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Preface

We are pleased to present in this LNCS volume the proceedings of the 11th Inter-
national Conference on Adaptive and Neural Computing Algorithms, ICANNGA
2013, that was held in Lausanne, Switzerland. The biennial ICANNGA series
of conferences was started in 1993 in Innsbruck, Austria, and was followed by
Ales, France (1995), Norwick, UK (1997), Portorož, Slovenia (1999), Prague,
Czech Republic (2001), Rouen, France (2003), Coimbra, Portugal (2005), War-
saw, Poland (2007), Kuopio, Finland (2009), and Ljubljana, Slovenia (2011). The
present edition thus marks the 20th year of existence of this successful series of
conferences.

We received 91 paper submissions for this edition coming from many differ-
ent countries. Following an extensive review process, the Program Committee
selected 51 manuscripts for inclusion in this volume. Of the 51 papers, 39 were
presented in oral sessions and the rest as posters. The selected papers cover many
aspects of soft computing techniques and adaptive algorithms, from artificial
neural networks to evolutionary algorithms, system dynamics and identification,
pattern recognition, machine learning techniques, and swarm computing among
others. Both theoretical and fundamental contributions as well as applications
were present, although theoretical and numerical models were the majority.

The conference featured three distinguished keynote speakers: Tom Heskes,
Moshe Sipper, and Alessandro Villa. Their presentations were at the leading
edge of today’s research and of great inspirational value. Tom Heskes’ talk was
about Bayesian machine learning approaches to analyze complex data sets com-
ing from the brain’s functional data and their application to brain–computer
interfaces, a really exciting perspective. Moshe Sipper focused on artificial in-
telligence techniques based on evolutionary computation within the domain of
games, an activity in which Sipper’s group has produced human-competitive
and award-winning game strategies in games such as chess, checkers, and sev-
eral others. Alessandro Villa’s talk was on theoretical models of spatio-temporal
patterns of recurrent neural networks based on dynamical systems theory. He
showed that only selected meaningful patterns may contribute to extend the
computational power of neural networks.

The success of a conference depends on the quality of the scientific contri-
butions, as well as on the work of the reviewers and of the organizers. We are
grateful to all the contributors for their hard and high-quality work that made
the conference possible. And of course, we thank the reviewers for their time and
careful work. We would also like to express our gratitude to the Advisory Com-
mittee, which guarantees the continuity of the conference series and provided
advice, feedback, and discussion throughout. Finally, we thank the Economics
Faculty of the University of Lausanne for the logistic support provided, which
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proved very important in creating a nice and productive environment for all the
conference activities.

April 2013 Marco Tomassini
Alberto Antonioni

Fabio Daolio
Pierre Buesser



Organization

Advisory Committee

Rudolf Albrecht
Bartlomiej Beliczynski
Andrej Dobnikar
Mikko Kolehmainen
Vera Kurkova

David Pearson
Bernardete Ribeiro
Nigel Steele

Program Committee

Hernan Aguirre
Jarmo Alander
Rudolf Albrecht
Alberto Antonioni
Rubén Armañanzas
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Andrés Pérez-Uribe
Clara Pizzuti
Riccardo Poli
Mike Preuss
Bernardete Ribeiro
Conor Ryan
Jorge Santos
Henrik Saxen
Marc Schoenauer
Roberto Serra
Catarina Silva

Moshe Sipper
Branko Ster
Thomas Stuetzle
Miroslaw Swiercz
Ryszard Tadeusiewicz
El-Ghazali Talbi
Tatiana Tambouratzis
Marco Tomassini
Leonardo Vanneschi
Miguel A. Vega-Rodŕıguez
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Piotr P�loński and Krzysztof Zaremba

Defining Semantic Meta-hashtags for Twitter Classification . . . . . . . . . . . . 226
Joana Costa, Catarina Silva, Mário Antunes, and Bernardete Ribeiro

Reinforcement Learning and Genetic Regulatory Network
Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
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On Appropriate Refractoriness

and Weight Increment in Incremental Learning

Toshinori Deguchi1, Junya Fukuta1, and Naohiro Ishii2

1 Gifu National College of Technology
2 Aichi Institute of Technology

Abstract. Neural networks are able to learn more patterns with the
incremental learning than with the correlative learning. The incremental
learning is a method to compose an associate memory using a chaotic
neural network. The capacity of the network is found to increase along
with its size which is the number of the neurons in the network and to be
larger than the one with correlative learning. In former work, the capacity
was over the direct proportion to the network size with suitable pairs
of the refractory parameter and the learning parameter. In this paper,
the refractory parameter and the learning parameter are investigated
through the computer simulations changing these parameters. Through
the computer simulations, it turns out that the appropriate parameters
lie near the origin with some relation between them.

1 Introduction

The incremental learning proposed by the authors is highly superior to the auto-
correlative learning in the ability of pattern memorization[1,2]. The idea of the
incremental learning is from the automatic learning[3]. In the incremental learn-
ing, the network keeps receiving the external inputs. If the network has already
known an input pattern, it recalls the pattern. Otherwise, each neuron in it
learns the pattern gradually. The neurons used in this learning are the chaotic
neurons, and their network is the chaotic neural network, which was developed
by Aihara[4].

In former work, we investigated the capacity of the networks[5] and the error
correction capability[6]. Through the simulations, we found that the capacity
is in proportion to the network size with the appropriate parameter which is
inverse proportion to the size and that the capability decreases gradually as the
number of the learned patterns increases.

In this paper, first, we explain the chaotic neural networks and the incremen-
tal learning and refer to the former work on the capacities[7], then the refractory
parameter and the learning parameter are investigated, with simulations chang-
ing the refractory parameter and the learning parameter counting the capacity
of the network in the 100 neuron network.

M. Tomassini et al. (Eds.): ICANNGA 2013, LNCS 7824, pp. 1–9, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 T. Deguchi, J. Fukuta, and N. Ishii

2 Chaotic Neural Networks and Incremental Learning

The incremental learning was developed by using the chaotic neurons. The
chaotic neurons and the chaotic neural networks were proposed by Aihara[4].
We presented the incremental learning which provided an associative memory[1].
The network type is an interconnected network, in which each neuron receives
one external input, and is defined as follows[4]:

xi(t+ 1) = f
(
ξi(t+ 1) + ηi(t+ 1) + ζi(t+ 1)

)
, (1)

ξi(t+ 1) = ksξi(t) + υAi(t) , (2)

ηi(t+ 1) = kmηi(t) +

n∑
j=1

wijxj(t) , (3)

ζi(t+ 1) = krζi(t)− αxi(t)− θi(1− kr) , (4)

where xi(t + 1) is the output of the i-th neuron at time t + 1, f is the output
sigmoid function described below in (5), ks, km, kr are the time decay constants,
Ai(t) is the input to the i-th neuron at time t, υ is the weight for external inputs,
n is the size—the number of the neurons in the network, wij is the connection
weight from the j-th neuron to the i-th neuron, and α is the parameter that
specifies the relation between the neuron output and the refractoriness.

f(x) =
2

1 + exp(−x
ε )

− 1 . (5)

The parameters in the chaotic neurons are assigned in Table 1.

Table 1. Parameters

υ = 2.0,
ks = 0.95,
km = 0.1,
kr = 0.95,
θi = 0,
ε = 0.015

In the incremental learning, each pattern is inputted to the network for some
fixed steps before moving to the next. In this paper, this term is fixed to 50
steps, and 1 set is defined as a period for which all the patterns are inputted.
The patterns are inputted repeatedly for some fixed sets.

During the learning, a neuron which satisfies the condition (6) changes the
connection weights as in (7)[1].

ξi(t)× (ηi(t) + ζi(t)) < 0 . (6)

wij =

{
wij +Δw, ξi(t)× xj(t) > 0
wij −Δw, ξi(t)× xj(t) ≤ 0

(i �= j) , (7)

where Δw is the learning parameter.
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If the network has learned a currently inputted pattern, the mutual interaction
ηi(t) and the external input ξi(t) are both positive or both negative at all the
neurons. This means that if the external input and the mutual interaction have
different signs at some neurons, a currently inputted pattern has not been learned
completely. Therefore, a neuron in this condition changes its connection weights.
To make the network memorize the patterns firmly, if the mutual interaction is
less than the refractoriness ζi(t) in the absolute value, the neuron also changes
its connection weights.

In this learning, the initial values of the connection weights can be 0, because
some of the neurons’ outputs are changed by their external inputs and this
makes the condition establish in some neurons. Therefore, all initial values of
the connection weights are set to be 0 in this paper. ξi(0), ηi(0), and ζi(0) are
also set to be 0.

To confirm that the network has learned a pattern after the learning, the
pattern is tested on the normal Hopfield’s type network which has the same con-
nection weights as the chaotic neural network. That the Hopfield’s type network
with the connection weights has the pattern in its memory has the same meaning
as that the chaotic neural network recalls the pattern quickly when the pattern
inputted. Therefore, it is the convenient way to use the Hopfield’s type network
to check the success of the learning.

3 Capacity

In this section, we retrace the simulations in the former work[7]. In the former
works[5,6,7], it turned out to be important for the incremental learning that the
connection weights were reinforced by the effect of the refractoriness ζi(t) in the
learning condition (6). This suggests that α is significant to the incremental learn-
ing. Therefore, we regarded not only Δw but also α as learning parameters,
although the other parameters are not meant to have no effect.

First, the refractory parameter α was fixed to be 2.0 and the capacity was
inspected changing Δw. The capacity is proportional to its size with the pro-
portional constant 0.92 as shown in Fig. 1. The capacity of the auto-correlative
learning is also shown in Fig. 1 and the proportional constant is 0.07.

Under consideration of the former works[5,6], we took Δw = 0.0001 and
α = 0.1 and used a 200 neuron network with 250 input patterns. Fig. 2[7] shows
the result. The horizontal axis is the learning sets which means learning period
and the vertical axis is the number of learned patterns at the end of that sets.
The result shows that the capacity of this network is equal to or more than 250
patterns, which means the capacity of the network exceeds the direct proportion
to its size.

Next, to investigate the usable pair of Δw and α, the following simulations
were carried out. In these simulation, 200 neuron network was used with 240
input patterns and the number of learned patterns was counted changing Δw
and α. Because the appropriate value of Δw was 0.005 in former work[5,6], the
parameter Δw was changed from 0.0001 to 0.01 in increments of 0.0001 to cover
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Fig. 2. Number of Learned Patterns in 200 Neuron Network

Δw = 0.005. The parameter α was changed from 0.01 to 2.00 in increments of
0.01 to cover α = 0.1 which was used in Fig 2.

Fig. 3 shows the result of these simulations. From this result, not only Δw
but also α strongly affects the number of learned patterns. Around Δw = 0.0011
and α = 0.41, all the 240 input patterns are learned.
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4 Appropriate Pairs

In this section, we investigate the appropriate pair of Δw and α, with which the
network was able to learn all the inputted patterns. To reduce computational
complexity, we took the 100 neuron network in this section. The refractory pa-
rameter α is changed in increments of 0.01 and the learning parameter Δw is
changed in increments of 0.0001.

Through the simulations, the capacity turns out to be 131 with α and Δw
listed in Table 2. Fig. 4 shows the result of the simulation with (α,Δw) =
(0.02, 0.0001). Both axes are the same as the ones in Fig. 2. Because the appro-
priate pairs listed in Table 2 are located in low area of Δw, the simulations have
to be carried out with finer values of Δw in this area.

In the next simulations, the refractory parameter α is changed from 0.001 to
0.2 in increments of 0.001 and the learning parameter Δw is changed from 10−6

to 10−4 in increments of 10−6. In these simulations, the capacity of the network
grew to 145. Fig.5 shows the number of learned patterns when 145 patterns are
inputted to the network. The appropriate pairs are plotted with large dots, so
that the area of these pairs looks blacker than the other. In Fig.5, the appropriate
pairs are lined in an area near α = 0.01.

From the result, next simulations are carried out with smaller parameters.
In these simulations, the refractory parameter α is changed from 10−5 to 10−3

in increments of 10−5 and the learning parameter Δw is changed from 10−7 to
10−5 in increments of 10−7. Again, the capacity of the network grew to 149.
Fig.6 shows the number of learned patterns when 149 patterns are inputted to
the network. The appropriate pairs are lined in an area around α = 180Δw.
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Fig. 4. Number of Learned Patterns in 100 Neuron Network with α = 0.02 and Δw =
0.0001

Table 2. Appropriate α and Δw in the 100 Neuron Network

α Δw

0.02 0.0001
0.03 0.0002
0.04 0.0002
0.05 0.0003
0.06 0.0003
0.07 0.0004
0.08 0.0005

From above results, the capacity of the network is increasing as the parameters
are decreasing. Then, for the third time, the simulations are carried out, with
the refractory parameter α changed from 4× 10−7 to 4× 10−5 in increments of
4 × 10−7 and with the learning parameter Δw changed from 10−9 to 10−7 in
increments of 10−9.

These simulations revealed that the capacity of the network is still 149. Fig.7
shows the number of learned patterns when 149 patterns are inputted to the
network. The appropriate pairs are lined in an area around α = 193Δw. From
the fact that these parameters are two digits smaller than the ones in Fig 6,
and that the capacities are the same, 149 can be the maximum capacity of the
network.
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Fig. 6. Number of Learned Patterns in 100 Neuron Network with α = 10−5 to 10−3

and Δw = 10−7 to 10−5

For α and Δw, there are appropriate pairs of these parameters, which are in
an area around α � 190Δw near the origin. We consider that smaller Δw means
finer tuning of the connection weights, that smaller α is needed for smaller Δw
to keep the balance in the condition (6), and that thus the appropriate pairs lie
near the origin. Because the capacity can change with the parameters, to use the
maximum capacity of the network, it is important to verify the these parameters
which tend to be near the origin with the relation of α � 190Δw.
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Fig. 7. Number of Learned Patterns in 100 Neuron Network with α = 4 × 10−7 to
4× 10−5 and Δw = 2× 10−9 to 2× 10−7

5 Conclusion

From the former work, the capacity of the network with the incremental learning
increases in proportion to its size with the proportional constant 0.92 at the
appropriate Δw, and the capacity had exceeded the direct proportion to its size
using a suitable α.

In this paper, the refractory parameter and the learning parameter were in-
vestigated, counting the capacity of the network. The results shows that the
appropriate α and Δw lie near the origin with the relation α � 190Δw. We just
used a 100 neuron network, so there is a possibility that the appropriate α and
Δw differ in the other networks, and that is a future work.
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Abstract. To make clear the mechanism of the visual movement is important in 
the visual system. The problem is how to perceive vectors of the optic flow in 
the network. First, the biological asymmetric network with nonlinearities is 
analyzed for generating the vector from the point of the network computations. 
The results are applicable to the V1 and MT model of the neural networks in the 
cortex. The stimulus with a mixture distribution is applied to evaluate their 
network processing ability for the movement direction and its velocity, which 
generate the vector. Second, it is shown that the vector is emphasized in the MT 
than the V1. The characterized equation is derived in the network computations, 
which evaluates the vector properties of processing ability of the network. The 
movement velocity is derived, which is represented in Wiener kernels. The 
operations of vectors are shown in the divisive normalization network , which 
will create curl or divergence vectors in the higher neural network as MST area. 

1 Introduction 

In the biological neural networks, the sensory information is processed effectively and 
speedily. Reichard[1] evaluated the sensory information by the auto-correlations in the 
neural networks. Motion perception is a basic mechanism in the layered visual system 
of the brain[2]. In this paper, it is shown that the model of the brain cortex proposed by 
Heeger et al.[4,5] plays an important role in the movement detection and its direction in 
the neural network computations. First, we analyze the retinal circuit of the 
catfish[11,12], in which asymmetric sub-network with nonlinearity has a role of the 
detection of movement of the stimulus by applying Wiener kernel. It is shown that  
the asymmetric network with nonlinearity detects the movement direction of the 
stimulus, which has characteristics as a vector. The model of V1 followed by MT in the 
cortex is represented by the approximated networks. It is shown that the approximated 
network is closely related to the asymmetric sub-network. Then, the velocity is shown to 
be emphasized in MT than V1. Beck,J.M et al. derived the activity formula of the 
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divisive normalization circuit[10]. The divisive normalization circuit is included in the 
model of V1 followed by MT. Then, by applying the activity formula of the divisive 
normalization circuit in approximated V1 and MT networks, the vector sequence of the 
optic flow of the stimulus is derived. Thus, it is shown that the operations of the vectors 
are discussed in the generated vector field of the optic flow.  

2 Biological Neural Networks 

In the structure of the biological neural networks, neurons are arranged in a 
systematic way in their structure based on retinal networks. This will be caused for 
the efficient computation of the collaborative activities. Further, layered structure of 
the networks shows a prominent feature for the collaborative computations and 
controls of the total system. Here, we present an example of layered neural network in 
the biological visual cortex. Fig.1 shows two layered neural network studied by 
Simoncelli and Heeger [4], which connects networks of V1 followed by MT, where 
V1 is the front part of the total network, while MT is the rear part of it in Fig.1.  

The sub-network model of V1 and MT has nonlinear characteristics followed by a 
-net normalization  sub-network  after half-wave rectification circuit.  

 

Fig. 1. Model of neural network of brain cortex V1  followed by MT ( Simoncelli  & 
Heeger[4]) 



12 N. Ishii et al. 

On the V1 cell and MT cell, velocities are discussed in the visual motion analysis 
[Fukushima, 2007]. Schematic velocities are shown in Fig. 2, which is shown  in 
Fukushimas V1 and MT neural mode [9]. The directed arrows in V1 receptive field, 
show the velocity in the horizontal and vertical directions in the left side of Fig. 2, 
while those in MT receptive field show also larger velocities in the right side of  
Fig. 2. 

V1- cells 
MT- cells abs  

Fig. 2. Schematic vector representation in cells V1 and MT areas 

The problem is how to relate the connected V1 and MT neural model in Fig.1 to 
the vector formation as shown in Fig. 2 in logical formulation. To solve the problem, 
the connected network is transformed to the approximated network by the following 
steps 

(1) Normalization  of a neuron in Fig,1 implies an aspect of saturated activity of 
neuron responses. 

(2) Nonlinearity of the halfwave, squaring rectification and normalization of neuron 
is approximated as a sigmoid nonlinear function. 

(3) The sigmoid nonlinear function is approximated in Taylor series. 
(4) The Taylor series expansion is expressed as a transformed network. 

3 Analysis Based on Asymmetrical Sub-networks 

Respective neurons in the network seem to work independently as they are observed 
respectively. But, respective neurons work according to the background laws or rules 
for the total objective function. To make clear functions of the combined 
approximated network in Fig.1, we applied the research results of the asymmetric 
sub-network analysis[11,12] and we developed here new formulas for vector 
computations.. In Fig.3, we assume two kinds of neurons, which are seen in biological 
retinal network[6,11,12]. One is a linear function neuron and the other is a nonlinear 
function neuron. The nonlinear neuron works as a nonlinear function of squaring, 
which show the function of quadratic characteristics. To make clear the function of 
the combined approximated network in Fig.3, the basic sub-network is analyzed first, 
since it consists of the basic sub-network in Fig.3. 
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3.1 Architecture of Asymmetric Sub-networks 

Movement perception is carried out firstly in the retinal neural network as the special 
processing between neurons. The following asymmetric neural network is extracted 
from the catfish retinal network [6]. The asymmetric structure network with a 
quadratic nonlinearity is shown in Fig.3, which composes of the pathway from the 
bipolar cell B1 to the amacrine cell N and that from the bipolar cell B2 , via the 
amacrine cell N with squaring function to the N cell.  

    
  
  
  
  
  
  
  
  
  
  
  
  
  

B1

  
B 2

  

  

C  

N
  

 

X(t)

 

Linear   
Pathway 

Nonlinear Pathway 
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h1’(t) 
 

h1’’(t) 

y1(t) 
 

y2(t) 
 

X’(t)

 

Fig. 3. Asymmetric network with linear and squaring nonlinear pathways 

Fig.3 shows a network which plays an important role in the movement perception 
as the fundamental network. It is shown that N cell response is realized by a linear 
filter, which is composed of a differentiation filter followed by a low-pass filter. Thus, 
the asymmetric network in Fig.3 is composed of a linear pathway and a nonlinear 
pathway. Here, the stimulus with Gaussian distribution is assumed to move from the 
left side to the right side in the network in Fig.3, as shown in Fig.4. x''(t) is mixed 

with x(t) . Then , we indicate the right stimulus by x'(t) . By introducing a mixed 

ratio , α , the input function of the right stimulus , is described in the following 

equation , where 0  α 1≤ ≤  and β= 1- α  hold. Then, Fig.4 shows that the moving 

stimulus is described in the following equation, 
 

x '(t) = α x(t) + βx ''(t)                      (1)   

 
Let the power spectrums of x(t)  and x''(t) , be p and p' ,respectively an 

equation p = k p'' holds for the coefficient k , because we assumed here that the 

deviations of the input functions are different in their values. Fig.4 shows that the 
slashed light is moving from the receptive field of B1 cell to the field of the B2 cell . 
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Fig. 4. Stimulus movement from the left to the right side 

The mixed ratio of the input x(t) , α  is shown in the receptive field of B2 cell 

First , on the linear pathway of the asymmetrical network in Fig.3, the input function 
is x(t)  and the output function is y(t) ,  which  is an output after the linear filter of 

the cell N. 
 

1 1 2y(t)= h '''( )( y (t - )+ y (t - ))dτ τ τ τ ε+               (2)      

 
where 1y (t)  shows the linear information on the linear pathway 2y (t)  shows the 

nonlinear information on the nonlinear pathway and ε  shows error value. The 

1y (t)  and 2y (t)  are given, respectively as follows, 

0

1 1( ) '( ) ( )y t h x t dτ τ τ
∞

= −
                        

(3) 

 
1 2 1 2 1 2

0 0

2 1 1( ) "( ) "( ) '( ) '( )y t h h x t x t d dτ τ τ τ τ τ
∞ ∞

= − −                 (4)                             

We assume here the linear filter N to have only summation operation without in 
the analysis. Thus the impulse response function 1'''( )h t  is assumed to be value 1 
without loss of generality. 

3.2 Vector Generation in the Sub-networks 

Under the assumption that the impulse response functions, 1h ΄(t) of the cell B1, 

1h ˝(t)  of the cell B2 and moving stimulus ratio α  in the right to be unknown, the 

optimization of the network is carried out. By the minimization of the mean squared 
value ξ  of ε  in equation (4), the following necessary equations for the 

optimization of equations are derived, 

   B1 cell                    B2 cell 
 

α 
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1

0
'( )h t

ξ∂ =
∂

  ,   
2

0
''( )h t

ξ∂ =
∂

   ,  0
ξ
α

∂ =
∂

                (5) 

Then, the following three equations are derived  for the optimization satisfying the  
equation (5). 
 

                    [ ] 1( ) ( ) '( )E y t x t h pλ λ− =
 

[ ] 1 1
2 2

0 1 2 1 2( ( ) ) ( ) ( ) 2 "( ) "( )E y t C x t x t p h hλ λ α λ λ− − − =  

 [ ] 1 1
2

0 1 2 1 2( ( ) ) '( ) '( ) 2 ' "( ) "( )E y t C x t x t p h hλ λ λ λ− − − =                (6) 

where 
0C  is the mean value of, ( )y t  which is shown in the following. Here, the 

equations (6) can be rewritten by applying Wiener kernels, which are related with 
input and output correlations method developed by Lee and Schetzen[7]. From the 
necessary optimization equations in (5), the following Wiener kernel equations are 
derived as shown in the following[7]. First, we can compute the 0-th order Wiener 
kernel 0C  , the 1-st order one and 11C (λ)  the 2-nd order one  21 1 2C (λ ¸λ )  on the 

linear pathway by the cross-correlations between x(t)  and. y(t) . The suffix i , j  

of the kernel, Cij(•)  shows that i   is the order of the kernel and j = 1   means the 

linear pathway, while j = 2   means the nonlinear pathway.  Then , the 0-th order 

kernel under the condition of the spatial interaction of cell’s impulse response 
functions  1h ΄(t)  and 1h ˝(t)  becomes 

1 1 1
1

C ( λ ) = E [ y ( t ) x ( t - λ ) ] = h ´ ( λ )
p

            (7) 

since the last term of the second equation becomes zero. The 2-nd order kernel is also 
derived from the optimization equation as follows,  

21 1 2 0 1 2

1 1 1 2

1
C (λ ¸λ ) = E[(y(t) - C )(x(t - λ )x(t - λ )]

2p²  

                  = α ²h ˝(λ )h ˝(λ )

          (8) 

From equations  (7) and (8) , the ratio , α  which is a mixed coefficient of x(t)  to, 

is x´(t)  shown by α²  as the amplitude of the second order Wiener kernel. Second , 

on the nonlinear pathway , we can compute the 0-th order kernel  , 0C  the 1-st order 
kernel 12C (λ)  and the 2-nd order kernel by the 22 1 2C (λ ¸λ )  cross-correlations between 

x(t)   and  y(t)  as shown in the following, which are also derived from the 

optimization equations. 
 

1 2

1

1
C ( λ ) = E [ y ( t ) x ´ ( t - λ ) ]

p ( α ² + k β ² )

α
            = h ´ ( λ )

α ² + k ( 1 - α ) ²         (9)      
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and 
2 2 1 2 1 1 1 2C (λ ¸λ ) = h ˝(λ )h ˝(λ )                    (10)                             

The motion problem is how to detect the movement in the increase of the ratio α  in 
Fig.4. This implies that for the motion of the light from the left side circle to the right 
one, the ratio α can be derived from the kernels described in the above, in which the 
second order kernels 21C and 22C  are abbreviated in the representation of equations 

(11) and (12).  
  2 1 2 2 )(C /C = α ²                              (11) 

 
holds. Then , from the equation (11) the ratio α  is shown as follows 

                            
21

2 2

Cα =
C

                                   (12)                            

The equation (12) is called here α - equation , which implies the movement stimulus 
on the network and shows the detection of the movement by the α  without it’s 
direction. This shows that the α - equation is determined by the second order kernels 
on the linear pathway and the nonlinear one in the network.   From the first order 
kernels 11C  and 12C , and the second order kernels in the above derivations, the 
movement equation from the left to the right, holds as shown in the following,                  

            

21

12 22

11 21 21

22 22

C
C C=
C C C

+ k 1 -
C C

²( )
                       (13)   

It can be shown that the movement equation for the null direction from the right to the 
left, is derived similarly , which is different from the equation (13) under the 
condition of the parameter 0< α < 1. Thus, the equation (13) shows the direction of 
the moving stimulus from the left to the right.  Next problem is what kinds of 
functions are needed in the neural networks to realize the movement equations, which 
are equations  (12) and (13). The equations (12) and (13) are derived by computing  
Wiener nonlinear analysis, which is based on the temporal correlations. It is suggested 
that some correlation computations will play an important role in the biological neural 

networks as shown in the following. From equation(8), the velocity ( )
d

v t
dt

α=  is 

derived as the following equation (14), 

21 1 2
1 1 1 2 1 1 1 2

( , )
2 "( ) "( ) 2 ( ) "( ) "( )

dC d
h h v t h h

dt dt

τ τ αα τ τ α τ τ= =
 

21 1 2

21 22

1 ( , )
( )

2

dC
v t

dtC C

τ τ=
                    (14) 
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4 Operations in Vector Field of Normalization Network 

Beck, J.M. et al.[10] derived a new aspect of the divisive normalization circuit, which 
is called the marginalization in neural circuit with divisive normalization. This 
normalization circuit is proposed in V1-MT network model by Heeger et al.[4,5] as 
shown in Fig.1. This normalization circuit is also applicable to the model of MST, 
which is followed by MT for creating characteristic vector operations as curl or 
divergence. Beck,J.M. et al.[10] show that biologically plausible networks can 
implement marginalization near optimally for coordinate transformations, object 
tracking, simplified olfaction, and causal reasoning. The networks are relatively 
multilayer recurrent networks that implements a quadratic nonlinearity and divisive 
normalization. Population code is introduced to determine how  neurons encode the 
likelihood functions and probability  distributions from the Bayes approach. The 
marginalization of the coordinate transformation theory is proposed. Then, the 

variance of the posterior, 2σ , is inversely proportional to the gain of the activity. 
Further, on the coordinate transformation, the neural activity A for the one task and 
another neural activity B for the other task, are assumed. By the marginalization of 
the neural activities, A and B, the integrated neural activity is generated as the C. 
Then, by the linear coordinate transformation, the integrated variance is shown as 

2 2 2
C A Bσ σ σ= + . This shows that the integrated gain of the neural activity becomes 

1/ 1/ 1/C A Bg g g= + , which may be written as  

A B
C

A B

g g
g

g g
=

+
                          (15) 

 
Thus, the gains transform via a quadratic nonlinearity with divisive normalization. 
The response activity, which is proportional to the gain in equation (15), is replaced 
as [10]  

 

                 ( )

k A B
ij i j

ijC
k A A B B

l l l l
l

w r r

r
r rα β

=
+


                       (16) 

where the 'w s , ' sα  and ' sβ  are coefficient weights. Here, A
ir  and B

jr  

correspond to activity in the input layer and C
kr  to activity in the output layer. The 

equation (16) is useful for the vector operations for the detection and estimation of 
differential forms in optic flows, which also shows a quadratic nonlinearity with 
divisive normalization. 

The suffix of A, B and C in the equation (16) can be interpreted as the vectors A , B 
and C.. 
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From the equation (16), the vector dot product in the vector operation, is 
introduced. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 5. A partial representation of simplified optic flow vectors 

A simplified example of the optic flow is shown in Fig.5, in which one arrow 
shows a vector of the optic flow. The vector flow [A] shows a curved vectors 
sequence to the left side as shown in Fig.5. Also, the vector flow [B] to the right side 
and the vector flow [C] diverges straightly. The vector flow [A] is characterized by 
applying the equation(16).  

The Stokes’ theorem is computed by the line integral of vectors, which is 
essentially calculated by the vector dot product, which will be carried out in the 
marginalization circuit. The estimated vector sequence points the coordinates of the 
vectors sequence. By using these coordinate values, the line integral of the  Stokes’ 
theorem is computed. The curl vectors shown in MST will be created by the Stokes’ 
theorem. When the counter clockwise rotation of the curved optic flow vectors is 
taken, the Stokes’ theorem shows a negative value. Thus, the line integral of the 
estimated vector sequence has a negative value. Then, the counter clockwise rotation 
vector will be made in the MST. When the clockwise rotation of the curved optic flow 
vectors is taken, the theorem shows a positive value. Then, the clockwise rotation 
vectors will be created. 

5 Conclusion 

The neural networks are analyzed to make clear functions of the layered network of 
V1 followed by MT in the brain cortical area. In this paper, the structure and  
function of the nonlinear biological asymmetrical network, are analyzed first to detect  
 

[A] 
[B] 

[C] 
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the movement direction and its speed of the stimulus from the point of the neural 
computation. The conditions of the movement and its direction of the stimulus, are 
derived from these analyses. We applied these results by using Wiener analysis to the 
connected V1 and MT networks. Then, it was shown that the structure of the 
approximated V1 and MT network  has  a higher detection ability for the movement. 
Finally, the operations of the vectors of optic flow are discussed based on the theory 
of the divisive normalization circuit, which is derived by Beck,J.M., et al. The vector 
sequence is applicable to the Stokes’ theorem on the vector field. Thus, the curl or 
divergence vectors will be generated on the higher network as MST, which is 
followed by MT in the brain. 
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Abstract. Learning in the brain requires complementary mechanisms:
potentiation and activity-dependent homeostatic scaling. We introduce
synaptic scaling to a biologically-realistic spiking model of neocortex
which can learn changes in oscillatory rhythms using STDP, and show
that scaling is necessary to balance both positive and negative changes in
input from potentiation and atrophy. We discuss some of the issues that
arise when considering synaptic scaling in such a model, and show that
scaling regulates activity whilst allowing learning to remain unaltered.

1 Introduction

Spike Timing-Dependent Plasticity (STDP), a phenomenological learning rule in
which synaptic potentiation and depression depend upon relative firing times [1, 2],
has been used to learn oscillatory rhythms in neocortical models. In an existing
biologically-realistic spiking model of neocortex [3], applying excitatory to exci-
tatory (E→E) STDP with a rhythmic training signal led to hyper-potentiation
through positive feedback: strengthened synapses drove postsynaptic neurons to
fire immediately, leading to further potentiation. This unbounded potentiation
then pushed the network into synchronized epileptiform firing. Directly opposing
E→E learning with equal excitatory to inhibitory (E→I) potentiation partially
balanced this positive feedback. However, epileptiform behaviour still occurred
with high-frequency signals [4].

We postulated that a homeostatic mechanism might be a solution to this prob-
lem. Neuronal homeostatic synaptic scaling is a local feedback mechanism which
senses levels of activity-dependent cytosolic calcium within the cell and adjusts
neuronal firing activity accordingly. This is achieved by producing alterations in
excitatory AMPA receptor accumulation in response to changes in firing activ-
ity occurring over hours to days [5], leading to changes in the excitability of the
neuron.

During learning, synaptic scaling plays an important role in balancing poten-
tiation. By constantly shifting mean activation back towards a target activity
level, but maintaining the learned relative distribution of presynaptic weights,
global levels of activity can be regulated [6]. During periods of hypoactivity (e.g.
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in degenerative disorders), synaptic scaling is also capable of raising the sensi-
tivity of neurons via AMPA receptor upregulation, so that activity levels can be
restored [5].

Previous work has demonstrated synaptic scaling with learning in a single-
neuron model [6]. It has also been shown that synaptic scaling can prevent
input saturation in a spiking neural network in the absence of learning [7]. In
this paper, we add long-term synaptic plasticity to a spiking neural network
to show that homeostatic synaptic scaling can prevent hyper-potentiation while
preserving learned information.

2 Methods

The model was based on the anatomy of a single column of sensory neocortex
[3, 8, 9]. It was composed of 470 neurons divided into 3 types (excitatory pyra-
midal cells E, fast-spiking interneurons I, and low-threshold spiking interneurons
IL), distributed across the 6 layers of the neocortex. This yielded 13 neuronal
populations in total, with the following numbers of cells per type: E2 (i.e. ex-
citatory layer 2/3 cell), 150; I2 (fast spiking interneuron in layer 2/3), 25; I2L
(low-threshold spiking interneuron in layer 2/3), 13; E4, 30; I4, 20; I4L, 14; E5a,
65; E5b, 17; I5, 25; I5L, 13; E6, 60; I6, 25; and I6L, 13.

The cell model was an extension of an integrate-and-fire unit with added
complexity (adaptation, bursting, depolarization blockade, and voltage-sensitive
NMDA conductance) in the form of rules [10], and was simulated in an event-
driven fashion where cell state variables were only calculated at input events,
making use of previously developed just-in-time synapses optimized for large
networks supporting high-frequency synaptic events [11]. Each cell had fast in-
hibitory GABAA receptors, fast excitatory AMPA receptors, and slow excitatory
NMDA receptors, with each producing a voltage-step with following decay.

In addition to spikes generated by cells in the model, subthreshold Poisson-
distributed spike inputs to each synapse were used to maintain activity in the
model: 100–150 Hz for GABAA, 240–360 Hz for AMPA receptors, and 40–60 Hz
for NMDA receptors. These external inputs represented the inputs from other re-
gions of the brain. To simulate additional afferent sensory inputs, low-amplitude
training signals were applied to the layer 4 excitatory neurons (E4) in some sim-
ulations. STDP was implemented on AMPA synapses from E→E cells using a
basic model with bilateral exponential decay (40ms maximal interspike differ-
ence, 10ms time constant) incrementing by 0.1% of baseline synaptic weight. It
should be noted that STDP in this model is additive, whilst van Rossum argues
that it should be multiplicative [6]. Further details of the cell model can be found
in [3] and [4].

Scaling was implemented at E cell AMPA synapses by multiplying each cell
i’s postsynaptic input by a scale factor wi, representing the multiplicative ac-
cumulation of AMPA receptors at synapses. Changes in the scale factor were
calculated following the formula of van Rossum et al. [6], with ai as the cell’s

firing activity, agoali as the target activity, β as the scaling strength, γ as the
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“integral controller” weight, and dwi(t)
dt as the rate of change of the synaptic

weight:

dwi(t)

dt
= βwi(t)[a

goal
i − ai(t)] + γwi(t)

∫ t

0

dt′[agoali − ai(t
′)] (1)

The following parameter values were used: strength β = 4.0 × 10−8/ms/Hz;
integral controller weight γ = 1.0×10−10/ms2/Hz; activity sensor time constant
τ = 100 × 103 ms. Scaling was applied inversely at GABAA synapses (i.e. by
multiplying postsynaptic input by 1

wi
) to enable the scaling of excitatory and

inhibitory synapses in opposite directions, mimicking the effect of global growth
factors such as BDNF [5, 7, 12, 13].

Average activity level for each cell i was sensed using van Rossum’s slow-
varying sensor ai(t), which increased monotonically with spike tx at current
timestep t, and decayed otherwise [6]:

τ
dai(t)

dt
= −ai(t) +

∑
x

δ(t− tx) (2)

The sensor decays exponentially as it is updated at each non-firing timestep.
However, the use of event-driven just-in-time synapses [4, 11] meant that cell
states were only updated upon each spike event rather than at every timestep,
so inter-spike decay of the activity sensor could only be calculated periodically.
We therefore modified the activity sensor. Here, the first term decays the sensor
according to the time between spikes t− tx, and the second term increments it
for the new spike, with both terms updated concurrently on the occurrence of a
spike at time tx:

ai(t) = ai(tx)e
− 1

τ (t−tx) +
1− ai(tx)

τ
(3)

Figure 1 shows the activity of a simulated, randomly-spiking neuron operating
under the constant-timestep update policy (2), and the equivalent activity values
under the periodic-update policy (3). The activity rises identically in both cases
when spikes occur, but the periodic sensor does not decay until the next spike
event occurs, giving the step-like appearance. The values at the spike times are
correct down to round-off error at the spike times.

Instead of providing an arbitrary rate target for each cell, which would fun-
damentally affect network dynamics, the intrinsic dynamics of the network were
used to provide set-points. Initially, with synaptic scaling off, activity sensors
began at 0 Hz. They were then adjusted over 800 s of simulated time based on
the activity level of the cells. Synaptic scaling was then switched on.

A time constant τ of 100 s [6] leads to a simulation timescale of several hours
for synaptic scaling: far closer to the expected biological timescale than pre-
vious studies [5, 14, 7]. To achieve this length of simulation, the model was
extended to allow periodic flushing of all spike data to disk, enabling very
long runs (unlimited except for available disk space). A typical simulation of
44 hours ran in approximately real time and produced around 2 GB of spike
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Fig. 1. Activity sensor updating at every simulation timestep (Eqn. 2; black) and at
every spike for activity-driven just-in-time synapses (Eqn. 3; magenta).

data. The model was implemented in NEURON 7.2 [15] for Linux, and is
available on ModelDB at the following URL: https://senselab.med.yale.edu/
modeldb/enterCode.asp?model=147141.

Data Analysis. Simulation spike-trains were organized into multiunit activ-
ity (MUA) vectors, defined for a cell population as the number of spikes in
the population over a time interval (bin). Bin sizes were set to 5 ms (200 Hz
sampling rate). Analyses were performed using mean-subtracted MUA vectors,
with spectra calculated by the multitaper spectral power estimation method, as
implemented in the Python wrapper of the FORTRAN MTSpec library [16].

3 Simulation Results

3.1 Scaling Prolonged Activity during Deletion

In an initial experiment, we demonstrated the usefulness of synaptic scaling by
altering network dynamics through gradual removal (pruning) of cells (Fig. 2).
Every 1600 s, three I or E neurons were selected at random and removed from
the network by setting all their synaptic weights to zero. The global external
input weights were scaled down proportionally to the amount of deletion, at
a quarter of the deletion rate, to prevent the external inputs from swamping
internal activation and artificially raising activity. By the end of the simulation,
approximately two thirds of the cells in the network had been deleted.

In the absence of scaling, average firing across E cells declined steadily as
cell deletion progressed (Fig. 2 green / lower line). With scaling present, firing
activity was maintained (Fig. 2 blue / upper line), with brief activity peaks
caused when the inherent delay in the activity sensor led to over-compensation.
These activity peaks do not correspond to deletion times, but rather to emer-
gent instabilities in the resulting damaged network. Indeed, the network remains
stable for nearly half a day following the onset of deletion after 800 s. The
over-compensation can be adjusted to some degree, although not eliminated, by
altering the scaling parameters β and γ (not shown).

https://senselab.med.yale.edu/modeldb/enterCode.asp?model=147141
https://senselab.med.yale.edu/modeldb/enterCode.asp?model=147141
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Fig. 2. E activity during pruning with (blue / upper) and without (green / lower)
compensatory synaptic scaling. Run time 160,000 s (≈ 44 h).
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(a) E activity during scaling
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(b) Scale factors of E cells

Fig. 3. Scaling does not destabilize the network (mean: blue, std: grey)

3.2 Synaptic Scaling Did Not Disrupt Network Behavior

The model was run for 160,000 s (≈ 44 h) to examine the effects of scaling
over time on network dynamics. With scaling, activity of the E cells remained
steady (Fig. 3a), and scale factors remained centered around 1 (Fig. 3b). Scaling
appeared to preserve stability of the network during these extremely long runs.

3.3 Unrestrained STDP Led to Hyper-potentiation

We trained the network by applying a signal consisting of low-weight single spikes
at 8 Hz to E4 cells for 8000 s (≈ 2.2 h) in the absence of synaptic homeostasis
(Fig. 4). STDP was turned off during the final 800 s in order to test recall. We
found that any training signal frequency eventually pushed the network into a
state of excessive firing. This occurred even when E→I STDP balancing was
added (not shown).
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(a) E activity during training (b) Raster plot of 500 ms showing high-
frequency network activity after 2 h

Fig. 4. Training with E→E STDP pushes network to high frequency activity
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(a) E activity during training with scaling
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Fig. 5. Synaptic scaling maintains E activity profile during STDP

3.4 Synaptic Scaling Prevented Overactivation

We then assessed the model with STDP, training and synaptic scaling (Fig. 5).
Local E cell homeostatic scaling balanced the potentiation caused by STDP,
gradually scaling down all E cells, and preventing pathological over-activation.

3.5 Synaptic Scaling Preserved Learning

Synaptic scaling served to maintain cell firing near the target rate, here the base-
line rate. However, it was possible that the scaling-down of activity would simply
reverse the potentiation caused by STDP, resulting in a loss of learned informa-
tion. In order to determine whether scaling allowed the learning of oscillations to
persist, the power spectra of the E cells were obtained at various points during
the learning process using the multitaper spectral analysis method, with spikes
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Fig. 6. Baseline power spectrum of E cells (frequency (Hz) vs normalized power)

sorted into 5 ms bins (Fig. 6) [16]. These plots show unsmoothed normalised
power of the E cells within the network at each of a range of frequencies from
0-100 Hz.

STDP was applied at E→E synapses for 8000 s (≈ 2.2 h) with an 8 Hz sensory
signal (Fig. 7d). In one simulation, synaptic scaling was also switched on for E
cells. Power spectra were obtained for the period from 5600-6400 s, shortly after
the middle of training (Figs. 7a and 7b), and again during the recall period at
the end of learning (Figs. 7c and 7d).

In both simulations, it can be seen that STDP has caused a shift in the power
spectra, with an increase in the amplitude of oscillations at low frequencies from
0-10 Hz and a decrease above 10 Hz (Figs. 7a and 7b). This demonstrates that
the network has learned from the training signal. Shortly after 7400 s (2 h), the
network without synaptic scaling transitioned to high-frequency activity, without
retention of the 8 Hz training signal (Fig. 7c; note different scale). However,
in the network with synaptic scaling turned on, lower frequency activity was
maintained, with a peak near the 8 Hz that was imposed during training (Fig.
7d). Synaptic scaling therefore prevented over-activation and preserved learning.

4 Discussion

This research has introduced homeostatic synaptic scaling with dynamically-
obtained target activity rates to a realistic spiking model of neocortex which
learned oscillatory frequencies via STDP. We demonstrated that scaling is nec-
essary for upregulation of neural activity during decline in input. This might have
implications for neurodegenerative brain disorders, in which cortical activation
might be expected to decrease. Peaks of activity were observed during dele-
tion due to periodic over-compensation by the scaling mechanism. Experimental
observations demonstrating hyperactivity in cells near beta-amyloid plaques in
Alzheimer’s disease, and the increased incidence of seizures in Alzheimer’s pa-
tients, suggests these activity peaks may have a biological basis [17, 14, 18].
Additionally, synaptic scaling may play a significant role in the progression of
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(a) With STDP only, during training
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(b) With STDP & scaling, during training
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(c) With STDP only, after training
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(d) With STDP & scaling, after training

Fig. 7. Power spectra during (top)/after (bottom) STDP, with (R)/without (L) scaling

Alzheimer’s disease [19–21], and further understanding of this mechanism and its
relationship to learning and disease pathology may be crucial to finding better
treatments.

We also showed that scaling does not negatively affect the network at baseline,
but that it is stable. We demonstrated that E→E scaling is sufficient to balance
the hyper-potentiation caused by unrestrained STDP. Potentiation strengthens
the co-incident connections between neurons in a positive feedback cycle, even-
tually leading to hyper-potentiation, but scaling acts to shift the mean activa-
tion constantly back towards the target activity. At the same time, the relative
(learned) distribution between postsynaptic weights remains unaltered by scal-
ing, and we subsequently demonstrated this principle by showing that learning
of an 8 Hz oscillatory signal is not erased by scaling.

This model investigated training and scaling at E→E synapses between E
cells. While there is some evidence of STDP in I cells [22], I cells do not appear
to perform scaling, but rather: “homeostatic regulation of inhibition is a noncell-
autonomous process that either requires changes in both pre-and postsynaptic
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activity simultaneously or is triggered by global changes in network activity”
(Turrigiano et al., 2011 [13]). In our model, directly enabling synaptic scaling in
I cells was found to lead to dramatic instabilities in the network dynamics (even
when operating the network at baseline, i.e. without STDP or a sensory signal),
which is consistent with Turrigiano’s observations. Rather, the network appears
to be most stable when I cells are allowed to adjust their activity passively
according to the changing output from neighboring E cells, thus requiring only
one dimension for the E/I balance rather than needing a second simultaneously
active dimension for scaling.

STDP was implemented using an incremental step of 0.1% of baseline synap-
tic weight, which may seem low. Increasing this step size, however, meant that
short bursts of high-frequency activity were seen during learning, as the activity
sensors could not respond quickly enough to cause sufficient compensatory scal-
ing (although the network did soon scale back to previous firing rates). However,
8000 s (2 h) of sustained training may also be very long compared to biological
learning from hippocampal backprojections, which is known to include periods
of recall and consolidation between periods of learning [23]. This would make an
interesting avenue for future research.
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Abstract. Representations of multivariable Boolean functions by one
and two-hidden-layer Heaviside perceptron networks are investigated.
Sufficient conditions are given for representations with the numbers of
network units depending on the input dimension d linearly and polyno-
mially. Functions with such numbers depending on d exponentially or
having some weights exponentially large are described in terms of prop-
erties of their communication matrices. A mathematical formalization of
the concept of “highly-varying functions” is proposed. There is given an
example of such function which can be represented by a network with
two hidden layers with merely d units.

Keywords: One and two hidden-layer perceptron networks, model com-
plexity, representations of multivariable Boolean functions, communica-
tion matrices.

1 Introduction

The most widespread type of a neural network architecture is the one-hidden-
layer network. Computational units in the hidden layer are usually perceptrons,
radial or kernel units. For regression tasks, one-hidden-layer networks have a
single linear output whereas for classification ones, they have a single threshold
unit. For one-hidden-layer networks, a variety of learning algorithms have been
developed and successfully applied (see, e.g., [1, 2] and the references therein).

One-hidden-layer networks with many types of computational units are known
to be universal approximators, i.e., they can approximate up to any desired
accuracy all continuous functions and all Lp-functions on compact subsets of Rd.
In particular, the universal approximation property holds for one-hidden-layer
perceptron networks with non polynomial activation functions [3, 4] and with
radial and kernel units satisfying mild conditions [5–7]. Moreover, all functions
defined on finite subsets of Rd can be represented exactly by one-hidden-layer
networks with sigmoidal perceptrons [8] or with Gaussian kernel units [9].

Although some proofs of the universal approximation capability of one-hidden-
layer networks are constructive, they require potentially unlimited number of
hidden units. This number is a critical factor for a practical implementation.
Model complexities of one-hidden-layer networks have been studied using tools
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from nonlinear approximation theory. Estimates of rates of approximation of
various classes of multivariable functions by networks with increasing numbers
of hidden units were derived (see, e.g., [10] and references therein). Inspection of
such upper bounds led to descriptions of families of functions that can be well
approximated by one-hidden-layer networks with reasonably small numbers of
computational units of various types. On the other hand, limitations of com-
putational capabilities of one-hidden-layer networks are less understood. Only
few lower bounds on the approximation error by one-hidden-layer networks are
known. Moreover, such bounds are mostly non constructive and hold for types
of computational units that are not commonly used [11, 12].

Recently, new learning algorithms, which can be applied to networks with
more than one hidden layer, were developed (see, e.g., [13, 14]). Such networks
have been called deep networks, in contrast to shallow ones that have merely
one hidden layer [13]. As training deep networks involves complicated nonlinear
optimization procedures, generally it is more difficult than training shallow ones.
Thus it is desirable to develop some theoretical foundations for the character-
ization of tasks that require considerably larger model complexity and/or size
of weights when computed by shallow networks than by deep ones. Since typ-
ical applications of neurocomputing deal with large numbers of variables, it is
particularly important to understand how quickly model complexities of shallow
and deep networks grow with increasing input dimensions.

To contribute to such understanding, we investigate complexity of one and
two-hidden-layer Heaviside perceptron networks representating real-valued
Boolean functions. These functions occur in applications where input data are
represented by binary values. Among Boolean functions, d-dimensional parities
received special attention. Several authors (see, e.g., [15, 16]) investigated ca-
pabilities of perceptron, SVM and RBF networks to classify d-dimensional data
according to their parities.

We estimate growth of model complexities of one-hidden-layer perceptron
networks representing Boolean functions with increasing numbers d of variables.
We give several sufficient conditions guaranteeing for the number of units in
one-hidden-layer networks linear and polynomial dependencies on d. Using the
concept of Hadamard communication matrix, we describe a class of functions
that do not satisfy these conditions and so might need exponentially large net-
works for their representations. We show that the function “inner product mod
2” belongs to this class and prove that for its representation by a network with
two hidden layers, merely d/2 Heaviside perceptrons in each layer is sufficient.
Further, we propose a mathematical formalization of the observation of Bengio
et al. [17, 16] that “amount of variations of a function” can cause difficulties in
its representations by one-hidden-layer networks. We use the concept of varia-
tional norm with respect to a dictionary of computational units as a measure of
tractability of a representation of a function by a neural network reflecting both
number of hidden units and sizes of output weights. Bartlett [18] demonstrated
that in some cases, the size of weights is a more important factor for successful
learning than the number of network units. We prove that in a one-hidden-layer
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perceptron network representing a d-variable Boolean function with a Hadamard
communication matrix, the number of units depends on d exponentially or the
absolute values of some output weights increase exponentially with d.

The paper is organized as follows. Section 2 contains some concepts and nota-
tions from the area of multilayer networks, Boolean functions, and their Fourier
transforms. Section 3 investigates model complexities of one and two-hidden-
layer perceptron networks representing d-variable Boolean functions. Section 4
proposes a mathematical formalization of the concept of a “highly-varying func-
tion” in terms of a variational norm with respect to a type of network units.
Section 5 is a discussion.

2 Preliminaries

A widely-used network architecture is a one-hidden-layer network with a single
linear output. Such a network with n hidden units can compute input-output
functions from the set

spannG :=

{
n∑

i=1

wigi

∣∣∣wi ∈ R, gi ∈ G

}
,

where G, called dictionary, is a set of functions computable by a given type of
units. In this paper we use the term one-hidden-layer network meaning a network
with a single linear output.

We investigate model complexities of networks computing functions from the
space

B({0, 1}d) := {f | f : {0, 1}d → R}
of real-valued Boolean functions of d variables. As B({0, 1}d) is isomorphic to the

Euclidean space R2d , on B({0, 1}d) we have the Euclidean inner product defined
as 〈f, g〉 :=

∑
u∈{0,1}d f(u)g(u) and the Euclidean norm ‖f‖2 :=

√
〈f, f〉. By ·

we denote the inner product on {0, 1}d defined as u · v :=
∑d

i=1 uivi.
An important subset of B({0, 1}d) is formed by generalized parities. For a

set I ⊆ {1, . . . , d}, I-parity pI : {0, 1}d → {0, 1} is defined as pI(x) := 1 if∑
i∈I xi is odd and pI(x) := 0 otherwise. Note that in some literature parities

are considered as functions with values in {−1, 1} defined as pu(x) := (−1)x·u,
where u ∈ {0, 1}d. Obviously, pu(x) = s(pIu(x)), where s : {0, 1} → {−1, 1} is
defined as s(0) := 1 and s(1) := −1 and Iu := {i ∈ {0, . . . , d} |ui = 1}.

Let the subset Fd := {φu |u ∈ {0, 1}d} of B({0, 1}d) be defined for every
u, x ∈ {0, 1}d as

φu(x) := 2−d/2 (−1)x·u . (1)

It is well-known and easy to check that Fd forms an orthonormal basis of
B({0, 1}d) called Fourier basis.

We consider two dictionaries of computational units, which are subsets of
B({0, 1}d). The first one is the set Hd of functions on {0, 1}d computable by
Heaviside perceptrons, i.e.,

Hd := {ϑ(e · .+ b) : {0, 1}d → {0, 1} | e ∈ R
d, b ∈ R} , (2)
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where ϑ denotes the Heaviside activation function defined as ϑ(t) := 0 for t < 0
and ϑ(t) := 1 for t ≥ 0. Note that Hd is the set of characteristic functions of
half-spaces. The set Hd is much smaller than the whole space B({0, 1}d) as it

has cardinality smaller than 2d
2

[19]. The second dictionary that we consider,
denoted by Sd, is closely related to Hd. It is formed by functions on {0, 1}d com-
putable by perceptrons with the signum activation function sgn : R → {−1, 1}
defined as sgn(t) := −1 for t < 0 and sign(t) := 1 for t ≥ 0. So

Sd := {sgn(v · .+ b) : {0, 1}d → {−1, 1} | v ∈ R
d, b ∈ R} . (3)

3 Representations of Boolean Functions by One and
Two-Hidden-Layer Perceptron Networks

In this section, we investigate model complexities of one and two-hidden-layer
networks with Heaviside perceptrons representing Boolean functions.

Ito [8, Theorem 4] proved that every function on a finite subset X of R
d

can be represented by a network with one hidden layer with sigmoidal percep-
trons, the number of which does not exceed the cardinality of the set X . So
in particular, every element of B({0, 1}d) can be represented by one-hidden-
layer Heaviside network with at most 2d units. For the special case of Boolean
functions with Boolean values, Ito [8, Theorem 5] proved that they can be repre-
sented by networks with the number of hidden units equal to the cardinality of
their support and all output weights equal to 1. For f : {0, 1}d → R we denote
supp(f) := {u ∈ {0, 1}d | f(u) �= 0}.

Theorem 1 (Ito). Let d be a positive integer, f : {0, 1}d → {0, 1}, and w ∈
{0, 1}d. Then for all x ∈ {0, 1}d

f(x) =
∑

u∈supp(f)

ϑ(vu · x− bu),

where vu := 2u− w and bu satisfies ‖u‖2 − 1 < bu ≤ ‖u‖2.
Theorem 1 implies a condition on a d-variable function f : {0, 1}d → {0, 1}
sufficient to be representable by a one-hidden-layer network with the number of
Heaviside perceptrons being a polynomial in d.

Corollary 1. Let d be a positive integer and f : {0, 1}d → {0, 1} a function
such that card supp(f) or card({0, 1}d \ supp(f)) is a polynomial in d. Then f
can be represented by a network with one linear output and one hidden layer with
the number of Heaviside perceptrons being a polynomial in d.

Thus functions f : {0, 1}d → {0, 1} whose representations by one-hidden-layer
networks are not “tractable” in the sense that they require exponentially many
Heaviside perceptrons, have to be searched among functions with both sup-
ports and their complements of sizes exponential in d. Obviously, this condition
is not necessary. For example, the projection π1 : {0, 1}d → {0, 1} defined as
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π1(x1, . . . , xd) = x1 has both support and its complement of cardinality 2d/2,
but it can be computed by a single perceptron ϑ((1, 0, . . . , 0) ·(x1, . . . , xd)−1/2).

Generalized parities do not belong to such class of non tractable functions
as they can be represented by one-hidden-layer networks having merely d hid-
den units. Indeed, it is easy to verify that for every u ∈ {0, 1}d, the func-
tion φu from the Fourier basis can be represented as φu(x) = 2−d/2 (−1)x·u =

2−d/2
∑d

i=1(−1)i ϑ(u · x− i + 1/2). Thus any function with the number of non
zero coefficients in its Fourier representation depending on d polynomially can
be represented by a network with a polynomial number of Heaviside percep-
trons. Generalized parities are symmetric functions, i.e., they are invariant un-
der permutations of entries of vectors x ∈ {0, 1}d. More precisely, a function
f : {0, 1}d → R is called symmetric if there exists a function g : {0, . . . , d} → R

such that for all x ∈ {0, 1}d, f(x) = g(
∑d

i=1 xi). The following proposition shows
that any symmetric function of d variables can be represented by a network with
d Heaviside perceptrons.

Proposition 1. Let d be a positive integer. Then every symmetric function f :
{0, 1}d → R can be represented by a one-hidden-layer network with d Heaviside
perceptrons.

Proof. Let f(x) = g(
∑d

i=1 xi). Then f(x) = g(0)ϑ(x · (1, . . . , 1) + 1/2) +∑d−1
i=1 (g(i)− g(i− 1))ϑ(x · (1, . . . , 1)− i+ 1/2) . �

Thus searching for functions which might not be representable by one-hidden-
layer networks with polynomially many perceptrons one has to look for more
complicated functions than generalized parities and symmetric functions.

By ∗ we denote the concatenation of two vectors in {0, 1}k, i.e., for u, v ∈
{0, 1}k, u ∗ v ∈ {0, 1}2k such that

(u ∗ v)i = ui for i = 1, . . . , k and (u ∗ v)i = vi for i = k + 1, . . . , 2k.

A communication matrix of a function f : {0, 1}d → {−1, 1} is a 2d/2 × 2d/2

matrix M(f) with rows and columns indexed by vectors u, v ∈ {0, 1}d/2, where

M(f)u,v := f(u ∗ v).

A Hadamard matrix is a square matrix M with entries in {−1, 1} such that any
two distinct columns (or equivalently rows) of M are orthogonal. For d even, let
βd : {0, 1}d → {0, 1} denote the function inner product mod 2, defined for all
x ∈ {0, 1}d as

βd(x) := 1 if l(x) · r(x) is odd and βd(x) := 0 if l(x) · r(x) is even,

where l(x), r(x) ∈ {0, 1}d/2 are set for every i = 1, . . . d/2 as l(x)i := xi and
r(x)i := xd/2+i. For technical reasons, sometimes we use instead of the inner

product mod 2 the function β̄d : {0, 1}d → {−1, 1} defined as

β̄d(x) := (−1)l(x)·r(x) . (4)
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To show that the function inner product mod 2 has both the preimages of 1
and of 0 of sizes exponential in d, we use a lemma by Lindsay (see, e.g., [20,
p.88]), which estimates the difference between the numbers of 1s and −1s in
submatrices of Hadamard matrices.

Lemma 1 (Lindsey) Let n be a positive integer and let M an n×n Hadamard
matrix. Let A, B be subsets of the set of indices of rows, columns, resp., of M .
Then

∣∣∑
a∈A

∑
b∈B Ma,b

∣∣ ≤ √
n cardA cardB.

Proposition 2. Let d be an even integer. Then both β−1
d ({1}) and β−1

d ({0})
have cardinalities exponential in d.

Proof. It is easy to show that the communication matrixM(β̄d) is a Hadamard
matrix. Indeed, its rows multiplied by 2−d/2 form the Fourier basis Fd/2 of

B({0, 1}d/2). Let α := card(β̄−1
d ({1}) and β := card(β̄−1

d ({−1}). So by the defi-
nition, α+β = 2d. As the 2d entries of 2d/2×2d/2 matrixM(β̄d) represent values
of β̄d(u) for all u ∈ {0, 1}d, by Lemma 1 we have |α − β| ≤ 23d/4. On the other
hand, α+β = 2min(α, β)+|α−β| = 2d. Hence, |α−β| = 2d−2min(α, β) ≤ 23d/4.
Thus 2d − 23d/4 ≤ 2min(α, β), hence α and β must be exponential in d. �

Proposition 2 implies that applying the representation from Theorem 1 to βd
provides a network with the number of perceptrons exponential in d.

On the other hand, the next theorem shows that when Heaviside perceptrons
are arranged in two hidden layers, the function β̄d can be computed by a net-
work with only d hidden units. Its proof exploits a representation of β̄d as a
composition of two functions, each representable by a one-hidden-layer network
with a number of units dependent on d linearly.

Theorem 2. For every even integer d, the function β̄d : {0, 1}d → {−1, 1} can
be represented by a network with one linear output and two hidden layers with
d/2 Heaviside perceptrons each.

Proof. For any b ∈ (1, 2), define d/2 perceptrons with d inputs in the first
hidden layer as ϑ(vi · x − b), where vii := 1, vid/2+i := 1, and all other weights

are equal to 0. So for an input vector x ∈ {0, 1}d, the output yi(x) of the i-th
perceptron in the first hidden layer satisfies yi(x) = ϑ(vi · x− b) = 1 if and only
if both xi = 1 and xd/2+i = 1, otherwise yi(x) is equal to zero.

Let w = (w1, . . . ,d/2 ) = (1, . . . , 1) be such that wj := 1 for all j = 1, . . . , d/2.
In the second hidden layer, define d/2 perceptrons zj(y) = ϑ(w · y − j + 1/2).
Finally, for all j = 1, . . . , d/2 let the j-th unit from the second hidden layer be
connected with one linear output unit with the weight (−1)j.

