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Abstract. This paper introduces a linear time graph-based soft cluster-
ing algorithm. The algorithm applies a simple idea: given a graph, vertex
pairs are assigned to the same cluster if either vertex has maximal affin-
ity to the other. Clusters of varying size, shape, and density are found
automatically making the algorithm suited to tasks such Word Sense
Induction (WSI), where the number of classes is unknown and where
class distributions may be skewed. The algorithm is applied to two WSI
tasks, obtaining results comparable with those of systems adopting ex-
isting, state-of-the-art methods.

1 Introduction

A Natural Language Processing (NLP) task may require a set of words to be
grouped or clustered into subsets, where each subset represents a distinct lexico-
logical class. For example, Word Sense Induction (WSI), the task of automati-
cally determining word senses from text, is approached in this paper by clustering
words associated with a polysemous target word into subsets of semantically re-
lated words. The words in each subset are then taken to define a different sense
of the target word. For example, if orange is a target word associated with the
set of words {red, apple, yellow, banana, green, pear}, assignment of the words in
this set to two subsets {{red, yellow, green},{apple, banana, pear}} defines two
senses of orange: the first representing the colour sense of orange, the second,
its fruit sense. In practice of course, the use of very large corpora in NLP means
that there is a need to cluster much larger sets of words than illustrated here. A
computationally efficient clustering process is therefore needed. In addition, as
words associated with a target word may themselves be polysemous, clustering
should also be able to assign words to two or more senses of the target word.

A WSI system such as that outlined above has the potential to alleviate the
lexicographer’s task of manually identifying, collating, and exemplifying word
senses: an enormous undertaking, given both the number of existing senses and
the rate at which new senses are introduced into language. In principle, WSI
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avoids reliance on a pre-defined sense inventory1, as required in Word Sense
Disambiguation (WSD). WSD systems assign pre-defined senses to words on the
basis of context. In contrast, WSI systems follow the dictum that “The meaning
of a word is its use in the language.” [3] to discover senses through examination
of context of use in large text corpora. As a consequence, rare, fine-grained and
domain specific senses not defined in existing inventories can be induced [4].

2 A Graph-Based Approach to Word Sense Induction

WSI is approached in this paper using a graph-based model of word co occur-
rence. A graph G = (V,E) consists of a set of vertices V and a set of edges
E ⊆ V × V . In the present approach, each vertex v ∈ V represents a word. An
edge (u, v) ∈ E is a pair of vertices. An edge represents a symmetrical relation-
ship between words u and v; here, that u and v co-occur in the contexts of a
target word. An edge-weighted graph assigns to each edge a weight w(u, v). In
the present work edge-weights can be understood as quantifying the strength or
significance of word co-occurrence relationships.

Figure 1 shows an edge-weighted graph Gorange in which the target word
vertex is orange and the set of words associated with orange are represented as
adjacent vertices (i.e. words found to co-occur in orange’s contexts of use).
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Fig. 1. Gorange

1 In practice, evaluation of a WSI approach requires the use of a gold standard sense
inventory, for example WordNet [1] or OntoNotes [2].
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In principle, ‘contexts of use’ might be interpreted as sentences, paragraphs,
or context windows containing the target word. In the work described, context
words are nouns occurring in co-ordination patterns [5]2. Edge weights are scores
provided by the Log Likelihood Ratio (LLR) [6], a measure of how significant it
is that two words u and v co-occur [7].

Senses may be induced by applying a clustering algorithm to identify sub-
graphs of Gorange, as illustrated in Fig. 2. Each subgraph (cluster) can then be
assigned a sense of the target word, either by mapping the cluster to a sense
given in an inventory (e.g. WordNet [8, 9]) or to a gold standard class [10–12].
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pinkyellow

red
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colour

Fig. 2. CGorange , a clustering solution for the graph Gorange shown in Fig. 1. Sense
labels are obtained using the cluster to sense mapping algorithm proposed in [8]

The word co-occurrence model outlined here is similar to models previously
applied in WSI, notably to those presented in [5, 10]. A key difference however
is the use of a novel clustering algorithm, MaxMax.

3 MaxMax

MaxMax is a non-parameterised, soft-clustering algorithm applicable to edge-
weighted graphs. A notion of maximal affinity is used, where affinity between
vertex pairs u and v is quantified by edge weights w(u, v). A vertex u is said to
have maximal affinity to a vertex v if the edge weight w(u, v) is maximal amongst
the weights of all edges incident on u. In this case, v is said to be a maximal
vertex of u (v need not be unique). Two principles are applied: 1) vertex pairs
u,v are assigned to the same cluster if either vertex is a maximal vertex of the
other; and 2) maximal affinity implies a directed relationship: if v is a maximal
vertex of u then there is a directed relationship from v to u.

