
studies
in applied
philosophy,
epistemology
and
rational
ethics

Gordana Dodig-Crnkovic
Raffaela Giovagnoli (Eds.)

Computing Nature
Turing Centenary Perspective

123



Studies in Applied Philosophy,
Epistemology and Rational Ethics 7

Editor-in-Chief

Prof. Dr. Lorenzo Magnani
Department of Arts and Humanities
Philosophy Section
University of Pavia
Piazza Botta 6
27100 Pavia
Italy
E-mail: lmagnani@unipv.it

Editorial Board

Prof. Atocha Aliseda
Instituto de Investigaciones Filosoficas, Universidad Nacional Autónoma de México (UNAM),
Ciudad Universitaria, Coyoacan, 04510, Mexico, D.F.
E-mail: atocha@filosoficas.unam.mx

Prof. Giuseppe Longo
Centre Cavaillès, CNRS - Ecole Normale Supérieure, Paris, France
E-mail: Giuseppe.Longo@ens.fr

Prof. Chris Sinha
Centre for Languages and Literature, P.O. Box 201, 221 00 Lund, Sweden
E-mail: chris.sinha@ling.lu.se

Prof. Paul Thagard
Department of Philosophy, Faculty of Arts, Waterloo University, Waterloo, Ontario,
Canada N2L 3G1
E-mail: pthagard@uwaterloo.ca

Prof. John Woods
Department of Philosophy, University of British Columbia, 1866 Main Mall BUCH E370,
Vancouver, BC Canada V6T 1Z1
E-mail: john.woods@ubc.ca

For further volumes:
http://www.springer.com/series/10087



Advisory Board
Akinori Abe
Faculty of Letters, Chiba University, Inageku,
Chiba, Japan
Hanne Andersen
Department of Physics and Astronomy,
Science Studies, Aarhus University, Aarhus,
Denmark
Otávio Bueno
Department of Philosophy, University of Miami,
Coral Gables, USA
Sanjay Chandrasekharan
Science Education Centre, Tata Institute of
Fundamental Research (TIFR), Mumbai, India
Marcelo Dascal
Department of Philosophy, Tel Aviv University,
Tel Aviv, Israel
Gordana Dodig Crnkovic
Department of Computer Science and Networks,
School of Innovation, Design and Engineering,
Mälardalen University, Sweden
Michel Ghins
Institut supérieur de philosophie,
Université Catholique de Louvain,
Lovain-la-Neuve, Belgium
Marcello Guarini
Department of Philosophy, University of Windsor,
Canada
Ricardo Gudwin
Department of Computer Engineering and
Industrial Automation, the School of Electrical
Engineering and Computer Science,
State University of Campinas, Brazil
Albrecht Heeffer
Centre for History of Science, Ghent University,
Belgium
Mireille Hildebrandt
Erasmus University, Rotterdam, The Netherlands
Kenneth Einar Himma
Department of Philosophy, Seattle Pacific
University, Seattle, USA
Michael Hoffmann
School of Public Policy, Georgia Institute
of Technology, Atlanta, USA
Ping Li
Department of Philosophy,
Sun Yat-sen University, Guangzhou, P.R. China
Michael Minnameier
Goethe-Universität Frankfurt am Main, Frankfurt,
Germany
Margaret Morrison
Department of Philosophy, University of Toronto,
Toronto, Canada
Yukio Ohsawa
School of Engineering, The University of Tokyo,
Tokyo, Japan
Sami Paavola
Center for Research on Activity, Development,
and Learning (CRADLE), Institute of Behavioural
Sciences, University of Helsinki, Helsinki, Finland
Woosuk Park
Humanities & Social Sciences, KAIST,
Guseong-dong, Yuseong-gu Daejeon, South Korea

Alfredo Pereira
Institute of Biosciences, São Paulo
State University (UNESP), São Paulo,
Brazil

Luís Moniz Pereira
Centro de Inteligência Artificial (CENTRIA),
Faculdade de Ciências e Tecnologia,
Universidade Nova de Lisboa, Caparica, Portugal

Ahti-Veikko Pietarinen
Department of Philosophy, History, Culture
and Art Studies, University of Helsinki, Finland

Demetris Portides
Department of Classics and Philosophy,
University of Cyprus, Nicosia, Cyprus

Dagmar Provijn
Centre for Logic and Philosophy of Science,
Ghent University, Ghent, Belgium

Joao Queiroz
Institute of Arts and Design. Federal University
of Juiz de Fora, Brazil

Athanasios Raftopoulos
Department of Psychology, University of Cyprus,
Cyprus

Chiaki Sakama
Department of Computer and Communication
Sciences, Wakayama University, Japan

Colin Schmidt
Institut d’Informatique Claude Chappe,
University of Le Mans, France

Gerhard Schurz
Institute for Philosophy,
Heinrich-Heine University, Germany

Nora Schwartz
Department of Humanities, Faculty of Economics,
Universidad de Buenos Aires, Argentina

Cameron Shelley
Department of Philosophy,
University of Waterloo, Waterloo, Canada

Frederik Stjernfelt
Center for Semiotics, Aarhus University,
Aarhus, Denmark

Mauricio Suarez
Department of Logic and Philosophy of Science,
Faculty of Philosophy, Complutense University of
Madrid, Madrid, Spain

Jeroen van den Hoven
Values and Technology Department,
Delft University of Technology, Delft,
The Netherlands

Peter-Paul Verbeek
Department of Philosophy, University of Twente,
Enschede, The Netherlands

Riccardo Viale
Department of Sociology and Social Research,
University of Milan-Bicocca, Milan, Italy and
Italian Cultural Institute of New York (Director),
USA

Marion Vorms
University Paris 1 Panthéon-Sorbonne, IHPST,
Paris, France



Gordana Dodig-Crnkovic
and Raffaela Giovagnoli (Eds.)

Computing Nature

Turing Centenary Perspective

ABC



Editors
Gordana Dodig-Crnkovic
School of Innovation, Design and Engineering
Mälardalen University
Västerås
Sweden

Raffaela Giovagnoli
Faculty of Philosophy
Pontifical Lateran University
Vatican City
Italy

ISSN 2192-6255 ISSN 2192-6263 (electronic)
ISBN 978-3-642-37224-7 ISBN 978-3-642-37225-4 (eBook)
DOI 10.1007/978-3-642-37225-4
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013933717

c© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Contents

Computing Nature

Computing Nature – A Network of Networks of Concurrent Information
Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Gordana Dodig-Crnkovic, Raffaela Giovagnoli

A Framework for Computing like Nature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Ron Cottam, Willy Ranson, Roger Vounckx

The Coordination of Probabilistic Inference in Neural Systems . . . . . . . . . . . 61
William A. Phillips

Neurobiological Computation and Synthetic Intelligence . . . . . . . . . . . . . . . . . 71
Craig A. Lindley

A Behavioural Foundation for Natural Computing and a
Programmability Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Hector Zenil

Alan Turing’s Legacy: Info-Computational Philosophy of Nature . . . . . . . . . 115
Gordana Dodig-Crnkovic

Dualism of Selective and Structural Manifestations of Information in
Modelling of Information Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Marcin J. Schroeder

Intelligence and Reference: Formal Ontology of the Natural
Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Gianfranco Basti

Representation, Analytic Pragmatism and AI . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Raffaela Giovagnoli



VI Contents

Salient Features and Snapshots in Time: An Interdisciplinary Perspective
on Object Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Veronica E. Arriola-Rios, Zoe P. Demery, Jeremy Wyatt, Aaron Sloman,
Jackie Chappell

Toward Turing’s A-Type Unorganised Machines in an Unconventional
Substrate: A Dynamic Representation in Compartmentalised Excitable
Chemical Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Larry Bull, Julian Holley, Ben De Lacy Costello, Andrew Adamatzky

Learning to Hypercompute? An Analysis of Siegelmann Networks . . . . . . . . 201
Keith Douglas

Oracle Hypermachines Faced with the Verification Problem . . . . . . . . . . . . . . 213
Florent Franchette

Does the Principle of Computational Equivalence Overcome the
Objections against Computationalism? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Alberto Hernández-Espinosa, Francisco Hernández-Quiroz

Some Constraints on the Physical Realizability of a Mathematical
Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Francisco Hernández-Quiroz, Pablo Padilla

From the Closed Classical Algorithmic Universe to an Open World of
Algorithmic Constellations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
Mark Burgin, Gordana Dodig-Crnkovic

What Makes a Computation Unconventional? . . . . . . . . . . . . . . . . . . . . . . . . . 255
S. Barry Cooper

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271



G. Dodig-Crnkovic and R. Giovagnoli (Eds.): Computing Nature, SAPERE 7, pp. 1–22. 
DOI: 10.1007/978-3-642-37225-4_1              © Springer-Verlag Berlin Heidelberg 2013 

Computing Nature – A Network of Networks  
of Concurrent Information Processes 

Gordana Dodig-Crnkovic1 and Raffaela Giovagnoli2 

1 Department of Computer Science and Networks, Mälardalen University, Sweden 
gordana.dodig-crnkovic@mdh.se 

2 Faculty of Philosophy. Lateran University, Rome, Italy 
raffa.giovagnoli@tiscali.it 

1 Introduction 

The articles in the volume Computing Nature present a selection of works from the 
Symposium on Natural/Unconventional Computing at AISB/IACAP (British Society 
for the Study of Artificial Intelligence and the Simulation of Behaviour and The In-
ternational Association for Computing and Philosophy) World Congress 2012, held at 
the University of Birmingham, on the occasion of the centenary of Alan Turing’s 
birth. 

This book is about nature considered as the totality of physical existence, the un-
iverse. By physical we mean all phenomena - objects and processes - that are possible 
to detect either directly by our senses or via instruments. Historically, there have been 
many ways of describing the universe (the cosmic egg, the cosmic tree, the theistic 
universe, the mechanistic universe) while a particularly prominent contemporary 
model is the computational universe.  

One of the most important pioneers of computing, Turing, seen by Hodges [1] as 
natural philosopher, can be identified as a forerunner and founder of the notion of 
computing nature and natural computing through his ideas about morphological com-
puting, ”unorganized” (neural-network type) machines and “oracle” machines. Tur-
ing’s impact on the development of computing can be seen as two-fold: laying down 
the foundations of the theory of computing by his Turing Machine model he provided 
such powerful paradigm that soon led to the belief that it is all we can do when it 
comes to computing. But, “There are assumptions underlying the paradigm which 
constrain our thinking about the realities of computing”, as Cooper in this volume 
rightly observed. On the other hand, his work on natural computing points towards the 
development in different directions. It is obvious from Turing’s own research that he 
did not consider Turing Machine model the only possible way of computation.  

After many decades of development, present day computers are distinctly different 
from the early stand-alone calculating machines that Turing helped construct, that 
were designed to mechanize computation of mathematical functions. Computers to-
day are networked and largely used for world-wide communication and variety of 
information processing and knowledge management. They are cognitive tools of ex-
tended mind (in the sense of Clark and Chalmers) used in social interactions and they 
provide ever growing repositories of information. Moreover, computers play an  
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important role in the control of physical processes and thus connect directly to the 
physical world in automation, traffic control, robotics and more. Apart from classical 
engineering and hard-scientific domains, computing has in recent decades pervaded 
new fields such as biology and social sciences, humanities and arts – all previously 
considered as typical soft, non-mechanical and unautomatable domains.  

Computational processes running in networks of networks (such as the internet) 
can be modeled as distributed, reactive, agent-based and concurrent computation. The 
main criterion of success of this computation is not its termination, but its behavior - 
response to changes, its speed, generality and flexibility, adaptability, and tolerance to 
noise, error, faults, and damage. Internet, as well as operating systems and many da-
tabase management systems are designed to operate indefinitely and termination for 
them would be an error. We will return to the topic of concurrent computing and its 
relationship with Turing machine model of computation in more detail later on. 

One of the aims of this book is to show the state of the art of developments in the 
field of natural/unconventional computation which can be seen as generalization and 
enrichment of the repertoire of classical computation models. As a generalization of 
the traditional algorithmic Turing Machine model of computation, in which the com-
puter was an isolated box provided with a suitable algorithm and an input, left alone 
to compute until the algorithm terminated, natural computation models interaction i.e. 
communication of computing processes with each other and with the environment. In 
natural systems, computation is information processing that can proceed on both 
symbolic and sub-symbolic (signal-processing) level. For human cognitive processes 
it means that not only the execution of an algorithm can be seen as computation, but 
also learning, reasoning, processing of information from sense organs, etc.  

Hewitt [2] characterizes the Turing machine model as an internal (individual) 
framework and the Actor model of concurrent computation as an external (sociologi-
cal) model of computing. This tension between an (isolated) individual one and (inte-
racting) social many resonates with two articles from this volume: Cottam et al. who 
distinguish ”conceptual umbrella of entity and its ecosystem” and Schroeder’s view 
that “Information can be defined in terms of the categorical opposition of one and 
many, leading to two manifestations of information, selective and structural. These 
manifestations of information are dual in the sense that one always is associated with 
the other.” Here information is directly related with computation defined as informa-
tion processing. [3] 

The frequent objection against the computational view of the universe, elaborated 
by Zenil in this volume, is that ”it is hard to see how any physical system would not 
be computational.” The next frequently mentioned issue is: if the universe computes, 
what are the input and the output of its computation? This presupposes that a compu-
ting system must have an input from the outside and that it must deliver some output 
to the outside world. But actor system [2] for example needs no input. Within pan-
computationalist framework, the whole universe computes its own next state from its 
current state [4]. As all of physics is based on quantum mechanical layer of informa-
tion processing, zero-point (vacuum) oscillations can be seen as constant input for the 
computational network of the universe. What causes different processes in the un-
iverse is the interaction or exchange of information between its parts. The universe is 
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a result of evolution from the moment of big-bang or some other primordial state, 
through the complexification of the relationships between its actors by computation as 
a process of changes of its informational structure. Physical forces are established 
through particle exchanges (message exchanges) which necessarily connect particles 
into a web of physical interactions which are manifestation of natural laws. The  
whole of the universe is in the state of permanent flow, far from steady state, which 
results in forming increasingly complex structures, [5]. So much on the input-output 
objection. 

As to the objection that not all of the universe can be computational, as it is a too 
powerful a metaphor, [6] it is essential to keep in mind the layered architecture of the 
computing nature, as not all of computation is the same – computation is proceeding 
on many scales, on many levels of hierarchical organization. Moreover, in tandem 
with computation, universe is described by information, representing its structures. 
Given that computation follows physical laws, or represents/implements physical 
laws, generative model of the universe can be devised such that some initial network 
of informational processes develops in time into increasingly complex (fractal, ac-
cording to Kurakin, [5]) information structures.  

The parallel could be drawn between natural computationalism and atomic theory 
of matter which is another general theory which implies that all of matter is made of 
atoms (and void). We may also say that all of physics (structures and processes) can 
be derived from elementary particles (and void that is an ocean of virtual particles 
which for short time, obeying Heisenberg uncertainty relations, pop into existence and 
quickly thereafter disappear). This does not make the world a soup of elementary 
particles where no differences can be made, and nothing new can emerge. Those basic 
elements can be imagined as neodymium ball magnets from which countless struc-
tures can be constructed (in space and time, through interactions). 

Unified theories are common and valued in physics and other sciences, and natural 
computationalism is such a unified framework. It is therefore not unexpected that 
physicists are found among the leading advocates of the new unified theory of infor-
mational and computational universe – from Wheeler, via Feynman, to our contempo-
raries such as Fredkin, Lloyd, Wolfram, Goyal and Chiribella. For the articles of latter 
two physicists on the topic of informational universe, see the special issue of the jour-
nal Information titled Information and Energy/Matter [7] and the special issue of the 
journal Entropy titled Selected Papers from Symposium on Natural/ Unconventional 
Computing and its Philosophical Significance [8]. 

Conceptualizing the physical world as a network of information networks evolving 
through processes of natural computation helps us to make more compact and cohe-
rent models of nature, connecting non-living and living worlds. It presents a suitable 
basis for incorporating current developments in understanding of biological, cognitive 
and social systems as generated by complexification of physicochemical processes 
see Deacon [9] through self-organization of molecules into dynamic adaptive com-
plex systems that can be understood as morphogenesis, adaptation and learning—all 
of which can be understood as computation (information processing), [50]. 
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2 Re-Conceptualizing of Nature as Hierarchically Organized 
Network of Networks Computational Architecture 

2.1 Natural Hierarchy 

“If computation is understood as a physical process, if nature computes with 
physical bodies as objects (informational structures) and physical laws govern 
process of computation, then the computation necessarily appears on many differ-
ent levels of organization. Natural sciences provide such a layered view of nature. 
One sort of computation process is found on the quantum-mechanical level of 
elementary particles, atoms and molecules; yet another on the level of classical 
physical objects. In the sphere of biology, different processes (computations = in-
formation processing) are going on in biological cells, tissues, organs, organisms, 
and eco-systems. Social interactions are governed by still another kind of commu-
nicative/interactive process. If we compare this to physics where specific “force 
carriers” are exchanged between elementary particles, here the carriers can be 
complex chunks of information such as molecules or sentences and the nodes 
(agents) might be organisms or groups—that shows the width of a difference.” [3] 

Searching for a framework for natural computation and looking at nature from variety 
of perspectives and levels of organization, Cottam et al. in this book address the gen-
eral question of hierarchy in nature and point to Salthe who ”restricts the term hierarchy 
to two forms: the scale (or compositional) hierarchy and the specification (or subsumption) 
hierarchy.” However, they find that for the description of ntural systems a third form they name 
the representation or model hierarchy is most suitable. The central tenet is the birational eco-
systemic principle: “Nature seen through sciences brings all of Science under a generalized 
umbrella of entity and its ecosystem, and then characterizes different types of entity by their 
relationships with their relevant ecosystems.” (emphasis added) 

In spite of suggested tree-structure with representation on top, followed by model 
hierarchy with subsequent compositional and subsumption hierarchy, the authors 
emphasize the movement between the bottom and the top. Parts define the whole, 
which once established, affect its parts. As a case in point, they provide an example of 
a (Natural) model hierarchy for a tree represented at different scales: ”{a tree de-
scribed in terms of atoms}, {a tree described in terms of molecules}, {a tree described 
in terms of cells}… up to {a tree described in terms of branches}, {a tree as itself – a 
tree}”. Here inter-scale interfacing and consequently digital-analog interfaces are 
discussed and it is pointed out that naturally-hierarchical multi-scale organisms func-
tion qualitatively differently from a digital computer. The article concludes with the 
hope that this birational ecosystemic hierarchical framework will be capable of pro-
viding a new definition of computation, closer to physical processes in nature. 

2.2 Cognitive Level of Information Processing 

In a hierarchy of organizational levels in nature the most complex level of information 
processing is cognitive level and it subsumes all lower levels that successively emerge 
from their antecedent lower levels. Lindley in this volume addresses the problems 
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encountered in the development of engineered autonomous and intelligent systems 
caused by exclusively linguistic models of intelligence. The alternative proposed is 
“taking inspiration more directly from biological nervous systems”. This approach is 
argued to be able to go “far beyond twentieth century models of artificial neural net-
works (ANNs), which greatly oversimplified brain and neural functions”. This im-
plies study of computation as information processing in neural and glial systems in 
order to implement “asynchronous, analog and self-* architectures that digital com-
puters can only simulate.” (emphasis added) The difference between physical process 
as it appears in nature and its computational simulation is essential when we not only 
talk about them and represent them them, but also use them as computational re-
sources in AI systems. 

Continuing on the level of neural systems, Phillips’s paper addresses the important 
topic of coordination of concurrent probabilistic inference. Adaptively organized 
complexity of life builds on information processing and in cognitive agents with 
neural systems also on inference. The paper discusses the theory of Coherent Infomax 
in relation to the Theory of free energy reduction of probabilistic inference. Coherent 
Infomax shows how neural systems combine local reliability with context-sensitivity 
and here we recognize the leitmotif from several other papers: individual in relation to 
the social, or agent and its eco-system. 

Basti and Dodig-Crnkovic recognize significant role Turing played as a pioneer of 
natural computing, especially in the field of morphological computing and neural 
networks (unorganized machines). 

Bull et al. in this book address Turing’s unorganized machines as models of neural 
systems. Turing in his 1948 paper [10] made an essential insight about the connection 
of social aspects of learning and intelligence. From the contemporary perspective of 
natural computing we see networks as information processing mechanisms and their 
role in intelligence is fundamental. Suggesting that natural evolution may provide 
inspiration for search mechanisms to design machines, Bull et al investigate Turing’s 
dynamical representation for networks of vesicles (membrane-bound compartments 
with Belousov-Zhabotinsky mixture) used as liquid information processing system. 
Communication between vesicles via chemical signals - excitations propagating be-
tween vesicles, was seen as imitation or cultural information communication. The 
authors hope that this may provide “a useful representation scheme for unconvention-
al computing substrates”.  

Arriola-Rios, Demery, Wyatt, Sloman and Chappell contribute to this book with a 
study of object representation in animals (especially parrots) and robots from segre-
gate information about physical objects. This work helps better understanding of the 
mechanisms of information processing on the cognitive level. Information in a cog-
nizing agent forms internal representations dependent on the way of its use, or the 
way of the interaction of the agent with the environment. Information could be com-
pressed and re-used for interpretations, and identification of causal relationships and 
functions. It is described “how a selection of key elements from the environment 
could be used as a basis for an object representation, and considered possible underly-
ing exploration strategies for gathering information by observing natural behaviour.“ 
Particular analysis is devoted reasoning about deformable objects through key frames.  
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Still on the cognitive level of an agent processing information through its physical 
structures, it is instructive to connect to Cooper’s observation about Turing’s model. 

“We might have been told at some point that it was devised as a disembodying 
model of machine computation. Not so, of course. 2012 has made everyone aware 
of the very specific physicality of the computing situation that Turing was model-
ling, the predominantly women `computers' following instructions. (…) The  
underlying physicality may be highly complex. But such things as the human 
computer's aches and pains, her feelings of hunger or boredom, are factored out of 
the process.” 

Yet, on a more basic level, “her feelings of hunger or boredom” were part of her be-
ing alive which made it possible for her to compute. If we want to construct such self-
sustained, intelligent, adaptive computers capable of not only following instructions 
but even creating new algorithms, we might need to take the boredom and joy and 
other human characteristics into our broader model of computing. Those are qualities 
that may fuel creativity, even though they act as disturbance when performing lengthy 
mechanical calculations. Nature uses both mechanical and creative computing in cog-
nitive agents. 

3 The Unreasonable Effectiveness of Mathematics  
in the Natural Sciences (Except for Biology). Mathematicians 
Bias and Computing Beyond the Turing Limit 

Mathematician’s contribution to the development of the idea of computing nature is 
central. Turing as an early proponent of natural computing put forward a machine 
model that is still in use. How far can we hope to go with Turing machine model of 
computation?  

In the context of computing nature, living systems are of extraordinary importance 
as up to now science haven’t been able to model and simulate the behavior of even 
the simplest living organisms. “The unreasonable effectiveness of mathematics” ob-
served in physics (Wigner) is missing for complex phenomena like biology that today 
lack effective mathematical models (Gelfand), see Chaitin [11]. 

Not many people today would claim that human cognition (information processing 
going on in our body, including brain) can be adequately modeled as a result of com-
putation of one Turing machine, however complex function it might compute. In the 
next attempt, one may imagine a complex architecture of Turing machines running in 
parallel as communicating sequential processes (CSPs) exchanging information. We 
know today that such a system of Turing machines cannot produce the most general 
kind of computation, as truly asynchronous concurrent information processing going 
on in our brains. [4] 

However, one may object that IBM’s super-computer Watson, the winner in man 
vs. machine "Jeopardy!" challenge, runs on contemporary (super)computer which is 
claimed to be implementation of the Turing machine. Yet, Watson is connected to the 
Internet. And Internet is not a Turing machine. It is not even a network of Turing 
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Machines. Information processing going on throughout the entire Internet includes 
signaling and communication based on complex asynchronous physical processes that 
cannot be sequentionalized. (Hewitt, Sloman) As an illustration see Barabási et al. 
article [12] on parasitic computing that implements computation on the communica-
tion infrastructure of the Internet, thus using communication for computation. 

Zenil in this volume examines the question: “What does it mean to claim that a 
physical or natural system computes?” He proposes a behavioural characterisation of 
computing in terms of a measure of programmability, which reflects a system’s ability 
to react to external stimuli. To that end Zenil investigates classical foundations for 
unconventional computation.  

Cooper in his chapter “What Makes a Computation Unconventional?” investigates 
the relationships between method and matter, process and embodiment. He addresses 
the phenomenon of emergence, which is recurrent theme of this book, but in Coopers 
approach emergence is related to unconventional, higher type computation: 

“Although Stephen Kleene provided formal content to the notion of higher type 
computation via a series of papers spanning over 30 years (1959 - 1991), the phys-
ical relevance of his take on the topic needs to be clarified. A forthcoming book on 
"Computability At Higher Types" by John Longley and Dag Normann is eagerly 
anticipated. The intuition is that computational unconventionality certainly entails 
higher type computation, with a correspondingly enhanced respect for embodied 
information." 

Hernandez-Espinosa and Hernandez-Quiroz, starting from the old computationalism 
defined as the belief that the human mind can be modeled by Turing Machines,  
analyze Wolfram’s Principle of Computational Equivalence based on his studies of 
cellular automata – the claim that “any natural (and even human) phenomenon can be 
explained as the interaction of very simple rules.” The next step in cellular automata 
models may be to replace present basic simple rules of cellular automata with more 
elaborate ones. Instead of synchronous update of the whole system; they can be made 
asynchronous networks of agents, placed in layered architectures on different scales 
etc. Here we recognize the basic idea of generative science which is to generate ap-
parently unanticipated and infinite behaviour based on deterministic and finite rules 
and parameters reproducing or resembling the behavior of natural and social pheno-
mena. As an illustration see Epstein, [13]. 

If we want to generalize the idea of computation so to be able to encompass more 
complex operations than mechanical execution of an algorithm, simulating not only a 
person executing strictly mechanical procedure, but the one constructing a new 
theory, we must go back to underlying mathematics. 

While Cooper in this volume asks “To what extent can the explanatory power of 
the mathematics clarify key issues relating to emergence, basic physics, and the  
supervenience of mentality on its material host?” Dodig-Crnkovic and Burgin inves-
tigate the explanatory power of mathematics. They analyze methodological and philo-
sophical implications of algorithmic aspects of unconventional/natural computation 
that extends the closed classical universe of computation of the Turing machine type. 
The new extended model constitute an open world of algorithmic constellations,  



8 G. Dodig-Crnkovic and R. Giovagnoli 

allowing increased flexibility and expressive power, supporting constructivism and 
creativity in mathematical modeling and enabling richer understanding of computa-
tion, see [14]. 

3.1 Hypercomputation - Beyond the Turing Limit 

Hypercomputation is the research field that formulated the first ideas about the possi-
bility of computing beyond Turing machine model limits. The term hypercomputation 
was introduced by Copeland and Proudfoot [15]. The expression "super-Turing com-
putation" was coined by Siegelman and usually implies that the model is physically 
realizable, while hypercomputation in general typically relies on thought experiments. 
Present volume offers two contributions that sort under hypercomputation, written by 
Franchette and Douglas. 

Franchette studies the possibility of a physical device that hypercomputes by build-
ing an oracle hypermachine, which would be a device able to use external information 
from nature in order to go beyond Turing machines limits. The author also addresses 
an analysis of the verification problem for oracle hypermachines. 

Douglas in his contribution presents a critical analysis of Siegelmann Networks. 

3.2 Physical Computation “In Materio” - Beyond the Turing Limit 

Several authors at the Symposium on Natural/Unconventional Computing at 
AISB/IACAP World Congress 2012 (Stepney, Cooper, Goyal, Basti, Dodig-
Crnkovic) underlined the importance of physical computing, or as Stepney [16] 
termed it, “computation in materio”. Along the same lines, Cooper in his article Tur-
ing's Titanic Machine? [17] diagnoses the limitations of the Turing machine model 
and identifies the ways of overcoming those limitations by introducing: 

− Embodiment invalidating the `machine as data' and universality paradigm. 
− The organic linking of mechanics and emergent outcomes delivering a clearer 

model of supervenience of mentality on brain functionality, and a reconciliation 
of different levels of effectivity. 

− A reaffirmation of experiment and evolving hardware, for both AI and extended 
computing generally. 

− The validating of a route to creation of new information through interaction and 
emergence. 

Related article by the same author, The Mathematician's Bias and the Return to Em-
bodied Computation, in [18], analyses the role of physical computation vs. universal 
symbol manipulation. 

The theme of embodied computation is addressed in this volume by Hernandez-
Quiroz and Padilla who examine actual physical realizability of mathematical con-
structions of abstract entities - a controversial issue and important in the debate about 
the limits of the Turing model. The authors study a special case of physical realiza-
bility of the enumeration procedure for rational numbers via Cantor's diagonalization 
by an Ising system. 
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3.3 Higher Order Computability - Beyond the Turing Limit 

One of the main steps towards the new paradigm of natural/unconventional compu-
ting is to make visible host of myths which are surrounding the old paradigm and 
helping it to survive. One of those myths is that our modern computers with all their 
programming languages are just diverse implementations of Turing machines. How-
ever, as Kanneganti and Cartwright already argued twenty years ago: 

“Classic recursion theory asserts that all conventional programming languages 
are equally expressive because they can define all partial recursive functions over 
the natural numbers. This statement is misleading because programming languag-
es support and enforce a more abstract view of data than bit strings. In particular, 
most real programming languages support some form of higher-order data such as 
potentially infinite streams (input and output), lazy trees, and functions.” Kanne-
ganti and Cartwright [19] 

Kleene was a pioneer of higher order computability as he “opened the frontiers of 
computability on higher type objects in a series of papers first on constructive ordinals 
and hierarchies of number-theoretical predicates and later on computability in higher 
types.” Soare [20] 

Also Cooper [21] underlines the importance of higher-order computational struc-
tures as characteristic of human thinking. This can be connected to higher-order func-
tional programming, which means, among others, programming with functions whose 
input and/or output may consist of other functions. 

“Kreisel [21] was one of the first to separate cooperative phenomena (not 
known to have Turing computable behaviour), from classical systems and pro-
posed [22] (p˙143, Note 2) a collision problem related to the 3-body problem as a 
possible source of incomputability, suggesting that this might result in “an analog 
computation of a non-recursive function (by repeating collision experiments suffi-
ciently often)”. This was before the huge growth in the attention given to chaos 
theory, with its multitude of different examples of the generation of informational 
complexity via very simple rules, accompanied by the emergence of new regulari-
ties (see for example the two classic papers of Robert Shaw [33], [32]). We now 
have a much better understanding of the relationship between emergence and 
chaos, but this still does not provide the basis for a practically computable rela-
tionship.“ Cooper [21] (emphasis added)  

4 Concurrent Computing and Turing Machine Model 

4.1 Bi-directional Model Development of Natural Computation 

Turing machine (originally named “logical calculating machine”) model of computa-
tion was developed by Turing in order to describe a human (at that time called” a 
computer”) executing an algorithm:  
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“It is possible to produce the effect of a computing machine by writing down a 
set of rules of procedure and asking a man to carry them out. Such a combination 
of a man with written instructions will be called a ‘Paper Machine’. A man pro-
vided with paper, pencil, and rubber, and subject to strict discipline, is in effect a 
universal machine.” Turing [10] 

The underlying logic of Turing’s “logical calculating machine” is fully consistent 
standard logic. Turing machine is assumed always to be in a well defined state. [2] In 
contemporary computing machinery, however, we face both states that are not well 
defined (in the process of transition) and states that contain inconsistency: 

“Consider a computer which stores a large amount of information. While the 
computer stores the information, it is also used to operate on it, and, crucially, to 
infer from it. Now it is quite common for the computer to contain inconsistent in-
formation, because of mistakes by the data entry operators or because of multiple 
sourcing. This is certainly a problem for database operations with theorem-
provers, and so has drawn much attention from computer scientists. Techniques 
for removing inconsistent information have been investigated. Yet all have limited 
applicability, and, in any case, are not guaranteed to produce consistency. (There 
is no algorithm for logical falsehood.) Hence, even if steps are taken to get rid of 
contradictions when they are found, an underlying paraconsistent logic is desirable 
if hidden contradictions are not to generate spurious answers to queries.” Priest 
and Tanaka [22] 

Open, interactive and asynchronous systems have special requirements on logic. Gol-
din and Wegner [23], and Hewitt [2] argue e.g. that computational logic must be able 
to model interactive computation, and that classical logic must be robust towards 
inconsistencies i.e. must be paraconsistent due to the incompleteness of interaction.  

As Sloman [24] argues, concurrent and synchronized machines are equivalent to 
sequential machines, but some concurrent machines are asynchronous, and thus not 
equivalent to Turing machines. If a machine is composed of asynchronous concur-
rently running subsystems, and their relative frequencies vary randomly, then such a 
machine cannot be adequately modeled by Turing machine, see also [4].  

Turing machines are discrete but can in principle approximate machines with con-
tinuous changes, yet cannot implement them exactly. Continuous systems with non-
linear feedback loops may be chaotic and impossible to approximate discretely, even 
over short time scales, see [25] and [2]. Clearly Turing machine model of computa-
tion is an abstraction and idealization. In general, instead of idealized, symbol-
manipulating models, more and more physics-inspired modeling is taking place.  

Theoretical model of concurrent (interactive) computing corresponding to Turing 
machine model of algorithmic computing is under development. (Abramsky, Hewitt, 
Wegner) From the experience with present day networked concurrent computation it 
becomes obvious that Turing machine model can be seen as a special case of a more 
general computation. During the process of learning from nature how to compute,  
we both develop computing and at the same time improve understanding of natural 
phenomena. 
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“In particular, the quantum informatic endeavor is not just a matter of feeding 
physical theory into the general field of natural computation, but also one of using 
high-level methods developed in Computer Science to improve on the quantum 
physical formalism itself, and the understanding thereof. We highlight a seemingly 
contradictory phenomenon: passing to an abstract, categorical quantum informat-
ics formalism leads directly to a simple and elegant graphical formulation of quan-
tum theory itself, which for example makes the design of some important quantum 
informatic protocols completely transparent. It turns out that essentially all of the 
quantum informatic machinery can be recovered from this graphical calculus. But 
in turn, this graphical formalism provides a bridge between methods of logic and 
computer science, and some of the most exciting developments in the mathematics 
of the past two decades“ Abramsky and Coecke [25] 

The similar two-way process of learning is visible in biocomputing, see Rozenberg 
and Kari [26]. As we already mentioned “the unreasonable effectiveness of mathe-
matics in the natural sciences” does not (yet) apply to biology, as modeling of biolog-
ical systems attempted up to now was too crude. Living systems are essentially open 
and in constant communication with the environment. New computational models 
must be interactive, concurrent, and asynchronous in order to be applicable to biolog-
ical and social phenomena and to approach richness of their information processing 
repertoire.  

Present account of models of computation highlights several topics of importance 
for the development of new understanding of computing and its role: natural compu-
tation and the relationship between the model and the physical implementation, inte-
ractivity as fundamental for computational modeling of concurrent information 
processing systems (such as living organisms and their networks), and new develop-
ments in logic needed to support this generalized framework. Computing understood 
as information processing is closely related to natural sciences; it helps us recognize 
connections between sciences, and provides a unified approach for modeling and 
simulating of both living and non-living systems. [4] 

4.2 Concurrency and Actor Networks in Nature All the Way Down 

In his article: What is computation? Concurrency versus Turing's Model, Hewitt [2] 
makes the following very apt analysis of the relationship between Turing machines 
and concurrent computing processes: 

“Concurrency is of crucial importance to the science and engineering of com-
putation in part because of the rise of the Internet and many-core architectures. 
However, concurrency extends computation beyond the conceptual framework of 
Church, Gandy [1980], Gödel, Herbrand, Kleene [1987], Post, Rosser, Sieg 
[2008], Turing, etc. because there are effective computations that cannot be per-
formed by Turing Machines. In the Actor model [Hewitt, Bishop and Steiger 
1973; Hewitt 2010], computation is conceived as distributed in space where com-
putational devices communicate asynchronously and the entire computation is not 
in any well-defined state. (An Actor can have information about other Actors that 
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it has received in a message about what it was like when the message was sent.) 
Turing's Model is a special case of the Actor Model.” Hewitt [2] (emphasis added) 

According to natural computationalism/pancomputationalism [4] every physical sys-
tem is computational, but there are many different sorts of computations going on in 
nature seen as a network of agents/actors exchanging ”messages”. The simplest 
agents communicate with simplest messages such as elementary particles (with 12 
kinds of matter and 12 kinds of anti-matter particles) exchanging 12 kinds of force-
communicating particles. Example from physics that we can recast into actor model is 
Yukawa’s theory of strong nuclear force modeled as exchange of mesons (as messag-
es), which explained the interaction between nucleons. Complex agents/actors like 
humans communicate through languages which use very complex messages for com-
munication. Also, exchange of information causes change of actors. Those changes 
are simple in simple actors such as elementary particle that can change its state (quan-
tum numbers) and in complex agents with memory, communication results in  
substantial changes in agents’ way of response. 

Natural computational systems as networks of agents exchanging messages are in 
general asynchronous concurrent systems. Conceptually, agent-based models and 
actor models are closely related, and as mentioned, understanding of interactions  
between agents in interaction networks fits well in those frameworks.  

Physical Computing - New Computationalism.   
Non-symbolic vs. Symbolic Computation 

It is often argued that computationalism is the opposite of connectionism and that 
connectionist networks and dynamic systems do not compute. This implied that hu-
man mind as a processes powered by human brain as a network of neurons cannot be 
adequately modeled in computational terms. However, if we define computation in a 
more general sense of natural computation, instead of high level symbol manipulation 
of Turing machine, it is obvious that connectionist networks and dynamical systems 
do compute. Computational modeling of cognitive processes requires computing tools 
that contain not only Turing Machine model but also connectionist network models. 
That is also the claim made by Scheutz in the Epilogue of the book Computational-
ism: New Directions [27], where he notices that: 

“Today it seems clear, for example, that classical notions of computation alone 
cannot serve as foundations for a viable theory of the mind, especially in light of 
the real-world, real-time, embedded, embodied, situated, and interactive nature of 
minds, although they may well be adequate for a limited subset of mental 
processes (e.g., processes that participate in solving mathematical problems).  
Reservations about the classical conception of computation, however, do not au-
tomatically transfer and apply to real-world computing systems. This fact is often 
ignored by opponents of computationalism, who construe the underlying notion of 
computation as that of Turing-machine computation.” Scheutz [27] p. 176 
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Classical computationalism was the view that classical theory of computation (Tur-
ing-machine-based, universal, and disembodied) might be enough to explain cognitive 
phenomena. New computationalism (natural computationalism) emphasizes that em-
bodiment is essential and thus physical computation, hence natural computationalism. 

The view of Scheutz is supported by O'Brien [28] who refers to Horgan and Tien-
son [29] arguing that “cognitive processes, are not governed by exceptionless, repre-
sentation-level rules; they are instead the work of defeasible cognitive tendencies 
subserved by the non-linear dynamics of the brains neural networks.” 

Dynamical characterization of the brain is consistent with the analog interpretation 
of connectionism. But dynamical systems theory is often not considered to be a com-
putational framework. O'Brien [28] notices that “In this sense, dynamical systems theory 
dissolves the distinction between intelligent and unintelligent behaviour, and hence is quite 
incapable, without supplementation, of explaining cognition. In order for dynamical engines to 
be capable of driving intelligent behaviour they must do some computational work: they must 
learn to behave as if they were semantic engines.” 

O’Brien and Opie [30] thus search for an answer to the question how connectionist 
networks compute, and come with the following characterization: 

”Connectionism was first considered as the opposed to the classical computa-
tional theory of mind. Yet, it is still considered by many that a satisfactory account 
of how connectionist networks compute is lacking. In recent years networks were 
much in focus and agent models as well so the number of those who cannot im-
agine computational networks has rapidly decreased. Doubt about computational 
nature of connectionism frequently takes the following two forms.  

1. (W)hile connectionists typically interpret the states and activity of connectionist 
networks in representational terms, closer scrutiny reveals that these putative re-
presentations fail to do any explanatory work, and since there is ‘‘no computation 
without representation’’ (Pylyshyn 1984, p. 62), the connectionist framework is 
better interpreted non-computationally. 

2. “the connectionist networks are better characterized as dynamical systems rather 
than computational devices.” 

In the above denial of computational nature of connectionist models the following 
confusions are evident.  

1. Even though it is correct that there is “no computation without representation”, 
representation in this context can be any state of activation in a cognizing agent 
that causes the agent to “recognize” the information. It can be a dynamical state in-
duced in the agents’ brain as a consequence of perception and that dynamical state, 
even though it has no apparent resemblance of the source of information, is causal-
ly connected to it. 

2. Dynamical systems compute and their computation in general is natural computa-
tion. One of the central questions in this context is the distinction between symbol-
ic and non-symbolic computing. Trenholme [31] describes the relationship of  
analog vs. symbolic simulation: 
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“Symbolic simulation is thus a two-stage affair: first the mapping of inference 
structure of the theory onto hardware states which defines symbolic computation; 
second, the mapping of inference structure of the theory onto hardware states 
which (under appropriate conditions) qualifies the processing as a symbolic simu-
lation. Analog simulation, in contrast, is defined by a single mapping from causal 
relations among elements of the simulation to causal relations among elements of 
the simulated phenomenon.” Trenholme [31] p.119. (emphasis added) 

Both symbolic and sub-symbolic (analog) simulations depend on caus-
al/analog/physical and symbolic type of computation on some level but in the case of 
symbolic computation it is the symbolic level where information processing is ob-
served. Similarly, even though in the analog model symbolic representation exists at 
some high level of abstraction, it is the physical agency of the substrate and its causal 
structure that define computation (simulation). 

Basti in this volume suggests how to “integrate in one only formalism the physical 
(“natural”) realm, with the logical-mathematical (“computation”), studiying their 
relationships. That is, the passage from the realm of the causal necessity (“natural”) 
of the physical processes, to the realm of the logical necessity (“computational”), and 
eventually representing them either in a sub-symbolic, or in a symbolic form. This 
foundational task can be performed, by the newborn discipline of theoretical formal 
ontology.” Proposed formal ontology is based on the information-theoretic approach 
in quantum physics and cosmology, the information-theoretic approach of dissipative 
QFT (Quantum Field Theory) and the theoretical cognitive science. 

Freeman offers an accurate characterization of the relationship between physi-
cal/sub-symbolic and logical/symbolic level in the following passage: 

“Human brains intentionally direct the body to make symbols, and they use the 
symbols to represent internal states. The symbols are outside the brain. Inside the 
brains, the construction is effected by spatiotemporal patterns of neural activity 
that are operators, not symbols. The operations include formation of sequences of 
neural activity patterns that we observe by their electrical signs. The process is by 
neurodynamics, not by logical rule-driven symbol manipulation. The aim of simu-
lating human natural computing should be to simulate the operators. In its sim-
plest form natural computing serves for communication of meaning. Neural  
operators implement non-symbolic communication of internal states by all mam-
mals, including humans, through intentional actions. (…) I propose that symbol-
making operators evolved from neural mechanisms of intentional action by  
modification of non-symbolic operators.“ [32] (emphasis added) 

Consequently, our brains use non-symbolic computing internally in order to manipu-
late relevant external symbols/objects! 

4.3 Physical Computation/Natural Computation vs. Turing Machine Model  

So in what way is physical computation/natural computation important vis-à-vis Turing 
machine model? One of the central questions within computing, cognitive science, AI 
and other related fields is about computational modeling (and simulating) of intelligent 
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behaviour. What can be computed and how? It has become obvious that we must have 
richer models of computation, beyond Turing machine, if we are to adequately model 
and simulate biological systems. What exactly can we learn from nature and especially 
from intelligent organisms?  

It has taken more than sixty years from the first proposal of the test Turing called 
the ”Imitation Game", as described in Turing [33] p. 442, to the Watson machine 
winning Jeopardy. That is just the beginning of what Turing believed one day will be 
possible - a construction of computational machines capable of generally intelligent 
behavior as well as the accurate computational modeling of the natural world. So 
there are several classes of problems that deserve our attention when talking about 
computing nature. 

To ”compute” nature by any kind of computational means, is to model and/or si-
mulate the behaviors of natural systems by computational means. Watson is a good 
example. We know that we do not function like Watson or like chess playing pro-
grams that take advantage of brute force algorithms to search the space of possible 
states. We use our ”gut feeling” and ”fingertip-feeling”/ ”fingerspitzengefühl” and 
they can be understood as embodied, physical, sub-symbolic information processing 
mechanisms we acquire by experience and use when necessary as automatized  
hardware-based, automatic recognition tools. 

To compute nature means to interpret natural processes, structures and objects as a 
result of natural computation which is in general defined as information processing. 
This implies understanding and modeling of physical agents, starting from the funda-
mental level of quantum computing via several emergent levels of chemistry, biology, 
cognition and extended cognition (social, and augmented by computational/ informa-
tion processing machinery).  

At the moment we have bits and pieces of the picture – computing nature, that is 
computational modeling of nature and computing nature, that is nature understood in 
itself as a computational network of networks.  

5 The Relationship between Human Representation, Animal 
Representation and Machine Representation 

We would like to highlight the relevance of the relationship between human represen-
tation and machine representation to show the main issues concerning “functional-
ism” and “connectionism”. We propose to discuss the notion of “representation”  
because an important challenge for AI is to simulate not only the “phonemic” and 
“syntactic” aspects of mental representation but also the “semantic” aspect. Tradition-
ally, philosophers use the notion of “intentionality” to describe the representational 
nature of mental states namely intentional states are those that “represent” something, 
because mind is directed toward objects. We think that it is important to consider the 
relevance of “embodied cognition” for contentful mental states (see, for instance, the 
classical thought experiment of the “Chinese room” introduced by Searle to criticize 
the important results of the Turing test, [34]).  
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The challenge for AI is therefore to approximate to human representations i.e. to 
the semantic content of human mental states. There are two competing interpretations 
of mental representations relevant for AI. The first focuses on the discreteness of 
mental representations and the second focuses on their inter-relation [35]. The first 
corresponds to the symbolic paradigm in AI, according to which mental representa-
tions are symbols. Proponents of the symbolic representation point on a semantic that 
rests on the relation between tokens of the symbol and objects of representation. The 
intentional mechanism functions in a way that the content of a symbol does not de-
pend on the content of other symbols. In this sense, each symbol is discretely con-
ferred with its intentional content. The second corresponds to connectionism in AI, 
according to which mental representations are distributed patterns. Proponents of this 
view intend the way in which a mental representation is conferred with its intentional 
content as mediated by relations with other representations. The virtue of connection-
ism as presented in the neural networks resides in the fact that the categories 
represented admit borderline cases of membership. As regards the composition of 
mental representations, it reveals itself to be the complex, contextually modulated 
interaction of patterns of activation in a highly interconnected network. We aim to 
describe the main aspects of the two approaches to make clear: the mechanisms cha-
racterizing the different way by which representations are conferred with their inten-
tional content; the nature and structure of the categories represented and the ways in 
which mental representations interact.  

The task to consider the similarity between human and artificial representation 
could involve the risk of skepticism about the possibility of “computing” this mental 
capacity. If we consider computationalism as defined in purely abstract syntactic 
terms then we are tempted to abandon it because human representation involves “real 
world constrains”. But, a new view of computationalism could be introduced that 
takes into consideration the limits of the classical notion and aims at providing a con-
crete, embodied, interactive and intentional foundation for a more realistic theory of 
mind [27]. We would like to highlight also an important and recent debate on “digital 
representation” [36] that focus on the nature of representations in the computational 
theory of mind (or computationalism). The starting point is the nature of mental re-
presentations, and, particularly, if they are “material”. There are authors such as Clark 
who maintain that mental representation are material [37] while others like Speaks 
think that thought processes use conventional linguistic symbols [38]. The question of 
digital representation involves the “problem of physical computation” [39] as well as 
the necessity of the notion of representation [40] so that we only have the problem of 
how to intend the very notion of representation [41, 42]. But, there is also the possi-
bility of understanding computation as a purely physical procedure where physical 
objects are symbols processed by physical laws on different levels of organization 
that include “every natural process” in a “computing universe” [43]. In this context, 
we need a plausible relation between computation and information. Info-computational 
naturalism describes the informational structure of the nature i.e. a succession of level 
of organization of information. Morphology is the central idea in the understanding of 
the connection between computation and information. It proceeds by abstracting the 
principles via information self-structuring and sensory-motor coordination. The sen-
sory-motor coordination provides an “embodied” interaction with the environment: 
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information structure is induced in the sensory data, thus facilitating perception, learn-
ing and categorization.  

Among the possibilities to compute human representational processes, Basti in this 
volume proposes a natural account from the field of formal ontology. In particular, he 
implements the so-called “causal theory of reference” in dynamic systems.  

We think it is necessary to find a plausible philosophical strategy to consider the 
capacities that are common to human and machine representation (Giovagnoli in this 
volume). Analytic Pragmatism that is represented by the American philosopher Bran-
dom [44] suggests relevant ideas to describe human, animal and artificial capacities 
for representing the external world. It is easier to start with the human case and so to 
describe discursive practices and to introduce norms for deploying an autonomous 
vocabulary, namely a vocabulary of a social practice (science, religion etc.). These 
norms are logical and are at the basis of an “inferential” notion of representation. But, 
inference in this sense, recalling Frege, is material. Brandom refuses the explanation 
of representation in terms of syntactical operations as presented by “functionalism” in 
“strong” artificial intelligence (AI or GOFAI). He does not even accept weak AI 
(Searle), rather he aims to present a “logical functionalism” characterizing his analytic 
pragmatism. According to Brandom, we are not only creatures who possess abilities 
such as to respond to environmental stimuli we share with thermostats and parrots but 
also “conceptual creatures” i.e. we are logical creatures in a peculiar way and we need 
a plausible view to approach human capacities.  

Very interesting results are offered by Arriola-Rios and Demery et al. who discuss 
in this book how salient features of objects can be used to generate compact represen-
tations in animals and robots, later allowing for relatively accurate reconstructions 
and reasoning. They would like to propose that when exploration of objects occurs for 
forming representations, it is not always random, but also structured, selected and 
sensitive to particular features and salient categorical stimuli of the environment. 
They introduce how studies into artificial agents and into natural agents are comple-
mentary by emphasizing some findings from each field.  

Along this line, Bull, Holley, De Lacy Costello and Adamatzky present initial  
re-sults from consideration of using Turing’s dynamical representation within uncon-
ven-tional substrate – networks of Belousov-Zhabotinsky vehicles – designed by an 
imitation based i.e. cultural approach. Over sixty years ago, Alan Turing presented a 
simple representation scheme for machine intelligence namely a discrete dynamical 
system network of two-input NAND gates. Since then only a few other explorations 
of these unorganized machines are known. As the authors underscore in their paper, it 
has long been argued that dynamic representations provide numerous useful features, 
such as an inherent robustness to faults and memory capabilities by exploiting the 
structure of their basins of attraction: 

“For example, unique attractors can be assigned to individual system 
states/outputs and the map of internal states to those attractors can be constructed 
such that multiple paths of similar states lead to the same attractor. In this way, 
some variance in the actual path taken through states can be varied, e.g., due to er-
rors, with the system still responding appropriately. Turing appears to have been 
thinking along these lines also”. 
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6 Conclusions, Open Problems and Future Work 

“It turns out to be better to use the world as its own model.” Brooks [45] 

As already argued, we enjoy and appreciate what Wigner named “the unreasonable 
efficiency of mathematics in natural sciences” [46] – except for biology. Time is right 
to address biology at last and try to find out how best to use computation to model and 
simulate behavior of biological systems. In this context it can never be overempha-
sized that:"nothing in biology makes sense except in the light of evolution" – an  
insight made by the evolutionary biologist Dobzhansky [47]. In order to model (simu-
late) evolution we need generative models. As demonstrated by e.g. Epstein [13] and 
Wolfram [48], such models are capable of producing complex behaviors starting from 
simple structures and processes (rules). 

Of all biological phenomena, cognition (the ability of living organisms to process 
information beyond simple reactivity) seems to be the most puzzling one, as in more 
complex organisms it is related to phenomena such as mind, intelligence and mental 
(thought) processes. Cognition in highly developed organisms indeed looks like a 
miracle if one does not take into account that it took several billions of years in nature 
to develop through the process of evolution from simplest forms to increasingly com-
plex ones. Through the reverse engineering of evolution we are learning how organ-
isms function through computational models such as Human Brain/Blue Brain 
project. At the same time we learn to compute in novel and more powerful ways, such 
as developed in the IBM’s project on Cognitive Computing. 

For the future work on computing nature it remains to reconstruct the process of 
evolution of life in terms of information and computation (as information processing), 
starting from the process of abiogenesis i.e. the transition from amino acids to first 
living organisms. Of special interest are the evolution of nervous systems and brains 
in animals and thus the development of complex cognitive capacities, such as intelli-
gence. This understanding of the evolution and the development in terms of informa-
tion and computation will lead to improved understanding of underlying mechanisms 
of morphological computing as information self-structuring [48].  

Here follows the list of some important questions to answer in the framework of 
natural computation (information processing in physical systems). 

− Generative modeling of the evolution and development of physical structures of 
the universe, starting with minimum assumptions about primordial universe in 
terms of information and computation, based on actor (agent) networks exchang-
ing information (messages/particles). 

− Generative modeling of hierarchical structure of emergent layers of organization 
in physical systems in terms of natural computing. Modeling of the process in 
which the whole constraints its parts and showing how its (higher level) properties 
emerge. 

− Understanding and describing of the evolution and development of living organ-
isms on earth within the framework of natural computation (morphological com-
putation, self-organization of informational structures through computational 
processes – concurrent computational processes, modeled as above. [49] 
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− Understanding intelligence and consciousness, in terms of information and  
computation. Explaining how representations (symbolic level) emerge from sub 
symbolic information processes. Understanding how exactly our brains process in-
formation, learn and act in terms of information and natural computation on dif-
ferent levels of organization. Working out the connections between connectionist 
networks/dynamic systems and symbol manipulation, sub-symbolic and symbolic 
information processing. 

− Explaining how physics connects to life and how the fact that we evolved from 
physical matter defines the ways we interact with the universe and form our con-
cepts and actions (observer problem in epistemology), continuation of the project 
started by Deacon [9].  

− Uncovering details of info-computational mechanisms involved in DNA control of 
cellular processes.  

− Application of natural computation to program nano-devices and universally pro-
grammable intelligent matter. [50] 

− Answering questions for which natural computationalism is especially suitable 
framework, such as: why is the genetic difference between humans and other ani-
mals much smaller than we imagined before genome sequencing? How does the 
evident difference between humans and apes developed, given our social commu-
nication system as computational infrastructure that acts as a basis of human social 
intelligence established by natural computing?  

From all above proposed research a richer notion of computation will emerge, which 
in its turn will help in the next step to better address natural phenomena as computa-
tions on informational structures. As Penrose in the foreword to [18] states: 

“(S)ome would prefer to define “computation” in terms of what a physical ob-
ject can (in principle?) achieve (Deutsch, Teuscher, Bauer and Cooper). To me, 
however, this begs the question, and this same question certainly remains, whi-
chever may be our preference concerning the use of the term “computation”. If we 
prefer to use this “physical” definition, then all physical systems “compute” by de-
finition, and in that case we would simply need a different word for the (original 
Church-Turing) mathematical concept of computation, so that the profound ques-
tion raised, concerning the perhaps computable nature of the laws governing the 
operation of the universe can be studied, and indeed questioned.” 

With this new idea of natural computation generalizing current Turing model of com-
putation, nature indeed can be seen as a network of networks of computational 
processes and what we are trying is to compute the way nature does, learning its tricks 
of the trade. So the focus would not be computability but computational modeling. 
How good computational models of nature are we able to produce and what does it 
mean for a physical system to perform computation, where computation is implemen-
tation of physical laws. 

It is evident that natural computing/ computing nature presents a new natural philos-
ophy of generality and scope that largely exceed natural philosophy of Newton’s era, 
presented in his Philosophiae Naturalis Principia Mathematica. Natural computation 
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brings us to the verge of a true paradigm shift in modeling, simulation and controlling 
the physical world, and it remains to see how it will change our understanding of nature 
and especially living nature including humans, their societies and ecologies. 
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Abstract. We address the context within which ‘Natural’ computation can be 
carried out, and conclude that a birational ecosystemic hierarchical framework 
would provide for computation which is closer to Nature. This presages a major 
philosophical change in the way Science can be carried out. A consequence is 
that all system properties appear as intermediates between unattainable dimen-
sional extremes; even existence itself. We note that Classical and Quantum me-
chanical paradigms make up a complementary pair. What we wish to do is to 
bring all of Science under a generalized umbrella of entity and its ecosystem, 
and then characterize different types of entity by their relationships with their 
relevant ecosystems. The most general way to do this is to move the ecosystem-
ic paradigm up to the level of its encompassing logic, creating a complementary 
pair of conceivably different logics – one for the entity we are focusing on; one 
for the ecosystem within which it exists – and providing for their quasi-
autonomous birational interaction. 

Keywords: natural computation, modeling, ecosystem, birationality, hierarchy, 
entropy, life. 

1 Introduction 

Does Nature compute? By matching computational models to Natural phenomena we 
are effectively saying yes. But we cannot know for certain. All we can say is that this 
is how it looks. Processes in nature can be far more complex than the simple func-
tional computation of a Turing machine – with asynchronous parallelism; recursively 
communicating subroutines; … Computation is a logical process by which the confi-
guration of data may be modified. Consequently it is devoid of meaning per se, and 
relies on evaluation at the higher context-dependent level of information processing to 
confirm its procedural correctness. Our conventional concept of computation is an 
empirically-aligned invented paradigm, like any other Scientific paradigm, which 
must therefore be principally referred to Natural processes, and whose validity may be 
challenged at any time. Computation becomes ‘more Natural’ when its currently-
adopted paradigm is challenged by another, more effectively Nature-referred one, and 
not when a previously unemployed Natural mechanism is adopted to carry out  
‘computation’ as it is defined within the current paradigm. 
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So how can we compute like Nature? This is arguably what we are trying to do al-
ready. But is the framework within which we compute sufficient? We ourselves 
would say no. We manage well enough for systems which are close to linearity and 
equilibrium, but outside of that we quickly run into difficulties. So what can we 
change? Quantum mechanics [1] and ecosystemics [2] have led the way – both of 
them insisting that we cannot in general observe a system without changing it. But we 
have not followed. Maybe we should. This is what we will address. 

What is Natural computation? And as a starting point, what is conventional compu-
tation? Conventionally, we presume that given a relevant process of ‘computation’, 
we can to some degree know precisely and accurately both an initial data configura-
tion (at time t1) and a resultant data configuration (at time t2). The difficulty is always 
to justify the presumption. If we can model the process in a formally defined envi-
ronment, then we reduce it to a parallelized1 or serialized set of logical and accessible 
incremental steps whose ‘correctness’ is defined by the axioms of the particular for-
mal environment. Even so, both the belief aspect of systemic axioms and Gödel’s 
incompleteness theorems [3] leave us with a lack of complete justification. 

Having at least partially justified our model, we then move to comparative empiri-
cal testing in a probably closed domain where accurate measurements are available. 
This is all well and good, but it would be a waste of time if that is all we require; the 
point of the exercise is clearly to obtain computational results outside the empirical 
test-domain. To do this, we need to be able to extrapolate our ‘justification’ to these 
disparate regions of interest. But how can we then be certain of the ‘correctness’ of 
our initial-final computational relationship? Ideally, we need to view the combination 
of test-domain and disparate regions from a higher level, within which we can charac-
terize their overall degree of correspondence. Clearly, we have now trapped ourselves 
in an apparently infinite series of higher and higher levels of reference, without any 
final justification at all being available. 

This is the kind of impasse in which Rosen [4] found himself when trying to set up 
his (M,R)-system model of an organism. His initial attempts to make efficient cause 
[5] entirely internal to the organism led to an infinite series of creator, creator-creator, 
creator-creator-creator… entities. His solution was to point out that recursion could 
occur from a later creator to an earlier one, effectively truncating the infinite series by 
turning it back on itself (see [6] for an extensive discussion of this aspect). Can we 
solve our present difficulty in a similar way? It is instructive to invert Rosen’s [4] 
initial argument. Rather than defining first that efficient cause must be internal, which 
then leads to his closed solution for an organism2, we can point out that in an internal-
ly self-consistent closed system all of its static characteristics can be successfully 
evaluated (while retaining the belief and Gödel constraints we referred to earlier). As 
a consequence, in our computational quandary, we can only solve our justification 
difficulty with any degree of success if we are operating within a closed system, 

                                                           
1  Neglecting here for simplicity the overhead involved in splitting a process into justifiable 

parallel paths. 
2  Note that Rosen [4] avoided the implication of an organism being an at least partially open 

system by ignoring the input of elements from the environment in his final model (see [6]). 
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where ultimately our local computational result is justifiably derived from the way it 
appears to be at higher levels of criticism. 

It is of value to note two controlling aspects here. Firstly, if we are attempting to 
justify local computational success by progressively relating it to larger and larger 
domains, Einstein’s [7] relativity comes to our aid in effectively closing off the sys-
tem we are working with from the rest of the Universe – within a given timescale. 
Secondly, Rosen’s (M,R)-system is effectively a model for Natural computation, and 
its principal relational characteristics are associated with change, and not stasis! 

Our computational model now includes justification as a prime consideration, and 
this within an approximately closed hierarchical representation. As such, local justi-
fication is obtained from global characteristics,3 and the entire hierarchy is in a con-
stant state of flux between its different interrelated levels: Natural computation cannot 
provide temporally independent static solutions! 

Much of what we will have to say addresses the manner in which we habitually de-
scribe, model or point to the elemental ‘nuts and bolts’ of our surroundings, and 
whether our conventional Scientific habits are sufficient, or even ‘fit for purpose’. In 
this, our birational approach is closely related to the conventionally mono-rational 
discipline of semiotics [8-9] – or the study of signs – and sign processes (semiosis), 
such as analogy, metaphor, designation, signification, symbolism, indication and 
communication. In accordance with linguistics, semiotics exposes the character and 
behavior of Natural objects and phenomena in terms of syntactics – the relationships 
between signs themselves – semantics – the relationships between signs and their 
denotata, or ‘what they refer to’ – and pragmatics – the relationships between signs 
and the effects they have, or the contexts within which they are effective [10]. 

The central thrust of our argumentation will particularly address the semantic rela-
tionships between models and their denotata, and the pragmatic relationships between 
denotata, or denoted entities, and their contexts, or denoted ecosystems in the termi-
nology we will adopt. By ecosystem we refer to the environment within an entity 
exists or thrives.4 As such, the same environment may appear differently to different 
organisms, for example, as they will each be subject to different specific sets of signs, 
or influences, and not to others. Agamben [12] has given as an example of Jakob von 
Uexküll’s biosemiotics [11] that a tick’s parasitism of another organism is controlled 
by a set of particular environmental signals, ranging from “the odor of butyric acid” to 
its new host’s “precise temperature”, while these may be entirely irrelevant to other 
organisms. 

General public attention to this pragmatic relationship between entity and ecosystem 
derives initially from developments starting in the 1960s – best illustrated by the publi-
cation of Rachel Carson’s book “Silent Spring” [13] – although this was predated not 
only by quantum mechanics, but also by the appearance of second-order cybernetics in 
the mid- to late-1900s [14]. The aspect of entity-ecosystem characteristics which will 
be of most importance to us in this chapter will be the complementarity between entity 

                                                           
3  This corresponds to a basic character of non-relativistic post-Newtonian classical mechanics, 

where local and global effects are presumed to coincide. 
4  Referred to by Jakob von Uexkull [11] as the entity’s umwelt. 
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and ecosystem. This complementarity implies that entity and ecosystem cannot be 
simplistically separated, and that their symbiosis influences properties of both of them. 
Critically, for a complementary pair, ‘the whole is not necessarily equal to the sum of 
the parts’, although the common assumption [5] that ‘the whole’ is automatically ‘more 
than the sum of the parts’ does not necessarily hold [15]. Deacon [16] rephrases this as 
‘the whole is less than the sum of the parts’, but attention to Root-Bernstein and Dil-
lons’ [17] arguments suggests that any evolutionary process results in a combination of 
both of these – more of some, but less of other. 

Our approach in this chapter will be to address the general character of representa-
tion of complex systems, and to reduce it to a form which is amenable to Natural 
computation. Our target is to bring all of Science under a generalized umbrella of 
entity and its ecosystem. This, then, will permit us to characterize different types of 
entity by their relationships with their relevant ecosystems, while retaining characte-
ristics they hold in common. The most general way of doing this is to move the  
ecosystemic paradigm up to the level of its encompassing logic [18], thus creating a 
complementary pair of conceivably different coupled logics – one for the entity we 
are focusing on; one for the ecosystem within which it exists – and providing for their 
quasi-autonomous birational interaction.5 An important comparison to this interpreta-
tion of Nature can be found in Brenner’s [19] book “Logic in Reality”, which puts 
forward the Principle of Dynamic Opposition, instantiating the necessary co-existence 
of a characteristic and its opposite or contradiction. This aspect of “Logic in Reality” 
supports the central focus of Deacon’s [16] book “Incomplete Nature”: that of  
absence: 

“The concepts of information, function, purpose, meaning, intention, 
significance, consciousness, change and human value are intrinsically 
defined by their fundamental incompleteness” [20]. 

We are of the opinion that Deacon’s absence corresponds, at least approximately, to 
the ecosystem we refer to here. 

A central aspect of our development here will be the concept of scale. Scale is most 
usually associated with linear dimension, or size – an analogue we will often adopt 
here. In accordance with Matsuno’s [21] description of observation as a mutual mea-
surement, we will refer to differences in scale in terms of differences in perceptional 
capacity [22]. Most particularly, we will relate differences in scale to differences 
between the various more-or-less complex models which may be used to represent an 
entity or a system, as we will illustrate later. 

                                                           
5  Throughout this paper we will use the term logic for the set of static operational rules which 

apply to a specific entity in a particular context, and rationality for the context-dependent 
logically-determined path through which the entity progresses, either as a consequence of its 
initial state or quasi-autonomously towards a predetermined goal. This restriction to quasi-
autonomy corresponds to a belief that system (re)organization is always driven by contextual 
influences, and that there are no instances of ‘pure’ self-organization. Otherwise, the 
birational framework we propose would have limited meaning, as ‘pure’ self-organization 
would weaken, if not completely destroy, entity-ecosystem complementarity. 
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Natural systems tend towards hierarchy. Multiple individual scales or levels are se-
parated by complex regions whose character resembles a less-than-formal interpreta-
tion of ‘=’ in ‘1+2=3’ [18]. Inter-scale communication and scale isolation are both 
necessarily partial [23]. Decision-making processes are nominally data-destructive: 
global data judged to be unhelpful is progressively thrown away until a simple loca-
lized choice remains.6 Analogously, a denoted entity hierarchy is reductive towards 
localization. Somewhat surprisingly, the set of intervening complex regions we re-
ferred to above make up a second, denoted ecosystem hierarchy, which is expansive – 
or ‘reductive’ in its own way – towards nonlocalization [24]. Each of these two hie-
rarchies embodies one of the two rationalities we created earlier. At any extant scale 
there is a complementary pair of models of denoted entity and denoted ecosystem – 
one related to post-Newtonian classical representation, the other to quantum represen-
tation – both evaluated at that scale [25]. 

We believe that computation within this birational framework can be much closer 
to Nature than conventional mono-rational approaches, most particularly for complex 
and living systems. Conventional formal systems rely on a single homogeneous logic, 
and progression through a hierarchy corresponds to either top-down or bottom-up 
transit. Our own creative processes use both of these modes, usually invoked alter-
nately, to guide our progress most efficiently towards suitable conclusion. We pro-
pose that Scientific or philosophical investigations should always be formulated bira-
tionally, in a way which is related to the Western interpretation of yin-yang [26] – as a 
complementary pair rather than an alternation of opposites. 

2 Philosophical Relationships 

A fascinating aspect of this birational approach is that representations and properties 
now always exist as intermediates between pairs of ideal extremes. Quantum logic, 
for example, no longer replaces post-Newtonian classical logic; it complements it 
[27], consequently identifying all real entities as compromises between the two. This 
philosophically non-traditional included middle is identical to that of the philosophi-
cal logic of Stéphane Lupasco [28], and to the implications of Brenner’s “Logic in 
Reality” [19]. 

The fundamental postulate of “Logic in Reality” (LIR), its Principle of Dynamic 
Opposition, states that 

1) every real complex process is accompanied, logically and functionally, by its 
opposite or contradiction (Principle of Dynamic Opposition), but only in the sense 
that when one element is (predominantly) present or actualized, the other is (predomi-
nantly) absent or potentialized, alternately and reciprocally, without either ever going 
to zero; and 

2) the emergence of a new entity at a higher level of reality or complexity can take 
place at the  point of equilibrium or maximum interaction between the two. 

                                                           
6  This is part of the reason why a digital computer needs access to memory. 
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A necessary concept is the categorial non-separability of, for example, individuality 
and non-individuality; part and whole; subjectivity and objectivity in relation to the 
experiment-experimenter pair. 

The six Axioms of Life in Reality (LIR) are: 

LIR1: (Physical) Non-Identity: There is no A at a given time that is identical to A 
at another time. This formulation is essentially that of Leibniz. 

LIR2: Conditional Contradiction: A and non-A both exist at the same time, but on-
ly in the sense that when A is primarily actual, non-A is primarily potential, and vice 
versa, alternately and reciprocally. 

LIR3: Included (Emergent) Middle: An included or additional third element or T-
state emerges from the point of maximum contradiction at which A and non-A are 
equally actualized and potentialized, but at a higher level of reality or complexity, at 
which the contradiction is resolved . 

LIR4: Logical Elements: The elements of the logic are all representations of real 
physical and non-physical entities, processes and systems none of which can be total-
ly identical to another. 

LIR5: Functional Association: Every real logical element e – objects, processes, 
events – always exists in association, structurally and functionally, with its anti-
element or contradiction, non-e; in physics terms, they are conjugate variables. This 
Axiom applies to the classical pairs of dualities, e.g., identity and diversity.   