Thus the two-hidden-layer network computes the function
∑d/2

j=1(−1)jϑ(w ·
y(x) − j + 1/2) where yi(x) = ϑ(vi · x − b), i.e., it computes the function∑d/2

j=1(−1)jϑ(
∑d/2

i=1 ϑ(v
i · x− b)− j + 1/2). �
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4 Highly-Varying Functions and Variation with Respect
to Half-Spaces

In this section, we propose a mathematical formalization of the concept of
“highly varying functions” suggested by Bengio et al. [16, 17] as “difficult”
functions for computation by one-hidden-layer networks. We suggest that the
concept of a variational norm tailored to a dictionary of computational units,
which plays an important role in estimates of rates of approximation, can serve
as a measure of “tractability” of a representation of a function by a network
with units from a finite dictionary.

Variation with respect to a set of functions was introduced by Kůrková [21] as
an extension of Barron’s [22] concept of variation with respect to characteristic
functions. Barron considered the set of characteristic functions of halfspaces cor-
responding to the dictionary of functions computable by Heaviside perceptrons.
Variational norms play an important role in estimates of rates of approximation
by one-hidden-layer networks (see, e.g., [10] and the references therein).

For a subset G of a normed linear space (X , ‖.‖X ), G-variation (variation with
respect to the set G), denoted by ‖.‖G, is defined as

‖f‖G := inf {c ∈ R+ | f/c ∈ clX conv (G ∪ −G)} , (5)

where clX denotes the closure with respect to the norm ‖·‖X on X . It was shown
in [23] that the infimum in the definition (5) can be replaced by minimum.

For a finite dictionary G, G-variation of a function f ∈ spanG is equal to the
minimal sum of absolute values of coefficients in all possible representations of
f as linear combinations of elements of G. More precisely, by [24, Proposition
2.3] for G with cardG = m and f ∈ spanG we have

‖f‖G = min

{
m∑
i=1

|wi|
∣∣∣ f =

m∑
i=1

wi gi , wi ∈ R, gi ∈ G

}
. (6)

So if a function has a “large” variation with respect to a finite set G, then each
its representation by a network with units from G has either “large number of
units” or some units have “large” output weights.

We investigate variation with respect to the two dictionaries, Hd and Sd,
defined in Section 2, formed by Boolean functions computable by Heaviside
perceptrons and signum perceptrons, resp.

The following theorem shows that variations with respect to half-spaces of
functions with Hadamard communication matrices grow exponentially with d.
The proof follows from [24, Theorem 3.7] and the relationship between Sd-
variation and Hd-variation. Following [25], we use the notation h = Ω (g(d))
for two functions g, h : N → R if there exist a positive constant c and n0 ∈ N

such that for all n ≥ no, h(n) ≥ c g(n).

Theorem 3. Let d be an even integer and f : {0, 1}d → {−1, 1} a function with
a Hadamard communication matrix. Then ‖f‖Hd

= Ω(22d/3) .
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Proof. It was shown in [24, Theorem 3.7] that under the assumptions of the
theorem, ‖f‖Sd

= Ω(2d/6). Thus it is sufficient to verify that for every f ∈
B({0, 1}d), ‖f‖Sd

≤ ‖f‖Hd
. By [26, Proposition 3], for every pair of subsets F,G

of a normed linear space, ‖.‖G ≤ c‖.‖F iff for all h ∈ F , ‖h‖G ≤ c. Since
ϑ(e · x + b) = 1

2 sgn(e · x+ b) + 1
2 = 1

2 sgn(e · x+ b) + 1
2 sgn(e · (1, . . . , 1) + 1), we

have for every h ∈ Hd, ‖h‖Sd
≤ 1. So ‖.‖Sd

≤ ‖.‖Hd
and the statement holds. �

By Theorem 3 and the formula (6) we get the next corollary.

Corollary 2. Let d be an even integer, f : {0, 1}d → {−1, 1} a function with a
Hadamard communication matrix and f(x) =

∑m
i=1 wiϑ(ei · x+ bi) be its repre-

sentation by a one-hidden-layer Heaviside perceptron network. Then
∑m

i=1 |wi| =
Ω(22d/3) .

By Corollary 2, if a d-variable Boolean function with a Hadamard communication
matrix can be represented by a one-hidden-layer Heaviside perceptron network
with the number of units depending on d merely polynomially, then some of
the network output weights must have exponentially large sizes. In the proof of
Proposition 2, it was verified that β̄d has a Hadamard communication matrix.
So we get the next Corollary.

Corollary 3. Let d be an even integer and β̄d(x) =
∑m

i=1 wiϑ(ei · x + bi) a
representation of the function β̄d. Then

∑m
i=1 |wi| = Ω(22d/3) .

So in a representation of the d-dimensional function inner product mod 2 by
a one-hidden-layer Heaviside perceptron network, the number of units must be
exponential in d or some output weights must have absolute values of sizes
exponential in d. On the other hand, Theorem 2 shows that there exists a repre-
sentation of this function by a two-hidden-layer network with merely d/2 units
in each hidden layer.

5 Discussion

We addressed the difficulty of efficiently representing d-variable Boolean func-
tions by networks with merely one hidden layer and advantages of using two
hidden layers. To get some insight into properties that make some Boolean func-
tions hardly representable by networks with only one hidden layer, we estimated
numbers of units in representing networks in dependence on their input dimen-
sions d.

We derived conditions for Boolean functions guaranteeing representations by
networks with the numbers of perceptrons depending on d polynomially. We de-
scribed Boolean functions that do not satisfy these conditions. We proposed a
formalization of the concept of “amount of variations of a function” suggested by
Bengio et al. [16, 17] as an important factor for tractability of its representation
by a neural network. We showed that when a Boolean function has a “large”
variational norm with respect to a dictionary of computational units, then each
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its representation by a network with units from the dictionary has “large” num-
ber of units or ”large” size of output weights. In particular for functions with
Hadamard communication matrices, the number of Heaviside perceptrons in one-
hidden-layer networks representing these functions depends on d exponentially
or the absolute values of some output weights must increase exponentially with
d. As an archetype of functions with such a behavior we presented the function
inner product mod 2 and used it to demonstrate an example of a function which
can be represented more efficiently by a network with two hidden layers than a
network with merely one hidden layer.

The question whether a one-hidden-layer Heaviside perceptron network with
one linear output can represent the inner product mod 2 with a number of units
that grows with d polynomially is an open problem. Hajnal et al. [27, 28] derived
an exponential lower bound on the number of hidden units needed to compute
the inner product mod 2 by a one-hidden-layer Heaviside perceptron network
with a single output Heaviside perceptron and all the weights between hidden
units and the output unit being integers bounded by a polynomial in d.
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1368 and institutional support 67985807. The authors thank P. C. Kainen for
fruitful discussions.
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Abstract. We propose an asymmetric version of the Self-Organizing
Map (SOM) capable to properly visualize datasets consisting of time se-
ries. The goal is achieved by introducing an asymmetric coefficient mak-
ing the asymmetric SOM capable to handle time series. The experiments
on the U.S. Stock Market Dataset verify and confirm the effectiveness of
the proposed asymmetric SOM extension.

Keywords: Self-Organizing Map, asymmetric Self-Organizing Map,
asymmetry, visualization, U.S. Stock Market visualization.

1 Introduction

The Self-Organizing Map (SOM) by T. Kohonen [1] is an example of the ar-
tificial neural network architecture. The approach can be also interpreted as a
visualization technique, since the algorithm performs a projection from multi-
dimensional space to 2-dimensional space, this way creating a map structure.
The location of points in 2-dimensional grid aims to reflect the similarities be-
tween the corresponding objects in multidimensional space. Therefore, the SOM
algorithm allows for visualization of relationships between objects in multidi-
mensional space.

The asymmetric version of the SOM algorithm (i.e., SOM using the asym-
metric similarities) was introduced in [2], and it was extended in [3].

However, the methodology utilized in those papers does not apply to every
kind of analyzed data. In particular, at it was discussed in [3], time series are an
example of the data difficult to handle by the asymmetric SOM. This happens
because, the asymmetric nature of data in [2] is derived from the hierarchical data
relationships (see Section 3). The hierarchical relationships, in turn, are reflected
using the asymmetric coefficients measuring the frequencies of occurrences of
objects in an analyzed dataset. And, in case of the time series analysis, when
each visualized object is a relatively long vector of samples, it is pointless to
measure frequencies of occurrences of objects, because it is almost impossible
to find two identical vectors of samples, and consequently, the method from [2]

M. Tomassini et al. (Eds.): ICANNGA 2013, LNCS 7824, pp. 40–49, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Time Series Visualization Using Asymmetric SOM 41

will fail. Nevertheless, the hierarchy-caused asymmetry phenomenon still exist
is such case. However, this time, it should be differently observed, interpreted,
and handled.

The specific character of the time series data often enforces formulating special
forms of methods and algorithms designed for that particular kind of data, e.g.,
in case of clustering, see [4], and in case of classification, see [5].

In this paper, we propose a novel asymmetric coefficient designed for mea-
suring the hierarchy-caused degree of asymmetry in time series datasets. The
coefficient will then be used in order to weight the standard Euclidean distance,
and subsequently, in order to obtain an asymmetric similarity utilized in the
asymmetric SOM. The proposed coefficient is formulated this way that it finds
hierarchical associations in time series dataset, even if there are no identical
series.

The results of the experimental study carried out on the U.S. Stock Market
Dataset verify and confirm the effectiveness of the proposed approach.

2 Symmetric Self-Organizing Map

The SOM algorithm provides a non-linear mapping between a high-dimensional
original data space and a 2-dimensional map of neurons. The neurons are ar-
ranged according to a regular grid, in such a way that the similar vectors in
input space are represented by the neurons close in the grid. Therefore, the
SOM technique visualize the data associations in the input high-dimensional
space.

It was shown in [6] that the results obtained by the SOM method are equiv-
alent to the results obtained by optimizing the following error function:

e (W) =
∑
r

∑
xμ∈Vr

∑
s

hrsD (xμ, ws) (1)

≈
∑
r

∑
xμ∈Vr

D (xμ, wr) + K
∑
r

∑
s�=r

hrsD (wr , ws) , (2)

where xμ are the objects in high-dimensional space, wr and ws are the prototypes
of objects on the grid, hrs is a neighborhood function (e.g., the Gaussian kernel)
that transforms non-linearly the neuron distances (see [1] for other choices of
neighborhood functions), D (·, ·) is the squared Euclidean distance, and Vr is
the Voronoi region corresponding to prototype wr. The number of prototypes is
sufficiently large so that D (xμ, ws) ≈ D (xμ, wr) + D (wr, ws).

According to equation (2), the SOM error function can be decomposed as the
sum of the quantization error and the topological error. The first one minimizes
the loss of information, when the input patterns are represented by a set of
prototypes. By minimizing the second one, we assure the maximal correlation
between the prototype dissimilarities and the corresponding neuron distances,
this way assuring the visualization of the data relationships in the input space.
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3 Handling the Asymmetry in Data Analysis

One of the first works regarding the asymmetric view on dissimilarity is [7] by
Amos Tversky. He claims that a similarity or dissimilarity may have a directional
character, i.e., it may have a subject and a referent. This results in asymmetric
nature of the similarity or dissimilarity. His claims were validated in his numer-
ous psychological experiments [8], and his idea was undoubtedly an inspiration
for many later works concerning the asymmetric dissimilarities and the general
problem of asymmetry in data analysis.

An example continuation of the Tversky’s idea appears in the work of Manuel
Martín-Merino and Alberto Muñoz [2], where the asymmetric version of the Self-
Organizing Map was proposed. The idea of hierarchical-caused asymmetry can
be also found in [9], where the asymmetric version of the k-means clustering
algorithm was introduced. The author utilized a similar assertion justifying the
usage of asymmetric dissimilarities. Also, in [10], where the improved version of
the asymmetric k-means algorithm was proposed, the asymmetric dissimilarity
was employed as preferable over the standard symmetric one.

When an analyzed dataset appears to have asymmetric properties, the sym-
metric measures of similarity or dissimilarity (e.g., the most popular Euclidean
distance) do not grasp to this phenomenon, and for most pairs of data points,
they produce small values (similarities) or big values (dissimilarities). Conse-
quently, they do not reflect accurately the relationships between objects. The
asymmetry in a dataset arises, e.g., in case, when the data associations have a
hierarchical nature, i.e., when a dataset consists of general and specific entities.
In case of the dissimilarity, when it is computed in the direction – from a more
general entity to a more specific one – it should be greater than in the opposite
direction. As an example, one can consider the text analysis field, particularly,
the dissimilarity between the two words: “Mathematics” and “Bayes”. The former
is a more general word, and consequently, the dissimilarity from “Mathematics”
to “Bayes” should be greater than in the opposite direction, because the meaning
of the word “Mathematics” contains a lot more topics than just “Bayes,” while
the word “Bayes” directly comes under “Mathematics.” The hierarchical connec-
tions in data are closely related to the asymmetry. This relation has been noticed
in [11]. As stated in [2], asymmetry can be interpreted as a particular type of
hierarchy.

An idea to overcome this problem is to employ the asymmetric similarities and
dissimilarities. They should be applied in algorithms in such a way, so that they
would properly reflect the hierarchical asymmetric relationships between objects
in an analyzed dataset. Therefore, it should be guaranteed that their application
is consistent with the hierarchical associations in data. This can be achieved
by use of the asymmetric coefficients, inserted in the formulae of symmetric
measures. This way, we can obtain the asymmetric measures on the basis of the
symmetric ones. The asymmetric coefficients should assure the consistency with
the hierarchy. Hence, in case of the dissimilarities, they should assure greater
values in the direction – from a more general concept to a more specific one.
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In this paper, we deal with the datasets consisting of time series, and our
asymmetric SOM version is time-series-oriented.

Our paper proposes an asymmetric coefficient, which can be successfully used
in case of the time series analysis, in contrast to the prior work [2], where the
object occurrences frequencies are used in order to asymmetrize the dissimilar-
ities, which essentially inhibits and limits the possibility of application of the
approach from [2] in the field of time series visualization.

3.1 Asymmetric Coefficient

The role of the asymmetric coefficient is to convey the information provided by
the asymmetry. Two coefficients were introduced in [12]. The first one is derived
from the fuzzy logic similarity, and the second one formulated on the basis of
the Kullback-Leibler divergence.

Time series are usually relatively long vectors of samples. Even after effective
feature extraction and dimensionality reduction, they still usually remain highly
multidimensional. Hence, it is difficult to find two identical instances of time
series. Therefore, both coefficients mentioned in [12] are not a recommended
choice in that case.

The asymmetric coefficient, proposed in this paper, is designed for the time
series analysis. It measures the frequencies of occurrences of features with a given
tolerance. This kind of approach makes it possible to divide the time series in an
analyzed dataset to the ones more general, and to the ones more specific, even
if there are no identical time series in a given dataset. Our method allows for
identifying time series belonging to different levels of generality. Consequently,
the hierarchical relationships can be reflected and exploited in datasets. The
mentioned tolerance is set arbitrarily, and in our experimental research was set
empirically (see Section 5.3).

The proposed asymmetric coefficient is formulated in the following way:

ai =
|fi ± δ|

maxj (|fj ± δ|) , (3)

where fi are the features of time series in an analyzed dataset, |·| is the
norm meaning the number of time series possessing the features from the
interval 〈fi − δ, fi + δ〉, and δ is a chosen tolerance belonging to the inter-
val 〈0,maxj (|fj|)〉.

This coefficient takes values in the 〈0, 1〉 interval. Intuitively speaking, it will
become large for general (broad) concepts with large |·| norm.

Note that the asymmetric coefficients must be computed and assigned to each
feature of every time series instance in an analyzed dataset.

4 Asymmetric Self-Organizing Map

On the basis of the asymmetric coefficient introduced in Section 3, the asym-
metric version of the SOM algorithm will be formulated. Since the coefficient
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ai is designed for the time series analysis, the asymmetric SOM considered in
this section will also be time-series-oriented, and appropriate terminology will be
used. In order to obtain the target asymmetric SOM, we will refer to the error
function (2). As it was stated in Section 2, the results produced by the SOM
method are identical to the results obtained by optimizing the function (2).

The asymmetric SOM algorithm is derived in three steps:

Step 1. Transform a symmetric dissimilarity (e.g., the Euclidean distance) into
a similarity:

SSYM
ij = C − d2 (xi, xj) , (4)

where d2 (xi, xj) is the squared Euclidean distance between objects xi
and xj , and the constant C is the upper boundary of the squared Eu-
clidean distance over all the pairs of objects belonging to the dataset in
question. This step is necessary, because the asymmetric coefficient ai
defined in (3) imposes the requirement of using a similarity instead of a
dissimilarity (ai measures certain frequency).

Step 2. Transform the symmetric similarity into the asymmetric similarity:

SASYM
ij = ai

(
C − d2 (xi, xj)

)
, (5)

where ai is the asymmetric coefficient defined in Section 3, in (3), and the
rest of notation is described in (4). The asymmetric similarity defined
this way, using the proposed asymmetric coefficient guarantees the con-
sistency with the asymmetric hierarchical associations among the time
series in the dataset (explained in Section 3).

Step 3. Insert the asymmetric similarity in the error function (2), in order to
obtain the energy function, which needs to be maximized:

E (W) =
∑
r

∑
xμ∈Vr

∑
s

hrsai
(
C − d2 (xi, xj)

)
, (6)

where the notation is explained in (2), (4), and (5). The energy func-
tion (6) can be optimized in the similar way as the error function (2).
The update formula of the asymmetric SOM is similar to the adapta-
tion rule of the standard symmetric SOM, with the difference that the
asymmetric coefficient is inserted. Employing the similarity (derived in
Steps 1 and 2) instead of dissimilarity results in changing the SOM ob-
jective function from the error function (2) to the energy function (6).
Consequently, the SOM optimization process changes from minimization
to maximization. An important property of the asymmetric SOM is that
it maintains the computational simplicity of the symmetric approach.

5 Experiments

In our experimental study, we have compared the proposed asymmetric SOM
and the traditional symmetric SOM, both visualizing the time series.
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The visualizations provided by the two SOM versions have been used as an
input to the traditional k-means clustering algorithm, i.e., the clustering was
performed in the 2-dimensional space, and the clustering results have been used
as the basis of the comparison between the two investigated techniques. The clus-
tering results have been assessed using two evaluation criteria, i.e., the accuracy
degree and the entropy measure, described in Section 5.2.

5.1 Dataset Description

The experiments have been carried out on the U.S. Stock Market Dataset. The
dataset consisted of time series representing the close prices of five stocks from
the U.S. Stock Market adjusted for dividends and splits. The adjusted close
prices have been collected in the time interval from 27.11.1992 to 28.09.2012.
As a result, each of the analyzed time series consisted of 5000 samples. The
following stocks have been considered: Bank of America Corporation, Boeing
Co., General Electric Co., Intel Corporation, Time Warner Inc. Each of the
time series corresponding to the respective stock has been divided into 10 sub-
series. Consequently, we have obtained the dataset consisting of 50 time series,
each consisting of 500 samples. In a feature extraction process, 25 features have
been extracted from the time series, hence, the dimensionality of the analyzed
data has been reduced to 25 dimensions. Then, the 50 time series have been
visualized using symmetric and asymmetric SOM, and subsequently, clustered
using the traditional k-means clustering algorithm. The clustering process aimed
to separate time sub-series corresponding to the same stock.

The feature extraction has been conducted using the standard Discrete-
Fourier-Transform-based method.

In the first part of our experiments, we have visualized, and then clustered only
3 stocks from the U.S. Stock Market Dataset, i.e., Boeing Co., Intel Corporation,
and Time Warner Inc., while in the second part of our experimental study, we
have taken into account all 5 stocks from the U.S. Stock Market Dataset.

5.2 Evaluation Criteria

In our empirical research, we have compared the results of the k-means clustering
of the symmetric and asymmetric SOM visualizing the time series. As the basis
of the comparisons, i.e., as the evaluation criteria, we have used the accuracy
degree [9,3], and the entropy measure [2,3].

Hence, the following two evaluation criteria have been used:

1. Accuracy degree. This evaluation criterion determines the number of cor-
rectly assigned objects divided by the total number of objects.

Hence, for the ith formed cluster, the accuracy degree is determined as
follows:

qi =
mi

ni
, (7)
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where mi, i = 1, . . . , k is the number of objects correctly assigned to the ith
cluster, ni, i = 1, . . . , k is the number of objects in the ith cluster, and k is
the number of clusters.

And, for the entire dataset, the total accuracy degree is determined as
follows:

qtotal =
m

n
, (8)

where m is the total number of correctly assigned objects, and n is the total
number of objects in the entire dataset.

The accuracy degrees qi and the total accuracy degree qtotal assume values
in the interval 〈0, 1〉, and naturally, greater values are preferred.

The total accuracy degree qtotal was used in our experimental study as
the main basis of the clustering accuracy comparison of the two investigated
SOM approaches – the symmetric and the asymmetric.

2. Entropy measure. This evaluation criterion determines the number of
overlapping objects divided by the total number of objects in a dataset.
This means, the number of objects, which are in the overlapping area be-
tween clusters, divided by the total number of objects. If the ratio of sim-
ilarities between a given object and the two nearest cluster centroids is in
the interval 〈0.9, 1.1〉, then the object is said to be in the overlapping area.
In other words, the entropy measure determines the clustering uncertainty.

The entropy measure is determined as follows:

I =
μ

n
, (9)

where μ is the number of overlapping objects in a dataset, and n is the total
number of objects in the dataset.

The entropy measure assumes values in the interval 〈0, 1〉, and, smaller
values are desired.

5.3 Parameter δ

As it was stated in Section 3.1, the tolerance in comparing the features retrieved
from time series is expressed using the parameter δ. During the experimental
study, it was set empirically to the value of 0.005, which corresponded to the
highest clustering performance among the other empirically tested values of the
parameter δ.

5.4 Experimental Results

The results of our experiments are shown in Figs. 1 and 2, and in Tables 1
and 2. Figure 1 presents the U-matrices generated by the symmetric (Fig. 1(a))
and asymmetric (Fig. 1(b)) SOM techniques visualizing 3 stocks from the U.S.
Stock Market Dataset, while Fig. 2 demonstrates the U-matrices generated by
the symmetric (Fig. 2(a)) and asymmetric (Fig. 2(b)) SOM techniques visualiz-
ing 5 stocks from the U.S. Stock Market Dataset. The U-matrix is a graphical
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presentation of SOM. Each entry of the U-matrix corresponds to a neuron on
the SOM grid, while value of that entry is the average dissimilarity between the
neuron and its neighbors. Table 1 reports the accuracy degrees and the entropy
measures corresponding to the symmetric and asymmetric SOM methods for
3 formed clusters, while Table 2 shows the accuracy degrees and the entropy
measures corresponding to the symmetric and asymmetric SOM methods for 5
formed clusters.

In case of the 3 formed clusters, the following stocks have been taken into
account: Boeing Co., Intel Corporation, Time Warner Inc. In case of the 5 formed
clusters, all 5 stocks in the U.S. Stock Market Dataset have been considered.
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Fig. 1. Visualizations of 3 stocks from the U.S. Stock Market Dataset

In Figs. 1 and 2, the following abbreviations have been used: BoA stands
for Bank of America Corporation, Boeing stands for Boeing Co., GE stands for
General Electric Co., Intel stands for Intel Corporation, while TW stands for
Time Warner Inc.

Table 1. Accuracy degrees and entropy measures of the 3 stocks clustering

Symmetric SOM Asymmetric SOM
Accuracy degree 42/50 = 0.8400 45/50 = 0.9000
Entropy measure 9/50 = 0.1800 5/50 = 0.1000

The results of both parts of our empirical research show that the proposed
asymmetric SOM visualizing time series outperforms its symmetric counterpart.
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Fig. 2. Visualizations of all 5 stocks from the U.S. Stock Market Dataset

Table 2. Accuracy degrees and entropy measures of the 5 stocks clustering

Symmetric SOM Asymmetric SOM
Accuracy degree 34/50 = 0.6800 38/50 = 0.7600
Entropy measure 18/50 = 0.3600 11/50 = 0.2200

This claim of superiority was ascertained on the basis of the clustering per-
formance of the two investigated SOMs. By using the two evaluation criteria
(accuracy degree and entropy measure), we can assert that the k-means cluster-
ing of the proposed asymmetric SOM leads to higher clustering accuracy (0.9000
vs. 0.8400 – for 3 clusters, and 0.7600 vs. 0.6800 – for 5 clusters), and also, it
leads to lower clustering uncertainty (0.1000 vs. 0.1800 – for 3 clusters, and
0.2200 vs. 0.3600 – for 5 clusters). This clustering quality comparison can be
used to verify and confirm the effectiveness of the proposed approach, and its
superiority over the standard symmetric SOM technique.

6 Summary and Concluding Remarks

In this paper, an asymmetric coefficient ai was introduced in Section 3. The
coefficient was subsequently utilized in order to build the asymmetric SOM in
Section 4. The obtained form of the asymmetric SOM is capable to effectively
handle datasets consisting of time series, in contrast to the proposal of the pa-
per [2], where the basic (not handling time series) version of the asymmetric
SOM approach was presented.

The experimental research on the U.S. Stock Market Dataset showed that the
proposed method outperforms the traditional symmetric one. The superiority
was ascertained on the basis of the clustering performance of the two exam-
ined SOMs (symmetric and asymmetric). Both analyzed SOMs were clustered
by means of the k-means clustering algorithm, and two cases (3 and 5 formed
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clusters) were considered. In both these cases the symmetric SOM remained in-
ferior with respect to the proposed technique using the introduced asymmetric
coefficient ai. Of course, further experiments are needed to more widely confirm
this superiority.
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Abstract. This paper presents a comparative study of two intelligent techniques 
to replace conventional comparators and selection table of direct torque control 
for induction machines, namely fuzzy logic and artificial neural network. The 
comparison with the conventional direct torque control proves that FL-DTC and 
NN-DTC reduces the electromagnetic torque ripple, stator flux, and stator 
current. Simulation results prove the effectiveness and the performances 
proposed strategies. 

Keywords: artificial neural network, direct torque control, fuzzy logic, 
induction motor. 

1 Introduction 

A simplified variation of field orientation known as direct torque control (DTC) was 
developed by Takahashi [1]-[2] and Depenbrock [3]. In direct torque controlled 
induction motor drives, it is possible to control directly the stator flux linkage and the 
electromagnetic torque by the selection of an optimum inverter switching state. The 
selection of the switching state is made to restrict the flux and the torque errors within 
their respective hysteresis bands and to obtain the fastest torque response and highest 
efficiency at every instant [4]-[5]. DTC is simpler than field-oriented control and less 
dependent on the motor model, since the stator resistance value is the only machine 
parameter used to estimate the stator flux [6].  

High torque ripple is one of the disadvantages of DTC [5]. Under constant load in 
steady state, an active switching state causes the torque to continue to increase past its 
reference value until the end of the switching period; then a zero voltage vector is 
applied for the next switching period causing the torque to continue to decrease below 
its reference value until the end of the switching period. That results in high torque 
ripple. A possible solution to reduce the torque ripple is to use a high switching 
frequency; however, that requires expensive processors and switching devices [7]-[8]. 
A less expensive solution is to use artificial intelligence control. In this article we 
propose two intelligent approaches namely fuzzy logic and artificial neural networks 
to replace conventional hysteresis comparators and selection table.  
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An artificial neural network (ANN) is essentially a way to learn the relationship 
between a set of input data and the corresponding output data. That is, it can 
memorize data, generalize this information when given new input data, and adjust 
when the relationship changes. The training is normally done with input-output 
examples. After training, ANNs have the capability of generalization. That is, given 
previously unseen input data, they can interpolate from the previous training data [9]-
[10]. Inspired by the functioning of biological neurons, ANN became popular in the 
research community when architectures were found to enable the learning of 
nonlinear functions and patterns [10]-[11]. 

The fuzzy reasoning approach can model the qualitative aspects of human 
knowledge and reasoning processes without employing precise quantitative analysis 
[12]-[13]. This approach provides an efficient way to cope with imperfect information 
and imprecise knowledge. It offers some kind of flexibility in decision making 
processes and is especially useful when a process can be controlled by a skilled 
human without knowledge of its underlying dynamics [12]-[14]-[15]. 

This paper is organized as follows: The principle of direct torque control is 
presented in the second part, the direct torque fuzzy control is developed in the third 
section, section four presents a direct torque neural control, and the fifth part is 
devoted to illustrate the simulation performance of this control strategy, a conclusion 
and reference list at the end. 

 
Symbols: 

 
Rs , Rr        stator and rotor resistance [Ω] 
isd , isq         stator current dq axis [A] 
vsd , vsq       stator voltage dq axis [V] 
Ls , Lr         stator and rotor self inductance [H] 
Lm  mutual inductance [H] 
λsd,  λsq dq stator flux [Wb] 
λrd, λrq dq rotor flux [Wb] 
Te electromagnetic torque [N.m] 
ETe electromagnetic torque error [N.m] 
Eλs stator flux error [Wb] 
φs stator flux angle [rad] 
ωr rotor speed [rad/sec] 
J inertia moment [Kg.m2] 
pp pole pairs 
σ leakage coefficient 
ts sampling period [sec] 

2 Direct Torque Control  

The principle of DTC is to directly select voltage vectors according to the difference 
between reference and actual value of electromagnetic torque and stator flux linkage. 
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Electromagnetic torque and stator flux errors are compared in hysteresis comparators. 
Depending on the comparators a voltage vector is selected from a table [16]-[17]. 
This can be explained by looking at the two following equations of the induction 
motor: 
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In the following a digital control is considered with sampling period ts very short with 
respect to the motor time constants. In a generic (k+1)ts instant the stator and rotor 
flux space-vectors can be evaluated by means of the simplified expressions: 
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In terms of stator and rotor flux the electromagnetic torque is: 
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where Im [ ] represents the imaginary part of the expression in brackets. 
The electromagnetic torque variation ΔTe,k in each sampling interval: 

 , , 1 ,e k e k e kT T T+Δ = −  (4) 

Can be evaluated by introducing Eq. (2) in (3) and neglecting the terms containing the 
square of ts: 
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 (5) 

A discrete from of stator flux in a generic sampling instant can be obtained: 

 ( ), 1 , , ,s k s k s k s s k sv R i tλ λ+ = + −  (6) 
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From Eq. (9) the variations of the stator flux magnitude: 

 , , 1 ,s k s k s kλ λ λ+Δ = −  (7) 

can be easily evaluated as a function of the applied voltage. By a proper analysis of 
Eqs. (5) and (7), useful information can be yield about the influence both on stator 
flux and torque of a generic inverter voltage space vector, in correspondence of a 
fixed operating condition. The DTC optimum switching table is shown in Table 1. 

Table 1. Switching table for conventional direct torque control 

Eλs ETe n1 n2 n3 n4 n5 n6 
 

1 
1 V2 V3 V4 V5 V6 V1 
0 V7 V0 V7 V0 V7 V0 
-1 V6 V1 V2 V3 V4 V5 

 
0 

1 V3 V4 V5 V6 V1 V1 
0 V0 V7 V0 V7 V0 V7 
-1 V5 V6 V1 V2 V3 V4 

3 Fuzzy Logic Based Direct Torque Control  

The structure of the switching table can be translated in the form of vague rules. Therefore, we 
can replace the switching table and hysteresis comparators by a fuzzy system whose inputs are 
the errors on the flux and torque denoted Eλs and ETe and the argument φ of the flux. The output 
being the command signals of the voltage inverter n. The fuzziness character of this system 
allows flexibility in the choice of fuzzy sets of inputs and the capacity to introduce knowledge 
of the human expert.  

The ith rule Ri can be expressed as: 

 Ri: if ETe is Ai, Eλs is Bi, and φ is Ei, then n is Ni (8) 

where Ai, Bi and Ci denote the fuzzy subsets and Ni is a fuzzy singleton set. 
The synthesized voltage vector n denoted by its three components is the output of 

the controller. 
The inference method used in this paper is Mamdani’s [18] procedure based on 

min-max decision [19]. The firing strength ηi, for ith rule is given by: 

 ( )min ( ), ( ), ( )
i e i s ii A T B CE Eλη μ μ μ ϕ=  (9) 

By fuzzy reasoning, Mamdani’s minimum procedure gives: 

 ( )' ( ) min , ( )
i iN i Nn nμ η μ=  (10) 

where μA, μB, μC, and μN are membership functions of sets A, B, C and N of the 
variables ETe, Eλs, φ and n, respectively. 
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Thus, the membership function μN of the output n is given by: 

 ( )72 '
1( ) max ( )

iN i Nn nμ μ==  (11) 

We chose to share the universe of discourse of the stator flux error into two fuzzy 
sets, that of electromagnetic torque error in five and finally for the flux argument into 
seven fuzzy sets. This choice was based on Table 1. However the number of 
membership functions (fuzzy set) for each variable can be increased and therefore the 
accuracy is improved. All the membership functions of fuzzy controller are given in 
Fig. 1. 
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Fig. 1. Membership functions for fuzzy logic controller 

Table 2. Fuzzy rules 

 
Eλs 

 
ETe 

φ 
φ1 φ2 φ3 φ4 φ5 φ6 

 
PL 

P V6 V2 V3 V1 V5 V4 
Z V4 V6 V2 V3 V1 V5 
N V5 V4 V6 V2 V3 V1 

 
PS 

P V6 V2 V3 V1 V5 V4 
Z V7 V0 V7 V0 V0 V0 
N V5 V4 V6 V2 V3 V1 

 
NS 

P V2 V3 V1 V5 V4 V6 
Z V0 V7 V0 V7 V0 V7 
N V1 V5 V4 V6 V2 V3 

 
NL 

P V2 V3 V1 V5 V4 V6 
Z V3 V1 V5 V4 V6 V2 
N V1 V5 V4 V6 V2 V3 
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4 Neural Network Based Direct Torque Control 

This section presents the outline of neural networks to emulate the table of inverter 
switching states of DTC. The input signals of the table are the errors of 
electromagnetic torque, stator flux and the position vector of flux. The output signals 
are the inverter switching states na, nb and nc. As the switching table depends only on 
the electromagnetic torque error, stator flux angle and sector where the flux is located, 
and induction motor parameters, this neural network can be trained independently of 
the set. With the changes in the switching table reduces the training patterns and 
increases the execution speed of training process. This has been achieved by reducing 
the table to convert input analog signals to a digital bit for the flux error, two bits for 
the torque error and three bits for the flux position, which has a total of six inputs and 
three outputs, and only sixty-four training patterns. With these modifications, the 
network used to simulate has the advantage that it is independent of parameter 
variation of induction motor. This allows applying to any induction motor irrespective 
of its power. 

From the flux space vectors λds and λqs we can calculate the flux angle φ and flux 
magnitude λ . The coding of the flux angle is given by ,  and  according to 
following equations: 

 2 2
s ds qsλ λ λ= + , 1tan ds
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The network structure used, as shown in Fig. 2 has an input layer with five neurons, a 
first hidden layer with six neurons, a second hidden layer with five neurons and an 
output layer with three neurons. After training satisfactory, taking the weights and 
thresholds calculated and placed into the neural network prototype replacing the 
switching table. This network is incorporated as a part of the DTC. 
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5 Simulation Results 

To compare and verify the proposed techniques in this paper, a digital simulation 
based on Matlab/Simulink program with a Neural Network Toolbox and Fuzzy Logic 
Toolbox is used to simulate the NN-DTC and FL-DTC, as shown in Fig. 4.  The 
block diagram of a C-DTC/FL-DTC/NN-DTC controlled induction motor drive fed 
by a 2-level inverter is shown in Fig. 3.  The induction motor used for the simulation 
studies has the following parameters:  

1ξ
2ξ

3ξ

1eTE

2eTE

sE λ an

bn

cn

[ ]1B

[ ]2B

[ ]3B

[ ]3W

[ ]2W
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Fig. 2. Neural-network implementation of DTC 

Rated power = 7.5kW, Rated voltage = 220V, Rated frequency = 60Hz, Rr = 
0.17Ω, Rs = 0.15Ω, Lr = 0.035H, Ls = 0.035H, Lm = 0.0338H, J = 0.14kg.m2. 
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Fig. 3. General configuration of C-DTC/FL-DTC/NN-DTC scheme 
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Figs. 4(a), 4(b) and 4(c) show the torque response of the C-DTC, FL-DTC and 
NN-DTC respectively with a torque reference of [20-10-15] Nm. While Figs. 4(a’), 
4(b’) and 4(c’) show the flux response of the C-DTC, FL-DTC and NN-DTC 
respectively with a stator flux reference of 1Wb.  

 

a 

 

b 

 

c 

 

a’ 

 

b’ 

 

c’ 

Fig. 4. (a), (b) and (c) torque response of C-DTC, FL-DTC and NN-DTC respectively, (a’), (b’) 
and (c’) Stator flux trajectory response of C-DTC, FL-DTC and NN-DTC respectively 

Table 3 represents the comparative results in both stator flux and torque ripples 
percentage for C-DTC, FL-DTC and NN-DTC. The steady state response for the 
torque in NN-DTC is faster and provided more accuracy compared to other control 
strategies presented in this paper. 
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Table 3. Comparative study of C-DTC, FL-DTC and  NN-DTC 

Control strategies Torque ripple 
(%) 

Flux ripple 
(%) 

Rise time 
(sec) 

Setting time 
(sec) 

C-DTC 10.6 2.3 0.009 0.01 
FL-DTC 3.9 2.1 0.007 0.0085 
NN-DTC 2.9 1.6 0.006 0.0082 

6 Conclusions 

A comparative study of C-DTC, FL-DTC and NN-DTC for an inverter fed induction 
motor drive was proposed in this paper. A better precision in the torque and flux 
responses was achieved with the NN-DTC method with greatly reduces the execution 
time of the controller; hence the steady-state control error is almost eliminated. The 
application of neural network techniques simplifies hardware implementation of 
direct torque control and it is envisaged that NN-DTC induction motor drives will 
gain wider acceptance in future. 
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Abstract. Artificial neural networks and symbolic expression based ensembles 
are used for solving classification problems. Ensemble members and the 
ensembling method are generated automatically with the self-configuring 
genetic programming algorithm that does not need preliminary adjusting. 
Performance of the approach is demonstrated with real world problems. The 
proposed approach demonstrates results competitive to known techniques. 

Keywords: self-configuring genetic programming, artificial neural networks, 
symbolic expressions, ensembles, classification problems.  

1 Introduction 

Classification is a well-known application of natural computing algorithms. Within 
machine learning domain, problems in which aim is to assign each input vector to one 
of a finite number of discrete categories are called classification problems [1]. The 
classification problem solving is usually described in terms of an optimization 
procedure that maximizes the number of correctly classified instances and minimizes 
the number of misclassified ones. This makes classification problems an appropriate 
area for the application of nature-inspired intellectual information processing 
technologies (IIT) like neural networks, fuzzy systems, evolutionary computations 
and many others.   

The highly increasing computing power and technology made possible the use of 
more complex intelligent architectures, taking advantage of more than one intelligent 
system in a collaborative way. This is an effective combination of intelligent 
techniques that outperforms or competes to simple standard intelligent techniques. 

One of the hybridization forms, the ensemble technique, has been applied in many 
real world problems. It has been observed that the diversity of members, making up a 
“committee”, plays an important role in the ensemble approach [2-5]. Different 
techniques have been proposed for maintaining the diversity among members by 
running on the different feature sets [6] or training sets (e.g., bagging [7] and boosting 
[8]). Some techniques, such as neural networks, can be run on the same feature and 
training sets producing the diversity by different structures [9]. Simple averaging, 
weighted averaging, majority voting and ranking are common methods usually 
applied to calculate the ensemble output.  
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Johansson et al. [10] used genetic programming (GP) [11] for building an 
ensemble from the predefined number of the ANNs where the functional set consisted 
of the averaging and multiplying and the terminal set included the models (i.e., 
ANNs) and constants. In [12], a similar approach was proposed where first a specified 
number of the neural networks are generated and then a GP algorithm is applied to 
build an ensemble making up the symbolic regression function from partial decisions 
of the specific members.  

In this paper, we apply the self-configuring genetic programming technique [13] to 
construct formula that shows how to compute an ensemble decision using the 
component decisions. The algorithm involves different operations and math functions 
and uses the models providing the diversity among the ensemble members. Namely, 
we use neural networks and symbolic expressions, automatically designed with our 
GP algorithm, as the ensemble members. The algorithm automatically chooses 
components which are important for obtaining an efficient solution and doesn’t use 
the others. 

With the approach developed an end user has no necessity to be an expert in the 
computational intelligence area but can implement the reliable and effective 
classification tool. It makes the approach very useful for different area experts making 
them free from extra efforts on the intellectual information technology algorithmic 
core implementation and allowing them to concentrate their attention in the area of 
their expertise, e.g. medicine, finance, engineering, etc.  

The rest of the paper is organized as follows. Section 2 describes the method for 
the GP self-configuring and it’s testing results confirming the method usefulness. 
Section 3 describes the method of the ANN automated design and its performance 
evaluation. In Section 4 we describe the GP-based approach to the IIT ensembles 
automated integration and the results of the performance comparative analysis on 
three relatively simple and two harder classification problems. In Section 5 we apply 
developed approach to hard real world problems solving from the area of the speech 
recognition and computer security. In Conclusion section we discuss the results and 
directions of the further research.  

2 Operator Rates Based Self-configuration of GP Algorithm 

Before suggesting the GP use to end users, e.g., medicine or finance specialists, for 
application in classification tools development, we have to save them from main 
troubles which are the problem even for evolutionary computation experts. It is really 
hard job to configure GP settings and tune its parameters, i.e., we have to suggest a 
way to avoid this problem.  

We apply the operator probabilistic rates dynamic adaptation on the level of 
population with centralized control techniques [14-16]. To avoid the issues of 
precision caused while using real parameters, we used setting variants, namely types 
of selection, crossover, population control and level of mutation (medium, low, high). 
Each of these has its own probability distribution, e.g., there are 5 settings of 
selection: fitness proportional, rank-based, and tournament-based with three 
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tournament sizes. During initialization all probabilities are equal to 0.2 and they will 
be changed according to a special rule through the algorithm execution in such a way 
that the sum of probabilities should be equal to 1 and no probability could be less than 
predetermined minimum balance.  

When the algorithm creates the next off-spring from the current population it first 
has to configure settings, i.e. to form the list of operators with using the probability 
operator distributions. The algorithm then selects parents with the chosen selection 
operator, produces an off-spring with the chosen crossover operator, mutates off-
spring with the chosen mutation probability and puts off-spring into the intermediate 
population. When the intermediate population is filled, the fitness evaluation is 
computed and the operator rates (probabilities to be chosen) are updated according to 
operator productivities. Then the next parent population is formed. The algorithm 
stops after a given number of generations or if the termination criterion is met.  

The productivity of an operator is the ratio of the average off-spring fitness 
obtained with this operator and the average fitness of the overall off-spring 
population. Winning operator increases its rate obtaining portions all other operators. 
We call our algorithm as self-configuring genetic programming (SelfCGP).  

SelfCGP had demonstrated the high performance and reliability on benchmark 
symbolic regression problems with functions from [17] and in classification problems 
solving via symbolic expression based separating surfaces building [13]. It gives us a 
possibility to recommend SelfCGP for solving symbolic regression problems as better 
alternative to conventional GP. Main advantage of the SelfCGP is no need of 
algorithmic details adjustment without any losses in the performance that makes this 
algorithm useful for many applications where terminal users being no experts in 
evolutionary modelling intend to apply the GP for solving these problems.  

3 ANN Automated Design with Self-configuring GP Algorithm 

Usually, the GP algorithm works with tree representation, defined by functional and 
terminal sets, and exploit the specific solution transformation operators (selection, 
crossover, mutation, etc.) until termination condition will be met [11].  

For the ANN automated design, the terminal set of our GP includes 16 activation 
functions such as bipolar sigmoid, unipolar sigmoid, Gaussian, threshold function, 
linear function, etc. The functional set includes specific operation for neuron 
placement and connections. The first operation is the placing a neuron or a group of 
neurons in one layer. There will no additional connections appeared in this case. The 
second operation is the placing a neuron or a group of neurons in sequential layers in 
such a way that the neuron (group of neurons) from the left branch of tree preceded 
by the neuron (group of neurons) from the right branch of tree. In this case, new 
connections will be added that connect the neurons from the left tree's branch with the 
neurons from the right tree's branch. Input neurons cannot receive any signal but have 
to send a signal to at least one hidden neuron.  

The GP algorithm forms the tree from which the ANN structure is derived. The 
ANN training is executed to evaluate its fitness that depends on its performance in 
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solving problem in hand, e.g., the approximation precision or the number of 
misclassified instances. For training this ANN, connection weights are optimized with 
self-configuring genetic algorithm (SelfCGA) [18] that similarly to SelfCGP does not 
need any end user efforts to be the problem adjusted doing it automatically. When GP 
finishes giving the best found ANN structure as the result, this ANN is additionally 
trained with again SelfCGA hybridized with local search. 

We compared the performance of the ANNs designed with our SelfCGP algorithm 
with the alternative methods on the set of problems from [19]. Materials for the 
comparison we have taken from [20] where together with results of authors' algorithm 
(CROANN) the results of 15 other approaches are presented on three classification 
problems (Iris, Wisconsin Breast Cancer, Pima Indian Diabetes) from [19].  

Analysing comparison results, we observed ([21]) that the performance of our 
approach is high enough comparing to alternative algorithms (1st, 3rd and 4th 
positions, correspondingly). However, the main benefit from our SelfCGP algorithm 
is the possibility to be used by the end user without expert knowledge in ANN 
modelling and evolutionary algorithm application. Additional dividend is the size of 
designed ANNs. The ANNs designed with SelfCGP contain few hidden neurons and 
connections and use usually not all given inputs although perform well.  

Now we can conclude that the self-configuring genetic programming algorithm is 
the suitable tool for ANN automated design.  

4 Integration of IIT Ensembles with Self-configuring Genetic 
Programming Algorithm  

Having developed appropriate tool for IIT automated design that does not require the 
effort for its adjustment, we applied our self-configuring genetic programming 
technique to construct formula that shows how to compute an ensemble decision 
using the component IIT decisions. The algorithm involves different operations and 
math functions and uses the models of different kinds in terminal set that provides the 
diversity among the ensemble members. In our numerical experiments, we use 
symbolic expressions and neural networks, automatically designed with our SelfCGP 
algorithm, as the ensemble members. The algorithm automatically chooses the 
component IIT which are important for obtaining an efficient solution and doesn’t use 
the others. The ensemble component IIT are taken from the preliminary IIT pool that 
includes 10 ANNs and 10 symbolic regression formulas (SRFs) generated in advance 
with SelfCGP. For the designing every IIT, corresponding data set is randomly 
divided into two parts, i.e., training sample (70%) and test sample (30%). 

The first experiment was conducted for comparing the performance of the 
ensembling method based on the SelfCGP with the others, i.e. simple averaging, 
weighted averaging and bagging [7]. Bagging technique assumes that all members of 
the ensemble are trained on different subsets of the training sample. In Table 1 below, 
“ensemble+bagging” means that ensemble members were generated with SelfCGP 
using different subsets of the training sample and then corresponding ensemble was 
designed with SelfCGP. We used the same three problems from [19] as the test bed. 
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In Table 1 below we present our results. Numbers in columns are the error measure 
calculated as it was given in [20]. The first six lines contain results of the ensembling 
method suggested in this paper (with bagging and without it) for three kinds of 
ensemble members – ANNs, SRFs and both. Next eight lines contain results for 
conventional methods of ensemble forming, i.e., conventional bagging, simple and 
weighted averaging. Next two lines shows results of single technologies (ANN and 
SRF) automatically generated with SelfCGP. Results of these lines are averaged over 
20 independent runs. Results for the last 15 lines were taken from [20] for the 
comparison.  

Table 1. Ensembling methods comparison 

Classifier Iris Cancer Diabetes 

SelfCGP+ANN+Ensemble+Bagging 0 0 17.13 
SelfCGP+ANN+Ensemble  0 0 17.18 
SelfCGP+ANN+SRF+Ensemble+Bagging 0 0 17.41 
SelfCGP+ANN+SRF+Ensemble 0 0.06 17.43 
SelfCGP+SRF+Ensemble+Bagging 1.12 0.06 18.11 
SelfCGP+SRF+Ensemble 1.33 0.34 18.21 
Bagging (SelfCGP+ANN) 1.26 0.67 18.22 
Bagging (SelfCGP+SRF) 2.67 0.95 19.34 
ANN ensemble with weighted averaging  2.67 1.03 19.03 
ANN ensemble with simple averaging  2.67 1.09 19.75 
SRF ensemble with weighted averaging  4.00 1.22 19.86 
SRF ensemble with simple averaging  5.33 1.27 20.23 
ANN+SRF ensemble with weighted averaging 2.67 1.09 19.34 
ANN+SRF ensemble with simple averaging  4.00 1.18 19.79 
SelfCGP+ANN  1.33 1.05  19.69 
SelfCGP+SRF 2.67 1.23 20.01 
CROANN  1.31   1.06 19.67 
GANet-best  6.40 1.06 24.70 
SVM-best  1.40 3.10 22.70 
CCSS  4.40 2.72 24.02 
COOP  - 1.23 19.69 
CNNE  - 1.20 19.60 
EPNet  - 1.38  22.38 
EDTs  - 2.63 - 
SGAANN  14.20 1.50 24.46 
EPANN  12.56 1.54 25.75 
ESANN  7.08 0.95 20.93 
PSOANN  10.38 1.24 20.99 
GSOANN  3.52 0.65 19.79 
MGNN  4.68  3.05 - 
EENCL - - 22.1 
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Results in Table 1 demonstrate that the SelfCGP based ensembling method used 
the ANNs or ANNs and SRFs integration outperforms conventional ensembling 
methods, the single best ANN and SRF designed with SelfCGP as well as other given 
classification methods. We can also see that bagging does not produce impact being 
added to our ensembling technique based on ANNs. The statistical robustness of the 
results obtained was confirmed by ANOVA tests which were used for processing 
received evaluations of our algorithms performance. 

Within the second numerical experiment we solved two hard classification 
problems and compared our results with alternative approaches. These problems are 
so called German and Australian Credit Data Sets from the UCI Repository of 
Machine Learning Databases [19], and are often used to compare the accuracy with 
various classification models. 

Results for alternative approaches have been taken from scientific literature. In 
[22] the performance evaluation results for these two data sets are given for authors’ 
two-stage genetic programming algorithm (2SGP) as well as for the following 
approaches taken from other papers: conventional genetic programming (GP+SRF), 
classification and regression tree (CART), C4.5 decision trees, k nearest neighbors (k-
NN), linear regression (LR). Additional material for comparison we have taken from 
[23] where is evaluation data for authors’ automatically designed fuzzy rule based 
classifier as well as for other approaches found in literature: Bayesian approach, 
boosting, bagging, random subspace method (RSM), cooperative coevolution 
ensemble learning (CCEL). 

The results of the comparison (the proportion of correctly classified objects in the 
test set) are given in Table 2 where the last letter “E” means “ensemble”. 

Table 2. Performance comparison for bank credit scoring problems  

Classifier Australian 
credit 

German 
credit 

Classifier Australian 
credit 

German 
credit 

SelfCGP ANN+SRFE 0.9094 0.8126 Fuzzy 0.8910 0.7940 
SelfCGP ANN+SRFE+Bag  0.9093 0.8127 2SGP 0.9027 0.8015 
SelfCGP ANNE+Bag 0.9092 0.8125 GP+SRF 0.8889 0.7834 
SelfCGP SRFE+Bag 0.9071 0.8050 LR 0.8696 0.7837 
Bagging (SelfCGP+ANN) 0.9071 0.8004 Bayesian 0.8470 0.6790 
SelfCGP ANNE 0.9046 0.8075 RSM 0.8660 0.7460 
SelfCGP SRFE 0.9046 0.8050 k-NN 0.8744 0.7565 
Bagging (SelfCGP+SRF) 0.9046 0.7975 CART 0.8986 0.7618 
SelfCGP+SRF 0.9022 0.7950 C4.5 0.8986 0.7773 
SelfCGP+ANN 0.9022 0.7954 CCEL 0.7150 0.7151 
GP+ANN 0.8969 0.7863 Bagging 0.8470 0.6840 
   Boosting 0.7600 0.7000 

 

As one can see, the ensembles automatically designed with the SelfCGP 
outperform other ensembles (Boosting, Bagging, CCEL) and single classifiers 
including these specially implemented for bank scoring problems solving (Fuzzy, 
2SGP). We can also see that bagging here does not bring improvement if it is added to 
heterogeneous ensemble (ANN+SRF) but it brings higher performance being added to 
homogenous ensembles consisted of ANN or SRF.  
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5 IIT Ensemble Design for Solving Computing Technologies 
Problems  

Successful application of our approach in the area of classification brought us to the 
idea of its adapting to the complex problems from the area of computing technologies 
such as speech recognition and computing security.  

In the area of speech recognition we have chosen the ISOLET problem ([19]) due 
to the availability of the other approaches known results for the comparison. 

ISOLET problem is the recognition problem of English letters pronounced by 150 
different speakers those spoke the name of each letter of the alphabet twice. The 
features include spectral coefficients; contour features, sonorant features, pre-sonorant 
features, and post-sonorant features. Exact order of appearance of the features is not 
known. It gives the data set with 617 attributes (all of them are continuous, real 
valued attributes scaled into the range -1.0 to 1.0), 26 classes, and 7797 instances. 

Having in mind the necessity to verify the ensembles, we have randomly divided 
the data set in three parts: 4679 instances for single ANNs training, 1559 instances for 
single ANNs testing and 1559 instances for the ensembles cross-validation. 
Ensembles training were executed on the first 6238 instances. Both ANN-based 
classifiers and their ensembles were automatically designed with SelfCGP algorithm. 
Preliminary pool of classifiers consisted of 10 members. SRFs are not used here 
because of the problem complexity (26 classes). 

Alternative approaches for performance comparison have been taken from [19]. In 
table 3 bellow OPT means conjugate-gradient implementation of back propagation, 
C4.5 means Quinlan’s C4.5 system, OPC means one-per-class representation, ECOC 
means error-correcting output code.  

As one can see from Table 3 where we show first 12 of 41 lines, both our approaches 
demonstrate competitive results (2nd and 10th position of 41). ANN-based classifier 
automatically generated with SelfCGP can be considered as enough powerful tool for 
speech recognition problems but our ensembling technique can essentially improve the 
classifier performance making it to be one of the best among competitors.  

Table 3. Performance comparison for ISOLET problem 

Algorithms and their configurations % errors % correct 
OPT 30-bit ECOC 3.27 96.73 
SelfCGP+ANN+Ensemble 3.40 96.60 
SelfCGP+ANN+Ensemble+Bagging 3.40 96.60 
OPT 62-bit ECOC 4.04 95.96 
Bagging (SelfCGP+ANN) 4.17 95.93 
OPT OPC 4.17 95.83 
C4.5 107-bit ECOC soft pruned 6.61 93.39 
C4.5 92-bit ECOC soft pruned 6.86 93.14 
C4.5 45-bit ECOC soft pruned 6.99 93.01 
SelfCGP+ANN 7.21 92.79 
C4.5 107-bit ECOC soft raw 7.44 92.56 
C4.5 92-bit ECOC soft raw 7.57 92.43 
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Here bagging does not improve the performance of our homogenous ANN-based 
ensemble although, of course, it improves the performance of single ANN generated 
with SelfCGP. 

In the area of computer security we have chosen the problem of the detection of 
PROBE attacks. Corresponding dataset “KDD’99 Cup” is hosted in the Machine 
Learning Repository [19]. For the approach effectiveness evaluation, all patterns 
relevant to PROBE attacks were marked as referring to the first class, the others were 
marked as belonging to the second class. We used the following attributes in our 
experimental study: 1, 3, 5, 8, 33, 35, 37, 40. The choice of these attributes has been 
made empirically based on the analysis of related works and their description can be 
found in [24]. The results were compared with other approaches collected in [25]. The 
comparison results are shown in Table 4 below.  

Table 4. Performance comparison for PROBE attack detectors 

Applied technique Detection 
rate, % 

False positive 
rate, % 

PSO-RF 99.92 0.029 
SelfCGP+ANN+Ensemble+Bagging 99.80 0.028 
SelfCGP+ANN+Ensemble 99.79 0.027 
Random Forest 99.80 0.100 
Bagging (SelfCGP+ANN) 99.24 0.078 
SelfCGP+ANN 98.78 0.097 
Bagging 99.60 0.100 
PART (C4.5) 99.60 0.100 
NBTree 99.60 0.100 
Jrip 99.50 0.100 
Ensemble with majority voting 99.41 0.043 
Ensemble with weighted averaging 99.17 0.078 
Ensemble with simple averaging 99.18 0.122 
BayesNet 98.50 1.000 
SMO (SVM) 84.30 3.800 
Logistic 84.30 3.400 

 
From Table 4 we can conclude that the classifier automatically designed with 

SelfCGP as the ANN-based ensemble demonstrates the high performance compared 
with the best known results (PSO-RF and RF). The classifier based on the single 
ANN designed with SelfCGP also demonstrates competitive performance. Bagging 
again does not improve the ensemble performance although improves it for ANN. 

6 Conclusion  

The SelfCGP based automatic design of IITs ensembles allows improving the 
effectiveness of classification. Obtained results are approved by solving some hard 
real-world problems.   
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Comparing with usual ensembling methods, e.g. weighted averaging or voting, 
additional computational effort for our approach is the necessity to run the genetic 
programming algorithm that combines single models outputs into an output of the 
ensemble that could be considered as the acceptable disadvantage. 

As about the model complexity, of course, a computational model given by the 
genetic programming algorithm could be much more complicated comparing to usual 
ensembling methods but in our experiments we did not observe great complexity of 
ensembles. Examples of usual ensembles are cos(N0)+0.5·N8·N9 for Australian credit 
and 1–(1–N0)·(1–N1) for German credit. Here Ni are outputs of automatically 
designed ANNs. Our experiments show that self-configuring genetic programming 
algorithm never includes all available single models into an ensemble taking usually a 
few of them. As the greater part of the ensemble computational complexity is given 
by the computational efforts needed for calculating the output for each model, our 
approach has the advantage upon usual ensembling methods that usually include all 
available single models in the ensemble as well as upon SelfCGP based bagging 
approach that usually requires two or three times more ensemble members designed 
with SelfCGP (e.g., ( ) 63079520 69.072.053.1sin NNNNNNNN ⋅−⋅⋅+⋅⋅⋅⋅⋅ for 

German credit) and doesn’t improve the ensemble performance.  
The further development of our approach is aimed to the expansion of its 

functionality by including the other types of IITs (fuzzy logic systems, decision trees, 
neuro-fuzzy systems, other kinds of ANNs, etc.). 

 
Acknowledgments. The research is partially supported through the Governmental 
contracts № 16.740.11.0742 and 11.519.11.4002. 

References 

1. Bishop, C.: Pattern recognition and machine learning. Springer (2006) 
2. Dietterich, T.G.: An experimental comparison of three methods for constructing ensembles 

of decision trees: bagging, boosting, and randomization. Machine Learning 40(2), 139–158 
(2000) 

3. De Stefano, C., Della Cioppa, A., Marcelli, A.: An evolutionary approach for dynamic 
configuration of multi-expert classification systems. In: Proceedings IEEE Congress on 
Evolutionary Computation, CEC 2006, pp. 2444–2450 (2006) 

4. Kim, Y.W., Oh, I.S.: Classifier ensemble selection using hybrid genetic algorithms. Pattern 
Recognition Letters 29(6), 796–802 (2008) 

5. Rokach, L.: Ensemble-based classifiers. Artificial Intelligence Review 33(1), 1–39 (2010) 
6. Ho, T.K., Hull, J.J., Srihari, S.N.: Decision combination in multiple classifier systems. 

