

2 Methodology and Metrics

In order to be able to compare the performance of the different hash functions
in terms of speed and memory space, the developers were asked to respect a list
of common constraints, detailed hereunder. (1) The code has to be written in

1 i.e. the same security is required for collision, preimage and 2nd preimage resistance.
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assembly, if possible in a single file. It has to be commented and easily readable,
for example, giving the functions the name they have in their original specifi-
cations. (2) The function has to be implemented in a low-cost way, minimizing
the code size and the RAM use. (3) Data does not have to be preserved by the
hashing process. This allows direct modification of the data zones in RAM, hence
reducing the amount of memory needed. (4) The interface should be made up
of 3 functions. (a) init takes no input and initializes the internal state, which
is a dedicated memory zone seen as a black box, and returns no output; (b)
update takes as input a full block of data, updates its internal state by pro-
cessing that block and returns no output; (c) final takes as input the (possibly
empty) last chunk of data together with its size and processes it before finalizing
the hash computation. By convention, the data passed to final is necessarily an
incomplete block. (5) Data exchanges are performed with pre-defined memory
zones where data has to be put before calling functions, or can be found on their
return. For example, the data block to hash has to be put at the pre-defined
address SRAM DATA before a call to update, and the final hash can be found at
SRAM STATE on return of final. Most input/output values are thus implicitly
passed. The only explicitly passed value is the size of the data passed to final.
(6) Only the internal state is preserved between calls to these functions. No as-
sumption can be made that other RAM zones (e.g. SRAM DATA) or registers
will stay unchanged. (7) The target device is an 8-bit microcontroller from the
ATMEL AVR device family, more precisely the ATtiny45. It has a reduced set
of instructions and no hardware multiplier. A common interface file was pro-
vided to all designers (available on [1]). Note that for some functions (e.g., for
block cipher based), the padding was not explicitly defined. In these cases, we
appended n null bytes, followed by the length of the message coded as a 64-bit
value, where n is chosen to make the global message length a multiple of the
block size. The basic metrics considered for evaluation are code size, number of
RAM words, and cycle count. Performances were measured on 4 different mes-
sage lengths: 8, 50, 100 and 500 bytes, ranging from a very small (smaller than
one block) to a large message. Finally note that some of the guidelines were not
always followed, because of the cipher specifications making them less relevant
(which will be specified when necessary).

3 Description of the ATtiny45 Microcontroller

The ATtiny45 is a 8-bit RISC microcontroller from ATMEL’s AVR series.
The microcontroller uses a Harvard architecture with separate instruction and
data memory. Instructions are stored in a 4 kB Flash memory (2048× 16 bits).
Data memory involves the 256-byte static RAM, a register file with 32 8-bit
general-purpose registers, and special I/O memory for peripherals like timers,
analog-to-digital converters or serial interfaces. Different direct and indirect ad-
dressing methods are available to access data in RAM. Especially indirect ad-
dressing allows accessing data in RAM with very compact code size. Moreover,
the ATtiny45 integrates a 256-bytes EEPROM for non-volatile data storage.
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The instruction-set of the microcontroller contains 120 instructions which are
typically 16-bits wide. Instructions can be divided into arithmetic logic unit
(ALU) operations (arithmetic, logical and bit operations) and conditional and
unconditional jump and call operations. The instructions are processed within a
two-stage pipeline with a pre-fetch and an execute phase. Most instructions are
executed within a single clock cycle, leading to a good instructions-per-cycle ra-
tio. Compared to other microcontrollers from ATMEL’s AVR series such as the
ATmega devices, the ATtiny45 has a reduced instruction set (e.g. no multiply
instruction), smaller memories (Flash, RAM, EEPROM), no in-system debug ca-
pability, and less peripherals. The ATtiny45 also has lower power consumption
and is cheaper.

4 Implementation Details

4.1 SHA256 and SHA3 Candidates

SHA256. Like its predecessor SHA1, SHA256 is optimized for 32-bit software
implementation. Hence, it can be expected to be similarly efficient on 8-bit AVR
processors. When implementing the iteration step of its compression function,
the main observation is that six out of eight working registers are just circularly
copied. To reduce code and cycles for memory transfer operations, the addresses
of the RAM-based working registers are reassigned using circular pointer arith-
metic instead of addressing these registers by its names A-H explicitly.

Circular pointer arithmetic as part of the iteration step is also used to update
the input word according to the message expansion. Besides 32-bit modular addi-
tions, SHA2 requires 32-bit right rotations by r = {2, 6, 7, 11, 13, 17, 18, 19, 22, 25}
bits and right shifts by s = {3, 10}. Rotations and shifts by parameters larger
than 8 bits first swap 8-bit register accordingly; then single bit operations on the
swapped 32-bit word are performed to correspond to f = {r, s} mod 8. SHA256
uses up to three 32-bit bit rotations processing the same input in a row so that
reordering of rotation and shift operations by ascending f -values improves effi-
ciency.

BLAKE-256. The RAM consumption is mainly due to storing 64 byte input
data, 64 byte state, 32 byte chain value, 8 byte salt, and an 8 byte counter. The
initialization vectors (32 byte) and constants (64 byte) are stored in the flash
memory of the microcontroller. We refrained from transferring the constant table
into the RAM in order to keep RAM consumption low. BLAKE’s permutation
table σ consists of 10× 16 entries. However, each entry is only a four bit number
so we merged two entries in one byte and later select the upper/lower 4-bits by
masking. Thus, the permutation table requires just 80 instead of 160 bytes in
ROM. In order to maintain a decent performance while keeping the code size
down we incorporated the observation by Osvik [25] to efficiently load and store
in-/outputs of the round function Gi (a, b, c, d). Furthermore, we use loops where
applicable and move recurring tasks such as loading and storing the counter into
functions. An exception to this rule is the implementation of the round function.
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Since it is called 80 times when hashing one message block its runtime heavily
impacts the overall performance. Therefore, we decided to unroll critical parts
of the round function.

Grøstl-256. Grøstl has a state of 64 bytes. During the update function, we
need to keep the state, the input message and the previously computed hash
in memory. Thus, we need 192 byte of RAM. The ShiftBytes is computed by
offloading each row, one at a time, from the state into the register of the micro-
controller and then writing it back in the new position. In order to increase the
performance and reduce the number of accesses to the memory, the SubBytes is
computed together with the ShiftBytes. The MixBytes is computed as proposed
by Johannes Feichtner [16,28], and is carried out one column at a time. Finally,
to easily compute the padding, 8 bytes of memory are used to keep track of the
numbers of messages. This 8 bytes are copied directly in the appropriate position
of the padding block.

JH-256. Specifications for a bitsliced implementation of JH are available, but
require to store 42 256-bit round constants in memory, which is not compliant
with our low-cost constraints. Hence, JH was implemented according to the ref-
erence specifications. The utilization percentage of the RAM is high as JH needs
128 bytes to store the state, 64 for the input block and 32 for the round constant.
In order to improve the performance, the S-box and linear transformation were
combined into two look-up tables, of 32 bytes each, as was done in the opti-
mized 8-bit implementation provided by JH author [33]. For the same reason,
the initial state was precomputed and stored in program memory. It allows us
to save the initialization phase which is equivalent to the processing of one input
block. Regarding the permutation, it is performed by reading the state bytes
in a different order at the beginning of each round. Finally, the state bits are
reorganized at the beginning and end of each function E8. This bitwise permuta-
tion is time consuming and requires additional memory. Those problems can be
partially prevented by reorganizing the input bytes before XORing them with
the state.

Keccak. In a first level, we implemented the sponge construction, which comes
down to XORing r-bit message blocks into the state, with r > 0 the rate, and
to calling the underlying permutation. In a second level, we implemented the
permutations Keccak-f [b] for b ∈ {200, 400, 800, 1600}. The sponge construction
imposes that the capacity c is twice the security strength level and that b =
r + c, and our implementation allows any combination of rate and capacity
under these constraints. For clarity, the benchmark focuses on three specific
instances: the SHA3 candidate Keccak[r = 1088, c = 512], and the lightweight
variants Keccak[r = 144, c = 256] and Keccak[r = 40, c = 160] for the 128-
bit and 80-bit security strengths levels, respectively. Any pair of instances with
c = 256 and c = 160 would have satisfied the requirements, but our choice
aims at minimizing b for a given c and thereby the RAM usage, consistently
with a lightweight context. Inside the implementation, some operations (i.e., the
rotations in θ and ρ) are performed on a lane basis, mapping a lane to b/200
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byte(s). Some other operations, such as χ or the parity computation in θ, are
instead slice-oriented, taking advantage of the representation of 8 consecutive
slices in 25 bytes [8]. Note that in the specific case of Keccak-f [200], the two
approaches collide as the state contains exactly 8 slices or 25 lanes, mapped to
25 bytes. RAM usage is composed of b/8 bytes for the state and some working
memory (b/40 bytes, or 0 for Keccak-f [200] as the AVR registers suffice). If the
desired output length is greater than the rate (e.g., for lightweight instances),
an additional output buffer is needed to perform the squeezing phase.

Skein-x-y. We implemented the SHA3 finalist Skein-512-256, with an output of
256 bits, limited to the hashing functionality. The internal state is therefore made
of eight 64-bit words. To keep the program memory space small and the code
readable, some basic 64-bits functions like loading, saving, adding, . . . , have been
employed. The registers are only used temporarily, except the round counter. The
message, the state, the key, the key-schedule and the tweak are always in the
data space, and modified directly. The three main Threefish functions (addkey,
mix and permute) were implemented following the reference specifications. Be-
sides, the modulo 3 and modulo 9 values used in the key schedule were saved
in the program memory space. We have also developed Skein-256-256, slightly
optimized for the speed and data memory space performance, by leaving most
of the time three out of the four state words in the registers.

4.2 Lightweight Hash Functions

S-Quark and D-Quark. The critical point in the implementation of QUARK
hash functions is the update of the state2. This update phase considers the state
as two LFSRs that will be updated using three retro-action polynomials3. This
design is thought for hardware, a context where it is very efficient, but is much
more expensive in software. Nevertheless, our choice to implement this step using
a bit-slice approach provides rather good performance. The platform is an 8-bit
microprocessor and the retro-action polynomials are such that the last 8 bits of
each LFSR are not considered. Hence, our implementation performs 8 updates at
the same time reducing from 1024/704 to 128/88 polynomial computations. The
state is stored in RAM, as it is too large to be kept in registers. Computations
are ordered in such a way that the shift of the state is performed on the fly.

PHOTON-160/36/36 and PHOTON-256/32/32. First note that these im-
plementation significantly differ, since PHOTON-160 has a state matrix with
4-bit cells and uses the PRESENT S-box while PHOTON-256 has 8-bit entries
and uses the AES S-box. This results in different implementation strategies.

2 During implementation, a minor inconsistency was discovered between the paper
description [2] and the reference code [3], which use different bit ordering conventions.
We chose to comply with the description provided in the original article. Compliance
with the C code can be obtained by inverting the order of bits in the input message.

3 An additional third will provide constants for the 1024/704 executions required to
apply the permutation P.
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The state of the implemented PHOTON-160/36/36 variant consists of 7-by-7
4-bit elements which are packed into 25 bytes in order to save memory. This al-
lows an optimal usage of the RAM but naturally also results in additional code
in order to extract the correct nibble out of the state. It is a trade-off between
code size/speed and RAM usage. As the interface only allows messages that are
a multiple of 8 bits while each iteration of a PHOTON-160/36/36 round func-
tion absorbs 36 bits, we just process an input block of length 72 bits and call
the PHOTON round function internally twice for a full 72-bit block. The largest
amount of computational time is spend in the permutation layer for ShiftRows
and especially during the MixColumnsSerial step as finite field arithmetic has
to be carried out on 4-bit values. The internal state of PHOTON-256/32/32
consists of 36 bytes, arranged as a 6-by-6 matrix, that goes over four different
transformations to produce a 32 byte hash digest. Due to their sizes both state
and digest have to be stored in SRAM. This generates an inherent implemen-
tation overhead, as state bytes need to be fetched from and stored to SRAM
once for each transformation. We partially reduce this overhead by merging all
row-based transformations, and also by incrementing code size. Due to its use of
AES-like permutations, the implementation of the PHOTON-256/32/32 trans-
formations can be carried out quite efficiently on 8-bit controllers. The SubCells
transformation is implemented as a memory aligned lookup table resulting in im-
portant cycle savings. The MixColumnsSerial transformation, consisting of six
consecutive calls to the AES MixColumns transformation, is similarly optimized
by implementing the multiplication by ‘02’ as a memory aligned LUT [12].

SPONGENT-160/160/80 and -256/256/128. The SPONGENT-160 state
is 160 + 80 = 240 bits or 30 bytes large. Therefore, the state can be stored in
the registers already available on the target device. However, SPONGENT uses
a PRESENT-like bit permutation in πb and therefore every output bit of an
S-box is mapped to a distinct nibble after permutation. If we were to store the
state in the available registers, we would only have two registers for additional
computations and this would lead to a large code size when implementing the bit
permutation. Therefore, the state is stored in SRAM and a three-step iterative
approach is used for the bit permutation to achieve a smaller code size. For the
permutation, each four consecutive nibbles are permuted and stored in SRAM at
the same places. Then, the permuted nibbles are re-ordered to obtain permuted
bytes and finally bytes are re-ordered to their appropriate places in the state.
Although this approach is code-size efficient, note that it leads to an increase
in running time of the overall hashing process. The remaining operations like
round constant computation, padding and control logic are implemented in a
straightforward manner. The state of SPONGENT-256 is 256 + 128 = 384 bits
or 48 bytes large. Since the state does not fit into the available registers, we
optimized this variant with respect to code size and the state is kept in SRAM.
For the permutation, iteratively four successive bytes are loaded into registers
and the permuted byte is constructed from two bits at fixed offsets of each of
these four bytes. Afterwards the processed bytes are stored back to SRAM. This
method keeps the code very small but requires a copy of the 48 bytes state
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and therefore doubles the required memory. Besides the two states no additional
memory is required. The S-boxes are stored in flash memory and must be aligned
to a address dividable by 16 for easier pointer arithmetic. Again, the remaining
operations are straightforwardly implemented.

4.3 Block Cipher-Based Constructions

Rogaway-Steinberger LP/lp362. For realizing the Rogaway and Steinberger
construction principle, the matrix A suggested by Lee and Park [21] with α =
2 has been used. For operations in F2128 (addition and multiplication) we have
selected the same irreducible polynomial x128 + x7 + x2+ x+1 as stated in [27].
The implementation of the block cipher NOEKEON is based on the open source
version published in [14], but the decryption functionality has been removed
since it is not required for the generation of a permutations. Two variants of the
Rogaway-Steinberger scheme have been implemented: LP362 and lp362. The
two variants mainly differ in code size. The lp362 scheme uses a single fixed key
for all permutations, leading to about 100 bytes less code than for the LP362
scheme which uses a different fixed key for each of the six permutations. Both
variants have similar execution time, consume 92 bytes of RAM, and make use
of 8 registers for computing the hash value of a message.

Hirose Double Block Length (DBL) Construction. For simplicity we chose
an all-zero IV and the additive constant to be 1. One of the advantages of
Hirose is that the two parallel AES executions use the same key. However, due
to memory restrictions, the key should be computed on-the-fly. Hence, the two
encryptions need to be processed in parallel. The AES design is similar to the
one presented in [14], with a further optimized Shift Rows operation. Decryption
code is not needed and has been removed. The key scheduling is performed on-
the-fly and and processes 32 bit at a time. The full 128-bit state of one encryption
block is kept in the registers. Since both encryptions are performed in parallel,
the two states have to be swapped in and out of SRAM regularly. Due to the
large key size, the swap is performed as little as every 4 rounds, keeping the
resulting overhead at a minimum. The implementation needs 82 bytes of RAM.
We chose not to overwrite the input to the update function, which results in a
need for 16 additional RAM bytes for the input. By overwriting the input these
additional 16 bytes can be saved if RAM size is critical.

Davies-Meyer Construction. The implementation of the Davies-Meyer con-
struction simply requires making a copy of the message to be XORed with the
resulting encryption, resulting in an additional consumption of 32 bytes of RAM.

Shrimpton-Stam Construction. The implementation of Shrimpton-Stam con-
struction only requires to take care of remembering inputs of the ciphers to be
able to XOR them to the result of the encryptions. We chose simple keys to
instantiate the functions fi so that no extra memory is required to store them.
More precisely, we respectively set all key bytes to 0x00, 0x11 and 0x22 for
f1, f2 and f3.
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Rijndael-256/256. The operations to be performed during a Rijndael-256/256
encryption are simple and can be made efficient using the well-known techniques
for implementing AES on lightweight processors, like the use of a lookup table
for the S-box and the efficient multiplication by ’02’ for MixColumns [13]. The
main issue when working on an ATtiny45 is the state size: whereas AES state
can be kept in registers, this is not possible any more for 256-bit blocks. As
RAM accesses are time-consuming on the ATtiny, the design of this implemen-
tation focuses on minimizing the number of these accesses. This has been done
by reorganizing the round loop (without, of course, affecting the behaviour of
the cipher) in such a way that the round ends with a ShiftRows operation. Addi-
tionally, we used an auxiliary state to perform ShiftRows efficiently. As a result,
we can fetch a full column from RAM, immediately perform MixColumns, Ad-
dRoundKey and SubBytes, and write the result in the auxiliary RAM state,
taking the effect of ShiftRow into account to determine the exact locations in
RAM. The next round is then performed similarly, but writing data from the
auxiliary state to the initial one, and so on.

SEA. The reference code was written following directly the cipher specifications,
and is a natural extension of the 96-bit version designed in [14]. During its
execution, plaintexts and keys are stored in RAM (accounting for a total of 48
bytes), limiting the register consumption to 12 registers for the running state,
one register for the round counter and some additional temporary storage. The
S-box was implemented using its bitslice representation. The block cipher was
then inserted in a Davies-Meyer mode of operation, using a similar code as the
version using Rijndael-256/256. Overall, the implementation maintains low code
size and RAM use at the cost of a large cycle count, mainly due to the large
number of rounds (177) in the 196-bit version of the cipher based on 8-bit words.

5 Performance Evaluation and Conclusions

We first refer to a number of other implementations of hash functions in AT-
MEL AVR devices [8,15,25,26,28,31,32]. In general, these previous works present
benchmarking results in devices from the ATmega family rather than the AT-
tiny one, hence tolerating larger code sizes and RAM use. As they are hardly
comparable with ours and because of space constraints, we do not detail them in
this section. Overall, we believe they provide a complementary view to ours. In
particular, the pretty complete comparisons of the XBX website certainly sheds
another light on the different algorithms [32]. Note also that some of these previ-
ous works consider older versions of the SHA3 candidates. Our following results
consider the exact SHA3 finalists, according to their last updated specifications.
We recall that for the functions appearing several times in the tables (e.g. Kec-
cak, Skein, Quark, PHOTON, SPONGENT), the different lines correspond to
different specifications and not different implementations of the same algorithm.
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Fig. 1. Performance evaluation: code size (bytes)

Fig. 2. Performance evaluation: RAM (bytes)
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Fig. 3. Performance evaluation: cycle count (500-byte message)

Fig. 4. Performance evaluation: code size (bytes) x cycle count (500-byte message)
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Fig. 5. Performance evaluation: RAM (bytes) x cycle count (500-byte message)

Following Section 2, we evaluated the performance of our different algorithms
based on three main metrics, namely the code size (in bytes), RAM use (in bytes)
and cycle counts for different message sizes4. They are represented in Figures 1,
2 and 3. Besides, we also produced so-called combined metrics that aim to sum-
marize the efficiency of the hash functions in the ATtiny45. We used the product
of the code size and cycle count and the product of the RAM use and cycle count
for this purpose. Eventually, we note that all our results are given numerically in
the performance tables of the extended paper [5]. As already mentioned, these
results have to be interpreted with care, as they both represent the skills of the
programmer and the algorithms efficiency. Yet, given this cautionary note, we
believe a number of general observations can be extracted.

First, the code size and RAM usage illustrate that the implementation con-
straints were reached for all algorithms. Nevertheless, the cost of the SHA3 can-
didates is generally higher than the one of both lightweight hash functions and
block cipher based constructions. For some of them, the RAM use is close to the
limit of the ATtiny device (i.e. 256). This can be explained by the generally larger
states of all SHA3 candidates. Second, we observe that lightweight algorithms
have large cycle counts compared to other hash functions. This implies that their

4 Note that for certain (e.g., sponge-based) functions, the data part of the RAM could
be arbitrarily reduced by changing the interface. In this case, the RAM use evaluation
in the figures excluded the data RAM (reported in gray in the tables).
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overall efficiency (measured with the combined metrics) is generally low in our
implementation context. By contrast, the flexible nature of sponge-based func-
tions (including all lightweight proposals) allows reducing the RAM usage quite
significantly, which is an interesting feature for hardware and embedded software
implementations. Third, it is noticeable that the SHA3 candidates hardly com-
pete with AES-256 in Hirose construction or Rijndael-256-256 in Davies-Meyer
mode. This observation is quite consistently observed for all our metrics. Even-
tually, and as far as SHA3 finalists (in the 256-bit versions) are concerned, our
investigations suggest that BLAKE offers the best performance figures, followed
by Grøstl, Keccak, Skein and JH.

All these results were naturally obtained within a limited time frame. Hence,
we encourage the reader to download codes and possibly improve them with
further optimization. Looking at how the AES implementations have evolved
following its selection as standard, it is likely that similar improvements can be
expected for the hash functions in this work.
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Abstract. We present GrÆStl, a combined hardware architecture for
the Advanced Encryption Standard (AES) and Grøstl, one of the final
round candidates of the SHA-3 hash competition. GrÆStl has been de-
signed for low-resource devices implementing AES-128 (encryption and
decryption) as well as Grøstl-256 (tweaked version). We applied several
resource-sharing optimizations and based our design on an 8/16-bit data-
path. As a feature, we aim for high flexibility by targeting both ASIC and
FPGA platforms and do not include technology or platform-dependent
components such as RAM macros, DSPs, or Block RAMs. Our ASIC
implementation (fabricated in a 0.18μm CMOS process) needs only
16.5 kGEs and requires 742/1,025 clock cycles for encryption/decryption
and 3,093 clock cycles for hashing one message block. On a Xilinx Spartan-
3 FPGA, our design requires 956 logic slices and 302 logic slices on a
Xilinx Virtex-6. Both stand-alone implementations of AES and Grøstl
outperform existing FPGA solutions regarding low-area design by need-
ing 79% and 50% less resources as compared to existing work. GrÆStl
is the first combined AES and Grøstl implementation that has been fab-
ricated as an ASIC.

Keywords: Hardware implementation, AES, Grøstl, ASIC, FPGA, em-
bedded systems, low-resource design.

1 Introduction

Among the most commonly used cryptographic primitives in classical communi-
cation protocols are block ciphers and hash functions. The Advanced Encryption
Standard (AES) [1] is by far the most widespread block cipher since its standard-
ization in 2001. Grøstl [2] was one of the final round candidates of the SHA-3
cryptographic hash function competition from which Keccak [3] emerged as
winner. Both AES and Grøstl share several similarities such as a common S-box
or similar diffusion layers which encourage the implementation of a combined
hardware architecture.

In this paper, we describe a hardware architecture—called GrÆStl—that
combines the functionality of AES-128 and Grøstl-256 in one piece of silicon.

S. Mangard (Ed.): CARDIS 2012, LNCS 7771, pp. 173–187, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Our design aims for high flexibility supporting both Application Specific Inte-
grated Circuit (ASIC) and Field Programmable Gate Array (FPGA) platforms
without using technology dependent components such as Random Access Mem-
ory (RAM) macros, Digital Signal Processors (DSPs), or Block RAMs. We ex-
ploit various optimization techniques to reduce the required area, for example,
by sharing registers and a common datapath. The ASIC version of our design
has been fabricated using the 0.18μm Complementary Metal Oxide Semicon-
ductor (CMOS) process technology from the United Microelectronics Corpora-
tion (UMC) and therefore represents the first tape-out version of a combined
AES/Grøstl architecture in the literature. It requires only 16.5 kGEs in total
and needs 742/1,025 clock cycles for AES encryption/decryption and 3,093 clock
cycles for hashing. The small area requirements and also the low-power con-
sumption of about 20μW at 100 kHz make the design applicable to resource-
constrained devices such as smart cards or contact-less powered devices. We also
compared the results of our stand-alone implementations of AES and Grøstl. It
shows that the implementations outperform existing FPGA solutions in terms
of low-area. They require up to 79% less resources on a Spartan-3 as compared
to existing implementations.

The remainder of this paper is organized as follows. In Section 2, an overview
about related work on area-constrained AES and Grøstl implementations is
given. Section 3 presents the architecture of GrÆStl and describes the design
starting from the top module down to the implemented (combined) datapath.
In Section 4, we present our results and compare them with related work. Finally,
we summarize our results and draw conclusions in Section 5.

2 Related Work

There exist many papers in the literature that present low-resource hardware
implementations of AES or Grøstl. Since publication of the algorithms, several
optimization techniques have been proposed that reduce the area requirements
for both ASIC and FPGA platforms. One example is the optimized AES S-box
implementation of Canright [4] that has been also used by Feldhofer et al. [5]
to realize a very compact version of AES-128 in 2005. Their implementation
requires 3.4 kGEs for both encryption and decryption. Similar results have been
reported by Hämäläinen et al. [6], Kaps et al. [7], and Kim et al. [8] who reported
about 4 kGEs in total. At EUROCRYPT 2011, Moradi et al. [9] presented an
area-optimized implementation of (encryption-only) AES which needs about 2.4
kGEs that marks the lowest level of state-of-the-art AES implementations.

As opposed to AES, there exist only a few publications so far that describe
low-area optimizations for Grøstl on ASIC devices. Tillich et al. [10] have been
the first who presented an implementation requiring 14.6 kGEs. This number
also corresponds well to the area estimations given in the Grøstl specification
from Gauravaram et al. [2] which reported a size of less than 15 kGEs. Further
implementations have been presented by Katashita et al. [11], Guo et al. [12],
and Henzen et al. [13] which require between 34.8 and 72 kGEs.
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In view of FPGA platforms, large effort has been made to reduce the com-
plexity by reusing existing hardware components, e.g., Block RAMs and DSPs.
Chodowiec and Gaj [14] presented a low-resource AES-128 implementation on
FPGAs in 2003 and described different optimization techniques. Their imple-
mentation needs 222 slices and 3 Block RAMs on a Spartan-2 supporting both
encryption and decryption. In particular, they made use of Look-Up Tables
(LUTs) to efficiently implement shift registers such that intermediate values can
be easily shifted without generating additional address logic. In the upcoming
years, improvements have been reported by, e.g., Good et al. [15], Chi-Wu et
al. [16], and Bulens et al. [17].

A very compact FPGA implementation of Grøstl has been presented by Jungk
et al. [18,19,20] in 2010, 2011, and 2012. Their design needs 967 slices on a
Spartan-3 FPGA without interface and 328 slices on a Virtex-6 FPGA requiring
no Block RAMs. Sharif et al. [21] reported 1,627 slices (w/o Block RAMs) and
1,141 slices (using 18 Block RAMs) on a Virtex-5. In the same year, Kerckhof
et al. [22] presented an implementation that needs only 343 slices on a Spartan-
6 and 260 slices on a Virtex-6 FPGA (w/o using any Block RAMs or DSPs).
At the final SHA-3 conference, Kaps et al. [23] published a lightweight Grøstl
implementation requiring approx. 560 slices and one Block RAM on a Spartan-3
FPGA.

While there exist several papers that analyze the combination of differ-
ent block ciphers and hash functions (mostly combining MD5 with SHA-1,
e.g., [24,25,26,27]), there exists only one publication that focuses on the com-
bination of AES and Grøstl on FPGA platforms. Järvinen [28] analyzed various
resource-sharing techniques to reduce the area requirements for an Altera Cy-
clone III. Their smallest design needs 12,387 Logic Cells (LCs) whereas AES
takes an overhead of about 2.5%, i.e., 300 LCs.

3 Hardware Architecture of GrÆStl

GrÆStl has been designed with the aim for a very compact solution that supports
both AES-128 and Grøstl-256 in one piece of silicon. We targeted a low-resource
design (primarily area and power optimized) and applied different design tech-
niques that are new or already known, e.g., from existing low-area AES imple-
mentations. Low-resource architectures are especially interesting for embedded
systems such as contactless smart cards, sensor nodes, and RFID-based devices
where area and power are stringent requirements for a practical deployment.

Next to the low-resource requirements, we aim for high flexibility so that the
design can be applied on both ASIC and FPGA platforms. We therefore avoid
the use of process-dependent technologies like RAM macros or the use of Block
RAMs or DSPs on FPGA architectures. The disadvantage of these technolo-
gies are that they might not be available in all CMOS libraries and that they
have to be recreated in case of a possible CMOS-process variation. Moreover, in
case of FPGAs, resources such as Block RAMs or DSPs might be already used by
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Fig. 1. Architecture of our 8-bit GrÆStl implementation

other system components such that the applicability of the design depends on
their availability. In order to avoid those dependencies, we based our design only
on standard cells and generic hardware components which makes it very flexible
and portable to other platforms.

Since Grøstl needs per se more resources than AES, cf. [2], it is advisable
to reuse existing hardware components to keep the overhead for AES as low as
possible. We therefore decided to implement a combined datapath that effectively
shares resources such as the S-box, temporary registers, or the State matrix. We
based the top-module design and also the interface on an 8-bit architecture
because it reduces the area complexity and power consumption of our design
compared to larger datawidths. For the common datapath, we used 16 bits for
Grøstl and only 8 bits for AES. This has two advantages. First, since two S-
boxes are required for Grøstl, one S-box can be used in parallel to the SubBytes
operation of AES to improve the performance of round-key generation. Second,
parts of the computation can be switched off in order to reduce the overall power
consumption.

An overview of the GrÆStl architecture is shown in Fig. 1. The main com-
ponents are a common datapath (denoted as Core unit) that combines most
of the round transformations for AES and Grøstl and two shared 512-bit shift
registers. In order to keep the area requirements low, we decided to calculate
the P and Q permutations of Grøstl sequentially instead of calculating them
in parallel. This reduces the performance of hashing but allows to implement
only one shared permutation instance in hardware. The need of two additional
512-bit shift registers is compensated by the fact that they are needed anyway in
order to store the original message (needed for the second permutation Q), the
result of the first permutation P and intermediate hash values in case of mes-
sages not fitting one block. These shift registers feature an 8-bit I/O through
which large de-/multiplexers can be avoided. In the following, we present the
common datapath and describe the implemented optimization techniques. Af-
terwards, we make use of the shared registers to improve the performance of the
AES round-key generation.
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Fig. 2. Core datapath w/o round-key generation and un-/loading of the State matrix

3.1 The Common Datapath

Figure 2 shows the architecture of the common datapath. It has been separated
into four main components according to the round transformations of AES and
Grøstl: a shared State, an AddRoundConstant/AddInitialKey, SubBytes, and
MixBytes unit.

Sharing the State. One of the most obvious ways to share resources between
AES and Grøstl is to share the memory resources for the State. The size of the
State for AES is 128 bits, i.e., a 4 × 4-byte matrix. Grøstl, in contrast, needs
512 bits (for variants returning a message digest of a size up to 256 bits), i.e.,
an 8× 8-byte matrix. Thus, up to four AES States can fit into one Grøstl State
which allows to integrate up to four AES encryption/decryption units in parallel
to speed up the computation with minimal overhead. The work of Järvinen [28],
for example, reported such an integration with an additional overhead of 13.5%
for four parallel AES encryptions and only 2.5% for one AES encryption (neither
of these two architectures contain the key generation). In contrast to our imple-
mentation, Järvinen targeted a high-throughput architecture with a datapath
width of 512 bits.