LIR6:  Asymptoticity: No process of actualization or potentialization of any ele-
ment goes to 100% completeness 

These six axioms form a whole which is very close to the proposition we will make 
here. LIR1, for example, corresponds the implications of Einstein’s [7] relativity in an 
extensive system. LIR3 and LIR6 correspond to our observation above that quantum 
logic complements post-Newtonian classical logic, “consequently identifying all real 
entities as compromises between the two”. The context-dependence of Life in Reality 
corresponds to the entity-ecosystemic relationship we have described above, unlike 
the situation in conventional logic systems. However, two differences in approach 
should be noted. Firstly, our representation relates to hierarchical systems consisting 
of numerous different clearly identifiable scales or levels. Secondly, in our proposi-
tion, we do not specify a functional association of every real logical element with its 
anti-element or contradiction (c.f. LIR4 above), but a functional association of every 
entity with its Natural ecosystem. In mono-rational non-hierarchical terms, however, 
this would reduce to LIR4. We would prefer to denote Lupasco and Brenners’ in-
cluded middle as the exclusive middle, to emphasize our proposition’s equivalence to 
the implications of Brenner’s LIR6. It is then understandable that the measurement of 
a particle’s/quantum-wave-packet’s properties with suitable equipment will indicate 
mixed properties [29] and not uniquely particulate or wave characteristics! 

Science is often described as the child of Aristotelian pragmatism [5], but this 
leaves no functional place for the abstraction of models. In a birational description, 
Science automatically has two complementary aspects: the Aristotelian pragmatism of 
measurement and the Platonic abstraction of models. 
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The complementary ecosystemic paradigm relates an individual to its global envi-
ronment. In computational terms, this can be correlated, for example, with Turing’s 
advances in code-breaking [30], through the insistence on relating an individual coded 
message to the globality of its ‘environment’ of place, date, time, weather, … and 
proceeding by the elimination of consequently discovered contradictions. 

In a birational framework existence itself ‘becomes’ a derivative of localization  
and nonlocalization, and the informational entropy associated with living systems 
becomes a compromise between that of two complementary kinds of entropy: one 
nominally inversely proportional to the conventional definition of order, and one 
nominally proportional to it.7 

3 Outline 

The remainder of this paper is organized as follows. We begin by establishing the 
context within which we will proceed (‘4 Setting the Stage’). Our first focus will be 
on ‘size-dependent’ Natural properties (‘5 Scale in Nature’) and their organization 
and representation in large Natural systems (‘6 Representation and Natural Hie-
rarchy’). Next we will explore how these properties are interrelated (‘7 Inter-scale 
Interfacing’) and the nature of their classification (‘8 Digital versus Analogue in Hie-
rarchy’). This will lead us to considerations of system cohesion (‘9 Quasi-stability’). 
We will draw comparisons between Natural- and digital- information processing (’10 
Organisms and Computers’) and address the lack of universal presence of hierarchy in 
Nature (’11 Hierarchy and Opportunism’). Our main focus will be on the establish-
ment of a general entity-ecosystem framework (’12 Birational Complementarity’) and 
we will end with a reflection on its implications (’13 Unavoidable Consequences and 
Conclusions’). 

Although this proposal may appear at first sight to be anti-Scientific, such is not 
the case: it simply addresses an extension of the current Scientific point of view and 
of its inclusivity. As such it is 

 “part of an emerging dynamic-informational paradigm in which all 
currently accepted wisdom is to be questioned. The concepts of the role 
of intermediates in complex systems, a principle of complementarity in a 
new systems paradigm and above all the need for a new, non-standard 
but encompassing logical framework for describing birational interac-
tions are essential in order to, finally, break through a number of ‘brick 
walls’ in philosophy, logic and the sciences of life and mind”.8 

This development holds out the exciting prospect of conceivably overcoming the 
impasse of complexity currently facing artificial intelligence and finally opening the 
way to developing real non-biological intelligent systems. 

                                                           
7  Note that this dual entropy is not directly equivalent to that invoked by Landsberg [31-32], 

which is related to both informational entropy and thermodynamic entropy. 
8  Joseph Brenner: private communication. 
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4 Setting the Stage 

For us to address the current framework for computation we must first describe it. 
Scientific measurement and consideration take place in and around particular models, 
which are usually constructed in terms of a limited set of independent parameters, 
and are usually derived from previous conceptual forms through intuition or inspira-
tion. The validity of a model is checked by comparing its predictions with multi-
parametric models in other domains, resulting in an always provisional conclusion of 
acceptability or of definitive rejection. At any typical point in the temporal evolution 
of Science there is an overall coherence between models in different investigative 
domains: they will all be more or less related to a consistent grounding – the current 
paradigm, whether this be purely Scientific, or humanist, or religious in character. 

At somewhat irregular intervals there is an upheaval leading to change in the 
grounding paradigm, usually following a realization that information derived from the 
application of specific models to measurement data cannot be resolved within the 
current paradigm. After its three centuries of predominance, for example, the post-
Newtonian classical paradigm began to be questioned around the turn of the 19th 
century following the discovery of what became known as the ‘ultraviolet catastro-
phe’ [33]. This led to the development of quantum mechanics in the first decades of 
the 20th century as a way of resolving the problem [34]. 

However, a description of Scientific structure in terms of just model and paradigm 
does not tell the whole story. Both of these are subject to the all-encompassing con-
straints of logic. As a joint epistemological/ontological hierarchy, not only do con-
temporary models exist within a current paradigm; a current paradigm itself exists 
within an over-arching logic structure. At this point we should emphasize that al-
though human endeavor is most usually coupled to a single quasi-universal mono-
logic, there is no reason why this should always be the case. Human language and 
discourse are so closely integrated with consequent mono-rationality that it is difficult 
to imagine any other way they could evolve. However, there is no obviously funda-
mental reason why a change in the grounding logic system should be philosophically 
excluded. Ecosystemics itself exhibits non-homogenous logic in the way that an indi-
vidual species is related to the multiple other species of its environment. As John 
Kineman has pointed out,9 if you remove the species of bear from an ecosystem, the 
remaining uninhabited niche or ‘bear-hole’ is not exactly equivalent to the missing 
species, as the bears’ absence immediately modifies relationships between all the 
other species present. 

Our overall position is that now, at the beginning of the 21st century, a new ‘para-
digm shift’ is necessary to resolve the apparent exclusion of life from biology and 
Science in general. Rosen [4] has pointed out that living systems survive and propa-
gate through continuity in the relationships between their distinguishable parts, and 
not predominantly through the local characteristics of those parts themselves.  
The problem area is principally that of reductionism, whose over-application has led 
Rosen to describe biology as “the study of the dead”. 

                                                           
9  John Kineman: private communication. 
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Since the nineteen sixties there has been a successful revolution in approaches to 
living Nature [35], through the development of a view relating organisms to their 
entire relevant environments – the development of ecosystemics. Until now, however, 
this revolution has been confined to living Nature, leaving the ‘hard’ or ‘precise’ 
sciences of physics and chemistry mostly untouched. We believe that it is now time 
for a new paradigmatic revolution which will extend the ecosystemic approach to all 
of Science in a way that makes it possible to integrate life into Science in general, 
while leaving the ‘exact’ sciences exact! The most obvious way to do this is to move 
the ecosystemic paradigm up from the paradigmatic level to that of logic itself, thus 
moving a large part of the paradigmatic complementary inter-dependence up to the 
logic level and creating a complementary ecosystemic pair of logics to replace con-
ventional mono-rationality [27]: see Figure 1(a) and Figure 1(b). 
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Fig. 1. Moving the ecosystemic paradigm up to the logic level: (a) the conventional placing of 
the ecosystemic paradigm; (b) the ecosystemic paradigm moved up to the logic level; (c) the 
resulting characters of the two remaining quasi-independent parts of the ecosystemic paradigm; 
(d) an example of coupling through complexity: the transport of electric current in a solid 

Interestingly, this attributes very particular characteristics to the remaining parts of 
the original ecosystemic paradigm itself. Rather than remaining simply organism and 
ecosystem, these two now come to represent post-Newtonian-classical and quantum 
mechanical descriptions, respectively [18]: see Figure 1(c). This places these two 
ostensibly discrete and independent paradigms in a complementary framework of 
relationships! It is comparatively easy to see why this should be the case. Post-
Newtonian classical mechanics is based on the primacy of localization: it is specified 
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in terms of precision and accuracy of local measurement. Quantum mechanics, on the 
other hand, is principally ‘nonlocal’ and probabilistic in its derivation and operation. 

An excellent example of complementarity between opposites, in a way which is re-
lated to Brenner’s [19] LIR ‘A and non-A’ description, is the conduction of electricity 
in solids (Figure 1(d)). Silicon has a simple cubic (zinc blende) crystal structure, and 
its electrical conductivity is describable in two isotropic separate parts, one related to 
an entity – the electron – and one related to its environment – the ‘hole’ which is left 
where an electron is absent. Arsenic, however, has a more complex trigonal (distorted 
cubic) crystal structure, and the two components of electron and hole conductivity 
cannot be so easily separated [36]. This is reminiscent of the ‘bear and bear-hole’ we 
referred to earlier, as a ‘hole’ in arsenic is not isotropically equivalent to the absence 
of an electron. 

Stepping a little to one side for a moment, we should explain what we mean by 
three of the important terms we will rely on. We will regularly refer to digital as op-
posed to analogue characters. While occasionally the reference will be to styles of 
computer or computation, the sense we will more often imply is a more general dis-
tinction between a differentiated (discretized) context and an undifferentiated (inte-
grated) continuous one. The third, somewhat obscure term is nonlocal. Einstein’s [7] 
relativistic arguments limit the speed of communication between any two real sepa-
rated entities to the (measured) velocity of light – some 300 million meters per 
second. Nonlocality describes communication across space which transcends this 
limitation, which is nominally impossible in reality. However, Bennett et al. [37] have 
proposed that instantaneous nonlocal communication of this kind is in fact possible, 
but that the decoding of such an ‘instantaneous’ message must rely in addition on a 
second message passing between transmitter and receiver in ‘real-time’ (or ‘real-
speed’) – thus eliminating the at-first-sight apparently ‘faster-than-light’ transmission 
of information.10 

The clearest example of the apparent difference between post-Newtonian-classical 
and quantum mechanical descriptions and of their paradigmatic coupling is that of light. 
We can describe optical phenomena within both representational schemes: in the post-
Newtonian classical paradigm, light is represented as waves;11 in the quantum paradigm, 
it is represented as particles. These two representations lie at opposite ends of a spec-
trum of size:12 ‘waves’ only exist as spatial extensions; ‘point-like particles’ lack spatial 
extension, being zero-dimensional, so do not take up any space [39]. A fundamental 
aspect of post-Newtonian classical mechanics is the unstated assumption that there is an 
instantaneous correlation between local and global properties. This apparently, and 
surprisingly, corresponds to the quantum mechanical characteristic of nonlocality, but it 
is a false nonlocality which takes no account of relativistic communication limitation. 

                                                           
10  This scheme, referred to by Bennett et al. [37] as ‘teleportation’ after the TV series Star 

Trek, does in fact work, and is in use for the uninterceptable transmission of coded informa-
tion (e.g. Shields and Yuan 2007). 

11  Note that Newton proposed a corpuscular, or particulate theory of light, but that this was 
superseded by the wave description principally due to Huygens [38]. 

12  Note that for simplicity, we are describing the situation here only in terms of spatial exten-
sion: the word size we use can also refer to functional complication, or ‘extension’. 



 A Framework for Computing Like Nature 33 

Similarly, the quantum mechanical description of light as localized photons, or particles, 
is a false description, as the probability wave of any ‘localized particle’ automatically 
spreads over the entire Universe! Post-Newtonian classical mechanics permits the exis-
tence of single-frequency optical waves, but any single frequency wave must also 
spread over the entire Universe, because a phase change at any location implies a simul-
taneous analogous phase change at every other location. This injects nonlocality into 
post-Newtonian classical mechanics! In a related manner, although photonic probability 
waves touch everywhere simultaneously, a photon’s position in ‘space-time’ can be 
determined through attention to its constraints, injecting localization into quantum me-
chanics. We maintain that these two paradigms of post-Newtonian-classical and quan-
tum mechanics are opposite (complementary) ‘faces of the same coin’, and that they 
always coexist in any descriptive exercise. 

This, then, is the first stage of our argument. Our intention is to replace conven-
tional mono-rationality by a complementarily-coupled birational framework, derived 
from the ecosystemic paradigm, within which the conventional disciplines of Science 
– physics; chemistry; biology – may be successfully embedded without degrading 
their present performances. Conventional modeling relies heavily on reductionism in 
attempting to describe Natural phenomena, with the result that it cannot effectively 
deal with living organisms whose character is principally determined by their sub-
systemic interrelationships. The primary aspect of our derived ecosystemic birational 
framework is the interrelationship between its constituent paradigms [40]. This makes 
it an ideal support for representations of life itself, as an integral part of Nature rather 
than an uncommon emergence from it, to which end we reject any initial assumption 
of fundamental difference between organic and inorganic, between organisms and 
crystals, or between living and non-living. Consequently, a basic premise of our  
approach is that, in common with Nature itself, any distinction between living and 
non-living must automatically drop out of our subsequent modeling rather than being 
imposed from the start.  

5 Scale in Nature 

In general, Natural systems exhibit different scales. By scale, we mean ‘size’-related 
differences in properties. A distinction is frequently made between scale – in terms  
of spatially structural aspects – and level – in terms of functional complication or 
complexity. However, as will become clear, this distinction is irrelevant for the inter-
pretation of Nature which we will present, and we will consequently use the words 
interchangeably where this is convenient. 

It is notable that although organisms often present a number of distinguishably dif-
ferent scales, inorganic entities exhibit few, and the differences between them,  
although observable, are less marked [41]. The number of scales exhibited by an  
organism ranges from a minimum for primitive forms, for example two for some 
slime molds/fungi13 [43], up to an apparently limiting upper number for mammals. 
                                                           
13  Note that we attribute two scales to an entity with a single level of internal structure and an 

overall outward appearance [42]. 
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Dinosaurs and mice exhibit similar extant scales, whose number depends on the 
framework within which it is established: for example ten (elementary particle, atom, 
molecule, molecule group, organelle, cell, tissue, organ, organ system, organism) 
from a simplified ‘Physics’ point of view [44],  five (cell, tissue, organ, organ system, 
organism) in a simple biological framework [45], or four (hadron, atom, cell, memon) 
in Jagers op Akkerhuis’s [46] operator hierarchy. 

In his booklet “What is Life?: the Physical Aspect of the Living Cell” Schrödinger 
[47] attempted to couple the characteristics of organisms and crystals by introducing 
the idea of an ‘aperiodic crystal’ that contained genetic information in its configura-
tion of covalent chemical bonds. This stimulated research which culminated in dis-
covery of the character of DNA [48]. A closer connection between organisms and 
crystals can be found in the structure of some fundamental biochemicals, for example 
the lipid pdmpg, which exhibits an almost crystalline regularity in its structure (see 
Figure 2). In any case, the major defining characteristic of any scale14 system is the 
nature and quantity of information which is transferred between its different scales.  
In an organism the informational differences between scales can be enormous; in a 
crystal they are minimal [41]. 

 
Fig. 2. The almost crystalline structure of the lipid pdmpg 

A vital aspect of any multi-scaled system is the difficulty of establishing a conven-
tional externalized 3rd person point of view or description. If there were no difference 
in properties between the different scales, then 

 

1. it would be very easy to formulate an accurate 3rd person description, because 
2. in that case there would not be any different scales at all, 

which is nearly the case for a crystal, where macro forms follow on almost directly 
from microscopic atomic arrangements. Such is far from the case for organisms,  
 
                                                           
14  Note that we will use the word scale intentionally as an adjective in place of the more 

grammatically correct scalar, to avoid confusion between references to the scale phenomena 
we are describing and the mathematical entity of a scalar (as a noun). 
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where cross-scale informational differences can be extreme. Consequently, a different 
1st person description will be associated (at least) with each scale, and it will be im-
possible to generate an accurate 3rd person ‘summation’ of these from an external 
viewpoint.15 If for no other reason, this makes it impossible to accurately ‘understand’ 
what is going on in another person’s mind at any particular moment [40]! 

6 Representation and Natural Hierarchy 

We concur with Lupasco [28] and Brenner [19] that the very nature of reality is a 
concurrent operation of actual and potential, and that 

 

“when one element is (predominantly) present or actualized, the other is 
(predominantly) absent or potentialized, alternately and reciprocally, 
without either ever going to zero” (see the Principle of Dynamic Oppo-
sition above). 

 

This logic is independent of the means of representation employed, and consequently 
Brenner and Lupascos’ interpretation of reality sits at the top of the representational 
tree-structure shown in Figure 3. Following on from this starting point, we may ad-
dress Nature in a variety of ways, with a variety of different possible formulations or 
representations. However, having introduced the presence of an organism’s different 
organizational scales, we must now reflect on how they are coupled together to 
present the unified appearance we perceive as a 3rd person interpretation from out-
side16.  Natural systems tend towards hierarchy [50]. This character of ‘hierarchy’ is 
closely related to the correspondingly named structure which is applied to business 
enterprises, where different levels of organization – such as chief executive (CE), top-
level managers, middle management, foremen and workers – are coupled together to 
provide a hopefully efficient coordinated activity. 

In a Natural context the overall organization is much more coherent and self-
consistent than in a business – from both top-down and bottom-up perspectives – and 
there is no single predominant level which is comparable to a business’s CE. Conse-
quently, we will always portray a hierarchy ‘on its side’, with the ‘top’ (i.e. the equiv-
alent of CE) at the right hand side. Salthe [44], [50-51] has extensively described the 
properties of hierarchy in Nature. However, he restricts the term hierarchy to two 
forms: the scale (or compositional) hierarchy and the specification (or subsumption) 

                                                           
15  Note the word 'accurate' here. A 3rd person view is always possible... what is at issue is  

its justifiable closeness to what is apparently being viewed. Science deals with this by  
cross-referencing between different domains, to establish what is a ‘good’ model and what is 
not. 

16  Ultimately, such a reflection results in the expression of a concept referred to as hyperscale, 
but for the sake of brevity we will not address this aspect here, as it is not directly relevant to 
our argument. An extensive description of hyperscale and its implications may be found in a 
number of previous publications [25], [27], [40], [49]. 
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hierarchy. However, we find that a third form – the representation or model hierarchy 
– is most suitable for describing the properties of Natural systems.17 

It is our opinion that a representation or model hierarchy is the parent of Salthe’s 
two hierarchical children, and we believe that these are two reduced formalizations of 
the representation hierarchy itself, as indicated in Figure 3. As such, there may even 
be other as-yet unnoticed reduced hierarchical formulations, and even intermediate 
forms between them, as sketched out in Figure 3. The representation or model hie-
rarchy provides the link between Brenner-Lupasco representation ‘at the top of the 
tree’ and Salthe’s compositional and subsumption hierarchies lower down. 

Representation

Representation or
hierarchymodel 

Compositional
hierarchy

Subsumption
hierarchy

(Salthe)

(Brenner-Lupasco)

 

Fig. 3. The tree-structured relationship between this work, Brenner (2008) and Lupasco’s 
(Brenner 2010) philosophical logics, and Salthe’s approach to hierarchy. The model hierarchy 
provides a necessary link in the representational chain, as it exhibits both the Dynamic Opposi-
tion of Brenner’s and Lupasco’s high-level logical representation and the lower-level hierar-
chical aspects of Salthe’s interpretations. 

So, what exactly is a representation or model hierarchy? Figure 4 provides an easy-
to-grasp example, in the form of a set of models of an electronic diode. The models 
show a progression from left to right from the simplest representation (a), correspond-
ing to a binary digital model, to the most detailed representation (f), corresponding to 
the digital approximation of an analogue set of empirical measurements.18 In common 
with many series of progressively more and more ‘accurate’ representations of a 
complex system, the intermediate series here shows one change – between (c) and (d) 
– where there is a step function in the style of modeling – from piecewise-linear to 
exponential. This hierarchical series appears to be a combination of Salthe’s [44] 
compositional and subsumptive forms. The set of individuals (a), (b), (c) and the set 
of individuals (d), (e), (f) both appear to be compositional  series (added elements are 
‘a part of’ the whole). The two types of set, of piecewise-linear representation  

                                                           
17  For the moment we will refer to this concept as a representation or model hierarchy, as con-

venient. Ultimately, we will be drawn to address it as a fundamental character of Nature – a 
Natural hierarchy. All these three names are valid. 

18  We have adopted here the most intuitive way to present this series, starting from the simplest 
(a) on the left and moving towards the most complex (f) on the right. It is important to note 
that in all of our illustrations of hierarchy the highest level (i.e. the ‘simplest’ representation) 
is on the right hand side, not as shown here on the left. 
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(a)-to-(c) and exponential representation (d)-to-(f), appear to be subsumptive (each set 
is representatively ‘a kind of’ the whole). 

A further example of a (Natural) model hierarchy is that of a tree (see Figure 5(a)), 
where the differently scaled models are {a tree described in terms of atoms}, {a tree 
described in terms of molecules}, {a tree described in terms of cells}… up to {a tree 
described in terms of branches}, {a tree as itself – a tree}. Our generalized portrayal 
of a (Natural) model hierarchy is presented in Figure 5(b) for this same example of a 
tree, where each vertical line represents a differently scaled multi-parametric model in 
terms of the quantity of information needed to describe it (which would, of course, be 
far more extensive for the population of workers than for the CE; and more extensive 
for ‘a tree as atoms’ than for ‘the tree as itself’). 
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with the addition
of a turn-on voltage
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of forward resistance

moving to the
ideal diode equation

including the effect
of reverse breakdown

including the effect
of high-level injection 

Fig. 4. The sequence of electronic diode models making up an example of a model hierarchy. 
The physical origin of the differently-modeled effects is of no particular consequence here, and 
the individual models (a) to (f) are referred to in the accompanying text. 

It can be seen from Figure 5(a) that this series is both compositional (atoms-
molecules-cells …) and subsumptive (a tree ‘as itself’ subsumes ‘a tree as branches’ 
and ‘a tree as molecules’…). 

It will be evident from Figure 5 and from the description we have given that the 
character, or at least the quantity of information at each organizational scale, will be 
different. This is a major problem: how can adjacent but dissimilar multi-parametric 
scales be self-consistently correlated? Surprisingly, we encounter the same difficulty 
even with a simple arithmetic equation such as 1+2 = 3, where we lose information on 
going from left to right, as we drop one of the 2 digits we started with (i.e. from ‘1+2’ 
to ‘3’), and we consequently lose its degrees of freedom.19 If we try subsequently to 

                                                           
19  The number of degrees of freedom of a system or of one of its elements can be defined as the 

minimum number of coordinates which are required to specify its state. If we describe the 
state of a non-rotating element in three-dimensional space, for example, it will possess three 
translational degrees of freedom. 
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return towards the left hand side from the single ‘3’, it will become obvious that we 
have no way at all of knowing whether we started initially on the left with 3, or 1+2, 
or 2+1, or even 1+1+1 ! 
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sub-scale detail

contained

Decreasing 
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containing

A tree as atoms

A tree as molecules

A tree as cells

A tree as branches

A tree as itself

(a)

      

(b)
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Individual
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Fig. 5. (a) A tree, as another simple example of a multi-scale model hierarchy; (b) The general 
representation of a (Natural) model hierarchy for this same example of a tree. Each vertical line 
represents a differently scaled model in terms of the quantity of information needed to describe 
it without taking into account the subsumed information of the lower scales –  which means 
that the most complex description at the right hand side of (a) is here the least extensive. The 
inter-scale regions indicated are multiply fractal and complex. The net result is close to being a 
‘subsumptive’ hierarchy which is formulated in terms of scale!20 

In general, therefore, if we ‘travel’ from a lower extensively detailed multi-
parametric scale to a higher one whose description requires fewer parameters, we 
must remember that it will no longer be possible from there to accurately determine 
the characteristics of the lower scale. This corresponds to the general rule that it is not 
possible in a model to simultaneously maximize accuracy, precision and generality 
[52]. As a consequence, individual scales will necessarily be partially isolated from 
each other. However, they will still be partially inter-communicating and directly or 
indirectly interacting, so that approximately complete and apparently self-consistent 
correlation can be carried out between them. This is a fundamental property of a Nat-
ural hierarchy: individual scales are partially isolated from each other, and only  
partially communicating with each other. 

7 Inter-scale Interfacing 

The regions between adjacent scales in both Figures 5(a) and 5(b) appear to be vir-
tually impossible to successfully model, even by some kind of extremely simplified 
approximation.21 It may be that future developments in Natural computation will  

                                                           
20  Stan Salthe: private communication. 
21  These inter-scale regions are archetypically chaotic from a post-Newtonian classical view-

point, and the accurate evaluation of any model would therefore require infinite computa-
tional precision to avoid consequences such as the ‘butterfly effect’. 
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resolve this issue, but it may also be the case that Nature itself cannot successfully 
compute these regions on a purely local basis. Gutowitz and Langton [53], for exam-
ple, have suggested that the phenomenon of critical slowing down at phase changes 
could conceivably be linked to 

“fundamental limits on physical systems' abilities to effectively 
'compute' their own dynamics”. 

The ‘=’ we are used to encounter in expressions such as ‘1+2 = 3’ is logically defined 
in its arithmetic context as a statement that the left and right sides of the ‘equation’ 
are indistinguishable. This is clearly not the case: the character string ‘1+2’ is easily 
distinguishable from the string ‘3’. This is one of the drawbacks of conventional ma-
thematics in its application to real-world problems: even though extensively useful, it 
is far too short-sighted in its formality to comprehensively represent even the simplest 
of circumstances. If we try blindly to rely on ‘1+2 = 3’ to represent a left-to-right 
summation of apples, we can end up on the right with one very big apple! Even so, 
will this super-apple be equivalent to ‘1+2’ apples in terms of width, or of weight, or 
of color, or of taste? We have no way of knowing. From a wider perspective which 
takes account of unspecified properties, ‘1+2 = 3’ is primarily a hierarchical relation-
ship: the two sides of the ‘equation’ characterize different scales. The only way we 
can rely on this kind of equation is to provisionally close our eyes to reality and trust 
the abstract formal nature of mathematical definitions. Then, in some but not all con-
texts, we will be successful: 1 apple + 2 apples can happily result in the 3 apples we 
would like, for example – if we disregard disturbing properties such as degrees of 
freedom. 

The coordinating relationship between any pair of adjacent scales of a real Natural 
entity, therefore, will be very different from the abstract equivalence of ‘=’. Commu-
nication between the two must be bi-directional, but this bi-directionality will be un-
avoidably asymmetrical. It must take account of differences in properties between the 
two scales; most particularly those which apparently disappear or emerge during pas-
sage through the intervening region. Above all, it must be aware of the entity’s more 
global context, which it must be able to adapt to. The resulting overall relationships 
which characterize the inter-scale regions, therefore, must be appropriately applicable 
in any conceivable local circumstances. This makes these regions complex in the 
manner described by Rosen [4]: 

“A system is simple if all of its models are simulable. A system that is 
not simple, and that accordingly must have a nonsimulable model, is 
complex.” 

Consequently, the only way to completely represent one of the complex inter-scale 
regions we refer to in all of its temporal detail would be by employing an infinite 
number of formalizations [4], which seems somewhat impractical! Sometimes a mod-
el’s simple computational rules can produce amazingly rich complex behavior, but if 
the inter-scale regions could indeed be simplistically and logically modeled then adja-
cent scales would collapse into each other, and there would be no hierarchy at all [25]. 
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It is also impossible to manageably digitize these inter-scale regions, as completely 
accurate conversion would require an infinite number of digital bits. This makes the 
inter-scale regions archetypically analogue22 in character [54]. In reality, the situation 
is even far less obvious than it at first appears. If we examine either Figure 5(a) or 
5(b) of our example of a tree, the extreme right hand side of the illustration corres-
ponds to a digitized representation of whether the tree exists or not: the tree’s ‘reality’ 
is modeled as true or false, equivalently to the ‘1’ or ‘0’ of conventional computing 
notation. If we now move progressively towards the left of Figure 5(a) or 5(b), we 
pass through a scaled sequence of multi-parametric representations, which through {a 
tree described in terms of branches}, {a tree described in terms of cells}, {a tree de-
scribed in terms of molecules}, {a tree described in terms of atoms} approaches more 
and more closely a detailed analogue description of the tree. So, the extreme right 
hand side of Figures 5(a) and 5(b) corresponds to the simplest digital representation 
of the tree, by indicating its reality; the extreme left hand side corresponds to a digital 
simulation of an analogue representation of the tree (the extreme left hand side of the 
sequence is equivalent to a digital representation in terms of an infinite number of 
bits, and it cannot consequently be practically distinguished from an analogue repre-
sentation: the distinction between ‘analogue space-time’ and ‘quantized space-time’ is 
similarly problematic23). This illustrates the principal character of a multi-scale Natu-
ral hierarchy: it provides an interface between analogue and digital representations 
[58] – between existential integration and differentiation! We submit that Natural 
hierarchical interfacing of this kind constitutes the defining feature of our Universe. 
There are far-reaching consequences of this proposed conceptualization – most  
particularly with respect to the historical evolution of the Universe. 

8 Digital versus Analogue in Hierarchy 

Conventional interpretation depicts the origin of the Universe as a homogeneous, 
isotropic, undifferentiated state of incredibly high energy density, which precedes 
space and time [59].24 Following the Big Bang, later stages of Universal expansion 
develop differentiation into a multiplicity of more ordered and consequently less 
communicating entities, whose configuration in the absence of life progressively de-
cays through time towards the uniform physical entropy of ‘heat death’ [60]. In its 
most complete form, Natural hierarchy delivers the temporal interface between the 

                                                           
22  Note that to avoid confusion we will consistently use the spelling ‘analogue’ here, implying, 

as we logically should, that the analog referred to in digital information processing systems 
and the analogue referred to in inter-dimensional comparison are directly related, if not  
precisely the same. 

23  We have here avoided any further discussion of the potential analogue or quantized nature of 
space-time itself. We do not believe, maybe surprisingly at this point, that such a debate 
would radically alter the basic ideas we present here. Reference to Dodig-Crnkovic [55],  
Kurzweil [56] and Lloyd [57] and further reading of our argument will support this belief. 

24  There are now a number of far more esoteric versions of pre-Big Bang conditions, but until 
now they all remain as conjecture. 
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infinite analogue energy of the pre-Big Bang condition and the digital character of 
evolved multiple differentiations. This characterizes Natural hierarchy as the major 
descriptor of continuum-to-discrete, integration-to-differentiation and analogue-to-
digital processes in the Universe. To be consistent, therefore, we should not only  
always resort to our generalized representation to clarify the properties of any multi-
scaled entity or phenomenon; we should also ‘insert’ it into any context where analo-
gue and digitized structures or representations are physically or functionally adjacent. 

 

Analogue

Digital  

Fig. 6. The consequences of inserting our entire hierarchy between any digital-analogue adjacency 

Figure 6 indicates the consequences of inserting our entire hierarchy between any 
digital-analogue adjacency in an extended rendering of Figure 5(b). Between each 
pair of multi-parametric (and therefore digitized) model scales lie complex (analogue) 
regions: we must insert at least a version of our entire hierarchy between the scales at 
every stage, as shown in Figure 6. But this will not be enough. We have now, in each 
case, implanted between analogue and digital a set of digitized sub-scales, and are 
faced with the frightening prospect that we should again insert at least a version of 
the entire hierarchy between these… and so on, ad infinitum! We end up with an infi-
nite sequence of scales, sub-scales, sub-sub scales, sub-sub-sub-scales,… whose repe-
tition towards smaller and smaller size resembles the self-similarity of fractals [61]. 
This progressive finer and finer accumulation of ‘detail repeating itself’ not only 
makes the inter-scale regions infinitely (digitally) fractal, but also makes them digital 
reproductions, or digital facsimiles, of analogue complexity. It unavoidably, and 
somewhat confusingly, makes the entire Natural hierarchy we are describing a pri-
marily digital facsimile of what initially appeared to be a purely analogue view of our 
surroundings! 

9 Quasi-Stability 

The picture we now have of the constitution of a Naturally-hierarchical entity or sys-
tem is one of multiple constituent elements which are distributed throughout multiple 
dissimilar scales of organization. A degree of cohesion between these different ele-
ments is necessary to prevent the entity or system fragmenting into a disorganized 
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collection of lower level components [62], and this cohesion must be communicated 
throughout the entity or system, at the very least at its lowest organizational level. For 
an organism, for example, there must be enough communicated cohesion at the level 
of the individual cells. If the organism expands beyond a particular size the local 
communicational overhead required to maintain cohesion will become excessive, and 
the only alternative to fragmentation is to reorganize in a way that reduces this local 
overhead [40]. The generation of a new higher scale can achieve this by replacing a 
multiplicity of local communications by a reduced number of higher-level long range 
ones. More correctly, any reconfiguration to prioritize long range communication will 
only take place if it will result in lower overall communicational overhead. This is a 
Natural analogue of the technique used in large scale computer chip manufacture of 
grouping communications between different regions of the chip to increase speed of 
operation and save energy [63]. 

If our represented multi-scale Natural entity or system is to be at least provisionally 
stable it must be able to inter-correlate its different partially-isolated scales effective-
ly – most particularly and most consistently at its lowest levels of organization. The 
solution to this conundrum, however, is comparatively simple. The greater the stabili-
ty of the entire entity or system, the greater the proportion of information crossing 
between scales which is quasi-static and structure-supporting in character. This is 
very clear in the case of the long-term stability of an inorganic crystal – for example, 
gallium arsenide [41] – where nearly all of the inter-scale transfer of information is 
structural, and information content is virtually identical across scales. It must, howev-
er, also be the case for an organism, as a means of maintaining its quasi-stability. We 
can conceptually split any inter-scale information transfer into two functionally-
different parts. One of these is the quasi-static structure-supporting information we 
have already referred to; the other is any remaining non-quasi-static information, 
which although being unexceptional from the ‘point of view’ of the ‘transmitting’ 
scale, will be novel to the ‘receiving’ scale. Although neither of these two parts can  
be rigidly defined, we find ourselves once more in a domain where Aristotelian prag-
matism lies between Platonic dimensional extremes: the biological reality of an  
organism’s quasi-stability lies in the middle ground between the two extremes of 
stability-supporting static information and stability-weakening novel information. 

10 Organisms and Computers 

In his book “Life Itself: a Comprehensive Inquiry into the Nature, Origin, and Fabri-
cation of Life”, Rosen [4] has extensively addressed the criteria for existence of a 
living organism in terms of its indispensable internalization of Aristotle’s [5] efficient 
cause, or ‘means of creation or construction’. His ultimate depiction is of an inte-
grated graph of feedback or ‘looping-back’ processes, each representing one of an 
organism’s internal functions of Metabolism, Repair and reproduction – his (M,R)-
system. Although open to a degree of criticism [6] his graph confirms, unsurprisingly 
but somewhat realistically, that an organism is indeed only quasi-stable, correspond-
ing to our conclusions in terms of cross-scale information transport. Rosen [4] has 
suggested in reference to his book’s figure [10C.6] that: 
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 “Any material system possessing such a graph as a relational model 
(i.e. which realizes that graph) is accordingly an organism. From our 
present perspective, we can see that [10C.6] is not the only graph that 
satisfies our conditions regarding entailments; there are many others. A 
material realization of any of them would likewise, to that extent, consti-
tute an organism.” 

The Natural model hierarchy we are describing is capable of reproducing at least the 
relational functionality of Rosen’s figure [10C.6], but it also enables us to progress 
much farther than Rosen’s (M,R)-system implies [6], [64]. From the character of  
inorganic crystals we have referred to, and the conceptual split we have proposed 
between stability-supporting static information and stability-weakening novel  
information, it is clear that the former quasi-static cross-scale informational relation-
ships specify nothing other than a non-living system, while the latter novel or closely 
scale-related informational relationships are what make an organism alive! 

The last few decades have seen a wide-ranging growth of research into artificial 
intelligence, artificial life and artificial consciousness – all three of these addressing 
the essential nature of living organisms through the medium of digital computation. 
The historical move from analogue to digital computation was driven by a wish for 
the generality of von Neumann computers and for computational precision as a surro-
gate for accuracy. Unlike analogue circuitry, digital circuits permit wide variation in 
component tolerances without degrading overall performance. There is, however, a 
current resurgence of interest in analogue computation, particularly in the context  
of morphological computation and robotics. It is important to note that although digi-
tal and analogue computers each realize enormous benefits in some areas of informa-
tion processing, they both suffer from critical disadvantages when compared to an 
organism. 

While the evolution of digital systems has followed a path which is conceptually 
parallel to that of Natural organisms [65], they implement radically different logical 
structures, and this makes for a fundamental dissimilarity in the ways they can operate 
and in what they can achieve. Conventional digital computers consist of a (very) large 
array of simple Boolean logic gates. These are connected together in a complicated 
manner to provide the extensive abstract functionality to which we are now accus-
tomed. However, each gate is a physically real entity, and takes a certain period of 
time to provide an output that correctly corresponds to its current inputs. To avoid 
consequent logical errors, a repetitive clock signal tells all of the gates to wait for a 
predefined ‘settling time’ before passing on their outputs to subsequent gate inputs. It 
is most instructive to describe the computer clock signal with respect to an altogether 
different characteristic: it completely isolates each gate from all of the others, except 
in the ways that the computer was conceived or programmed. Consequently, a digital 
computer is only capable of exhibiting local control or phenomena: it is incapable of 
generating or accessing any larger-scale or global properties. This, then, makes it 
impossible to generate in a digital computer any phenomenon which depends on glo-
bally-coupled properties, such as intelligence, life or consciousness [18]. A further 
disadvantage of Boolean implementation is that every gate in a digital computer is at 
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the same non-hierarchical level [25]. This means that the bigger the computer’s gate 
network, the slower the computer will perform (thus the race during the last few dec-
ades to increase computer clock-signal frequency or speed). 

A Naturally-hierarchical multi-scale organism functions in a completely different 
manner from a digital computer. The partial isolation of its scales means that most of 
its information processing is being carried out at its lowest scales, and the highest, 
most abstract scales can operate in real time quasi-independently of the lower ones. 
This is an enormous advantage to an organism, as it means that its large complicated 
and complex system can react comparatively rapidly to threatening external stimuli 
[18]. This, then, is an area where analogue computation has the advantage over digi-
tal, because its operating speed is unrestricted by the imposition of a delaying clock 
signal. Computation routinely takes the form of a reconfiguration of analogue empiri-
cal data in support of our analogue style of comprehension. Analogue computers do 
not need to encode and decode data into binary format, and they can be dramatically 
faster than digital ones at computing continuous functions. However, analogue com-
puters are subject to numerous electrical limitations, such as component inaccuracies 
and instabilities, the noise floor of their signals, the finite nature of an electron's 
charge, microelectronic parasitic effects, temperature issues and non-linearities. 

Computers of either kind can, of course, be used to control complex systems (e.g. a 
nuclear power station) at both their local and global levels, but the conceptual distinc-
tion is in the mind of the control-system designer, not inherently in the computer’s 
make-up. For example, neural network software can indeed carry out a distributed 
form of processing, but this is a combination of many local processes and it has  
no non-local character. Although it may be convenient to describe a digital computer 
as a number of different operating levels, an individual processing gate neither knows 
nor cares if it is processing a part of the operating system, the user interface, an  
application … 

Chalmers [66] claims that continuous systems would need to exploit infinite preci-
sion to exceed the powers of discrete systems. However, the reverse is also the case: 
discrete systems would need to exploit an infinite number of computational bits to 
exceed the feasible precision of continuous systems! Natural hierarchy implements 
the advantages of both digital and analogue processing, as does the brain. The most 
obvious differences between an organism and a computer are an organism’s  
self- properties,25 like self-organization, self-repair, self-reproduction and self-control, 
which are totally absent from conventional computers. However, it is the Natural 
hierarchical character of an organism which is responsible for the occurrence of all of 
these self- capabilities. 

11 Hierarchy and Opportunism 

Following on from our submission that Natural systems tend towards hierarchy it 
might be expected that we would find hierarchical organization literally everywhere. 
                                                           
25  Note, once more, that nominally ‘self-’ properties are always contextually or environmentally 

mediated. 
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But such is not the case, and we must explain why. It should be noted that we have 
only submitted that Natural systems tend towards hierarchy – not that they necessarily 
achieve it. To see why this is so we must look at the implications of Evolution. 

Darwin’s [67] 19th century depiction of the Evolution of organisms specified the 
three essential features of variation, reproduction and selection. Conventionally, his 
variation is associated with DNA mutation, his reproduction corresponds to our usual 
description of reproduction, and his selection is carried out by the survival or death of 
members of a species through environmental influences, cooperation or competition. 
We consider that these three essential features are the result of the evolution of Evolu-
tion itself, from a simple integral form more reminiscent of that normally associated 
with simple chemical interactions to a later ‘crystallization’ corresponding to Dar-
win’s differentiated description. This then suggests a continuity of evolution from the 
Big Bang up to the present day, during which every development of our Natural envi-
ronment has been subject to prior influence. 

Evolution is opportunistic, if nothing else. Nature has not been created ‘in one go’: 
it has evolved from state, to state, to state on the basis of what went before. This 
means that the characteristics which we observe today do not necessarily correspond 
to a ‘rational’ construction. This is very clear from the current physiognomies of or-
ganisms. Referring to the progressive evolution of physical characteristics, Sigmund 
[68] has pointed out that: 

”What serves for thermoregulation is re-adapted for gliding; what was 
part of the jaw becomes a sound receiver; guts are used as lungs and 
fins turn into shovels. Whatever happens to be at hand is made use of.” 

This is the real character of Evolution. We ourselves, for example, have a backbone 
which originally evolved to support our hanging internal organs while we moved 
around on four limbs. Fortunately, not all the consequences of Evolution are disad-
vantageous. Much of evolution can be associated with the distribution or exchange of 
autonomies between members of a species, internal scales of an organism, or even 
whole parts of an organism. Collier [62] has provided a beautiful example of this kind 
of relationship, in his suggestion that our brains have gained informational autonomy 
by ceding supportive biological autonomy to our bodies. 

In an opportunistic Evolutionary environment, we cannot expect that current Natu-
ral states or organisms will always correspond to the tendency towards hierarchy we 
have suggested. Even so, much of our surroundings does correspond to a hierarchical 
model. For example, there is evidence that parts of our brains operate hierarchically 
[69], while other parts do not [70].  

12 Birational Complementarity 

We now come to the central issue we wish to address. The study of ecosystemics leads 
us to the assertion that birational concepts are more general than conventional mono-
rational approaches in their applicability to the disciplines of physics, chemistry and 
biology. We consider that Science should be reformulated to take account of what Nils 
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Bohr believed to be an all-pervasive complementarity [71]. We do not imagine, howev-
er, that a binary ecosystemic complementarity is the ultimate scenario towards which 
we are heading: Nature operates through multiple concurrent complementarities, and in 
moving towards a binary representation we are simply taking the first step towards a 
hoped-for future intellectual multi-complementarity more closely related to the informa-
tional integration of consciousness [18], [72-73]. It could be argued that more compli-
cated complementarities could be looked at pairwise – as a multiplying-up of Brenner’s 
LIR ‘A’ and ‘non-A’ – but we believe that in a realistic setting the interactions between 
different elemental pairs would themselves interact, producing a more complex ar-
rangement. This is in any case an important feature of Natural hierarchy, as indicated in 
Figure 7(a), where bottom-up (‘emergent’ [74]) and top-down (‘slaving’ [75]) inter-
scale processes interact with each other [58]. It also indicates a weakness in the tradi-
tional circular representation of cybernetic feedback ‘loops’, as shown in Figure 7(b), 
which fails to take into account this vital characteristic. 

separate adjacent scales

no
inter-process

coupling

emergent

slaving

separate adjacent scales

inter-process
coupling

emergent

slaving

(b)(a)

 

Fig. 7.   (a) Parallel inter-scale process coupling, and (b) representational circularity 

We have earlier shown [6] that Rosen’s (M,R)-systems can be represented as a 
complementary pair of extremes (Figure 8(a)), and that the consequence is a  
mid-region, found only in organisms, where the four processes of {software flow}, 
{hardware flow}, {induction of software flow} and {induction of hardware flow} co-
exist (Figure 8(b)). One of these, {induction of hardware flow}, corresponds to the 
teleodynamic organization referred to by Deacon [16], where 

“one physical system is capable of influencing other physical systems 
via something that is merely virtual” [20]. 

Deacon [16] describes the emergence of morphodynamics (often referred to as ‘self-
organization’) from homeodynamics (thermodynamics), and that teleodynamics (life, 
evolution, semiosis…) can emerge from the interactions of morphodynamic 
processes. This mirrors Rosen’s [4] (M,R)-systems, where the (teleodynamic) organ-
ism ‘emerges’ from the interaction of (morphodynamic) metabolism, (morphodynam-
ic) repair and (morphodynamic) reproduction. The means by which Rosen finally 
‘encloses’ efficient cause is the identification of the individual parts of B in Figure 
8(a) as processors themselves – corresponding to one of Deacon’s [16] ‘intrinsic  
constraints’. 
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Figure 5(b) portrays the general representation of a Natural model hierarchy, with 
discrete (digitized) scale models separated by (analogue) complex regions. Figure 6 
does not in any way contradict this portrayal; it merely catalogues more clearly the 
complexity of the inter-scale regions. However, we now note an entirely unexpected 
feature of Natural hierarchy. Close attention to the comprehensive assembly of rela-
tionships between the individual scales, the individual complex regions and the unified 
nature of the denoted entity indicates that the set of inter-scale complex regions forms 
a previously unnoticed second hierarchy, whose different ‘scales’ are interleaved with 
those of the initial one (Figure 9) [18]. 

(a)

        

(b)

hardware
flow

software
flow

hardware induction of
software flow

software induction of
hardware flow

 

Fig. 8. (a) A symmetrical representation of Rosen’s [4] (M,R)-systems, showing the induction 
of software flow on the left (a classical ‘machine’) and its complement, the induction of hard-
ware flow, on the right. Empty-headed arrows represent software flow, and solid-headed arrows 
its hardware induction.  f is the functor driving the metabolism (M), A represents the environ-
mental input of material and f-A-B corresponds to the metabolic activity; Φ is the repair (R) 
functor, recreating f from B. (b) A characterization of the mid-region of the representation, 
where {software flow}, {hardware flow}, {induction of software flow} and {induction of 
hardware flow} co-exist 

An apparent contradiction must now be resolved. We have suggested that the inter-
scale complex regions are Rosennean in nature – thus archetypically analogue – and 
that they would therefore require an infinite number of models to completely formally 
represent them, or an infinite number of bits for accurate digital representation. But we 
have also concluded that our Natural hierarchy is a primarily digital facsimile of an 
analogue view of our surroundings. However, this seemingly analogue view is based 
on the multi-parametric digitized form of modeling we habitually and apparently nec-
essarily adopt in the human pursuit of representational accuracy. We say apparently, 
because it is only our reliance on conventional techniques of computation that makes it 
necessary to fragment the complementary characteristics of Natural phenomena in 
order to represent them in a tractable form. We have indicated in a previous publication 
[76] that organisms appear to resort to a more performant chaos-based scheme of in-
formation processing. Chaotic systems have the ability to explore their phase spaces 
and generate new information in a manner which is more related to their characteristic 
Lyapounov exponents [77] than to their characteristic processing-element size, and  
this makes it possible to increase information-processing density rather than merely 
quantity [76]. 

On close examination, our original formulation of a multi-scale Natural hierarchy 
does indeed turn out to be primarily digital in character, because its multi-parametric 
models are constructed through the fragmentation of phenomenological properties. 
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The complex inter-scale regions, however, should be assessed from an entirely differ-
ent viewpoint, as their properties are essentially inseparable. This particular analogue 
viewpoint is totally inaccessible from a conventional Scientific platform, as it is 
‘strange’ to traditional modeling and conventional computation: it is characteristic of 
a holistic approach, rather than a reductive one. We cannot stress this point too 
strongly: the second hierarchy of complex regions is analogue in nature, as opposed 
to the digital character of the first one. The first scale hierarchy is reductive towards 
localization at the right hand side of Figure 9. The second, inter-scale complex region 
hierarchy, however, is expansive towards the left hand side, but as Figure 9 implies 
this is equivalent to saying that it is reductive towards nonlocality [24], [27]. 

Digital scales
Analogue inter-scales

(a)

        
Structural scales,
related to “being”

Process-related inter-scales,
related to “becoming”

(b)

 

Fig. 9. (a) The analogue inter-scale regions form a second hierarchy which is partially indepen-
dent of the first scale hierarchy, and (b) association of the digital scales with the structural term 
‘being’, and the analogue inter-scales with the process-related ‘becoming’ 

The complex contained region (see Figure 5) associated with a specific scaled con-
taining model of a denoted entity in Figure 9 constitutes the ecosystem from which 
that scale will appear to have emerged. This means that at every scale of a Natural 
hierarchy there is a combination of containing information and contained information 
(Figure 5(a)) – the extant model and its associated complex region, respectively – 
which makes up a {denoted-entity model – denoted-ecosystem model} pair, and which 
completely describes the denoted entity at that scale. Transition towards the right hand 
side of Figure 9 is accompanied by a progressive reduction in the containing informa-
tion from model to model, corresponding to an increase in the amount of hidden con-
tained information: transition towards the left increases the containing information, 
and the contained information decreases. To a first approximation the total informa-
tion at each scale will be the same, The intimate inseparability of the two hierarchies 
of Figure 9 creates a singular birational framework within which any and all Natural 
entities and phenomena can be embedded. We believe that computation within this 
birational framework can be closer to Nature than conventional mono-rational ap-
proaches, most particularly for complex and living systems. We conclude that Scien-
tific or philosophical investigations should always be formulated birationally, in a 
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way which is related to the Western interpretation of yin-yang [26] – as a complemen-
tary pair rather than an alternation of opposites.26 

As indicated in Figure 9, the two hierarchies possess completely different charac-
ters. It should be noted that a model does not necessarily constitute static properties 
alone, and that both structure and process have implications for each other. We have 
earlier indicated a belief that the dynamic ‘material’ from which a Natural hierarchy is 
‘constructed’ is a complement of these two reductively-separated aspects of structure 
and process, and we have referred to their complement by the term struccess [78]. We 
have also expressed the opinion that this ‘material’ has also a limited character of 
awareness [18]. The digital-representation model scales of a Natural hierarchy them-
selves are nominally structural with procedural implications; the analogue inter-scale 
regions are nominally procedural with structural implications, thus the entire dual 
hierarchy invokes both static and dynamic facets of reality. The birational character of 
Natural hierarchy reflects Brenner’s [19] Principle of Dynamic Opposition, and we 
will see later that his ‘actual’ and ‘potential’ can be located at its heart. 

Transition from the right hand side of Figure 9 towards the left involves passing 
through sequentially-scaled models whose digital facsimiles contain more and more 
information, and whose representations approximate better and better the analogue 
properties they attempt to reproduce. However, we must address the real time acces-
sibility of these models with an eye on the information-processing timescales they 
consequently impose. Models towards the right hand side of Figure 9 contain limited 
amounts of information, and they are therefore conducive to rapid evaluation. If the 
entity denoted by our hierarchy is an organism, then these simplified models facilitate 
rapid response to an external threat. Models towards the left hand side of Figure 9 
contain more detailed information, which would demand more time-consuming 
processing. This is comparable to the potential of our own brains, where a rapid reac-
tive system through the amygdala (related to ‘fear-learning’ [79]) is available to by-
pass the more accurate but slower processing of the cerebral cortex. 

Ultimately, such a birational Natural dual hierarchy describes the past, current or fu-
ture emergence or evolution of any differentiated entity from its Universal origin in the 
Big Bang, and the farther we progress towards the left hand side of Figure 9 the more 
we approach perfect nonlocality. Conversely, the more we approach the right hand side 
of Figure 9 the more we approach the simple closed-off non-communicating character 
of pure localization or formal logic.27 These two extremes of perfect nonlocality and 
pure localization provide inaccessible spatial dimensional extremes between which any 
differentiated entity must and can only exist: they are Platonic in their perfection or 
purity. This makes our usual conception of existence itself a relative derivative of these 
two absolute models of nonlocality and localization! 

                                                           
26  Brenner’s LIR view is that they are indeed opposites, but not mutually exclusive ones, and 

that from their dynamic opposition emerges a third term, which is their conjunction, the Tao. 
27  Godel’s incompleteness theorems [3] indicate, as might be expected, that the description we 

are presenting is itself incomplete, as any model involving Rosennean complexity must be. 
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The model scales which appear in our first Natural hierarchy each constitutes the 
totality of information which is required to completely describe the denoted entity at 
that scale as viewed from outside. This descriptive or containing information, howev-
er, is progressively less and less able to accurately represent in detail the entire de-
noted entity as we move farther and farther towards the right hand side of Figure 9. 
Each scaled model, therefore, is necessarily an incomplete description, and any in-
formation which has been automatically subsumed or contained during its generation 
is omitted. This contained information is effectively ‘invisible’ at that scale of model-
ing, and it can be likened to the hidden variables [80] which appear, for example, in 
David Bohm’s treatment of Quantum Mechanics in a realistic setting, where he states 
that: 

“In the enfolded (or implicate) order, space and time are no longer the 
dominant factors determining the relationships of dependence or inde-
pendence of different elements. Rather, an entirely different sort of basic 
connection of elements is possible, from which our ordinary notions of 
space and time, along with those of separately existent material par-
ticles, are abstracted as forms derived from the deeper order. These  
ordinary notions in fact appear in what is called the ‘explicate’ or ‘un-
folded’ order, which is a special and distinguished form contained  
within the general totality of all the implicate orders” [81] 

While Bohm’s stated relationship between implicate and explicate orders is less than 
fashionable, we believe that his explicate order corresponds to the denoted entity of 
our first (single) Natural hierarchy: it consequently appears in various forms in a mul-
ti-scale representation. His implicate order at a specific scale would then be the enti-
rety of that scale’s pre-emergent information, and his explicate order would be the 
scale’s post-emergent model description, or containing information. But where is the 
post-emergent contained information located in our birational hierarchy? We submit 
that the total hidden or contained information in a birational Natural hierarchy consti-
tutes the totality of the complex inter-scale regions. But, for a specific scale, will the 
contained information be its pre-emergent complexity, to its left in Figure 9, or its 
post-emergent complexity, to its right in Figure 9? Well, neither and both!  

We pointed out earlier that a Natural hierarchy constitutes an interface between 
analogue and digital representations, and that in order to constitute a complex region 
we must insert at least one facsimile of our entire hierarchy between adjacent scales 
of the hierarchy itself. More precisely, if we are to identify the extant scales of a Natu-
ral hierarchy as digital representations and the complex regions as analogue ones, we 
must establish the scale sequence illustrated in Figure 10(a): transition from digital 
scale A to higher digital scale B requires first a digital-to-analogue hierarchical inter-
face, then the expected analogue region, and lastly a hierarchical analogue-to-digital 
interface. 

While we might intuitively expect the contained information of scale A to consti-
tute uniquely a pre-emergent complexity to its left, prior creation of scale A will also 
have generated to its right a potentiality for creating scale B approximately equivalent 
to the A-to-B analogue region indicated in Figure 10(a). The subsequent emergence of 
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scale B will recursively adapt, or slave [75] scale A and its associated information 
(and indirectly all other extant scales). Following this emergence of scale B, the com-
plete post-emergent contained information associated with scale A will then be ap-
proximately as shown: it will neither be the entire complex region to the left of A, nor 
the entire region to its right, but ‘part of each’ (Figure 10(b)). Although Brenner’s 
[19] ‘actuality’ may be identified with the extant scales – A and B here – it remains 
difficult to uniquely associate a specific region of the hierarchy with his ‘potentiality’. 
Given that in an ecosystemic system ‘a bear’ is not equal and opposite to ‘a bear-
hole’, this should come as no surprise. 

A major characteristic of the representation shown in Figure 10(b) is that the digi-
tal and analogue layers are no longer completely separated: each of digital and analo-
gue encroaches on the other, thus providing a progressive change between them. This 
corresponds to an early proposition [58] for a structure for coupling comparative ana-
logue processing to digital decision-making in a thresholded multi-scale system, 
where the threshold progressively changed from analogue to digital between compari-
son and decision-making. 
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Fig. 10. (a) The sequence of elements on transiting from lower scale A to higher scale B; (b) 
approximate contained information associated with scale A after the emergence of scale B 
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As usual, it is much easier to describe the character of a static state than to specify 
how it comes into being. As Pirsig [82] suggests: 

“A Dynamic advance is meaningless unless it can find some static pat-
tern with which to protect itself from degeneration back to the condi-
tions that existed before the advance was made. Evolution can’t be a 
continuous forward movement. It must be a process of ratchet-like steps 
in which there is a Dynamic movement forward up some new incline 
and then, if the result looks successful, a static latching-on of the gain 
that has been made; then another Dynamic advance; then another static 
latch”. 

Deacon [16] puts forward a similar proposal: that teleological processes result in con-
straint stabilization and support the development of life through entropy ‘ratcheting’.  

A major disadvantage of mono-rational approaches to Natural multi-scale systems 
is that relationships between the different scales must be ‘inserted’ from outside. The 
birational hierarchy we have described takes account of static properties, but it also 
intimately integrates both structure and processes of change through an overall con-
text-dependent partiality. Not only are the individual scales partially integrated and 
partially autonomous, so are the individual sub-hierarchies themselves: change in any 
property of any part of a birational Natural hierarchy results in partial correlated 
changes in every other property. We believe that computation within this birational 
framework can be far closer to Nature than conventional mono-rational approaches, 
most particularly for complex and living systems. 

13 Unavoidable Consequences and Conclusions 

The imposition of birational ecosystemic principles on the conventionally mono-
rational domains of Science and Philosophy results in unexpected and unavoidable 
consequences. Principal among these is a change in our perception of existence, 
which in a mono-rational scheme must be absolute. Not so in an ecosystemic context, 
where entities or phenomena ‘exist’ in a context-dependent intermediate Aristotelian 
condition relative to the spatiotemporally-dimensional Platonic extremes of pure lo-
calization and perfect nonlocality. These two extremes themselves ‘exist’ as a pair of  
complementary paradigms related to post-Newtonian-classical and quantum mechan-
ics, respectively, which are found to be of equivalent importance rather than a dis-
carded imperfect classical precursor and a currently-adopted undisputable quantum 
‘reality’. Existence itself is fragmented between numerous organizational scales 
which are recursively coupled by facsimiles of the entire bi-paradigmatic structure 
itself to create a multiply-fractal ‘living’ hierarchy. Nowhere is there a functionally 
isolated entity or phenomenon; only degrees of interconnectedness, from the weak to 
the strong, but never zero or complete. 

Our original mission was to bring all of Science under a generalized umbrella of 
entity and its ecosystem, and then characterize different types of entity by their rela-
tionships with their relevant ecosystems. This can be achieved within the birational 
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ecosystemic hierarchical framework we have described, where any and all definable 
entities and processes are contextually-dependent and consequently more or less 
coupled or autonomous. 

The overall representational scheme we envisage is as follows: 
As in our Figure 3; at the highest, most abstract level sits the potential-actual 

couple advocated by Lupasco [28] and Brenner [19]. All representation is derivative 
of this principle. Reality can be represented in terms of a multitude of conceptions, or 
denotable entities, both simple and complex: matter; energy; entropy; particles; 
waves; biology; hierarchy; Science; life; society; politics; theology… , and in each 
case potentiality and actuality are inaccessible and balanced, and reality emerges from 
potentiality and actuality as an included middle,28 contrary to the more traditionally 
philosophical position of excluded middle. 

A

degree of
complementarity

excluded middle

exclusive middle(a)

Anon-  
 

x

Wave field(b)

 

Fig. 11. (a) The transition from excluded to exclusive middle depending on the degree of com-
plementarity, illustrated in terms of Brenner’s coupled {A and non-A}. The borders between 
the middle and the extremes are unrealistically portrayed as abrupt: they could more be realisti-
cally represented in terms of a recursive application of Dempster-Shafer probability, and (b) the 
form of a quantum-mechanical photonic wave-packet, exhibiting neither zero (particulate) 
linear extension x nor infinite (wave) extension, but its exclusive middle state between the two 
of them 

Our own preferred description here would be of an exclusive middle, whose pre-
dominance and distinction from the classical excluded middle depends on the degree 
of complementarity between the potential-actual extremes (see Figure 11). A notable 
distinction between Brenner’s {A and non-A} and our own formulation is that we are 
                                                           
28  (With regard to) the “included middle”, this is one and perhaps not the best translation of the 

Lupasco idea, developed by Nicolescu [83], of le tiers inclus. Nicolescu prefers ‘included 
third’, which carries the flavor of an ontologically real entity, emerging from real contradic-
torial interactions. (Joseph Brenner: private communication). 
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portraying a reality as an emergence from its ecosystem, where ‘the bear’ and ‘the 
bear-hole’ are not exactly equal and opposite. 

Next we must choose a representative medium. Our choice is clearly the Natural 
hierarchy, although numerous other formulations could be imagined. In Figure 3 we 
have portrayed the hierarchical representation of Salthe’s [44] hierarchies. This brings 
to the fore an important aspect of Natural hierarchy, illustrated in Figure 12(a), which 
we must emphasize. The formalizations which can be said to exist at a particular scale 
of representation are emergences from the ecosystem at that scale. An even minor 
change in the represented denoted entity can bring to the fore other, possibly very 
different emergences: change in the expected character of hierarchy, for example, 
could result in completely different styles of formalization from Salthe’s [44] compo-
sitional and subsumptive modes (see, for example, the note we made earlier about the 
tree represented in Figure 5). It is not even necessarily the case that the positive or 
negative sense of elements at a given scale must be self-consistent. Figure 12(b) sug-
gests that the recognizable thermodynamic and informational elements of entropy can 
fit into a similar hierarchical representation, even though their senses are opposite. 

 

hierarchy

compositional

subsumptive

(a)

      

entropy

thermodynamic

informational

(b)

 

Fig. 12. (a) The hierarchical constituents of hierarchy – Salthe’s compositional and subsump-
tive hierarchies, and (b) the hierarchical constituents of entropy – thermodynamic and informa-
tional entropy 

And what happens when we represent hierarchically the denoted entity of hie-
rarchy itself? Our entire scheme – including Brenner’s potential-actual couple – be-
comes recursive, in the same way that progression from lower towards higher scales 
of a Natural hierarchy is recursive. In fact, there is no difference: the Natural hie-
rarchy itself includes its own recursivity, and the sensitivity to definition of a scaled 
denoted entity leads to a process of evolution. 

We noted earlier that an ecosystemic approach could be related to Turing’s ad-
vances in code-breaking [30], through the insistence on relating an individual coded 
message to the globality of its ‘environment’ of place, date, time, weather,… but also 
that it is impossible to generate in a (monorational) digital (conventional universal) 
computer any phenomenon which depends on globally-coupled properties, such as 
intelligence, life or consciousness [18]. From an unconventional-computation point 
of view these global properties are all regarded as the outcomes of Natural computa-
tion, and the hope is that advances in Natural styles of computation will make  
possible the generation of globally-coupled properties. Birational ecosystemic hie-
rarchy holds out the exciting prospect of fabricating more generally applicable com-
putational machines, conceivably bypassing the ‘brick wall’ of complexity currently 
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facing artificial intelligence and opening the way to the development of real  
non-biological intelligent systems. 

The relationship between life and informational entropy provides an excellent ex-
ample of the way in which the birational approach creates new viewpoints. Informa-
tional entropy is most usually referred to as the inverse of order. Given equal numbers 
of black and white balls, the most ordered arrangement is taken to be with all the 
black balls together and all the white balls together, as in Figure 13(a). Reasonably, 
the least ordered, most entropic arrangement would then be the alternation of black 
and white balls shown in Figure 13(b). However, this latter is really an alternate kind 
of order, which is found in the atomic arrangement of crystalline gallium arsenide, for 
example, where atom types alternate through the crystal [41]. 

If we associate informational entropy with the inverse of order, we now need two 
different kinds of entropy to associate with the two different kinds of order – informa-
tional-entropy.1 and informational-entropy.2. This provides a good example of a 
change in the denoted entity (entropy) which results in a change in the number of 
extant sub-types – see Figure 14, compared to Figure 12(b). 

(a)

(b)  

Fig. 13. (a) A conventional two-component ordered state; (b) the alternate ordered state 

entropy

thermodynamic

informational.1

informational.2

 

Fig. 14. Modification in the definition of the denoted entity of entropy results in multiplication 
of the number of sub-types, now including two types of informational entropy 

Here again we meet with a pair of dimensional extremes enclosing reality.29 If we 
start from one of these two extreme ordered states and move towards the other we 
would expect the initial state’s associated entropy to progressively rise, and the other 
state’s associated entropy to progressively fall away (Figure 15). We suggest that life 
colonizes the mid-region between the two kinds of order where the total summed 
entropy may be lowest. 

This raises a number of fascinating questions. Life has been described as being lo-
cated ‘at the edge of chaos’ [84]. Is the mid-ground of Figure 15 this region? Or does 
it correspond to Sabelli’s [85] bios – one step beyond chaos? Deacon [16] has  

                                                           
29  Neither of these two ordered states is accurately accessible in reality: the sequences would 

need to be infinitely long, while in reality the ‘observational window’ is always much  
smaller than this. 
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indicated that life is related to a balance between thermodynamic entropy and infor-
mational entropy. Does this mid-ground correspond to the informational entropy  
required in his proposal? 

Complementarity is the order of the day, whether this is unformalizably-intimate, 
as in recursively-functional organisms, or formalizably-distant, as in the loosely-
tractable ‘inorganic’ subjects of conventional Science. Complementarity may be  
approximated in various ways, from its most simplistic representation as a pair of 
opposites to the extreme complexity which apparently characterizes life. Science habi-
tually resorts to a two-part representation: first the institution of a set of non-recursive 
orthogonal parameters, whether dependent or independent, then the establishment of a 
formal, preferably linear relationship between them.30 This effectively ejects recur-
sively-functional living organisms from Science’s purview; thus Rashevsky [86] and 
Rosens’ [4] particular focus on the interrelational characteristics of life. 

entropy

Does life colonize
the mid-ground?

 

Fig. 15. The progression of entropy on moving away from each of the extreme ordered states, 
and the hypothesized colonization by life of the mid-ground where entropy is lowest 

The birational ecosystemic association is fundamentally one of combined existen-
tial differentiation and integration, neither one nor the other, where predominance 
depends unavoidably on context. Differentiating segregation leads to the reductionism 
of conventional Science; unifying integration leads to the holism of human relations. 
Either of these can be embedded in the general hierarchical scheme we have pre-
sented. We believe that computation within this birational framework can be far  
closer to Nature than conventional mono-rational approaches, most particularly for 
complex and living systems. 

Acknowledgement. The authors wish to thank Gordana Dodig-Crnkovic, Joseph 
Brenner and Stan Salthe for their constructive and helpful comments in connection 
with this chapter. 

                                                           
30  An excellent example of this approach can be found in electronics, where a resistive compo-

nent is first characterized in terms of the institution of non-interactive orthogonality between 
two functionally-dependent parameters – voltage V and current I – and then the compo-
nent’s resistance R is established by the formal relation R = V/I. 
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Abstract. Life, thought of as adaptively organised complexity, depends upon 
information and inference, which is nearly always inductive, because the world, 
though lawful, is far from being wholly predictable. There are several influen-
tial theories of probabilistic inference in neural systems, but here I focus on the 
theory of Coherent Infomax, and its relation to the theory of free energy reduc-
tion. Coherent Infomax shows, in principle, how life can be preserved and  
improved by coordinating many concurrent inferences. It argues that neural sys-
tems combine local reliability with flexible, holistic, context-sensitivity. What 
this perspective contributes to our understanding of neuronal inference is briefly 
outlined by relating it to cognitive and neurophysiological studies of context-
sensitivity and gain-control, psychotic disorganization, theories of the Bayesian 
brain, and predictive coding. Limitations of the theory and unresolved issues are 
noted, emphasizing those that may be of interest to philosophers, and including 
the possibility of major transitions in the evolution of inferential capabilities.  

Keywords: Probabilistic inference, Coherent Infomax, free energy reduction. 

1 Introduction 

Many forms of organised complexity have arisen during nature’s long journey from 
uniformity to maximal disorder, despite the ever present forces of noise and disorder. 
Biological systems are able to create and preserve organised complexity, by, in effect, 
making good predictions about the likely consequences of the choices available to 
them. This adaptively organised complexity occurs in open, holistic, far-from-
equilibrium, non-linear systems with feedback. Though usually implicit, probabilistic 
inference is crucial, and useful inference is only possible because the laws of physics 
are sufficiently reliable. The endless variety of individual circumstances and the preva-
lence of deterministic chaos and quantal indeterminacy make many things uncertain, 
however; so, to thrive, biological systems must combine reliability with flexibility. 

It is in neural systems that the crucial role of probabilistic inference is most ob-
vious. Helmholtz correctly emphasized the centrality of unconscious inference to 
perception, and many examples of its use for contextual disambiguation can be given 
[1]. Furthermore, it has also now been explicitly shown how such unconscious infe-
rence may also be central to reinforcement learning, motor control, and many other 
biological processes [2]. 
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Better formalisation of these issues is clearly needed, so Section 3 outlines an ele-
mentary neurocomputational perspective that uses information theory measures to 
shed light on them, i.e. the theory of Coherent Infomax [3, 4, 5]. A major advantage 
of that theory is that, in addition to being formally specified and simulated in large 
artificial neural networks, it has wide-ranging empirical roots, being related, often in 
detail, to much empirical data from neuroanatomy, cellular and synaptic physiology, 
cognitive psychology, and psychopathology. Section 4 briefly discusses relations 
between this theory and that of free energy reduction [2], to which it has deep connec-
tions, and which has been applied to an even wider range of phenomena than has 
Coherent Infomax. Finally, in Section 5, difficulties of the theory and unresolved 
issues of possible philosophical interest are briefly discussed. First, the following 
section outlines some of the difficult conceptual problems to be solved by theories of 
neuronal inference. 

2 Theories of Neuronal Inference and Difficult Problems That 
They Must Solve 

The preceding arguments suggest several issues on which we need to make progress. 
What is organised complexity? What are the capabilities and constraints of various 
forms of inductive inference, e.g. classical versus Bayesian [6], conscious versus un-
conscious [7]? How is reliability combined with flexibility, i.e. how is information 
about reliable generalities combined with information about individual particularities? 
How is localism combined with holism? What forms of learning and processing does 
neural inference require, and how are they implemented at the synaptic, local circuit, 
and systems levels? Do biological capabilities for probabilistic inference evolve to-
wards forms of inference with greater accuracy, generality, or abstraction? Informa-
tion theory measures such as Shannon entropy and free-energy have been applied to 
these issues, but how can they be tested and what do they contribute to our under-
standing? 