IEEE Transactions on Pattern Analysis and Machine Intelligence 16(1), 66–75 (1994) 
7. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996) 
8. Friedman, J.H., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view of 

boosting. Annals of Statistics 28(2), 337–374 (2000) 
9. Navone, H.D., Granitto, P.M., Verdes, P.F., Ceccatto, H.A.: A learning algorithm for 

neural network ensembles. Inteligencia Artificial, RevistaIberoamericana de Inteligencia 
Artificial (12), 70–74 (2001) 



 Classifier Ensembles Integration with Self-configuring GP Algorithm 69 

10. Johansson, U., Lofstrom, T., Konig, R., Niklasson, L.: Building Neural Network 
Ensembles using Genetic Programming. In: International Joint Conference on Neural 
Networks (2006) 

11. Poli R., Langdon W.B., McPhee N.F.: A Field Guide to Genetic Programming (2008), 
Published via, http://lulu.com and freely available, http://www.gp-field-
guide.org.uk 

12. Bukhtoyarov, V., Semenkina, O.: Comprehensive evolutionary approach for neural 
network ensemble automatic design. In: Proceedings of the IEEE World Congress on 
Computational Intelligence, pp. 1640–1645 (2010) 

13. Semenkin, E., Semenkina, M.: Self-Configuring Genetic Programming Algorithm with 
Modified Uniform Crossover. In: Liu, J., et al (eds.): CEC IEEE WCCI 2012, Congress on 
Evolutionary Computations of IEEE World Congress on Computational Intelligence, 
Brisbane, Australia, pp. 1918–1923 (2012) 

14. Gomez, J.: Self Adaptation of Operator Rates in Evolutionary Algorithms. In: Deb, K., 
Tari, Z. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 1162–1173. Springer, Heidelberg 
(2004) 

15. Meyer-Nieberg, S., Beyer, H.-G.: Self-Adaptation in Evolutionary Algorithms. In:  
Lobo, F., Lima, C., Michalewicz, Z. (eds.) Parameter Setting in Evolutionary Algorithm, 
pp. 47–75 (2007) 

16. Angeline, P.J.: Two Self-Adaptive Crossover Operators for Genetic Programming. In: 
Angeline, P.J., Kinnear Jr., K.E. (eds.) Advances in Genetic Programming, vol. 2, pp. 89–
110 (1996) 

17. Finck, S., et al.: Real-parameter black-box optimization benchmarking 2009. In: 
Presentation of the noiseless functions. Technical Report ResearhCenter PPE (2009) 

18. Semenkin, E., Semenkina, M.: Self-configuring Genetic Algorithm with Modified 
Uniform Crossover Operator. In: Tan, Y., Shi, Y., Ji, Z. (eds.) ICSI 2012, Part I. LNCS, 
vol. 7331, pp. 414–421. Springer, Heidelberg (2012) 

19. Frank, A., Asuncion, A.: UCI Machine Learning Repository. University of California, 
School of Information and Computer Science, Irvine, CA (2010),  
http://archive.ics.uci.edu/ml 

20. Yu, J.J.Q., Lam, A.Y.S., Li, V.O.K.: Evolutionary Artificial Neural Network Based on 
Chemical Reaction Optimization. In: IEEE Congress on Evolutionary Computation (CEC 
2011), New Orleans, LA (2011) 

21. Semenkin, E.S., Semenkina, M.E.: Artificial neural networks design with self-configuring 
genetic programming algorithm. In: Filipic, B., Silc, J. (eds.) Bioinspired Optimization 
Methods and their Applications: Proceedings of the Fifth International Conference, 
BIOMA 2012, pp. 291–300. Jozef Stefan Institute, Ljubljana (2012) 

22. Huang, J.-J., Tzeng, G.-H., Ong, C.-S.: Two-stage genetic programming (2SGP) for the 
credit scoring model. Applied Mathematics and Computation 174, 1039–1053 (2006) 

23. Sergienko, R., Semenkin, E., Bukhtoyarov, V.: Michigan and Pittsburgh Methods 
Combining for Fuzzy Classifier Generating with Coevolutionary Algorithm for Strategy 
Adaptation. In: 2011 IEEE Congress on Evolutionary Computation, New Orleans, LA 
(2011) 

24. Stolfo, S., Fan, W., Lee, W., Prodromidis, A., Chan, P.: Cost-based Modeling for Fraud 
and Intrusion Detection: Results from the JAM Project. In: Proceedings of the 2000 
DARPA In-formation Survivability Conference and Exposition, DISCEX 2000 (2000) 

25. Malik, A.J., Shahzad, W., Khan, F.A.: Binary PSO and random forests algorithm for 
PROBE attacks detection in a network. In: IEEE Congress on Evolutionary Computation, 
pp. 662–668 (2011) 



A Multi-objective Proposal Based on Firefly

Behaviour for Green Scheduling in Grid Systems
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Abstract. Global warming and climate change are threats that the
planet is facing nowadays. Green computing has emerged as a challenge
to reduce the energy consumption and pollution footprints of computers.
Grid Computing could match the principles of Green Computing as it
could exploit and efficiently use processors’ computing power. This paper
presents a swarm multi-objective optimization algorithm for scheduling
experiments (the job execution) on the Grid. Multi-Objective Firefly Al-
gorithm (MO-FA) is inspired by the brightness attraction among fireflies.
One of the main contributions of this work is that the increasing firefly
brightness is interpreted as an improvement in response time and energy
savings. This would fulfill both conflicting objectives of Grid users: ex-
ecution time and energy consumption. Results show that MO-FA is a
reliable method according to its interquartile range and its comparison
with the standard and well-known multi-objective algorithm NSGA-II.
Moreover, it performs better than actual grid schedulers as the Work-
load Management System (WMS) and the Deadline Budget Constraint
(DBC).

Keywords: swarm, multi-objective optimization, green computing, grid
environment, scheduling.

1 Introduction

Green Computing also called Green IT has emerged to accomplish the efficiency
of computational resources. Its aims are: environment impact minimization and
economic availability maximization. At present, a fast advance is occurring in
the creation of energy-efficient supercomputers, in fact there is a world ranking
list called The Green 500 1. One of the infrastructures that could contribute
reducing the energy consumption or the carbon emission is Grid Computing2.

1 http://www.green500.org/
2 http://www.gridtalk.org/Documents/gridsandgreen.pdf

M. Tomassini et al. (Eds.): ICANNGA 2013, LNCS 7824, pp. 70–79, 2013.
c© European Union 2013
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Grid computing gives access to geographically and heterogeneous distributed
resources using their power as a big and powerful processor [8]. Job scheduling
is already a non-trivial problem widely studied to optimize the response time
for experiments submitted on Grid environments ([7], [15], [21]). They tried to
fulfill deadlines or at least minimize the execution time for scientific applications
with dependent or independent jobs.

However, the progress of green computing is opening a new goal for this
problem. Current researches are focused on the energy management taking into
account the energy consumption on idle resources or nodes ([2], [9], [5], [18]),
even cores of processing for multiprocessors [14], or just considering the energy
reduction for communication data [17]. Most of these approaches use heuristics
based on the Dynamic Voltage and Frequency Scaling (DVFS) technique [23].
They try to optimize the use of energy by decreasing the voltage and the clock
frequency (CPU speed) on the idle nodes or nodes that are executing non-critical
jobs. These researches reduce the energy consumption by heuristics or greedy al-
gorithms and some of them try to balance this reduction regarding the execution
time by using a single objective function with weights for evaluating these ob-
jectives. In this paper, a new approach is studied related to the multi-objective
optimization for these two conflictive objectives, considering them separately
and with the same importance. Khan’s work ([10], [11], [12], [16]) takes into
account this scheduling problem in a low level by simulating the power off and
DVFS techniques for the machines. However, most of these simulated researches
lack of detailed configuration for their topologies, they do not specify the char-
acteristics for the used resources or the scheduling workflows are not described
in detail. We try to solve all these lacks.

In addition, we include a comparison with real grid schedulers as the Work-
load Management System (WMS)3 from the most used European middleware
Lightweight Middleware for Grid Computing (gLite)4 and also the well-known
Deadline Budget Constraint (DBC) [3] from Nimrod-G.

In the present paper, we propose a novel swarmalgorithmwith amulti-objective
approach to deal with the optimization of both critical goals - energy consumption
and execution time - considering them with the same importance. Multi-objective
Firefly Algorithm (MO-FA) is based on the mono-objective counterpart FA [24]
inspired on the fireflies’ behaviour. The main feature of this algorithm is the com-
munication between the fireflies combining multi-objective exploitation and ex-
ploration processes to solve the problem. MO-FA is implemented in the simula-
tor GridSim5 which allows the configuration of complex topologies and the spec-
ification of resource characteristics such as processing speed, MIPS (Millions of
Instructions Per Second) or power per time unit. In addition, several workflows
have been used as Gaussian, Gauss-Jordan or LU Decomposition following a DAG
(Directed Acyclic Graph) Model to support dependent jobs. This research contri-
bution assumes the utilization of ecological resources that are emerging nowadays

3 http://web.infn.it/gLiteWMS/
4 http://glite.cern.ch/
5 http://www.buyya.com/gridsim/

http://web.infn.it/gLiteWMS/
http://glite.cern.ch/
http://www.buyya.com/gridsim/
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by using software and techniques as CLUES 6 or EnergySaving Cluster (ESC) [6].
These techniques manage idle resources and other approaches per site or machine.
Therefore, our proposal is the perfect complement to this ecological software that
is emerging. A very preliminary version of this work, with only two pages, was pub-
lished in [1]. In this paper, this work has been considerably extended and improved.
This paper is structured as follows. Section 2 defines the problem statement. Sec-
tion 3 describes the MO-FA approach. Section 4 shows the test environment and
the experimental results. Finally, Section 5 summarizes the conclusions.

2 Problem Statement

Grid scheduling consists in the job allocation on grid resources fulfilling the user
requirements. In this research, we focus on two critical objectives: energy con-
sumption and execution time. Nowadays, the reduction of energy consumption
is an up-to-date goal as a result of the big importance of green computing, being
execution time an essential issue in scheduling problems. Furthermore, these ob-
jectives are conflicting with each other due to faster resources frequently implies
higher energy consumptions. Therefore, a multi-objective approach is necessary
to tackle this problem. Multi-objective Optimization Problems (MOPs) [13] in-
clude a set of n parameters (decision variables) and a set of k objective func-
tions. The objective functions are functions from the decision variables. Hence, a
MOP could be defined as: Optimize y = f(x) = (f1(x), f2(x), ..., fk(x)), where
x = (x1, x1, ..., xn) ∈ X is the decision vector and y = (y1, y2, ..., yk) ∈ Y the
objective vector. The decision space is denoted by X and Y is the objective space.

MOPs generally return a set of solutions. The set of optimum solutions is
called Pareto optimal set and the point set, defined by the Pareto optimal set
in the value space of the objective functions, is known as Pareto front. For
a given MOP and Pareto optimal set P*, the Pareto front (PF) is defined
as: PF ∗ := f = (f1(x), f2(x), , fk(x))|xεP ∗. Pareto front consists just in non-
dominated solutions. One solution dominates other if and only if, it is at least
as good as the other in all the objectives and it is better in at least one of them.

Our Multi-objective Optimization Problem minimizes at the same time and
with the same importance two critical objectives - energy consumption and ex-
ecution time -. Given a set of grid resources R = {Rj}, j = 1,..,n and a set of
jobs J = {Ji}, i = 1,..,m the fitness functions are defined as:

Min F = (F1, F2) (1)

F1 =
∑

EnergyConsumption (Ji, fj(Ji)) (2)

F2 = MaxTime (Ji, fj(Ji)) (3)

6 http://www.grycap.upv.es/clues/eng/index.php

http://www.grycap.upv.es/clues/eng/index.php
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where fj(Ji) denotes the job Ji allocation on the resource Rj . The objective
function F1 returns the energy consumption for processing the experiment (set
of jobs) and the objective function F2 reports its completion time.

Experiments often are built up from workflows - set of jobs with dependencies
among them - . Dependent jobs are critical for minimizing the execution time,
because they need to wait to the successful execution of the predecessor jobs.
Therefore, a Directed Acyclic Graph (DAG) model has been considered to rep-
resent the experiments submitted on Grid. A workflow is modeled by a weighted
directed acyclic graph (DAG) JG = (V,E, l, d), where V is a set of nodes and
E is a set of edges. Each node j ∈ V corresponds to a job and it has assigned
a constant length measured in thousands of MI (Millions of Instructions), this
length is denoted by l(j). Each edge (j → j′) ∈ E from j to j′ denotes the
dependency between the job j′ regarding the job j. Job j′ could not be executed
until job j has been executed successfully. The transferred data length d(j → j′)
between the jobs is specified and measured in bytes.

3 Multi-Objective Firefly Algorithm (MO-FA)

Multi-objective Firefly Algorithm (MO-FA) is a new version of the original and
mono-objective Firefly Algorithm (FA) [24] to support the optimization for more
than one objective. FA is a swarm algorithm based on the fireflies behaviour. The
outstanding characteristic of the fireflies is the attractiveness among them. This
attractiveness is proportional to their brightness, therefore for any two flashing
fireflies, the less bright one will move towards the brighter one. In order to apply
this behaviour in optimization problems, the brightness represents the value of
the fitness function. The multi-objective approach has to consider more than
one fitness function and for solving our minimization problem the brightness
attribute would be inversely proportional to the fitness functions. Following,
MO-FA is described in Algorithm 1.

Algorithm 1 MO-FA pseudocode

INPUT: Population Size, β, γ, α
OUTPUT: Set of Solutions

1: Initialize population of solutions;
2: Evaluate population (Energy and Time);
3: while not stop condition do
4: Multiobjective Comparison among fireflies;
5: Multiobjective firefly attraction;
6: end while
7: Select Set of Best Solutions (First Pareto Front);

This algorithm requires four parameters: population size, β, γ and α. MO-
FA considers the population size as the number of fireflies, which represent the
candidate solutions. The initial attractiveness between two fireflies is denoted
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by β. The coefficient of light absorption is indicated by γ and it represents the
light absorbed from the air. And α is the randomization parameter. These three
parameters are used in equation 5 to diversify the optimization process.

Each firefly represents a candidate solution. Two vectors are built for any
firefly: allocation and order vector. Order vector denotes execution order of the
jobs that compound the workflow. Allocation vector indicates the assignment
between jobs and resources, where jobs will be executed. The combination of
these two vectors conforms the firefly dimensional position called UO+A. Energy
consumption and execution time are the fitness values for each firefly returned
by GridSim according to the previous vectors. This representation is based on
the work [20]. The algorithm starts with a random initialization of the fireflies’
population taking into account the dependencies among jobs. When the fireflies
are generated, GridSim returns the values of energy consumption in watts and
the execution time in seconds.

Then, each firefly is compared with the others in order to detect if there
is any firefly with more brightness (better fitness values). This comparison is
carried out per each pair of fireflies according to the dominance concept. The
dominated firefly will move towards the firefly with better fitness values. The
firefly attraction process needs first the calculation of the Euclidean distance.
Euclidean distance is calculated from the UO+A vectors of the pair of agents.
Using in the first part of the vector (order vector), the distance between order
positions and for the second part (allocation vector) the distance between the
resource numbers (equation 4).

ri,j = ‖fireflyi − fireflyj‖ =

√√√√dimension∑
k=1

(fireflyi,k − fireflyj,k)2 (4)

The movement of a firefly fireflyi attracted to another more attractive (brighter)
firefly fireflyj is determined by equation 5 (applied to every dimension of the
fireflies).

fireflyi = fireflyi + βe−γr2i,j(fireflyj − fireflyi) + α(rand − 1

2
) (5)

where β indicates the attractiveness for r = 0, γ is the coefficient of light ab-
sorption and α is the randomization parameter, because rand denotes a random
number between 0 and 1. This stochastic feature is considered to apply the
exploration processes for this algorithm. In swarm algorithms, exploration and
exploitation processes are required to avoid local optima and achieve good solu-
tions.

Once all the fireflies are compared and the updated movements are carried
out, a stagnation checking method is applied to the new firefly population. This
method is an improvement with respect to the original FA in order to avoid the
population stagnation during several iterations. Two mutation methods (one
per each vector) are applied to the stagnated fireflies. Both mutations consider
heuristics from the job scheduling problem carrying out a local search. Order and
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allocation vectors are generated randomly but each one has its own heuristics.
Random order vector is compared with other order vector built from a greedy
algorithm. The greedy algorithm consists in the creation of an order vector where
its first positions are assigned for the jobs that have more jobs dependents on
it. This fact implies that these jobs will be executed first. The mutation for
the allocation vector is more complex, since it considers more heuristics such as
the first selection of the resources according to their speed/energy consumption,
time per job in the resource selected, wait time taking into account the depen-
dencies between jobs and the overhead time to predict the total execution of the
workflow.

Then, the new population is processed again until the time limit is expired.
After that, the fireflies are ranked by using the multi-objective operator Pareto
fronts classification from the Non-dominated Sorting Genetic Algorithm II
(NSGA-II) [4]. Finally, the first Pareto front is extracted from the final pop-
ulation being the resulting set of solutions for the problem.

4 Test Environment and Experiments

A detailed grid topology and workflows are configured in GridSim to simulate
a real grid behavior. The EU Data Grid testbed [19] is completed with the grid
resources characteristics from the WWG tested [3] (Table 1). Moreover, we have
simulated 3 working nodes (WNs) per resource to add more complexity to this
environment. Three different and parallel numerical computation workflows are
launched on this infrastructure: Parallel Gaussian Algorithm, Parallel Gauss-
Jordan Algorithm and Parallel LU decomposition [22]. All of these workflows
follow a DAG model with their respective lengths in thousands of MI (Millions
of Instructions) and the input/output sizes in bytes.

Table 1. Resource Characteristics

Resource Features (Vendor, Type, OS, Resource MIPS Power(W)
Name CPUs/WN) Manager Type /CPU /CPU time

LYON Compaq, AlphaServer, OSF1, 4 Time-shared 515 67
CERN Sun, Ultra, Solaris, 4 Time-shared 377 50
RAL Sun, Ultra, Solaris, 4 Time-shared 377 50

IMPERIAL Sun, Ultra, Solaris, 2 Time-shared 377 50
NORDUGRID Intel, Pentium/VC820, Linux, 2 Time-shared 380 29.05

NIKHEF SGI, Origin 3200, IRIX, 6 Time-shared 410 17
PADOVA SGI, Origin 3200, IRIX, 16 Time-shared 410 17
BOLOGNA SGI, Origin 3200, IRIX, 6 Space-shared 410 17

ROME Intel, Pentium/VC820, Linux, 2 Time-shared 380 29.05
TORINO SGI, Origin 3200, IRIX, 4 Time-shared 410 17
MILANO Sun, Ultra, Solaris, 8 Time-shared 377 50

Experiments have been divided in two complementary studies to evaluate the
feasibility of the proposed algorithm MO-FA. Due to the stochastic nature of
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multi-objective metaheuristics, each experiment performed in our study includes
30 independent executions. In addition, other study for parameter settings was
carried out in order to obtain the more suitable values for the tackled problem.
This study was based on 30 independent executions per parameter value (at least
5 different equidistant values were checked for every parameter), considering the
others as a constant. The final settings used are: Population size = 100, β= 0.2,
γ = 1, α = 1 and stop condition = 2 minutes.

On the one hand, the MO-FA behaviour is studied as a multi-objective al-
gorithm compared with the standard and well-known multi-objective algorithm
NSGA-II (Non-dominated Sorting Genetic Algorithm-II)[4] to evaluate the multi-
objective properties and assess its reliability. Hypervolume [25] is a well-known
performance measure used in multi-objective algorithms to evaluate the opti-
mization regarding the solutions found. The hypervolume median, interquartile
range and the maximum reference point (the other reference point is (0,0) in all
the cases) are presented to consider them in future comparisons. Results shown
in Table 2 demonstrate that its median of hypervolume percentages arises more
than 50%, being a good point regarding the solutions found (MO-FA obtains bet-
ter hypervolume values than NSGA-II). Moreover, the comparison with NSGA-II
indicates the reliability of the solutions found. Set coverage metrics [25] is used to
indicate the percentage of dominance among the solutions found per each algo-
rithm. In Table 3, each cell gives the fraction of non-dominated solutions evolved
by algorithm B, which are covered by the non-dominated points achieved by al-
gorithm A [25]. Table 3 shows that MO-FA solutions dominate the solutions
found by NSGA-II in all the workflows.

Table 2. Hypervolume properties per each workflow and algorithm

Workflows MO-FA NSGA-II Reference Point
Median (%) Interquartile Median (%) Interquartile

Range Range (Time (s), Power (kW))

Gaussian 57.48 1.31 57.07 1.07 (1300, 113)
Gauss-Jordan 58.94 1.47 57.69 1.94 (3000, 130)

LU 56.85 0.88 53.19 1.23 (2000, 120)

We think that the better behaviour of MO-FA (regarding NSGA-II) could be
due to the following: NSGA-II generates new solutions by applying a recombi-
nation methodology that considers only two parent solutions to obtain a child
solution. MO-FA goes a step further and generates new solutions considering
all the information gathered by the entire swarm (population). This collective
behaviour could be the reason for the obtaining of better results.

On the other hand, a comparison between MO-FA and the real grid schedulers,
WMS and DBC, is performed. WMS has been executed with the most efficient
scheduling option, which consists in sorting the resources according to their
response time. Results show that MO-FA always obtains better results for energy
consumption (and also for the execution time). In fact, MO-FA reduces the
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Table 3. Set coverage comparison of MO-FA and NSGA-II per each workflow

Coverage A ≥ B

Algorithm Workflows Average

A B Gaussian Gauss-Jordan LU

MO-FA NSGA-II 60.00% 57.14 % 40.00% 52.38%
NSGA-II MO-FA 16.66% 25.00 % 16.66% 19.44%

Table 4. Results of DBC, WMS and MO-FA per workflow. Time (s) and Power (kW)

Workflows DBC WMS MO-FA

Time Power Time Power Time Power

Gaussian 480.82 24.69 482.68 42.93 453.18 17.86
Gauss-Jordan 533.41 46.29 534.70 80.06 515.17 37.93

LU 596.66 34.91 612.29 58.55 586.29 26.78

Table 5. Study restricted by deadline to check the jobs executed successfully

Workflows Constraint DBC WMS MO-FA

Deadline Time Power/ Jobs Time Power/ Jobs Time Power/ Jobs
Job Job Job

460 460.43 2.31 10 460.00 4.01 10 453.18 1.48 12
Gaussian 445 445.64 2.42 10 445.00 4.16 9 439.12 1.59 12

430 430.73 2.40 9 430.00 4.16 9 415.82 2.33 12

530 525.71 2.99 15 530.00 5.34 14 515.17 2.16 15
Gauss-Jordan 515 505.82 3.23 15 515.00 5.34 14 514.38 2.91 15

500 500.08 3.08 14 500.00 5.34 14 496.27 3.06 15

560 560.80 2.63 12 560.00 4.53 12 559.87 2.23 14
LU 545 545.00 2.81 12 545.00 4.90 10 537.70 2.40 14

530 530.10 2.85 10 530.00 4.90 10 530.03 3.22 14

energy consumption in more than 50% respect to the results obtained by WMS
and also a reduction around of 25% is performed regarding the results from
DBC. Moreover, MO-FA obtains the minimum values for response time (Table
4). In the last comparison, we have evaluated a deadline restriction proving the
decrease of successful jobs from DBC and WMS while MO-FA always executes
successfully all the jobs with the minimum energy and time consumption (Table
5). Other advantage that MO-FA offers as a multi-objective algorithm is that
it obtains more than one solution per each execution regarding DBC and WMS
that only obtain one per each workflow.

5 Conclusions

Green computing is a hot topic nowadays being the Grid scheduling problem a
challenging task to optimize the energy consumption. In this paper, not only an
energy consumption optimization is considered but also the execution time of
workflows with dependent jobs by using a novel multi-objective swarm approach.
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MO-FA is inspired in the fireflies behaviour considering their brightness attrac-
tion as the minimization of energy consumption and execution time. Results
demonstrate not just the goodness of MO-FA as a multi-objective algorithm but
also its efficiency regarding real grid schedulers as WMS and DBC in all the
cases. In future works, other multi-objective algorithms will be compared with
MO-FA.
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Abstract. Column generation is a basic tool for the solution of large-
scale mathematical programming problems. We present a class of column
generation algorithms in which the columns are generated by deriva-
tive free algorithms, like population-based algorithms. This class can
be viewed as a framework to define hybridization of free derivative al-
gorithms. This framework has been illustrated in this article using the
Simulated Annealing (SA) and Particle Swarm Optimization (PSO) al-
gorithms, combining them with the Nelder-Mead (NM) method. Finally
a set of computational experiments has been carried out to illustrate the
potential of this framework.

Keywords: Column generation, derivative free methods, Particle Swarm
Optimization, Nelder-Mead Simplex, Simulated Annealing.

1 Introduction

Derivative free algorithms is a key area with an increasing interest due to its
versatility and broad use in optimization problems. The main motivation for
this paper is to propose a means to accelerate the convergence of these algo-
rithms in order to be able to apply them to large-scale problems in a reasonable
computational time.

Column generation (CG) [1] is a classic means to attack the following (large-
scale) constrained optimization problem:

minimize
x∈X

f(x), P(f,X)

where the feasible region X ⊆ lRN is non-empty and closed, and f : X �→ lR is
a continuous function on X . These algorithms follow two main steps:

1. Column Generation Problem (CGP). A relaxation of the original problem is
constructed, based on current estimates x̃ of the optimal solution, which
provides a bound to the optimal value of the original problem, a new column
and information that indicates if the column should be introduced into the
solution or if the process should stop. This problem can be defined by P(f̂ , X)

where f̂(x) is an approximation of f(x) on x̃.
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2. Restricted Master Problem (RMP). Previously generated columns define an

inner approximation X̂ of the feasible region X and the new column ỹ is
used to expand it. The original problem is approximated by P(f, X̂) and
its solution x̃ is used to define a new CG sub-problem which iterates the
process.

Classic examples of this type of algorithm used for linearly and nonlinearly con-
strained problems are simplicial decomposition (SD) [2] and Restricted Simplicial
Decomposition [3]. In these algorithms the relaxation is a linearization of the ob-
jective function while the feasible set is defined by the convex hull of the retained
columns in the RMP. In this algorithm column generation is not based on pric-
ing or dual information and is associated with multidimensional extensions of
primal descent algorithms in NLP.

In [1] a CG algorithm is proposed based on closed descent algorithms. In
this framework the CGP is defined by a given algorithm and the RMP as a
phase which tries to accelerate the algorithm used in CGP. RMP is solved by an
algorithm capable of using the advantages of RMP to its favour, like a reduced
number of variables and a simple set of restrictions.

In this algorithm the SD is obtained as a column running only one iteration
of the Frank-Wolfe method [4]. A key theoretical result is that the local rate
of convergence of SD is governed by the local convergence rate of the method
chosen for the solution of the RMP; thus a superlinear or quadratic convergence
rate may be attained if a (projected) Newton method is used [5]. Note that the
rate of convergence of the Frank-Wolfe algorithm is sublinear.

In [6] was carried out an experimental study focused on their computational
efficiency of CG methods. Two types of test problems were considered, the first
one is the nonlinear, capacitated single-commodity network flow problem, and
the second one is a combined traffic assignment model. This paper validates
this methodology in order to improve the performance of feasible direction and
simplicial decomposition methods used in equilibrium assignment models.

The main contribution of this paper is to extend this framework to derivative
free optimization methods for general optimization problems. To verify the good-
ness of the framework a set of computational tests have been performed with
the algorithms: i) Nelder-Mead simplex method (NM) [7] ii) Bohachevsky et al.
Simulated Annealing (SA) [8], and iii) Particle Swarm Optimization (PSO) [9],
showing that the convergence rate and effectiveness of the heuristics algorithms
can be improved by hybridization.

The paper is organized as follows. In Section 2 the proposed framework for
derivative free optimization methods is explained, in Section 3 we discuss some
instances of the hybrid CG algorithm, in Section 4 several computational exper-
iments are reported, and finally in Section 5 we conclude with a discussion of
our findings and future work.
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2 The Conceptual Framework of Hybridization

[1] dealt with a class of CG algorithms in which the approximated objective

function f̂(y) coincides with the original f(y). This point of view leads to a CG
algorithm which can be defined according to the following three key items: i)
the algorithm to solve the P(f,X) (denoted by Ac), ii) the algorithm applied to

RMP (denoted by Ar) and iii) the means of stating the inner approximation X̂ .
The algorithms Ac and Ar analysed in [1] are descent primal methods and the
P(f,X) is a differentiable optimization problem. In this paper we extend this
framework to derivative free optimization methods and for general optimization
problems P(f,X). We begin by stating the characteristics of the optimization

algorithms Ac and Ar that can be used to solve the CGP(f,X) or RMP(f, X̂).
A type of derivative free algorithm which works with populations generates an

evolution of the population instead of generating a sequence of solutions (parti-
cles in Particle Swarm Optimization, an atom in Simulated Annealing, chromo-
somes in Genetic Algorithms, ants in Ant Colony Optimization, etc. [10]). For
this reason we consider algorithms based on populations, and if the cardinality
of this population is one the classical optimization methods appear.

Assumption 1 (Optimization Algorithm) Let P(f, Z) be an optimization
problem and let A be an optimization algorithm. This algorithm is defined as an
iterative procedure which will be assumed to fulfill the following two conditions.

i) (Feasible population). This algorithm works on a population of particles

Z̃ = {z1, · · · , zm} which is modified iteratively. This algorithm is described
by means of a point-to-set algorithmic mapping

A : Zm �→ 2Z
m

(1)

Z̃ �→ A(Z̃)

where 2Z
m

is the power set of Zm. Also we denote

At(Z̃) := [A
t times︷ ︸︸ ︷
◦ · · · ◦ A] (Z̃) (2)

and the realization of t′−iterations generate a sequence of populations
Z̃1, · · · , Z̃t′ such as Z̃t := {zt1, · · · , ztm} ∈ A(Zt−1) of feasible points for

any initialization Z̃ ∈ Zm.
ii) (Convergent property). This algorithm is convergent for every Z̃ ∈ Zm in the

following sense. Let Zt ∈ At(Z), t = 1, 2, · · · be the sequence of populations
generated by A and let

zt := Arg minimize
z∈Zt

f(z) (3)

then

dSOL(f,Z)(z
t) :=

{
min

z∗∈SOL(f,Z)
‖zt − z∗‖

}
→ 0 (4)

where SOL(f, Z) denotes the set of global minimizers of P(f, Z).
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The methods used in [1] are descent closed algorithms which are convergent for
differentiable convex programs. In this paper we generalize them to convergent
algorithms for a given optimization problem. Properties i) and ii) guarantee the
convergence of the algorithm in a finite number of iterations or a finite number
of descents in the objective function. In the CG method the number of these
descents is used to decide a change between the algorithms used. The following
definition explains this concept.

Definition 1 (n−descent iteration).
We say that an algorithm A achieves an n−descent if the algorithm is applied
in a sufficient number of iterations to ensure n times a descent in the objective
function. More formally, let n be a positive integer number and we denote

f(Z̃) := minimize
z∈Z̃

f(z) (5)

An n− descent iteration of A consists of applying the following algorithm:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Let Z̃ ′ be the initial population and let � = 0.
Do While (� ≤ n)

Z̃ ∈ A(Z̃ ′)
If f(Z̃ ′) < f∗then f∗ = f(Z̃ ′) and � = �+ 1

Z̃ ′ = Z̃
End Do While

The realization of a n−descent iteration is denoted by:

Z̃ ∈ A(Z̃ ′, n) (6)

˜Y ′ ˜Y ⊇ Y

Restricted Master
Algorithm

Ar(nr)
˜X ′ ˜X ⊇ X

RMP(f, ̂X)

Column Generation
Algorithm

Ac(nc)

Fig. 1. Hybridization of Algorithms

In Table 1, we summarize the different steps of a CG algorithm belonging
to the proposed framework. The resulting algorithm can be viewed as a hybrid
algorithm of Ac and Ar.
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Table 1. Hybrid CG algorithm

0. (Initialization): Let {nt
c} and {nt

r} be two sequences of positive integer numbers.

Let Ỹ ′1 and X̃ ′1 be respectively the initial populations for the algorithms Ac and
Ar. Let X 1 := {∅} and t := 1.

1. (Column Generation Algorithm): Apply a nt
c -descent with the algorithm Ac on

the problem P(f,X), starting from Ỹ ′t. Let Ỹt be the resulting population i.e.,

Ỹt ∈ A(Ỹ ′t, nt
c) and let yt be the current best solution. i.e.,

yt := Arg minimize
y∈Ỹt

f(y), (7)

2. (Set augmentation): Choose a set of columns Yt satisfying yt ∈ Yt ⊂ Ỹt. Let
Xt+1 ⊂ X a nonempty closed set containing {Yt,X t}.

3. (Update of populations for RMP(f, X̂)): Let X̃ ′t+1
⊆ Yt ∪ X̃ t.

4. (Restricted Master Algorithm): Apply a nt
r-descent with the algorithm Ar on

RMP(f,Xt+1), starting from X̃ ′t+1
. Let X̃ t+1 ∈ A(X̃ ′t+1

, nt
r) be the resulting

population. Let xt+1 be the current best solution. i.e.,

xt+1 := Arg minimize
x∈X̃ t+1

f(x), (8)

5. (Update of population for P(f,X)): Choose a set of solutions X t+1 satisfy-

ing xt+1 ∈ X t+1 ⊆ X̃ t+1 and update the population for solving P(f,X) as

Ỹ ′t+1
⊆ Ỹt ∪ X t+1.

6. (Termination criterion ): If xt+1 ∈ SOL(f,X) → Stop. Otherwise, let t := t + 1.
Go to Step 1.

3 Instances of Hybrid CG Algorithms

Classical algorithms used in differentiable optimization such as SD, RSD or
NSD [1] are roughly obtained letting Z be a point instead of a population, X

a polyhedral set and X̂ as the convex hull of retained columns. These methods
can be interpreted as a hybridization of Ac=Frank-Wolfe and Ar=(projected)
Newton method.

In free derivatives optimization the line-search based modification of the
Hooke and Jeeves method [11] combine, in one iteration, a coordinate-wide search
through each of the variables (Ac) with a pattern search (Ar). The Ar produces
an acceleration in the convergence of Ac.

In this paper we investigate numerically only the basic framework which con-

sists of letting X = lRn, X̂t = lRN , Yt = {yt}, X̃ t+1 = {yt} and Ỹ ′t = Ỹt−1.
Roughly, this basic hybrid algorithm consists of interchanging both algorithms
when an n−descent iteration is carried out. We have introduced the follow-
ing improvement. In order to take into account the random walking of Ac, the
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objective function f(x) in RMP is represented by f(dt ·xT ) where T is the trans-
pose of a vector, and dt = yt − xt−1. This new function is a scalarization of the
function f(x).

In the numerical experiments, for Ar the Nelder-Mead simplex search method
has been used. This method is a direct search method that does not use numerical
or analytic gradients and has local convergence. This algorithm described in [12]
uses a simplex of N + 1 points for N -dimensional vectors x. The algorithm first
makes a simplex around the initial point yt. Then, the algorithm modifies the
simplex repeatedly generating at each step of the search a new point in or near
the current simplex. The function value at the new point is compared with the
function’s values at the vertices of the simplex and, usually, one of the vertices
is replaced by the new point, creating a new simplex.

On the other hand, for Ac two algorithms with properties of global conver-
gence have to be employed. The motivation is to combine global convergent
methods with a local convergent method which is more computationally effi-
cient. In particular in this paper SA and PSO algorithms have been used for
Ac.

The SA algorithm used in this paper was proposed by [8] is an improved
version of the classical SA [13]. It adds the parameters α and β, α is the maximum
step size and β dictates the conditional probability that a worse solution can be
accepted.

The second algorithm used is the original PSO algorithm using the global gbest
model. It is a population-based algorithm and evolutionary in nature, introduced
by [9]. PSO is a kind of random search algorithm based on the metaphors of social
interaction and communications. This method has been shown to be effective in
solving difficult and complex optimization problems in a wide range of fields [14]
[15]. PSO maintains at each iteration a set of swarm particles, feasible points

represented by (Ỹ ′) in our framework.

4 Computational Results

In this section the framework proposed in this paper is tested by the hybridiza-
tion of SA with NM (SA+NM) and PSO with NM (PSO+NM) to test the
improvement of the algorithms used. As mentioned above, the main motivation
of this hybridization is to combine the capacity of the SA and PSO algorithms
to find a global minimum with the capacity of the NM algorithm to obtain a
more precise solution near a local minimum.

In the next sections, the design of experiments is explained, and the results
are reported comparing our approach with the SA, NM and PSO algorithms.

4.1 Design of the Experiments

To compare the quality of the proposed modified algorithms it is necessary to test
them with a large-scale test process on a variety of response functions, ignoring
the possible effectiveness of the algorithm in a specific type of function.
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The set of 20 deterministic functions used in the computational experiments
are found in [16] and [17], and have been selected because they are a set of
curvilinear functions for difficult unconstrained optimization problems with a
variety of dimensions (N) and functional forms, which makes it possible to asses
the robustness of the proposed approach.

To evaluate the algorithms’ effectiveness each of them have been executed
100 times per test function. In each of the executions, the initial point in SA,
NM and SA+NM is sampled from Uniform(-50,50) and initial particles in PSO
and PSO+NM are randomly generated from Uniform(-50,50). Also, in PSO and
PSO+NM algorithms the number of particles is defined as 5N .

The stopping criterion selected for all the algorithms is that the current execu-
tion reaches 5000N2 function evaluations, which corresponds to 1000N iterations
of the PSO algorithm. The sequence of number of descents was {nt

c} = 5 and
{nt

r} = 100 in the numerical tests.
The criteria selected to compare the algorithm’s robustness, effectiveness, ef-

ficiency and accuracy using the results obtained in the experiments described
above are:

1. Rate of successful minimizations, considering that a successful minimization
occurs when |f(X t)− f∗| < 10−10 where f∗ = min{f(x) : x ∈ X}.

2. Average of function evaluations until a successful minimization occurs.

3. Gap between the best minimum found in the 100 executions and the opti-
mum of the function.

4.2 Results

The results given in this section will show that the approach described is capable
of improving the SA, NM and PSO algorithms.

Tables 2 and 3 show the complete results of the experiments performed. By
comparing them, it can be seen that the modified version of the algorithms in
general has a significantly higher rate of successful minimization and a lower av-
erage of objective function evaluation before reaching a successful minimization
than the original algorithms.

To prove these statements the non-parametric statistical Wilcoxon test is
carried out with a significance of 0.05 to compare the paired groups SA vs
SA+NM, NM vs SA+NM, PSO vs PSO+NM and NM vs PSO+NM, and gives
the results shown in Table 4. Taking into account these results, it can be stated
that there exists a clear improvement in the number of successful minimizations
for all the algorithms.

In the case of function evaluations until a successful minimization occurs, the
results show that in NM and SA vs SA+NM there are no conclusive results be-
cause of the lack of successful minimizations in the NM and SA algorithms, but
in PSO and NM vs PSO+NM it can be seen that there does exist an improve-
ment, reducing the number of evaluations necessary to find the minimum of the
function.
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Table 2. NM, SA and SA+NM Results

Successful minimizations Function Evaluations Gap with best minimum found
Function NM SA SA+NM NM SA SA+NM NM SA SA+NM

1 17 0 17 1.829e+02 - 1.479e+04 1.769e-13 2.190e-08 2.827e-15
2 0 0 24 - - 1.816e+04 1.411e-09 1.035e-05 3.919e-12
3 5 0 46 2.912e+02 - 1.450e+04 4.300e-11 1.191e-06 1.943e-13
4 0 0 97 - - 1.658e+04 3.756e-10 7.366e-07 9.437e-16
5 0 0 2 - - 4.504e+04 2.181e-10 1.885e-04 4.288e-11
6 0 0 87 - - 4.480e+04 3.941e-10 6.979e-06 2.553e-13
7 69 5 64 4.014e+02 2.757e+04 2.210e+04 0 2.208e-12 1.449e-16
8 0 0 0 - - - 3.169e-10 3.652e-04 1.167e-07
9 0 0 29 - - 7.993e+04 4.480e-10 8.617e-05 2.130e-12
10 0 0 0 - - - 1.261e-10 1.809e-03 5.536e-09
11 0 0 23 - - 8.001e+04 9.319e-10 6.986e-05 3.390e-13
12 0 0 0 - - - 6.552e-08 3.071e-06 1.173e-06
13 0 0 0 - - - 5.403e-07 3.247e-06 1.175e-06
14 0 0 29 - - 3.200e+05 7.027e-10 1.916e-03 6.095e-12
15 78 0 0 3.499e+03 - - 1.704e-14 6.399e-03 4.059e-06
16 0 0 0 - - - 1.009e-01 6.264e-01 5.793e-01
17 0 0 0 - - - 235.796 5.081 1.990e+00
18 0 0 0 - - - 2.949e-01 1.589 1.947e+00
19 0 0 0 - - - 2.544 1.406 1.686e+00
20 0 0 0 - - - 7.227e-01 4.031 4.348e+00

Table 3. NM, PSO and PSO+NM Results

Successful minimizations Function Evaluations Gap with best minimum found
Function NM PSO PSO+NM NM PSO PSO+NM NM PSO PSO+NM

1 17 48 64 1.829e+02 5.408e+03 6.862e+02 1.769e-13 0 0
2 0 64 76 - 2.962e+03 2.159e+03 1.411e-09 0 0
3 5 58 69 2.912e+02 2.778e+03 9.795e+02 4.300e-11 0 0
4 0 57 71 - 3.023e+03 1.677e+03 3.756e-10 0 0
5 0 61 80 - 1.112e+04 5.231e+03 2.181e-10 1.523e-109 3.641e-99
6 0 62 80 - 3.925e+03 1.956e+03 3.941e-10 0 6.043e-283
7 69 57 96 4.014e+02 7.442e+03 1.307e+03 0 0 1.733e-238
8 0 0 63 - - 8.959e+03 3.169e-10 1.675e-09 3.748e-23
9 0 24 34 - 9.891e+03 4.012e+03 4.480e-10 1.868e-32 1.805e-31
10 0 25 64 - 5.543e+04 2.197e+04 1.261e-10 7.500e-22 0
11 0 57 73 - 9.798e+03 6.319e+03 9.319e-10 0 0
12 0 43 43 - 1.284e+05 8.431e+04 6.552e-08 6.626e-12 6.626e-12
13 0 1 23 - 3.151e+05 2.354e+05 5.403e-07 9.539e-11 7.986e-11
14 0 30 37 - 4.586e+04 2.528e+04 7.027e-10 1.032e-30 5.311e-31
15 78 0 43 3.499e+03 - 8.342e+04 1.704e-14 1.728e-09 5.276e-18
16 0 0 0 - - - 1.009e-01 7.411e-03 1.478e-02
17 0 13 10 - 2.495e+05 2.193e+05 2.358e+02 0 0
18 0 0 3 - - 3.383e+05 2.949e-01 1.865e-08 5.417e-18
19 0 44 53 - 5.563e+05 4.949e+05 2.544e+00 0 0
20 0 36 22 - 1.371e+06 8.114e+05 7.227e-01 0 0

Table 4. Significances of Wilcoxon tests

Algorithms S. minimizations F. Evaluations Gap best minimum
NM vs SA+NM 0.037 0.0545* 0.3005
SA vs SA+NM 0.0025 -* 0.0285

NM vs PSO+NM 0.00015 0.034 0.0001
PSO vs PSO+NM 0.001 0.0001 0.2345

* Not enough data
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To illustrate the general performance of the approaches in terms of evaluations
of the objective function, Figure 2 show the 2nd function of the experiments,
(B2 function), plotting the best evaluation of the function vs the number of
evaluations of the objective function. It can be seen from the figures that the
SA+NM and PSO+NM algorithms converge more quickly than the classical
algorithms, also breaking the local minimum which cannot be reduced by the
NM algorithm.

Fig. 2. Objective Function vs Evaluations for SA, NM and SA+NM

Finally, for the gap with the best found minimum results it can be shown that
the SA is improved by the SA+NM algorithm and the NM is improved by the
PSO+NM algorithm.

5 Conclusions

In this paper a new framework for hybridization of derivative free algorithms
is presented. This approach includes the hybridization of two methods in an
attempt to combine the specific capacity of exploitation and exploration of each
algorithm, increasing the robustness, effectiveness, efficiency and accuracy.

This paper investigates numerically the basic CG algorithm consisting of
letting X̂ = X = lRN and the algorithms NM, SA and PSO. Also a set of
computational tests has been done using 20 curvilinear functions for difficult
unconstrained optimization, in which the original algorithms are compared with
the modified versions. The results show that the hybrid algorithms have a higher
rate of successful minimizations and an acceleration of the algorithms, which are
capable of giving the optimum using fewer evaluations of the function than the
original algorithm.

Future work will research new instances of the algorithm based on the ini-
tialization [16] or augmentation rules for defining X̂. The idea is to extend the
computational results by trying to apply the framework to other algorithms and
more complex optimization problems like [18].
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Abstract. In this paper we present an approach to the part-of-speech
tagging problem based on particle swarm optimization. The part-of-
speech tagging is a key input feature for several other natural language
processing tasks, like phrase chunking and named entity recognition. A
tagger is a system that should receive a text, made of sentences, and, as
output, should return the same text, but with each of its words associ-
ated with the correct part-of-speech tag. The task is not straightforward,
since a large percentage of words have more than one possible part-of-
speech tag, and the right choice is determined by the part-of-speech tags
of the surrounding words, which can also have more than one possible
tag. In this work we investigate the possibility of using a particle swarm
optimization algorithm to solve the part-of-speech tagging problem sup-
ported by a set of disambiguation rules. The results we obtained on two
different corpora are amongst the best ones published for those corpora.

Keywords: Part-of-speech Tagging, Disambiguation Rules, Evolution-
ary Algorithms, Particle Swarm Optimization, Natural Language Pro-
cessing.

1 Introduction

The words in most languages can assume different roles in a sentence, depend-
ing on how they are used. These roles are normally designated by part-of-speech
(POS) tags or word classes, such as nouns, verbs, adjectives and adverbs. The
process of classifying words into their POS, and labeling them accordingly, is
known as POS tagging, or, simply, tagging. Tagging is a very important task
in natural language processing (NLP), because it is a necessary step in a large
number of more complex processes like phrase chunking, named entity recogni-
tion, parsing, machine translation, information retrieval, speech recognition, etc.
In fact, it is the second step in the typical NLP pipeline, following tokenization.

The role of a word in a sentence is determined by its surrounding words
(context). For instance, the word fish can assume the function of a verb, "Men
like to fish.", or a noun, "I like smoked fish", depending on how we choose
to use it on a sentence. This means that in order to assign to each word of a
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sentence its correct tag, we have to consider the context in which each word
appears. However, each of the words belonging to a word’s context can also be
used in different ways, and that means that in order to solve the problem we
have to have some type of disambiguation mechanism. Traditionally there are
two groups of methods used to tackle this task, with respect to the information
model used. The first group is based on statistical data concerning the different
context possibilities for a word (stochastic taggers) [1–4], while the second group
is based on rules that capture the language properties and are used to improve
tagging accuracy [5–7].

The simplest stochastic tagger, called unigram tagger, takes only into account
the word itself. It assigns the tag that is most likely for one particular token.
The tagger works like a simple lookup tagger, assigning to each word the most
common tag for that word in the training corpus. To do that, the learning
process just counts, for each word, the number of times it appears with each
of the possible tags. A n-gram tagger is a generalization of an unigram tagger,
whose context is the current word together with the part-of-speech tags of the
n-1 preceding tokens. In this case, the training step saves, for each possible
tag, the number of times it appears in every different context presented on the
training corpus. Since the surrounding words can also have various possibilities
of classification, it is necessary to use a statistical model that allows the selection
of the best choices for marking the entire sequence, according to the model. Most
of the stochastic taggers are based on hidden Markov models, and, because of
that, a word’s context consists only in the tags of the words that precede it.

One of the most popular taggers based on rules is the one proposed by Brill
[5]. Brill’s rules are usually called transformation rules. The system can be di-
vided into two main components: a list of transformation rules patterns for error
correction, and a learning system. The transformation patterns are hand made
and provided to the learning algorithm, which will instantiate and order them.
The search is made in a greedy fashion. The result is an ordered set of transfor-
mation rules, which is then used to perform the tagging. These rules are meant
to correct mistakes in a pre-tagged text, usually achieved by a baseline system
that marks each word with its most common tag. They are applied in a iterative
way until no rule can be fired.

As already observed, the only information a n-gram tagger considers from
prior context is the tags, even though words themselves might be an useful source
of information. It is simply impractical for n-gram models to be conditioned by
the context words themselves (and not only their tags). On the other hand,
Brill’s approach allows the inclusion of other type of information besides the
context. In fact, the author also used the learning algorithm to achieve a set of
lexicalized transformation rules, that includes not only the tags but the words
themselves.

There are also some other aspects that can be used to determine a word’s
category beside its context in a sentence [8]. The internal structure of a word
may give useful clues as to the word’s class. For example, -ness is a suffix that
combines with an adjective to produce a noun, e.g., happy → happiness, ill →
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illness. Therefore, if we encounter a word that ends in -ness, it is very likely
to be a noun. Similarly, -ing is a suffix that is most commonly associated with
gerunds, like walking, talking, thinking, listening. We also might guess that any
word ending in -ed is the past participle of a verb, and any word ending with ’s
is a possessive noun.

More recently, several evolutionary approaches have been proposed to solve
the tagging problem. These approaches can also be divided by the type of infor-
mation used to solve the problem, statistical information [2–4], and rule-based
information [6]. Shortly, in the former, an evolutionary algorithm is used to as-
sign the most likely tag to each word of a sentence, based on a training table,
that basically has the same information that is used in the traditional probabilis-
tic approaches. Notwithstanding, there is an important difference related with
the context’s shape, i.e they also take into account context information about
the tags that follow a particular word. On the other hand, the later is inspired
by the Brill’s tagger. In this case a genetic algorithm (GA) is used to evolve a
set of transformations rules, that will be used to tag a text in much the same
way as the Brill’s tagger. While in Araujo’s work, the evolutionary algorithm is
used to discover the best sequence of tags for the words of a sentence, using an
information model based on statistical data, in Wilson’s work the evolutionary
algorithm is used to evolve the information model itself, in the form of a set of
transformation rules.

In this work we investigate the possibility of using a discrete particle swarm
optimization (PSO) algorithm to solve the POS tagging problem, using as in-
formation model a set of disambiguation rules extracted earlier by other evo-
lutionary algorithm, which in this case was also a PSO based algorithm. The
rules were extracted from an annotated corpus and have the typical form of a
classification rule. The problem of searching for the best tag assignments can be
seen as a combinatorial optimization problem, where a solution is evaluated with
the help of the disambiguation rules previously learned. We decided to test the
application of swarm intelligence to this problem, since other population based
algorithms, in particular genetic algorithms, have been successfully applied to
many combinatorial optimization tasks.

2 Particle Swarm Optimization

In PSO algorithms, a particle decides where to move next, considering its own
experience, which is the memory of its best past position, and the experience
of its most successful neighbor. There may be different concepts and values for
neighborhood; it can be seen as spatial neighborhood where it is determined by
the Euclidean distance between the positions of two particles, or as a sociometric
neighborhood (e.g.: the index position in the storing array). The number of
neighbors k usually considered is either k = 2 or k = all. Although some actions
differ from one variant of PSO to the other, the common pseudo-code for PSO
is as follows:
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Algorithm 1. Generic Particle Swarm Optimization Algorithm
Initiate_Swarm()
repeat

for p= 1 to number of particles do
Evaluate(p)
Update_past_experience(p)
Update_neighborhood_best(p,k)
for d= 1 to number of Dimensions do

Move(p,d)
end for

end for
until Criterion

The output of this algorithm is the best point in the hyperspace the swarm
visited. Since its introduction, the PSO algorithm has been successfully applied
to problems in different areas, including antenna design, computer graphics visu-
alization, biomedical applications, design of electrical networks, and many others
[9]. Amongst the qualities that led to this popularity are its conceptual simplic-
ity, ease of implementation and low computational costs. The algorithm works
well with small swarms and tends to converge fast to a solution. There are sev-
eral variants of PSO, including algorithms for discrete and continuous domains.
The variant used in our work was the discrete PSO introduced by Kennedy [10].
The discrete variant of the PSO considers each bit as a dimension, with 2 possi-
ble values 0 or 1. Particle motion is just the toggling between these two values.
There is a velocity value (Vid) associated with each dimension/bit; this value
is randomly generated from a range of [−4.0, 4.0] when the particle is created
and iteratively updated (see equation 1) according to his previous best position
(Pid), and the best position in the neighborhood (Pgd). ϕ1 and ϕ2 are random
weights whose role is to provide diversity between individual learning and social
influence.

Vid(t+ 1) = Vid(t− 1) + ϕ1(Pid − xid(t− 1)) + ϕ2(Pgd − xi,d(t− 1)) (1)

To determine if a bit will toggle (see equation 2), a random number, ρ, is drawn
from a uniform distribution ranging from 0 to 1, and is compared to a normalized
value of the velocity associated with this dimension.

xi,d =

{
1 if ρ < S(vid(t))
0 otherwise (2)

The sigmoid function (see equation 3) is used here to insure that the velocity’s
value is kept in the range of [0.0, 1.0].

S(vid) =
1

1 + exp(−vid)
(3)
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3 The Disambiguation Rules

One of the problems of the stochastic taggers, is that they tend to be dependent
of the domain in which they are trained. Also the information used is in the form
of probabilistic values, which are less comprehensible than data presented in the
form of rules, and only contemplates context information. The other evolutionary
taggers, as far as we know, also used stochastic information to guide the evolu-
tionary process. However they were able to consider different context shapes in
the decision process, due to the use of the evolutionary algorithm in opposition
to the hidden Markov model used in the traditional stochastic taggers.

We believe that the optimization process necessary to perform the tagging
could be improved if the information used to guide it is in the form of rules
that capture some relevant aspects of the language. This aspects should include
not only the word’s context, but also information about some of its morphology
features.

In this work we used a set of disambiguation rules found earlier by a discrete
PSO discovery algorithm to help the optimization process. These rules guided
the swarm particles towards the best tagging for a sentence. Since the tagging
of unambiguous words is straightforward, we only used rules for the ambigu-
ous tags of the corpora used in the experimental work. A set of disambiguation
rules is given to the PSO-Tagger for each ambiguous tag. The rules follow the
classification rules format, and, therefore, are no more than conditional clauses,
involving two parts: the antecedent and the consequent. The former is the con-
junction of logical tests, and the latter gives the class that applies to instances
covered by the rule: IF attriba = val1 AND attribb = val2 ..... AND attribn
= vali THEN classx.

Since each tag has its set of disambiguation rules, the rule’s consequent was
ignored. The antecedent takes into consideration six attributes concerning the
word’s context: the lexical categories of the third, second and first words to the
left, and the lexical categories of the first, second, and third words to the right.
In addition, nine attributes that capture some aspects of the words’ morphology,
are also considered: ’The word is capitalized?’, ’The word is the first word of the
sentence?’, ’The word ends with ed?’, ’The word ends with ing?’, ’The word
ends with es?’ , ’The word ends with ould?’ , ’The word ends with ’s?’ , ’The
word ends with s?’, and ’The word has numbers or ’.’ and numbers?’.

The possible values for each of the first six attributes are the values of the
corpus tag set and the other nine are boolean attributes. Each rule has associated
a measure of its quality that was computed during the discovery process. This
value was given by the well known fβ-measure (see equation 4), that takes into
consideration the precision (see equation 5) and the recall (see equation 6) of
the rule.

Fβ(X) = (1 + β2)× precision(X)× recall(X)

β2 × precison(X) + recall(X)
(4)

precision(X) =
TP

TP + FP
(5)
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recall(X) =
TP

TP + FN
(6)

where:

– TP - True Positives = number of instances covered by the rule that are
correctly classified, i.e., its class matches the training target class;

– FP - False Positives = number of instances covered by the rule that are
wrongly classified, i.e., its class differs from the training target class;

– FN - False Negatives = number of instances not covered by the rule, whose
class matches the training target class.

The rules were extracted from the first 50000 examples of the Brown corpus.

4 PSO-Tagger

The PSO-Tagger was designed to receive as inputs a sentence, a set of disam-
biguation rules and a dictionary. The returned output is the input sentence with
each of its words marked with the correct POS tag. The discrete PSO algorithm
evolves a swarm of particles, that encode, each of them, a sequence of tags to
mark the ambiguous words of the input sentence. Since we adopted the discrete
version of the PSO algorithm, we used a binary representation for the particles.
To encode each of the tags belonging to the tag set, used in the experimental
work, we used a string of 5 bits. Therefore, a particle that proposes a tagging
for a sentence with n ambiguous words will be represented by n× 5 bits.

4.1 Representation

Each five bits of a particle encode a integer number that indexes a table with as
much entries as the possible tags for the correspondent ambiguous word. If the in-
teger number given by the binary string exceeds the table size, we use as index the
remainder of the division by the table size value. As we said before, we intend to
use the disambiguation rules, described in the previous section, to guide the evo-
lution of the swarm particles. Since these rules have six attributes related with the
word context, and other nine attributes concerningmorphological properties of the
words, we need to build, from the input sentence and from the tags proposed by
the particles, the values of each one of the attributes contemplated in the rules’ an-
tecedents. Although the particles only propose tags for the ambiguous words, the
tags of the unambiguous ones will be needed to extract the attributes’ values.Thus,
before optimization begins, the discrete PSO marks each of these words with the
correspondent tag, by simple input dictionary lookup. So a particle completes the
previous lookup based tagging, and provides a full marked sentence. This sentence
can then be used to extract a set of instances composed by the 15 attributes, so
that the disambiguation rules can be applied. This way, each pair wi/ti in the full
annotated sentence results in a 16-tuple made by the 15 properties and by ti. When
there is no word in one of the positions contemplated in the context, we adopted
the use of an extra tag named ’None’.
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4.2 Particles’ Evaluation

The quality of a particle is given by the tagging quality of the full input sentence.
To evaluate the tagging of the sentence, we use the disambiguated rules to mea-
sure the quality of each instance extracted from the sentence. The quality of the
overall tagging is given by the sum of the evaluation results for each instance.
Let’s consider ti to be the class presented in the last position of the 16-tuple
of instance instancek. If Rti represents the set of disambiguation rules for the
lexical category ti, and rk ∈ Rti a disambiguation rule that covers the instance
instancek, then the quality value of instancek is given by the quality measure
associated with rule rk (see equation 7).

F (instancek) =

{
Quality(rk) if rk is found
0 otherwise (7)

If Sp is the set of all instances extracted from the annotated sentence determined
by the particle p, the quality of particle p is given by equation 8.

Fitness(p) =
∑
i∈Sp

F (i) (8)

Although a particle only suggests tags for the ambiguous words in the sentence,
the quality of the instances defined by the unambiguous words is affected by the
tags established by the particle. Therefore, the overall tagging evaluation should
also consider this instances.

5 Experimental Results

We developed our system in Python and used the resources available on the
NLTK (Natural Language Toolkit ) software package in our experiences. The
NLTK package provides, among others, the Brown corpus and a sample of 10%
of the Wall Street Journal (WSJ) corpus of the Penn Treebank. These corpora
are the most frequently used to test taggers’ performances and also the ones
used in the approaches we mentioned earlier. The NLTK package also provides
several Python modules to process those corpora.

As we said before, tagged corpora use many different conventions for tagging
words. This means that the tag sets vary from corpus to corpus. To avoid this,
we decided to use the simplify_tags=True option of the tagged_sentence module
of NLTK corpus readers. When this option is set to True, NLTK converts the
respective tag set of the corpus used to a uniform simplified tag set, composed
by 20 tags. This simplified tag set was the one used by the PSO discovery
algorithm to extract the disambiguation rules we used, and, for that reason, the
one adopted here.

We tested our PSO-Tagger on 8300 words of the WSJ corpus of the Penn
Treebank and on 22562 words of the Brown corpus. We ran the algorithm 20
times with a swarm of 10 and 20 particles during 50 and 100 generations. The
results achieved are shown in table 1. As we can see, the best average accuracy on
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Table 1. Results achieved on the Brown and WSJ corpora by the PSO-Tagger after
20 runs with a swarm of size 10 and 20, during 50 and 100 generations

Corpus Swarm Gen Average Stand. Dev. Best
Brown 10 50 96.68 0.022 96.72

100 96.67 0.028 96.72
20 50 96.7 0.024 96.75

100 96.69 0.024 96.73

WSJ 10 50 96.9 0.054 96.99
100 96.91 0.054 97.04

20 50 96.88 0.053 96.99
100 96.91 0.031 96.98

Table 2. Results achieved by the PSO-Tagger on the WSJ corpus and on the Brown
corpus, along with the results achieved by the approaches more similar to the one
presented here

Corpus Tagger Training Set Test Set Average Best
Brown PSO-Tagger 50000 22562 96.7 96.75

GA-Tagger [2] 185000 2500 - 95.4
GA-Tagger [4] 165276 17303 96.37 96.67
PGA-Tagger [4] 165276 17303 96.61 96.75

WSJ PSO-Tagger none 8300 96.91 97.04
Wilson’s Tagger [6] 600000 none - 89.8
Brill’s Tagger [5] 600000 150000 - 97.2
PGA-Tagger [4] 554923 2544 - 96.63

the WSJ corpus was 96.91% and the best average accuracy on the Brown corpus
was 96.72%. The best results on the Brown corpus were achieved with a swarm
of 20 particles over 50 generations. A maximum accuracy of 96.75% was found.
A swarm of 20 particles over 100 generations gave the best results for the WSJ
corpus. In this case, the best tagging found had an accuracy of 97.04%. Both
results allow us to conclude that the PSO-Tagger usually finds a solution very
quickly. Like we said before, this algorithm works well with small swarms and
tends to converge fast to a solution. Table 2 presents the best results achieved
by the approaches we mentioned earlier, along with the best ones achieved by
the PSO-Tagger. Observing table 2, we can see that the PSO-Tagger accuracy
is very promising, since it is among the best values presented.

Naturally, the difficulty level of the tagging task depends on the number of am-
biguous words of the sentence we want to tag. Although it is possible to construct
sentences in which every word is ambiguous [11], such as the following: "Her hand
had come to rest on that very book."; those situations are not the most common.
After counting the number of ambiguous words that appear in the sentences of the
10% of the Brown corpus we reserved for testing the tagger, we observed that, in
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average, there are 6.9 ambiguous words per sentence. This explain the considerable
low number of particles and generations needed to achieve a solution. We could ar-
gue that in those conditions the use of a PSO algorithm is unnecessary, and that
a exhaustive search could be applied to solve the problem. However, we can not
ignore the worst case scenario, where, like we see above, all the words, or a large
majority of the words, on a very long sentence may be ambiguous. Furthermore,
we observed that the sentence average size of the Brown corpus is of 20.25 tokens,
with a maximum of 180. The largest number of ambiguous words on a sentence be-
longing to this corpus is 68. Even for the smallest degree of ambiguity, with only
two possible tags for each word, we have a search space of 268, which fully justifies
the use of a global search algorithm such as a PSO.

The results achieved show that there are no significant differences on the
accuracy obtained by the tagger on the two test sets. At this point, it is important
to emphasize that the disambiguation rules used on the tagger were extracted
from a subset (different from the test set used in this experiments) of the Brown
corpus. Which bring us to the conclusion that the learned rules are generic
enough to be used on different corpora, and are not domain dependent.

6 Conclusions

We described a new evolutionary approach to the POS tagging problem that
achieved competitive results when compared to the ones obtained by previously
used methods (see table 2). Although there are other approaches to this task
based on evolutionary algorithms, in particular genetic algorithms, as far as we
know this is the first attempt that uses a PSO algorithm to tackle the POS
tagging problem. Our method also differs from previous ones on the information
model used to guide the evolutionary process. More specifically, in this work,
we used a set of disambiguation rules, including morphological information, in
opposition to the stochastic data that is usually adopted in the evolutionary
approaches we have found in the literature. We believe that this approach brings
an important level of generalization to the model, which results in good tagging
performances even when applied to other corpora.