For the design of GrÆStl, we decided to avoid any parallel computations
to keep the area requirements as low as possible. Thus, we mapped one AES
structure into the Grøstl State as illustrated in Fig. 3, i.e., the data (requiring
the upper left 4 × 4 bytes) and the round key (requiring the lower left 4 × 4
bytes). In addition to these memory locations, we reused four bytes of the upper
right 4 × 4 matrix as temporary registers for the round-key generation, further
on denoted as RotWord shift-register. The round keys are then generated “on-
the-fly” during AES computation.

The common State has been implemented using shift registers. This has sev-
eral advantages. First, they reduce the area requirements on common FPGA plat-
forms since the Look-Up Table (LUT) in certain logic blocks can be configured as
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Fig. 3. Mapping the AES State into the Grøstl State and the construction of a single
State matrix row

a shift register without using the flip-flops available in each slice as also noticed
by Chodowiec et al. [14]. Second, they are very flexible and can be used for both
ASIC and FPGA designs as opposed to other memory architectures such as RAM
macros or Block RAMs. Third, due to automatic shifts of intermediate values, ad-
ditional address logic and multiplexer stages can be avoided. Thus, no ShiftRows
or ShiftBytes units are needed because they are implicitly performed by the ap-
plied shift registers.

Each row in the State has been implemented as an 8-byte shift register that
can be split into two 4-byte shift registers with two independent inputs. Figure 3
shows one internal row composed of two 4-byte shift registers. When AES is
performed, only 4-byte shift registers are used, 8-byte shift registers are used
during Grøstl computations. In order to reduce the power consumption during
AES computation, we applied an operand-isolation technique that switches off
unused parts of the matrices, e.g., the lower right 4×4 bytes of the State matrix.
Furthermore, we applied clock gating cells to minimize toggling activity.

Tweaked AddRoundConstant Stage. For Grøstl, the State is modified
through the AddRoundConstant function, which varies with the type of the
required permutation. In case of the P permutation, the first row gets modified
through fixed constants whereas the rest stays untouched. This changes for the
Q permutation, where instead of the first row, the last row gets modified. Ad-
ditionally, the rest of the State bits get flipped, cf. [2]. Note that in contrast to
the Grøstl-0 specification (from the 31th of October 2008), where only a sin-
gle byte gets modified (for both permutations), in the tweaked Grøstl version
(from the 2nd of March 2011, version 2.0.1) multiple bytes get modified. Com-
pared to existing work, which mostly presents solutions for Grøstl-0, e.g., in [10],
we present an implementation that considers the tweaked variant including the
modified round constants and initial vectors.



Putting together What Fits together - GrÆStl 179

For AES, the State gets modified through the AddRoundKey function, which
simply adds (XOR-operation) the round key located in the lower left 4× 4 bytes
of the State matrix to the data in the upper left 4× 4 bytes.

Reusing SubBytes for AES Round-Key Generation. The SubBytes trans-
formation in Grøstl can be efficiently combined with the S-box operation of AES,
because both algorithms make use of the same S-box transformation. Minor ef-
fort has to be made in order to provide the inverse S-box transformation required
for AES decryption.

There exist several implementation optimizations for the AES S-box, e.g.,
given in [4], [29], or [30]. Most of the related work transformed the finite-field
operations over GF (28) into a composite of smaller fields, e.g., GF ((24)2). We
implemented the method proposed by Wolkerstorfer et al. [30], where an S-box
is composed of two transformations, namely the calculation of a multiplicative
inverse in the finite field GF (28) and an affine transformation. For AES decryp-
tion, the affine transformation is exchanged with its counterpart and executed
before computing the multiplicative inverse. In order to save some additional
gates, one may replace the S-box implementation by Wolkerstorfer et al. with
the one by Canright [4]. As our Grøstl version is based on a 16-bit wide data-
path, we implemented two S-boxes, one of them providing both transformation
directions. AES is based on an 8-bit datapath, thus we exploited the presence of
an additional S-box in order to improve the performance of the AES round-key
generation as described in the following.

Basically, there exist two possibilities to generate the round keys for AES
encryption and decryption. First, the round keys are pre-computed and stored in
non-volatile memory. Second, the round keys are computed ”on-the-fly”. While
the first option provides fast access to existing round keys, the second option is
cheaper in terms of area requirements since no memory is needed to store the
keys. We therefore decided to implement the second option.

While one S-box is used to perform the SubBytes operation of AES, the second
S-box can be reused to calculate the round keys in parallel. For the round-key
generation, one S-box, XOR operations, and a small LUT is required that holds
the round constants. Figure 5 and Fig. 6 in Appendix A illustrate the general
forward and backward round-key generation.

The forward round-key generation is done as follows. First, during the initial-
ization of the common State, the last four bytes of the master key are loaded
into the RotWord shift-register (located in the upper right 4 × 4 matrix as
shown in Fig. 3). The output of the RotWord shift-register gets substituted by
the shared S-box and modified with the round-dependent constant Rcon before
it gets added to the output of the first row of the key matrix (located in the lower
left 4 × 4 matrix as shown in Fig. 3). Afterwards, the result is loaded back into
the RotWord shift-register and the first row of the key matrix before both get
shifted. This is done for the first byte of each row of the key matrix in order to
obtain the highest four bytes of the next round key. The following three columns
of the next round key get calculated by applying the same procedure while
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bypassing the S-box and Rcon modifications. Due to the similarity of the forward
and backward round-key generation, we do not explain the latter in detail.

Combined MixColumns and MixBytes. MixColumns and MixBytes have
been combined to a common MixBytes function. It has been implemented such
that it takes the 64-bit output of the MixBytesReg as input, representing either
a column of AES or a column of Grøstl. As for AES one column only has a
size of 32 bits, the remaining 32 bits are not used. For both AES and Grøstl
the matrices, which have to be multiplied with the State, are circulant and
constant. This fact helps in reducing the complexity by implementing from each
of the three matrices only one row. The circulant behavior is gained through the
MixBytesReg, realized as an 8-byte shift register. In the next four clock cycles
after this register has been loaded, always 8 bits for AES respectively 16 bits for
Grøstl are processed and stored in the State matrix. Note that the MixColumns
operation for AES encryption comes for free as it is implicitly computed during
a Grøstl MixBytes operation.

Furthermore, the MixColumns operation for AES decryption takes larger co-
efficients than those required for Grøstl. Therefore, additional effort has been
made to provide also the inverse operation of the MixColumns function.

3.2 I/O-Register Sharing

Since two 512-bit registers are required for our Grøstl implementation in order
to hold intermediate values and the original input message during the sequential
execution of permutation P and Q, we can reuse them to improve the perfor-
mance of AES decryption as follows. As soon as an AES encryption or decryption
finishes, we store its master key together with the corresponding last round key
in the output register. If afterwards another decryption takes place, we compare
its master key with the previously stored one. In case the keys match, we reuse
the previously stored last round key instead of the new master key and can
therefore save the time (i.e., 330 clock cycles) for calculating the last round key
required for decryption.

4 Results

We implemented GrÆStl-256 in VHDL and synthesized it for both ASIC and
FPGA platforms. For the ASIC design, we used Mentor Graphics ModelSim
6.5c and Synopsys DesignCompiler 2010.03 for functional simulations (RTL
and post-layout verification) and synthesis. We mapped our architecture onto a
standard-cell library based on the 0.18μm CMOS process by UMC. One single
Gate Equivalent (GE) therefore corresponds to the area of a 2-input NAND
gate, i.e., 9.3744μm2. For FPGA synthesis, we used Xilinx ISE Design Suite
12.1 and applied the parameter set “Area Reduction with Physical Synthesis”.
Furthermore, we removed the reset feature from all shift registers as sub-optimal
reset strategies can prevent the use of device-library components, such as shift
register look-up tables (SRLs) [31].
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Table 1. ASIC area results after synthesis

Component AES Grøstl GrÆStl
[GE] [GE] [GE]

Top Level Glue Logic 50 460 800
Input/Output Reg. - 8,250 8,250
Core 2,550 6,340 7,500

State Matrix 1,100 4,200 4,350
AddRndCnst. - 100 100
SubBytes 330 540 600
MixBytes 490 900 1,100
Core Glue Logic 630 600 1,350

Round-Key Gen. 2,150 - -

Overall 4,750 15,050 16,550

Fig. 4. Chip layout

In order to evaluate the efficiency of GrÆStl compared to separate implemen-
tations, we provide results for stand-alone variants of AES and Grøstl. How-
ever, we have to note that a fair comparison of our stand-alone variants with
related work is largely infeasible since we targeted a combined version and in-
tegrated optimization techniques that do not affect the single-implementation
variants. Table 1 lists the area occupation for AES, Grøstl, and GrÆStl for a
target frequency of 100MHz. It shows that GrÆStl needs only 16,550GEs of
area not including an interface. This is about 16% less than the sum of the
two separate implementations. Furthermore, it shows that the overhead for AES
is only 1.5 kGEs which is smaller than the smallest available stand-alone AES
implementation given in the literature, cf. [5,6].

In view of execution time, our stand-alone version of AES and GrÆStl need
945 clock cycles for encryption. This includes an 8-bit four-phase-handshaking
that requires 203 clock cycles to load/unload the input/output register. Decryp-
tion needs 1,558 clock cycles. Our GrÆStl implementation even reduces the num-
ber of clock cycles by 330 because the round-key generation can be avoided if
the last round key is already maintained in the I/O registers. Hashing of a 512-
bit block takes 3,465 clock cycles (including 404 clock cycles for the interface)
without applying message padding. The number of clock cycles results from the
State matrix design, the datapath width of 8 bits and the required MixBytes-
Reg through which the datapath is split into halves. In short, this register gets
filled in each cycle with one valid byte related to a certain column of AES
or Grøstl. After finishing loading, the State matrix gets updated through the
MixBytes function. Afterwards the State matrix is shifted by one column and the
procedure starts over again.

We taped out our design as an ASIC. For this, we targeted a maximum
clock frequency of 125MHz. This in combination with clock gating and eight
scanchains required an additional amount of 750 GEs of chip area. A photo of
the fabricated chip, highlighting the floorplan of the three different modules, is
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Table 2. ASIC comparison of AES-128 (incl. decryption) and Grøstl-256

Source Width Techn. fmax Cycles/Block Power Area
[bits] [μm] [MHz] Enc. Dec. Hash [μW/MHz] [kGE]

Hämäläinen [6] 8 0.13 153 160 n/a - 37@1.2V 3.91 }
AESFeldhofer [5] 8 0.35 80 1,032 1,165 - 45@1.5V 3.4

Ours - AES 8 0.18 100 742 1,025 - 130@1.8V 4.75

Tillich [10] 64 0.35 56 - - 196 2,210 @3.3V 14.6
}

GrøstlOurs - Grøstl 16 0.18 100 - - 3,093 200@1.8V 15.05

Ours - GrÆStl 8/16 0.18 100 742 1,025 3,093 200@1.8V 16.55
}
GrÆStl

1 The area for the design, including the decryption has been estimated with
additional 25% of the original (encryption only) AES design.

illustrated in Fig. 4. To the best of our knowledge, there is no ASIC design of
Grøstl (or a combination of AES and Grøstl) available so far, which targets a
low-resource implementation and has finally been taped out.

Table 2 gives a comparison with related work. While our stand-alone imple-
mentation of AES is about 1 kGE larger than existing work [5,6], only a small
overhead is required for Grøstl to support also AES, i.e., 10%. Moreover, our
GrÆStl implementation is only slightly larger than the work by Tillich et al. [10]
which can be attributed to the design decisions to support both Grøstl (tweaked
version instead of Grøstl-0) and AES which requires additional area to optimally
merge both algorithms (to keep the overall area as low as possible). Regarding
power consumption, it shows that our design meets most requirements even for a
contactless operation, e.g., for contactless smart cards. However, due to different
fabrication technologies and supply voltages, we cannot fairly compare the given
numbers.

4.1 FPGA Results

We used Xilinx Spartan-3 and Virtex-6 FPGAs to evaluate the performance of
our design on reconfigurable hardware. Table 3 shows the results after place-and-
route and without an interface included. On the Spartan-3, our design needs only
956 slices. On the Virtex-6, 302 slices are needed. The sum of slices required by
the independent Spartan-3 AES/Grøstl implementations is smaller than those
required for the GrÆStl design. This is due to the structure of the State matrix
of the inner 8/16-bit datapath. For the Grøstl design, this State matrix is built
upon eight 8-byte shift registers which perfectly fit the SRL-16 mode (provided
by Xilinx) as such a 8-byte shift register can be achieved within only a single
CLB. For GrÆStl, each row of the State matrix is replaced by two independent
4-byte shift registers since AES operates on a smaller State compared to Grøstl.
Because of the 4-byte shift registers and the control logic required to form a
8-byte shift register, it is not possible for the compiler to fit the two 4-byte
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Table 3. Post place-and-route results for various Xilinx FPGAs

Spartan-3 Virtex-6
AES Grøstl GrÆStl AES Grøstl GrÆStl

Number of slice LUTs 838 896 1,805 455 531 1,046
Number used as logic. 788 743 1,554 419 443 927
Number used as shift registers 48 128 192 24 64 96
Number used as a route-thru 2 25 59 12 24 23

Number of slice registers 48 293 407 169 279 360
Frequency(MHz) 35 40 30 110 115 80

Number of occupied slices 442 488 956 142 202 302

Table 4. FPGA comparison of AES-128 (incl. decryption) and Grøstl-256

Source Width Output Device fmax Cyc./Block Area
[bits] [bits] [MHz] Enc. Dec. Hash [Slices]

Bulens [17] 128 128 Spartan-3 150 12 12 - 2,150
⎫⎪⎬⎪⎭AESOurs - AES 8 128 Spartan-3 35 742 1,0251 - 442

Bulens [17] 128 128 Virtex-5 350 11 11 - 550
Ours - AES 8 128 Virtex-6 110 742 1,0251 - 142

Jungk [19] 64 224/256 Spartan-3 182 - - 160 967
⎫⎪⎬⎪⎭Grøstl

Ours - Grøstl 8/16 256 Spartan-3 40 - - 3,093 488
Kerckh. [22] 64 256 Virtex-6 280 - - 450 260
Ours - Grøstl 8/16 256 Virtex-6 115 - - 3,093 202

Ours - GrÆStl 8/16 256 Spartan-3 30 742 1,0251 3,093 956
}

GrÆStlOurs - GrÆStl 8/16 256 Virtex-6 80 742 1,0251 3,093 302

1 Decryption with stored last round key.

shift registers into one CLB. Particular changes to the design, which target a
certain FPGA device (i.e., a more target-oriented mapping of the shift registers)
may lead to better results for all three designs. However, this would lead to a
platform-dependent architecture what would contradict with one of our main
goals, i.e., to stay platform independent.

Table 4 shows a comparison with related work. Note that we listed only AES
implementations that require no Block RAMs, DSPs, etc. to allow a fair com-
parison. It shows that our stand-alone AES implementation is the smallest on
the Spartan-3 needing only 442 slices. For the Virtex-6, our design needs only
142 slices. Our Grøstl implementation needs 488 slices on the Spartan-3 and is
therefore about 2 times smaller than the work of Jungk et al. [19] which requires
967 slices. Compared to the work of Kerckhof et al. [22], we need only 202 slices
on the Virtex-6 instead of 260, i.e., a factor of about 1.3.
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5 Conclusion

In this paper, we presented GrÆStl—a combined hardware implementation of
AES-128 and Grøstl-256. GrÆStl has been designed for embedded systems and
therefore shares resources as much as possible to lower the area requirements.
We integrated the following optimization techniques: (1) we mapped the AES
State into the GrÆStl State matrix to avoid the need of additional memory,
(2) we made use of shift registers to provide high flexibility (for ASICs as well
as FPGAs) and avoid the implementation of ShiftBytes and ShiftRows, (3) we
implemented the tweaked AddRoundConstant function instead of Grøstl-0 as
given in related work, (4) we reused the S-box for AES and Grøstl and reused it
also to increase the performance of AES round-key generation, (5) we combined
MixBytes and MixColumns, and finally (6) we proposed to share the I/O regis-
ters which avoids forward round-key generation during decryption which helps
to reduce 330 clock cycles in addition.

As result, GrÆStl is the first combined hardware implementation fabricated
as ASIC and occupies 16.55 kGEs in total whereas AES needs an overhead of
only 10%. In particular, on a Spartan-3 FPGA, our stand-alone AES and Grøstl
implementations outperform existing solutions by a factor of 4.8 and 2 in terms
of area. The small area requirements and the low-power consumption of about
20μW at 100 kHz make the design right suitable for low-resource devices such
as contact-less smart cards and Radio Frequency (RF) communication based de-
vices. Besides that, GrÆStl might be also considered to implement a low-resource
authenticated-encryption scheme, since it provides the required cryptographic
primitives in a single architecture.
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A AES-128 Key Generation

Figure 5 and Fig. 6 illustrate the general forward and backward round-key gen-
eration of AES-128. Each of the round key words is stored in a single column
and updating the keys is done column by column.
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Abstract. We propose a practice-oriented scheme for protecting RAM
access pattern. We first consider an instance which relies on the use of
a secure (trusted) hardware buffer; it achieves both security and per-
formance levels acceptable in practice by adapting ideas from oblivious
RAM mechanisms, yet without the expensive (re-)shuffling of buffers.
Another instance requires no special hardware, but as a result leads to a
higher, yet practical overhead. One of the main features of the proposal
is to maintain the history of memory access to help hiding the access
pattern. We claim that under reasonable assumptions, the first scheme
with trusted memory is secure with overhead of only 6×, as is the second
scheme with overhead of (2m+2	h+2)× where m and 	h are respectively
the size of the buffer and history. We note that although the proposal is
particularly focused on the software execution protection environment,
its security may well be appropriate for most uses in the remote stor-
age environment, to prevent access pattern leakage of cloud storage with
much lower performance overhead than existing solutions.

Keywords: Access Pattern Protection, Oblivious RAM, Shuffle Buffer.

1 Introduction

The problem of preventing leakage of information arising from both running
software on untrusted systems, as well as storing data in remote untrusted servers
has attracted much attention. While encryption can be used to protect data
confidentiality, the problem of protecting access pattern with manageable and
practical overhead is harder to address.

In the software execution environment, one can identify two main motivations
for protecting memory access pattern privacy: the traditional application is to
protect Intellectual Property, and prevent software piracy. More recently, it has
been shown how access pattern leakage can be used to attack certain implemen-
tations of cryptographic algorithms (in the so-called cache attacks [15]). In the
remote storage environment, one would like to protect access pattern from a
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curious but not malicious server, which may benefit from gaining information
about the client’s pattern of access of stored data.

The traditional solution for memory access pattern protection is known as
Oblivious RAM. It was first proposed by Goldreich [5], and later extended by
Goldreich and Ostrovsky [6]. The main construction is based on the hierar-
chical solution, in which the data structure is organised in levels consisting of
hash-tables (using secret hash functions known by the client only), and requires
periodic expensive oblivious re-shuffling of data.

In the past few years, many improvements have been proposed, for exam-
ple [1,16,4,9,17,12]. Several schemes consider improvements for the application
to cloud computing [3,19,7,8,10,11,13,20]. Improvements typically arise from the
use of different data structures and hash function schemes, more efficient sorting
algorithms (for the oblivious shuffling step), and the use of secure local (client)
memory. Besides the hierarchical solution, Goldreich and Ostrovsky [6] also pro-
posed the square root construction, which uses secret random permutations when
storing data. Boneh et al. [2] have recently presented a hybrid algorithm between
the square-root and hierarchical algorithms, and proposed a new notion of obliv-
ious storage.

Despite much recent progress, where both the asymptotic efficiency as well as
the constant terms of oblivious RAM solutions have been improved (making it
particularly attractive for remote storage access pattern protection), current so-
lutions remain inefficient for software execution protection, i.e. to prevent leakage
of relatively limited-in-size memory access pattern. In these cases, the constant
terms involved in the computational complexity make the overhead unaccept-
ably high. Yet an efficient and secure mechanism for access pattern protection is
a particularly desirable feature in this environment. For instance, an emerging
issue is the rapid increase of malicious software targeting smartphones. Most ex-
isting protection schemes, originally designed for PCs, are not suitable for smart-
phones due to several limitations, such as the computational power and available
storage size. In these environments, solutions range from use of obfuscation to
hardware-based access pattern protection mechanisms. For instance, Zhuang et
al. [21] proposed a practical, hardware-assisted scheme for embedded processors,
with low computational overhead. Their control flow obfuscation scheme for em-
bedded processors employs a small secure hardware obfuscator to hide program
recurrence. Their proposal however trades security for low overhead (and the
cost of the trusted hardware buffer), and in some situations an adversary with
access to the device can retrieve information about memory access.

In this paper, we propose a practice-oriented scheme for protecting RAM ac-
cess pattern. We first consider an instance which, similar to the proposal by
Zhuang et al., also relies on the use of a secure (trusted) hardware buffer. How-
ever it achieves higher security by adapting ideas from Goldreich and Ostro-
vsky’s square root solution, yet without the expensive (re-)shuffling of buffers.
By applying this scheme, we can construct a secure platform that is suitable for
executing software that deals with user private information. A potential appli-
cation is to secure program execution in smartphones: these devices typically
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contain sensitive user information and are increasingly under severe threat from
malware. Most smartphones have a SIM card, which is generally considered as
a secure area, and deployment and security of our scheme could rely on the SIM
card. Another instance requires no special hardware, but as a result leads to a
higher, yet practical overhead. This scheme can offer the same level of security
without any special hardware. Many applications have their security relying on
IC cards or other trusted hardware. One of the roles of trusted hardware is of-
fering a secure computation, which can be realised with our proposal. Another
role is a secure storage for a secret information, which is yet to be realised.

The main feature of our proposal is to maintain the history of memory access,
which together with the access of dummy data, helps one to hide data access
pattern. The security of the schemes depends on the size of the buffer (as cache
or in RAM) and how the history is used. We claim that under reasonable as-
sumptions and by selecting appropriate parameters, the schemes achieve both
security and performance levels acceptable in practice. We note that although
the proposal is particularly focused on the software execution protection envi-
ronment (i.e. to prevent RAM access pattern leakage), its security may well be
appropriate for most uses in the remote storage environment, to prevent access
pattern leakage of cloud storage with much lower performance overhead than
existing solutions.

2 Access Pattern Protection Problem

We can model the problem of access pattern protection as follows. We consider
a client, with potentially small secure memory, and a server providing large
insecure storage. This storage consists of several data blocks (for simplicity,
all of the same size). In the software execution environment, we can think of
the CPU as the client, and RAM as the server, where a malicious entity (e.g.
malware) has access to RAM and the memory bus used in the communication
between the CPU and memory.

The client accesses data by making requests to the server to either retrieve
the contents of a particular data block at location i or by writing x into a data
block at location j. We denote these operations by read(i) and write(j, x),
respectively. We consider the security goals as: to protect the confidentiality1 of
data, as well as hide the client’s access pattern to the stored data blocks from a
computationally bounded adversary, which can access the data storage and the
communication channel between the client and the server.

We can address the first goal by using a semantically secure probabilistic
encryption scheme, such that two encryptions of the same data block will look
indistinguishable to a computationally bounded adversary. The use of encryption
adds a constant overhead to the system. For the remaining of this work, we will

1 In environments where there is a requirement, we will also want to protect data
integrity; this can be done by adding a MAC or by using an authenticated encryption
algorithm.
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assume that the data is stored encrypted; it is decrypted whenever it is read
from memory, and re-encrypted whenever it is written into memory.

For the second goal, we would like that a particular sequence of operations
in the stored data does not substantially leak any information, other than how
many data blocks were accessed. To formalise it, we use the definition in [16] for
a secure oblivious RAM system.

Definition 1 ([16]). The input y of the client is a sequence of data blocks,
denoted by ((v1, x1), . . . , (vn, xn)) and a corresponding sequence of operations,
denoted by (op1, . . . , opm), where each operation is either a read operation, de-
noted read(v), which retrieves the data of the block indexed by v, or a write
operation, denoted write(v, x), which sets the value of block v to be equal to x.

The access pattern A(y) is the sequence of accesses to the remote storage
system. It contains both the indices accessed in the system and the data blocks
read or written. An oblivious RAM system is considered secure if for any two
inputs y and y′ of the client, of equal length, the access patterns A(y) and A(y′)
are computationally indistinguishable for anyone but the client.

The typical, straightforward method for preventing an adversary from distin-
guishing between the read and write operations is to always perform both
operations in every access. As a result of using this method, an access pattern
A(y) (for the purpose of indistinguishability) can be thought as simply as a
sequence of indices i (corresponding to the data blocks accessed). The trivial
solution to the access pattern protection problem consists of accessing all data
blocks on the memory for each query. Another trivial solution is to use a secure
client hardware. Both schemes are however too costly in practice.

In addition, data blocks are typically organised in memory based on a se-
cret permutation or hash function in an oblivious way. This is the most expen-
sive component of the schemes, and is the main responsible for the (amortised)
computational overhead. Our proposal does not employ oblivious re-shuffling of
memory; while this will affect the security provided by the scheme, we claim that
under reasonable assumptions, the proposals achieve both security and perfor-
mance levels acceptable in practice.

3 Related Work

We briefly introduce below some of the main research results related to our work.

3.1 Oblivious RAM

Oblivious RAM is the traditional solution for memory access pattern protection,
having been first proposed by Goldreich [5], and later extended by Goldreich
and Ostrovsky [6]. The main construction is based on the hierarchical solution,
in which the data structure is organised in levels consisting of hash-tables (using
secret hash functions known by the client only), and requires frequent oblivious
re-shuffling of data. Data is scanned by visiting each level, after which the item
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found is written in the top level. Levels eventually overflow with data, leading
to their move downwards. This process requires the re-shuffling of data, which is
done obliviously. This is the most complex component of the construction, and
is the main factor in its (amortised) complexity overhead. The original scheme
requires O(n logn) in storage, and has computation overhead of O((log n)3) per
query (using a particularly impractical sorting algorithm, or O((log n)4) with
more reasonable constant in practice).

Since the original proposal of hierarchical solution, several improved schemes
have been proposed. Pinkas and Reinman [16] improved the performance of
oblivious RAM using Cuckoo hashing and a new oblivious sorting algorithm.
However, Kushilevitz et al. [12] pointed out a security flaw of the scheme pre-
sented in [16]. They also proposed a new scheme with O((log n)3) worst-case
overhead. Goodrich and Mitzenmacher [8] achieved O((log n)2) amortised cost
with O(1) client-side storage. Their scheme could achieve higher performance of
O(log n) by using O(nα) client storage where 0 ≤ α ≤ 1. Stefanov et al. [18] pro-
posed a scheme with an amortised overhead of (20–35)× by partitioning a bigger
oblivious RAM into smaller oblivious RAMs. An efficient worst-case overhead
scheme was proposed by Goodrich et al. [9]. This scheme also requires O(nτ )
client storage, where τ is a small constant, and achieves O(logn) access overhead
and O(n) storage overhead.

Goldreich [5,6] also proposed the square root construction, which uses secret
random permutations when storing data. The solution requires O(n +

√
n) in

storage, and has computation overhead of O(
√
n logn) per query. See appendix

of the extended version of [16] for an overview, or refer to the original paper
for a detailed description. We note that our proposal borrows ideas from the
square-root solution.

3.2 Hardware-Assisted Control Flow Obfuscation

Oblivious RAM constructions remain too expensive to be implemented on em-
bedded processors. In [21], Zhuang et al. proposed a practical, hardware-assisted
scheme for embedded processors, with low computational overhead. Their control
flow obfuscation scheme for embedded processors employs a small secure hard-
ware obfuscator (called shuffle buffer) to hide program recurrence. The shuffle
buffer is within the CPU trusted boundary, and an adversary is not able to
observe access pattern in the shuffle buffer. The first m blocks in memory are
moved to the shuffle buffer, which can hold m data blocks. When making a re-
quest for a data block, if the block is found in the shuffle buffer, access the block.
Otherwise fetch the block from memory and a random block in the shuffle buffer
is written back to memory. For more details, refer to [21].

This scheme however leaks information about access of data blocks. The
scheme accesses memory only when it is necessary (i.e. when the block is not
in the shuffle buffer), hence, one knows the exact block being accessed. Further-
more, an access in memory to a data block which was previously swapped out
from the buffer indicates with high probability the existence of repeated access
to a particular data.
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Despite the limitations of the proposal, it adds a very low overhead to the
program execution (besides the read/write and encryption/decryption overhead,
only an extra read/write operation due to cache misses). We will surmount this
limitation in our proposal.

4 Our Scheme for Memory Access Pattern Protection

While oblivious RAM constructions can completely hide memory access pattern,
they are too expensive to be implemented on resource-constrained devices. In
this section, we describe our proposal for a practice-oriented memory access
pattern protection scheme. One of its main features is the inclusion of an extra
buffer used to maintain the history of memory access, to help hiding the access
pattern. We present below two instances: the first one uses a secure (trusted)
hardware buffer, as in [21]; however it achieves higher security by adapting ideas
from oblivious RAM mechanisms, yet without the expensive (re-)shuffling of
buffers. The second instance requires no special hardware, but as a result leads
to a higher, yet practical overhead.

4.1 Assumptions

We consider the problem of hiding the access pattern of memory with n data
blocks. Our scheme will assume that the client has access to an efficient pseudo-
random number generator (to make random choices of addresses), and a seman-
tically secure probabilistic encryption scheme. Data is always stored encrypted:
it is decrypted whenever it is read from memory, and re-encrypted whenever
it is written into memory. Furthermore, either a read or write operation will
always perform the two operations in every access, the difference is the value
being written in the write step. As a result of using this method, an access
pattern (for the purpose of indistinguishability) can be thought as simply as a
sequence of indices i (corresponding to the data blocks accessed).

Our scheme will also require a way to generate a pseudo-random permuta-
tion, to map memory addresses. This can be achieved by using a deterministic
encryption algorithm E . This mapping will be described either by the function
E , with the output computed in each call, or explicitly described as a table look-
up (with input-output pairs). We note that the latter requires O(n) memory
within the client’s trusted boundary (as in [21]), which in some scenarios may
be impractical.

Perhaps the main challenge of access pattern protection schemes is to hide
the repeated access of data blocks. In general, when not deploying expensive
ORAM solutions, access pattern can typically be distinguishable by observing
a long series of accesses. Therefore, we define a relaxed, still practical, security
definition of access pattern protection, which we call δ-length security. Assume
that during a certain sequence of data access, a particular block ‘a’ is accessed
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twice by a program at t-th access and (t+ δ)-th access; we call this a δ-distance
access of ‘a’. Informally, an access pattern protection scheme is δ-length secure if
the probability that an adversary identifies repeated accesses in A(y) at distance
at most δ is small.

Definition 2. We say that an access pattern protection scheme is δ-length ε-
secure if the probability that an adversary identifies any d-distance access in A(y)
is at most ε for every d ≤ δ.

4.2 Set-Up

On loading n data blocks to memory, our scheme will use E to permute the
corresponding addresses. Dummy data will be typically added to the original
data, so that at initialisation we have kn data blocks being loaded to memory,
with k ≥ 1 a small constant. The constant k will be selected based on the typical
epoch length of the program and the availability of memory within the client’s
trusted boundary to describe the random permutation E . We discuss the use of
dummy data in more detail in Section 5.3.

Our scheme will partition memory into two regions: a (secure) buffer M and
an unsecured memory L, of sizes m and �, respectively, with m � �. It follows
that m+� = kn. Furthermore, we will require a secure table H, called the history
table. The table H stores addresses of data blocks that have been moved from
the secure buffer M to the unsecured memory L, and has size �h. We denote
the address of a data block ‘a’ as ia. Typically, we may have H implemented
as part of M. In the case where we are able to store the permutation mapping
table explicitly, H can be implemented by adding a set bit into the table. Despite
these choices, in our discussions below we consider H as a separate table.