Several theories of probabilistic inference in neural systems have been proposed, 
including the Bayesian brain [8, 9], predictive coding [10], efficient coding and Info-
max [11, 12, 13], and sensorimotor integration [14]. It has been argued that all can be 
unified via the principle of least variational free energy [2, 15, 16]. The free energy 
principle is formulated at the level of the interaction of the system with its environ-
ment – and emphasizes Bayes optimal inference using hierarchical architectures with 
backward as well as forward connections. As free energy theory offers a broad synop-
tic view of neuronal inference the Coherent Infomax theory will be compared to that. 

The theory of Coherent Infomax stresses the necessity of avoiding information over-
load by selecting only the information that is needed. This necessity arises not only from 
requirements of computational tractability, but also from an unavoidable property of 
noisy high-dimensional spaces. As dimensionality increases the number of possible loca-
tions in that space increases exponentially, with the consequence that nearly all events 
occur at novel locations. Probabilistic inference based on prior events then becomes im-
possible. This problem is well-known within the machine learning community, where it 
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is referred to as the ‘curse-of-dimensionality’. It may be avoided by selecting only the 
information that is ‘relevant’; but how? Coherent Infomax suggests a solution: select 
information that reveals latent statistical structure in the available data. Useful combina-
tions of datasets between which to seek predictive relations may be found by genetic 
search prescribing gross system architectures combined with the learning algorithms of 
Coherent Infomax, as outlined in the following section.  

3 The Theory of Coherent Infomax: A Brief Outline 

An unavoidable consequence of the curse-of-dimensionality is that large amounts of 
data must be divided into subsets that are small enough to make learning feasible. If 
they were processed independently, however, then relations between the subsets would 
be unobservable. Success in finding useful relations would then be completely depend-
ent upon the original division into subsets, but that is unlikely to be adequate unless the 
crucial relations were already known. Coherent Infomax responds to this dilemma by 
dividing data at each level of an interpretive hierarchy into many small subsets, and 
searching for variables defined on them that are predictably related across subsets. This 
strategy allows for endlessly many ways in which the data can be divided into subsets 
and linked by modulatory coordinating interactions between them. 

These considerations suggest minimal requirements for local neural processors per-
forming such inference. They must have a subset of inputs within which latent vari-
ables may be discovered and compressed into fewer dimensions. These are referred to 
as driving, or receptive field (RF), inputs.  They must also receive inputs conveying 
information about the activity of other processors with which they are to seek predic-
tive relations. These are referred to as contextual field (CF) inputs. They control the 
gain of response to the driving RF inputs but cannot by themselves drive processor 
activity, because, if they did, that would contradict the strategy for avoiding the curse-
of-dimensionality. Given this constraint, local processors can have a rich array of 
contextual inputs, far richer than the array of driving inputs within which they seek 
predictable variables. 

The theory of Coherent Infomax has grown from combining such considerations 
with much empirical data from several relevant disciplines [3, 4, 5]. Only a brief out-
line is given here. For full formal presentations see the original publications. The 
theory uses three-way mutual information and conditional mutual information to 
show how it is possible in principle for contextual inputs to have large effects on the 
transmission of information about the primary driving inputs, while transmitting little 
or no information about themselves, thus influencing the transmission of cognitive 
content, but without  becoming confounded with it. Guided by neuroanatomy, the 
gross system architecture assumed is that of at most a few tens of hierarchical layers 
of processing, with very many specialized but interactive local processors at each 
stage. Feed forward connections between layers are driving, whereas a larger number 
of lateral and feedback connections provide coordinating gain-control as shown in 
Figure 1. Minimally, the function of local processors is to select and compress that 
information in their driving receptive field (RF) input that is relevant to the current 
task and situation, as indicated by the contextual field (CF) input that modulates 
transmission of RF information.  
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a) Coordination of feedforward transmission

b) Coordination of associative assemblies

REGION C

REGION B
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Fig. 1. Examples of system architectures that could be built from the local neural processors of 
Coherent Infomax, shown here as small cylindrical columns. Though only a few are shown in 
each region, in useful applications, as in mammalian cerebral cortex, there would be very many 
in each region. Receptive field connections, shown by thick lines, provide the input from which 
information is to be selected and compressed. Coordinating contextual field connections, shown 
by thin lines, control the gain of response, and provide the inputs with which predictive rela-
tions are to be sought. 

This is formalized as an objective function describing the signal processing work to 
be done, as shown in Figure 2 by arrows associated with each of the four components 
of the output H(X). 

H (R)

H (X)

H (C)
I(X;R;C)

I(X;R|C) I(X;C|R)

H(X|R,C)

The Objective of Coherent Infomax is:
Max I(X;R) so that I(X;R;C) > I(X; R|C) & Min I(X; C|R) 

R

X

C
X: Output
R: Receptive field input
C: Contextual field input

 

Fig. 2. The objective of local processors in Coherent Infomax. The ovals show the Shannon 
entropy in each of three probability distributions. Information flow through the local processor 
is shown in the small icon, bottom right. Contextual entropy can be greater than the other two 
because it is not to be transmitted in the output. Thus, it enables narrowly focussed receptive 
field processing to operate within a broad context. 
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Outward pointing arrows show components that should be increased, with priority 
being shown by arrow length. Inward pointing arrows show components that should 
be decreased. In short, the objective is to maximise the information transmitted about 
the receptive field input subject to the constraints of substantial data reduction while 
emphasizing the mutual information between receptive field input and contextual 
field input and minimizing any information transmitted specifically about the context. 
To show how that objective could be met in neural systems, a biologically plausible 
activation function for idealized local neural processors was formulated to include the 
required gain-control, and a learning rule for modifying the synaptic strengths of the 
connections between these local processors was derived analytically from the objec-
tive function. What most impressed us about the consequent learning rule is that, al-
though it was deduced formally from the objective function, assuming none of the 
physiological evidence concerning the dependence of synaptic plasticity on current 
and prior activity, it is broadly in agreement with that evidence. The theory of Coher-
ent Infomax thus shows how it is possible for neural systems to perform probabilistic 
inference in a way that combines reliability with flexibility, and localism with holism, 
while making useful inference feasible by selecting only information that is relevant, 
and thus avoiding the curse-of-dimensionality. It has guided studies of common 
neurobiological foundations for cortical computation [17], dynamic coordination in 
the brain [18], cognitive impairments in schizophrenia [19], and of relations between 
probability theory, organised complexity and brain function [20]. 

4 Relations to the Theory of Free Energy Reduction 

The current growth of interest in inference and prediction as possible keys to a fun-
damental understanding of neuronal systems is seen in the many groups working on 
‘predictive coding’ and the ‘Bayesian brain’ as cited in Section 2. Those theories do 
not usually make use of gain-control or context to select the relevant information to 
be coded and used, however, and rarely show explicitly how the curse-of-
dimensionality can be avoided. One theory that may be able to do so, however, is that 
proposing a unifying brain theory based on ideas from statistical physics and machine 
learning [2]. This has already received deep philosophical examination, and been 
found to have considerable interest from that perspective [21], even though it still 
needs further development. It interprets many aspects of neural structure and function 
as having evolved to reduce Helmholtz free-energy using a form of predictive coding 
in which ascending activities predicted by feedback descending from higher levels in 
the hierarchy are suppressed. In contrast to this, Coherent Infomax proposes that ac-
tivities predicted by contextual input can be amplified. Thus, the form of predictive 
coding used in free energy theory seems to imply effects of context that are in opposi-
tion to those of Coherent Infomax. Furthermore, the theory of free energy reduction is 
formulated at the level of an agent in an environment with distal causes and parame-
ters that are hidden from the agent; Coherent Infomax is formulated at the level of 
local neural processors operating within a large population of other such processors, 
with which they can communicate either directly or indirectly. 
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There are at least three grounds for thinking that these two theories are not in es-
sence opposed, however. First, both theories imply that the fundamental objective of 
neuronal dynamics is to reduce any differences between predicted and observed prob-
ability distributions. Indeed, it may even be possible to unify the two perspectives by 
formulating the objective of Coherent Infomax as the maximisation of predictive suc-
cess and of free energy reduction as the minimisation of prediction failure (Phillips 
and Friston, in preparation). Such a common goal could be described as maximising 
the transmission of information that is relevant to the context, or alternatively as re-
ducing uncertainty about sensory inputs given the contextual constraints. Second, the 
two theories may be complementary, rather than opposed, because Coherent Infomax 
emphasizes lateral connections between streams of processing dealing with distinct 
datasets, while also including some downward connectivity, whereas the theory of 
free energy reduction emphasizes downward connections, while also including some 
lateral connectivity. Third, it has been argued that predictive coding theories can be 
made formally equivalent to theories based on evidence for amplifying effects of  
top-down attentional inputs [22]. This was done by reorganising the computations 
required for predictive coding, and assuming that suppressive effects of prediction 
operate on intra-regional signals, rather than on inter-regional signals. Furthermore, a 
detailed model of that form of predictive coding argues that it is compatible with 
much of the neurobiological evidence [23]. These studies therefore suggest that some 
form of predictive coding may be compatible with both Coherent Infomax and the 
theory of free energy reduction. Deeper examination of relations between those two 
theories is therefore a major task for the future. 

5 Unresolved Issues and Difficulties of the Theory 

The conceptual depth and empirical scope of the free energy and Coherent Infomax 
theories raises many unresolved and controversial issues, some of which may have 
philosophical significance. There is time here to mention only a few, and each in no 
more than speculative and flimsy outline. 

First, is any unified theory of brain function possible? As a recent philosophical 
examination of the free energy theory shows this is an issue of lasting debate, with the 
‘neats’ saying ‘Yes’, and the ‘scruffies’ saying ‘No’ [21]. As the issue cannot be re-
solved by failing to find any unifying theory, it can only be resolved by finding one. 
Some are happy to leave that search to others, on the assumption that Darwinian evo-
lution is the only unifying idea in biology. Even if true that need not deter the search 
for unifying principles, however, because it can be argued that free energy theory both 
formally specifies what adaptive fitness requires and shows how neural systems can 
meet those requirements (Friston, personal communication). 

Second, another crucial issue concerns the possibility of major transitions in the 
evolution of inferential capabilities. Seven major transitions in the evolution of life 
have been identified [24], such as the transition from asexual to sexual reproduction. 
Only one of those concerned cognition, i.e. the transition to language. Major transi-
tions in the evolution of inferential capabilities prior to language are also possible, 
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however, and it is crucial to determine whether this is so because empirical studies of 
inferential capabilities will be misinterpreted if they are assumed to reflect a single 
strategy, when instead they reflect a mixture of strategies, either across or within spe-
cies. One way in which work of the sort discussed here could contribute to this issue 
is by proposing various possible inferential strategies. They could range from those 
with requirements that are easier to meet but with severely limited capacities, through 
intermediate stages of development, to those having more demanding requirements 
but with enhanced capabilities. Some possible transitions are as follows: from predic-
tions only of things that are directly observable to estimates of things not directly 
observable; from generative models averaged over various contexts to those that are 
context specific; from hypotheses determined by input data to those that are somehow 
more internally generated; from probabilistic inference to syntactic structure, and, 
finally, from hypothesis testing to pure hypothesizing freed from testing. Within  
stages marked by such transitions there would still be much to be done by gradual 
evolutionary processes. For example, context-sensitive computations can make astro-
nomical demands on computational resources, so they will be useful only if appropri-
ate constraints are placed on the sources and size of contextual input, as already 
shown for its use in natural language processing [25]. Thus, even given the ability to 
use contextual information, the search for useful sources of contextual input could 
still be a lengthy process, even on an evolutionary timescale, and produce much  
diversity. 

Third, how can apparently simple objectives, such as specified by Coherent Info-
max and free energy theory, help us understand the overwhelming evidence for wide 
individual differences in cognitive style and capabilities? To some extent answers to 
this question are already available as it has been shown that within human cognition 
there are wide variations in context-sensitivity across sex and occupation [26], culture 
[27], schizotypy [28], and developmental stage [29]. The use of these theories to help 
us understand the diversity of cognitive capacities both within and between species is 
in its infancy, however. 

Fourth, why are there several different neurobiological mechanisms for gain-
control? Earlier work done from the Coherent Infomax perspective, both in relation to 
normal and psychotic cognition [19], emphasized only NMDA synaptic receptors for 
the predominant excitatory neurotransmitter glutamate, but we now realize that sever-
al other gain-control mechanisms are also important, particularly at the level of  
micro-circuitry involving inhibitory inter-neurons. The various uses, capabilities and 
limitations of these different mechanisms for gain-control remain to be determined. 

Fifth, as Coherent Infomax is formulated at the level of local neural processors that 
operate only within a population of other such processors, are they not doomed to 
imprisonment in such a ‘Chinese room’, with no hint of a world beyond? As Fiorillo 
argues, neuroscience must be able to ‘take the neurons perspective’ [30], but how can 
that be done without thereby losing contact with the distal world beyond? Coherent 
Infomax suggests an answer to this dilemma, first, by being formulated explicitly at 
the level of the local neuronal processor, and, second, by searching for predictable  
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relations between diverse datasets. Discovery of such interdependencies implies the 
existence of distal causes that produce them. The more diverse the datasets the more 
distal their common origins are likely to be. This can be seen as a neurocomputational 
version of Dr Johnson’s refutation of idealism when he kicked a stone and said “I 
refute it thus”. A distal reality is implied both by the agreement between what he sees 
and what he feels, and by his successful prediction of the outcome of his actions. 
Though this argument seems plausible to me, I am not a philosopher, so it may be in 
need of closer philosophical examination. 

Sixth, coherence, as conceived within this theory, depends upon the long-term sta-
tistics of the co-occurrence of events defined at the highly specialized level of recep-
tive fields, which convey information only about fragments of the current state as a 
whole, so how can episodic capabilities that deal with unique events, such as working 
memory and episodic memory, be included within such a conception? My working 
assumption is that these capabilities are closely related to the syntactic grammars of 
language and schematic structures. Though syntactic and statistical conceptions of 
cognition have long been contrasted, there is no fundamental conflict between them 
because, as many studies have shown, grammars can be acquired by statistical infe-
rence. The use of such grammars to create novel but relevant patterns of activity 
seems to be, in essence, close to what the theory of Coherent Infomax has to offer, but 
I know of no attempt to explore that possibility. 

Seventh, how can attention and consciousness be included within these theories? 
Within Coherent Infomax, attention is assumed to operate via the contextual inputs, 
which are purely modulatory as required. One psychophysical study of texture per-
ception by humans used the formal information theoretic measures of the theory, and, 
indeed, in that case attention had the complex set of properties predicted [30]. That 
one study has not been followed-up, however, and though it has promise, far more 
needs to be done. The theory of free energy reduction has also been related in detail to 
attention [31], but in that case also far more is needed. 

Eighth, can the dynamics of biological systems be described as maximising a for-
mally specified objective without implying that they have a long-term objective? This 
question is distinct from the much debated issue contrasting descriptive and prescrip-
tive formulations. Instead, it concerns the temporal course of evolution. Is it progres-
sive or not? Evolutionary biologists are divided on this issue, but Coherent Infomax 
implies that it can be progressive, provides a conceptual measure of the progress, i.e. 
as increasing organised complexity, and suggests ways in which neuronal systems 
contribute to that progress [20]. We can then think of life at the ecological and species 
levels, not as ‘evolved to reproduce’, but as ‘reproducing to evolve’; i.e. in the direc-
tion of the formally specified objective. From that perspective we can think of our 
own individual efforts as directed, not merely towards survival, but as directed to-
wards whatever organised complexities we choose to create. 
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Abstract. When considering the ongoing challenges faced by cognitivist  
approaches to artificial intelligence, differences in perspective emerge when the 
synthesis of intelligence turns to neurobiology for principles and foundations. 
Cognitivist approaches to the development of engineered systems having proper-
ties of autonomy and intelligence are limited in their lack of grounding and  
emphasis upon linguistically derived models of the nature of intelligence. The al-
ternative of taking inspiration more directly from biological nervous systems can 
go far beyond twentieth century models of artificial neural networks (ANNs), 
which greatly oversimplified brain and neural functions. The synthesis of intelli-
gence based upon biological foundations must draw upon and become part of the 
ongoing rapid expansion of the science of biological intelligence. This includes an 
exploration of broader conceptions of information processing, including different 
modalities of information processing in neural and glial substrates. The medium 
of designed intelligence must also expand to include biological, organic and inor-
ganic molecular systems capable of realizing asynchronous, analog and self-*  
architectures that digital computers can only simulate.  

Keywords: Artificial intelligence, neuroscience, natural computing. 

1 Introduction 

Alan Turing [27] provided the definitive challenge for research in artificial intelli-
gence (AI) of creating a computer program that could not be distinguished in commu-
nication via a remote interface from a human operator. This challenge has had the 
great advantage of providing a constrained and measurable problem for artificial intel-
ligence, which more generally suffers from being highly unconstrained [11]. That is, 
AI seeks to make machines more intelligent, which immediately raises questions of 
what intelligence is and how it might be detected or measured. The focus of the Tur-
ing test on textual discursive capability has encouraged a symbolic AI paradigm that 
emphasizes the definition of formalized linguistic representations and the logic of 
high level cognitive operations that are involved in verbal and textual discourse. The 
Turing test meshes well with Newell and Simon’s physical symbol system hypothesis 
[17] that: “A physical symbol system has the necessary and sufficient means for gen-
eral intelligent action.” In this conception, the foundations of discursive intelligence 
become the foundations of general intelligence.  
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While this approach may lead to systems that can pass the Turing test within li-
mited contexts, as a general paradigm of intelligence it has severe limitations, as 
summarized by Lindley [15]. Indeed, following the argument of [15], not only is the 
Turing test limited to symbolic discursive intelligence, the foundation of Turing’s 
challenge, computing machinery, is a narrow and historically situated understanding 
of machines that unnecessarily constrains the historical development of synthetic 
intelligences. In the age of nanotechnology and biotechnology, the distinction be-
tween machines and biological organisms breaks down. This suggests that the realiza-
tion of intelligence by design can shift towards foundations in the design of self-
replicating, self-assembling and self-organizing biomolecular elements or analogs 
capable of generating cognizing systems as larger scale assemblies, analogous to the 
neurobiological substrate of human cognition. That is, the paradigm of biomolecular 
engineering implies the construction of human level intelligence (HLI), not from the 
top-down by the manipulation of symbols, but from the bottom-up by the synthesis of 
neural architectures starting at the level of molecular engineering. 

Here this bottom-up approach will be referred to as synthetic intelligence (SI), by 
analogy to synthetic biology, characterized by the OpenWetWare group as “A)  
the design and construction of new biological parts, devices, and systems, and  
B) the re-design of existing, natural biological systems for useful purposes” 
(http://syntheticbiology.org/, accessed on 11 September, 2012). SI may be contrasted 
with symbolic AI (SAI) which is largely based upon top-down analysis of higher level 
cognitive functions with the aim of deriving abstract symbolic models that can be 
expressed independently of mechanisms by which representation and logical infe-
rence may be automated. 

While SI can be motivated by reflection upon the limited success of SAI, it finds a 
strong and obvious demonstration in human neural systems, of which only functions 
pertaining to abstraction and symbol manipulation are readily captured by SAI. For 
SI, abstraction and symbol manipulation are functions that need to be achieved from 
the bottom-up, in the context of more extensive non-symbolic neural functions such 
as perception, orientation, control of movement, automation of vital functions, impul-
sive and goal-oriented behaviour generation, drive arbitration and contextualization, 
etc.. However, the achievement of SI as a product of engineering is, of course, yet to 
be demonstrated. Moreover, the pursuit of SI immediately raises the question of how 
well we understand neurobiology. One of the issues to consider in this is the degree to 
which our understanding of neurobiology is conditioned by historically situated meta-
phors and current technologies, just as [15] describes the metaphorical construction of 
AI in terms of intelligence as computation, and of robotics as the reinvention of the 
(typically) human form in the media of twentieth century electromechanical engineer-
ing and industrial technology. 

A central question here is that of the nature and role of information processing in 
understanding the functions of neurobiology, especially those functions that may ap-
pear most relevant to the realization of HLI, and the implications of this for how SI 
may be achieved. Critical to this is the degree to which information processing is 
being used metaphorically or literally. A metaphor can be defined as “a figure of 
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speech in which a word or phrase is applied to an object or action that it does not 
literally denote in order to imply a resemblance”  

(http://www.collinsdictionary.com/dictionary/english/metaphor, accessed 11 Janu-
ary 2012). In neurobiology it is often very unclear when descriptions in terms of com-
putation or information processing are metaphorical and when they are literal. The 
degree of literalness or metaphor depends upon the degree to which specific models 
of computation capture more or less fundamental aspects of the operation of the brain 
associated with the realization of HLI. For SI, which seeks to realise designed intelli-
gence, the distinction between the literal and the metaphorical, and what falls within 
the gap, can be critical to success or failure.    

2 Neurobiology: Systems, Signals and Processes  

Understanding neural signal transmission and processing in the brain requires under-
standing at many different spatial scales, including those of ion channels (at a scale 
around 1 pm), signaling pathways (1 nm), synapses (1 µm), dendritic subunits (10 µm), 
neurons (100 µm), microcircuits (1 mm), neural networks (1 cm), subsystems (10 cm) 
and the whole nervous system (1 m) [26]. For understanding intelligence, a key question 
is: at what levels of this structural and functional hierarchy are information processes 
critical to intelligence carried out? The answer is not obvious, since a top-down, cogni-
tive account of intelligence might identify intellectual functional capabilities that could 
be realized by a high level implementation providing a layer of abstraction in the place 
of lowers levels of the hierarchy of neural signal processing; this is exactly what a high-
level, rule-based model of problem-solving does. For bottom-up, neurobiological ac-
counts, the question amounts to where to identify the bottom (are abstract neurons 
enough, or do we need to model synapses, ion channels, molecular interactions, etc.). 
Conversely, what aspects of the physiology, structure and operation of the brain that are 
not captured by the concept of information processing may nevertheless be critical to 
achieving HLI? Or turning the last question around, which concept(s) of information 
processing are critical to achieving HLI? Or which explanations of neurobiological 
function need to be expressed in which language of information processing and/or  
computation to explicate the critical foundations of HLI? 

Symbolic AI has focussed upon behaviour, what may be inferred from behaviour 
regarding functional types and capacities, and the derivation from language constructs 
of more formalized models (e.g. taxonomies, propositions, rules, etc) of linguistic 
forms, their syntax and semantics. Subsymbolic AI has focussed upon simplified 
models of neurons and neural networks characterized by different learning rules and 
topologies. Since HLI has yet been approached by any kind of AI system, it must be 
asked if these approaches are adequate, or whether comparison with biological brains 
and nervous systems can reveal structures, functions, processes or principles that have 
not yet been used in AI that may nevertheless be critical for the achievement of artifi-
cial or synthetic HLI. Since SI is concerned with the bottom-up creation of intelli-
gence, the discussion here will focus upon the lower layers of the hierarchy, i.e. the 
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levels of simple neural interconnections and below (ignoring larger scale circuits, 
network topologies and subsystems).  

The most ubiquitous image of the brain is that of a kind of wet computer with cir-
cuitry consisting of a vast network of interconnected neurons transmitting electrical 
signals among themselves, with each neuron summing weighted inputs and issuing an 
output signal if the sum of inputs exceeds a threshold (the integrate-and-fire model of 
neurons). This view is a simple embodiment of the neuronal doctrine [28], which 
places neurons and their synaptic interconnections at the centre of brain and nervous 
system functionality. This is really tautologous in the case of the nervous system, 
since the nervous system is the network of neurons and their interconnections. Less 
obviously, however, it may be asked what contributions the neural system makes to 
intelligence, compared with the contributions of physiological information processing 
that is not carried out by neurons. This requires a consideration of signal processing 
by neural and non-neural systems. 

A single bipolar neuron cell consists of a cell body from which there extend den-
dritic trees surrounding the cell body, and an elongated axon that also leads to a 
branching end structure. Dendrites accept inputs from other neurons in the form of 
neurotransmitters, via synapses that often occur on small projections referred to as 
dendritic spines. Any given input can have an additive or subtractive effect upon the 
summation of inputs at the neuron body, with different inputs having different 
strengths. When a sufficient balance of additive over subtractive inputs is received, 
the cell body accumulates enough of a potential difference between the inner and 
outer surfaces of its surrounding membrane for ion channels embedded in the mem-
brane to open, leading to the movement of ions between the inside and the outside of 
the cell. This movement of ions cascades along the cell axon as an action potential, a 
voltage spike providing a signal that is transmitted via the terminal axonal branches to 
the dendrites of other neurons. After the passage of such an electrochemical pulse, 
following a brief refractory period during which no further action potentials can be 
generated, the ionic balance across the neuron cell membrane returns to the rest po-
tential. The details of this process are covered in many neuroscience texts (e.g. [2], 
[25], [13]).  

Significant contributions to action potential generation are made by astrocytes, oli-
godendrocytes and Schwann cells. Astrocytes have a role in regulating the concentra-
tion of extracellular K+. Oligodendrocytes (in the central nervous system) and 
Schwann cells (in the peripheral nervous system) provide insulating myelin wrapping 
to the axons of some neurons. Where the myelin wrapping occurs, there is no ion-
containing extracellular fluid on the outer surface of the axon, and no electrical poten-
tial can travel along these segments. At the gaps between myelinated sections, the 
nodes of Ranvier, there are high densities of voltage-gated ion channels, so that when 
an action potential creates a sideways spread of Na+, the action potential jumps from 
one node of Ranvier to the next, creating a highly accelerated propagation of action 
potentials and consequently much faster speed of signal transmission than in unmye-
linated axons. The speed of transmission of an action potential in the fastest, myeli-
nated, cells of the peripheral nervous system is about 150 ms-1, a speed that is two 
million times slower than the transmission of an electric signal along a wire or a pulse 
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of light along an optical fibre. The metaphor of neural transmission as an electrical 
signal is highly misleading in this respect; an action potential is measured across and 
propagates along the neuron cell membrane due to a cascading flow of charged par-
ticles, a process of electrochemical diffusion.   

The primary signal transmission connections between neurons occur at synapses. A 
synapse consists of a synaptic terminal on the presynaptic side, a synaptic cleft, which 
is a gap of ~20 nm width, and a postsynaptic membrane on the receiving side. A sub-
set of a wide range of possible neurotransmitters is issued from synaptic terminals of 
an activated neuron. The neurotransmitters move across the synaptic cleft to receptors 
on dendrites on the post-synaptic side.  Hence action potentials as such are not direct-
ly transmitted from one neuron to another (in most cases), the inter-neuron connection 
being mediated by neurotransmitters passing across the synaptic cleft and into recep-
tor proteins in the post-synaptic membrane. Hence chemical synapses provide elec-
trical and physical isolation between interconnected neurons. However, some neurons 
do have electrical synaptic interconnections, gap junctions that are channels allowing 
the passage of ions for direct propagation of electrical signals, but also allowing the 
passage of larger molecules, thereby creating metabolic coupling in addition to elec-
trochemical coupling between neurons [28]. There are also anterograde connections 
from post-synaptic neurons to presynaptic neurons, typically realised by gaseous neu-
rotransmitters such as nitric oxide.  

Neurotransmitters, as well as hormones secreted by neurons, are not limited to lo-
cal effects, but can diffuse more widely through extracellular space, thereby bypass-
ing the dendritic/axonal network. These broad diffusion processes can be referred to 
as Volume Transmission (VT) processes. Processing within the dendritic/axonal net-
work can be referred to as wiring transmission (WT) [28]. WT is rapid (from several 
microseconds to a few seconds), highly localised, signals pass between two cells, and 
the effects are phasic (i.e. event-related). VT is slow (from seconds to minutes/hours), 
global, has one-to-many signals, and the effects are tonic (extended over numerous 
events). VT may be the consequence of synapse leakage, open synapses, ectopic re-
lease (i.e. neurotransmitters released from the surface away from synapses), etc.. 

WT networks formed by neurons and their interconnections are the main informa-
tion processing structure of the brain posited by the neuronal doctrine. Hence it is this 
interconnected structure of weighted links, integrators and action potential generators 
that has been regarded as the primary system of information processing and computa-
tion in the brain. This is also the model that has been adopted by simple artificial 
neural network models derived from the neuronal doctrine during the latter half of the 
twentieth century. The neuronal doctrine accommodates increasing sophistication in 
the understanding of how biological neurons and their networks function. Synapses 
are highly plastic, their plasticity being a major mechanism of learning, with synapses 
between co-active neurons being strengthened while synapses between neurons that 
are rarely active at the same time deteriorate. Most of the adult human brain does not 
undergo any significant new neuron creation (with the notable exception of the olfac-
tory epithelium), but dendrites and dendritic connections, ion channels, dendritic 
spines and synapses undergo continuous ongoing changes. By these mechanisms, 
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cortical neuron populations of a sufficient size appear to be capable of learning any 
function of an arbitrary number of dimensions (e.g. [7]). 

Information processing by the propagation of action potentials through neuron 
networks, and the integrate-and-fire operation of individual neurons represents one 
level of computation in the brain. Processing of information within the dendritic trees 
of single neurons has recently been proposed to represent local forms of computation 
within the dendritic structure, together with back propagation of spikes from the soma 
via dendrites, spike generation in dendritic spines and shafts, and bistable dynamics 
[16]. Computations conducted within dendral structures may include simple arithmet-
ic, from simple to complex logic functions, filtering, and even integrate and fire func-
tions within dendral substructures, creating a two-layered ‘neuron’ model (similar to 
simple classic ANNs) within a single neuron. The extended structure of dendritic trees 
means that different spatiotemporal input patterns can have different effects on neuron 
firing, allowing for computation of directional selectivity, in retinal and audio 
processing [16]. Moreover, Rall and Shepherd [19] proposed that two neuronal popu-
lations (excitatory and inhibitory) could communicate via direct synapses between 
their dendrites, without involving axonal propagation (see also [20]). While these 
forms of computation may be observed within dendritic structures, as London and 
Hausser [16] note, the key question is the extent to which the brain takes advantage of 
these building blocks to perform computations. For SI the question is that of the ex-
tent to which these mechanisms may contribute to HLI. Hameroff [12] even suggests 
that dendritic cross-connections provide the foundations of consciousness. 

The changes in ion channels, dendritic and axonal tree growth and interconnec-
tions, and synaptic processes in response to network activity can be seen as another 
level of computation, and one more fundamentally associated with neural plasticity. It 
is also possible to model the internal processes of cells in terms of information 
processing and/or computation (e.g. [26]). This includes the effects of neurotransmit-
ter reception, continuous metabolic processes, and interactions between these two. 
Hence computation/information processing occurs at the intra-cellular level, as well 
as at the WT and VT levels. 

This picture of the neuronal doctrine makes information processing, or computa-
tion, within the brain complex and multi-levelled. In general there about 500 different 
types of human neurons. There are about 100 billion neurons in a single brain, each of 
which is connected to 1,000-10,000 others with over 200,000 km of axons [18]. 
Hence the WT network is highly complex, even without considering detailed mechan-
isms of intercellular communication, dendritic processing, synaptic processing, plas-
ticity and intra-cellular processes. 

However, neurons only constitute about 10% of brain cells. The rest consist of glial 
cells [28], of which 80% are astrocytes. For most of the time since the discovery of 
glial cells in the late 19th century they have been regarded as secondary support cells 
for neurons, e.g. providing nutrients and mopping up excess neurotransmitters. How-
ever, research over the last couple of decades has radically revised this understanding. 
It is now known that astroglia are the stems cells from which neurons differentiate. 
Those that remain as astrocytes form networks connected via gap junction bridges 
that provide intercellular communication, providing transfer paths for ions, metabolic 
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factors and second messengers throughout the central nervous system (CNS). Astro-
cytes also engage in long distance communication by calcium wave propagation in-
itiated by stimulation of neurotransmitter receptors in the astroglial cell membrane 
[28]. Astroglia appear to express all known forms of neurotransmitters, which can 
influence neuron activity, and they possess numerous ion channels that can be acti-
vated by extracellular and intracellular activity, such as the activity of neighbouring 
neurons [28]. Hence neurons and astroglia appear to form parallel and intercommuni-
cating systems of signal transmission and processing. Glial cells also determine the 
differentiation, microarchitecture, synaptogenesis, and death of neurons and neural 
structures. Verkhratsky and Butt [28] hypothesize that neuronal networks are specia-
lised for fast communication (i.e. metaphorically, they provide a kind of internet with-
in the CNS), while astroglia provide the most substantial information processing, 
integration and storage functions of the brain. Evidence for the significance of glia is 
found in their dramatic increase, both in absolute numbers and relative to the numbers 
of neurons, on a phylogenetic scale, reaching the greatest complexity in the human 
brain [28]. 

One further information processing system within neurobiological systems that 
will be mentioned in this paper is the system of hormones that also interacts with the 
processes described above. Hormones are chemicals secreted by specific groups of 
cells that are carried by the bloodstream to other parts of the body where they act on 
other cells to produce specific physiological effects [2]. Neurosecretory, or neuroen-
docrine, cells in the hypothalamus are almost the same as neurons, except that they do 
not release neurotransmitters, but instead they secrete hormones into the blood stream 
[2]. The effects of hormones on the body include reproductive development and 
rhythms, water and salt balance, growth, the secretion of other hormones, metabolic 
rate, emotional arousal, inflammation reactions, digestion and appetite control [2]. 
Hormones constitute a VT system in the terms used by Verkhratsky and Butt [28]. 
Hormones act gradually, change the intensity or probability of behaviours, are influ-
enced (in type and quantity released) by environmental factors, have a many-to-many 
relationship with cells, organs and behaviours, are secreted in small amounts and 
released in bursts, may vary rhythmically in levels, may be mutually interacting, and 
are graded in strength (unlike the digital nature of neuronal action potentials [2]). 
Hormones, neural systems, behaviours and their consequences, are highly interactive 
and integrated. Hence an understanding of the processes and consequences of the 
nervous system, including the achievement of HLI, requires understanding the paral-
lel signalling and information processing system mediated by hormones. 

The specific role of neural processing can be highlighted by comparing i) the most 
complex organisms lacking a neural system with ii) the simplest organisms having a 
neural system. i) are the Porifera, or sponges, while the most basic examples of ii) are 
members of the phylum Cnidaria, which includes sea anemones, corals, jellyfish and 
hydrozoa.  

Poriferans are sessile, suspension-feeding, multicellular animals lacking true tissues 
and having cells that are all capable of changing form and function [4]. Feeding is 
achieved with the aid of flagellate cells that circulate water through a system of water 
canals. The cells of a sponge are continuously mobile. Flagellations used to circulate 
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water are not coordinated at a detailed level, although overall activity levels of a sponge 
can vary. Larger scale movements include closing their oscula (large water vents) or 
ostia (smaller water input pores), constricting water canals, and reversing the direction 
of water flow. These changes can be triggered by water-born particle size, or by direct 
tactile stimulation. In some cases the whole sponge can slowly change its location (e.g. 
at a rate of 4 mm per day). There is no evidence that Poriferans have neurons, action 
potentials or specialized sense organs. Rather, the spread of behaviour appears to be by 
direct mechanical interaction among adjacent cells, and possibly by the diffusion of 
chemical messengers. Larger scale movements are achieved by contractile myocytes 
acting independently but otherwise forming analogs of muscle tissues. The conduction 
of contractions is typically less than 0.04 cm sec-1 and is always unpolarized and diffuse. 
Conduction speeds in hexactinellids can achieve 0.22 cm sec-1, which is considered by 
Lawn et al [14] to be too slow for a nervous system, but too fast for simple chemical-
like diffusion, raising the possibility of the existence of a primitive non-neural enhanced 
messaging system. The Poriferan A. queenslandica has been shown to have a nearly 
complete complement of synaptic genes, without the coordination of regulatory circui-
tries required to express these genes in a regulated neuronal form [5]. Hence the devel-
opment of neural systems from more primitive Poriferan ancestors may have evolved 
from the development of mechanisms for localizing gene expression in the specialized 
form of neurons. 

Organisms manifesting the simplest forms of nervous system such as the Cnidaria, 
show a significant enhancement of speed, complexity and coordination in sensory 
discrimination and behaviour generation, compared with the Porifera. Taking ane-
mones (order Actiniaria) as a more detailed example of Cnidaria, movements are 
achieved by muscle-like tissues acting in longitudinal, axial and radial directions to 
create retraction, elongation, and contraction (at the mouth and base) [4]. Movements 
include those of the whole body, with some species locomoting via pedal disc mani-
pulations, somersaults or inch-worm type movements, or swimming via flexing the 
body or thrashing tentacles.  Sensors include mechanoreceptors in the form of cilia 
from individual cells, which also appear to function as chemoreceptors. Cnidaria 
show general sensitivity to light. For some polyps this is not associated with any spe-
cific sense neurons, most likely being mediated by epidermal neurons, while more 
sophisticated Cnidaria have radially distributed ocelli (simple eyes). Cnideria do not 
have centralized nervous systems or brains, but have diffuse, decentralized nerve nets 
that include sensory neurons, networks of intermediate neurons with some clustered 
ganglia providing coordination functions, and motor neurons for activating move-
ments [22]. Cnidarian nerve junctions are mediated by synapses, while those respon-
sible for triggering rapid movements needed for swimming are mediated by gap  
junctions forming direct electrochemical connections. Cnidarian sensory neurons are 
the most primitive among animals, and most of their neurons and synapses are unipo-
lar and hence bidirectional. This means that a sufficiently strong stimulus will result 
in the spread of pulses in all directions from the point of stimulation. Motile Cnida-
rians have more sophisticated neural systems than sessile species, some having a sep-
arate and faster network of bipolar neurons. In addition to a neural system, Cnidarians 
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also have a slow and highly diffuse impulse conduction system, involving epidermal 
cells and muscle elements, similar to that of sponges. 

The comparison of Cnidaria with Porifera highlights major benefits arising from a 
neural system, including at the most primitive level of enhanced sensory capabilities 
and capacities for rapid motion coordinated across the large scale structure of an or-
ganism’s body. Increasing levels of complexity within neural systems introduce loca-
lized concentrations of neurons in the form initially of nerve ganglia, ultimately lead-
ing to the evolution of centralized vertebrate brains. Sensory neurons for senses of all 
types provide inputs to nervous systems in the form of voltage spike trains having 
frequencies proportional to the intensity of the stimuli. Motor neurons similarly active 
muscle cells via spike trains where the density, frequency and persistence of spikes 
determines the degree and duration of muscle activation. A critical and as yet unans-
wered question is that of which subset of the forms of computation that biological 
neural networks realize are sufficient for HLI, and does HLI have any critical depen-
dencies upon other levels of biological information processing? Once this question is 
definitively answered, implementation of a homologous system in any alternative 
medium may be sufficient for achieving HLI.  

3 Neurophysiology and Computer Systems, Essential 
Differences 

A fundamental question in the quest for synthetic HLI is that of which levels of ab-
straction or description represent the lowest level necessary for the realisation of HLI. 
Human levels of intelligence are poorly defined and poorly constrained. Cognitive 
science and cognitive psychology have made some progress in the top-down decom-
position of human intelligence into functional parts and facilitating capacities. 
Knowledge of how cognitive constructs map onto brain structures and processes at 
lower physiological levels are being increasingly provided by correlation studies with 
neuroimaging, lesion studies, etc.. But since there are as yet no convincing demon-
strations of synthetic or artificial HLI, it is not yet clear where the lower limits of 
necessary functional and structural decomposition are. There is also a conceptual 
question of the degree to which constructs such as computation, information and in-
formation processing, and which particular understandings of these constructs, are 
helpful (or not) in creating a working model of the relationship between physiological 
processes at different levels of abstraction/description and the achievement of HLI. 
Answers to this question provide foundations for considering which technologies may 
provide suitable media for the achievement of the required forms of computation and 
information processing. However, specific differences between biological brains and 
computational machines as we know them may make machines as such incapable of 
achieving the intelligence demonstrated by biological brains, irrespectively of issues 
of abstract computation and information models.  

Potter [18] presents a number of differences between natural intelligence (NI) and 
AI, suggesting features that could, at least in principle, potentially make AI more brain-
like. These include: 
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• brains don’t have a CPU, they are highly distributed; NI uses lots of parallelism 
• biological memory mechanisms are not physically separable from processing 

mechanisms 
• biological memories are dynamic and continually reshaped by recall 
• the brain is asynchronous and continuous; resulting phase differences can encode 

information. As noted by Crnkovic [6], the asynchrony of brain processing means 
that it does not conform to Turing computation. 

• brains do not separate hardware from software; i.e. computation and information 
processing are not abstracted from the physical level, and the physical level is con-
tinuously changing (e.g. in mechanisms of plasticity noted above) 

• NI thrives on feedback and circular causality. The nervous system is full of feed-
back at all levels, including the body and the environment in which it lives; it bene-
fits in a quantifiable way from being embodied and situated. 

• NI uses lots of sensors 
• NI uses lots of cellular diversity 
• delays are part of the computation. The brain computes with timing, not Boolean logic. 

Further differences may also be noted, including: 

• the brain is analog, where computers are digital. The digitisation of atemporal 
quantities leads to quantisation errors, and the quantisation of time leads both to 
potential quantisation errors and aliasing (the appearance of high frequency content 
in the form of illusory low level frequency components) although it is unclear how 
critical these errors are in functions underlying the achievement of HLI.  

• neural systems are coextensive with the human body. This leads to layered and par-
tially hierarchical control, achieved to a degree in some AI architectures (e.g. [3]). 

• biological power distribution is decentralised and coextensive with information proc-
essing; hence human metabolic processes are implicated in information processing 

• brains and nervous systems are intimately integrated with other bodily systems and 
processes. It may be reasonable to suggest that more abstract cognitive functions 
(e.g. abstract problem solving, mathematics) are understandable without consider-
ing parallel or underlying physiological processes. But even the most abstract brain 
operations are in practice constrained by factors in their physiological substrate 
(e.g. successful high level reasoning requires energy and sleep). 

• much of the organization of the brain is topographic, from sensory processing to 
the contralateral organisation of the cerebral hemispheres 

• physical locations can matter. A good example of this is the use of differential 
timing of the arrival of aural information via separate dendrites as a cue for sound 
localisation (see [16]) 

• NI systems are built from the bottom up in processes that are self-assembling, self-
organizing, and adaptively self-maintaining (characterised by Crnkovic [6] as self-
* processes), based upon a ubiquitous (genetic) instruction set that is expressed in 
ways that vary according to highly local conditions and their recursively embedded 
contexts 

• the foundations of NI have not been designed, but have evolved 
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The last two points are critical. There is currently no demonstration proof of the 
achievement of HLI in a way in which its mechanisms and contents are fully compre-
hensible within human consciousness. However, to achieve an SI that is capable of 
HLI should not require directly building a fully capable system; it is only in more 
primitive biological animals (e.g. insects) that specific neurons and neural connec-
tions are genetically pre-programmed. Rather, as in the human case, detailed neural 
architecture (i.e. at the level of differentiating individual neurons and growing their 
interconnections) can be based upon initiating processes of self-assembly and self-
organisation that can create a sufficiently complex microstructure to achieve an adap-
tive, learning and growing nascent SI. The nascent SI must be capable of maturing 
through self-organisation in interaction with its environment to full HLI and beyond, 
just as in biological HLI.  

4 Neurophysiological Processing as Information Processing 

In considering the nature of the brain as an information processing system, it is neces-
sary to be clear about what kind of information processing system it is, and according 
to what understandings of the term information. A widely used formal definition of 
information was first formulated by Shannon [23]. Shannon’s concept of information 
can be summarized in the following way: if there are n possible messages, then n is a 
measure of the information produced by the selection of one message from the set, 
when all messages are equally likely. That information can be expressed by log2 n. 
This represents a number to the base 2 which can be represented by a sequence of bits 
(binary digits) of length log2 n, where any specific bit pattern of length log2 n can 
represent a particular message among the set of n possible messages.  

To contextualize this characterization of information, Shannon and Weaver [24] 
describe three levels of communication problems: “A. How accurately can the sym-
bols of communication be transmitted? B. How precisely do the transmitted symbols 
convey the desired meaning? C. How effectively does the received meaning affect 
conduct in the desired way?” The mathematical theory of communication is con-
cerned with A. This conception of information has been used in many analyses of 
neural system function, providing methods of measuring probability distributions, 
supporting analysis of information bottlenecks, and providing a view of cortical sys-
tems as systems that maximize information [1]. Information maximization includes 
maximizing the richness of representations, heuristic identification of underlying 
causes of an input, to provide economies of space, weight and energy, and as a rea-
sonable heuristic for describing models [1]. Potential disadvantages of the use of ma-
thematical information theory include the need for vast amounts of data for generating 
reliable probability distributions, the need for independent sources of the usefulness 
of an encoding scheme, the uncertain nature of neural encoding of information, and 
the assumed stationarity of probability distributions known to an information receiver 
[1]. Nevertheless, it has been suggested that the overall goal of the brain and individ-
ual neurons is to minimise uncertainty, which corresponds with the maximization  
of information. The ‘neurocentric’ approach of Fiorillo ([8], [9]) proposes that the 
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activity of individual neurons can be fully described in Bayesian terms grounded in 
information theory, where a single neuron integrates information from molecular 
sensors to reduce uncertainty about the state of its world. In this case, the state of the 
world is the local environment of the neuron, where information input to the neuron is 
a property of biophysical mechanisms from the level of single molecules and up, ra-
ther than being inferred by a scientific observer from external properties of the envi-
ronment. Hence the computational goal of the nervous system is the minimization of 
uncertainty (of the brain about its world) exclusively based upon the information and 
mechanics of the system, a view closely related to Friston’s [10] theory of free energy 
minimization but with an internal rather than external view of information sources 
and their resulting probabilities. 

Fiorillo [8] emphasizes that the neurocentric approach uses probabilities only to 
describe the biophysical information of a neuron. “There is no physical step that must 
occur within the nervous system to “calculate” probabilities from information. Proba-
bilities are a quantitative property of information in much the same way that mass is a 
quantitative property of matter. Likewise, information is an intrinsic property of mat-
ter and energy. Information follows the rules of physics, and Bayesian principles al-
low us to quantify information using probabilities.” Crnkovic [6] goes further than 
this, proposing that “Information may be considered the most fundamental physical 
structure. Info-computationalist naturalism understands the dynamical interaction of 
informational structures as computational processes.” This view goes much further 
than Shannon’s view of information, which is essentially an epistemological one, to 
one that equates the epistemological with the ontological. A further development of 
this view is morphological computation, where biological computation is conceived 
as a “computational mechanism based on natural physical objects as hardware which 
at the same time acts as software or a program governing the behavior of a computa-
tional system” [6]. Morphological computation captures many of the essential differ-
ences between biological brains and semiconductor-based computers noted earlier in 
this paper, since physically interacting objects realize computations that are naturally 
analog, continuous, parallel, built from the bottom up, and topographic by virtue of 
the spatial embeddedness of causal interactions. Semiconductor-based computers 
achieve this in their hardware to realize an abstract layer of information processing 
that does not achieve morphological computing in its software, since the information 
model of computer software is based upon abstract and non-situated logical and 
arithmetic operations (non-situated in the sense that the meaning of strings of 1s and 
0s and their manipulations is established by human readings and is not in general 
dependent upon their physical connections to the context, which are primarily limited 
to transformation into noisy thermal energy).   

5 Conclusions: Implications for Synthetic Intelligence 

All of the hierarchical levels of the human nervous system have been simulated in 
detail using digital computer technology [26]. However, both cognitive and neural 
simulations have had limited success to date and certainly fall far short of HLI.  
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Lindley [15] has argued that cognitive approaches in particular do not appear to be 
promising in isolation. Here it may be added that an essential problem for cognitivist 
AI is an implicit Cartesian dualism, where AI has focussed upon modelling the mind, 
and the symbol grounding problem, a central problem for AI, is the computationalist’s 
version of the problem for dualists of the nature of the ‘mechanism’ by which the 
mind and the body interact. In the spirit of Rorty [21], it is possible to shift the em-
phasis away from the nature of mind towards the physiological foundations of the 
generation and use of mentalist language. The focus then shifts to the physiological 
foundations of human intelligence, the simulation of which has also not yet demon-
strated anything remotely approaching HLI. However, the physiological project has 
two major advantages over the neo-Cartesian cognitivist project. Firstly, as consi-
dered in this paper, neural computation includes many broad frontiers of ongoing 
knowledge development, including cellular, sub-cellular and molecular processes, the 
role of dendritic computation, the role of astroglia, and the embedded interdependen-
cies between brain systems, bodies and their contexts. Simply put, we understand 
biological intelligence so incompletely that it provides an ongoing wealthy source of 
methods, principles and foundations yet to be comprehensively understood, let alone 
transferred into the design of intelligence as an engineered artifact. 

The second great advantage of the physiological project as an engineering project 
is that it is no longer limited to twentieth century engineering media. It is possible to 
apply molecular regulation, transgenic and viral techniques to selectively modify 
neurons and neural populations to generate “designer dendrites” [16] and other neural 
structures having specific computational properties and topologies. It is also possible 
to explore the creation of brain system analogs in different chemistries, including 
organic and inorganic systems different from ‘wild’ neural biochemistry. These sys-
tems can implement the analog, asynchronous and necessarily self-* characteristics of 
biological nervous systems in ways that are not possible with digital simulations. In 
implementing the morphological computing foundations of biological intelligence, 
these systems can be realizations of synthetic intelligence, rather than simulations or 
metaphors. 

This is not an argument for any specific technique or a proposal of any particular so-
lution to the challenge of engineering HLI. Rather, it is a call for reframing the AI 
quest, for it to escape the confines of 20th century technological metaphors and seek 
new avenues of enquiry derived from contemporary neuroscience and biochemistry. 
This may involve the implementation of neurological or biological signal processing, 
information processing and computation models using digital information processing 
and computing technologies, as practiced in computational neuroscience, computation-
al cell biology, etc.. It may also embrace the more direct exploration of the molecular 
and cellular foundations of HLI using the methods of cell biology, genetic modifica-
tion, and molecular synthesis. While these techniques are frontiers of rapid ongoing 
research in their own right, they represent a radical alternative for the project of artifi-
cial intelligence, an alternative perhaps better called synthetic intelligence for its prox-
imity to synthetic biology and the implication of a bottom-up synthetic process. The 
proof of any approach to engineering HLI is in the demonstration of HLI by an engi-
neered system. The failure of SAI demonstrates that SAI as traditionally conceived 
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does not work. It is reasonable to assume that this follows from its choice of the wrong 
levels of symbolic abstraction as the foundation of intelligence, and the resulting inef-
fectiveness of the models of symbol processing applied to the manipulation of symbols 
of this kind. Neural processing models are widely understood as a viable alternative to 
SAI, but ANN approaches have also reached the area of diminishing returns in terms 
of knowledge generated for research effort expended. The only way forward is a shift 
to the rapidly expanding tools and theories of biomolecular science and engineering, 
those tools and theories that are actively advancing our understanding of the only  
successful model of HLI that we have, i.e. human intelligence.  
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(Paris 1 Sorbonne-Panthéon/ENS Ulm/CNRS), Paris, France
hector.zenil-chavez@malix.univ-paris1.fr

Abstract. What does it mean to claim that a physical or natural system com-
putes? One answer, endorsed here, is that computing is about programming a
system to behave in different ways. This paper offers an account of what it means
for a physical system to compute based on this notion. It proposes a behavioural
characterisation of computing in terms of a measure of programmability, which
reflects a system’s ability to react to external stimuli. The proposed measure of
programmability is useful for classifying computers in terms of the apparent al-
gorithmic complexity of their evolution in time. I make some specific proposals
in this connection and discuss this approach in the context of other behavioural
approaches, notably Turing’s test of machine intelligence. I also anticipate pos-
sible objections and consider the applicability of these proposals to the task of
relating abstract computation to nature-like computation.

Keywords: Turing test, computing, nature-like computation, dynamic be-
haviour, algorithmic information theory, computationalism.

Faced with the question of computation, it may be tempting to go along with the formal
mathematical position and simply invoke Turing’s model. This paper doesn’t need to
do this, though its author couldn’t be more wholehearted in granting the beauty and
generality of the universal Turing machine model, which, it will be argued, is also a
natural foundation for unconventional (and natural) computation.

To date the study of the limits of computation has succeeded in offering us great
insight into this question. The borderline between decidability and undecidability has
provided an essential intuition in our search for a better understanding of computation.
One can, however, wonder just how much can be expected from such an approach, and
whether other, alternative approaches to understanding computation may complement
the knowledge and intuition it affords, especially in modern uses of the concept of
computation, where objects or events are seen as computations in the context of physics.

One such approach involves not the study of systems lying “beyond” the uncom-
putable limit (the “Turing limit”), but rather systems at the farthest reaches of the
computable, in other words the study of the minimum requirements for universal com-
putation. How easy or complicated is it to assemble a machine that is Turing universal?
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This minimalistic bottom-up approach is epitomised by Wolfram’s programme [38]
in its quest to study simple programs, a programme initiated by Minsky [23] and to
which several authors have contributed (see [39] for an excellent survey). The underly-
ing question is how pervasive and ubiquitous the computational property of universality
is in computational and natural systems. From the various results concerning small uni-
versal computing systems, we now know that generating universality takes very little,
indeed that it seems to be the case that it is more difficult to design a non-trivial non-
Turing-complete computer language than a Turing-complete one. Thus it seems natural
to believe that computation and universality are not exclusive to digital computers.

This paper is organised as follows. In Section 1, the foundations of natural computa-
tion are discussed, taking as a starting point Turing’s case—argued in relation to digital
computation—for the disembodied essence of natural computation. In Section 2, the
behavioural approach to natural computation will be introduced, based on notions of
algorithmic complexity, and with an analogy drawn between it and Turing’s pragmatic
approach to machine intelligence. In Section 3, a characterisation and taxonomy of
computation (and of computers) based on the compression-based approximation of a
system’s algorithmic complexity is advanced and, finally, in Section 4 possible objec-
tions are analysed, also in light of the way in which they can be transferred between
Turing’s test and the definition of nature-like computation adopted herein.

1 A Classical Foundation for Unconventional Computation

A compiler written between computational systems, hence a mapping between symbols
and states, is the usual way of proving in a technical fashion that one system is equiva-
lent to another in computational power (hence that it computes). A legitimate question
that arises is whether we need this technical apparatus to define computation. The prob-
lem can be phrased in the words of M. Conrad [7] In the real world, little if anything is
known of the primitive operations or symbols of a system.

One strong criticism of the idea that natural objects (including the universe) com-
pute is that the question and answer become meaningless, as it is hard to see how any
physical system would not be computational [28,31]. One concept that Turing did not
advance (although he suggested taking into account the percentage of people acknowl-
edging the success or failure of his machine intelligence test [37]), but that is very much
in the spirit of another of his seminal contributions (the relativisation of computation,
in his notion of degrees of computation [36]), is a metric of intelligence, one where
passing or failing is beside the point, but which tells us how close or far we are from
intelligent behaviour.

This paper advances a metric of approximative, asymptotic and limit behaviour, not
for intelligence, but for computation, one that identifies objects to which some degree
of computation can be assigned on the basis of how they behave, and particularly on
the basis of whether they can be programmed. It thereby places programmability at the
centre of our definition of computation and so avoids representationalism.
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1.1 A Behavioural Approach to Computation

Among the most important of Turing’s contributions to AI was his test of machine in-
telligence [37], devised as a response to the question of whether computers could think.
The Turing test is a pragmatic behavioural approach to the problem of assigning intelli-
gence to objects (see Fig. 1). In the spirit of Turing, one may ask whether objects other
than electronic computers compute, in particular natural objects and natural processes.
This question ultimately leads to the more general question of whether the universe
itself computes (also known as “pancomputationalism”), and if so how. Some specu-
lative answers have been given, but in this presentation we take a more pragmatic and
behavioural approach to the question, in the spirit of Turing’s approach to intelligence.

Fig. 1. The basic elements of Turing’s test of intelligence

When Alan Turing was thinking about AI he believed “that in about fifty years’ time
it will be possible to programme computers, with a storage capacity of about 109, to
make them play the imitation game so well that an average interrogator will not have
more than a 70 percent chance of making the right identification after five minutes of
questioning. . . . I believe that at the end of the century the use of words and general
educated opinion will have altered so much that one will be able to speak of machines
thinking without expecting to be contradicted.”

Most would agree that Turing’s faith hasn’t exactly been vindicated, perhaps because
of the way in which the definition of intelligence has changed over time, indeed every
time that some task requiring intelligence has been successfully executed by a comput-
ing machine, from crunching numbers faster than humans to faring better at chess, and
more recently, performing some rather complicated games on TV shows. I think we live
in a time where it has finally become common practice to treat objects other than elec-
tronic and human computers as computing objects, and so I shall address the ineluctable
generalisation of the concept of computation beyond the realm of digital computers, and
more specifically its extension to natural systems. If Turing’s claim were to be revised,
with objects computing being substituted for ”machines thinking”, the prediction seems
right on target: “I believe that at the end of the century the use of words and general
educated opinion will have altered so much that one will be able to speak of [all kinds
of objects computing] without expecting to be contradicted.”
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1.2 Digital Computation as Natural Computation

Turing’s most important contribution to science is his definition of universal compu-
tation, integral to his attempt to mechanise the concept of a computing machine. A
universal (Turing) machine is an abstract device capable of carrying out any computa-
tion for which an instruction can be written. More formally, given a fixed description
of Turing machines, we say that a Turing machine U is universal if for any input s and
Turing machine M , U(〈M〉, s) halts if M halts on s and outputs M(s); and does not
halt if M(s) does not (where 〈M〉 means the codification of M in bits so that it can be
fed to a Turing machine U that accepts binary inputs). In other words, U is capable of
running any Turing machine M with input s.

The fact that we need hardware and software is an indication that we need a pro-
grammable substratum that can be made to compute something for us, but Turing’s
main contribution vis-à-vis the concept of computational universality is that data and
programs can be stored together in a single memory without any fundamental distinc-
tion. One can always write a specific-purpose machine with no input to perform any
computation, and one can always write a program describing that computation as the
input for a (universal) Turing machine, so in a sense there is a non-essential distinction
between program and data.

It is clear that one can derive a fundamental kind of natural computation from Alan
Turing’s seminal concept of universal computation. Turing points out [37] that given
that Babbage’s computer did not use electrical power, and that because Babbage’s and
all digital computers are in some fundamental sense equivalent, electricity cannot be
a fundamental property of computation. Neither is it the carrier. In other words, Tur-
ing universality disembodies computation, uncoupling it from any physical substratum.
This doesn’t mean that one can carry out computations without physical elements, but
rather that the nature of the physical elements is not very relevant except insofar as it
bears upon the (important) question of resources (capacity, speed). A programmer uses
memory space and cpu cycles in a regular computer to perform a computation, but this
is by no means an indication that computation requires a computer (say a PC), only that
it needs a substratum. The behaviour of the substratum is the underlying property that
makes something a computation.

The main difference between a digital electronic computer and a natural system that
possibly computes, is that the former was designed for the purpose, and hence one can
easily identify all its elements and have recourse to them when establishing a definition
of computation. For natural systems, however, there is little hope that even if their ele-
ments were to be identified, one could define their states in a way that captured all their
convolutions well enough to establish that they possessed some property of computa-
tion. This situation is not that different from the undecidability of the halting problem,
but it is in some sense more general. For digital computation, the undecidability of
the halting problem means that if one wished to know whether a computation would
eventually halt, one would have no other option than to run it and wait and see (pos-
sibly for an infinite length of time). In natural systems, the halting problem is closer
to the reachability problem, that is, the question of whether a system will reach a cer-
tain configuration. By reduction to the halting problem, this can also be proven to be
undecidable. The halting and reachability problems are in a strong sense behavioural
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and subjective in nature, as the behaviour of a system has to be determined by waiting,
witnessing and recording it so that it can be understood in retrospect. If for Turing ma-
chines M , the function that computes M cannot in general be found, there is little hope
of ever finding or even defining the function of a natural system. Hence one has to give
up on trying to define computation for natural systems using elements such as states or
functions.

We know that systems that nobody ever designed as computers are able to perform
universal computation, for example Wolfram’s Rule 110 [38,6] (in the rulespace of
the so-called elementary cellular automata [38]), and that this, like other remarkably
simple systems, is capable of universal computation (e.g. Conway’s game of Life [2] or
Langton’s ant [19]). These systems may be said to readily arise physically, not having
been deliberately designed. There is, however, no universal agreement as regards the
definition of what a computer may or may not be, or as to what exactly a computation
might be, even though what computation is and what a computer is are well grasped on
an intuitive level.

Now we would like a concept of computation associated with natural and physical
phenomena that we can measure and build on. We want a metric of computation that al-
lows us to identify what is a computer and what is not. We want to be able to distinguish
what computes from what does not. And we want a metric that we can use.

2 A Turing Test-Inspired Approach to Computation

As for Turing’s test of intelligence, where one needs to accept that humans think if the
test is to make sense, the reader must first accept that digital computation is performed
in nature and that nature is capable of digital computation, even if only by the digital
computers constructed by humans for precisely such a (general) purpose. Human be-
haviour is to the Turing test what digital computation is to this behavioural approach
to natural computation. The argument can be rendered more succinctly thus: Electronic
computers compute, electronic computers are physical objects, physical objects are part
of the universe, a part of the universe is therefore capable of computation. Computers
can be seen as the result of the re-programming of a part of the universe to make it com-
pute what we want it to compute. This means that the question is not exactly whether the
universe is capable of digital computation but rather whether the universe only performs
computation, and if so, what kind of computation. I aim to provide a behavioural defini-
tion of computation that admits a wider definition of the notion of ‘computation’. Notice
that I am replacing the question of whether a system is capable of digital computation
with the question of whether a system can behave like a digital computer and whether
a digital computer can exhibit the behaviour of a natural system. So the approach is
still classical in this sense, but purposely neutral with regard to the ontological issue.
Also notice again the similarity with Turing’s approach to machine intelligence. Turing
chose to sometimes speak of “imitation” instead of “behaviour”. “Imitation”, however,
seems to carry connotations of intentionality (see Subsection 4.2.3), and I am not very
comfortable with the suggestion that a natural system may have a will to, or may pur-
posefully imitate another system, especially if it is forced to do so artificially (although
imitation is quite common in nature, where, for example, some animals mimic the be-
haviour of other animals to avoid being preyed upon).
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To make sense of the term “computation” in the contexts I’m interested in (modern
views of physics), I propose a behavioural notion of nature-like computation (similar in
spirit to the coinage “physics-like computation” [29,33]) that is compatible with digital
computation but meaningful in broader contexts, independent of representations and
possible carriers. This will require a measure of the degree of programmability of a
system based on a compressibility index which is ultimately rooted in the concept of
algorithmic complexity. I ask whether two computations are the same if they look the
same and I try to answer with a specific tool possessing the potential to capture a notion
of qualitative behaviour.

In [9], a similar approach, but this time to the question of life, is audaciously put
forward, also in the spirit of Turing’s test. The idea is to recognise living systems by the
way they behave and communicate through the signals transmitted between biological
cells. This approach uses a biological interrogator to ask not what life is but rather when
an artificial cell can be said to be alive.

Table 1. Comparison of Turing tests for intelligence, life [9] and computation

Turing test for Turing test for
intelligence [37] Turing test for life [9] computation

Imitated property Thought Cellular functions Programmability
Subjects Computing Biological and artificial any object

in question machines cells
Embodiment of Human Biological life Digital

property intelligence (metabolism, evolution, etc) computers
Probing Questions/answers Questions/answers mediated Behavioural evaluation

mechanism mediated by natural by physicochemical (sensitivity to external
language language (chemical stimuli, behavioural

potentials, mechanical, differences, etc.)
transduction, signalling, etc.) mediated by a lossless

compression algorithm.

The behavioural approach takes Turing’s disembodied concept of universal compu-
tation independent of substratum to its logical limit, its central question being whether
one can program a system to behave in a desired way. This is again close to Turing’s
test in which the interrogator cannot directly see the individual replying, because in-
telligence is not a property that requires the possessor to have a “skin” (in the words
of Turing himself [37]), for example, or to be a human being for that matter (Turing’s
approach), just as computation doesn’t require electricity, or for that matter a digital
computer (this approach). This approach that bases itself on the extent to which a sys-
tem can be programmed tells us to what degree a given system resembles a computer. As
the interrogator we will use a lossless compression algorithm that manifests properties
of an observer, such as some type of subjectivity and finite resources. As suggested by
Sutner [33], it is reasonable to require that any definition of computation in the general
sense, rather than being a purely logical description (e.g. in terms of recursion theory),
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should capture some sense of what a physical computation might be. Sutner adds “A
physical system is not intrinsically a computer, rather it is necessary to interpret certain
features of the physical system as representing a computation.” This obliges Sutner to
take into consideration the observer and the act of interpretation of a physical system.

In many ways, this account of computation can be derived from the negation of Pic-
cinini’s 4th. feature (the wrong things do not compute) [27], which I think is dogmatic
and gets in the way of the extension of the notion of computation to cover natural com-
putation. Among the things that Piccinini rules out as objects that possibly compute are
planetary systems, hurricanes and digestive systems. In fact, Piccinini himself seems
to have some difficulty ([27], p. 508) justifying how a digestive system is not com-
putational. For insofar as a legitimate mechanistic account can be given of a digestive
system, that would mean that it possesses precisely the sorts of properties and compo-
nents that are taken into consideration in determining whether or not a system counts
as a computer. I will argue that one doesn’t need to axiomatically rule out such systems
as computing or not. I will avoid making claims about whether or not such systems
compute, because the approach advanced herein is above all a pragmatic approach de-
signed to have applications (in fact it was first developed as a tool for the investigation
of dynamical properties of computer programs and not primarily as a philosophical
account).

On the other hand, the behavioural account defended herein does satisfy Piccinini’s
3rd requirement (the right things compute). Piccinini’s requirements 2 (Explanation)
and 6 (Taxonomy) are at the core of this proposal connecting programmability and com-
putation and providing a grading system based on behaviour. Piccinini’s requirement 5
(Miscomputation) doesn’t seem very relevant to this proposal, and even if it were, to
this author this feature doesn’t seem essential to computation, for it is hard to see how
a computational system can miscompute other than in the eyes of the observer. Indeed
Piccinini himself sees this as troublesome in an account of computation, as it violates
requirement 1. In fact, weak (i.e. observer dependent) miscomputation is pervasive in
nature; I think nature amply manifests this kind of “miscomputation”. In summary, I
reject requirement 1 (the basis of Piccinini’s account), satisfy requirements 2, 3, and 6,
particularly 2 and 6 at which I think this proposal excels. And concerning requirement
4, I remain neutral, not to say unconvinced, although I can acknowledge a form of weak
miscomputation, that is a computation that does not go in the way the observer expects
it to. This approach allows a taxonomy of computation.

2.1 Algorithmic Complexity as an Approximative Measure of Programmability

The traditional connection between behaviour and computation has tended toward ex-
plaining behaviour as computation [17] or computation as emulating brain activity [22],
but this author has no knowledge of explorations in the direction of explaining compu-
tation as behaviour.

This paper proposes an alternative behavioural definition of computation based on
whether a system is capable of reacting to the environment—the input—as reflected in
a measure of programmability. This will be done by using a phase transition coefficient
previously defined in an attempt to characterise the evolution of cellular automata and
other systems. This transition coefficient measures the sensitivity of a system to external
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stimuli and will be used to define the susceptibility of a system to being (efficiently)
programmed, in the context of a nature-like definition of computation.

Turing’s observer is replaced by a lossless compression algorithm, which has subjec-
tive qualities just like a regular observer, in that it can only partially “see” regularities in
data, there being no perfectly effective compression algorithm in existence. The com-
pression algorithm will look at the evolution of a system and determine, by means of
feeding the system with different initial conditions (which is analogous to questioning
it), whether it reacts to external stimuli.

The compressed version of the evolution of a system is an approximation of its algo-
rithmic (Kolmogorov) complexity defined by [18,4]:

KT (s) = min{|p|, T (p) = s}
That is, the length of the shortest program p that outputs the string s running on a uni-
versal Turing machine T ) [18,4]. A technical inconvenience of K as a function taking s
to be the length of the shortest program that produces s is its non-computability, proven
by reduction to the halting problem. In other words, there is no program which takes
a string s as input and produces the integer K(s) as output. This is usually taken to
be a major problem, but one would expect a universal measure of complexity to have
such a property. The measure was first conceived to define randomness and is today the
accepted objective mathematical measure of complexity, among other reasons because
it has been proven to be mathematically robust (in that it represents the convergence of
several independent definitions). The mathematical theory of randomness has proven
that properties of random objects can be captured by non-computable measures. One
can, for example, approach K using lossless compression algorithms that detect regu-
larities in order to compress data. The value of the compressibility method is that the
compression of a string as an approximation to K is a sufficient test of non-randomness.
If the shortest program producing s is larger than |s| the length of s, then s is considered
to be random.

Based on the principles of algorithmic complexity, one can use the result of the com-
pression algorithms applied to the evolution of a system to characterise the behaviour
of the system [40] by comparing it to its uncompressed evolution. If the evolution is too
random, the compressed version won’t be much shorter than the length of the original
evolution itself. It is clear that one can characterise systems by their behaviour [40]: if
they are compressible they are simple, otherwise they are complex (random-looking).
The approach can be taken further and used to detect phase transitions, as shown in
[40], for one can detect differences between the compressed versions of the behaviour
of a system for different initial configurations. This second measure allows us to char-
acterise systems by their sensitivity to the environment: the more sensitive the greater
the variation in length of the compressed evolutions. A classification places at the top
systems that can be considered to be both efficient information carriers and highly pro-
grammable, given that they react succinctly to input perturbations. Systems that are too
perturbable, however, do not show phase transitions and are grouped as inefficient infor-
mation carriers. The efficiency requirement is to avoid what is known as Turing tarpits
[26], that is, systems that are capable of universal computation but are actually very
hard to program. This means that there is a difference between what can be achieved
in principle and the practical ability of a system to perform a task. This approach is
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therefore sensitive to the practicalities of programming a system rather than to its po-
tential theoretical capability of being programmed. What if, instead of trying to draw
a crystal clear line between what is and is not a computer, one were to define a mea-
sure of (“computedness”)? I propose the following approach as a first approximation to
programmability.

