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Abstract. Extraction of protein-protein interactions from scientific pa-
pers is a relevant task in the biomedical field. Machine learning-based
methods such as kernel-based represent the state-of-the-art in this task.
Many efforts have focused on obtaining new types of kernels in order to
employ syntactic information, such as parse trees, to extract interactions
from sentences. These methods have reached the best performances on
this task. Nevertheless, parse trees were not exploited by other machine
learning-based methods such as Bayesian networks. The advantage of
using Bayesian networks is that we can exploit the structure of the parse
trees to learn the Bayesian network structure, i.e., the parse trees provide
the random variables and also possible relations among them. Here we
use syntactic relation as a causal dependence between variables. Hence,
our proposed method learns a Bayesian network from parse trees. The
evaluation was carried out over five protein-protein interaction bench-
mark corpora. Results show that our method is competitive in compari-
son with state-of-the-art methods.

1 Introduction

The automation of protein-protein interaction (PPI) extraction from scientific
papers is a critical and relevant task in the biomedical field. PPIs are important
to understand the cell behavior and, consequently, to develop new drugs. Ini-
tially, manual extractions (curations) were used to perform this task. However,
the PPI extraction has been adversely limited by the growing amount of papers
and the time-consuming task involved [1]. Although this task has been addressed
by various computational approaches, the extraction of PPI still challenges the
Machine Learning community. For example, a sentence containing names of sev-
eral proteins could involve multiple interactions. In addition, there is a large
number of possibilities to express the same idea utilizing natural language in
written form. Since these problems affect the performance of computational ap-
proaches, the task is commonly considered as a binary classification problem in
order to reduce its complexity [2]. It consists in detecting whether an interaction
involved between a pair of protein names exists or not.

Figure 1 illustrates the extraction of PPIs from a sentence1 as a binary
problem. Three pairs of protein names are candidates: Actin−Iota toxin, Iota

1 This sentence belongs to the Bioinfer corpus. ID: “BioInfer.d27.s0”.
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toxin−Profilin and Actin−Iota toxin, and the output for these pairs of protein
names are “true”, “false” and “true” respectively. Thus, only two pairs of protein
names are considered interaction relationships.

ADP-ribosylation of actin at Arg 177 by
Clostridium perfringens iotatoxin increased
the nucleotide dissociation rate from 2.2 x
10(-3) s-1 to 4.5 x 10(-3) s-1 without affect-
ing the profidd-induced stimulation of nu-
cleotide exchange.

actin

iota toxin

profilin

A I

A P

I P

‘True interaction’

Fig. 1. actin (A), iota toxin (I) and profilin (P) proteins are evaluated in order to
determine which pairs of these proteins describe an interaction. Two interactions were
founded. The first one belongs to the Actin−Iota toxin (A,I) pair and, the last one
belongs to the Iota toxin−Profilin (I,P) pair.

As stated earlier, the PPI task has been treated by different machine learning
approaches, particularly, the kernel approaches using parse trees (PTs) [3] or
dependency trees [2]. In contrast, there is a lack of recent research on Bayesian
network (BN) models. Although BN models, using lexical features, have been
proposed to solve the PPI problem before [1, 4], the PTs may play an important
role to provide syntactic features for BN models. In BN, features and their
relationships are modeled as a graph from unstructured data. However, this
modeling may be enriched when relationships among features are also given from
the training data set. In that sense, a PT represents syntactic information from
a sentence in a tree form, where relationships are already given. Taking this into
account, BNs can be learned from PTs. The rationale behind this hypothesis is
that syntactic patterns among features may convey relevant information about
the existence or not of PPIs.

To the best of our knowledge, this is the first work that proposes to learn
a Bayesian network directly from parse trees to PPI extraction. The method
combines the PTs, from sentences in training data, in order to create a (probably
cyclic) graph. Then, the method removes edges and obtains a directed acyclic
graph. Finally, we limit the maximum number of parents for each node in order to
reduce the number of parameters and add a class node containing the values ‘true
interaction’ or ‘no interaction’ in the BN. To complete the BN model (structure
and parameters), the method uses the maximum likelihood estimation (MLE)
[5] to calculate the parameters.

Models obtained by the proposed method were evaluated using five well-known
PPI corpora. They are IEPA, AIMed, BioInfer, HPRD50 and LLL. Results
demonstrated that the performance of our BN models are competitive compared
to kernel-based methods applied on large corpora. However the performance of
our models decrease when employed on small corpora. This limitation can be
less latent since annotated corpora on PPI are becoming larger.
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The reminder of the paper is organized as follows. In Section 2, we describe
the related work on the PPI extraction problem. In Section 3, we explain the
proposed method. In Section 4, we provide experimental results that demonstrate
the competitive performance of the proposed method in comparison with the
state-of-the-art methods. Finally, we conclude this work.