4.3 Instance 1: Construction with Secure Memory

The first instance of our scheme considers the buffer M being implemented
within the client’s trusted boundary (as in [21]). The table H is also stored
within this boundary. After loading data into memory, m data blocks are copied
intoM; the table H starts empty2. On the first access to a data block ‘a’ (either
a read(a) or write(a, x)), we search for ‘a’ in M and access L twice: if ‘a’ is in
M, we replace two random elements (not ‘a’) fromM with two random dummy
elements from L and we access ‘a’; if ‘a’ is not in M, two random elements
from M are replaced by ‘a’ and one random dummy element from L (and ‘a’ is
accessed). In both cases, the corresponding addresses of blocks being kicked out
from M are written in H. In subsequent calls, we proceed as follows:

1. if ‘a’ is in M, we replace two random elements (not ‘a’) from M by a
random element from L and a random element from L which had already
been accessed before (as recorded in the history buffer), and we access ‘a’.

2 Although, before the program starts to run, the scheme can operate by accessing a
number of dummy data blocks to populate the history buffer.
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Algorithm 1. Pseudocode of access pattern protection scheme

1: scan M for ‘a’
2: if ‘a’ ∈ M then
3: replace two random elements (not ‘a’) in M with two random blocks in L, one

of them is chosen from the history H and the other is randomly chosen from L
4: else
5: scan H for ‘ia’
6: if ‘ia’ ∈ H then
7: replace two random blocks in M with a random block in L and ‘a’
8: else
9: replace two random blocks in M with ‘a’ and a random block whose address

is registered in H
10: end if
11: end if
12: choose 	h elements from 	h + 2 to update history table H
13: access ‘a’

2. if ‘a’ is not in M, and its address is in the history table, we replace two
random elements fromM by a random element from L and ‘a’ (as recorded
in the history buffer). Note that H holds only addresses and data itself is
stored in L.

3. if ‘a’ is not inM, and its address is not in the history table either, we replace
two random elements from M by ‘a’ and a random element from L which
had already been accessed before (as recorded in the history buffer).

Every time the data blocks are kicked out fromM to L, data blocks are written
in L taking their original position (as described by E), and addresses of those
blocks are registered in the history table H. As the program continues to access
data blocks, the table may eventually get full. When this is the case, at each
access we select at random �h elements among the �h + 2 elements (the current
history elements and the two new ones). We have a pseudocode of our scheme
in Algorithm 1 and show an example in the appendix.

The Objective of the History Buffer. The goal of our scheme is to efficiently
protect the privacy of data access pattern. It is clear that if during a run of
the program, data blocks are only accessed once, then the use of a random
permutation alone will suffice to hide the access pattern. The case of relevance is
thus when a data block is accessed more than once. When it is accessed for the
first time, it is copied intoM. If accessed again, and it is still inM, then access
is oblivious from an adversary; still we would like to hide the fact that the data
accessed was found inM. If it is no longer inM, then we would like to hide the
fact we are accessing it again from an adversary. Thus, if we consider the case
that a program keeps reading ‘a’ at different intervals, we have the following
three types of access to consider:
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1. ‘a’∈M;
2. ‘a’/∈M and ‘ia’ ∈ H;
3. ‘a’/∈M and ‘ia’ /∈ H.

Note that case 3 is likely to occur when ‘a’ is accessed for the first time. As
discussed, the cases that require most attention are 2 and 3 when ‘a’ is accessed
again: since we do not perform an oblivious re-shuffling, the adversary would
notice that ‘a’ is being accessed again.

To address this, in our scheme, we first search ‘a’ in M and then, depending
on the cases described above, the access of memory is done as follows:

1’. access (r, p),
2’. access (r, a),
3’. access (a, p),

where r is a random location in L and p is a location recorded in the table H.
Note that we need to keep the contents in the history table secret: although

the adversary can record all blocks previously accessed, in practice we may not
be able to keep the addresses of all accessed blocks in the history table (since �h
may be small). If we had the addresses in cleartext, one may note that in case 3’
above, although ‘a’ had being accessed before, its address was no longer in the
history buffer (for lack of space).

4.4 Instance 2: Construction without Secure Memory

We consider a second instance of our proposal, which does not require a secure
buffer. The bufferM and history tableH are kept in the unsecured memory area,
as with L. In this case, access to M (and H) is made by reading and writing
every data block in the buffers (which requires decryption and encryption of
data). Thus, to find out whether ‘a’ is in M, we read/write all values; when
replacing data blocks in M, we again read/write all values. Except for this, the
access is made as described in Section 4.3. The security provided is the same,
but the computation overhead is obviously increased, and it is dependent of the
sizes of buffers M and H.

5 Security Analysis

We discuss the security of our scheme.

5.1 Access Pattern Hiding

Regarding recurrence, recall that in our scheme, we first search ‘a’ in M and
then, depending on the cases described in Section 4, the access of memory is as
follows:
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1. ‘a’∈M, and ‘a’ is accessed: access (r, p) in L;
2. ‘a’/∈M, ‘a’∈ H, and ‘a’ is accessed: access (r, a) in L;
3. ‘a’/∈M, ‘a’/∈ H, and ‘a’ is accessed: access (a, p) in L.

Assume that the program accesses ‘a’ at time t; we denote it by Xt = a. We
have the following lemma.

Lemma 1. Assume that Xt = a, and let m and �h denote the sizes of the M
and H, respectively. Then after δ steps we have pM = Pr[a ∈M] ≥

(
m−2
m

)δ
and

pH = Pr[a ∈ H] ≥
(

�h
�h+2

)δ

.

Proof. To compute Pr[a ∈ M], note that the right-hand side of the expression
corresponds to the probability that an element remains in a set of size m after
δ replacements of 2 elements at time, which is how the scheme manages the
buffer M. The inequality comes from the fact that even if removed after d < δ
steps, ‘a’ may be re-inserted during the normal operation of the scheme. Showing
the second probability is similar (noting however that in the history buffer, the
scheme draws 2 elements among �h + 2 elements). ��

For the sake of simplicity, we will in the remaining of this paper assume equality
in the two expressions above. Furthermore, we will also assume that the two
events are independent (obviously the probability of ‘a’ being in H after δ steps
will be influenced by whether/when ‘a’ leaves the buffer M; however we believe
this assumption is reasonable for typical values ofm, �h and δ – and substantially
simplifies our computations). The simple lemma below then follows.

Lemma 2. Consider the three cases for memory access discussed above, and
assume that Xt = Xt+δ = a. Then the probability that we have case 1 is pM , the
probability that we have case 2 is pH(1 − pM ), and the probability that we have
case 3 is (1 − pH)(1 − pM ).

Now assume that an adversary observes the scheme at time t + δ in case 1,
i.e. we have a ∈ M and access to (r, p) from L. Then following a conservative
estimate, we have Pr[Xt+δ = a | case 1 ] ≤ 1

m−2 . For case 2, we have a similar

upper bound: Pr[Xt+δ = a | case 2 ] ≤ 1
m−2 . Case 3 is perhaps the one in which

an adversary can extract more information (since it is very likely that, unlike
the other two cases, the pair of elements (a, p) drawn from L have already been
observed by the adversary). We will again adopt a conservative approach, and
have the upper-bound Pr[Xt+δ = a | case 3 ] ≤ 1/2.

Theorem 1. The proposed scheme is δ-length ε-secure access pattern protection
scheme, where

ε ≤ pM
(m− 2)2

+
(1− pM )pH
(m− 2)2

+
(1− pM )(1 − pH)

2(m− 2)
.

Proof. Let A be adversary who is able to observe an access sequence Xi = ai,
for i = 1, . . . , N . Let us assume that Xt = Xt+δ = a. We wish to compute the
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probability Pr[Xt = a,Xt+δ = a]. We assume that the first access to a is at time
t (the proof and figures can be slightly modified when this is not the case), and
that the accesses at time t and t+ δ are independent events (i.e. we assume no
knowledge of statistics of the original program being protected). Then we have
Pr[Xt = a] ≤ 1/(m− 2), and by lemmas and discussion above.

Pr[Xt = a,Xt+δ = a] = Pr[Xt = a] · Pr[Xt+δ = a]

≤ 1

m− 2
(Pr[Xt+δ = a | case 1 ] · Pr[ case 1 ]

+ Pr[Xt+δ = a | case 2 ] · Pr[ case 2 ]

+ Pr[Xt+δ = a | case 3 ] · Pr[ case 3 ])

≤ pM
(m− 2)2

+
(1 − pM )pH
(m− 2)2

+
(1 − pM )(1 − pH)

2(m− 2)
. ��

5.2 Parameters: Size of Secure Memory and History Table

The choice for sizes of the secure memory M and history table H have an
obvious influence in the security and efficiency/cost of the scheme: it follows
from Theorem 1 that large values form and �h significantly decreases the chances
that an adversary can identify a repeated access to a particular memory block.
However large M and H negatively affect the performance of the scheme (as
well as increase its costs in the hardware-assisted version).

For instance, if we take the size of the shuffle buffer as 128 16-byte blocks (as
in [21]), and the same size for H (that is, 512 32-bit addresses), then for δ = 20,
we have pM ≈ 0.73 and pH ≈ 0.92, and as a result ε ≤ 1.4 × 10−4. The value
increases to 4.4× 10−4 if δ = 50, and to 1.06× 10−3 if δ = 100 In general, SIM
cards have a capacity of 64KB, which means we can allocate much more space,
say 1024 blocks and 4× 1024 history addresses. In this case, we have pM ≈ 0.82
and pH ≈ 0.95, and as a result ε ≤ 0.5× 10−5 for δ = 100.

As discussed before, we note however that our scheme does not achieve strong
indistinguishability: As we use a static permutation E , addresses are fixed (after
the permutation), and this implies some leakage of information (an adversary
will, for instance, know when the sets of potentially accessed blocks are disjoint,
implying no recurrence). Overall, we believe that, a choice of parameters can be
made to achieve both security and performance levels acceptable in practice.

5.3 How Much Dummy Data Should We Use?

Oblivious RAMs provide security by making sure that a data block is only
accessed once while it remains at the same address. When it is accessed again,
it will be allocated to a completely different address and the adversary will have
no information about the contents and whether/when it was accessed before.
Our scheme, on the other hand, tries to ensure the security in the circumstance
that the data block is accessed multiple times while in the same address.

If there are several dummy data blocks, that can be used as random elements
that the protection scheme can access. They will also prevent the adversary from
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determining which blocks are actually accessed by the program. We can also
make dummy accesses to the actual data blocks when it is not accessed by the
program. When the program accesses a data block, the access pattern protection
scheme will access 2 blocks as the scheme always swaps 2 blocks betweenM and
L. If we add n dummy data blocks, the number of accesses to the actual data
and dummy data will be roughly the same. Guessing the access pattern correctly
becomes harder as n increases, and less dummy blocks will be required. While
we still need to confirm it experimentally, we expect that the required number
of dummy blocks will be at most 2n and the constant k will be 1 ≤ k ≤ 3.

6 Comparison

Our scheme requires secure memory for storing m data blocks. It also requires
storage for the history table of size �h. When we read a data block, we first access
the secure memory to check whether the data block sought is in M. We then
move two data blocks into M and read the data block. We also need to access
and update the history table. Thus the total cost is 4 operations, plus the cost
associated with reading and writing the history table (which can be only two
extra accesses if H is within the secured boundary). Thus we have the overhead
of 7 operations. We discuss how to improve the overhead later this section. The
history can be potentially stored (encrypted) in the memory area L. When H is
not within the secured boundary, we have to read and update all blocks in the
table. Thus we have the overhead of 4 + 2�h. Finally, if using dummy data, we
also have data storage overhead in L depending on the constant k.

Our scheme can also be implemented without any special hardware. The differ-
ence in this case is that we need to scan the entire bufferM twice, plus the access to
the history table and two swaps. We have therefore the cost of 2m+ 2�h + 2 oper-
ations. As we assumem is much smaller than n, our scheme without a hardware is
still more efficient than most of oblivious RAMs. According to [18], practical over-
head of oblivious RAMs are, in general, on the range of thousands to hundred of
thousands. When we choosem = �h = 128, the overhead is 514, which is less than
half of that of oblivious RAMs. The scheme proposed of [18] achieved the overhead
of (20− 35)×, which is faster than our second scheme, still our scheme has the ad-
vantage in terms of storage size, that is, ours requires less than 3n storage for n
original data while the scheme in [18] requires 4n+ o(n).

Overall, the parameters m, �h and k can be set to suitable values, to offer the
appropriate trade-off between security and implementation/computational costs.
While oblivious RAMs are too expensive especially for resource constrained de-
vices and Zhuang et al.’s scheme is not suitable scheme for this purpose, our
scheme can offer reasonable security for the access pattern protection problem
with constant computational overhead and practical storage.

Improvement of Performance. When we update the history table, addresses
of two data blocks are registered into the history table independently in the
original scheme. Assume that two addresses ‘ia’ and ‘ib’ need to be registered,
then two random locations are selected and those locations are updated with
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Table 1. Comparison with Other Schemes

Pattern Leakage Computational Overhead Storage

Square root [6] No O(
√
n log n) O(n+

√
n)

Pinkas-Reinman [16] No O((log n)2) 8n

Stefanov et al. [18] No O(log n) 4n+ o(n)

Goodrich-Mitzenmacher [8] No O(log n) 8n

Lu-Ostrovsky [14] No O(log n) O(n)

Kushilevitz et al. [12] No O((log n)2/ log log n) O(n)

Zhuang et al. [21] Yes 2 2n

Ours w/ Sec. Mem. see Theorem 1 6 ≤ 3n

Ours w/o Sec. Mem. see Theorem 1 2(m+ 	h + 1) ≤ 3n

the new blocks. Therefore, the update requires two operations in each cycle.
The update can be done with only one operation by modifying the entry as
a bigger one ia||ib, where || is concatenation. When choosing one data block
from the history table, one can first choose the concatenated block and then can
choose higher half or lower half of the block. As a result, we can reduce the cost
for updating the history table from 2 to 1 and the overall overhead is improved
to 6. Table 1 gives the comparison of the performance with other schemes.

7 Conclusion

In this paper, we proposed two new schemes for protecting memory access pat-
terns. The distinctive character of our scheme is that we do not re-shuffle the
order of the data blocks in memory. To protect the access pattern without re-
shuffling, we used a history of the accesses. We first considered an instance which
is similar to the proposal in [21], and also relies on the use of a secure (trusted)
hardware buffer; however it achieves higher security by adapting ideas from
Oblivious RAM mechanisms, without the expensive (re-)shuffling of buffers. An-
other instance requires no special hardware, but as a result leads to a higher, yet
practical overhead. We defined a new security notion called δ-length ε-security
and proved that the proposed two schemes are secure in this notion. We also
discussed the size of parameters, which are the size of secure memory, history ta-
ble and dummy data and compared the performance with existing schemes. We
claim that under reasonable assumptions, the schemes can achieve both security
and performance levels acceptable in practice.
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Appendix

We present an example of the scheme in Figure 1. In this example, we have
m = 4 and �h = 6, then the program reads data in the order 5 → D → 8 → 5.
For simplicity, we will not be using dummy data (i.e. k = 1) and we have a fixed
permutation.

A B C D E F5 6 7 8 91 2 3 4

5 7 D 2 1A C 6E 9 F3 B 8

5

D

5

8

B 7 D 1A C 64 E 9 F3 5 8

5 7 2 18 A C 6 3E 9 F3 B D

5 B 7 1C 6 34 E 9 FA 8 D

B 7 2 18 C 34 E 9 FA 5 D

5 B 7 D 2 18 A C 6 34 E 9 F

5 B 7 D 2 18 A C 6 34 E 9 F

4

2

2

2

6

History

Reading

4 B

4 B 5 8

4 B 5 8 3 B

M

Secure memory

2 B 8 8 3 B

Fig. 1. Our Scheme

1. All data in the memory L is randomly permuted and M is filled with the 4
random blocks.

2. When the program tries to access 5, since it is not in M, blocks 5 and 2
are brought into M. Since we do not have any history yet, block 5 and a
random block is chosen. Two blocks (4 and B) in M are written back to L,
and their addresses are entered in the history.

3. When the program accesses D, the block D is brought into M. The block
B is chosen from the history and also brought into M. Blocks 5 and 8 are
instead written back to L, and their addresses are entered in the history.

4. When the program accesses 8, since 8 is in the history, block A is randomly
chosen. Blocks 3 and B are written back to L, and their addresses are entered
in the history.

5. When the program accesses 5, since the address of 5 is in the history, the
block 6 is randomly chosen to be brought into the M. Blocks 2 and 8 are
written back to L. Now the history table is full, two addresses of random
blocks (in this example, 4 and 5) are replaced with those of 2 and 8.

6. All blocks in M are written back into L.
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Abstract. This paper describes a new design of the multipurpose cryp-
tographic primitive ARMADILLO3 and analyses its security. The AR-
MADILLO3 family is oriented on small hardware such as smart cards
and RFID chips. The original design ARMADILLO and its variants were
analyzed by Sepehrdad et al. at CARDIS’11, the recommended variant
ARMADILLO2 was analyzed by Plasencia et al. at FSE’12 and by Abdel-
raheem et al. at ASIACRYPT’11. The ARMADILLO3 design takes the
original approach of combining a substitution and a permutation layer.
The new family ARMADILLO3 introduces a reduced-size substitution
layer with 3 × 3 and 4 × 4 S-boxes, which covers the substitution layer
from 25% to 100% of state bits, depending on the security requirements.
We propose an instance ARMADILLO3-A1/4 with a pair of permutations
and S-boxes applied on 25% of state bits at each stage.

1 Introduction

Tiny computing devices such as smart cards, sensor networks and RFID tags
are becoming more and more widespread. The implementation of standardized
cryptographic algorithms such as the block cipher AES [21] or the hash func-
tions SHA [10] are very expensive in terms of the number of gates and power
consumption. Moreover, the security requirements of these tiny devices are often
weaker than which of algorithms such as AES or SHA. The widespread usage
of the constrained devices triggered a spontaneous competition for the tiniest
and the most secure designs. There have been several designs of such primitives
[5,8,9,14,15,17,25].

Since these devices communicate over an insecure channel, usually a wireless
channel, there is a threat of an attacker trying to listen to the communication or
trying to impersonate a server or another device. Therefore, there is a need for an
authentication protocol to provide authenticity of the device, and an encryption
to provide the confidentiality. However, as we want to reduce the implementa-
tion cost as much as possible, it is important to find a universal design, which
can be used in many different applications. This allows to further reduce the
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implementation cost, as it is not necessary to implement multiple algorithms
on the small device. Some recent designs deal with this issue by reusing some
parts of the implementation, for instance the hash function QUARK [2] and
the message authentication code SQUASH-128 [23] use some components of the
stream cipher GRAIN [14]. This approach is the first step towards a multipurpose
cryptographic primitive, that can be used in all applications.

We introduce a new primitive ARMADILLO3 which is designed to be used as
a message authentication code (MAC), a hash function and a pseudo-random
number generator. The ARMADILLO3 is the third generation of the multipur-
pose cryptographic function ARMADILLO [3] introduced at CHES’10. The new
version ARMADILLO3 prevents all known attacks against the ARMADILLO [22]
design and the attack against ARMADILLO2 based on parallel matching [1], and
Hamming weight preservation in PRNG mode [19]. We provide a security anal-
ysis against known types of attacks and discuss some dedicated attacks and
counter-measures. We support our security claims using the security analysis
based on properties of the underlying expander graph of ARMADILLO3.

The ARMADILLO is a family of cryptographic functions based on data depen-
dent permutations. That is, we use an internal function P defined by P (p‖b, Z) =
P (p, S(Zσb

)) iteratively, where b is the tailing bit of the first operand p‖b, S is
a substitution layer, σb is a permutation (σ0 or σ1) and Zσb

denotes the trans-
position of Z based on permutation σb. The extension ARMADILLO3 adopts a
preprocessing to prevent the known attacks against ARMADILLO1 reported in
[22], and it introduces a reduced-size S-box layer to improve the confusion of
ARMADILLO2 which lead to a practical low complexity attack reported in [19].

The ARMADILLO3 internal function generalizes the SPN structure by intro-
ducing a second permutation. In every round, we choose one of the two permu-
tations based on a pseudorandom value.The internal function is then followed by
an XOR with the input and the control register value similar to the Davies-Meyer
construction.

The ARMADILLO3 reduces the number of S-boxes due to both the higher
number of rounds and the pseudorandom selection of the permutation. This
means that only some bits of the internal state go through the S-boxes in a sin-
gle round. The pair of permutations for ARMADILLO3 has to be selected in such
a way that even when the attacker controls the selection of the permutation at
every round, which is the case for hash functions, she should be unable to pre-
vent the diffusion of the input. Therefore, the selection of the two permutations
is a non-trivial task. We introduce a notion of Hierarchical Permutations which
ensure that every bit goes through an S-box in a minimum number of steps
for all possible sequences of data-dependent permutations, while making no sig-
nificant restrictions on other properties of these permutations. The selection of
the final pair is based on the diffusion properties of both permutations and the
expansion properties of the expander graph corresponding to the pair of the
permutations.
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2 The ARMADILLO3 Function

The ARMADILLO3 is based on a recursive function P which takes two param-
eters P (Y,X). The register Y is used as a control register for selecting the
permutation in each step of the function P , and the ith step of P consists of
applying permutation σ0 or σ1, depending on the value Y [i], and the S-boxes
on specified bits. Since the value Y has to be pseudo-random which is difficult
to control for an attacker, we set Y = P (X,X) for an input X . Therefore, the
ARMADILLO3 consists of two steps: preprocessing step for computing the value
Y and the computation of P (Y,X) followed by an XOR with the input X and
the control register Y . We give recursive definition of ARMADILLO3 followed by
the pseudo-code. The parameters for the algorithm are: the type of S-boxes, the
number and placement of S-boxes, and the permutation pair.

The ARMADILLO3 algorithm on input W = H‖X is defined as follows.

ARMADILLO3(W) = P (Y,W)⊕W⊕ Y, for

Y = P (W,W)

P (p‖b, Z) = P (p, S(Zσb
))

P (λ, Z) = Z

Y = P (H‖Xi,H‖Xi)

Xi

H
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�
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Fig. 1. Scheme of ARMADILLO3
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where p denotes a bit string, b denotes a bit, S denotes the substitution layer
which is defined separately, and λ denotes the empty string. The substitution
layer of ARMADILLO3 consists of r identical t× t S-boxes. In our example, i.e.,
ARMADILLO3-A1/4, we build the permutation pair σ0, σ1 for the placement of
3 × 3 S-boxes at positions 0-32 (so we have 11 3 × 3 S-boxes), which gives the
“coverage rate” = rt

k , where k is the size of register Y.

Algorithm 1. ARMADILLO3 pseudo-code

input X, H
W = H‖X
R = H‖X
for i=0 to |W| do

b = W[i]
R ← S(Rσb)

end for
for i=0 to |W| do

b = P [i]
W ← S(Wσb)

end for
return W

The substitution layer S, i.e., the S-boxes and the bits covered by S-boxes, together
with permutations σ0, σ1 are defined later for ARMADILLO3-A1/4.

The function ARMADILLO3 differs from the original design ARMADILLO1
[3] in several ways. Like ARMADILLO2 [3], it has an internal register of size k
instead of 2k, which makes the design more compact, and as ARMADILLO2 it
also includes a preprocessing step, i.e., Y = P (H‖X,H‖X). The preprocessing
prevents the attacker from controlling the permutation P (Y,H‖X), since it is
difficult for an attacker to predict Y = P (H‖X,H‖X) without a knowledge of
H. In the case of the hash function, when the attacker knows the value H or
is allowed to choose this value to find a pseudocollision, the attacker can only
control the register in the preprocessing phase. The ARMADILLO3 differs from
ARMADILLO2 [3] by removing the XOR with a constant and adding a reduced-
size substitution layer.

2.1 Modes of Operations in ARMADILLO3

FIL-MAC. The fixed input-length message authentication code is required in
RFID applications. The output X’ is used for authentication of the tag. In ap-
plications such as Pathchecker [20], the secret key of the RFID tag is renewed
with the value H’.

Hashing. For a variable-length input message we use the strengthened Merkle-
Damg̊ard construction [18,7]. The ARMADILLO3 is used as a compression func-
tion. The value H is taken as the IV and the compression function ARMADILLO3
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produces H’ which is the new IV. The value X is a message block to be processed.
Such construction is similar to a sponge construction proposed in [4]. The inner
function of ARMADILLO3 could also be used in a sponge construction as an
alternative to our construction.

PRNG, PRF. In this mode we use the j most significant bits of the output
value (H’‖X’) = ARMADILLO3(H,X), where j is a parameter. The input value X
is chosen sequentially, and can be sent in clear for the resynchronization purposes
for a self-synchronizing stream cipher.

2.2 The Permutation Pair for ARMADILLO3

We introduce a concept of Hierarchical Permutation which ensures the avalanche
effect in small number of rounds even if the selection of permutations is under
full control of the attacker. Given the set of indices X and a set of indices
S, covered by S-boxes, we define a height of i ∈ X for the permutation π as
h(i) = minj{j : πj(i) ∈ S}. We now explain how to build the Hierarchical
permutation for t × t S-boxes, and give a concrete example for the case t = 3.
We suppose that the layer of S-boxes covers bits [0, tr − 1]. We define sets of

indices Ai, Bi, and Ci so that

h∑
i=0

|Ai| +
h−1∑
i=0

|Bi| +
h−2∑
i=0

|Ci| = k, i.e., Ai, Bi,

Ci are partitions of [0, k − 1]. In the case t = 3 let a, b and c be integers such
that a+ b + c = 3r, and similarly in the case t = 4 let a, b, c and d be integers
such that a + b + c + d = 4r. Ideally, we would have a = b = c = r, but this
is not always possible. So, we target a ≈ b ≈ c ≈ r. We define several sets Ai,
Bi and Ci to partition {0, 1, 2, . . . , k − 1}: Ah = {a+ b+ c, . . . , 2a+ b+ c− 1},
Ah−1 = {2a+ b+ c, . . . , 3a+ b+ c− 1}, Bh−1 = {3a+ b+ c, . . . , 3a+2b+ c− 1},
Ah−2 = {3a+2b+c, . . . , 4a+2b+c−1},Bh−2 = {4a+2b+c, . . . , 4a+3b+c−1},
Ch−2 = {4a+3b+c, . . . , 4a+3b+2c−1},Ah−3 = {4a+3b+2c, . . . , 5a+3b+2c−1},
. . . , A0 = {0, 1, 2, . . . , a−1},B0 = {a, . . . , a+b−1},C0 = {a+b, . . . , a+b+c−1}.
In what follows, ABi denotes the union of Ai and Bi. ABCi denotes the union
of Ai, Bi, and Ci. We further define pairwise disjoint sets Ah+1, Bh, and Ch−1

so that Ah+1 ∪ Bh ∪ Ch−1 = S = ABC0 and that output bits from an S-
box fall into different sets Ah+1, Bh and Ch−1 (with very few exceptions). In
the case when |Ah+1| = |Bh| = |Ch−1| we set Ah+1 = {3i : i ∈ [0, r − 1]},
Bh = {3i + 1 : i ∈ [0, r − 1]} and Ch−1 = {3i + 2 : i ∈ [0, r − 1]} or in case
of 4 × 4 S-boxes Ah+1 = {4i : i ∈ [0, r − 1]}, Bh = {4i + 1 : i ∈ [0, r − 1]},
Ch−1 = {4i+ 2 : i ∈ [0, r − 1]} and Dh−2 = {4i+ 3 : i ∈ [0, r − 1]}. In the case
when the sets Ah+1, Bh and Ch−1 are not balanced, we select the excess elements
to be far from each other. We construct σ such that Ah+1 is mapped to Ah. Bh

is mapped to Bh−1. Ch−1 is mapped to Ch−2. Ah is mapped to Ah−1. ABh−1

is mapped to ABh−2. ABCh−2 is mapped to ABCh−3. ABCh−3 is mapped to
ABCh−4. Etc. These constraints are depicted in Fig. 2. Note that

T = {Ah+1, Bh, Ch−1, Ah, ABh−1, ABCh−2, ABCh−3, . . . , ABC1}
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is a partition of {1, . . . , k}, since Ah+1∪Bh∪Ch−1 = ABC0. From the construc-
tion of Hierarchical Permutation, we have that every i in Ai (i ≤ h+ 1) and Bi

(i < h), Ci (i < h − 1) has height i. The unbalanced-height structure makes it
such that the output bits of the S-box will meet the S-box layer every h + 1,
h, or h − 1 iterations. That is, two bits of the same height are likely to have
different heights after going through their respective S-box. When the structure
is balanced with a = b = c, we can take Ah+1 to the list of the first output bits
of S-boxes, Bh to the list of the second output bits of the S-boxes, and Ch−1

to the list of the third output bits of the S-boxes. This way, two bits going out
from the same S-box cannot meet in the same S-box the next time since they
have different height. When the structure is unbalanced, it should be close to
the same situation. Exceptions to this rule are called “collisions”. In the case of
ARMADILLO3-A1/4 we have a = 9, b = 11, and c = 13 for r = 11, h = 4. This
gives coverage 33

128 ≈
1
4 , and A5, B4, C3 as follows

– A5 = {0, 3, 6, 9, 12, 18, 21, 24, 27}
– B4 = {1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31}
– C3 = {2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 15, 30}

Additionally, we check that for σ′(x) = σh(x)(x) we have⌊
σ′(15)

3

⌋
�=
⌊
σ′(17)

3

⌋
and

⌊
σ′(30)

3

⌋
�=
⌊
σ′(32)

3

⌋
.
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�

�

�
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�
A3 B3

�
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�
A1 B1 C1

�

Fig. 2. Hierarchy for Permutations with h = 4 and t = 3

We provide additional criteria to achieve the highest possible diffusion for a pair
of Hierarchical permutations.
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Definition 1 (Distance). Let σ0, σ1 be a pair of the permutations on a set
{1, . . . , k}. We say that they have a distance d� at level � where

d�(σ0, σ1) = min
U,V ∈{0,1}�,U 	=V

|{j : σU (j) �= σV (j)}|

For the selection of σ0 and σ1 we maximize d2(σ0, σ1). The high distance d1 is
associated with small number of fixed points of permutation σ0σ

−1
1 . Similarly,

the high distance d2 is associated with small number of fixed points of the per-
mutation σUσ

−1
V , for all U, V ∈ {0, 1}2. Otherwise, for some values U and V of

the control register, the bit from position i is mapped to σU (i) = σV (i) = j
for some j. This allows the attacker to predict the behavior of the unknown
permutation. In ARMADILLO3-A1/4, which is defined in Section 4, we require
d2(σ0, σ1) = 127, which means there is at most one index i which is mapped to
the same index j by the permutations σU and σV , where U, V ∈ {0, 1}2.

Definition 2 (Graph Ωσ0σ1,U). Let U be a bitstring and r, t be integers (repre-
senting the number and the types of S-boxes respectively). We define a multigraph
Ωσ0σ1,U = (V,E) for permutations σ0, σ1 and parameters r and t as follows:

V =

|U|⋃
i=0

V i V i = {vi,j : j ∈ {1, . . . , k}} E =

|U|⋃
i=1

(
Ei ∪ Si

)

Ei =

⎛⎜⎝(
vi−1,j , vi,σUi

(j)

)
, . . . ,

(
vi−1,j , vi,σUi

(j)

)
;︸ ︷︷ ︸

t

rt < j ≤ k

⎞⎟⎠
Si =

((
vi−1,j∗t+a+1 , vi,σUi

(j∗t+b+1)

)
; j < r and a, b ∈ {0, . . . , t− 1}

)
where Ui denotes the ith bit of U .