Let C be an approximation to K (given that K is non-computable) by any means,
for example, by using lossless compression algorithms or using the coding theorem
technique we presented in [12]. Let’s define the function f as the variability of a system
M as the result of fitting a curve φ (by (linear) regression analysis) to the data points
produced by different runs of increasing time t′ (for fixed n) up to a given time t, of
the sums of the differences in length of the approximations to Kolmogorov complexity
(C) of a system M for inputs ij , j ∈ {1, . . . , n} ∈ E, divided by t(n− 1) (for the sole
purpose of normalising the measure by the system’s “volume,” so that one can roughly
compare different systems for different n and different t). With E an enumeration of
initial inputs for M . The following expression is a more formal attempt to capture this
first step:

f(M, t, n) = φ

(∑n−1
j=0 |C(M1(ij))−C(M1(ij+1))|

1(n−1) , ...,
∑n−1

j=0 |C(Mt(ij))−C(Mt(ij+1))|
t(n−1)

)
(1)

That is the sum of the differences of the compressed lengths of M for different initial
conditions ij . Mt(i) is a system M running for time t and initial input configuration
i. At the limit Cn

t captures the behaviour of Mt for t → ∞, but the value of Cn
t de-

pends on the choices of t and n (we may sometimes refer to C as assuming a certain
t and n), so one can only aim to capture some average or asymptotic behaviour, if any
(because no convergence is guaranteed). Cn

t is, however, an indicator of the degree of
programmability of a system M relative to its external stimuli (input i). The larger the
derivative, the greater the variation in M , and hence in the possibility of programming
M to perform a task or transmit information at a rate captured by Cn

t itself (that is,
whether for a small set of initial configurations M produces a single significant change
or does so incrementally). Now the second step is to define the asymptotic measure,
that is the derivative of f with respect to time, as a system’s programmability (first
basic definition):

C
n
t (M) =

∂f(M, t, n)

∂t
(2)

For example, as is shown in [40], certain elementary cellular automata rules that are
highly sensitive to initial conditions and present phase transitions which dramatically
change their qualitative behaviour when starting from different initial configurations can
be characterised by these qualitative properties. A further investigation of the relation
between this transition coefficient and the computational capabilities of certain known
(Turing) universal machines has been undertaken in [42]. We will refrain from exact
evaluations of C to avoid distracting the reader with numerical approximations that may
detract from our particular goal in this paper. Other calculations have been advanced in
[43] and [44].
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2.2 A Behavioural Approach to Computation

The following are first approaches to definitions connected to the qualitative behaviour
of computational systems:

Approximate variability (the number of possible different evolutions of a system):
Let U1, U2, . . . be an enumeration of inputs to a system M . We are interested in the
question of how different the evolution of M(Ui) is to the evolution of M(Uj), in
particular the maximum difference.

Programmability: The capability of a system to change, to react to external stimuli
(input) in order to alter its behaviour. Programmability, then, is a combination of
variability and external control.

Computational universality: Maximum programmability.

Efficient programmability: Maximum variability changes reached in polynomial time
(of a small degree).

Efficient universal computation: Universality with measurable variations detected in
polynomial time (of a small degree).

Notice how close this approach is to Turing’s test for intelligence. This is a kind of
generalisation of the Turing test: computation is what behaves as such, and it does so if
it can be programmed.

The following assertions follow (a technical paper with formal definitions is in prepa-
ration):

• A system U is capable of computation if Cn
t (U) > 0 for t, n > 0.

• A 0-computer is not a computer in any intuitive sense because it is not capable of
carrying out any calculation.

• A system capable of (Turing) universal computation has a non-zero C limit value
(see [42]). (A non-zero C value, however, doesn’t imply Turing universality.)

• A system U capable of Turing computational universality asymptotically converges
to limCn

t (U) = 1 for t, n → ∞.

The use of a general lossless compression algorithm is comparable with the role of an
interrogator in Turing’s test (see Fig. 2). To the compression algorithm the carrier of
the computation is irrelevant as long as it can be represented in some form such that
it can serve as input when running said compression algorithm. On the other hand, a
compression algorithm is resource bound, in that it cannot implement in a finite time
all the tests that can effectively detect all possible regularities in the data. This means
that the algorithm is somehow subjective; it will first resort to what strikes it as the
most obvious patterns to use to compress the data. Yet the algorithm does this in a
sophisticated way, with a greater likelihood of success than a human compressor, as it
is systematic and implements general methods. Lossless compression algorithms can
also be set to run for a longer time to attempt more methods of compression, just as a
human observer would devise more methods of compression given more time.

So a system S is provided with a random input i (a “question”) and the lossless
compression algorithm evaluates the reaction of the system (then mapping the input i
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to a numerical value C(S(i)), the compressed length of S(i) using the compression
algorithm C). Just as observers would do for regularity appreciations (or answer evalu-
ations), different compression algorithms may retrieve different compression lengths of
S(i), as they may differ in the way they compress. This compressed value is not com-
pletely arbitrary, as there is some objectivity in a strong desirable sense. This is because
lossless compression is a sufficient test of non-randomness, meaning that if a lossless
compression algorithm C is able to compress S(i) then the Kolmogorov complexity
of K(S(i)) cannot be greater than (C(S(i))). On the other hand, no C ′ algorithm can
compress S(i) such that (C(S(i))) < K(S) by definition of K , so the values of a
compression algorithm C are not completely arbitrary (or subjective).

Fig. 2. The Turing-test inspired approach to the question of computation as a behavioural test
undertaken by a lossless compression algorithm in the role of the answer evaluator. Notice that
the natural system can be a human being or anything else.

One may challenge the configuration depicted in 2 as lacking a true questioner, given
that the compression algorithm evaluates the answers but does not formulate the ques-
tions, meaning that the test, unlike Turing’s, is not self-contained. This is a very good
and legitimate point, but thanks to Turing, it is not very well founded. This is because
from Turing we know that a system S with input i can be rewritten as a new system
S′(〈S〉, i), that is a new system S′ encoding S with input i. One can actually do this not
just for a single input, but for any number of inputs, even an infinite number of inputs
such as in an enumeration. Let E be an enumeration for S and pE the program that
produces E (we know that the program exists by definition). Then S′(〈S〉, 〈pE〉) such
that S′ behaves like S and uses pE to feed S with an infinite number of inputs (just as
S for i, S′ may not halt). So in some strong sense the system is neutral even to having
all the questions at once or not.

3 A Taxonomy of Computation

The measure proposed in 2.1 can be used to dynamically define computation based
on the degree of programmability of a system. The advantage of using the transition
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coefficient C is that it is indifferent to the internal states, formalism or architecture of
a computer or computing model; it doesn’t even specify whether a machine has to be
digital or analog, or what its maximal computational power must be. It is only based
on the behaviour of the system in question. It allows us to minimally characterise the
concept of computation on the basis of behaviour alone.

Now we can attribute the property of computation to natural and physical objects,
hence arriving at a measure of Nature-like computation, and distinguish between the
computational attributes of physical objects depending on their programmability.

Our proposal has many similarities to Piccinini’s mechanistic approach, yielding a
hierarchy of computing objects. But while he puts calculators and (specific-purpose)
computers in different categories, I don’t see any essential reason to do so. He places
the concept of programmability at the centre of the discussion, as I do, but all in all our
approaches are very different. His mechanistic approach doesn’t seem particularly suit-
able for natural computation. At a more fundamental level, Piccinini’s approach differs
from this approach in that he seems to attribute importance to the physical implemen-
tation of a computation and to its physical components, whereas this is not a matter
of interest here. Unlike Piccinini, I do not think that the property of computing is an
objective feature of a system.

A program can be defined as that which turns a general-purpose computer into a
special-purpose computer. This is not a strange definition, since in the context of com-
puter science a computation can be regarded as the evolution undergone by a system
when running a program. However, while interesting in itself, and not without a cer-
tain affinity with our approach, this route through the definition of a general-purpose
computer is a circuitous one to take to define computation. For it commits one to defin-
ing computational universality before one can proceed to define something more basic,
something which ideally should not depend on such a powerful (and even more difficult-
to-define) concept. Universal computation is without a doubt the most important fea-
ture of computation, but every time one attempts to define computation in relation to
universal computation, one ends up with a circular statement [computation is (Turing)
universal computation], thus merely leading to a version of a CT thesis.

As Piccinini suggests in [27], a Turing universal computer, and indeed a human be-
ing, can do more than follow one algorithm. They can follow any algorithm, which is
typically given to them in the form of instructions. “More generally, a human can be
instructed to perform the same activity (e.g. knitting or playing the piano) in many dif-
ferent ways. Any machine that can be easily modied to yield different output patterns
may be called ‘programmable’. In other words, ‘being programmable’ means being
modiable so as to perform relatively long sequences of different operations in a differ-
ent way depending on the modication.”

If everyday things like fridges or lamps can be deemed computational, then it’s hard
to see how any physical system whatsoever is not computational (this relates to Put-
nam’s realisation theorem, see Subsection 4.2.6). We can now meaningfully ask the
question whether a lamp or a fridge is or isn’t a computer, without trivialising the ques-
tion itself or any possible answer. A lamp’s output, for example, can be described by two
different behaviours (in this case, traditionally identified as states), that is, on and off,
which are triggered by external input (via a switch). Even if the lamp can be considered
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to react to external stimuli, it is very limited in its behaviour, and the space of its initial
configurations is finite and small (it has only two possible initial configurations). Hence
the slope of the differences of the behavioural evolution in time is very close to 0. A
lamp is therefore a very limited computer with C value very close to 0. If one wished to
rule out lamps or fridges as computing devices one would only need to define a thresh-
old beyond which a system can be said to compute and beneath which it would not
be said to compute. With a definition of programmability one can expect to be able to
construct a hierarchy of computing objects (see Table 2), with digital general-purpose
computers placed correctly (at the top of the hierarchy of computers), while other ob-
jects that we may consider (non) computing objects can be found at or near the bottom.
It is clear that the threshold is at the level of specific-purpose computers, given that
we may want to include in the definition of computation entities that compute simple
functions such as—only—the successor function, or the sum of 2 integers, while we
may not be able to assign any computing capabilities to a specific-purpose “computer”
capable of—only—“computing” the identity function.

Table 2. A primitive hierarchical view of computation according to the first approximation of
computation based on the coefficient C with customisable threshold δ is considered a computer
if C > δ, otherwise it is not. The symbol “>>” is for systems for which (assuming they operate
as they usually do, e.g. a fully capable human brain) no mistake about their computational capa-
bilities can be made based on their degree of programmability approached by C. That is, their
C

n
t value is strictly greater than δ for any δ for t and n that are run for long enough (that is, long

enough to be greater than δ).

Object C value Threshold flag
(C > δ?)

General-purpose digital
(electronic) computer C >> δ > 0 Yes

Human brains C >> δ > 0 Yes
Specific-purpose computers

(e.g. calculators, successor machine) C ≥ 0 < δ Yes/No
Lamps C ∼ 0 < δ No
Rocks C = 0 < δ No

Brains and digital (Turing universal) computers can show great variation for two
different random inputs, potentially even for two arbitrarily close inputs (according to
same sensible distance of inputs), but for systems with low C this is different. For ex-
ample, a lamp has only two possible “random” inputs: on and off, and the same number
of outputs. For rock-like systems (including rocks themselves), the rock looks the same
disregarding the possibly thinkable inputs for a rock. Fig. 3 shows a rock-like behaviour
of an elementary cellular automaton.

According to Piccinini, we distinguish computers from most other things because,
at the very least, computers are more versatile than other computing mechanisms. He
thus attributes a measure of positive versatility to the concept of computation (or the
computer). “Computers can do arithmetic but also graphics, word processing, Internet
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Fig. 3. Example of a “rock-like” behaviour by an elementary cellular automaton [38] with Rule
4 for several “random” initial configurations and evolving from top to bottom. The evolutions
are preceded by an icon (top) illustrating the rule that the system follows for every possible cell
configuration.

browsing, and a myriad other things”, Piccinini says. And he adds: “Computer versatil-
ity calls for an explanation” [27]. Some objects, such as abaci, have parts that need to be
moved by hand. They may be called computing aids, as Piccinini does. Of course abaci
would have very small, if not zero, C values with no human intervention, and therefore
can be flagged as non-computers, even for small δ threshold value.

This account does justice to digital computers and the practices of computer scien-
tists and computability theorists. On the one hand, digital computers, calculators, both
universal and nonuniversal Turing machines, and finite state automata, are examples of
computation under the proposed definition. These can be recognised as computers, and
universal digital computers can be placed at the top of the hierarchy of computational
systems. On the other hand, the definition also places the concept of programmability
at the centre of the practice of computer science, but through algorithmic complexity
one can also define higher classes of computation based on Turing degrees, given that
abstract machines that can solve the halting problem behaviourally perform a computa-
tion that cannot be carried out by a Turing machine that may not halt. That is, the oracle
machine does halt, but it does not halt for every possible computation; it has its own
new halting problem of a higher degree, and so on, hence building up the arithmetical
hierarchy without need of explicit descriptions of states or functions.

It is clear that computers are not the only programmable mechanisms. So are brains,
as are many other natural systems that we can now control and direct to perform certain
tasks that they were not supposed to be naturally capable of (e.g. through genetic engi-
neering). A computer is a system that can be modified to compute in different ways. I
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think one, if not the most important features of brains and computers is that they can be
reprogrammed (in different but analogous ways). Along the lines of Fodor’s conclusion
[14], but with no need of state representation, if the brain is a programmable system,
then it is a computer under this behavioural approach. This is paradoxical because ac-
cording to Fodor’s slogan “no computation without representation,” according to which,
in order for a system to be ascribed computational status, it needs to be construed as
representing information in some way. According to the view proposed here, we should
neither reject or accept this dictum because a natural occurring process can be assigned
a computational value if and only if it can be programmed, regardless of whether it
represents anything. As pointed out by Dresner [13], a measurement-theoretic repre-
sentation typically is accompanied by a uniqueness theorem that states how all the ho-
momorphisms from the given empirical structure to the numerical one relates to each
other (that is, can be obtained from each other). I will provide some clues of how to do
this in the answer to possible objections in Section 4.

Beyond formalisms, the present account of computers and computation is used to
formulate a rigorous taxonomy. According to this behavioural approach, all Turing ma-
chines that compute a function other than identity are computers, and all that do so
are universal Turing machines. It encompasses minds and computers while excluding
almost everything else, investing minds and computers with a special status. One may
think of some possible counterexamples. Think of the billiard ball computing model.
It is designed to perform as a computer and can therefore be trivially mapped onto the
states of a digital computer. Yet it is a counterexample of what the semantic account
sets out to do, viz. to cordon off minds and computers (believed capable of compu-
tation) from things like billiard balls, tables and rocks (believed to be incapable of
computation). The billiard ball computing model, as a system, however, is identified as
computational in this behavioural approach, without further ado.

4 Addressing Possible Objections

Despite avoiding representationalism, which is one advantage of this approach, we find
that certain objections to Turing’s test, including some addressed by Turing himself,
can serve as objections to the behavioural approach to computation, and that possible
objections to the behavioural approach to computation can also serve as objections to
the Turing test. Nevertheless, we claim that the behavioural approach can provide useful
tools for natural computation, and we will use it as a basis for a set of measures captur-
ing different properties of the dynamic behaviour of natural systems, measures drawing
on concepts from algorithmic information theory and compressibility. The objections
are not thoroughly addressed here, as each may require a paper of its own, but I sketch
some possible responses to explore.

4.1 Technical Objections

Let me first address some possible technical objections before turning to the philosoph-
ical ones. These and other objections deserve careful scrutiny, but there is no reason to
address them all in depth here.
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4.1.1 The Assumption That Compressibility Can Capture Different Behaviours
One assumption that the first approach to a definition of programmability makes is that
compression algorithms are able to distinguish between different behaviours. From the
proposed definition we derive the differences in the compressed lengths of the evolution
of a system. But it may not be clear whether the length of the compressed version for
a given initial configuration of a system can differ from the length of the compressed
version of the evolution of a system for a different initial configuration that yields ap-
parently different behaviour. The problem can be stated as follows: Imagine that one
has two very different processes generating different data files, but that the lengths of
their compressed versions using, for example, gzip, are the same. It may seem that our
approach is suggesting that both processes are behaviourally the same, even when, apart
from the coincidence in the compressed lengths of their respective outputs, they may in
fact be completely different.

K(s), however, is upper semi-computable[21]; there is a sequence of lossless com-
pression algorithms approximating K(s): C1(s) ≥ C2(s) ≥ C3(s) ≥ . . . ≥ K(s).
That is, one can find a sequence of compression algorithms that asymptotically ap-
proaches K . K(s) cannot then be greater than the most compressed version of s. The
invariance theorem [4] in the theory of algorithmic information guarantees that the out-
puts can be distinguished from one another at the limit, no matter how close they are to
each other, by a compression algorithm approaching K , and up to a bounded degree of
precision (which can be large, but increasing t eventually overcomes it). More formally,
the invariance theorem states that if CU (s) and CU ′(s) are the shortest programs gener-
ating s using the universal Turing machines U and U ′ respectively, their difference will
be bounded by an additive constant independent of s.

It is easy to see that the underlying concept is that since both U and U ′ are universal
Turing machines, one can always write a general translator (a compiler) between U
and U ′ such that one can run either Turing machine and get one or another complexity
value, simply adding the constant length of the translator to the result.

This means that eventually, if two processes are essentially different in the sense of
algorithmic complexity, they will have different C values from some time t on up to
K . The caveat that a system may be characterised in an imprecise fashion still applies,
but the invariance theorem guarantees that the approach is sound theoretically, even if in
practice it may sometimes be misleading, in a way that we are used to with compression
algorithms that may not “see” regularities in a file (e.g. a file containing the digits of π).

It is worth noticing that two different evolutions produced by the same rule system,
such as a cellular automaton, may not necessarily have the same Kolmogorov complex-
ity (in fact it is unlikely they will if they appear different) because the system in question
is S(i) and not S alone, that is S for the initial configuration i (e.g. Rule 30 elementary
cellular automaton [38] starting from a black cell is a different system than Rule 30
starting from a repetition of ten times 01). From Turing’s universality, we know that
S(i) can always be rewritten as S′, that is a system with empty input that behaves like
S for input i, where it is clear that S �= S′, and this difference is ultimately captured
by the difference between K(S) and K(S′), that is the lengths of the shortest programs
producing S and S′.
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4.1.2 The Choice of Enumeration of Initial Configurations
The interrogator plays an important part in this Turing-based approach, which is why

the initial input configurations are key—their role is analogous to that of the interrogator
questioning the system. In general, one can always tamper with an enumeration E to
make a system behave in a certain way for a limited period of time, as one can always
run a system and then pick initial conditions for which the system behaves in a certain
way, proceeding to design another enumeration E′ for which the first E′

t members are
members of E but sorted from t = 1, ..., n such that the system behaves in a desired
way for the first n elements. So how sensitive to the choice of initial input enumeration
is the Turing-test inspired approach to the problem of natural computation? One can
make n as large as one wishes, but the limit behaviour of a system will always go
beyond n. Does this guarantee that from some point on (e.g. n) the system will start
behaving “naturally”? Imagine that one knew that a system behaved in a certain way
for even length initial configurations. One could then design a E such that all initial
configurations are of even length. But E has to reach every possible initial configuration
in finite time, so there is no way to design E so that it would run all even length inputs
and then all odd length inputs in a finite time. There is no way to fool the limit analysis
of the behaviour of a system by tampering with the initial configurations for more than
a finite number of inputs.

The general question of the appropriate enumeration of inputs for a system is worth
exploring, especially for natural systems, given that it is not always clear what the enu-
meration of inputs for a natural system might be (questions arise, for example, about
continuous-value parameters that may need to be discretised in order for a compression
algorithm to analyse). One obvious problem is that of “encrypted systems”. What if an ef-
ficient programmable computing system looks intentionally random and inefficient? Say
one Turing universal system (e.g. Rule 110 [38,6]) behaving like another random-looking
system (such as Rule 30 in the same rulespace). It is still Rule 110, but the question is
whether one would be able to identify and program Rule 110 if it is behaving like Rule
30. It may be that one can only know it is Rule 110 if one knows the decrypting function,
so the compression algorithm can be fooled. This is related to who can pass a “stupidity
test”, that is a system that is so smart that it knows how to look stupid, or to really is
(one cannot pass, however, an intelligence or computation test without being intelligent
or being able to compute. ). The question of “encrypted systems” occurring in nature is
important to address. But this is certainly related to a feature I think is desirable in this
behavioural approach, that of observer-dependent subjectivity (Subsection 4.2.4) and to
the question of the enumeration of initial conditions (Subsection 4.1.2) and the question
of some sort of minimal need for representation (Subsection 4.2.1).

4.2 Foundational Objections

It is interesting to see how some objections serve at once as arguments against the
Turing machine intelligence approach and this natural computational approach, while
others do not (e.g. the Mathematical Objection (Searle [32], Penrose [25]) doesn’t seem
obviously to apply to the question of computation). Other examples are the theological
and the consciousness arguments, which work against both machine intelligence and
natural computation by endowing humans and natural things with qualia, which are
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said not to be concomitants of the domain of digital computation. The objections work
differently however, because in the case of machine intelligence they are meant to “safe-
guard” the essence of the human being, endowing it with irreproducible qualities such
as consciousness, while in the case of natural computation they work to “safeguard” the
nature of digital computation. The advantage of my approach as compared to Turing’s
is that there are fewer people willing to defend machines than humans, though heated
debates are carried out in both directions. The current tendency in computation, how-
ever, is greater openness to the possibility that objects and systems other than electronic
computers compute.

4.2.1 Some Representation Is Needed
It is interesting to note that one needs some representation of the output of a system
before feeding the compression algorithm (see Fig. 4). What about the introduction
or the simplification of complexity in the encoding process from the language of the
system to the language of a digital computer implementing the lossless compression
algorithm?

This is indeed the case, and it implies that there is some communication and map-
ping between the natural system and the digital computer implementing the lossless
compression algorithm, but this mapping is of a very different nature from the mapping
of states or functions among systems. Is this representation always possible?

On the one hand, one can always discretise data. On the other hand we know that
a discrete language can always be translated into binary. So in a technical sense this is
always possible. This is related to the previous discussion of the question of whether a
universal system could emulate a random-looking system to hide its programmability
capabilities, and what this would mean.

The proposal advanced herein is, however, different to the requirement of a strong
form of representationalism, where knowing the states of a system to put them into re-
lation with another is needed, which is fully dependent on the complete (and unlikely)
knowledge of the states of a natural system. Here, however, it is only needed a weak

Fig. 4. What is the nature of the encoders? They work in both directions encoding “questions”
properly for each system, and feeding the lossless compression algorithm in the right format.
Encoders A and B may be of very different nature. Simple encoders always seem a possibility,
but questions about their implementation and role remain legitimate.
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translation of one system output language into another, represented by the encoders
boxes in Fig. 4. Encoders should not be seen as a drawback, we deal with them all the
time in computing in the form of compilers. In systems development different program-
ming languages are used for different purposes in different places of a system. Even if
one can simulate each other as Turing complete, very few non-trivial applications today
are fully developed in a single programming language.

4.2.2 Programmability
A second immediate reaction is whether placing programmability at the centre of a def-
inition of computation is too strong as an assumption. For one may think of artificial
and natural systems that may not look programmable, yet one would be ready to grant
can compute (e.g. discrete neural networks). I think this objection arises from a con-
flation between the standard meaning of programming and the behavioural one I am
advancing here. While it is true that for many artificial and natural systems a concept
of programmability is difficult to determine, the concept of programmability advanced
in this paper is about whether one can, by any means, make a system behave in a way
other than the way it was already behaving. In this sense, for example, a logic circuit or
a batch process may not qualify as a computation if these are unable to react to external
stimuli or if the observer is unable to witness such an interaction if it happens in the
design or the launch of a computing process.

4.2.3 Human-Machine and Intentionality Objections
When Julien Offray de La Mettrie [35] took Descartes’ method to what he claimed
was its logical conclusion in his L’homme-machine, the argument was that Descartes’
attempt to defend the theory of a human soul by relegating mechanical behaviour to
animals in fact acted against humans. For if animals were capable of feeding, mov-
ing and interacting with other animals, strictly speaking, there was nothing to prevent
human behaviour from being seen as a consequence of mechanical behaviour. In the
Turing test we see a similar reversal of the argument, where it is not the machine’s in-
telligence that is questioned but rather the intelligence of the human being, not because
the questioners harbour the suspicion that humans may not be intelligent but because
the mechanisms that drive human intelligence may turn out to be of the same order as
those that drive computers today.

Searle advances the problem of intrinsic meaning or “intentionality” [32]. Harnad
[16] defines it as the symbol grounding problem. I consider this objection weak in our
context (though it remains to be further explored), because if assumed, the definition of
computation is rendered meaningless in the physical context (we know we can program
certain natural things, these things would be considered computers when computing
for us, and not when not). For the Turing test, some “intention” is desirable, as Turing
is trying to convince his reader that there is no argument in principle for a machine
to fail an intelligence test if it increasingly improves its performance when imitating
intelligent human behaviour. Also it is clear that electronic computers, back in Turing’s
time as well as today, are assembled for the purpose of computing, hence no harm is
done by assuming some intentionality.

Dennett has suggested [11] that it would seem that explicit representation is not
necessary for the explanation of propositional attitudes. For example, during a game
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of chess with a computer program, attitudes such as “It thinks that the queen should
be moved to the left” are often attributed to the computer. Yet no one would suggest
that the computer actually thinks or believes, in the way we do. I think it is clear how
this behavioural approach to computation is compatible with this view, and neutral on
intentionality questions, as it is only interested in the ways a system seems to behave and
not whether it “really” does so (meaning it intended to do so, whether we are concerned
with computers or with natural systems, including the brain).

4.2.4 The Observer-Oriented Objection
One immediate reaction to, and a possible objection to this approach, concerns the
applicability of such a behavioural (observer-oriented) definition, given the possibly
arbitrary choice of δ (see e.g. Table 2). According to certain arguments, computation
is observer-relative, either in the sense that many physical systems implement many
computations (Putnam [28]), or in the sense that almost all physical systems imple-
ment all computations (Searle [31]). Some physical objects, for example, may be seen
to implement any computation of whatever complexity. Thus the walls in Searle’s [31],
implement his wordprocessing program. Since the physical description of an object
underdetermines its computational description in this way, computation is deemed
observer-relative [31].

This is of course a legitimate objection, which also applies to other behavioural ap-
proaches to other notions, such as the notion of intelligence, and to the Turing test. I
have suggested (Section 2.1), however, that a measure of limit behaviour is possible,
and that even if δ is very large, one can always overcome it over time for systems that
are indubitably computing devices according to the programmability approach (com-
puters and brains), while one can always contrive to have trivial devices such as lamps
and rocks not pass as computers, leaving a flexible space in between for systems that
may or may not, subjectively, be considered computers.

Its dependence on programming language or universal Turing machine has tradition-
ally been considered one of the drawbacks of Kolmogorov complexity. In this approach
we actually take advantage of this property of Kolmogorov complexity, as it assorts with
a behavioural approach to computation that cannot but be observer-(or machine-) rel-
ative. This is because the Kolmogorov (program-size or algorithmic) complexity only
makes sense once a universal Turing machine or Turing-complete language is fixed.
On the other hand, because Kolmogorov complexity (K) is uncomputable (another
commonly identified drawback), or more precisely, upper semicomputable, it is what
the compression algorithm “observes” that approaches K that we will turn to our ad-
vantage in capturing the qualitative behaviour of a computational system in order to
quantitatively measure it.

Piccinini argues that any reasonable definition of computation should be objective. I
don’t think, however, that this should be a sine qua non of a reasonable account of com-
putation, nor that failure to meet this objectivity criterion makes an account vacuous or
trivial. In fact I think computation is intrinsically user/observer oriented, both in practice
and in theory. In practice, computation is mostly, if not entirely about programming sys-
tems. On the one hand, programming systems is intentional (driven by the desire to make
a computer behave in a particular way), even if intentionality is not essential to compu-
tation. On the other hand, theory prescribes subjectivity in various ways. The halting
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problem can be read as an observer-relative property of computational systems, given
that one cannot, in general, ever know whether a computation will halt except by running
a system for a number of steps—which depends on the willingness of the observer to
wait, if it doesn’t halt before the specified number of steps. The problem is not exclusive
to halting, but extends to reachability in general, that is, the question of whether a system
will reach a certain configuration. Universal computation is subjective in the sense that
one has to decide to stop a computation and deal with the fact that one may never know
whether such a computation will ever halt or reach a certain configuration.

4.2.5 The Halting Problem Prescribes Subjectivity at All Levels
The halting problem is the problem of deciding whether a computation will halt or not.
The halting problem implies that computations can be divided into 2 categories: re-
ducible and irreducible, that is computations that are simple enough to be determined
to halt or never halt, and computations for which the only option is to run them and wait
for them to halt, which may obviously take an infinite amount of time. Irreducible com-
putations can also be classified into 2 kind of computations: computations that never
halt and therefore not even running the computation will help and computations that
halt in time t but there is no way to know t but by running the computation for at least t.
Clearly this characterisation incorporates an important role of the observer in that there
exists computations for which one can only know whether they will halt by running
them, and introduces a subjective component, namely the fact that the observer has to
decide a runtime cutoff that is willing to wait before making an informed assumption
about the (non-)halting characteristic of a computation.

Now one can see how an observer is important in the account of computation even
for the most classical case of the unsolvability of the halting problem. This is even
more evident when considering other phenomena, such as reachability, that is whether
a computation will reach certain configuration, in which for some computations only
an observer willing to run and witness the computation may answer.

The undecidability of the halting problem affects all theoretical and practical notions
related to computation. For example, in Kolmogorov complexity one can never say
whether an object is random (one can say whether an object is simple if it has been
compressed but not the converse). This doesn’t make algorithmic complexity useless.
In fact it is this observer-relative property (with respect to compression algorithms that
may or may not “see” regularities in the data) that the measure is most useful—for
all kinds of applications, including classification of animal species and languages by
compressibility, detection of genetic sequences, fraud and plagiarism detection. In finite
Kolmogorov complexity, finite randomness is in the eye of the beholder, in the sense
that any finite sequence can always be part of a random or non-random string. Hence
the quality of being random is observer-dependent, just as it is in the case of the halting
problem.

I think that it is denying the role of the observer that makes the intuitive notion of
computation vacuous or trivial. The observer plays an essential role in the definition of
computation. This is made explicit in our definition of computation, for the purposes of
generalising and characterising natural computation.

Under this approach, computation is observer-relative (in agreement with many au-
thors who endorse computationalism), just as intelligence is observer-relative in the case
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of the Turing test. We find that certain objections to Turing’s test, including some ad-
dressed by Turing himself, can serve as objections to this behavioural approach to com-
putation (we will address some of them), and that possible objections to the behavioural
approach to computation can also serve as objections to the Turing test. Nevertheless,
we claim that the behavioural computation approach can provide useful tools for natu-
ral computation, and we will use it as the basis for a toolkit of quantitative measures—
based on concepts from algorithmic information theory and compressibility—capturing
different qualitative properties of natural systems.

Paradoxically, the behavioural approach does not explain a system’s behaviour, at
least not in full, for we can explain part of a system’s behaviour once a first behavioural
analysis is performed, but not in the way we would be led to expect if we followed
Smith or Piccinini, for it is not intended to be a theory of computing, nor does it set out
to fully account for the causes of a system’s behaviour, only for its apparent behaviour.
The approach proves to have applicability and to provide insight into the properties of
dynamical systems about whose internal states one could potentially have no informa-
tion, nor any clue as to the possible mappings between a natural and an abstract compu-
tational system. But it also works well for systems which we know and whose internal
states we can study in full detail, producing all manner of mappings to other models
of computation, as we have shown using cellular automata and the way in which the
measures based on this behavioural approach allow us to characterise phase transitions
or rates of information transfer from a purely behavioural perspective.

Take the example of having to calculate the Lyapunov exponents of a natural system.
Even if the system can be described as a dynamical system for which orbits can be
described, this already assumes that one is able to represent such dynamics. Of course
the behavioural approach also assumes that one can capture the behaviour of the system,
but it does not assume full knowledge of the precise evolution of the system. In fact one
can to some extent analyse a system in an instant of time without having to go through
intermediate times (this will of course impact the final result, as it improves in direct
proportion the more one observes the system).

If the observer is essential to the definition of computation, one has to acknowledge
that there is no sense to the most general question of whether the universe computes, be-
cause no definition of the universe allows for external stimuli (external to the universe),
nor for the output of the universe to reside outside it for an observer to evaluate.

4.2.6 Does Implementation Matter?
The question of the implementation of computation seems not to have been taken seri-
ously until critics of computationalism brought forward certain arguments to the effect
that a great many physical systems implement many, if not all, computations. Such ar-
guments have been presented by Putnam [28] and Searle [31]. According to Putnam
(the eponymous Putnam’s Realization Theorem), “for every ordinary open system S,
for every finite state automaton M (without input and output), for any number n of
computational steps of the automaton M , and for every real-time interval I (divisible
into n subintervals) S realizes n computational steps of M within I”. And according to
Searle (what is sometimes called Searle’s Thesis), “for any program and for any suffi-
ciently complex (physical) object, there is some description of the object under which
it is implementing the program.”
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Along the lines of the question asked by Chalmers [5], what makes a rock compute
something (or nothing) rather than everything? It seems that, at least prima facie, what
(abstract) computability and (concrete) computation have in common is some logical
description, only the characterisation of the latter isn’t exhausted by a purely logical
description, so implementation does matter. And it does matter in my approach, given
that the rock may potentially be capable of any computation (think of using its particles
to build a more programmable device), but it does not do so at the level at which it
must be described as a rock, and if we look at it through a Turing-test inspired lens and
attempt to make it behave in one way or another, i.e. program it to behave differently for
different external stimuli (see Fig. 3 for a “rock-like” behaviour of an abstract system).

4.2.7 Laws Have No Distinguished Character
It has been suggested [24] that I am assigning a special status to physical laws, or to
computer programs for that matter. This is an understandable objection but in fact it rep-
resents a misconception of my position. The misunderstanding resides in the conclusion
that by connecting laws to computer programs as opposed to data, I give physical laws a
special, immortal and unchanging status. Computer programs, however, can be written
in bits. And, as I have explained in Section 1.2, Turing proved that computer programs
and data are not essentially different; one can always exchange one for the other. That
is, it is possible to write the transition table of a Turing machine in the form of an input
for a universal Turing machine, or to build a transition table (a Turing machine) from
the computer program description.

In algorithmic probability there is only one strong assumption regarding the dis-
tribution of objects. What Levin’s universal distribution is supposed to indicate is the
probability of a string being generated by a program, but one has to make an assumption
as regards the distribution of programs in order to talk about picking a random program.
And that is the only possible uninformed assumption–the uniform distribution. That is,
any program of the same length is equally likely to occur as a product of chance. But
apart from this one is free to interchange programs. There is nothing special about phys-
ical laws. They can be seen as highlighting or summarising a regularity in the data (the
world), and data can change, hence physical laws may do so as well.

4.2.8 The Question of Scale
In the real world, things are constituted by smaller elements unless they are elementary
particles. One therefore has to study the behaviour of a system at a given scale and not
at all possible scales, otherwise the question becomes meaningless, as elements of a
physical object are molecules, and ultimately atoms and particles that have their own
behaviour, about which too the question about computation can be asked. This means
that a C-computer may have a low or null C at some scale but contain C

′-computers
with C′ > C at another scale (for which the original object is no longer the same as a
whole). A setup in which C′ ≤ C is actually often common at some scale for any com-
putational device. For example, a digital computer is made of simpler components, each
of which at some macroscopic level but independently of the interconnected computer,
is of lower behavioural richness and may qualify for a C of lower value. In other words,
the behavioural definition is not additive in the sense that a C-computer can contain or
be contained in another C′-computer such that C �= C

′.
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In the physical world, under this qualitative approach, things may compute or not
depending on the scale at which they are studied. To say that a table computes only
makes sense at the scale of the table, and as a C-computer it would have a very limited
C, that is a very limited range of behaviour, for it can hardly be programmed to do
something else.

The behavioural definition is not immune to scale. Something may or may not com-
pute at a certain level of description but it may compute at another more macro- or more
microscopic level of description. But the concept of the object is also not scale invariant
(we call things by different names when we change scale, e.g. we call the constituents
of a rock atoms, or the aggregation of H2O in liquid form water).

4.2.9 Batch Process Objection
A batch process is the execution of a program on a computer without the need of any
external intervention. This kind of system would go unnoticed by this proposed be-
havioural approach given the insensitivity of such a system to any external stimuli, as it
is programmed to perform a task without interacting with anything else until it stops and
produces some output, if any. During this time the process may look as if it were doing
nothing, but this is merely appearance, and there are ways for the observer to ascertain
that it is in fact computing, at the lowest level by its external resource consumption and
release, such as energy and heat (which one could also manipulate to make the process
change behaviour, for example, stop the process), and at another level, by monitoring
the process for a long-enough time. The batch process instance is only valid as an ob-
jection between the time t = 1 when the process is actually initiated (it has to), and
t = n− 1, because at least at one time t = 0 or t = n (if it halts and produces an out-
put) some interaction with the outside is expected to happen. So while some computers
may fail to be identified by the behavioural definition, the limit behaviour definition
seems to be immune to this objection, except insofar as it may for all (proper) purposes
consider something that may be computing as not computing because it is disconnected
from the external world in which the observer lives.

4.2.10 The Contingency of Quantum Mechanics
Using algorithmic probability (AP) S. Lloyd claims [20]:

I would suggest, merely as a metaphor here, but also as the basis for a scien-
tific program to investigate the computational capacity of the universe, that this
is also a reasonable explanation for why the universe is complex. It gets pro-
grammed by little random quantum fluctuations, like the same sorts of quantum
fluctuations that mean that our galaxy is here rather than somewhere else.

(S. Lloyd, 2002)

We don’t know whether AP can be adapted to a quantum version but we do know that
there is no need for quantum fluctuations to generate algorithmic structure [12] that
Lloyd was trying to explain on the basis of quantum mechanics.

The strong assumption in the context of classical computation and classical mechan-
ics is determinism. The wave-function collapse in quantum mechanics and the problem
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of measurement may challenge determinism at two different levels, but otherwise clas-
sical mechanics prescribes determinism in the (macroscopic) universe. Classical (New-
tonian) mechanics guarantees the deterministic output (the problem is to generate the
same input). Running a computation twice with the same input generates the same out-
put through exactly the same path just as would do a classical system following the
rules of classical mechanics (that in practice this is not possible is due to the problem
of limited accuracy of the measurement of the initial conditions).

4.2.11 Connections to Computational Complexity
In the light of this research now one can find an interesting connection of the measure
C to traditional computational complexity where one is concerned with the needed re-
sources for a computation to be carried out. C provides clues on whether a system may
be Turing universal but not on whether a system may not be universal, because univer-
sality requires variability and sensitivity to external stimuli to program a computation.
Also C is greatly influenced but not directly related to universality given that univer-
sality will guarantee that limC

n
t = ∞ for t, n → ∞, but a positive value C does not

guarantee universality, it guarantees sensibility which in this context is a measure of the
capability of the system to be programmed to do different (even if limited) computa-
tions by transferring information from the input to the output. But C ultimately depends
on the way in which C is calculated for a finite number of initial configurations and a
finite number of steps, hence systems that may compute at a slow pace may be misclas-
sified for some t and n small enough. C can be, however, thought as also measuring
efficiency of a system to be programmed. So one can relativise this concept introducing
time complexity classes. So one can say that a system with C value that grows in linear
time is efficient, but it is not efficient if it grows in logarithmic time.

5 Concluding Remarks

This paper has addressed the problem of recognising computation. It partially fulfils
some of the requirements that according to several authors any definition of computa-
tion should meet (e.g. [30], [27]), while I have made the case that some properties are
not needed and should not be required or expected, especially in the novel context of
natural computation and artificial biology.

Computational models can be very useful even when not every detail about a sys-
tem is known. The aim of systems biology, for example, is to understand the functional
properties and behaviour of living organisms, while the aim of synthetic biology is to
design, control and program the behaviour of living systems, even without knowing the
details of the biological systems in question. Along the lines of Turing’s intelligence
test, this approach seems to be useful for investigating qualitative properties of comput-
ing systems in a quantitative fashion, and since it places programmability at the centre
of computation it serves as a possible foundation for natural computation.

Acknowledgements. I would like to thank Marcin Miłkowski for some references and
the organisers of the symposium Natural/Unconventional Computing and its Philosoph-
ical Significance for their kind invitation to speak at the AISB/IACAP World Congress



112 H. Zenil

2012—Alan Turing 2012. I also wish to thank the FQXi for the mini-grant awarded by
way of the Silicon Valley Foundation under the title “Time and Computation”, which
this project studies in connection to behaviour (mini-grant no. 2011-93849 (4661)).

References

1. Ausländer, S., Ausländer, D., Müller, M., Wieland, M., Fussenegger, M.: Programmable
single-cell mammalian biocomputers. Nature (2012)

2. Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways for your Mathematical Plays. AK
Peters Ltd. (2001)

3. Blanco, J.: Interdisciplinary Workshop with Javier Blanco: Ontological, Epistemological and
Methodological Aspects of Computer Science. University of Stuttgart, Germany (July 7,
2011)

4. Chaitin, G.J.: On the length of programs for computing finite binary sequences: Statistical
considerations. Journal of the ACM 16(1), 145–159 (1969)

5. Chalmers, D.J.: Does a Rock Implement Every Finite-State Automaton? Synthese 108,
310–333 (1996)

6. Cook, M.: Universality in Elementary Cellular Automata. Complex Systems 15, 1–40 (2004)
7. Conrad, M.: The Price of Programmability. In: Herken, R. (ed.) The Universal Turing Ma-

chine, A Half-Century Survey. Springer (1994)
8. Berlekamp, E., Conway, K., Guy, R.: Winning Ways for your Mathematical Plays, vol. 2.

Academic Press (1982)
9. Cronin, L., Krasnogor, N., Davis, B.G., Alexander, C., Robertson, N., Steinke, J.H.G.,

Schroeder, S.L.M., Khlobystov, A.N., Cooper, G., Gardner, P.M., Siepmann, P., Whitaker,
B.J., Marsh, D.: The imitation game—a computational chemical approach to recognizing
life. Nature Biotechnology 24(10) (2006)

10. Davis, M.: Universality is Ubiquitous, Invited Lecture. In: History and Philosophy of Com-
puting (HAPOC 2011), Ghent, November 8 (2011)

11. Dennett, D.C.: Brainstorms: Philosophical Essays on Mind and Psychology. MIT Press
(1981)

12. Delahaye, J.-P., Zenil, H.: Numerical Evaluation of the Complexity of Short Strings:
A Glance Into the Innermost Structure of Algorithmic Randomness. Applied Math. and
Comp. 219, 63–77 (2012)

13. Dresner, E.: Measurement-theoretic representation and computation-theoretic realisation.
The Journal of Philosophy cvii(6) (2010)

14. Fodor, J.: The Language of Thought. Harvard University Press (1975)
15. Fredkin: Finite Nature. In: Proceedings of the XXVIIth Rencotre de Moriond (1992)
16. Harnad, S.: The Symbol Grounding Problem. Physica D 42, 335–346 (1990)
17. Hodgkin, A., Huxley, A.: A quantitative description of membrane current and its application

to conduction and excitation in nerve. Journal of Physiology 117, 500–544 (1952)
18. Kolmogorov, A.N.: Three approaches to the quantitative definition of information. Problems

of Information and Transmission 1(1), 1–7 (1965)
19. Langton, C.G.: Studying artificial life with cellular automata. Physica D: Nonlinear Phenom-

ena 22(1-3), 120–149 (1986)
20. Lloyd, S.: Computational capacity of the Universe. Physical Review Letters 88, 237901

(2002)
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Abstract. Alan Turing’s pioneering work on computability, and his ideas on 
morphological computing support Andrew Hodges’ view of Turing as a natural 
philosopher. Turing’s natural philosophy differs importantly from Galileo’s 
view that the book of nature is written in the language of mathematics (The As-
sayer, 1623). Computing is more than a language used to describe nature as 
computation produces real time physical behaviors. This article presents the 
framework of Natural info-computationalism as a contemporary natural philos-
ophy that builds on the legacy of Turing’s computationalism. The use of  
info-computational conceptualizations, models and tools makes possible for the 
first time in history modeling of complex self-organizing adaptive systems, in-
cluding basic characteristics and functions of living systems, intelligence, and 
cognition. 
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computationalism. 

1 Turing and Natural Philosophy 

Andrew Hodges [1] describes Turing as a Natural philosopher: “He thought and lived 
a generation ahead of his time, and yet the features of his thought that burst the boun-
daries of the 1940s are better described by the antique words: natural philosophy.” 
Turing’s natural philosophy differs from Galileo’s view that the book of nature is 
written in the language of mathematics (The Assayer, 1623). Computation is not just a 
language of nature; it is the way nature behaves. Computing differs from mathematics 
in that computers not only calculate numbers, but more importantly they can produce 
real time physical behaviours. 

Turing studied a variety of natural phenomena and proposed their computational 
modeling. He made a pioneering contribution in the elucidation of connections be-
tween computation and intelligence and his work on morphogenesis provides evi-
dence for natural philosophers’ approach. Turing’s 1952 paper on morphogenesis [2] 
proposed a chemical model as the basis of the development of biological patterns such 
as the spots and stripes that appear on animal skin. 

Turing did not originally claim that the physical system producing patterns actually 
performs computation through morphogenesis. Nevertheless, from the perspective of 
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info-computationalism, [3,4] argues that morphogenesis is a process of morphological 
computing. Physical process, though not computational in the traditional sense, 
presents natural (unconventional), physical, morphological computation.  

An essential element in this process is the interplay between the informational 
structure and the computational process – information self-structuring. The process of 
computation implements physical laws which act on informational structures. 
Through the process of computation, structures change their forms, [5]. All computa-
tion on some level of abstraction is morphological computation – a form-
changing/form-generating process, [4]. 

In this article, info-computationalism is identified as a new philosophy of nature 
providing the basis for the unification of knowledge from currently disparate fields of 
natural sciences, philosophy, and computing. An on-going development in bioinfor-
matics, computational biology, neuroscience, cognitive science and related fields 
shows that in practice biological systems are currently already studied as information 
processing and are modeled using computation-theoretical tools [6,7,8]. 

Denning declares: “Computing is a natural science” [9] and info-computationalism 
provides plenty of support for this claim. Contemporary biologists such as Kurakin 
[10] also add to this information-based naturalism, claiming that “living matter as a 
whole represents a multi-scale structure-process of energy/matter flow/circulation, 
which obeys the empirical laws of nonequilibrium thermodynamics and which 
evolves as a self-similar structure (fractal) due to the pressures of competition and 
evolutionary selection”. [11, p5] 

2 Universe as Informational Structure 

The universe is, from the metaphysical point of view, "nothing but processes in struc-
tural patterns all the way down" [12, p228]. Understanding patterns as information, 
one may infer that information is a fundamental ontological category. The ontology is 
scale-relative. What we know about the universe is what we get from sciences, as 
"special sciences track real patterns" [12, p242]. This idea of an informational un-
iverse coincides with Floridi’s Informational Structural Realism [13,14]. We know as 
much of the world as we explore and cognitively process: 

“Reality in itself is not a source but a resource for knowledge. Structural objects 
(clusters of data as relational entities) work epistemologically like constraining affor-
dances: they allow or invite certain constructs (they are affordances for the informa-
tion system that elaborates them) and resist or impede some others (they are  
constraints for the same system), depending on the interaction with, and the nature of, 
the information system that processes them.” [13, p370]. 

Wolfram [15] finds equivalence between the two descriptions – matter and information: 

“[M]atter is merely our way of representing to ourselves things that are in fact 
some pattern of information, but we can also say that matter is the primary thing and 
that information is our representation of that. It makes little difference, I don’t think 
there’s a big distinction – if one is right that there’s an ultimate model for the repre-
sentation of universe in terms of computation.” [16, p389]. 
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More detailed discussion of different questions of the informational universe, natural 
info-computationalism including cognition, meaning and intelligent agency is given 
by Dodig Crnkovic and Hofkirchner in [17]. 

3 The Computing Universe – Naturalist Computationalism 

Zuse was the first to suggest (in 1967) that the physical behavior of the entire universe 
is being computed on a basic level, possibly on cellular automata, by the universe 
itself, which he referred to as "Rechnender Raum" or Computing Space/Cosmos. 
Consequently, Zuse was the first pancomputationalist (natural computationalist), [18]. 
Chaitin in [19, p.13] claims that the universe can be considered to be a computer 
“constantly computing its future state from its current state, constantly computing its 
own time-evolution account!” He quotes Toffoli, pointing out that “actual computers 
like your PC just hitch a ride on this universal computation!”  

Wolfram too advocates for a pancomputationalist view [15], a new dynamic kind 
of reductionism in which the complexity of behaviors and structures found in nature 
are derived (generated) from a few basic mechanisms. Natural phenomena are thus 
the products of computation processes. In a computational universe new and unpre-
dictable phenomena emerge as a result of simple algorithms operating on simple 
computing elements such as cellular automata, and complexity originates from the 
bottom-up emergent processes. Cellular automata are equivalent to a universal Turing 
Machine. Wolfram’s critics remark, however, that cellular automata do not evolve 
beyond a certain level of complexity; the mechanisms involved do not produce evolu-
tionary development. Wolfram meets this criticism by pointing out that cellular auto-
mata are models and as such surprisingly successful ones. Also Fredkin [20] in his 
Digital philosophy builds on cellular automata, suggesting that particle physics can 
emerge from cellular automata. For Fredkin, humans are software running on a uni-
versal computer.  

Wolfram and Fredkin, in the tradition of Zuse, assume that the universe is, on a 
fundamental level, a discrete system, and is thus suitably modeled as an all-
encompassing digital computer. However, the computing universe hypothesis (natural 
computationalism) does not critically depend on the discreteness of the physical 
world, as there are digital as well as analog computers. On a quantum-mechanical 
level, the universe performs computation on characteristically dual wave-particle 
objects [21], i.e. both continuous and discrete computing. Maley [22] demonstrates 
that it is necessary to distinguish between analog and continuous, and between digital 
and discrete representations. Even though typical examples of analog representations 
use continuous media, this is not what makes them analog. Rather, it is the relation-
ship that they maintain with what they represent. Similar holds for digital representa-
tions. The lack of proper distinctions in this respect is a source of much confusion on  
discrete vs. continuous computational models. 

Moreover, even if in some representations it may be discrete (and thus conform to 
the Pythagorean ideal of number as a principle of the world), computation in the  
universe is performed at many different levels of organization, including quantum 
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computing, bio-computing, spatial computing, etc. – some of them discrete, others 
continuous. So computing nature seems to have a use for both discrete and continuous 
computation, [23]. 

4 Information Processing Model of Computation 

Computation is nowadays performed by computer systems connected in global net-
works of multitasking, interacting devices. The classical understanding of computa-
tion as syntactic mechanical symbol manipulation performed by an isolated computer 
is being replaced by the information processing view by Burgin, [24]. Info-
computationalism adopts Burgin definition of computation as information processing. 

In what follows, I will focus on explaining this new idea of computation, which is 
essentially different from the notion of context-free execution of a given procedure in 
a deterministic mechanical way. Abramsky summarizes this changing paradigm of 
computing as follows:  

“Traditionally, the dynamics of computing systems, their unfolding behaviour in 
space and time has been a mere means to the end of computing the function which 
specifies the algorithmic problem which the system is solving. In much of contempo-
rary computing, the situation is reversed: the purpose of the computing system is to 
exhibit certain behaviour. (…)  

We need a theory of the dynamics of informatic processes, of interaction, and in-
formation flow, as a basis for answering such fundamental questions as: What is 
computed? What is a process? What are the analogues to Turing completeness and 
universality when we are concerned with processes and their behaviours, rather than 
the functions which they compute?” [25, p483] 

According to Abramsky, there is a need for second generation models of computation, 
and in particular there is a need for process models such as Petri nets, Process  
Algebra, and similar. The first generation models of computation originated from 
problems of formalization of mathematics and logic, while processes or agents, inte-
raction, and information flow are genuine products of the development of computers 
and Computer Science. In the second generation models of computation, previous 
isolated systems with limited interactions with the environment are replaced by 
processes or agents for which interactions with each other and with the environment 
are fundamental.  

As a result of interactions among agents and with the environment, complex beha-
viour emerges. The basic building block of this interactive approach is the agent, and 
the fundamental operation is interaction. The ideal is the computational behaviour of 
an organism, not mechanical machinery. This approach works at both the macro-scale 
(such as processes in operating systems, software agents on the Internet, transactions, 
etc.) and on the micro-scale (from program implementation, down to hardware).  

The above view of the relationship between information and computation pre-
sented in [25] agrees with ideas of info-computational naturalism of Dodig-Crnkovic 
[3] which are based on the same understanding of computation and its relation to  
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information. Implementation of info-computationalism, interactive computing (such 
as, among others, agent-based) naturally suits the purpose of modelling a network of 
mutually communicating processes/agents, see [3,4,5]. 

5 Natural Computation 

Natural computing is a new paradigm of computing which deals with computability in 
the natural world. It has brought a new understanding of computation and presents a 
promising new approach to the complex world of autonomous, intelligent, adaptive, 
and networked computing that has emerged successively in recent years. Significant 
for Natural computing is a bidirectional research [7]: as natural sciences are rapidly 
absorbing ideas of information processing, computing is concurrently assimilating 
ideas from natural sciences.  

The classical mathematical theory of computation was devised long before global 
computer networks. Ideal, classical theoretical computers are mathematical objects 
and they are equivalent to algorithms, Turing machines, effective procedures, recur-
sive functions or formal languages. Compared with new computing paradigms, Tur-
ing machines form the proper subset of the set of information processing devices, in 
much the same way as Newton’s theory of gravitation presents a special case of  
Einstein’s theory, or Euclidean geometry presents a limited case of non-Euclidean 
geometries, [5]. 

Natural/Unconventional computing as a study of computational systems includes 
computing techniques that take inspiration from nature, use computers to simulate 
natural phenomena or compute with natural materials (such as molecules, atoms or 
DNA). Natural computation is well suited for dealing with large, complex, and  
dynamic problems. It is an emerging interdisciplinary area closely related to artificial 
intelligence and cognitive science, vision and image processing, neuroscience,  
systems biology and bioinformatics, to mention but a few.  

Computational paradigms studied by natural computing are abstracted from natural 
phenomena such as self-* attributes of living (organic) systems (including -
replication, -repair, -definition and -assembly), the functioning of the brain, evolution, 
the immune systems, cell membranes, and morphogenesis.  

Unlike in the Turing model, where the Halting problem is central, the main issue in 
Natural computing is the adequacy of the computational response (behaviour). The 
organic computing system adapts dynamically to the current conditions of its  
environments by self-organization, self-configuration, self-optimization, self-healing, 
self-protection and context-awareness. In many areas, we have to computationally 
model emergence which is not algorithmic according to Cooper [26] and Cooper and 
Sloman [27]. This makes the investigation of computational characteristics of  
non-algorithmic natural computation (sub-symbolic, analog) particularly interesting.  

In sum, solutions are being sought in natural systems with evolutionary developed 
strategies for handling complexity in order to improve complex networks of massive-
ly parallel autonomous engineered computational systems. Research in theoretical 
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foundations of Natural computing is needed to improve understanding of the funda-
mental level of computation as information processing which underlies all computing. 

6 Information as a Fabric of Reality 

“Information is the difference that makes a difference. “ [29] 

More specifically, Bateson’s difference is the difference in the world that makes the 
difference for an agent. Here the world also includes agents themselves. As an exam-
ple, take the visual field of a microscope/telescope: A difference that makes a differ-
ence for an agent who can see (visible) light appears when she/he/it detects an object 
in the visual field. What is observed presents a difference that makes the difference 
for that agent. For another agent who may see only ultra-violet radiation, the visible 
part of the spectrum might not bring any difference at all. So the difference that 
makes a difference for an agent depends on what the agent is able to detect or perce-
ive. Nowadays, with the help of scientific instruments, we see much more than ever 
before, which is yet further enhanced by visualization techniques that can graphically 
represent any kind of data.  

A system of differences that make a difference (information structures that build 
information architecture), observed and memorized, represents the fabric of reality for 
an agent. Informational Structural Realism [13] [30] argues exactly that: information 
is the fabric of reality. Reality consists of informational structures organized on dif-
ferent levels of abstraction/resolution. A similar view is defended in [12]. Dodig 
Crnkovic [3] identifies this fabric of reality (Kantian 'Ding an sich') as potential in-
formation and makes the distinction between it and actual information for an agent. 
Potential information for an agent is all that exists as not yet actualized for an agent, 
and it becomes information through interactions with an agent for whom it makes a 
difference. 

Informational structures of the world constantly change on all levels of organiza-
tion, so the knowledge of structures is only half the story. The other half is the know-
ledge of processes – information dynamics. 

It is important to note the difference between the potential information (world in it-
self) and actual information (world for an agent). Meaningful information, which is 
what in everyday speech is meant by information, is the result of interaction between 
an agent and the world. Meaning is use, and for an agent information has meaning 
when it has certain use. Menant [31] proposes to analyze relations between informa-
tion, meaning and representation through an evolutionary approach. 

7 Info-computationalism as Natural Philosophy 

Info-computationalist naturalism identifies computational process with the dynamic inte-
raction of informational structures. It includes digital and analog, continuous and dis-
crete, as phenomena existing in the physical world on different levels of organization. 
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Our present-day digital computing is a subset of a more general Natural computing. In 
this framework, computational processes are understood as natural computation, since 
information processing (computation) is not only found in human communication and 
computational machinery but also in the entirety of nature. 

Information represents the world (reality as an informational web) for a cognizing 
agent, while information dynamics (information processing, computation) implements 
physical laws through which all the changes of informational structures unfold.  

Computation, as it appears in the natural world, is more general than the human 
process of calculation modelled by the Turing machine. Natural computing takes 
place through the interactions of concurrent asynchronous computational processes, 
which are the most general representation of information dynamics [5]. 

8 Conclusions 

Alan Turing’s work on computing machinery, which provided the basis for artificial 
intelligence and the study of its relationship to natural intelligence, together with his 
computational models of morphogenesis, can be seen as a pioneering contribution to 
the field of Natural Computing and the Computational Philosophy of Nature. Today’s 
info-computationalism builds on the tradition of Turing’s computational Natural  
Philosophy. It is a kind of epistemological naturalism based on the synthesis of two 
fundamental cosmological ideas: the universe as informational structure (informatio-
nalism) and the universe as a network of computational processes (pancomputational-
ism/naturalist computationalism).  

Information and computation in this framework are two complementary concepts 
representing structure and process, being and becoming. Info-computational concep-
tualizations, models and tools enable the study of nature and its complex, dynamic 
structures, and uncover unprecedented new possibilities in the understanding of the 
connections between earlier unrelated phenomena of non-living and living nature 
[28]. 
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Abstract.  Information can be defined in terms of the categorical opposition of 
one and many, leading to two manifestations of information, selective and 
structural.  These manifestations of information are dual in the sense that one 
always is associated with the other. The dualism can be used to model and ex-
plain dynamics of information processes. Application of the analysis involving 
selective-structural duality is made in the contexts of two domains, of computa-
tion and foundations of living systems. Similarity of these two types of infor-
mation processing allowing common way of their modelling becomes more 
evident in the naturalistic perspective on computing based on the observation 
that every computation is inherently analogue, and the distinction between ana-
logue and digital information is only a matter of its meaning. In conclusion, it is 
proposed that the similar dynamics of information processes allows considering 
computational systems of increased hierarchical complexity resembling living 
systems.  

Keywords: Selective and structural information, Dynamics of information 
processing, Hierarchic levels of information. 

1 Introduction 

The concept of information has several very different definitions. In this large variety, 
only few qualify as correct and intelligible. Too frequently, definitions simply refer to 
intuitive understanding of the explanatory concepts selected from the vernacular vo-
cabulary. It is quite rare that the formulation of the definition refers to any particular 
philosophical background. However, there are two clearly distinctive or even compet-
itive tendencies in the understanding of information. One is characterized by explicit 
or implicit reference to selection, sometimes in alternative form of difference or dis-
tinction. The other has the general idea of the form or structure as the focal point of 
explanation.  

The definition of information used in this paper was introduced and extensively 
analyzed in earlier articles of the author. Its desirable feature is that the both ideas of 
selection and of structure can be found as alternative and complementary ways of its 
interpretation.  

Moreover, it turns out that the selective and structural manifestations of informa-
tion are dual in the sense that one always is associated with the other. The dualism is 
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being used in present article to model and explain dynamics of information processes. 
Dynamical processes of this type are analyzed in contexts of the two domains, of 
computation and foundations of living systems, but there is nothing which would limit 
this model to any particular domain. In conclusion, it is suggested that the similar 
dynamics of information processes allows considering computational systems of in-
creased complexity resembling living systems.   

Due to the scope and limitation of the format of this paper more detailed presenta-
tion of the technical issues related to mathematical theory of information developed 
by the author for the description of the dual concept of information and of information 
dynamics will be published elsewhere.   

2 Dualism of Selective and Structural Information  

The concept of information is understood here in the way it was defined in earlier 
papers of the author [1] as an identification of a variety. Thus, starting point in the 
conceptualization of information is in the categorical opposition of one and many.  

The variety in this definition, corresponding to the “many” side of the opposition is 
a carrier of information. Its identification is understood as anything which makes it 
one, i.e. which moves it into or towards the other side of the opposition. The preferred 
word “identification” (not the simpler, but possibly misleading word “unity”) indi-
cates that information gives an identity to a variety, which does not necessarily mean 
unification, uniformization or homogeneization. However, this identity is considered 
an expression of unity or “oneness”. 

There are two basic forms of identification. One consists in the selection of one out 
of many in the variety (possibly with limited degree of determination which element 
of the variety is selected), the other in a structure binding many into one (with differ-
ent degrees of such binding). This brings two manifestations of information, the selec-
tive and the structural. The two possibilities are not dividing information into two 
types, as the occurrence of one is always accompanied by the other, but not on the 
same variety, i.e. not on the same information carrier. For instance, information used 
in opening a lock with the corresponding key can be viewed in two alternative ways. 
We can think about it as a way to make the selection of the key, out of some variety 
of keys, or we can think about the spatial structure of the key which fits the structure 
of the lock. In the first case, the variety consists of a collection of keys, in the second 
the variety consists of the material units (for instance molecules) forming appropriate 
geometric shape of the key. It can be easily observed that the varieties in this example 
are related hierarchically. Every element of one variety (keys) is an instance of the 
other (molecules to be bound into a key). Thus, we can consider selective and struc-
tural information as dual manifestations of one concept, with the duality related to 
objective, structural characteristics of reality.  

Coexistence of different manifestations of information justifies introduction of the 
concept of an information system understood as a complex of varieties (information 
carriers) whose forms of identification are pair-wise combined through selective-
structural duality. Going beyond a pair of information carriers will be considered later 
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in the context of systems in which a hierarchic chain of related pairs can be identified, 
as for instance in living systems.   

As mentioned above, the identification of a variety may differ in the degree. For 
the selective manifestation this degree can be quantitatively described using appropri-
ate probability distribution and measured using for instance Shannon’s entropy, or 
more appropriate measure when we want to characterize information within the sys-
tem, not its transmission between systems [2]. For the structural manifestation the 
degree can be characterized in terms of decomposability of the structure [3].  

Selective-structural duality of information is reflected in a variety of contexts. An 
example of very general character can be found in the way how we form concepts. 
One way is focusing on the denotation and the selection of objects which we want to 
include in denotation. Another way is to focus on the connotation determined by the 
configuration of characteristics which describe it.  

Another example can be found in the analysis of scientific or philosophical inquiry. 
In his philosophical analysis of the methods of science and history Wilhelm Windel-
band [4] introduced frequently revoked distinction, or even opposition of nomothetic 
and idiographic methodologies. The former has its starting point in the acknowledge-
ment of the differences, but assumes the existence of similarities which produce 
grouping within the variety, and therefore it is looking for comparable aspects and 
serves identification of the subject of study. The latter is assuming the uniqueness of 
the object of study and therefore is focused on elements which constitute this unique-
ness through specific structural characteristics. Although, the distinction is between 
methodologies of inquiry, not between manifestations of information, association with 
information is quite evident.  

Similar, but much more frequently used distinction in the context of cultural stu-
dies has been introduced more than a half century later by Keneth L. Pike [5]. He 
called his methodological schemata etic and emic methodologies, deriving their 
names from phonetic and phonemic studies of language. Here too, the distinction is 
based on the differences in the perspective of the study. In the first case the subject of 
study is viewed in a comparative manner as a member of a variety in which differenc-
es and similarities are used to establish its unique characteristics. In the second case, 
the subject of the study, whose uniqueness is already assumed, is viewed from the 
inside with the aim to reconstruct its internal structure.  

In these examples, as well as in all instances of the reflection of the selective-
structural duality in methodological analysis, it is considered obvious that the choice 
of a particular method is dictated by the discipline of inquiry. Physics for instance is 
recognized always as a paradigm of the nomothetic or ethic approach corresponding 
to selective information. After all, probability distributions describe the state of a 
system, collective one in classical physics, and individual in quantum physics. But 
closer look reveals that actually in this domain both methodological positions are 
omnipresent. It is enough to recall tendency of geometrization in physics continuing 
beyond the General Relativity Theory, or the special role of the field theory to recog-
nize the presence of the view associated with structural information.  

The selective-structural dualism of information can be found not only in the dis-
tinction of methodological perspectives in physics. Wave-particle dualism which is 
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understood as a characteristic of physical reality at quantum mechanical level can be 
interpreted as an expression of the dualism of selective and structural manifestations 
of information. Corpuscular image of an electron is based on the selection of its posi-
tion out of a variety of possibilities described by a probability distribution. Wave 
image is based on the structural characteristics of the space.  

The most significant is association of the selective-structural dualism of informa-
tion with the dualism of function and structure in the foundation studies of living 
systems, which constitutes the central theme of the work of Humberto Maturana and 
Francisco Varela [6] on autopoiesis. Here it becomes clear that this dualism is not just 
a matter of the choice of a method of inquiry, but it is a characteristic of living sys-
tems. Function determines structure and structure determines function. Maturana and 
Varela were looking for the resolution of this convolution in autopoiesis, self-
construction of living systems. However, from the point of view of information  
studies, there is no need to restrict this dualism to living systems, as it is simply ref-
lection of the universal dualism of selective and structural information. Functions of 
the elements of a system give them identity by distinguishing them from, and giving 
them their place in the differentiated variety. On the other hand, this distinction is a 
consequence of the specific structural characteristics that they posses, their internal 
structure allows them to play specific roles in the system. It is not a matter of the right 
or wrong perspective of the study, but an inherent feature of all information systems.  

Mathematics provides several different examples of dualism which can be very 
clearly associated with that of selective and structural information. The most funda-
mental can be traced back to the 19th Century when Felix Klein formulated in his 
1872 Erlangen Program the view of geometry as a theory of invariants for the group 
of transformations of a geometric space. Instead of identification of the objects of 
geometric studies through analysis of their internal structure, the structure of trans-
formations of the plane or space is selected, and only then geometric objects appear as 
those subsets of points which are transformed into themselves, although their points 
may be exchanged. Such an approach, in which instead of inquiry of internal structure 
of objects, the structure of transformations preserving the identity of these objects (i.e. 
selection of invariants) is analyzed, has become commonly used in a wide range of 
mathematical theories leading to the development of the theory of categories and 
functors.  

In the past, the dualism of selective and structural information has been present in in-
formation studies only in the form of a competition between two, apparently conflicting 
views on the “proper” answer to the question “What is information?” [1]. The dominat-
ing position focusing on the selective manifestation of information and neglecting the 
structural one was supported by the practical success of Shannon’s quantitative charac-
terization of information in terms of entropy. But the failure in establishing equally 
successful semantics for information understood exclusively in terms of selection was 
driving the efforts to shift studies of information to its structural manifestation.  

The dual approach achieved through the definition of information used in the present 
paper has more advantages than just reconciliation between adherents of competing 
views on information. It also helps to model dynamics of information in processes of 
evolution or computation.  
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3 Dynamics of Information in Computing 

The definition of information in terms of one-many opposition has been a starting 
point for author’s attempt to formulate a theoretical framework for information [7]. 
This framework has a static form reminding logical structure, at least in the sense of 
similarity of the mathematical formalisms. However, the formalism used by the au-
thor can be used to model process of information integration which can be interpreted 
in terms of temporal orientation (input/output) [3].  

The change of the level of information integration is not a dynamical process, un-
derstood as transformation resulting from the interaction of different information 
systems. For this reason, information integration, although modelled by a theoretical 
device called a Venn gate in the earlier papers of the author should not be confused 
with traditionally understood computation.  

What is computation in the present conceptual framework? First, we have to clarify 
some quite common confusion related to the distinction between analogue and digital 
computing. The distinction between “analogy and digital” principles, automata, or 
machines introduced by John von Neumann [8] at the time when first computers were 
being constructed was referring to the way the numbers are represented, by certain 
physical quantity, or by “aggregates of digits.”  

For von Neumann the main issue here was in handling errors. He wrote “Thus the 
real importance of the digital procedure lies in its ability to reduce the computational 
noise level to an extent which is completely unobtainable by any other (analogy)  
procedure.”  

Of course, von Neumann was right about practical advantages of “digital proce-
dure” in handling errors, but he overlooked what actually constitutes the distinction 
and why it is important outside of practical considerations of precision. The mistake 
he made is being perpetuated even now. Of course, the numbers are always repre-
sented by physical quantities, even in digital computers. For instance, the typical im-
plementation of computing units associates digit 1 with one physical state and 0 with 
another physical state. But it is only an interpretation of the distinction between two 
physical states. Moreover, the positional numerical system used in this interpretation 
is not based on aggregation of digits, but on very specific and conventional structural 
rules. “Aggregates of digits” do not exist independently from the physical systems 
constituting machines or any other computing systems. To that extent everyone will 
agree with Ralph Landauer [9] that information is physical.  

Thus, the actual distinction is in the semantics of information. It is the way how we 
associate numbers with physical states of the computing machine which decides 
whether computing is digital or analogue. Information itself is neither one, nor the 
other. Cat is not becoming more English, when described with the English word 
“cat”.  