The PSO-Tagger proved to be capable of tackling the combinatorial optimiza-
tion problem, performing the tagging task with good results, while using limited
resources in terms of swarm size and number of generations. Although we con-
sider our results to be promising, we are aware of the necessity of evaluating our
approach with a larger tag set and of applying it to more corpora. We intend
to test the tagger on other languages, as well. Finally, we also think that the
overall evolutionary approach we developed for the POS tagging problem could
be successfully applied to other disambiguation problems, like the named-entity
recognition problem.
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Abstract. Support vector machines are classification algorithms that
have been successfully applied to problems in many different areas. Re-
cently, evolutionary algorithms have been used to train support vector
machines, which proved particularly useful in some multi-objective for-
mulations and when indefinite kernels are used. In this paper, we propose
a new heterogeneous particle swarm optimization algorithm, called scout-
ing predator-prey optimizer, specially adapted for the training of support
vector machines. We compare our algorithm with two other evolutionary
approaches, using both positive definite and indefinite kernels, on a large
set of benchmark problems. The experimental results confirm that the
evolutionary algorithms can be competitive with the classic methods and
even superior when using indefinite kernels. The scouting predator-prey
optimizer can train support vector machines with similar or better classi-
fication accuracy than the other evolutionary algorithms, while requiring
significantly less computational resources.

Keywords: particle swarm optimization, heterogeneous particle swarms,
support vector machines, non PSD kernels.

1 Introduction

Kernel methods are data analysis techniques, whose strategy is to map the orig-
inal data into a feature space, where existing patterns can be discovered using
simple linear relations [1]. This process is carried out on a modular basis, as
each step is performed by separate components. The data mapping component
is defined implicitly through a kernel function. The choice of the kernel function
depends on the problem’s characteristics and knowledge about the patterns that
are expected to be found. Linear patterns are then searched in the resulting
feature space, using problem independent learning algorithms.

The best known representatives of these methods are support vector machines
(SVMs), which classify new data by comparing it with a learned hyper-plane
that maximizes a margin between data points of different classes [2]. The re-
markable success with which these methods have been applied to many areas is
the result of their specific properties: low computational cost; robustness, with
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solid theoretical bases in statistical learning; and generality, since the choice of
an appropriate kernel function allows the algorithm to learn non-linear decision
functions and deal with non-vectorial and even heterogeneous data.

Despite the success of this approach, the application of a SVM to a new
problem still presents a number of difficulties. A kernel function must be chosen
and its parameters optimized. A real parameter C must also be chosen to balance
error and capacity in the SVM. If a new kernel function has to be developed, care
must be taken to ensure the kernel is positive semi definite (PSD), since training
relies on quadratic programming based techniques, where a unimodal concave
function is optimized. These issues have been addressed using both analytic
techniques and heuristic search algorithms. Recently, several approaches based
on evolutionary methods, such as genetic algorithms (GA), genetic programming
(GP) and particle swarm optimization algorithms (PSO) have been proposed.
These algorithms are advantageous when search and/or optimization is done in
complex, non-vectorial spaces, or when the function to optimize is multi-modal,
with many local optima in alternative to a single solution. In this paper, we deal
with evolutionary approaches to the training of support vector machines.

There are three main reasons that make the evolutionary training of SVMs an
interesting problem. The most important concerns the possibility of using evo-
lutionary algorithms to train SVMs using indefinite kernels [3]. Learning with
indefinite kernels is an important research area, because traditional methods are
not guaranteed to find the global optimum on the resulting optimization prob-
lem; proving a new kernel to be PSD can be a difficult task; some kernels that are
proven non PSD, e.g. the sigmoid kernel, can be of practical interest [4]; there
were promising empirical results reported for SVMs using indefinite kernels [4];
some kernel learning approaches (including GP based methods) return kernels
that are not guaranteed to be PSD [5]. The second reason is related with the re-
cent proposal of multi-objective evolutionary SVM formulations [6], which allow
the independent optimization of error and model complexity, i.e., the trade-off
parameter C is not needed. Finally, this is an interesting practical problem for
evolutionary computation, with an objective function that is high-dimensional,
multi-modal (for indefinite kernels) and non-separable.

In this paper, we propose the use of an heterogeneous particle swarm opti-
mizer, called scouting predator-prey optimizer (SPPO), to train the support vec-
tor machines. We empirically compare this algorithm with the best evolutionary
based approach found in the field literature [7], the canonical constricted version
of the PSO and two standard training methods. The comparison is done over a
large set of benchmark datasets, including 7 real world and 3 synthetic datasets.
The algorithms are tested using two different kernels, the radial basis function
and a non positive definite kernel, the Epanechnikov kernel.

2 Previous Work

The optimization of the kernel and C parameters are the issues that have at-
tracted the most attention from the evolutionary computation community (see,
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e.g., [8]). Some approaches, of which [9] is a recent example, use genetic program-
ming to evolve the kernel best suited for a given problem. While these methods
are very computationally expensive, they also frequently find new kernels with
better performance than the more usual ones. A difficulty common to these ap-
proaches is how to deal with the evolved kernels, when they are non PSD. Initial
research in the evolutionary training of support vector machines has been cen-
tered on the training of SVMs with positive definite kernels. The first approach
reported in the literature was a hybrid approach that combined a linear particle
swarm optimizer with traditional decomposition based methods [10]. It had some
severe problems and experimental results were very limited. An approach based
on a genetic algorithm has been used to optimize the primal problem instead of
the more common dual version [11], which seriously limits its applicability.

The most significant work in SVM evolutionary training was based on the use
of evolution strategies (ES). Mierswa compared several ES based algorithms with
a standard PSO optimizer on 6 benchmark problems and found that the evolu-
tionary algorithms’ performance was competitive with the traditional methods
[7], but that the PSO did not achieve as lower classification errors as the other al-
gorithms. The best ES approach was then used as the optimization method for a
new multi-objective SVM formulation [6], allowing the simultaneous independent
optimization of the classification error and model complexity. The same method
was also applied to the training of a SVM with an Epanechnikov kernel [3], in
what was the first described application of an evolutionary training algorithm to
the optimization of SVMs with a non PSD kernel. The evolutionary method was
reported to have achieved better optimization and classification results in several
benchmark problems, when compared with a traditional quadratic programming
based method.

3 Support Vector Machines

In their most common formulation [1,2,12], support vector machines are classifi-
cation mechanisms, which, given a training set T = {(x1, y1), ..., (xn, yn)} , with
xi ∈ R

m and yi ∈ {±1}, assuming n exemples with m real attributes, learn a
hyperplane 〈w,x〉+ b = 0, with w ∈ R

m and b ∈ R, which completely separates
the example labels as −1 from the ones labeled as +1. Using this hyperplane, a
new instance x is classified using f(x) = sgn(〈w,x〉 + b).

The maximization of the distance, or margin, between the discriminating hy-
perplane and the closest examples, is a characteristic of large margin methods, of
which support vector machines are an instance. This maximization reduces the
so-called structural risk, which is related to the quality of the decision function.
Support vector machines therefore try to minimize the structural risk, which
comprises not only the empirical risk, but also a measure of the classifier’s qual-
ity. In general, these methods seek to avoid the over-adjustment of the classifier,
by giving preference to classification functions which appear to be the most
promising in terms of their ability to generalize for new data. The most dis-
criminating hyperplane can be computed by solving the following maximization
problem:
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maximize
∑
i

αi −
1

2

∑
i

∑
j

αiαjyiyjk(xi,xj), (1)

subject to
∑
i

αiyi = 0 (2)

and ∀i : 0 � αi � C (3)

Support vector machines are extended to the non-linear case by implicitly map-
ping the data to a secondary space with higher dimensionality - the feature space
- where a linear separation is possible. This mapping is achieved by using a kernel
function k(xi,xj) in equation (1) instead of the product 〈xi,xj〉. The most com-
mon kernel function is the radial basis function, but many others are used. If the
kernel is positive definite, the optimization problem is a quadratic problem with
a concave optimization function and several algorithms are available to solve it
efficiently, with the most popular implementations being mySVM and LIBSVM.
If, however, the kernel is not positive definite, the problem is not guaranteed
to possess a single optimum and these algorithms can become trapped in local
optima, failing to find the best solution.

Central to the wide acceptance of SVMs are their sound theoretical founda-
tions and clear geometric interpretation. SVMs work on Euclidean feature spaces
implicitly defined by the kernel functions. They classify patterns using an op-
timal hyperplane computed by maximizing the margin to the nearest training
examples - the support vectors. Unfortunately, this interpretation fails to hold
when non positive definite kernels are used, even if experimental results show
that these kernels can result in successful classifiers.

Haasdonk, however, has proposed an alternative interpretation for SVMs
based on non positive definite kernels, which accounts for their good experimen-
tal results [13]. In this interpretation, SVMs are optimal hyperplane classifiers,
not by margin maximization, but by minimization of distances between convex
hulls in pseudo-Euclidean spaces. Both this work and the one by [4] conclude
that traditional methods, e.g. LIBSVM, can converge to a stationary point of the
non concave optimization problem that results from the use of indefinite kernels.
Obviously, there is no guarantee that this point is the global optimum, which
leads us to the interest in using heuristic global optimization methods, like the
evolutionary algorithms we discuss here. An in-depth discussion of the relevance
of learning with non PSD kernels can be found in [5], while the training of SVM
using these kernels is thoroughly discussed in [3,4,13].

4 The Scouting Predator-Prey Optimiser

Particle swarm optimizers [14,15] can be an obvious answer to the problem of
optimizing SVMs with non positive definite kennels, since they are population
based global optimization algorithms with successful application to hard opti-
mization problems with many optima [16]. We recently proposed a new heteroge-
nous particle swarm algorithm, called scouting predator-prey optimizer (SPPO),
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which showed good performance, even on hard optimization problems [17]. We
also proposed the use of scout particles to improve a swarm optimizer by us-
ing problem specific knowledge. Here, we will describe a version of the SPPO
specifically tailored to the training of SVMs.

In particle swarm optimization, each swarm member is represented by three
m-size vectors, assuming an optimization problem f(x) in R

m. For each particle
i we have a xi vector that represents the current position in the search space,
a pi vector storing the best position found so far and a third vector vi cor-
responding to the particle’s velocity. For each iteration t of the algorithm, the
current position xi of every particle i is evaluated by computing f(xi). Assuming
a maximization problem, xi is saved in pi if f(xi) > f(pi), i.e. if xi is the best
solution found by the particle so far. The velocity vector vi is then computed
using equation (4) and used to update the particle position using equation (5).

vt+1
i = wvt

i + u(0, φ1)⊗ (pt
i − xt

i) + u(0, φ2)⊗ (pt
g − xt

i) (4)

xt+1
i = xt

i + vt
i (5)

In equation (4) (pt
i − xt

i) represents the distance between a particle and its best
position in previous iterations and (pt

g − xt
i) represents the distance between a

particle and the best position found by the particles in its neighborhood (which
can be the complete swarm), stored in pt

g. u(0, φ1) and u(0, φ2) are random num-
ber vectors with uniform distributions between 0 e φ1 and 0 e φ2, respectively. w
is a weight associated with the velocity in the previous iteration, which usually
decreases linearly during the algorithm execution. ⊗ is a vector component-wise
multiplication.

4.1 The Predator Effect

One of the limitations of the standard particle swarm algorithm is its inability
to introduce diversity in the swarm after it has converged to a local optimum.
Since there is no mechanism similar to a mutation operator, and changes in
xi are dependent on differences between the particles’ positions, as the swarm
clusters around a promising area in the search space, so does velocity decreases
and particles converge to the optimum. This is the desirable behavior if the
optimum is global, but, if it is a local optimum, there is no way to increase
velocities again and allow the swarm to escape to a new optimum. We use a
predator-prey effect in SPPO to alleviate this problem. The predator particle’s
velocity vp is updated using equation (6), oscillating between the best particle’s
best position and the best particle’s current position. This update rule makes
the predator effectively chase the best particle in the search space.

vt+1
p = wvt

p + u(0, φ1)⊗ (xt
g − xt

p) + u(0, φ2)⊗ (pt
g − xt

p) (6)

The role of the predator particle in the SPPO algorithm is to introduce a per-
turbation factor in the swarm and to guarantee that this disturbance increases
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as the swarm converges to a single point. To achieve this, we add a perturbation
to a particles’s velocity in dimension j, as defined by equation 7, where u(−1, 1)
and u(0, 1) are random numbers uniformly distributed between the arguments,
xmax and xmin are, respectively the upper and lower limit to the search space
and r is the user defined perturbation probability.

vtij = vtij + u(−1, 1)|xmax − xmin|, if u(0, 1) < r exp−|xij−xpj| (7)

From equation 7 follows that a random perturbation is added to the velocity
value in dimension j with a probability that depends on the particles’s distance
to the predator in that dimension. This probability is maximum (r) when that
distance is 0, but rapidly decreases if the particle escapes the predator. Since
the predator chases the best particle, the perturbation in the swarm is more
likely when all the particles are very near, i.e. during the exploitation phase,
and becomes almost inexistent when the particles are far apart. This mechanism
allows for particles to escape and find new optima far from the current attractor
even in the last phases of exploitation.

4.2 Scout Particles

Scout particles, or scouts, are a subset of the swarm that implement exploration
strategies different from the one used by the main swarm. They can be used to in-
troduce improvements to the global algorithm, e.g. a local search sub-algorithm,
or to implement problem dependent mechanisms to better adapt the algorithm
to a specific problem. In this work, we will use two scout particles to tailor
the SPPO to the specific problem of training SVMs. The first scout is a local
search particle which, from previous work [17], we know can be used to increase
the convergence speed without compromising the final results. For this scout we
choose the best particle at each iteration and perform a random mutation on
one of its dimensions j using equation (8), where n(0, σ2) is a a random num-
ber drawn from a normal distribution with average 0 and standard deviation σ.
pg is updated to the new p′

g only if f(p′
g) > f(pg). σ is set to xmax/10. This

mechanism allows for a local search to be made around pg over time.

p′gj = pgj + n(0, σ) (8)

The second scout particle uses specific problem knowledge to accelerate the
training process. Since we know that in the final solution only the few αi corre-
sponding to support vectors will be different from 0, and that, from these, most
will be C, we will, at every iteration move the scout particle, in a random dimen-
sion, to an extreme of the search space, with an 80% probability of that extreme
being 0 and 20% of being C. This scout will consequently explore the border of
the search space, where we know the solution should be in a large majority of
dimensions. Scout particles are updated prior to the main update cycle of the
swarm, where they can cumulatively be updated using equations (4) and (7).



106 A. Silva and T. Gonçalves

5 Experimental Results

In the first set of experiments, we tested three evolutionary approaches, includ-
ing the best previous ES based approach [7], a constricted PSO and the SPPO
algorithm previously described, against the two most popular quadratic pro-
gramming based methods, MySVM and LIBSVM, in a set of 10 benchmark
problems, 3 of which are synthetically generated and the remaining 7 are real
world benchmark problems. Table 1 lists the datasets’ names, source, number of
attributes n and number of instances m. ed is the error for a classifier that always
returns the most frequent class. The kernel used in all experiences was the radial
basis function and its parameter σ was previously optimized for the MySVM
method using a grid search (See Table 1). We used C = 1 for all datasets.

Table 1. Dataset and kernel parameters

Dataset Source n m ed σ σE d

Checkerboard Synthetic 1000 2 48.60 100 0.92 6.54

Spirals Synthetic 500 2 50.00 100 0.12 3.84

Threenorm Synthetic 500 2 50.00 1 61.60 9.38

Credit UCI MLR 690 14 44.49 0.001 564.62 0.65

Diabetes UCI MLR 768 8 34.90 0.1 220.51 4.87

Ionosphere UCI MLR 351 34 35.90 0.1 2.44 7.48

Liver UCI MLR 345 6 42.03 1 61.59 6.90

Lupus StatLib 87 3 40.23 0.1 241.63 7.42

Musk UCI MLR 476 166 43.49 0.1 63.12 6.93

Sonar UCI MLR 208 60 46.63 0.1 61.63 6.90

The evolutionary approaches were implemented to search for the vector α that
maximizes equation (1). Each αi was limited to the interval [0, C], respecting
restrictions (2). Fixing b = 0 during optimization makes restriction 3 disappear,
increasing the efficiency of the optimizers. After the optimization is done, a value
for b can be computed using the restriction. This is a common technique in other
approaches, since the fixing of just one variable in the optimization problem is
a mild disadvantage, at least for high-dimensional problems [12]. Since the used
kernel is positive definite, the problem is unimodal and the main difficulties
for the evolutionary approaches are the high dimensionality of the optimization
function and the fact that many of the αi are usually 0 or C, placing the solu-
tion in the frontier of the search space in many dimensions. The evolutionary
algorithms were run for 500 iterations with 20 individuals/particles, except the
SPPO, which only used 18 particles to compensate for the extra evaluations of
the scout particles. Evaluation is done using 20-fold cross-validation. Experiences
were run using RapidMiner software [18] with additional operators.
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Table 2 presents average error rates and respective standard deviations for
all pairs algorithm/dataset. We found that the best evolutionary approaches
performed as well as the classical methods, both in terms of accuracy (error per-
centage) and robustness (standard deviation). Only the simple PSO performed
poorer, which is compatible with the findings in [7]. Since the classical approaches
are significantly faster than the evolutionary ones, there’s no particular reason to
prefer the later for the training of SVMs with PSD kernels. These results are still
useful to demonstrate some debilities of the standard PSO and to demonstrate
that the SPPO is the first competitive swarm intelligence based approach to the
training of support vector machines.

Table 2. Experimental results (error percentage) using the RBF kernel

Dataset MySVM LIBSVM ES PSO SPPO

Checkerboard 5.6 (2.6) 5.6 (3.2) 5.5 (3.0) 8.1 (4.3) 5.7 (3.4)

Spirals 0.4 (1.2) 0.2 (0.9) 0.6 (1.4) 2.2 (2.0) 0.6 (1.9)

Threenorm 15.0 (6.3) 14.8 (4.9) 14.6 (6.5) 14.2 (5.0) 14.8 (8.1)

Credit 14.5 (6.5) 14.5 (4.5) 14.5 (6.5) 13.8 (6.4) 14.4 (5.7)

Diabetes 22.4 (5.0) 22.5 (4.8) 23.7 (5.5) 29.8 (5.6) 23.3 (7.4)

Ionosphere 6.8 (5.9) 6.2 (5.6) 7.1 (5.7) 24.2 (9.1) 7.1 (5.7)

Liver 29.9 (11.9) 28.4 (10.5) 29.3 (11.9) 31.7 (10.4) 28.7 (11.1)

Lupus 26.0 (22.4) 24.8 (22.8) 25.0 (22.4) 26.0 (24.5) 25.0 (16.6)

Musk 7.8 (5.2) 7.5 (4.5) 9.9 (6.0) 11.1 (6.9) 8.6 (7.4)

Sonar 14.4 (7.6) 16.0 (11.8) 14.4 (9.9) 15.3 (10.2) 14.3 (13.1)

In the second set of experiments, we investigate how the best evolutionary
algorithms compare with one of the standard approaches when training SVMs
with a non PSD kernel, i.e., in a multimodal optimization problem. We use the
same datasets, but the RBF is substituted by an Epanechnikov kernel, which can
be proved to be indefinite. C was set to 1 and kernel parameters are presented in
Table 1. Since we observed in the convergence graphs of the previous experiences
that the evolutionary algorithms converged a lot sooner than the allotted 500
generations, we reduced the iteration limit to 100 (150 for the synthetic prob-
lems). In Table 3 we present the classification error, and, for the evolutionary
approaches, the average best value found for the objective function, f(α∗).

This second set of results allows us to draw several conclusions. First, all al-
gorithms were able to learn with the non-PSD kernel. In fact, for two of the
datasets, Lupus and Sonar, the best overall results were obtained using the
Epanechnikov kernel, in both cases using the SPPO algorithm. Second, with
the lower iteration limit, there is a large difference, both in classification ac-
curacy and best f(α∗), between the evolutionary approaches. This leads us to
conclude that the SPPO needs significantly less function evaluations to achieve
similar (or superior) classification accuracy, when compared with the best ES
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based approach. And, finally, we can see four datasets for which the SPPO per-
forms better than the MySVM algorithm (results are similar for the rest). Since,
from the previous experiments, we know that the algorithms are able to obtain
identical results when using the same parameters in the concave optimization
problems, these data apparently illustrate situations where, for a multimodal
problem, the quadratic based approach fails to converge to the global optimum.
This result confirms our proposition that evolutionary approaches can be useful
tools in the training of SVMs when using non PSD kernels.

Table 3. Experimental results (error percentage) using the Epanechnikov kernel

Dataset MySVM ES (f(α∗)) ES SPPO (f(α∗)) SPPO

Checkerboard 6.5 (4.6) -304.1 (37.6) 8.2 (4.0) 60.9 (12.3) 7.5 (4.9)

Spirals 11.0 (6.5) 163.2 (3.2) 19.2 (7.8) 188.5 (2.5) 7.8 (5.6)

Threenorm 14.0 (7.5) 31.0 (11.9) 15.0 (6.9) 132.5 (4.7) 14.4 (6.6)

Credit 14.4 (5.5) 254.8 (6.2) 14.2 (6.5) 299.6 (5.5) 13.6 (4.4)

Diabetes 24.8 (6.2) -62.4 (197.2) 29.4 (6.6) 297.5 (7.8) 25.2 (8.1)

Ionosphere 26.9 (10.6) 79.8 (3.9) 24.0 (9.3) 99.8 (1.6) 16.1 (9.0)

Liver 40.8 (3.7) 175.1 (5.5) 35.9 (12.1) 224.1 (4.7) 35.4 (10.6)

Lupus 27.8 (15.8) 48.6 (1.9) 24.0 (15.9) 58.4 (1.3) 21.5 (18.8)

Musk 9.6 (5.7) 104.5 (2.4) 11.8 (7.1) 118.4 (2.1) 9.5 (5.5)

Sonar 12.4 (11.4) 175.1 (5.5) 12.8 (10.8) 224.1 (4.7) 11.9 (9.6)

6 Conclusions

In this paper we proposed the first known particle swarm based approach to the
problem of training SVMs with non PSD kernels. Our algorithm is a specially
tailored version of the scouting predator prey algorithm [17], an heterogeneous
particle swarm optimizer. To improve the algorithm performance in this partic-
ular problem, we embedded two scout particles in the algorithm, one to perform
a local search and another to take advantage of specific problem knowledge. We
compared our algorithm with the best known evolutionary approach to this task,
as well as with two popular classical SVM training algorithms, using both a PSD
and a non PSD kernel. The experimental results supported the assertions made
in [3], since the evolutionary approaches, most specifically the SPPO, were able
to outperform the classical method on several benchmark problems, when train-
ing the SVMs with the non PSD kernel. Regarding the evolutionary approaches,
the results show that the SPPO can achieve significantly better values for the op-
timization function, with corresponding similar or better classification accuracy,
than the ES based approach, for the same number of function evaluations.
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Abstract. A significant challenge in nature-inspired algorithmics is the
identification of specific characteristics of problems that make them
harder (or easier) to solve using specific methods. The hope is that, by
identifying these characteristics, we may more easily predict which al-
gorithms are best-suited to problems sharing certain features. Here, we
approach this problem using fitness landscape analysis. Techniques al-
ready exist for measuring the “difficulty” of specific landscapes, but these
are often designed solely with evolutionary algorithms in mind, and are
generally specific to discrete optimisation. In this paper we develop an
approach for comparing a wide range of continuous optimisation algo-
rithms. Using a fitness landscape generation technique, we compare six
different nature-inspired algorithms and identify which methods perform
best on landscapes exhibiting specific features.

1 Introduction

Inspired by the foundational work of Wolpert and Macready [1], practitioners
have long sought to better understand the relationship between problems and
solution methods (i.e., algorithms). Here, we are particularly interested in the
question of which algorithm is best-suited to a particular problem, and the process
of addressing this has been described by some as a “black-art” [2].

Although theoretical studies in this area have yielded useful results, the exper-
imental analysis of algorithms is receiving increasing attention. As Morgan and
Gallagher point out [3], this approach is scalable in that it readily admits newly-
described algorithms, and it is now an area of research that is supported by a
number of high-profile competitions and libraries of benchmark test problems.

The fundamental properties of a problem’s search landscape underpin much
work in experimental analysis, and the use of landscape/test case generators [3–7]
has been proposed as one way in which we might effectively assess algorithms
against problem instances.

In this paper we examine six different nature-inspired algorithms by testing
them against a number of different randomized landscapes with several different
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properties (e.g., ruggedness). This gives a much richer picture of their relative
strengths and weaknesses, compared to simply using the “difficulty” of a land-
scape [8].

The rest of the paper is organized as follows: in Section 2 we give a brief
overview of previous work, before describing our testing methodology in Section
3. We then present our experimental results in Section 4, before concluding in
Section 5 with a discussion of our findings.

2 Previous Work

The use of algorithms inspired by physical or natural processes is now well-
established in the field of optimisation [9]. As the number of such algorithms
grows year-on-year, there is a pressing need to better understand their properties,
in order that practitioners may make informed decisions about which method is
best-suited to a particular problem, under certain conditions. Although analyti-
cal methods have been successfully applied to nature-inspired methods [10] [11],
their “real world” applicability is not clear, as they often rely on significant
assumptions and/or simplifications.

In what follows, we take an experimental approach [12] to studying the selected
algorithms, using an established landscape generation technique [4]. As Morgan
and Gallagher observe, “In a general sense, an algorithm can be expected to
perform well if the assumptions that it makes, either explicit or implicit, are well-
matched to the properties of the search landscape or solution space of a given
problem or set of problems” [3]. We therefore seek to investigate the performance
of several algorithms on a number of types of fitness landscape with specific
properties or characteristics. This approach is preferred by Hooker to the use of
benchmark problems, because the latter “differ in so many respects that it is
rarely evident why some are harder than others, and they may yet fail to vary
over parameters that are key determinants of performance. It is better generate
problems in a controlled fashion... The goal is not to generate realistic problems,
which random generation cannot do, but to generate several problem sets, each
of which is homogeneous with respect to characteristics that are likely to affect
performance” [13].

The fitness landscape approach has been successfully applied to the study of
various nature-inspired algorithms [14–16]. Indeed, to our knowledge, landscape
analysis of nature-inspired algorithms has been largely restricted to evolution-
ary methods. In this paper we broaden this work considerably, by considering
several classes of natural algorithms (social, evolutionary and physical). Over-
all, we study six different nature-inspired methods, as well as stochastic hill-
climbing as a baseline algorithm. Our empirical approach is informed by previ-
ous work [17] [18], which emphasises the need to establish a rigorous framework
for experimental algorithmics. In the next Section, we describe in detail our
methodology.



112 M. Crossley, A. Nisbet, and M. Amos

3 Methodology

3.1 Algorithm Selection

We select, for comparison, a number of nature-inspired algorithms that are com-
monly applied to continuous function optimisation. These may be classified [19]
as either social, evolutionary or physical. The social algorithms we select are Bac-
terial Foraging Optimisation Algorithm (BFOA) [20], Bees Algorithm (BA) [21],
and Particle Swarm Optimisation (PSO) [22]. The evolutionary algorithms se-
lected are Genetic Algorithms (GA) [23] and Evolution Strategies (ES) [24],
and physical algorithms are represented by Harmony Search (HS) [25]. We also
include random search (RS) and stochastic hill climbing (SHC) as “baseline”
algorithms.

We note that the references supplied above for each algorithm may serve sim-
ply as an example of their application, rather than their precise implementation.
In terms of implementation, we heed the observation that “Ideally, competing
algorithms would be coded by the same expert programmer and run on the same
test problems on the same computer configuration” [12]. With that in mind, we
use only implementations provided by Brownlee to accompany [26]. The limited
space available prevents a complete description of each algorithm, but full im-
plementation details are in [26], which is freely available and contains the source
code used here.

3.2 Optimisation Problem Characteristics

As Morgan and Gallagher explain [3], their Max-Set of Gaussians (MSG) method
[4] is a “randomised landscape generator that specifies test problems as a weighted
sum of Gaussian functions. By specifying the number of Gaussians and the mean
and covariance parameters for each component, a variety of test landscape in-
stances can be generated. The topological properties of the landscapes are intu-
itively related to (and vary smoothly with) the parameters of the generator.” By
manipulating these parameters, we obtain landscapes with different characteris-
tics. This allows us to investigate the performance of our selected algorithms on
landscapes with different features, and to identify which characteristics pose the
greatest challenge. As Morgan and Gallagher observe, “Different problem types
have their own characteristics, however it is usually the case that complemen-
tary insights into algorithm behaviour result from conducting larger experimen-
tal studies using a variety of different problem types” [3]. We now describe the
different characteristics (corresponding to problem types) under study in this
paper.

Ruggedness of a landscape is often linked to its difficulty [8], and factors
affecting this include (1) the number of local optima [27], and (2) ratio of the
fitness value of local optima to the global optimal value [28] [14]. Other significant
factors concern (3) dimensionality [29] (that is, the number of variables in the
objective function), (4) boundary constraints (that is, the limits imposed on the
value of a variable) [30], and (5) smoothness of each Gaussian curve (effectively
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Table 1. A summary of the ranges selected for the characteristics in our fitness
space (F )

Characteristic Min Step Max Default

Number of local optima 0 1 9 3

Ratio of local optima to
global optimum

0.1 0.2 0.9 0.5

Dimensionality 1 1 10 2

Boundary constraints 10 10 100 30

Smoothness 10 10 100 15

the gradient) used to generate the landscape [31] - a smaller value indicates a
smoother gradient. A summary of the ranges selected for each characteristic is
given in Table 1.

3.3 Performance Measurement

In terms of performance metrics, we abstract away from algorithm-specific mea-
sures, due to the diverse range of methods selected. The following metrics are
applied: (1) Accuracy: We define this as the mean absolute error of the best
solution found on a given set of landscape characteristics, over a number of runs

( 1n

n∑
i=1

(xi−x̄)) (whereX is the set of best solutions found, n is the number of runs

performed and x̄ is the known optimum). This is the most commonly-used as-
sessment metric for optimisation algorithms [4]. The generation technique we use
creates landscapes with a known global optimum, in this case zero. (2) Variance
of final solutions: A measure of variation in best solutions found across differ-
ently seeded runs. We use the standard deviation of the best solutions of all runs

on a given set of landscape characteristics, defined as ( 1
n−1

n∑
i=1

(xi− x̄)2)
1
2 (where

X is our data set, n is the size of the data set and x̄ is the mean average). (3)
Success rate: We measure this as the frequency with which differently-seeded
runs of an algorithm are able to find a solution within a specified distance from
the optimum [32]. We keep the success tolerance relatively low (error less than
1.0×10−4) in order to ensure that we capture the change in success rate of al-
gorithms which perform poorly.

3.4 Experimental Setup

In order to generate the landscapes, we used the Matlab code supplied with [4].
All landscapes were generated using default parameters of three curves, two
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dimensions, 0.5 average ratio of local minima to global minimum, 30 units in
each dimension with a smoothness coefficient of 15), with only the parameter
under investigation changing for each experiment. We ran each algorithm 100
times on each landscape in the set of landscapes generated for each particular
characteristic value (when investigating smoothness, for example, we generated
10 different landscapes (smoothness = 10 . . . 100), and ran each algorithm 100
times on each landscape).

Parameterisation of algorithms provides a significant challenge when evalu-
ating performance. Our aim is not to perform “competitive testing” [13], but
to establish general performance profiles for different algorithms over different
types of problem. As such, we use the so-called “vanilla” implementation of each
algorithm, with general-purpose settings taken from [4]. Where an algorithm has
a “population size” parameter, we use a value of 50; where an algorithm has a
“range” or “velocity” parameter, we use a value of 10.

Termination criteria were also standardised. The most objective criterion is
the number of objective function evaluations. This means each algorithm has
access to the same amount of information from the landscape, and the same
amount of feedback on potential solutions. Experimentally we determined that
the selected algorithms generally converged within 20,000 objective function cal-
culations, so this was used as the termination criterion. The code used for all
algorithms, as well as datasets and the landscape generator, is available on re-
quest from the authors.

4 Results

Space prevents a detailed presentation of full experimental plots, but these are
available from the project website1. To summarise, we plot the resilience of each
algorithm to changing landscape characteristics, in the form of a radar plot in
Figure 1. To assess the resilience of an algorithm we use the standard deviation
of the average error across all values of a landscape characteristic, which we
normalise on a per-characteristic basis. This “ranking” shows which algorithms
do not show performance variability versus those which are heavily influenced
by a characteristic. BFOA shows large deviations in average error for boundary
constraint range, smoothness coefficient changes and dimensionality, indicating
that BFOA is an algorithm heavily dependent on the landscape of a problem
- perhaps because of a heavy reliance on careful parameterisation. SHC also
shows large variance - perhaps, in large part again, to a lack of parameters and
complicated local optima avoidance techniques. GA and ES show large variation
with respect to number of local optima, perhaps supporting the argument that
evolutionary algorithms suffer more than most from the problem of becoming
“stuck” in local optima.

All algorithms produce the smallest average error when no local optima
(minima) are present in the fitness landscape. This is expected, as, with only

1 http://www2.docm.mmu.ac.uk/STAFF/M.Amos/Project/Characterisation

http://www2.docm.mmu.ac.uk/STAFF/M.Amos/Project/Characterisation
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(a) Bees algorithm (b) Bacterial foraging optimisation al-
gorithm

(c) Evolution strategies (d) Genetic algorithm

(e) Harmony search (f) Particle swarm optimisation

(g) Random search (h) Stochastic hill climbing

Fig. 1. Radar plots depicting the standard deviation of the average error of each al-
gorithm with respect to differing landscape characteristics. Standard deviations are
normalised on a per-axis basis. Values close to the centre of the plot indicate a larger
variance in average error, indicating these algorithms are more affected by the charac-
teristic. In general, the more robust an algorithm, the larger the plot surface area.
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one optimum, there are no alternative solutions to which the algorithms may con-
verge. We observe the greatest average error with only one optimum from SHC,
with BFOA (approx. 0.14) also showing a large average error. There are very
small average errors (almost zero) from GA, ES, PSO, HS, RS and BA. BFOA
also produces the largest variation in final solutions (0.32).With the introduc-
tion of only a single local optimum, performance of most algorithms degrades
significantly. ES and GA suffer significantly, with average error increasing from
approximately zero to 0.06 and 0.08 respectively, and the standard deviation
of solutions increasing by around 0.15 for each algorithm. SHC also performs
poorly, with a similar increase in average error. The least affected are RS (which
blindly chooses random solutions, and is therefore unaffected by local minima)
and BA, which contains a global search mechanism.

For algorithms which do not directly use the gradient of the landscape, we
would expect to see no change in their performance as we adjust the ratio
of local optima parameter. We observe that RS, which selects new solutions
randomly from the entire search space, offers very similar performance in terms
of mean error and success rate for all ratio values. Similarly, algorithms which
perform a global search should be better at avoiding local minima even when
they are attractive - and this is true for BA and HS. PSO shows little change in
success rate as the ratio becomes more attractive, owing to the fact that solutions
are directed towards the best particle, and their own best solution, regardless
of their individual experience with the gradation of the landscape. Interestingly,
SHC average error decreases as ratio increases - most likely due to an increased
availability of ‘better’ solutions throughout the landscape. ES demonstrates very
poor, yet consistent, performance as the ratio changes. Success rates are very low,
and, interestingly, we observe a decrease in the standard deviation of solutions as
the ratio increases. This suggests that ES is perhaps more “content” to optimise
at a local minima, with the algorithm getting trapped in these more frequently
as ratio increases. This could also be true of other algorithms whose deviation
decrease, such as BFOA and SHC. GA performs in a similar manner to ES with
regard to average error and diversity, although with a considerably better success
rate, suggesting that this may be a general problem for algorithms which use an
evolutionary approach.

At only one dimension, fitness landscapes are trivially easy. The performance
of all algorithms reflects this, with all algorithms performing well on landscapes of
a single dimension. All algorithms show a success rate (that is, optimisation with
an error of under 1.0×10−4) above 90%. As we increase the dimensionality to two,
most algorithm performances begin to degrade. Suffering mostly severely is RS,
which is to be expected, as random search is our most basic algorithm. Algorithms
whichalso performpoorly at only twodimensionsareES,BAandPSO. It isperhaps
surprising, at first, to seeBAperforming poorly, given that the algorithmcontains a
randomly sourced global search.However, this global search is effectivelyRS,which
performs poorly, so we can assume the global search is not covering enough of the
landscape. Coupled with the non-adaptive nature of the algorithm (meaning that
solution selection around the current best area is within a relatively large range),
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poor algorithmperformance is easily explained.Wepropose thatPSOandESsuffer
from a similar problem, in that exploration is limited, and neither optimise their
current best as accurately as their adaptive variants.

Random search exhibits a similar, yet less extreme, reaction to changes in
boundary constraints as with the increase in dimensionality. This is to be ex-
pected, as the limit on objective function calculations results in random search
having less chance to explore the search space. SHC also has an almost linear
increase in average error, matching the linear increase in search space size, but
produces consistently poor results in terms of success. The social system algo-
rithms (BA and PSO) both exhibit slightly unusual behaviour - as the problem
space increases, their success rate also increases. This suggests that their reliance
on a parameter to search within a range is hindering the algorithms when the
problem space is too small to properly explore. HS provides the best success
rate for the entire range of sizes we have selected in this problem, indicating
good exploration of the search space irrespective of the range parameter. BFOA
also suffers significantly as search space size increases, again implying a heavy
reliance on the parameter which controls the range of search for new solutions.
The evolutionary algorithms do not cope particularly well with the increase of
problem size, with performance in terms of both average error and success rate
decreasing consistently as size increases.

The evolutionary algorithms (ES and particularly GA) perform poorly and
are most affected by changing the smoothness coefficient. BA and PSO all
also show decreasing success rate as the curves become steeper, as does BFOA
which relies heavily on gradient information. Harmony search suffers similarly
to the evolutionary algorithms, and swarm algorithms, as curves become more
steep. The similarity in terms of success rate for all algorithms suggests that the
availability of gradient information is something which affects all algorithms.

5 Conclusions

In this paper, we have described the results of an extensive study of nature-inspired
algorithms, in terms of their performance on fitness landscapes with different char-
acteristics. We studied six nature-based methods (plus two stochastic baseline al-
gorithms), varying a number of landscape features. Themost significant character-
istic appears to be the number of local minima, where a combination of global and
local search appears to be beneficial. On the other hand, the ratio of local optima to
the global minimum appears to have little effect on the success of the algorithms
under study. As expected, dimensionality proved problematic for all algorithms,
whereas landscape smoothness appeared to have little effect.

This work offers a contribution to the empirical study of nature-inspired algo-
rithms, and we hope that it motivates future investigations. To further this work,
it may be useful to examine a larger collection of nature-inspired algorithms over
a greater range of values for the characteristics, in order to more fully capture
a wider variety of algorithmic performance. The current work provides a firm
foundation for this.
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Abstract. We discuss the implementation and results of an evolution-
ary algorithm designed to generate oscillating biological networks. In
our algorithm we have used a type of fitness function which defines os-
cillations independent of amplitude and period, which improves results
significantly when compared to a simple fitness function which only mea-
sures the distance to a predefined target function. We show that with our
fitness function, we are able to conduct an analysis of minimal oscillating
motifs. We find that there are several different examples of mechanisms
that generate oscillations, which make use in various ways of transcrip-
tional regulations, complex formation and catalytic degradation.

Keywords: Genetic algorithms, gene regulatory networks, protein in-
teraction networks.

1 Introduction

Evolutionary algorithms have been used for about 10 years to investigate the
structural properties of biological networks [1–6] by constructing them “ab-
initio” using a predefined set of evolutionary rules. Here, we use an evolutionary
algorithm to generate networks of interacting genes and proteins which have
an oscillatory output. The aim is to systematically build up small networks (or
“motifs”) in order to gain some insights on the core mechanisms responsible for
the oscillations. In the generated motifs, protein concentrations follow a stable
self-sustained oscillating pattern. The motifs provide examples of oscillators that
may be compared to known biological oscillators, such as circadian clocks, and
they may improve understanding of the underlying mechanisms of oscillation in
this type of networks.

Circadian clocks have long been studied using models that feature a negative
feedback loop due to the regulation of gene expression, affecting the production
rate of proteins. However, recent results [7] showed that circadian rhythms still
persist even when such regulatory mechanisms are disabled. This proves that
there are autonomous oscillations due to interactions between proteins, suggest-
ing that the structure of feedback loops is probably more complex than initially
expected. Efficient evolutionary algorithms may provide new insights in the mod-
eling of circadian clocks, as many different network architectures could be gen-
erated and compared with each other. In addition, experimental techniques are
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Fig. 1. An example of two representations of the same biological network, with a
schematic representation (left) and a complete description with all kinetic rates (right).
In the schematic representation, only the “core” interactions (those which define the
topology) are given and only proteins are shown. The core interactions shown are (1)
a repression of the synthesis of mRNA from gene A by the dimer AB (repression is
indicated by a ‘
’ symbol, activation by a ‘→’ symbol), and (2) a catalytic degradation
of the dimer AB by B, i.e. the reaction B +AB → B which is indicated as ‘—⊂’. The
groups of small dots in the full representation indicate degradation.

rapidly improving, and in the near future high quality data is expected to allow
discrimination between motifs based on their specific output.

In this paper we revisit an algorithm, originally proposed in [1], by improv-
ing its efficiency and extending it further. We show that such an algorithm
is capable of rapidly generating oscillating motifs thanks to optimally selected
score functions. We show how the different types of biomolecular reactions may
be combined to produce an oscillating output. Quite interestingly, in view of
the recent experimental results [7], the output also provides examples of purely
post-transcriptional oscillators which do not rely on oscillations of mRNA con-
centrations.

2 Algorithm

The allowed biological mechanisms and interactions used in this work are tran-
scriptional regulation, formation and dissociation of protein complexes, and cat-
alytic degradation. They are shown graphically in Figure 1(right), which provides
an example of a small network in its full representation. In Fig. 1(left) we pro-
vide a schematic representation (as used throughout the paper) of the same net-
work where only proteins are shown. The latter representation omits the genes,
which produce mRNA, and the mRNAs which produce the gene-specific protein.
In order to simulate the temporal behavior of a network, we use deterministic
mass-action kinetics. The resulting set of nonlinear first-order ODEs are solved
by the Runge-Kutta-Fehlberg Method (RKF45).

2.1 Evolutionary Fitness

An appropriate fitness function is highly important both for fast convergence
of the algorithm and for the evolution of motifs that are as small as possible.
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Additionally, the choice of the fitness function will cause certain evolutionary
pathways to be much more accessible than others, and therefore the results
will depend strongly on the fitness function that is chosen. Previous algorithms
designed for the same purpose have varied the exact selection mechanism, such
as elitist evolution or tournament selection [8, 9], but the notion of fitness has
always been related to a specific concentration profile. We have abandoned this
kind of scoring, as the associated requirements for amplitude and period are very
restrictive. Instead, a fitness function should reward oscillatory behavior without
being tied to any predefined shape, and not even distinguish between sawtooth
profiles, pulses, and sine-like waves. The most straightforward way of defining
oscillation independent of the profile is to analyse its peak-to-trough behavior.
This leads to the fitness function

S = 20− 2

10∑
i=1

|ai − ai+1|
ai + ai+1

min (1, |ai − ai+1|) , (1)

where the ai are the first 11 extrema, ordered by time, of the concentration
of a target protein A(t). If A(t) has less than 11 extrema, the sum only in-
cludes the available terms, and S = 20 for all monotonic functions. Equation (1)
is the mathematical equivalent of the intuitive concept that oscillations are of
a good quality if the peaks are relatively much higher than the troughs. The
min (1, |ai − ai+1|) on the right is a technical correction which we added to pre-
vent the algorithm from evolving very low-concentration oscillations. A signif-
icant advantage of this specific scoring function is that a strongly damped os-
cillation is recognised and rewarded, which is helpful for fast convergence. The
convergence threshold is set to S = 4 since for such values stable oscillations
are seen in any network, except for some rare cases which feature very weakly
damped oscillations.

2.2 Topological Reduction

In spite of choosing a fitness function that favors fast convergence, the evolu-
tionary procedure almost inevitably enlarges the size of the network by adding
links and nodes which are not necessary for oscillatory behavior. The simplest
topological reduction would consist of cutting away parts of the network as long
as this does not destroy oscillations. However, it is likely that the network can be
reduced further if the kinetic rates are varied to compensate for the removal of a
component. Therefore, we have applied additional topological evolution, which
computes a topological fitness score related to the topological components. We
constrained the evolution by removing any networks that did not satisfy S < 5
in order to preserve oscillatory function, but other than this constraint the topo-
logical evolution could in principle evolve freely towards smaller networks. In
order to improve convergence, we also incorporated the kinetic rates into the
topological fitness score such that interactions could have their importance re-
duced gradually, increasing the likeliness that they could be removed entirely in
a future generation.
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2.3 Evolutionary Process

In order to illustrate the evolutionary algorithm, let us consider the pseudocode
for the functions “evolve()” and “reduce topological size()” as displayed below.

function evolve()
make initial network()
for n = 0 to 300
mutate networks() /* Create mutant for each network */
score networks() /* Compute S for all networks */
if Smin ≤ 4
break /* Stop evolution once fitness threshold is reached */

prune networks(100) /* Keep only 100 best scoring networks */
if T > 15
reduce topological size(Smin + 1)

if Smin > 4
return /* Failed to evolve oscillations */

reduce topological size(5) /* Reduce T of oscillating network */
for n = 0 to 20 /* Optimize network score */
mutate networks kinetic() /* Only evolve rate constants */
score networks()
prune networks(100)

save best network() /* Store network with lowest S */

function reduce topological size(int maxscore)
for n = 0 to 500
mutate networks() /* Create mutant for each network */
check fitness(maxscore) /* Remove networks with bad fitness */
score topology() /* Compute T for all networks */
prune networks(10) /* Keep only 10 best scoring networks */

The first function, evolve(), shows the general course of evolution. Every gen-
eration consists of duplicating all networks and mutating each duplicate in a ran-
dom way. These mutations include topological modifications as well as changes
to kinetic rate constants. Subsequently, the score of all networks is computed and
the worst performing networks are discarded. The second function, as described
in Sec. 2.2, performs a topological reduction which aims to shrink the network
size, and it is used by the first function when the networks have grown too large,
or in order to reduce the size of an evolved network with oscillatory behavior.

3 Results

The evolution results in a large pool of networks of various complexities. As
the number of possible topologies is small when the complexity of the graph
is restricted, we analyse the collection of about 15, 000 evolved networks with
a topological size T ≤ 5 (where T is defined as the total number of genes,
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protein complexes, regulations, and catalytic degradations). The total number
of distinct topologies was less than 100. We shall discuss the differences and
similarities between the topologies obtained.

3.1 Parameter Variation

The population of oscillating networks that results from repeatedly running an
evolutionary algorithm depends not only on the fitness function, which is the
same for all networks discussed here, but also on the choice of parameters and
evolutionary limits. A very broad range of allowed kinetic rates decreases the
performance of the algorithm, in particular because it increases the computa-
tional cost of numerically solving the system of ODEs for a network. We use a
fixed time window within which the oscillations should take place, which is suffi-
ciently large compared to allowed kinetic rates such that a wide range of periods
is found (across more than one order of magnitude). Effectively, the minimum
possible periods are dictated by the upper allowed limits of kinetic rates, while
the maximum possible period is a consequence of the fitness computation which
demands a minimum number of oscillations in the maximum time allowed for
integration. We use several parameter settings in order to search different regions
of parameter space. In the default setting, we assume kinetic rates to be around
1.0 such that all timescales in the system are similar. In a second case we as-
sume that the formation of complexes is significantly faster than transcriptional
regulation and degradation. In a third setting we have disabled the evolution of
catalytic degradations, which lead to a larger proportion of repressing regula-
tions, and in a final setting we loosen the limits on all mutable rates such that
the search space is significantly larger.

3.2 Mechanisms of Oscillation

Oscillatory function is known to be connected to negative feedbacks that incor-
porate a time delay, and our simplest networks use no more than a few distinct
patterns in spite of belonging to many different topologies. Examples of those
patterns are given in Figures 2, 3, 4 and 5.

(i) Motifs without catalytic degradations. A few examples are shown in Fig.2
and 3. These networks fall into two subcategories, namely networks with two
proteins and one regulation, and networks with one protein and two regulations.
Both types feature multimers which help to generate time delays, and in most
cases the complex formation is irreversible. Of note, there are two types of time
delays due to complexation, namely competitive complexation, where two dif-
ferent ways of complex formation compete for the same protein (e.g. Fig. 3(a)),
and chain-like complexation, where complexes of more than two components are
formed (e.g. Fig. 3(b)). Oscillating networks with T = 4 (see Fig. 2) all belong
to this group.

(ii) Motifs with catalytic degradations and regulations, such as the examples
in Fig. 4. Again there exist two subcategories, because mechanisms can have
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either two proteins and a single heterodimer formed by the two proteins; or only
one protein, a dimer and either a trimer or a tetramer.

(iii) Motifs without regulations. They can also have one or two genes, and all
feature reversible complexation as a method of generating a time delay. Examples
are shown in Fig. 5.

(iv) Motifs without multimers. They all have two genes and are similar to cer-
tain motifs from (i) where the absence of the AB heterodimer is compensated for
by catalytic degradation interactions. Because of the similarity, no examples are
shown.

A B

A B

(a) The mixed feedback
loop (MFL)

A B

A B

(b) The mixed autorepres-
sion loop (MAL)

A

A A

A

A A

(c) and (d) Two dimer-
monomer oscillators
(DMO)

Fig. 2. All four evolved motifs of size T = 4. The MFL andMALmotifs show a negative
feedback by a regulation whose action is delayed due to the formation of the AB dimer,
which acts as an exclusion mechanism. The MFL motif has been previously studied in
[10]. The DMO motifs employ a repressing regulation as a negative feedback, while the
time delay is due to TF binding/unbinding dynamics rather than dimerization.
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Fig. 3. Three examples of pattern (i).Most motifs with this pattern are similar theMFL,
MAL and MDO motifs presented in Fig. 2. Time delays are larger than in the original
motifs due to usage of higher order multimers, such that oscillations are evolved more
easily.

4 Algorithm Performance

4.1 Efficiency

We have tried to optimize our algorithm towards generating networks at the
fastest possible rate. We terminated our evolution after 300 generations, as the
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Fig. 4. Examples of pattern (ii). Negative feedbacks due to catalytic degradations
are often accompanied by reversible formation of a complex (denoted by gray dashed
arrows), which results in a time delay.
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Fig. 5. Examples of pattern (iii). When no regulations are present, the catalytic degra-
dation seems to need two separate time delay mechanisms in order to cause stable
oscillations. This is seen as either two levels of reversible complexation as seen in (b)
and (c), or as a reversible complexation and a dimer.

evolutionary process had likely become stuck in a local minimum if still no oscilla-
tions had been found. This was not a frequent problem, however, and depending
on the parameter setting the success rate varied from 75% to 95%. The typical
type required to complete one evolutionary process varied (depending on the pa-
rameter settings) from a few minutes to half an hour when running the program
on three cores of a standard quad-core personal computer. In exceptional cases
the computation time can be much longer. In addition, we enforced a maximal
number of time integration steps since our RKF45 integration routine was very
inefficient in some cases. If this number of steps was exceeded, the network was
removed from the population regardless of its fitness performance.

In Fig. 6 we have shown how the topological size T of the network depends
on the number of evolutionary steps. In line with our expectations, networks
typically end up smaller when evolution finishes early. More generations do not
only increase the size of the networks by mutations, but they also integrate
existing parts of the network better and better, such that it becomes harder to
prune these parts once oscillations have been evolved.
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Fig. 6. The typical size of the final, reduced network grows with the number of genera-
tions it takes to evolve oscillations. The average was computed for all 39, 457 networks
evolved in the large-range setting, and a random subset of 3917 networks are repre-
sented by dots. If no oscillations had evolved after 300 generations, the evolutionary
process was abandoned.

4.2 Influence of Parameter Choices

As discussed in Sec. 3.1, we used four different parameter settings. The reason to
do this was twofold: firstly, to avoid generating only networks in a very limited
region of parameter space, and secondly, to allow for a comparison of results,
such that we can estimate to what degree the results are a consequence of the
parameters of the algorithm.

It turns out that some parameter choices exclude a significant portion of
possible motifs. The default choice allows catalytic degradation, but except in
rare cases, it failed to find small networks incorporating catalytic degradations
with size T ≤ 5. When the catalytic degradation was removed as an evolutionary
option, the rate of finding networks with T = 5 increased from 3.3% to 5.2% and
several mechanisms featuring repressing regulations became much more common.
The setting with fast complex formation yielded several networks with T = 4,
but the variety of networks was limited to only the MFL and MAL networks
shown in Figures 2(a) and 2(b). The most successful setting was the default
setting with very loose parameter limits, where the variable rates were allowed
to vary across four orders of magnitude instead of just two. Nevertheless, this
setting appeared to be inefficient for the evolution of networks with repressing
regulations, such that some motifs found in other settings were not evolved, and
it seems plausible that a parameter setting can be found which is much more
conducive towards evolving motifs featuring repressing regulations. Additionally,
this setting consumed roughly ten times more computation time per evolutionary
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Fig. 7. An example of the evolution of sustained oscillations for a network with a
topology as shown in 5(b). The amplitude, period and shape of the oscillations vary
while the quality of the oscillation is gradually improving. Each graph shown represents
the output for the best-scoring network in the N-th generation, where the values of N
were chosen from a single run. The final graph shows the output of the final network
after topological reduction.

process than the other settings. Broadly speaking, it seems likely that there is
no single setting which is optimal, and a comprehensive set of oscillating motifs
can only be generated by varying the parameter settings.

5 Conclusions

In this paper, we have presented an analysis of various examples of oscillatory
biological networks generated by an evolutionary algorithm. The algorithm can
efficiently produce oscillating networks of small size. We have discussed which
choices in the implementation of the evolutionary algorithm were responsible
for this improvement, and how our implementation in general influences what
motifs are evolved.

The most significant improvement resulted from a fitness function that did
not force evolution towards any particular type of oscillation. The freedom that
resulted from a loose definition of the concept of oscillations allowed for the
evolution of many small networks. Additionally, the algorithm was made more
efficient by avoiding the evolution of very large networks.

Many different types of motifs appear to have an oscillatory output for certain
rate constants. This is a positive feature of the algorithm since it suggests that
it performs a wide search in the complex space of all possible topologies. In view
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of the recent experiments on circadian clocks [7], it is also interesting that the
algorithm generated several examples of post-transcriptional oscillators.

The abundance of motifs found by our algorithm might prove useful, serving
as a set of candidates that might be found as core parts of networks found in
systems biology. The small systems we have found are likely simple compared to
biological mechanisms. However, as they hint at topological structures that are
conducive towards oscillatory behavior, they may help in recognizing the core
parts of biological examples of oscillating protein networks.

In this paper we have only evolved networks aimed at oscillatory output. Real
biological evolution may have further selected through the available oscillating
motifs using criteria as robustness to fluctuations and/or entrainability (i.e. the
resetting of the phase of the oscillations). Further research aimed at analyzing
the properties of the generated motifs against these types of criteria may suggest
which motifs are most likely to be present in real biological networks.
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Abstract. We discuss the use of scout particles, or scouts, to improve
the performance of a new heterogeneous particle swarm optimization
algorithm, called scouting predator-prey optimizer. Scout particles are
proposed as a straightforward way of introducing new exploratory be-
haviors into the swarm, expending minimal extra resources and without
performing global modifications to the algorithm. Scouts are used both as
general mechanisms to globally improve the algorithm and also as a sim-
ple approach to taylor an algorithm to a problem by embodying specific
knowledge. The role of each particle and the performance of the global
algorithm is tested over a set of 10 benchmark functions and against two
state-of-the-art evolutionary optimizers. The experimental results sug-
gest that, with the addition of scout particles, the new optimizer can be
competitive and even superior to the other algorithms, both in terms of
performance and robustness.

Keywords: swarm intelligence, particle swarm optimization, heteroge-
neous particle swarms.

1 Introduction

The particle swarm optimization algorithm (PSO) is a stochastic optimization
algorithm that uses a population of individuals, represented as vectors of real
numbers, to search for the global optimum in a multidimensional space [7]. In-
dividuals are usually called particles, and the particle set is called a swarm. In
addition to their current position, each individual keeps a memory of the best
position it has found so far, as well as a velocity vector. Each particle is also
aware of the best position found by its best neighbor in the swarm. The pop-
ulation behavior mimics the social interactions in real swarms by computing
each particles’ velocity in terms of how strongly the individual is attracted to its
own notion of where the best solution should be and the believe of the group,
represented by the best neighbor. The velocity vector is added to the particle’s
position at each iteration, thus defining its trajectory in the search space.

Qualities like conceptual simplicity, quick implementation, low computational
costs and being easily adaptable to new domains have made the PSO hugely
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popular amongst practitioners, with successful applications in many areas [11].
Despite its popularity, the basic PSO also presents some challenges that must be
tackled for a successful application [1,14]. These include controlling the balance
between exploration and exploitation; maintaining some level of diversity in the
swarm after it has converged (there is no equivalent to the mutation operator
present in evolutionary algorithms); fine-tuning a reasonable (but not optimal)
solution to where the swarm has converged; avoiding performance degradation
when optimizing non-separable functions.

Since the introduction of the original PSO, there has been a very strong body
of research dedicated to the study and overcome of the algorithm perceived
weaknesses [12]. Amongst the many variants in use today, we can identify three
main groups of approaches that seem the most promising: hybrid approaches,
which use one or more mutation operators mainly inspired in other evolution-
ary algorithms [6]; memetic variants, which ally the advantages of local search
algorithms with the global exploratory capabilities of the PSO [10] and, more re-
cently, heterogeneous particle swarm optimizers, where different particles within
the same swarm can have different behaviors and/or properties, allowing for dif-
ferent parts of the swarm to be tuned for different aspects of the problem being
optimized or for different phases of the exploration process [4,8].

In previous work we introduced a new heterogeneous particle swarm algo-
rithm, called scouting predator-prey optimizer (SPPO), which uses an extra
particle, called a predator, to dynamically control diversity and the balance be-
tween exploitation and exploration [16]. The same article introduced the concept
of scout particles, which are a swarm subset that can be updated with differ-
ent rules, leading to alternative exploratory behaviors. In this paper, we discuss
the effects of different scout particles, and show how they can perform different
roles, from globally improving the SPPO performance, to using problem specific
knowledge to better adapt the algorithm to a specific task.

2 The Scouting Predator-Prey Optimizer

In particle swarm optimization each swarm member is represented by three m-
size vectors, assuming an optimization problem f(x) in R

m. For each particle
i we have a xi vector that represents the current position in the search space,
a pi vector storing the best position found so far and a third vector vi cor-
responding to the particle’s velocity. For each iteration t of the algorithm, the
current position xi of every particle i is evaluated by computing f(xi). Assuming
a minimization problem, xi is saved in pi if f(xi) < f(pi), i.e. if xi is the best
solution found by the particle so far. The velocity vector vi is then computed
with equation 1 and used to update the particle’s position (equation 2).

vt+1
i = wvt

i + u(0, φ1)⊗ (pi − xt
i) + u(0, φ2)⊗ (pg − xt

i) (1)

xt+1
i = xt

i + vt
i (2)
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In equation 1 (pi − xt
i) represents the distance between a particle and its best

position in previous iterations and (pg − xt
i) represents the distance between a

particle and the best position found by the particles in its neighborhood, stored in
pg. u(0, φ1) and u(0, φ2) are random number vectors with uniform distributions
in intervals [0, φ1] and [0, φ2], respectively. w is a weight that decreases linearly
with t and ⊗ is a vector component-wise multiplication.

2.1 The Predator Effect

One of the limitations of the standard particle swarm algorithm is its inability
to introduce diversity in the swarm after it has converged to a local optimum.
Since there is no mechanism similar to a mutation operator, and changes in
xi are dependent on differences between the particles’ positions, as the swarm
clusters around a promising area in the search space, so does velocity decreases
and particles converge. This is the desirable behavior if the optimum is global,
but, if it is local, there is no way to increase velocities again, allowing the swarm
to escape to a new optimum, i.e. there is no way to go back to a global exploration
phase of search after the algorithm entered a local search (exploitation) phase.

We introduced the predator-prey idea to alleviate this problem [15,16]. The
predator particle’s velocity vp is updated using equation 3, oscillating between
the best particle’s best and current position. This update rule makes the predator
effectively chase the best particle in the search space.

vt+1
p = wvt

p + u(0, φ1)⊗ (xt
g − xt

p) + u(0, φ2)⊗ (pg − xt
p) (3)

The role of the predator particle in the SPPO algorithm is to introduce a per-
turbation factor in the swarm and to guarantee that this disturbance increases
as the swarm converges to a single point. To achieve this, we add a perturbation
to a particles’s velocity in dimension j, as defined by equation 4, where u(−1, 1)
and u(0, 1) are random numbers uniformly distributed between the arguments,
xmax and xmin are, respectively the upper and lower limit to the search space
and r is the user defined perturbation probability.

vtij = vtij + u(−1, 1)|xmax − xmin|, if u(0, 1) < r exp−|xij−xpj| (4)

From equation 4 follows that a random perturbation is added to the velocity
value in dimension j with a probability that depends on the particles’s distance
to the predator in that dimension. This probability is maximum (r) when that
distance is 0 but rapidly decreases if the particle escapes the predator. Since
the predator chases the best particle, the perturbation in the swarm is more
likely when all the particles are very near, i.e. during the exploitation phase,
and becomes almost inexistent when the particles are far apart. This mechanism
allows for particles to escape and find new optima far from the current attractor
even in the last phases of exploitation.
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2.2 Scout Particles

The predator-prey optimizer is an heterogeneous particle swarm algorithm, since
the predator particle is updated using a different equation. We propose a new
level of heterogeneity by including scout particles into the swarm. Scout parti-
cles, or scouts, are a subset of the swarm that implements different exploration
strategies. They are inspired by the common presence in real insect swarms, e.g.
honeybees [2], of specific individuals in charge of scouting for new food sources.
When successful in this task, they communicate the finding to other individuals,
called recruits, that may then follow to the new food source.

