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Abstract. In this paper, we propose a new approach of data pre-
processing based on rough set theory for the Dendritic Cell Algorithm
(DCA). Our hybrid immune inspired model, denoted QR-DCA, is based
on the functioning of dendritic cells within the framework of rough set
theory and more precisely, on the QuickReduct algorithm. As the DCA
data pre-processing phase is divided into two sub-steps, feature selection
and signal categorization, our QR-DCA model selects the right features
for the DCA classification task and categorizes each one of them to its
specific signal category. This is achieved while preserving the same DCA
main characteristic which is its lightweight in terms of running time. Re-
sults show that our new approach generates good classification results.
We will also compare our QR-DCA to other rough DCA models to show
that our new approach outperforms them in terms of classification accu-
racy while keeping the worthy characteristics expressed by the DCA.

Keywords: Artificial immune systems, Dendritic cells, Rough sets,
QuickReduct.

1 Introduction

Artificial Immune Systems (AIS) are a class of computationally intelligent sys-
tems inspired by the principles of the natural immune system. As AIS is being
developed significantly, novel algorithms termed “2nd Generation AISs” have
been created. One such 2nd Generation AIS is the Dendritic Cell Algorithm
(DCA) [1] which is derived from behavioral models of natural dendritic cells
(DCs). As a binary classifier, the DCA performance is mainly based on its data
pre-processing phase which is divided into two main phases which are feature
selection and signal categorization. More precisely and for data pre-processing,
DCA uses the Principal Component Analysis (PCA) to automatically select fea-
tures and to categorize them to their specific signal types; as danger signals
(DS), as safe signals (SS) or as pathogen-associated molecular patterns (PAMP)
[2]. DCA combines these signals with location markers in the form of antigen to
perform antigen classification. For signal selection, PCA transforms a finite num-
ber of possibly correlated vectors into a smaller number of uncorrelated vectors,
termed “principal components” which reveal the internal structure of the given
data with the focus on data variance [2]. Nevertheless, using PCA as a dimension-
ality reduction technique presents some shortcomings as it is not necessarily true
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that the first selected principal components that capture most of the variance are
the adequate features to retain [3]. Consequently, choosing these components for
the DCA may influence its classification task by producing unreliable results.
For feature categorization, DCA uses the PCA ranking of attributes which is
based on variability and maps this obtained order to the ranking of the signal
categories of the DCA which is in the order: Safe, PAMP and Danger; implying
the significance of each signal category to the signal transformation of the DCA
[2]. However, this categorization reasoning which is based on attributes’ ranking
and where the variability of attributes is equivalent to importance could not be
considered as a coherent and consistent categorization procedure. Hence, in [4],
a first work, named RC-DCA, was developed to solve these issues. RC-DCA is
based on Rough Set Theory (RST) to perform data pre-processing. It is based
on the reduct and the core RST fundamental concepts to select the most impor-
tant features and to categorize them to their specific signal types. In [4], it was
shown that applying RST, instead of PCA, is more appropriate for the DCA data
pre-processing phase leading to a better binary classifier. However, to select the
right set of features, RC-DCA generates all possible subsets and retrieves those
with a maximum rough set dependency degree. Obviously, this is an expensive
solution to the problem and is only practical for very simple data sets. Most of
the time only one reduct is required as, typically, only one subset of features
is used to reduce a data set, so all the calculations involved in discovering the
rest are pointless. In addition, this time consuming task led to neglect the main
DCA characteristic which is its lightweight in terms of running time [5]. Thus,
in this paper, we propose a novel bio-inspired hybrid model of the DCA based
on a new signal selection and categorization technique. Our new model, named
QR-DCA, is based on the behavior of natural dendritic cells and grounded on
the framework of rough set theory for data pre-processing where it adopts the
QuickReduct algorithm. The main contributions of this paper are to introduce
the concept of RST, specifically the QuickReduct algorithm, in the DCA data
pre-processing phase and to show how our proposed new model, QR-DCA, can
find a trade-off between generating good classification results and preserving the
lightweight of the algorithm. We, also, aim to compare the results obtained from
QR-DCA to other rough DCA models proposed in literature.