To avoid going too far beyond the scope of this paper, simplifying assumption will 
be made that information is associated with the state of the physical system which is 
used as a computing machine. Then, observables will assign numbers to particular 
states, giving meaning to information, but we have to remember the lesson from quan-
tum mechanics making clear distinction between the concepts of a state and an  
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observable [10]. As a consequence, every process of computing is a physical process 
with some dynamic characteristics. Association of numbers with the states of the 
computing system belongs to the interpretation of information, the same way as in 
physics observables provide numerical interpretation of the states of a physical sys-
tems. Numerical values of observables cannot be identified with states, and therefore 
cannot be identified with information involved in the process of computing. The same 
applies to the choice of the numerical system used to represent numbers.  

Recognition of the fact that every computation is being carried by some physical 
information systems justifies the interest in its description as a dynamical process. 
However, the dynamics of computation does not have to be understood in traditional 
terms of mechanics. Physicality of computation is just a matter of the ontological 
status of information systems involved. 

We can find some analogy with the status of the Second Law of Thermodynamics, 
in its interpretation introduced by Boltzmann. We can apply this principle to every 
sufficiently complex system without any reference to standard physical observables. 
However, its validity requires that this complex system has the ontological status of a 
part of the physical reality with all its consequences.  

Now, when a justification of our naturalistic perspective is presented we can begin 
analysis of the process of computing modelled by Turing machines. Once again we 
have to be careful with traditional way of imagining of the process. Traditional vision 
of computing is similar to the way people were interpreting mechanical processes 
before Isaac Newton introduced his Third Principle of Mechanics. In pre-Newtonian 
vision of the world, every change had to have an active agent (subject) and passive 
object of the action. Newton recognized that in mechanical phenomena there is no 
action, but only interaction. The Third Principle states that we cannot distinguish 
between an agent and recipient of action, as we have always mutual interaction. I 
cannot claim that my pushing the wall is in any way different from wall’s pushing me, 
as long as we analyze it in terms of mechanics. 

From this point of view the interpretation of a head in Turing machine printing a 
character on the tape is an arbitrary assumption. If we want to consider process of 
computing in a naturalistic perspective, we can simply talk about mutual interaction in 
which characters change (or not) on the tape in contact with the head, and the head is 
changing its state/instruction in contact with the tape. In literally understood physical 
model of Turing machine, the change of the head may be negligible. But in general 
we cannot exclude this change from consideration.  

More precisely, we could describe Turing machine as a device consisting of two 
information systems, which in order to retain traditional terminology are called a 
“tape” and a “head”, each consisting of independent components being themselves 
information (sub)systems. For the tape, components are cells. For the head, subsys-
tems are positions of instructions on the list. At every moment both systems have 
finite, but unlimited number of engaged components (non-empty cells, or non-empty 
instructions), and the number of engaged components can grow without restriction.  

 Each component (cell or position on the list of instructions) is capable to assume 
one of the finite number of states (possibly different for the components of the tape 
and the components of the head). For cells on the tape the states are characters in the 
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traditional description of Turing machine. For components of the head (positions on 
the list of instructions), there is a finite number of choices for an instruction which 
give the position particular state. Also, we can assume that in the initial step of com-
putation only finite number of positions have nonempty instructions.  

Now, we have a crucial and restrictive assumption that these two fundamental in-
formation systems can interact only by the contact or interaction of a single pair of 
active components (which corresponds to the traditional assumption that the head is in 
the state with one particular instruction, and it can read and act on a single cell). 

Experience from the studies of Turing machines suggests that the assumption is not 
restrictive as long as the difference between one pair of active components is con-
trasted with clearly defined finite number of pairs. The restrictive character appears 
when we exclude the possibility of interaction on the scale of all systems.  

The process of computing is described as follows. The active cell is changing (or 
not) its state (character) into one determined by the state of the active component of 
the head (particular instruction in the position on the list for given state). On the side 
of the head the change of the instruction depends on the state of the cell (character in 
the cell). Then both fundamental information systems change their active component. 
Again this change on the tape depends on the state of active component of the head, 
the change in the head depends on the state of active cell (character).  

Thus, the dynamics of computation considered as an interaction of two information 
systems consists in the change of current states of both active components, that of the 
tape and that of the head. The change is a mutually conditioned selection. Also 
change of the choice of active pair of components is similarly cross related. The cru-
cial point is that the interaction acts as a new information system which cannot be 
reduced to interacting systems. The variety involved consists of all possible pairs of 
states which can be selected as an outcome of the step in computation. Another, inde-
pendent information system consists of all possible selections of the pair of next  
active pair.  

In traditional description of a Turing machine the information regarding dynamics 
of the process (how components are changing and what the choice of next pair of 
active components is) is “physically” located in the head or on the tape. For each 
step of computing, it is located within the instruction as a conditional statement of 
doing something, if the current tape cell has given state. However, there is nothing 
that compels us to such model. Equally well we can think that the instruction has 
form of a character, and what is happening with the tape is a result of the reaction of 
the tape’s active cell to this character, and of selection of the next pair of active 
components activated externally but conditioned by the states of the pair of present 
active components.  

This machine is little bit more general than Turing’s A-machine, as the process  
allows changes of instructions in the head. This machine could be called a  
symmetric machine (an S-machine) because the process consists in mutual interaction 
producing similar type of change. It is being reduced to usual Turing A-machine, if 
we additionally assume that the instructions in the head are not changing. Of course, 
this assumption is making Turing A-machine a special case of an S-machine.  
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There are several natural questions regarding this generalization. For instance, 
whether for every S-machine there exists an equivalent A-machine producing the 
same outcome on the tape after computation performed on arbitrary input tape. An-
other example would be the question about universal S-machines (machine which can 
produce arbitrary global finite state of the tape, by appropriate choice of the initial 
global state of the tape, but without any change of the state of the head. However, for 
general S-machines we have also dual questions regarding configuration of instruc-
tions after computation or the minimal number of instructions which produce the 
same outcome of computation.  

At this point we can observe that as long as we are interested in the relationship be-
tween computation and fundamental characteristics of life (or living objects), in con-
trast to traditional studies of computing, it is non-computability which is of special 
interest. If living objects perform some process of computation, achieving the final 
stage of computation is a death of the system. Thus, sustainability of life is more 
likely to be associated with non-computability. However, this issue is outside of the 
scope of the present paper, since we are more interested in similarities between the 
two domains, than differences.  

For the symmetric Turing machines describing a general dynamic process of the 
interaction of a pair of complex systems with a restricting assumption that the interac-
tion is in each moment through exactly one pair of active components (mild  
restriction), we can consider additional distinction between deterministic and nonde-
terministic machines. The distinction is based on the requirement that the choice of 
the next pair of active components is strictly determined by the states of the present 
active components, not random or determined only up to some probability distribution 
(rather strong restriction).  

Even with these two restrictions, symmetric Turing machine gives us a model of 
information dynamics applicable to a very wide range of information systems.  

We know that computation cannot be reduced to one information system. Claude 
Shannon [11] showed that the head of Turing machine has to have at least two differ-
ent states. Similar requirement of at least two characters for the tape is obvious. Once 
we have a variety of two states and choice between them, we have an information 
system.  

Now, the dynamics of the process of computation is revealed in the selective-
structural dualism of information. For both fundamental information systems (tape 
and head considered globally) information is structural. The state of all tape consists 
of configuration of characters in its cells, but computation is an interaction in which 
the choice of one out of many states (characters) for the active component (cell) is 
being made. Similarly, the state of the head is in the configuration of instructions, but 
in each step of computation one out of many possible choices of instruction is being 
made. The selection of states and active components is shaping the global structures 
of the tape and of the head. However, process of local selection is dependent on the 
global structural characteristics of the tape and the head.  

Finally, we could consider an extension of the process of computation using the 
concept of selective-structural information dualism. While computation considered at 
the level of active, interacting pair of components refers to the selective manifestation 
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of information (e.g. selection of a character for the cell), each character can be under-
stood as structural manifestation of information, if we can decompose it into a variety 
of elements with some structure. Corresponding to this structural manifestation, its 
selective counterpart can be subject to interaction which results in its own dynamics. 
This way we can consider multi-level symmetric Turing machines, which resemble 
systems encountered in the study of the foundations of life.  

4 Dynamics of Evolution 

Before we enter the analysis of evolutionary mechanisms, it is necessary to consider 
more general issue of control systems. In this domain the most fundamental principle 
has been formulated by W. Ross Ashby as the Law of Requisite Variety “A model 
system or controller can only model or control something to the extent that it has suf-
ficient internal variety to represent it” [12], [13]. This principle in the informal, intui-
tive form and in application to the process of generation, not to the modelling or  
controlling has been until the end of the 18th Century used as an argument for the 
hierarchy of beings and the need for supremely intelligent creator acting intentionally 
to generate them [14]. 

It seemed obvious that any complex system can be generated only by a system of 
higher level of organization. This reasoning is based on the assumptions that creation 
is an action (not interaction) and requires a design. Following the Law of Requisite 
Variety such a design, i.e. internal model is impossible without higher degree of va-
riety. Evolutionary model of the development of life disposed of the design putting 
this higher level of variety in the environment. Thus the species are getting increa-
singly complex by the interaction with the environment, which of course is a carrier 
of a huge amount of information.  

Let’s start from a dualistic model of relatively simple mechanism of feedback con-
trol. It requires interaction of two information systems. Selection of a state of one of 
them through interaction is accompanied by the selection of a state of the other, which 
in turn has its reflection in the structural manifestation of information. This structural 
manifestation of information in the second system is determining the structural infor-
mation of the first system. And this corresponds to the modification of the selection of 
its state.  

For instance, using classical example of a governor controlling work of the steam 
machine, we have two information systems which can be in a variety of states. One is 
a valve whose state (described by the amount of steam passing through it) decides 
about the speed of the work of the machine. The other is a pair of balls hanging on the 
arms rotating around the vertical axis whose rotation is propelled by the machine. Its 
state (velocity of rotation) is selected by the work done by machine. From the struc-
tural point of view, information is manifested by the geometric structures of the sys-
tems, diameter of the valve and extension of the arms on which the balls are attached. 
The higher is extension of arms, the smaller diameter of the valve.  

Interaction between the two information systems is as follows. Choice or selection 
of the amount of steam is determining the choice of the velocity of rotation. But  



134 M.J. Schroeder 

velocity of rotation corresponds to the structural information regarding position of the 
balls. Position of the balls (structural information) is determining the structural cha-
racteristics of the valve. And finally this structural information corresponds to the 
selective manifestation in form of the amount of steam flowing through the valve.  

The governor is a simple case of an artefact invented by humans, originally with 
the intention to control the speed of work of windmills. There is more complicated 
situation when we want to explain the dynamics of information in systems which 
were naturally generated without any intentional design.  

We can proceed to the dualistic description of the evolutionary process. Here, in 
distinction from the earlier example where the function was a result of human inven-
tion and the structure followed the needs of implementation, we can encounter confu-
sion which puzzled generations of biologists, but which can be easily resolved within 
the dualistic perspective. 

The mechanism of evolution is usually reduced to natural selection in which the 
fittest organisms survive and reproduce transmitting and perpetuating their genetic 
information. The puzzling question is about the meaning of the term “fittest”. Does it 
have any other meaning beyond the tautological statement that these are organisms 
which survived and reproduced?  

The answer is that the meaning of the term “fittest” is expressing the relationship 
between two manifestations of information. While naturally, natural selection de-
scribes the dynamics of information for selective manifestation in terms of reproduc-
tion (which obviously requires survival), the fittest individuals are those whose  
phenotype has structural characteristics compatible with structural characteristics of 
the environment.  

More generally, we can describe the evolutionary process as such in which two (or 
more) information systems interact. Interaction is determining the outcome of the 
selection, and therefore the dynamical view seems more natural in terms of the selec-
tive manifestation. However, it is the structural manifestation of information which 
actually demonstrates the results of evolution. And what is most important, there is no 
point in asking which manifestation is more important, primary, or true. Dynamics of 
information has two manifestations, simply because information does.   

5 Dynamics of Information in Living Systems 

Thus far we were talking about biological evolution of species as a dynamical infor-
mation process. We were concerned with the question how this process can be un-
derstood. There is another, much more difficult question why it occurs, and why in 
this particular way. To seek the answer, we have to consider more general issue of the 
dynamics of information in the living systems. Naturally, it is equivalent to the in-
quiry regarding the question “What is life?” We will consider here only some aspects 
of this extremely broad and deep problem. Specifically those related to the selective-
structural dualism of information. The issues related to the necessity of holistic  
methodology in the study of life are presented in another article of the author [15].  
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The main fallacy in answers to the question “What is life?” is in the attempt to ex-
plain life by distinguishing one particular process driving and determining all other in 
the multi-level hierarchical structure of the biosphere. This fallacy is being perpe-
tuated even in most recent publications [16]. The process chosen by the authors of 
explanations could be photosynthesis (but, what about forms of life which do not 
depend on it?), metabolism, reproduction with transmission of genetic information, 
formation of large organic molecules, etc. In each case, authors believe that life can 
be reduced to one particular level of organization, in analogy to mechanical systems 
built from basic subcomponents or to the vision of the world built from fundamental 
particles (“atoms”) through their aggregation.  

Another problem is in the restriction of attention to what is called a biosphere. In 
the earliest fundamental answer to the question Erwin Schrödinger [17] pointed at 
what he called negative entropy of the light coming from sun as the factor driving 
processes of life. It is also a fallacy perpetuated continuously by generations of au-
thors who change the name of the factor (negentropy, entropy deficit, inhomogeneity, 
etc.) but do not notice that the light coming to earth does not have high or low entro-
py. It is a matter of the process in which incoming visible light, for which the atmos-
phere is transparent, is transformed by living systems and reradiated into cosmic 
space as infrared radiation of 22 times higher entropy [18]. Thus, it is not that light 
coming to Earth has low entropy, but that we have complex process which is making 
this entropy low relative to the outcoming radiation. There is nothing which prevents 
this infrared radiation to drive processes of life somewhere else, if re-radiated from 
there longer-wave outcoming radiation could have entropy several times higher than 
radiation coming from Earth.  

Thus, the driving factor is a mechanism which transcends biosphere and which has 
its source in astronomical phenomena of huge spatial and temporal measures. But this 
driving factor itself would not produce life processes. It is just a necessary condition 
for life. It creates conditions allowing generation of information participating in the 
dynamic processes of life at all of its levels. Life cannot be understood by observing 
only one of these levels, as it is usually done. We can artificially generate processes 
from one level in a system of limited complexity, but they cannot continue function-
ing independently, and this lack of ability to survive excludes considering such a  
system as living.  

Of course, evolution of species, cycles of metabolism, photosynthesis, or reproduc-
tion are component processes of life. But neither has privileged or exclusive position. 
We can ask however about the common features for component processes of life. 
Here we can find again help in the dualistic perspective on information, and the con-
cept of information definitely is the best candidate to unify description of all life 
processes.  

The main characteristic of life processes consists in enriching information in one 
system of a smaller variety, i.e. lower informational volume through the dynamic 
interaction with another of a large volume. This process was already described in a 
general view of the dynamics of information in the evolution of species. We need in 
this case generation of a large variety of objects and interaction with the other system 
which selects some of them (the fittest) whose structural characteristics predestine 
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them to survive. Thus, the collective system is increasing its organization (internal 
information) not because they have some design, but they fit selective information of 
the outer system. The crucial point is in inseparable dualism between the two manife-
stations of information and multi-level character of the total system. The multiple 
levels can be identified at intra-organismal and at inter-organismal side of the organi-
zation of life. Typical approach in determination of the levels is the use of either func-
tional (selective) aspect of bio-dynamics described above in the context of the work of 
Maturana and Varela, or structural characteristics. However, we should be aware of 
their dual relationship.  

6 Conclusions and Future Work 

There are two domains of special interest where dualism of selective and structural 
information can be used to model dynamics of information, computation and living 
systems. Although in both cases dynamics is similar, there is a big contrast between 
the levels of complexity between them. In what here was described as a slightly more 
general view of Turing machines there are two information systems (tape and head) 
which are considered at the two levels corresponding to selective and structural  
information. 

Life constitutes an extremely complex system of at least dozens of levels and  
the number of component information systems exceeding any practical limits of  
calculation. However, the basic mechanism involving in its description the two ma-
nifestations of information is the same as in symmetric Turing machines. 

On the other hand, there is nothing which prevents us from designing computation-
al systems of complexity going beyond two levels. This may require more compli-
cated (multilevel) semantics of information (which in traditional Turing machines is 
typically an association of particular combination of the states of cells with natural 
numbers). Each cell may be considered a carrier of an information system with its 
own variety and with dynamical mechanisms of evolution adjusted to the conditioning 
by higher or lower levels of the hierarchical structure.   

The study of such theoretical systems and their practical implementation is of some 
interest and has a potential wide range of applications.  
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Abstract. In a seminal work published in 1952, “The chemical basis of morpho-
genesis”, A. M. Turing established the core of what today we call “natural com-
putation” in biological systems, intended as self-organizing dissipative systems. 
In this contribution we show that a proper implementation of Turing’s seminal 
idea cannot be based on diffusive processes, but on the coherence states of con-
densed matter according to the dissipative Quantum Field Theory (QFT) prin-
ciples. This foundational theory is consistent with the intentional approach in 
cognitive neuroscience, as far as it is formalized in the appropriate ontological 
interpretation of the modal calculus (formal ontology). This interpretation is 
based on the principle of the “double saturation” between a singular argument 
and its predicate that has its dynamical foundation in the principle of the “doubl-
ing of the degrees of freedom” between a brain state and the environment, as an 
essential ingredient of the mathematical formalism of dissipative QFT. 

Keywords: Morphogenesis, quantum field theory, self-organizing systems, dis-
sipative structures, double saturation, degrees of freedom doubling, chaotic  
trajectory, chaotic trajectory, cognitive neuroscience. 

1 Introduction 

1.1 Natural Computation and Algorithmic Computation 

Today the Natural Computation (NC) is considered as an alternative paradigm to the 
Algorithmic Computation (AC) paradigm in natural sciences and in computer 
sciences, being the paternity of only the latter one generally ascribed to Alan Mathi-
son Turing (1912-1954) pioneering work. On the contrary, after the publication of his 
famous seminal paper on algorithmic computation in 1936 [1] based on the notions of 
Turing Machine (TM) and Universal Turing Machine (UTM), Turing worked for 
widening the notion of “computation” in the direction of what today we define as 
“natural computation”. 

Before all, he defined the notion of Oracle-machine(s)1  and  of their transfinite 
hierarchy, in his doctoral work at Princeton, under the Alonso Church supervision, 
published in 1939 [2]. 

                                                           
1  I.e., a TM enriched with the output of operations not computable by a TM, endowing the TM 

with the primitives of its computable functions. 
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Afterward, in 1947, in a lecture given at the London Mathematical Society [3], and 
hence in an unpublished communication for the National Physical Laboratory in 1948 
[4], he sketched the idea of computational architectures made by undefined interact-
ing elements, that can be suitably trained, so to anticipate the so-called Artificial 
Neural Networks (ANN) computational architectures.  

Finally, in a much more known contribution on a new mathematical theory of mor-
phogenesis, published in 1952 [5], Turing was the first who studied a model of pattern 
formation via non-linear equations, in the specific case of chemical reaction-diffusion 
equations simulated by a computer.  

This pioneering work on non-linear systems, and their simulation via computers, is, 
indeed, among all the pioneering works of Turing, the most strictly related with the 
new paradigm of NC, because of its wide field of application in practically every 
realm of mathematical and natural sciences, from cosmology and fundamental phys-
ics, to thermodynamics, chemistry, genetics, epigenetics, biology, and neurosciences; 
but also in human sciences, from cognitive and social sciences, to ecology, to eco-
nomical sciences, to linguistics, …, and wherever a mathematical modeling of empir-
ical data makes sense. 

In a recent paper devoted to illustrate the new paradigm of NC in relationship with 
the old paradigm of AC [6], G. Dodig-Crnkovic emphasizes the main differences 
between the two paradigms that can be synthesized according to the following, main 
dichotomies: 

1. Open, interactive agent-based computational systems (NC)2 vs. closed, stand-alone 
computational systems (AC); 

2. Computation as information processing and simulative modeling (NC) vs. compu-
tation as formal (mechanical) symbol manipulation (AC); 

3. Adequacy of the computational response via self-organization as the main issue 
(NC) vs. halting problem (and its many, equivalent problems) as the main issue in 
computability theory (AC). 

Of course, such dichotomies must be intended, in perspective, as oppositions between 
complementary and not mutually exclusive characters of computation models. How-
ever, as Dodig-Crnkovic emphasizes, such a complementarity might emerge only 
when a foundational theory of NC will be sufficiently developed, overall as to the 
semantic and the logic of NC. The present contribution is devoted precisely to this 
aim, even though it is necessary to add to the previous list other two essential dicho-
tomic characters of NC, emphasized by Dodig-Crnkovic in other papers, overall the 
more recent one published on the Information journal [7]: 

                                                           
2  So, she synthesizes this important fundamental character of NC approach: «Agent Based 

Models are the most important development in this direction, where a complex dynamical 
system is represented by interacting, in general adaptive, agents. Examples of such systems 
are in physics: turbulence, percolation, sand pile, weather; in biology: cells organs (including 
brain), organisms, populations, ecosystems; and in the social sphere: language, organizations, 
and markets». 
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1. Intentional, object-directed, pre-symbolic computation, based on chaotic dynamics 
in neural computation (NC) vs. representational, solipsistic, symbolic computation, 
based on linear dynamics, typical of the early AI approach to the cognitive neuros-
cience (AC). 

2. Dual ontology of the energy-information distinction in natural (physical, biological 
and neural) systems (NC), based at the foundational level on Quantum Mechanics 
(QM), vs. monistic ontology, based on the energy-information equivalence in all 
natural systems (AC).  

1.2 Relevance of the Reference Problem in NC 

In this paper, we want to suggest how a foundational approach to NC, overall as to its 
logical and semantic components, cannot disregard the essential point of how to inte-
grate in one only formalism the physical (“natural”) realm, with the logical-
mathematical (“computation”) one, as well as their relationships. That is, the passage 
from the realm of the causal necessity (“natural”) of the physical processes, to the 
realm of the logical necessity (“computational”), eventually representing them either 
in a sub-symbolic, or in a symbolic form. This foundational task can be performed, by 
the newborn discipline of theoretical formal ontology [8,9,10,11,12], as distinguished 
from formal ontology engineering – an applicative discipline, well established and 
diffused in the realm of computational linguistics and semantic databases. 

Particularly, the distinction between the formal logic and the formal ontology is 
precious for defining and solving a foundational misunderstanding about the notion of 
reference that the NC approach had the merit of emphasizing, making aware of it the 
largest part of the computer science community – and also the rest, we hope, of the 
scientific community, as far as NC is spreading all over the entire realm of the natural 
sciences.  

In fact, as A. Tarski rightly emphasized since his pioneering work on formal se-
mantics [13], not only the meaning but also the reference in logic has nothing to do 
with the real, physical world. To use the classic Tarski’s example, the semantic refer-
ence of the true statement “the snow is white” is not the whiteness of the crystalized 
water, but at last an empirical set of data, to which the statement is referring, even-
tually taken as a primitive in a given formal language. In other terms logic is always 
representational, it concerns relations among tokens, either at the symbolic or sub-
symbolic level. It has always and only to do with representations, not with real things. 
This is well emphasized, also, by R. Carnap’s principle of the methodological solips-
ism in formal semantics [14], that both (the early) H. Putnam [15] and J. Fodor [16] 
rightly extended also to the representationalism of cognitive science, as far as it is 
based in the so-called functionalist approach of the classic, symbolic AI, and hence of 
the classic AC paradigm. Finally, this is also the deep reason for what Quine defines 
as the “impenetrability of reference” beyond the network of equivalent statements, 
signifying the same referential object in different languages [17]. 

Now, in AC, any formal theory of reference and truth is faced with the Gödelian 
limits making impossible a recursive procedure of satisfaction in a semantically 
closed formal language. What we emphasized also elsewhere [18,19,20], as the core 
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of the reference problem, is that such a recursive procedure, for being complete, 
would imply the solution of the coding problem through a diagonalization procedure; 
that is, the solution of the so–called “Gödel numbering” problem. In computational 
terms, the impossibility of solving the coding problem through a diagonalization pro-
cedure in AC means that no TM can constitute by itself the “basic symbols” of its 
own computations. For this reason Tarski rightly stated that, at the level of the propo-
sitional calculus, the semantic theory of truth has nothing to say about the conditions 
under which a given simple (“atomic” in L. Wittengstein’s terms) proposition can be 
asserted. And for this very same reason, in his fundamental paper about The meaning 
of “meaning” [15], Putnam stated that no ultimate solution exists in logic both of the 
problem of reference and, at the level of linguistic analysis, of the problem of naming.  

In this sense, Putnam stated, we would have to consider ultimately names as rigid 
designators in S. Kripke’s sense [21], i.e. in a “one – to – one relationship” with their 
singular referential objects. However no room exists, also in Kripke’s theory of the 
partial reference [22], for justifying formally (algorithmically) the condition of self-
reference that the notion of rigid designation supposes. Kripke’s modal theory, in-
deed, uses, in the context of a “three-valued logic”, Kleene’s genious solution of the 
partial recursive predicates, for dealing with the problem of the enumeration (labe-
ling) of partial functions [23]. By defining the “label” outside the partial domain to be 
labeled, it avoids inconsistencies and hence undecidabilities, but at the cost of a sub-
stantial arbitrariness in defining the label. Hence a formal language has always to 
suppose the existence of names (or numbers) as rigid designators, and cannot give 
them a non-arbitrary foundation. However what the logic necessity cannot in principle 
give, the causal necessity could give, as R. Penrose suggested [24]. 

It is thus evident the necessity of formal ontology for formalizing a non-arbitrary 
approach to the meaning/reference problem in the NC paradigm. That is, it is evident 
the necessity of a formal calculus of relations able to include in the same, coherent, 
formal framework both “causal” and “logical” relations, as well as the “pragmatic” 
(real, causal relations with the cognition/communication/computation agents), and not 
only “syntactic” (logical relations among terms) and/or “semantic” (logical relations 
among symbols) components of meaningful actions/computations/cognitions.  

2 From Formal Logic to Formal Ontology 

2.1 Three Eras in the Interpretation of Modal Logic Syntactic Structures 

Following [25], we can distinguish three eras in the short history of the modern modal 
logic.  

1. The first era is related with the origins of modern modal logic. Starting from 1912, 
before the publication by Bertrand Russell of Wittegstein’s Tractatus Logico-
Philosophicus, the young American philosopher Clarence I. Lewis denounced in 
several papers [26,27,28] the limit of using the “material implication” of exten-
sional logic also for the formalization of other types of deduction/demonstration, 
typical of the humanistic disciplines. At the same time, Lewis’ vindication of the 
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oddity of what is today defined as philosophical logic, with respect to the mathe-
matical logic of the Principia, recognized also the power that the axiomatization of 
mathematical logic will have for the worldwide diffusion of the scientific thought 
and practice. A similar formalization, according to Lewis, had thus to be developed 
for what he defined as the strict implication typical of metaphysical arguments, in 
which it is impossible to admit that true consequences can be implied by false 
premises, as it is possible by material implication of the mathematical logic3. In 
this way, Lewis re-discovered the classical distinction among different ways of de-
fining necessity in different linguistic uses (e.g., the logical necessity of mathemat-
ics is different from the causal necessity of ontology, from the obligation of ethics 
and of law, etc.). 

2. After Lewis’ pioneering work devoted to the intensional interpretations of modal 
syntactic structures, the second era of modal logic development, comprised be-
tween ‘60’s and 70’s of the last century, is related to the development of Kripke’s 
formal semantics, as far as it is based on his brilliant notion of frame, as a particu-
lar evolution of the mathematical notion of “set”. A “frame” indeed is a set of ele-
ments with the complete collection of relations defined on pairs of them, as we see 
below. The brilliance of such a notion is related to the fact that the frame notion 
can be applied, not only to the formalization of intensional models of the modal 
structures in Lewis’ sense, but also to the formalization “from the inside” of exten-
sional, mathematical and algebraic interpretations (models) of the modal structures.  

3. All this is related to the so-called third era of modern modal logic, from 80’s of the 
last century till now, that is, to the algebraic interpretation of modal logic, and of 
Kripke’s relational semantics based on frames. This way back from the philosophi-
cal to the mathematical logic, made modal logic an essential tool in theoretical 
computer science, not only for the computer simulation of semantic tasks, but 
overall for testing “from the inside” the truth and the consistency of mathematical 
models. Of course, this holds also for the models of computational physics and bi-
ology. This algebraic interpretation is based on two fundamental principles defin-
ing the relations between modal logic and mathematical logic: 
(a) The correspondence principle between modal formulas defined on models, and 

first-order formulas in one free-variable of the predicate calculus. This allows 
the use of modal logic frame semantics, which is a decidable second-order 
theory, as a meta-logical tool for individuating and testing decidable (and hence 
computable) fragments in first-order mathematical models, and hence of com-
puter programs too.  

(b) The duality principle between modal relational semantics and algebraic seman-
tics, based on the fact that models in modal logic are given not by substituting 
free variables with constants, like in the predicate calculus semantics, but by 
using binary evaluation letters (0,1) in relational structures (frames) like in  
algebraic semantics.    

                                                           
3  In fact, in the concrete existence realm, it is meaningless that an effect (= “consequence” in 

ontological sense) occurs (= it is true in ontological sense) if its proper cause (= “premise” in 
ontological sense) does (did) not occur too (= it is false in ontological sense). 
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Modal formal logic is thus fundamental also in our case, i.e., in developing a con-
sistent formal ontology of the dual (energy-information) ontology emerging from:  

1. The information-theoretic approach in quantum physics and cosmology (“It from 
bit”), in the wider context  of a relational interpretation of QM [29], perfectly 
consistent also with its modal interpretation [30,31,32,33]. We cannot develop here 
this point (for an updated synthesis, see [34]). 

2. The information-theoretic approach of dissipative QFT and its algebraic formal-
ism, as a foundational theory of the dissipative structures, applied to the study of 
the chemical and the biological systems, neural systems included.  

3. The theoretical cognitive science, since the modal logic furnishes scientists and philo-
sophers with one only syntactic formalism, capable of bridging among causal (physi-
cal), intensional (psychical), and computational (logical) components of the cognitive 
agency. This is fundamental for an effective solution of the reference problem. 

2.2 Intensional Interpretations of Modal Logic 

The modal logic with all its intensional interpretations constitutes the “first era” of its 
development, i.e., what is today defined as philosophical logic [35], as far as it is 
distinguished from the mathematical logic, the logic based on the extensional calcu-
lus, and the extensional meaning, truth, and identity4.  

For our aims, it is sufficient here to recall that formal modal calculus is an exten-
sion of classical propositional, predicate and hence relation calculus with the inclu-
sion of some further axioms. Here, we want to recall only some of them — the 
axioms N, D, T, 4 and 5 —, useful for us: 

N: <(X→α)  (X→α)>, where X is a set of formulas (language),  is the ne-

cessity operator, and α is a meta-variable of the propositional calculus, standing for 
whichever propositional variable p of the object-language. N is the fundamental ne-
cessitation rule supposed in any normal modal calculus 

D: <α→àα>, where à is the possibility operator defined as ¬¬ α. D is typi-

cal, for instance, of the deontic logics, where nobody can be obliged to what is im-
possible to do.  

T: <α→α>. This is typical, for instance, of all the alethic logics, to express either the 
logic necessity  (determination by law) or the ontic necessity (determination by cause).  

                                                           
4  What generally characterizes intensional logic(s) as to the extensional one(s) is that neither 

the extensionality axiom – reducing class identity to class equivalence, i.e., ↔  =A B A B  - 

nor the existential generalization axiom – Pa xPx∃ , where P is a generic predicate, a is an 
individual constant, x is an individual variable – of the extensional predicate calculus hold in 
intensional logic(s). Consequently, also the Fegean notion of extensional truth based on the 
truth tables does not hold in the intensional, predicate and propositional calculi.  Of course, 
all the “first person” (both singular, in the case of individuals, and plural, in the case of 
groups), i.e., the belief or intentional (with t) statements, belong to the intensional logic, as J. 
Searle, from within a solid tradition in analytic philosophy, rightly emphasized [75]. For a 
formal, deep characterization of intensional logics as to the extensional ones, from one side, 
and as to intentionality, from the other side, see [76]. 
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4: <α→α>. This is typical, for instance, of all the “unification theories” in 
science where any “emergent law” supposes, as necessary condition, an even more 
fundamental law. 

5: <α→α>. This is typical, for instance, of the logic of  metaphysics, where it 
is the “nature” of the objects that determines necessarily what it can or cannot do.  

By combining in a consistent way several modal axioms, it is possible to obtain sev-
eral modal systems which constitute as many syntactical structures available for dif-
ferent intensional interpretations. So, given that K is the fundamental modal systems, 
given by the ordinary propositional calculus k plus the necessitation axiom N, some 
interesting modal systems are for our aims are: KT4 (S4, in early Lewis’ notation), 
typical of the physical ontology; KT45 (S5, in early Lewis’ notation), typical of the 
metaphysical ontology; KD45 (Secondary S5), with application in deontic logic, but 
also in epistemic logic, in ontology, and hence in NC as we see. 

As we said (see note 4), the extensional notion of truth does not hold in intensional 
logics, but each of them has its own truth condition characterizing it. Generally, the 
truth condition of a given intensional logic is expressed in terms of a reflexivity prin-
ciple, i.e., a formal scheme that, by applying the proper modal operator of this logic 
on its argument, is able to give back it as true. So, in the alethic (either logical or 

ontological) interpretations of modal structures the necessity operator p is inter-

preted as “p is true in all possible worlds”, while the possibility operator àp is inter-

preted as “p is true in some possible worlds”. So, the  reflexivity principle for the 
necessity operator in its alethic interpretations holds in terms of the axiom T, i.e, 

p → p. In fact, if p is true in all possible worlds, it is true also in the actual world 

(E.g., “if it is necessary that this heavy body falls (because of Galilei’s law), then this 
body really falls”). 

This is not true in deontic contexts. In fact, “if it is obligatory that all the Italians 
pay taxes, it does not follow that all Italians really pay taxes”, i.e., p p→O , where O 
is the necessity operator in deontic context. In fact, the obligation operator Op must 
be interpreted as “p is true in all ideal worlds” different from the actual one, otherwise 

O=, i.e., we are in the realm of (meta)physical determinism, where freedom is an 

illusion and ethics too. The reflexivity principle in deontic contexts, able to make 
obligations really effective in the actual world, must be thus interpreted in terms of an 
optimality operator Op for intentional agents, i.e,  

 (Op→p) ⇔ ((Op (x,p) ∧ ca ∧ cni ) → p) (1) 

Where x is an intentional agent, ca is an acceptance condition and cni is a non-
impediment condition. In similar terms, in epistemic contexts, where we are in the 
realm of representations of the real world we have a different intensional interpreta-
tion of modal operators. The interpretations of the two modal epistemic operators 
B(x,p), “x believes that p”, and S(x,p), “x knows that p” are the following: B(x,p) is 
true iff p is true in the realm of representations believed by x. S(x,p) is true iff p is true 
for all the founded  representations believed by x. Hence the relation between the two 
operators is the following: 
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 ( ) ( )( ), ,x p x p⇔ ∧S B F  (2) 

Where F is a foundation relation, outside the range of B, and hence outside the range 
of x consciousness, otherwise we should not be dealing with “knowing” but only with 
a “believing of knowing”. I.e., we should be within the realm of solipsism and/or of 
metaphysical nihilism, systematically reducing “science” or “well founded know-
ledge” to “believing”. So, for instance, in the context of a logicist ontology, such a F 
is interpreted as a supposed actually infinite capability of human mind of attaining the 
logical truth [36]. We will offer, on the contrary, a different finitistic interpretation of 
F within NC . Anyway, as to the reflexivity principle in epistemic context, 

( ),x p p→B  

In fact, believing that a given representation of the actual world, expressed in the 
proposition p, is true, does not mean that it is effectively true, if it is not well founded. 
Of course, such a condition F — that hence has to be an onto-logical condition — is 
by definition satisfied by the operator S, the operator of sound beliefs, so that the 
reflexivity principle for epistemic context is given by: 

 ( ),x p p→S  (3) 

2.3 Kripke’s Relational Semantics 

The “second era” of modern modal logic is related with Kripke’s relational semantic 
that is an evolution of Tarski formal semantics, with two specific characters: 1) it is 
related to an intuitionistic logic (i.e., it considers as non-equivalent excluded middle 
and contradiction principle, so to admit coherent theories violating the first one), and 
hence 2) it is compatible with the necessarily incomplete character of the formalized 
theories (i.e., with the Gödel theorems outcome), and with the evolutionary character  
of natural laws, not only in biology but also in cosmology. In other terms, while in 
Tarski classical formal semantics, the truth of formulas is concerned with the state of 
affairs of one only actual world, in Kripke relational semantics the truth of formulas 
depends on states of affairs of worlds different from the actual one (= possible 
worlds). On the other hand, in contemporary cosmology it is nonsensical speaking of 
an “absolute truth of physical laws”, with respect to a world where the physical laws 
cannot be always the same, but have to evolve with their referents [37,38].  

Anyway, the notion of “possible world” in Kripke semantics has not only a physi-
cal sense. On the contrary, as he vindicated many times, the notion of “possible 
world”, as syntactic structure in a relational logic, has as many senses as the semantic 
models that can be consistently defined on it. In Kripke words, the notion of “possible 
world” in his semantics has a purely stipulatory character. In the same way, in Kripke 
semantics, like the notion of “possible world” can be interpreted in many ways, so 
also the relations among worlds can be given as interpretations of the only relation of 
accessibility. In this way, a unified theory of the different intensional interpretations 
(alethic – ontology included –, deontic, epistemic, etc.) of modal logic became possi-
ble, as well as a graphic representation of their relational semantics.  



 Intelligence and Reference 147 

The basic notion for such a graphic representation is the notion of frame. This is an 
ordered pair , <W, R>, constituted by a domain W of possible worlds {u, v, w…}, 
and a by a two-place relation R defined on W, i.e., by a set of ordered pairs of ele-
ments of W (R ⊆ W×W), where W×W is the Cartesian product of W per W.  

E.g. with W = {u,v,w} and R = {uRv}, we have: 

  (4) 

According to such a model, the accessibility relation R is only in the sense that v is 
accessible by u, while w is not related with whichever world. If in W all the worlds 
were reciprocally accessible, i.e., R = {uRv, vRu, uRw, wRu, wRv, vRw}, then we 
would have R only included in W×W. On the contrary, for having R = W×W, we 
need that each world must be related also with itself, i.e.: 

  (5) 

Hence, from the standpoint of the relation logic, i.e., by interpreting {u,v,w} as ele-
ments of a class, we can say that this frame represents an equivalence class. In fact, a 
R, transitive, symmetrical and reflexive relation holds among them. Hence, if we con-
sider also the serial relation:  <(om u)(ex v)(uRv)>5 where “om” and “ex” are the 
meta-linguistic symbols, respectively of the universal and existential quantifier, we 
can discuss also the particular Euclidean relation that can be described in a Kripke 
frame.  

The Euclidean property generally in mathematics means a weaker form of the tran-
sitive property (that is, if one element of a set has the same relation with other two, 
these two have the same relation with each other).  
I.e.,<(om u) (om v) (om w) (uRv et uRw  vRw)> : 

  (6) 

Where et is the meta-symbol for the logical product.  
Hence, for seriality, it is true also <(om u)(om v) (uRvvRv)>: 

  (7) 

                                                           
5  For ontological applications it is to be remembered that seriality means in ontology that the 

causal chain is always closed, as it is requested in physics by the first principle of thermody-
namics, and in metaphysics by the notion of a first cause of everything. 
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Moreover, <(om u) (om v) (om w) (uRv et uRw  vRw et wRv)>: 

  (8) 

Finally, if we see at the last two steps, we are able to justify, via the Euclidean rela-
tion,  a set of secondary reflexive and symmetrical relations, so that we have the final 
frame of a secondary equivalence relation among worlds based on an Euclidean rela-
tion with a third one: 

  (9) 

Of course, this procedure of equivalence constitution by a transitive and serial 
(=causal) relation can be iterated indefinitely: 

  (10) 

Let us consider now the algebraic interpretation of modal logic applied to the QFT 
approach to biological and neural systems for an original solution of the reference 
problem in formal ontology. 

3 Dissipative QFT in Biological and Neural Systems and the 
Formal Ontology of the Reference Problem 

3.1 “Coherent States and Coherent Domains in the Physics of the Living 
Matter” 

The title of this sub-section is between quotation marks because effectively it is the 
title of a recent review paper of the Italian physicist, Giuseppe Vitiello, from the Uni-
versity of Salerno [39]. It synthesizes more than thirty years of research in the QFT 
widely and universally applied to the study of coherence phenomena in the condensed 
matter, and extended to the study also of Thermal Field (TF) of dissipative systems, 
the biological systems and the brain — the “dissipative brain”, according to his very 
effective expression — included.  

In fact, it is evident that the vital functions do not depend only on the chemical 
agents (biomolecules) and their interactions at different level of self-organization of 
the biological matter, but depend also critically on which “organizes the molecular 
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traffic” among the chemical partners. In other terms, each complex vital function 
consists in an ordered series of single chemical events, according to the chemistry 
laws. All the chemical interactions, however, (e.g., the van der Waals forces) hold 
only for short distances. The fact that a given molecule arrives in the proximity of the 
proper receptor, so to make possible the chemical event, can depend neither on the 
chemical laws, nor on the diffusive processes alone, according to Turing early hypo-
thesis of “morphogenesis” [5], because of the casual character of diffusive processes. 
They indeed, would imply, on one side, a slow temporal dynamics, and, on the other 
side a series of not appropriate molecular interactions, outside of the “coded” molecu-
lar sequence. 

The only way for efficiently “canalizing” the molecules, all oscillating according to 
frequencies depending on quantum physics laws, consists thus in submitting them to 
electromagnetic fields oscillating according to specific frequencies. Specific mole-
cules can thus recognize each other, also at long distances, and among a multitude of 
other molecules [40] [41]. The medium in which such oscillating electromagnetic 
fields occur is the water, constituting more than 70% of our bodies, over the 80% of 
our molecules, in which all the proteins of our bodies are immersed, and in which 
only the biomolecules are active. Now, what characterizes both water molecules and 
organic molecules is a strong electrical dipole field.  So, to sum up, the basic hypo-
thesis of QFT applied to living matter is that “at the dynamic fundamental level, the 
living matter can be considered as a set of electrical dipoles whose rotational symme-
try is broken down” ( [39], p. 16. For the mathematical apparatus of the theory, see 
[42,43,44,45,46,47]). This is not a reductionist view, because the characterizing prop-
erties of living matter, are macroscopic structures and functions, with their own laws, 
emerging over the microscopic dynamics generating it. On the contrary, in such a 
way, the ambiguous notion of emergence has, in the context of QFT, a precise conno-
tation, and it is quantitatively well defined. The emergence of macroscopic properties 
is given by the dynamic process determining the system ordering. Of course, any 
emergence process is related also to a scale change, then, because the dynamic regime 
responsible of this change is of a quantum nature — because the elementary compo-
nents have a quantum nature —the resultant system, with its macroscopic properties, 
is thus a quantum macroscopic system. 

So, if we consider more closely the nature of the correlations among the elementa-
ry components in living matter (essentially, the oscillating molecules and their elec-
tromagnetic fields), the correlations are essentially phase correlations, so that the role 
of correlation waves is the fine-tuning of the elementary oscillations. The “coherence” 
consists in such a being in phase. This implies the immersion of the coherent regions 
into non-coherent ones, so that their dimensions, because of their dynamic nature, can 
fluctuate. In this way, other control parameters, such as the temperature, the spatial 
density of distribution of the material elements, as well as the density of distribution 
of the electric charges and their fluctuations, can play a fundamental role. Namely, 
they can determine, either the formation of more extended coherence domains, or, 
instead, the further fragmentation of them, till their complete destruction, and the 
recovery of the symmetric “disordered” state. 
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3.2 Dual Nature of the Dissipative QFT Approach to Biological Systems 

Crystals, are, for instance, typical examples of early successful applications of QFT in 
the realm of non-living, condensed, matter. In crystals, the “order parameter”, that is 
the macroscopic variable characterizing the new emerging level of matter organiza-
tion, is related to the matter density distribution. In fact, in a crystal, the atoms (or the 
molecules) are “ordered” in well-defined positions, according to a periodicity law 
individuating the crystal lattice. Other examples of such ordered systems, in the non-
living realm, are the magnets, the lasers, the super-conductors, etc. In all these sys-
tems the emerging properties related to the respective order parameters, are neither 
the properties of the elementary constituents, nor their “summation”,  but new prop-
erties depending on the modes in which they are organized, and hence on the dynam-
ics controlling their interactions.   

So, any process of dynamic ordering, and of information gain, is related with a 
process of symmetry breakdown, the symmetry of the disorder of the “quantum va-
cuum”6, related to the “third principle of thermodynamics”, i.e., with the irreducible 
motion of particles at the fundamental level and the associated quantum field. In the 
magnet case, the “broken symmetry” is the rotational symmetry of the magnetic di-
pole of the electrons, and the “magnetization” consists in the correlation among all 
(most) electrons, so that they all “choose”, among all the directions, that one proper of 
the magnetization vector. 

Finally, whichever dynamic ordering among many objects implies an “order rela-
tion”, i.e., a correlation among them. What, in QFT, at the mesoscopic/macroscopic 
level is denoted as correlation waves among molecular structures and their chemical 
interactions, at the microscopic level any correlation, and more generally any interac-
tion, is mediated by quantum correlation particles. They are called “Goldstone bo-
sons” or “Nambu-Goldstone bosons” [48,49,50], with mass — even though always 
very small (if the symmetry is not perfect in finite spaces) —, or without mass at all 
(if symmetry is perfect, in the abstract infinite space). Hence, differently from the 
gauge bosons (the photons γ of electromagnetic field; the gluons g of the strong field, 
the bosons W± and the boson Z of the weak field; and the scalar Higgs boson H0 of the 
Higgs field, common to all the precedent ones), which are energy exchange mediators 
the Goldstone bosons simply vanish when the ordered modality of interaction they 
mediate disappear (e.g., by heating a diamond over 3,545 °C). This is the basis of the 
fundamental “Goldstone theorem” [51,52]. So, despite the correlation quanta are real 
particles, observable with the same techniques (diffusion, scattering, etc.) of other 
particles, not only in QFT of condensed matter, but also in QED and in QCD, whe-
rever we have to reckon with broken symmetries [50], nevertheless they do not exist 
outside the system they are correlating. Also on this regard, a dual ontology is funda-
mental for avoid confusions and misinterpretations.  

 

                                                           
6  In a disordered macrostate, any microstate is equivalent and hence symmetric as to the whole 

conservation. This is no longer the case, when an ordered macrostate emerges: not all the mi-
crostates are equivalent as to the ordered macrostate conservation. Dynamic ordering is thus 
always related with a symmetry breakdown of the microstate equivalence.  
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3.3 Doubling of the Degrees of Freedom (DDF) in Dissipative QFT and Its 
Significance in Cognitive Neuroscience 

The Background 
As Perrone and myself emphasized in several papers on the physical basis of intentio-
nality [20,18,53,54], only the long-range correlations, which propagate in real-time 
along wide areas of the brain, and manifest themselves as aperiodic “chaotic” oscilla-
tions, can offer a valid dynamical explanation of an intentional act, always involving 
the simultaneous interaction among emotional, sensory and motor components, lo-
cated in very far areas of the brain. Such a coordination, that constitutes also the dy-
namic “texture” of long-term memory phenomena, cannot be explained in terms of 
the usual axon-synaptic networking, too slow and too limited in space and time, for 
giving a suitable explanation of this requirement .  

On the other hand, Walter J. Freeman and his collaborators, during more than forty 
years of experimental research by the Neurophysiology Lab at the Dept. of Molecular 
and Cell Biology of the University of California at Berkeley, not only shared our 
same theoretical convictions, but observed, measured and modeled this type of dy-
namic phenomena in mammalian and human brains during intentional acts. 

The huge amount of such an experimental evidence found, during the last ten 
years, its proper physical-mathematical modeling in the dissipative QFT approach of 
Vitiello and his collaborators, so to justify the publication during the last years of 
several joint papers on these topics (see, for a synthesis, [55,56]).  

To sum up [57], Freeman and his group used several advanced brain imaging tech-
niques such as multi-electrode EEG, electro-corticograms (ECoG), and magneto-
encephalogram (MEG) for studying what neurophysiologist generally consider as the 
background activity of the brain, often filtering it as “noise” with respect to the synap-
tic activity of neurons they are exclusively interested in. By studying these data with 
computational tools of signal analysis to which physicists, differently from neurophy-
siologists, are acquainted, they discovered the massive presence of patterns of 
AM/FM phase-locked oscillations. They are intermittently present in resting and/or 
awake subjects, as well as in the same subject actively engaged in cognitive tasks 
requiring interaction with the environment. In this way, we can describe them as fea-
tures of the background activity of brains, modulated in amplitude and/or in frequency 
by the “active engagement” of a brain with its surround. These “wave packets” extend 
over coherence domains covering much of the hemisphere in rabbits and cats 
[58,59,60,61], and regions of linear size of about 19 cm in human cortex [62], with 
near zero phase-dispersion [63]. Synchronized oscillations of large scale neuron ar-
rays in the b and g ranges are observed by MEG imaging in the resting state and in the 
motor-task related states of the human brain [64].  

DDF in Dissipative QFT of Brain Dynamics 
So, what was missing to the Umezawa’s pioneering efforts to apply QFT to brain long-
term memory dynamics [65] was the mechanism of DDF characterizing the dissipative 
QFT and its algebraic formalism, developed by E. Celeghini, M. Rasetti, and G. Vitiel-
lo during the 90’s [66], and explicitly applied by Vitiello himself to the modeling of  
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brain dynamics, but also in any realm of quantum physics, from cosmology, to quan-
tum computing, till chemistry and biology. 

In fact, we know that the relevant quantum variables in biological system are the 
electrical dipole vibrational modes in the water molecules, constituting the oscillatory 
“dynamic matrix” in which also neurons, glia cells, and the other mesoscopic units of 
the brain are embedded. The condensation of Goldstone massless bosons (named, in 
the biological case, Dipole Wave Quanta, DWQ) — corresponding, at the mesoscopic 
level, to the long-range correlation waves observed in brain dynamics — depends on 
the triggering action of the external stimulus for the symmetry breakdown of the 
quantum vacuum of the corresponding brain state. In such a case, the “memory state” 
corresponds to a coherent state for the basic quantum variables, whose mesoscopic 
order parameter displays itself at the mesoscopic level, by the amplitude and phase 
modulation of the carrier signal. 

In the classical Umezawa’s model [65], however, the system suffered in an “intrin-
sic limit of memory capacity”. Namely, each new stimulus produces the associated 
DWQ condensation, by cancelling the precedent one, for a sort of “overprinting”. This 
limit is systematically overcome in dissipative QFT where the many-body model pre-
dicts the coexistence of physically distinct amplitude modulated and phase modulated 
patterns, as it is observed in the brain. That is, by considering the brain as it is, name-
ly an “open”, “dissipative” system continuously interacting with the environment, 
there not exists one only ground (quantum vacuum) state, like in thermal field theory 
of Umezawa where the system is studied at equilibrium, but, in principle, infinitely 
many ground states (quantum vacuum’s), so to give the system a potentially infinite 
capacity of memory. To sum up, the solution of the overprinting problem relies on 
three facts [67]: 

1. In a dissipative (non-equilibrium) quantum system, there are (in principle) infinite-
ly many quantum vacuum’s (ground or zero-energy) states, on each of which a 
whole set of non-zero energy states (or “state space” or “representation states”) can 
be built.  

2. Each input triggers one possible irreversible time-evolution of the system, by in-
ducing a “symmetry breakdown” in one quantum vacuum, i.e., by inducing in it an 
ordered state, a coherent behavior, effectively “freezing” some possible degrees of 
freedom of the constituting elements behaviors (e.g., by “constraining” them to os-
cillate on a given frequency), in the same time “labeling” it as the coherent state 
induced by that input, as an “unitary non-equivalent state” of the system dynamics. 
In fact, such a coherent state persists in time as a ground state (DWQ are not ener-
getic bosons, are Goldstone bosons) as a specific “long-term” memory state as long 
as, of course, the brain is coupled with its environment. A brain no longer coupled 
with its environment is either in a pathological state, or it is directly dead. 

3. At this point emerges the DDF principle as a both physical and mathematical ne-
cessity of the model. Physical, because a dissipative system, even though in non-
equilibrium, must anyway satisfy the energy balance. Mathematical, because the 0 
energy balance requires a “doubling of the system degrees of freedom”. The 

doubled degrees of freedom, say A  (the tilde quanta, where the non-tilde quanta A 
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denote the brain degrees of freedom), thus represent the environment to which the 
brain is coupled. The environment (state) is thus represented as the “time-reversed 
double” of the brain (state) on which it is impinging. The environment is thus 
“modeled on the brain”, according to the finite set of degrees of freedom the envi-
ronment itself elicited. Anyway, which are the available degrees of freedom to be 
elicited for that input depends on the brain itself that, for this reason, is effectively 
a self-organizing system. 

Of course, the point 3 represents the essential idea of the “doubling algebra” (alge-
bra/co-algebra) formalism, constituting the mathematical core of the dissipative QFT 
model that we cannot illustrate here, and for which we refer to [66], and to the wide 
literature quoted in [57]. Of the DDF we illustrate only, in the final section of this paper 
its logical relevance, for an original solution of the reference problem, not yet developed 
till now. For concluding this part, dedicated to the relevance of the dissipative QFT in 
cognitive neuroscience, I want to emphasize only three final remarks [56,57]: 

1. Another success of the dissipative QFT model is that the irreversible time evolu-
tion because of the dissipative condition (each coherent state is constituted of  
“entangled”, non-separable, tilde and non-tilde DWQ’s), of each “unitary non-
equivalent coherent state” can be characterized macroscopically as an input-
labeled classical chaotic trajectory, in the brain-environment phase space, as it was 
experimentally observed. I.e., they are trajectories, in the infinite limit: i) bounded 
and never intersecting with itself; ii) non intersecting with others for different ini-
tial conditions; iii) diverging in time also for small differences in the initial condi-
tions.  On the other hand, the finite conditions of real systems, the presence of 
noise and other constraining conditions make possible the phenomena of the 
“chaotic itinerancy” among different attractors, the fusion of attractors and/or of 
chaotic trajectories differing for only few degrees of freedom, and other phenome-
na of “associative memories”. The real dynamics so live in a continuous interplay 
between “noise” and “chaos” for which Freeman invented the neologism of  
“stochastic chaos” for characterizing the dissipative QFT dynamics of the brain. 

2. QFT approach is very different from other approaches to cognitive neuroscience 
based on QM, in which the quantum effects occur only at the microscopic level. On 
the contrary, in QFT the effects of quantum events display themselves as a macros-
copic quantum state, due to the coherence of the correlation modes. This makes 
possible that the interaction between such a mechanism and the electrochemical ac-
tivity of neurons and synapses, observed by neurophysiologist as the first response 
to the external stimuli, occurs effectively only at the macroscopic level, as the  
relationship between the background activity (memory) and its ongoing activity 
(synapses), in the global interaction between the brain and is environment.  

3. Because QFT coherent states are “entangled states” between tilde (environment) 
and non-tilde (brain) DWQ’s, it is evident that also this approach supports the loca-
lization of mind and of its logical machinery not “inside” the brain, but in the dual 
(energy/information) interplay between the brain and its environment [67], like all 
the approaches based on the intentional and not representational theory of mind 
[18,54,68,69,70,71]. This last remark opens the way to an ontological and hence 
logical interpretation of the DDF scheme.   
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3.4 Double Saturation S/P and the Solution of the Reference Problem 

To conclude this paper we want to offer for the first time a logical and ontological 
interpretation of the DDF in brain dynamics as a possible solution of the reference 
problem, in the direction of the interplay between physical necessity and logical ne-
cessity that the same notion of NC implies. For this we want to use in a not yet forma-
lized way — that its outside the scope of this paper — the modal logic machinery, 
developed by Kripke’s theory of frames (§1.2), in strict connection with his logical 
theory of truth (§2.3), in the direction of its algebraic interpretation, applied to the 
algebra-doubling formalism (co-algebras) of the dissipative QFT.  

The first point to recall for understanding this point is that in any definite descrip-
tion to be associated to a proper name intended as a rigid designator the relationship 
connecting Subject S and Predicate P is not of class membership, ∈, like when we say 
“Aristotle is a philosopher”, but of identity, =, like when we say “Aristotle is the phi-
losopher”. The second point to recall is that the notion of saturation, today normally 
used in modal model theory for denoting which subset of elements of a given domain 
effectively satisfy a given relation, was introduced in logic by G. Frege for justifying 
the unity of proposition, where the predicate is the unsaturated component and the 
subject is the saturated one. 

The solution that the intentional theory of reference suggests is the double satura-
tion S/P, causally driven by the same referential object. By such a procedure their 
logical identity and hence the referential relation of the definite description is causal-
ly constructed [72,10,54,11]. 

Thomas Aquinas (1225-1274)7 depicted in the Middle Age his causal theory of 
reference in the following way: 

Science, indeed, depends on what is object of science, but the opposite is not true: 
hence the relation through which science refers to what is known is a causal  [real 
not logical] relation, but the relation through which what is known refers to science 
is only logical [rational not causal]. Namely, what is knowable (scibile) can be said 
as “related”, according to the Philosopher, not because it is referring, but because 
something else is referring to it. And that holds in all the other things relating each 
other like the measure and the measured (Q. de Ver., 21, 1. Square parentheses and 
italics are mine). 

In another passage, this time from his commentary to Aristotle book of Second Analyt-
ics, Aquinas explains the singular reference in terms of a “one-to-one universal” (i.e. 
Kripke’s rigid designators), as opposed to “one-to-many universals” of the generic 
predications.  

                                                           
7  Historically, he first introduced the notion and the term of “intention” (intentio) in the epis-

temological discussion, in the context of his naturalistic ontology. The approach was hence 
rediscovered in the XIX century by the philosopher Franz Brentano, in the context of a con-
ceptualist ontology, and hence passed to the phenomenological school, through Brentano’s 
most famous disciple: Edmund Husserl. 
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It is to be known that here “universal” is not intended as something predicated of 
many subjects, but according to some adaptation or adequation (adaptationem vel 
adaequation) of the predicate to the subject, as to which neither the predicate can be 
said without the subject, nor the subject without the predicate (In Post.Anal., 
I,xi,91. Italics mine). 

So, Aquinas’ idea is that the predicative statement, when it is denoting a singular object, 
must be characterized by a “mutual redefinition” between the subject S and the predicate 
P, “causally” driven by the referential object itself. DDF mechanism is evidently in an 
operational, even though unaware, continuity with such Aquinas’ theory[73]. 

On the other hand it is evident that the modal construction of an equivalence relation 
illustrated step by step in the frames (6)-(9) in §2.3 constitutes a logical description of 
the DDF principle in dissipative QFT. It is sufficient to interpret u as the referential 
object (environment), w as the brain state, v as the input state, so that in (6), uRw, uRv, 
and vRw  represent the transitive and serial (= causal) relations constituting the initial 
step of the procedure. Particularly, the relationship vRw represents the starting step of 
DDF in which the input elicits the coherent state (the freezing of the degrees of free-
dom) in the brain state. In frames (8) and (7) the doubling of the degrees of freedom and 
the entanglement conditions are, respectively, posed, so to conclude the onto-logical 
constitution of the transitive-reflexive-symmetrical relations, i.e., the equivalence rela-
tion (=logical), between S/P of a definite description denoting the referential object, we 
are searching for. Moreover, if we interpret this procedure inside the Kripke theory of 
truth, as it is natural to do, it is evident that the final frame (9) constitutes an onto-logical 
depiction of an “unitary in-equivalent state”, “labeled” by the referential object u, i.e., 
the “seed” of a new “equivalence class” (see frame (10)).  

However, precisely because of this causal labeling by the referential object, the 
theory has no longer that limit of arbitrariness that it has in the original Kripke use of 
Kleene’s partial recursive functions (see above §1.2). In this sense, because the modal 
equivalence does not generally implies bisimilarity8 – but bisimilarity is implied only 
when the specific conditions of the famous van Benthem theorem occur ([25] 
pp.104ff.), so in our case bisimilarity occurs only when the “doubling” input/output is 
given in each cognitive agent9. This means that the same input causally produces 
different state-transition sequences (chaotic trajectories) in different cognitive agents, 
however all equivalent among themselves because causally labeled by the same input. 
                                                           
8  We recall here that “computation” in theoretical computer science can be interpreted as a 

Labeled Transition System (LTS), in the sense that “when we traverse an LTS we build a se-
quence of state transitions – or to put it another way, we compute” ([25], p.68). So, roughly 
speaking, bisimilarity between two models M and N in modal logic means that at each  
accessibility relation between two states mi and mj in M, corresponds a relation between ni 
and nj in N. So, if we interpret such models as two equivalent programs in dynamic logic (i.e., 
two “black boxes” producing equivalent outputs for equivalent inputs), their bisimilarity 
means the further condition of a correspondence between the different “labeled” steps of their 
execution.   

9  On the other hand, one of the most famous scholars in modal logic, Prof. Yde Venema of the 
University of Amsterdam, recently demonstrated that the modal logic is the proper logic for 
co-algebras, just as equation logic is the proper logic for algebras  ([77], p. 332).  
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In this sense, the causal relations from the world u (=referential object) onto each of 
the other worlds (=different, but equivalent definite descriptions of the same object), 
in the equivalence class of the frame (10), represent the foundation clause F of the 
epistemic logic in its intentional interpretation (see §2.2).   Finally, it is evident by 
such a reconstruction that the localization of a cognitive agency is not “inside the 
brain”, but in the interplay between a brain and its environment.  

4 Conclusions 

In this paper we showed how the theoretical formal ontology can support a foundational 
theory of the singular reference, in the context of the NC approach to theoretical computer 
science, putting in one only relational framework both causal and logical relations. Effec-
tively, this approach satisfies all the NC features listed in §1.1. At the same time, follow-
ing the correspondence principle between modal and mathematical logic (see §2.1), we 
used frame semantics for individuating as decidable fragments particular first order formu-
las in one free variable: the definite descriptions in QFT modeling of brain-environment 
dynamics. In this sense, such an approach can offer a foundational modal theory of the 
logical calculus inside the intentional approach to cognitive neuroscience, till now lacking. 
It can offer also an adequate start point for developing a NC approach, based on the dis-
sipative QFT model to cognitive functions, as Vitiello himself proposed to develop [67]. 
Finally, the principle of the input labeling function typical of DDF, offers an original solu-
tion to the arbitrariness of the labeling function in Kripke’s modal theory of truth, because 
Kripke’s theory is lacking in an intrinsic relation between the labeling function and the 
definition of the partial domain satisfying the predicate to be labeled (see §1.2). Such an 
intrinsic relationship naturally exists in DDF approach because the very same causal rela-
tion determines, even though in a non-algorithmic way – however forbidden by Gödel 
theorems –, both the satisfying partial domain of a given predicate, and its label.   
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Abstract. Our contribution aims at individuating a valid philosophical strategy 
for a fruitful confrontation between human and artificial representation. The 
ground for this theoretical option resides in the necessity to find a solution that 
overcomes, on the one side, strong AI (i.e. Haugeland) and, on the other side, 
the view that rules out AI as explanation of human capacities (i.e. Dreyfus). We 
try to argue for Analytic Pragmatism (AP) as a valid strategy to present 
arguments for a form of weak AI and to explain a notion of representation 
common to human and artificial agents. 

Keywords: Representation, Analytic Pragmatism, Weak AI, Strong AI, 
Inference. 

1 Representation in AI  

The notion of “representation” is at the basis of a lively debate that crosses 
philosophy and artificial intelligence. This is because the comparison starts from the 
analysis of “mental representations”.  First, we move by adopting a fruitful distinction 
between the “symbolic” and the “connectionist” paradigms in AI [1]. This distinction 
is useful to highlight two different ways of explaining the notion of representation  
in AI.  

An important challenge for AI is to simulate not only the “phonemic” and 
“syntactic” aspects of mental representation but also the “semantic” aspect. 
Traditionally, philosophers use the notion of “intentionality” to describe the 
representational nature of mental states namely intentional states are those that 
“represent” something, because mind is directed toward objects. The challenge for AI 
is therefore to approximate to human representations i.e. to the semantic content of 
human mental states. If we think that representation means to connect a symbol to the 
object of representation we focus on the discreteness of mental representations. On 
the contrary, it could be plausible to focus on the inter-relation of mental 
representations. The first corresponds to the symbolic paradigm in AI, according to 
which mental representations are symbols. The second corresponds to connectionism 
in AI, according to which mental representations are distributed patterns [2].  

The task to consider the similarity between human and artificial representation 
could involve the risk of skepticism about the possibility of “computing” this mental 
capacity. If we consider computationalism as defined in purely abstract syntactic 
terms then we are tempted to abandon it because human representation involves “real 
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world constrains”. But, a new view of computationalism could be introduced that 
takes into consideration the limits of the classical notion and aims at providing a 
concrete, embodied, interactive and intentional foundation for a more realistic theory 
of mind [3]. 

Generally speaking, there are several authors who try to conceive a notion of 
representation that is similar to human mental activity. They criticize Strong AI or 
GOFAI that rely to a theory of representation attempting to build a mental model by 
working backwards from sense-impressions and by giving rise to five tensions [4]:  

1. mind and world 
2. mind and body 
3. mental activity and perception 
4. plans and behavior 
5. abstract ideals and concrete things.  

Actually, there are different ways of construing the first opposition, but in AI it has 
been operationalized by a sharp qualitative distinction between the inside of the 
machine and the world outside. The obvious consequence is a common idealization to 
suppose that one’s world model is complete in every relevant respect and stays up-to-
date automatically. In Agre’s words: “Even in domains that involve physical objects, 
it is common for AI people (and computer scientists in general) to employ the same 
words to name both the representations in a machine and the things that those 
representations represent” [5]. The dissociation between mind and body emerges from 
the typical division of labor in “planning” in AI, where “the mind” generates the plan, 
and “the body” executes it. Mental activity and perception become conflating as the 
formal organization of grammatical utterances is privileged upon perceptual activity. 
The opposition between plans and behavior is originated by an evident difficulty that 
concerns our complex world. The conception of a plan as a computer program does 
not capture the knowledge required that is essentially bound to a dynamic world. The 
last dissociation is directed to Frege and the traditional semantic theory, that aims at 
capture the content or sense of thoughts and utterances without reference to embodied 
activities and relationships with which are used. It is agreeable that human 
representation has to do with concrete reality and for this reason Searle, for instance, 
provides a thoughtful reinterpretation of the Fregean thoughts, but still remain the 
problem of how to shift from traditional to natural computing.  

We would like to highlight also an important and recent debate on “digital 
representation” [6] that focuses on the nature of representations in the computational 
theory of mind (or computationalism). The starting point is the nature of mental 
representations, and, particularly, if they are “material”. There are authors who 
maintain that mental representation are material [7] other think that thought processes 
use conventional linguistic symbols [8]. The question of digital representation 
involves the “problem of physical computation [9] as well as the necessity of the 
notion of representation [10] so that we only have the problem of how to intend the 
very notion of representation [11]. But, there is also the possibility of understanding 
computation as a purely syntactic procedure or to include “every natural process” in a 
“computing universe” [12].  
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2 What Is AP?  

The core point of Brandom’s original book Between Saying and Doing [13] is to 
describe discursive practices and to introduce norms for deploying an autonomous 
vocabulary namely a vocabulary of a social practice (science, religion etc.). These 
norms are logical and are at the basis of an “inferential” notion of representation. But, 
inference in this sense, recalling Frege, is material [14]. Brandom refuses the 
explanation of representation in terms of syntactical operations as presented by 
“functionalism” in “strong” artificial intelligence (AI). He does not even accept weak 
AI (Searle), rather he aims to present a “logical functionalism” characterizing his 
analytic pragmatism (AP) [15]. Even though Brandom uses his account of 
representation to refuse computationalism, his pragmatism is different from the 
Dreyfus’s one, which rests on a non-linguistic know-how (logically and artificially 
not computable). According to Brandom, we are not only creatures who possess 
abilities such as to respond to environmental stimuli we share with thermostats and 
parrots but also “conceptual creatures” i.e. we are logical creatures in a peculiar way.  

First, we introduce “practice-vocabulary sufficiency” or “PV-sufficiency” which 
obtains when exercising a specific set of abilities is sufficient for someone to count as 
deploying a specified vocabulary [16]. These are for instance “the ability to mean red 
by the word red” or “the capacity to refer to electrons by the word electrons” 
(Brandom includes even intentions to refer). Together with these basic abilities we 
must consider the relationship between these and the vocabulary in which we specify 
them. A second basic meaning-use relation is the “vocabulary-practice sufficiency” or 
just “VP-sufficiency” namely the relation that holds between a vocabulary and a set 
of practices-or-abilities when that vocabulary is sufficient to specify those practices-
or-abilities. In order to deploy any autonomous vocabulary we must consider the 
necessity of certain discursive practices defined as “asserting” and “inferring” that, 
according to Brandom, rule out computationalism [17].  

Another basic “meaning-use” relation is the “PV-necessity” that allows the 
development of more complex relations as exemplified in the following diagram: 

1: PV-suff

Res1:VV 2-4
V1V2

PAlgEl 3: PP-suff
P2

2: PV-nec
4: PV-suff

PSuff

PNec
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There are practices that are PV-necessary to deploy a vocabulary V1 and are PP-
sufficient for practices-or-abilities PV-sufficient to deploy V2.  According to the PV-
necessity thesis, there are two abilities that must be had by any system that can deploy 
an autonomous vocabulary: the ability to respond differentially to some sentence-
tokenings as expressing claims the system is disposed to assert and the ability to 
respond differentially to moves relating one set of such sentence-tokenings to another 
as inferences the system is disposed to endorse. By hypothesis, the system has the 
ability to respond differentially to the inference from p (premise) to q (conclusion) by 
accepting or rejecting it. It also must have the ability to produce tokenings of p and q 
in the form of asserting.  