2 Nouns are extracted from the British National Corpus (BNC) using the regular ex-
pression NP(, NP)*,?( CJC NP)+ where CJC = (and|or|nor) and NP, a noun phrase,
= AT?( CRD)*( ADJ)*( NOUN)+.
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Algorithm 1. MaxMax

1: procedure MaxMax(G = (V,E))
2: construct a directed graph G′ = (V,E′) where:
3: (v, u) ∈ E′ iff (u, v) ∈ E and v is a maximal vertex for u
4: mark all vertices of G′ initially as root
5: for each vertex v of G′ do
6: if v is marked root then
7: mark any descendant u of v (u �= v) as ¬root
8: end if
9: end for

10: end procedure

MaxMax consists of two discrete stages:

Stage 1. Graph Transformation. In stage 1 (lines 2 and 3 of Algorithm 1)
MaxMax takes a weighted graph G and transforms it to an unweighted, directed
graph (digraph) G′. The maximal affinity relationships between vertices of G are
used to determine the direction of the edges in G′. An example of the way in
which a weighted undirected graph is transformed to an unweighted, directed
graph is shown in Fig. 3.
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Fig. 3. G and its transformation to an unweighted directed graph G′

Stage 2. Identifying Clusters. In a digraph G′, a vertex v is said to be a
descendant of a vertex u if there is a directed path from u to v. For example, in
Fig. 3 vertex v is a descendant of vertices s and r. In stage 2, clusters are found
by tracing directed paths in G′ to identify rooted subgraphs of a particular type
(lines 4 to 9 of Algorithm 1). The vertices of each subgraph define a distinct
cluster. This is made precise as follows.

A directed graph is said to be quasi-strongly connected (QSC) if for any ver-
tices vi and vj , there is a vertex vk (not necessarily distinct from vi and vj) such
that there is a directed path from vk to vi and a directed path from vk to vj .
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It is not hard to show that a QSC digraph must contain at least one vertex vr
which is a root in the sense that every other vertex can be reached by following a
directed path from vr. Given a directed graph G′, a subgraph of G′ is a maximal
QSC subgraph if it is a QSC digraph and it is not possible to add any further
vertices or edges from G′ without rendering the subgraph non-QSC.

Clusters are identified by finding the root vertices of maximal QSC subgraphs
of G′. This is achieved simply by marking all descendants of a given vertex as
¬root . For example, consider vertex s in the directed graph G′ of Fig 4, which is
initially marked as a root . The descendant vertices of s are u and v thus marked
as ¬root . In turn, s, as a descendant of r, is marked ¬root3. At the end of stage
two, vertices that are still marked as root vertices uniquely identify clusters,
since they correspond to the roots of maximal QSC subgraphs of G′.

r

s t

u v w

x

Fig. 4. Two clusters in G′

As Fig. 4 shows, this process allows vertices to be soft clustered to more
than one cluster. In this particular example, vertex t is soft clustered to cluster
{r, s, t, u, v} and cluster {w, t, x}.

3.1 Time Complexity

It can be shown that for a connected graph G = (V,E), MaxMax runs in time
O(|E|), that is, linear in the number of edges of G. The transformation of an
edge weighted graph G to an unweighted directed graph G′ in the first stage
can be computed in O(|E|). In constructing G′ it is necessary to find maximal
vertices of each vertex in G. For a given vertex u, the set of maximal vertices can
be identified by scanning each of the edges from u to a vertex adjacent to u in
order to determine those of maximal weight. This is done for each vertex of G,
with each edge in G inspected just once4. Consequently, G′ can be constructed
in time linear in the number of edges of G.

3 In Fig. 3 vertex r or vertex s is a permissible root of the cluster {r, s, t, u, v}; similarly,
either x or w may be the root of the cluster {t, w, x}.

4 Connections u to v and v to u are considered to be two separate edges in undirected
graphs [13].
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In the second stage, vertices are initially marked as root (line 4 of Algo-
rithm 1), taking O(|V |) time. The for loop (lines 5 to 9) iterates over vertices
to identify descendant vertices (line 7) that should be marked ¬root . Naively
tracing all of the descendants of each vertex in turn could in the worst case
entail visiting O(|V |) vertices on each pass through the loop and so, result in
an overall complexity of O(|V |2). However, it is easy to show that once a vertex
has been marked ¬root then none of its descendants needs to be visited again.
Equivalently, no directed edge needs to be traversed more than once thus, overall
complexity of the for loop is linear in the number of edges of G′ (and hence linear
in the number of edges of G). This yields an overall time complexity of O(|E|).