In our algorithm, scouts are specific particles to which we assign update rules
different form those used by the rest of the swarm. Each new rule implements
a different exploratory behavior with specific objectives in terms of function
optimization. As in real swarms, resource management is essential, so we must
ensure that the positive effect of the scouts is not offset by many extra function
evaluations or memory requirements. It is also important to ensure that the
addition of scouts doesn’t disrupt the swarm usual behavior. To achieve this,
recruitment is only done by updating the scout best found position, as well as
its neighborhood best when that is the case. From the viewpoint of the rest of
the swarm the use of scouts is, consequently, transparent, constituting a very
flexible way to introduce new capabilities to the optimization algorithm, or even
to hybridize it with a different optimizer altogether.

Scouts can be used to introduce improvements to the global algorithm, e.g. a
local search sub-algorithm, or to implement problem dependent mechanisms to
better adapt the algorithm to a specific problem. In the later case, the mechanism
can be of general nature or based in specific problem knowledge that may be
used to speed up the optimization process. To illustrate these ideas, we will use
two scout particles to improve the performance of the predator-prey algorithm
in continuous optimization problems and a third particle to taylor the algorithm
to a purposefully designed problem set.

For the first scout we choose the best particle in the swarm at a given iteration
and perform a random mutation on one of its dimensions j using equation 5,
where n(0, σ2) is a a random number drawn from a normal distribution with
average 0 and standard deviation σ. pg is updated to the new p′

g only if f(p′
g) <

f(pg). σ starts at xmax/10 and is updated during the run using the 1/5 rule
borrowed from evolution strategies [3]: after every 100 generations σ is doubled
if the mutation success rate is over 1/5 and is halved otherwise. This mutation
mechanism allows for a local search to be made around pg over time.

p′gj = pgj + n(0, σ) (5)

The second scout particle uses an update rule inspired by opposition based learn-
ing (OBL) [18]. The basic idea behind OBL is that sometimes it might be useful
to search in the opposite direction of the current position. Opposition based
extensions of particle swarm [19] and differential evolution [13] have improved
on the results of the corresponding base algorithms. For this second scout, we
use the particle with worst evaluation, pw, based on the heuristic that in the
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opposite of the worst particle might be a more promising search region. We com-
pute the opposite particle position p′

w using equation 6 for each dimension j,
with atj and btj being, respectively, the maximum and minimum value for pij at
generation t. Again, pw is only updated to the new p′

w if f(p′
w) < f(pw).

p′wj = atj + btj − pwj (6)

Scout particles are updated prior to the main update cycle of the swarm, where
they can cumulatively be updated using equations 1 and 4. To save objective
function evaluations, we update the best particle but not the worst one. The third
scout particle is problem dependent and it will be described in the experimental
results section, together with the relevant experiments.

3 Experimental Results

For the experiments described in this paper we used 10 common benchmark
functions, selected from the optimization bibliography. The first three are uni-
modal functions, but f2 is non-separable and in f3 the optimum is in a very
flat zone with little information to guide the algorithms. f4-f10 are multimodal
functions with many local optima, selected to pose different obstacles to the
optimization algorithms. Table 1 lists names and parameters for the benchmark
functions, including the optimum value f(x∗) and its position x∗i .

Table 1. Benchmark functions’ names and parameters

Function Name Range f(x∗) x∗
i Displacement

f1 Sphere [−100 : 100] 0 0 25
f2 Rotated Ellipsoid [−100 : 100] 0 0 25
f3 Zhakarov’s [−5 : 10] 0 0 1.25
f4 Rastrigin’s [−5.12 : 5.12] 0 0 1.28
f5 Ackley’s [−32 : 32] 0 0 8
f6 Griewangk’s [−600 : 600] 0 0 150
f7 Salomon’s [−100 : 100] 0 0 25
f8 Kursawe’s [−1000 : 1000] 0 0 250
f9 Shaffer’s [−100 : 100] 0 0 25
f10 Levy-Montalvo’s [−500 : 500] 0 1 125

From Table 1 we can observe that all used functions (f10 being the exception)
have their optimum in the search space origin. They all also present some level of
symmetry around that point. While these characteristics will later be useful to set
up some specific experiments, they could also give some advantage to algorithms
that present a bias towards the origin of the search space. To avoid this, the global
optimum was displaced, for each function, by the amount shown on Table 1. All
functions were optimized in 40 dimensions in the reported experiments and their
equations can be found in [16] as well as in the field bibliography.

The first set of experimental results compares the final SPPO algorithm, us-
ing both local search and an opposition based search scouts, against other PSO
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and differential evolution (DE) based approaches [17]. We included DE algo-
rithms since differential evolution shares many of the PSO advantages, namely
in terms of simplicity, flexibility and performance. We used a recent state-of-the
art hybrid PSO (HMRPSO) variant [5], which reported very good results in the
optimization of a large set of benchmark functions when compared with several
other PSO variants and evolutionary algorithms.

The DE approach used for comparison, which also showed promising experi-
mental results, is called free search differential evolution (FSDE) [9]. Our imple-
mentations were first tested on the benchmarks reported in the original papers
to minimize implementation discrepancies. Standard versions of the PSO and
DE algorithms were also included in our experiments.

The parameters for the algorithms are the ones proposed by the respective
authors. For the scouting predator-prey optimizer we used φ1 = φ2 = 1.6, w was
decreased from 0.4 to 0.2 and r = 0.0008. Population size was set to 20 and the
algorithms were run for 1e4 iterations or until 2e5 objective function evaluations
were performed. In Table 2 we present averages and standard deviations for
the best values found for each test function, taken over 50 runs of each pair
algorithm/function. The random number generator was initiated to ensure that
all algorithms started with the same population for corresponding runs.

Table 2. Experimental results for the final algorithm: average and standard deviations
of the best values found over 50 runs of an algorithm for each function

PSO DE HMRPSO FSDE SPPO

f1 1.65169e-26
(5.54796e-26)

6.25047e-23
(4.4143e-22)

3.38079e-23
(1.4217e-23)

0.242096
(0.174053)

7.57306e-31
(3.02794e-30)

f2 316.126
(254.974)

56.2572
(397.747)

0.00226426
(0.00212582)

61.5534
(33.1706)

2.52261e-09
(2.40497e-09)

f3 15.8846
(9.53778)

0.000692142
(0.0016271)

5.19511e-09
(4.86953e-09)

1.13648
(0.807662)

6.72887e-10
(5.23577e-10)

f4 55.8172
(17.0791)

148.852
(84.0428)

17.8104
(5.6274)

7.72839
(11.3974)

0.0198992
(0.140708)

f5 0.476326
(2.91565)

5.47737
(6.9252)

1.27917e-12
(2.26036e-13)

0.150284
(0.0844456)

3.96305e-14
(8.27882e-15)

f6 0.0134364
(0.0169437)

0.0861482
(0.282405)

0.00777161
(0.0112705)

0.290238
(0.191083)

0.0524945
(0.0498488)

f7 0.639873
(0.137024)

0.389874
(0.194044)

0.553874
(0.0973316)

0.375873
(0.169706)

1.19387
(0.219842)

f8 -41.2553
(50.7622)

-76.2049
(67.5841)

-24.9186
(25.9715)

171.819
(215.74)

-150.326
(16.6553)

f9 5.15659
(2.34525)

15.976
(0.391461)

6.77497
(1.32032)

12.0213
(1.81459)

0.860774
(0.424196)

f10 0.0181309
(0.126894)

0.0621908
(0.216245)

5.56247e-22
(3.83363e-22)

55.1298
(78.7154)

5.86288e-28
(3.38157e-28)

As we can see in Table 2, the SPPO algorithm obtained substantially better
average results in 8 of the 10 benchmark problems. For the remaining two func-
tions, the best result was achieved by the HMRPSO for f6 and by FSDE for f7.
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All the hybrid algorithms performed consistently better than the basic versions,
which can be observed in the columns marked PSO and DE in Table 2.

These results confirm more extensive results presented in previous work [16],
where, using a significantly larger problem set, we could also observe that the
scouting predator-prey optimizer was generally competitive and frequently su-
perior to other state-of-the-art PSO and DE based algorithms. In this work we
aim to additionally address the different roles performed by each scout particle
and also to illustrate how scout particles can be used to improve performance
by using problem specific knowledge.

The second set of experiments compares, under the same experimental condi-
tions used previously, the standard PSO, the PSO with just the predator effect
added (PPO), the PPO with an opposition learning based scout (OPPO), the
PPO with a local search based scout (LPPO) and the final algorithm including
all described behaviors, the SPPO. The results are presented in Table 3.

Table 3. Experimental results for the general scout particles: average and standard
deviations of the best values found over 50 runs of an algorithm for each function

PSO PPO OPPO LPPO SPPO

f1 1.65169e-26
(5.54796e-26)

1.71656e-28
(3.5187e-28)

1.63629e-27
(5.77022e-27)

0
(0)

7.57306e-31
(3.02794e-30)

f2 316.126
(254.974)

1260.18
(2219.77)

1712.43
(2802.44)

3.9881e-10
(4.35113e-10)

2.52261e-09
(2.40497e-09)

f3 15.8846
(9.53778)

31.3115
(46.2811)

24.5038
(40.7141)

4.62151e-10
(5.1526e-10)

6.72887e-10
(5.23577e-10

f4 55.8172
(17.0791)

0.139295
(0.853063)

0.0397984
(0.196951)

0.23879
(1.24822)

0.0198992
(0.140708)

f5 0.476326
(2.91565)

2.29725
(6.23978)

7.24576e-14
(2.50212e-14)

2.01927
(5.62937)

3.96305e-14
(8.27882e-15)

f6 0.0134364
(0.0169437)

0.139295
(0.853063)

0.0624817
(0.0569936)

0.0535327
(0.0535873)

0.0524945
(0.0498488)

f7 0.639873
(0.137024)

1.21987
(0.192725)

1.22987
(0.208248)

1.15387
(0.183181)

1.19387
(0.219842)

f8 -41.2553
(50.7622)

-153.179
(5.3920)

-153.365
(2.16092)

-150.644
(1.26064)

-150.326
(16.6553)

f9 5.15659
(2.34525)

0.855093
(0.420195)

0.920654
(0.434841)

0.797715
(0.413331)

0.860774
(0.424196)

f10 0.0181309
(0.126894)

5.41382e-27
(2.00007e-26)

2.0807e-26
(5.06554e-26)

4.46798e-28
(3.52975e-28)

5.86288e-28
(3.38157e-28)

These results help to understand the contribution of each component to the
overall performance of the algorithm. The predator-prey algorithm improves
substantially on the results of the simple PSO for f1, f4 and f8-f10, with results
slightly worse for the remaining functions. Overall, the predator-effect has a
positive contribution since, for some functions, the improvement is of several
orders of magnitude while, when a performance decrease occurs, is less marked.

When compared with the predator-prey optimizer, the introduction of an
opposition learning based scout substantially improves the optimization results
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for f4, f6 and, specially, for f5. For the remaining functions the variation is mostly
negligible, with exception of f10. This illustrates the use of a scout particle that
implements a general exploration behavior that is mostly beneficial for a specific
problem. It also underlines that its inclusion does not substantially impact on
the overall performance of the algorithm.

The local search scout, again in comparison with the PPO, has a more uniform
effect. There is improvement in almost all functions, with particular focus on
the unimodal ones. When there is no improvement the difference is negligible,
strengthening the idea that the addition of scout particles doesn’t disturb the
general algorithm behavior. The local search scout performs a different role since,
while the scouting is also general, i.e. not tailored for this particular problem, it
seems to improve the algorithm performance over many problems.

Table 4. Experimental results for the problem specific scout particle: average and
standard deviations of the best values found over 50 runs of an algorithm for each
function; when the average is 0, the following value is the average number of function
evaluations needed to find the optimum

HMRPSO FSDE SPPO SPPO+

f1 7.3948e-26
(2.60705e-25)

1.04446
(7.38415)

0 [9200] 0 [7250]

f2 3372.4
(10336.1)

13183.7
(9154.16)

6.95768e-29
(3.01847e-28)

3.75725e-29
(2.04331e-28)

f3 31.8958
(225.537)

158.062
(102.318)

1.07958e-28
(5.73612e-28)

4.05921e-29
(1.33317e-28)

f4 0 [117000] 40.1661
(37.248)

0.0198992
(0.140708)

0 [151600]

f5 2.25064e-14
(2.2529e-14)

15.0721
(4.13056)

0 [16900] 0 [15150]

f6 0.0322881
(0.0425845)

0.648994
(1.87741)

0.0450732
(0.062597)

0.0471287
(0.0583248)

f7 0.405873
(0.130008)

1.51993
(2.52228)

0.335876
(0.158765)

0.293873
(0.142012)

f8 -39.5094
(11.0244)

751.95
(395.148)

-55.8945
(10.2041)

-53.3964
(9.4122)

f9 2.70569
(1.11255)

7.32397
(2.4941)

0.0223451
(0.0842491)

0.000777273
(0.0038465)

f10 5.19578e-06
(1.98551e-05)

173886
(239596)

3.77984e-27
(4.94146e-27)

3.87103e-28
(1.38232e-27)

For the third, and final, set of experiments, we changed the problems’ charac-
teristics, by moving the optimum to 0 in 80% of dimensions. For the remaining
dimensions, 80% were set to xmax and the rest to a random value in the func-
tion’s domain, which was also changed to [0, xmax]. A new problem is randomly
generated for each run of an algorithm. These changes, in one hand, make the
problems harder for evolutionary algorithms, by placing the solution in the bor-
der of the search space for most of the dimensions. This allows to better evaluate
the robustness of the algorithms being compared. On the other hand, this knowl-
edge about the optimum’s characteristics can be used to test the use of a scout
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built around specific problem knowledge. In these experiments we used a simple
scout that, for each iteration, moved the particle, in a random dimension, to 0
(with 80% probability) or xmax (with 20% probability). The results for these
experiments are presented in Table 4, where SPPO+ represents the scouting
predator-prey algorithm with the extra scout. In this table, when the algorithm
found the global optimum in all runs, we present in brackets the average number
of used function evaluations, instead of the standard deviation.

Looking at the results in Table 4, our first conclusion is that the problems’
new formulation was particularly challenging for the FSDE algorithm, which
struggled considerably to optimize many of the benchmark functions. The HM-
RPSO algorithm performance decayed more gracefully, inclusively achieving the
best results for f4, but it also had great difficulties to optimize some functions,
specially f2, f3, f9 and f10. The SPPO algorithm performed at least as well as
for the previous formulations, which suggests this algorithm to be more robust
than both the FSDE and HMRPSO. The results for SPPO+, using the third
scout particle, were superior in 8 of the 10 benchmark functions, when compared
with those of the SPPO. These results illustrate the fact that even a single scout
particle, using a specific behavior based on problem specific knowledge, can have
a positive impact on the algorithm’s performance. Additionally, using scout par-
ticles, this impact can be achieved without performing global changes to the
algorithm or using a large number of extra function evaluations.

4 Conclusions

In this paper we discussed the use of scout particles to improve the performance
of an heterogeneous particle swarm optimizer algorithm. We added three different
scout particles to the swarm, performing different roles, and thus contributing in
differentways to the final behavior of the swarm.We used a local searchbased scout
to improve the overall optimizationperformance of the algorithmandobserved that
an opposition learning based scout has a more limited effect, which still could have
a large impact for specific functions. Finally we changed the experimental condi-
tions and built a scout based on the knowledge about that changes to adjust the
algorithm to the new conditions, with additional gains in performance.

Overall, we can conclude that scout particles can be easily used to add new
exploratory behaviors to the algorithm, without perturbing the general dynamic
of the swarm, either by introducing global modifications or using extra resources,
e.g. objective function evaluations. From the extensive experiments performed
on the benchmark functions, it is apparent that the resulting scouting predator-
pray optimizer is not only competitive but even superior to other state-of-the-art
evolutionary, not only in optimization performance but also in robustness.
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Abstract. In this paper, we propose a new approach of data pre-
processing based on rough set theory for the Dendritic Cell Algorithm
(DCA). Our hybrid immune inspired model, denoted QR-DCA, is based
on the functioning of dendritic cells within the framework of rough set
theory and more precisely, on the QuickReduct algorithm. As the DCA
data pre-processing phase is divided into two sub-steps, feature selection
and signal categorization, our QR-DCA model selects the right features
for the DCA classification task and categorizes each one of them to its
specific signal category. This is achieved while preserving the same DCA
main characteristic which is its lightweight in terms of running time. Re-
sults show that our new approach generates good classification results.
We will also compare our QR-DCA to other rough DCA models to show
that our new approach outperforms them in terms of classification accu-
racy while keeping the worthy characteristics expressed by the DCA.

Keywords: Artificial immune systems, Dendritic cells, Rough sets,
QuickReduct.

1 Introduction

Artificial Immune Systems (AIS) are a class of computationally intelligent sys-
tems inspired by the principles of the natural immune system. As AIS is being
developed significantly, novel algorithms termed “2nd Generation AISs” have
been created. One such 2nd Generation AIS is the Dendritic Cell Algorithm
(DCA) [1] which is derived from behavioral models of natural dendritic cells
(DCs). As a binary classifier, the DCA performance is mainly based on its data
pre-processing phase which is divided into two main phases which are feature
selection and signal categorization. More precisely and for data pre-processing,
DCA uses the Principal Component Analysis (PCA) to automatically select fea-
tures and to categorize them to their specific signal types; as danger signals
(DS), as safe signals (SS) or as pathogen-associated molecular patterns (PAMP)
[2]. DCA combines these signals with location markers in the form of antigen to
perform antigen classification. For signal selection, PCA transforms a finite num-
ber of possibly correlated vectors into a smaller number of uncorrelated vectors,
termed “principal components” which reveal the internal structure of the given
data with the focus on data variance [2]. Nevertheless, using PCA as a dimension-
ality reduction technique presents some shortcomings as it is not necessarily true
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that the first selected principal components that capture most of the variance are
the adequate features to retain [3]. Consequently, choosing these components for
the DCA may influence its classification task by producing unreliable results.
For feature categorization, DCA uses the PCA ranking of attributes which is
based on variability and maps this obtained order to the ranking of the signal
categories of the DCA which is in the order: Safe, PAMP and Danger; implying
the significance of each signal category to the signal transformation of the DCA
[2]. However, this categorization reasoning which is based on attributes’ ranking
and where the variability of attributes is equivalent to importance could not be
considered as a coherent and consistent categorization procedure. Hence, in [4],
a first work, named RC-DCA, was developed to solve these issues. RC-DCA is
based on Rough Set Theory (RST) to perform data pre-processing. It is based
on the reduct and the core RST fundamental concepts to select the most impor-
tant features and to categorize them to their specific signal types. In [4], it was
shown that applying RST, instead of PCA, is more appropriate for the DCA data
pre-processing phase leading to a better binary classifier. However, to select the
right set of features, RC-DCA generates all possible subsets and retrieves those
with a maximum rough set dependency degree. Obviously, this is an expensive
solution to the problem and is only practical for very simple data sets. Most of
the time only one reduct is required as, typically, only one subset of features
is used to reduce a data set, so all the calculations involved in discovering the
rest are pointless. In addition, this time consuming task led to neglect the main
DCA characteristic which is its lightweight in terms of running time [5]. Thus,
in this paper, we propose a novel bio-inspired hybrid model of the DCA based
on a new signal selection and categorization technique. Our new model, named
QR-DCA, is based on the behavior of natural dendritic cells and grounded on
the framework of rough set theory for data pre-processing where it adopts the
QuickReduct algorithm. The main contributions of this paper are to introduce
the concept of RST, specifically the QuickReduct algorithm, in the DCA data
pre-processing phase and to show how our proposed new model, QR-DCA, can
find a trade-off between generating good classification results and preserving the
lightweight of the algorithm. We, also, aim to compare the results obtained from
QR-DCA to other rough DCA models proposed in literature.

2 The Dendritic Cell Algorithm

1)Introducing Dendritic Cells: DCs are antigen presenting cells that possess
the ability to capture and process antigens [6]. DCs differentiate into three main
states upon the receipt of signals: PAMPs, danger, safe. The first DC maturation
state is the immature state (iDCs). The differentiation of iDCs depends on the
combination of the signals received leading either to a full maturation state or to
a partial maturation state. Under the reception of safe signals, iDCs migrate to
the semi-mature state (smDCs) causing antigens tolerance. iDCs migrate to the
mature state (mDCs) if they are more exposed to danger signals and PAMPs
than safe signals. mDCs present the collected antigens in a dangerous context.
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2)Abstract View of the Dendritic Cell Algorithm: The initial step of the
DCA is data pre-processing where feature selection and signal categorization
are achieved. More precisely, DCA selects the most important features, from the
initial input database, and assigns each selected attribute to its specific signal
category (SS, DS or PAMP). To do so, DCA applies the PCA [7].

For signal selection, PCA selects the first “principal components” which reveal
the internal structure of the given data with the focus on data variance. PCA
reduces data dimension, by accumulating the vectors that can be linearly repre-
sented by each other [2]. Once features are selected, PCA is applied to assign each
attribute to its specific signal type. In fact, PCA performs a ranking procedure
by using a sum of the absolute values of the weights used for signal transforma-
tion by the DCA. Once ranking is performed, the attributes are mapped into
the DCA input signal categories, by correlating the PCA ranking with the rank-
ing of signal categories - which implies the significance of each signal type to
the signal transformation of the DCA - which is in the order: Safe, PAMP, and
Danger [2]. DCA adheres these signals and antigen to fix the context of each
object (DC) which is the step of Signal Processing. The algorithm processes its
input signals in order to get three output signals: costimulation signal (Csm),
semi-mature signal (Semi) and mature signal (Mat). A migration threshold is
incorporated into the DCA in order to determine the lifespan of a DC. As soon
as the Csm exceeds the migration threshold; the DC ceases to sample signals
and antigens. The migration state of a DC to the semi-mature state or to the
mature state is determined by the comparison between cumulative Semi and
cumulative Mat. If the cumulative Semi is greater than the cumulative Mat,
then the DC goes to the semi-mature context, which implies that the antigen
data was collected under normal conditions. Otherwise, the DC goes to the ma-
ture context, signifying a potentially anomalous data item. This step is known
to be the Context Assessment phase. The nature of the response is determined
by measuring the number of DCs that are fully mature and is represented by the
Mature Context Antigen Value (MCAV). MCAV is applied in the DCA final
step which is the Classification step and used to assess the degree of anomaly of
a given antigen. The closer the MCAV is to 1, the greater the probability that
the antigen is anomalous. Those antigens whose MCAV are greater than the
anomalous threshold are classified as anomalous while the others are classified
as normal. More DCA details and its pseudocode can be found in [1].

3 Rough Set Theory

In RST [8], an information table is defined as a tuple I = (U,A) where U is non-
empty set of primitive objects and A is non-empty set of attributes. A may be
partitioned into C and D, called condition and decision attributes, respectively.
With any P ⊂ A there is an associated equivalence relation IND(P ) defined
as: IND(P ) = {(x, y) ∈ U2 : ∀a ∈ P, a(x) = a(y)}, where a(x) denotes the
value of feature a of object x. The family of all equivalence classes of IND(P )
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is denoted by U/IND(P ). The equivalence classes of the P-indiscernibility re-
lation are denoted [x]P . Let X ⊆ U , the P-lower approximation of a set can
now be defined as: P (X) = {x|[x]P ⊆ X}. The P-lower approximation is the
set of objects U that are surely in X . Let P and Q be equivalence relations
over U , then the positive region can be defined as: POSP (Q) =

⋃
X∈U/Q P (X).

The positive region contains all objects of U that can be classified to classes of
U/Q using the knowledge in attributes P . An important issue in data analysis
is discovering dependencies between attributes. Intuitively, a set of attributes
Q depends totally on a set of attributes P , denoted P ⇒ Q, if all attribute
values from Q can be uniquely determined by values of attributes from P . In
particular, if there exists a functional dependency between values of Q and P ,
then Q depends totally on P . Dependency can be defined in the following way:
For P , Q ⊂ A, Q depends on P in a degree k (0 ≤ k ≤ 1), denoted P ⇒k Q,
if k = γP (Q) = |POSP (Q)|/|U |; If k = 1 Q depends totally on P , if k < 1
Q depends partially (in a degree k) on P , and if k = 0 Q does not depend on
P . RST performs the reduction of attributes by comparing equivalence relations
generated by sets of attributes. Attributes are removed so that the reduced set
provides the same quality of classification as the original. A reduct is defined as a
subset R of the conditional attribute set C such that γR(D) = γC(D). Note that
a given data set may have many attribute reduct sets. The intersection of all
the sets in R is called the core, reflecting those attributes that cannot be elimi-
nated without introducing more contradictions to the data set. In RST, a reduct
with minimum cardinality is searched for; in other words an attempt is made
to locate a single element of the minimal reduct set. A basic way of achieving
this is to calculate the dependencies of all possible subsets of C. Any subset X
with γX(D) = 1 is a reduct; the smallest subset with this property is a minimal
reduct. However, for large data sets this method is impractical and an alterna-
tive strategy is required. One possible way to avoid these extra calculations, is
to apply the QuickReduct Algorithm [9] that attempts to calculate a minimal
reduct without exhaustively generating all possible subsets. It starts off with an
empty set and adds in turn those attributes that result in the greatest increase in
γP (Q), until this produces its maximum possible value for the data set (usually
1). An illustrative example of the QuickReduct Algorithm application as well as
its pseudocode can be found in [9].

4 QR-DCA: The Solution Approach

In this Section, we present our QR-DCA model based on RST, and specifically on
the QuickReduct algorithm, for the automatic DCA data pre-processing phase
including feature selection and signal categorization.

4.1 The QR-DCA Signal Selection Process

For antigen classification, our learning problem has to select high discriminat-
ing features from the original input database which corresponds to the antigen
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information data set. We may formalize this problem as an information table,
where universe U = {x1, x2, . . . , xN} is a set of antigen identifiers, the condi-
tional attribute set C = {c1, c2, . . . , cA} contains each feature of the information
table to select and the decision attribute D of our learning problem corresponds
to the class label of each sample.

For feature selection, QR-DCA computes, first of all, the dependency of the
entire database γC(D). To do so, QR-DCA has to calculate the positive region
for the whole attribute set C: POSC(D) (as presented in Section 3). Once the
consistency of the database is measured, QR-DCA starts off with an empty set
and moves to calculate the dependency of each attribute c a part: γc(D). The
attribute c having the greatest value of dependency is added to the empty set.
Once the first attribute c is selected, QR-DCA adds, in turn, one attribute to
the selected first attribute and computes the dependency of each obtained at-
tributes’ couple γ{c,ci}(D). The algorithm chooses the couple having the greatest
dependency degree. The process of adding each time one attribute to the subset
of the selected features continues until the dependency of the obtained subset
equals the consistency of the entire database already calculated: γC(D).

The generated subset of the selected features, constituting the reduct, shows
the way of reducing the dimensionality of the original data set by eliminating
those conditional attributes that do not appear in the set. Those discarded at-
tributes are removed in each QR-DCA computation level since they do not add
anything new to the target concept nor help the QR-DCA to perform well its
classification task. However, the reduct features represent the most informative
features that preserve nearly the same classification power of the original data
set. Using the reduct concept, our method can guarantee that attributes of ex-
tracted feature patterns will be the most relevant for its classification task.

4.2 The QR-DCA Signal Categorization Process

The second step of our QR-DCA model data pre-processing phase is feature
categorization. More precisely, our method has to assign for each selected at-
tribute, produced by the previous step and which is included in the generated
reduct, its definite and specific signal category. The general guidelines for signal
categorization are as follows:

• Safe signals : Their presence certainly indicates that no anomalies are present.
• PAMPs : Their presence usually means that there is an anomalous situation.
• Danger signals : Their presence may or may not show an anomalous sit-
uation, however the probability of an anomaly is higher than under normal
circumstances.

From the previous definitions, both PAMP and SS are positive indicators of an
anomalous and normal signal while the DS is measuring situations where the
risk of anomalousness is high, but there is no signature of a specific cause. In
other words, PAMP and SS have a certain final context (either an anomalous
or a normal behavior) while the DS cannot specify exactly the final context to
assign to the collected antigen. This is because the information returned by the
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DS is not certain as the collected antigen may or may not indicate an anomalous
situation. This problem can be formulated as follows:

Both PAMP and SS are more informative than DS which means that both of
these signals can be seen as indispensable attributes. To represent this level of
importance, our method uses the first obtained couple of features through the
reduct generation. On the other hand, DS is less informative than PAMP and
SS. Therefore, our method applies the rest of the reduct attributes, discarding
the two first selected attributes that are chosen to represent the SS and PAMP
signals, to represent the DS. More precisely, our method processes as follows:

As QR-DCA has already calculated the dependency of each attribute c a
part, γc(D), QR-DCA selects the attribute c having the greatest dependency
degree to form the SS as it is considered the most informative feature added to
the reduct. With no additional computations and since QR-DCA has already
computed the dependency of each attributes’ couple γ{c,ci}(D) when adding, in
turn, one attribute ci to the selected first attribute c that represents the SS, QR-
DCA chooses the couple having the greatest dependency degree. More precisely,
QR-DCA selects that second attribute ci to form the PAMP signal. And finally,
the rest of the reduct attributes are combined and affected to represent the DS
as it is less than certain to be anomalous.

Once the selected features are assigned to their suitable signal types, our
method calculates the values of each signal category using the same process as
the standard DCA [1]. The output is thus a new information table which reflects
the signal database. In fact, the universe U of the induced signal data set is
U = {x′

1, x
′
2, . . . , x

′
N} a set of antigen identifiers and the conditional attribute

set C = {SS, PAMP,DS} contains the three signal types: SS, PAMPs and DS.
Once data pre-processing is achieved, QR-DCA processes its next steps which
are the Signal Processing, the Context Assessment and the Classification step
as the DCA does and as described in Section 2.

5 Experimental Setup

To test the validity of our QR-DCA hybrid model, our experiments are performed
on two-class databases from [10] described in Table 1. We try to show that
our QR-DCA can find a trade-off between generating good classification results
and having a lightweight in terms of running time. Thus, we will compare the
QR-DCA performance to our first work, RC-DCA, published in [4] which is
also based on RST for the DCA data pre-processing phase. The common idea
between QR-DCA and RC-DCA is to assign for each selected feature a specific
signal category: either as SS, DS or PAMP. Nevertheless, RC-DCA generates all
the possible reducts, which is a time consuming task, to select the reduct having
the minimal set of features among the other generated reducts. In addition, RC-
DCA differs from our new rough DCA model in the categorization step which
focuses on proposing different solutions in case where this method produces one
reduct or a family of reducts. More details about RC-DCA can be found in
[4]. The QR-DCA performance is also compared to another rough DCA work,



146 Z. Chelly and Z. Elouedi

named RST-DCA [11]. The main difference between RST-DCA and both QR-
DCA and RC-DCA is that RST-DCA assigns only one attribute to form both
SS and PAMP as they are seen as the most important signals. As for the DS
categorization, RST-DCA combines the rest of the reduct features and assigns
the resulting value to the DS. Like RC-DCA, RST-DCA generates all the possible
reducts and proposes solutions to handle both cases (generating one reduct or
a family of reducts) for data pre-processing. More details about RST-DCA can
be found in [11].

For data pre-processing and for all the mentioned rough DCA works includ-
ing QR-DCA, each data item is mapped as an antigen, with the value of the
antigen equal to the data ID of the item. In all experiments, a population of
100 cells is used and 10 DCs sample the antigen vector each cycle. To perform
anomaly detection, a threshold which is automatically generated from the data
is applied to the MCAVs. The MCAV threshold is derived from the proportion
of anomalous data instances of the whole data set. Items below the threshold
are classified as class 1 and above as class 2. The resulting classified antigens are
compared to the labels given in the original data sets. For each experiment, the
results presented are based on mean MCAV values generated across 10 runs.

We evaluate the performance of the rough DCAmethods in terms of number of
extracted features, running time, and accuracy which is defined as: Accuracy =
(TP + TN)/(TP + TN + FN + FP ); where TP, FP, TN, and FN refer re-
spectively to: true positive, false positive, true negative and false negative. We
will also compare the classification performance of our QR-DCA method to well
known classifiers which are the Support Vector Machine (SVM), Artificial Neural
Network (ANN) and the Decision Tree (DT).

Table 1. Description of Databases

Database Ref � Instances � Attributes

Spambase SP 4601 58
SPECTF Heart SPECTF 267 45
Cylinder Bands CylB 540 40
Chess Ch 3196 37
Ionosphere IONO 351 35
Congressional Voting Records CVT 435 17
Tic-Tac-Toe Endgame TicTac 958 10

6 Results and Analysis

Let us remind that the first step of the standard DCA classification algorithm
is data pre-processing which is based on the use of PCA. In [11] and [4] and by
the development of both RST-DCA and RC-DCA, we have proved that applying
PCA for both feature selection and signal categorization is not convenient for
the DCA as both phases are not consistent. We have also shown that applying
rough set theory with DCA is a good alternative leading to a better classification
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performance. However, these two rough DCA models suffer from some limita-
tions; principally the time taken by the algorithms to process which contradicts
the main characteristic of the standard DCA: its lightweight in terms of running
time. Thus, in this paper, we have developed a new rough DCA hybrid model,
QR-DCA, where we show that this proposed solution can find the trade-off be-
tween generating good classification results and processing in less time than both
RC-DCA and RST-DCA. This is confirmed by the results presented in Table 2.
From these results, we will also show that assigning for each selected feature a
specific signal category, a process performed by both QR-DCA and RC-DCA,
lead to a better performance than assigning the same attribute to both SS and
PAMP, a process performed by RST-DCA.

Table 2. Comparison Results of the Rough DCA Approaches

Accuracy (%) � Attributes Time (s)
Database DCA DCA DCA

QR RC RST QR RC RST QR RC RST

SP 98.87 98.45 94.5 11 8 8 1976.05 3184.83 2923.41

SPECTF 93.26 88.38 82.4 12 4 4 5.49 1423.02 1361.77

CylB 97.46 97.46 96.67 7 7 7 12.68 1441.93 1398.12

Ch 98.84 98.84 98.02 11 11 11 571.05 1779.83 1697.01

IONO 96.58 97.15 96.29 22 19 19 15.88 668.32 591.13

CVT 97.93 98.85 96.55 11 8 8 7.03 17.83 10.54

TicTac 96.65 95.3 93.52 8 6 6 49.89 62.66 58.80

From Table 2, we can notice that RST-DCA and RC-DCA models have the
same number of selected features. This is explained by the fact that both models
are based on the same feature selection phase. They generate all the possible
reducts and choose the one having the smaller number of features. However, our
QR-DCA new version has either the same number of features as both RST-DCA
and RC-DCA or more features. This is explained by the fact that QR-DCA, by
applying the QuickReduct algorithm, follows the features’ path that generates
the highest dependency degree. Consequently, the taken path may either lead to
a final reduct including the smallest number of features or to a path including
more selected features; but still this obtained reduct includes the most important
features to retain. For instance, applying QR-DCA to the IONO database, the
number of selected attributes is 22. However, when applying RST-DCA or RC-
DCA, the number of selected features is 19. Applying the three rough DCA
models to the Ch database, the number of the selected features is the same: 11.
We have also to mention that obtaining the same number of features does not
mean that this reduct includes the same attributes; the attributes may differ.

Based on these selected attributes, the accuracies of the algorithms are calcu-
lated. From Table 2, we can notice that the difference between the classification
accuracies generated by both QR-DCA and RC-DCA is not significant. Thus,
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we can say that QR-DCA has nearly the same classification performance as
RC-DCA. For instance, when applying the algorithms to the SP data set, the
classification accuracy of QR-DCA is set to 98.87% and when applying RC-DCA
to the same database, the accuracy is set to 98.45%. In some databases, the QR-
DCA classification accuracy is a bit less than the one generated by RC-DCA
and sometimes a bit higher. We also remark, that in all databases, QR-DCA
and RC-DCA outperform the classification accuracy generated by RST-DCA.
For instance, the classification accuracy of RST-DCA when applied to the SP
database is set to 94.5% which is less than 98.87% and 98.45% generated respec-
tively by QR-DCA and RC-DCA. This is explained by the fact that RST-DCA
differs from QR-DCA and RC-DCA in the signal categorization phase. Both QR-
DCA and RC-DCA assign different features to different signal categories (DS,
SS, PAMP). However, RST-DCA uses the same attribute to assign it for both
SS and PAMP. As for the DS categorization, RST-DCA combines the rest of the
reduct features to assign it for the DS. From these results, we can conclude that
it is crucial to assign for each signal category a specific and different feature.

Another advantage of our QR-DCA is that it takes less time to process than
RC-DCA and RST-DCA. This is confirmed by the results appearing in Table 2.
For example, when applying the algorithms to the CylB database, the amount of
time taken by QR-DCA to process is 12.68(s) which is less than the times taken
by RC-DCA and RST-DCA which are 1441.93(s) and 1398.12(s), respectively.
The QR-DCA lightweight in terms of running time is explained by the advantage
of using the QuickReduct algorithm as it attempts to calculate a reduct without
exhaustively generating all possible subsets. In contrast, both RST-DCA and
RC-DCA generate all possible subsets and retrieve those with a maximum rough
set dependency degree. Obviously, this is an expensive solution to the problem.
Most of the time only one reduct is required as, typically, only one subset of
features is used to reduce a data set, so all the calculations involved in discovering
the rest are pointless.

We have also compared the performance of our QR-DCA to other classifiers
including SVM, ANN and DT. The comparison made is in terms of the average
of accuracies on the databases presented in Table 1. The parameters of SVM,
ANN and DT are set to the most adequate parameters to these algorithms
using the Weka software. Figure 1 shows that our QR-DCA has nearly the same
classification performance as RC-DCA. It also shows that QR-DCA outperforms
RST-DCA, SVM, ANN and DT.

To summarize, QR-DCA is a good classification technique proposed as an
alternative to our RC-DCA first work. QR-DCA has the advantage of generating
good classification results while preserving a lightweight in terms of running time.
We have also shown that it is crucial that DCA assigns different attributes for
each signal type. QR-DCA performs much better than the mentioned classifiers
in terms of classification accuracy.
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Fig. 1. Comparison of Classifiers’ Average Accuracies on the 7 Binary Data sets

7 Conclusion and Further Work

In this paper, we have introduced a new hybrid DCA bio-inspired model based on
RST. Our model aims to select the convenient set of features and to perform their
signal categorization using the QuickReduct algorithm. Results show that our
method is capable of finding a trade-off between generating good classification
results and keeping the algorithm lightweight in terms of running time. As future
work we aim to apply the fuzzy RST for the DCA data pre-processing phase.
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Abstract. The best achievable convergence rates of mutation-based evo-
lutionary algorithms are known for various characteristic test problems.
Most results are available for convex quadratic functions with Hessians of
full rank. Here, we prove that linear convergence rates are achievable for
convex quadratic functions even though the Hessians are rank-deficient.
This result has immediate implications for recent convergence results for
certain evolutionary algorithms for bi-objective optimization problems.

Keywords: evolutionary algorithm, convergence rate, quadratic func-
tions, rank-deficient Hessian.

1 Introduction

Themaximumconvergence speed ofmutation-based evolutionaryalgorithms (EA)
have been derived for various characteristic test problems f : Rn → R. In 1973
Rechenberg [15] began this kind of research by deriving the convergence rate the
(1 + 1)-EA for the so-called sphere and corridor model in case of Gaussian mu-
tations. This work was extended by others [21, 20, 3, 6, 7, 2, 16–19, 14, 13, 8] in
various directions including the type of evolutionary algorithms, test problems and
mutation distributions. These theoretical analyses typically assumed that the step
size or mutation distribution can be adjusted optimally by exploiting knowledge
about the distance to the optimal solution or optimal value. Jägersküpper’s results
[11, 12] extended the theory considerablyby proving that the step sizes or variances
of the mutations controlled by mechanisms in the spirit of Rechenberg’s 1

5 -success
rule [15] also lead to linear convergence rates for quadratic convex functions with
full rankHessians.Objective functions of this type exhibit positive definiteHessian
matrices. Here, we shall consider the case of rank-deficient Hessians which implies
that the Hessian is positive semidefinite and not positive definite. This scenario
is analyzed in [5] with the result of an expected convergence rate ∈ [c, 1] for some
c ∈ (0, 1). The inclusion of c = 1 restricts the power of the result considerably since
we have no progress in convergence then. The limitation in that result stems from
the necessity of a positive least eigenvalue of the Hessian in the proof technique.
Since the least eigenvalue of a positive semidefinite and rank-deficient matrix is
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zero another proof technique is required. The application of this alternative tech-
nique leads to the result that the case c = 1 is actually excluded. This result is a
further step towards a comprehensive convergence theory of EAs.

In section 2 we introduce basic results from linear algebra, the problem class
and the evolutionary algorithm under consideration. Section 3 contains the con-
vergence analysis whereas section 4 discusses implications of the result for the
multiobjective setting. Conclusions are presented in section 5.

2 Preliminaries

2.1 Tools from Linear Algebra

The terminology and results are extracted from [1].

Definition 1. A matrix A : n× n is termed
a) symmetric if A = A′, where A′ denotes the transpose of A,
b) orthogonal if A′A = In, where In is the unit matrix of dimension n,
c) positive definite (p.d.) if x′Ax > 0 for all x ∈ R

n \ {0},
d) positive semidefinite (p.s.d.) if x′Ax ≥ 0 for all x ∈ R

n,
e) rank-deficient if rank A < n. ��

The result below will serve as a central tool to simplify the analysis in section 3.

Theorem 1. Let A : n× n be a p.s.d. symmetric matrix with rankA < n.
a) A is diagonizable.
b) All eigenvalues are nonnegative.
c) The number of positive eigenvalues is equal to the rank of A.
d) There exists an orthogonal matrix T such that

T ′AT = diag(ν1, . . . , νr, 0, . . . , 0)

where ν1 ≤ ν2 ≤ . . . ,≤ νr are the positive eigenvalues and r = rank A. ��

2.2 Problem Class

In section 3 we shall analyze the problem class min{f(x) : x ∈ R
n} with f(x) =

x′Ax where A : n×n is symmetric, positive semidefinite and rank-deficient with
rank A = r < n. Since the Hessian matrix ∇2f(x) = 2A is p.s.d. for all x ∈ R

n

by precondition, all x ∈ R
n with ∇f(x) = 2Ax = 0 are global minimizers. Thus,

optimal solutions x∗ are elements of the null space or kernel of matrix A, i.e.,
x∗ ∈ kern A = {x ∈ R

n : Ax = 0}. Since dim(kern A) + rank A = n in general
and rank A = r < n by assumption, the dimension of the null space is n− r ≥ 1.
As a consequence, this problem has denumerable many solutions.
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2.3 Algorithm

The analysis will be restricted to the (1 + 1)-EA sketched in Alg. 1. Here, Z ∼
N(0, In) means that Z is a random vector of dimension n with zero expectation
vector and unit matrix as covariance matrix. It can be generated by drawing
n independent, standard normally distributed random numbers Z1, . . . , Zn and
setting Z = (Z1, Z2, . . . , Zn)

′. The choice of σt will be a result of the analysis in
section 3.

Algorithm 1. (1 + 1)-EA

1: choose X(0) ∈ R
n at random; set t = 0

2: repeat
3: draw Z ∼ N(0, In)
4: Y = X(t) + σt · Z
5: if f(Y ) ≤ f(X(t)) then
6: X(t+1) = Y
7: else
8: X(t+1) = X(t)

9: end if
10: t = t+ 1
11: until stopping criterion fulfilled

2.4 Convergence Rate

To avoid misunderstandings it is necessary to equip the notion of “convergence”
with a precise meaning.

Definition 2. Let X be a random variable and (Xk)k∈N0 a sequence of random
variables defined on a probability space (Ω,A, P ). Then (Xk) is said to

(a) converge completely to X, if for any ε > 0

lim
k→∞

k∑
j=1

P{|Xj −X | > ε} < ∞;

(b) converge almost surely or with probability 1 to X, if

P{ lim
k→∞

|Xk −X | = 0} = 1;

(c) converge in probability to X, if for any ε > 0

lim
k→∞

P{|Xk −X | > ε} = 0;

(d) converge in mean to X, if

lim
t→∞E(|Xk −X |) = 0. �

The velocity of approaching a limit is expressed by the “convergence rate.”
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Definition 3. Let (Zk : k ≥ 0) be a non-negative random sequence. The se-
quence is said to converge geometrically fast in mean (in probability, w.p. 1)
to zero if there exists a constant q > 1 such that the sequence (qkZk : k ≥ 0)
converges in mean (in probability, w.p. 1) to zero. Let q∗ > 1 be supremum of
all constants q > 1 such that geometrically fast convergence is still guaranteed.
Then c = 1/q is called the convergence rate. A sequence with geometrically fast
convergence is synonymously denoted to have a linear convergence rate. ��

Let ρ(·) denote a function that measures the performance of an EA’s population
Xk and ρ∗ the target value. If the sequence (Zk)k≥0 defined by Zk = |ρ(Xk)−ρ∗|
converges (in any mode mentioned above) to zero with a certain convergence
rate, then the EA approaches the target performance value with this rate.

For example, let ρ(Xk) be the best objective function value of the population
at generation k ≥ 0 of a single-criterion EA and ρ∗ be the global minimum of the
objective function. If Zk converges to zero then the EA converges to the global
minimum. Similarly, let ρ(Xk) be the dominated hypervolume of population Xk

and ρ∗ the maximal dominated hypervolume in the multi-objective scenario then
the population converges to the maximum dominated hypervolume if Zk → 0 as
k → ∞. Other performance concepts can be used accordingly.

3 Analysis

3.1 Rotation of the Coordinate System

Notice that we can rotate the coordinate system by replacing every x ∈ R
n by

Tx ∈ R
n where T is the orthogonal matrix specified in the Theorem 1(d) such

that

T ′AT = diag(ν1, . . . , νr, 0, . . . , 0)

for the symmetric, p.s.d. and rank-deficient matrix A of some instance f(x) =
x′Ax from our problem class. This leads to

f(Tx) = (Tx)′A(Tx) = x′TATx = x′diag(ν1, . . . , νr, 0, . . . , 0)x =

r∑
i=1

νix
2
i

with positive eigenvalues ν1, . . . , νr and r < n. Since the mutations of our (1+1)-
EA are placed spherically symmetric it is sufficient, without loss of generality,
to consider only test problems of the form

f(x) =

r∑
i=1

ai x
2
i → min! (1)

for x ∈ R
n with a1, . . . , ar > 0 and r < n. Evidently, optimal solutions are

x∗ ∈ R
n with x∗ = (0, . . . , 0, x∗r+1, . . . , x

∗
n)

′ where x∗r+1, . . . , x
∗
n ∈ R.
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3.2 Hessian with Rank 1

At first, we shall consider the extreme case r = 1 before we generalize the
analysis to arbitrary r < n. As a consequence, we can restrict the analysis to
the objective function f(x) = a1 x

2
1 with a1 > 0. The objective function value of

the mutated individual with parent x ∈ R
n is a random variable defined via

f(x+ σ Z) = a1 (x1 + σ Z1)
2 = a1 (x

2
1 + 2 σ x1 Z1 + σ2 Z2

1 )

where Z ∼ N(0, In) and Z1 ∼ N(0, 1). Setting σ = γ x1 for some γ > 0 the
equation above changes to

f(x+ σ Z) = a1 x
2
1︸ ︷︷ ︸

f(x)

+2 γ a1 x
2
1︸ ︷︷ ︸

f(x)

Z1 + γ2 a1 x
2
1︸ ︷︷ ︸

f(x)

Z2
1 = f(x)

(
1 + 2γ Z1 + γ2Z2

1

)
.

Since the (1 + 1)-EA accepts a mutated individual only if it is not worse than
the parent the expected function value after mutation and selection is given by

E[ min{f(x), f(x+ σ Z)} ] = E
[
min{f(x), f(x)

(
1 + 2γ Z1 + γ2 Z2

1

) ]
= f(x) · E[ min{1, (1 + γ Z1)

2} ] . (2)

Notice that 1 + γ Z1 ∼ N(1, γ2) so that random variable V := (1 + γ Z1)
2 has

noncentral χ2 distribution with 1 degree of freedom and noncentrality parameter
κ = 1/γ2. The cumulative distribution function (c.d.f.) of random variable V can
be expressed by the c.d.f. Φ(x) of the standard normal distribution via

FV (x) = P{ (1 + γ Z1)
2 ≤ x } = P{−

√
x ≤ 1 + γ Z1 ≤

√
x } =

P

{
−

√
x+ 1

γ
≤ Z1 ≤

√
x− 1

γ

}
= Φ

(√
x− 1

γ

)
− Φ

(
−

√
x+ 1

γ

)
for x ≥ 0 and FV (x) = 0 otherwise. The probability density function (p.d.f.) of
V can be determined from its c.d.f. by derivation w.r.t. x:

fV (x) =
dFV (x)

dx
=

1

2 γ
√
x

[
ϕ

(√
x− 1

γ

)
+ ϕ

(√
x+ 1

γ

)]
· 1[0,∞)(x)

where ϕ(x) is the p.d.f. of the standard normal distribution. Notice that ϕ(x) =
ϕ(−x) for all x ∈ R

n. Taking into account the identity

min{1, v} = v · 1(−∞,1](v) + 1(1,∞)(v)

we are in the position to determine the right factor in equation (2) via

E[ min{1, (1 + γ Z1)
2} ] = E[ min{1, V } ] = E[V · 1(−∞,1](V ) + 1(1,∞)(V ) ] =

E[V · 1(−∞,1](V ) ] + E[ 1(1,∞)(V ) ] = E[V · 1(−∞,1](V ) ] + P{V > 1 } =

∞∫
−∞

x · 1(−∞,1](x) · fV (x) dx + P{V > 1 } =

1∫
0

x · fV (x) dx + P{V > 1 } .
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Notice that

P{V > 1 } = 1− FV (1) =
1

2
+ Φ

(
− 2

γ

)
.

It remains to evaluate the integral

1∫
0

x · fV (x) dx =

1∫
0

√
x

2 γ

[
ϕ

(√
x− 1

γ

)
+ ϕ

(√
x+ 1

γ

)]
dx

where ϕ(x) is the p.d.f. of the standard normal distribution again. After tedious
but straightforward calculations one obtains

1∫
0

x · fV (x) dx = (γ2 + 1)

[
Φ

(
2

γ

)
− 1

2

]
− γ

√
2

π

and finally the γ-dependent convergence rate

c(γ) := E[ min{1, V } ] = γ2
[
Φ

(
2

γ

)
− 1

2

]
− γ

√
2

π
+ 1 . (3)

A graphical illustration is given in fig. 1. Numerical minimization of (3) leads to
the optimum

γ∗ ≈ 0.877 with c(γ∗) ≈ 0.676

for the special case r = 1. Notice that the dimension n of the search space neither
affects the optimal convergence rate nor the optimal standard deviation

σ∗ = γ∗ x1

for the mutation vector.
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Fig. 1. Convergence rate depending on γ for Hessians with rank 1
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Thus, we have proven:

Theorem 2. The best possible convergence rate of the (1+1)-EA with Gaussian
mutations for the minimization of a convex quadratic function with rank-deficient
Hessian is linear with value c∗ = 0.676 for rank r = 1 regardless of the dimension
of the search space. ��

3.3 Hessian with Rank r < n

The rotation of the coordinate system is not really necessary for the analysis
but it was helpful to get a clear view on the essential ingredients of the prob-
lem. We now drop the assumption of a properly rotated coordinate system so
that the objective function is f(x) = x′Ax for x ∈ R

n. Since A is assumed
to be symmetric, p.s.d. and rank-deficient there exists a (nonunique) Cholesky
decomposition A = B′B with upper triangular matrix B [10, p. 13] so that
x′Ax = x′B′Bx = (Bx)′(Bx) = ‖Bx‖2 where ‖ · ‖ denotes the Euclidean norm.
The objective function value after mutation is

f(x+ σ Z) = x′Ax+ 2σZ ′Ax + σ2Z ′AZ
= x′B′Bx+ 2σ Z ′B′Bx+ σ2Z ′B′BZ
= (Bx)′(Bx) + 2σ (BZ)′(Bx) + σ2(BZ)′(BZ)
= ‖Bx‖2 + 2 σ‖BZ‖ · ‖Bx‖ · cosω + σ2 ‖BZ‖2 (4)

where ω is the random angle between BZ and Bx. Notice that ω is independent
from ‖BZ‖ (see [9]) and that cosω has a Beta-distribution with support (−1, 1)
and parameters only depending on the rank r (see [16]). Setting σ = γ ‖Bx‖ in
(4) yields

f(x+ σ Z) = ‖Bx‖2 + 2 γ‖BZ‖ · ‖Bx‖2 · cosω + γ2 ‖Bx‖2 ‖BZ‖2

= ‖Bx‖2 (1 + 2γ ‖BZ‖ · cosω + γ2 ‖BZ‖2)
= f(x) · (1 + 2γ ‖BZ‖ · cosω + γ2 ‖BZ‖2) (5)

which is the random objective function value after mutation. Since the (1+1)-EA
accepts a mutated individual only if it is not worse than the parent the expected
function value after mutation and selection is given by

E[ min{f(x), f(x+σ Z)} ] = f(x)·E[ min{1, 1+2γ ‖BZ‖·cosω+γ2 ‖BZ‖2} ] (6)

Evidently, ‖BZ‖ and ω are independent and both do not depend on x (but on
r). It follows that the expected convergence rate, i.e., the E[ · ] part of (6), is a
fixed value for given problem f(x) = x′Ax, as A determines B, its eigenvalues
and the rank r. This fact reveals a linear convergence rate.

Theorem 3. The best possible convergence rate of the (1+1)-EA with Gaussian
mutations for the minimization of a convex quadratic function with rank-deficient
Hessian is linear with a value only depending on the positive eigenvalues of the
Hessian and its rank, regardless of the dimension of the search space. ��
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This result can be extended further. Recall from (1) that the problem on which
the (1+1)-EA is operating is nothing more than just a convex quadratic function
with full rank in the r-dimensional subspace of Rn. Therefore we can rewrite the
existing theory for problems with full rank Hessians and dependence on n to a
theory of convex quadratic problems with rank-deficient Hessians by replacing
the dimension n of the search space with the dimension r of the spanned subspace
(the rank of A). An immediate consequence of this observation is the validity of
Jägersküpper’s results on self-adaptive EAs on positive definite quadratic forms
[11, 12] in the subspace of dimension r.

Theorem 4. The convergence rate of the (1+1)-EA with self-adaptive Gaussian
mutations in the spirit of Rechenberg’s 1/5-success rule for the minimization of a
convex quadratic function with rank-deficient Hessian is linear with a value only
depending on the success rule parameters and the positive eigenvalues as well as
the rank of the Hessian regardless of the dimension of the search space. ��

4 Implications for Multi-Objective Evolutionary
Algorithms

The goal of multiobjective optimization is simultaneous minimization of d ≥ 2
objective functions. In [4] it was proven that in case of d = 2 objectives the
(1 + 1)-SMS-EMOA is algorithmically equivalent to the (1 + 1)-EA if the latter
minimizes the sum of both objectives. Moreover, if both objective functions are
convex quadratic functions where at least one function has a Hessian of full rank
then it was shown that the (1 + 1)-SMS-EMOA converges geometrically fast to
the Pareto front.

With the result of the previous section we can extend the result as follows:
Let the convex quadratic objective functions both have rank-deficient Hessians
A and B. As a consequence, we have for all x ∈ R

n \ {0}

f1(x) + f2(x) = x′Ax︸ ︷︷ ︸
≥0

+ x′Bx︸ ︷︷ ︸
≥0

= x′(A+B)x ≥ 0

with strict inequality if and only if rank(A + B) = n. In this case, the theorem
in [4] is also valid. But if rank(A + B) < n then we may apply Theorem 3 to
generalize the result in [4]:

Theorem 5. The (1+1)-SMS-EMOAwith self-adaptation applied to a bi-objective
optimization problemmin{f : Rn → R

2} approaches an element of the Pareto front
with linear order of convergence if both objective functions are quadratically convex
with p.s.d. Hessian matrices. ��

In [5] (section 6) it was proven that in case of d = 2 objectives the (1 + 1)-SMS-
EMOA with fixed reference point r ∈ R

2 is algorithmically equivalent to the
(1 + 1)-EA if the latter maximizes the surrogate function fs(x) = [r1 − f1(x)] ·
[r2 − f2(x)]. Moreover, if the objective functions are linear, i.e., f(x) = (a0 +
a′x, b0+ b′x)′, then −f s(x) is convex provided that −ab′ is positive semidefinite.
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In this case the theorem in [5] guaranteed a linear convergence rate between
0 and some c ∈ (0, 1). Before improving the result we figure out under which
conditions we can assert that −ab′ is p.s.d. for sure.

Theorem 6. Let a ∈ R
n with n > 1, a �= 0 and A = a a′.

a) A is symmetric.
b) A is p.s.d.
c) rank A = 1.
d) ν1 = a′a > 0.

Proof.
a) aij = ai · aj = aj · ai = aji for all i, j = 1, . . . , n.
b) x′(a a′)x = (x′a) (a′x) = (a′x) (a′x) = (a′x)2 ≥ 0 for all x ∈ R

n.
c) By construction, the ith row is a multiple of the first row for i = 2, . . . , n.
d) Since trace A =

∑n
i=1 νi and trace A = trace aa′ =

∑n
i=1 a

2
i = a′a > 0 we

know that
∑n

i=1 νi = a′a > 0. Owing to Theorem 1(c) and Theorem 6(c) we
have ν1 > 0 and νi = 0 for i = 2, . . . , n. Thus, trace aa′ = ν1 = a′a > 0. ��

Thus, if b = −a then the preconditions of Theorem 2 are fulfilled and we may
state:

Theorem 7. The (1+1)-SMS-EMOA with fixed reference point and spherically
symmetric mutations Z ∼ N(0, σ2

t In) maximizes the dominated hypervolume of
the linear problem

f(x) = (a′x+ a0, b
′x+ b0)

′ → min!, x ∈ R
n

with linear convergence rate if b = −a. ��

5 Conclusions

The determination of the convergence rates of simple evolutionary algorithms
for quadratic convex functions can be extended from the case of positive definite
to positive semidefinite Hessians, or equivalently, from fully ranked to rank-
deficient Hessians: The order of the convergence rate is not affected. The analysis
also revealed that optimizing rank-deficient quadratic problems can be treated as
optimizing positive definite quadratic problems in subspaces of dimension r < n,
where r is the rank of the Hessian. Moreover, the convergence theory for EAs
in R

n for quadratic problems actually does not depend on the dimension n of
the search space but on the codimension r of the Hessian’s kernel, i.e., the rank
of the Hessian. Therefore the broadly accepted tenet that the best convergence
rate depends on the problem dimension has to be adapted: the best convergence
rate depends on the dimension of the dimensionally largest subspace affecting
the objective function value. Finally, these results immediately extend recent
convergence result for the (1 + 1)-SMS-EMOA used in bicriteria optimization.
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Abstract. The scale-up performance of genetic algorithms applied to group 
decision making problems is investigated. Ordinal intervals are used for 
expressing the individual preferences of the decision makers, as provided 
independently for each course of action. Genetic algorithms have been found 
capable of swiftly returning optimal ranking solutions, with computational 
complexity (the relationship between the number of available courses of action 
and the number of generations until convergence) expressed by a fourth order 
polynomial, but found practically independent of the number of decision 
makers. 

Keywords: Group decision making. decision makers, courses of action, 
preference ranking, ordinal interval numbers, genetic algorithms, scaling.  

1 Introduction 

Group decision making (GDM) [1-2] selects the preferred course of action (COA) out 
of a number of available COAs. A group of decision makers (DMs) is employed to 
this end, with each DM expressing his/her preference for the COAs, following which 
the preferences are aggregated and the collectively preferred COA is determined. 

A means of implementing GDM problems is preference ranking via ordinal 
interval numbers. Preference ranking GDM via ordinal interval numbers produces an 
ordering of all the COAs in terms of collective preference, thereby showing a 
significant advantage over classic GDM in terms of robustness as well as efficiency in 
the case that the overall preferred COA cannot be implemented and an alternative 
COA must be selected (namely the COA ranked second, third etc. best until an 
implementable COA is found).  

In this piece of research, the scale-up performance of genetic algorithms (GAs) [3] 
applied to preference ranking GDM via ordinal interval numbers is investigated for 
increasing numbers of available COAs and/or DMs. GAs have been found capable of 
swiftly returning optimal ranking solutions, with computational complexity (the 
relationship between the number of available courses of action and the number of 
generations until convergence) expressed by a fourth order polynomial, but found 
practically independent of the number of decision makers. An example taken from the 
relevant literature is used to demonstrate these points.  
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The presentation is organized as follows: Sections 2 and 3 introduce preference 
ranking GDM via ordinal interval numbers and GAs, respectively; Section 4 describes 
the construction and operation of the GA for efficiently producing optimal (i.e. 
collectively preferred) orderings of the COAs, while Section 5 evaluates the scale-up 
potential of GAs using a large-scale GDM problem found in the literature; finally, 
Section 6 concludes the paper. 

2 Preference Ranking GDM via Ordinal Interval Numbers 

In preference ranking GDM via ordinal interval numbers, the m DMs independently 
express their preferences concerning the ranking of the n COAs via ordinal interval 
numbers of the form [a  b] (1≤a≤b≤n), specifying that a COA is ranked either ath, 
a+1th, …, b-1th, or bth best in a DM’s preferences. The relation between the values 
of a and b determines the following: 

• if 1≤a and b<n, or 1<a and b≤n, it is possible to consider (a) all the numbers 
in the ordinal interval number as equivalent in the DM’s preference rankings, 
or (b) the nearer/further the numbers are to the centre of the ordinal interval 
number, the greater/smaller the DM’s preference ranking1;  

• if a=b, a trivial (single number) ordinal interval number is created specifying 
that the COA is ranked exactly ath best in the DM’s preferences; 

• if 1=a and b=n, the DM expresses no preference ranking for the COA, which 
this is equivalent to the DM providing no preference for the COA. 