But what is important is that if we want to sort inferences into good or bad we must 
focus on conditionals that are PP-necessary to deploy an autonomous vocabulary. 
What is the relationship between these abilities?  By hypothesis, the system has the 
ability to respond differentially to the inference from p to q by accepting or rejecting 
it. It also must have the ability to produce tokenings of p and q in the form of 
asserting. In Brandom’s terms “Saying that if something is copper then it conducts 
electricity is a new way of doing – by saying – what one was doing before endorsing 
the material inference from “that is copper” to “That conducts electricity”. 
Conditionals make explicit something that otherwise was implicit in the practical 
sorting of non-logical inferences into good and bad. Where before one could only in 
practice talk or treat inferences as good or bad, after the algorithmic introduction of 
conditionals one can indorse or reject the inference by explicitly saying something, by 
asserting or denying the corresponding conditionals. What the conditional says 
explicitly is what one endorsed by doing what one did” [18]. Conditionals are thus the 
paradigm of logical vocabulary to remain in the spirit of Frege’s Begriffschrift. But, 
according to Brandom, the meaning-use analysis he provides of conditionals specifies 
the genus of which logical vocabulary is a species. That genus are ascribed three 
characteristics: 

1. being deployed by practices-or-abilities that are algorithmically elaborated from; 
2. practices-or-abilities that are PV-necessary for every autonomous vocabulary (and 

hence every vocabulary whatsoever) and that 
3. suffice to specify explicitly those PV-necessary practices-or-abilities. 

Any vocabulary meeting these conditions is called by Brandom “universal LX-
vocabulary”. A crucial consequence of this proposal is that only algorithmic 
elaboration is required to turn the ability to distinguish material incompatibility into 
ability to deploy logical negation. For example if the ability to distinguish a 
monochromatic patch is deployed, it (together of the conditional) lets one say that two 
claimable claims are incompatible: “If a monochromatic patch is red, then it is not 
blue”. 

What are the results of Brandom analytic pragmatism for logic? A first response 
comes from an observation Brandom formulates in the spirit of Hempel famous essay 
“The Theoretician’s Dilemma” according to which vocabulary and metavocabulary 
seem of two different kinds pulling against one another. Because Brandom explains 
logical vocabulary as a species of the genus of conditionals then the dilemma is 
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solved. A further step is to explain why analytic pragmatism is semantically 
transparent and analytically efficacious. The semantic transparence is due to the fact 
that we do not need, for example, to use notions such as definitability, translateability, 
reducibility, supervenience or whatever because there is no interest to the claim that 
culinary vocabulary supervenes, for instance, on chemical vocabulary, if it turns out 
we mean that it does so if we can help ourselves to the vocabulary of home economics 
as an auxiliary in securing that relation. The problem is: how is the contrast between 
semantic form and content to be drawn so as to underwrite criteria for demarcation for 
logical vocabulary? 

Even Frege’s notion of substitution seems not to fulfill this requirement as it does 
not provide but presuppose a criterion of demarcation of logical vocabulary. 
According to Brandom, Frege makes the notion of formality promiscuous because we 
can pick any vocabulary we like to privilege substitutionally: an inference in good 
and a claim true in virtue of its theological or geological form just in case it is good or 
true and remains so under all substitutions of non-theological for non-theological 
vocabulary, or non-geological for non-geological vocabulary. The sense-dependence 
in Frege’s terms implies that theological and geological formality will not just depend 
upon but will express an important aspect of the content of theological and geological 
concepts. 

The second criteria of analytical efficacy means that logic must help in the 
processes of establishing the semantic relation between vocabularies and we have, 
according to Brandom, a much more powerful “glue” available to stock together and 
articulate what is expressed by favored base vocabularies be they phenomenological, 
secondary-quality or observational (criticism to Russell and Whitehead Principia).  

Semantic transparence is thus secured by the fact that practices sufficient to deploy 
logical vocabulary can be algorithmically elaborated from practices necessary to 
deploy any autonomous vocabulary. The notion of algorithmic elaboration gives a 
definite sense to the claim that the one set of abilities is in principle sufficient for the 
other: anyone who can use any base vocabulary already knows how to do everything 
needed to deploy any universal LX-vocabulary. For analytical efficacy we focus on 
the fact that logic has an expressive task: to show how to say in a different vocabulary 
what can be already be said using the target vocabulary. But logic is PV necessary  
i.e. logical vocabulary must make it possible to say something one could not say 
without it. 

Brandom aims at grasping the true nature of human beings namely a problem that 
is crucial even for AI that tries to go in the direction of a more natural form 
computationalism. So our question is the following: is our true nature “logical” in 
virtue of the “fact” that conditionals are the genus of our expressive rationality?  

3 Why AP Could Be a Fruitful Strategy to Simulate 
Representation? 

In this conclusive session I’ll try to show that the notion of representation described in 
AP terms presents aspects that are common to human and artificial intelligence.  
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The PV- and VP-sufficiency thesis suggest that basic practices can be 
computationally implemented and this description corresponds to the Brandomian 
interpretation of the Turing test and, consequently, to the refusal of a classical 
symbolic interpretation in AI (GOFAI) of the notion of human representation. 
Brandom introduces a pragmatic conception of artificial intelligence or “pragmatic 
AI” which means that any practice-or-ability P can be decomposed (pragmatically 
analyzed) into a set of primitive practices-or-abilities such that: 

1. they are PP-sufficient for P, in the sense that P can be algorithmically elaborated 
from them (that is, that all you need in principle to be able to engage in or exercise 
P is to be able to engage in those abilities plus the algorithmic elaborative abilities, 
when these are all integrated as specified by some algorithm); and 

2. one could have the capacity to engage or exercise each of those primitive 
practices-or-abilities without having the capacity to engage in or exercise the 
target practice-or-ability P [19]. 

For instance, the capacity to do long division is “substantively” algorithmically 
decomposable into the primitive capacities to do multiplication and subtraction. 
Namely, we can learn how to do multiplication and subtraction without yet having 
learning division.  

On the contrary, the capacities to differentially respond to colors are not 
algorithmically decomposable into more basic capacities. This observation entails that 
there are human but also animal capacities that represent a challenge for strong AI 
(GOFAI), but nowadays not for new forms of computationalism. Starting from 
Sellars, we can call them reliable differential capacities to respond to environmental 
stimuli [20] but these capacities are common to humans, parrots and thermostats so 
that they do not need a notion of representation as symbol manipulation.   

Along the line introduced by Sellars, Brandom intends the notion of representation 
in an “inferential” sense. It is grounded on the notion of “counterfactual robustness” 
that is bound to the so-called frame problem [21]. It is a cognitive skill namely the 
capacity to “ignore” factors that are not relevant for fruitful inferences. The problem 
for AI is not how to ignore but what to ignore. In Brandom’s words: “Since non-
linguistic creatures have no semantic, cognitive, or practical access at all to most of 
the complex relational properties they would have to distinguish to assess the 
goodness of many material inferences, there is no reason at all to expect that that 
sophisticated ability to distinguish ranges of counterfactual robustness involving them 
could be algorithmically elaborated from sorts of abilities those creatures do have” 
[22].  

Nevertheless, we could start by studying what “intelligence” really is by starting 
from the simplest cases. We can also show the relevance of language for a Turing 
Robot to steal categories far beyond the temporal and spatial scope of its sensorimotor 
interactions and data [23]. Harnad proposes the “narrow hybrid approach” to symbol 
grounding on the basis of sensorimotor interactions with the distal objects of which 
they are the proximal projections. This sensorimototr capacity is a robotic capacity 
and aims at capturing instrumental responses or the arbitrary names that successfully 
sort them according to what is adaptive for the hybrid system. The essential point of 
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Harnad’s proposal is the acquisition of categories by “symbolic theft”. Categories can 
be acquired by “nontoil” through the receipt of verbal information under the 
conditions that the symbols in the verbal message are already grounded (by 
sensorimotor toil or indirectly and recursively by previous grounded verbal messages) 
and that there is someone who already possesses the category and is ready to share it 
with you.  

Harnad makes two important suggestions: 

1. Successful sorting capacity must be based on detectable invariance and 
2. The invariance can be learned via experience or via hearsay. 

The role of language becomes very clear if we consider a useful example: the 
mushroom/toadstool case [24]: “In a mushroom world I could earn these to important 
survival categories the hard way, through honest toil, sampling the sensorimotor 
projections and trying to sort them based on feed back from sometimes getting sick 
and sometimes getting nourished. Assuming the problem is soluble, that is, that 
projections are successfully sortable, then if I have the requisite learning capacity, and 
there is enough time in the day, and I don’t kill myself or die of hunger first, I will 
sooner or later get it right, and the basis of my success will be some sort of invariance 
in the projections that some internal mechanism of mine has laboriously learned to 
detect. Let’s simplify and say that the invariant is the Boolean rule “if it’s white and 
has red spots, it’s a toxic toadstool; otherwise it’s an edible mushroom”.  

Naturally, life becomes easier namely without toil and risk if one could be 
informed that a “toadstool” is a “mushroom” that is “white” with “red spots”. Clearly, 
one has to know what “mushroom” and “white” and “red” and “spots” were, but, 
symbolic theft is recursive, though not infinitely regressive (the vocabulary of theft 
must be grounded directly in honest toil and/or Darwinian theft).    

Things become more difficult in the case of the categorization, for instance, of 
chairs, bears, games and goodness namely the problem is to individuate the shared 
categories of the sensorimotor projections of all the members of each of these 
categories.  Let’s consider Harnad’s “Peakaboo Unicorn” [25]: “A Peekaboo Unicorn 
is a Unicorn, which is to say, it is a horse with a single horn, but it has the peculiar 
property that it vanishes without a trace whenever sense or measuring instruments are 
trained on it. So not just in practice, but in principle, you can never see it; it has no 
sensorimotor projections. Is “Peakaboo Unicorn” therefore a meaningless term?”  

It is a meaningful term like “Toadstool” or “Zebra” in the sense that we can give a 
linguistic description of them. The sentences “a toadstool is a white mushroom with 
red spots” and “a Zebra is a horse with black and white strips” provide the way you 
can learn what “toadstool” and “zebra” mean without having to find out the hard way. 
Again, we need the terms of the sentences to be grounded directly or indirectly. In the 
case of the Peekaboo Unicorn, it is “horse”, “horn”, “sense”, “measuring instrument” 
and “vanish” that must be grounded. Harnad’s example shows that language gives us 
resources to give meaning also to abstract entities and this discussion provides 
arguments for the implementation of “representative” capacities in artificial agents. 
The “symbol grounding problem” reveals the real challenge for AI (according to the 
Turing-Test scale) as grounding requires an internal mechanism that can learn by both 



168 R. Giovagnoli 

sensorimotor toil and symbolic theft. A Turing Robot unlike an encyclopedia is 
“grounded” namely the connection between its symbols and what they are 
interpretable as is not mediated by an external interpreter. Language has a functional 
value in humans and robots. It allows it to rely on its proximal projections and the 
mechanism in between them for grounding. 

4 Conclusion 

Brandom introduces the notion of “counterfactual robustness” to overcome strong 
GOFAI, to avoid the primacy of prelinguistic background capacities and skills in 
weak AI (Searle) and phenomenology (Dreyfus). The notion of representation he 
introduces could work only if we embrace a peculiar form of inferentialism. 
Differently, we could think that AP is useful as a philosophical strategy to analyze 
skills that are common to human, animal and artificial intelligence in a broad sense 
and also those inferential capacities that are connected with logical laws common to 
human and artificial agents [26].  

Acknowledgments. I would like to thank Gordana Dodig-Crnkovic for the fruitful 
criticisms and comments on my draft. I am grateful to Gianfranco Basti for the 
clarification of several essential points. I would also thank the participants to the 
symposium “Natural/Unconventional Computing” for the interesting and lively 
discussion. 

References 

1. Carter, M.: Minds and Computers. Edimburgh University Press, Edimburgh (2007) 
2. Carter, ch. 18 (2007) 
3. Scheutz, M. (ed.): Computationalism. MIT, New Directions (2002) 
4. Agre, P.: The Practical Logic of Computer Work in M. Scheutz (ed.) (2002)  
5. Agre, pp. 133–134 (2002)  
6. Müller, V.C.: Representation in Digital Systems. In: Briggle, A., et al. (eds.) Current 

Issues in Computing and Philosophy. IOS Press (2008) 
7. Clark, A.: Material Symbols. In: Philosophical Psychology, 19th edn., pp. 291–307 (2006); 

Sedivy, S.: Minds: Contents without vehicles. Philosophical Psychology 17, 149–179 
(2004) 

8. Speaks, J.: Is mental content prior to linguistic meaning? Nous 40, 428–467 (2006) 
9. Shagrir, O.: Why we view the brain as a computer. Synthese 153, 393–416 (2006) 

10. Fodor, J.A.: The mind-body problem. Scientific American 244, 114–123 (1981) 
11. O’Brien, G.: Connectionism, analogicity and mental content. Acta Analitica 22, 111–131 

(1998) 
12. Dodig-Crnkovic, G.: Epistemology naturalized: The info-computationalist approach. APA 

Newsletter on Philosophy and Computers 6, 9–14 (2007) 
13. Brandom, R.: Between Saying and Doing. Oxford University Press, Oxford 

 



 Representation, Analytic Pragmatism and AI 169 

14. Brandom, R.: Making It Explicit, Cambridge University press, Cambridge, ch. 2 (1994); 
Giovagnoli, R.: Razionalità espressiva. Scorekeeping: inferenzialismo, pratiche sociali e 
autonomia, Mimesis, Milano. In: Giovagnoli, R. (ed.) Prelinguistic Practices, Social 
Ontology and Semantics, vol. XI(1). Etica & Politica/Ethics & Politics (2004, 2009) 

15. Brandom, ch. 2, ch. 3 (2008)  
16. Brandom, pp. 74–77 (2008)  
17. Brandom, pp. 77–83 (2008)  
18. Brandom, pp. 82–83 (2008)  
19. Brandom, p. 78 (2008)  
20. Sellars, W.: Empiricism and the Philosophy of Mind. Harvard University Press, 

Cambridge (1957, 1997) 
21. Brandom, p. 79 (2008)  
22. Brandom, p. 83 (2008)  
23. Harnad, S.: Symbol Grounding and the Origin of Language. In: Scheutz (ed.) (2002)  
24. Harnad, p. 153 (2002)  
25. Harnad, p. 154 (2002)  
26. Boley, H.: Semantic Web. Knowledge Representation and Inferencing (2010), 

http://www.cs.unb.ca/~boley/talks/DistriSemWeb.ppt Carter (2007); 
Evans, R.: Introducing exclusion logic as a deontic logic. In: Governatori, G., Sartor, G. 
(eds.) DEON 2010. LNCS, vol. 6181, pp. 179–195. Springer, Heidelberg (2010); 
Giovagnoli, R.: Osservazioni sul concetto di “pratica autonoma discorsiva” in Robert 
Brandom. Etica & Politica/Ethics and Politics  IX(1), 223–235 (2008); Giovagnoli, R.: On 
Brandom’s “Logical Functionalism’”. The Reasoner 4 (3) (2010),  
http://www.thereasoner.org  



Salient Features and Snapshots in Time:
An Interdisciplinary Perspective on Object

Representation

Veronica E. Arriola-Rios1,�, Zoe P. Demery2,�,
Jeremy Wyatt1, Aaron Sloman1, and Jackie Chappell2

1 School of Computer Science, University of Birmingham,
Edgbaston, Birmingham, B15 2TT, UK

{v.arriola-rios,j.l.wyatt,asloman}@cs.bham.ac.uk
2 School of Biosciences, B15 2TT, UK

{zxd878,j.m.chappell}@bham.ac.uk

Abstract. Faced with a vast, dynamic environment, some animals and robots of-
ten need to acquire and segregate information about objects. The form of their
internal representation depends on how the information is utilised. Sometimes it
should be compressed and abstracted from the original, often complex, sensory
information, so it can be efficiently stored and manipulated, for deriving inter-
pretations, causal relationships, functions or affordances. We discuss how salient
features of objects can be used to generate compact representations, later allow-
ing for relatively accurate reconstructions and reasoning. Particular moments in
the course of an object-related process can be selected and stored as ‘key frames’.
Specifically, we consider the problem of representing and reasoning about a de-
formable object from the viewpoint of both an artificial and a natural agent.

Keywords: Representations, Learning, Exploration, Cognitive Agents, Animal
Cognition, Deformable Objects, Affordances, Dynamic Representation, Salient
Features.

1 Introduction

The cognitive architecture of any animal or machine (jointly ‘agents’) has limits, so it
cannot contain a perfect model of the dynamic external and internal world, such as about
all matter, processes, affordances, or more abstract concepts, like ‘mind’ or ‘spirit’. Ev-
ery agent receives a particular amount of data through its sensors. How useful that data
is in the short or long term depends on the environmental conditions, how accurately
the data might be processed into information, and the agent’s behavioural response.
Frequently, an agent should maximise the amount of meaningful, relevant information
it can obtain about its surroundings, while minimising the energy expended, but this is
highly dependent on the nature of the agent [1]. This applies not just to a static snapshot
of time, but also to a constantly changing world with a past, present and future, where
being able to predict events, or select between alternative actions without actually trying
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them, may be useful for the agent. So in these circumstances, what are the most useful
elements for the agent to store and process in its cognitive architecture and how may
they best be coded? Principally, we propose that when an agent gathers information
through its senses, often it may form object representations supported by exploration1.

To date in the field of animal cognition (AC), there has been surprisingly little sys-
tematic, quantitative research on exploration, and how it could support learning mech-
anisms in different agents (see [3] for more discussion). What research there is, has
largely been on humans and focussed on Bayesian network learning (e.g. [4]). Among
the non-human animal researchers, the focus has been on what the different cognitive
capacities of different species are, rather than how they actually process information to
achieve those capacities [5]. For example, the ‘trap-tube task’ is a typical litmus test
for causal understanding of gravity (e.g. [6]). It has revealed a lot about many species,
but it is just a binary measure of whether an individual can complete the task or not.
No one has fully investigated why one individual can succeed at the task, while another
fails – is it something about their different exploratory strategies? Moreover, although
quite complex-looking actions can often be performed by agents with simple mecha-
nisms and small neural architectures (e.g. [7]), they may not be able to generalise these
actions to other similar, but novel circumstances. Thus in this paper, we are concerned
with more complex, flexible agents. Another area consistently ignored in AC, but one
which may provide answers, is how the senses support exploratory learning (e.g. [8]).

It is a blossoming area in Artificial Intelligence (AI) however. Robots force us to ex-
plicitly define the model design, suggesting concrete, testable hypotheses for AC. How-
ever, we believe there is not yet a robot/simulation that can flexibly abstract concepts, or
generalise knowledge to new situations. AI has looked at different learning mechanisms
in isolation with relative success, but few projects have tried combining them into one
agent (e.g. [9]). Therefore, AC behavioural experiments can provide realistic biological
constraints and inspire more integrative cognitive modelling in AI.

We would like to propose that when exploration of objects occurs for forming repre-
sentations, it is not always random, but also structured, selective and sensitive to partic-
ular features and salient categorical stimuli of the environment. Also that it can follow
through three stages of theory formation – the forming, the testing and the refining of
hypotheses [10]. Each hypothesis may be specific to a particular group of affordances or
processes (‘exploratory domains’), but they may also be generalisable to novel contexts.
We introduce how studies into artificial agents and into natural agents are complemen-
tary [10], by comparing some findings from each field.

First, we will take a top-down approach to explore what some of the general en-
vironmental constraints imposed on an agent’s system when internalising the world
around it may be. Then we will look at some of the possible mechanisms to solve these
problems, particularly in the visual domain of object representation. There are several

1 Cognition does not always rely on internal representations and the degree of detail in any
internal representation can vary greatly depending on the situation. For instance, there can be
a lack of detail especially when the environment can largely control an agent’s behaviour, such
as in flocking behaviour or in using pheromone trails. Here alternative, but complementary,
mechanisms may be more relevant, such as emergency or embodiment, but in this paper we
will not consider these cases[2].
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methodological problems in computer vision research, including recognition, tracking
and mental imagery [11]. Within robotics, we present an approach where simulations
of real objects, calibrated from real-time environmental data, can be used as artificial
mental imagery. We have exploited a combination of key features from image analysis,
computer graphics and animation, as well as aspects of physical models, to generate
an internal representation of a deformable object with predictive capabilities. Finally,
we will consider the degree of ecological validity of this model by comparing it with
AC behavioural findings about parrots, who are notoriously exploratory and playful
throughout their lives.

2 Requirements for the Agent-Environment Interaction

An agent interacting with its surrounding environment often combines perception and
analysis with action. It can also be driven by its goals, which can be quite explicit, like
foraging for survival, or particular problem-solving tasks. Or they can be quite implicit,
such as to gather information by apparently random exploratory behaviour. Shaw [12]
suggests, “The chief end of an intelligent agent is to understand the world around it.”
Here, the word ‘understanding’ implies the agent’s ability to make predictions about the
world. For this to take place, the agent should be able to detect the consistent properties
or salient features in its environmental niche. These properties allow a link to form
between the agent and the environment. We will now consider what some of these
primordial properties might be (see also [13]).

2.1 Redundancy

Given the inherent limitations of the agent, it will only be possible for it to gain a partial
understanding of its surroundings2. This partial understanding may not allow the agent
to make perfect predictions for all environmental events, so it cannot always be ready
to process useful information. As it detects sensory data, it also may not succeed at
processing relevant signals. Therefore, we expect there may be errors and inexactitudes
at different levels of the agent’s perceptual or analytical processes. It may thus be useful
for its system to be able to tolerate this margin-of-error. Some agents often have more
than one mechanism to find things, solve problems, or to perform actions. The agent
could just react according to different layers of data filtering, or it could use one or a
combination of different learning mechanisms [10]. While qualitatively different, all of
these mechanisms produce similar, valid results. In this sense, we call these different
possible mechanisms ‘valid ways’, and say they are ‘redundant’. Therefore, redundancy
allows the agent to ignore irrelevant data, or to reconstruct faulty perceptions from new
perceptions that convey the same information.

2.2 Consistency

When multiple methods are used to collect or analyse data, they can act in a comple-
mentary way, and contribute by providing different information. Alternatively, they may

2 An artificial agent (e.g. a virtual automaton) in a very simple environment can make perfect
predictions; but we are not concerned with these cases.
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be superfluous; in which case, they confirm previous findings. For an agent, different
methods of perceiving or deducing the same thing should be consistent with each other,
if there is enough knowledge. An agent that sees a pen while touching it, should gain
tactile information in accordance with the position and surface of the image it sees. If
there is a fault in the synchronisation between this visual and tactile information, the
agent will not be able to properly integrate this information, or accurately describe the
object. This principle is present in human mathematics: different methods used to solve
the same equation, must give the same answer.

2.3 Persistency

For an agent to be able to make relatively accurate predictions about the environment,
there should be at least a few unchanging rules in the environment for a significant
period of time. These rules are useful for the agent’s internal knowledge and learning
mechanisms. The strongest examples can be found in mathematics and physics. In order
to develop the cosmological theories of physics, it is necessary to assume that the phys-
ical laws that rule at the present time on planet Earth, are the same rules that applied
during the Big Bang and in galaxies far beyond ours. Agents should respond in the same
way to the environment. During complex actions, an agent may change or modify their
goals and plans. Even then though, they should make the changes according to a partic-
ular, foreseeable pattern, which may be rooted, for example, in their brain structure. If
agents do not follow persistent rules, their behaviour is erratic and unpredictable.

2.4 Regularity

This is the predictable presence of previously perceived features or classes of them,
due to a fixed relationship between occurrences3. There should be persistent patterns in
the environment, allowing at least for partial predictions, particularly when an agent is
faced with different causal problems. Causality is a manifestation of regularity, where
the partaking elements are not always identifiable, but whose manifestation always en-
tails the same consequence. Thus, agents should have mechanisms capable of detecting
these patterns to take advantage of them. Then the environment could be categorised
using a finite amount of key features linked by predictive relationships, including el-
ements representing continuous features. For example, a small mathematical equation
can describe an infinite parabola.

Sequentiality. This is a particular form of regularity, but in a universe with only one
temporal dimension, it becomes especially relevant. Sequentiality is the presence of
a series of features of two or more elements that are nearly always perceived in the
same total or partial order4. The first features can be used to identify the sequence and
predict either the following features, or the rules set needed to process them. Some
examples include: identify a command and know which actions to execute; analyse the
first items of a numerical sequence and predict the next; listen to the first notes of a

3 This can be present in different dimensions, or in a hierarchical structure.
4 These may not be contiguous and can include cause-and-effect learning.
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song and remember how to sing the rest (which was memorised in advance); identify
the beginning of a question and prepare to understand it to look for the answer; or listen
to the sound of a prey and prepare to chase.

Structure with Partial Order and Layers. There could also be a succession of sub-
sequences. The connections here would only allow a few options to follow, such as
beginnings of other sub-sequences. This forms a branching structure, which becomes
layered, modular, and, in some cases, hierarchical [14]. The maximum length of an
existing sequence, and the maximum number of branches that can be remembered and
manipulated, impose strict limitations upon what the agent can understand, and the
types of patterns it is capable of detecting. However, this structure may allow more
complex agents to make abstractions, as concepts formed at one stage could be re-used
and refined to repeatedly form ever more complex concepts in multiple ways [1]. This
allows for progressively specific and parallel processes (e.g. [15]).

2.5 Experience

For small and well-identified tasks, a largely pre-programmed agent may suffice. Little
experience may be needed in a relatively static environment, such as where precocial
animals, whose behaviour has been almost completely determined by their genome, just
need to survive long enough to reproduce. Other agents are often required to adapt to
diverse, dynamic environments, where a lot more learning is required (see [1] for greater
discussion). The different extractions of relevant information (Section 2.1) would more
likely be processed by mechanisms shaped and influenced by experience. The agent
should seek out information to reinforce, evolve and, when possible, prove or disprove
its current models, particularly if its expectations are violated. Depending on the needs
and the competences of the agent, a specific, relevant subset of experiences would allow
specific, relevant features of the individual’s niche to be captured (e.g. [16]). We believe
there is continual extension of these ‘branches’ or ‘blocks of knowledge’ throughout the
life of a cognitive agent. At different ages or stages of development, an agent should
take in different aspects of the same overheard conversation, for instance, or different
aspects of the operation of the same tool.

2.6 Where Does This Leave Us?

All of the above described environmental features/constraints together form a structured
universe. Parts of this structure may be perceived and understood by artificial and nat-
ural agents. The existence of regularities reduces the information needed to describe a
part of the environment, as once enough elements and relationships have been identi-
fied, the rest can be inferred. Some animals may have the ability to identify ‘valid ways’
and describe them as ‘formalisms’; sets of rules that can warrant good results when suf-
ficient conditions are met [10]. This is essentially how science operates, particularly
logic, mathematics and computer science.

Within the field of AI, some formalisms for ‘knowledge representation’ focus on the
association of symbols to entities (i.e. objects, relationships and processes) in a struc-
tured way, such as ‘Frame Languages’ [17]. However others, like ‘First Order Logic’,
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incorporate powerful systems of deduction. These symbolic languages are extremely
powerful for discrete reasoning, but they may not be particularly appropriate for de-
scribing continuous dynamics, or even for making predictions, such as when objects
move through an environment. In AI, it is highly relevant to consider the amount and
type of knowledge needed before an agent can be capable of processing it. How much
does the agent need to know to be able to predict a few movements of different objects?
Can that knowledge be learned from experience, or does it need to be pre-programmed?

In certain contexts, the minimum number of necessary elements to complete a de-
scription is known as the number of degrees of freedom. For example, given the generic
mathematical formula that describe parabolae, only three points are needed to specify a
single, infinite parabola. This principle can be directly applied in computer graphics. By
making use of algebraic equations, an infinite amount of shapes can be approximated,
represented and reconstructed with just a few polynomials [18]. Furthermore, transfor-
mations of these shapes can be encoded with mathematical formulae, thus allowing the
representation of physical objects and processes; which can be used to implement a
form of mental imagery.

Hence, whether the powerful deductive machinery is available in a natural or an ar-
tificial agent, it is important to define how we go from representations of continuous
transformations, to discrete objects and events. As with the popular phrase, ‘a picture
is worth a thousand words’, predicate logic may not be able to naturally represent 3D
graphical information in a consistent, complete and compact description. It may be pos-
sible, however, to extract logical information from graphical simulations when required
for symbolic reasoning. Here we give an example of how this could be achieved in AI
by combining traditional animation techniques, computer graphics and physics, with
symbolic representations.

We believe this approach may be more rigorous than the standard mechanism used
in human brains. Humans can recognise things without being able to draw them [19],
or use mental imagery without making exact simulations [11] (while our AI system
requires them). This shows how we need to better understand the underlying mecha-
nisms of natural agents processing and representing the world around them. Observa-
tions of natural exploration behaviour do provide realistic biological constraints on the
design of AI models for object representation. We will investigate these issues in AC
by running behavioural experiments on parrots, as our exemplar exploratory and adap-
tive species. Is there evidence of each of the environmental requirements/regularities
described above being attended to by the parrots? Does their exploration behaviour
suggest underlying strategies for processing and representing the environment?

3 Designing a Representation

3.1 Using Key Frames to Model Deformable Objects

The study of the perception and understanding of the affordances of deformable objects
is particularly appropriate to illustrate the points outlined in the section above. The
problem of representing solid objects, their properties and their related processes has
been studied in great detail in computer graphics [20], and there have been attempts to
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generate representations using semantic information [21]. Within the first field, there are
several good representations for many different types of shapes, most of them based on
meshes, splines or quadrics [18]. The motion of objects is simulated with an approach
analogous to traditional cartoon animations. There is a set of key frames, where a ‘key
frame’ is a drawn snapshot in time defining the start and end points of any smooth
transition, and all of the frames connecting them are called the ‘inbetweeners’.

Currently, key frames are identified and drawn by humans; in traditional animation
the most skilled cartoonists are responsible for them. Due to the smoothness of the
transition between key frames, it is possible for a less-skilled cartoonist to interpolate
the inbetweeners. In computer animation, the control points and curves defining the
geometry and colours of the scene are set in the key frames. The transitions between
key frames are mainly polynomial interpolations, or continuous mathematical transfor-
mations of these control elements [22]. To create realistic animations, movements are
often captured from real objects. This is a very slow and expensive process [23]. In an
attempt to automate the rendering of realistic movements and the inbetweeners, physics
engines have been incorporated into the animation packages. They are also present in
real-time virtual environments where interaction with a user takes place.

However, the incorporation of physics changes the dynamics of producing an ani-
mation slightly. Instead of interpolating between two key frames, the first key frame is
given by a human designer and the simulation stops when a given condition is satis-
fied, thus automatically generating the inbetweeners and the final key frame. Note that
predictive capabilities have been attained, and that the simulation is now required to
specify the new parameters of the material. This includes mass, young coefficients or
spring stiffness, in addition to the method’s criteria, such as integration methods or time
steps. Correctly estimating these parameters is a difficult problem.

Furthermore, while the simulations may look plausible to the human eye, they may
not be physically accurate, so different models are required to simulate different materi-
als and differently shaped objects. A natural agent’s brain faces a similar computational
problem, yet evolution largely seems to have solved it in a qualitatively different way.
Humans can reason and make predictions about features of the world, but we proba-
bly do not simulate it in the quantitative way a physics engine does. It is still not com-
pletely clear how or what exactly the underlying mechanism is in various natural agents.
Behavioural experiments can allow us to infer what is going on in an animal’s mind.
However, interpretation of the data is largely based on assumptions and only allows us
to make indirect conclusions. Invasive techniques, such as particular neurophysiolog-
ical or brain imaging methods, only provide partial information about the content, or
even about the structure or neural representations, in an animal’s mind. Thus, if done
correctly, AI simulations can be very illuminating. We suggest that an initial list of
problems an artificial agent needs to solve are:

1. Generate an internal representation of real deformable objects in the surrounding
environment;

2. Identify key frames of the related environmental processes;
3. Interpolate (continuously or discretely) the links between frames;
4. Use previous knowledge to predict future events.
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The automation of the animation process provides one solution for the first three points.
Traditional animation techniques, however, cannot address the fourth point. The use of
physics models and formal logics can address the two last points, but in this case the
agent needs to select and calibrate the right model. It is still debatable whether physics
models can correctly approximate all the ranges of processes observed in natural envi-
ronments, given the inherent limitations of mathematical models to model real, complex
deformations. Furthermore, there is still no model that integrates all of the points into
one agent. Given the huge variety of possible affordances perceived by humans alone,
we expect that some form of learning should be used to generate the model(s), which
would provide the interpolating link between key frames and aid the artificial agent
in making predictions. However, which type of learning mechanism is still open to
question.

Here we present the advances of a preliminary, physics-based method, where a gen-
eral (though not completely accurate) model of deformable objects is used [24], and an
artificial agent learns to calibrate and use it in the way described above. The next step
is to take the key frame representation of the object and extract symbolic ones from
it. Then we need to take functions that describe the transformations, associate a sym-
bol to each, and consider that symbol as referring to a categorised process or action.
For several cases, this step should be quite straightforward, since the representation has
already been discretised, grounded and categorised [25]. Then the already developed,
symbolic-level machinery can be applied. Finally, the overall results can be compared
with natural exploration behaviour (e.g. of parrots) for ecological validity. Is there evi-
dence of similar mechanisms in natural systems? Is our model biologically plausible?

3.2 Representing the Object’s Shape

Kakariki Experiment I: AC Implications for AI Models. When segregating the
world around itself, we believe an agent first needs to identify and represent distinct
objects. Then the agent needs to understand what the shape of each object means, i.e.
its affordances when it interacts with the rest of the world. What are its physical prop-
erties? How can some of these properties be encoded in the memory of the agent?
For instance, if two key elements are connected by a known relationship, anything in
between is already implicitly represented. Contact points and segments of continuous
curves can be approximated by lines and polynomials, and delimited by key points.
Under this light, it is natural that an agent would be more interested in these points of
discontinuity. Indeed, in our first AC experiment, we found that this does seem to be the
case, at least for the New Zealand red-fronted parakeet or ‘kakariki’ (Cyanoramphus
novaezelandiae).

We chose kakariki as our model animal species for investigating how agents gather
and represent environmental information, as they are neophilic and have a high ex-
ploratory tendency throughout their lives. Moreover, as with many other parrot species,
they are relatively intelligent and have an anatomy adapted to dexterity and fine object
manipulation. We presented a series of novel objects of a range of different rigid shapes
to 21 kakariki individually and recorded their exploratory behaviour in detail over a
25-minute period. They spent most of the time exploring the corners and indents of the
objects, then areas of high curvature second, over smooth surfaces. We would like to
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suggest this may be because corners and areas of high curvature are more likely to cue
useful properties/affordances about different objects.

Related to this finding, it is interesting to consider in AI how Shaw uses information
theory to apply the principle of maximising information and predictive capabilities to
an image analysis task, and the first result he finds is an edge detector [12]. Similarly,
related to the AC finding on relative importance of areas of high curvature, Ravishankar
[26] found that it is easier for an artificial agent to recognise deformed objects by plac-
ing emphasis on the bending around points of high curvature. It is further compelling
that a piece-wise continuous mathematical function is naturally segmented at its points
of discontinuity; corners are discontinuities of the derivative of a function of one dimen-
sion; edges are discontinuities of the derivative of a function of two dimensions; while
points of high curvature (maxima, minima and inflexion points) are points where the
first derivatives are zero. It would seem that the same points that mathematicians deem
interesting are playing a major role in both natural and artificial agents, as features for
object segmentation, categorisation, tracking and, possibly, prediction. Therefore the
use of mathematical curves to approximate deformable objects is highly illustrative.

AI Model I: Modelling the Sponge. In one dimension, a way of approximating a
continuous curve is by a succession of lines. In two or more dimensions, shapes can
be approximated by meshes, where each element is ‘flat’ and defined by nodes and
edges. Triangular and hexagonal meshes are widely used. Alternatively, quadrics and
polynomials of two or three degrees can be used. They are flexible enough for repre-
senting most humanly distinguishable continuous shapes. Polynomials have been used
to form splines, which are defined by a small set of control points. They can be used to
interpolate as much detail of a shape as desired, since the polynomials are continuous,
while the connections between them can be discontinuous (e.g. [18]). This is why we
considered meshes and splines for our model.

As an experimental example, our model analysed the process of deforming a sponge.
In general, compliant materials have the potential to change their shape in nearly an in-
finite amount of unpredictable ways, therefore understanding deformable objects poses
a particularly interesting challenge for both artificial and natural agents. Unlike rigid
objects, it is not possible to know in advance all of the elements required for represent-
ing the deformation. How many splines or elements in a mesh is required, or what are
its degrees of freedom? For some specific objects under controlled circumstances, these
possibilities can be restricted, as in medical research with human organs [27]. However,
an agent that interacts with an environment populated with unrestricted deformable ob-
jects, requires a more general solution. One approach is to automatically generate a
hierarchical mesh to represent a few objects in a virtual environment, which adapts as
an object deforms [28]. However, this has not yet been directly tried in robotics, where
an internal representation needs to match objects in the external environment. This con-
tinues to remain an open question even in the AC literature – what would the agent do
if an object becomes deformed to a shape unforeseen by the initial representation?

As a tentative first step towards solving this problem, we looked at modelling a
spheric robotic finger pushing against a sponge. Please note we are not claiming this
model replicates animal vision or reasoning, but it may provide a building block from
which to work from. The movement of the robotic finger was blocked by a pencil
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Fig. 1. Top view of an experiment where a robotic finger (sphere at the top) pushes a sponge,
perpendicular to its widest axis, against a pencil that serves as an obstacle (green cap). a) The
contour of a deformed sponge approximated by a series of splines, with the control points placed
by a human. b) The sponge represented by a rectangular mesh, generated in the first frame before
deformation; the mesh configuration was predicted by the physics model. c) Hexagonal mesh,
similar to (b).

directly opposite. The finger performed a continuous movement against the sponge,
while a camera and a force sensor registered the interaction. Figure 1 illustrates the
use of splines and meshes to approximate the contour and surface of the sponge as it
became deformed.

3.3 Representing the Related Processes

Kakariki Experiment II: More Implications for Models. Once the agent can gener-
ate a representation of any object shape it may detect, we believe the next step is for it
to understand the related physical processes in the environment. It should identify the
key elements and unite them with appropriate functions. How does the object become
deformed when interacted with in the world?

We first considered this in the natural dimension in a second AC behavioural exper-
iment. We presented the same kakariki with five cubes of different deformabilities in a
random order over five trials over different days. As in the previous experiment, in each
trial we allowed them 25 minutes to interact with the objects as they chose and recorded
their exploration behaviour in detail.

As we predicted in [10], they initially explored the two extremes the most (i.e. the
most rigid and the most deformable cube), but their exploratory ‘focus’ or ‘strategy’
changed. So in the second and third trial, the cube of the ‘median’ or intermediate
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deformability was explored significantly more than all of the other cubes. Then in the
final two trials, the cubes the next interval along (i.e. the second-most deformable cube
and the second-most rigid cube) became more of a focus for the kakariki’s exploration.
In conclusion, the exploration strategy seems to change with time, perhaps as more
experience and progressively more specific knowledge is gained about the deformability
of objects and different object categories. We would like to suggest that the kakariki had
a exploration strategy that allowed them to gain more information about the process of
deforming an object.

AI Model II: Modelling the Deformation. Simultaneously, we wanted to consider
what the design of this internal strategy/learning mechanism could be for an artificial
agent. In the AI example of deforming the sponge, the following key frames can be
identified:

1. The finger starts moving. At this point the force sensor detects only some noise,
but the command to move has been given and the vision (camera) begins to detect
changes between frames, i.e. that the position of the finger is changing. Thus, the
first key frame would contain the finger separated from the sponge and the pencil.

2. The finger touches the sponge. At this point the force sensor detects an abrupt
increase in one direction. Visually, collision detection routines begin to detect a
contact between the circle (i.e. the finger), and one or two triangles in the mesh (i.e.
the sponge).

3. The finger stops moving. No more changes are detected.

Notice that these coarse key frames are the frames where things change in a very notice-
able manner. It is possible to connect frames 1 and 2 by using a function that describes
the simple linear translation of the circle (finger). Between frames 2 and 3, the same
translation function applies to the circle, but also the physics model gets activated to
deform the mesh (sponge) as the circle pushes it. These two functions can predictively
describe the observed movements. At frame 3, no function or model is required any-
more, because the execution of the command is over and there is no more movement.
The scene has ended. From this perspective, the whole process/action can productively
be segmented into smaller actions. The internal representation of each frame can be
formed by tracing back the activation and deactivation of the required mechanisms.
Now each segment can be re-represented by a single symbol. The whole sequence can
be described as something like: displace finger; push sponge; stop. The agent can then
choose between thinking of the command it executed (e.g. translate), or the changes in
the sponge (detected through vision or touch), or combinations of both.

There are precedents to doing this type of segmentation, such as in the work by
[21]. Here the agent, Abigail, analyses a simple circle-and-sticks simulation of ping-
pong. Even for this highly simplified world, it was not trivial to unequivocally detect
the points of discontinuity that establish the beginning and end of an action. However,
Siskind was not quite using our concept of segmentation in modelling, which is just an
extension of the idea of a polynomial connecting two control points. Even though the
use of splines to approximate curves is a widely used technique, there is not a general
technique that can automatically generate a spline from scratch to approximate any



182 V.E. Arriola-Rios et al.

curve. It is a brand new research field; to investigate the use of models for interpolation
between frames, segmenting and understanding actions.

4 Conclusion

By studying both artificial and natural agents, we can provide a fuller account of how,
when necessary, an individual can efficiently represent objects and their related pro-
cesses in the environment from the huge number of sensory signals they receive. In this
light, we can also consider what the requirements posed by the external environment
may be upon the finite brain of the agent. Thus, we have briefly discussed two be-
havioural experiments on parrot exploration of novel objects to give us an insight into
what the biological constraints might be on an AI model for representing deformable
objects.

Specifically, we have described how a selection of key elements from the environ-
ment could be used as a basis for an object representation, and considered possible
underlying exploration strategies for gathering information by observing natural be-
haviour. These key elements are connected through functions, which indicate how to
obtain the value of other points. The same mechanism could be used to represent pro-
cesses and actions, by identifying key frames, and finding the correct physics model to
interpolate between frames. It is possible to segment a complex interaction between
the agent and the environment into individual actions, by detecting: the commands
given; discontinuities in the sensory signals; and the intervals of application of each
mechanism. Each of these individual actions could then be represented by symbols.
These symbols are grounded in the environment through the selected key elements. It
is straightforward to use these symbols for traditional problem-solving tasks, as in [14].
We have further provided evidence that natural agents seem to similarly focus their
exploration behaviour on key environmental elements, such as corners, edges and ar-
eas of high curvature. Likewise, at least with parrots, individuals seem to attend first
to extreme exemplars of particular object properties, including deformability/rigidity,
but this exploration strategy becomes gradually refined with time. However, we cannot
yet confirm if this parrot exploration is due to similar underlying mechanisms as those
presented in our AI model. In conclusion, we have presented an interesting preliminary
analysis of some of the forms of object representation that may be useful to intelli-
gent natural agents in certain contexts, and demonstrated these capabilities in working
computer models.
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Abstract. Turing presented a general representation scheme by which to 
achieve artificial intelligence – unorganised machines. Significantly, these were 
a form of discrete dynamical system and yet such representations remain 
relatively unexplored. Further, at the same time as also suggesting that natural 
evolution may provide inspiration for search mechanisms to design machines, 
he noted that mechanisms inspired by the social aspects of learning may prove 
useful. This paper presents initial results from consideration of using Turing’s 
dynamical representation within an unconventional substrate - networks of 
Belousov-Zhabotinsky vesicles - designed by an imitation-based, i.e., cultural, 
approach. Turing’s representation scheme is also extended to include a fuller set 
of Boolean functions at the nodes of the recurrent networks.  

1 Introduction 

In 1948 Alan Turing produced an internal paper where he presented a formalism he 
termed “unorganised machines” by which to represent intelligence within computers 
(eventually published in [39]). These consisted of two main types: A-type 
unorganised machines, which were composed of two-input NAND gates connected 
into disorganised networks (Figure 1); and, B-type unorganised machines which 
included an extra triplet of NAND gates on the arcs between the NAND gates of A-
type machines by which to affect their behaviour in a supervised learning-like 
scheme. In both cases, each NAND gate node updates in parallel on a discrete time 
step with the output from each node arriving at the input of the node(s) on each 
connection for the next time step. The structure of unorganised machines is therefore 
very much like a simple artificial neural network with recurrent connections and 
hence it is perhaps surprising that Turing made no reference to McCulloch and Pitts’ 
[29] prior seminal paper on networks of binary-thresholded nodes. However, Turing’s 
scheme extended McCulloch and Pitts’ work in that he also considered the training of 
such networks with his B-type architecture. This has led to their also being known as 
“Turing’s connectionism” (e.g., [10]). Moreover, as Teuscher [36] has highlighted, 
Turing’s unorganised machines are (discrete) nonlinear dynamical systems and 
therefore have the potential to exhibit complex behaviour despite their construction 
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from simple elements. The current work aims to explore the use of Boolean dynamic 
system representations within networks of small lipid-coated vesicles. The excitable 
chemical Belousov-Zhabotinsky (BZ) [42] medium is packaged into the vesicles 
which form the simple/elementary components of a liquid information processing 
system. The vesicles communicate through chemical “signals” as excitation 
propagates from vesicle to vesicle. Initial experimental implementations which use 
micro-fluidics to control vesicle placement have recently been reported [25]. 

This paper begins by considering implementation of the basic two-input NAND 
gates using the vesicles and then how to design networks of vesicles to perform a 
given computation. In particular, a form of collision-based computing (e.g., [1]) is 
used, along with imitation programming (IP) [8], which was also inspired by Turing’s 
1948 paper, specifically the comment that “Further research into intelligence of 
machinery will probably be very greatly concerned with ‘searches’ …. [an example] 
form of search is what I should like to call the ‘cultural search’ … the search for new 
techniques must be regarded as carried out by the human community as a whole” 
[39]. Kauffman [22] introduced a form of dynamical Boolean network which uses any 
possible Boolean function at each node – random Boolean networks (RBN). The use 
of other well-known Boolean functions within the networks is subsequently explored 
here, again through collision-based computing. Performance from the extension to 
more realistic signal propagation times within the networks is also explored. 

 
 
 
 
 
 

 
 
 

 
 

Fig. 1. Simple example A-type unorganised machine consisting of four two-input NAND gate 
nodes (N=4), with one input (node 1) and one output (node 4) as indicated by the bold arrows 

2 Background 

“The machine is made up from a rather large number N of similar units. Each unit 
has two input terminals, and has an output terminal which can be connected to input 
terminals of (0 or more) other units. We may imagine that for each integer r, 1 ≤ r ≤ 
N, two numbers i(r) and j(r) are chosen at random from 1..N and that we connect the 
inputs of unit r to the outputs of units i(r) and j(r). All of the units are connected to a 
central synchronising unit from which synchronising pulses are emitted at more or 
less equal intervals of time. The times when these pulses arrive will be called 
‘moments’. Each unit is capable of having two states at each moment. These states 
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may be called 0 and 1. The state is determined by the rule that the states of the units 
from the input leads come are to be taken at the previous moment, multiplied together 
and then subtracted from 1” [39]. 

A-type unorganised machines have a finite number of possible states and they are 
deterministic, hence such networks eventually fall into a basin of attraction. Turing was 
aware that his A-type unorganised machines would have periodic behaviour and he stated 
that since they represent “about the simplest model of a nervous system with a random 
arrangement of neurons” it would be “of very great interest to find out something about 
their behaviour” [39]. Figure 2 shows the fraction of nodes which change state per 
update cycle for 100 randomly created networks, each started from a random initial 
configuration, for various numbers of nodes N. As can be seen, the time taken to 
equilibrium is typically around 15 cycles, with all nodes in the larger case changing state 
on each cycle thereafter, i.e., oscillating (see also [36]). For the smaller networks, some 
nodes remain unchanging at equilibrium on average; with smaller networks, the 
probability of nodes being isolated is sufficient that the basin of attraction contains a 
degree of node stasis. However, there is significant variance in behaviour. 

 

Fig. 2. Showing the average fraction of two-input NAND gate nodes which change state per 
update cycle of random A-type unorganised machines with various numbers of nodes N. Error 
bars show max. and min. values from 100 trials. 

Turing [39] envisaged his A-type unorganised machines being used such that they 
“ ... are allowed to continue in their own way for indefinite periods without 
interference from outside” and went on to suggest that one way to use them for 
computation would be to exploit how the application of external inputs would alter 
the (dynamic) behaviour of the machine. This can be interpreted as his suggesting 
individual attractors are used to represent distinct (discrete) machine states and the 
movement between different attractors as a result of different inputs a way to perform 
computation. Note this hints at some of the ideas later put forward by Ashby [6] on 
brains as dynamic systems. 

Teuscher [36] used a genetic algorithm (GA) [18] to design A-type unorganised 
machines for bitstream regeneration tasks and simple pattern classification. Bull [8] 
used IP to design simple logic circuits, such as multiplexers, from them. Here the 
unorganised machine had an external input applied, was then updated for some 
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number of cycles, e.g., sufficient for an attractor to be typically reached, and then the 
state of one or more nodes was used to represent the output. More generally, it is 
well-established that discrete dynamical systems can be robust to faults, can compute, 
can exhibit memory, etc. (e.g., see [23][41]). 

Given their relative architectural simplicity but potential for complex behaviour, 
A-type unorganised machines appear to be a good candidate (dynamic) representation 
to use with novel computing substrates. Their use for a chemical computing system is 
considered here. It can be noted that Turing (e.g., [40]) was also interested in 
chemical reaction-diffusion systems, for pattern formation not computation. 

3 Chemical Computing 

Excitable and oscillating chemical systems have been used to solve a number of 
computational tasks such as implementing logical circuits [34], image processing 
[26], shortest path problems [33] and memory [31]. In addition chemical diodes [5], 
coincidence detectors [15] and transformers where a periodic input signal of waves 
may be modulated by the barrier into a complex output signal depending on the gap 
width and frequency of the input [32] have all been demonstrated experimentally. 

A number of experimental and theoretical constructs utilising networks of chemical 
reactions to implement computation have been described. These chemical systems act 
as simple models for networks of coupled oscillators such as neurons, circadian 
pacemakers and other biological systems [24]. Ross and co-workers [16] produced a 
theoretical construct suggesting the use of “chemical” reactor systems coupled by 
mass flow for implementing logic gates neural networks and finite-state machines. In 
further work Hjelmfelt et al. [17] simulated a pattern recognition device constructed 
from large networks of mass-coupled chemical reactors containing a bistable iodate-
arsenous acid reaction. They encoded arbitrary patterns of low and high iodide 
concentrations in the network of 36 coupled reactors. When the network is initialized 
with a pattern similar to the encoded one then errors in the initial pattern are corrected 
bringing about the regeneration of the stored pattern. However, if the pattern is not 
similar then the network evolves to a homogenous state signalling non-recognition. 

In related experimental work Laplante et al. [27] used a network of eight bistable 
mass coupled chemical reactors (via 16 tubes) to implement pattern recognition 
operations. They demonstrated experimentally that stored patterns of high and low 
iodine concentrations could be recalled (stable output state) if similar patterns were used 
as input data to the programmed network. This highlights how a programmable parallel 
processor could be constructed from coupled chemical reactors. This described 
chemical system has many properties similar to parallel neural networks. In other work 
Lebender and Schneider [28] described methods of constructing logical gates using a 
series of flow rate coupled continuous flow stirred tank reactors (CSTR) containing a 
bistable nonlinear chemical reaction. The minimal bromate reaction involves the 
oxidation of cerium(III) (Ce3+) ions by bromate in the presence of bromide and 
sulphuric acid. In the reaction the Ce4+ concentration state is considered as “0” “false” 
(“1”“true”) if a given steady state is within 10% of the minimal (maximal) value. The 
reactors were flow rate coupled according to rules given by a feedforward neural 
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network run using a PC. The experiment is started by feeding in two “true” states to the 
input reactors and then switching the flow rates to generate “true”-“false”, “false”-“true” 
and “false”-“false”. In this three coupled reactor system the AND (output “true” if 
inputs are both high Ce4+, “true”), OR (output “true” if one of the inputs is “true”), 
NAND (output “true” if one of the inputs is “false”) and NOR gates (output “true” if 
both of the inputs are “false”) could be realised. However to construct XOR and XNOR 
gates two additional reactors (a hidden layer) were required. These composite gates are 
solved by interlinking AND and OR gates and their negations. In their work coupling 
was implemented by computer but they suggested that true chemical computing of some 
Boolean functions may be achieved by using the outflows of reactors as the inflows to 
other reactors, i.e., serial mass coupling. 

As yet no large scale experimental network implementations have been undertaken 
mainly due to the complexity of analysing and controlling many reactors. That said 
there have been many experimental studies carried out involving coupled oscillating 
and bistable systems (e.g., see [35][11][7][21]). The reactions are coupled together 
either physically by diffusion or an electrical connection or chemically, by having two 
oscillators that share a common chemical species. The effects observed include 
multistability, synchronisation, in-phase and out of phase entrainment, amplitude or 
“oscillator death”, the cessation of oscillation in two coupled oscillating systems, or 
the converse, “rhythmogenesis”, in which coupling two systems at steady state causes 
them to start oscillating [13]. 

Vesicles formed from droplets of BZ medium (Figure 3), typically just a few 
millimetres in diameter, exhibit many properties which may be considered as 
rudimentary for possible future molecular processing systems: signal transmission, self-
repair, signal gain, self-organisation, etc. Their potential use for computation has begun 
to be explored through collision-based schemes (e.g., [3][4][19][20]). This paper 
considers their use within a dynamic representation using a collision-based scheme. 

 

Fig. 3. Showing the BZ droplet vesicles 
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Collision-based computing exploits the interaction of moving elements and their 
mutual effects upon each other’s movement wherein the presence or absence of 
elements at a given point in space and time can be interpreted as computation (e.g., 
see [2] for chemical systems). Collision-based computing is here envisaged within 
recurrent networks of BZ vesicles, i.e., based upon the movement and interaction of 
waves of excitation within and across vesicle membranes. For example, to implement 
a two-input NAND gate, consider the case shown in Figure 4: when either input is 
applied, as a stream of waves of excitation, no waves are seen at the output location in 
the top vesicle - only when two waves coincide is a wave subsequently seen at the 
output location giving logical AND. A NOT gate can be constructed through the 
disruption of a constant Truth input in another vesicle, as shown. 

A-type unorganised machines can therefore be envisaged within networks of BZ 
vesicles using the three-vesicle construct for the NAND gate nodes, together with 
chains of vesicles to form the connections between them. Creation of such chains is 
reported in the initial experimentation with micro-fluidics noted above [25]. As also 
noted above, it has recently been shown that IP is an effective design approach with 
the dynamic representation. 

 
 
 
 
 
 
 
 
 
 

 
 

 
 
 

 

Fig. 4. Showing the construction of a two-input NAND gate under a collision-based scheme 
using three BZ vesicles. The cases of inputs True-False (left) and True-True (right) are shown. 
Note the existence of an AND gate also. 

4 Imitation Programming 

The basic principle of imitation programming is that individuals alter themselves 
based upon another individual(s), typically with some error in the process. Individuals 
are not replaced with the descendants of other individuals as in evolutionary search; 
individuals persist through time, altering their solutions via imitation. Thus imitation 
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may be cast as a directed stochastic search process, thereby combining aspects of both 
recombination and mutation used in evolutionary computation: 

 
 

BEGIN 
INITIALISE population with random candidate solutions 
EVALUATE each candidate 
REPEAT UNTIL (TERMINATION CONDITION) DO 

FOR each candidate solution DO 
SELECT candidate(s) to imitate 
CHOOSE component(s) to imitate 
COPY the chosen component(s) with ERROR 
EVALUATE new solution 
REPLACE IF (UPDATE CONDITION) candidate with new solution 

     OD 
OD 
END 

 
 
For A-type design, IP utilizes a variable-length representation of pairs of integers 

defining node inputs, each with an accompanying single bit defining the node’s start 
state. There are three imitation operators - copy a node connection, copy a node start 
state, and change size through copying. In this paper, each operator can occur with or 
without error, with equal probability, such that an individual performs one of the six 
during the imitation process as follows: 

To copy a node connection, a randomly chosen node has one of its randomly 
chosen connections set to the same value as the corresponding node and its same 
connection in the individual it is imitating. When an error occurs, the connection is set 
to the next or previous node (equal probability, bounded by solution size). Imitation 
can also copy the start state for a randomly chosen node from the corresponding node, 
or do it with error (bit flip here). Size is altered by adding or deleting nodes and 
depends upon whether the two individuals are the same size. If the individual being 
imitated is larger than the copier, the connections and node start state of the first extra 
node are copied to the imitator, a randomly chosen node being connected to it. If the 
individual being imitated is smaller than the copied, the last added node is cut from 
the imitator and all connections to it re-assigned. If the two individuals are the same 
size, either event can occur (with equal probability). Node addition adds a randomly 
chosen node from the individual being imitated onto the end of the copier and it is 
randomly connected into the network. The operation can also occur with errors such 
that copied connections are either incremented or decremented. For a problem with a 
given number of binary inputs I and a given number of binary outputs O, the node 
deletion operator has no effect if the parent consists of only O + I + 2 nodes. The 
extra two inputs are constant True and False lines. Similarly, there is a maximum size 
(100) defined beyond which the growth operator has no effect. 
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In this paper, each individual in the population P creates one variant of itself and it 
is adopted if better per iteration. In the case of ties, the solution with the fewest 
number of nodes is kept to reduce size, otherwise the decision is random. The 
individual to imitate is chosen using a roulette-wheel scheme based on proportional 
solution utility, i.e., the traditional reproduction selection scheme used in GAs. Other 
forms of updating, imitation processes, and imitation selection are, of course, possible 
[8]. In this form IP may be seen as combining ideas from memetics [12] with 
Evolutionary Programming [14]. It can be noted GAs have previously been used to 
design chemical computing systems in various ways (e.g., [9][37][38]). 

5 A-Type Experimentation 

In the following, three well-known logic problems are used to begin to explore the 
characteristics and capabilities of the general approach. The multiplexer task is used 
since they can be used to build many other logic circuits, including larger 
multiplexers. These Boolean functions are defined for binary strings of length l = k + 
2k under which the k bits index into the remaining 2k bits, returning the value of the 
indexed bit. Hence the multiplexer has multiple inputs and a single output. The 
demultiplexer and adders have multiple inputs and multiple outputs. As such, simple 
examples of each are also used here.  A simple sequential logic task is also used here - 
the JK latch. In all cases, the correct response to a given input results in a quality 
increment of 1, with all possible binary inputs being presented per solution 
evaluation. Upon each presentation of an input, each node in an unorganised machine 
has its state set to its specified start state. The input is applied to the first connection 
of each corresponding I input node. The A-type is then executed for 15 cycles. The 
value on the output node(s) is then taken as the response. All results presented are the 
average of 20 runs, with P=20. Experience found giving initial random solutions 
N=O+I+2+30 nodes was useful across all the problems explored here, i.e., with the 
other parameter/algorithmic settings. 

Figure 5 shows the performance of IP to design A-type unorganised machines on 
k=2 versions of the four tasks: the 6-bit multiplexer (opt. 64), 2-bit adder (opt. 16), 6-
bit demultiplexer (opt. 8) and 2-input JK latch (opt. 4).  As can be seen, optimal 
performance is reached in all cases, well within the allowed time, and that the solution 
sizes are adjusted to the given task. That is, discrete dynamical circuits capable of the 
given logic functions have been designed. As discussed elsewhere [8], the relative 
robustness of such circuits to faults, their energy usage, etc. remains to be explored. 

However, to begin to consider implementing such designs within BZ vesicles, the 
time taken for signal propagation between NAND gate nodes needs to included. That 
is, in Figure 5, as in all previous work with such dynamic representations, any 
changes in node state are immediately conveyed to any other connected nodes since a 
traditional computational substrate is assumed. Within the vesicles, changes in NAND 
gate node state will propagate through chains and hence there will be a time delay 
proportional to the distance between nodes. 
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Fig. 5. Showing the performance of IP in designing A-type unorganised machines for the three 
combinatorial and single sequential logic tasks 

Figure 6 shows results for the same experiments and parameters as before but with 
a form of time delay added to begin to consider the physical implementation in an 
elementary way. Here NAND gate node states take the same number of update cycles 
to propagate between nodes as the absolute difference in node number. For example, 
the state of node 11 at time t would take 8 update cycles to reach node 3. Hence at 
update cycle t+8, node 3 would use the state of node 11 as at time t as one of its 
inputs. The number of overall update cycles for the A-types was increased to 50 to 
help facilitate signal passing across the network. 

As Figure 6 shows, it takes longer to reach optimal solutions (T-test, p<0.05) and 
they are perhaps surprisingly smaller (T-test, p<0.05, except JK Latch) than before, 
but suitable dynamic designs are again found in the allotted time, except for the adder 
which takes longer to reach optimality. 



194 L. Bull et al. 

 

Fig. 6. Showing the performance of IP in designing A-type unorganised machines for the four 
logic tasks with signal propagation times added 

6 RBN Experimentation  

Random Boolean networks were originally introduced to explore aspects of biological 
genetic regulatory networks. Since then they have been used as a tool in a wide range 
of areas such as self-organisation (e.g., [23]) and computation (e.g., [30]). An RBN 
typically consists of a network of N nodes, each performing a Boolean function with 
K inputs from other nodes in the network, all updating synchronously. As such, RBN 
may be viewed as a generalization of Turing‘s A-type unorganised machines which 
used only the NAND Boolean function with K=2. As noted above, Turing‘s paper was 
not published until 1968 so it is perhaps not too surprising that Kauffman did not 
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originally discuss his work - although no connection has been made subsequently 
either, except in [36]. 

It is well-established that the value of K affects the emergent behaviour of RBN 
wherein attractors typically contain an increasing number of states with increasing K. 
Three phases of behaviour are suggested: ordered when K=1, with attractors 
consisting of one or a few states; chaotic when K>2, with a very large numbers of 
states per attractor; and, a critical regime when K=2, where similar states lie on 
trajectories that tend to neither diverge nor converge and 5-15% of nodes change state  
 

 

Fig. 7. Showing the construction of a two-input OR and NOR gates under a collision-based scheme 
using three BZ vesicles. The cases of inputs False-False (left) and True-True (right) are shown. 

 

Fig. 8. Showing the construction of a two-input XOR and XNOR gates under a collision-based 
scheme using three BZ vesicles. The cases of inputs False-False (left) and False-True (right) are 
shown. 
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Fig. 9. Showing the performance of IP in designing RBN for the four logic tasks with signal 
propagation times 

per attractor cycle (see [23] for discussions of this critical regime, e.g., with respect to 
perturbations). Analytical methods have been presented by which to determine the 
typical time taken to reach a basin of attraction and the number of states within such 
basins for a given degree of connectivity K (again, see [23]). 

The previous A-type scenario has been extended to include other well-known 
Boolean functions through collision-based schemes. Figures 7 and 8 show how two-
input OR, NOR, XOR and XNOR can all be achieved using vesicles. 

 



 Toward Turing’s A-Type Unorganised Machines in an Unconventional Substrate 197 

Figure 9 shows how performance is not typically improved in any case considered 
(T-test, p<0.05) with the extra Boolean functionality added - AND, NAND, OR, 
NOR, XOR, XNOR – and hence Turing’s simpler scheme appears to represent a 
potentially useful approach for implementation with the vesicles. 

7 Conclusions 

Over sixty years ago, Alan Turing presented a simple representation scheme for 
machine intelligence – a discrete dynamical system network of two-input NAND 
gates. Since then only a few other explorations of these unorganized machines are 
known. As noted above, it has long been argued that dynamic representations provide 
numerous useful features, such as an inherent robustness to faults and memory 
capabilities by exploiting the structure of their basins of attraction. For example, 
unique attractors can be assigned to individual system states/outputs and the map of 
internal states to those attractors can be constructed such that multiple paths of similar 
states lead to the same attractor. In this way, some variance in the actual path taken 
through states can be varied, e.g., due to errors, with the system still responding 
appropriately. Turing appears to have been thinking along these lines also. 

Given the relative simplicity of A-types but their potential for complex behaviour, 
this paper suggests they may provide a useful representation scheme for 
unconventional computing substrates. Unconventional computing aims to go beyond 
traditional architectures and formalisms, much of which is based upon Turing’s work 
on computability, by exploiting the inherent properties of systems to perform 
computation. A number of experimental systems have been presented in biological, 
chemical and physical media. Where NAND gate function can be realised, whilst also 
leaving open the potential utilisation of other aspects of the chosen medium, A-types 
could be explored. In particular, a substrate of BZ vesicles recently presented as a step 
towards molecular information processing, e.g., for future smart drugs, was 
considered and a form of two-input NAND gate designed for it through collision-
based computing. 

It was then shown how a number of well-known benchmark logic circuits can be 
designed from A-type unorganised machines using an approach inspired by a 
comment from Turing on cultural search. Further consideration of the physical 
implementation within networks of BZ vesicles meant that signal propagation times 
were also included into the A-types. Results indicate that the design process was 
slowed relatively but still effective. Extending the NAND gate functionality to 
include other well-known Boolean logic within the networks showed no improved 
performance in the more realistic case. Current work is increasing the level of detail 
of the simulated chemical system both in terms of the vesicle structure and of the BZ 
reaction therein. 

Acknowledgement. The research was supported by the NEUNEU project sponsored 
by the European Community within FP7-ICT-2009-4 ICT-4-8.3 - FET Proactive 3: 
Bio-chemistry-based Information Technology (CHEM-IT) program. 



198 L. Bull et al. 

References 

1. Adamatzky, A. (ed.): Collision-based Computing. Springer, London (2002) 
2. Adamatzky, A., De Lacy Costello, B., Asai, T.: Reaction-Diffusion Computers. Elsevier 

(2005) 
3. Adamatzky, A., Holley, J., Bull, L., De Lacy Costello, B.: On Computing in Fine-grained 

Compartmentalised Belousov–Zhabotinsky Medium. Chaos, Solitons & Fractals 44(10), 
779–790 (2011) 

4. Adamatzky, A., De Lacy Costello, B., Holley, J., Gorecki, J., Bull, L.: Vesicle computers: 
Approximating a Voronoi diagram using Voronoi automata. Chaos Solitons and 
Fractals 44, 480–489 (2011) 

5. Agladze, K., Aliev, R.R., Yamaguhi, T., Yoshikawa, K.: Chemical diode. Journal of 
Physical Chemistry 100, 13895–13897 (1996) 

6. Ashby, W.R.: Design for a Brain. Wiley, New York (1954) 
7. Bar-Eli, K., Reuveni, S.: Stable stationary-states of coupled chemical oscillators: 

Experimental evidence. Journal of Physical Chemistry 89, 1329–1330 (1985) 
8. Bull, L.: Using Genetical and Cultural Search to Design Unorganised Machines. 

Evolutionary Intelligence 5(1) (2012) 
9. Bull, L., Budd, A., Stone, C., Uroukov, I., De Lacy Costello, B., Adamatzky, A.: Towards 

Unconventional Computing Through Simulated Evolution: Learning Classifier System 
Control of Non-Linear Media. Artificial Life 14(2), 203–222 (2008) 

10. Copeland, J., Proudfoot, D.: On Alan Turing’s Anticipation of Connectionism. 
Synthese 108, 361–377 (1996) 

11. Crowley, M.F., Field, R.J.: Electrically coupled Belousov-Zhabotinskii oscillators 1: 
Experiments and simulations. Journal of Physical Chemistry 90, 1907–1915 (1986) 

12. Dawkins, R.: The Selfish Gene. Oxford Press, Oxford (1976) 
13. Dolnik, M., Epstein, I.R.: Coupled chaotic oscillators. Physical Review E 54, 3361–3368 

(1996) 
14. Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial Intelligence Through A Simulation of 

Evolution. In: Maxfield, M., et al. (eds.) Biophysics and Cybernetic Systems: Proceedings 
of the 2nd Cybernetic Sciences Symposium, pp. 131–155. Spartan Books (1965) 

15. Gorecki, J., Yoshikawa, K., Igarashi, Y.: On chemical reactors that can count. Journal of 
Physical Chemistry A 107, 1664–1669 (2003) 

16. Hjelmfelt, A., Ross, J.: Mass-coupled chemical systems with computational properties. 
Journal of Physical Chemistry 97, 7988–7992 (1993) 

17. Hjelmfelt, A., Weinberger, E.D., Ross, J.: Chemical implementation of neural networks 
and Turing machines. PNAS 88, 10983–10987 (1991) 

18. Holland, J.H.: Adaptation in Natural and Artificial Systems. Univ. of Mich. Press (1975) 
19. Holley, J., Adamatzky, A., Bull, L., De Lacy Costello, B., Jahan, I.: Computational 

modalities of Belousov-Zhabotinsky encapsulated vesicles. Nano Communication 
Networks 2, 50–61 (2011) 

20. Holley, J., Jahan, I., De Lacy Costello, B., Bull, L., Adamatzky, A.: Logical and 
Arithmetic Circuits in Belousov Zhabotinsky Encapsulated Discs. Physical Review E 84, 
56110 (2011) 

21. Holz, R., Schneider, F.W.: Control of dynamic states with time-delay between 2 mutually 
flow-rate coupled reactors. Journal of Physical Chemistry 97, 12239 (1993) 

22. Kauffman, S.A.: Metabolic Stability and Epigenesis in Randomly Constructed Genetic 
Nets. Journal of Theoretical Biology 22, 437–467 (1969) 

23. Kauffman, S.A.: The Origins of Order. Oxford Press, Oxford (1993) 



 Toward Turing’s A-Type Unorganised Machines in an Unconventional Substrate 199 

24. Kawato, M., Suzuki, R.: Two coupled neural oscillators as a model of the circadian 
pacemaker. Journal of Theoretical Biology 86, 547–575 (1980) 

25. King, P.H., Corsi, J.C., Pan, B.-H., Morgan, H., de Planque, M.R., Zauner, K.-P.: Towards 
molecular computing: Co-development of microfluidic devices and chemical reaction 
media. Biosystems (2012) 

26. Kuhnert, L., Agladze, K.I., Krinsky, V.I.: Image processing using light sensitive chemical 
waves. Nature 337, 244–247 (1989) 

27. Laplante, J.P., Pemberton, M., Hjelmfelt, A., Ross, J.: Experiments on pattern recognition 
by chemical kinetics. Journal of Physical Chemistry 99, 10063–10065 (1995) 

28. Lebender, D., Schneider, F.W.: Logical gates using a nonlinear chemical reaction. Journal 
of Physical Chemistry 98, 7533–7537 (1994) 

29. McCulloch, W.S., Pitts, W.: A Logical Calculus of the Ideas Immanent in Nervous 
Activity. Bulletin of Mathematical Biophysics 5, 115–133 (1943) 

30. Mesot, B., Teuscher, C.: Deducing Local Rules for Solving Global Tasks with Random 
Boolean Networks. Physica D 211(1-2), 88–106 (2005) 

31. Motoike, I.N., Yoshikawa, K., Iguchi, Y., Nakata, S.: Real time memory on an excitable 
field. Physical Review E 63, 1–4 (2001) 

32. Sielewiesiuk, J., Gorecki, J.: Passive barrier as a transformer of chemical frequency. 
Journal of Physical Chemistry A 106, 4068–4076 (2002) 

33. Steinbock, O., Toth, A., Showalter, K.: Navigating complex labyrinths: Optimal paths 
from chemical waves. Science 267, 868–871 (1995) 

34. Steinbock, O., Kettunen, P., Showalter, K.: Chemical wave logic gates. Journal of Physical 
Chemistry 100, 18970–18975 (1996) 

35. Stuchl, I., Marek, M.: Dissipative structures in coupled cells: Experiments. Journal of 
Physical Chemistry 77, 2956–2963 (1982) 

36. Teuscher, C.: Turing’s Connectionism. Springer, London (2002) 
37. Toth, R., Stone, C., De Lacy Costello, B., Adamatzky, A., Bull, L.: Dynamic Control and 

Information Processing in the Belousov-Zhabotinsky Reaction using a Co-evolutionary 
Algorithm. Journal of Chemical Physics 129, 184708 (2008) 

38. Toth, R., Stone, C., De Lacy Costello, B., Adamatzky, A., Bull, L.: Simple Collision-based 
Chemical Logic Gates with Adaptive Computing. Journal of Nanotechnology and 
Molecular Computation 1(3), 1–16 (2009) 

39. Turing, A.: Intelligent Machinery. In: Evans, C.R., Robertson, A. (eds.) Key Papers: 
Cybernetics, Butterworths, pp. 91–102 (1968) 

40. Turing, A.: The Chemical Basis of Morphogenesis. Philosophical Transactions of the 
Royal Society of London. Series B, Biological Sciences 237(641), 37–72 (1952) 

41. Wolfram, S.: A New Kind of Science. Wolfram Media (2002) 
42. Zaikin, A.N., Zhabotinsky, A.M.: Concentration wave propagation in two-dimensional 

liquid-phase self-oscillating system. Nature 225, 535–537 (1970) 



G. Dodig-Crnkovic and R. Giovagnoli (Eds.): Computing Nature, SAPERE 7, pp. 201–211. 
DOI: 10.1007/978-3-642-37225-4_12                  © Springer-Verlag Berlin Heidelberg 2013 

Learning to Hypercompute? An Analysis of Siegelmann 
Networks 

Keith Douglas 

philosopher.animal@gmail.com 

Abstract. This paper consists of a further analysis (continuing that of [11]) of 
the hypercomputing neural network model of Hava Siegelmann ([21]).  