2 The Dendritic Cell Algorithm

1)Introducing Dendritic Cells: DCs are antigen presenting cells that possess
the ability to capture and process antigens [6]. DCs differentiate into three main
states upon the receipt of signals: PAMPs, danger, safe. The first DC maturation
state is the immature state (iDCs). The differentiation of iDCs depends on the
combination of the signals received leading either to a full maturation state or to
a partial maturation state. Under the reception of safe signals, iDCs migrate to
the semi-mature state (smDCs) causing antigens tolerance. iDCs migrate to the
mature state (mDCs) if they are more exposed to danger signals and PAMPs
than safe signals. mDCs present the collected antigens in a dangerous context.
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2)Abstract View of the Dendritic Cell Algorithm: The initial step of the
DCA is data pre-processing where feature selection and signal categorization
are achieved. More precisely, DCA selects the most important features, from the

initial input database, and assigns each selected attribute to its specific signal
category (SS, DS or PAMP). To do so, DCA applies the PCA [7].

For signal selection, PCA selects the first “principal components” which reveal
the internal structure of the given data with the focus on data variance. PCA
reduces data dimension, by accumulating the vectors that can be linearly repre-
sented by each other [2]. Once features are selected, PCA is applied to assign each
attribute to its specific signal type. In fact, PCA performs a ranking procedure
by using a sum of the absolute values of the weights used for signal transforma-
tion by the DCA. Once ranking is performed, the attributes are mapped into
the DCA input signal categories, by correlating the PCA ranking with the rank-
ing of signal categories - which implies the significance of each signal type to
the signal transformation of the DCA - which is in the order: Safe, PAMP, and
Danger [2]. DCA adheres these signals and antigen to fix the context of each
object (DC) which is the step of Signal Processing. The algorithm processes its
input signals in order to get three output signals: costimulation signal (C'sm),
semi-mature signal (Semi) and mature signal (Mat). A migration threshold is
incorporated into the DCA in order to determine the lifespan of a DC. As soon
as the C'sm exceeds the migration threshold; the DC ceases to sample signals
and antigens. The migration state of a DC to the semi-mature state or to the
mature state is determined by the comparison between cumulative Semi and
cumulative Mat. If the cumulative Semi is greater than the cumulative M at,
then the DC goes to the semi-mature context, which implies that the antigen
data was collected under normal conditions. Otherwise, the DC goes to the ma-
ture context, signifying a potentially anomalous data item. This step is known
to be the Context Assessment phase. The nature of the response is determined
by measuring the number of DCs that are fully mature and is represented by the
Mature Context Antigen Value (MCAV). MCAV is applied in the DCA final
step which is the Classification step and used to assess the degree of anomaly of
a given antigen. The closer the MCAV is to 1, the greater the probability that
the antigen is anomalous. Those antigens whose M C AV are greater than the
anomalous threshold are classified as anomalous while the others are classified
as normal. More DCA details and its pseudocode can be found in [IJ.