2 Related Work

According to [6], computational methods for PPI extraction can be organized
in three groups. The first group consists of co-occurrence and rule-based ap-
proaches. The co-occurrence-based approaches evaluate the likelihood of two
protein names co-occur in a same sentence. The rule-based approaches define a
set of rules which is commonly applied on syntactic features, such as dependency
trees [7]. These rules represent evidence of the existence of interactions. However,
approaches based on co-occurrence lead to a low precision, whereas rule-based
approaches lead to a low recall on the PPI extraction [1]. As a consequence,
these methods have not succeeded on this task, needing further improvements.
The second group is machine learning-based approaches which are commonly
combined with natural language processing techniques. Recently, ensemble sys-
tems demonstrated a high performance in BioCreative II.5 [8]. Also, kernel-based
machine learning approaches have been widely used in the PPI extraction task
[2, 9–11, 6, 3, 12] with a high performance. They are considered state-of-the-art
with the use of syntactic features. The third group is the combination from the
approaches of the earlier two groups [7].

In machine learning-based methods, Dynamic Bayesian networks [4] were em-
ployed to solve the PPI extraction task in a multi-class context. In this case,
words from sentences are used as features. However, the PPI corpora are get-
ting larger and the use of all words as features in a Bayesian network increases
computational cost. Bayesian networks learned by using Hill-climbing search
algorithm [1] were also used in PPI extraction. These BN models use a fixed
number of features (7 features). This small number of features could be little
representative for all possible interactions existing in a sentence. A study [9] of
the performance of the state-of-the-art methods in the PPI extraction indicates
that these methods achieve between 19% and 30% of performance in terms of
F-measure. In that sense, this study [9] proposes the use of an unified format of
five benchmark corpora for more reliable evaluations. At present, these corpora
are used by several works on PPI extraction problem and are also used in this
work.

Currently, the kernel-based approaches are dominant on this task. Depen-
dency trees were used to construct knowledge in a graph representation [2].
Afterwards, features are extracted from the graph. In the next step, these fea-
tures are used on a regularized least squares kernel-based approach. In a similar
way, kernel based on dependency paths [13] were used to cover different syntac-
tic substructures and to obtain similarities (or dissimilarities) among sentences.
Also, support vector machines using lexical and syntactic features [12] were used,
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obtaining little improvements. In an effort to achieve better results, multiple
kernels combining lexical and syntactic features [10] obtained a high perfor-
mance in comparison with the state-of-the-art approaches. Factors to improve
the performance, such as pruning parse trees and tuning parameters of support
vector machines, were employed in a simple but effective kernel-based method
[3]. As suggested in [3], the pruning factor can be used independently of the
machine learning-based approach employed. Thus, we also use prune method
for parse trees to improve the performance and to reduce irrelevant informa-
tion. In BioCreative II.5 challenge, the OntoGene text mining environment [14]
obtained the best results. The OntoGene system employed dependency trees,
demonstrating the importance of syntactic features on the PPI extraction task.

3 Extraction of PPI Using a Probabilistic Model

In PPI extraction, the relation extraction typically consider binary relations.
This means that we have

(
n
2

)
instances from a sentence, where n is the number

of proteins. For example, we have
(
3
2

)
= 3 instances from the sentence described

in Figure 1, since there are 3 protein names. These instances named (A, I),
(A,P ) and (I, P ), must be evaluated to identify if there exist an interaction
or not. Thus, currently, the relation extraction task can be seen as a binary
classification problem [2]. The goal of this classification problem is to calculate
the maximum a posteriori (ŷ) of the random class variable (C), and a pair of
proteins is extracted if there exist an interaction (C = 1). In both cases (C = 1
and C = 0), we are given a classifier model M, a training data set D and a test
instance x denoted by (prot1, prot2), since it is assumed a binary relation. The
maximum a posteriori is obtained among values of the class C in equation (1).

ŷ = arg Cmax {P (C = 0 | M,D, x), P (C = 1 | M,D, x)} (1)

Thus, we use a function for relation extraction according to equation (2).

extractRelation (ŷ, x) =

{
ŷ = 1 interactsWith(x.prot1, x.prot2)
ŷ = 0 ∅ (2)

where the relation interactsWith(x.prot1, x.prot2) is extractedwhether aM clas-
sifier predicts an interaction (ŷ = 1) for the pair of protein names corresponding
to the test instance x. For all test cases, the relation interactsWith is defined as
‘true interaction’. In this work, parse trees are considered as instances in the train-
ing data set D and, M is our Bayesian network model induced from D.

