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Abstract

A closed-loop simulation is set up in order to study in detail regional gravity modelling
from GRACE-type observations. Thereby, potential differences between two satellites are
simulated from a pre-defined mass trend signal, superimposed to a static background
gravity model. These simulated observations are used for regional gravity field analysis
with spherical radial basis functions. Finally, we use EOF analysis to identify the trend
in gravity potential from a time series of 15-days quasi-static snapshots. Regional gravity
modelling on the sphere is fairly complex and introduces approximation errors and artificial
effects. In order not to mix up these errors with noise from the observations, we currently
use noise-free observations. The model provides a versatile tool for detailed investigation
of the data analysis method. Validation of the results is performed by comparison of input
and output gravity change.
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1 Introduction

Observations of mass changes in the Earth system play an
important role in many disciplines. Especially, mass changes
in the cryosphere gain more and more interest because the
cryosphere is considered to be very sensitive to a changing
climate.

Good temporal and spatial coverage with terrestrial obser-
vations of mass changes is almost impossible. Alternatively,
airborne remote sensing provides high spatial resolution,
but continuous monitoring is still not possible. Satellite
techniques offer continuous observations while the satellite is
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in orbit and the instruments in operation. Coverage, temporal
as well as spatial, depends on the orbit of the satellite. A wide
range of different methods is used for investigation of mass
changes from space.

We want to focus on mass changes from gravity observa-
tions of the GRACE (Gravity Recovery And Climate Experi-
ment) satellite mission (see Tapley et al. 2004). The GRACE
mission was launched in 2002 and is still operational today.
Thus, it provides very long and valuable time series of obser-
vations. However, the main drawback is signal damping at
the satellites’ orbit height which limits the spatial resolution.
Global solutions from the GRACE mission are provided
in spherical harmonic basis functions and are successfully
used to monitor ice mass changes in Greenland and Antarc-
tica, the Earth’s largest ice-covered areas. See for example
Ramillien et al. (2006) and Velicogna (2009) amongst many
others. In contrast to the global approach, spherical radial
basis functions with local support may be used for better
regional gravity field representations. Klees et al. (2008)
give an overview of different types of possible functions.
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The fundamentals of modelling in radial basis functions can
be found in Freeden et al. (1998) or Holschneider et al.
(2003). Finally, different approaches for gravity modelling
in spherical radial basis functions are given, for example, in
Schmidt et al. (2007) or Freeden and Schreiner (2005).

In the interpretation of the results it has to be considered
that satellite gravity measurements monitor all mass changes
in the Earth system. Mass changes from the cryosphere, the
atmosphere, the ocean, continental hydrology, or glacial iso-
static processes are superimposed and need to be separated
from each other. Assuming individual spatial and temporal
characteristics of the different mass change components,
we propose EOF (Empirical Orthogonal Function) analysis.
Fundamentals of this method are found in Preisendorfer
(1988) or Jolliffe (2002) and applications for GRACE gravity
data for example in Schrama et al. (2007) and Rangelova
et al. (2007).

2 Global Versus Regional
Gravity Modelling

The GRACE mission consists of two satellites at about
450 km orbit height which are about 220 km apart from each
other. The core measurements of GRACE are precise range-
rates between the two satellites, measured with a K-band
microwave instrument. These are available as Level-1B data
products, along with GPS measurements of the satellites’
positions, information from attitude sensors, and accelerom-
eter measurements. Derived science products are monthly
global gravity maps (Level-2 data), see Tapley et al. (2004)
and Flechtner et al. (2007). These monthly solutions are rep-
resented in spherical harmonics and are best fitting the data
on a global scale. Thus, they are not necessarily optimal solu-
tions for a specific region. This also means that small regional
gravity signals, which might actually be detected by the
K-band range-rates, could be masked in the global solutions.

Therefore, we study regional gravity field analysis from
GRACE observations (derived from Level-1B data) which
allow for an optimal solution in a particular region. For the
parametrization we use spherical radial basis functions which
have quasi-local support and are rotationally symmetric.
This means, their amplitude decreases rapidly with distance
from their center and, thus, the basis functions’ influence is
maximal at the location of the center and has very little
influence in non-local areas.

3 Closed Loop Model

Regional representation of the Earth’s gravity field from
GRACE Level-1B data is not straightforward. Additionally,
determination of mass changes from satellite gravimetry is
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Fig. 1 Illustration of the closed-loop model

a challenge due to the downward continuation problem and
the question of separation of sources. In order to investigate
data analysis methods in more detail, and to have control over
error effects due to the methods in use, we set up a closed-
loop simulation which is illustrated in Fig. 1.