1 Introduction 

This paper consists of a further analysis (continuing that of Douglas [11]1) of the 
hypercomputing neural network model of Hava Siegelmann ([21]). It consists of three 
large sections. In the first section, a brief description of Siegelmann’s model is pre-
sented. This section will be followed by a discussion of the merits of taking this mod-
el as a factual model (pace the “abstract” approach of Sieg [20]). Third, a discussion 
of one of Siegelmann’s key, heretofore poorly explored, assumptions (the “linear 
precision suffices” claim) will be addressed and is the primary focus of the paper. 
This discussion will proceed along the following three subsections of analysis: it will 
discuss (1) a not-fully “noticed” suggestion of Arlo-Costa ([1]) and Douglas ([11])2 
that the Siegelmann network model actually requires a supertask to perform; (2) the 
merits of treating Siegelmann’s proposal as one involving an idealization in the sense 
of Norton ([15]). The latter two will also allow a brief discussion of a factual interpre-
tation of the arithmetic, analytic and similar familiar hierarchies; (3) that pace Davis 
and Scott ([9]) “non-recursive black boxes” are not exactly untestable, making use of 
the work of Kelly and Schulte ([16]). Subsections (2) and (3) are not independent and 
yield similar findings. 

I end with summary conclusions. The conclusions will largely be more negative 
and “skeptical” about the merits of the Siegelmann network than those of herself or 
some of those (e.g. Copeland) who have defended it, but hope to provide more details 
on the areas of the model where interested parties could work on improving its  
plausibility and (nomological) possibility.  

                                                           
1  This paper is dedicated to the memory of Horacio Arlò-Costa and, of course, to that of Alan 

Turing, who I would like to think would be astonished by the amount of work building on his 
we have today and by which the results are so omnipresent. 

2  I am not claiming such should have been noticed, per se, but I find it strange that these con-
siderations have not made it into the discussion of our topic by critics of hypercomputing (or 
considered as a “devil’s advocate” objection by proponents). 
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2 Siegelmann Neural Networks 

Hava Siegelmann’s monograph ([21]) is the principle source of detailed discussion of 
her model (hereafter SN), and includes much information about the computational 
strengths of various forms of neural networks, their properties from the perspective of 
computational complexity and much off topic for our present purpose. Subsequently 
here, we only need to focus on aspects that are unique or unusual in her presentation 
with regards to the question of computability. I assume the reader is familiar enough 
with usual artificial neural network models (hereafter, ANN) to follow the discussion 
involving such matters as nodes and weights (see, e.g.,[8]). 

These unique/unusual aspects are: (1) the necessity of using an “output protocol”, 
(2) her claims about the (real-valued) weights in the network and (3) the “sensitivity” 
of the network, i.e., a matter of interpreting the activation function.  

This section of the paper will simply remind or inform the audience of these  
features as they do play a role later on, and not critically discuss them completely at 
this point.  I bring these up to show that there are additional problems with SNs not 
discussed as much as the problem of weights already familiar in the literature and 
because they will play a crucial role in the discussions of idealizations later on. 

In the case of “output protocol”, what is meant is the convention adopted by Sie-
gelmann (see in particular, [21], pp. 23-24) to indicate when a SN is finished its com-
putation and is returning the value so calculated to its users. A state flag called the 
“output validation line” is set to 1 and is held in this value for the duration of the sig-
nificant output and is set and held at 0 at all other times. One can then, during the time 
this line is 1, read off the value of the output from another, more conventional, output 
line. The “hypercomputing” part of this proposal is somewhat significant and yet 
hidden in her presentation.  

In particular, how does this flag get set? Take the case of a recursively undecidable 
problem, for which these networks are supposedly useful at solving, like the halting 
problem for Turing machines (hereafter, TMs). In this case the output is a single en-
coded output, so in this case, the flag will be set to 1 at one “tick”3 sometime in the 
future while (say) 1 comes out of the output line if the encoded TM halts and 0 other-
wise. How does one know how to set this flag as a “programmer” of one of the net-
works? This depends on how the function is calculated, presumably. One has to know 
that the calculation is finished, that whatever state the network is in is the correct one. 
But this itself is a hyper-computational task; and so a regress seems to threaten. 

Let us move on then to the case of the real valued weights of the network. This fea-
ture is the root of the hypercomputational power of the SN. Siegelmann does not tell 
us how these are to be obtained; merely calculates approximately how many digits of 
precision are needed after a given amount of run time. Since (by hypothesis) the net-
work does not use registers, it is unclear what gaining digits of precision could refer  
 

                                                           
3  This assumes the network is somehow equipped with a clock (which at least some ANNs do 

not have), but in the interest of manageability of this paper, I’ll simply grant this part of the 
SN ex hypothesi. 
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to. An unspecified learning procedure is appealed to for the source of this extra preci-
sion, but without details this is simply an unknown as well. Notice that there are two 
concerns here - both the learning procedure and how its use gets “recorded”, “stored”, 
etc. are at stake.  As for the activation functions, their “embodiment” or “implementa-
tion” also raises unanswered questions. For example, a threshold function (as the 
name suggests) is typically understood to be some representation of a node’s sensi-
tivity to its inputs. In the case of SNs, these must be infinitely sensitive. Take a thre-
shold function of the form (all of them discussed have the same problem; but since 
Siegelmann places special emphasis on the truncated linear one I use it here): 
 

f(x) = 0 if x < 0     
= x if 0 <= x <=1 
= 1 if x > 1  

 

To see the potential concern, consider a value of x = 0 + e, where e is some small 
value approximately (but not exactly) equal to zero. Represented in the usual notation, 
this is then some value 0.00000000000000000...1, say. The network has to be able to 
be able to “recognize” that value, no matter how small its difference is from 0, be-
cause the value of the output depends on it4. Siegelmann emphasizes truncation or 
rounding reduces the value represented at a node to a rational value and hence renders 
the computational properties of the network nonhypercomputational. I call the proper-
ty of the nodes in question “sensitivity”, and as we have now seen, this is infinite in a 
real valued network (which allows literally any real value as a weight). Previous crit-
ics have pointed out the implausibility of finding (or knowing) that one had a hyper-
computable weight in a SN (e.g., [9]); it is hopefully now clear that the problem is at 
least twice that, since one also needs a way for the network to make use of it, and that 
requires a “hypersensitive sensor” or something of the kind - subsystems that respond 
in infinitely precise ways to embody the activation functions. I might add in passing 
that this mistake or oversight is nothing new. Bunge ([5]) argues that a human brain is 
not suitably modeled by a TM because even a single electron can be in a continuum 
of states. Ignoring that this might prove too much, Bunge, like Siegelmann, has to 
argue that there can be an infinite number of (hyper)computationally (or, in Bunge’s 
case5, cognitively) relevant states and events (state transitions: [10]). 
                                                           
4  Consider the required difference in output from two nodes that differ in value by 2e (e.g., one 

0+e and the other 0-e). One of these will have activation 0 and the other e. It is also interest-
ing to reflect that a relatively informal presentation of ANNs like in [8] the weights are also 
described as being real-valued, but nothing in their presentation hinges on it. Presumably it 
makes explaining the mathematics easy and ensures that a digression about computable 
PDEs is irrelevant. Presumably also Churchland and Sejnowski regard the plausibility of any 
real number as a weight to be not worth considering. Note also that the learning algorithms 
they discuss (pp. 96 ff.) are computable as well. 

5  I will not press the point here, but from my experience in conversation with Bunge (in the 
late 1990s); he does not think human brains are hypercomputers: rather, he thinks that com-
putational notions are inapplicable to them altogether. The view, although he would be horri-
fied by the comparison, seems to be similar to that of Wittgenstein. But this is all for another 
time. 
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3 Sieg (Indirectly) on Siegelmann  

Sieg ([20]) has argued (in the context of a discussion of the Church-Turing thesis) that 
one can dispense with said thesis and instead:  

“My strategy, when arguing for the adequacy of a notion, is to bypass theses alto-
gether, and avoid the fruitless discussion of their (un-)provability. This can be done 
by conceptual analysis, i.e., by sharpening the informal notion, formulating its general 
features axiomatically, and investigating the axiomatic framework.”  

This viewpoint dispenses with the need to analyze the Siegelmann network in de-
tail, at least for the present purposes - were it correct. It would make it clear that 
hypercomputation is doomed to failure as a subject as the axiomatic framework in 
question makes it perfectly clear that broadly computational devices (including poten-
tial hypercomputers6) do not include anything like the SN7. 

However, as has been pointed out by Stewart Shapiro ([19]), it does not appear that 
Sieg successfully dispenses with theses here. In other words, there is the question of 
whether or not the axioms are correct8 of the real (or non-abstract, non-Platonic, etc.: 
replace as necessary according to your favourite philosophy of mathematics) systems 
under consideration. How do we (hopefully) resolve this impasse? For if Sieg is right, 
there is nothing to investigate; we simply see that the SNs do not fall under the 
axioms of computing machines he has usefully provided and that would be the end of 
it. This seems too hasty for the present purpose, so the concern is pressing. 

Here is where Shapiro is mistaken; he thinks that (following Quine [18] and others) 
one is dealing with some matter which is both mathematical and empirical. For some 
(perhaps for Sieg) this is impossible or unlikely; instead it is like investigating axioms 
for (say) groups9.  If Sieg were right it would be a matter of getting (as he borrows a 

                                                           
6  Nothing in the Sieg-Gandy presentation actually rules out accelerated Turing machines ([2]) 

for example. However, it is unlikely at best that either Sieg or Gandy would approve; the ad-
vantage to the SN over many models of computation is that it explicitly includes a clock (a 
feature it admittedly shares with some ANN models) and thus can be used to more precisely 
make claims for or against “tricks with time” like the accelerated Turing machine requires. 
I’d hazard a conjecture that such a machine also requires no lower bound on the size of its 
parts if described as a Sieg-Gandy machine, and hence runs afoul of the finiteness require-
ments that way, but such an argument would require delicate physical hypotheses I do not 
wish to address in the present work. 

7  Since I disagree with Sieg that this approach is suitable, I shall not investigate precisely (in 
the present paper) where Sieg-Gandy machines rule out SNs, however it seems likely they 
run afoul of the “finite parts” conditions. Sieg and Gandy represent parts by the hereditary 
finite sets, so, presumably, a similar approach to the SN would need to use hereditary count-
able sets. This seems to suggest either or both of an infinite number of parts or an infinite 
magnitude of a property of one. 

8  I suspect that Sieg would claim that there is no thesis involved here; one simply investigates 
whether or not the axioms are fruitful, lead to desired consequences, etc. However useful that 
approach is for his and many other very important purposes, it amounts to begging the ques-
tion against hypercomputation without further ado. 

9  Using an algebraic analogy here, as opposed to (say) using a geometric one is important. By 
contrast, say, analysis would lead to questions immediately about the “real” continuum and 
whether spacetime is or could be discrete; geometry raises similar questions about dimensio-
nality, curvature, etc. 
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phrase from Hilbert in saying) the “Tieferlegung der Fundamente” right; Shapiro 
claims instead one has to look to the world too. I claim both are mistaken because 
they have overlooked the possibility that the matter is not about mathematics  
at all.  

I argue that the debate should be construed as one about doing mathematics (or at 
least doing calculations or computations). Turing, as Sieg has rightly emphasized, 
analyzed a human “computor” (in the sense of Gandy [13]). Similarly, Gandy, him, 
and others have analyzed calculations by machine as well. Using Bunge’s ([3]) theory 
of reference and Sieg’s admirable presentation ([20]) of “Gandy machines”, one sees 
that the theory of Gandy machines is, indeed, about computing machines. This makes 
the subject matter a factual10 one in Bunge’s sense11; see also Douglas [12]. In other 
words, it is not a matter of mathematics - one can (and should) use mathematics as a 
tool to describe the characteristics of the computers and computors, but this does not 
make the field mathematics anymore than using differential equations in the theory of 
reaction mechanisms makes chemistry a branch of mathematics. 

Hence Shapiro is right in his claim: Sieg does not dispense with theses - or, if  
preferred, Church’s thesis is in need of “empirical” confirmation  and hence SNs’ 
“usefulness” as a model of computing cannot be dismissed so hastily. Also hence in 
particular, we must address the question of whether SNs are empirically plausible. It 
is here that we run quickly into previous criticisms of her proposals from the likes of 
Martin Davis and Dana Scott.  

Davis’ ([9]) paper quotes Scott concerning how we would recognize a “nonrecur-
sive black box”. I feel this quotation is also slightly mistaken: it proves too much. I 
agree that no finite amount of interaction with a black box could show that it performs 
hypercomputational processes. However, no finite amount of observation could tell 
you that a black box contains a Turing machine. Any finite experimentation with 
input and output is consistent with the black box being a (perhaps very large) finite 
state automaton12. This is not to say Scott and Davis are mistaken concerning the 
difficulty of determining that one has a hypercomputer of some kind, but instead that 
it is important not to overstate this difficulty. He emphasizes how hard it would be to 
tell that one had a non- recursive “transparent box” (i.e. a black box with much of its 
workings well known). It seems to me that Scott and Davis have adopted almost an  
instrumentalist attitude towards (what Bunge would call factual) scientific theories 
here. Since instrumentalism is controversial amongst philosophers of science, we 

                                                           
10 Bunge ([3], [5]) is a mathematical fictionalist and contrasts factual to formal sciences; once 

again one can translate into one’s appropriate philosophy of mathematics idiom. The impor-
tant matter is that group theory is not the correct analogy; instead, a theory in (say) chemistry 
- like (say) a theory of solutions - is a better comparison. Using physics would raise questions 
about “rational mechanics” that might prolong the debate unnecessarily and other sciences 
would raise equally irrelevant questions for our present purpose. I will use “factual” in his 
sense throughout. 

11 Bunge (see, e.g., [4]) would claim that this use of “empirical” (traditional in most philosophy 
of science) is wrong, however, I shall use it here to emphasize what I intend. 

12 Matters are actually not quite this simple. See below about [15]). 
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should be wary of this approach13. After all, how does (say) Newtonian dynamics 
(ND) get verified? This presumably factual theory uses continuous functions and 
such; whereas any measurement is only of finite precision and hence renders direct 
confirmation impossible. Davis and Scott thus “prove too much” with this approach. 
They might rejoin that one could state ND in terms of computable analysis. However, 
assuming it could be done in this case does not show it could be done in general. Al-
so, since the theory is then different, how does one decide between the computable 
version and its (usual) noncomputable counterpart? It would seem one would have to 
apply more general principles about the nature of theories in (factual) science. Since 
these are arguably under debate, we are now back where we started. 

Nevertheless, Davis and Scott have correctly (in my view) treated SNs as to what 
sort of proposal they are - namely a family of factual hypotheses. I have mentioned 
earlier (section 1) that there are what one might call “nomological” areas of discus-
sion (problems, counterproposals, etc.) with the SN approach. I now turn to three of 
these. 

4 Nomological Considerations about “Linear Precision 
Suffices” 

The first of these stems from Arlò-Costa ([1]) and adapts prior remarks of Douglas 
([11]) to that end. He asks whether or not the SN require a supertask to implement and 
hence “inherit” the implausibility of the accelerated Turing machine (see, e.g., Boolos 
and Jeffrey [2]) which most would agree is a purely “notional” device. In particular, 
note the difficulty even in computing a constant function with a SN. Since the weights 
of each node in a SN are of infinite precision, outputting their value directly is im-
possible by the protocol described. This arises because such a constant is still an infi-
nite precision number, and so outputting its value requires an infinite amount of 
time14, followed by a signal to indicate that the output is finished. At best this would 
require a supertask. A suitable re-encoding15  would have to be found, and that is not 
suggested anywhere by Siegelmann. Moreover, such would have to handle rational 

                                                           
13  Disclosure: As may be noticed, I am a scientific realist (of a somewhat unnamed sort), so I 

have (what I take to be) good reasons against instrumentalisms. But to be charitable to such 
esteemed scholars as Scott and Davis, I have tried to avoid dismissing their seemingly in-
strumentalist views out of hand and tried to find a way to allow both them and Siegelmann 
the benefit of the doubt about the plausibility of certain hypotheses. 

14  That is, unless one could in every case “program” the Siegelmann network to tell when it had 
an irrational number and flag rationals appropriately. This ability itself seems to be hyper-
computational. 

15  Siegelmann’s book spends a lot of time talking about Cantor sets and changes in number 
bases, etc. As far as I can tell, qua engineering proposal (and one does take SNs as such when 
one takes them factually, as we are doing) this is largely irrelevant without knowing what  
physical properties does the representation in the engineering sense. Obviously no registers 
are involved, and so re-encoding is not well defined at present. This problem is (needless to 
say) another instance of the same one that we keep encountering: how do the weights work? 
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values as well as surds, transcendental values, and even non-Turing computable num-
bers, like Chaitin’s constant. Of course, giving a finite representation of the latter sort 
of value cannot in general be done. My earlier remarks about the “output protocol” 
loom large here. 

Similarly, if the precision of an infinitely precise real number is not available at the 
beginning of the run of a SN, and the precision increases uniformly in time (see fur-
ther my discussion of “learning networks”) it will take an infinite amount of time for 
the network to become infinitely precise. This entails immediately that the networks 
are actually Turing-equivalent for any finite period of time. Here, let me note further 
that this puts Siegelmann’s model in an unfortunate dilemma much as the precision 
consideration proper above provokes. Once again, either the network is infinitely 
precise in finite time (throwing away the “linear precision suffices” result), in which 
case the Siegelmann network is implausible from the sensitivity considerations I have 
canvassed and from related concerns, or it is only infinitely sensitive in infinite time, 
in which case using it to perform super-Turing computations would again require a 
supertask. Thus, it seems that Arlò-Costa is in fact correct, though a proof would be 
nice to have - but in the interests of time I have omitted such. I thus turn to a question 
which stems also from [11]). 

This concerns the nature of idealizations and approximations. It might be argued 
that the critics of SNs are taking the model too literally. Instead, it should be treated 
as one involving either an idealization or an approximation. For example, a SN-fond 
opponent of the critics of hypercomputing may well point out the critic will ask: why 
should we not grant relevant idealizations to the Siegelmann network? after all, the 
TM itself (or, equally, a “Gandy-Sieg machine”) makes idealizations concerning 
computing agents and their resources. For example, these are held to have an un-
bounded amount of memory, do not break down ever, can calculate without running 
out of energy no matter how long they run, etc. So, the opponent asks, why not grant 
idealizations to the SN? 

One could attempt to respond to this opponent by (1) counting idealizations or (2) 
intuitively trying to evaluate their merits and plausibilities. In the case of (1) it is like-
ly correct to conclude that the SN includes all those of the TM and then some, it does 
not seem fruitful to simply claim that the SN has more and hence is more implausible, 
for what if the TM was already regarded as sufficiently implausible to not merit adop-
tion? Or, in other words, does this objection prove too much? Also, how does one 
know what is “too many” idealizations and approximations anyhow? Better to look at 
(2), instead.  

To focus attention, let us discuss one particular family of idealizations, that of the 
weights of the nodes16  in the SN. Norton ([15]) has circulated a manuscript on ideali-
zations which is useful to apply to the present purpose (cf. also the brief remarks in 
[14] and [7]). Norton’s paper centers around what he has called “the problem of lim-
its”, distinguishing between the case when the limit property and the limit system 
agree on the one hand, and when there is no limit system on the other. I shall argue, 

                                                           
16 There is an “informal duality” between the weights and what I have called “sensitivity”. All 

the arguments I raise, as far as I can tell, apply to it as well. 
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based on considerations based on the arithmetic hierarchy (e.g., [16], pp. 362 ff.) that 
Siegelmann’s proposal falls into the latter category. This is because at any finite time, 
a Siegelmann network is equivalent to a TM in power; only “at” the limit of infinite 
time is the network super-Turing in power. 

To adopt Norton’s analysis, one thus has to identify the limit property of a SN and 
what the limit system could be (if there is one). As just suggested, the limit property is 
the node weight (it does not matter if we take all the nodes or one, as by interleaving 
their expansion one can see there is effectively only one “weight” anyway17).  Let us 
also assume for definiteness that this weight is Chaitin’s constant, ɸ18. Then the ques-
tion becomes how the weight gets used in an idealization. Here I do not know what to 
do to proceed. The weight is still not explained: in order to evaluate the idealization 
we have to know what this property actually is. For the sake of definiteness again, 
assume that we are dealing with a length. Then the idealization involves that of limit-
ing lengths, the idealized value of which is ɸ. This is a case where the limit property is 
not a property of the limit system. This is because the increases in length precision do 
not correspond at all the steps on the arithmetic hierarchy: if the idealization here 
were plausible then each finite increase in precision would correspond to some finite 
n in the usual labeling of the hierarchy19. One simple “imaginable possibility” would 

be to think that a weight of precision n corresponded to a “strength” of  where 
f(n)  is some finite (i.e., non-divergent) function of n so that an infinite precision 

would deliver   as required20. But this does not work, no matter how slowly the 

function f grows, as   is already the recursive functions. In that sense, since each 

                                                           
17 For example, taking the digits from each weight value: 0.a1a2a3a4... and 0.b1b2b3b4... be-

comes 0.a1b1a2b2a3b3a4b4... in the case of a two node network. A similar procedure can be 
done for any SN, as they all have a finite number of nodes. 

18 A referee asked if we know that this particular constant is calculable. Since it is representable 
as a function from natural numbers to natural numbers, it is. SNs can calculate all such func-
tions ([21],  pp. 59 ff.). 

19 It is vital not to get the order of this (very impressionistic) proposal wrong. Since SNs grow 
in computational power by increasing precision, and in the conventional theory of computa-
tion, more computational power means “climbing” the arithmetic hierarchy, all I am suggest-
ing is how one would have to reconcile these aspects. 

20 There is some potential confusion here, so a clarification is true. It is quite correct to point 
out that this level of the hierarchy is “infinitely more” than is needed to do super-Turing 
computations. But precisely what is wrong (in one way) with the SN proposal is that it skips 
that entire part of the hierarchy. Why? Because that’s precisely what a jump from finite pre-
cision real numbers (i.e., rational weights) to the full infinitely precise weights of the SN 
does. On the one hand one needs the infinite precision; on the other hand the jump is an in-
appropriate idealization for that reason. There is no way an SN, as described, can climb 
through the hierarchy over finite time and wind up, in the infinite limit, at the ability to calcu-
late all functions from natural numbers to natural numbers. Any finite increase in precision 
adds at best a finite ability. It is not as if some magic bit, say at the 31337th decimal place, 
suddenly allows all the sigma 0 1 functions to be computed, etc. 
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finite n is still sub-recursive, the limit in question of the SNs is then the recursive 
functions and not the arithmetic ones the SN need, never mind the analytic ones (i.e. 
all the functions from natural numbers to natural numbers). Hence, the property of the 
limiting system and the limit property do not agree. Hence further it looks like an 
inappropriate idealization in Norton’s sense. We thus have a clearer way of stating the 
difference over the idealizations of the SN versus those of the TM. 

These brief appeals to the arithmetic hierarchy also allow an answer to Scott and 
Davis (above) and avoid protracted debates over operationalism. A non-recursive 
“oracle” is indeed hard to investigate; however, Kelly and Schulte ([15]) draw impor-
tant connections between the arithmetic hierarchy and the learning of theories with 
uncomputable predictions. While I will not prove any results here, I suggest that ra-
ther than an “operationalist” response to Siegelmann, one can in principle give a 
learning-theoretic answer at least for some possible uses of the network.  The goal in 
this section is to answer residual worries about operationalism and merely gesture at 
an area of future investigation, particularly connecting the properties of Siegelmann 
network to other hypercomputing proposals as has been suggested by the Wikipedia 
contributors ([22]). 

Let us turn to specifics. Kelly and Schulte ([15]) classify (following Gold and Put-
nam) hypercomputational problems into learning theoretic classes. For example, a 

hypothesis of the form   is one which is “refutable with certainty”. However, 

what is interesting from the perspectives of this paper (and symposium) is that a   
sentence is sufficiently “complex” that there is no way to investigate it in a computa-

ble way21. This is “infinitely far” away from the level   that characte-
rizes the complete SNs. However, a brief look at learning again might prove useful. If 
the increase in precision of real valued weights increased through the learning-
theoretic hierarchy in a useful way - say, some fixed bound moved the strength of the 

system from   to , that would be a useful finding. Unfortunately, it seems to 
be nowhere in offering, once again for the same reason. To reiterate: any finite bound 
in increase of precision of the networks preserves their behaviour vis-a-vis the arith-
metic hierarchy. This makes it implausible, to say the least, that SNs could increase 
their precision in a relevant way by “learning” as she proposes (without a supertask). 
This is not to say that real valued weights in a network could not increase precision by 
external influence (learning) but rather that they could not do so in a relevant way that 
makes hypercomputation plausible (or nomologically possible). 

The lesson for this subsection is then: Scott and Davis are right to be skeptical of 
our abilities to investigate purported capabilities of a supposed non-recursive black 
box. However, they are wrong to say that it is impossible in principle, but SNs pro-

                                                           
21 Claiming to investigate it in a hypercomputable way would of course beg the question 

against the critic of the SNs and also be useless for the proponent of them. After all, if one 

has a known “ ω
0Δ  device” or procedure already, why use a SN? 
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vide no way for this investigation to proceed. Partisans of hypercomputation wanting 
to answer Scott and Davis must look elsewhere (including refining their models). 

5 Conclusions 

Investigations into the arithmetic hierarchy-related properties of Siegelmann style 
networks show how they are implausible relative to a Turing machine model of com-
putation for they invoke various versions of the same inappropriate idealization. In 
future work, I hope to discuss whether any models of hypercomputation meet these 
requirements. I also hope to provide more details in these areas of specific criticism 
and also more rigorously analyze the Turing machine model from the perspective of 
idealizations. 
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Abstract. One of the main current issues about hypercomputation con-
cerns the claim of the possibility of building a physical device that hy-
percomputes. In order to prove this claim, one possible strategy could
be to physically build an oracle hypermachine, namely a device which is
be able to use some extern information from nature to go beyond Turing
machines limits. However, there is an epistemological problem affecting
this strategy, which may be called “verification problem”. This problem
raises in presence of an oracle hypermachine and it may be set out as
follows: even if we were able to build such a hypermachine we would not
be able to claim that it hypercomputes because it would be impossible to
verify that the machine can compute a non Turing-computable function.
In this paper, I propose an analysis of the verification problem in order
to know whether it is a genuine problem for oracle hypermachines.

Keywords: computability theory, hypercomputation, oracle hyperma-
chine, Turing machine, verification problem, randomness.

1 Introduction

Hypercomputation is a term that denotes the computation of functions, which
are not computable by a Turing machine (non Turing-computable functions)
[8]. Current researches about this notion primarily concern its possibility, either
conceptual or physical.

On the one hand, the conceptual possibility of hypercomputation is not really
contested because several machines able to hypercompute - called “hyperma-
chines” - have been formalized [8], [10], [16], [27], [29]. This conceptual possibility
means that effective procedures are not the only methods to compute mathemat-
ical functions and that hypermachines can be devised to compute more functions
than the Turing machine1.

On the other hand, the physical possibility of hypercomputation is not fully
accepted within scientific and philosophical communities [12], [21], [24]. Although

1 By “the Turing machine” we want to say “a universal Turing machine”, namely a
Turing machine that is able, according to the Church-Turing thesis, to compute all
functions f : Nk → N computable by effective procedures. It is worth noting that
hypercomputation and the Church-Turing thesis are not in opposition with each
other, because the latter only concerns effective methods by contrast to the former.

G. Dodig-Crnkovic and R. Giovagnoli (Eds.): Computing Nature, SAPERE 7, pp. 213–223.
DOI: 10.1007/978-3-642-37225-4_13 c© Springer-Verlag Berlin Heidelberg 2013
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numerous hypermachines have been devised from a logical point of view, current
issues are more about the physical domain. In particular, one of these issues
directly concerns the physical construction of a hypermachine and the truthful-
ness of the claim that I will call the “physical hypercomputation thesis”: it is
physically possible to build a device that hypercomputes.

In order to prove the physical hypercomputation thesis, two strategies have
been proposed [21]:

Definition 1 (Strategies P and O)
• According to strategy P (where P stands for programmable), the device

should be able to compute a non Turing-computable function from its inter-
nal program [19], [25], [26].

• According to strategy O (where O stands for oracle), the device should be
able to compute a non Turing-computable function with the help of an extern
information coming from nature [2], [10], [28].

Propositions based on the strategy P come from the works of Pitowski and Hog-
arth [17], [25]. More precisely, they showed that the computation of an infinite
number of steps is consistent within a particular relativistic space-time called
“Malament-Hogarth space-time”. Later, Shagrir and Pitowski devised a hyper-
machine based on the Malament-Hogarth space-time, which is able to compute
the halting function for Turing machines [26]. However, even if it appears that
some space-times can be regarded as realistic, it is unclear whether kind of de-
vices could ever be constructed to take practical advantage of their properties
[11], [14].

On the contrary, the strategy O is more promising because devices based
on the use of an oracle seem to be closer to be built [2], [28]. Nevertheless,
there is still an epistemological problem affecting the strategy O, which may
be called “verification problem” [8], [20], [28]. This problem raises in presence
of an oracle hypermachine and it may be set out as follows: even if we were
able to physically build such a hypermachine we would not be able to prove the
physical hypercomputation thesis because it would be impossible to verify that
the machine can compute a non Turing-computable function.

In this paper, I propose an analysis of the verification problem in order to
know whether it is a genuine problem for oracle hypermachines. In section 2 I
will start by illustrating two propositions concerning the physical construction
of an oracle hypermachine; then, in section 3, I will deal with the verification
problem in itself.

2 How to Build an Oracle Hypermachine?

Before explaining how to physically build an oracle hypermachine, it is first
necessary to understand how it works in theory.

The idea of computing with the aid of an oracle comes from Turing’s work
[30]. Turing is indeed behind a kind of machine called “oracle Turing machine”
or “O-machine”, which is a Turing machine equipped with an oracle, namely a
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black box whose behaviour is not specified. The particularity of the oracle lies in
its capacity to provide some non computable functions results to the machine:

“Let suppose that we are supplied with some unspecified means of
solving number-theoretic problems; a kind of oracle as it were. We shall
not go any further into the nature of this oracle apart form saying that
it cannot be a machine” [30, p. 167].

Thus, according to its architecture and computational power, the O-machine is
not a standard model of computability but a hypermachine.

However, the O-machine is not detailed enough to perfectly understand how
it is able to hypercompute. It is why Copeland and Proudfoot have proposed
a further definition of that hypermachine [10]. From their point of view an O-
machine is a Turing machine which has two more elements: first, a device -
the oracle - able to make measurements with an infinite precision; secondly, a
memory space containing a real number called “τ”. τ is an infinite binary string,
which represents the results of a non Turing-computable function. Thus, if such
non Turing-computable function is denoted by d, the nth symbol of τ represents
d(n), namely 0 or 1. For example, if we want to have acces to d(239208) the device
measures the symbol number 239208 and provides the corresponding value.

Now, the first practical step in order to build an O-machine is to find a physical
theory in which a device will be able to use some extern information from nature.
Such an information would be regarded as an oracle that provides an additional
element to go beyond Turing machines limits. Nowadays, there are two proposals
that go in this direction: one is based on randomness from radioactive decay [28],
while the other on quantum randomness [2]. The interesting fact is that both of
these propositions regard randomness as a source of non computable information,
which could be used to hypercompute.

This very idea is not really a new one; already Turing pointed out that a ma-
chine equipped with a random element could domore than the Turing machine [7].
More precisely, there are two types of random processes: true-random processes
and pseudo-random processes. Pseudo-random processes generate strings of num-
bers from pseudo-random methods (for example the linear congruence method),
which numbers “appear” random but that are actually provided by algorithms.
An immediate consequence is that machines using pseudo-random processes are
equivalent to Turing machines [13]. By contrast, if a machine is able to gener-
ate an infinite true-random string of numbers2, it would provide the results of a
nonTuring-computable function. Indeed, a simple cardinality consideration shows
that, with probability one, the sequence produced is not Turing-computable [3].
There are uncountablymany infinite strings of digits and evenmore strongly, there
are uncountably many infnite strings of digits with any given limiting frequency of
0’s and 1’s. But there are only countably many Turing-computable strings. There-
fore, assuming that each infinite string (or each infinite string with a certain limit-
ing frequency) has the same probability of occuring as a result of a randomprocess,

2 The definition of an infinite true-random string of numbers is both technically and
philosophically complex. For further details see [4], [5], [22].
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the probability that a random process would generate a Turing-computable string
of digits is zero, whereas the probability that the string is not Turing-computable
is one.

On the one hand, Stannett described a hypermachine that uses a radioac-
tive sample to generate such an infinite true-random string of numbers [28].
More specifically, this sample decays by “α-radiation”, a process in which He-
lium nuclei are ejected from the nuclei of atoms. The Helium nuclei combine
with electrons in their environment to form atoms of Helium gas that can be
pumped out of the experimental apparatus, and as a result the sample becomes
progressively lighter. In order to generate a random integer, it is necessary to
examine the weighting scales to determine how much mass has to be lost by
the sample for the reduction to be detectable. Then, large amount of sample
material is collected to ensure that when all of it has decayed, the weight loss
will be easily noticeable. One chooses a “threshold” value somewhere between
the minimum mass loss detectable by the scales, and the total possible mass loss
of the sample, and then set a clock running. The number that is generated by
the system is defined to be the number of complete seconds that pass before the
system generates the chosen amount of mass loss.

Nevertheless, underpinning the system’s behaviour is the standard assumption
(considered by physicists to be valid for all radioactive materials) that there
eventually comes a time when half of the sample can be expected to have decayed
(the average time required is called the “half-life” of the sample in question).
Because the threshold mass is strictly less than the total possible mass, it should
eventually be reached after only finitely many half-lives, but because decay is
assumed in the standard model to occur randomly, the number of seconds that
pass before this happens must also be random. In other words, this system
implements a true random number generator.

On the other hand, Calude’s proposition is simpler to explain and consists
of fixing on a computer a device able to generate a string of random numbers
from a quantum process [2]. The idea of finding this information from quan-
tum randomness comes from the standard model of quantum physics. Precisely,
quantum randomness is postulated from the Born postulate, which is the idea
that a measurement of a particle will yield a result which follows probability
distribution |ψ|2, where ψ is the particle’s wave function. In particular, the ID
quantique company3 has created a device whose name is “Quantis”, which gen-
erates a string of random numbers from an elementary quantum optics process
[18]. More specifically, photons are sent one by one onto a semi-transparent mir-
ror and detected. The exclusive events (reflection - transmission) are associated
to “0”, “1” bit values and each of them have a probability at 50% to occur. The
operation of Quantis is continuously monitored to ensure immediate detection
of a failure and disabling of the random bit stream.

In theory, a device equipped with Quantis might provide an arbitrarily long
string of quantum random strings. However, this device should be considered
as a hypermachine only if the quantum random string cannot be generated by

3 http://www.idquantique.com/

http://www.idquantique.com/
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a Turing machine, that is to say only if the string includes an infinite number
of bits. In that case Quantis would be seen as an oracle able to provide non
computable information from nature.

Although the physical construction of these two devices based on randomness
seems to be sufficient to prove the physical hypercomputation thesis, an episte-
mological problem nevertheless remains. This problem is raised when we have an
oracle hypermachine: even if we build such a hypermachine we will not be able
to prove the physical hypercomputation thesis because it would be impossible
to verify that the device is able to compute a non Turing-computable function.
I am going to analyze this problem in further details in the next section.

3 The Verification Problem

Suppose to have an oracle hypermachine, how can we verify the results provided
by the machine? In practice, this problem does not seem to be different from the
verification of results provided by standard computers. Indeed, take a particular
function as an example (the argument works no matter which function is consid-
ered). Let p the function defined by p(n) = the nth decimal of the expansion of
π. It is easy to check that we cannot verify in practice (due to a lack of resources)
whether the 1012th decimal of π recently computed by a computer is 5. So why
verification would be a real problem in the case of hypercomputation?

According to Copeland, the difference lies in principle and not in practice,
namely in the case where we disregard physical computational resources:

“ There is an epistemological problem with the idea of hypercompu-
tation. Suppose Laplace’s genius says ’Here is a black box for solving the
Turing-machine halting problem’ (The problem arises no matter which
non Turing-machine-computable function is considered.) Type in any in-
teger x and the box will deliver the corresponding value of the halting
function H(x) or so Laplace’s genius assures you. Since there is no sys-
tematic method for calculating the values of the halting function, you
have no means of checking whether or not the machine is producing cor-
rect answers. Even simulating the Turing machine in question will not in
general help you, because no matter how long you watch the simulation,
you cannot infer that the machine will not halt from the fact that it has
not yet halted” [8, p. 471].

More specifically, from a point of view in principle, and since standard computers
can be studied from its theoretical model, namely the Turing machine, it is
possible to verify that a standard computer provides a correct result. Indeed,
according to the definition of an effective procedure we can have access to results
in principle by checking step by step the computation from the input to the
output. On the contrary, we could not proceed in the same way with an oracle
hypermachine because we would not be able to check each computational step
because of the absence of an effective procedure. Hence we would not be able to
prove in principle the hypercomputational power of the device.
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Although Copeland’s thought experiment could call into question that devices
using oracles really hypercompute, it is nevertheless the case in practice that
we need to consider to answer whether the physical hypercomputation thesis
could be challenged. According to a verification in practice, namely a verification
which takes into account physical computational resources, one solution has been
suggested to overcome the verification problem.

This solution was brought both by Shagrir & Pitowski and Cleland and it is to
claim that computation does not presuppose verification [6], [26]. More precisely,
they claim that since we regard a function as computed by a standard computer,
even if we are not able to verify in practice the provided results, the same should
be true for hypercomputation. As we mentioned at the beginning of this section,
it is indeed impossible in practice (because of a lack of resources) to verify
that a computer correctly computes a given function. However, we would be
inclined to say that computers do compute functions and, moreover, we develop
a real confidence in computers; otherwise why would they be the grounds for
the construction of our transport networks, economy and energy systems? But
where does such a trust come from? On the one hand, Cleland explains this
confidence arises from the fact that it is possible to use some empirical methods
such as probabilistic causal relations or parallel computations and theoretical
methods such as program verification [6, p.224]. Such tests are used to claim in a
plausible way that a computer computes a function even if no perfect verification
is possible. In the other hand, Shagrir and Pitowski claim that what computers
do, namely computations, can be explained in terms of a formal or physical
background theory :

“We can use our physical theories to explain what function is being
computed. Our physical theories mandate that a device with such-and-
such a physical structure and initial conditions will behave according to
a given set of equations, whose solutions it computes” [26, p. 91].

According to this passage, we can use in the case of computers both program
verification to check their computational behavior and physical theories to en-
sure that programs are correctly physically implemented. Therefore, computa-
tion does not presuppose a perfect verification.

In summary, the verification problem should not to be considered as a thought
experiment as Copeland did but as an empirical hypothesis. In other words, the
problem could not be solved as long as one will assume the physical construction
of an oracle hypermachine; on the contrary we must dispose of an oracle hyper-
machine physically build to achieve theoretical and physical tests, and to claim
with a high confidence that it computes a non Turing-computable function. In
this way, the verification problem should not be a real problem for hypercom-
putation.

I do not entirely agree with this conclusion. In my opinion, the solution pro-
posed by Shagrir, Pitowski and Cleland only works for a particular kind of
hypermachine, namely programmable hypermachines, but fails to dissolve the
verification problem in the case of oracle hypermachines.
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As their name suggests, programmable hypermachines have a remarkable
property: they are programmable. This property means first that we can study
their computational behavior from their internal program. In particular, take the
relastivistic hypermachine, which is able to compute an infinite number of steps
from Malament-Hogarth space-times properties. One possible physical realisa-
tion of this hypermachine consists of two modern computers TA and TB that
can communicate with each other. From the properties of Malament-Hogarth
space-times, when TA will have computed a finite number of steps, TB will have
computed an infinite number of steps. Now here is the procedure that allows to
compute the halting function h:

1. We begin by providing the input n to TA and transferring it to TB. TB is an
universal Turing machine, that is to say its program allows to simulate the
computation of the nth Turing machine on input n.

2. During the computation, if TB halts then it immediately sends a signal to
TA. Otherwise, it sends nothing to TA.

3. Finally, when TB has achieved an infinite number of steps in a finite time,
TA will print 1 if it has recieved a signal from TB and will print 0 otherwise.

We can notice then that program verification for this kind of hypermachines
is easy because it reduces to the verification of the fact that we have correctly
implemented the program of an universal Turing machine on a modern computer.

Secondly, the program of programmable hypermachines can be used to in-
crease the plausibility they are computing a non Turing-computable function.
Assume we want to decide whether or not a Diophantine equation has a solu-
tion4. Even though there is no effective procedure that decides this problem [23],
we can nevertheless implement on a modern computer a simple program using
the brute-force search method (to test each integer and to find the solution if it
exists). Therefore since TB (a modern computer that belongs to the relastivistic
hypermachine) is able to compute an infinite number of steps in a finite time,
it will be able to cover all integers in a finite time in order to find an integer
satisfying a given equation. Now, if we feed the device with an input, which is the
code of a Diophantine equation for which we still do not have a solution and the
device gives as output that the equation has no solution, then the plausibility
that the device hypercomputes will be increased.

However, even if the solution proposed by Shagrir, Pitowski and Cleland seems
to reasonably work for programmable hypermachines, it is a different issue in
the case of oracle hypermachines. Here are four arguments why the verification
problem is a real problem for this kind of hypermachines.

First, we cannot use the method which has been set out above in order to
increase the plausibility that a programmable hypermachine computes a given
function. The reason is that we do not know the function that is computed by
an oracle hypermachine based of randomness. Indeed, since the hypermachine
provides a random string of numbers, there is no way to define the function

4 A Diophantine equation is an equation whose cœfficients and solutions are integers
numbers.
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f : Nk → {0, 1} whose values are being generated by the random process [24].
Of course, f exists in the set-theoretic sense of a set of pairs whose output values
process happens to emit. But in this context, defining f means actually specify-
ing the relationship that obtains between the arguments and values of f , as we
do when we define, for instance, the halting function for Turing machines. If the
process is genuinely random, there is no way to specify f without generating the
values of f by running the process. Therefore the computation of an oracle hy-
permachine gives no hint about the plausibility of having computed a particular
non Turing-computable function.

Even worse, it would be impossible to know whether the oracle hypermachine
is hypercomputing or not because we would not be able to claim whether the
computed function is a non Turing-computable function or a computable one.
On the one hand, as a consequence of the impossibility for identifying the non
Turing-computable function that is computed by the hypermachine, oracle hy-
permachines have to be regarded as black boxes, which internal behavior is not
specified. On the other hand, it is impossible - exclusively from intput-output
black box behavior - to identify the function that is computed by the Turing ma-
chine [1], [15]. Intuitively, this is due to the fact that we only have at our disposal
a finite number of results, which could every time correspond to other functions.
For exemple, if we think that the computed function multiplies a number by 2
and the first 3000 results agree with f , it could be still possible that the next
number will be multiplied by 3. Hence we would not be able to verify the device
is computing a non Turing-computable function or a computable one, and we
would not be able to claim whether it is a hypermachine or a Turing machine.

However, according to Shagrir and Pitowski however, we are not in a total in-
capacity to claim that the device is hypercomputing because we can use our phys-
ical theories to explain that the computed function is non Turing-computable. In
particular, from the theory of radioactive decay and the standard interpretation
of quantum mechanics, we can infer that processes based on these theories are
genuisely random and thus that oracle hypermachines are able to hypercompute.
Nevertheless, Stannett has proved in the case of the oracle hypermachine based
on the theory of radioactive decay that either the theory is correct, and we can
build the true infinite random-number generator using a radiocative sample, or
the assumption was flawed, but in this case, we can show that hypercompu-
tation cannot be refuted by any experiment conducted according to the rules
of the theory [28]. To sum up, this means that any experimental refutation of
the hypercomputational power of the oracle hypermachine is a refutation of the
theory of radioactive decay itself. In other words, even if the theory tells us why
the device should hypercompute, we cannot have any experimental proof of this
claim. It seems therefore that physical theories do not bring any robust answer
concerning the verification problem applied to oracle hypermachines. Yet since
Stannett’s argument only works in the case of oracle hypermachines based on the
theory of radioactive decay, further research will need to be carried out about
oracle hypermachines based on quantum randomness.
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Finally, even if we cannot prove hypercomputation from experiments accord-
ing to the rules of the theory, it could be still possible to solve the verification
problem in an empirical way in increasing the plausibility of the claim that the
device computes a non Turing-computable function [6]. In that case, tests on
random strings should be achieved in order to show with a high probability that
they are not pseudo-random. If such tests were achieved and we concluded that
a string is true-random, then we could claim that this string represents the re-
sults of a non Turing-computable function. However, the disadvantage is that all
current pseudo-random number generators provide strings, which are in practice
impossible to distinguish from true-random number strings. Nevertheless, it is
true that we cannot dismiss the possibility to have some day reasonable grounds
to believe that a string is true-random.

4 Conclusion

In this paper, we have tried to explain that the verification problem, namely the
problem of verifying the computed results provided by a machine, could be a
threat to a possible proof of the physical hypercomputation thesis. Indeed, even
though some researchers have proposed solutions in order to solve this problem,
we claimed these solutions fit for programmable hypermachines but not for ora-
cle hypermachines. Our arguments were that in the case of oracle hypermachines
(1) we cannot increase the plausibility that the hypermachine computes a given
function because we cannot know what is the computed function; (2) it is impos-
sible to know whether the hypermachine is hypercomputing because we would
not be able to claim whether the computed function is a non Turing-computable
function; (3) From physical theories, we cannot have any experimental proof
of the claim that an oracle hypermachine is hypercomputing; (4) no current
methods are able to prove the true randomness of the string provided by the
hypermachine, which is the property on which is based its hypercomputational
power. Thus, as long as the verification problem will not be solved, the physical
construction of an oracle hypermachine could not be considered as a proof of
the physical hypercomputation thesis.

Acknowledgements. I would like to thank the editors and referees for very
helpful comments during the preparation of this paper. In particular, many
thanks to Cristian Calude and Jack Copeland for their very interesting advices.
Finally, I am very grateful to the university paris 1 Doctoral school for support-
ing this work.

References

1. Adleman, L.M., Blum, M.: Inductive Inference and Unsolvability. The Journal of
Symbolic Logic 56, 891–900 (1991)

2. Calude, C.S.: Algorithmic randomness, quantum physics, and incompleteness. In:
Margenstern, M. (ed.) MCU 2004. LNCS, vol. 3354, pp. 1–17. Springer, Heidelberg
(2005)



222 F. Franchette

3. Calude, C.S., Svozil, K.: Quantum Randomness and Value Indefiniteness. Ad-
vanced Science Letters 1, 165–168 (2008)

4. Chaitin, G.: On the Length of Programs for Computing Finite Binary Sequences.
Journal of the Association for Computing Machinery 13, 547–569 (1966)

5. Church, A.: On the Concept of a Random Sequence. Bulletin of the American
Mathematical Society 46, 130–135 (1940)

6. Cleland, C.E.: The Concept of Computability. Theoretical Computer Science 317,
209–225 (2004)

7. Copeland, J.: Narrow Versus Wide Mechanism: Including a Re-Examination of
Turing’s Views of the Mind-Machine Issue. The Journal of Philosophy 1, 5–32
(2000)

8. Copeland, J.: Hypercomputation. Minds and Machines 12, 461–502 (2002)
9. Copeland, J.: Accelerating Turing Machine. Minds and Machines 12, 281–301

(2002)
10. Copeland, J., Proudfoot, D.: Alan Turing’s Forgotten Ideas in Computer Science.

Scientific American 208, 76–81 (1999)
11. Davies, B.: Building Infinite Machines. British Journal for the Philosophy of Sci-

ence 52, 671–682 (2001)
12. Davis, M.: The Myth of Hypercomputation. In: Teuscher, C. (ed.) Alan Turing:

The Life and Legacy of a Great Thinker, pp. 195–212. Springer, Berlin (2004)
13. De Leeuw, K., Moore, E.F., Shannon, C.E., Shapiro, N.: Computability by Prob-

abilistic Machines. Automata Studies. Princeton University Press (1956)
14. Earman, J.: Bangs, Crunchs, Whimpers and Shrieks - Singularities and Acausalities

in Relativistic Spacetimes. Oxford University Press, Oxford (1995)
15. Gold, M.: Limiting Recursion. The Journal of Symbolic Logic 30, 28–48 (1965)
16. Hamkins, J.D.: Infinite Time Turing Machines. Minds and Machines 12, 567–604

(2002)
17. Hogarth, M.: Does General Relativity Allow an Observer to View an Eternity in

a Finite Time? Foundations of Physics Letters 5, 173–181 (1992)
18. Jennewein, T., Achleitner, U., Weihs, G., Weinfurter, H., Zeilinger, A.: A Fast

and Compact Quantum Random Number Generator. Review of Scientific Instru-
ments 71, 1675–1680 (2000)

19. Kieu, T.: Quantum Hypercomputation. Minds and Machines 12, 541–561 (2002)
20. Leitsch, A., Schachner, G., Svozil, K.: How to Acknowledge Hypercomputation?

Complex Systems 18, 131–143 (2008)
21. Loff, B., Costa, J.F.: Five Views of Hypercomputation. International Journal of

Unconventional Computing 5, 193–207 (2009)
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Abstract. Computationalism has been variously defined as the idea
that the human mind can be modelled by means of mechanisms broadly
equivalent to Turing Machines. Computationalism’s claims have been
hotly debated and arguments against and for have drawn extensively
from mathematics, cognitive sciences and philosophy, although the de-
bate is hardly settled. On the other hand, in his 2002 book New Kind
of Science, Stephen Wolfram advanced what he called the Principle of
Computational Equivalence (PCE), whose main contention is that fairly
simple systems can easily reach very complex behaviour and become as
powerful as any possible system based on rules (that is, they are computa-
tionally equivalent). He also claimed that any natural (and even human)
phenomenon can be explained as the interaction of very simple rules.
Of course, given the universality of Turing Machine-like mechanisms,
PCE could be considered simply a particular brand of computational-
ism, subject to the same objections as previous attempts. In this paper
we analyse in depth if this view of PCE is justified or not and hence if
PCE can overcome some criticisms and be a different and better model
of the human mind.

Keywords: Computationalism, Computational Theory of Mind, Rep-
resentationalism, Principle of Computational Equivalence.

1 Introduction

Computational Theory of the Mind or computationalism is usually attributed to
Alan Turing (for instance [15]). In fact Turing compared the human brain to a
digital computing machine [34], but also to an analogue type machine [36], but
we should point out that Turing never developed a formal theory of thought,
despite his foundational work on computability. In contrast, McCulloch and Pitts
[21] did talked about mental processes as computations, as Piccinini reminds
us [23].
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As we said before, computationalism is not a single thesis, but it has been
formulated differently by many people. According to Piccinini [23], computa-
tionalism claims that cognitive activity is achieved by means of computations
carried out by specific components of the mind whose functioning is akin to that
of a Turing Machine (TM) or an equivalent mechanism. The fact that cogni-
tion happens in the brain (and the brain is based on neural networks and not
on TM) can be incorporated into computationalism by considering that neural
computations are Turing-computable at least as they are actually realized in the
human brain. This wider thesis would make some types of connectionism mere
variations of computationalism.

Piccinini [24] also distinguishes two variations: 1) traditional or classic com-
putationalism, which claims that thought can be reduced to computations made
over linguistic structures and 2) connectionist computationalism, which claims
that thought can be reduced to “computations” carried out by Neural Network
Systems.

There are some other theses that frequently have been grouped together under
the label of computationalism, for instance, the so called Strong Artificial Intel-
ligence (SAI), which, according to Searle [30], claims that artificial intelligence
can eventually reach the ability of becoming self-aware and exhibit human-like
thought processes.

We will not dwell on this specific variety of computationalism (if it really can
be found beyond Searle’s analysis) as we are interested only in the explanatory
power of computationalism for understanding the human mind and not in the
question of whether computers can really think, and we consider Piccinini’s
classification perfectly adequate for this purpose.

The debate between supporters of varieties of computationalism and their
detractors has raged for decades and both sides have drawn arguments from
mathematics, cognitive science and philosophy. The point is hardly settled and
we do not intend to review it here even superficially. New arguments and theories
keep appearing which can (or cannot) be considered variations of computational-
ism and claim to deal better with objections against computational explanations
of the mind. Our purpose in this paper is to analyse one of this theories, namely,
Stephen Wolfram’s Principle of Computational Equivalence (PCE), introduced
as one of the key elements of his extremely ambitious New Kind of Science pro-
gram. In his book of the same name, Wolfram contends that PCE can explain
the complexity in any natural or artificial phenomenon, including of course the
complexity of human mind.

The outline of the paper is as follows: in the second section we review some
arguments against computationalism. In the third section, we summarize what
we consider some of the essential claims of Wolfram’s PCE as a tool for explaining
the complexity of the human mind. In the fourth we ponder the ability of PCE
for dealing against the counterarguments of computationalism presented in the
second section, while at the same time evaluating if PCE is or not just plain
computationalism under a new disguise (although we do not offer a definite
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answer yet). In the final section, we point out to the challenges that PCE should
deal with if it has any hope of offering a better alternative to past theories.

2 Four Types of Arguments against Computationalism

Cordeshi [4], Dreyfus [9,10] and Horst [17] have brought forward diverse ar-
guments against computationalism. We have classified them in four types for
convenience.

Computationalism contends that is the only scientific explanation in offer.
Their supporters argue that computational explanations of cognitive abilities like
language and learning are the only viable approach to the mind. Examples of this
view can be found in Fodor [13], Pinker [25] and Winograd [37]. Even if they take
for granted that the mind “resides” in the brain and the brain is a gigantic neural
network, they also claim that electrical signals in neural networks codify symbols
and representations which are manipulated according to logical rules [30]. One
consequence of this view is that the mind deals basically with representational
systems [17]. A first and clear line of attack against computationalism (at least
its representational version) is to challenge the contention that it is the only
serious candidate for modelling or explaining the mind. As Horst has pointed
out [19], in the search for alternatives philosophers and cognitive scientists are
reconsidering if models like neural networks can and should be based on rules
and representations or if they work in a radically different way.

On the other hand, Dreyfus [9,10] and even Winograd and Flores [37] have
argued that a significant part of what we call thought and behaviour cannot be
reduced to explicit rules and therefore cannot be formalized (and translated into
a computer program). In other words, a sizeable portion of mental phenomena
are beyond the reach of techniques dearest to computationalists.

A third line of criticism rejects the use of symbols as the foundation of the
semantics of thoughts. Symbolic semantics imply intentionality in thought either
through causality [16,27,28] or concepts [18]. But trying to explain intentionality
by symbols is a vicious circle. Searle [29] and Horst [18] go further and state
that computer “representations” are not even symbolic on their own right as its
symbolic nature rests on the intentions and conventions held by their human
users.

Supporters of externalist theories of meaning have raised a fourth set of criti-
cisms. Many computationalists were fond of what can be called “methodological
solipsism” [12] or individualism: the view that mental states’ characterization
is insensitive to and independent from any external features of the cognitive
subject, as the underlying computational processes only have access to mental
representations. But at the same time, computationalism would have this char-
acterization reflecting semantic properties. This is clearly difficult to reconcile
with an externalist stand on meaning [27], which would require that the mean-
ing of terms be at least partially determined by factors external to the cognitive
subject, for instance, its physical [24] and linguistic [1,2] environment. Of course,
the argument can be turned around to reject externalism as Fodor did [11].
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3 NKS and the Principle of Computational Equivalence
(PCE)

Stephen Wolfram wrote his book A New Kind of Science (NKS) [38] after twenty
years of experimentation with Cellular Automata (CA) as tools for solving prob-
lems in a very wide range of domains. One of the main guidance of his proposal
is the Principle of Computational Equivalence (PCE), which can be summarized
by the two following theses:

1. All processes, whether they are produced by human effort or occur sponta-
neously in nature, can be viewed as computations.

2. In computational terms there is a fundamental equivalence between many
different kinds of processes. In particular, almost all processes that are not
obviously simple can be viewed as computations of equivalent sophistication.
[38]

In very general terms, Wolfram contends that PCE means that there is a maxi-
mal (“universal”) level of complexity in computations and this level is easily at-
tainable by most non-trivial systems (even artificial ones). Natural systems can
in principle have the same computational power as computers and vice versa.
Wolfram claims that, provided a proper translation for inputs and outputs of
different systems, all of them are computationally equivalent.1

Wolfram states that his NKS has four basic advantages over classical science:

1. An alternative view of randomness: over time, simple rules can produce very
complex behaviour which becomes almost impossible to predict. Randomness
is then just unpredictability arising from lack of information about deter-
ministic phenomena. But this type of “randomness” can be approximated by
means of programs based on very simple rules.

2. The assumption of a maximal degree of simplicity in phenomena, which im-
plies also their irreducibility to even simpler rules (wolfram calls it “com-
putational irreducibility”). When confronted with irreducible cases, direct
observation and experimentation are the only way forward for Science. The
seemingly paradoxical nature of free will may contain this sort of irreducibil-
ity.

3. Scientific insight should be guided by the search of these very simple rules in
all natural and human phenomena. Of course, this idea goes counter the “prej-
udice” that computing simulations of natural phenomena should be based in
very complex software. The key, according to Wolfram, is the opposite: look
for simple rules.

4. Given that all systems are based on simple rules, individual sciences can pro-
ceed to analyse their disparate subjects by means of a uniform methodology
which can help to extract more general and abstract explanations.

1 Sutner claims that Wolfram’s view can be taken to mean that there are really only
two levels of complexity in natural phenomena: a lower one of systems whose be-
haviour is decidable and the higher one of systems whose behaviour reaches universal
complexity in computational terms [32,33]. This thesis has been called a 0/1 law of
computational degrees.
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Stephen Wolfram states explicitly that the complexity of the human mind is
also covered by PCE. For instance, he claims that perception can be reduced to
a process of pattern recognition and information processing [38]. At first sight,
PCE seems to be just another version of classical computationalism. But it
may not be so simple. For instance: does PCE imply representationalism? Other
similar questions can be easily asked and their answers are not straightforward,
which makes us think worthwhile to consider in depth if Wolfram’s proposal can
really offer a valuable alternative to classical computationalism.

4 NKS vs Objections against Computationalism

Following Dodig-Crnkovic’s analysis of what she calls info-computationalism (the
strong thesis that the universe can be better understood as a series of compu-
tational processes operating on informational structures) [5,6,7], we may be in-
clined to regard PCE as a variety of info-computationalism. Nonetheless, there
are at least two reasons why Wolfram’s proposal may be considered a differ-
ent and probably better brew of computationalism which may be able to avoid
some criticisms directed against other traditional computationalist views: 1) if
he is right (and this a big “if”) that there is an upper limit in complexity for
all systems and this limit can be reached by some simple rules, then of course
computer programs can simulate any degree of complexity; 2) again, if his main
thesis is right, the complexity of the mind also falls in the scope of what can be
explained by computations based on simple rules.

While it is far from clear that all systems in nature have a complexity limit
within the reach of the computable, computable universality is reachable by
means of the simple rules advocated by Wolfram [31,3]. The general question of
a universal limit is still open and seems bound to remain so for the foreseeable
future. On the other hand, even if Wolfram were right about the existence of
an upper limit in complexity, he offers no practical clues for the solution of the
many problems any theory of mind (let alone a computational one) should face.
His optimism becomes evident when he regards a possible explanation of free will
as computationally complex decision procedures whose inner details are hidden
from consciousness [38].

NKS and the PCE are then just a (sketch of a) proposal for a research program
and before embracing it any prospective theoretician of mind should at least
make a quick assessment of its potential:

1. A first obvious question is if we are not dealing with a mere variety of com-
putationalism.

2. A second and more interesting one is —if PCE is not simple computationalism
(or even despite being computationalism)—, how it can prove its worth as
a serious challenge to representationalism’s claim of being the only viable
explanation in offer.[13].

3. Next it is to be seen if PCE can answer the objection that human thought
and behaviour cannot be reduced to explicit rules and therefore cannot be
formalized or reduced to computer programs [9,10,37].
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4. PCE should also offer a theory of the meaning of thought without the troubles
faced by computationalism’s symbolic semantics [28,16,27].

5. Finally, PCE should present an alternative explanation of how mental states
can be characterized independently of features external to the cognitive
subject [1,2].

Many other issues could be raised [4,24], but we consider these some of the most
relevant because they touch the core of the theory and we will dwell on them in
the next section.

5 Problems to Solve

What are the chances of PEC dealing rightly with the previous questions? It
is not our intention to give a definitive answer, but just to offer a very initial
assessment and to outline how a NKS practitioner should carry on.

To begin with, the charge of being just computationalism under a different
guise. Mathematically speaking, the simple rules on which NKS is based are com-
putationally equivalent to Turing Machines and other Turing-complete models.
Claiming that any system (natural or artificial) is of equivalent complexity is
highly reminiscent of (a strong form of) Church-Turing’s thesis, on its turn one
of the pillars of computationalism. Wolfram himself seems to support this view:
“But it was not until the 1980s —perhaps particularly following some of my
work— that it began to be more widely realized that Church’s Thesis should
best be considered a statement about nature and about the kinds of computa-
tion that can be done in our universe. The validity of Church’s Thesis has long
been taken more or less for granted by computer scientist, but among physicists
there are still nagging doubts, mostly revolving around the perfect continua
assumed in space and quantum mechanism in the traditional formalism of theo-
retical physics” [38]. Wolfram calls Turing’s and other scientists’ attempts “close
approaches”, acknowledging their similarity, but he also claims to have a distinc-
tive proposal which is also based on “experimentation” on computers. Of course,
these short and sometimes puzzling comments do not settle the point, as (a sort
of) mathematical equivalence between Church’s thesis and PCE does not imply
that PCE has to assume all the baggage of classical computationalism (which in
turn is not a consequence of Church’s thesis).

Regarding the second question, PCE should be able to attain at least the same
degree of success as connectionism, an important rival of classical computation-
alism. According to some researchers [16] connectionism has been able to explain
some intellectual abilities without resorting to syntactical representations and
manipulations (let us put aside the issue that Artificial Neural Networks as they
exist in this moment are mathematically equivalent to Turing Machines), per-
forming better than actual or potential systems based on techniques dear to
computationalists. Can PCE equal these supposed achievements? Again, for the
time being Wolfram’s NKS can only provide more optimism: “So on the basis
of traditional intuition; one might then assume that the way to solve this problem
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must be to use systems with more complicated underlying rules, perhaps more
closely based on details of human psychology or neurophysiology. But from dis-
coveries in this book we know that this is not the case, and that in fact very
simple rules are quite sufficient to produce highly complex behaviour” [38].

Searle [27,28] and Horst [18] have provided a powerful argument against the
idea that thought can be reduced to the application of simple rules in the style of
a computer program, as meaning cannot be derived from rules for manipulating
symbols (so covering the core of questions 4 and 5): “The problem of semantics
is: How these sentences in the head get their meaning? But that question can be
discussed independently of the question: How does the brain work in processing
these sentences?” [29]. About this last issue Wolfram says: “One might have
imagined that human thinking must involve fundamentally special processes,
utterly different from all other processes that we have discussed [here Wolfram
talks about thinking and perception as processes]. But just as it has become
clear over the past few centuries that the basic physical constituents of human
beings are not particularly special, so also —especially after the discoveries in
this book (NKS)— I am quite certain that in the end there will turn out to
be nothing particularly special about the basic processes that are involved in
human thinking. And indeed, my strong suspicion is that despite the apparent
sophistication of human thinking most of the most important processes that
underlie it are very simple” [38]. To be fair (and therefore not so pessimistic),
Wolfram’s phrasing of the problem does not imply that the solution should be
attached to rules for manipulating symbols.

Finally, there is the issue of defining mental states (which are internal rep-
resentations according to computationalism) and their complex relation with
features external to the cognitive subject [23]. Can Wolfram‘s idea of intelli-
gence being based at least partially on pattern recognition point to a different
definition about what a mental state is and how it relates to the external world
(the ultimate source from which the pattern is recognized)? We consider that,
right now, this idea is too vague to give rise to any serious attempt to formulate
the problem of mental states, let alone to lead to its solution.

To conclude: PCE hopes for being a better alternative than classical com-
putationalism are dependent on many “if”, namely: if Wolfram is right that
all natural and artificial phenomena are under the scope of the kind of simple
computational rules he advocates, if these rules can lead to practical ways of
explaining what previous models have been unable to explain, if complex be-
haviour such as meaning and mental states (and their relation with the external
world) can be accounted for by the same rules, then NKS can offer a way out
of computationalism troubles. On a more positive note, we want to stress an
implicit conclusion of our previous analysis: it is not obvious that PCE should
fail where classical computationalism has already failed.

But optimism cannot be the only foundation for a scientific account of the
human mind. More philosophical and empirical research is needed to see if opti-
mism can be turned into results or, at least, concrete lines of research.



232 A. Hernández-Espinosa and F. Hernández-Quiroz

References

1. Burge, T.: Individualism and the mental. In: French, P., Euhling, T., Wettstein, H.
(eds.) Studies in Epistemology, Midwest Studies in Philosophy, vol. 4. University
of Minnesota Press, Minneapolis (1979)

2. Burge, T.: Individualism and psychology. Philosophical Review 95(1), 3–45 (1986)

3. Cook, M.: Universality in Elementary Cellular Automata. Complex Systems 15,
1–40 (2004)

4. Cordeschi, R.: Computacionalism under attack. Cartographies of the Mind, Chap-
ter 3, 37–49 (2007)

5. Dodig-Crnkovic, G., Mueller, V.: A dialogue concerning two world systems: info-
computational vs. mechanistic. In: Dodig Crnkovic, G., Burgin., M. (eds.) In-
formation and Computation, pp. 149–184. World Scientific Publishing Co., Inc.,
Singapore (2009)

6. Dodig-Crnkovic, G.: Biological Information and Natural Computation. In: Val-
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Abstract. Mathematical constructions of abstract entities are normally
done disregarding their actual physical realizability. The definition and
limits of the physical realizability of these constructions are controversial
issues at the moment and the subject of intense debate.

In this paper, we consider a simple and particular case, namely, the
physical realizability of the enumeration of rational numbers by Cantor’s
diagonalization by means of an Ising system.

We contend that uncertainty in determining a particular state in an
Ising system renders impossible to have a reliable implementation of
Cantor’s diagonal method and therefore a stronger physical system is
required. We also point out what are the particular limitations of this
system from the perspective of physical realizability.

Keywords: Diagonalization, Ising systems, Physical Implementation.

1 Introduction

“There is no quantum world. There is only an abstract quantum description. It
is wrong to think physics’ task is to discover how Nature is. Physics deals with
what is possible to say about Nature.”

This quote is attributed to Niels Bohr, when he was asked whether the quan-
tum formalism reflected the underlying physical reality. Bohr’s, other philoso-
phers’ and scientists’ opinions aside, a good deal of paper has been used to
analyse the possibility of describing and understanding reality by means of for-
mal mathematical tools. Barrow, Chaitin, Hawking and Penrose (among others)
have advanced some ideas with varying degrees of formality.