3 Rough Set Theory

In RST [8], an information table is defined as a tuple I = (U, A) where U is non-
empty set of primitive objects and A is non-empty set of attributes. A may be
partitioned into C' and D, called condition and decision attributes, respectively.
With any P C A there is an associated equivalence relation IND(P) defined
as: IND(P) = {(z,y) € U?:Va € P,a(z) = a(y)}, where a(z) denotes the
value of feature a of object x. The family of all equivalence classes of IND(P)
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is denoted by U/IND(P). The equivalence classes of the P-indiscernibility re-
lation are denoted [z]p. Let X C U, the P-lower approximation of a set can
now be defined as: P(X) = {z|[z]p C X}. The P-lower approximation is the
set of objects U that are surely in X. Let P and @ be equivalence relations
over U, then the positive region can be defined as: POSp(Q) = Uxey/q P(X).
The positive region contains all objects of U that can be classified to classes of
U/Q using the knowledge in attributes P. An important issue in data analysis
is discovering dependencies between attributes. Intuitively, a set of attributes
@ depends totally on a set of attributes P, denoted P = @, if all attribute
values from () can be uniquely determined by values of attributes from P. In
particular, if there exists a functional dependency between values of @) and P,
then @ depends totally on P. Dependency can be defined in the following way:
For P, Q C A, @ depends on P in a degree k (0 < k < 1), denoted P =, Q,
if k = vp(Q) = |POSp(Q)|/|U|; f k = 1 Q depends totally on P, if & < 1
@ depends partially (in a degree k) on P, and if k = 0 @ does not depend on
P. RST performs the reduction of attributes by comparing equivalence relations
generated by sets of attributes. Attributes are removed so that the reduced set
provides the same quality of classification as the original. A reduct is defined as a
subset R of the conditional attribute set C' such that yg(D) = (D). Note that
a given data set may have many attribute reduct sets. The intersection of all
the sets in R is called the core, reflecting those attributes that cannot be elimi-
nated without introducing more contradictions to the data set. In RST, a reduct
with minimum cardinality is searched for; in other words an attempt is made
to locate a single element of the minimal reduct set. A basic way of achieving
this is to calculate the dependencies of all possible subsets of C'. Any subset X
with vx (D) = 1 is a reduct; the smallest subset with this property is a minimal
reduct. However, for large data sets this method is impractical and an alterna-
tive strategy is required. One possible way to avoid these extra calculations, is
to apply the QuickReduct Algorithm [9] that attempts to calculate a minimal
reduct without exhaustively generating all possible subsets. It starts off with an
empty set and adds in turn those attributes that result in the greatest increase in
vp(Q), until this produces its maximum possible value for the data set (usually
1). An illustrative example of the QuickReduct Algorithm application as well as
its pseudocode can be found in [9].

4 QR-DCA: The Solution Approach

In this Section, we present our QR-DCA model based on RST, and specifically on
the QuickReduct algorithm, for the automatic DCA data pre-processing phase
including feature selection and signal categorization.

4.1 The QR-DCA Signal Selection Process

For antigen classification, our learning problem has to select high discriminat-
ing features from the original input database which corresponds to the antigen
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information data set. We may formalize this problem as an information table,
where universe U = {z1,22,...,2n} is a set of antigen identifiers, the condi-
tional attribute set C' = {c1,ca,...,ca} contains each feature of the information
table to select and the decision attribute D of our learning problem corresponds
to the class label of each sample.

For feature selection, QR-DCA computes, first of all, the dependency of the
entire database yo (D). To do so, QR-DCA has to calculate the positive region
for the whole attribute set C: POSx(D) (as presented in Section 3). Once the
consistency of the database is measured, QR-DCA starts off with an empty set
and moves to calculate the dependency of each attribute ¢ a part: v.(D). The
attribute ¢ having the greatest value of dependency is added to the empty set.
Once the first attribute c is selected, QR-DCA adds, in turn, one attribute to
the selected first attribute and computes the dependency of each obtained at-
tributes’ couple (. ¢,} (D). The algorithm chooses the couple having the greatest
dependency degree. The process of adding each time one attribute to the subset
of the selected features continues until the dependency of the obtained subset
equals the consistency of the entire database already calculated: y¢ (D).

The generated subset of the selected features, constituting the reduct, shows
the way of reducing the dimensionality of the original data set by eliminating
those conditional attributes that do not appear in the set. Those discarded at-
tributes are removed in each QR-DCA computation level since they do not add
anything new to the target concept nor help the QR-DCA to perform well its
classification task. However, the reduct features represent the most informative
features that preserve nearly the same classification power of the original data
set. Using the reduct concept, our method can guarantee that attributes of ex-
tracted feature patterns will be the most relevant for its classification task.