 
In this piece of research, purely binary reward-penalty assignments are employed, 
with all the numbers in the ordinal interval number being ranked equal in terms of 
reward/penalty. Assuming that ordinal interval numbers [xcd  ycd] are provided by the 
dth (1≤d≤m) DM for the cth (1≤c≤n) COA, and that a given ranking v={vc} (1≤c≤n) 
of the COAs exists, the binary reward-penalty assignment allots rewards of +1 if vc 
falls within [xcd  ycd], penalties of -1 if vc  falls outside [xcd  ycd], and 0 if the DM 
provides no preference. Such an assignment implies that the optimal ranking of the 
COAs is the one that collectively satisfies the maximum number of ordinal interval 
numbers.  

It is useful to assign importance values impd (1≤d≤m) to the DMs, expressing each 
DM’s relative familiarity/expertise with the problem. By convention  

1
1

=
=

m

d
dimp .     (1) 

with impd =
m

1
 (1≤d≤m) if the same confidence is assigned to all of the DMs’ ordinal 

interval numbers. 
 

                                                           
1 The first representation is used here. 
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3 GAs 

GAs derive their inspiration from the evolution of species observed in nature, as this 
may occur at different time scales (from hours, weeks, or months to years or even 
millennia).  

GAs operate by manipulating populations of candidate solutions to a problem. 
Each candidate solution is encoded as a chromosome, although ensembles of 
chromosome may also be used for expressing a candidate solution. Every 
chromosome comprises genes, with every gene representing an elementary 
component of the problem. The different candidate solutions are expressed via 
distinct combinations of values of the constituent genes. A fitness function is 
employed which evaluates the quality of any given candidate solution in constituting 
a solution to the problem. 

GA operation begins with a random population of chromosomes (candidate 
solutions) which evolves via the following three operators: 

(a) crossover, i.e. the random exchange of genes between two or more 
chromosomes,  

(b) mutation, i.e. the random and with small probability change in the values of 
individual genes of a chromosome, and  

(c) selection, i.e. the probability of including a chromosome in the evolving 
population constituting a function of its quality (fitness) in representing a solution to 
the problem.  

The repeated application of these operators promotes the inclusion of chromosomes of 
progressively high fitness in the population, and thus drives the population towards 
increasing average fitness. As a result, and after an adequate number of generations, a 
(near-)optimal solution to the problem emerges from the population. 

4 GAs for Preference Ranking GDM via Ordinal Interval 
Numbers 

4.1 Chromosome Construction 

A given chromosome CH comprises n genes g={gc} (1≤c≤n), where the cth gene gc 
represents the cth COA and takes on a distinct integer value between 1 and n 
specifying the rank assigned to the cth COA according to the Borda-Kendall 
representation [4-5]2. Ties in ordering the COAs are not permitted, whereby the set of 
values of the genes {gc} (1≤c≤n) must constitute a permutation of numbers 1 to n.  

                                                           
2 For instance, for a given chromosome {4 2 1 3}, the first COA is ranked fourth, the second 

COA is ranked second, the third COA is ranked first, and the fourth COA is ranked third. 
This chromosome represents the relationship S3 > S2 > S4 > S1, where A > B denotes that A is 
ranked higher than B in terms of preference. 
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4.2 Fitness Function 

The degree to which chromosome CH satisfies the DMs’ ordinal interval numbers is 
expressed by the algebraic sum of the rewards and penalties calculated according to 
the binary reward-penalty assignment via the inclusion (or not) of the ranking of the 
cth (1≤c≤n) COA - represented by the value of the cth gene gc (1≤c≤n) - in the 
corresponding ordinal interval number of the dth DM (1≤d≤m). Each contribution is 
scaled by the importance value assigned to the respective DM, resulting in: 


=

=
m

d
cddc rpimpf

1

.   (1≤c≤n).    (2) 

The fitness value fitCH of chromosome CH constitutes the sum of the contributions fc 

(1≤c≤n) 

    
=

⋅=
n

c
cCH f

n
fit

1

1
            (3) 

where the scaling factor 
n

1
 ensures that the fitness value fitCH  ranges within [-1 +1].  

Since the total number n! of chromosomes that can be exhaustively generated by 
permuting numbers 1, 2, 3, …, n, becomes unmanageable for values of n larger than 4 
or 5 (as does the evaluation of their fitness values), GAs constitute a viable choice for 
producing an optimal solution (i.e. .a collectively preferred COA ranking that 
maximally satisfies the DMs’ ordinal interval numbers for the given COAs) after a 
small - yet sufficient - number of generations.  

4.3 GA Operation 

Numerous crossover/mutation operators and selection methods have been proposed 
for problems of permutation. For the GDM problem tackles here, numerous 
combinations of the most popular crossover/mutation operators (like partially patched 
crossover, cycle crossover, order-based crossover, Stefan Jakobs Crossover or SJX) 
and selection methods (like proportional selection, tournament selection, random 
pairing) have been tested. The combination that has been found to perform quite well 
consists of the SJX [6] methodology as the crossover operator, roulette-wheel as the 
selection operator and gene-swapping as a the mutation operator.  

The SJX crossover ensures that the two chromosomes resulting from mixing the 
genes of the two original chromosomes are valid, i.e. that their rankings (values of 
their genes) continue to constitute permutations of the numbers 1, 2, …, n; for 
preference ranking GDM via ordinal interval numbers, the optimal crossover rate 
equals 0.9. 

The mutation operator simply swaps the location of two randomly selected genes 
of each chromosome, thus again preserving validity of the mutated chromosomes; a 
mutation probability of 0.01 is used in the following.  
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Selection employs the principle of "roulette-wheel selection". For each generation, 
selection from the current population is performed P times, where P is the size of the 
population. In order not to give chromosomes of higher fitness too great of an 
advantage over chromosomes of lower fitness during the selection procedure – and to, 
thus, avoid premature convergence to a sub-optimal solution), the fitness scaling 
technique of rank scaling is employed, namely the chromosomes are scored according 
to their ranks (i.e. their positions in the list of chromosomes sorted in descending 
order of their fitness values) rather than on its actual fitness values.  

Finally, termination of GA operation occurs as soon as no change is observed in 
the fitness value of the fittest chromosome of the population for 500 consequent 
generations. 

5 Demonstration - Results 

The application of GAs to preference ranking GDM via ordinal interval numbers is 
demonstrated on a large-scale (six-DM nine-COA) problem that has already been 
investigated in [7-8]. As shown in Table 1, the six DMs (n=6) provide their 
preference rankings for the nine COAs (n=9) via trivial (single-valued) ordinal 
interval numbers; ties are allowed, whereby more than one COA may be assigned the 
same ranking by a DM. In the following, all DMs are assumed equivalent in terms of 
expertise, whereby they are assigned uniform importance values of 1/5, and the GA 
population invariably (for all the values of n investigated) comprises 50 
chromosomes. 

Table 1. The Six-DM Nine-COA ordinal interval number GDM problem of [7-8] 

            
COA 
DM 

1 
 

2 
 

3 4 5 6 7 8 
 

9 
 

1  4 9 2 1 5 6 3 8 7 
2 1 7 2 8 9 6 5 4 3 
3  7 9 5 1 2 8 3 4 6 

4  1 4 2 5 3 8 9 6 7 
5 2 7 1 4 3 9 5 6 8 
6 1 9 2 7 4 7 4 4 3 

 
The scale-up potential of the proposed approach is investigated for n=5, 6, 7, 8, 9 

COAs. This is implemented by beginning from the original six-DM nine-COA 
problem shown in Table 1 and progressively ignoring the last COA (9th, 8th, 7th, and 
6th) and limiting the remaining ordinal interval numbers such that they do not to 
exceed the current value of n. Table 2 shows the scale-up results of the GA (for the 
different values of n), expressed in terms of  

 



166 T. Tambouratzis and V. Kanellidis 

(a) the total number of combinatorially possible rankings; 
(b) .the highest fitness value determined analytically as well as via the proposed 

GA; 
(c)  the accuracy of the GA in terms of the frequency of reaching an optimal 

ordering of the COAs; 
(d) the efficiency of the GA, namely the mean number of generations required 

until GA convergence is achieved3; 
(e) the total number of chromosomes generated until GA convergence; this 

number –provides a rough estimate of the amount of problem space visited 
during GA operation. 

The following points are made: 

(a) The first row of Table 2 shows that the process of producing, and 
subsequently, evaluating all the COA rankings quickly becomes inefficient 
(time- as well as effort-consuming) for increasing values of n.  

(b) A comparison between the second and third rows of Table 2 illustrates the 
successful (accurate as well as efficient) operation of the GA: the fitness 
value of the optimal chromosome(s) (i.e. COA ranking(s)) coincide when 
evaluated analytically as well as via the GA. When observing the fourth row 
of the same Table, however, it can be seen that GA accuracy falls 
significantly for n=9, a fact that is due to the small population of 50 
chromosomes used for exploring the vast problem space of 362,880 
combinatorially possible solutions via the GA. It is interesting that a 
population of 100 chromosomes produced significantly higher accuracy 
without compromising efficiency, suggesting that the size of the GA 
population can vary as a function of n.  

 
Further investigating efficiency, a 4th degree polynomial has been found sufficiently 
accurate (error of the order of e-10 for the best-fit in a least-squares sense) in 
approximating the relationship between the value of n and the mean number of 
generations (over 100 trials) until convergence.  

The last row of the Table shows that the number of chromosomes created until 
convergence exceeds the total number of combinatorially possible solutions for n=5 
and n=6. This suggests that evaluation of the relatively “few” (120 and 720, 
respectively) fitness values of the combinatorially possible COA orderings is 
preferable to employing the GA. For higher values of n, however, the total number of 
chromosomes created by the GA becomes a fraction of the total number of 
combinatorially possible solutions (32%, 15%, and only 4% for n=7, 8, and 9, 
respectively), highlighting the scale-up potential of the GA. Although this fraction is 
underestimated in that it does not take into account the re-appearance of the fitter 
chromosomes in the evolving population of chromosomes, it shows that GA 

                                                           
3 Convergence occurs as soon as the highest fitness value of the chromosomes in the evolving 

population does not change for 500 generations; the first generation at which convergence is 
shown in Table 2. 
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convergence is swift and focused early on during GA operation in promising areas of 
the problem space. The fact that only 4% of the population (at best) is investigated for 
n=9 further supports the increase in population size proportionally to the value of n. 

Table 2. Scale-up performance characteristics of the GA applied to the six-DM nine-COA 
GDM problem 

              n value 
 
problem 
characteristics 

5 
 

6 
 

7 8 9 
 

number of  
combinatorially 
possible rankings 

 
120 

 
720 

 
5,040 

 
40,320 

 
362,880 

 
highest  
fitness (analytical) 

 
0.1333 

 
0 

 
-0.0952 

 
-0.2083 

 
-0.1852 

 
highest  
fitness (GA) 

 
0.1333 

 
0 

 
-0.0952 

 
-0.2083 

 
-0.1852 

accuracy  
(% correct  
Solutions) 

 
100 

 
99 

 
100 

 
100 

 
41 

mean number of  
generations until  
convergence 

 
3 

 
42 

 
32 

 
119 

 
302 

number of  
chromosomes 
until convergence 

 
150 

 
2,100 

 
1,600 

 
5,950 

 
15,100 

 
Some final points are mentioned next: 

• The value of m does not affect the accuracy of GA operation, as it is not 
implicated in the evaluation of the fitness function or of GA operation and 
convergence; by appearing in Equ. (2), it only weakly affects computational 
complexity. 

• A decreasing trend of the highest fitness value is observed for rising values 
of n. This is not unexpected, as it becomes increasingly difficult to 
accommodate for the larger number of constraints that need to be satisfied 
for higher values of n. 

• A comparison of the GA approach with the linear programming GDM 
methodologies of [7-8] highlights the transparent, constraint-free means of 
expressing the GDM problem, the computationally efficient means of 
converging towards an optimal or near-optimal) solution, and the robustness 
of the proposed approach to deal with ties in the DMs’ preferences. 
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6 Conclusions  

Genetic algorithms have been found to be appealing alternatives (in terms of both 
accuracy and efficiency) to existing linear programming methodologies, when applied 
to group decision making problems expressed as preference ranking via ordinal 
interval numbers. The proposed representation and search for an optimal solution is 
independent of the existence of ties in the preferences of the decision makers. 
Computational complexity is expressed by a fourth order polynomial, but found 
practically independent of the number of decision makers. An example appearing in 
the relevant literature confirms these points, while also suggesting that a gradual 
increase in population size for group decision problems involving more alternative 
courses of action would increase accuracy. 
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Pod Vodárenskou v́ıž́ı 2, 18207 Prague, Czech Republic

Abstract. This paper deals with the problem of choosing the most suit-
able model for a new data mining task. The metric is proposed on the
data mining tasks space, and similar tasks are identified based on this
metric. A function estimating models performance on the new task from
both the time and error point of view is evolved by means of genetic pro-
gramming. The approach is verified on data containing results of several
hundred thousands machine learning experiments.
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1 Introduction

Data mining – the process of finding new patterns in data sets – is now widely
used in medicine, economics, bioinformatics and other important areas of human
interest. Many different algorithms exist and are used for this task of pattern
extraction. According to the no free lunch theorem [1], the average performances
of data mining algorithms on all data mining tasks are equal. That means that
superior performance of any algorithm over one class of tasks is paid for in
performance over another class. Therefore, the key to success when dealing with
a data mining task is in binding the task with an algorithm having superior
performance on the class of similar tasks.

Data mining tasks have many parameters (task type, number of instances,
number of attributes, types of attributes, etc.), and they may be compared based
on these parameters. One can assume that similar tasks belong to the same class,
and that the performance of any algorithm will be similar to the tasks of that
class (that means tasks with similar parameters). Having a new data mining
task, the estimated performance of all algorithms in question may be calculated
by utilizing performance of those algorithms on tasks similar with the one at
hand. The algorithms with the best estimation are suggested as candidates for
solving the task in question.

This paper proposes a metalearning method that estimates performance of
algorithms on a given data mining task. The metalearning studies how learning
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systems can increase their efficiency through experience [2]. It differs from base-
learning in the scope of the level of adaptation; whereas learning at the base-level
is focused on accumulating experience on a specific learning task, learning at the
meta-level is concerned with accumulating experience on the performance of mul-
tiple applications of a learning system. Briefly stated, the field of metalearning
is focused on the relation between tasks or domains and learning strategies.

Our method utilizes the genetic programming (GP) approach to develop a
meta-model which is implemented in the form of a software agent exposing an
interface which returns evaluation results in real time. It has become an integral
part of our data mining multi-agent system and it serves as a recommending
service for selecting the best machine learning model based on previous experi-
ence.

2 Related Work

Authors of [3] employ the k-nearest neighbor algorithm with a distance function
based on a set of statistical, information theoretic, and other dataset character-
ization measures in order to identify the set of similar already computed tasks
(the so-called zooming phase). In the second phase (called ranking), a ranking
on the basis of the performance information of the candidate algorithms on the
selected datasets is constructed. The adjusted ratio of ratios ranking method is
presented which processes performance information based on accuracy and time.

The relevance of the processed dataset di to the dataset dj at hand is defined
in terms of similarity between them, according to meta-attributes. It is given by
a function:

dist (di, dj) =
∑

x
δ
(
vx,di, vx,dj

)
, (1)

where di and dj are datasets, vx,di is the value of meta-attribute x for dataset
di, and δ

(
vx,di, vx,dj

)
is the distance between the values of meta-attribute x for

datasets di and dj . All meta-attributes were normalized.
The k-nearest neighbor algorithm is then used to identify k cases nearest to

the dataset in hand.
The adjusted ratio of ratios uses information about accuracy and execution

time to rank the given classification algorithms. The auxiliary term ARRdi
ap,aq

is
defined as:

ARRdi
ap,aq

=

SR
di
ap

SR
di
aq

1 +
log

(
T
di
ap

T
di
aq

)
KT

, (2)

where SRdi
ap

and T di
ap

are the success rate and duration of algorithm ap on the
dataset di, and KT is a user-defined value that determines the relative impor-
tance of time.
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Finally, we derive the overall mean adjusted ratio of ratios for each algorithm:

ARRap =
1

m− 1

(∑
aq

∑
di
ARRdi

ap,aq

n

)
, (3)

where m is the number of algorithms, n is the number of datasets. The ranking
is derived directly from this measure.

Authors of [4] take similar approach. During the zooming phase, metadata
containing the following information about the task were utilized:

• Number of attributes in data,
• Number of instances,
• Data type (one of the following – categorical, integer, multivariate),
• Default task type (set by the user, the most common types are classification
and regression),

• Missing values (flag whether data contains unknown or unspecified values).

The following metric is defined between two tasks based on their metadata:

d (m1,m2) =
n∑

i=1

widi (m1 [i] ,m2 [i]) , (4)

where m1, m2 are metadata of compared tasks, wi is a weight of each attribute
and di is distance between metadata attribute i which depends on the type of the
attribute. The following formula was used to compute the distance of Boolean
and categorical attributes:

di (v1, v2) =

{
0; if v1 = v2

1; otherwise
. (5)

Missing values are handled as an extra Boolean attribute. The variables v1 and
v2 represent actual values of the attribute i.

To compute the distance of numerical attributes, the following formula that
maps two values v1 and v2 on the interval 〈0, 1〉, was used:

di (v1, v2) =
|v1 − v2|

max
v∈i

v −min
v∈i

v
. (6)

The suggested model is the one with the best performance on the nearest task.
Authors of [5] propose a practical model of Evolutionary Program-induction

Algorithms (EPAs) including Genetic Programming. The model corresponds to
the following equation:

P (t) ≈ a0 +
∑
p∈S

apd(p, t), (7)

where ai are coefficients, P (t) is a performance of an EPA on the target function-
ality t, S is a subset of a program search space and d is a function of similarity
between the output of the EPA and the target functionality t. Paper deals with
the issue of determining the suitable coefficients and the suitable subset of the
search space. The model is tested on various tasks.
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3 Metalearning Algorithm Design

This section describes our design of a genetic programming based metalearning
procedure. First, the metadata and the induced metrics are described, then the
genetic programming algorithm is described. Metadata values were extracted
from all instances of all data mining tasks computed by our models. Metadata
is divided into two categories:

• Task related – all metadata available for each task:

◦ Number of instances.
◦ Number of attributes.

• Attribute related – all metadata available for each attribute of the task:

◦ Type: determines the nature of the attribute and it has one of the follow-
ing values – real, integer, categorical, Boolean. Additional availability of
metadata depends on the type.

◦ Missing values: determines whether an attribute can have an unknown
value or not.

Brief summary of metadata is shown in the Fig. 1:

Fig. 1. Available metadata

Our metric proposal is based on the metric proposed in [4]:

d (m1,m2) =
n∑

i=1

widi (m1 [i] ,m2 [i]) , (8)

where m1, m2 are metadata of compared tasks, wi is a weight of each attribute
and di is distance between metadata attribute i.

This metric yields different results for various orderings of metadata. Even the
same data mining tasks, only with different attribute ordering, may be evaluated
as distant. We propose a metric that eliminates this issue:

d (m1,m2) = dcategorical (m1,m2) + dinteger (m1,m2) + dreal (m1,m2) . (9)



Using GP to Estimate Models Performance 173

For the purposes of the metric, Boolean attributes will be treated as categorical
attributes with two categories True and False. Let min be a minimum value
of integer occurring in the metadata, likewise let max be a maximum value of
integer occurring in the metadata. Let Σ be an alphabet of integers between min
and max. A string S over an alphabet Σ is a (finite) concatenation of symbols
from S. The length of a string S is the number of symbols in S, denoted by |S|.
S[i] denotes the ith symbol of S. Alignment of two strings S1 and S2 (without
loss of generality, let us assume that |S1| ≥ |S2|) is a function f that for every
position in S1 returns a position in S2, or a special symbol GAP . In addition,
for every position j in S2, there must exist exactly one position i in S1 such that
f(i) = j.

Let the string representation of categorical attributes be a concatenation
of the number of categories of categorical attributes. Let C2 [GAP ] be treated
as 0. Let C1,C2 be string representations of categorical attributes of metadata
m1,m2. Then we define the categorical distance as:

dcategorical (m1,m2) = min
f

|C1|∑
i=1

|C1 [i]− C2 [f (i)]| . (10)

An algorithm computing dcategorical with the complexity of O (n log (|C1|)) was
introduced in our previous work [6].

The term dinteger is defined the same way, except that the difference between
minimum and maximum value of the attribute is used instead of a number of
categories.

We have proposed dreal as:

|R1 −R2|max (4, {|C1[i]− C2[f(i)]||i ∈ F} , {|I1[i]− I2[l(i)]||i ∈ F}), (11)

where R1, R2 are numbers of real attributes in m1, m2, f is the alignment used
in dcategorical, F = dom(f), and l is the alignment used in dinteger . We argue
that real attributes do not depend on its Min and Max (because even if Min
and Max are arbitrarily near, there is still infinity of different points between
them) and should be the most significant. Definition of the real distance does
not depend on the order of real, integer and categorical attributes. It would be
undesirable if there were other optimal f

′
, l

′
alignments that would be more

optimal in the sense of the real distance compared to f , l. We have shown in [6]
that this is not the case.

Estimation functions were evolved by the genetic programming and were rep-
resented by two trees: one for estimating accuracy and another one for estimating
time consumption. Each estimation function receives as its inputs a task to esti-
mate, task metadata, a model to estimate, and performance results of the model
on similar tasks based on the metric proposed in the previous section. Therefore,
we need to propose two domains for the GP algorithm. If not said otherwise, the
proposed functions and terminals can be used regardless of the type of program
evolved. All functions and terminals are type consistent, which means that all
functions have all arguments and output of the same type, a real number in our
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case. If some n-ary function is not defined on the whole Rn, its extension on the
whole Rn is used instead.

For the sake of simplicity, only functions representing elementary operations,
square root, logarithm and Boolean functions lesser than, lesser than or equal
are used.

Constant terminals: we have proposed terminals that represent real and in-
teger numbers. When creating such a terminal, a random number is generated
and set as a value of the new terminal.

Previous results terminals : terminals that represent previous results of the
model in question were proposed. When creating such a terminal a random
number i is generated. The value of the new terminal is the root mean squared
error of the model on the ith nearest task for the accuracy domain and compu-
tation duration of the ith nearest task for the time domain. To measure the time
elapsed, the computation duration was the only option. Computation duration is
the time interval between start and finish of the computation and it is expressed
in seconds.

Metadata terminals : A terminal for each type of metadata available can be
considered, but this amount of terminals is not necessary for estimating the
duration or accuracy. Instead, the following terminal that aggregates metadata
information of the task on an input is proposed:

terminal complexity =
∑
ai

δ (ai) log(Task.NumberOfInstances), (12)

where ai is an ith attribute of the task, δ (ai) is the complexity of an attribute
defined as:

δ (ai) =

⎧⎪⎨⎪⎩
1; if ai is Boolean or categorical attribute

2; if ai is integer attribute

3; if ai is real attribute

. (13)

and Task.NumberOfInstances is the number of instances of the task on input.
The purpose of this terminal is to represent the task complexity. Integer at-
tributes are nearly always harder to compute than Boolean and categorical at-
tributes, and similarly real attributes are nearly always harder to compute than
integer attributes. The complexity of the task also rises with a logarithm of the
number of instances.

The estimation agent architecture consists of 4 parts – the input part, the
zooming part, the estimation part and the output part. The input part receives
queries and forwards them to the zooming part. The zooming part handles zoom-
ing and forwards the results to the estimation part. Another role of the zooming
part is to obtain the data from both storages. The estimation part encapsu-
lates estimation trees. Its goal is to return a time and accuracy estimation of all
models that occur in Computation results storage on the task in the query. The
output part handles the estimation results delivery to the inquirer. All parts and
their purposes are overviewed in the Fig. 2:
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Fig. 2. Architecture overview

For each model in the Computation results storage, the estimation is as fol-
lowing:

• In zooming, we first identify several closest tasks already computed by the
model based on their metadata and metrics proposed. For this process, we
use the actual states of Computation results and metadata storage. The
number of tasks obtained by zooming depends on the GP trees evolved, to
be more precise, on the highest argument of the Result terminal used in the
trees.

• In estimation, the input task and the tasks obtained by zooming are used
to compute an input for all terminals in the generated trees. The trees are
evaluated and their output is returned.

4 Experiments

We had 109 732 records of previous computation results at our disposal for
training of our models. The validation set was extracted from 649 964 previ-
ously unseen performance records. The tasks computed were commonly known
tasks from [7], while the computational models correspond to several Weka [8]
methods, such as multilayer perceptron and RBF networks, and similar. The
large number of records contains each pair of task and model with different pa-
rameter settings. 50 GP runs were performed for both duration and accuracy
experiments. The fitness progression of the best runs is shown in the Fig. 3. The
following abbreviations are used for models in the figures showing validation
results (Figs. 4 and 5): MLP is a multilayered perceptron, RND is a random
tree algorithm, RBF stands for a RBF network, J48 and PART are decision
tree algorithms, NNge is the nearest neighbor like algorithm using non-nested
generalized exemplars.

4.1 Duration Experiments

This section describes duration estimation experiments. The fitness was linearly
dependent on the estimation error. The average estimation deviation of the best
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individual from the training set cases was about ten percent of actual results.
The duration values of the validation set were in the interval 〈0, 1994092411〉.
Because of this enormous range, we did not use the absolute deviation between
estimation and actual results for the validation error calculation. Instead, we
used the logarithm difference of the estimation and actual results. Duration often
vary significantly, even between similar tasks, and estimation need not to be too
precise, therefore we consider this error calculation sufficient. The mean error
on the validation set was 0.7, the standard deviation error was 0.9. Validation
results of the best individual are shown in the Fig. 4.

4.2 Accuracy Experiments

The fitness was linearly dependent on the estimation error. The RMSE values
of the validation set were in the interval 〈0, 1〉. The best individual’s error on
the training set was approximately 0.31. It is clear from the graph of the best
run that there were lots of best individual improvements during computation,
some of them were quite significant. The mean error on the validation set was
0,120234505 (which is near to the error on the training set) and the standard
deviation was 0,18667105. Validation results of the best individual are shown in
the Fig. 5.

(a) Best duration estimation run (b) Best accuracy estimation run

Fig. 3. Best GP runs

5 Conclusions

A GP algorithm capable of finding an estimation function of model performance
was introduced in this paper. We have made the decision to split the performance
estimation into the accuracy and duration estimation. The GP goal was to find
two trees which estimate duration and accuracy performance of a model on
the new data mining task. A metric for finding similar tasks was introduced.
Terminals for obtaining model’s previous performance results — including those
utilizing metadata — were defined.

Experiments to find accuracy and estimation trees were performed. The re-
sults of these experiments suggest that genetic programming has the potential
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Fig. 4. Validation results of duration experiments

Fig. 5. Validation results of accuracy experiments
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to be successfully used in metalearning. In our future work we intend to pro-
pose new metrics and analyze their time complexity. Testing on more datasets,
including artificial ones is also crucial for solid validation of our technique. A
comparison to other approaches, such as [5] is also planned.
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Abstract. In this paper we apply a multi-caste ant colony system to
the dynamic traveling salesperson problem. Each caste inside the colony
contains its own set of parameters, leading to the coexistence of different
exploration behaviors. Two multi-caste variants are proposed and ana-
lyzed. Results obtained with different dynamic scenarios reveal that the
adoption of a multi-caste architecture enhances the robustness of the al-
gorithm. A detailed analysis of the outcomes suggests guidelines to select
the best multi-caste variant, given the magnitude and severity of changes
occurring in the dynamic environment.

Keywords: Ant Colony Optimization, Dynamic Traveling Salesperson
Problem, Multi-caste Ant Colony System.

1 Introduction

Ant Colony Optimization (ACO) is one of the most successful branches of swarm
intelligence. ACO algorithms were originally proposed by Marco Dorigo and, as
its name suggests, take inspiration from pheromone-based interactions occurring
in ant societies [4]. ACO algorithms mimic the natural foraging behavior, when
solving a given problem. In concrete, artificial ants iteratively construct solutions
biased by pheromone values and heuristic information. The pheromone values
represent dynamic feedback information, reflecting the shared colony search ex-
perience and implementing a mechanism for indirect communication, whereas
heuristic knowledge is usually modeled as problem specific greedy information.

Currently there are many ACO variants, with differences, e.g., in the strat-
egy adopted by ants when building solutions or in the pheromone update rules
[4]. Also, one must carefully define parameter settings when applying an ACO
algorithm to a specific optimization situation as it is well-known that search
performance is strongly affected by this choice. Selecting the ideal configuration
for a given scenario is far from trivial and this difficulty is amplified when deal-
ing with dynamic problems. In this case, the search environment changes over
time and ants must quickly adapt to new situations. We hypothesize that an
ACO algorithm with self-adaptive ability is better equipped to deal with chang-
ing environments. The multi-caste Ant Colony System (ACS), recently proposed
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in [14], is the adaptive algorithm considered in this paper. This framework di-
vides the colony in several castes, each one with its own q0 value, a parameter
that strongly influences ACS search behavior. To test our hypothesis, we apply
the multi-caste ACS to the Dynamic Traveling Salesperson Problem (DTSP),
where the travel cost between pairs of cities changes over time. The analysis of
the results helps to gain insight into the advantages of relying on a multi-caste
framework to tackle dynamic environments.

The paper is structured as follows: in section 2 we present the multi-caste
ACS used in our work, whereas in section 3 we introduce the dynamic TSP.
Section 4 comprises the experimentation and analysis. Finally, section 5 gathers
the main conclusions and suggests directions for future work.

2 Multi-caste Ant Colony System

Ant Colony System (ACS) was originally proposed in [3]. It differs from the orig-
inal Ant System in a key issue: ants rely on a greedy decision rule to select the
components that will appear in the solution. To balance the exploitation intro-
duced by this rule, ACS contains a local pheromone update rule to discourage
ants to follow the same trail (consult the aforementioned reference for details).

The application of ACS to a given problem requires the definition of the
following parameters: m - Number of ants in the colony; β - relevance given to
the heuristic knowledge; ρ - evaporation rate; q0 - probability of selecting the next
component greedily; ξ - pheromone decay coefficient; τ0 - initial pheromone value.
The parameter q0 is essential in ACS, as it balances the relative importance given
to exploration versus exploitation. Whenever an ant has to make a decision about
which path to follow, a variable q is sampled: if q < q0 the most promising edge
is greedily chosen (exploitation); otherwise, an edge is probabilistically selected.

2.1 Our Approach

The multi-caste version of the ACS was originally proposed in [14]. In this work,
it was applied to the static TSP and results showed that multi-caste architectures
are more robust than standard ACS and effectively avoid the poor performance
that follows as a consequence of a suboptimal selection of parameters.

In the multi-caste framework, ants belonging to the colony are divided in
subgroups. The term caste is inspired by the behavior of biological ants and it was
first used for artificial ants in [1]. Ants belonging to different castes have different
q0 values. The idea behind multi-caste ACS is to grant the algorithm different
search strategies for different optimization periods. The framework comprises
two variants: const-multi-caste and jump-multi-caste. The alterations needed to
the conventional ACS are minimal.

Const-multi-caste: The colony is divided in castes, all with the same number
of ants. The distribution remains fixed throughout the optimization. Each caste
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is characterized by a specific q0 value. When applying the state transition rules,
each ant relies on the q0 value from the caste to which it belongs.

Jump-multi-caste: The initial distribution is similar to that of const-multi-
caste. However, at the end of each iteration, two ants are selected at random. If
the ants belong to different castes and both castes have more than 20% of the
total number of ants, the quality of their solutions is compared. The ant with
the worse solution jumps to the caste of the winning ant. The aim is to provide
a simple method to dynamically adjust the size of the castes, favoring those that
in the current search status encode the most promising q0 value.

Multi-caste ACS was originally proposed for the static TSP and a few al-
terations are needed to adjust it to a dynamic environment. In the scenarios
addressed in section 4, the cost between pairs of cities changes over time. When-
ever a change occurs we need to load a new distance matrix and recompute the
nearest neighbor list. Also, the value of the best solution found needs to be re-
computed to reflect the new costs. This is required since the same tour after the
change could be associated with a larger travel distance. Keeping an old (untrue,
but smaller) value would prevent the algorithm from updating the best-so-far
ant, thus a sub-optimal solution would be used to update the trail.

3 Dynamic Traveling Salesperson Problem

The TSP is a famous NP-hard combinatorial optimization problem. Given a set
of cities and all pairwise distances between them, the goal is to discover the short-
est tour that visits every city exactly once. This was the first problem addressed
by ACO algorithms, both because it is a difficult optimization situation and it
can be modeled in a suitable way for the exploration performed by artificial ants
(consult [4] for a detailed overview).

Two types of dynamism can added to the TSP: adding / removing cities to the
problem or changing the cost between pairs of cities (i.e., inserting traffic jams).
In this work we address the second modification, a variant known as DTSP with
a traffic factor [12]. For each pair of cities, i and j, eij = dij × fij , where dij is
the original distance between cities i and j, and fij is the traffic factor between
those cities. Every F evaluations, a random number R in [FL, FU ] is generated
probabilistically. FL and FU are the lower and upper bounds for the traffic factor
and R represents the traffic at that moment. With a probability M each link
can change its traffic factor to fij = 1 + R, or otherwise, reset its traffic factor
to 1 (meaning no traffic). F and M represent the number of evaluations

10 between
changes (i.e., its frequency) and the magnitude of change, respectively. For all
experiments reported in this paper, we consider 16 dynamic scenarios (4 values
of F× 4 values of M): F = {10, 20, 100, 200}, where F = 10 defines a rapid
changing environment and F = 200 represents a slow changing environment;
M = {10, 25, 50, 75}, with M = 10 and M = 75 establishing a small and large
degree of change, respectively.



182 L. Melo, F. Pereira, and E. Costa

To compare the different algorithms, we adopt the offline performance [2],
which consists on the average performance of the best-since-last-change solution
at each time step, as described in formula 1:

Poffline =
1

E

E∑
i=1

⎛⎝ 1

T

T∑
j=1

P ∗
ij

⎞⎠ (1)

where E is number of iterations in each run, T is the number of independent
runs, and P ∗

ij is the best solution at iteration i of run j considering only the ants
that existed since the last change of the present run.

3.1 ACS for the Dynamic Traveling Salesperson Problem

ACO variants can benefit from on-line parameter adjusting even in static TSP
instances [17], [14]. We expect that this advantage is more visible in dynamic
situations. To confirm this supposition, we selected a TSP instance with 200 cities
and compared the offline performance of several mono-caste configurations q0 =
{0.75, 0.9, 0.95, 0.99}, in different frequency and magnitude of change scenarios.
In figure 1 we present an overview of the analysis. Results are the averages
of 30 runs and each run went through 30 variations. For each one of the 16
scenarios, we compared every pair of configurations using the paired t-test with
confidence level of 0.95 and 29 degrees of freedom. The value in any given cell
represents the difference between the number of configurations that were found
to be significantly worse, and the number of configurations significantly better
than that cell. The lighter the color (and higher the number), the better the
configurations performed when compared to the others.

Some values of q0 seem to be better suited for a given scenario than others.
For instance, q0 = 0.99 is the best when the the magnitude of change is high
(each link with a 50% to 75% chance of change) and the change occurs frequently
(every 10 or 20 iterations), but behaves poorly when both the magnitude and
frequency of change are low. On the other hand, q0 = 0.95 seems to have a
more balanced behavior but it favors the low frequency/high magnitude and
high frequency/low magnitude environments, while q0 = 0.90 is at its best in
low frequency/low magnitude scenarios. Similar results were obtained with other
instances. This outcome suggests that the coexistence of different q0 is beneficial,
as it provides the algorithm with tools to change its search behavior, thereby
adapting to dynamic environments.

3.2 Related Work

The existing ACO approaches for the DTSP cover both forms of dynamism:
addition/elimination of cities [6], [8], [7], [16], [10], [11], as well as the modification
of the cost between pairs of cities (inserting traffic jams): [5], [9], [13], [12]. Several
dynamic features have been addressed by ACO approaches. A non-exhaustive
list of variations includes:
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Fig. 1. ACS mono-caste performance for a dynamic TSP instance of size 200

– frequency change - from short to long intervals between changes (from 20
iterations [10], [13], [12], [11] to 750 iterations [8], [7] or somewhere in between
[16]); also from a single to several simultaneous changes [6], [5], [9];

– severity of change - from 0.5% [8], [7] to 75% [10], [11] of the cities added/
removed; from 1% [5], [9] to 75% [13], [12] of the links affected by traffic
jams;

– cycle length and accuracy [13];

Although there is sometimes a changing pattern (predictability of change), no
algorithm explores it. Also, the dimension of the instances used in tests is highly
variable, ranging from situations with 25 cities [9] to those with 532 [13]. There
is not a widely accepted DTSP benchmark in the literature making it impossible
to directly compare the algorithm.

There are different strategies adopted by ACO approaches to deal with change.
These include: trail equalization or adjustment [6], [8], [16], [5]; a local search
procedure (KeepElitist) applied to an ant or a group of ants when a change
occurs [8], [7], [16], [10], [11], [12], [13]; the existence of explicit memory [7],
[16], [12], [13]; the implementation of an immigrants scheme [10], [11], [12], [13].
Finally, several ACO variants have been adopted for dynamic situations. Some
noteworthy examples include Ant System [6], [8], [5], Ant Colony System [9],
[16] or P-ACO [7], [10], [11], [12], [13].

4 Experiments

We selected the TSP instances kroA200, and att532 from the TSPLIB 95 [15] to
build the 16 dynamic scenarios as described in section 3. Unless otherwise noted,
the default values used for the experiments are: m = 10, β = 2, ρ = 0.1, ξ = 0.1,
τ0 = 1/(n ·Lnn) (where Lnn is the length of the tour using the nearest neighbor
heuristic [4]), q0 = {0.75, 0.9, 0.95, 0.99}, and the local search algorithm is the
3-opt. In multi-caste configurations, all castes have the same (initial) size. Each
experiment was repeated 30 times and was allowed to run for at least 30×F×10
evaluations (minimal adjustments to this number were made to allow a fair
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comparison with the configurations containing 8 and 12 ants). Configurations
are identified according to the following convention:

– cx: mono caste configuration with a q0 value of 0.x (eg.: c95);

– cx y (jx y): constant (jump) dual-caste configuration with q0 values of 0.x
and 0.y (eg.: c90 95);

– cxquadsm (jxquadsm): constant (jump) quad-caste configuration with q0
values of 0.x, 0.90, 0.95, and 0.99 and a total of m ants (eg.: c75quads12);

For all scenarios, we compared each pair of configurations using the paired t-test
with confidence level of 0.95 and 29 degrees of freedom. In the upcoming figures,
values in cells represent the difference between the number of configurations
that discovered an average tour length larger (worse) than the current setting
and the number of configurations with a smaller average tour length. Higher
values identify better configurations. Shaded cells highlight combinations whose
behavior is not statistically different from the one that achieved the best result
in that particular environment (confidence level: 0.05).

Figure 2 contains the comparative study concerning the results obtained in
the kroA200 instance. The configurations with best performance (considered as
those that are statistically equivalent to the one with the best offline perfor-
mance) are c95 99, c95, c99, j95 99, c90, and j90 99. The worst configurations
are c50 99, c75 99, and c50quads, suggesting that a too low q0 value compro-
mises the reaction of the algorithm in dynamic situations. Results clearly show
that the behavior of the mono-caste configurations tends to be more extreme.
Even thought there are several scenarios where their performance is close to the
best, c90 and c99 also have some of the worst results. This outcome confirms
that standard ACS requires a careful definition of parameters, in order not to
compromise its performance. On the contrary, several multi-caste configurations
(e.g., c95 99, c90 99, and to some extent j75quads) are better equipped to pre-
vent bad results. The jump-caste mechanism seems to be important in the j50
99, j75 99 and jquads configurations, as it allows the migration of ants to the
caste with q0 = 0.99, if the environment requires it. This effect is most visible in
scenarios with a very high frequency and magnitude of change.

The comparative study concerning the results obtained in the att532 instance
is displayed in figure 3. This is a larger TSP instance with 532 cities and a
brief perusal of the figure reveals that a configuration (c99) is better than all
others. On the contrary, c90 and most const multi-caste configurations have
the worst performance. This is another example of a situation where ACS is
very sensitive to the definition of an appropriate q0 value. As such, mono-caste
configurations with the wrong choice of q0 lead to poor result. Multi-caste ACS
variants, by allowing the coexistence of several q0 are better equipped to deal
with this situation. In most of the scenarios from this instance, the jump-caste
variant outperforms its constant counterpart This situation is probably related to
the advantage in defining aggressive q0 for this particular situation. An inspection
of figure 3 shows that configurations j95 99, j90 99, c95 99, and jquads12 are able
to avoid bad results, while maintaining a reasonable quality.
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Fig. 2. Comparative performance of the ACO configurations in the 16 optimization
scenarios from the kroA200 instance
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Fig. 3. Comparative performance of the ACO configurations in the 16 optimization
scenarios from the att532 instance
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To complete our analysis, we measured the peaks in the length of the tour
that appear immediately after a change, to determine which configurations react
faster to the change. Equation 2 is used in this study:

Q =
1

E

∑
i∈C

⎛⎝ 1

T

T∑
j=1

Pij

⎞⎠ (2)

where C is the set of iterations immediately after a change, T is the number of
independent runs, and Pij is the best solution found at iteration i of run j.

We then compared, for every scenario, every pair of configurations according
to the average peak value. In this case the differences between the distributions
is quite marked. In all TSP instances, the configurations from the quads12 group
have the lowest peaks after a change. The configurations from the quads08 have,
consistently, the largest peaks. The differences between quads12, quads08, and
the rest of the configurations are evident: for almost all scenarios, every element
of the quads12 is similar to the best, every element in quads08 is similar to the
worst and the remaining configurations are different from both the best and the
worst.

5 Conclusions

In this paper we studied the application of a multi-caste ACS to the dynamic
TSP. This framework divides the ants in different castes, each one with its own
q0 value, thereby promoting the appearance of different search behaviors.

Results show that, as a rule, the existence of several castes enhances the ro-
bustness of the algorithm when solving dynamic situations. Even though multi-
caste configurations are usually not the absolute best algorithms, the coexistence
of simultaneous q0 values prevents them from very poor performances. Also, the
existence of different castes removes the need to carefully define q0, which is an
essential parameter for the success of standard ACS. Overall, the c95 99 config-
uration seems to provide a compromise, as it always avoids poor performances,
independently of the problem instance and of the dynamic scenario properties.
The j95 99 and j75quads12 also showed a robust behavior while maintaining rea-
sonably good results. Additionally, the quads12 castes are effective in avoiding
big degradation in performance immediately after a change.

In the near future we aim to apply the existing multi-caste framework to
other dynamic situations to gain additional insight into its main strengths and
weaknesses. Also, we will investigate how the algorithm performs in cyclical
dynamic environments. In what concerns the multi-castes modus operandi, the
current jump-mechanism seems to be too slow in re-balancing the caste sizes.
This can be easily explained since, the larger the dominant caste is, the harder
it will be for an ant from the smaller cast (even if producing a better solution),
to be randomly selected. Testing alternative rules for the immigration of ants
between castes is another topic that we will address in our research.
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Abstract. Information-theoretic measures are frequently employed to
select the most relevant subset of features from datasets. This paper
focuses on the analysis of continuous-valued features. We compare the
common approach with discretization of features prior the analysis, to the
direct usage of exact values. Due to the overwhelming costs of computing
continuous information-theoretic measures based on Shannon entropy
the Renyi and Tsallis generalized measures are considered. To enable
computation with continuous Tsallis measures a novel modification of the
information potential is introduced. The quality of the analysed measures
was assessed indirectly through the classification accuracy in conjuction
with the greedy feature selection process. The experiments on datasets
from UCI repository show considerable improvements of the results when
using both generalized continuous measures.

Keywords: Feature selection, Information theory, Renyi entropy,
Tsallis entropy.

1 Introduction

In the field of data mining and knowledge discovery we are usually involved in
analysis of data attributes or features. In many cases we use supervised learning
techniques to build classification models which associate instances to classes. De-
spite the fact that all available features describe instances in maximum available
detail, many of them are partially or completely irrelevant for the association.
Besides, a huge number of features usually leads to very long processing times
and models with poor generalization capabilities [1]. By using feature selection
methods we try to obtain only the relevant features and consequently improve
the efficiency and generalization capabilities of the classification models. Numer-
ous feature selection methods exist [2], some are fast and wide-ranging, but lack
in effectiveness, others give better results but are computationally expensive. A
majority of them need discrete data to perform feature selection. If data includes
continuous features, they must be discretized beforehand, which causes varying
results, depending on the discretization method used. There are many types of
evaluation functions used in the feature selection process; a review can be found
in [1].

M. Tomassini et al. (Eds.): ICANNGA 2013, LNCS 7824, pp. 189–197, 2013.
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Information measures are definitely among the most interesting because they
arise from the definition of feature selection: wewish to obtain a set of features pro-
viding the largest amount of information on the problem domain. Commonly used
measures include averagemutual information [3] and its extensions [4,5].Measures
based on generalizations of Shannon entropy, are also being considered [6].

Due to the computational considerations mainly the discrete version of the
entropies are used in practice [7]. This poses aforementioned problem when anal-
ysed features are continuous in their nature. Our idea is to find a proper infor-
mation measures and algorithms to support direct analysis of continuous-valued
features. We propose using two evaluation functions based on the Renyi [8] and
Tsallis entropy [9] that can be used to evaluate feature relevancy and can cope
with continuous as well as discrete data.

In the next section the information-theoretic measures are presented together
with proposed modifications, which make them ready for feature selection. Sec-
tion three presents the greedy algorithm used to sweep through feature space. In
section four the performance of different information-theoretic feature selection
methods are indirectly (through a classifier) evaluated on some datasets from
UCI repository. Main findings are summarized at the end.

2 Information-Theoretic Measures

Supervised learning is a common task in machine learning, where one tries to
build a model which relates an instance to a class. Information theory measures
offer means to rank features according to the information they provide about
class values [5].

For a set of features X, which can acquire values x1, ...,xn with probabilities
p(x1), ..., p(xn), we can calculate the Shannon entropy as

HS(X) = −
n∑

i=1

p(xi) log2 p(xi) . (1)

In a similar manner we can calculate the entropy of class HS(C) given the
possible class values C = {c1, . . . , cm} with probabilities p(c1), . . . , p(cm) as well
as the joint entropy H(X, C) given the joint probabilities p(xi, cj) of relating
the instance xi to the class value cj . Provided with the above values we can use
mutual information

I(X;C) = HS(X) +HS(C) −HS(X, C) (2)

to assess the relevancy of a set of features X with regard to the class C.
Usually the probability distributions are not known and need to be estimated

from instances in the data. If the features are continuous in their nature, a
discretization step is usually applied to the data beforehand. Unfortunately the
discretization can lead to spurious results by shrouding some proprieties of the
probability distribution [10].
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To avoid the discretization step we can use the differential entropy

HD
S (X) = −

∫
p(x) log2 p(x)dx (3)

with p(x) being the probability density function. The numerical computation
of differential entropy for a multi-dimensional set of features is computationally
expensive; in three or more dimensions the usage of Monte Carlo integration is
almost a must.

The non-parametric Parzen window method [8] is the most straightforward
approach for estimating the probability density function from the data. The
estimate is obtained by spanning kernel functions around the instances, p(x) =∑n

i=1G(x−xi,h)/n. If we assume a multivariate normal distribution of the data,
we can use a product of gaussians G(x,h) =

∏
dG(xd, hd) as the kernel function.

According to the Silverman’s rule the width of a gaussian hd = 1.06σdn
−1/5 in

each dimension d of the feature vector depends on the distribution of the instance
values given in terms of standard deviation σd .

Besides the classical Shannon entropy there exists a range of entropy gener-
alizations. Two of the more widely known are the Renyi entropy [8] and Tsallis
entropy [9]

HRq (X) =
1

1− q
log

n∑
i=1

p(xi)
q , HTq (X) =

1

q − 1

(
1−

n∑
i=1

p(xi)
q

)
, (4)

which extend the original concept by introducing an additional parameter q. It
should be noted that both entropies converge to Shannon entropy as q approaches
1 in the limit. They can replace the original Shannon entropy in calculation of
the average mutual information [11]. However, when substitutions are used we
can no longer speak of mutual information, but rather mutual entropy since
the presented entropies have not been theoretically established as measures of
information [9].

Similarly as in the case of Shannon entropy, the differential versions of the
two generalized entropies are also defined, with the sum

∑n
i=1 p(xi)

q substituted
by the integral

∫
p(x)qdx in Eq. 4. Hild et al. [8] showed that by setting q = 2

and approximating the probability density function using Parzen windows with
gaussian kernels, we can simplify the computation. Namely, the information
potential V (x) =

∫
p(x)2dx can be estimated as

V̂ (x) =
1

n2

n∑
k=1

n∑
j=1

G(xk − xj ,
√
2h) . (5)

The summation heavily reduces the computational time compared to the Monte
Carlo numerical integration of Shannon entropy. The Renyi differential quadratic
entropy estimator thus becomes

ĤD
R2

(X) = − log V̂ (x) . (6)
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The same strategy can not be used directly in the case of Tsallis differential
entropy. Namely, the sum in Tsallis entropy is always smaller or equal to 1 for
q > 1, which ensures that the entropy is always non-negative. On contrary, there
is no such guarantee for the Tsallis differential entropy. From the properties of
the product of gaussian functions and Eq. 5 we can see that the upper limit
for the estimated information potential V̂ (x) equals

∏
d (2

√
πhd)

−1
. For some

choices of widths hd, the upper limit can easily exceed 1, which can potentially
lead to negative values of Tsallis differential entropy. This makes the mutual
comparison of two feature vectors of different sizes impossible. Namely, analysis
of an additional dimension in the feature vector can reverse the sign of differential
Tsallis entropy, pointing to an illogical conclusion that with an additional feature
less is known about the problem.

To overcome this issue we propose a new normalized estimator for the infor-
mation potential

V̂T (x) =

(
2dπd/2

∏
d

hd

)
V̂ (x) , (7)

which is confined to the interval [0, 1]. As a consequence, the proposed estimator
for the normalized Tsallis differential quadratic entropy equals

ĤD
T2
(X) = 1− V̂T (x) (8)

and is normalized to the same interval. The normalized information potential
estimator could be also used in computation of Renyi differential entropy, where
the normalization factor produces only a constant offset.

3 Greedy Feature Selection

Feature selection methods are presented with a full set of possible candidate fea-
tures and must choose an optimal subset according to some evaluation function.
When searching through a set of n candidate features, the feature selection al-
gorithm should evaluate 2n possible feature subsets in order to find the optimal
one. This search strategy is practically prohibitive, even for a few dozen can-
didate features. Consequently, other types of search strategies are used, which
drastically reduce the processing time at the cost of the possibility of selecting
suboptimal feature subset. Examples of such strategies are genetic algorithms
[12], greedy algorithms [13], simulated annealing [14] and branch and bound al-
gorithms [15]. In our paper we will focus on the greedy algorithms, specifically
on the Sequential Forward Selection algorithm [13], which presents one of the
simplest search strategies for feature selection.

The Sequential Forward Selection algorithm (Fig. 1) starts with an empty set
of features and at each step sequentially adds a feature x that maximizes the
measure of relevancy I(X∪x;C) when combined with a set features X that have
already been selected.
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begin

start with the empty set X = ∅
repeat

set X0 = X
select the next best feature xbest = argmax

x/∈X0

I(X0 ∪ x,C)

set X = X0 ∪ xbest

until I(X, C) ≤ I(X0, C)
end

Fig. 1. Sequential Forward Selection algorithm

Sequential Forward Selection algorithm is a simple search strategy and works
best when the optimal subset of features is small. It’s main disadvantage is that
it is unable to remove features that become obsolete after the addition of other
features. It can be improved by the similar Sequential Backward Selection and
the Sequential Floating Selection algorithms [16].

4 Experimental Work

We compared the feature selection performance for discrete and differential en-
tropies of Shannon, Renyi and Tsallis. We employed them in terms of average
mutual information or corresponding Renyi and Tsallis average mutual entropy
as evaluation functions in the Sequential Forward Selection algorithm. From the
top five features returned by the Sequential Forward Selection algorithm we built
a classification tree using the Weka data mining tool implementation of C4.5 al-
gorithm [17]. The classification accuracy of the model, given as a proportion of
correctly classified instances, represented a measure of the quality of the selected
features.

We tested the feature selection methods on three datasets which include dis-
crete and continuous features and have a discrete class. Table 1 gives some
details about Sonar, Ionosphere and Wave datasets from UCI Machine Learning
repository [18].

Table 1. Properties of the selected datasets

Dataset Number of features Number of instances by class value
continuous discrete 0 1 2

Sonar 60 0 111 97 0
Ionosphere 32 2 225 125 0
Wave 40 0 100 100 100

We had to discretize the continuous-valued features prior to using them with
discrete entropy measures. Feature values of all instances were allotted to corre-
sponding intervals; the non-interleaved intervals of equal size were covering the
whole range of each features’ values.
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In cases when instances are described with discrete- and continuous-valued
data, the differential entropies can be directly used on both. The time complexity
of calculating the differential entropies is O(n2) in comparison to O(n) of the
discrete entropies. Consequently, when data is only discrete in its nature it is
better to put differential entropies aside and only use entropies to reduce the
computational costs.

During the feature selection we varied the number of instances, from 20 to
maximum available, to see what effect it has on the selection of features and
consequently on the classification accuracy. When evaluating the classification
accuracy we randomly split all instances in a dataset into two parts, using 67%
of instances for training and 33% of instances for testing. Each experiment was
executed 100 times to obtain relevant results; in the following the average values
are presented.

First we varied the number of discrete intervals from 3 to 9. Fig. 2a shows
the comparison of using the discrete versions of the three types of entropies. We
can see that using different number of intervals to discretize the data does not
affect the feature selection process considerably. In most cases there is a slight
improvement achieved by increasing the number of intervals since using a larger
number of intervals reveals more variability of the data. However, by increasing
the number of intervals and keeping the number of instances fixed, the assessment
of probability density function in higher dimensions becomes inaccurate. This is
why in some of the test cases discretization to nine intervals preforms worse than
others. As expected, using more instances to perform feature selection improves
the relevancy of the selected features, leading to better classification accuracy.
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Fig. 2b shows that Renyi and Tsallis differential entropies perform much bet-
ter than their discrete counterparts. For clarity only the classification accuracy
obtained with discretization to five intervals is shown. Shannon differential en-
tropy is on pair with the discrete entropies, except for low numbers of instances
where it performs somewhat better. The main reason for poor performance of
the Shannon differential entropy lies in the inaccurate but yet time consuming
Monte Carlo integration. Interestingly, the Renyi entropy performance is the
worst, contrasting with the Tsallis entropy, which performs even better than the
Shannon entropy.

Fig. 3 shows similar results for the Ionosphere and Wave dataset. Renyi and
Tsallis differential entropies perform quite well, achieving more than 10% higher
classification accuracy than the rest. Shannon differential entropy does not im-
prove with increasing number of instances. This might be attributed to the
increasing complexity of the estimated probability density function, requiring a
more exact but impractical integration process. Obviously using the Monte Carlo
integration to compute the Shannon entropy is not as efficient as the compu-
tation of the two generalized differential entropies, since the two perform much
better. Again Renyi entropy performed the worst on both datasets and Tsallis
entropy achieved on average the best performance on the discretized datasets.

In all three datasets the differential entropies behave very well even for really
small numbers of instances, which is not the case for the entropies.
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5 Conclusion

In this paper we considered a problem of selecting features that most relevantly
describe instances and relate them to a given class.We focused on the continuous-
valued features and assessment of their relevancy. Opposed to the classical ap-
proach with discretization step we explored the possibility of directly determining
features relevancy.

The experiments show that generalized entropies and generalized differential
entropies considerably improve the relevancy of continuous-valued features in
feature selection task — the classification accuracy is greatly improved in com-
parison with the classical Shannon approach.

The proposed normalization of the information potential used in Tsallis differ-
ential entropy makes it appropriate for the feature selection task. This puts it on
pair with the Renyi differential entropy, as both achieve similar results in terms
of classification accuracy. Besides, Tsallis average mutual entropy behaves much
better than the Renyi mutual entropy on the discretized data. This confirms that
Tsallis entropy and Tsallis diferential entropy are good choices for assessing the
feature relevancy when dealing with discrete- as well as continuous-valued data,
respectively.

More complex discretization strategies might better grasp the variability of
data among instances and thus improve the relevancy of the selected features.
Similarly, a lot of possibilities for improvements is also on the side of differential
entropies, mainly in better approximation of probability density function and
reduction of the computational costs. In our work we used a simple greedy al-
gorithm as a search strategy, but more advanced exist, leaving even more room
for further improvement of our methods.
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Abstract. The paper presents the new algorithm of oblique rules in-
duction. On the basis of the initial step that consists in clustering the
decision class into subclasses, for every subclass the oblique hypercuboid
is generated. Sides of the hypercuboid are parallel and perpendicular
to the directions defined by PCA. One hypercuboid corresponds to one
decision rule. Results of inducting rules in the new way were compared
with other oblique and non-oblique rules sets built on the artificial and
real data.

Keywords: machine learning, rules induction, decision systems, Prin-
cipal Component Analysis, oblique rules.

1 Introduction

Classification is one of the most popular problems in data analysis. It is expected,
that it is possible to extract the dependence (or dependencies) between object
features and the class that it belongs to. If we denote x as the object from the set
X and C as the finite set of class labels l the classification task can be described
as the function f : X → C.

The problem of classifying objects can be solved in two ways. Sometimes it is
not necessary to know how the classifier works and only the classification results
are interesting. Algorithms that represent this approach can be described as
„black boxes”: one knows the result but one does not know the mechanism of
reasoning. However, sometimes it is useful to know what kind of dependencies
in the data generate the specific expression that assigns the given object to one
of the class labels.

Each of the mentioned approaches is represented by a wide group of algo-
rithms. The most popular „black boxes” are: support vector machines, artificial
neural networks, k–nearest neighbor. More interpretable results come from de-
cision trees or decision rules.

Here, a new way of oblique rules induction is presented. This kind of rules
still gives us the possibility of understanding (or interpreting) of obtained model.
However, it should be considered as the way of generalisation of typical (hyper-
cuboidal) rules. The main motivation to develop this method is to decrease the
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rule description of dependencies in the data, assuring still the acceptable level
of classification accuracy. The paper starts from a brief description of the most
popular approaches of decision rules generating and the definition of oblique
rule. Then, the PCA based decision rules induction is described. Afterwards, the
results of experiments on the artificial and real data are described. The paper
ends with some final conclusions and remarks.

2 Related Works

2.1 Decision Rules Generalisation

Decision rules are mathematical formulas given in the following form:

IF cond1 ∧ cond2 ∧ . . . ∧ condn THEN class = c

where condi denotes the logical condition based on equality or inequality between
the attribute value and some number or interval, and c is the label from the finite
set of class labels. The main advantage of building classifiers on the basis of the
decision rules is full interpretability of the rules. Sometimes it occurs that the
rule description of the decision class consists of many rules which recognise very
small number of objects. That leads to the postprocessing step that generalises
and simplifies rules [15]. One of the most popular method of rules generalisation
is rules shortening consisting of removal of elementary conditions on the basis
of exhaustive searching or some heuristic methods. In the RSES (Rough Set
Exploration System) [1] the shortening of the rule is performed as long as the
rule quality remains on the same level.

The other approach of rules generalisation consists in joining two or more rules
that describe the same class. The iterative algorithm described in [14] merges
the ranges of conditions in corresponding elementary conditions (the elementary
condition has the form cond ≡ v(o) ∈ [a; b], where v is one of variables, o is
object, v(o) is the value of the v for the object o and a and b are ends of single
range). Similar approach is presented in [8] - instead of the iterative way, rules
are grouped before the merging step. In the paper [11,16] the complex elemen-
tary conditions in rules premises are introduced, they are linear combinations of
attributes from elementary conditions of original rules premises.

2.2 Oblique Rules Induction

One of the main limitation of decision rules induction that are hyper-rectangles
is their inability of describing the oblique shapes. If the class contains objects
that are bounded with some hyperplane it may occur that this class will be
described with a big amount of small rules: rules that recognise and describe only
a small number of objects, rules that cover only a small part of the feature space.
The solution is to define conditions on the basis of some hyperplane equation.
Considering k-dimensional hyperplane H given with the equation:

H1x1 +H2x2 + . . .+Hkxk +Hk+1 = 0
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and the k-dimensional object o lets define H(O) as:

H(O) =

k∑
i=1

Hioi +Hk+1.

Then the single conditional descriptor may take one of the following values:
H(O) ≤ 0 or H(O) ≥ 0.

In this case it is assumed that each nonzero Hi is equivalent to one elementary
condition.

There are also methods to generate this kind of rules from the results of other
algorithms like from the oblique decision trees [4,7,10], from linear SVM [2],
using the constructive induction [3,18], or directly from the data [9,12].

3 PCA Oblique Decision Rules

Previous approach to oblique rules generating (the ORG algorithm [9]) was based
on semi-exhausting search of optimal parameters of separating hyperplanes. Af-
ter some data transformation it was possible to determine boundaries for every
hyperplane parameters. Then each combination of parameters (from minimal to
maximal value with the defined step) was taken into consideration and evalu-
ated. This gave quite satisfactory results but had a very high complexity. The
usage of the global evaluation function also caused that the ORG did not recog-
nise the situation when the class was build from several disjoint subclasses. In
this approach each decision rule is built around the located subclass.

3.1 PCA Background

Principal component analysis (PCA) [17] is a statistical tool that transforms the
coordinate system of the data in such a manner that the greatest variance of
the data lies along the first coordinate, called the first principal component, the
second greatest variance lies on the second coordinate, and so on. This transfor-
mation is useful in pattern description and data dimension reduction. However,
the presented application concentrates on the abilities to find the coordinate
system transformation only.

Having a data set X , whose mean is zero, it is possible to find the trans-
formation using singular value decomposition or the covariance method. In the
covariance method the covariance matrix of the data should be found

C = XXT . (1)

Using the covariance matrix the eigenvectors Evec and corresponding to them
eigenvalues Eval are calculated following the equation:

E−1
vecCEvec = Eval. (2)

Next, the columns of Evec are sorted in order of descending eigenvalues Eval.
After this rearrangement the first eigenvector denotes the direction with the
greatest variability, whereas the last one with the smallest one.