The set Ei is a multiset of edges between level i − 1 and level i where every
edge is taken t times, and the set Si is a set of edges representing the S-boxes,
i.e., for every S-box we have a complete bipartite graph t × t. Therefore, the
definition 2 gives a t-regular multigraph (since some edges are repeated t times),
i.e., Ωσ0σ1,U is an expander graph. Combinatorically, the expander graphs are
highly connected sparse graphs, probabilistically expander graphs behave like
random graphs. Let λ0 denote the second largest eigenvalue of adjacency matrix
of graph G. We now introduce a new criterion which measures the randomness
of the graph Ωσ0σ1,U . This criterion is based on the expander graph theory, the
reader is referred to [24] for details. We recall that an expander graph is a τ -
regular graph G with expansion factor D(G) > c for some constant c > 0 and
some τ ∈ N, where the expansion factor D(G) is given by the following formula.
Let δ(S) denote a set of edges neighboring of S, then

D(G) = min
0<|S|≤ |V |

2

|δ(S)|
|S|
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Let σ0, and σ1 be permutations. We say that the graph Ωσ0σ1,U diffuses if for
all v ∈ V 0 and w ∈ V |U| there exists an oriented path from v to w in graph
Ωσ0σ1,U . We say that the pair (σ0, σ1) has diffusion level difσ0,σ1 where

difσ0,σ1 = min{h : ∀U ∈ {0, 1}h graph Ωσ0σ1,U diffuses }.

For the selection of σ0, σ1 we minimize difσ0,σ0 , difσ1,σ1 , and difσ0,σ1 .

Additionally, we verify the randomness of selected pair permutations. Let G =
(V,E) be a 4t-regular multigraph where V = V (Ωσ0σ0,0) and E = E(Ωσ0σ0,0) ∪
E(Ωσ1σ1,0)∪E(Ωσ−1

0 σ−1
0 ,0)∪E(Ωσ−1

1 σ−1
1 ,0). We require the second largest eigen-

value λ0 of adjacency matrix of multigraph G to be small. According to the
Expander mixing lemma, we have∣∣∣∣E(S, T )− d|S||T |

n

∣∣∣∣ ≤ λ0

√
|S||T |.

This criterion helps us to select pair of permutations which minimizes difσ0,σ1 ,
where E(S, T ) denotes the number of edges between S and T , and d is the degree
of each vertex (in our case 4t), and n is the total number of vertices (in our case
2k). It allows to quantify the diffusion coming from the the data dependent
permutation layer, as the high number of edges means the higher diffusion. The
Expander mixing lemma gives an estimate, on how far we are from an optimum
(Ωσ0σ1,U behaving like a random d-regular graph). We refer the reader to [3] for
further analysis of ARMADILLO family based on expander graphs.

3 The Security Analysis of ARMADILLO3 Function

3.1 Differential and Linear Cryptanalysis

The differential and linear cryptanalysis is complicated by the fact, that the at-
tacker does not know the sequence Y , i.e., the sequence in which permutations
σ0 and σ1 are selected. In the differential cryptanalysis, the attacker looks for
differentials which propagate with a high probability through the cipher. Since
the permutation Y is not fixed while it varies according to the input X and the
input H, the input Y is hard to predict, i.e., it is hard for an attacker to find a
good differential path and mount differential cryptanalysis. Similarly, the linear
relations between input and output of ARMADILLO3-A1/4 depend on the value
Y which is unpredictable, and therefore obtaining a good linear characteristic
is hard. Moreover, the S-boxes are selected to provide good security guarantees
against both differential and linear cryptanalysis, therefore even if the value Y is
known to the attacker, the differential/linear cryptanalysis should be impossible.
From LAT, resp. DDT we can see that any linear characteristic resp. differential
have probability at most 1

4 . Therefore, any differential/linear characteristic over
(h + 1) rounds will have a probability at most 1

4 from the construction of the
S-box. Consequently, any (h + 1) · g round differential characteristic will have
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probability 2−2g and any (h + 1) · g round linear characteristic will have a cor-
relation of at most 2−2g. In the case of ARMADILLO3-A1/4, we have k = 128,
and h = 4. Therefore, the best differential/linear characteristic has probability

probability at most 2−2 128
5 ≈ 2−51. The security margin is obtained from the

fact that the attacker have to know the values in the control register to be able
to use such differential/linear characteristics.

3.2 High Order Differentials and Algebraic Attacks

The number of S-boxes and the structure of the selected permutations ensure
that the degree of underlying ANF equations is close to maximum and the data-
dependency of the design ensures that these equations do not have any simple
structural properties.

3.3 Statistical Saturation Attacks

The statistical saturation attacks were introduced in [6] against PRESENT [5].
Such attack is based on low diffusion trails in the linear layer of PRESENT.
However, as the low diffusion trails are not constant and the permutations are
selected in such a way that the distance of σ0, σ1 and their compositions σ0σ0,
σ0σ1, σ1σ0, and σ1σ1 are maximal, the low diffusion trace changes substantially
for different sequences Y . As the value Y depends both on the secret key C and
the challenge U , and since Y = P (X,H‖X), we expect that it would be difficult
for an attacker to control the low diffusion paths and to utilize them at the same
time.

3.4 The Internal Collision Attack

The attacker can try to force an internal collision. The internal collision can
appear during the computation, since it is possible to find a pair (Y , Y ′) such
that Yσ0 = Y ′

σ1
. Let consider a single step of ARMADILLO3, i.e., P (p‖b, Z) =

P (p, S(Zσb
)) and let consider how can we obtain an internal collision S(Zσb

) =
S(Z ′

σb′ ). We need to have Z ′ = Zσ−1
b σb′

as the substitution layer is bijective. This

means that either Z = Z ′ for b = b′ or we have a prescribed relation between
Z and Z ′. This allows the attacker to force the value Y (from the preprocessing
phase) to be the same for different inputs U and U ′. However, the attacker
has then no control over the propagation of the difference in the computation
ARMADILLO3(H‖X) and ARMADILLO3(H‖X′).

3.4.1 Invariant States. The relation Z ′ = Zσ−1
b σb′

also allows the attacker

to find invariant internal state, i.e, a state W such that Wσ0 = Wσ1 . Therefore,
the invariant state has to follow an equationW = Wσ−1

b σb′
which means that bits

of W are constant for each cycle of permutation σ0
−1σ1. Therefore, selecting σ0

and σ1 so that σ0
−1σ1 has long cycles is a good protection against these types of
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attacks. We note that a cycle of permutation σ0
−1σ1 is a subset of the set A, B or

C. Therefore, we cannot obtain a pair of permutations, such that σ0
−1σ1 has less

than h+1 cycles. Moreover, as the S-boxes takes input/output bits from different
cycles and changes the parity and therefore if Z ′i = Zi

σ−1
b σb′

=⇒ Z ′i+1 �= Zi+1

σ−1
b σb′

which means there is no invariant state in ARMADILLO3.

4 ARMADILLO3-A1/4

This section gives a concrete proposal of ARMADILLO3-A1/4 with k = 128 t = 3
and r = 11 and “coverage rate” ≈ 1

4 . This instance has only 11 3 × 3 S-boxes,
which makes it an interesting design for study by cryptographic community. We
give a description of S-boxes and the pair of permutations. We argue about the
security of ARMADILLO3 based on the properties of Hierarchical Permutations
and the low second largest eigenvalue of the selected pair of permutations.

4.1 The S-box Layer of ARMADILLO3

The function S is defined as follows:

S(z1‖z2‖z3‖ . . . ‖z31‖z32‖z33‖ . . . ‖z128) = s(z1, z2, z3)‖ . . . ‖s(z31, z32, z33)‖z34‖ . . . ‖z128

The reader should notice that the indices covered by S-boxes correspond to the
sets A0, B0, and C0 of the Hierarchical Permutation.

Table 1. ARMADILLO3 variants with “coverage” 1
4

version k c m r t
ARMADILLO3-A1/4 128 80 48 11 3
ARMADILLO3-B1/4 192 128 64 16 3
ARMADILLO3-C1/4 240 160 80 20 3
ARMADILLO3-D1/4 288 192 96 24 3
ARMADILLO3-E1/4 384 256 128 32 3

Table 2. Implementation results with throughput at 1MHz, using 0.35μm

Algorithm Block Key Area Time Cell power
(bits) (bits) (GE) (cycles/block) (mW)

ARMADILLO3-A1/4 48 80 4048 176 60
ARMADILLO3-B1/4 64 128 6065 256 89
ARMADILLO3-C1/4 80 160 7576 320 110
ARMADILLO3-D1/4 96 192 9133 384 134
ARMADILLO3-E1/4 128 256 12239 512 177
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Table 3. Implementation comparison for hash functions with throughput at 100 kHz

Algorithm Digest Block Area Time Throughput Logic FOM
(bits) (bits) (GE) (cycles/block) (kb/s) (μm) (nanobit/cycle.GE2)

ARMADILLO2-A 80 48 4 030 44 109 0.18 67.17
PHOTON [13] 80 20 1168 132 775 0.18 59.27

ARMADILLO3-A1/4 80 48 4 302 44 109 0.35 58.95
ARMADILLO2-A 80 48 2 923 176 27 0.18 31.92
ARMADILLO3-A1/4 80 48 2 991 176 27 0.35 30.49

PHOTON [13] 80 20 865 708 144 0.18 20.12

KECCAK-f[400][16] 128 128 5 090 32 200 0.18 110.41
H-PRESENT-128[5] 128 128 4 256 32 200 0.18 110.41
ARMADILLO2-B 128 64 6 025 64 1000 0.18 27.55
ARMADILLO3-B1/4 128 64 6 409 64 1000 0.35 24.34

PHOTON [13] 128 16 1 708 156 422 0.18 15.06
ARMADILLO2-B 128 64 4 353 256 250 0.18 13.19
ARMADILLO3-B1/4 128 64 4 449 256 250 0.35 12.62

MD5 [12] 128 512 8 400 612 83.66 0.13 11.86
U QUARK[2] 136 8 2 392 68 476 0.18 8.51
PHOTON [13] 128 16 1 122 996 66 0.18 5.48
U QUARK[2] 136 8 1 379 544 87 0.18 3.20

ARMADILLO2-C 160 80 7 492 80 100 0.18 17.81
PHOTON [13] 160 36 2 117 180 731 0.18 17.01

ARMADILLO3-C1/4 160 80 7 972 80 100 0.35 15.72
ARMADILLO2-C 160 80 5 406 320 250 0.18 8.55
ARMADILLO3-C1/4 160 80 5 526 320 250 0.35 8.18

D QUARK[2] 176 16 2 819 88 616 0.18 8.08
PHOTON [13] 160 36 1 396 1332 98 0.18 5.28
SHA-1 [12] 160 512 8 120 1 274 40.18 0.35 6.10

D QUARK[2] 176 16 1 702 704 76 0.18 2.77

ARMADILLO2-D 192 96 8 999 96 100 0.18 12.35
ARMADILLO3-D1/4 192 96 9 575 96 100 0.35 10.90
C-PRESENT-192[5] 192 192 8 048 108 59.26 0.18 9.15
ARMADILLO2-D 192 96 6 554 384 25 0.18 5.82
ARMADILLO3-D1/4 192 96 6 698 384 25 0.35 5.37

MAME [26] 256 256 8 100 96 266.67 0.18 40.64
ARMADILLO2-E 256 128 11 914 128 100 0.18 7.05
ARMADILLO3-E1/4 256 128 12 682 128 100 0.35 6.22

SHA-256 [12] 256 512 10 868 1 128 45.39 0.35 3.84
ARMADILLO2-E 256 128 8 653 512 25 0.18 3.34
ARMADILLO3-E1/4 256 128 8 845 512 25 0.35 3.19

PHOTON [13] 256 32 4 362 156 650 0.18 2.94
PHOTON [13] 256 32 2 177 996 1034 0.18 1.85
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Table 4. Implementation comparison for encryption with throughput at 100 kHz

Algorithm Key Block Area Time Throughput Logic FOM
(bits) (bits) (GE) (cycles/block) (kb/s) (μm) (nanobit/cycle.GE2)

PRESENT-80 [5] 80 64 1 570 32 200 0.18 811.39
Grain [14] 80 1 1 294 1 100 0.13 597.22

KTANTAN64 [8] 80 64 927 128 50 0.13 581.85
KATAN64 [8] 80 64 1 269 85 75 0.13 467.56

ARMADILLO2-A 80 128 4 030 44 291 0.18 179.12
ARMADILLO3-A1/4 80 128 4 302 44 291 0.35 157.19

Trivium [9] 80 1 2 599 1 100 0.13 148.04
PRESENT-80 [5] 80 64 1 075 563 11 0.18 98.37
ARMADILLO2-A 80 128 2 923 176 73 0.18 85.12
ARMADILLO3-A1/4 80 128 2 991 176 73 0.35 81.30

PRESENT-128 [5] 128 64 1 886 32 200 0.18 562.27
HIGHT [15] 128 64 3 048 34 189 0.25 202.61
TEA [25] 128 64 2 355 64 100 0.18 180.31

ARMADILLO2-B 128 192 6 025 64 300 0.18 82.64
ARMADILLO3-B1/4 128 192 6 409 64 300 0.35 73.03
ARMADILLO2-B 128 192 4 353 256 75 0.18 39.58
ARMADILLO3-B1/4 128 192 4 449 256 75 0.35 37.89

AES-128 [11] 128 128 3 400 1 032 12 0.35 10.73

Table 5. Permutation σ0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
33 61 92 34 52 86 36 54 89 41 59 93 39 53 84 94

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
55 88 35 57 90 37 58 85 38 56 82 40 51 91 83 60

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
87 50 45 43 49 42 47 44 48 46 78 69 70 73 79 63

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
72 75 67 81 71 64 76 66 77 62 65 80 68 74 118 119

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
100 122 127 107 108 117 109 121 111 105 110 98 97 96 120 103

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
99 115 116 123 126 124 114 113 125 95 106 104 101 102 112 0

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
24 29 2 13 6 25 16 10 32 21 15 18 1 27 7 11

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
17 22 19 31 9 30 4 8 12 28 5 20 26 3 23 14
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Table 6. Permutation σ1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
34 53 88 37 61 82 35 51 86 36 58 85 41 55 94 90

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
57 87 40 52 89 38 59 83 33 60 84 39 56 92 93 54

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
91 46 49 42 47 48 44 43 50 45 64 65 67 80 75 76

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
66 71 68 63 73 70 72 74 79 77 62 78 69 81 104 116

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

113 106 126 105 95 119 127 124 100 122 117 114 112 123 96 102

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

125 120 103 110 98 99 97 111 121 115 109 118 108 101 107 25

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
5 18 22 21 12 16 23 4 26 32 11 0 7 30 17 29

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
13 15 8 24 6 20 9 14 19 31 1 3 10 27 28 2

The proposed instance of ARMADILLO3 has 3 × 3 S-boxes. The S-box satis-
fies the following equations. For an input (x0, x1, x2) and output (y0, y1, y2) =
S(x0, x1, x2). We have⎧⎨⎩

y0 = x0 + x1 + x2 + x0 ∗ x1 + 1
y1 = x0 + x1 + x0 ∗ x2 + 1
y2 = x0 + x1 ∗ x2 + 1

The permutation defined by the S-box expressed in decimal is a non-linear cycle:
(0 7 5 3 2 4 6 1). Thus, with 3 AND, 6 XOR and 2 NOT we can implement a
single ARMADILLO S-box in hardware.

4.2 The Permutation Pair

For a selection of a good pair of permutations, we create a pool of Hierarchical
Permutations with low diffusion difσ and a small number of long cycles. After-
wards we select a pair which achieves a full diffusion in 25 rounds and the second
largest eigenvalue of graph Ωσ0σ1,U (Def. 2) is λ0 = 9.36. The permutation σ0 is
given in Table 5 and the permutation σ1 is given in Table 6.
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4.3 Test Vectors and Implementation

We give a test vector for the ARMADILLO3-A1/4 with the S-boxes above and
the permutation pair σ0 in Table 5 and σ1 in Table 6.

ARMADILLO3-A1/4(0k) = 0xF89FCBAB 0x47D36AF6 0xDC51602D 0x31C3EEA1

ARMADILLO3-A1/4(1k) = 0x7C7A0E1F 0xBA9214DF 0x5FC3CD65 0x374EB994

The synthesis results at 1MHz with typical 0.35μm library and 2.2V voltage
supply can be found in Table 2. We give the details for several instances with
“coverage” 1

4 . We give the figures for several variants of ARMADILLO3 depending
on the size of internal state, see Table 1 for details on the variants with coverage
“ 1
4”. Concrete proposals for variants ARMADILLO3-B1/4, ARMADILLO3-C1/4,

ARMADILLO3-D1/4, and ARMADILLO3-E1/4 are omitted due to the lack of
space.

5 Conclusion

We introduced a new hardware oriented class of cryptographic primitives AR-
MADILLO3. Our design of ARMADILLO3 is based on data-dependent permuta-
tions and a reduced size substitution layer. To meet the criteria for good confu-
sion and diffusion layers, we introduce the concept of Hierarchical Permutations.
Such permutations give guarantees, that the diffusion is fast despite the reduced
substitution layer. The applications for ARMADILLO3 include MACs, hashing
and PRNG. We propose an instance ARMADILLO3-A1/4 to encourage the study
of ARMADILLO3. The ARMADILLO3-A1/4 consists of a pair of carefully selected
Hierarchical Permutations and 11 3× 3 S-boxes.
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B.: MAME: A Compression Function with Reduced Hardware Requirements. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 148–165.
Springer, Heidelberg (2007)



Improving Side-Channel Analysis
with Optimal Linear Transforms

David Oswald and Christof Paar

Horst Görtz Institute for IT Security
Ruhr-University Bochum, Germany

{david.oswald,christof.paar}@rub.de

Abstract. Pre-processing techniques are widely used to increase the
success rate of side-channel analysis when attacking (protected) imple-
mentations of cryptographic algorithms. However, as of today, the ac-
cording steps are usually chosen heuristically. In this paper, we present
an analytical expression for the correlation coefficient after applying a
linear transform to the side-channel traces. Doing so, we are able to pre-
cisely quantify the influence of a linear filter on the result of a correlation
power analysis. On this basis, we demonstrate the use of optimisation
algorithms to efficiently and methodically derive “optimal” filter coef-
ficients in the sense that they maximise a given definition for the dis-
tinguishability of the correct key candidate. We verify the effectiveness
of our methods by analysing both simulated and real-world traces for a
hardware implementation of the AES.

Keywords: side-channel analysis, linear filtering, countermeasures, pre-
processing, attacks on protected implementations, DPA contest v2.

1 Introduction

The use of Digital Signal Processing (DSP) to facilitate attacks based on Side-
Channel Analysis (SCA) or to reduce the number of needed measurements
(traces) has been demonstrated to be effective in numerous publications (cf.
Sect. 1.1). Methods such as Differential Power Analysis (DPA) [12] or Cor-
relation Power Analysis (CPA) [5] often benefit from prior signal processing,
e.g., Finite Impulse Response (FIR) filtering. Yet, the precise effect of the pre-
processing steps on the success rate of SCA has, to our knowledge, not been
precisely quantified. In this paper, we utilise analytical properties of the corre-
lation coefficient in order to derive a more systematic approach for optimising
the – so far mostly heuristically selected – pre-processing parameters. From a
designer’s point of view, our method helps to objectively estimate the amount
of leakage an adversary might extract by means of filtering.

1.1 Related Work

One of the first examples of DSP being applied to SCA can be found in [14]:
the authors mention the use of a matched filter to increase the Signal-to-Noise
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Ratio (SNR) and thus the height of a DPA peak. In [6], Clavier et al. propose to
perform comb filtering, i.e., average measurement samples from multiple clock
cycles in order to increase the success rate of a DPA in the presence of random
process interrupts.

Especially for practical attacks on cryptographic devices, DSP pre-processing
is often mandatory, for instance because of uncorrelated noise due to non-
cryptographic parts of an Integrated Circuit (IC). In [2], digital filtering helped
to isolate the frequency components containing the side-channel leakage of a
cryptographic co-processor. Similarly, the attacks on the bitstream encryption
mechanism of Xilinx Field Programmable Gate Arrays (FPGAs) required the
removal of an interfering signal [15].

For SCA utilising the electro-magnetic (EM) emanation of a cryptographic
device, digital filters have been applied to isolate the frequencies containing
the side-channel leakage [1]. In the context of cryptographic Radio Frequency
Identification (RFID) devices, DSP pre-processing steps have been shown to
be necessary [18]. Accordingly, the real-world attacks on the Mifare DESFire
MF3ICD40 RFID smartcard described in [11,17] involve several filter operations.

Yet, there is almost no systematic research how DSP operations such as fil-
tering affect the outcome of SCA. In [3], the authors propose an approach to
automatically determine appropriate bandpass filters, using CPA as a block al-
gorithm that is repeatedly executed for different choices for the filter coefficients.
In general, however, filtering is seen as a completely separate pre-processing step,
and the parameters are usually chosen manually.

1.2 Contribution of This Paper

In this paper, we intend to improve on the current approach for devising suitable
DSP operations for SCA. More precisely, we examine the effect of linear trans-
forms (which cover amongst others linear filters) on the result of a CPA. The
remainder of this paper is organised as follows: in Sect. 2, we briefly review CPA
and linear filtering. Then, we introduce a matrix notation that provides a closed
form for the correlation coefficient after a linear transform in Sect. 2.1. On this
basis, we propose the use of numerical optimisation to determine “good” filter
coefficients in Sect. 3. In Sect. 4 and Sect. 5, we compare our approach to nor-
mal CPA and to a CPA in the frequency domain, using simulated and real-world
measurements (provided in the second DPA contest [7]), respectively. Finally, we
conclude in Sect. 6.

2 CPA and Linear Transforms

In the following, we assume the usual setting of SCA: the adversary sends freely
chosen input data to a Device Under Test (DUT) (that performs a cryptographic
operation on this data) and obtains the corresponding output. The computation
done by the DUT involves some secret information (in the following referred to
as a key) kdut ∈ K (with K the set of all possible keys) that the adversary aims
to obtain by means of SCA.
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Notation. The process of performing a CPA can be divided into two steps:
in the measurement phase, the adversary has physical access to the DUT and
records some side-channel signal (e.g., the power consumption or the electro-
magnetical emanation during the cryptographic computation) that is related to
the processed data. This step is repeated N times with varying input data Mi,
yielding N time-discrete waveforms xi (t) with T points each. In the evaluation
phase, the key is recovered by fixing a (small) subset Kcand ⊆ K and considering
all key candidates k ∈ Kcand: for each k ∈ Kcand and for each i ∈ {0, . . . , N − 1},
a hypothesis Vk, i on the value of some intermediate is computed. Using a power
model f , this value is then mapped to hk, i = f (Vk, i) to describe the physi-
cal process that causes the side-channel leakage. In practice, for DUTs such as
FPGAs or Microcontrollers (μCs), the power model is often either the Hamming
Weight (HW) or Hamming Distance (HD) model [13].

hk, i and xi (t) are treated as observations of discrete random variables. In
order to detect the dependency between hk, i and xi (t), the correlation coeffi-
cient ρk (t) (for each point in time t ∈ {0, . . . , T − 1} and each key candidate
k ∈ Kcand) is given as ρk (t) = cov(x(t), hk)/

√
var(x(t))var(hk) with var (·) indicat-

ing the sample variance and cov (·, ·) the sample covariance according to the
standard definitions [24]. The key candidate k̂ with the maximum correlation
k̂ = arg maxk, t ρk (t) is assumed to be the secret key kdut used by the DUT.

Linear Filters. As mentioned in Sect. 1.1, a CPA in the time domain is often
preceded by a linear FIR filter: for example, a bandpass or bandstop filter may be
used to isolate or remove certain frequencies present in a side-channel signal [2].
Integrating over multiple clock cycles can be interpreted as a comb filter [6].

An S −1-th order FIR filter is defined by S coefficients ai ∈ R, i = 0 . . . S −1.
The response y (t) of the filter to the input signal x (t) is computed as a (sliding)
weighted sum of the points of the input signal, i.e., y (t) =

∑S−1
i=0 aix (t − i).

In the following Sect. 2.1, we show how to compute the correlation coefficient
between a prediction hk and an arbitrary weighted sum like an FIR filter, given
the “raw” correlation for each point in time and the covariance matrix of the
input signal. To this end, we apply a matrix notation according to [10].

2.1 Matrix Notation

To improve the readability, we drop the index k for the key candidate in this
section. All involved quantities are represented as vectors or matrices. A trace
xi (t) is hence denoted as T × 1 vector xi. Σxx is the T × T sample covariance
matrix over all traces according to the standard definition.

For the purposes of this paper, the prediction is a scalar hi, i.e., a 1 × 1
vector. Note that this restriction is not mandatory: the prediction could also
be extended to a P × 1 vector hi, for example to handle multiple bits of one
prediction separately. Again, Σhh is the P × P covariance matrix. For the scalar
case P = 1, this reduces to the usual variance.
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Finally, Σxh is the T × P covariance matrix between x and h. For P = 1,
this corresponds to the covariance term in the denominator of the traditional
formula for the correlation coefficient. Then, given a T × 1 weight vector a and
a P × 1 weight vector b, a closed form for the correlation coefficient between the
dot products a · xi and b · hi is given by Equation 1 [10].

ρxh (a, b) = aT · Σxh · b
√

aT · Σxx · a
√

bT · Σhh · b
(1)

This representation is fully equivalent to performing the dot products first (as a
pre-processing step) and then computing the correlation coefficient on the pre-
processed data. In particular, a can be seen as the coefficients of an FIR filter
that is applied to each trace separately. Similarly, b corresponds to an arbitrary
weighted sum of e.g. several bits of a predicted intermediate. As stated above, for
the purposes of this work, we assume a scalar prediction hi and hence set P = 1
and b = 1 for the remainder of this paper. As a side note, in order to obtain the
unfiltered correlation coefficient at time index t = 0, 1, . . ., only the t’th entry
of a has to be set to a non-zero value, i.e., a = (1 0 0 . . . 0) , (0 1 0 . . . , 0) , and
so on.

Note that Equation 1 can be naturally extended to incorporate a transform
matrix rather than a vector. In this case, a becomes a T ×S matrix A formed by
S different column vectors as, s ∈ 0, . . . S − 1. The S × 1 correlation coefficient
vector ρxh (A, b) is then given by evaluating Equation 1 for all as and concate-
nating the results. This form covers (amongst other linear transforms) any FIR
filter: A consists of the filter coefficient vector that is shifted by s positions for
row s, that is, A is a Toeplitz matrix [21].

Computational Complexity. The form of Equation 1 is useful when the
correlation coefficient is to be computed for fixed xi and hi but for (many)
different a: first computing a · xi for each trace and then evaluating the tradi-
tional formula for the correlation coefficient has a complexity of O (N T ). For L
different choices al, l = 0 . . . L − 1, the overall effort is thus O (L N T ). In con-
trast, to evaluate Equation 1, the computation of the covariance matrices needs
O (

N
(
T 2 + T

))
= O (

N T 2)
operations. The post-processing to obtain the de-

sired correlation coefficients for all al is then O (
L T 2)

(which is independent of
N). Hence, the total complexity is O (

N T 2 + L T 2)
.

Complexity Reduction in Special Cases. The main drawback of Equation 1
is that it requires the covariance matrix Σxx. For large T , the estimation of this
matrix is problematic due to issues with the computational complexity. Thus,
the application of the closed form of the correlation may become infeasible.
Incidentally, the statistical efficiency is not an issue in this case — Equation 1
does not involve the inverse of Σxx and is fully valid for small sample size N .

Still, for a filter of order S − 1, a only has S consecutive non-zero coefficients.
Hence, in this case, it is sufficient to estimate Σxx as a band matrix with a band-
width of S. The computational complexity is then reduced to O (S T ), i.e., linear
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with respect to the length of the traces. Finally, for the optimisation approach
proposed in the following Sect. 3, Σxx can be factored out when determining a.
Hence, if estimating Σxx becomes prohibiting for large T , one may still utilise
the traditional approach and compute the dot products a · xi before the CPA
once the optimal a has been found.

3 Optimal Linear Transforms for CPA

Given the closed-form expression for the transformed correlation coefficient of
Equation 1, we propose a method to find “optimal” filter coefficients a in the
sense that the filter maximises the distinguishability of the correct key candidate.

To achieve this goal, we regard Equation 1 as a multivariate function in a
and employ standard numerical optimisation algorithms. As we aim to maximise
the distinguishability rather than the correlation itself, a suitable optimisation
criterion has to be defined. We assume a (semi-)profiled scenario in which an
adversary possesses an instance of the DUT for which he knows the secret key.
Note that the adversary is not necessarily able to change the key — only the
knowledge of the correct key is required for the optimisation of the filter coef-
ficients. In contrast to template attacks, which have been shown to be highly
sensitive to process variations [19], we expect the filter coefficients to be less
sensitive in this regard. This conjecture is based on the fact that a filter modifies
the frequency spectrum (which should be less device-dependent than e.g. the
signal amplitude), while the actual key recovery is still carried out by a (more
robust) differential technique like CPA.

In our experiments, directly maximising Equation 1 gave rise to overfitting
of the coefficients a. As a result, the correlation is maximised for one specific
problem instance (i.e., fixed input data, key, and traces), however, if any pa-
rameter changes, the determined coefficients no longer lead to the desired result.
Hence, we devised the criterion given in Equation 2. The goal is to maximise
the ratio between the absolute value of the correlation coefficient for the correct
key kdut and the average over the absolute value of the correlation coefficients
for incorrect key candidates kwrong ∈ Koptim, Koptim = Kcand \ {

kdut}.

fobjective (a) =
∣
∣ρxh

kdut (a)
∣
∣

1/|Koptim|
(∑

k∈Koptim
|ρxhk

(a)|
) (2)

Note that in Equation 2, every ρxh both in the numerator and denominator con-
tains a positive factor of 1/

√
aT ·Σxx·a (independent of hk) which can be cancelled.

Equation 2 thus takes the form of Equation 3 (whereas the factor 1/|Koptim| was
left out).

fobjective (a) =

∣
∣
∣1/

√
Σh

kdut h
kdut · aT ·Σxh

kdut

∣
∣
∣

∑
k∈Koptim

∣
∣1/

√
Σhkhk

· aT · Σxhk

∣
∣ (3)

This eliminates the computationally most expensive part of Equation 1, namely
the vector-matrix product with complexity O (

T 2)
. Moreover – at least in the



224 D. Oswald and C. Paar

profiling step – the covariance matrix Σxx is not needed at all. Hence, as men-
tioned in Sect. 2.1, the optimisation of the weight coefficients can be carried out
even with long traces for which computational issues make the estimation of the
sample covariance matrix difficult or impossible. To numerically find an opti-
mum of fobjective, we employ the function fminunc provided by the MATLAB
optimization toolbox [23]. This function minimises a given objective function.
In our case, we thus search for a minimum of −fobjective (which is equivalent to
a maximum of fobjective).

3.1 Relation to Other Techniques

Principal Component Analysis. The method of Principal Component Anal-
ysis (PCA) [22] transforms signals to a new (lower-dimensional) representation.
Recently, Batina et al. proposed to use PCA as a pre-processing step for a
CPA [4]. Their idea is based on the observation that a leakage signal and unre-
lated noise are often mapped to different principal components. PCA is a linear
transform, i.e., a trace xi is projected to the new representation using the vector-
matrix product y = UT · xi with U the matrix of the (retained) eigenvectors
of the covariance matrix Σxx. Thus, as mentioned in Sect. 2.1, one point of the
projected trace y is given as scalar product between xi and one row of UT . The
rows of UT can therefore be regarded as different choices for the weight vector.

Canonical Correlation Analysis. In contrast to PCA which picks principal
components with maximum variance, Canonical Correlation Analysis (CCA) [10]
finds a weight vector that maximises the correlation coefficient. Performing an
eigenvector decomposition of the covariance matrix, CCA finds a vector a that
maximises Equation 1. However, as mentioned in Sect. 3, in our experiments this
lead to overfitting and resulted in non-applicable weight vectors.