The first step of the closed-loop simulation is the choice
of a time-variable input gravity signal. In the second step,
potential differences between the GRACE satellites are syn-
thesized from this signal. These are taken as observations in
the simulation. Spherical radial basis functions are used for
the analysis and regional modelling in step three. This step
also contains the downward continuation and the result is a
regional gravity solution on the sphere for every 15 days.
Since this signal contains all different mass change effects
from Earth, or, in this simulation, the predefined gravity
change and a background signal from a global geopoten-
tial model (EGM2008), a signal separation step is needed.
Thus, EOF analysis is step four in the simulation where we
try to recover the input gravity trend. Finally, comparison
of the input and the recovered signal is an easy tool to
evaluate the performance of the analysis steps. In the fol-
lowing subsections steps one to four are explained in more
detail.

3.1 Cryosphere Signal Modelled
by aMascon

GRACE observations have been very successfully used by
Luthcke et al. (2008) to determine glacier mass changes
in the Alaska Range region. They use a mascon (mass
concentration) parametrization of the gravity field variations.
Thereby, a small uniform layer of mass over a region at an
epoch t can be represented in a set of differential Stokes
coefficients as described in Eq. (1). These sets of differential
coefficients provide an improvement in the representation in
spherical harmonics for the area of interest for a given time
interval and can be computed from mascon area and height
according to:
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Hereby, kl is the Love number of degree l , R is the radius
of the Earth with R D 6; 378; 137 m, Me is the mass of the
Earth with Me D 5:9736e24 kg, and NPlm are the normalized
Legendre functions. The mascon area is given by the solid-
angle surface area ˝ , and its thickness via �.t/, a parameter
which is directly linked to the mascon height in meters and
can change with time t . It holds d˝ D cos.#/ d# d� and
the integration is performed only over the area of the mascon.
We use equivalent water height to convert a certain mass into
the height information for the mascon area.

As a signal example, we choose an annual regional mass
loss of 3 Gt, a value which is roughly in the order of
magnitude of the signal from Austfonna, Svalbards largest
ice cap (see Dowdeswell et al. 2008). This mass loss leads to
a 15-day height decrease of 0.0031 m in a 2ı by 2ı mascon at
a latitude of 35ı, respectively, a decrease in gravity potential
on the sphere of approximately 3:4522 · 10�5 m2/s2 per year,
as directly found from spherical harmonic synthesis from the
mascon coefficients and degrees 10–120. This degree range
corresponds to the forward modelled signal, see Sect. 3.2.

3.2 Forward Modelling

The second step is the simulation of GRACE-type potential
differences at orbit height for the previously defined mass-
loss signal in addition to a background signal, the global
geopotential model EGM 2008. Mascon and background
signal are used in a spherical harmonic synthesis from degree
10 to 120. A synthesis of the signal only from degree 10
simulates removing the long wavelengths part of the signal.
We locate the mascon (Sect. 3.1) in the Himalayan area, from
84ı to 86ı longitude and 34ı to 36ı latitude. This location
is a challenging location for our closed-loop model in terms
of detecting the mascon signal since the gravity signal from
topography is very high in the Himalayas and the quality of
a regional gravity representation on the sphere depends on
the signal magnitude in the area because of boundary and
oscillation effects. From the mascon and geopotential model
we compute the resulting gravity potential at both satellites
GRACE A and GRACE B for every 5 s. In this simulation,
we simulate one GRACE-type orbit and use this orbit for
both satellites, GRACE A and B, following each other at
a distance of about 220 km or about 30 s. From GRACE
Level-1B data, gravity potential differences between the two
spacecraft can be obtained via the so-called energy integral
approach (e.g. Visser et al. 2003). The potential differences
are taken as observations in our model. We use noise-
free simulated observations in order to study details of the

modelling process and to avoid effects from the regional
modelling process itself being covered by noise from the
observations. The approximation in Eq. (2) relates instanta-
neously the GRACE inter-satellite range-rate measurements
P�12 to gravitational potential differences along the orbit
between GRACE A and B.

V2 � V1 � V12 � jPx1j P�12 (2)

V1 and V2 are gravity potential at the two satellites, and V12 is
the potential difference between them. Px1 is the velocity
vector of one of the two satellites. This approximate model is
used and explained in Han (2003, Eq. (4)), and Jekeli (1999,
Eq. (25)), and references herein. It was initially developed by
Wolff (1969).