4 WSI Tasks

In this section MaxMax is applied to two different WSI tasks. Results show that
approaches based on MaxMax are comparable with those of state-of-the-art WSI
systems.

4.1 Task 1: The SemEval 2010 WSI Task

The SemEval 2010 Word Sense Induction and Disambiguation task [12] pro-
vides a formal evaluation framework, enabling participants to compare systems.
Systems may be evaluated on a supervised WSD task or alternatively on an
unsupervised WSI task. The WSI task is considered here.

Participants are required to induce the senses of 100 target words: 50 verbs
and 50 nouns. The test set consists of 8,915 instances (sentences or paragraphs)
containing a target word: 5,285 for nouns; 3,630 for verbs. Instances are tagged
with OntoNotes senses [2]. Participants are required to tag each instance in
the test set with a sense of the target word, the sense being derived by the
participant’s WSI system.

The SNNswf System. The WSI system applied in this evaluation, SNNswf,
adapts the Shared Nearest Neighbours (SNN) algorithm [14] to fit the task.
SNNswf first extracts unordered and ordered pairs of words from test instances.
For example, given an instance [w1 tw w2 w3], where tw represents the tar-
get word and w1, w2, w3 represent context words, the following information is
extracted -

1. unordered pairs: {w1, w2}, {w1, w3}, {w2, w3}.
2. ordered pairs: (w1, w2), (w1, w3), (w2, w3).

Each context word in a target word instance is associated with a set of word
features. Thus, for the instance above, w2 is associated with the word features
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w1 and w3 and the relative word order features (extracted from the ordered pairs)
w1Left2, w3Right1. The rationale for the inclusion of the word order features is
that these may function as proxies for dependency relations between context
words [15].

Word features are filtered using the Log Likelihood Ratio (LLR) measure [6].
In this evaluation, a LLR threshold is set at 10.835. Thus, if the LLR score
between w2 and w3 is greater than or equal to 10.83, then w3 is taken to be a
significant word feature of w2. The threshold filters out features shared by many
words. Features passing the LLR threshold should provide strong indicators for
the senses of a target word.

Similarity between instance pairs is then calculated as the number of shared
significant word features (for all context words in both instances). This approach
allows both first order and second order similarity to be computed. Thus, even if
two instances have no words in common, the words themselves may share many
features, indicating a degree of semantic relatedness between two instance pairs.

A target word graph is constructed using similarity between instance (vertex)
pairs as edge weights. MaxMax is then applied to identify a set of sense clusters.
A perfect clustering solution would thus assign test instances of each sense of
the target word to a separate cluster.

Evaluation Measures. Two evaluation measures are used to assess system
performance: the V-Measure [16] and the Paired F-Score [17]. Both measures
purport to reflect alignment between a hypothesis K, the clusters returned by a
system, and a reference C, the set of gold standard classes in the test set. The
V-Measure is defined as the harmonic mean of homogeneity and completeness,
where homogeneity is the degree to which each cluster in K consists of instances
belonging to a single gold standard class in C and completeness is the degree to
which each cluster in K consists of all instances of a single gold standard class in
C. The Paired F-Score pairs instances in gold standard classes C and instances
in clusters K, then measures the extent to which pairs in C and K overlap.

Results. Tables 1 and 2 report results for SNNswf along with the best, worst,
and average score returned by participating systems. The baselines, provided
by the organisers of the task, are: 1CPI, one cluster per instance; MFS, most
frequent senses (all instances in one cluster), and Random, which randomly as-
signs instances to one of four clusters. Table 1 shows that SNNswf is the best
performing system, by some margin, according to the V-measure. However, Ta-
ble 2 shows that SNNswf is the worst performing system if the Paired F-Score is
applied.