3.1 Learning a Bayesian Network from Parse Trees

Given a Bayesian network model M = 〈GM, θ〉, where GM is its structure (i.e.,
a directed acyclic graph) and θ is the set of parameters of the BN, the goal is to
learn the model from parse trees in D. The graph GM = 〈ZM, EM〉 contains a
set of nodes (ZM) and edges (EM).
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The basic assumption of the method is that non-terminal and pre-terminal
nodes in parse trees can be considered as random variables (ZM) in order to
learn a Bayesian network. In addition, an edge between a parent node and its
child node, in the parse trees, can be regarded as a directed edge (EM) in the
Bayesian network structure. This information is used to infer how these potential
random variables are related to each other. Thus, we explain how our method
allows to learn the structure and the parameters of a Bayesian network model.

Bayesian Network Structure. Our method follows 4 steps to learn the net-
work structure: (1) create a (probably cyclic) graph structure using the non-
terminal and pre-terminal nodes from parse trees, (2) remove all the cycles in
the graph structure, (3) limit the maximum number of parents to d for each
node zk using mutual information to rank and keep only the d best parents, and
(4) add a bi-valued class node to the graph in order to infer whether a sentence
has or not an interaction.

In the first step, we consider a training data set containing M parse trees.
Each parse tree PTi (1 ≤ i ≤ M) is defined as PTi = 〈ZPTi , EPTi〉, where a
non-terminal or a pre-terminal node zk ∈ ZPTi could also exist in other parse
trees. In the i-th parse tree, PTi, ZPTi and EPTi is the set of nodes and edges
respectively. We aim to find the random variables of the Bayesian network ZM =
{ZPT1

⋃
. . .

⋃
ZPTn}. In this context, we considered the non-terminal and pre-

terminal nodes from parse trees as random variables in the ZM set. In a same
way, the set of edges can be defined by EM = {EPT1

⋃
. . .

⋃
EPTn}. An edge

ex ∈ EM describes a relationship parent → child over the nodes in ZPTi . For
example, assuming that we can learn a Bayesian network structure from only
four parsed sentences (see Figure 2), the result G′

M = 〈Z ′
M, E′

M〉, after removing
cycles, is shown in Figure 3.(a).

The second step involves the elimination of the cycles. We employ a depth-
first search technique and put repeated nodes (with the corresponding parent)
in a queue data structure. Since the preservation of the original relationships is
desired, we only remove one edge in the queue. This edge contains the pair of
nodes (a repeated node with its parent node) with the maximum distance from
each other, when we apply the depth-first search. We do this second step again
until no further repeated nodes are detected.

In the third step, each node zk ∈ ZM is restricted to have at most d number
of parents. Such restriction minimizes the complexity of the Bayesian network
structure in terms of the number of parameters. To select edges to be removed,
we rank each edge containing a relationship between the node zk and each of
its parents zπkj

∈ ZM by using the mutual information (I) measure in equation
(3). The node zπkj

is the j-th parent of the zk node. The mutual information, be-
tween two variables zk and zπkj

, determines how similar is the joint distribution

p
(
zk, zπkj

)
in comparison to the factored distribution p (zk) p

(
zπkj

)
.

I =
∑

zk

∑

zπkj

p(zk, zπkj
) log

p
(
zk, zπkj

)

p (zk) p
(
zπkj

) (3)
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Fig. 2. This figure shows four parsed sentences

(a) (b)

Fig. 3. (a) An acyclic graph containing non-terminal and pre-terminal nodes from
the parse trees in Figure 2. (b) A Bayesian network structure with non-terminal and
pre-terminal nodes and a class node C.
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For each node zk, we rank the edges ekj =
(
zk, zπkj

)
, where ekj ∈ EM, in

a descendent order in terms of I, such that, the first d edges in the rank are
considered in the graph and remaining edges are removed.

Finally, in the last step, we add a class node C and use a hill-climbing local
search algorithm and a Bayesian score [15] to connect this class node with the rest
of nodes in the graph. This new graph structure is the final Bayesian network
structure. For example, Figure 3(b) shows the graph of the Figure 3(a) but
including the class node C. The class node C is a binary variable, where C = 1
means ‘true interaction’ and C = 0, ‘no interaction’.

Parameters of the Bayesian Network. To calculate the parameters θ for
each variable zk (1 ≤ k ≤ n) in a Bayesian network model, we use the maximum
likelihood estimation (MLE) [5]. Given a training data set D with M samples,
we use the MLE in equation (4).