SCA in the Frequency Domain. Transforming traces to the frequency do-
main and discarding the phase component has been shown to be beneficial for
SCA [8,18]. This pre-processing step, also known as Differential Frequency Anal-
ysis (DFA), is both applicable to overcome misalignment in the traces and to
spectrally isolate the leakage component. Note that the phase component is re-
moved by taking the absolute value of the transformed traces, i.e., |DFT {xi}|.
Due to the absolute value operator, the transform is no longer linear, and hence
cannot be described in terms of Equation 1 with a suitable a. In Sect. 4 and
Sect. 5, we provide a comparision of our proposed technique to DFA.

It should be taken into account that computing the Discrete Fourier Trans-
form (DFT) over the complete trace is only suitable in special cases. In practice,
a trace is usually split into windows of a given length which are processed sepa-
rately [17]. As of today, determining the optimal window length is a somewhat
heuristic process that either involves (educated) guessing or optimisation by
testing many choices for the parameter.
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Note that our proposed method can be combined with the frequency domain
transformation. The weight vector is then applied to the transformed traces
|DFT {xi}| and optimised according to Sect. 3. In cases where the leakage is
distributed over multiple frequency bins, this approach can combine and thus
presumably better utilise the overall side-channel information. Therefore, we
also included this approach in our simulation and practical results in Sect. 4 and
Sect. 5.

4 Simulation Results

In order to evaluate the effect of the optimised weight coefficients, we generated
simulated traces for a 128-bit implementation of the Advanced Encryption Stan-
dard (AES) in MATLAB. The main purpose of this section is to demonstrate
the basic effectiveness of the proposed approach. We do not aim to comprehen-
sively examine every conceivable scenario, hence, the choice of the simulation
parameters may appear somewhat arbitrary.

In our simulation, the clock frequency was set to 33.3 MHz, with the trace be-
ing sampled at 1 GHz. A clock cycle thus contains 30 samples. The i’th simulated
trace for the clock cycle c is then generated as the sum of a “clock” signal multi-
plied by a leakage sc

i and normally distributed noise as xc
i = (1 + σsignal · sc

i ) t+
N (0, σnoise)

We used σ2
signal = σ2

noise = 1/1000. t was set to a rectangular pulse, that is,
t = (1, 1, . . . , 1, 0, 0, . . . , 0), with the first seven entries set to 1 (corresponding
to 1/4 of the full cycle) and the remaining 23 entries set to 0. To form the final
simulated trace xi, we concatenated four cycles xc

i . The leakage in the first cycle
s0

i was generated as the HW of the 128-bit AES state after the initial key addition
and SubBytes operation. In the remaining three cycles, s

1/2/3
i was calculated as

the HW of a uniformly distributed random 128-bit value.

Band-Limited Noise. To simulate the effect of a band-limited noise source,
we added an additional noise term N band to the simulated trace. For our ex-
periments, we selected a noise bandwidth of ±1 MHz around 24 MHz, i.e., the
spectrum of N band is “white” between 23 and 25 MHz and zero otherwise. For a
range of noise powers of N band, we then performed (1) a time domain CPA, (2)
a CPA on the frequency domain representation of the traces (cf. Sect. 3.1), (3) a
time domain, and (4) a frequency domain CPA using optimised filter coefficients
a as described in Sect. 3. For the profiling and the attack, we used different keys
and different input data.

Fig. 1 depicts the respective (maximum) correlation for the cases (1), (2), (3),
and (4) for a noise power (i.e., the average standard deviations σbandlimited) of 1.
The average signal power of a trace was σtrace = 0.56, i.e., the given σbandlimited

correspond to a “Trace-to-Noise Ratio” (TNR) of approximately 0.5. Because
the simulated traces already contain white noise, we avoid the term SNR here.

As evident in Fig. 1, the CPA using optimised filter coefficients (3) outper-
forms the normal CPA (1) and the frequency domain CPA (2) in the presence of
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Fig. 1. Maximum correlation for band-limited noise, σbandlimited = 1. Top left: time
domain (1), top right: time domain, optimised (3), bottom left: frequency domain (2),
bottom right: frequency domain, optimised (4). Correct key candidate: dashed, red.

band-limited noise. Table 1 summarises the results, giving the absolute value of
the correlation coefficient for the correct key after 50,000 traces (Table 1a) and
the ratio between the correlation for the correct candidate and the maximum
correlation for the wrong candidates (Table 1b). If this ratio is less than 1, the
correct key can no longer be distinguished from the wrong candidates, i.e., the
attack does not succeed.

Table 1. Comparision of evaluation methods (1) - (4) for simulated traces with band-
limited noise. Best values in bold font.

TNR (1) (2) (3) (4)
∞ 0.123 0.09 0.051 0.017
1.7 0.009 0.019 0.049 0.014
1 0.005 0.012 0.049 0.007

0.5 0.003 0.01 0.04 0.004
(a) Correlation using 50k traces

TNR (1) (2) (3) (4)
∞ 3.73 3.46 3 1.21
1.7 0.5 1 2.88 1.17
1 0.28 0.63 2.72 0.44

0.5 0.17 0.59 1.9 0.26
(b) Ratio between correct and max-
imum wrong candidate (50k traces)

With increasing σbandlimited (i.e., decreasing TNR), the correlation coefficient
for the correct key candidate is very close to or even below the correlations for
the wrong key candidates using method (1), (2), or (4) after 50,000 traces. In
contrast, the correlation for the correct key obtained with method (3) clearly
exceeds the correlation for the wrong candidates after less than 5,000 traces
in all cases. Computing the frequency response corresponding to the optimised
coefficients, it turns out that the range from 23 to 25 MHz is attenuated, while
the filter’s transfer function is rather flat in the region of the clock frequency.
The corresponding plot of the frequency response is given in Fig. 2a.



Improving Side-Channel Analysis with Optimal Linear Transforms 227

(a) Noise (σbandlimited = 1) (b) Noise + randomised timing (4 cycles)

Fig. 2. Magnitude frequency response of the optimised filter coefficients for the simu-
lated traces

Interestingly, if no additional noise is present, method (3) provides worse
distinguishability of the correct key than methods (1) and (2). In this case, the
optimisation algorithm appears to overfit the weight coefficients – the coefficients
then yield optimal distinguishability based on the data used in the profiling
phase, but do not produce the desired effect in general. Thus, in the attack
phase with a different set of traces, the distinguishabilty is reduced and not
– as intended — increased. This problem could presumably be mitigated by
techniques used in global optimisation, e.g., running the optimisation algorithm
several times using different initial values and different subsets of the profiling
data. For the purposes of this paper, we did not look further into this issue and
leave it for future work.

Timing Randomisation. A randomisation of the algorithmic timing was re-
alised by shuffling the four clock cycles for each trace, that is, by randomly
selecting a uniformly distributed position for the clock cycle that corresponds
to the actual AES state. For this case, we applied the same evaluation methods
as above. We also combined the timing randomisation with the band-limited
noise source, again considering the same range of noise powers as for the non-
randomised traces.

The result for σbandlimited = 1, i.e., a TNR of approximately 0.5, is exemplarily
depicted in Fig. 3. Table 2 subsumes the results like in Table 1, giving the
maximum correlation and the ratio between the correlation for the correct and
the highest wrong candidate for different TNRs. While the normal CPA and
the frequency domain CPA fail to clearly distinguish the correct key candidate
from the wrong ones after 50,000 traces, the optimisation approach determines
filter coefficients that allow to extract the correct candidate after less than 5,000
traces. The according frequency response (Fig. 2b) again exhibits a band-stop
characteristic eliminating the band-limited noise. In the time domain, the filter
coefficients additionally resemble a comb filter, i.e., realise the averaging over
multiple clock cycles [6].



228 D. Oswald and C. Paar

Fig. 3. Maximum correlation for jitter (4 cycles) and band-limited noise, σbandlimited =
1. Top left: time domain (1), top right: time domain, optimised (3), bottom left: fre-
quency domain (2), bottom right: frequency domain, optimised (4). Correct key can-
didate: dashed, red.

Table 2. Comparision of evaluation methods (1) - (4) for simulated traces with band-
limited noise and timing randomisation (4 cycles). Best values in bold font.

TNR (1) (2) (3) (4)
∞ 0.038 0.089 0.04 0.02
1.7 0.005 0.018 0.04 0.014
1 0.004 0.011 0.038 0.007

0.5 0.003 0.01 0.029 0.004
(a) Correlation using 50k traces

TNR (1) (2) (3) (4)
∞ 1.9 3.42 2.5 1.33
1.7 0.28 1 2.22 1.08
0.5 0.22 0.58 2.11 0.54
1 0.17 0.59 1.81 0.25

(b) Ratio between correct and max-
imum wrong candidate (50k traces)

5 Practical Results

In order to evaluate the efficiency of our findings in a real-world setting, we
applied our methods to the traces provided in the second DPA contest [7].
The traces were recorded for a hardware implementation of the AES on the
Sasebo GII [16] at a sample rate of fs = 5 GHz. We focused on the last round of
the encryption process and accordingly only used the respective part from time
point 2300 to 2700 of the 3253-point original traces.

For the profiling purposes, we used 15,000 raw traces of the “public database”
(DPA_contest2_public_base_diff_vcc_a128_2009_12_23) belonging to the en-
cryption with the AES key kprofiling = 0x37d0d724d00a1248db0fead349f1c09b.
For the attack phase, i.e., to evaluate the effect of the optimised filter coefficients, we
used 15,000 traces for kattack = 0x0000000000000003243f6a8885a308d3.
These keys lead to different subkeys for the first S-Box in the final round (0xdc
for kprofiling , 0x53 for kattack).
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Fig. 4. Correlation coefficients (DPA contest v2 AES) for the first byte after 15,000
traces, left: time domain, right: frequency domain. Correct key candidate: dashed, red.

As a first step, we performed a standard CPA targeting the (bytewise) Ham-
ming distance between the input of the last SubBytes operation and the en-
cryption result, following the reference attack of the DPA contest. As depicted
in Fig. 4, the highest correlation coefficient clearly occurs for the correct key
candidate after 15,000 traces, with a magnitude of 0.064 in the time domain and
0.055 in the frequency domain, respectively. However, significant “ghost peaks”
occur at the end of the trace (around point 300).

At this point, we want to emphasise that we primarily use the DPA contest
traces to demonstrate the general effectivity of our approach in a practical set-
ting. Hence, we did not employ the full range of evaluation metrics provided
by the contest. We applied the same evaluation methods as in Sect. 4, that is,
CPA (1), frequency domain CPA (2), CPA with optimised coefficients (3), and
frequency domain CPA with optimised coefficients (4).

Fig. 5. Maximum correlation coefficients (DPA contest v2 AES) for the first byte. Top
left: time domain (1), top right: time domain, optimised (3), bottom left: frequency
domain (2), bottom right: frequency domain, optimised (4). Correct key candidate:
dashed, red.
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(a) Time domain (b) Frequency response for (a)

Fig. 6. Optimised filter coefficients for the DPA contest v2 traces

As evident in Fig. 5, the optimised coefficients decrease the number of required
traces both for the time and the frequency domain CPA: for the normal CPA,
the correct key candidate yields the highest correlation, however, the ratio with
the second highest is rather small, i.e., 0.064/0.057 = 1.12 in the time domain and
0.055/0.052 = 1.06 in the frequency domain. In contrast, with the optimised filter
coefficients, these ratios are increased to 0.087/0.03 = 2.9 and 0.042/0.023 = 1.83,
respectively. Accordingly, the (approximate) minimum number of traces needed
to distinguish the correct and the wrong key candidate is reduced from 8,000 to
3,000 in the time domain and 11,000 to 8,000 in the frequency domain.

The optimised coefficients reduce the influence of the “ghost peaks” mentioned
above on the results of the CPA, i.e., improve the distinguishability of the correct
key candidate. As evident in Fig. 6a, the optimised coefficients obtained with
method (3) put the highest weight on the maximum of the leakage at around
time point 50, followed by decaying weight according to the shape of the cor-
relation depicted in Fig. 4. The according frequency response (Fig. 6b) shows
a lowpass characteristic in general. However, certain frequencies are selectively
attenuated, for example, narrow regions around 70 MHz, 160 MHz, 227 MHz,
327 MHz, 388 MHz, 422 MHz, and 480 Mhz.

We experimentally verified that these results obtained for the first byte equiv-
alently hold for the other bytes. Table 3 gives the ratio between the correlation
for the correct and the highest wrong candidate after 15,000 traces for a normal
CPA (1) and a CPA with optimised coefficients (3) in the time domain. For all

Table 3. Ratio between correct and maximum wrong candidate for normal (1) and
optimized CPA (3) in the time domain after 15,000 DPA contest v2 traces

Byte 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
CPA 1.12 1.84 1.47 1.67 1.02 1.77 1.5 1.45 1.68 2.17 1.24 1.83 1.63 1.68 1.53 1.81
opt.
CPA 2.9 2.74 2.48 3.83 1.71 3.88 3.12 3.15 3.44 3.79 2.16 3.31 2.49 3.24 2.54 4.44
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bytes, the optimised coefficients lead to a higher distinguishability and allow for
extracting the key with less traces.

6 Summary

We presented a closed form to perform CPA on traces under a linear transform.
In contrast to traditional approaches, our method does not require to re-compute
the CPA for each particular choice of the transform parameters. Thus, in cases
where many different parameters are to be tested, our method allows for a sub-
stantially faster evaluation. Consequently, we derived an optimisation criterion
allowing to find an “optimal” transform in the sense that it maximises the distin-
guishability of the correct key candidate. Using both simulated and real-world
traces, we demonstrated that this technique performs better than traditional
methods and offers a systematic way to derive linear filters for SCA. Especially
when designing countermeasures against SCA, our method allows to give a more
comprehensive (and objective) assessment regarding the effectiveness of protec-
tion mechanisms.

Future Work. Our work offers several starting points for further research: first
of all, the employed numerical optimisation algorithm was used “out-of-the-box”.
We believe that an algorithm adapted to the specific requirements of our method
may lead to better results and avoid the problem of overfitting. Besides, the pro-
posed optimisation criterion could be replaced, utilising a different metric for the
distinguishability of the correct key candidates. It would also be interesting to
investigate whether an analytical solution for the present or a different suitable
optimisation criterion can be computed efficiently. In this regard, the applica-
bility of statistical methods like CCA in a side-channel context would deserve
some attention.

We limited our experiments to the weight coefficients applied to the traces.
However, equivalently, the prediction could also be subject to a linear transform.
This essentially corresponds to finding a suitable model for the contribution of
single bits to the overall leakage, i.e., relates to SCA with stochastic models [20].
Finally, we focused on CPA only. However, distinguishers like Mutual Informa-
tion Analysis (MIA) [9] have been shown to be superior in certain cases. Thus,
finding a similar technique to compute the mutual information of transformed
traces without re-executing the complete MIA is worth further research.

Acknowledgements. The work described in this paper has been supported
in part by the European Commission through the ICT program under contract
ICT-2007-216676 ECRYPT II and by the German Federal Ministry of Education
and Research BMBF (grant 01IS10026A, Project EXSET).



232 D. Oswald and C. Paar

References
1. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM Side-Channel(s).

In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523,
pp. 29–45. Springer, Heidelberg (2003)

2. Barenghi, A., Pelosi, G., Teglia, Y.: Improving First Order Differential Power
Attacks through Digital Signal Processing. In: Proceedings of the 3rd In-
ternational Conference on Security of Information and Networks, SIN 2010,
pp. 124–133. ACM, New York (2010)

3. Barenghi, A., Pelosi, G., Teglia, Y.: Information Leakage Discovery Techniques to
Enhance Secure Chip Design. In: Ardagna, C.A., Zhou, J. (eds.) WISTP 2011.
LNCS, vol. 6633, pp. 128–143. Springer, Heidelberg (2011)

4. Batina, L., Hogenboom, J., van Woudenberg, J.G.J.: Getting More from PCA:
First Results of Using Principal Component Analysis for Extensive Power Analysis.
In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 383–397. Springer,
Heidelberg (2012)

5. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage
Model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156,
pp. 16–29. Springer, Heidelberg (2004)

6. Clavier, C., Coron, J.-S., Dabbous, N.: Differential Power Analysis in the Presence
of Hardware Countermeasures. In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS,
vol. 1965, pp. 252–263. Springer, Heidelberg (2000)

7. COMELEC department, Télécom ParisTech. DPA Contest v2. Website,
http://www.dpacontest.org/v2/index.php

8. Gebotys, C.H., Ho, S., Tiu, C.C.: EM Analysis of Rijndael and ECC on a Wireless
Java-Based PDA. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659,
pp. 250–264. Springer, Heidelberg (2005)

9. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual Information Analysis – A
Generic Side-Channel Distinguisher. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008.
LNCS, vol. 5154, pp. 426–442. Springer, Heidelberg (2008)

10. Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical Correlation Analysis: An
Overview with Application to Learning Methods (May 2003)

11. Kasper, T., Oswald, D., Paar, C.: Side-Channel Analysis of Cryptographic RFIDs
with Analog Demodulation. In: Juels, A., Paar, C. (eds.) RFIDSec 2011. LNCS,
vol. 7055, pp. 61–77. Springer, Heidelberg (2012)

12. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

13. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Springer, Secaucus (2007)

14. Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Investigations of Power Analysis Attacks
on Smartcards. In: USENIX Workshop on Smartcard Technology, pp. 151–162 (1999)

15. Moradi, A., Barenghi, A., Kasper, T., Paar, C.: On the Vulnerability of FPGA
Bitstream Encryption against Power Analysis Attacks: Extracting keys from Xilinx
Virtex-II FPGAs. In: Chen, Y., Danezis, G., Shmatikov, V. (eds.) ACM Conference
on Computer and Communications Security (CCS 2011), pp. 111–124 (2011)

16. National Institute of Advanced Industrial Science and Technology (AIST). Side-
channel Attack Standard Evaluation Board SASEBO-GII Specification, 1.01 edi-
tion (2009)

17. Oswald, D., Paar, C.: Breaking Mifare DESFire MF3ICD40: Power Analysis and
Templates in the Real World. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS,
vol. 6917, pp. 207–222. Springer, Heidelberg (2011)

http://www.dpacontest.org/v2/index.php


Improving Side-Channel Analysis with Optimal Linear Transforms 233

18. Plos, T., Hutter, M., Feldhofer, M.: Evaluation of Side-Channel Preprocessing
Techniques on Cryptographic-Enabled HF and UHF RFID-Tag Prototypes. In:
Dominikus, S. (ed.) Workshop on RFID Security — RFIDSEC 2008, pp. 114–127
(2008)

19. Renauld, M., Standaert, F.-X., Veyrat-Charvillon, N., Kamel, D., Flandre, D.: A For-
mal Study of Power Variability Issues and Side-Channel Attacks for Nanoscale De-
vices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 109–128.
Springer, Heidelberg (2011)

20. Schindler, W., Lemke, K., Paar, C.: A Stochastic Model for Differential Side Chan-
nel Cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659,
pp. 30–46. Springer, Heidelberg (2005)

21. Smith, J.O.: General LTI Filter Matrix. In: Introduction to Digital Filters with
Audio Applications. Center for Computer Research in Music and Acoustics (2007),
http://www.dsprelated.com/dspbooks/filters/

22. Standaert, F.-X., Archambeau, C.: Using Subspace-Based Template Attacks to
Compare and Combine Power and Electromagnetic Information Leakages. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 411–425. Springer,
Heidelberg (2008)

23. The MathWorks, Inc. MATLAB R2011b Documentation, Optimization Toolbox,
fminunc. Website (Online; accessed February 28, 2012)

24. Weisstein, E.W.: Variance. Mathworld - A Wolfram Web Resource (December
2010), http://mathworld.wolfram.com/Variance.html

http://www.dsprelated.com/dspbooks/filters/
http://mathworld.wolfram.com/Variance.html


SCA with Magnitude Squared Coherence

Sebastien Tiran and Philippe Maurine

University of Montpellier / LIRMM
161 Rue Ada

34392 Montpellier France

Abstract. Magnitude Squared Coherence (MSC) is a signal processing
tool that indicates how well two time domain signals match one with the
other by tracking linear dependencies in their spectral decomposition.
Spectral Coherence ANalysis (SCAN) was the first way to use it as a
Side-Channel Attack (SCA). This paper introduces two ways of using
the Magnitude Squared Coherence in side-channel analyses. The first
way is to use it as a distinguisher while the second consists in using it to
transform the side-channel traces in a worthwhile manner. Additionally,
an algorithm for fast computation of the SCAN is provided.

Keywords: Secure Circuits, Side-Channel Attacks, Frequency Domain,
Distinguisher.

1 Introduction

Following [7], many side-channel attacks have been proposed in the literature.
Most of them directly work with time domain traces, and aim at analysing
each time sample independently to retrieve the secret key. However, the power
consumption and the electromagnetic (EM) emanations of a cryptographic algo-
rithm, are such that the leakage is spread over many time samples. Consequently,
these analyses cannot exploit the leakage in its whole.

By contrast, much less attention has been paid to side-channel analyses per-
formed in the frequency domain that could bring a solution to this problem. To
the best knowledge of the authors, Gebotys, Ho and Tiu [5] were the first to
propose a differential attack after the application of a Fast Fourier Transform
(FFT) to side-channel traces. This work was then extended towards Correla-
tion Power Analysis like attacks (CPA) in [2]. Various similar approaches were
described in [9]. These works underlined the advantages of frequency domain
analyses against misaligned traces but they didn’t focus on the fact that they
can also capture more efficiently a leakage that is spread over time.

The Magnitude Squared Coherence being a tool that works in the frequency
domain to estimate the similarity between two signals, it can be used in the
context of side-channel analysis to retrieve the secret key [4,13]. In some cases,
it can provide better results than the time domain distinguishers. The advantages
of MSC are that it can exploit the leakage scattered in time and fully use it by
exploiting several harmonics.

S. Mangard (Ed.): CARDIS 2012, LNCS 7771, pp. 234–247, 2013.
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This paper aims at showing the efficiency of the MSC as a tool for side-channel
analysis. First, it shows that the MSC is a really interesting distinguisher and
provides some explanations related to its efficiency. Second, a new way of using
the MSC is introduced. It consists in transforming the traces to get a wider
source of information before exploitation by statistical means.

The rest of this paper is organized as follow. Section 2 reminds some basics
about Magnitude Squared Coherence. Section 3 briefly recalls its first use in
the context of side-channel analysis. It also provides additional information such
as an efficient coding of the SCAN. Section 4 presents a method to transform
the side-channel traces and introduces various solutions to exploit the resulting
source of information. In section 5, experimental results of these attacks are
shown. Finally, a conclusion is drawn.

2 Magnitude Squared Coherence

The Magnitude Squared Coherence is a signal processing tool that returns real
values between 0 and 1 to indicate how well two time domain signals x(t) and y(t)
match one with the other. It provides scores, MSC(f), allowing to estimate their
similarity at various frequencies. The result of the Magnitude Squared Coherence
at a given frequency, f, is obtained by computing :

MSC(f) =
|Pxy(f)|2

Pxx(f).Pyy(f)
. (1)

where Pxy is the cross-power spectral density of x(t) and y(t) and Pxx, Pyy are
the auto-power spectral densities of x(t) and y(t), respectively. To calculate the
cross-power spectral density, the Welch’s average method is typically used [10].
This consists in : dividing the signals in several overlapping segments of the
same length, computing the cross-power spectral density between each pair of
segments and finally, computing the average.

Px,y(f) =

n∑
i=1

FFTxi(f).FFTyi(f) (2)

with {x1(t), x2(t), ..., xn(t)} and {y1(t), y2(t), ..., yn(t)} the segments of x(t) and
y(t), respectively.

3 Spectral Coherence ANalysis

Typically in side-channel analysis, an adversary has to collect a set of traces,
{T1, T2, ..., Tn}, corresponding to the encryption / decryption of n messages,
{m1,m2, ...,mn}. He then sorts these traces according to a given selection func-
tion, fk, that predicts some intermediate values computed during the algorithm
execution and that depend on a part of the key.

fk : {0, 1}q × {0, 1}p → {0, 1}w
(mi, k)→ fk(mi, k) = ci

(3)
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If the Hamming Weight (HW) model is chosen, then fk predicts a word ci of w
bits processed by the cryptographic algorithm according to the value of a clear
/ ciphered message mi and according to a key guess k ∈ K. If the Hamming
Distance (HD) model is preferred, then fk rather provides a word ci indicating
which of the w bits have switched during a given clock cycle.

To apply a SCAN as defined in [4,13], one have to proceed as for a DPA.
For each guess on the key and for each of the w bits, the adversary must sort
the traces in two subsets depending on the values provided by fk and compute
the means of the two resulting subsets. But instead of computing the difference
of the means (DoM), one may first compute the Magnitude Squared Coherence
between the two mean traces. Finally, one have to compute the mean, of all
obtained MSC(f) values in order to fix a score for the considered key guess.

For wrong key guesses, as the traces are not well sorted, the two mean traces
are expected to be similar while they should be significantly different for the
correct key. This is to say that the correct key is identified by searching the guess
with the minimum score. For detailed information about efficient implementation
of the SCAN, see Appendix A.

As one may conclude from this brief description, the SCAN is obtained from
the DPA simply by replacing the DoM by the MSC distinguisher. This is an
intuitive and straightforward way of using the MSC within the context of SCA.
However this approach could be far from being optimal. Indeed, the MSC can
be used differently. For example, one may use it to transform the side-channel
traces containing the leakage as explained below.

4 Transformation of the Leakage

The basic idea of leakage transformation is to construct from the set of available
traces, a new set of data on which side-channel attacks are more efficient. The
MSC offers the possibility of applying this idea.

4.1 Preprocessing Step

Indeed, given a set of traces, one may compute the MSC(f) between each pair
of curves. By doing so, one gets several MSC(f) for each pair of curves. To
exploit fully the leakage, which is scattered on many frequencies, one may then
computes the mean of all the MSC(f) values to get a score, Coher(Ti, Tj), that
will represent, in the rest of the paper, the difference of leakage between two
traces, namely Ti and Tj.

Coher(Ti, Tj) =
1

nbf
.

fmax∑
f=fmin

MSCTi,Tj (f) (4)

where Ti and Tj are two time domain signals and nbf is the number of harmon-
ics falling in the bandwidth of interest, ie between fmin and fmax, the cut-off
frequencies of the used equipments .
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At the end of this leakage transformation step, one obtains for a set of n traces,
n.n−1

2 Coher(Ti, Tj) scalars, that is to say n−1
2 times as much informers, the

latter being related to the leakage difference of trace pairs. Such a multiplication
of data constitutes an interesting advantage while attacking systems in which
keys are regularly refreshed. The open questions are then:

– what is the relevant leakage model?
– how to efficiently extract the secret key from the statistical distribution of

the Coher(Ti, Tj) values?

4.2 Leakage Model

When working in time domain with now classical attacks (DPA, CPA ... ), an
adversary typically uses the HW and HD models. The basic idea on which the
HW model relies is that computations ending by a ’1’ (Vdd) usually consume
more energy than computations ending by a ’0’ (Gnd). Similarly, the HD model
is based on the idea that a state change burns much more energy than a calculus
ending by the same result than the preceding one.

Considering that the power consumption or EM emanations are additive quan-
tities, the leakage model we adopted is based on the following idea : the inco-
herence (coherence) of two traces is an increasing (decreasing) function of the
difference of their HW or HD. That is to say: the greater the difference of the
Hamming Weights is, the more incoherent (less coherent) the corresponding
traces are. This choice, which relies on the shape of the traces rather than on
the amplitude of samples, can be improved. However, it has lead to interesting
experimental results given in the next sections.

4.3 Specific Selection Function

With such a leakage model, the question is now : how to sort coherence values?
In other words, what are the relevant selection functions? Considering (3) and
following the same reasoning as for the previous leakage model, we defined the
following selection function :

Δfk : {0, 1}w × {0, 1}w → {0, 1}w
(ci, cj)→ Δfk(ci, cj) = fk(mi, k)⊕ fk(mj , k) = Δci,j

(5)

with Δci,j(l) the lth bit of Δci,j that represents the difference between the lth

bits of ci and cj . Δfk has thus been deduced from the difference of the selection
function fk (3), the latter providing the values of ci and cj .

4.4 Mean and Variance Analyses

Following (5), let us define {Ck|Δci,j(l) = 0} and {Ck|Δci,j(l) = 1} as the two sub-
sets of coherence values for which the lth bits of ci and cj are respectively equal
and different. Because {Ck|Δci,j(l) = 0} ( {Ck|Δci,j(l) = 1}) gathers coherence
values associated to pair of traces with a given bit having the same and differ-
ent HD or HW values, the expectation E(Ck|Δci,j(l) = 0) should be higher than
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E(Ck|Δci,j(l) = 1). By averaging these results for every bits from 1 to w, an ad-
versary may expect disclosing the secret key using the following distinguisher :

max
k∈K

{
w∑
l=1

(E(Ck|Δci,j(l) = 0)− E(Ck|Δci,j(l) = 1))

}
(6)

Similarly, the variances V (Ck|Δci,j(l) = 0) and V (Ck|Δci,j(l) = 1) should have
greater values for wrong guesses than for the secret key, kg. Thus, an adversary
may also identify kg with:

min
k∈K

{
w∑
l=1

V (Ck|Δci,j(l) = 0)

}
(7)

Let us denote by mean+MSC and var+MSC these two attacks afterwards.

4.5 Correlation Analysis

According to the adopted leakage model, the coherence of two traces is a decreas-
ing function of the difference ofΔci,j(l). Assuming additionally that this function

is linear, is equivalent to assume that the expectations of (Ck|
w∑
l=1

Δci,j(l) = q)

are decreasing with the increase value of q. This is to say that the more the
words ci and cj associated to the two traces are different, the less these traces
are similar. Thus, an adversary may analyse the correlation between Ck and
w∑
l=1

Δci,j and identify the secret key by searching the guess with the maximum

absolute score.
Let us denote by corr+MSC this attack afterwards.

4.6 Non-parametric Tests

In 4.4, we explained why the probability density functions associated to the
values {Ck|Δci,j(l) = 0} or {Ck|Δci,j(l) = 1} must have different values of ex-
pectation and variance for a correct guess of the secret key. Let us generalize
this reasoning and more precisely let us assume:

– that for kg, the secret key, the Cumulative Density Function (CDF) con-
structed with all values

{
Ckg |Δci,j(l) = 0

}
is unique and different from all

the others,
– that for wrong guesses, k, the CDFs constructed with all values
{Ck|Δci,j(l) = 0} are similar in shape.

With these assumptions, the secret key can then be identified, using the Kol-
mogorov - Smirnov test [14,15] of goodness of fit, with:

max
k1∈K

⎧⎨⎩
w∑
l=1

∑
k2 	=k1

δ (CDF [Ck1 |Δci,j(l) = 0], CDF [Ck2 |Δci,j(l) = 0])

⎫⎬⎭ (8)
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with:
δ(F1, F2) =

g1.g2
g1 + g2

.Supx |F1(x)− F2(x)| . (9)

the maximal distance between F1 and F2, two Cumulative Distribution Func-
tions.

Let us denote by KS+MSC this attack afterwards.

5 Experimental Results

In order to verify the efficiency of the SCAN, and of the leakage transformation
with its derived attacks, we have applied them on a set of 5000 traces collected
at the surface of an unprotected implementation of the DES. This FPGA im-
plementation operates at 50 MHz. We also compared the results obtained with
MSC based attacks to those of well known distinguishers. (It is to notice that
the following attacks are noted with a P for power, to keep their usual name,
however they are applied on electromagnetic curves.) Among them, we selected:

– The Bravais-Pearson correlation used in the time domain [3] and which is
perfectly adapted to a linear leakage,

– the Difference of Means and more precisely the multi-bit Differential Power
Analysis (DPA) that also works in the time domain [1] and sum the Differ-
ence of Means for each bit,

– the multi-bit DPA (DPAabs) which sums the absolute value of the Difference
of Means of each bit [11],

– the Correlation Power Frequency Analysis (CPFA) described in [2] and fur-
ther analysed [8], to provide a comparison with previous attempts to exploit
the frequency domain,

– and two different implementations of the Mutual Information Analysis [6]
based on kernel estimations. The first one (MIA) calculates the mutual infor-
mation between the traces and the sum of all the output bits

∑w
l=1 ci(l) (see

eq.3). The second one (MIA mb) calculates the mutual information between
the traces and the values of each output bits ci(l) and then computes the
average of all results.