5 Lower LLR thresholds were applied (3.84, 6.63, 7.9), returning worse results. Given
the number of possible word, feature pairs in the test set, a threshold set higher than
10.83 would be statistically invalid.
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Table 1. V-Measure results

System Verbs Nouns |Clusters|
1CPI 25.6 35.8 89.15
SNNswf 24.6 32.8 32.31
Hermit 15.6 16.7 10.78
UoY 8.5 20.6 11.54
Average 6.37 7.73 4.07
Random 4.6 4.2 4.00
Duluth-WSI-SVD-Gap 0.1 0.0 1.02
MFS 0.0 0.0 1.00

Table 2. Paired F-Score results

System Verbs Nouns |Clusters|
MFS 72.7 57.0 1.00
Duluth-WSI-SVD-Gap 72.4 57.0 1.02
Average 52.3 42.8 4.07
Random 34.1 30.4 4.00
Hermit 30.1 24.4 10.78
SNNswf 14.4 13.2 32.31
1CPI 0.08 0.11 89.15

It can be observed that Paired F-Score is biased towards clustering solutions
returning large clusters: each instance in a cluster of size n pairs with n−1 other
instances, and so punishes misclassification in small clusters disproportionately
[18, 19]. This penalises the MaxMax system, which tends to generate relatively
high numbers of fine-grained senses. Such senses may very well have high stan-
dard Precision and Recall [19]. The V-Measure on the other hand favours cluster-
ing solutions returning numerous small clusters [18, 20, 19, 21]. In this case the
bias is due to the normalisation applied in the completeness term of the measure
which monotonically increases with the number of induced clusters [20].

4.2 Task 2: Inducing WordNet Senses

The aim of this task is to induce the senses, as defined in WordNet 3.0, of
the 27,071 nouns found in co-ordination patterns extracted from the British
National Corpus (BNC). The evaluation methodology follows that in [5], which
reports results comparable with those reported in [9] – the best results reported
to date for this task. In [5], an unweighted graph Gtw is constructed, where
each vertex represents a noun found in co-ordination patterns and each edge
represents noun co-occurrence. The vertex cohesion measure of curvature [22, 23]
is applied to partition the graph into a set of clusters. The graph theoretical
concept of percolation [24, 25] is used to find a suitable curvature threshold to
apply. Nouns in each cluster are taken to represent a candidate WordNet sense.
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A problem observed with this approach is that many semantically unrelated
words may be assigned to the same cluster [19]. Consequently, an alternative
approach is adopted here. The weighted graph Gtw is first transformed to a
weighted graph GT

tw. Gtw consists of a target word (a noun in co-ordination
patterns) and its adjacent neighbours. Edge weights w(u, v) between vertices u
and v are values returned by an association measure for two nouns co-occurring in
patterns.GT

tw is derived by deleting edges in Gtw with edge weight≤ a predefined
threshold. MaxMax is then applied to GT

tw, returning a set of candidate sense
clusters for the target word.

Candidate sense clusters are mapped to WordNet senses using the method
proposed in [9]. This method returns a similarity score between a cluster and the
sense of the target word the cluster maximises. If the similarity score exceeds
a predefined threshold, the cluster is taken to be a sense of the target word.
Validity of cluster to sense mappings is measured using Precision, Recall and
F-Score [26]. Precision for a target word tw is defined as:

Precision(tw) =
|{ci ∈ Ctw | ∃ sj ∈ Stw : similarity(ci, sj) ≥ σ}|

|Ctw | , (1)

and Recall as:

Recall(tw) =
|{si ∈ Stw | ∃ cj ∈ Ctw : similarity(cj, si) ≥ σ}|

|Stw| . (2)

In (1) and (2) Ctw denotes the set of clusters returned by MaxMax given GT
tw,

and Stw is the set of WordNet senses of tw. σ is the cluster-sense similarity
threshold applied6.

Precision is defined in (1) as a many to one mapping; that is, many clusters
may map to a single sense of the target word tw7. Arguably, this is a fairer
measure for evaluating WSI approaches than that of standard Precision [26] as
a sense of a target word may be distributed across a number of clusters. Note
that each cluster mapped to a sense of tw must pass the similarity threshold σ
thus, each cluster counted in the numerator of (1) is, according to the definition
given in [9], a valid sense of the target word.