PCA Based ORG 201

3.2 Finding Subclasses

Approximating the data with a hyper-cuboid introduces a noticeable error, as
the data does not fill the object tight. Therefore, in order to diminish the error,
it is suggested to divide the data into several subclasses and find separate hyper-
cuboids for each of them. This solution removes the unnecessary space from the
region belonging to the class and allows precisely defining the data boundaries.

Amongst many clustering algorithms one of the simplest was chosen: k-means.
It has only one parameter to set – the number of objects that are nearest to the
currently classified object. This application of the algorithm uses the adaptive
way of finding the optimal value of subclasses number c. Let us assume the
interesting range for cmin ≤ c ≤ cmax. Then for every c the division to the
specified number of clusters is performed. The error metric is defined as an
average distance from each cluster data to its cluster mean. The optimal value
is defined taking into account two criteria: the smallest possible error value as
well as the smallest cluster number.

3.3 Oblique Rules Induction

Subclass Rule Induction. The previous part of the article describes the way
of finding subclasses for every class in the data. Having the set of objects that
belong to the one subclass, it is assumed that their obliqueness can be described
on the basis of the Principal Component Analysis.

Considering the k−dimensional subclass, after the PCA we obtain new k di-
mensional coordinate system which coordinate lines are parallel to PCA eigen-
vectors and go through the arithmetical centre of the subclass. Each eigenvector
Eveci also determines the hyperplane H(Eveci) that is parallel to one of the new
coordinate line and perpendicular to all the remaining ones.

In the presented approach it is assumed that every subclass of the data can be
described with the oblique hyper-cuboid. The construction of the hyper-cuboid
should fulfil the following conditions:

– every parallel pair of its sides is also parallel to one of the hyperplanes
obtained from the PCA,

– all subclass objects lie between every pair of cuboid parallel sides,
– the distance between two parallel sides is the minimal.

The pair of parallel sides can be easily calculated from eigenvector Eveci :

Hlowi = EveciVsm Hhighi = EveciVgr (3)

where Vsm and Vgr are the smallest and the greatest values found in the data
subclass transformed in the chosen direction.

Having hyperplanes that bound the k−dimensional subclass of the class c data
we can build the decision rule R that is the logical conjunction of the following
form:

R :

k∧
i=1

Hlowi(P ) ≥ 0 ∧Hhighi(P ) ≥ 0 → class = c.
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The point P is the point corresponding to the currently classified object.
A simple illustration for the single oblique rule induction is on the Fig. 1.

Black dots represent the oblique data. Two dashed lines are coordinate lines in
the new space, determined by the PCA. Solid lines are hyperplanes that bound
the subclass. We may see that every hyperplane has at least one data point that
belongs to the hyperplane. This assures that two parallel hyperplanes lie as close
to themselves as possible and no data lies outside the hypercuboid.
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Fig. 1. Visualisation of the single PCA oblique rule induction

Orientation of the Hyperplane. Each hyperplane H divides the
k−dimensional hyperspace R

k into two disjoint sets. The first of them contains
points P that satisfy the condition H(P ) > 0 and the second one contains points
P that satisfy the following condition: H(P ) < 0. The hyperplane H may be
then interpreted as the boundary between these two subspaces. In presented ap-
proach it is assumed that the boundary is attached to the first set. Finally, it is
claimed that each hyperspace H splits the hyperspace into two disjoint subsets:

H+ = {P ∈ R
k : H(P ) ≥ 0}

and
H− = {P ∈ R

k : H(P ) < 0}

Now the notion of the hyperplane orientation is introduced. The point Q lies
on the correct side of the hyperplane H iff Q ∈ H+. In order to assure that all
training data are on the correct side of the hyperplanes each subclass must check
its hyperplanes orientation. If randomly selected point P lies on incorrect side
of some hyperplanes then coefficients in their equations should be negated.
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The Algorithm. Here the detailed description of PCA oblique decision rules
induction is presented

1. Generate subclasses for each decision class in the adaptive way (assuming
the minimal and the maximal number of subclasses)

2. For each subclass generate eigenvectors.
3. For each eigenvector generate two hyperplanes and check their orientation.
4. For each subclass build one decision rule from correctly oriented hyperplanes.

4 Experiments and Results

4.1 Experiments

Experiments were performed on the artificial and real data. Three sets of syn-
thetic data are less known in the literature and comes from [16]. Each of them
is the two-class problem with 1000 objects. Two sets are two-dimensional and
classes are almost balanced (562:438 and 534:466). The third one is three-
dimensional with unbalanced classes (835:165). Visualization of these data is
shown on the Fig. 2.
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Fig. 2. Visualisation of the synthetic datasets: 2D (upper left); double2D (upper right);
3D (down)

Classes in the first set (2D) are divided by the diagonal of the square. In the
second set (double2D) one class is placed in two opposite corners. The three-
dimensional set (3D) with the unbalanced division contains the smaller class in
the one of the corners of the cube. Results of experiments on these data are
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shown in the Table 1. Other datasets (iris, balance, breast wisconsin) come from
the UCI repository [5] and from [13] (Ripley). Results obtained on these sets
are shown in the Table 2.

Experiments were performed with the 10-fold cross-validation. As the quality
measure (in percents) the average of the rule precision and recall was used. The
maximal number of subclasses per each decision class was set to 10.

The PCA oblique rules were compared with results of two other algorithms:
PART and ORG. The Weka implementation of the PART was used [6]. Because
Weka does not give information about the classification accuracy in each iteration
of cross-fold validation, the information about its standard deviation cannot be
presented. The ORG algorithm (Oblique Rules Generator) [9] searches for the
best parameters of separating hyperplane in the grid of possible parameters
values.

Table 1. Results on synthetic datasets

accuracy avg. rules avg. elem.
dataset avg (std) number cond. number

PART ORG PCA ORG PART ORG PCA ORG PART ORG PCA ORG

2D 95.5(-) 96.0(1.5) 98.4(1.0) 10 2 2 18 3 8
double 2D 93.8(-) 84.3(3.1) 99.0(1.1) 14 3 2 23 6 8

3D 94.8(-) 98.2(1.2) 98.3(1.6) 13 2 2 22 2 18

Table 2. Results on real datasets

accuracy avg. rules avg. elem.
dataset avg (std) number cond. number

PART ORG PCA ORG PART ORG PCA ORG PART ORG PCA ORG

iris 94(-) 94(4.6) 84(8.4) 2 3.1 3 3 5.2 32
balance 84(-) 92(2.4) 80(4.2) 46 6 3 126 12 32
Ripley 85(-) 81(8.4) 65(11.6) 4 2 6.6 6 4 8

breast w. 94(-) 97(1.7) 92(3.0) 10 3 2 33 19 162

4.2 Discussion

As it may be seen in the Table 1, that shows results of rules induction for some
strongly oblique data, the PCA oblique rules induction algorithm gives the best
(2D and double2D sets) or comparable (3D set) accuracy of classification. Even
the number of rules is as small as possible: equal to the number of decision
classes. The number of elementary condition may seem too big, but one should
have that in mind that in the case of the PCA oblique rules this number is
strongly dependent on the dimensionality of the input data. It is proportional to
the squared number of dimensions: for each of d dimension, 2 hyperplanes with
d + 1 parameters are generated. This is the cost of keeping rules interpretable
because every single condition is just the linear combination of data attributes.
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The Table 2, that shows results for real and common known data, points some
aspects of the data, for which PCA oblique rules do not give the satisfactory
results. One of the most important disadvantages of the presented method is
its non-resistance for quite overlapping classes. It might be observed in the case
of the iris data and in the case of Ripley’s data, where the data characteristics
has significant impact of the rules generation. For classes which distribution
characteristic is similar (in the sense of PCA) rules inducted with the described
method may become not satisfactory and valuable from the classification point
of view. The visualisation of the two-class and two-dimensional Ripley’s data is
shown on the Fig. 3.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Fig. 3. Visualisation of the Ripley’s data – problem with strong overlapping classes

What is worth to be noticed, the comparable accuracy of classification of
balance and breast sets is achieved with smaller number of rules. It points that
the presented algorithm can really generalise the class description in the oblique
way without loosing its accuracy.

5 Conclusions and Further Works

In the paper the new algorithm of oblique decision rules induction is presented.
The additional step aims to divide the data into subclasses, which allow to define
hypercuboids defining class borders as tight to data as possible. In order to decide
the hypercuboids sides direction the PCA analysis is applied. This division aims
to enable generation of very precise oblique decision rules in second step.
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The proposed algorithm was tested on artificial and real data set. The results
proved that in most cases the number of generated rules is smaller in comparison
to the ORG and PART algorithm. In case of the artificial data the results
achieved with this algorithm proved better that the other approaches. However,
when applying this algorithm to the real data, some drawbacks of this method
occur, as it does not manage well with separate and overlapped classes.

Our further works will focus on decreasing the number of elementary condi-
tions (which means that hyperplanes will be replaced with some hyperspaces)
and also on limitation of number of hyperplanes (hyperspaces) in the single rule.

Acknowledgements. This work was supported by the European Union from the
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Abstract. There is a variety of models for portfolio selection. However, in port-
folio theory applications little or no attention is paid to the cardinality problem. 
In this paper, an algorithm for dealing with this problem is presented. The pro-
posed allocation algorithm is implemented in a software system, which is based 
on the Fuzzy Logic Q-measure Model and manages financial investments in 
real time. Tests on real data from Bulgarian Stock Exchange are presented as il-
lustration to the solution. 

Keywords: portfolio selection, cardinality problem, fuzzy system, Q-measure.  

1 Introduction to Cardinality Problem in Portfolio Theory 

Let S be the capital to be invested in a financial portfolio and let
{ }Nj AAAA ,,,,, 21   be the set of available assets. If xj is the quota of asset Aj 

in the portfolios, then the constraint for the sum of these quotas in optimization algo-
rithms [2], [3], [4], [5], [8], [10], [11], [12], [13], [16], [17], [18] is: 

 1
1

=
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N

j
jx  (1) 

Apparently, this constraint cannot be precisely satisfied in the real world. Indeed, if Pj 
is the price of asset Aj and xj are the quotas obtained after applying any algorithm for 
portfolio selection, then the number nj of shares from asset Aj, included in the portfo-
lio, is calculated as: 
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and thus the capital Su used for constructing the portfolio is obtained as: 
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where jjjj PnSxo .. −=  are remainders due to (2). Then, the actual quota of each 

asset is 
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Hence the component 
S

o
N

j
j

=1
 in (3) changes the constraint (1) to the inequality: 

 1
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N

j
jx  (5) 

and so it modifies substantially any of the optimization algorithms. It is important to 

note that empirical tests show that the rate of 
=

N

j
jo

1

 can reach up to 25% of S. 

There are two main problems that arise at this point. Firstly, if the investor wants to 

use possible maximum of the capital S, then an assessment of 
=

N

j
jo

1

 is needed and 

if the latter sum exceeds any of the prices Pj then the number nj should be changed. 
Secondly, if short sales are excluded (as is the case on BSE) then (5) changes to: 

 10,1
1

≤≤≤
=

j

N

j
j xx . (6) 

In this paper, one solution that satisfies (6) is proposed.  

2 Description of the Software System 

The software system is designed to manage financial data and investments (both indi-
vidual and portfolio) in real time and is based on FLQM Model. The system consists 
of three modules (Fig.1): 

o Module 1 – Data Managing Module (DMM); 
o Module 2 – Q-Measure Fuzzy Logic Module (QFLM); 
o Module 3 – Portfolio Construction Module (PCM). 
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Fig. 1. A real time software system for financial portfolios selection 

2.1 Data Managing Module 

DMM is an application for collecting, storing and managing financial data in real 
time. In addition, in this module calculations of precise measurements of important 
asset characteristics (return, risk and q-ratio) are implemented. 

Since the tests of the system are conducted over data from Bulgarian Stock Ex-
change, the information of interest (date, BSE code, open, close, high and low prices) 
is in the HTML code of www.bse-sofia.bg. The application is started automatically by 
Windows Task Scheduler. The Requester realizes the request to the web page of BSE 
(www.bse-sofia.bg). The Parser selects the needed data in a suitable form with re-
spect to the next steps and therefore the HTML code of the page, downloaded by the 
Requester, is parsed with regular expressions. The Filler is the part of the application 
that deals with the missing data. The Calculator uses the information obtained by 
Filler and the following mathematical formulae to calculate the return, risk and q-
ratio for each asset.  
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In time series of daily asset prices, there are days with no trading activity, i.e. there 
are missing data. One way to deal with this problem is to copy the last price a corres-
ponding number of times, i.e. 
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 and tΔ  is the number of days between the non-missing observations 

at days 1−t  and t , as decreased by 1. If log returns are used, the above considera-
tions should be made very carefully because of the different number of days between 

the observations. Thus, if the return for the period tΔ  is 1
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Then, the annual norm of return ANR is 
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where D is the number of days in the financial year.  
Finally, the annual return is  

 1−= ANRAR . (7) 

In the proposed system, annual return is used as a measure of asset return as it is an 
adequate estimator for the change of the investment. 

The commonly used idea for risk in investment theory is the variability of returns. 
The variability is calculated with different statistical tools, based on probability distri-
butions but most often by the variance of the returns. [1], [9]  

If log returns are used then the estimator of variance as arithmetic mean of log re-
turns is calculated as follows: 
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and the q-ratio [15] equals the quotient of return and risk: 

 
s

AR
q = . (9) 

Since some investors have specific expectations about both the return and risk of their 
investments, there are two additional inputs in the system: a lower threshold of return 

0r  and risk 0σ .  

2.2 Q-measure Fuzzy Logic Module 

QFLM is an application of Fuzzy Logic Q-measure Model [7]. Input data for this 
module are the crisp numerical values of asset characteristics, obtained by (7), (8) and 
(9) in DMM. These crisp values are fuzzified and after applying the aggregation rules 
a fuzzy variable Q-measure for each of the assets is derived. The output is a defuzzi-
fied crisp value of Q-measure. [14] 

The linguistic variables are four: three input variables and one output variable. Input 
variables describe the characteristics of an asset: K1 = {return}, K2 = {risk} and 
K3 = {q-ratio}. The output variable is Q = {Q-measure}. 

The input variables K1 = {return} and K2 = {risk} consist of five terms each with 
corresponding parameters: Very low with Sigmoid membership function; Low with 
Gaussian membership function; Neutral with Gaussian membership function; High 
with Gaussian membership function, and Very high with Sigmoid membership func-
tion (Fig. 2). 

 

 

Fig. 2. Input linguistic variables K1 = {return} and K2 = {risk} 

K3 (Fig. 3) consist of three terms: Small with Sigmoid membership function; Neu-
tral with Bell membership function, and Big with Gaussian membership function. 
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Fig. 3. Input linguistic variable K3 = q-ratio} 

The output variable Q (Fig. 4) consists of five terms: Bad, Not good, Neutral, Good 
and Very Good, all with Gaussian membership functions. 

 
 
 
 
 
 
 
 

 

Fig. 4. Output linguistic variable Q-measure 

All fuzzy rules in this module have the form: 

IF {K1 is high} AND {K2 is low} {K3 is big} THEN (Q is good) 

There are 24 fuzzy rules implemented in the system [6]. Although these rules ade-
quately describe the most important possible situations that might arise in the process 
of investment decision-making, the list of fuzzy rules can be extended without chang-
ing the system’s architecture. 

As a defuzzification method, the method of centre of gravity has been chosen:  
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and thus a crisp value for the asset quality is obtained as an output of QFLM. 
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The estimated value for each asset is then recorded in the database and used for 
managing individual assets or for constructing investment portfolios. 

2.3 Portfolio Construction Module with Allocation Algorithm 

In PCM, several portfolios are constructed. The investors’ utility preferences are the 
key factor for choosing the optimal portfolio. 

First, in Asset Selection all the assets are sorted in descending order by their Q-
measure. Then several assets are selected with respect to a criterion set by the inves-
tor, e.g. maximum number of assets, or another. Here the case of max number of as-
sets will be described. In the next step all possible combinations of these assets are 
generated and they form corresponding portfolios. Finally, if a substantial amount of 
capital is unused then a procedure for allocation takes place. This procedure modifies 
the portfolio to the optimal reduction of unused capital. Constructed portfolios are 
stored in a database and the investor can make a decision. 

Now, if the investor wants no more than m assets in his portfolio, then the first m 
assets from the sort list are extracted. Then, these assets are combined in all possible 
ways to sets with 1, 2, ..., m elements. The number of these sets is 2m – 1, because the 
empty set is not taken into consideration. Now, for each of these sets a portfolio is 
constructed.  

The share of asset Aj is denoted by xj and equals  
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where n is the number of financial assets in the portfolio, n = 1, 2, …, m, and Qj is the 
Q-measure of Aj.  
 
Allocation Algorithm 

The number of shares nj and the amount of used capital are calculated according to (2) 
and (3). In case S – Su exceeds a given percentage of the initial capital an allocation 
procedure takes place. In the first step of this procedure, the remaining capital is com-
pared to the price of the asset with the highest Q-measure. If S – Su is bigger than that 
price, then additional number of shares of this asset is added to the portfolio. Other-
wise, the comparison is repeated for the next item in the sort list. This process repeats 
until the remaining capital is small enough and no more shares can be bought. At each 

step, the number of additional shares 
aj

n  of an asset is  
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Finally, portfolio return Rp, risk pσ and q-ratio qp are calculated for all 2m – 1 portfo-

lios:  



 Cardinality Problem in Portfolio Selection 215 


=

=
N

j
jjp rxR

1

.
, 


=

=
N

j
jjp sx

1

.σ
, p

p

p

R
q

σ
=

. 
Now, each portfolio is put through QFLM in order to obtain its Q-measure. The port-
folios with their characteristics are stored in the data base. 

3 Experiments and Results 

To study the relationship between the size of the investment capital and the need to 
implement additional allocation procedure, various tests have been conducted. In this 
paper, portfolios of seven assets and initial capital of S = BGN 1 000 have been con-
structed with assets listed on BSE on 20.06.2012 to illustrate the above considerations. 
It is important to note that the additional allocation procedure does not apply if the 
unused capital is less than 0.5% of the initial capital. This percentage is set up to 
avoid transaction costs, whenever unused capital is relatively small. 

The initial portfolio has return Rp = 1.78318324, risk σp = 0.01519687, Q-measure 

= 0.81230537 and in this case 
=

N

j
jo

1

= BGN 66.58  (Table 1). 

Originally, the portfolio is constructed with a high percentage of unused capital 
(6.658%, which is well over 0.5%). To reduce this rate, the allocation procedure is 
applied. 

Table 1. Initial portfolio with 7 assets, Su = BGN 66.58 

BSE 
code 

Pj nj xj Risk 
Annual norm 

of return 
Q-measure 

3JU 45 3 0.14538565 0.0241193 1.99408284 0.82919283 

5ORG 90 1 0.14245006 0.00247399 1 0.81245 

6A6 1.74 81 0.14244872 0.01237877 1.85524372 0.81244236 

BLKC 0.471 302 0.14244326 0.02221776 2.52884615 0.81241119 

4EC 1.91 74 0.14243653 0.02754392 2.86830926 0.81237285 

SO5 1.846 77 0.14243505 0.00874433 1.18275862 0.81236439 

5BD 0.754 188 0.14240073 0.00871467 1.04851752 0.81216861 

The portfolio after the first allocation procedure has return Rp = 1.79868443, risk 

σp = 0.01556071, Q-measure = 0.81228124 and 
=

N

j
jo

1

= BGN 15.97 (Table 2). It can 

be noted that the risk of this portfolio is less than the risk of the initial portfolio, the 
return is higher and the Q-measure is slightly smaller. The unused capital is reduced 
to BGN 15.97, but an additional allocation procedure is still possible. 
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Table 2. Portfolio with 7 assets after first and second allocation 

 
After first allocation After second allocation 

BSE 
code 

Pj nj xj Pj nj xj 

3JU 45 3 0.135 45 3 0.135 

5ORG 90 1 0.09 90 1 0.09 

6A6 1.74 87 0.15138 1.74 88 0.15312 

BLKC 0.471 325 0.153075 0.471 331 0.155901 

4EC 1.91 79 0.15089 1.91 80 0.1528 

SO5 1.846 82 0.151372 1.846 83 0.153218 

5BD 0.754 202 0.152308 0.754 206 0.155324 

The portfolio after the second allocation has Rp = 1.81988325, risk σp = 

0.01574007, Q-measure = 0.81228817 and 
=

N

j
jo

1

= BGN 4.64. (Table 2)  

In this example, the unused capital is reduced from 6.658% to 0.464% of the in-
vestment capital as a result of applying the allocation procedure twice. The last port-
folio has a very good Q-measure, which is an indicator for stable behaviour in future. 

Clearly, the allocation procedure can be repeated as many times as needed.  

4 Conclusions 

In this paper, a solution to the cardinality problem in portfolio theory is presented. 
This solution is obtained after applying an allocation procedure in a real time software 
system for managing individual assets and portfolio investments. This system is based 
on the Q-measure of an asset. The Q-measure incorporates return, risk and their ratio, 
and being modeled with fuzzy logic tools it intuitively reflects the process of invest-
ment decisions in economic environment with enormous amount of data, which is 
often incomplete and imprecise. The system provides a procedure for portfolio alloca-
tion that aims at maximal possible use of investment capital. Although it is not based 
on an optimization algorithm it solves the cardinality problem in portfolio manage-
ment to a degree that suits investors.  
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Full and Semi-supervised k-Means Clustering

Optimised by Class Membership Hesitation
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Abstract. K-Means algorithm is one of the most popular methods for
cluster analysis. K-Means, as the majority of clustering methods optimise
clusters in an unsupervised way. In this paper we present a method of clus-
ter’s class membership hesitation, which enables k-Means to learn with
fully and partially labelled data. In the proposed method the hesitation of
cluster during optimisation step is controlled by Metropolis-Hastings al-
gorithm. The proposed method was compared with state-of-art methods
for supervised and semi-supervised clustering on benchmark data sets. Ob-
tained results yield the same or better classification accuracy on both types
of supervision.

Keywords: k-Means, Semi-supervised clustering, Supervised cluster-
ing, Classification, Metropolis-Hastings algorithm.

1 Introduction

Cluster analysis is one of the most used data mining techniques [6]. Clustering
assigns similar data points into the same cluster, whereas separate different data
points by assigning them to different clusters. Clustering is NP-hard problem and
among clustering algorithms the most popular is k-Means [14], [10]. It is a simple
algorithm that requires tuning of the k number of clusters and selecting optimal
distance metric. There have been proposed many heuristic improvements to find
optimal k [7], [13] and to designate distance metric [20], [5], [16]. The drawback
of k-Means algorithm is its sensitivity to initial cluster centre values. Therefore,
a careful seeding of k-Means is needed [3].

K-Means is originally an unsupervised learning algorithm. However, there were
proposed several techniques to use it in a supervised and semi-supervised manner.
They can be divided into three groups. The first group of methods upon labelled
data is optimising the distance metric, which gives small distance for samples from
the same class and separates by a large distance samples from different classes.
After metric optimisation step, the k-Means in an unsupervised way is performed
with learnedmetric [1], [20]. The other group ofmethods uses labelled data to com-
pute initial centre values to k-Means algorithm [22], [4]. The last group of methods
used labelled data to generate constrains. They control which points can be in the

M. Tomassini et al. (Eds.): ICANNGA 2013, LNCS 7824, pp. 218–225, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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same cluster and which should be separated by assigning into different clusters.
The constrains are used during k-Means learning [21], [5].

Herein, we present the method for controlling supervision process in k-Means.
It is based on Metropolis-Hastings (MH) algorithm [15], [8] well known from
Simulated Annealing (SA) method [11]. MH algorithm is used to simulate a
hesitation of cluster’s class membership during k-Means learning. In the super-
vision process both fully and partially labelled data can be used. SA was already
used in k-Means algorithm focused on seed selection [17] or parameters tuning
[23] rather than supervision control. Recently, we proposed a similar method for
controlling learning of neurons in Self-Organising Maps [19].

2 Methods

Let’s denote data set as D = {(xi, ci)}, where xi is an attribute vector, x ∈
Rd and ci is a discrete class number of i-th sample, i = [1, 2, ..., N ] and c =
[1, 2, ..., C].

2.1 K-Means Algorithm

K-Means is an unsupervised learning algorithm. However, it can be used for
classification. The two methods that enable handling class labels in k-Means are
described below. The original K-Means algorithm can be described in four steps:

1. Initialize k cluster’s centre {μ1, μ2, ..., μk} with randomly selected values
xi ∈ D.

2. Assign each data point xi to the closest cluster ζh, h = argmin
h

||xi − μh||2.
3. Update each cluster centre μi as mean of the assigned points,

μi = 1/|ζi|
∑

xi∈ζi
xi.

4. Repeat steps 2 and 3 until convergence.

In k-Means algorithm information about sample’s class label is not used. How-
ever, after unsupervised learning for each cluster can be assigned class label
based on major vote of sample’s class, which belongs to the cluster. In testing
phase, for input sample is designated a class label from the closest cluster. We
will call this method vote-k-Means.

Another method for using unsupervised k-Means for classification is to assign
clusters to the classes arbitrarily - usually the same number of clusters for each
class. During learning for each sample only clusters with the same class as the
sample’s class are considered [9]. Therefore, clusters are updated only with sam-
ples from the same class. For a testing sample a label the same as class of the
closest cluster is given. We will call this method a class-k-Means.

2.2 Seeded k-Means

The next method that uses labels is seeded-k-Means [4]. It uses labelled data to
compute better initial values of cluster centres. In seeded-k-Means we assume
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that as algorithm input we have k disjoint sets S = {S1, S2, ..., Sk}, S ⊆ D, on
which supervision is provided - for each xi ∈ S is known a cluster ζl to which it
belongs. The cluster centres are initialized as follows:

μi =
1

|Si|
∑

xj∈Si

xj . (1)

In [4] there is also an assumption that each cluster has at least one seed point.
However, this condition is hard to be satisfied, and for clusters without any seed
point a randomly selected value xi can be used [22].

2.3 Proposed Method (MH-k-Means)

In the proposed method, for each cluster we compute a class membership in each
iteration. Let’s note it as Pl(j), where l is cluster index and j is class number.
For each sample a group of clusters is selected, which will take part in the
closest cluster finding. Selection is described by a matrix T , where T i

l = 1 means
that cluster ζl will participate in learning, using i-th sample, T i

l = 0 otherwise.
Clusters for training are selected in two steps. At first we choose clusters having
maximum probability for the class matching the class ci of the input sample:

T
i(1)
l =

{
1 if argmaxj(Pl(j)) = ci;
0 otherwise.

(2)

In the second step, remaining clusters with T
i(1)
l = 0 are considered. The decision

on joining into the training with i-th sample is taken upon MH algorithm. The
probability of joining is computed upon the following equation:

J i
l = 1− exp(−ρPl(ci)tstop/t), (3)

where ρ is the parameter that controls the intensity of hesitation, ρ ∈ [0, 1]. The
greater ρ, the more clusters are selected additionally to learning in the MH step.
In eq.(3) the parameter t is a number of current algorithm iteration and tstop is an
overall number of algorithm iterations. The fact that t is presented in (3) ensures
that clusters added during MH step will be selected less frequently at the end of
learning process than at its beginning. This can be interpreted as a hesitation
of the cluster, which decreases during the learning. To decide whether the MH
decision is positive, we draw a random number a from a uniform distribution,
a ∈ [0, 1]. The cluster will be added to the training group if a is smaller than J i

l :

T
i(2)
l =

{
1 if a < J i

l ;
0 otherwise.

(4)

This procedure is repeated for each sample. We called T
i(2)
l = 1 as a positive MH

decision. The final decision on cluster selection is a logical ’or’ of the decisions

T i
l = T

i(1)
l ∨ T i(2)

l . For i-th sample the closest cluster ζh is computed as follows:

h = argmin
h

||xi − μh||2 ∧ T i
h = 1. (5)
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After the presentation of all samples new class membership probabilities are
computed for each cluster:

Pl(h) =
|xi ∈ ζl ∧ xi ∈ ch|

|xi ∈ ζl)
. (6)

The procedure described above is repeated till algorithm’s convergence. We have
called the proposed algorithm MH-k-Means. The MH-k-Means algorithm de-
scribed above works on fully labelled data. In case of partially labelled data,
for samples without class label we assume that T i

h = 1 for all clusters. Thus,
all clusters participate in training. For labelled samples the procedure described
above is used.

3 Results

To test performance of MH-k-Means method on fully labelled data, we will com-
pare it to the Learning Vector Quantization algorithm (LVQ) [12], vote-k-Means,
class-k-Means and seeded-k-Means. On partially labelled data sets, we will com-
pare MH-k-Means to seeded-k-Means and vote-k-Means1. The comparison is
made on 6 real data sets. We used data sets ’Wine’, ’Ionosphere’, ’Iris’, ’Sonar’,
’Spam’ from the ’UCI Machine Learing Repository’ 2 [2], and set ’Faces’ are
from the ’The ORL Database of Faces’3. Data sets are described in Table 1.

Table 1. Description of data sets used to test performance, number of clusters used
to each data set and optimal ρ in MH-k-Means. (∗In ’Faces’ data set, the number of
attributes was reduced with PCA.)

Train
examples

Test
examples

Attributes Classes # clusters MH ρ

Faces 320 80 50∗ 40 80 1

Sonar 166 42 60 2 36 0.5

Spam 3680 921 57 2 72 0.25

Iris 120 30 4 3 12 1

Ionosphere 280 71 34 2 24 0.25

Wine 142 36 13 3 12 1

In all experiments we train algorithms with number of iterations tstop = 200.
For LVQ we use learning rate η1 = 0.1, exponentially decreasing to η200 = 0.001.
All algorithms, except seeded-k-Means, were initialized with random samples. For
seeded-k-Means we assigned available labelled samples to appropriate clusters
reusing clustering from class-k-Means, in case of incomplete seeding of the cluster
we used initialization with random sample [22]. For each data set, we arbitrarily

1 We used only labelled data for cluster’s class voting.
2 http://archive.ics.uci.edu/ml/
3 http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

http://archive.ics.uci.edu/ml/
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
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Fig. 1. Number of positive MH decisions in MH-k-Means algorithm taken in each
training iteration for different ρ values on ’Iris’ data set

Table 2. Percent of incorrect classification on fully labelled testing subsets. Results
are mean and σ over 10 runs.

LVQ vote-k-Means class-k-Means
seeded-k-
Means

MH-k-Means

Faces 8.25±3.34 28.0±4.5 6.5±3.72 6.88±4.09 4.0±2.34

Sonar 14.52±7.48 26.9±8.1 15.48±4.92 17.38±5.73 14.52±5.32

Spam 13.34±1.16 18.43±1.25 14.18±1.77 17.13±2.19 14.47±1.3

Iris 4.0±2.11 3.33±3.51 4.33±2.74 4.67±3.58 3.0±1.89

Ionosphere 10.99±2.95 9.58±3.31 12.82±2.61 10.0±3.22 8.73±2.38

Wine 5.0±3.66 7.5±3.72 4.72±3.72 6.39±5.08 4.44±2.68

chose the cluster number (selecting optimal cluster size is not in the scope of
this paper), selected values are presented in Table 1. The total cluster number
for each algorithm type is equal. For MH-k-Means the parameter ρ must be
tuned. We checked several values of ρ, ρ = {0.05, 0.25, 0.5, 0.75, 1} and for each
data set an optimal value was selected by cross-validation. Selected ρ values are
presented in Table 1. The impact on number of positive MH decision, depending
on ρ value is demonstrated on ’Iris’ set in the Fig.1. The greater ρ value is, the
more positive MH decisions are made and the more frequently cluster takes part
in training with the sample, of which class is different than its major class. For
each data set we made 10 repetitions to avoid effect of local minima, each time
training and testing subsets were redrawn. As an accuracy measure of cluster-
ing, we take a percentage of incorrect classifications - for each testing sample we
compute the closest cluster and compare the labels. The mean results on test-
ing subsets for all the methods on fully labelled sets are presented in Table 2.
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Fig. 2. Performance of vote-k-Means, seeded-k-Means and MH-k-Means on partially
labelled data. Results are mean and σ over 10 runs.

With one exception the MH-k-Means achieves lower error rates than other meth-
ods. On ’Spam’ data sets the best method was LVQ. The MH-k-Means obtained
the greatest improvement over ’vote-k-Means’ on ’Faces’ data set. There are 40
classes (persons) in ’Faces’ set, therefore it is difficult to compute good clusters
without any information about class labels during learning. On this set, MH-k-
Means uses the largest ρ, which means that cluster’s class membership hesitates
the most. On ’Sonar’ data set, LVQ and MH-k-Means gain the same average
of incorrect classification. However, MH-k-Means has lower standard deviation
value. On ’Iris’ set all methods give similar results, with slightly lower error of
MH-k-Means. On this set and ’Ionosphere’ the vote-k-Means accuracy is bet-
ter than LVQ. They are simple sets, therefore without any supervision a good
minima can be obtained. On ’Wine’ set, class-k-Means is better than LVQ. The
poorest accuracy on all data sets was obtained by vote-k-Means method. This
was expected, as this method does not use the information about sample’s class
during the cluster’s centre tuning. Seeded-k-Means have results slightly worse
than class-k-Means, on all sets, except ’Ionosphere’. This is due to the fact that
clusters obtained by class-k-Means were used in initialization of seeded-k-Means.
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To test performance of the proposed MH-k-Means method on partially la-
belled data, we used only part of available labels in training subsets, in per cent
r = {12.5, 25, 37.5, 50, 75, 87.5, 100}. The results of comparison are presented
in Fig.2. The MH-k-Means is significantly better than other methods on ’Faces’,
’Spam’ and ’Sonar’ data sets. On ’Iris’, ’Ionosphere’ and ’Wine’ all methods seem
to give similar results. The ’Faces’, ’Spam’ and ’Sonar’ seem to be more com-
plex in classification than other sets, therefore we observe that using information
about class labels during learning gives better clustering. For simple data sets
semi-supervised and unsupervised methods gain similar minima.

4 Conclusions

We present a novel method MH-k-Means for learning k-Means with fully and
partially labelled data. In each iteration for every cluster a class membership is
computed. Upon this, for each sample for the closest cluster finding a group of
clusters with the same as sample’s class is selected. What is more, the hesitation
mechanism is introduced, which enables clusters with different class to take part
in the closest cluster finding. The hesitation is based on Metropolis-Hastings
algorithm, with hesitation intensity controlled by ρ parameter and current iter-
ation number. The number of MH positive decisions decrease during learning,
which can be interpreted as making clusters more confident. In case of partially
labelled data, the clusters selection for learning is made only for labelled sam-
ples. For unlabelled samples all clusters participate in training. The proposed
MH-k-Means method was compared to other state-of-art methods on classifica-
tion tasks. The results confirm that proposed method obtains better or similar
accuracy than other methods. Matlab implementation of the MH-k-Means al-
gorithm is available at http://home.elka.pw.edu.pl/~pplonski/mh_kmeans.
Future work will be focused on two aspects: testing what impact on MH-k-Means
accuracy has the noise of class labels and the use of distance metric learning
method for classification accuracy improvement[18].
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Abstract. Given the wide spread of social networks, research efforts
to retrieve information using tagging from social networks communica-
tions have increased. In particular, in Twitter social network, hashtags
are widely used to define a shared context for events or topics. While
this is a common practice often the hashtags freely introduced by the
user become easily biased. In this paper, we propose to deal with this
bias defining semantic meta-hashtags by clustering similar messages to
improve the classification. First, we use the user-defined hashtags as the
Twitter message class labels. Then, we apply the meta-hashtag approach
to boost the performance of the message classification.

The meta-hashtag approach is tested in a Twitter-based dataset con-
structed by requesting public tweets to the Twitter API. The experimen-
tal results yielded by comparing a baseline model based on user-defined
hashtags with the clustered meta-hashtag approach show that the overall
classification is improved. It is concluded that by incorporating seman-
tics in the meta-hashtag model can have impact in different applications,
e.g. recommendation systems, event detection or crowdsourcing.

Keywords: Meta-hashtags, Semantic, Text Classification, Twitter.

1 Introduction

Twitter is a social media platform that provides a microblogging service where
users are able to post text-based messages of up to 140 characters, also known as
tweets. It can also be considered an online social network, as users can link them-
selves by defining others to follow, and consequently have their own followers.
The underlying concept of Twitter is to share the everyday activities with friends
and family in a simple way. However, tweets may contain information of broad
interest [1] and have a wide range of applications and uses, like event detection
[2–5], academic tool [6–8], news media [2,9] or mining political opinion [10,11].
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Twitter provides the possibility of including an hashtag, a single word started
with the symbol “#” , in order to classify the content of a message and improve
search capabilities. This can be particularly important considering the amount
of data produced in Twitter social network. Besides improving search capabili-
ties, hashtags have been identified as having multiple and relevant potentialities,
like promoting the phenomenon described in [12] as micro-meme, i.e. an idea,
behavior or style that spreads from person to person within a culture [13]. By
tagging a message with a trending topic hashtag, a user expands the audience
of the message, compelling more users to express their feelings about the sub-
ject [14].

Considering the importance of the hashtag in Twitter, it is relevant to study
the possibility of evaluating message contents in order to predict its hashtag.
If we can classify a message based on a set of hashtags, we are able to suggest
an hashtag for a given tweet, bringing a wider audience into discussion [15],
spreading an idea [16], get affiliated with a community [17], or bringing together
other Internet resources [18].

We propose an approach to deal with the bias resulting from the freely user-
defined hashtags, by defining semantic meta-hashtags to identify clusters of similar
messages, in order to improve their classification. First, we use the user-defined
hashtags as the Twitter message class labels. Then, we define meta-hashtags by
grouping the most used hashtags and their related hashtags into a meta-class and
applied the meta-hashtag approach to boost the performance of the initial message
classification. Both the initial model and the meta-hashtag model were tested with
the initial user defined hashtags and the results are presented by comparing the
classification performances obtained.

The rest of the paper is organized as follows. We start in Section 2 by describing
the related work regarding social networks and meta-class approaches. We then
proceed in Section 4 to explain the experimental setup, including the dataset de-
scription, the pre-processingmethods, learning and evaluation approaches. In Sec-
tion 5 we present and analyse the results obtained. Finally, in Section 6 we present
the most relevant conclusions and delineate some directions for future work.

2 Related Work

Social networks have gained significant importance and are being widely studied
in many fields in the last years. Modern challenges in social networks involve not
only computer science matters but also social, political, business, and economi-
cal sciences. In computer science, and considering our focus on Twitter, recent
works comprise event detection [3, 4], information spreading [19], community
mining [20], crowdsourcing [21] and sentiment analysis [11].

Regarding Twitter hashtags, and particularly hashtag recommendation, we
have identified the recent study presented in [22], where an approach for hashtag
recommendation is introduced. This approach computes a similarity measure
between tweets and uses a ranking system to recommend hashtags to new tweets.
A different approach is proposed in [23], where an event detection method is
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described to cluster Twitter hashtags based on semantic similarities between
the hashtags. Two methods for tweet vector generation are proposed and their
performance evaluated on clustering and event detection in comparison to word-
based vector generation methods. This work is in line with our work except
for the fact that the semantic similarities are computed based on the message
content similarities rather than being based on semantic hashtag similarities.

The foundation of our proposal is the use of meta-classes to boost the perfor-
mance of Twitter messages. Although the application on a Twitter classification
problem is a novel contribution, the use of meta-classes has been studied in other
classification contexts. In [24] the use of meta-classes is proposed to improve the
performance of classifiers in an handwritten character recognition problem. The
use of meta-classes is promoted in this study based on the complex boundaries
between classes, the classes overlapping and the lack of sufficient number of
samples for some classes.

The related work presented so far sheds light on the importance of social
networks in the scientific community, specially the recently explored niche of
Twitter hashtags, that can have multiple applications like recommendation sys-
tems or improvement of search capabilities. In the next section we will detail our
proposed approach in order to settle our contribution in the field.

3 Proposed Approach

This section describes the proposed approach to define meta-hashtags and to use
them in a classification application to improve the overall classification obtained.
Our approach is twofold, resulting in two final models, the baseline model, that
considers the user-defined hashtags, and the meta-hashtags model, that considers
the clusters of similar messages grouped by a single meta-hashtag. In Fig. 1 we
depict the proposed framework.

The baseline model is constructed and trained with labelled examples that use
the user-defined hashtags as a “one-against-all” two-class problem. In the meta-
hashtags model, semantic meta-hashtags were heuristically defined, by clustering
similar in a meta class. Related classes are then relabelled according to the new
defined meta-hashtags and a similar training process occur in order to construct
the new proposed model.

The underpinning idea behind the use of meta-hashtags is to combine the class
label of similar messages in order to mitigate the effects of the bias introduced
by freely user-defined hashtags, and thus improving the overall classification of
Twitter messages according to their hashtags.

4 Experimental Setup

In this section we start by describing the built data set for the purpose of testing
our approach.Wealso characterize themethodology for documents representation.
We then proceed dealing with the pre-processing method and finally, we conclude
by introducing the performance metrics used to evaluate the proposed approach.
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Fig. 1. Proposed approach

4.1 Dataset

The dataset was constructed by requesting public tweets to the Twitter API1.
We have collected more than 230.000 messages during four days and, considering
the worldwide usage of Twitter, tweets were only considered if the user language
was defined as English. All the messages that did not have at least one hashtag
were discarded, as the hashtag are assumed as the message classification. Finally,
tweets containing no message content besides hashtags were also discarded and
all the hashtags are removed from remaining tweets. From the 230.000 collected
messages, we reach 10.000 tweets that have a body part and at least one hashtag.

As users are able to define their own hashtags, a high number of different
hashtags is present in the requested tweets. In order to narrow the number of
classes, we have only considered the most used hashtags. Finally, we used the
crowdsourcing platform http://tagdef.com/ to discover the hashtag meaning and
the related hashtags, and considered the most used ones, which have at least two
or more related hashtags, so a meta-hashtag class may empirically be defined.
A total number of 15 hashtags were found to match this presumption and a
total number of 1.230 tweets were considered as being labelled and suited for
classification purposes. The individual hashtags were semantically clustered in 5
meta-hashtag classes, as depicted in Table 1.

1 https://dev.Twitter.com/

https://dev.Twitter.com/
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Table 1. Amount of positive documents in the training and testing phases

Training Testing

NP 138 139
NOWPLAYING 72 68

meta-hashtag NP 209 207

SEX 70 54
PORN 65 56
XXX 23 19
HOT 14 6

meta-hashtag SEX 104 76

JOB 32 36
JOBS 41 37

meta-hashtag JOB 59 61

NW 32 32
NOWWATCHING 7 4

meta-hashtag NW 39 36

TEAMFOLLOW 17 18
TEAMFOLLOWBACK 126 148

FOLLOWBACK 14 24
NF 58 57

NOWFOLLOWING 7 10
meta-hashtag NF 207 238

The tweets were then split into two equally sized and disjoint sets: training
and testing. The training data set is used to build classification learning models,
and the testing data set to evaluate performance.

Table 1 describes the positive documents of each class and the correspon-
ding meta-class of the data set. As can be observed from the Table 1, there is an
heterogeneous distribution of hashtags in the dataset. For example, class TEAM-
FOLLOWBACK has 274 documents, while class NOWFOLLOWING has only
17 documents. The amount of positive documents in the training and testing
data sets is balanced because it is obtained by the equally split of training and
test sets.

4.2 Pre-processing Methods

A tweet is represented as one of the most successful and commonly used doc-
ument representation, which is the vector space model, also known as Bag of



Defining Semantic Meta-hashtags for Twitter Classification 231

Words. The collection of features is built as the dictionary of unique terms
present in the documents collections. Each document of the document collec-
tion is indexed with the bag of the terms occurring in it, i.e., a vector with one
element for each term occurring in the whole collection.

High dimensional space can cause computational problems in text-classification
problemswhere a vectorwith one element for each occurring term in the whole con-
nection is used to represent a document.Also, overfitting can easily occurwhich can
prevent the classifier to generalize and thus the prediction ability becomes poor.
In order to reduce feature space pre-processing methods are often applied. These
techniques aim at reducing the size of the document representation and prevent
the mislead classification as somewords, such as articles, prepositions and conjunc-
tions, called stopwords, are non-informativewords, and occur more frequently than
informative ones. These words could also mislead correlations between documents
so stopword removal technique was applied. Stemming method was also applied.
This method consists in removing case and inflection information of a word, re-
ducing it to the word stem. Stemming does not alter significantly the information
included, but it does avoid feature expansion.

4.3 Learning and Evaluation

The evaluation of our approach was done by the dataset with the Support Vec-
tor Machine (SVM) method. This machine learning method was introduced by
Vapnik [25], based on his Statistical Learning Theory and Structural Risk Min-
imization Principle. The idea behind the use of SVM for classification consists
on finding the optimal separating hyperplane between the positive and negative
examples. Once this hyperplane is found, new examples can be classified sim-
ply by determining which side of the hyperplane they are on. SVM constitute
currently the best of breed kernel-based technique, exhibiting state-of-the-art
performance in text classification problems [26–28]. SVM were used in our exper-
iments to construct the model with user-defined hashtags and the meta-hastags
model.

In order to evaluate the binary decision task of the proposed models we defined
several measures based on the possible outcomes of the classification, such as,
error rate ( FP+FN

TP+FP+TN+FN ), recall (R = TP
TP+FN ), and precision (P = TP

TP+FP ),
as well as combined measures, such as, the van Rijsbergen Fβ measure [29], which
combines recall and precision in a single score.
Fβ is one of the best suited measures for text classification used with β = 1,

i.e. F1 (F1 = 2∗P∗R
P+R ), an harmonic average between precision and recall.

5 Experimental Results and Analysis

In this Section we evaluate the performance obtained on the Twitter data set
using the two approaches described in Section 3, namely the baseline approach
considering the 15 initial hashtags and the meta-hashtag approach. Table 2 sum-
marises the performance results obtained by classifying the datasets.
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Table 2. Comparative results

Baseline Model Meta-hashtags Model

Precision Recall F1 Precision Recall F1

NP 45.73% 53.96% 49.50% 35.44% 92.81% 51.29%
NOWPLAYING 23.96% 33.82% 28.05% 15.11% 80.88% 25.46%

meta-hashtag NP 50.55% 88.89% 64.45%

SEX 70.18% 74.07% 72.07% 38.69% 98.15% 55.50%
PORN 80.00% 71.43% 75.47% 40.88% 100.00% 58.03%
XXX 21.05% 21.05% 21.05% 11.45% 100.00% 20.54%
HOT 7.14% 16.67% 10.00% 3.61% 100.00% 6.98%

meta-hashtag SEX 69.23% 94.74% 80.00%

JOB 53.33% 66.67% 59.26% 34.31% 97.22% 50.72%
JOBS 50.79% 86.49% 64.00% 33.33% 91.89% 48.92%

meta-hashtag JOB 56.86% 95.08% 71.17%

NW 17.65% 9.38% 12.24% 15.38% 12.50% 13.79%
NOWWATCHING 0.00% 0.00% - 3.85% 25.00% 6.67%

meta-hashtag NW 19.23% 13.89% 16.13%

TEAMFOLLOW 100.00% 100.00% 100.00% 26.09% 100.00% 41.38%
TEAMFOLLOWBACK 40.80% 55.41% 46.99% 32.91% 87.84% 47.88%

FOLLOWBACK 0.00% 0.00% - 5.57% 91.67% 10.50%
NF 25.00% 5.26% 8.70% 13.92% 96.49% 24.34%

NOWFOLLOWING - 0.00% - 2.53% 100.00% 4.94%
meta-hashtag NF 54.94% 91.18% 68.56%

Analysing the table we can observe that the use of a meta-hashtag outper-
forms the overall classification of the initial hashtags when they are considered
individually. For example, the class NP has a F1 measure of 49.50% in the base-
line model, in the class NOWPLAYING the corresponding value is 28.05% and
with the use of a meta-hashtag the new proposed model presents a F1 value for
the meta-hashtag NP class of 64.45%. This might be related to the fact that the
content being classified in the meta-hashtag dataset is different from the initial
dataset, thus misleading the classifier. Theses improvements on the results ob-
tained may also be observed for other cases, like in class JOB with F1 of 59.26%
and class JOBS with 64.00%, while the corresponding meta-hashtag JOB has
71.17%.

With the use of a meta-hashtag we unify the labelling process by grouping
similar messages and placing them in the same classification class, thus boosting
the performance of the overall classifier. This analysis is in line with previous
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results in [23] where from a set of different methods proposed, a pseudo-meta-
hashtag approach was presented to be beneficial in a clustering problem.

Other noteworthy results are obtained when using the meta-hashtag model
to classify the initial classes. Although the F1 measure decreases considering
the baseline model, the recall increases in a higher proportion. As an example,
the class XXX classified by the baseline model presents a precision and a recall
of 21.05%. Classified by the meta-hashtag model, the precision falls to 11.45%
and the recall raises up to 100.00%, which means that precision proportionally
decreases less than the increase of recall. This is due to the false positive increase
being less than the increase of true positives. The increase of false positives, and
thus the decrease of the F1 measure was expected, as we mislead the classifier by
training it with the meta-hashtags examples, which means we used as positive
examples not only the initial class messages, but also the related messages that
belong to semantically similar hashtags.

In the baseline model, classes like NOWFOLLOWING or FOLLOWBACK
have no F1 measure. This occurs because the classifier did not identified any
true positive document, probably due to the lack of information in the training
phase, so precision and recall are 0.00% and F1 can not be calculated. In these
classes the use of the meta-hashtags approach, more than increasing the classifier
performance, permits the identification of these classes documents.

6 Conclusions and Future Work

In this paper we have presented a meta-hashtag approach in order to deal with
the bias produced by freely user-defined hashtag in Twitter social network. The
main idea of defining semantic meta-hashtags that cluster similar messages is
to boost the classification performance of messages, by avoiding the mislead
classification problem raised by having multiple classes to identical features.

For that purpose, we have constructed a dataset by requesting public tweets
to the Twitter API and conducted a set of experiments by comparing a base-
line model based on user-defined hashtags with our approach based on meta-
hashtags.

The preliminary results are very promising. It is possible to observe that the
proposed approach outperforms the F1 measure of each initial class included
in its composition, with the exception of the initial class TEAMFOLLOW that
is already correctly classified in the initial approach. It is also important to
note the overall improvement of the recall metric when using the meta-hashtag
model to classify the initial classes. This improvement sustains the use of meta-
hashtags and makes it possible to infer that, the more information we give to the
classifier in the training process, the better for the identification of true positive
documents in the testing phase, as the increase of recall is due to the increase
of true positives.

Our future work will give a formalization of the meta-hastags model including
hashtags similarities in order to evaluate the clustering quality. Moreover, evalu-
ation of dynamically created Twitter meta-hashtags will be performed possibly
for enrichment of applications in real-time.
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Abstract. Many different models of genetic regulatory networks (GRN) exist, 
but most of them are focused on off-line processing, so that important features 
of real networks, like adaptive and non-stationary character are missed. Inter-
disciplinary insight into the area of self-organization within the living organ-
isms has caused some interesting new thoughts, and the suggested model is 
among them. Based on reinforcement learning of the Boolean network with 
random initial structure, the model is searching for a specialized network, that 
agrees with experimentally obtained data from the real GRN. With some expe-
riments of real biological networks we investigate its behaviour. 

Keywords: genetic regulatory network, reinforcement learning, canalysing 
Boolean functions. 

1 Introduction 

Understanding the way biological cells process an enormous number of operations, 
required for normal activity, is a major challenge in developmental biology. A num-
ber of different approaches toward modelling a genetic regulatory network (GRN) 
have been introduced, including linear models [1], Bayesian networks [2], neural 
networks [3] and neurogenetic approaches [19],  differential equations [4],  and 
models including stochastic components on the molecular level [5]. A good review of 
general models is given in [6]. The Boolean network (BN) model was originally in-
troduced by Kauffman [7], and has recently been used by many authors (to mention 
only some of them [9, 10]). A stochastic nature of GRN was reconstructed either with 
context-sensitive probabilistic Boolean networks together with a dynamic program-
ming approach [11] or with a conditional mutual information [12]. In one of our re-
cent works we studied the origin of a subcellular signal transduction system via an 
evolutionary (genetic) algorithm [20], which might be called a bottom-up approach 
because of its growth feature. In this paper, we however change the direction and 
suggest top-down access to the GRN from an evolved structure (only in terms of 
number of nodes or genes/proteins and number of inputs to nodes) to the specialized 
network of GRN. Though many different models of the GRN obviously exist, they do 
not explain the on-line operation of the subcellular structures of genes and/or proteins. 
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They are mostly able to process the data, that are experimentally obtained in some 
individual instances more or less successfully. The self-organizing feature or capabili-
ty of adaptation is therefore missing. We believe that with the reinforcement learning 
algorithm we are able to explain some of the details that are not included in the cur-
rent models. In particular, the proposed model enables us to deal with the time-
varying structure of genes/proteins in order to ensure functional continuity.   

In the paper we introduce an adaptive Boolean model of GRN (ABGRN) with a 
reinforcement learning algorithm of special regulatory signals that follow the meas-
ured data from a biological cell. The search for suitable function pathways in the uni-
versal and randomly constructed network is the goal of the algorithm. The following 
characteristics are presumed: 1. The model represents an adaptive and non-stationary 
network of gene/protein nodes with special canalysing Boolean functions; 2. Intercell 
or intracell (transcription) signals act as inputs to the ABGRN, though the model can 
work without inputs; 3. Genes and proteins (mRNAs) determine states and outputs of 
ABGRN, respectively; 4. Instead of bio-chemical mechanisms in real systems, meas-
ured data enable assessment of the states and/or outputs in ABGRN - the response is 
either reward (R) that preserves the network or penalty (P) that causes adequate up-
dating of the links and/or function nodes in the network; 5. Special regulatory signals 
adjust connections between nodes and their functions to minimize the penalties; 6. 
There are some global (evolving) parameters, n (number of nodes), k (number of in-
puts to nodes) and m (number of regulatory signals), whose correct values represent 
the necessary condition for efficient ABGRN, while connections between nodes and 
their functions establish a sufficient condition; parameter d (number of cell-
differentiating signals) implies cell types (differentiation) in a similar way to m para-
meter, and will therefore not be considered in this work.  

The goal of the presented model is to recognize the principle of cell processing of 
the sub-cell network of genes/proteins based on an adaptive process of self-
organisation. The reinforcement learning of regulatory signals is introduced to raise 
the proper function pathways in the network so that the penalties related to the meas-
ured data from real GRN are minimized.  

The paper is organized as follows. In section 2, basic definitions of the suggested 
ABGRN model are given, followed by the description of the reinforcement learning 
algorithm in section 3. The experimental work is described in section 4, together with 
the results and comments. In the conclusion we resume the main issues and give some 
ideas for the future work.  

2 Basic Definitions 

Adaptive Boolean network (ABN) is an expansion of the Boolean network (BN), 
where BN = (V, B). V is a set of nodes (genes or proteins), V = (x1, …, xn), and B a set 
of Boolean functions, B = (f1, …, fn), with fi = fi(xi1,…xik), where ik is the number of 
inputs to node i, and ABN = (V, R, B*), where V is again the set of nodes, R is a set of 
regulatory signals representing two groups, R = (r1,…, ri,…, rp, rp+1, …, rj,…, rp+q), 
first p influencing connections in the network and next q establishing functions of the 
nodes. B* is a special set of canalysing Boolean functions, B* = (f1*, …, f2x2

k*). There 
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are m = p + q regulatory signals, but only one at a time is used to change the regulato-
ry point. The selection of a regulatory signal from R depends on the probabilities p’ 
for the signals within the first group and q’ for signals from the second group. In the 
experimental work we use p’ = 0.1 and q’ = 0.9 to improve the convergence speed of 
the learning. Namely, any change of connection between two nodes needs more func-
tional updates on the sequel pathways in order to properly  follow the data from the 
GRN via experimental work. Connection between two nodes in the network can either 
be opened (ri = 0) or closed (ri = 1), i = 1,…, p, while node function rj  can be de-
fined from set B*, which defines one of the 2*2k special canalysing Boolean func-
tions. Each fj*= rj, has only one active value (T or F) and 2k-1 non-active values (F or 
T), where k is the number of j-th node inputs. In such functions, any input variable (so 
called canalysing input) is able to establish the output either as a constant or a type of 
gate function (AND/NAND) of the other k - 1 inputs of all possible combinations of 
their literals. Instead of the AND/NAND pair one can deal with the OR/NOR pair 
which is related with the first pair through the DeMorgan theorem. There are other 
canalysing functions as well, but we restrict ourselves to this set in order to reduce the 
set and therefore simplify the learning procedure.  

The network with random connections and random distribution of special canalys-
ing Boolean functions represents a universal pool for the processing of any cell func-
tion. In order to specialize for a specific task, the GRN needs to adapt through some 
bio-chemical mechanisms, enabling self-organization. In living organisms there exist 
many so called switch proteins controlled by phosphorylation, organised in cascades, 
transmitting the signal onward and, in the process, amplifying, distributing, and mod-
ulating it, making such mechanisms feasible [13]. The process of self-organisation is 
vital for universal network adaptation to a specialized network of a cell task. As the 
network is non-stationary, adaptation is a permanent duty of the cell regulatory me-
chanism. In the ABGRN model, reinforcement learning of regulatory signals is consi-
dered to perform such specialization. Each element of R, rl, l = 1, …, m, is bound to a 
randomly selected connection (between two nodes) or function node and is an object 
of reinforcement learning. It is assigned to change the value of the point (type of con-
nection or function of node) in a one at a time manner. The proper values of parame-
ters n (number of nodes that defines the size of network), and m (number of control 
points or signals) of ABGRN are essential for the successful learning process. The 
parameter k, representing the number of inputs to the nodes, was shown to be rather 
small in real biological systems [8, 13], which limits the frame of our simulations to 
the values of k between 2 and 5. 

3 Reinforcement Learning in ABGRN 

The adaptive Boolean model of the gene regulatory network (ABGRN) is a dynamic 
system which is changing its states (values of genes) in a synchronous way. It was 
shown [21, 22] that artificial synchrony simplifies computation while preserving the 
qualitative, generic properties of global network dynamics. The transition of states is 
caused either by change(s) of input signal(s) and/or gene state(s) in a particular in-
stant. In the model, all nodes update simultaneously, according to the functions. The 
system is following a given trajectory of the global states (states of all nodes). All 
global states can be divided into three groups: the group of states that belong to the so 
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called states of ‘Gardens-of-Eden’, the transient states and the attractor states. The 
second are temporary states as they are passed towards the limiting cycle of attractor 
state(s). The limiting cycle represents a steady state of one or more attractor states. In 
the former case, the steady state of the network is unique, while in the latter the steady 
state is defined with the cycle of attractor states. The response of the model network is 
measured with the percentage of  matching the next states with that of the data (from 
real GRN), averaged over C possible starting states. In order to assess the learning of 
the model, the comparison with state transitions of a real system is crucial. These data 
are obtained with micro array technology (many genes from a few biological repli-
cates) or flow cytometry (few genes from many biological samples or replicates) [13]. 
There are obviously two factors that influence the successful state transitions of the 
model. One is the structure (size and connectivity) of the model, defined with parame-
ters n, k and regulatory signals ri, i = 1, …, p, and the other the functions of the nodes, 
defined by their types and regulatory signals rj, j = 1, …, q. Through reinforcement 
learning, the connectivity and the function nodes are affected, which makes an expec-
tation for finding a correct structure that is compatible with the measured data (or real 
GRN) realistic.  

The hypothesis for the self-organisation in ABGRN is the following: given the 
measured data from the real GRN that imply a node connectivity graph with logic 
(next state) equations of related nodes (genes) and initial (random) model network 
with relevant parameters (n, k, m), it is possible to reconstruct GRN for the cell task  
by applying the reinforcement learning algorithm. The choice of relevant parameters 
is of the essence; however, efficiency of the learning from the measured data is the 
main achievement of the approach. 

The reinforcement learning algorithm can be described as follows. The initial 
ABGRN is raised with random connections (structure) of random functional nodes. 
The regulatory signals are bound to m random regulatory points, defining p connec-
tions and q functions of the nodes, where p and q are important parameters of the 
algorithm and should be congruent with the number expected to be changed in real 
systems during some period (M  iteration steps), and small because of their impact on 
the time of adaptation. The proper values of the regulatory signals are objects of the 
reinforcement learning and influence the effectiveness of the model. The algorithm 
starts with a set of C (possibly all) global states, and initial random regulatory signals. 
The next states of the model are processed and the difference from the target data 
(from real GRN) is recognized, resulting in a measure of matching. 

A regulatory signal is selected from R. It may be a changed connection (with 
smaller probability like p’ = 0.1) or a changed function (with probability like q’ = 
0.9). In case of penalty, the last change of the regulatory signal is suppressed. In case 
the result of the change is reward (improved matching), the applied regulatory signal 
is accepted and its efficiency updated. In either case the procedure continues with 
selection and modification of another regulatory signal and the same set of states is 
initiated again, followed by the next states processing to measure the matching.  

After M iterations of C transitions, m new regulatory points are selected by consi-
dering the result from the hitherto learning implicitly included in current efficiencies 
of the regulatory points (connections and functions). Greater efficiency means higher 
probability for selection. The efficiency of a regulatory signal is measured during the 
run of the algorithm. The regulatory signal influencing connection considers the  



240 B. Šter and A. Dobnikar 

percentage of the successful connections and proximity (distance to a gene in terms of 
number of nodes). In case of a regulatory signal for the function node, it reflects the 
node proximity to a relevant gene only and is higher the shorter the distance to a gene. 
A new connection is established when the following criterion is satisfied: 0,1 _ 1 _  & 0,1 1 1 

where eff is efficiency, prox is proximity or a distance of an observed point to a gene, 
new_con and old_con are new and old regulatory connections. In this way a more 
efficient connection has a higher probability to be selected than a less efficient con-
nection, and a node closer to the gene is more probable to be chosen as a new regula-
tory point. 