L
(
θ̂ : D

)
= maxθ∈ΘL (θ : D) (4)

L (θ : D) =

M∏

m=1

P (z1[m], . . . , zn[m] : θ) (5)

The node zk[m] corresponds to the zk feature of the m-th sample. The likelihood
estimation of the joint probability L (θ : D) given the parameters θ is specified in
equation (5). We can decompose this joint probability into shorter and separate
terms according to their conditional probabilities in equation (6) [5].

L (θ : D) =

M∏

m=1

P (z1[m] | zπ1 [m] : θ) . . . P (zn[m] | zπn [m] : θ) (6)

Once we have the structure of the BN and its parameters, the BN model can
be used to extract PPIs. In this case, for a test sentence x, we use the queries
P (C[x] = 1 | z1[x], . . . , zn[x]) and P (C[x] = 0 | z1[x], . . . , zn[x]), in order to cal-
culate the probabilities for the values C[x] = 1 and C[x] = 0. To infer if there ex-
ist an interaction or not, we calculate the maximum a posteriori in equation (1),
of the probabilities P (C[x] = 1 | z1[x], . . . , zn[x]) and P (C[x] = 0 | z1[x], . . . , zn[x]).
Finally, we extract a PPI interaction according to the equation (2).

3.2 Pruning Parse Trees

We employed the path-enclosed tree method to prune parse trees [16]. The gen-
eralization provided by the pruning has been demonstrated to improve the per-
formance of extraction methods [3]. This method only considers the information
surrounding the pair of protein names that are being analysed.

Figure 4 shows an example of pruning using the path-enclosed tree method.
Note that after pruning, the leaves nodes “PROTEIN1” and “PROTEIN2” are
the borders of the new parse tree.
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Fig. 4. (a) A parse tree from a sentence ID=“BioInfer.d1.s2”. (b) A pruned parse tree
using the path-enclosed tree method.

4 Experimental Results

4.1 Evaluation Corpora

The proposed method was evaluated on five well-known PPI corpora. The cor-
pora is formed by the following collections: AIMed, BioInfer, IEPA, HPRD50
and LLL; which are described elsewhere [9]. Table 1 summarize general infor-
mation about the corpora, which are organized in an unified XML format [9].
BioInfer and AIMed corpora are greater than the rest of corpora in terms of
instances and sentences. They have 9666 and 5834 instances respectively. In
contrast, IEPA, HPRD50 and LLL have 817, 433 and 330 instances respectively.
Also, sentences in PPI corpora are normalized, since only a pair of proteins can
have an interaction and this interaction can be either positive or negative.

Table 1. General information of the Five PPI Corpora. “# inst. pos” and “# inst.
neg” are the number of positive and negative sentences respectively.

AIMed BioInfer HPRD50 IEPA LLL

# documents 225 836 43 200 45
# sentences 1955 1100 145 486 77
# instances 5834 9666 433 817 330
# inst. pos 1000 2534 163 335 164
# inst. neg 4834 7132 270 482 166

The pair of protein names, forming an instance, is replaced by the following
pair of alias: “PROTEIN1” and “PROTEIN2”. The rest of protein names are
replaced by “PROTEIN”. This replacement can be observed in sentences of the
Figure 2.
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4.2 Experimental Settings

The Charniak parser2 was used to obtain the parse trees from sentences. In the
modelling of Bayesian networks, we extended the Weka 3.6 package [17] in order
to employ the parse trees as training data. Furthermore, we use the inference
algorithm of Weka over our BN models. In the evaluation of the models, we used
the macro-averaged F-measure (ma-F) and employed a 10-fold cross-validation
at document level [3].

4.3 Performance of the PPI Extraction

The results are shown in Table 2. BN models have a clear pattern, their per-
formances vary according to the size of the training corpus and the test corpus
used. Thus, our models overcome the previous approaches for the larger collec-
tions AIMed and BioInfer in comparison with the following best results of CM
(2010) [3]. However, their performance is reduced when dealing with smaller
corpora, such as HPRD50 and LLL.

Table 2. Results on PPI Corpora. PT-BN: our method. It uses the d parameter to
limit the maximum number of parents for each node in the BN. CM (2010): [3]. Miwa
(2009a): [10]. ma-F: Average of F-measure. σma−F : standard deviation of F-measure.