4.2 The QR-DCA Signal Categorization Process

The second step of our QR-DCA model data pre-processing phase is feature
categorization. More precisely, our method has to assign for each selected at-
tribute, produced by the previous step and which is included in the generated
reduct, its definite and specific signal category. The general guidelines for signal
categorization are as follows:

e Safe signals : Their presence certainly indicates that no anomalies are present.
¢ PAMPs : Their presence usually means that there is an anomalous situation.
e Danger signals : Their presence may or may not show an anomalous sit-
uation, however the probability of an anomaly is higher than under normal
circumstances.

From the previous definitions, both PAMP and SS are positive indicators of an
anomalous and normal signal while the DS is measuring situations where the
risk of anomalousness is high, but there is no signature of a specific cause. In
other words, PAMP and SS have a certain final context (either an anomalous
or a normal behavior) while the DS cannot specify exactly the final context to
assign to the collected antigen. This is because the information returned by the



QR-DCA: A New Rough Data Pre-processing Approach for the DCA 145

DS is not certain as the collected antigen may or may not indicate an anomalous
situation. This problem can be formulated as follows:

Both PAMP and SS are more informative than DS which means that both of
these signals can be seen as indispensable attributes. To represent this level of
importance, our method uses the first obtained couple of features through the
reduct generation. On the other hand, DS is less informative than PAMP and
SS. Therefore, our method applies the rest of the reduct attributes, discarding
the two first selected attributes that are chosen to represent the SS and PAMP
signals, to represent the DS. More precisely, our method processes as follows:

As QR-DCA has already calculated the dependency of each attribute ¢ a
part, v.(D), QR-DCA selects the attribute ¢ having the greatest dependency
degree to form the SS as it is considered the most informative feature added to
the reduct. With no additional computations and since QR-DCA has already
computed the dependency of each attributes’ couple 7y, .,3(D) when adding, in
turn, one attribute ¢; to the selected first attribute c that represents the SS, QR-
DCA chooses the couple having the greatest dependency degree. More precisely,
QR-DCA selects that second attribute ¢; to form the PAMP signal. And finally,
the rest of the reduct attributes are combined and affected to represent the DS
as it is less than certain to be anomalous.

Once the selected features are assigned to their suitable signal types, our
method calculates the values of each signal category using the same process as
the standard DCA [I]. The output is thus a new information table which reflects
the signal database. In fact, the universe U of the induced signal data set is
U = {x;,x;, ceey xlN} a set of antigen identifiers and the conditional attribute
set C'={SS,PAMP, DS} contains the three signal types: SS, PAMPs and DS.
Once data pre-processing is achieved, QR-DCA processes its next steps which
are the Signal Processing, the Context Assessment and the Classification step
as the DCA does and as described in Section 2.

5 Experimental Setup

To test the validity of our QR-DCA hybrid model, our experiments are performed
on two-class databases from [I0] described in Table [ We try to show that
our QR-DCA can find a trade-off between generating good classification results
and having a lightweight in terms of running time. Thus, we will compare the
QR-DCA performance to our first work, RC-DCA, published in [4] which is
also based on RST for the DCA data pre-processing phase. The common idea
between QR-DCA and RC-DCA is to assign for each selected feature a specific
signal category: either as SS, DS or PAMP. Nevertheless, RC-DCA generates all
the possible reducts, which is a time consuming task, to select the reduct having
the minimal set of features among the other generated reducts. In addition, RC-
DCA differs from our new rough DCA model in the categorization step which
focuses on proposing different solutions in case where this method produces one
reduct or a family of reducts. More details about RC-DCA can be found in
[4]. The QR-DCA performance is also compared to another rough DCA work,



146 Z. Chelly and Z. Elouedi

named RST-DCA [II]. The main difference between RST-DCA and both QR-
DCA and RC-DCA is that RST-DCA assigns only one attribute to form both
SS and PAMP as they are seen as the most important signals. As for the DS
categorization, RST-DCA combines the rest of the reduct features and assigns
the resulting value to the DS. Like RC-DCA, RST-DCA generates all the possible
reducts and proposes solutions to handle both cases (generating one reduct or
a family of reducts) for data pre-processing. More details about RST-DCA can
be found in [IT].