Here we address a reciprocal question: given a mathematical construction and
a particular physical system, is the latter adequate to “implement” the former?
By implementation we mean an actual physical device that (a) has structural
properties that correspond to components of the mathematical entity (some have
talked about an isomorphism between physical and mathematical structures [3],
but a weaker notion may also do); (b) a physical procedure that can produce
experimental results which reflect accurately corresponding properties of the
mathematical construction.
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These are very intricate and hard questions to be answered definitely in a
general case. Our aim is more modest, namely to explore a specific instance of
this problem: we take the classical Cantor’s diagonalization for the enumeration
of the rational numbers [2] and how it can be implemented by an Ising system.
We provide a specific implementation and show its limitations deriving from
properties of the physical system itself.

This leads us to think that some clearly defined mathematical questions can-
not always be posed and answered within the context of a particular physical
system. Of course, the more general question of the existence of a physical sys-
tem realizing a particular mathematical construction is beyond the limits of this
work but we hope our example helps to stimulate discussions on this line of
thought. The standard interpretation of quantum mechanics regarding physi-
cally meaningful questions is that it should be possible to pose them in such a
way that they can be answered experimentally.

The reciprocal question is also interesting: to what extent mathematical con-
structions should be considered valid? One possible approach, would imply that
only those mathematical constructions that can actually be implemented by
means of a physical system can in fact be used, at least in terms of computation.

In the next section we present—as a reminder—Cantor’s diagonalization
method for enumerating the rational numbers. The third section deals with
Ising systems and its properties.The fourth section presents our implementa-
tion of Cantor’s method and how to find a specific rational number. In the final
section, which is the central part of this paper, we show how our system is unable
to perform the task for which it was designed due to intrinsic limitations of Ising
systems and other physical principles, and we also discuss some implications.

2 Cantor’s Diagonalization

In 1878 Cantor defined rigorously when two sets have the same cardinality. Let
A and B be two sets. They have the same number of elements if and only if
there exists a bijection between them, i.e., a function f : A → B which is both
injective and surjective.

He also proved that the set of natural numbers and the set of rational numbers
are equinumerous, even though the former is a proper subset of the latter. His
argument introduced an ingenious device to construct a one-to-one correspon-
dence between the two sets. The idea is that rational numbers are not arranged
according to the traditional < relation, but rather, by taking advantage of the
fact that a rational number (in accordance with the etimology of the name) can
be regarded as the ratio of two integers. For example, the number 0.5 is also
represented by the fraction 1/2.

The fractional representation of a number, let us saym/n, can be transformed
into the convention that the pair (m,n) represents this very number. Now con-
sider the list

(1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1), (1, 4), . . .
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where pairs are arranged so that the sum of the two components is increasing;
pairs whose sum produces the same value are ordered by the traditional < order
applied to the first coordinate of the pairs. By omitting pairs representing the
same number (which can always be calculated in a finite number of steps as the
list is being produced), this is a bijection between natural and rational numbers,
and thus both sets have the same cardinality.

If we set aside the traditional objections posed by mathematical construc-
tivists to the idea of actual infinite sets, Cantor’s argument seems very straight-
forward and has been regarded as such ever since. However we could take a
mathematical constructive perspective and reject Cantor’s device (and his whole
set theory, for that matter).

But we can also take a different constructive perspective, which we may name
physical constructivism: What requirements should a particular physical system
meet in order to serve as a basis for implementing Cantor’s device? At first sight
there must be physical systems on which this may not be possible (although the
symmetrical question does not seem easy to answer). Specifically, we will analyse
the feasibility of Ising models for this task in the next section.

3 Ising Models

In the last decades, some models in physics have played a central role in under-
standing specific connections between mathematical aspects of the theory and
experiments. One of such is precisely the Ising model. We use it here for different
purposes. We suggest that it can be taken as a real system in which Cantor’s
diagonal procedure could be implemented and therefore as a starting point from
which conclusions can be drawn regarding the limitations that mathematical
constructions could have in the physical world. This is due to the fact that, in
principle, the physical configurations of the system can be put in correspondence
with rational numbers. Moreover, for the Ising model a direct relationship be-
tween the physical entropy and the informational entropy can be established,
allowing a quantitative comparison .

We briefly recall what the Ising model is about and later on we make a few
remarks on the entropy of a discrete physical system. What follows is basically
adapted from [5].

We consider a magnetic material in which the electrons determining the mag-
netic behaviour are localized near the atoms of a lattice and can have only two
magnetization states (spin up or down). The spin for a given site in this lattice
will be identified with the of the 0’s or 1’s used in the mathematical construc-
tion of the previous section to write down the binary expansion of the rational
numbers. Notice that we need only a finite number or 0’s or 1’s since these ex-
pansions will be either finite or periodic. For instance, we might put in a row all
numbers (m,n) of a fixed height one after the other with a conventional sequence
to denote beginning and end of a number. As mentioned before, the magnetiza-
tion Si can take only two values ±1 that we identify with 0 and 1 respectively.
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There is a Hamiltonian associated in the presence of an external magnetic force
depending on the site, hi which is given by:

H = −J
∑
i,k

SiSj −
∑
i

hiSi,

where the sum over i and k runs over all possible nearest-neighbour pairs of the
lattice and J is the so called exchange constant.

The fact that is important to stress is that a possible enumeration of the
rationals correspond to a particular physical configuration. Notice that we are
disregarding the obvious limitation of size. That is, in Cantor’s procedure we
need an infinite number of rows and columns, that is an ideal lattice, whereas
a physical material will necessarily have finite size. Nevertheless, we will see
that even then, there are physical constraints that are imposed by the quantum
nature of the system to the entropy, which can be interpreted as informational
restrictions on the physical realizability of the mathematical construction.

For a continuous system whose configuration is denoted by C, where the con-
figuration space is assumed to be endowed with a measure μ (for simplicity one
may think of Rd), the entropy associated with a specific probability distribution
P is given by

S[P ] = −
∫

dμ(C)P (C)lnP (C),

that is, the expected value of −lnP (C) with respect to μ.
By dividing the space into cells of size εd the entropy of the continuous system

can be well approximated by the entropy of the discrete system resulting from
the partition:

Sdisc = Scont − dln(ε).

As a matter of fact, the ε can be taken to be the Planck constant for a quantum
system. This observation will be important later on.

4 Implementing Cantor’s Method

As we mentioned before, we can in principle use the Ising system to physically
array and enumerate the rational numbers and locate any of them in this array.
In fact the question: “How to find a rational number in the list?” is well defined
and would only need a finite number of steps.

In the section devoted to the Ising model, we recalled equation 3 for the
entropy of a quantum system. Notice that the second term is positive and in-
dependent of the details of the system, only due to the quantum nature of the
same. This has an important implication in terms of the possibility of actually
determining the state in which the Ising model is. If we relate the information
content with the entropy of the system we see that, in order for the state of
the system to be completely determined, we would need zero entropy [4]. This
is physically impossible. Moreover, a lower bound for the entropy is related not
only to the discrete (quantum) nature of the system, but it also depends on
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the temperature and other parameters. The conclusion is that even when the
counting and locating procedure is well defined, there is always an intrinsic er-
ror. Of course one might argue that this is probably due to the chosen system,
but the reasoning is general enough as to suggest that no matter what physical
implementation we choose, there will always exist this limitation.

5 Conclusion: Uncertainty Comes in the Way or How
Real Is Reality?

We have argued that uncertainty in determining a particular state in an Ising
system renders impossible to have a reliable implementation of Cantor’s diagonal
method. There are also other related mathematical constructions that could be
analysed in a similar way. For instance, Cantor’s proof of the uncountability
of the real numbers relies on similar ideas. As a matter of fact, in the usual
argument, a contradiction is obtained by producing a real number that cannot
be included in a proposed enumeration. This is done by considering the diagonal
sequence and taking its negation. Once this is done, it can be shown that if t is
the truth value of the element of this sequence intersecting the diagonal, then it
would have to satisfy the relation

t = 1− t,

which leads to a contradiction if one assumes the only possible truth values are 0
or 1 (see for instance chapter 2 on diagonalization in[1]). However, this equation
does not pose any problem if t is interpreted in a probabilistic way and assigned
a value of 1/2. This opens up a series of even subtler questions such as whether
we can actually have a physical model of the real numbers and many others,
that from our perspective, are worth addressing.

Many other people have previously addressed this questions either in general
terms or for particular mathematical concepts. A pioneering work is [6], which
posed the question of realizing an abstract mapping process within the con-
straints of a physical version of Church’s thesis. A very recent case study in the
field of control and quantum systems can be found in [7].
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Abstract. In this paper we analyze methodological and philosophical implica-
tions of algorithmic aspects of unconventional computation. At first, we de-
scribe how the classical algorithmic universe developed and analyze why it  
became closed in the conventional approach to computation. Then we explain 
how new models of algorithms turned the classical closed algorithmic universe 
into the open world of algorithmic constellations, allowing higher flexibility 
and expressive power, supporting constructivism and creativity in mathematical 
modeling. As Gödel’s undecidability theorems demonstrate, the closed algo-
rithmic universe restricts essential forms of mathematical cognition. In contrast, 
the open algorithmic universe, and even more the open world of algorithmic 
constellations, remove such restrictions and enable new, richer understanding of 
computation. 

Keywords: Unconventional algorithms, unconventional computing, algorithmic 
constellations, Computing beyond Turing machine model. 

1 Introduction 

Te development of various systems is characterized by a tension between forces of 
conservation (tradition) and change (innovation). Tradition sustains system and its 
parts, while innovation moves it forward advancing some segments and weakening 
the others. Efficient functioning of a system depends on the equilibrium between tra-
dition and innovation. When there is no equilibrium, system declines; too much tradi-
tion brings stagnation and often collapse under the pressure of inner or/and outer 
forces, while too much innovation leads to instability and frequently in rupture. 

The same is true for the development of different areas and aspects of social sys-
tems, such as science and technology. In this article, we are interested in computation, 
which has become increasingly important for society as the basic aspect of informa-
tion technology. Tradition in computation is represented by conventional computation 
and classical algorithms, while unconventional computation stands for the far-
reaching innovation. 
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It is possible to distinguish three areas in which computation can be unconventional: 

1. Novel hardware (e.g. quantum systems) provides material realization for uncon-
ventional computation. 

2. Novel algorithms (e.g. super-recursive algorithms) provide operational realization 
for unconventional computation.  

3. Novel organization (e.g. evolutionary computation or self-optimizing computation) 
provides structural realization for unconventional computation. 

Here we focus on algorithmic aspects of unconventional computation and analyze 
methodological and philosophical problems related to it, making a distinction between 
three classes of algorithms: recursive, subrecursive, and super-recursive algorithms. 

Each type of recursive algorithms form a class in which it is possible to compute 
exactly the same functions that are computable by Turing machines. Examples of 
recursive algorithms are partial recursive functions, RAM, von Neumann automata, 
Kolmogorov algorithms, and Minsky machines.  

Each type of subrecursive algorithms forms a class that has less computational 
power than the class of all Turing machines. Examples of subrecursive algorithms are 
finite automata, primitive recursive functions and recursive functions.  

Each type of super-recursive algorithms forms a class that has more computational 
power than the class of all Turing machines. Examples of super-recursive algorithms 
are inductive and limit Turing machines, limit partial recursive functions and limit 
recursive functions.  

The main problem is that conventional types and models of algorithms make the 
algorithmic universe, i.e., the world of all existing and possible algorithms, closed 
because there is a rigid boundary in this universe formed by recursive algorithms, 
such as Turing machines, and described by the Church-Turing Thesis. This closed 
system has been overtly dominated by discouraging incompleteness results, such as 
Gödel incompleteness theorems. 

Contrary to this, super-recursive algorithms controlling and directing unconven-
tional computations break this boundary leading to an open algorithmic multiverse – 
world of unrestricted creativity. 

The paper is organized as follows. First, we summarize how the closed algorithmic 
universe was created and what are advantages and disadvantages of living inside such 
a closed universe. Next, we describe the breakthrough brought about by the creation 
of super-recursive algorithms. In Section 4, we analyze super-recursive algorithms as 
cognitive tools. The main effect is the immense growth of cognitive possibilities and 
computational power that enables corresponding growth of information processing 
devices. 

2 The Closed Universe of Turing Machines and other Recursive  
Algorithms 

Historically, after having an extensive experience of problem solving, mathematicians 
understood that problem solutions were based on various algorithms. Construction 
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algorithms and deduction algorithms have been the main tools of mathematical re-
search. When they repeatedly encountered problems they were not able to solve, ma-
thematicians, and especially experts in mathematical logic, came to the conclusion 
that it was necessary to develop a rigorous mathematical concept of algorithm and to 
prove that some problems are indeed unsolvable. Consequently, a diversity of exact 
mathematical models of algorithm as a general concept was proposed. The first mod-
els were λ-calculus developed by Church in 1931 – 1933, general recursive functions 
introduced by Gödel in 1934, ordinary Turing machines constructed by Turing in 
1936 and in a less explicit form by Post in 1936, and partial recursive functions built 
by Kleene in 1936. Creating λ-calculus, Church was developing a logical theory of 
functions and suggested a formalization of the notion of computability by means of λ-
definability. In 1936, Kleene demonstrated that λ-definability is computationally 
equivalent to general recursive functions. In 1937, Turing showed that λ-definability 
is computationally equivalent to Turing machines. Church was so impressed by these 
results that he suggested what was later called the Church-Turing thesis. Turing  
formulated a similar conjecture in the Ph.D. thesis that he wrote under Church's  
supervision. 

It is interesting to know that the theory of Frege [1] actually contains λ-calculus. 
So, there were chances to develop a theory of algorithms and computability in the 19th 
century. However, at that time, the mathematical community did not feel a need of 
such a theory and probably, would not accept it if somebody created it. 

The Church-Turing thesis explicitly marked out a rigid boundary for the algorith-
mic universe, making this universe closed by Turing machines. Any algorithm from 
this universe was inside that boundary. 

After the first breakthrough, other mathematical models of algorithms were sug-
gested. They include a variety of Turing machines: multihead, multitape Turing ma-
chines, Turing machines with n-dimensional tapes, nondeterministic, probabilistic, 
alternating and reflexive Turing machines, Turing machines with oracles, Las Vegas 
Turing machines, etc.; neural networks of various types – fixed-weights, unsuper-
vised, supervised, feedforward, and recurrent neural networks; von Neumann automa-
ta and general cellular automata; Kolmogorov algorithms finite automata of different 
forms – automata without memory, autonomous automata, automata without output 
or accepting automata, deterministic, nondeterministic, probabilistic automata, etc.; 
Minsky machines; Storage Modification Machines or simply, Shönhage machines; 
Random Access Machines (RAM) and their modifications - Random Access Machines 
with the Stored Program (RASP), Parallel Random Access Machines (PRAM); Petri 
nets of various types – ordinary and ordinary with restrictions, regular, free, colored, 
and self-modifying Petri nets, etc.; vector machines; array machines; multidimension-
al structured model of computation and computing systems; systolic arrays; hardware 
modification machines; Post productions; normal Markov algorithms; formal gram-
mars of many forms – regular, context-free, context-sensitive, phrase-structure, etc.; 
and so on. As a result, the theory of algorithms, automata and computation has be-
come one of the foundations of computer science. 

In spite of all differences between these models and diversity of algorithms, there 
is a unity in the system of algorithms. While new models of algorithm appeared, it 
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was proved that no one of them could compute more functions than the simplest Tur-
ing machine with a one-dimensional tape. All this give more and more evidence to 
validity of the Church-Turing Thesis. 

Even more, all attempts to find mathematical models of algorithms that were 
stronger than Turing machines were fruitless. Equivalence with Turing machines has 
been proved for many models of algorithms. That is why the majority of mathemati-
cians and computer scientists have believed that the Church-Turing Thesis was true. 
Many logicians assume that the Thesis is an axiom that does not need any proof. Few 
believe that it is possible to prove this Thesis utilizing some evident axioms. More 
accurate researchers consider this conjecture as a law of the theory of algorithms, 
which is similar to the laws of nature that might be supported by more and more evi-
dence or refuted by a counter-example but cannot be proved.  

Besides, the Church-Turing Thesis is extensively utilized in the theory of algo-
rithms, as well as in the methodological context of computer science. It has become 
almost an axiom. Some researchers even consider this Thesis as a unique absolute law 
of computer science. 

Thus, we can see that the initial aim of mathematicians was to build a closed algo-
rithmic universe, in which a universal model of algorithm provided a firm foundation 
and as it was found later, a rigid boundary for this universe supposed to contain all of 
mathematics.  

It is possible to see the following advantages and disadvantages of the closed algo-
rithmic universe. 

Advantages: 

1. Turing machines and partial recursive functions are feasible mathematical models. 
2. These and other recursive models of algorithms provide an efficient possibility to 

apply mathematical techniques. 
3. The closed algorithmic universe allowed mathematicians to build beautiful theories 

of Turing machines, partial recursive functions and some other recursive and sub-
recursive algorithms. 

4. The closed algorithmic universe provides sufficiently exact boundaries for know-
ing what is possible to achieve with algorithms and what is impossible. 

5. The closed algorithmic universe provides a common formal language for researchers. 
6. For computer science and its applications, the closed algorithmic universe provides 

a diversity of mathematical models with the same computing power. 

Disadvantages: 

1. The main disadvantage of this universe is that its main principle - the Church-
Turing Thesis - is not true. 

2. The closed algorithmic universe restricts applications and in particular, mathemati-
cal models of cognition. 

3. The closed algorithmic universe does not correctly reflect the existing computing 
practice. 
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3 The Open World of Super-Recursive Algorithms and 
Algorithmic Constellations 

Contrary to the general opinion, some researchers expressed their concern for the 
Church-Turing Thesis. As Nelson writes [2], "Although Church-Turing Thesis has 
been central to the theory of effective decidability for fifty years, the question of its 
epistemological status is still an open one.” There were also researchers who directly 
suggested arguments against validity of the Church-Turing Thesis. For instance,  
Kalmar [3] raised intuitionistic objections, while Lucas and Benacerraf discussed 
objections to mechanism based on theorems of Gödel that indirectly threaten the 
Church-Turing Thesis. In 1972, Gödel’s observation entitled “A philosophical error in 
Turing’s work” was published where he declared that: "Turing in his 1937, p. 250 
(1965, p. 136), gives an argument which is supposed to show that mental procedures 
cannot go beyond mechanical procedures. However, this argument is inconclusive. 
What Turing disregards completely is the fact that mind, in its use, is not static, but 
constantly developing, i.e., that we understand abstract terms more and more pre-
cisely as we go on using them, and that more and more abstract terms enter the 
sphere of our understanding. There may exist systematic methods of actualizing this 
development, which could form part of the procedure. Therefore, although at each 
stage the number and precision of the abstract terms at our disposal may be finite, 
both (and, therefore, also Turing’s number of distinguishable states of mind) may 
converge toward infinity in the course of the application of the procedure.” [4] 

Thus, pointing that Turing disregarded completely the fact that mind, in its use, is 
not static, but constantly developing, Gödel predicted necessity for super-recursive 
algorithms that realize inductive and topological computations [5]. Recently, Sloman 
[6] explained why recursive models of algorithms, such as Turing machines, are  
irrelevant for artificial intelligence. 

Even if we abandon theoretical considerations and ask the practical question 
whether recursive algorithms provide an adequate model of modern computers, we 
will find that people do not see correctly how computers are functioning. An analysis 
demonstrates that while recursive algorithms gave a correct theoretical representation 
for computers at the beginning of the “computer era”, super-recursive algorithms are 
more adequate for modern computers. Indeed, at the beginning, when computers ap-
peared and were utilized for some time, it was necessary to print out data produced by 
computer to get a result. After printing, the computer stopped functioning or began to 
solve another problem. Now people are working with displays and computers produce 
their results mostly on the screen of a monitor. These results on the screen exist there 
only if the computer functions. If this computer halts, then the result on its screen 
disappears. This is opposite to the basic condition on ordinary (recursive) algorithms 
that implies halting for giving a result. 

Such big networks as Internet give another important example of a situation in 
which conventional algorithms are not adequate. Algorithms embodied in a multip-
licity of different programs organize network functions. It is generally assumed that 
any computer program is a conventional, that is, recursive algorithm. However, a 
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recursive algorithm has to stop to give a result, but if a network shuts down, then 
something is wrong and it gives no results. Consequently, recursive algorithms turn 
out to be too weak for the network representation, modeling and study. 

Even more, no computer works without an operating system. Any operating system 
is a program and any computer program is an algorithm according to the general un-
derstanding. While a recursive algorithm has to halt to give a result, we cannot say 
that a result of functioning of operating system is obtained when computer stops func-
tioning. To the contrary, when the operating system does not work, it does not give an 
expected result. 

Looking at the history of unconventional computations and super-recursive algo-
rithms we see that Turing was the first who went beyond the “Turing” computation 
that is bounded by the Church-Turing Thesis. In his 1938 doctoral dissertation, Turing 
introduced the concept of a Turing machine with an oracle. This, work was subse-
quently published in 1939. Another approach that went beyond the Turing-Church 
Thesis was developed by Shannon [7], who introduced the differential analyzer, a 
device that was able to perform continuous operations with real numbers such as op-
eration of differentiation. However, mathematical community did not accept opera-
tions with real numbers as tractable because irrational numbers do not have finite 
numerical representations.  

In 1957, Grzegorczyk introduced a number of equivalent definitions of computable 
real functions. Three of Grzegorczyk’s constructions have been extended and elabo-
rated independently to super-recursive methodologies: the domain approach [8,9], 
type 2 theory of effectivity or type 2 recursion theory [10,11], and the polynomial 
approximation approach [12]. In 1963, Scarpellini introduced the class M1 of func-
tions that are built with the help of five operations. The first three are elementary: 
substitutions, sums and products of functions. The two remaining operations are per-
formed with real numbers: integration over finite intervals and taking solutions of 
Fredholm integral equations of the second kind.  

Yet another type of super-recursive algorithms was introduced in 1965 by Gold 
and Putnam, who brought in concepts of limiting recursive function and limiting par-
tial recursive function. In 1967, Gold produced a new version of limiting recursion, 
also called inductive inference, and applied it to problems of learning. Now inductive 
inference is a fruitful direction in machine learning and artificial intelligence.  

One more direction in the theory of super-recursive algorithms emerged in 1967 
when Zadeh introduced fuzzy algorithms. It is interesting that limiting recursive func-
tion and limiting partial recursive function were not considered as valid models of 
algorithms even by their authors. A proof that fuzzy algorithms are more powerful 
than Turing machines was obtained much later (Wiedermann, 2004). Thus, in spite of 
the existence of super-recursive algorithms, researchers continued to believe in the 
Church-Turing Thesis as an absolute law of computer science. 

After the first types of super-recursive models had been studied, a lot of other su-
per-recursive algorithmic models have been created: inductive Turing machines, limit 
Turing machines, infinite time Turing machines, general Turing machines, accelerat-
ing Turing machines, type 2 Turing machines, mathematical machines, δ-Q-machines,  
general dynamical systems, hybrid systems, finite dimensional machines over real 
numbers, R-recursive functions and so on. 
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To organize the diverse variety of algorithmic models, we introduce the concept of 
an algorithmic constellation. Namely, an algorithmic constellation is a system of algo-
rithmic models that have the same type. Some algorithmic constellations are disjoint, 
while other algorithmic constellations intersect. There are algorithmic constellations 
that are parts of other algorithmic constellations. 

Below some of algorithmic constellations are described. 
The sequential algorithmic constellation consists of models of sequential algo-

rithms. This constellation includes such models as deterministic finite automata, de-
terministic pushdown automata with one stack, evolutionary finite automata, Turing 
machines with one head and one tape, Post productions, partial recursive functions, 
normal Markov algorithms, formal grammars, inductive Turing machines with one 
head and one tape, limit Turing machines with one head and one tape, reflexive  
Turing machines with one head and one tape, infinite time Turing machines, general 
Turing machines with one head and one tape, evolutionary Turing machines with one 
head and one tape, accelerating Turing machines with one head and one tape, type 2 
Turing machines with one head and one tape, Turing machines with oracles.   

The concurrent algorithmic constellation consists of models of concurrent algo-
rithms. This constellation includes such models as Petri nets, artificial neural net-
works, nondeterministic Turing machines, probabilistic Turing machines, alternating 
Turing machines, Communicating Sequential Processes (CSP) of Hoare, Actor model, 
Calculus of Communicating Systems (CCS) of Milner, Kahn process networks, 
dataflow process networks, discrete event simulators, View-Centric Reasoning (VCR) 
model of Smith, event-signal-process (ESP) model of Lee and Sangiovanni-
Vincentelli, extended view-centric reasoning (EVCR) model of Burgin and Smith, 
labeled transition systems, Algebra of Communicating Processes (ACP) of Bergstra 
and Klop, event-action-process (EAP) model of Burgin and Smith, synchronization 
trees, and grid automata. 

The parallel algorithmic constellation consists of models of parallel algorithms 
and is a part of the concurrent algorithmic constellation. This constellation includes 
such models as pushdown automata with several stacks, Turing machines with several 
heads and one or several tapes, Parallel Random Access Machines, Kolmogorov algo-
rithms, formal grammars with prohibition, inductive Turing machines with several 
heads and one or several tapes, limit Turing machines with several heads and one or 
several tapes, reflexive Turing machines with several heads and one or several tapes, 
general Turing machines with several heads and one or several tapes, accelerating 
Turing machines with several heads and one or several tapes, type 2 Turing machines 
with several heads and one or several tapes.   

The discrete algorithmic constellation consists of models of algorithms that work 
with discrete data, such as words of formal language. This constellation includes such 
models as finite automata, Turing machines, partial recursive functions, formal 
grammars, inductive Turing machines and Turing machines with oracles.   

The topological algorithmic constellation consists of models of algorithms that 
work with data that belong to a topological space, such as real numbers. This constel-
lation includes such models as the differential analyzer of Shannon, limit Turing ma-
chines, finite dimensional and general machines of Blum, Shub, and Smale, fixed 
point models, topological algorithms, neural networks with real number parameters.   
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Although several models of super-recursive algorithms already existed in 1980s, 
the first publication where it was explicitly stated and proved that there are algorithms 
more powerful than Turing machines was [13]. In this work, among others, relations 
between Gödel’s incompleteness results and super-recursive algorithms were dis-
cussed. 

Super-recursive algorithms have different computing and accepting power. The 
closest to conventional algorithms are inductive Turing machines of the first order 
because they work with constructive objects, all steps of their computation are the 
same as the steps of conventional Turing machines and the result is obtained in a fi-
nite time. In spite of these similarities, inductive Turing machines of the first order 
can compute much more than conventional Turing machines [14, 5].  

Inductive Turing machines of the first order form only the lowest level of super-
recursive algorithms. There are infinitely more levels and as a result, the algorithmic 
universe grows into the algorithmic multiverse becoming open and amenable. Taking 
into consideration algorithmic schemas, which go beyond super-recursive algorithms, 
we come to an open world of information processing, which includes the algorithmic 
multiverse with its algorithmic constellations. Openness of this world has many im-
plications for human cognition in general and mathematical cognition in particular. 
For instance, it is possible to demonstrate that not only computers but also the brain 
can work not only in the recursive mode but also in the inductive mode, which is es-
sentially more powerful and efficient. Some of the examples are considered in the 
next section.  

4 Absolute Prohibition in the Closed Universe and Infinite 
Opportunities in the Open World 

To provide sound and secure foundations for mathematics, David Hilbert proposed an 
ambitious and wide-ranging program in the philosophy and foundations of mathemat-
ics. His approach formulated in 1921 stipulated two stages. At first, it was necessary 
to formalize classical mathematics as an axiomatic system. Then, using only re-
stricted, "finitary" means, it was necessary to give proofs of the consistency of this 
axiomatic system. 

Achieving a definite progress in this direction, Hilbert became very optimistic. As 
a response to the Latin dictum: "Ignoramus et ignorabimus" or "We do not know, we 
cannot know", in his speech in Königsberg in 1930, he made a famous statement: 

Wir müssen wissen. Wir werden wissen. 
(We must know. We will know.) 

Next year the Gödel undecidability theorems were published [15]. They undermined 
Hilbert’s statement and his whole program. Indeed, the first Gödel undecidability 
theorem states that it is impossible to validate truth for all true statements about ob-
jects in an axiomatic theory that includes formal arithmetic. This is a consequence of  
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the fact that it is impossible to build all sets from the arithmetical hierarchy by Turing 
machines. In such a way, the closed Algorithmic Universe imposed restriction on the 
mathematical exploration. Indeed, rigorous mathematical proofs are done in formal 
mathematical systems. As it is demonstrated (cf., for example, [16]), such systems are 
equivalent to Turing machines as they are built by means of Post productions. Thus, 
as Turing machines can model proofs in formal systems, it is possible to assume that 
proofs are performed by Turing machines.  

The second Gödel undecidability theorem states that for an effectively generated 
consistent axiomatic theory T that includes formal arithmetic and has means for for-
mal deduction, it is impossible to prove consistency of T using these means. 

From the very beginning, Gödel undecidability theorems have been comprehended 
as absolute restrictions for scientific cognition. That is why Gödel undecidability 
theorems were so discouraging that many mathematicians consciously or uncons-
ciously disregarded them. For instance, the influential group of mostly French ma-
thematicians who wrote under the name Bourbaki completely ignored results of Gödel 
[17].  

However, later researchers came to the conclusion that these theorems have such 
drastic implications only for formalized cognition based on rigorous mathematical 
tools. For instance, in the 1964 postscript, Gödel wrote that undecidability theorems 
“do not establish any bounds for the powers of human reason, but rather for the poten-
tialities of pure formalism in mathematics.”   

Discovery of super-recursive algorithms and acquisition of the knowledge of their 
abilities drastically changed understanding of the Gödel’s results. Being a conse-
quence of the closed nature of the closed algorithmic universe, these undecidability 
results lose their fatality in the open algorithmic universe. They become relativistic 
being dependent on the tools used for cognition. For instance, the first undecidability 
theorem is equivalent to the statement that it is impossible to compute by Turing ma-
chines or other recursive algorithms all levels of the Arithmetical Hierarchy [18]. 
However, as it is demonstrated in [19], there is a hierarchy of inductive Turing  
machines so that all levels of the Arithmetical Hierarchy are computable and even 
decidable by these inductive Turing machines. Complete proofs of these results were 
published only in 2003 due to the active opposition of the proponents of the Church-
Turing Thesis [14]. In spite of the fast development of computer technology and 
computer science, the research community in these areas is rather conservative al-
though more and more researchers understand that the Church-Turing Thesis is not 
correct. 

The possibility to use inductive proofs makes the Gödel’s results relative to the 
means used for proving mathematical statements because decidability of the Arith-
metical Hierarchy implies decidability of the formal arithmetic. For instance, the first 
Gödel undecidability theorem is true when recursive algorithms are used for proofs 
but it becomes false when inductive algorithms, such as inductive Turing machines, 
are utilized. History of mathematics also gives supportive evidence for this conclu-
sion. For instance, in 1936 by Gentzen, who in contrast to the second Gödel undeci-
dability theorem, proved consistency of the formal arithmetic using ordinal induction. 
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The hierarchy of inductive Turing machines also explains why the brain of people 
is more powerful than Turing machines, supporting the conjecture of Roger Penrose 
[20]. Besides, this hierarchy allows researchers to eliminate restrictions of recursive 
models of algorithms in artificial intelligence described by Sloman [6].  

It is important to remark that limit Turing machines and other topological algo-
rithms [21] open even broader perspectives for information processing technology 
and artificial intelligence than inductive Turing machines. 

5 The Open World of Knowledge and the Internet 

The open world, or more exactly, the open world of knowledge, is an important con-
cept for the knowledge society and its knowledge economy. According to Rossini 
[12], it emerges from a world of pre-Internet political systems, but it has come to 
encompass an entire worldview based on the transformative potential of open, shared, 
and connected technological systems. The idea of an open world synthesizes much of 
the social and political discourse around modern education and scientific endeavor 
and is at the core of the Open Access (OA) and Open Educational Resources (OER) 
movements. While the term open society comes from international relations, where it 
was developed to describe the transition from political oppression into a more demo-
cratic society, it is now being appropriated into a broader concept of an open world 
connected via technology [22]. The idea of openness in access to knowledge and edu-
cation is a reaction to the potential afforded by the global networks, but is inspired by 
the sociopolitical concept of the open society. 

Open Access (OA) is a knowledge-distribution model by which scholarly, peer-
reviewed journal articles and other scientific publications are made freely available to 
anyone, anywhere over the Internet. It is the foundation for the open world of scientif-
ic knowledge, and thus, a principal component of the open world of knowledge as a 
whole. In the era of print, open access was economically and physically impossible. 
Indeed, the lack of physical access implied the lack of knowledge access - if one did 
not have physical access to a well-stocked library, knowledge access was impossible. 
The Internet has changed all of that, and OA is a movement that recognizes the full 
potential of an open world metaphor for the network. 

In OA, the old tradition of publishing for the sake of inquiry, knowledge, and peer 
acclaim and the new technology of the Internet have converged to make possible an 
unprecedented public good: "the world-wide electronic distribution of the peer-
reviewed journal literature" [23]. 

The open world of knowledge is based on the Internet, while the Internet is based 
on computations that go beyond Turing machines. One of the basic principles of the 
Internet is that it is always on, always available. Without these features, the Internet 
cannot provide the necessary support for the open world of knowledge because ubi-
quitous availability of knowledge resources demands non-stopping work of the Inter-
net. At the same time, classical models of algorithms, such as Turing machines, stop  
after giving that result. This contradicts the main principles of the Internet. In contrast  
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to classical models of computation, as it is demonstrated in [5], if an automatic sys-
tem, e.g., a computer or computer network, works without halting, gives results in this 
mode and can simulate any operation of a universal Turing machine, then this auto-
matic (computer) system is more powerful than any Turing machine. This means that 
this automatic (computer) system, in particular, the Internet, performs unconventional 
computations and is controlled by super-recursive algorithms. As it is explained in 
[5], attempts to reduce some of these systems, e.g., the Internet, to the recursive mode, 
which allows modeling by Turing machines, make these systems irrelevant. 

6 Conclusions 

This paper shows how the universe (the world) of algorithms became open with the 
discovery of super-recursive algorithms, providing more powerful tools for computa-
tional cognition and artificial intelligence.  

Here we considered only some of the consequences of the open world environment 
of unconventional algorithms and algorithmic constellations for mathematical  
(computation-theoretical) cognition. It would be interesting to study other conse-
quences of current break through into an open world of unconventional algorithms 
and computation.  

It is known that not all quantum mechanical events are Turing-computable. So, it 
would be interesting to find a class of super-recursive algorithms that compute all 
such events or to prove that such a class does not exist. 

It might be methodologically and philosophically interesting to contemplate rela-
tions between the Open World of Algorithmic Constellations and the Open Science in 
the sense of Nielsen [24]. For instance, one of the pivotal features of the Open 
Science is accessibility of research results on the Internet. At the same time, as it is 
demonstrated in [5], the Internet and other big networks of computers are always 
working in the inductive mode or some other super-recursive mode. Moreover, actual 
accessibility depends on such modes of functioning. 

One more interesting problem is to explore relations between the Open World of 
Algorithmic Constellations with the theoretical framework of Info-computationalism, 
a synthesis of Pancomputationalism (Naturalist Computationalism) with Information-
al Structural Realism – the model of a universe as a network of computational 
processes on informational structures. Info-computationalism connects algorithms 
with interactive computing in natural (physical) systems [25,26][28]. Connecting new 
unconventional models of super-recursive algorithms and Algorithmic Constellations 
with unconventional computations performed by natural systems opens new possibili-
ties for the development of innovative models of physical computation with  
“Trans-Turing” algorithms and “Non-Von” computing architectures. [27]. 
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What Makes a Computation Unconventional?

S. Barry Cooper

University of Leeds, UK

Turing’s standard model of computation, and its physical counterpart, has given
rise to a powerful paradigm. There are assumptions underlying the paradigm
which constrain our thinking about the realities of computing, not least when
we doubt the paradigm’s adequacy.

There are assumptions concerning the logical structure of computation, and
the character of its reliance on the data it feeds on. There is a corresponding
complacency spanning theoretical – but not experimental – thinking about the
complexity of information, and its mathematics. We point to ways in which
classical computability can clarify the nature of apparently unconventional com-
putation. At the same time, we seek to expose the devices used in both theory
and practice to try and extend the scope of the standard model. This involves a
drawing together of different approaches, in a way that validates the intuitions
of those who question the standard model, while providing them with a unifying
vision of diverse routes “beyond the Turing barrier”.

The results of such an analysis are radical in their consequences, and break
the mould in a way that has not been possible previously. The aim is not to
question, invalidate or supplant the richness of contemporary thinking about
computation. A modern computer is not just a universal Turing machine. But
the understanding the model brought us was basic to the building of today’s
digital age. It gave us computability, an empowering insight, and computing
with consciousness. What is there fundamental that unconventional computation
directs us to? What is it makes a computation unconventional? And having
fixed on a plausible answer to this question, we ask: To what extent can the
explanatory power of the mathematics clarify key issues relating to emergence,
basic physics, and the supervenience of mentality on its material host?

1 Method over Matter

There is a huge literature concerning computability. It has grown beyond what
anyone might have anticipated back in the 1930s. The subject has taken on a life
of its own, the context has spread across disciplinary boundaries in a startling
way and ideas are increasingly hard to categorise and evaluate within traditional
structures. During the 2012 centenary of Alan Turing’s birth, we were reminded
that some of the most important early contributions to the computing revolution
came from people who thought deeply about the way the world computes, while
gaining strength from their independence of what other people had done. Thank
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you, Turing. Relieved of the burden of the taxonomy of who said what and
when, let us start by mapping out some of the main features of the standard
model of computation. Or rather, the main features of how a starting student in
computability might unwrap the model.

The most basic feature, a feature not just of Turing’s 1936 Turing machine but
of all the equivalent models, is its disembodiment. We might have been told at
some point that it was devised as a disembodying model of machine computation.
Not so, of course. 2012 has made everyone aware of the very specific physicality of
the computing situation that Turing was modelling, the predominantly women
‘computers’ following instructions. One of the special strengths of the Turing
model is its close relationship with physical computation, via a very specific
deconstruction of a typical computational context. We have but a confused idea
of what a machine might be. We have a firmer grip on what a ‘computer’ following
instructions might be doing, using well-defined workspace, tools and conventions.
The underlying physicality may be highly complex. But such things as the human
computer’s aches and pains, her feelings of hunger or boredom, are factored out
of the process. We extract emergent features of the material context which are far
from disembodiments of the computation, but which give us a model which we
may re-embody in quite different contexts, and whose mathematical properties
can be investigated with a realistic hope of relevance to a wide spectrum of
controlled situations.

This provides a green light to those who would turn such a superficial take
on physical computation back on its host. In the absence of a corresponding
deconstruction of more complex physicality – and ignoring the fact that even
more ad-hoc descriptions of particle physics, life, cosmology, human mentality
etc. are incomplete – the temptation is to turn the Turing model into metaphor,
and then into extended model, in ways we can only argue about. The disembod-
iment implicit in the standard model is not so simple. It has a character which
we should not ignore. Surfing the computational world is fun, but the underlying
complexity may still surprise.

We have dwelled on the basic particularity and oddness of the standard model.
It is relevant to what we expect of other aspects of the dominant paradigm.
Before Turing and logicians like Emil Post, Kurt Gödel, Alonzo Church, and
Stephen Kleene came on the scene, an important input to a computation was
the computing machine itself. Physically the machine embodied a weighty piece
of data. The logician’s overview provided an extraction of its essentials in the
form of a simple code – a natural number, a finite binary string, or other sim-
ilar mathematical object. This provided two hugely important features of the
standard model, and the modern computational world.

Firstly, however we structure our machines, their descriptions can be con-
verted into data used by machines based on a different logical analysis, enabling
the construction of algorithms for converting ‘programs’ within one framework
into one fitting with another. Much activity of the early investigators involved
devising such algorithms (say, for converting a description of a λ-computable
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function into one for an equivalent Turing computable function). The natural
conclusion was that Turing machines could ‘compute anything’.

Secondly, having trivialised the hardware, the power of the computing
paradigm lay in the programming. And with a model which turned machines
into data, it was a short step to building a machine which could mine machines
for different purposes out of whatever data you gave it – and having decoded
the program from the data, could implement it. This was the origin of the so-
called ‘universal Turing machine’. By a simple mathematical sleight of hand,
one had moved machine from physical world to the realm of pure thought. Well,
not quite, as Charles Babbage found out in the process of getting his Analytical
Engine built prior to 1871. Of course, Babbage’s machine, like others pre-dating
the 1948 Manchester Small-Scale Experimental Machine (SSEM), or ‘Manch-
ester Baby’, was not universal machine in the sense of a modern stored-program
computer.

Today’s computers are a true embodiment of Turing’s universal machine in
that they enable programs to be combined and edited in increasingly creative
ways, without the need for any rebuilding of the programmer-computer physical
interface. Nowadays, the program, once input, becomes part of the computer,
to be stored, adapted or discarded by the programmer without any grappling
with punched cards or realigning of wired connections or switches. Early designs
of Babbage, Konrad Zuse and others are ‘Turing complete’, but lack the vital
stored-program feature. This important ingredient of Turing’s 1936 logical anal-
ysis was incorporated by John von Neumann in his June 1945 EDVAC report,
and also features, much less influentially, in Turing’s report on the ACE of later
that same year.

Universality; the transposability of computational activity from one comput-
ing platform to another; the supplanting of the physical by the logical; the redun-
dancy of information beyond the type 1 or type 2 mathematical level — these
are familiar aspects of an overarching computational paradigm. The underlying
assumptions have served us well, and moulded our thinking about the wider
context. One can recognise it in early approaches to artificial intelligence. In the
philosophy of mind one has various functionalist viewpoints, with Hilary Put-
nam explicitly drawing on the universal machine metaphor in his seminal 1960s
writings on the topic. Again, in computer science one has the allied notion of
‘virtual machine’ quite validly useful in both practical and theoretical contexts.
One observes the paradigm in the drive to reduce social interaction and devel-
opment to the algorithmic, setting complex interactive processes within simple
rule-based game structures. The feedback between the emergent and the algo-
rithmic, to which we return below, does not fit well with ‘corporate thinking’,
with its drive for strategic certainty.

In computer science andmathematics the paradigm can be detected in sophisti-
cated approaches to the logic of computation, focused on the value of frameworks
transferable not just between specific contexts, but between different disciplines.
Categorical methods have been productive in the computational context, where
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according toSamsonAbramsky“in theworkonconcurrentprocesses, thebehaviour
is the object of interest.

2 Process and Embodiment

History brings its own reminders that computers are not ‘just’ universal Turing
machines. Moving the model from the human ‘computers’ platform to a more
efficient and cost-effective electronic platform was highly non-trivial. Apart from
this, the re-embodiment of computing brought us closer to the main point of Tur-
ing’s 1936 paper — a proof that there are interesting questions beyond the reach
of algorithms. In retrospect, one can rephrase this as “computers are stupid”,
and go on to ask if a 14 billion year old universe is subject to similar limitations.
Is the mathematics of Turing’s simple diagonalisation of the computable reals
unembodiable?

The sort of problems Turing and Alonzo Church showed to be unsolvable by
a computer were very natural in an everyday sense. From Turing we know that
if U is a universal Turing machine then there is no computer that can tell us ,
for an arbitrary input x, whether U will ever produce an output from x. This
is the ‘unsolvability of the Halting Problem’ for U, with the set of numbers x
on which U halts called the Halting Set for U. Remembering that x can code a
program, this gives us an indication of why computer program checking is such
a tough problem. The process tends to be experimental, with a new piece of
software requiring a sequence of updates to fix various bugs.

Even closer to home is ‘Church’s Theorem’ — actually Turing proved it too,
it is just the negative solution to Hilbert’s Entscheidungsproblem. This says that
if you have a sentence in everyday language (as formalised in first-order logic),
there is no computer that can tell us of any such sentence whether it is logically
valid or not. To many this is quite informative and counter-intuitive.

One can extract from each of these problems a binary expression for a real
number r. Say r = 0 · r0r1 . . . , with each ri = 0 or 1, where ri = 1 exactly when
U successfully computes on input x = i. U can be thought to ‘compute’ r in the
sense that this number is uniquely decided by the actions of U in computing on
0, 1, 2, . . . successively. r is a very real feature of the real world in which U lives
and operates. However, the level of abstraction of r means that even though we
can ‘see’ U computing, we cannot ‘see’ r at all well. If we could see r we would
be moved to allow that it it is ‘computed’ in some sense. Of course, r does not
fit into the classical paradigm, since r is not available as an input to further
computation by U. Not only can we not see r, nor can U. And this is not just
due to the incomputability. r as a mathematical object is of higher type than the
natural numbers which U usually accepts as an input. Anyway, in the absence
of an embodied presence, r is not considered a computed outcome.

Mathematically, r is definable from U, but the existential quantifier needed to
define it puts r on the other side of an unembodied chasm. The question arises:
Can this chasm be crossed given the right material conditions?

There is an obvious counterpart of this elevation of type, and Turing’s proof
of a resulting incomputability. The non-locality of the view amounts to a logical
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interactivity between computations. The observing process provides the connec-
tivity, with us a player in the physical environment. We are no longer in the
presence of an individual computation, it is an interactive process at work, with
what we will subsequently recognise as an emergent incomputable real r. We will
come to regard emergent as real world analogue of ‘definable’. Emergence plays
an important role in many dynamical systems, such as weather systems, large
scale social interactions, the internet, biology, creative thinking, and turbulent
environments of many kinds.

Definability is commonly ignored, or regarded as a logician’s playground, with
important instantiations in the wider mathematical context. A useful ‘missing
link’ is the fractal, with both precise mathematical description and a visual
presence, often enhanced via computer simulation.

In a formal sense, the Halting Problem is in the same world as the Mandel-
brot set, for instance. We have gone up another level of the type structure, but
there is an in-principle connection. We have a simple computable rule hosted
by the complex numbers. Based on this there is a two-quantifier definition of
the members of the Mandelbrot set, which with a little manipulation can be
reduced to a one-quantifier expression for the purpose of the well-known com-
puter simulation. The computability or otherwise of the Mandelbrot set is still
an open problem. But unlike our incomputable Halting Set, the Mandelbrot set
comes beautifully and interestingly embodied, with quite visual counterparts to
the suspected incomputability. There it is on our computer screen! And we can
delve as deeply as we like into this fascinatingly surprising type-2 object. The
reason for this is that we are sampling this set of complex numbers. The com-
puter screen image involves a trick reduction of type. Turing himself was familiar
with the usefulness of statistical sampling for reducing complex information to
something computationally approachable. It is not a purely ad hoc methodology.
It is a way of recognising the higher type computability enabled by a definition,
or by some real world process to whose computational underpinnings we are not
privy.

Moving beyond our mathematical comfort zone, we can observe many every-
day examples of emergence as instances of objects definable in a real context.
We see apparently chaotic environments involving generation of informational
complexity via simple rules with a computational character. And we further ob-
serve the accompanying, often surprising, emergence of new regularities — such
as those of Robert Shaw’s dripping taps — entropic resting points, often at most
observable via the sort of selective sampling which made visible the embodied
Mandelbrot set.

The embodied computation of higher type objects is not in itself a challenge
to the classical model. But its character does mell with intuitions concerning
unconventionality of computation. And the parallel with the established incom-
putable r and its mathematical context certainly rings the alarm bells.
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3 Emergence and Definability

All around us we see a world exhibiting algorithmic content accompanied by
hierarchical structure not easily explainable in terms of the familiar underlying
rules. Our everyday lives are built around what appears to be a computable en-
vironment, but nature continually surprises us. Much of that surprise is attached
to natural form which does appear to be part of a universe which ‘knows what
it is doing’, and it is this we think of as ‘emergent’.

The importance of getting a mathematical grip on this omnipresent phe-
nomenon — in evidence from ‘strange attractors’ to human creativity, and from
the origins of life to large-scale cosmic structure — is illustrated by the history
of ‘British Emergentism’, and its heyday in the 1920s. One of the leaders of the
movement was the Cambridge philosopher C. D. Broad. Here he is1 in 1925,
attempting an explanation of what emergence is, while pointing to illustrative
examples:

. . . the characteristic behaviour of the whole . . . could not, even in the-
ory, be deduced from the most complete knowledge of the behaviour of
its components . . . This .. . . is what I understand by the ‘Theory of
Emergence’. I cannot give a conclusive example of it, since it is a matter
of controversy whether it actually applies to anything . . . I will merely
remark that, so far as I know at present, the characteristic behaviour
of Common Salt cannot be deduced from the most complete knowledge
of the properties of Sodium in isolation; or of Chlorine in isolation; or of
other compounds of Sodium, . . .

Dramatic scientific developments were in progress around this time. 1925 saw the
key elements of the new quantum mechanics put in place by Werner Heisenberg
and Erwin Schrödinger, and by the 5th Solvay conference in 1927 quantum theory
was revolutionising the foundations of chemistry. The mystery was stripped from
the examples from chemistry of Broad and others.2

For Stuart Kauffman3 emergence is not just an example of unconventional
computation, it calls into question basic assumptions about the computational
content of causality and the deterministic character of the universe:

We are beyond reductionism: life, agency, meaning, value, and even
consciousness and morality almost certainly arose naturally, and the evo-
lution of the biosphere, economy, and human culture are stunningly cre-
ative often in ways that cannot be foretold, indeed in ways that appear to
be partially lawless. The latter challenge to current science is radical. It
runs starkly counter to almost four hundred years of belief that natural

1 C.D. Broad, The Mind and Its Place In Nature, Kegan-Paul, London, 1925, p.59.
2 See Brian McLaughlin’s article “The Rise and Fall of British Emergentism”, in
Emergence or Reduction? – Essays on the Prospects of Nonreductive Physicalism
(A. Beckermann, H. Flohr, J. Kim, eds.), de Gruyter, Berlin, 1992, pp.49–93.

3 Stuart Kauffman, Reinventing the Sacred: A New View of Science, Reason and Re-
ligion, Basic Books, 2008, p.281.
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laws will be sufficient to explain what is real anywhere in the universe,
a view I have called the Galilean spell. The new view of emergence and
ceaseless creativity partially beyond natural law is a truly new scientific
worldview in which science itself has limits.

Such claims are counterbalanced by words of caution from Ronald Arkin4:

Emergence is often invoked in an almost mystical sense regarding the ca-
pabilities of behavior-based systems. Emergent behavior implies a holis-
tic capability where the sum is considerably greater than its parts. It
is true that what occurs in a behavior-based system is often a surprise
to the system’s designer, but does the surprise come because of a short-
coming of the analysis of the constituent behavioral building blocks and
their coordination, or because of something else?

In the face of historic confusions, and radical contemporary speculations, the
clarifying role of mathematics is urgently needed. This is not to brush aside the
more detailed proposals of Kauffman and others. The aim is to place them in a
more foundational framework.

To this end, one needs more than the codifying of current ‘best observational
practice’ represented by the Test of Emergence of Ronald, Sipper and Capcarrère
in Design, observation, surprise! A test of emergence (Artificial Life, 5 (1999),
225–239). Here is a summary of their qualifying criteria:

1) Design: The system has been constructed by the designer, by describing
local elementary interactions between components (e.g., artificial creatures
and elements of the environment) in a language L1.

2) Observation: The observer is fully aware of the design, but describes global
behaviors and properties of the running system, over a period of time, using
a language L2.

3) Surprise: The language of design L1 and the language of observation L2

are distinct, and the causal link between the elementary interactions pro-
grammed in L1 and the behaviors observed in L2 is non-obvious to the
observer – who therefore experiences surprise. In other words, there is a cog-
nitive dissonance between the observer’s mental image of the system’s design
stated in L1 and his contemporaneous observation of the system’s behavior
stated in L2.

Might this serve as a test for unconventional computation? Unconventionality
certainly requires some obstacle to reduction to basic algorithmic structure. And
it is hard to design a computational device which has no underpinning of classical
ingredients. On the other hand, there are potentially incomputable processes in
nature for which 1) or 2) fail. Can a foundational approach make computational
sense of the outcome of a quantum measurement leading to a collapse of the
wave function?

A nice aspect of the above test is its differentiation between ‘designer’ and
‘observer’ languages. This is a feature of the fragmentary nature of science, where

4 Ronald C. Arkin, Behaviour-Based Robotics, MIT Press, 1998, p.105.
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it is common to view, say, biology as emergent from an underlying quantum
mechanical base, with its own emergent rules and language, non-reducible to
the quantum level on which it depends. In the case of the Halting Set for a
universal Turing machine, L2 is distinguished by the addition of quantification.

Alan Turing recognised something computationally interesting in emergence
when he investigated the mathematics of morphogenesis. In the early 1950s Tur-
ing wrote his groundbreaking paper on The chemical basis of Morphogenesis, in
which he proposed a simple reaction-diffusion system describing chemical reac-
tions and diffusion to account for morphogenesis in a range of cases. He even ran
computer programs on the early Manchester Mark 1 computer (a more powerful
successor to the ‘Baby’) with the aim of verifying his reaction-diffusion ‘design’
underlying such emergent patterns as the familiar black and white dappling on
a Holstein dairy cow.

What is specially interesting about this work is how it related the powerful
descriptive framework of differential equations to emergent form in nature, so
exhibiting a connection between the mathematics of higher type objects and
apparent emergence. It is hard to claim computational unconventionality on
this basis – the solutions to Turing’s equations tended to be computable – but
then mathematics provides us with little means of identifying real world incom-
putability. Reducing the Halting Problem to an elusive solution to a non-linear
differential equation is not very likely. On the other hand, Marian Pour-el and
Ian Richards had some success designing ‘A computable ordinary differential
equation which possesses no computable solution’5

To summarise: Turing provided examples of descriptions of emergent phenom-
ena, whereby one might characterise the emergence as an expression of a higher
type computation. And this fits well with the Ronald-Sipper-Capcarrère test for
emergence, via the provision of each of design, observation and surprise. With
the latter mathematically traceable back to the type-climbing and concomitant
potential incomputability of the emergent form.

Is it pure serendipity the discovery that some phenomena can be described in
terms of material context? There is a strong intuition that form in the universe
arises for a reason. Scientifically this intuition takes the form of an expecta-
tion of finding descriptions of phenomena in terms of basic laws of nature. An
echo of such an expectation be traced back to Gottfried Leibniz’s 1714 descrip-
tion6 of his ‘principle of sufficient reason’:

. . . there can be found no fact that is true or existent, or any true propo-
sition, without there being a sufficient reason for its being so and not
otherwise, although we cannot know these reasons in most cases.

The intuition that natural phenomena not only generate descriptions, but arise
and derive from them, connects with a useful abstraction associated with Al-
fred Tarski, and growing out of his 1930s work on the notion of truth for for-
mal languages. Mathematical definability, or more generally invariance under

5 In: Annals of Mathematical Logic Volume 17, November 1979, Pages 6190.
6 See The Monadology, sections 31, 32.
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automorphisms of an appropriate structure, provides an effective organiser of
the relative ontology of relations over a structure.

Definability is a basic notion which deserves to be better known in the mathe-
matical world, and in the wider scientific community. It’s relevance to physics has
been long recognised. Hans Reichenbach worked to axiomatise Einstein’s relativ-
ity in the 1920s, a project carried forward in relation to general relativity today
by the Budapest group of István Németi and Hajnal Andréka. This extension
of the fundamental mathematics enables us to deal with a wider range of phe-
nomena, taking us beyond the classical computational model. It gives precision
to our experience of emergence as a potentially trans-algorithmic determinant
of phenomena.

The overarching aim now is to describe global relations in range of contexts
in terms of local structure, so capturing the emergence of large scale forma-
tions. And mathematically to formalise such descriptions as definability, or as
invariance over basic computational structure. Although Stephen Kleene pro-
vided formal content to the notion of higher type computation via a series of
papers spanning over 30 years (1959–1991), the physical relevance of his take on
the topic needs to be clarified. A forthcoming book on “Computability At Higher
Types” by John Longley and Dag Normann is eagerly anticipated. The intuition
is that computational unconventionality certainly entails higher type computa-
tion, with a correspondingly enhanced respect for embodied information. There
is some understanding of the algorithmic content of descriptions. But so far we
have merely scratched the surface.

4 Physics and Definability

When a Nobel Prize winner in Physics is quoted as saying7:

The state of physics today is like it was when we were mystified by
radioactivity . . . They were missing something absolutely fundamental.
We are missing perhaps something as profound as they were back then.

people take notice. And this from 2004 winner David Gross did cause something
of a stir.

This section is in the nature of a road test for the conceptual framework
we have been building up around the notion of unconventionality of a compu-
tation. We briefly outline various gaps in the ‘standard model’ of physics and
point to the how a more basic viewpoint can help. The discussion will consist
of a brief commentary centred around some revealing quotations from physicists
themselves.

We start with Einstein himself complaining about the resort to ad hoc ele-
ments of physical theories:

7 David Gross, quoted in New Scientist, Dec. 10 2005, “Nobel Laureate Admits String
Theory Is In Trouble”.
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. . . I would like to state a theorem which at present can not be based upon
anything more than upon a faith in the simplicity, i.e. intelligibility, of
nature . . . nature is so constituted that it is possible logically to lay down
such strongly determined laws that within these laws only rationally
completely determined constants occur (not constants, therefore, whose
numerical value could be changed without destroying the theory) . . .

Notice that this is not just an exhortation to physicists to look for a better
theory. It is an expression of faith in the fact that a theory which successfully
defines the observable universe should itself be determined by the universe. That
is, what we observe is there because the universe is ‘self organising’ itself, as one
would expect of an emergent system with sufficient invariance of its structure
to exhibit a high degree of mathematical rigidity. An interesting question is the
extent to which constants of the model which make it work, but which are not
measurable, are actually defined. In general, one can interpret the necessity of
certain values of the constants to make the model work as a sort of invariance.
What we suspect of invariance is an elusiveness of algorithmic infrastructure
to the relationship between the local and global which makes it possible that
aspects of reality are dependent on basic information in a way that is impossible
for us to theoretically unravel. We identify below a mathematical model within
which to host basic computable causality. Characterising the automorphisms of
this model promises to be a key task.

Here is a more recent questioning of progress towards a more comprehensive
model of physics, from Peter Woit, author of the book Not Even Wrong – The
Failure of String Theory and the Continuing Challenge to Unify the Laws of
Physics (Jonathan Cape, 2006):

By 1973, physicists had in place what was to become a fantastically
successful theory of fundamental particles and their interactions, a theory
that was soon to acquire the name of the standard model. Since that
time, the overwhelming triumph of the standard model has been matched
by a similarly overwhelming failure to find any way to make further
progress on fundamental questions.

And one of Peter Woit’s concerns is those undefined constants:

One way of thinking about what is unsatisfactory about the standard
model is that it leaves seventeen non-trivial numbers still to be explained,
. . .

Alan Guth, originator of the inflationary hypothesis, would like to see the laws
of physics defined:

If the creation of the universe can be described as a quantum process,
we would be left with one deep mystery of existence: What is it that
determined the laws of physics?

If we think we are observing the universe defining its own laws, we can but hope
to have access to the defining process in the course of time.
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We are talking here about hugely unconventional computation. It may be so
unconventional that for us it is hardly computation at all. But its existence can
be framed as a something feasibly approachable, at least in principle. Roger
Penrose8 calls it ‘Strong Determinism’:

[According to Strong Determinism] . . . all the complication, variety
and apparent randomness that we see all about us, as well as the precise
physical laws, are all exact and unambiguous consequences of one single
coherent mathematical structure.

In our final section, we fill in the missing ingredient — namely, the fundamental
mathematical host for all this embodied information, definability and higher
order computation. Before that, a remark regarding mathematical structures:
Mathematical structures commonly consist of objects connected by operations
or relations. Sometimes the difference between these classes is blurred, but in an
interesting structure there are objects which accumulate information expressive
of their context in the structure. Sometimes this information can be ‘read’ by
the relations on the structure, which express a formal ‘causality’, whereby the
distribution of information itself has a structure. This appears to be a feature of
our own universe.

5 Modelling Basic Causality

Another quotation, this time from Lee Smolin’s 2006 book on The Trouble with
Physics, p.241:

. . . causality itself is fundamental . . .

The ‘early champions’ of the role of causality mentioned by Smolin – Roger
Penrose, Rafael Sorkin, Fay Dowker, Fotini Markopoulou – make a doughty
bunch, formidable protagonists in contemporary turf wars around quantum grav-
ity, causal sets and a hydra-headed superstring theory. The aim, as outlined by
Smolin, is a more comprehensively immanent universe9:

It is not only the case that the spacetime geometry determines what the
causal relations are. This can be turned around: Causal relations can
determine the spacetime geometry . . . Its easy to talk about space or
spacetime emerging from something more fundamental, but those who
have tried to develop the idea have found it difficult to realize in prac-
tice. . . .We now believe they failed because they ignored the role that
causality plays in spacetime. These days, many of us working on quan-
tum gravity believe that causality itself is fundamental – and is thus
meaningful even at a level where the notion of space has disappeared.

8 Roger Penrose: Quantum physics and conscious thought, in Quantum Implications:
Essays in honour of David Bohm (B.J. Hiley and F.D. Peat, eds.), pp.106-107.

9 Lee Smolin, The Trouble With Physics, p.241.
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Note that we are talking about very specific observed and computationally well-
served causality here, which largely frees us from the strictures of John Earman10

regarding the more wide-ranging use of the term:

. . . the most venerable of all the philosophical definitions [of determin-
ism] holds that the world is deterministic just in case every event has a
cause. The most immediate objection to this approach is that it seeks to
explain a vague concept - determinism - in terms of a truly obscure one
- causation.

In fact, a primary objective of this modelling of basic computable causality is
the clarity that the mathematics of the model brings to less easily described
causality, and to issues regarding over causation, downward causation and non-
locality.

The question is, what kind of causality fails to engage with the informational
content of the reality it structures? The relevance of the question derives from
the fact that it is causal structure from which information derives and whereby it
is stored. Computation is about information, and potentially equipped to model
the way in which the basic causality of our universe respects and transports in-
formation. Once again it was Turing gave us a precise formulation corresponding
to the fundamentality of the intuition.

Alan Turing’s 1939 paper is a neglected masterpiece— less cited than the more
famous trio of papers that gave us the universal Turing machine, the Turing test
for intelligence, and the mathematics of morphogenesis — but crackling with
ideas and perceptive intuitions. The oracle Turing machine as it came to be
called appears on just one page of this densely argued article. Essentially, it
equips the computer – in the form of a Turing machine – to roam the scientific
universe of real numbers, accepting type 1 inputs, and outputting, if we are
lucky, type 1 outputs. This sometimes described as relative computation.

An oracle Turing machine exactly expresses the character of basic causality
in the world, progressively sampling information and transferring it comprehen-
sively across time and space.

The mathematician or computer scientist — and maybe Turing himself at
the time of its invention — regards the oracle machine as a model of how we
might compute using data given to us from an unknown source. This viewpoint,
together with observation of the apparent actuality of incomputability in the
natural universe, provides the basis for Jack Copeland’s notion of hyper compu-
tation (beyond the Turing barrier).

But the physicist is presented with a model — the Turing universe — within
which the computable content of Newtonian dynamics comfortably fits; at a basic
level of course. As Poincaré speculated, and researchers from Kreisel in 1970,
to Beggs, Costa and Tucker today observed, more broadly interactive contexts
based on Newton’s laws can generate infinitary mathematics with attendant
incomputabilities.

10 In A Primer On Determinism, D. Reidel/Kluwer, 1986, p.5.
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Mathematically, the type-2 computable functions Φ over the reals are termed
Turing – or partial computable (p.c.) – functionals. Turing, despite his longterm
interest in interactive computation (mainly between humans and machines),
seems to have never mentioned his oracle machines again. It was left to an-
other highly creative but under-appreciated mathematician, Emil Post, 15 years
older than Turing, to set in motion the mathematical development of Turing’s
model. In 1944 Post defined the degrees of unsolvability – later called the Turing
degrees – as a classification of reals in terms of their relative computability.

Strangely, the subsequent investigation of the mathematical character of the
Turing degree structure was a process entirely detached from reality. There was
no sense at all of relevance to the real world. The fact that the Turing universe
underpinned a wide range of dynamical contexts in which the ‘design’ was un-
derstood meant nothing. The possibility that all sorts of higher structure might
be better understood via an analysis of definability or invariance in the basic
underlying model was never entertained. I was there through a golden age of
technical development. Turing was gone, taking with him his broadly question-
ing brilliance, leaving behind a universally adopted computational paradigm. We
recursion theorists were busy doing our sums while the natural world around us
computed in mysterious and wondrous ways. There was no such thing as uncon-
ventional computation.

There were mathematical events beneath which one can retrospectively detect
a sort of subliminal prescience. In 1965 Hartley Rogers gave a fascinating talk
(judging by the 1967 paper11 that came out of it) at the Tenth Logic Colloquium
in Leicester, England. What was remarkable was the focus12 on the large scale
structure of the Turing universe, via the notions of invariance and definability
that we have identified as relevant to the emergence of form in wide range of
different environments. There was in evidence a ‘Hartley Rogers Agenda’, built
around a number of deep and difficult questions about the global character of
the Turing degrees. Over the years, there has been a growing intuition that
Rogers’ questions are key to pinning down how higher order relations on the
real world can appear to be computed. Much of the progress with these ques-
tions rests on the richness of Turing structure discovered so far. Mathematically
structural pathology is a disappointment. Out in the real world pathology is
super-abundant, both generator of and avatar of a richness of real world defin-
ability. In the Turing universe. the pathology takes on a parallel role, becoming
the raw material for a multitude of definable relations, counterparts to visibly
‘computable’ structure out in the real world.

11 H. Rogers, Jr., Some problems of definability in recursive function theory, in Sets,
Models and Recursion Theory (J. N. Crossley, ed.), Proceedings of the Summer
School in Mathematical Logic and Tenth Logic Colloquium, Leicester, August–
September, 1965, North Holland, Amsterdam, pp. 183–201.

12 Hartley Rogers’ 1965 Agenda, in ’Logic Colloquium ’98’ (S.R. Buss, P. Hajek and
P. Pudlak, eds.), Proceedings of the Annual European Summer Meeting of the ASL,
held in Prague, Czech Republic, August 9-15, 1998, Lecture Notes in Logic 13,
Association for Symbolic Logic/A.K. Peters, Natick, Massachusetts, pp. 154-172.
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6 Undefinable Relations

We might have developed the view of unconventional computation as higher
type computation in various guises – emergence, definability etc – in other
contexts. Another fruitful workspace would have been that of artificial intel-
ligence/neuroscience. Each has it’s special strengths. That of the physics is the
clear way in which it displays the fragility of definability, and the consequences
of its failure.

Failures of definability are not necessarily negative in their impact. Many
friendly features of our universe depend on them. In physics, there is a wide
range of special symmetries underpinning aspects of our observed world. A sym-
metry is of course an instance of an automorphism at work, maybe small-scale
or very selective in its scope. More important broad impact symmetries include
the relationship of the SU(3) symmetry group to the quark model underlying
hadrons, for which Murray Gell-Mann got a nobel prize in 1969. One of the
interests of such particular examples is that they point to the possibility of a
rich automorphism structure underlying the basic causal structure, and hence
to the identification on new relations defined/computed within the physics with
potentially far-reaching explanatory power.

Back in the underlying Turing model, there is some disagreement about the
potential character of the automorphism group of both the local and the global
structures. An interest in the so-called ‘Bi-interpretability Conjecture’ originat-
ing with Leo Harrington goes back around 30 years, during which time various
people have managed to prove partial versions of the conjecture, with interesting
consequences for the automorphism groups. Essentially, what the conjecture says
is that there is a close enough correspondence between the structure of the Tur-
ing degrees and that of second order arithmetic for the two structures to share a
number of characteristics, particularly related to automorphisms and definabil-
ity. A full verification of bi-interpretability would impose rigidity on the Turing
universe, and invalidate it as a model for the real universe, which appears to be
far from rigid. There is no consensus of informed guesses concerning rigidity.

Failure of rigidity would have potentially dramatic consequences for the long-
standing search for a ‘realistic’ interpretation of quantum non locality and the
collapse of the wave function in conjunction with a measurement. What we
commonly have is the deterministic continuous evolution of the wave equation
describing a physical system via Schrödinger’s equation, involving the superpo-
sition of basis states. We may then have a probabilistic non-local discontinuous
change due to a measurement – and observe a jump to a single basis state. There
are various interpretations of this. The simplest is that what we are encountering
is a level of failure of definability at the ontological level of the quantum world
— there is just not enough connectivity and information down there to uniquely
identify basis states. While the intervention entailed by the measurement changes
the situation. If a higher type relationship of definability gets unconventionally
computed, it is allowed to operate non-locally, without any of the usual problems
for the physics.
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There are wider ramifications to such a ‘realistic’ and immanent deciding of
physical transitions. The Many Worlds interpretation and its Multiverse deriva-
tives begin to look pleasingly redundant. It is not good that this becomes yet
another misfortune to impact on Hugh Everett III and his family – nowadays
represented by his son Mark, the talented lead singer of the EELS. No doubt,
even with such a powerfully persuasive replacement for Many Worlds and the
various Multiverses, via unconventional computation, it will be hard to divert
David Deutsch from his view13 that:

. . . understanding the multiverse is a precondition for understanding re-
ality as best we can. Nor is this said in a spirit of grim determination to
seek the truth no matter how unpalatable it may be . . . It is, on the con-
trary, because the resulting world-view is so much more integrated, and
makes more sense in so many ways, than any previous world-view, and
certainly more than the cynical pragmatism which too often nowadays
serves as surrogate for a world-view amongst scientists.

But there are many others, like presumably George Ellis,14 would breath a sigh
of relief:

The issue of what is to be regarded as an ensemble of ‘all possible uni-
verses’ is unclear, it can be manipulated to produce any result you
want . . . The argument that this infinite ensemble actually exists can
be claimed to have a certain explanatory economy (Tegmark 1993),
although others would claim that Occam’s razor has been completely
abandoned in favour of a profligate excess of existential multiplicity, ex-
travagantly hypothesized in order to explain the one universe that we do
know exists.

There are many other ways in which the admission of an extended computational
repertoire can bolster the integrity of the observed ‘one universe that we do
know exists’. Physics is just one area that can benefit from the mathematics of
definability, invariance, emergence and higher type computation. Alan Turing
would have been fascinated.

13 David Deutsch, The Fabric of Reality, Allen Lane, 1997, p.48.
14 The Unique Nature of Cosmology, in Revisiting the Foundations of Relativistic

Physics (eds. Abhay Ashtekar et al), Kluwer, 1996, p.198.
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