3.3 Representation in Radial
Basis Functions

The next step in the closed-loop model is the analysis
of the simulated observations. While we use mascon
parametrization in the forward model, we propose spherical
radial basis function to analyze the simulated observations.
For a regional representation in spherical radial basis
functions, multiple copies of a radial basis function are
located at grid points covering the area of interest. We use
Shannon scaling functions and Fig. 2 shows a radial
basis function (B.x; xk/) together with a Reuter grid
(see e.g. Schmidt et al. 2007; Freeden et al. 1998) for our
area of interest. Equation (3) gives a general representation
of a signal F in radial basis functions. Hereby xk are the
grid points, and N is the number of grid points under
consideration. x D r Œcos � cos �; cos � sin �; sin ��0.
In Eq. (4), the formula for a radial basis function B.x; xk/

is given, and in Eq. (6) the observational equation which
we use.
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r is the geocentric distance of the observation point and R is
the radius of the sphere with R D 6; 378; 137 m. The term
.R=r/nC1 allows for downward continuation of the observed
signal from satellite altitude (r) to the sphere (R). Pn are
the Legendre polynomials where # is the spherical distance
between x and xk , and Bn are coefficients which specify
the radial basis function. The coefficients Bn also give the
frequency behaviour of the radial basis function, and for the
Shannon scaling function it holds
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Fig. 2 Location of radial basis
functions on a Reuter grid

Bn D
(

1 8 n � nmax

0 8 n > nmax:
(5)

We use nmax D 130 and a spacing between the individual
grid points in the Reuter grid of about 1.125ı. The maximum
degree in the kernel has to be at least as high as the maximum
degree in the signal to be represented, and previous experi-
ments have shown that a slightly higher maximum degree in
the kernel than in the signal leads to a better representation
of the signal. The spacing in the Reuter grid is derived form
the maximum degree in the kernel.

The potential difference V12 (Eq. (2)) can be written as:

V12 D
NX

kD1

dk.B.x2; xk/ � B.x1; xk// (6)

Hereby x1 is the position of satellite A and x2 the position of
satellite B.

The estimation of the coefficients dk is an inverse problem
and the observational matrix is singular because of two
reasons: first, more radial basis functions are used in the
representation than minimally needed. With the minimum
number of basis functions, which is derived from a global
point of view, no satisfying representation of the regional
signal can be achieved. The point grid also imposes con-
straints on the number of basis functions due to its structure.
Second, the system of observation equations for the signal F

is singular due to the downward continuation problem which
is included. The singular system is solved by using a pseu-
doinverse of the normal equation matrix. The pseudoinverse
is based on a singular value decomposition.

After estimation of the coefficients dk , they can be used
in a synthesis step to reconstruct the regional gravity field
on the sphere. This is performed for every 15 days, since
we have found that in the course of 15 days we have
enough observations in the area of interest to estimate the
coefficients dk . Finally, after the downward continuation,
we have a time series of gridded potential values on the
sphere.

3.4 Identification of the Cryosphere Signal

The last step, after a regional gravity signal on the sphere
has been determined for every 15 days (which is possible at
an accuracy of 3.73 %, percentage of the residuals root mean
square from the signal root mean square), is separation of
sources. In this basic simulation, the gravity change trend
needs to be identified. We propose Empirical Orthogonal
Function (EOF) analysis, which has been successfully used
to separate different gravity signals by, for example, Schrama
et al. (2007) and Rangelova et al. (2007). Even though
we just want to identify a trend, we still use this method,
since we are planning to use our closed-loop model with
more realistic simulated observations later on. In the EOF
analysis, different types of signals are identified according
to their spatial and temporal correlations. White noise is
assumed to have no correlations at all. The method is based
on a singular value decomposition. It gives a set of modes,
and each of them consists of three elements: purely spatial
information (left eigenvectors), purely temporal information
(right eigenvectors), and information about the magnitude,
which is given by the singular value. The left and right eigen-
vectors, also called EOF patterns and principal components,
are normalized vectors, and the only scaling information is
contained in the singular values. Multiplication of the three
elements gives the signal which is represented by the mode.
The most dominant signal will have the largest singular value
and is therefore mapped into mode one. The following modes
contain other signals, which could be identified, in the order
of their signal strength.