Our evaluations have followed the framework proposed in [12]: we computed a
global Success Rate taken on the eight sub-keys of the last round of the DES. It
is to note that all EM traces were acquired with a Lecroy oscilloscope featuring
a 20 GS/s sampling rate and using a low noise 63db amplifier with a 1 GHz
bandwidth.

5.1 Efficiency: Number of Traces Required

Table 1 gives for each attack based on a HD model, the number of curves required
to reach a given value of Success Rate. In this table ’mb’ and ’word’ allow
identifying the attacks that work at the word level and the ones that work on
each bit separately before combining the results obtained for all bits. As can be
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seen, all attacks are able to disclose the secret key with this limited set of traces.
However, in this case, frequency domain analyses have given better results than
time domain analyses, especially those applied after the transformation of the
leakage.

It is to notice that the two MIA require less curves than CPA to reach a
Success Rate of 80% and 100%. This may suggest that the leakage has a linear
behavior but not only. It is also important to notice that all analyses based on
the MSC, including the SCAN, are the only ones to reach a Success Rate of 80%
after the processing of less than 1000 curves, while all time domain analyses have
reach a Success Rate of ∼ 10%, only (except DPA abs). Additionally, one can
note that all proposed analyses with the leakage transformation have allowed
disclosing the key with fewer traces than the SCAN (50% less in the best case).

We can therefore conclude from Table 1 that analyses in the frequency domain
may provide better results than time domain analyses and that transforming
the traces does not suppress information but seems to increase significantly the
number of informers.

Table 1. Number of processed traces vs Success Rate (HD model)

Success Rate 10% 20% 40% 60% 80% 100%

time domain

word
CPA 775 1075 1525 2150 4475 5000
MIA 1650 1850 2450 2900 3300 4150

mb
DPA 850 1175 1750 2800 4250 4975

DPAabs 500 550 720 825 1075 1400
MIA mb 950 1150 1250 1600 1750 2100

frequency
domain

word
CPFA 1110 1205 1410 1630 2025 3150

corr+MSC 320 410 480 532 660 730

mb

SCAN 375 390 420 480 615 1200
mean+MSC 230 260 310 440 495 650
var+MSC 440 450 535 670 780 1135
KS+MSC 350 370 440 455 540 690

Table 2 gives the same results than Table 1 but this time in case of an ad-
versary adopting the HW model. Only the MSC based analyses the DPA abs
and one of the two MIA (MIA mb) are able to retrieve entirely the key with
this set of 5000 traces. From Tables 1 and 2 we may thus conclude that MSC
based analyses provide the best results. However that doesn’t explain why these
analyses outperform the time domain attacks. One first explanation could be
that they work in the frequency domain, but this is not sufficient! Indeed, one
of the MIA remains efficient and the DPA abs also.

5.2 Efficiency: CPU Times

It is necessary to notice that all our attacks were coded in C and were launched
on a standard computer with a CPU running at 3 GHz. The CPU time costs of
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Table 2. Number of processed traces vs Success Rate (HW model)

Success Rate 10% 20% 40% 60% 80% 100%

time domain

word
CPA fail fail fail fail fail fail
MIA fail fail fail fail fail fail

mb
DPA fail fail fail fail fail fail

DPAabs 2800 3175 3925 4400 4800 4950
MIA mb 3550 3700 3900 4350 4550 4900

frequency
domain

word
CPFA fail fail fail fail fail fail

corr+MSC 2375 2515 2705 3495 3990 4810

mb

SCAN 1750 1900 2300 2950 3625 4200
mean+MSC 2430 2510 2685 3460 3980 4855
var+MSC 4250 4400 fail fail fail fail
KS+MSC 2120 2580 3310 3710 4070 4495

Table 3. CPU times of the attacks with a step of 10 curves

Number of traces : 500 1000

CPA 13s 26s

DPA and DPAabs 15s 30s

MIA 4m 8m

MIA mb 13m 25m

CPFA 13s 27s

SCAN 15s 31s

MSC based analyses 1h5m 4h20m

the different attacks were measured. Table 3 gives the results obtained for two
sets of 500 and 1000 traces, respectively. The step refers to the number of traces
between which the computation of the distinguisher is done to retrieve the key.

As can be seen, the application of a well implemented SCAN requires roughly
the same CPU time than a CPA. However all MSC based analyses that work on
pairs of curves are time consuming. Indeed, the increase of the number of inform-
ers comes at the cost of an increase of time computation which seems quadratic
(for a set of n traces, the number of coherences to compute is proportional to
n.n−1

2 ). Consequently, such attacks are to be used on a limited set of traces; i.e.
on systems embedding a frequent refreshing of the keys.

5.3 Advantages of the Frequency Domain

One main advantage of working in the frequency domain is the ability to catch
the leakage spread over time, while time domain attacks that aim at analysing
each time sample independently don’t fully use it. Additionally, analysing sev-
eral samples at a time, as frequency domain analyses do, may provide a certain
level of robustness against the eventual existence of a time sample with an outlier
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Fig. 1. Results of a DPA targeting the
four output bits of the sbox n◦4 after the
processing of 1000 curves

Fig. 2. Results of a SCAN targeting the
four output bits of the sbox n◦4 after the
processing of 1000 curves

behavior with respect to the leakage model. We verified this potential advantage.
Figure 1 shows the results, obtained for the fourth sbox, of the multi-bit DPA
based on a HD model after the processing of 1000 curves. As can be seen, there
is a peak corresponding to a wrong guess of the key that prevents from finding
the good key with 1000 curves while the SCAN, and the MSC based analyses,
performed with 512 consecutive samples, are not disturbed by its occurrence as
shown by Figure 2. This figure gives the coherence value obtained by each key
hypothesis after the processing of the same 1000 traces with the SCAN. Thus,
the ’filtering’ of few peaks with an outlier behavior constitutes a first advantage
of MSC based analyses.

The reading of Tables 1 and 2 highlights that the MIA and the analyses based
on theMagnitude SquaredCoherence give better results, on this set of traces, than
the CPA when the HW and the HD models are adopted. Thus one may wonder
about the correctness of the assumption according to which the leakage (an EM
leakage in our case) depends linearly either on the Hamming Distance or the Ham-
ming Weight, even if we were expecting to observe a strong linear dependency of
the leakage with the HD because of the iterative implementation of the DES.

We thus tried to find the degree of the polynomial representing at best the
evolution of the leakage according to the Hamming Distance and to the Ham-
ming Weight. Figures 3.a and 3.b are scatter plots vs the HD and the HW of
a single sample of the traces sorted according to the output value of the fourth
sbox:

∑w
l=1 ci. Figures 3.c and 3.d show the polynomial representing at best

the leakage. These polynomials were obtained with the least squared method. It
should be noticed that similar figures were obtained for neighbouring samples.

The best modelling of leakage found when the traces are sorted according
to the HD model, considered at the word level, is obviously linear as it was
expected. This explains why analyses based on the HD models at word level,
such as the CPA and the MIA, work well.
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Fig. 3. Figures a and b show the values of a single sample of EM traces sorted according
to guesses on the output of the fourth sbox. Figures c an d show the polynomials with
the lowest degree representing at best the leakage.

Fig. 4. Results of mono bit DPA targeting each of the four output bits of the fourth
sbox
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However, when traces are sorted according to a HW model, the leakage is
clearly not linear, and a polynomial of degree three is at least needed to describe
it correctly. It is to notice that the ordinates of Figures 3.c and 3.d are not
the same, and that compared to 3.c, 3.d seems quite constant, suggesting that
there is no leakage when working with

∑w
l=1 ci. These observations explain why

analyses based on the HW model at word level, such as the CPA and the MIA,
do not succeed in disclosing the key.

On the contrary, when we observed each output bit separately (represented
figure 4), results showed that the four output bits of the fourth sbox have different
behaviors. Two of them don’t seem to leak data dependent information, while
the two others leak opposite information. These two last bits, when working
at the sum level, cancel each other and this explains why the attacks, such as
the multi-bits DPA, can’t retrieve the key. However, attacks that work at the bit
level, and give a positive value to the score of each bit, such as the DPA absolute
Sum, the SCAN the MIA mb, are able to find the key.

From all the above analyses, we therefore conclude that attacks based on the
MSC offer the advantages:

– to work at bit level and thus to offer a significant resistance to the eventual
non linearity of the leakage model at word level,

– to score the leakage with a positive real value ranging between 0 and 1 so that
the cancellation of the various bit contributions is avoided (DPA Absolute
Sum and MIA mb do exactly the same),

– to be able to filter some peaks with outlier behaviors by working on several
consecutive samples,

6 Conclusion

From all the above analyses and results, one may conclude that Magnitude
Squared Coherence is an efficient tool for SCA. Indeed, it can be directly used
as a distinguisher characterized by an interesting robustness to the occurrence
of outlier behaviors on few samples of the leakage traces. Additionally, working
with this distinguisher at bit level, confers a significant robustness against an
eventual non linearity of the leakage at word level. The Magnitude Squared
Coherence can also be used to transform a reduced set of traces into a wider set
of scalar data without loss of information and even with a significant increase of
the amount of information. The resulting set of data can then be advantageously
used to obtain the secret key by statistical means. One may now wonder how to
mount an higher order analysis with such a tool.
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A SCAN Implementation

A.1 Naive Implementation of SCAN

During the application of a side-channel attack on a set of curves, one often
wants to see the results progressively and not only after the processing of all the
available traces. This usually allows stopping an attack as soon as this one may
be considered as successful. For that, an adversary have to compute the attack
by steps, i.e. each time a given number of additional traces has been processed.

Algorithm 1 gives a first way of implementing the SCAN, based on a multi-bits
DPA approach. It consists in computing a mean trace for each key hypothesis and
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for each bit of the predicted output. At each step, instead of doing the difference
of means, the MSC is computed between the averaged traces associated to the
two possible values of each predicted output bit.

However the computation of the Magnitude Squared Coherence implies the cal-
culation of a significant number of Fast Fourier Transforms ( see equations (1-2)).
This number depends on the segmentation of the signals when the Welch method
is adopted. For an algorithm such as the AES, retrieving the entire key implies the
computation of the MSC for each 16 sbox, for each 256 possible key hypotheses
and for each 8 output bits. Thus one have to compute 32768 MSC at each step.

A.2 Fast Implementation of SCAN

To reduce this number, in case of a low step value, one may compute directly the
FFT of each trace. Due to the linearity of the Fourier Transform, he can then
compute the mean of the Fourier Transform of the traces instead of calculating
the mean trace. This result in a significant reduction of the CPU time needed
to process a set of traces with a low step value. Algorithm 2 represents the
pseudocode of this new approach.

Algorithm 1. SCAN pseudocode

1: Input : messages Ti

2: Output : guessed key kg∗
3: for i = 1 to nbcurves do // loop on the number of curves
4: for k = 0 to nbk do // loop on the number of key hypothesis
5: for l = 1 to w do // loop on the number of predicted output bits
6: if ci(l) = 1 then // value of a predicted output bit

7: T
ci(l)=1
k + = Ti;

8: cpt
ci(l)=1
k ++;

9: else
10: T

ci(l)=0
k + = Ti;

11: cpt
ci(l)=0
k ++;

12: end if
13: end for
14: end for
15: if i mod step == 0 then
16: for k = 0 to nbk do
17: for l = 1 to w do
18: M

ci(l)=1
k = T

ci(l)=1
k /cpt

ci(l)=1
k ;

19: M
ci(l)=0
k = T

ci(l)=0
k /cpt

ci(l)=0
k ;

20: end for
21: end for

22: kg∗ = min
k∈K

⎧⎨⎩ 1

w

1

nbf

w∑
l=1

∑
f

Coher((M
ci(l)=1
k ), (M

ci(l)=0
k ))(f)

⎫⎬⎭
23: end if
24: end for
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It is to notice that the spectral components of the Fourier Transform of each
traces are averaged. Thus the Magnitude Squared Coherence is computed on this
mean instead of being computed at each frequency before being averaged. How-
ever experimental results have shown that these two methods lead approximately
to the same results and enable to retrieve the key with nearly the same number
of curves. Averaging the spectral components at the beginning greatly speeds up
the algorithm as this reduces the number of MSC that have to be computed (one
coherence on a mean frequency instead of a coherence at each frequency).

Algorithm 2. Fast SCAN pseudocode

1: Input : messages Ti

2: Output : guessed key kg∗
3: for i = 1 to nbcurves do
4: for wind = 1 to nbwind do // loop on the number of sub-segments of the trace

5: F (wind) = 1
nbf

∑
f

FFT (Ti,wind)(f);

6: end for
7: for k = 0 to nbk do
8: for l = 1 to w do
9: if ci(l) = 1 then
10: for wind = 1 to nbwind do
11: F

ci(l)=1
k (wind)+ = F (wind);

12: end for
13: cpt

ci(l)=1
k ++;

14: else
15: for wind = 1 to nbwind do
16: F

ci(l)=0
k (wind)+ = F (wind);

17: end for
18: cpt

ci(l)=0
k ++;

19: end if
20: end for
21: end for
22: if i mod step == 0 then
23: for k = 0 to nbk do
24: for l = 1 to w do
25: P

k,ci(l)
1,0 =

∑
wind

F
ci(l)=1
k (wind).F

ci(l)=0
k (wind);

26: P
k,ci(l)
1,1 =

∑
wind

F
ci(l)=1
k (wind).F

ci(l)=1
k (wind);

27: P
k,ci(l)
0,0 =

∑
wind

F
ci(l)=0
k (wind).F

ci(l)=0
k (wind);

28: end for
29: end for

30: k∗
g = min

k∈K

{
1

w

w∑
l=1

{∣∣∣P k,ci(l)
1,0

∣∣∣2 /(P k,ci(l)
1,1 .P

k,ci(l)
0,0

}}
31: end if
32: end for
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Abstract. The electromagnetic field as a side-channel of cryptographic
devices has been linked to several advantages in past contributions. We
provide a comprehensive study using high-resolution horizontal and ver-
tical magnetic field probes at close distance to an integrated circuit die.
We configured an FPGA device with two uncorrelated digital structures
showing similar leakage behavior as symmetric cryptography implemen-
tations. We found that measurements from the frontside of the die using
a horizontal probe lead to the highest signal-to-noise ratios. Further, high
sampling rates are required and no trace compression should be applied.
Contrary to previous contributions, we successfully demonstrate that the
leakage of design parts is locally restricted and matches their placement.
This proves the feasibility of localized side-channel analysis after a pro-
filing phase, however, also means that other locations will lead to inferior
results, which is an important limitation. Our analysis confirmed an ad-
vantage of measuring localized electromagnetic fields instead of current
consumption due to the fact that less parasitic capacitances are involved.

Keywords: EM, high-resolution, side-channel, localization, CPA, SNR.

1 Introduction

The past years have seen many publications describing the use of the Electro-
Magnetic (EM) side-channel, mostly the magnetic near-field, and cartography
thereof [10] to find locations where side-channel analyses lead to the best results
[5,12,11]. The magnetic field is vectored and measured using coil sensors. Differ-
ent coil angles capture different parts of the fields. Agrawal et al. [1] as well as by
Standaert and Archambeau [13] provide evidence for this in the context of side-
channel analysis. Gandolfi et al. [4] state that inductive probes with high spatial
resolutions can be used to locally restrict measurements to specific circuit parts if
they are placed close to the surface of an integrated circuit. A variety of magnetic
probes have been used in past contributions. Large, hand-crafted ones are used
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by Mulder et al. [3] for global measurements of a chip. Peeters et al. [9] use a cus-
tom designed probe with a coil diameter of 0.7mm at a fixed position and close
distance to an integrated circuit after partly removal of the package. Sauvage
et al. [12] use laboratory equipment with a coil diameter of 0.5mm outside the
chip’s package. As a conclusion, they state that observed areas of signal leakage
do not coincide with the placement of the leaking design parts on the floorplan
of the FPGA. We suggest that the measurement equipment and distance to the
die surface have been insufficient leading to mainly observing the magnetic field
of bonding wires. Kirschbaum and Schmidt [7] present evidence for successfully
localizing EM leakage and performed cartographic measurements. However, they
use a hand-crafted coil with 0.5mm diameter, which has a comparably coarse
resolution in our opinion. Heyszl et al. [6] use a high-resolution probe and show
that the information leakage significantly depends on the measurement location.
They provide first results, however, clear evidence for the feasibility of localizing
leakage of circuit parts is lacking.

We fill this gap by performing a comprehensive study of the electromagnetic
near-field side-channel using high-resolution measurement equipment at close
distance to a decapsulated integrated circuit die. We employ magnetic probes
with horizontal, and vertical coils and discuss important parameters of the mea-
surement setup. We analyze a design-under-test configured into an FPGA con-
sisting of a register with a loop feedback through the AES substitution function.
Therefore, our results allow conclusions about the side-channel analysis of sym-
metric cryptography implementations. We conclude, that measurements from
the frontside of an integrated circuit using a horizontal probe lead to the highest
signal-to-noise ratios. Further we argue, that high sampling rates are required
and no trace compression should be applied. Hence, as a main contribution, we
clearly demonstrate the feasibility of matching localized electromagnetic fields
with placed design parts. This proves the feasibility of restricting side-channel
analysis to parts of a design after finding the correct positions through profiling.
However, this also demonstrates that incorrect positioning of high-resolution
equipment leads to inferior signal-to-noise-ratios. We compared the achieved
signal-to-noise ratios against results that we derived from analyzing conven-
tional current consumption measurements. Leakage signals in the EM field are
observed within short times after the active clock edge, making local EM mea-
surements favorable for analyzing devices with high clock frequencies since less
parasitic capacitances influence the observation.

We describe the equipment, design and analysis method in Sect. 2. In Sect. 3,
we present and discuss our measurement results and derive conclusions which
are summarized in Sect. 4.

2 Practical Study

In this section, we present our device-under-test, measurement equipment and
analysis methods.
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2.1 Device-Under-Test

We use a Xilinx Spartan 3A XC3S200A FPGA in a VQ100 package, as device-
under-test. The device is manufactured in a 90 nm technology, uses a 1.2V sup-
ply for the internal logic, and the die measures 4100 × 4300 μm. To perform
semi-invasive measurements close to the surface of the chip, we decapsulated
the FPGA from the front-, and backside using fuming nitric acid, i.e., with a
concentration of > 95%.

s-box

8 bit register

88

reset0 1

8 bit initial value

(a) S-box-structure (b) Placement

Fig. 1. Design-under-test

The FPGA is configured with a hardware design-under-test. We use a spe-
cific, simple design to simplify the acquisition of measurements, while being able
to draw meaningful conclusions about the side-channel leakage of cryptographic
designs. This design is depicted in Fig. 1(a) and contains a feedback loop struc-
ture including an 8-bit register and an implementation of the AES substitution
function, s-box, as published by Canright [2]. The 8-bit register is loaded with a
fixed initial value at synchronous reset and updates the register with the value’s
s-box-substitution in every cycle. Therefore, every clock cycle contains a value
update, i.e. Hamming distance. The design always performs the same operation.
Hence, there are no operation-dependencies and the design serves to analyze
data-dependent side-channel leakage. This is according to implementations of
symmetric cryptographic algorithms which are primarily subject to differential
side-channel attacks relying exclusively on data-dependent leakage. According to
our opinion, this structure exhibits similar side-channel behavior as implemen-
tations of the AES algorithm, because the same non-linear function is used and
the amount of combinational logic is representative for such implementations.

To analyze localized aspects of the electromagnetic side-channel leakage, we
use two instantiations of this register-s-box structure. We used constraints to
place the s-box structures 0 and 1 on the FPGA at a certain distance and to
restrict both structures to the same area. The placement on the floorplan of the
Xilinx Spartan 3A FPGA is depicted in Fig. 1(b). Since both structures are active
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at the same time, they consume power at the same time and contribute to the
electromagnetic field jointly. To analyze the contributions of the two structures
separately, they need to be statistically independent. The two instantiations use
different initial values for their feedback loop. If values from a limited space are
repeatedly replaced by a substitution function projecting into the same space,
the initial values are eventually derived since the number space is limited. The
number of substitutions, thus, length of the sequence of values depends on the
number space, substitution function and the generating initial value. We achieve
an independence, or de-correlation of both structures by using sequences with
different initial values and different lengths for both structures. Hence, the offset
between the two sequences is different for every repetition of either one. The s-box
structure with index 0 has an initial value of 0x1d, resulting in a sequence length
of 87. The s-box structure with index 1 has an initial value of 0x09, resulting in
a sequence length of 81. Obviously, neither of the two sequences contains values
from the respective other sequence. The design additionally includes a 16-bit
counter to generate an external trigger for the oscilloscope and synchronously
reset both structures. Every measurement contains 216 consecutive clock cycles,
thus, 753 repetitions of the sequence with length 87 and 809 repetitions of the
sequence with length 81.

2.2 Measurement Setup

Magnetic fields are vector-fields and magnetic coils only capture components
which are orthogonal to the coil. It is not obvious which probe, or which coil
direction leads to the best results for side-channel analysis. We used the following
magnetic probes to measure the magnetic near-field:

1. Magnetic field probe with 150 μm shielded horizontal coil, 6 windings, 100 μm
resolution, and 2.5MHz− 6GHz frequency span.

2. Magnetic field probe with 150 μm shielded vertical coil, 6 windings, 80 μm
resolution, and 2.5MHz− 6GHz frequency span.

The horizontal coil probe will measure the vertical components of the superposed
magnetic field generated by the circuit. The vertical probe will record horizon-
tal magnetic field components and provides a choice of direction of the probe.
We limited our analysis to x- and y-directions since conductors in integrated
circuits are limited in these directions due to manufacturing stability reasons.
We also took measurements using a high-resolution electric field probe. How-
ever, the measurements did not reveal any detectable signals, thus, we conclude
that this probe is unsuitable for side-channel analysis. The reason might be that
the electric field is shielded by the conductors within the circuit. Ferromagnetic
conductors within an integrated circuit also influence magnetic fields, however,
our results indicate that the field is still detectable with high SNRs.

We moved the probes over the front- and backside surface of the FPGA die
using a stepping table at a resolution of 100 μm and recorded one measurement
at every position. The backside measurement is depicted in Fig. 2(b). The probe
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(a) Frontside (b) Backside

Fig. 2. Probe positioned and moved over the surface of the FPGA die

touches the surface of the circuit and we recorded 43 × 41 measurements. The
frontside measurement is depicted in Fig. 2(a). To prevent damaging probe and
die, the probe to surface distance is ≈ 50 μm. The bonding wires prevent mea-
surements over the complete surface and we recorded 27 × 27 measurements in
the area enclosed by the bonding wires.

All probes contain a built-in 30 dB amplifier with a noise figure of 4.5 dB.
Additionally, we use a 30 dB amplifier with a bandwidth of 3GHz and noise
figure of 4.5 dB. Our LeCroy WavePro 715Zi oscilloscope has an analog input
bandwidth of 1.5GHz at 50Ω impedance. As an approximate upper boundary
for the sampling rate, twice the bandwidth of the equipment, thus, 5GS/s seems
reasonable. We used a zero offset for all measurements and a vertical resolution
of 50mV/DIV and confirmed that all measurements stay within scale. The noise
contribution from the measurement setup, i.e., the probes, the two amplifiers,
and the oscilloscope was determined by turning of the clock and voltage supply
and recording a trace containing noise exclusively. This resulted in noise with
a standard deviation of ≈ 22.3 μV for the horizontal magnetic probe, and noise
with a standard deviation of ≈ 20 μV for the vertical one.

We use a 20MHz clock signal for the design on the FPGA. Through synchro-
nization of the oscilloscope and the function generator, we prevent frequency
jitter and drift in the measurements. Every measurement contains 16384000
byte samples for the 216 recorded clock cycles.

We took a current consumption measurement to compare its quality for side-
channel analysis to high-resolution EM measurements. We use a LeCroy active
differential probe with a bandwidth of 500MHz and a 10Ω measurement resistor.

2.3 Analyses

In every measurement, the two different s-box structures contribute a repeating
sequence of value updates of different length. To determine these two indepen-
dent signal components, every measurement trace is split into sub-traces in two
ways according to the different sequence lenghts. First it is split into sequences
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containing 87 clock cycles each, and second, it is split into sequences containing
81 clock cycles each. Both sets of sequences are averaged separately, thus, the
noise is removed from both signals at a statistical sample size of 753, and 809 re-
spectively. The two independent signals remain separately. After subtracting one
of those two signals from the trace the noise remains. It includes power supply
noise, clock supply noise, measurement noise, quantization error and switching,
or algorithmic noise from parts of the circuit which did not contribute to the
signal. In our case, the counter as well as the respective other s-box structure,
which exhibits an uncorrelated sequence with different length, contribute to this
switching noise. By comparing all clock cycles, the noise is observed as a Gaus-
sian mixture with zero mean and standard deviation σnoise at every relative
sample index within the clock cycle.

We regard the constant influence of clocking the registers, i.e., the clock tree
and common logic parts, in every cycle as an operation-dependent part of the
signal. The variance between the clock cycles in the two derived signal sequences
is due to the processed data, thus, the data-dependent part of the signal. We esti-
mate the data-dependent signal part by averaging the clock cycles from each sig-
nal sequence and subtracting this operation-dependent part from the sequence.
The data-dependent signal remains. By comparing all cycles in the sequence, we
get a data-dependent Gaussian distribution at every relative sample index within
the clock cycle and we describe it using the standard deviation σdata. We compute
the Signal-to-Noise Ratio (SNR) over the clock cycle in decibel as the quotient
between the signal and noise standard deviations, SNR = 20∗log( σdata

σnoise
)dB. The

SNR is derived for both identical signal sources and it depends on the location,
which one results in a higher SNR.

We performed a Correlation Power Analysis (CPA) to evaluate the quality of
the measurements for differential power analysis. We use the Hamming distance
leakage model between values from consecutive cycles. The sample size n for the
correlation equals the number of recorded clock cycles, 216, and a correlation
coefficient of 0 results in values of ±4/

√
n = ±0.015625 with a confidence level

of 99.99% [8]. Therefore, absolute correlation coefficients below this significance
level are disregarded.

3 Discussion of Measurement Results

In this section, we discuss measurement results and derive conclusions. Since the
measurements from the frontside with the horizontal coil led to the best results,
we provide details for this case and use it as a base for comparison.

3.1 Signal and Noise

Figure 3 depicts the mean and standard deviation of all clock cycles from one
measurement at position (x, y) = (24, 17). This position is approximately above
s-box structure 1 and will serve as an interesting example. The figure spans
the time of one clock cycle, thus, 50 ns. The mean represents the operation-
dependent part of the signal which is for instance due to clocking the registers
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Fig. 3. Mean and standard deviation of all clock cycles at position (24, 17) (frontside,
horizontal coil)

and the active and inactive clock edges can be observed as significant peaks.
The standard deviation is constant throughout most of the cycle which can be
explained by constant noise factors from the measurement setup and corresponds
well to the measured noise floor mentioned in Sect. 2.2. The standard deviation is
significantly higher during a time after the active clock edge which is due to data-
dependent switching activity in the circuit. At this stage, this switching activity
cannot be attributed to specific parts of the design and contains contributions
from all circuit parts.

Fig. 4. Mean and standard deviation of repeated s-box 1 sequence at position (24, 17)
(frontside, horizontal coil)

We determined the data-dependent signal and noise for both structures in
every measurement as described in Sect. 2.3. Figure 4 shows the mean and
standard deviation of the repeated sequence of values processed by s-box struc-
ture 1 which contains 81 clock cycles. The standard deviation trace is similar to
the one depicted in Fig. 3, however, there are no times with significantly high
standard deviations like in the previous figure. This is due to the fact that the
data-dependent signal parts are now included in the mean trace. This is clearly
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Fig. 5. Data-dependent signal standard deviation σdata over clock cycle for s-box 0
and 1 at position (24, 17) (frontside, horizontal coil)

visible in Fig. 4, where the mean exhibits significantly different amplitudes. To
determine the data-dependent part, we repeatedly subtracted the mean clock
cycle (Fig. 3) from the mean depicted in Fig. 4. Figure 5 depicts the result,
which is the data-dependent signal within the clock cycle of s-box structure 1 in
the bottom diagram. The maximum signal amplitude is clearly significant when
compared to the noise level mentioned before. The constant floor of ≈ 1 μV
seems to be due to statistical artifacts. We performed the same procedure using
the same measurement for s-box structure 0 resulting in the upper diagram in
Fig. 5. The signal from s-box structure 0 exhibits a significantly low amplitude
which is explained by the fact that the measurement position is close to s-box
structure 1 and further away from s-box structure 0. We conclude that the dis-
tance to parts of the design in x- and y-directions is important for the detection
of leakage signals.

Significant signal amplitudes are observed within the first 10 ns after the pos-
itive, active clock edge. The synthesis tool reported 12.5 ns delay as the longest
combinational path of our design. It is an important observation, that signal
leakage is exclusively restricted to a time-span as short as the combinational
path after the active clock edge when analyzing local EM measurements close to
the source of the leakage.

The SNR of the signal leakage of an s-box structure is computed as the max-
imum of the ratio of data-dependent signal amplitude σdata over noise σnoise

within the clock cycle. Strong signal components of an s-box structure add to
the algorithmic noise for the respective other s-box structure. The measurements
from the frontside using the horizontal coil led to the highest SNRs. Figure 6



256 J. Heyszl et al.

Fig. 6. SNR for both signals (frontside, horizontal coil)

depicts a map of those SNR values for all positions and both s-box structures. We
emphasize that a maximum of ≈ 4.7 dB represents a significant signal strength.
It is remarkable how the signals from the s-box structures are significant in ar-
eas above the placed logic of the structures as depicted in Fig. 1(b). This is an
important result of our study. Surprisingly, the SNRs are also higher close to the
respective other structure. We suspect that this is due to modulation effect as
described by Agrawal et al. [1]. As another important conclusion, we realize that
it is only possible to achieve high SNRs using a high-resolution probe when it is
correctly positioned. This requires that adversary is able to find such positions,
e.g., through profiling.

The two s-box structures only occupy a very small area on the FPGA as
depicted in Fig. 1(b). We took a measurement where the same s-box structures
were distributed over a broader area, thus, requiring longer routing wires. We
observed a significantly higher SNR for this case, thus, we conclude that the
SNR highly depends on the design and placement.

3.2 CPA and Localization

We performed CPA as described in Sect. 2.3. Figure 7 depicts the correlation co-
efficient over the clock cycle for both s-box structures at the position (24, 17). We
observe high correlation values, positive as well as negative, for s-box structure
1 and insignificant correlation values for s-box structure 0. Correlation peaks are
only 1 to 3 samples wide. Therefore, we estimate a minimal required sampling
rate of ≈ 2GS in this case. This will vary for other devices, but it can be generally
expected, that a high sampling rate is required for localized EM measurement.

Figure 8 depicts a map of maximum absolute correlation coefficients for every
measurement on the map. We strongly emphasize how perfectly distinct the areas
with high correlations of the two s-box structures are. This provides the perfect
precondition for localized CPA attacks where only a single s-box structure is
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Fig. 7. CPA over cycle at position (24, 17) (frontside, horizontal coil)

Fig. 8. CPA coefficients (frontside, horizontal coil)

targeted. However, it must be noted, that an adversary must be able to find those
positions.