Results. Table 3 reports results, where |Words| is the number of words that
can be evaluated by a particular measure, LLR is the Log Likelihood Ratio [6]
threshold used to transform Gtw to GT

tw , and Counts is a word co-occurrence
model using raw co-occurrence counts as edge weights between noun pairs in
coordination patterns (counts > 1). Results show that the graph transformation
approach outperforms the curvature approach. Coverage of words is also far
higher. It is interesting to note that the best results are returned by a simple
graph model of word co-occurrence (Counts). Coverage here, at 9101 words, is

6 σ is set to 0.25, the threshold applied in [9] and [5].
7 Defined as accuracy in [14].
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Table 3. Results for the curvature and graph transformation approaches

System Precision Recall F-Score |Words|
MaxMaxLLR=15.13 72.1 53.2 61.2 11138

MaxMaxLLR=10.83 65.5 53.1 58.7 16850

MaxMaxLLR=6.63 59.6 55.8 57.6 21716

MaxMaxLLR=3.84 56.6 59.1 57.8 22899

MaxMaxCounts 74.2 58.6 65.5 9101

Curvature 60.9 40.7 48.8 3906

relatively low yet, is still over twice the number of words that can be evaluated
using the curvature approach. This result suggests that comparatively complex
measures of word association may not be required to induce word senses.

5 Discussion

Graph-based models (GBM) have been previously applied to WSI, using words
as vertices in [27, 28, 10, 29–31] and word collocations as vertices in [32–35].
Alternative approaches include the use of a vector space model (VSM) in [36,
37, 9], Latent Semantic Analysis (LSA) in [38, 39], and a Bayesian approach in
[40]. Surveys of WSI approaches are provided in [41–43].

As noted in [28, 44], a VSM approach using context words can conflate senses,
as each vector merges the senses context words take. A GBM clearly delineates
the uses of context words. LSA, a dimensionality reduction technique, aims to
remove information that is irrelevant to the problem space however, this can lead
to information pertinent to finding rarer senses being discarded. In contrast, a
GBM retains all information. A GBM using collocations as vertices is based on
Yarowsky’s tenet: ‘one sense per collocation’ [45]. The argument given [32–35]
is that collocation vertices are less sense conflating than single word vertices.
Arguably though, collocation vertices are not required if the set of word vertices
that define target word senses is filtered using a significance threshold set on
edge weights.

Existing soft clustering algorithms such as Fuzzy c-Means [46] and Expec-
tation Maximization [47] require the number of clusters to be pre-defined. Pa-
rameter tuning is therefore necessary in order to find a good clustering solution
[14]. Consequently, these algorithms are not well-suited to WSI, as the number
of senses target words take is often undefined.

MaxMax bears some resemblance to single-link Hierarchical Agglomerative
Clustering (HAC) [14] in that leaf vertices (clusters consisting of one vertex)
in the first iteration of HAC are clustered using maximal affinity between ver-
tex pairs. However, whereas HAC hard clusters vertices in O(|V |3), MaxMax



378 D. Hope and B. Keller

hard/soft clusters vertices in linear time. MaxMax also shares some properties
with Chinese Whispers [48], a non-parameterised, graph-based clustering algo-
rithm shown to have utility in NLP [4, 49–52, 30]. Both algorithms use affinity
within the local neighbourhood of vertices to generate clusters and both have
linear run times. However, there are key differences. MaxMax is deterministic,
whilst Chinese Whispers may return different solutions for the same graph. In
addition, MaxMax is able to soft cluster vertices, whilst Chinese Whispers can-
not. Thus, given the input graph G in Fig. 5, Chinese Whispers randomly assigns
vertex c to cluster 1 or 2 whereas MaxMax returns the clustering solution CG.
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Fig. 5. Soft clustering example

6 Conclusions

This paper introduced MaxMax, a novel non-parameterised soft clustering algo-
rithm that finds the number of clusters in a graph automatically by identifying
root vertices of maximal quasi strongly connected subgraphs, a process shown to
be computable in linear time. Examples showed that descendant vertices of more
than one root vertex can be soft clustered, with a descendant vertex assigned to
each cluster containing a vertex to which it has maximal affinity: a straightfor-
ward process that, in comparison to existing soft clustering algorithms, is both
fast and transparent. As a non-parameterised clustering algorithm, MaxMax is
well-suited to WSI or, indeed, to any task in which the number of clusters is
not known in advance. To test its utility for WSI, MaxMax was incorporated
into two induction systems. Results in two tasks showed the systems to return
scores comparable with, if not better than, those of existing state-of-the-art sys-
tems. However, further tests are required thus, future research plans to apply the
algorithm in the forthcoming SemEval 2013 WSI evaluations and to carry out
a comparative analysis against the recently introduced SquaT++ and B-MST
clustering algorithms [30]. Additionally, as the WSI tasks in this paper have no
special requirement for soft clustering, future research also plans to apply the
algorithm to networks in which soft clustering may be of use. For example, social
networks [53] and contagion networks [54] typically have many vertices with ties
to more than one maximal vertex therefore, MaxMax may be particularly suited
to studying these types of networks.
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