Figure 3 shows the first three modes from the EOF
analysis of our recovered signal. On the left, there are the
spatial patterns and on the right the temporal behaviour, both
normalized. The static background signal does not appear
anymore, since the mean has been removed and only signal
variations are decomposed in the EOF analysis.

The spatial structure in the first mode shows the pattern
which we expect from the mass loss signal modelled by
the mascon. The signal clearly originates from the square in
the center of the region. The temporal behaviour corresponds
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Fig. 3 First three modes from
the EOF analysis. 1st mode:
singular value 2:93 · 10�4

(m2/s2). 2nd mode: singular value
1:83 · 10�7 (m2/s2). 3rd mode:
singular value 1:79 · 10�7 (m2/s2)

as well to what we have modelled, the curve indicates a
continuous mass loss. The detection of the trend is that
perfect because we did not consider noise and other signals
in our modelling.

The most interesting issue, however, is if we can recon-
struct our input mass loss. To reconstruct the signal from
mode 1, we multiply the three components of the mode.
From the spatial pattern we chose the maximum value in the
center of the peak. From the trend, we take the maximum and

minimum values. The decrease in gravity potential indicated
by the trend from 0:1686 · 2:9250 · 10�4 · 0:3391 m2=s2 to
0:1686 · 2:9250 · 10�4 · .�0:3390/ m2=s2 is about �3:3441 ·
10�5 m2=s2. Referring back to Sect. 3.1, this corresponds
to the decrease in gravity potential (�3:4522 · 10�5 m2=s2)
which was modelled by the mascon as input signal and can
be recovered with an error of 3.12 %.

A trend recovery with an error level of a few percent
is a fairly good result compared to other studies on ice
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Fig. 4 Singular values from the EOF analysis

mass changes from GRACE observations, see, for example,
Schrama and Wouters (2011) and references therein, where
ice mass changes can only be detected with uncertainties of
roughly about 10 %. Of course, one has to keep in mind that
we used noise-free observations in our simulation.

In the following two modes no signal structure can be
recognized. The spatial patterns as well as the temporal
behaviour seem to be purely random. This corresponds to
what we would expect, since there was no other signal used
in the simulation than the constant background signal and
the mass trend. The idea that these two modes, as well as
all higher modes, are only noise is also confirmed by the
singular values. The singular values of modes two and three
are of the same order of magnitude and significantly, that
is about three orders of magnitude, lower than the singular
value of the first mode. All modes that contain only white
noise are expected to have about the same singular value,
and it is expected that this value is fairly low compared to the
signal containing modes. Figure 4 gives a plot of all singular
values. This plot shows that all modes, but the first one, have
about the same singular values, and thus, we conclude that
these modes are all noise containing modes.

4 Summary and Outlook

The closed-loop simulation provides a very helpful tool to
investigate the method of regional gravity modelling with
spherical radial basis functions from GRACE Level-1 data.
In the regional modelling procedure a lot of parameters have
to be chosen. These are the radial basis function, the point
grid, and the method for the solution of the inverse problem.
Also, the downward continuation problem needs to be treated
appropriately. The errors in the reconstructed gravity field
due to the downward continuation problem are much larger
than the differences in the results from the choice of different
radial basis functions. Even though the Shannon kernel is
probably the most simple radial basis function, it is therefore
still appropriate to use in our simulations.

With the model, we can study in detail all strengths and
shortcomings of our analysis method, and hopefully develop

a valuable tool for analyzing real data at a later stage. We
will be able to distinguish between effects which actually
originate from the data, and such ones, which are artificial
effects due to the methods in use. In our future work, we want
to introduce a realistic level of noise in the model. In a previ-
ous study, Bentel and Gerlach (2010), we have shown that a
certain level of white noise on the range rates generates geoid
error degree variances which are very similar to those from a
simple coloured noise mode, which represents real GRACE
error degree variances. Therefore, the next step will be to use
a realistic level of white noise on the observations. Unfor-
tunately, only an unrealistically low level of white noise
on the observations was possible in order to still recover
the mass trend signal. We plan to implement an appropriate
filtering step, so that we can use a realistic signal-to-noise
ratio. Even though regional modelling with the Shannon
scaling function provides filtering in the frequency domain
and EOF analysis implies separation of signal from white
noise, this does not seem to be sufficient for a realistic
noise level.

When approaching the analysis of real data later on, a very
important issue is the appropriate separation of sources,
mainly to separate actual ice mass loss from post glacial
rebound effects and others. It might be advisable to use a
closed-loop model for a comprehensive study of separability
of sources as well.
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