For data pre-processing and for all the mentioned rough DCA works includ-
ing QR-DCA, each data item is mapped as an antigen, with the value of the
antigen equal to the data ID of the item. In all experiments, a population of
100 cells is used and 10 DCs sample the antigen vector each cycle. To perform
anomaly detection, a threshold which is automatically generated from the data
is applied to the MCAVs. The MCAV threshold is derived from the proportion
of anomalous data instances of the whole data set. Items below the threshold
are classified as class 1 and above as class 2. The resulting classified antigens are
compared to the labels given in the original data sets. For each experiment, the
results presented are based on mean MCAYV values generated across 10 runs.

We evaluate the performance of the rough DCA methods in terms of number of
extracted features, running time, and accuracy which is defined as: Accuracy =
(TP+TN)/(TP+ TN + FN + FP); where TP, FP, TN, and FN refer re-
spectively to: true positive, false positive, true negative and false negative. We
will also compare the classification performance of our QR-DCA method to well
known classifiers which are the Support Vector Machine (SVM), Artificial Neural
Network (ANN) and the Decision Tree (DT).

Table 1. Description of Databases

Database Ref  f Instances f Attributes
Spambase SP 4601 58
SPECTF Heart SPECTF 267 45
Cylinder Bands CylB 540 40
Chess Ch 3196 37
Tonosphere IONO 351 35
Congressional Voting Records CVT 435 17
Tic-Tac-Toe Endgame TicTac 958 10

6 Results and Analysis

Let us remind that the first step of the standard DCA classification algorithm
is data pre-processing which is based on the use of PCA. In [I1] and [4] and by
the development of both RST-DCA and RC-DCA, we have proved that applying
PCA for both feature selection and signal categorization is not convenient for
the DCA as both phases are not consistent. We have also shown that applying
rough set theory with DCA is a good alternative leading to a better classification
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performance. However, these two rough DCA models suffer from some limita-
tions; principally the time taken by the algorithms to process which contradicts
the main characteristic of the standard DCA: its lightweight in terms of running
time. Thus, in this paper, we have developed a new rough DCA hybrid model,
QR-DCA, where we show that this proposed solution can find the trade-off be-
tween generating good classification results and processing in less time than both
RC-DCA and RST-DCA. This is confirmed by the results presented in Table 21
From these results, we will also show that assigning for each selected feature a
specific signal category, a process performed by both QR-DCA and RC-DCA,
lead to a better performance than assigning the same attribute to both SS and
PAMP, a process performed by RST-DCA.

Table 2. Comparison Results of the Rough DCA Approaches

Accuracy (%) f Attributes Time (s)
Database DCA DCA DCA

QR RC RST QR RC RST QR RC RST
SP 98.87 98.45 945 11 8 8 1976.05 3184.83 2923.41

SPECTF 93.26 88.38 824 12 4 4 5.49 1423.02 1361.77
CylB 97.46 97.46 96.67 7 7 7 12.68 1441.93 1398.12
Ch 98.84 98.84 98.02 11 11 11  571.05 1779.83 1697.01
IONO 96.58 97.1596.29 22 19 19  15.88 668.32 591.13
CvVT 97.93 98.85 96.55 11 8 8 7.03 17.83 10.54
TicTac  96.65 95.3 93.52 8 6 6 49.89 62.66 58.80

From Table 2, we can notice that RST-DCA and RC-DCA models have the
same number of selected features. This is explained by the fact that both models
are based on the same feature selection phase. They generate all the possible
reducts and choose the one having the smaller number of features. However, our
QR-DCA new version has either the same number of features as both RST-DCA
and RC-DCA or more features. This is explained by the fact that QR-DCA, by
applying the QuickReduct algorithm, follows the features’ path that generates
the highest dependency degree. Consequently, the taken path may either lead to
a final reduct including the smallest number of features or to a path including
more selected features; but still this obtained reduct includes the most important
features to retain. For instance, applying QR-DCA to the IONO database, the
number of selected attributes is 22. However, when applying RST-DCA or RC-
DCA, the number of selected features is 19. Applying the three rough DCA
models to the Ch database, the number of the selected features is the same: 11.
We have also to mention that obtaining the same number of features does not
mean that this reduct includes the same attributes; the attributes may differ.