PT-BN d = ∞ PT-BN d = 3 CM (2010) Miwa (2009a)

ma-F σma−F ma-F σma−F ma-F σma−F ma-F σma−F

AImed 68.6 6.0 76.4 3.4 67.0 4.5 60.8 6.6
BioInfer 71.9 5.2 72.8 4.7 72.6 2.7 68.1 3.2
HPRD50 50.9 12.8 53.1 11.1 73.1 10.2 70.9 10.3
IEPA 68.2 4.6 67.4 0.5 73.1 6.0 71.7 7.8
LLL 55.43 1.7 59.0 19.3 82.1 10.4 80.1 14.1

We tested two types of models: BN-PT (d = 3) and BN-PT (d = ∞). We
selected an arbitrary number of parents, d = 3, since it proportionally increases
the complexity of the search best BN structure. The complexity of the search
procedure of the best BN is critical when d ≥ 2 [5]. In addition, we consider all
the parents of a node after our method generates the acyclic directed graph (i.e.
without using the mutual information measure to remove edges). In this case,
we denote d = ∞ to indicate that no edges were removed and all the parents
were considered.

It turns out that the number of parents d influences the performance of the
BN model. It is logical since the number of parents determines consequently the
number of parameters in the BN. To calculate these parameters, the number
of instances, in the training data set, must be large enough to learn the BN
model. Thus, the results of our BN models in large corpora, such as BioInfer

2 http://www.cs.brown.edu/people/ec/#software

http://www.cs.brown.edu/people/ec/# software
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Table 3. Results in cross-corpora. The comparison is performed in terms of F-measure.
PT-BN: our method. d: maximum number of parents for each node in the BN. CM:
[3]. Miwa (2009a): [10]. Airola (2008): [2]. Training corpora are distributed in rows and
test corpora in columns.

Methods BioInfer AIMed IEPA HPRD50 LLL

BioInfer PT-BN d = 3 72.8 69.3 67.4 66.0 65.5
CM (2010) 72.6 65.2 72.9 71.9 78.4
Miwa (2009a) 68.1 49.6 71.4 68.3 76.9
Airola (2008) 61.3 47.2 68.0 63.9 78.0

AIMed PT-BN d = 3 64.3 76.4 47.4 54.4 39.5
CM (2010) 64.2 67.0 59.0 72.9 62.7
Miwa (2009a) 53.1 60.8 68.1 68.3 73.5
Airola (2008) 47.1 56.4 67.4 69.0 74.5

IEPA PT-BN d = 3 67.3 64.2 67.4 61.9 63.0
CM (2010) 66.1 57.8 73.1 66.3 78.4
Miwa (2009a) 55.8 40.4 71.7 66.5 83.2
Airola (2008) 51.7 39.1 75.1 67.5 77.6

HPRD50 PT-BN d = 3 65.0 67.0 54.3 53.1 56.8
CM (2010) 65.5 63.1 69.3 73.1 73.7
Miwa (2009a) 48.6 43.9 67.8 70.9 72.2
Airola (2008) 42.5 42.2 65.1 63.4 67.9

LLL PT-BN d = 3 58.7 43.6 51.5 54.8 59.0
CM (2010) 64.4 55.9 71.4 69.4 82.1
Miwa (2009a) 48.90 38.60 65.6 64.0 83.2
Airola (2008) 42.50 33.30 64.9 59.8 76.8

or AIMed, are competitive (and even better) compared to the state-of-the-art
methods. Nevertheless, the performance of our BN models decrease with small
corpora.

Results using cross-corpora experiments are shown in Table 3. It is worthy of
note that the size of the corpus affects greatly the performance of the BN in terms
of F-measure. Our method achieves a competitive performance, or even better,
when it is used with IEPA, BioInfer or AIMed corpus as training data set and,
BioInfer or AIMed corpus as test data set. Note that IEPA, BioInfer and AIMed
have more than 480 sentences (486, 1,100 and 1,955 sentences respectively). On
the other hand, the corpora HPRD50 and LLL have less than 150 sentences (145
and 77 sentences respectively). The diversity of sentences in large corpora could
explain why our models performs better with them.

5 Conclusion

We conclude that the use of non-terminal nodes and their relationships from
parse trees provide important information in order to learn BN models for the
PPI extraction task.
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Thus, the BN-PT method was proposed to learn Bayesian network models
from parse trees. Like [3], we pruned the parse trees. Next, we use the parse
trees as training data set to learn BN models. These BN models obtained good
results in the PPI extraction task when they were used in large corpora such
as AIMed and BioInfer. However, the performance considerably decreased in
comparison with the state-of-the-art methods when they were employed in small
corpora. To overcome this problem, one strategy would be tuning the number of
parents d, obtaining a different value according to the corpus used. Nevertheless,
taking into account that collections of biomedical texts tend to become larger,
the proposed method can be useful in the task of extracting PPIs from these
collections.
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