Unfortunately, there is no available information about the physical size of the
FPGA cells. During the scanning of the surface, we used a step size of 100 μm.
In Fig. 8 and Fig. 6 we observe distinct leakage regions corresponding to the
two s-box structures. We assume that the distance between the centers of the
leakage regions equals the distance of the structure centers in the placement.
From this, we derive an assumed distance of the s-box structure centers of ≈
900 μm and an assumed logic area of the two structures of ≈ 250 × 250 μm. In
Fig. 8, we observe that the regions with significant correlation coefficients do not
overlap. We assume from the presented evidence that there are non-overlapping
regions of significant correlation coefficients even when the two s-box structures
are adjacent to each other, thus, when the centers are only ≈ 250 μm apart. This
is strongly dependent on the logic structure of the device, hence, we do not
suggest generalization. An interleaved placement of s-box structures will render
this significantly more difficult, if not impossible, because of entirely overlapping
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regions of correlation coefficients. However, measurement equipment with higher
resolution may still support localization.

3.3 Backside versus Frontside Measurement

Decapsulating a chip from the backside can be achieved with less effort than
from the frontside. Hence, it is an important question which preparation leads
to better results. Figure 9 depicts the SNR map from using the horizontal coil
from the backside. In the middle of the device, the localized signal leakage of
both structures is clearly visible in distinct, confined regions. Additionally, re-
gions with high SNRs are observed on the edges of the die. Those regions have
not been covered by the frontside measurements and exhibit signals from both
s-box structures. However, since those regions contain contributions from both
structures, they are useless from a localized perspective. We assume that the
magnetic field in those regions is caused by bonding wires or parts of the chip
supply. The maximum SNR is ≈ 15 dB lower than in case of frontside measure-
ment. This might be due to the silicone substrate and the fact that the conductors
within the integrated circuit, which carry the exploitable signals, are on upper
metal layers and therefore, further away when measuring from the backside. We
conclude that backside measurements lead to significantly lower SNRs.

Fig. 9. SNR is ≈ 15dB lower on backside (horizontal coil)

3.4 Probe-to-Chip Distance

An important question is whether high-resolution EM measurements require
semi-invasive decapsulation to achieve minimal probe-to-die distances. We re-
peated the measurement from the frontside using the horizontal coil and in-
creased the distance of the probe to the surface of the chip by 300 μm which
roughly equals the package thickness above the die. The measurements lead to
a significantly lower maximum SNR of −16.5 dB. This is ≈ 21 dB lower than
the maximum SNR observed in the original measurement depicted in Fig. 6. We
conclude that the semi-invasive decapsulation is important to achieve high SNRs.
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3.5 Vertical Coil

We took measurements using the vertical coil in x-, and y-direction. Figure 10
depicts the SNR maps for the x-direction. A maximum SNR of ≈ −8.9 dB is
achieved which is significantly lower than in case of using the horizontal coil.
However, the coil seems to capture the magnetic field more selectively than the
horizontal coil. We observe, that the regions with high SNR corresponding to
the s-box structures have a different, more compact shape than in case of using
the horizontal coil which is depicted in Fig. 6. This corresponds to the expecta-
tion that different coil orientations ’select’ different parts of the field. The results
from the y-direction resulted in even lower SNRs and the two regions with high
SNRs are dispersed over a wider area, thus, making localization more difficult.
Given those observations, we conclude that the probe with the vertical coil leads
to lower SNRs compared to horizontal coils. However, a better selectivity can be
achieved for better localization if the coil direction supporting this is known.

Fig. 10. SNR using vertical coil in the x-direction (frontside)

3.6 Frequency Domain

Frequency filtering of EM signals is generally promising for selecting data-
dependent signals. We used the Fast Fourier Transform (FFT) to calculate fre-
quency spectra at several positions on the die using the measurements from the
backside using the horizontal coil. We cut the measurement into 753 parts cor-
responding to the repeated s-box 0 value sequence. Then, we performed FFT
transformations and decreased phase and amplitude noise by averaging the fre-
quency spectra. Figure 11 shows the resulting power spectral density at three
different positions on the die. Our results show frequency components up to
2.5GHz because of the sampling rate of 5GS/s. The first position is close to the
s-box structure 0. The second one is close to an area where we assume a big in-
fluence of the power supply, and the third is at a position which exhibited a low
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Fig. 11. Frequency spectra at different positions (backside, horizontal coil)

SNR in Fig. 9. A comparison of the position close to s-box 0 to the position with
minimum SNR leads to the observation, that the information leakage is con-
tained in a frequency span between 100MHz and 1.5GHz. The upper frequency
limit might be determined by the bandwidth of our measurement equipment.
The position close to the power supply exhibits higher amplitudes, thus, infor-
mation leakage, in a frequency span lower than 200MHz. We argue that this is
due the low-pass characteristic of the series of on-chip capacitances between the
leaking s-box structure and the power supply. Therefore, a high-pass filter with
a cut-off frequency of 200MHz could be applied to focus on localized signals and
this fact could be used as a heuristic to find exploitable positions on the circuit.

3.7 Trace Compression

Trace compression is popular to reduce data and computational complexity dur-
ing side-channel analysis. We evaluated four methods which reduce 250 samples
per clock cycle to a single value and repeated the CPA from Sect. 3.2 to bench-
mark the outcome. During maximum extraction, one sample index is selected
which exhibits the maximum mean value over all cycles. This resulted in a max-
imum correlation of 0.086. Peak-to-peak extraction derives the distance between
the two values with highest and lowest mean over all cycles. This resulted in a
maximum correlation of 0.030. Sum-of-absolutes integrates absolute values over
whole clock cycles. This resulted in a maximum correlation of 0.063. Sum-of-
squares integrates squared values over whole clock cycles and resulted in a max-
imum correlation of 0.086. The original traces lead to a maximum correlation
coefficient of 0.234 in Sect. 3.2, Fig. 8.

Hence, all compression methods resulted in significantly lower correlation co-
efficients and we conclude that trace compression is generally inadvisable when
analyzing high-resolution EM measurements. However, a compression method,
which simply removes unimportant parts in each clock cycle, e.g., samples be-
tween 75 ns and 250 ns in Fig. 5, will not influence the outcome. This becomes
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obvious from Fig. 7, where the correlation is detectable in the first part of the
cycle only.

3.8 Current Consumption versus Electromagnetic Field

In our current consumption measurement, the signals from consecutive clock cy-
cles interfere which decreases the SNR due to additional data-dependent switch-
ing noise from other cycles. This is caused be the low bandwidth in the supply
network containing on- and off-chip capacitances and inductances [8]. We ex-
cluded the lower bandwidth of the differential probe as a cause by analyzing the
field of bonding wires of the supply exhibiting the same interference. As expected
we found that the signal leakage is detectable over the whole clock cycle almost
constantly instead of just during a short time after the active edge. This makes
current consumption measurements more robust against misalignment in differ-
ential attack settings. We detected a maximum SNR of 0.9 dB and a maximum
correlation coefficient of 0.094. This is significantly lower than the maximum ob-
served SNR of 4.7 dB and maximum correlation coefficient of 0.234 in the case of
high-resolution EM measurement. We assume that this is due to the overlap and
additional switching noise from other circuit parts. We conclude, that localized
EM measurements prevent interference of signals across multiple cycles at high
clock frequencies of the design under test and provides significantly higher SNRs.
However, this requires to be able to position the probe correctly.

4 Conclusion

We suggest that some of our conclusions about high-resolution EM measure-
ments can be generalized to other integrated circuits such as FPGAs or ASICs.
Localized measurements are only superior, if correct positions for measurement
are known. Then, the signal of circuit parts can be recorded selectively and
with higher SNRs without interference due to low-pass behavior of the sup-
ply network. Measurements from the die frontside lead to better results, and
we generally recommend semi-invasive decapsulation to achieve minimal probe-
to-die distances. The horizontal probe provided higher SNRs while the verti-
cal coil could be used to increase selectivity. High sampling rates, e.g., at least
> 1GS/s will be required in most cases and compression of traces is generally not
recommended.
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Abstract. Common template attacks are probabilistic relying on the
multivariate Gaussian distribution regarding the noise of the device un-
der attack. Though this is a realistic assumption, numerical problems
are likely to occur in practice due to evaluation in higher dimensions. To
avoid this, a feature selection is applied to identify points in time that
contribute most information to an attack. An alternative to common
template attacks is to apply machine learning in form of support vector
machines (SVMs). Recent works brought out approaches that produce
comparable results, respectively better in the presence of noise, but still
not optimal in terms of efficiency and performance. In this work we show
how to adapt the SVM template approach in order to considerably re-
duce the effort while carrying out the attack and how to better exploit
the side-channel information under the assumption of an attack model
with a strict order, e.g. Hamming weight model.

Keywords: Power Analysis, Template Attacks, Machine Learning, Sup-
port Vector Machines.

1 Introduction

Side-channel attacks are still, even after years of intensive research, a serious
threat to cryptographic devices. New attacks challenge new algorithms and re-
spective countermeasures. Generally, side-channel attacks rely on the assumption
that any electronic device provides physically observable information on secrets,
usually a cryptographic key, embedded in the device. The spot from which the
information is extracted is referred to as a side-channel. There exist several dis-
tinct kinds of side-channels, for instance the power consumption, electromagnetic
emanation, or timings. In this work we focus on template attacks (TAs) [5], a
powerful side-channel attack since they are supposed to retrieve the most in-
formation of a side-channel leakage. TAs require a profiling phase to model the
noise of the device, assuming the noise to be multivariate Gaussian distributed.
In the subsequent characterization phase any dependency can be found using a
likelihood approach for similarities between different points in time of recorded
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power consumption traces. Therefore, TAs are dependent on these points in time
which are assumed to contain the most information given by the maximum key-
dependent variance. Besides the selection of such points which is often denoted
feature selection, one is also concerned with potential numerical problems and
the question whether the assumed noise model is adequate or not in order to
mount a successful TA.

To overcome these issues recent works investigated alternatives to the mul-
tivariate Gaussian approach. Machine learning in the form of support vector
machines (SVMs) is one of these promising alternatives. The SVM is a linear
binary classifier that decides to which of two classes an input vector belongs,
based on classified training data. Further, the SVM is independent of a certain
noise distribution. In [12] the authors focused on SVMs amongst other machine
learners and present attacks that predict key bits of a DES implementation. In
[10, 11] the authors exclusively focused on SVMs concentrating on the applica-
bility for template attacks. However, they did not provide an attack. In [9] the
authors extend the SVM approach from a single-bit model to a multi-bit model
and consequently introduce probabilistic multi-class SVMs. They showed that
the SVM based template attack outperforms the Gaussian approach in the pres-
ence of noise. Nevertheless, their approach is not optimal in terms of efficiency
and exploited side-channel leakage.

Our contribution: In this work we carry the SVM template attacks forward.
We first show how a tailored multi-class strategy can considerably reduce the
effort during the profiling and characterization phase. Second, we show how to
better exploit the side-channel leakage, including the introduction of a dedicated
feature selection, and compare it against several other TA approaches. We there-
fore assume an attack model with a strict order, e.g. Hamming weight model.

Organization of the paper: This paper is organized as follows: Section 2 briefly
introduces template attacks based on the Gaussian approach. Section 3 provides
a broad overview on support vector machines. In Section 4 we describe how
SVM based template attacks can be improved by means of efficiency and per-
formance. Finally, Section 5 reports our experimental results before we conclude
in Section 6.

2 Template Attacks

Template attacks usually consist of three steps. The first step is to select points
in time (often called points of interest or features) that are supposed to contain
a considerable proportion of the leakage information. Afterwards templates are
built involving the power consumption of a reference device, similar to the target
device, that is under the full control of the attacker. Eventually, the attack on
the target device is carried out by matching its power consumption leakage to
the templates.

Feature Selection. The selection of points of interest within power traces is the
first issue in TAs we are concerned with. There are several methods to ob-
tain a set of points that could lead to a successful attack. Primarily, the points
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are selected according to their key-dependent variability, including known-key
DPA [18], pair-wise distance to the mean vectors [5], or using the sum of squared
pair-wise T-differences [8]. A more systematic approach is the principal subspace-
based TA where the principal component analysis (PCA) is applied to transform
the side-channel data into a low-dimensional subspace, figuring out the optimal
linear combination of points in time which show maximum variance with respect
to the side-channel leakage [1].

Template Building. The application of templates implies two successive phases.
In the first phase templates are built according to Np selected points of interest

from several measured power traces {tid,k}
Nt
i=1 that are correlated to a function

which involve both, known input data d and a key k, respectively a part of it.
The traces are assumed to be drawn from a multivariate Gaussian distribution
N (tid,k|μd,k,Σd,k). Therefore, a single template τ d,k is equivalent to an estima-
tion of the mean μd,k and the covariance matrix Σd,k based on the selected
points, and corresponding to different pairs of {d, k}.

Key Recovery Attack. In the second phase, given a new power trace tnew

d,k to be
characterized, the multivariate Gaussian probability density function

p(tnew

d,k |τ d,k) =
1√

(2π)Np |Σd,k|
exp

(
−1

2
(tnew

d,k − μd,k)
�Σ−1

d,k(t
new

d,k − μd,k)

)
(1)

is evaluated for each template. The maximum likelihood approach provides the
best fit, hence the higher the probability density the better the trace td,k fits
the respective template.

In order to avoid numerical problems in practice, mainly due to the inversion
of Σd,k, one can omit the covariances (off-diagonal values of Σd,k) to obtain so
called reduced templates [14]. This leads to a univariate approach since (1) can
then be rewritten as the product of the probability densities at each point of
interest

p(tnew

d,k |τ d,k) =

Np∏
i=1

1√
2πσ2

i

exp

(
−1

2

(tnewi,d,k − μi,d,k)
2

σ2
i

)
(2)

considering them as being independent and thus uncorrelated.
In practice it is often not sufficient to recover the key, or a part of it, based on

a single trace to be characterized but based on a few traces. Usually, we apply
Bayes’ theorem [14]

p(k∗|tnew

d,k ) =
p(tnew

d,k |τ d,k) · p(k∗)
p(tnew

d,k )
(3)

in order to determine by which key the traces to be characterized were generated.
Here, p(k∗) is the prior probability and p(k∗|tnew

d,k ) the posterior probability of
each key candidate k∗.
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3 Binary Support Vector Machines

Support vector machines are suitable for solving classification, regression, and
pattern detection problems and belong to the category of sparse kernel machines.
Originally described in [20], the SVM is a non-probabilistic, linear, binary-class
decision machine whose output is a class label. The SVM is related to supervised
learning methods whose determination of the model parameters correspond to
convex optimization problems. This section follows the explanations in [2].

3.1 Mathematical Background of Binary SVMs

A binary-class classification problem can be described by a linear discriminant
function of the form

y(x) = w�x+ b (4)

where w is a weight vector, and b is a bias. An input vector x is assigned to class
C− if y(x) < 0 and to C+ otherwise. Hence, the decision boundary corresponds
to the (D − 1)-dimensional hyperplane within the D-dimensional input space,
i.e. y(x) = 0. Since w�x = 0 for every x lying on the decision boundary, w
is orthogonal to every vector on the decision boundary and hence the normal
vector of the hyperplane. With the same argument, bias b = −w�x for every x
on the decision boundary. Suppose the training set consists of N input vectors
(row vectors) x1, . . . ,xN (vectors with an index belong to the training set in
the remainder) where each vector is associated to a class label ci ∈ {−1, 1}.
New vectors x are accordingly classified by the sign of y(x). For the moment,
it is assumed that the training set is linearly separable within the input space
D, which means we can find a pair (w, b) such that (4) satisfies ciy(xi) > 0
for all training vectors. That is, every training vector xi is correctly classified.
Naturally, we can find several pairs that separate the training set exactly but
not every solution will give the smallest generalization error [2] that states the
performance of classifying new vectors . In support vector machines this is solved
by introducing the approach of the margin which embodies the smallest distance
between the decision boundary to any input vector (Fig. 1). The best solution
is given by the pair (w, b) for which this margin is maximized. The orthogonal
distance of a vector x to the hyperplane is given by y(x)/ ‖w‖ (‖•‖ denotes the
Euclidean norm) and under the general constraint ciy(x) > 0 the maximum
margin can be achieved by finding

argmax
w,b

{min
i
[ci(w

�xi + b)]}. (5)

Finding a direct solution would be too complex. Since rescaling of w and b does
not affect the distance from any input vector to the hyperplane, we set

ci(w
�xi + b) ≥ 1, i = 1, . . . , N (6)

which means that for vectors that lie on the margin around the decision bound-
ary the equality holds. Consequently, the optimization problem has been reduced
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margin

 ( ) || |||| ||

Fig. 1. Geometry of the separating hyperplane in support vector machines

to maximize ‖w‖−1
which is equivalent to minimizing ‖w‖2. This is a quadratic

programming problem that can be solved by applying the method of Lagrange
multipliers ai, with respect to the Karush-Kuhn-Tucker (KKT) conditions [2].
The optimal solution of this Lagrangian optimization problem yields a represen-
tation of (4), s.t. w =

∑N
i=1 aicixi where the vectors xi for which ai > 0 are

called support vectors. Hence, to classify new vectors x we obtain

y(x) =

N∑
i∈S

aicix
�
i x+ b where b =

1

NS

∑
i∈S

(ci −
∑
j∈S

ajcjx
�
i xj) (7)

and S is the set of indices of the support vectors, respectively NS the number
of support vectors.

3.2 Non-linear Classification: Introduction of a Kernel

So far it was assumed that the training set is linearly separable within the in-
put space D. If that does not hold the training set may be separable in the
higher dimensional feature space F > D, not to be confused with feature se-
lection. Therefore, the input vectors are transformed into that feature space by
Φ(x) which gives a vector product of the form Φ(x1)

�Φ(x2) for x1,x2 ∈ R
D.

A direct solution is computationally very intensive. Hence, a kernel function is
applied that behaves exactly like the vector product in F without even knowing
the concrete feature space, but also without having influence on the resulting
dimension.

3.3 Non-separable Case: Introduction of a Soft-Margin

A linear separation, in the input space or in the feature space, can lead to a
poor generalization (large generalization error) in the case of overlapping class
distributions. Therefore, it makes sense to allow for misclassification of some
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training vectors to achieve a separation anyway. To do so, slack variables and a
trade-off parameter γ, often denoted box constraint, are introduced to penalize
misclassification leading to two kinds of support vectors (see [2] for details).
Those where ai < γ, support vectors which lie on the margin, and those where
ai = γ which are support vectors that are either correctly classified but inside the
margin or misclassified. For γ → ∞ the penalty prohibits misclassified vectors
and thus recovers the strict margin.

3.4 SVM Training and Classification

Training a support vector machine means solving the Lagrangian optimiza-
tion problem for the given training set. There exist a specific approach called
sequential minimal optimization (SMO) [16] that breaks down the optimiza-
tion problem into many smallest problems where each of which only considers
two Lagrange multipliers at a time. The Lagrange multipliers are jointly opti-
mized under a linear equality constraint. The subsequent multipliers to be opti-
mized are then chosen heuristically. The SVM classification is done through the
evaluation of (7) making use of the parameters of the SMO training.

4 Template Attacks Using Support Vector Machines

The approach is similar to common template attacks. The posterior key proba-
bilities are successively updated with each characterization trace applying Bayes’
theorem. Since TAs are a multi-class classification problem it is essential to turn
the actual binary SVM into a probabilistic multi-class SVM. Contrary to pre-
vious work [9] which follows a general probabilistic approach, we subsequently
present probabilistic multi-class SVMs tailored to fit template attacks.

4.1 Probabilistic Support Vector Machines

In order to use SVMs in an aggregated probabilistic approach, probabilistic deci-
sions of the class label c for new vectors are necessary. Maintaining the sparseness
property of SVMs it is proposed in [17] to fit a logistic sigmoid function to the
outputs y(x) of an already trained binary SVM to give the posterior conditional
probability

p(c = 1|x) = 1

1 + exp(A · y(x) +B)
(8)

that x belongs to the class c = 1. Clearly, p(c = −1|x) = 1 − p(c = 1|x). A
second training set should be involved to avoid severe overfitting (this will be
discussed in Section 5). The parameters A and B are found by minimizing the
cross-entropy error of the training set

argmin
A,B

−
N∑
i=1

ti log(pi) + (1 − ti) log(1− pi) (9)

where ti = (sign[y(xi)] + 1)/2 and pi = p(c = 1|xi). Nevertheless, solving this
optimization problem in a numerical stable way is proposed in [13].
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4.2 Our Probabilistic SVM Multi-class Approach

Previous work [7] investigates methods based on two strategies to turn a binary
SVM into a multi-class SVM. The one-versus-all strategy uses binary SVMs for
separating one multi-class from the joint set of all other multi-classes, whereas
the one-versus-one strategy applies binary SVMs for pair-wise distinguishing the
multi-classes. In [9] the authors preferred the one-versus-one strategy in order
to mount their attacks. In this work, we suggest our own method tailored for
template attacks with regards to the attack model.

Suppose the TA classification problem implies M distinct classes. Then, given
a new input vector x, we aim for posterior conditional probabilities p(Ωl|x) for
l = 1, . . . ,M and Ωl is the lth multi-class label. The classification is enabled by
a training set X̃ (traces) where for each training vector x̃j for j = 1, . . . , N the
correct multi-class label Ωl, relying on a certain attack model, is known.

Attack Model with a Strict Order. We assume that the side-channel leakage leads
to splitting the measurement samples into a strict order according to the known
multi-class labels at the leakage-dependent points in time. More precisely, let
xΩl,t be an arbitrary scalar at point t of a trace that belongs to label Ωl, then
for each leakage-dependent point t we assume a strict ordering of the labels,
i.e. either xΩ1,t < xΩ2,t < . . . < xΩM ,t or, alternatively, xΩ1,t > xΩ2,t > . . . >
xΩM ,t. A well-known example of such an ordered leakage is the Hamming weight
model [14]. With such an attack model we train M − 1 SVMs using the training

set X̃ and introduce binary-class helper labels ci,j to the training vectors, such
that

ci,j =

{
1, {x̃j |x̃j belongs to Ωl with l ≤ i

−1, else
,

j = 1, . . . , N
l = 1, . . . ,M

(10)

when the ith SVM is under training, i = 1, . . . ,M − 1. These helper labels con-
vert the attack model multi-classes to binary-classes as requested by the SVM
classification model. Using the ith SVM afterwards to classify a new vector x we
get the multi-class overlapping probabilities p(

⋃i
l=1 Ωl|x). That is, the ith SVM

gives the probability that x belongs to the classes before the ith hyperplane. Fig-
uratively, we construct the hyperplanes between the multi-class labels from the
left to the right as depicted in Figure 2. Recalling that the probabilities rely on
a distance measure between x and the separating hyperplane, each consecutive
probability p(

⋃i+1
l=1 Ωl|x), p(

⋃i+2
l=1 Ωl|x), . . . , p(

⋃M−1
l=1 Ωl|x) is even higher once x

was classified to belong to a multi-class before the ith hyperplane with a non-
negligible probability (cf. Fig. 2). This is due to the fact that the distance grows
in a positive manner and thus the probability grows since the binary-class sepa-
ration regarding x becomes even clearer. However, this is of course an undesired
result. We can overcome this drawback by training, again, M − 1 SVMs but this
time starting with the last multi-class label ΩM , i.e. using (10) with reversed
signs. With this approach, going from the left to the right first and then vice
versa, we surround the correct multi-class label by two consecutive hyperplanes.
In fact we do not need to train new SVMs since the separating hyperplanes
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1 1 1 −1 −1 −1 −1 −1

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 . . . ΩM

Fig. 2. For instance, the third support vector machine is trained which corresponds to
the hyperplane separating

⋃3
l=1 Ωl and

⋃M
l=4 Ωl. The binary-class helper labels c3,j for

the training vectors xj are given on top. Training vectors that belong to the multi-
classes before the hyperplane are classified with helper label 1, all others with −1.

did not change, but merely use the complementary probabilities deferred by one
multi-class due to the surrounding. Suppose x indeed belongs to Ωi, then x is
right-bounded by the hyperplane i and left-bounded by the hyperplane i−1 and
thus related to the probabilities p(

⋃i
l=1 Ωl|x) and 1 − p(

⋃i−1
l=1 Ωl|x). Hence, we

suggest using

p(Ωi|x) = p(
i⋃

l=1

Ωl|x) ·
[
1− p(

i−1⋃
l=1

Ωl|x)
]

(11)

=
1− 1

1+exp(Ai−1·yi−1(x)+Bi−1)

1 + exp(Ai · yi(x) +Bi)
, 1 < i < M, (12)

p(Ω1|x) = p(
1⋃

l=1

Ωl|x) =
1

1 + exp(A1 · y1(x) +B1)
, (13)

and p(ΩM |x) = 1−p(

M−1⋃
l=1

Ωl|x) = 1− 1

1 + exp(AM−1 · yM−1(x) +BM−1)
(14)

being the posterior conditional class probabilities.

Attack Model without a Strict Order. Technically speaking, if an attack model
with a strict order is not applicable, i.e. scalars that belong to different multi-
classes are equal on average, a separation is impossible no matter which method
is used. Nevertheless, in practice one could try to combine (leave out) equivalent
multi-classes or use a one-versus-one strategy. The latter case means separating
each pair (Ωi, Ωj) for i < j ≤ M which in turn results in training M(M − 1)/2
SVMs. The posterior conditional class probabilities are then given by

p(Ωi|x) =
∏
j 	=i

p[(Ωi, Ωj)|x belongs to Ωi]. (15)

4.3 SVM Based Templates

As in the multivariate Gaussian approach, templates are built on the reference
traces first, here called the training set, by training M−1 orM(M−1)/2 support
vector machines where M denotes the number of classes according to our attack
model. Afterwards, we fit the sigmoid function with classification values from
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the SVMs involving a second set of reference traces. Hence, a single template
contains the Lagrange multipliers ai, the support vectors XS i ⊂ X̃, and the
bias bi plus the values Ai and Bi for the templates i, . . . ,M − 1, respectively for
i, . . . ,M(M − 1)/2. Please note that in the SVM approach templates are to be
characterized by the class separators and not by the class representatives.

4.4 Considering Feature Selection

Primarily, a prior feature selection is a dimensionality reduction to help figuring
out the most discriminative features in a given data set. However, this generally
means a loss of information that in turn affects the prediction performance of
classifiers.

For the Gaussian TA approach a priorly executed feature selection is cer-
tainly essential since it avoids numerical problems in practice which render the
evaluation of probability densities impossible. Further, it is assumed that the
exploitable side-channel leakage is hidden locally in the variability of only a few
points in time with respect to such probability densities [14]. Hence, the loss
of information is accepted and considered as loss of noise, respectively loss of
information that marginally contributes to the attack.

This looks different for the SVM approach where we aim for inter-class sepa-
ration instead of intra-class densities. On the one side numerical problems due
to high dimensioned data do not occur and on the other dimensionality reduc-
tion methods such as PCA likely jeopardize the optimal performance of SVMs in
other applications [21]. In contrast to previous works [9–12] we suppose using the
linear kernel with a dedicated subsequent feature selection, called normal-based
feature selection, is optimal while presuming a linear attack model in template
attacks (cf. Section 4.2). The normal-based feature selection retains points in
time according to the weight vector w (cf. Section 3.1). It can be shown [3] that
a feature j which corresponds to a higher absolute value |wj | are more influential
in determining the optimal margin and thus improves classification performance.
Since we train several SVMs according to the attack model we disregard features
by setting the respective weights of w to zero instead of removing them from the
data set. One may argue that prior feature selection has the same effect but the
Lagrange multipliers ai that significantly determine the weight vector are still
found using the complete data set.

5 Experimental Results

For our experiments we used a Microchip PIC18F2520 microcontroller [15] run-
ning at 3.68 MHz. The power traces were acquired with a PicoScope 5203 and
a sampling rate at 125 MS/s using a 1 Ω-resistor in the ground line. The traces
were compressed with peak extraction [14] representing the full substitution
layer (S-boxes) in the first round of the AES (Advanced Encryption Standard).
Therefore, we chose the attack model to be the Hamming weight of the S-box
output. We thus have nine classes with a strict order (cf. Sec. 4.2).
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To produce comparable results to [9] we choose the guessing entropy [19] to
evaluate the attack performance. It states the average position of the correct key
within a descending ranking of the probabilities of all possible keys. However,
in order to introduce our adaptations we used our own SVM implementation
as described throughout this paper (see Appendix A for pseudo code) instead
of the C-SVC implementation of the LIBSVM library [4]. C-SVC also applies
SMO for training and the same probability model for classification, thus both
implementations are comparable.

In the following, we validate our SVM template attack against variants of it,
the SVM TA from [9], the common TA, and the common TA with prior PCA.
Our approach implies the here proposed multi-class method and the linear kernel
with the subsequent normal-based feature selection. As variants we replaced
the normal-based feature selection with prior feature selection, namely known-
key DPA (kkDPA) where the points in time with the highest correlation were
taken, respectively with the application of PCA. Further, we include the common
template attack with both known-key DPA and prior PCA. The SVM TA from
[9] uses the RBF kernel and known-key DPA. They also suggest an empirical
determined cost factor (box constraint) of γ = 10, respectively γ = 1 for noisy
measurements, and an empirical determined termination criterion of 0.02 that
states the fraction of vectors that are allowed to violate the KKT conditions. In
our experiments, however, we involve γ = 1 and termination criterion of zero,
as recommended in [6], except for the attack from [9]. In order to simulate noisy
measurements we add Gaussian noise to the power traces, in particular Gaussian
noise with a standard deviation of σng = 5. We determined the intrinsic noise of
our measured power traces to be σn0 ≈ 0.7.

Initially, we want to show how to disregard features with the help of normal-
based feature selection. As can be seen in Figure 3 the weights are linearly
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Fig. 3. Absolute values of the weights in ascending order. The weight vectors were
obtained from training 8 SVMs (HW attack model).
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increasing except the last few weights which increase exponentially. These are
the weights we retain and thus all the others were set to zero. In our experiments
we retain 8 weights. We also used 8 components from PCA and 8 points in time
with the highest correlation from known-key DPA.

Our performance comparison considers each template attack involving the re-
quired profiling, respectively characterization traces to reach a guessing entropy
of one. Thus, it states the minimum effort to always recover the correct key with
respect to our experiments. Furthermore, we depict the guessing entropies of the
attacks while our attacks possesses a guessing entropy of one.

Table 1. Comparison of template attacks depicting the required amount of character-
ization traces along an increasing profiling base (traces per HW) to reach a guessing
entropy of one. The lower table depicts the guessing entropies while our TA reaches a
guessing entropy of one. The traces were involved with their intrinsic noise σn0 ≈ 0.7.

Profiling SVM based TA Common TA
base Our TA linear & kkDPA linear & PCA Heuser et al. [9] kkDPA PCA

10 33 98 71 289 – –
20 22 67 33 147 92 53
40 21 63 26 139 63 37
60 19 61 21 121 59 23
80 15 44 17 116 55 19
100 13 39 15 111 51 16

10 1 2.59 1.17 18.54 – –
20 1 2.57 1.15 16.75 7.51 1.62
40 1 2.58 1.15 18.72 6.58 1.15
60 1 2.58 1.08 18.10 4.91 1.10
80 1 2.08 1.08 17.53 3.46 1.10
100 1 2.08 1.08 18.43 3.74 1.08

Table 1 shows the results considering the original traces. It is observable that
template attacks based on SVMs perform better than common TAs. As expected
each attack requires less characterization traces with an increasing profiling base
where best performance is almost reached with a profiling base containing 100
traces per Hamming weight. However, with a too small profiling base (10 traces
per HW) the common attacks fail due to numerical problems caused by the
matrix inversion with the Gauss-Jordan algorithm. Our approach performs well,
especially with a small profiling base, whereas the attack proposed in [9] using the
RBF-kernel performs only suboptimal. This observation is even more aggravated
when comparing the guessing entropies. When our TA reaches a guessing entropy
of one the other attacks reduce the key space to at most four except the RBF
kernel based attack that reduces the key space to about 18.