Based on these selected attributes, the accuracies of the algorithms are calcu-
lated. From Table 2, we can notice that the difference between the classification
accuracies generated by both QR-DCA and RC-DCA is not significant. Thus,
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we can say that QR-DCA has nearly the same classification performance as
RC-DCA. For instance, when applying the algorithms to the SP data set, the
classification accuracy of QR-DCA is set to 98.87% and when applying RC-DCA
to the same database, the accuracy is set to 98.45%. In some databases, the QR-
DCA classification accuracy is a bit less than the one generated by RC-DCA
and sometimes a bit higher. We also remark, that in all databases, QR-DCA
and RC-DCA outperform the classification accuracy generated by RST-DCA.
For instance, the classification accuracy of RST-DCA when applied to the SP
database is set to 94.5% which is less than 98.87% and 98.45% generated respec-
tively by QR-DCA and RC-DCA. This is explained by the fact that RST-DCA
differs from QR-DCA and RC-DCA in the signal categorization phase. Both QR-
DCA and RC-DCA assign different features to different signal categories (DS,
SS, PAMP). However, RST-DCA uses the same attribute to assign it for both
SS and PAMP. As for the DS categorization, RST-DCA combines the rest of the
reduct features to assign it for the DS. From these results, we can conclude that
it is crucial to assign for each signal category a specific and different feature.

Another advantage of our QR-DCA is that it takes less time to process than
RC-DCA and RST-DCA. This is confirmed by the results appearing in Table 2
For example, when applying the algorithms to the CylB database, the amount of
time taken by QR-DCA to process is 12.68(s) which is less than the times taken
by RC-DCA and RST-DCA which are 1441.93(s) and 1398.12(s), respectively.
The QR-DCA lightweight in terms of running time is explained by the advantage
of using the QuickReduct algorithm as it attempts to calculate a reduct without
exhaustively generating all possible subsets. In contrast, both RST-DCA and
RC-DCA generate all possible subsets and retrieve those with a maximum rough
set dependency degree. Obviously, this is an expensive solution to the problem.
Most of the time only one reduct is required as, typically, only one subset of
features is used to reduce a data set, so all the calculations involved in discovering
the rest are pointless.

We have also compared the performance of our QR-DCA to other classifiers
including SVM, ANN and DT. The comparison made is in terms of the average
of accuracies on the databases presented in Table [[I The parameters of SVM,
ANN and DT are set to the most adequate parameters to these algorithms
using the Weka software. Figure [[lshows that our QR-DCA has nearly the same
classification performance as RC-DCA. It also shows that QR-DCA outperforms
RST-DCA, SVM, ANN and DT.

To summarize, QR-DCA is a good classification technique proposed as an
alternative to our RC-DCA first work. QR-DCA has the advantage of generating
good classification results while preserving a lightweight in terms of running time.
We have also shown that it is crucial that DCA assigns different attributes for
each signal type. QR-DCA performs much better than the mentioned classifiers
in terms of classification accuracy.
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Fig. 1. Comparison of Classifiers’ Average Accuracies on the 7 Binary Data sets

7 Conclusion and Further Work

In this paper, we have introduced a new hybrid DCA bio-inspired model based on
RST. Our model aims to select the convenient set of features and to perform their
signal categorization using the QuickReduct algorithm. Results show that our
method is capable of finding a trade-off between generating good classification
results and keeping the algorithm lightweight in terms of running time. As future
work we aim to apply the fuzzy RST for the DCA data pre-processing phase.
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