Next, we evaluate the performance in the presence of higher noise. Table 2
depicts that in this case PCA is not the optimal choice for feature selection. Both
TA approaches lead to inferior results when using PCA instead of known-key
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Table 2. Comparison of template attacks depicting the required amount of character-
ization traces along an increasing profiling base (traces per HW) to reach a guessing
entropy of one. The lower table depicts the guessing entropies while our TA reaches a
guessing entropy of one. The traces were involved with added noise σng , thus σn1 ≈ 5.7.

Profiling SVM based TA Common TA
base Our TA linear & kkDPA linear & PCA Heuser et al. [9] kkDPA PCA

10 81 121 149 1100 – –
20 62 93 112 365 650 920
40 56 84 94 312 158 344
60 51 73 84 153 112 146
80 46 62 79 144 96 124
100 43 58 73 138 92 121

10 1 1.18 1.66 41.25 – –
20 1 1.14 1.62 13.54 15.524 14.37
40 1 1.12 1.54 7.8 11.22 12.02
60 1 1.12 1.52 7.75 4.91 5.55
80 1 1.12 1.46 7.57 2.95 3.58
100 1 1.12 1.36 7.58 2.96 2.81

DPA. Our approach still performs well but the results altogether are also a bit
closer now. The RBF kernel based attack performs slightly better and can finally
reduce the key space to eight.

Eventually, our findings indicate that SVM based template attacks do not
perform best with the RBF kernel. Admittedly, our results concerning the RBF
kernel were obtained using our multi-class strategy instead of the usual one-
versus-one strategy but we suggest this has no crucial negative impact. Actually,
the good performance of a linear kernel should not be surprising since template
attacks usually imply a linear classification problem whereas the RBF kernel is
appropriate for non-linear problems. The linear kernel also performs well with
prior feature selection, i.e. known-key DPA and PCA but the normal-based
feature selection is very simple, and furthermore it provides better results with
a small profiling base. The computational effort of our SVM based attack is in
the range of seconds and hence negligible when compared to common TAs.

6 Conclusion

In this work we showed how to improve the performance of template attacks
based on support vector machines. Although previous works already demon-
strated the advantages of such template attacks, their approaches were not
optimal in the sense of efficiency and performance. First of all we proposed
a multi-class method tailored for TAs which lead to training less SVMs under
a attack model with a strict order, e.g. the Hamming weight model. Next, we
showed that the subsequent feature selection after the training called normal-
based feature selection together with the linear kernel leads to superior results
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than using it with a prior feature selection, namely known-key DPA or PCA,
respectively.
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A Algorithms for SVM Based Template Attacks

Required adaptations for an attack model without a strict order infer from Sec-
tion 4.2.

Algorithm 1. SVM Template Building

Input: Training set X̃ with N traces related to labels Ω1, . . . , ΩM , and constraint γ
Output: M−1 templates (ai, bi, XS i ⊂ X̃, Ai, Bi)

1: for i = 1 to M − 1 do
2: for j = 1 to N do
3: if x̃j belongs to Ωl with l ≤ i then cj ← 1 else cj ← −1
4: end for
5: ai, bi, XS i ⊂ X̃ ← SMO-training [6] with X̃, (c1, . . . , cN ), and γ

6: Ai, Bi ← Sigmoid-training [13] with ai, bi, XS i ⊂ X̃, and X̃
7: end for

Algorithm 2. SVM Template Classification

Input: M − 1 templates (ai, bi, XS i ⊂ X̃, Ai, Bi), and new trace x
Output: Posterior probabilities p(Ω1|x), . . . , p(ΩM |x)
1: for i = 2 to M − 1 do
2: p(Ωi|x) acc. to (12) with (aj , bj , XSj ⊂ X̃, Aj , Bj) for j ∈ {i− 1, i}
3: end for
4: p(Ω1|x) acc. to (13) with (a1, b1, XS1 ⊂ X̃, A1, B1)

5: p(ΩM |x) acc. to (14) with (aM−1, bM−1, XSM−1 ⊂ X̃, AM−1, BM−1)
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Abstract. This paper considers the transfer of digital data over leaky
and noisy communication channels. We develop defensive strategies ex-
ploiting the fact that noise prevents the attacker from accurately mea-
suring leakage.

The defense strategy described in this paper pairs each useful data
element k with a camouflage value v and simultaneously transmits both
k and v over the channel. This releases an emission e(k, v). We wish to
select the camouflage values v(k) as a function of k in a way that makes
the quantities e(k, v(k)) as indistinguishable as possible from each other.

We model the problem and show that optimal camouflage values can
be computed from side-channels under very weak physical assumptions.
The proposed technique is hence applicable to a wide range of readily
available technologies.

We propose algorithms for computing optimal camouflage values when
the number of samples per trace is moderate (typically ≤ 6) and justify
our models by a statistical analysis.

We also provide experimental results obtained using FPGAs.

1 Introduction

In addition to its usual complexity postulates, cryptography silently assumes
that secrets can be physically protected in tamper-proof locations. All crypto-
graphic operations are physical processes where data elements must be repre-
sented by physical quantities in physical structures.

At any given point in the evolution of a technology, the smallest logic devices
must have a definite physical extent, require a certain minimum time to perform
their function and dissipate a minimal switching energy when transiting from
one state to another. Energy is also dissipated statically, i.e. in the absence of
any switching.
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During the last twenty years, the research community devised many sophisti-
cated methods for retrieving secret information from circuits by measuring their
side-channel emanations.

A number of authors, e.g. [1], rely on the isotropic switching-model in which
all bits dissipate identical switching energies. This work does not assume any a
priori side-channel model and totally relies on the analysis of actually measured1

emissions.
While most previous works analyzed leakage from complex cryptographic com-

putations, we focus on one of the simplest forms of leakage: the emanations of a
bus through which bits are being sent. We make only two physical assumptions:

– Emanations can be measured with equal (in)accuracy by both the attacker
and the defender.

– Leakage is a global function of data plus noise. The proposed methods are
thus unadapted to settings in which individual channel bits are probed with
precision.

The proposed methodology is hence applicable to a wide range of circuits having
leaky buses.

The proposed countermeasure pairs each useful data element k with a cam-
ouflage value v and simultaneously transmits k and v through the channel. This
releases a physical side-channel emanation e(k, v) that can be measured by both
the attacker and the defender.

We address the following question:

How can a defender pair each value of k with a corresponding value v(k) that makes
the e(k, v(k)) as indistinguishable as possible from each other?

The crux of this paper is the definition of indistinguishability given the mea-
sured emissions.

Section 2 introduces algorithms for computing optimal camouflage values from
actual power traces. These algorithms are efficient when each trace contains a
few samples (typically ≤ 6). Section 3 presents a statistical analysis justifying
the intuition that the best v values are those concentrating the e(k, v) into the
smallest possible sphere containing representatives of all k values. Section 4
provides experimental results.

In a way, this work achieves some sort of cryptographic key exchange based on
the existence of ambient noise and on a gap in measurement accuracy between
the legitimate receiver and the attacker.

2 Models and Algorithms

Let e(d) represent the side-channel (e.g. power consumption) resulting from the
transfer of an n-bit data element d over an n-bit channel (e.g. a bus). e(d) can
be measured with equal precision by both the attacker and the defender.

1 Potentially anisotropic.
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The defender builds a set of 2n side-channel measurements E . Each e(d) ∈ E
is generated by transmitting an n-bit data element d. The defender assigns s
channel bits to the useful information k, and devotes the remaining n− s bits to
the transmission of (n − s)-bit camouflage values v(k). We denote d = k|v and
call the k’s ”keys” or ”colors”. Note that key bits and camouflage bits are not
necessarily adjacent and might be interleaved.

Let e(k, v) = e(d) be the emanation released by transmitting d = k|v.
The vector V = [v(0), . . . , v(2s − 1)] of all camouflage values must be chosen

to make all emanations e(k, v(k)) look ”as similar as possible”. Our goal is to
infer V from E .

We assign a unique color k = color(e(k|v)) to each e(i) ∈ E . E is hence
analogous to a multidimensional cloud of 2n colored points (i.e. 2s sets of colored
points; each of these 2s sets contains 2n−s identically colored points).

A color-spanning sphere is a subset B ⊂ E containing at least one emission of
each color.

The defender will use the 2n elements of E to select 2s transmittable k|v(k)
values forming a color-spanning sphere A(V ) ⊂ E . The attacker will only get to
see traces belonging to A(V ):

A(V ) =
⋃

k=1,...,2s−1

{e ∈ E : color(e) = k}

The defender’s goal is to minimize the size of the color-spanning sphere A(V ) ex-
posed to the attacker. i.e. infer from E a smallest color-spanning sphere Aoptimal

such that

‖Aoptimal‖ = min
V
‖A(V )‖

Aoptimal has thus the least size for all choices of V .
The next section considers the simplest setting where emanations are scalars2.

In that case the difference |e − e′| between two scalars e, e′ ∈ E can be used as
a similarity measure for constructing Aoptimal efficiently.

2.1 One Dimension

Assume that the e(d) are scalars (e.g. execution times or a unique power mea-
surement per trace). Acquire the 2n reference traces:

E = {e(0), . . . , e(2n − 1)}

A given choice of V = [v(0), . . . , v(2s− 1)] restricts the attacker’s information to

A(V ) = {e(0, v(0)), . . . , e(2s−1, v(2s−1))}

2 e.g. execution times or a unique power measurement per trace.
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The defender’s goal is to minimize:

‖A(V )‖ = maxA(V )−minA(V ) = max
k

(e(k, v(k)))−min
k

(e(k, v(k)))

Let P = [p0 ≤ p1 ≤ · · · ≤ p2n−1] be the e(i) ∈ E sorted (with repetitions) by
increasing scalar values. A color-spanning segment is an interval of P containing
at least one pi of each color.

A straightforward algorithm for finding Aoptimal consists in working with
two pointers start and end representing the beginning and the end of the seg-
ment under evaluation. When execution begins, start and end point at p0. While
[start,end] is not a color-spanning segment end is moved to the right. When end
reaches p2n−1 start is moved by one position to the right (i.e. from pi to pi+1) and
end is moved back to start. Throughout this process, whenever a shorter color-
spanning segment is found, it is recorded. The complexity of this algorithm is
quadratic in the cardinality of E , i.e. O(22n).

More clever approaches allow to solve the problem in Õ(2n). To do so build
the 2s sorted sequences (with repetitions) of emissions for each color:

Pk = [pk0 ≤ . . . ≤ pk2n−s−1] for k = 1, . . . , 2s − 1

Represent the color-spanning segments by a binary search tree T of size 2s.
At step 0, initialize the tree to T0 = {p00, . . . , p2

s−1
0 } and proceed by 2s-way

merging.
At stage t, the color-spanning tree is

Tt =
{
p0λ0

t
, . . . , p2

s−1

λ2s−1
t

}
where the λk

t denote the merge pointers.
Let m and m denote (respectively) the minimal and maximal scalars in Tt.

We denote by φt the minimal (i.e. best) segment length found at step t.
If t = 0 or m−m < φt−1, then update φt = m−m else φt = φt−1.
Let m = pcλc

t
and let m = pcλc

t+1 be the next emission of the same color. The
next tree Tt+1 is obtained by replacingm bym in Tt. i.e. we increase λc

t+1 = λc
t+1

and stall all other merge pointers λk
t+1 = λk

t for k �= c.
The algorithm terminates (at some step τ < 2n) when it fails to find a suc-

cessor m to m. The length of the minimal color-spanning segment is then φτ .

Complexity: Partitioning E to 2s color subsets and sorting these subsets to
get the Pk costs O(n2n).

Binary search trees [5] support the operations (insert, find-min, extract-min
and find-max) required by the structure T , each of these operations requires
O(s) time. It follows that the 2s-way merge runs in O(s2n) and hence the above
algorithm has an overall complexity of Õ(2n).
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2.2 Higher Dimensions

We now consider the general case where e is a T -dimensional vector, e.g. a power
consumption sampled at T different instants. E is now a T -dimensional cloud of
colored points (Fig. 1) and the color spanning interval is a T -dimensional sphere.
We need to determine the smallest sphere containing at least one point of each
color i.e. the smallest color-spanning sphere Aoptimal (Fig. 2, right).

The cloud of points is contained in some minimal enclosing T -dimensional
rectangle R, whose sides are parallel to the hyperspace’s T axes (Fig. 3, right).

Fig. 1. Power trace representation in 3 dimensions

Divide and Conquer. This problem lends itself to divide and conquer resolu-
tion.

Let B be some3 initial color spanning sphere of radius r. Let � denote the
length of the rectangle R along some dimension x. Split R along the x axis into
two overlapping sub-rectangles of lengths �

2 + r as shown by Figure 4. Let Rright

and Rleft be the two equally sized sub-rectangles obtained that way (Fig. 5).
By construction, Aoptimal is fully contained in either Rright or Rleft. So, we

recursively apply the process to Rright and Rleft until splitting diminishes the
rectangles’ sizes only negligibly4. At that point we solve each of the smaller
instances (by any chosen method) and output the smallest solution of all, which
is indeed the smallest color-spanning sphere in R i.e. the smallest color-spanning
sphere Aoptimal of the original problem.

3 Not necessarily optimal, cf. Fig. 3, left.
4 After the w-th splitting the rectangles’ sides are of size 	w = (	 − 2r)2−w + 2r.
Hence splitting can last forever. We suggest to stop splitting when 	w < 3r i.e. after
�log2(	/r − 2)� iterations.
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Power Sample 2

Power 
Sample 1

Power

Time

Aoptimal

Power Sample 2

Power 
Sample 1

Fig. 2. Left: Mapping curves into points. Right: Problem instance and its optimal
solution Aoptimal.

B

Power Sample 2

Power 
Sample 1

l

R

Power Sample 2

Power 
Sample 1

Fig. 3. Left: Step 1, find any color spanning sphere B. Right: Step 2, define the rectangle
R.

Note that splitting can take place along several orthogonal axes simultane-
ously.

While practically very useful, this algorithm fails in a number of pathological
cases (e.g. when B is too large to split R). Luckily this is a well-studied problem:
[2] describes a simple linear-time algorithm in two dimensions and Welzl [3]
shows how to solve the problem in linear time for all dimensions, considering
that the number of dimensions is a fixed problem parameter. Complexity is
however exponential in the number of dimensions.

A key choice is the initial sphere B: we want B to be small enough to signifi-
cantly reduce the divide and conquer’s search space. Yet, we want B to remain
easy to compute.
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l/2 l/2 r r

Fig. 4. Left: Step 3, split R into two overlapping rectangles Rright and Rleft of length
�
2
+ r

Rleft : find optimum here

Rright : find optimum here

↓
RrightRleft

r+l/2 r+l/2

Fig. 5. Recursive problem size reduction
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Fig. 6. Program output example in 2 dimensions

Heuristics: In our implementation we used the following method to construct
B: let p0 be a point (for example the closest point to the center of R) of color
0. After computing p1, . . . , pk, we select as pk+1 the point of color k + 1 at
minimal distance from the barycenter of the cloud p1 · · · pk. The resulting B is
not necessarily optimal, (cf. Figure 7) but turns out to be much better than
selecting any random color-spanning sphere.

Fig. 7. The optimal sphere (left) is different from the sphere found by the barycenter
heuristic (right) if the heuristic considers first the red, then the blue and finally the
green points
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2.3 Implementations

Algorithms were implemented in C++5 in a straightforward manner. A function

bool smallest_ball(points, space, output)

splits space and points as explained above (using a sphere found by
find_ball_barycenter) and calls recursively smallest_ball on the smaller
spaces, until this process stops to significantly decrease the problem size. We
then use Miniball6, a C++ software for computing smallest enclosing spheres of
points in arbitrary dimensions (without requiring spheres to be color spanning)
using brute force. The description of Miniball can be found in [4,3].

Timings were measured on a Dell Inspiron 15207. Code was compiled using
Visual C++ 2008 with all optimization flags set for maximal speed.

Table 1. Running time for points randomly chosen in the 3-dimensional unit cube,
averaged over 10 runs

Total number of points 2 colors 3 colors 4 colors 5 colors

102 8 ms 11 ms 43 ms 211 ms

103 96 ms 221 ms 833 ms 7 s

104 946 ms 3 s 11 s 81 s

105 10 s 31 s 145 s 953 s

106 109 s 327 s

Table 2. Running time for points randomly chosen in the 4-dimensional unit cube,
averaged over 10 runs

Total number of points 2 colors 3 colors 4 colors 5 colors

102 11 ms 39 ms 309 ms 2 ms

103 164 ms 1 s 10 s 147 s

104 2 s 16 s 160 s

105 27 s 188 s 37 min

106 287 s 32 min > 1 hour > 1 hour

Experimental running times seem to confirm that the algorithm is linear in
the number of points and exponential in the number of colors.

5 The code is available at
http://perso.ens-lyon.fr/quentin.fortier/color ball.html

6 http://www.inf.ethz.ch/personal/gaertner/miniball.html
7 Intel Core 2 Duo T7300 processor, 2.0GHz, 4MB L2 cache, 2Go memory.
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3 Why Euclidean Distances?

Let {m0,t, . . . ,mn−1,t} be a database of n reference power consumption traces
measured over some discrete time interval t ∈ [0;T−1]. Sample mi,t corresponds
to the power consumption caused by the manipulation of data element i at
instant t. Let μt be the average power consumption at time t and σt the standard
deviation at time t:

μt =
1

n

∑
i<n

mi,t σt =

√
1

n

∑
i<n

(mi,t − μt)2.

Let at be an unidentified power measurement made by an attacker. The at-
tacker’s problem consists in finding the mk,t that best reassembles at. This sec-
tion justifies why for doing so, an attacker would naturally compute for i < n
the quantities:

score(i) =
∑
t<T

(at −mi,t)
2

σ2
t

, (1)

and output the guess k corresponding to the mk,t whose score is the lowest i.e.:

score(k) = min
i<n

(score(i)).

This formula is justified in the next section for t-wise independent mi,t’s.
In general, samples may be correlated, for instance when the same secret bit

is manipulated at two different instants. We analyze this general case later and
propose an explicit score minimization formula (2) taking into account intra-
sample correlations.

3.1 Multivariate Normal Distributions

Equation (1) stems from the assumption that, for any fixed i, successive mea-
surements of mi,t follow an independent normal distribution with mean μt and
standard deviation σt, and hence abide by the probability density function:

fmt(x) =
1

σt

√
2π

exp
(
− (x− μt)

2

2σ2
t

)
When the mi,t’s are independent, the probability density of all measurements
t < T can be expressed, for x = [x0 · · ·xT−1] as a T -dimensional multivariate
distribution:

fm(x) =
∏
t<T

fmt(xt) =
1

(2π)T/2
∏
t<T

σt
exp

(
−
∑
t<T

(xt − μt)
2

2σ2
t

)
.

Note that in the previous equation μt and σt are the expected value and standard
deviation of mi,t over all data elements i. For a measurement mi,t corresponding
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to a specific data element i, in addition, we also assume thatmi,t follows a normal
distribution with mean μ̃t = mi,t and standard deviation σ̃t; we also assume that
the standard deviation σ̃t around mi,t is the same for all data elements. In this
case, the measurement mt corresponding to data element i has the following
distribution:

fm(x) =
1

(2π)T/2
∏
t<T

σ̃t
exp

(
−
∑
t<T

(xt −mi,t)
2

2σ̃2
t

)
Additionally, we assume that the standard deviation σ̃t of mt around mi,t is
proportional to the standard deviation σt of mt when all data values are con-
sidered, i.e. we assume σ̃t = α · σt for all 0 ≤ t ≤ T − 1 for some α ∈ R. In this
case, the probability density function of the mt’s for data i can be written as:

fi(m) =
1

(2π)T/2αT
∏
t<T

σt
exp

(
−
∑
t<T

(mt −mi,t)
2

2α2σ2
t

)
∝ exp

(
− score(i)

2α2

)
where score(i) is given by equation (1). The probability to obtain measurements
mt from data i is thus a decreasing function of score(i). Given measurement m,
the most probable candidate is therefore the one with the lowest score.

3.2 Multivariate Normal Distribution: Taking Correlation into
Account

We denote by Σ the covariance matrix of the measurements, defined as follows:

Σ = var(m) = var

⎛⎜⎝m1

...
mT

⎞⎟⎠ =

⎛⎜⎜⎜⎜⎝
var(m1) cov(m1m2) · · · cov(m1mT )

cov(m1m2)
. . . · · ·

...
...

...
. . .

...
cov(m1mT ) · · · · · · var(mT )

⎞⎟⎟⎟⎟⎠
where cov(X,Y ) = E(XY ) − E(X)E(Y ) and var(X) = cov(X,X) = E(X2) −
E(X)2.

We assume that the measurements follow a T -dimensional multivariate distri-
bution with mean μ and covariance matrix Σ. The probability density function
can then be expressed as:

fm(x) =
1

(2π)T/2|Σ|1/2 exp
(
− 1

2 (x− μ)trΣ−1(x− μ)
)
.

where |Σ| is the determinant of Σ and M tr is the transposed of matrix M . The
mean μ is a T -vector and Σ is a T × T -matrix.

Note that in the previous equation μ and Σ are the expected value and co-
variance matrix of measurements for all data elements i. As previously for mea-
surements corresponding to a specific data element i, we assume that these
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measurements follow a T -multivariate normal distribution with mean μ̃t = mi,t

and covariance matrix Σ̃.
If we further assume that matrix Σ̃ is identical for all data elements, the

measurement m for data i then obeys the multivariate distribution:

fm(x) =
1

(2π)T/2|Σ̃|1/2
exp

(
− 1

2 (x−mi,·)trΣ̃−1(x−mi,·)
)
.

As previously, let us additionally assume that the covariance matrix satisfies
Σ̃ = α · Σ for some α ∈ R. In this case, the probability density function is
expressed by:

fm(x) =
1

(2πα)T/2|Σ|1/2 exp
(
− 1

2α (x−mi,·)trΣ−1(x−mi,·)
)
.

This can finally be written as

fm(x) =
1

(2πα)T/2|Σ|1/2 exp
(
− score(i)

2α

)
where

score(i) = (m−mi,·)trΣ−1(m−mi,·) (2)

It follows that equation (2) is a generalization of equation (1) where correlations
are taken into account. In other words, to take correlations into account acquire
at and compute for every i the score as per equation (2), sort the scores by
increasing values and bet on the smallest.

Example. To illustrate the procedure, we consider the bivariate case where the
covariance matrix between variables X and Y is:

Σ =

[
σ2
x ρσxσy

ρσxσy σ2
y

]
where var(X) = σ2

x, var(Y ) = σ2
y, cov(X,Y ) = ρσxσy and ρ is the correlation

between X and Y . In this case, we find:

Σ−1 =
1

1− ρ2

⎡⎢⎣
1
σ2
x

−ρ
σxσy

−ρ
σxσy

1
σ2
y

⎤⎥⎦
and the probability density function can be written as

f(x, y) =
1

2πσxσy

√
1− ρ2

exp

(
− 1

2(1− ρ2)

[
x2

σ2
x

+
y2

σ2
y

− 2ρxy

σxσy

])
.

In this case, equation (2) gets simplified as follows:

si =
(a1 −mi,1)

2

σ2
1

+
(a2 −mi,2)

2

σ2
2

− 2ρ(a1 −mi,1)(a2 −mi,2)

σ1σ2

where σ1 = var(m1), σ2 = var(m2) and ρ is the correlation between m1 and m2.
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4 Experiments

4.1 Measurements

This section describes our experimental results using the Altera EP2C20F484C7N
FPGA present on the Cyclone II Starter Development Kit (SDK). Fig.8 shows the
circuit used to measure the power consumption of a memory read + register store
operation. The circuit consisted of a RAM, a multiplexer, eight registers, slide
switches (DIP) and buttons. Identical data was simultaneously written into eight
identical registers to increase power signature.

Power was measured using a 1GHz oscilloscope (TDS 684B) and a Tektronix
P6247 differential probe (1GHz bandwidth). The SDK’s two GPIO pins (power
and ground) were connected via the differential probe. Apart from DC signal
rejection no filtering or power trace post processing was done.

0
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4
5
6
7
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D1
D2
D3
D4
D5
D6
D7
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Q1
Q2
Q3
Q4
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Q6
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DIP
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RAM
32x8

CLK W/R
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CLK

CLR
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R1
R2
R3
R4
R5
R6

S

0x00

0x08
/

/

/

5

5

5

Fig. 8. The experimental circuit used for power consumption measurements

The experimental protocol was defined as follows:

– The DIP’s eight slide switches were manually set to 0x00.
– Address 0x00 was latched on address bus A=[A0,...,A4] using the multi-

plexer’s control bit S. This caused the value 0x00 to be written into RAM
address 0x00.

– For d = 0 to 255:
• The DIP’s eight slide switches were manually set to d.
• Pressing the board’s KEY0 button triggered the following sequence of
events 1000 times (averaged to remove noise):
1. RAM write (W) was activated and bit S was used to latch address

0x08 on bus A. This caused d to be written to RAM address 0x08 (1
cycle).

2. RAM read was activated (R) and bit S was used to latch address
0x00 on bus A. This caused 0x00 to be read-out of RAM and clear
all data previously present on the bus and in the registers (3 cycles).
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3. The RAM’s CLK signal was disabled.
4. Bit S was used to latch address 0x08 on bus A.
5. The oscilloscope was triggered.
6. The RAM’s CLK signal was enabled for one cycle only causing d to

appear on bus [R0,...,R7]. The RAM’s CLK signal was immediately
re-disabled to avoid a double-reads and freeze d on bus [R0,...,R7].

7. At the next clock cycle, d appeared at the Q output pins of the eight
registers.

8. The clock was left running for one more cycle to acquire any signal
tails due to capacitive discharges.

• A 2500-sample averaged power measurement e′(d) was recorded.
• Three samples corresponding to instants t0, t1, t2 were extracted from
e′(d) to form e(d). e(d) was recorded8 as a file trace d.d used for cam-
ouflage calculations.

The described state-flow could only be interrupted by power-off or by pressing
KEY0. A finite state-machine (FSM) diagram will appear in the final version of
this paper. A characteristic power trace is shown in Figure 9.

Fig. 9. Power trace of the circuit on Fig.8

The obtained results confirm very wall both our analysis and intuition. How-
ever, for various technical reasons, we are not entirely satisfied with this first
measurement campaign. We thus plan to refine our setting and provide new
experimental results in the final paper.

4.2 Analysis

Figure 12 represent the 256 values (n = 8) obtained experimentally as 8 color
families (i.e. 32 points per family). The experimental data is available upon
request.

8 3 big-endian values stored in ASCII in decimal format. Each sample is represented
by two bytes (oscilloscope’s precision).
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sample 1

sample 3

sample 2

sample 3

sample 1

sample 2

sample 3

sample 2

sample 1

Fig. 10. Experimental results for n = 8. 3D and projected representations of the 256
experimental measurements (represented as 8 color families of 32 points).

Our goal is to consider this data as 2i colors × 28−i points for i = 1, . . . , 7,
select the optimal bus bits on which k should be encoded, compute the v(k) in all
cases and check if the results indicate, as we conjecture, that similar Hamming
weight words yield the best encoding.

For two colors (i.e. a 1-bit k) the two most similar bus values are 0x7F and
0xF9 for which:

distance(e(0x7F), e(0xF9)) = distance({28601, 28795, 28794}, {29115, 28789, 28876}) = 26.94

For four colors (i.e. a 2-bit k) we get:

binary value of k optimal k and v(k) observed side channel e(k, v(k))
00 0xB4=10110100 e(0xB4) = {28704, 28232, 28278}
01 OxD9=11011001 e(0xD9) = {28652, 28107, 28315}
10 0x96=10010110 e(0x96) = {28716, 28159, 28293}
11 0x6B=01101011 e(0x6B) = {28670, 28280, 28380}
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Fig. 11. Display of the re-scaled optimal solution rescale(e(0xB4)),
rescale(e(0xD9)), rescale(e(0x96)), rescale(e(0x6B))

sample 1

sample 3

sample 2

sample 3

sample 1

sample 2

sample 3

sample 2

sample 1

Fig. 12. Experimental results for n = 8. Position of the optimal solution
e(0xB4), e(0xD9), e(0x96), e(0x6B).
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sample 1

sample 2

sample 3

Fig. 13. Experimental results for n = 8. Position of the optimal solution
e(0xB4), e(0xD9), e(0x96), e(0xD0).

e(0xB4), e(0xD9), e(0x96), e(0x6B) are contained in a sphere of radius
√

17239
2

∼=
92.84 centered at c = {28661, 28193.5, 28347.5}where:

distance(c, e(0xB4)) = 90.34 distance(c, e(0xD9)) = 92.84
distance(c, e(0x96)) = 84.77 distance(c, e(0x6B)) = 92.84

The positions are illustrated in Figure 11 where points were re-scaled to [0, 1]
using the affine transform rescale({x, y, z}) = {u(x), u(y), u(z)} where u(�) =
(�− 28107)/609:

rescale(e(0xB4)) = {0.98, 0.21, 0.28} rescale(e(0xD9)) = {0.89, 0.00, 0.34}
rescale(e(0x96)) = {1.00, 0.09, 0.31} rescale(e(0x6B)) = {0.92, 0.28, 0.45}

5 Conclusion and Further Research

This works raises a number of interesting questions. A first natural generalization
is the translation of our analysis to an infinite number of dimensions (in terms
of metrics on function spaces and distances between functions).

A second line of research consists in introducing more complex information
encoding schemes. Here the defender detects the 2s most similar traces in E =
{e(0), . . . , e(2n− 1)}, e.g. using clustering. Let L be the subset (cluster) of these
most similar traces:
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L = {e(�(1)), . . . , e(�(2s − 1))} ⊂ E

The communicating parties assign9 to the transmitted information the encod-
ing:

�(k) = encode(k) k = decode(�(k))

For four colors (i.e. a 2-bit k) using our experimental data, we get:

binary value of k optimal encode(k) observed side channel e(encode(k))
00 0x96=10010110 e(0x96) = {28716, 28159, 28293}
01 OxB4=10110100 e(0xB4) = {28704, 28232, 28278}
10 0xD0=11010000 e(0xD0) = {28703, 28238, 28247}
11 0xD9=11011001 e(0xD9) = {28652, 28107, 28315}

e(0x96), e(0xB4), e(0xD0), e(0xD9) are contained in a sphere of radius
√

12193
2

∼=
78.08 centered at c = {28677.5, 28172.5, 28281}. This solution (shown in green in
Figure 13) shares three points with the previous solution (Figure 12) shown in red.

Along the same line of ideas, a further refinement consists in buying an eas-
ier computation of camouflage values at the cost of extra assumptions on the
power consumption model. Assume for instance an isotropic consumption model
where emanations are proportional to the Hamming weight of the transmitted
data. Here all

(
n
w

)
emissions of weight w cause identical emanations. The largest

binomial has weight w = n/2, and it is bounded by

2n√
2n

< bn =

(
n
n
2

)
<

2n√
πn/2

.

Assigning cn = �log2
√
2n� implies that 2n−cn ≤ 2n/

√
2n < bn, i.e. 2

s < bn
for s = n − cn. We can thus choose a distinct configuration of weight n/2 to
encode each secret key k. It follows that cn = (3 + log2 n)/2 bits are sufficient
to perfectly hide the emanations from s = n − cn keys over the n bits of an
isotropic bus.

If the noise level is high enough then the implementer may use the fact that

log

((
n
n
2

))
! log

((
n

n
2 ± γ

))
for moderate γ values

and increase bandwidth at the cost of a carefully controlled security risk.

Acknowledgments. Part of this work was supported under grant 12-15-1432-
HiCi from King Abdulaziz University.

9 e.g. using a lookup table.
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