The result of the learning is given with average percentage of the matching be-
tween the next states of the model and the data. The algorithm stops after a predefined 
number of repetitions. Figure 1 shows a simplified pseudo-code of the reinforcement 
learning algorithm. 

 begin 
  create initial ABGRN with global parameters n, k, m 
  define initial p and q regulatory signals  
  while (no stopping condition) 
   begin      
    select r

l
 with p’, q’, considering also efficiency 

    select C starting global states 
    process model 
    compare next global states with data         
    assess matching 
    if Penalty (worse matching than before) 
     restore signal 
    if Reward  
     update efficiency of regulatory signal r

l
  

    after every M iterations define new p and q signals  
   end; 
 end.   

Fig. 1. Pseudo-code of reinforcement learning algorithm (see text for further explanation) 

4 Experimental Work 

We applied the suggested approach on two examples, found in [15], that represent the 
attempts to model real biological networks. 

The first example deals with coupled oscillations in the cell cycle. It was apparent 
that the onset of M (mitosis) and S (DNA replication) phases of the cell cycle are 
controlled by the periodic activation of cyclin-dependent kinases [14]. From the diffe-
rential equations model of the system, the logic and the Boolean model were derived 
[15], and the resulting graph is shown in Fig. 2. The nodes represent genes while their 
state transition functions depict the need for the proteins/genes with appropriate cana-
lysing functions.   
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Fig. 2. The directed graph of coupled oscillations in cell cycle   

The logic equations for the nodes (genes) in the graph are (↓ is NOR): 

C1(t+1) = X1(t) ↓ M2(t)  C2(t+1) = X2(t) ↓ M1(t)  
X1(t+1) = M1(t)   X2(t+1) = M2(t) 
M1(t+1) = C1(t)   M2(t+1) = C2(t) 

Several simulation runs were carried out with different global parameters n and m. 
The goal was to find the most efficient specialized network in terms of time and accu-
racy obtained with the reinforcement learning from the random starting network, with 
the smallest number of nodes and regulatory signals. For every combination of global 
parameters, three runs of 100,000 iterations were accomplished and their average is 
shown in the resulting diagrams, depicted in Fig. 3, where  p* (q*) is proportion of 
connections  (functions) in R, relative to all connections (nodes) in the network. Pa-
rameter M was set to 10,000. 

 

 

Fig. 3. The resulting diagrams of simulation runs for Example 1: a) n = 10, b) n = 20, c) n = 50, 
and d) n = 100 
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This time the logic functions are ( | is NAND, ⋅ is AND, ’ is negation): 

A(t+1) = K(t)⋅H’(t)  B(t+1) = A(t)⋅C’(t)   
C(t+1) = D’(t) + I(t)  D(t+1) = J(t)⋅K(t)  
E(t+1) = C’(t) + F(t)  F(t+1) = E’(t) + G(t) 
G(t+1) = B(t) | E(t)  H(t+1) = F(t)⋅G’(t)    
I(t+1) = H(t)⋅I’(t)  J(t+1) = J(t)  K(t+1) = K(t) 

Assuming that the growth factor (node K) and cell spreading (node J) are both True 
(1), and due to implication J = K = 1 → D = 1 (see equation for D), a nontrivial 
growth attractor exists [18], which enables one to use only 8 nodes for the initial 
global states and for the sequencing of the system.  

Simulation runs were performed in a similar way to the previous example. The re-
sulting diagrams are depicted in Fig. 6.  

 

Fig. 6. The resulting diagrams of simulation runs for Example 2: a) n = 11, b) n = 20, c) n = 50, 
and d) n = 100 
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accuracy of near 95% is obviously obtained much later. Larger networks are therefore 
too complex for the coupled oscillation task. The simulation runs of Example 2 (cell 
growth) shown in Fig. 6, clearly indicate that a network with 11 nodes (which is the 
same as the number of genes) is not big enough and therefore needs more protein 
(function) nodes for better accuracy. The network with 20 nodes and p* or q* = 0.2 
seems to be optimal as it achieves around 95% accuracy. Other results are worse 
again in terms of time/performance trade off.  

Common to both experiments is the observation that with the increased complexi-
ty of a cell task, the size of the required network and the number of regulatory signals 
are increased. This is in concordance with the natural expectation, that a more com-
plex network with a higher number of possible topologies or functional pathways 
implies a harder combinatorial problem, which requires more decisions to be taken.  

5 Conclusion 

A new model of genetic regulatory network is introduced. It is based on the Boolean 
network with restricted set of canalysing functions and regulatory signals that enable 
modification of initial random network. The reinforcement learning is able to search 
for the specialized network that matches with the real GRN and its experimentally 
obtained data. It represents an attempt to describe the biological self-organization of 
the GRN of genes and/or proteins from the origin of the living system. The real bio-
logical examples were used to prove the efficiency of the model. We believe that the 
results are interesting as they show a new paradigm for further discoveries within the 
sub-cell world. There are many unknown details yet to be discovered, mostly in bio-
chemical mechanisms and gene proximity functions that are supposed to perform self-
organization, to mention only some of them. There remains plenty of room for re-
search, indeed. 
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Abstract. This paper shortly describes nonlinear Model Predictive
Control (MPC) algorithms for Least Squares Support Vector Machines
(LS-SVM) Hammerstein models. The model consists of a nonlinear
steady-state part in series with a linear dynamic part. A linear approxi-
mation of the model for the current operating point or a linear approx-
imation of the predicted output trajectory along an input trajectory is
used for prediction. As a result, all algorithms require solving on-line a
quadratic programming problem or a series of such problems, unreliable
and computationally demanding nonlinear optimisation is not necessary.
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1 Introduction

The general idea of Model Predictive Control (MPC) algorithms is to repeatedly
use on-line a dynamic model of the process to predict its future behavior and to
calculate the future control policy from an optimisation problem in which pre-
dicted control errors over a time horizon are taken into account [11,16,17]. Such
an approach has a few important advantages over many other control techniques:
constraints can be easily imposed on process inputs (manipulated variables) and
outputs (controlled variables), MPC algorithms can be efficiently used for multi-
variable processes and for processes with difficult dynamic properties (e.g. with
significant time-delays, the inverse response). In consequence, MPC algorithms
have been successfully used for years in numerous advanced applications [15].

The current research is concerned with nonlinear MPC algorithms which use
for prediction nonlinear models [17], e.g. neural structures [7,8,10]. Although the
feedforward neural network can be efficiently used in practice for modelling of
many technological processes, the neural model is entirely a black-box model,
i.e. its structure has nothing to do with the technological nature of the process.
An interesting and sound alternative is a block-oriented model which consists of
separate steady-state and dynamic parts connected in series [5]. It turns out that
for many processes the cascade structure is the best choice, since steady-state
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properties of measurement devices and actuators are frequently significantly non-
linear by nature whereas dynamic properties of the processes are (almost) linear.
The Hammerstein model, in which the linear dynamic part follows the nonlin-
ear steady-state part can be efficiently used for modelling, fault detection and
control of different technological processes, e.g. chemical reactors [2,13], heat
exchangers [1] and distillation columns [1,2].

Support Vector Machines (SVM) can be efficiently used for nonlinear classifi-
cation and function approximation [12]. An important advantage of SVM is the
fact that model identification requires solving convex optimisation problems, typ-
ically quadratic programming ones. In Least Squares Support Vector Machines
(LS-SVM) the identification procedure is even simpler as only least squares prob-
lems are solved [14]. On the contrary, neural networks training requires nonlinear
optimisation, in which the problem of local minima is unavoidable.

This paper shortly describes nonlinear MPC algorithms for LS-SVM Hammer-
stein models (the LS-SVM approximator is used in the nonlinear steady-state
part of the model). A linear approximation of the model for the current oper-
ating point or a linear approximation of the predicted output trajectory along
an input trajectory is used for prediction. As a result, all algorithms are compu-
tationally efficient since they require solving on-line a quadratic programming
problem or a series of such problems, unreliable and computationally demanding
nonlinear optimisation is not necessary. Accuracy and computational efficiency
of discussed algorithms are demonstrated for a significantly nonlinear benchmark
Hammerstein system.

2 Model Predictive Control Algorithms

In MPC algorithms [11,17] at each consecutive sampling instant k, k = 0, 1, 2, . . .,
a set of future control increments

�u(k) = [�u(k|k) �u(k + 1|k) . . .�u(k +Nu − 1|k)]T (1)

is calculated, where Nu is the control horizon and �u(k + p|k) = u(k + p|k) −
u(k+p−1|k). It is assumed that �u(k+p|k) = 0 for p ≥ Nu. The objective of the
algorithm is to minimise differences between the reference trajectory yref(k+p|k)
and predicted values of the output ŷ(k + p|k) over the prediction horizon N ,
N ≥ Nu. Constraints are usually imposed on input and output variables. Future
control increments (1) are determined from the following MPC optimisation task
(hard output constraints are used for simplicity of presentation)

min

u(k)

{
N∑
p=1

(yref(k + p|k)− ŷ(k + p|k))2 + λ

Nu−1∑
p=0

(�u(k + p|k))2
}

subject to (2)

umin ≤ u(k + p|k) ≤ umax, p = 0, . . . , Nu − 1

− �umax ≤ �u(k + p|k) ≤ �umax, p = 0, . . . , Nu − 1

ymin ≤ ŷ(k + p|k) ≤ ymax, p = 1, . . . , N
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Only the first element of the determined sequence (1) is applied to the process,
i.e. u(k) = �u(k|k) + u(k − 1). At the next sampling instant, k + 1, the output
measurement is updated, the prediction is shifted one step forward and the whole
procedure is repeated.

3 LS-SVM Hammerstein Models

Predicted values of the output variable, ŷ(k + p|k), over the prediction horizon
(i.e. for p = 1, . . . , N) are calculated using the LS-SVM Hammerstein model
depicted in Fig. 1. It consists of a nonlinear steady-state part in series with a
linear dynamic part, v(k) denotes an auxiliary signal. The steady-state part is
described by the equation

v(k) = g(u(k))

where the function g : R → R is realised by the LS-SVM approximator. It has
one input, nsv support vectors and one output. Assuming the exponential kernel
function, its output is

v(k) = β +

nsv∑
i=1

αi exp

(
− (u(k)− xsv,i)

2

σ2

)
(3)

where the quantities xsv,i define support vectors (since the model has one input,
the quantities xsv,i are scalars), αi and β are model parameters determined
during training. The linear part of the Hammerstein model is described by the
difference equation

A(q−1)y(k) = B(q−1)v(k)

where polynomials are

A(q−1) = 1 + a1q
−1 + . . .+ anAq

−nA

B(q−1) = bτq
−τ + . . .+ bnBq

−nB

The backward shift operator is denoted by q−1, integers nA, nB, τ define the
order of dynamics, τ ≤ nB. The output of the linear part of the model is

y(k) =

nB∑
l=τ

blv(k − l)−
nA∑
l=1

aly(k − l) (4)

The output of the LS-SVM Hammerstein model can be expressed as a function
of input and output signal values at previous sampling instants

y(k) = f(x(k)) = f(u(k − τ), . . . , u(k − nB), y(k − 1), . . . , y(k − nA)) (5)

From Eq. (3) and Eq. (4) one has

y(k) =

nB∑
l=τ

bl

(
β +

nsv∑
i=1

αi exp

(
− (u(k − l)− xsv,i)

2

σ2

))
−

nA∑
l=1

aly(k − l) (6)

Identification methods for LS-SVM Hammerstein models are discussed in [3].
An example application of the LS-SVM Hammerstein structure for modelling of
a proton exchange membrane fuel cell stack is given in [6].
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Fig. 1. The structure of the LS-SVM Hammerstein model

4 MPC-NPL Algorithm with Simple Linearisation for
the Current Operating Point

The LS-SVM Hammerstein model can be directly used for prediction. Using Eq.
(6) recurrently, one obtains consecutive predictions for p = 1, . . . , N

ŷ(k + p|k) =
Iuf (p)∑
l=1

bl

(
β +

nsv∑
i=1

αi exp

(
− (u(k − l+ p|k)− xsv,i)

2

σ2

))
nB∑

l=Iuf (p)+1

bl

(
β +

nsv∑
i=1

αi exp

(
− (u(k − l + p)− xsv,i)

2

σ2

))

−
Iyf (p)∑
l=1

alŷ(k − l + p|k)−
nA∑

l=Iyf (p)+1

aly(k − l + p) + d(k) (7)

where Iuf(p) = max(min(p − τ + 1, nB − τ + 1), 0), Iyf(p) = min(p − 1, nA),
d(k) is the estimation of the unmeasured disturbance [17]. Because the predic-
tions are nonlinear functions of the decision variables of the MPC algorithm (1),
the optimisation problem (2) is nonlinear. A straightforward idea exploited in
the MPC algorithm with Nonlinear Prediction and Linearisation (MPC-NPL),
the general idea of which is described in [10,17], is to use for prediction a linear
approximation of the model for the current operating point. Using the Taylor
series expansion formula and Eq. (5), the linearised model is

y(k) = f(x̄(k)) +

nB∑
l=τ

bl(k)(u(k − l)− ū(k − l))−
nA∑
l=1

al(k)(y(k − l)− ȳ(k − l))

where the vector x̄(k) = [ū(k − τ) . . . ū(k − nB) ȳ(k − 1) . . . ȳ(k − nA)]
T consists

of measurements and defines the current operating point. Using Eq. (6), one has

al(k) = − ∂f(x(k))

∂y(k − l)

∣∣∣∣
x(k)=x̄(k)

= al

bl(k) =
∂f(x(k))

∂u(k − l)

∣∣∣∣
x(k)=x̄(k)

= bl

nsv∑
i=1

αi exp

(
− (ū(k − l)− xsv,i)

2

σ2

)
2(xsv,i − ū(k − l))

σ2
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As derived in [9], when the linearised model is used for prediction, output pre-

dictions ŷ(k) = [ŷ(k + 1|k) . . . ŷ(k +N |k)]T are linear functions of future control
increments

ŷ(k) = G(k)�u(k) + y0(k) (8)

The matrix G(k) of dimensionality N×Nu contains step-response coefficients of

the linearised model, the free trajectory y0(k) =
[
y0(k + 1|k) . . . y0(k +N |k)

]T
depends only on the past. This trajectory is calculated from Eq. (7) assuming
that u(k + p|k) = u(k − 1) for p ≥ 0 and ŷ(k + p|k) = y0(k + p|k) for p ≥ 1.

Thanks to using the prediction equation (8), the MPC optimisation problem
(2) becomes the quadratic programming task

min

u(k)

{
J(k) =

∥∥yref(k)−G(k)�u(k)− y0(k)
∥∥2 + ‖�u(k)‖2Λ

}
subject to

umin ≤ J�u(k) + u(k − 1) ≤ umax

− �umax ≤ �u(k) ≤ �umax

ymin ≤ G(k)�u(k) + y0(k) ≤ ymax

In the quadratic programming problem yref =
[
yref(k + 1|k) . . . yref(k +N |k)

]T
,

ymin =
[
ymin . . . ymin

]T
and ymax = [ymax . . . ymax]

T
are vectors of length N ,

umin =
[
umin . . . umin

]T
, umax = [umax . . . umax]T,�umax = [�umax . . .�umax]T

and u(k−1) = [u(k − 1) . . . u(k − 1)]
T
are vectors of length Nu, the diagonal ma-

trix Λ = diag(λ, . . . , λ) and the lower triangular matrix J are of dimensionality
Nu ×Nu.

5 MPC-NPLTP Algorithm with Linearisation along the
Trajectory

In the MPC-NPL algorithm the model is linearised once at each sampling in-
stant k for the current operating point. The same linear approximation is used
for prediction over the whole prediction horizon. In the MPC algorithm with
Nonlinear Prediction and Linearisation along the Predicted Trajectory (MPC-
NPLPT), the rudimentary description of which is given in [8], not the model
but the predicted output trajectory is linearised. Linearisation can be carried
out once for an assumed trajectory or in an iterative manner a few times at
each sampling instant. In the nth internal iteration linearisation along the input

trajectory un−1(k) =
[
un−1(k|k) . . . un−1(k +Nu − 1|k)

]T
found in the previ-

ous internal iteration is calculated. Using the Taylor series expansion formula,
one obtains a linear approximation of the predicted nonlinear output trajec-
tory ŷn(k) = [ŷn(k + 1|k) . . . ŷn(k +N |k)]T calculated at the current internal
iteration

ŷn(k) = ŷn−1(k) +Hn(k)(un(k)− un−1(k)) (9)
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where the vectors un(k) and ŷn−1(k) are similar to the vector un−1(k) and
ŷn(k), respectively. The nonlinear trajectory ŷn−1(k) is calculated for the input
trajectory un−1(k) recurrently from Eq. (7) assuming u(k+p|k) = un−1(k+p|k)
and ŷ(k+ p|k) = ŷn−1(k+ p|k). The matrix Hn(k) is of dimensionality N ×Nu

and consists of partial derivatives of the predicted output trajectory ŷn−1(k)
with respect to the input trajectory un−1(k)

Hn(k) =
dŷn−1(k)

dun−1(k)
=

⎡⎢⎢⎢⎢⎢⎣
∂ŷn−1(k + 1|k)
∂un−1(k|k) · · · ∂ŷn−1(k + 1|k)

∂un−1(k +Nu − 1|k)
...

. . .
...

∂ŷn−1(k +N |k)
∂un−1(k|k) · · · ∂ŷn−1(k +N |k)

∂un−1(k +Nu − 1|k)

⎤⎥⎥⎥⎥⎥⎦
Taking into account the structure of the model, form Eq. (7) one has

∂ŷn−1(k + p|k)
∂un−1(k + r|k) =

Iuf (p)∑
l=1

bl

nsv∑
i=1

αi exp

(
− (un−1(k − l + p|k)− xsv,i)

2

σ2

)
× 2(xsv,i − un−1(k − l + p|k))

σ2

∂un−1(k − l + p|k)
∂un−1(k + r|k)

−
Iuf (p)∑
l=1

al
∂ŷn−1(k − l + p|k)
∂un−1(k + r|k)

Using Eq. (9), the optimisation problem (2) becomes the following quadratic
programming problem

min

un(k)

{∥∥yref(k)− ŷn−1(k)−Hn(k)J�un(k)

−Hn(k)(u(k − 1)− un−1(k))
∥∥2 + ‖�un(k)‖2Λ

}
subject to

umin ≤ J�un(k) + u(k − 1)

− �umax ≤ �un(k) ≤ �umax

ymin ≤ ŷn−1(k) +Hn(k)J�un(k) +Hn(k)(u(k − 1)− un−1(k)) ≤ ymax

If the the operating point does not change significantly, it would be sufficient to
carry out only one internal iteration. Internal iterations are continued if

N0∑
p=0

(yref(k − p)− y(k − p))2 ≥ δy

If
∥∥�un(k)− �un−1(k)

∥∥2 < δu or n > nmax internal iterations are terminated.
The quantities δu, δy, N0 and nmax are adjusted by the user.

In the MPC algorithm with Nonlinear Prediction and Linearisation along
the Trajectory (MPC-NPLT), the general idea of which is given in [7], a linear
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approximation of the nonlinear output trajectory ŷ(k) along an input trajectory
utraj(k) is calculated only once. In such a case the linearisation formula (9)
becomes

ŷ(k) = ŷtraj(k) +H(k)(u(k)− utraj(k))

For linearisation the input trajectory utraj(k) = [u(k − 1) . . . u(k − 1)]T can
be used, which leads to the MPC-NPLTu(k−1) algorithm, or the trajectory
utraj(k) = [u(k|k−1) . . . u(k+Nu−3|k−1) u(k+Nu−2|k−1) u(k+Nu−2|k−1)]T,
which leads to the MPC-NPLTu(k|k−1) algorithm.

6 Simulation Results

The linear dynamic part of the Hammerstein system [4] is defined by polynomials

A(q−1) = 1− 1.2q−1 + 0.9q−2, B(q−1) = 1.7q−1 − q−2 (10)

Its nonlinear steady-state part v(k) = 2sign(u(k))
√

|u(k)| is shown in Fig. 2.
The following MPC algorithms are compared:

a) the classical linear MPC algorithm based on the linear model,
b) the nonlinear MPC-NPL algorithm,
c) the nonlinear MPC-NPLTu(k−1) and MPC-NPLTu(k|k−1) algorithms,
d) the nonlinear MPC-NPLPT algorithm,
e) the “ideal” MPC-NO algorithm with on-line nonlinear optimisation.

The linear MPC algorithm uses the model (10). All nonlinear MPC algorithms
use the Hammerstein model with the linear dynamic part (10), the steady-state
nonlinear part is the LS-SVM approximator with 100 support vectors (Fig. 2).
Parameters of all MPC algorithms are: N = 10, Nu = 3, λ = 5, umin = −1.5,
umax = 1.5. Additional parameters of the MPC-NPLPT algorithm are: δu =
δy = 10−1, N0 = 2, nmax = 5.

Fig. 2. The characteristics v(k) = g(u(k)) of the steady-state part of the process (solid
line) and its LS-SVM approximation (dashed line)
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Fig. 3. Simulation results of the classical linear MPC algorithm

Fig. 4. Simulation results of the MPC-NPL algorithm

Because the process is significantly nonlinear, the linear MPC algorithm does
not work properly as depicted in Fig. 3. It also turns out that the simple lin-
earisation for the current operating point used in the MPC-NPL algorithm is
inefficient as shown in Fig. 4. The MPC-NPLTu(k−1) and MPC-NPLTu(k|k−1)

algorithms with linearisation along an assumed future input trajectory are much
better as shown in Fig. 5, but still the control accuracy is not satisfying. Finally,
Fig. 6 compares trajectories obtained in the MPC-NPLPT algorithm and in
the “ideal” but computationally demanding MPC-NO approach with nonlinear
optimisation repeated at each sampling instant. For the considered process the
MPC-NPLPT algorithm gives trajectories very close to those obtained in the
MPC-NO approach. Because the process is significantly nonlinear, the iterative
linearisation along the predicted trajectory is necessary rather than single model
or trajectory linearisation used in MPC-NPL and MPC-NPLT algorithms.

Table 1 shows accuracy (in terms of Sum of Squared Errors, SSE) and com-
putational load (in terms of floating point operations, MFLOPS) of compared
nonlinear algorithms. The MPC-NPLPT algorithm is many times less computa-
tionally demanding than the MPC-NO approach.
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Fig. 5. Simulation results: the MPC-NPLTu(k−1) algorithm (solid line) and the MPC-
NPLTu(k|k−1) algorithm (dashed line)

Fig. 6. Simulation results: the MPC-NPLPT algorithm (dashed line with circles) vs.
the MPC-NO algorithm (solid line with dots)

Table 1. Accuracy (SSE) and computational load (MFLOPS) of compared nonlinear
MPC algorithms based on the same LS-SVM Hammerstein model

Algorithm Optimisation SSE MFLOPS

MPC-NPL Quadratic 28.48 0.49
MPC-NPLTu(k−1) Quadratic 18.40 1.18
MPC-NPLTu(k|k−1) Quadratic 15.87 1.18
MPC-NPLPT Quadratic 12.53 1.68
MPC-NO Nonlinear 12.45 16.10

7 Conclusions

The described nonlinear MPC algorithms for LS-SVM Hammerstein models are
computationally efficient because they require solving on-line a quadratic pro-
gramming problem or a series of such problems, nonlinear optimisation is not
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necessary. For the considered process the iterative linearisation along the pre-
dicted trajectory used in the MPC-NPLPT algorithm gives the best results.

Acknowledgement. The work presented in this paper was supported by Polish
national budget funds for science.
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Abstract. In this paper, we propose a new algorithm to solve university course 
timetabling problems using a Particle Swarm Optimization (PSO). PSOs are be-
ing increasingly applied to obtain near-optimal solutions to many numerical op-
timization problems. However, it is also being increasingly realized that PSOs 
do not solve constraint satisfaction problems as well as other meta-heuristics 
do. In this paper, we introduce transition probability into PSO to settle this 
problem. Experiments using timetables of the University of Tsukuba showed 
that this approach is a more effective solution than an Evolution Strategy. 

Keywords: Particle swarm optimization, university course timetable, constraint 
satisfaction problem, transition probability. 

1 Introduction 

University course timetabling problems (UCTPs) are search problems involving assign-
ing timeslots to subjects so that existing constraints are satisfied [1-3]. The problems are 
generally characterized as constraint satisfaction problems to minimize the total penalty 
for constraint violations and generate feasible but not optimal solutions. The problems 
that belong to the NP-hard class are quite complex and very difficult to solve using 
conventional optimization techniques. These include Simulated Annealing [4], Case-
Based Reasoning [5], Graph Based Hyperheuristics [6], Ant Colony Optimization [7], 
Genetic Algorithms [8-10], and Particle Swarm Optimization (PSO) [11, 12]. 

PSO is a population-based stochastic search algorithm that is inspired by the social 
interaction behavior of birds flocking and fish schooling [13, 14]. The first version of 
PSO was intended to handle only continuous optimization problems [15-17]. As many 
optimization problems are defined in the discrete space, research on extending the 
PSO to solve discrete combinatorial optimization problems (COPs) and constraint 
satisfaction problems (CSPs) has become an attractive subject in recent years. 

Although various PSO algorithms have been proposed, they generally do not per-
form satisfactorily [18]. Compared with the other meta-heuristics for COPs and CSPs, 
their performance is not competitive. On the other hand, the hybrid PSO algorithms 
outperform the pure PSO approaches. However, as these algorithms are generally 
designed for specific problems, their structures are more complicated, and they are 
hard to apply to other COPs [18]. 
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In this paper, we propose a new PSO algorithm to solve UCTPs. Although pure 
and hybrid PSOs for timetabling problems have been proposed [11, 12, 19, 20], few 
general-use PSOs for UCTPs in the real world have been found. In the proposed me-
thod, transition probability is introduced into pure PSO, and a phenotype (timetable) 
can be used directly as a representation of a solution. It is easy to apply this technique 
to other COPs and CSPs. 

In the following sections, we first discuss the objective problem and related works. 
Next, we describe the algorithm of the proposed method in detail. Finally, we give the 
results of experiments using real timetables in Japan and show that this approach is a 
more effective solution than an Evolution Strategy (ES). 

2 Problem Description 

2.1 Objective Problem 

The timetables to be treated in this paper are constructed for the undergraduate 
courses of the College of Information Science in the University of Tsukuba, Japan. 
The college includes three specialized areas, four grades, and three terms. Though 
there are five interconnected timetables, we need to construct the timetables at the 
same time. Figure 1 shows an example of the objective timetable. 

The problem is defined using four terms: Problem = (S, T, C, W), where S = {S1, 
…, Sn} is a set of subjects; T = {T1, …, Tm} is a set of timeslots for allocation and Tj = 
(term, day of the week, time period); C = {C1, …, Cq} is a set of constraints; and W = 
{W1, …, Wq} is a set of weights (i.e., penalties) for the constraints. In addition, each 
subject has attributes such as a subject name, an area, a grade, the number of time 
periods, whether it is compulsory or an elective, the teacher in charge, and whether 
computers are used. 

Each timeslot consists of a term, a day of the week, and a time period, where the 
term is 1 to 3, the day of the week is Monday to Friday, and the time period is 1 to 6. 
There are 450 (=m) timeslots, 112 (=n) subjects, and 72 teachers in the problem 
treated here, but most subjects have lectures for two time periods (timeslots) in a 
week. These are henceforth called two-period subjects. 

 
 Mon Tue Wed Thu Fri 

1  Algebra 
II 

Statictics 
Signal 
proc. 

Physics 

2 Speech 
recog. 

 

3  Experi- 
ment 

OS II  

4  Image 
recog. 

Database 
Experi- 

ment 5   

6      
 

 

 

× 3 terms × 5 timetables 

 

Fig. 1. Example of timetable. The objective problem has 450 timeslots, 112 subjects, and 72 
teachers. 
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2.2 Constraints in Search 

The constraints we treat are classified as hard or soft. Hard constraints are those to 
which a timetable has to adhere in order to be feasible. Soft constraints are those that 
should preferably be satisfied, but which can be acceptably broken with a penalty 
associated with their violation. The 12 constraints shown in Table 1 are applied to the 
problems. In this table, C1 to C5 are hard constraints and C6 to C12 are soft constraints 
with weights W6 to W12. 

Table 1. Constraints and their weights applied (C1 to C5 are hard and the others are soft 
constraints). Weight of C8 depends on the number of subjects in violation. 

Symbol Constraint Weight 
C1 Each teacher can take only one class at the same time. NA 

C2 Subjects that are assigned in their order of priority must 
keep their orders. 

NA 

C3 More than one subject must not be allocated to the same 
time slot in the same timetable. 

NA 

C4 Only one subject can be allocated to a computer room 
during the same time period. 

NA 

C5 The same subjects (two-period subjects) must be allo-
cated to sequential time periods on a day. 

NA 

C6 Compulsory subjects of one grade and the other grades 
should not be allocated to the same time slot. 

10 

C7 The subjects taught over two terms should be allocated 
to the same time period and day of the week. 

10 

C8 The number of subjects per day should be equalized. 
Subjects should not concentrate on a specific day of the 
week. 

5 to 15 

C9 More than one subject should not be allocated to the 
same time slot in the timetables for specialized areas. 

3 

C10 Compulsory subjects should not be allocated to more 
than four time periods per day. 

2 

C11 Lunch break should not be between subjects with lec-
tures over two or more time periods in a row. 

2 

C12 Subjects should not be allocated to the sixth time pe-
riod. 

1 

2.3 Particle Swarm Optimization 

Particle swarm optimization (PSO) is a stochastic search algorithm for problem solv-
ing that is inspired by simulations of the swarm behavior of birds flocking [13, 14]. In 
PSO, a number of individuals, called particles, are placed in the search space of a 
problem, and each particle evaluates its fitness, i.e. the objective function, at its cur-
rent location. The coordinates of each particle represent a possible solution associated 
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with two vectors: the position and the velocity vectors. Each particle adjusts its flying 
in accordance with its own and its companions’ flying experience. 

The each particle is a point in N-dimensional search space. The position and ve-
locity of i-th particle are represented as xi = (xi1, xi2, …, xiN) and vi = (vi1, vi2, …, viN). 
The best previous position, i.e. giving the best fitness value, of particle i is 
represented as pbesti = (pbesti1, pbesti2, …, pbestiN) and the best previous position 
among all particles in the population is represented as gbest = (gbest1, gbest2, …, 
gbestN). Each particle updates its position in accordance with formula (1): 

      
)1()()1(

))()(())()(()()1( 2211

++=+
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iii

iiiii

      

(1) 

Where, k is the iteration index, c1 and c2 are constants, r1 and r2 are uniform random 
numbers in the range of [0, 1], and w is the inertia weight. The next iteration takes 
place after all particles have been moved. Eventually the swarm as a whole, like a 
flock of birds collectively foraging for food, is likely to move close to an optimum of 
the fitness function. 

2.4 Related Works 

Fen et. al. [12] proposed a hybrid PSO algorithm to solve the university course timetabl-
ing problem. The proposed approach uses PSO to find the position of rooms and time-
slots using a suitable objective function and the constraint-based reasoning (CBR). This 
algorithm has been validated with other hybrid algorithms (hybrid PSO with local 
search and hybrid genetic algorithm with CBR) using real world data. However, each 
particle is mainly updated by CBR, and small problems fit this method. This paper treats 
a problem with only 18 time slots and there is no soft constraint. 

Tassopoulos et. al. [20] proposed a new adaptive algorithm based on PSO and ap-
plied it to the high school timetabling problem. The proposed PSO algorithm is used 
to create feasible and very efficient timetables for high schools in Greece. However, 
the university timetable is more complicated in terms of constraints and the attributes 
of a subject than the school timetable. The particle encoding in this paper may not be 
useful for the university timetabling problem. 

Shiau [19] proposed a novel meta-heuristic algorithm that is based on PSO for the 
university course scheduling problem (instructors and class scheduling arrangements). 
The algorithms were tested using the timetabling data from a typical university in 
Taiwan. This algorithm also outperforms the genetic algorithm proposed in the litera-
ture. However, each particle is updated on the basis of continuous PSO formulas and 
local search. This method can be applied to only small problems in experiments. 

3 Proposed Method 

3.1 Particle Representation 

Figure 2 shows the structure and an example of a particle in the proposed method. We 
use direct coding for the particle representation, where each coordinate axis corres-
ponds to a subject and each component of a position vector corresponds to a timeslot 
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allocated to the subject. PSO assigns timeslots to subjects so as to minimize the objec-
tive function. As mentioned in Section 2.1, five timetables have to be constructed at 
the same time, so a particle consists of five timetables as shown in Fig. 2. The opera-
tion of PSO is separately performed on each timetable. A two-period subject uses two 
separate timeslots, and they are treated as independent timeslots.  

Let xij be the j-th component of particle i. In Figs. 1 and 2, for example, x11=(1, Fri, 
1), x12=(1, Tue, 1) and x13=(1, Tue, 2) mean that Physics is assigned to the first time 
period on Friday in term 1 and Algebra II is assigned to the first and second time pe-
riods on Tuesday in term 1. 

Timetable 1 ..... Timetable 5 Particle 
  

S1 S2 S2 ..... Sn1 Subject 

T1 T2 T3 ..... Tm1 Timeslot 
 

Physics Algebra II Algebra II OS II ..... Subject 
(1, Fri, 1) (1, Tue, 1) (1, Tue, 2) (1, Thu, 3) ..... Timeslot 

Fig. 2. Structure and example of particle (solution). Tj = (term, day of the week, time period). 
n1 and m1 are the numbers of subjects and timeslots allocated in Timetable 1, respectively. 
Since there are many two-period subjects, n1 is less than m1. 

3.2 Objective Function 

The objective function of each particle in the population is measured by the degree to 
which the timetables in the particle meet the constraints. A timeslot is assigned to a 
subject so as to satisfy all the hard constraints in the initial population generation and 
the particle flying (see Procedure update-position in section 3.4). Therefore, only soft 
constraints are taken into consideration as an objective function. The objective func-
tion value (fitness) of the i-th particle fi can be expressed by formula (2), where Mil is 
the number of times that the i-th particle violates the constraint Cl with penalty Wl. In 
addition, the objective function is calculated through five timetables. 


=

=
q

l
lili WMf

1

               (2) 

3.3 Transition Probability 

Transition probability to a subject is the probability that a timeslot of the subject on a 
particle will rewrite or exchange. This probability consists of three connected proba-
bilities: its own empty timeslot Pown, a timeslot of the subject on the personal best 
particle Ppbest, and a timeslot of the subject on the global best particle Pgbest 
(Pown+Ppbest+Pgbest=1). Each probability can be defined by formula (3); where w, c1, 
and c2 are constants defined by experiments, r1 and r2 are uniform random numbers in 
the range of [0, 1].  
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In addition, the calculation of the transition probability in the proposed method cor-
responds to the calculation of velocity in continuous PSOs.

 

3.4 Pseudo Code of Algorithms 

The main procedure and the procedure for one update of position in the flying process 
of i-th particle xi are as follows, where T = {T1, …, Tm} is a set of timeslots (see 2.1). 

Procedure main() 
Generate initial population randomly; 
Evaluate fitness of all particles; 
Save gbest and all pbests; 
While (terminal condition not met) { 

for (i = 1 to number of particles) { 
update-position(xi); 
Evaluate fi; 
Update pbesti; 

} 
Update gbest; 

} 
 
Procedure update-position(xi) 

for ( j = 1 to N) { 
Calculate probabilities Pown, Ppbest, and Pgbest; 

Generate uniform random number rand ∈ [0, 1]; 
if ( rand <= Pown ) { 

Timeslot Tp ∉ xi is randomly selected from T so as 
to satisfy all hard constraints; 
xij is rewritten as Tp; 

} 
if ( Pown < rand <= Pown + Ppbest ) { 

if ( pbestij is included in xi ) 
xij is exchanged to xi’s component the value of 
which is pbestij; 

else 
xij is rewritten as pbestij; 
if ( xij violates one or more hard constraints ) 

Last allocation is canceled; 
} 
if ( Pown + Ppbest < rand ) { 
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if ( gbestj is included in xi ) 
xij is exchanged to xi’s component the value of 
which is gbestj; 

else 
xij is rewritten as gbestij; 
if ( xij violates one or more hard constraints ) 

Last allocation is canceled; 
} 

} 

4 Experiments 

4.1 Parameter Dependence 

We first examined the dependence of the total penalty on the parameters (w, c1, and 
c2) through three experiments, where the population size was 200 and the number of 
iterations was 500. Figure 3 shows the experimental results. Each point in the figure is 
the average of 10 trials using different random number sequences. The optimal values 
of the parameters obtained by the experiments were w=0.05, c1=5.0, and c2=2.0. 

 

 

 

Fig. 3. Parameter dependence of the proposed method. The values of the other parameters were 
c1=c2=2.0 in the upper figure, w=0.05, c2=2.0 in the lower left figure, and w=0.05, c1=5.0 in the 
lower right figure. 

4.2 Comparative Study 

To evaluate the performance of the proposed method, we compared it with a (μ+λ) 
evolution strategy (ES). The mutation operation of the ES, “exchange”, was  
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performed for every timetable individually. First, we randomly selected a timeslot to 
which a subject is allocated. Second, we randomly selected another timeslot that  
includes an empty timeslot so as to satisfy all the hard constraints. Finally, we  
exchanged the two subjects (if the second subject is empty, this operation is "move-
ment"). In this section, λ = 2μ for ES and each point in figures is the average of 10 
trials. 

Figure 4 shows the relationship between the population size NI and the total penal-
ty of the best solution in the final iteration step fbest. The number of iterations was 
1000 for both methods. We can see that the value of fbest at NI = 200 for PSO is better 
than the value of fbest at NI = 1000 for ES. 

Figure 5 shows the total penalties of the best solution in each iteration step. We set 
NI of PSO = λ = 1000, so the number of fitness evaluations, i.e. computational cost, 
for ES was the same as that for PSO. We found that the total penalty of PSO obvious-
ly had a lower final value than ES. In addition, the total penalties of the best solution 
in ten trials for PSO and ES were 17 and 21, respectively. 

We investigated violation of the best solutions in the final iteration of Fig. 5. Table 
2 shows the number of unsatisfied constraints in the timetable, the total penalty of 
which is the median in ten constructed timetables for both methods. We can see the 
following: 

• The proposed PSO did not violate high penalty soft constraints (C6 to C8), even if it 
violated the lowest penalty constraint C12 many times; resulting in the lower total 
penalty than ES. 

• The ES twice violated high penalty constraints C8, so it was difficult for one ex-
change or one movement to satisfy C8 because several subjects were connected to 
this constraint. 

 

 

Fig. 4. Relationship between population size and total penalty. The number of iterations is 1000 
for ES and PSO, and λ = 2μ for ES. Each point is the average of 10 trials. 
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Fig. 5. Total penalty of best solution in each iteration step. Each point is the average of 10 
trials. Total penalty of best solution in initial population was about 210 for both methods. 

Table 2. Number of unsatisfied constraints for each method. Contents of constraints are 
referred to in Table 1. Number in parenthesis indicates penalty. Total penalties of PSO and ES 
are respectively 30 and 36 in this case. 

Method 
Soft constraint (penalty) 

C6 (10) C7 (10) C8 (*) C9 (3) C10 (2) C11 (2) C12 (1) 

PSO 0 0 0 0 1 5 18 

ES 0 0 2 0 0 1 10 

* Two penalties against C8 in ES are 10 and 15. 

5 Conclusions 

In this paper, we solved university course timetabling problems using PSO with tran-
sition probability. Experiments using timetables of the University of Tsukuba showed 
that this approach is an effective solution. We do not, however, claim that the PSO is 
the best method to solve the problem. The proposed method includes a general tech-
nique that can be applied to various large-scale real-life COPs and CSPs. We esti-
mated calculation cost using the number of fitness evaluations. To the real world 
problems, however, computation time is also important. In our forthcoming study, we 
will make a detailed comparison with genetic algorithms using both total penalty and 
computation time. This research was partly supported by a Grant-in Aid for Scientific 
Research (C) of the Japan Society for the Promotion of Science (23500169). 
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Abstract. Bankruptcy prediction is an extremely important topic in
the field of financial decision making. There has been a raising interest in
studying more accurate predictive models able to provide valuable early
warning before the real business failure. Recent researches suggested us-
ing the consensus of multiple classifiers for boosting the prediction per-
formance. Yet rarely the cost of misclassification errors is considered in
the literature of consensus decision making. In this paper we investigate
the performance of classifier ensembles for cost-sensitive bankruptcy pre-
diction. The selection of ensemble members is based on individual per-
formance and pairwise diversity of classifiers. The experimental results
on a real world database of French companies show that by selecting
appropriate base classifiers the ensemble learning substantially improves
the performance of cost-sensitive bankruptcy prediction.

Keywords: bankruptcy prediction, cost-sensitive classification, consen-
sus decision making, classifier ensemble.

1 Introduction

Bankruptcy prediction is an extremely important research topic in financial
decision-makingwith the recent emphasis onmore powerful predictivemodels and
better understanding of the financial data. A variety of approaches have been suc-
cessfully applied using the traditional statistics and recently developed machine
learning techniques. Bankruptcy prediction is formally solved as a classification
task, first extracting the intrinsic patterns between the class (financial status) of
companies and the features (financial and nonfinancial ratios) from the training
samples, then predicting the future of new samples based on the derived models.
It is well known that the costs of two misclassification errors, namely, classifying a
bankrupt company as normal and classifying a normal company as bankrupt, are
quite different. That is to say the misclassification cost is deemed to be a key fac-
tor in financial decision making in order to achieve accurate and desirable results.
Cost-sensitive classification addresses the challenging problem, that is different (or
asymmetric) costs are associated with different misclassification errors.
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© Springer-Verlag Berlin Heidelberg 2013
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Many researchers have provided supporting evidences that the performance of
predictive models can be significantly enhanced by means of ensemble comput-
ing methodology. A comprehensive review was presented in [15]. An ensemble
is constructed by combining multiple classifiers which are trained individually
and aggregated in a consensus manner when classifying new data. The rational
behind ensemble design is to comprise appropriate base classifiers which have
relatively high performance individually and low intercorrelation so as to en-
sure the effectiveness of the ensemble. Normally the ensemble members can be
developed using: 1) different data sets as input to the same predictive model;
2) different subsets of features; 3) different predictive models implemented by
non-hybrid structures (varying the parameters of classifiers) or hybrid structures
(varying the type of classifiers). A variety of strategies commonly used to build
an ensemble of classifiers include bagging, boosting, stacking, random subspace,
rotation forest, class switching etc.

In the context of financial risk analysis, the ensemble methods emerged in
recent years to boost the performance of single predictive model. It is encouraging
that the ensemble with some simple (and weak) classifiers can produce prominent
prediction results [13]. Nanni and Lumini tested various ensemble strategies using
4 diversified classifiers on 3 financial data sets. They found random subspace
produced the best performance in terms of the area under ROC curve (AUC) [9].
Li and Sun used Case-based Reasoning (CBR) as the base classifier to construct
an ensemble model based on diversified feature selection methods and weighted
majority voting principle. The results confirmed the ensemble evidently improved
the accuracy and stability of prediction [6]. On the other hand, some studies
found the ensemble was not superior to the best single classifier consistently. The
behaviour of base classifiers tended to vary across different ensemble strategies
as shown by Marques et al. through the comparison of 5 ensemble methods and
7 base classifiers on 6 financial data sets [7]. Tsai and Wu also showed that
an ensemble of diversified Neural Networks (NNs) did not always outperform
the (single) best NN [14]. Finlay summarized the multiple classifiers systems
into three categories: static parallel systems, multi-stage systems, and dynamic
classifier systems. The empirical results of different multiple classifier systems
demonstrated some delivered significantly better performance than the single
best classifier, but many did not [2]. From this point of view, how to select the
appropriate base classifiers and ensemble strategy remains a critical problem in
the research of classifier ensemble.

In ensemble learning the multicollinearity problem indicates that the corre-
lation are high among classifiers. It becomes more serious to stable learning
methods such as Support Vector Machines (SVMs) in the sense that they are
less sensitive to the change of training samples. The fundamental need for suc-
cessful ensemble is therefore to comprise the base classifiers which have high (or
moderate) performance individually and somewhat diversity that leads to in-
dependent misclassifications. Wang and Ma developed a hybrid ensemble model
using bagging (for different training samples) and random subspace (for different
features) strategies to ensure the diversity of multiple SVMs [16]. Sun and Li
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selected the candidate classifiers by training an SVM using different kernel func-
tions and feature subsets with the consideration of both individual performance
and diversity analysis, and found the resulting SVM ensemble was superior to
individual SVM [12]. Kim and Kang [4] have proposed a GA-based coverage op-
timization algorithm to determine the (near) optimal subsets of base classifiers
with respect to prediction accuracy and variance influence factor (VIF). They
demonstrated by selecting appropriate base SVMs the ensemble can produce
prominent performance improvement.

Recent attempts are devoted to aggregating classifiers of different architec-
tures to build an ensemble. Ravi et al. integrated MLP, RBF, PNN, SVM, CART,
fuzzy rule-based classifier, PCA-MLP, PCARBF and PCA-PNN in a selective
ensemble to reduce the prediction error rate [10]. Sun and Li proposed an ensem-
ble method which combined MDA, Logit, NN, SVM, Decision tree, and CBR,
with the conclusion that the ensemble indeed improved the prediction perfor-
mance [11]. In another study, Huang and Chen aggregated Decision tree, MLP
and SVM to enhance the predictive ability of the stand-alone classifiers [3]. The
previous studies provided the evidences that a well designed hybrid ensemble
can inherit advantages and avoid disadvantages of the employed methods, and
thus outperform stand-alone classifiers. Canuto et al. investigated the relation-
ship between the choice of ensemble members and accuracy through an extensive
evaluation using different data sets and combination methods. A general con-
clusion was that the hybrid ensemble structures outperformed the non-hybrid
ensemble structures in the accuracy consistently, owing to the higher diversity
among ensemble members in different model types [1].

In summary, the prior studies demonstrate the ensemble learning is actually
beneficial to improve the stand-alone classifiers though it is not always reported
superior to the single best classifier. Yet rarely the misclassification cost, an is-
sue of critical importance to bankruptcy decision making, has been considered
in ensemble learning. In this paper we seek to study the performance of classi-
fier ensembles by combining diversified cost-sensitive base classifiers. The base
classifiers are implemented by different types of learning methods with identical
representation of data. The ensemble is then built to comprise the classifiers
which have low expected misclassification cost and somewhat diversity in out-
put. The experimental results demonstrate the ensemble of properly selected
base classifiers is effective to achieve superior and stable prediction.

The rest of the paper is organized as follows. Section 2 describes the data,
classification methods, and classifier selection strategy. In Section 3 we show the
experimental results of classifier ensembles and discuss how the choice of base
classifiers affects the ensemble performance. Finally, in Section 4 we present the
conclusions and point out the further lines of work.
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2 Experiment Design

2.1 Data Description

Diane database contains financial statements of French companies. The problem
goal is to find a model able to predict the class (healthy or bankrupt) of compa-
nies in a correct manner. After pre-processing the bankruptcy data set contains
1200 companies, in which 600 examples distressed in 2007, and the remainder are
healthy. Table 1 lists the 30 financial ratios describing the features of companies
in 2006. The data is normalized to unit range before feeding to the classifiers.

Table 1. Financial ratios of French Diane database

Variable Description

x1- Number of Employees Previous year x16- Cashflow / Turnover
x2- Capital Employed / Fixed Assets x17- Working Capital / Turnover days
x3- Financial Debt / Capital Employed x18- Net Current Assets/Turnover days
x4- Depreciation of Tangible Assets x19- Working Capital Needs / Turnover
x5- Working Capital / Current Assets x20- Export
x6- Current ratio x21- Added Value per Employee in k EUR
x7- Liquidity Ratio x22- Total Assets Turnover
x8- Stock Turnover days x23- Operating Profit Margin
x9- Collection Period days x24- Net Profit Margin
x10- Credit Period days x25- Added Value Margin
x11- Turnover per Employee k EUR x26- Part of Employees
x12- Interest / Turnover x27- Return on Capital Employed
x13- Debt Period days x28- Return on Total Assets
x14- Financial Debt / Equity x29- EBIT Margin
x15- Financial Debt / Cashflow x30 - EBITDA Margin

Acronyms: EBIT: Earnings before interest and tax, EBITDA: Earnings
before interest, tax, depreciation and amortization

2.2 Classifier Description

The bankruptcy prediction problem is extensively studied in the literature by
various statistical and machine learning methods. We choose 10 methods in
the experiments for a number of reasons. First, they utilize different learning
methodologies. Second, they have received considerable academic attention in
recent years. Third, they have been practically applicable in real world decision
making problems. The default setting of all algorithms are used in Weka [17]
without the consideration of parameter optimization.

– K-Nearest Neighbor (KNN) is an instance-based learning algorithm classify-
ing an unknown instance to its nearest neighbors in the training data based
on a specified distance metric. In the present work, we set the parameter K
= 5 as recommended by previous studies.
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– Multi-Level Perceptron (MLP) is a widely used artificial neural network for
supervised learning. It consists of multiple layers of nodes, with each layer
fully connected to the next one. The training of the network is to adjust the
connection weights by means of back-propagation so to minimize the error
between the network output and the desired output.

– Support Vector Machines (SVMs) are maximum margin classifiers in the
sense that they find an optimal separating hyperplane which maximizes the
margin between two classes of data in the kernel induced feature space.
SVMs use the structural risk minimization principle to avoid overfitting.
The polynomial kernel function is used in the experiments.

– Naive Bayesian Network (Bayes) estimates the probability of each class based
on the assumption of feature independence.

– Bayesian logistic regression (BaysLR) uses a Laplace prior to avoid overfit-
ting and produces sparse predictive models.

– J4.8 is the most widely used decision tree algorithm which first infers a tree-
shape decision structure well-adapted to the training data then prunes the
tree to avoid over-fitting.

– ADTree is an alternating decision tree for classification, composed of decision
nodes and prediction nodes.

– RBF network implements a normalized Gaussian radial basis function net-
work.

– Logistic Regression (LR) can be regarded as a generalized linear model used
for binomial regression. It predicts the probability of financial distress by
fitting data to a logistic function of the explanatory input variables.

– Decision Table (DecT) is a rule-based learning algorithm using a simple
decision table majority classifier.

The cost-sensitive prediction is implemented by the meta Costsensitive Classifier
in Weka. It is a general approach to make the base classifier cost-sensitive by
assigning the weight to each training sample according to the predefined cost. In
this way the aforementioned classifiers are able to handle the misclassification
costs as a parameter.

2.3 Classifier Selection Strategy

We intend to select the classifiers with high (or moderate) performance and
diversity in order to attain the effectiveness of an ensemble. To achieve this, two
criteria are used for classifier selection, namely, expected misclassification cost
(as the performance measure) and Q-statistic (as the diversity measure).

As a binary classification problem, bankruptcy prediction models produce a
two dimensional confusion matrix containing the distribution of instances in
the real class and predicted class. In the confusion matrix shown in Table 2,
fn denotes the misclassification errors of ‘bankrupt’ companies as ‘healthy’, fp
denotes the misclassification errors of ‘healthy’ companies as ‘bankrupt’, tp de-
notes the correct predictions of bankrupt samples, and tn denotes the correction
predictions of healthy samples.



A Consensus Approach for Combining Multiple Classifiers 271

Table 2. Confusion matrix

real predicted class

class bankrupt healthy

bankrupt tp fn

healthy fp tn

Due to the asymmetric costs, the performance of predictive models should be
evaluated by cost-relevant measures. We use expected misclassified cost (EMC)
for the performance assessment. Assuming that Cp denotes the misclassification
cost of a ‘bankrupt’ company, Cn denotes the misclassification cost of a ‘healthy’
company, and N denotes the total number of samples, EMC can be defined as:

EMC = Cp ∗ fn
N

+ Cn ∗ fp
N

(1)

When equal costs are used (i.e., Cp = Cn), EMC value is same to the traditional
error rate (fp + fn)/N . For simplicity we set Cn as 1 and Cp > 1 as a real
number. The cost ratio consequently denotes the relative importance of false
negative errors with respect to false positive errors.

In the literature, the diversity of an ensemble can be measured by outcome
diversity and structure diversity. The former evaluates how the classifiers are
different in the outcome, and the latter evaluates how the classifiers are varied
in the structure. Musehane et al. used Shannon-Wiener and Simpson to measure
the diversity among multiple structurally different NNs [8]. The commonly used
outcome diversity measures include pairwise measures (e.g., Q-statistic, corre-
lation coefficient, disagreement, double fault) and non-pairwise measures (e.g.,
entropy measure, Kohavi-Wolpert variance, interrater agreement, difficulty in-
dex, generalized diversity, and coincident failure) [5]. In the present study, we use
Q-statistic, a simple definition proposed by Yule [18] to measure the diversity
between two classifiersMi andMj . In the following definition, a is the number of
samples correctly classified by both classifiers, b is the number of samples incor-
rectly classified by both classifiers, c is the number of samples correctly classified
by Mi but misclassified by Mj, and d is the number of samples correctly classi-
fied by Mj but misclassified by Mi. As a consequence, the value 1 of Q indicates
the positive correlation between Mi and Mj (in other words, they tend to make
decisions consistently), and the value -1 indicates the negative correlation (in
other words, they tend to commit errors on different samples).

Q =
ab− cd

ab+ cd
(2)

By combining the above two criteria, we intend to select the candidate classifiers
which have small EMC values individually and low pairwise Q-statistic values.
An ensemble is then built on the selected base classifiers to achieve the consensus
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decision. Out of various combination mechanisms, we use simple majority voting,
that is to say the outcome of the ensemble is the class mostly predicted by the
members.

To summarize, Figure 1 illustrates the framework of the consensus approach
for cost-sensitive bankruptcy prediction, composed of model learning, classifier
selection, and ensemble aggregation. The final decision is made with a consensus
of the selected base classifiers.

Candidate Model1

Candidate Model2

Candidate Modelk

Input data

Classifier Selection
Ensemble

Aggregation...

Bankrupt or 
Healthy
predicton

Selected Classifiers
M1 ,…, ML

EMC, Q-statistic

Fig. 1. Consensus approach for cost-sensitive bankruptcy prediction

3 Experimental Results

The experiments are performed on Diane database using the aforementioned 10
classifiers and the ensemble approach. For each specification of cost ratio, results
are obtained by 10-fold cross validation. Table 3 shows the EMC values of the
individual classifiers and ensembles at the varying cost ratio from 1 to 20. The
values in bold indicate that the corresponding classifiers are selected to build
the ensemble as described above. For each ensemble, Qav is calculated as the
averaged Q-statistic over all pairs of base classifiers.

Table 3. EMC results of individual classifiers and ensembles

Cost ratio 1 5 10 15 20

J48 0.1092 0.2558 0.3158 0.3733 0.4050
DecT 0.1275 0.3192 0.4108 0.5075 0.5000
KNN 0.1067 0.2850 0.3933 0.5017 0.6100
SVM 0.0908 0.2117 0.3050 0.3650 0.4250
MLP 0.0875 0.3158 0.4333 0.5008 0.5425
LR 0.0875 0.1933 0.2200 0.2450 0.2683
RBF 0.1242 0.3325 0.4342 0.4850 0.5117
Bays 0.1333 0.5358 1.0100 1.4950 1.9467
BaysLR 0.1208 0.3700 0.4850 0.5050 0.4975
ADTree 0.1125 0.2783 0.2883 0.3250 0.3517

Ensemble 0.0799 0.1783 0.2175 0.2308 0.2150
Qav 0.8637 0.7724 0.6153 0.5502 0.6239
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As was shown in this table, Logistic Regression always produces the lowest
EMC value across different cost settings, thus it is selected to build the ensemble
firstly. The other members are then selected successively in such a manner that
they hold a relatively low EMC value and a low correlation with the preselected
members. Here the threshold δ denotes the maximal correlation between two
base classifiers. In this way, the size of ensemble is determined by the threshold.
The experimental results show that the ensemble approach consistently produces
a better performance than a single classifier in terms of EMC values, irrespective
of the cost setting. It confirms that ensemble approach by selecting appropriate
base classifies is beneficial to establish more accurate prediction models for the
cost-sensitive bankruptcy prediction problem.

For further discussion we then take as an example the case when the cost ratio
is 5 (i.e., the cost of classifying a bankrupt sample as healthy is 5 times more
than classifying a healthy sample as bankrupt). In Figure 2, the performance of
different ensembles is outlined at a varying correlation threshold δ. It is observed
that the selection of members is important to the performance of ensembles.
The best performance is achieved when four classifiers, namely LR, J48, KNN,
and RBF, are selected at the threshold δ = 0.84. In both cases, less or more
candidates, there occurs a degradation of the ensemble performance. The selected
classifiers are shown in Table 4 given different thresholds. It is interesting that
some strong classifiers such as SVM, despite of good performance individually,
are not selected by the ensemble due to the high correlation with others. On
the contrary, some weak classifiers such as KNN and RBF network are selected
owing to the moderate performance and relatively high diversity with the strong
classifiers which have been selected. In this case, RBF achieves a moderate EMC
(0.3325), but holds a lowest Q-statistic with the other classifiers in the ensemble
(0.7334 on the average and 0.7458 on the maximum) as shown in Figure 3. The
results give some insights into the choice of base classifiers when building the
ensemble.
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Fig. 2. Performance of classifier ensembles at varying δ (cost ratio = 5)
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Fig. 3. Averaged and maximal Q-statistic value of selected classifiers (cost ratio = 5,
δ = 0.84)

Table 4. Ensembles at different δ (cost = 5)

δ Selected base classifiers EMC

0.4 LR 0.1933
0.8 LR, RBF 0.2217
0.835 LR, KNN, RBF 0.2058
0.84 LR, J48, KNN, RBF 0.1783
0.85 LR, J48, KNN, DecT, RBF 0.2092
0.865 LR, J48, KNN, DecT, RBF, BaysLR 0.2000
0.87 LR, J48, KNN, DecT, RBF, BaysLR, Bays 0.2150
0.9 LR, J48, ADTree, KNN, DecT, RBF, BaysLR, Bays 0.1883
0.92 LR, J48, ADTree, KNN, MLP, DecT, RBF, BaysLR, Bays 0.1975
0.99 LR, SVM, J48, ADTree, KNN, MLP, DecT, RBF, BaysLR, Bays 0.1858

4 Conclusion and Future Work

The combination of multiple classifiers has emerged as an effective approach to
improve the single classifier. It has the general aim to improve classification re-
sults by using several classifiers and also to use them jointly more intelligently
than just as individual classifiers. The previous studies have demonstrated the
benefit of ensemble learning in the prediction of business failure. To our knowl-
edge few papers studied the ensemble of cost-sensitive classifiers for bankruptcy
prediction. In this paper we investigated the performance of classifiers ensembles
with properly selected members in the context of cost-sensitive bankruptcy pre-
diction. The ensemble is constructed based on the individual performance and
pairwise diversity of candidate classifiers. The experiments on a French database
show that a properly constructed ensemble yields improved prediction perfor-
mance over a single classifier. Some conclusions can be attained. 1) The ensemble
technique actually contributes to boosting the performance of stand-alone cost-
sensitive classifiers for this problem. 2) The choice of base classifiers is a key
factor in designing classifier ensembles, where the individual performance and
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outcome diversity of classifiers are two helpful criteria. 3) Although weak classi-
fiers yield only moderate performance individually, they are potential to increase
the overall performance of an ensemble. It is suggested to combine strong clas-
sifiers with weak classifiers of high outcome diversity in an ensemble to ensure
the effective fusion of classifiers.

In the future work, some limitations will be addressed. First, although the
classifier selection approach is viable, the proper value of correlation threshold
is determined by a trail and error approach with the known outcome and thus
might yield a local optimal solution. A further step is using global search to
build the committee which achieves the optimal performance. Second, an exten-
sive evaluation will be conducted to validate the generalizability of the results
using other data sets, cost-sensitive methods and learning models. Last, there
are a wide range of strategies to generate diverse classifiers for building the en-
semble, for example by varying the training samples, features, or parameters of
classifiers. Besides, the combination method is also a component which affects
the performance of ensembles. It is interesting to compare the performance of
different ensemble approaches in the future study.
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Abstract. Source separation of whole-home electrical consumption also
known as energy disaggregation plays a crucial role in energy savings and
sustainable development. One important approach towards accurate en-
ergy disaggregation is based on sparse code learning. The sparsity-based
source separation algorithms allow to build models that explicitly gen-
eralize across multiple different devices of the same category. While this
method has recently been investigated, yet the importance of the degree
of sparseness given by the regularization parameter is rarely considered.
In this paper we aim at investigating the performance of learning repre-
sentations from the aggregated electrical load signal with sparse models
for energy disaggregation. In particular we focus our study on the influ-
ence of the regularization parameter in the overall approach. The com-
putational experiments yielded in real data from home electrical energy
consumption show that for several degrees of sparseness a reliable scheme
for energy disaggregation can be obtained with statistical significance.

Keywords: Sparse Coding Learning, Electrical Signal Disaggregation,
NILM, Parameter Regularization.

1 Introduction

Energy disaggregation via sparse coding for non-intrusive (appliance) load mon-
itoring, aka NILM or NIALM [1,2], was proposed by Kolter et al. in [3]. The goal
of NILM is to separate the whole-home energy consumption (aggregated signal)
into the individual signals of each appliance in the electrical network (see Fig. 1),
the problem of disaggregation can be viewed as a source separation one. NILM
related research has advanced in the recent years following approaches based on
appliances’ signatures [4,5,6] as initially proposed by Hart. However, methods
that learn data-adaptive representations usually applied to source separation
problems, as sparse coding and non-negative matrix factorization (NMF), are
also suitable. In fact, [3] proposes a sparse coding method for electrical disag-
gregation. This means that, sparse representations of electrical consumption for
each device in the network are learned, which are then enriched with information
supplied by the whole-home signal. Then, disaggregation is obtained for a set of
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Fig. 1. The home aggregated (and device) consumption signals for 24hours’ period

unknown aggregated signals. Since the electrical consumption is always a non-
negative quantity, this approach imposes non-negative restrictions in addition to
the sparsity condition.

In this context, while the non-negativity restrictions are clear, the imposition
of sparsity conditions is not obvious in regard of the signal in analysis. The
aggregated signal represents the consumption of two classes of appliances: the
ones that are switch on and off by the household members and the ones that once
they are on they operate automatically. The former may include devices with
stand-by mode, representing a low consumption, and the latter may also have a
residual consumption in parts of the operation cycle (see the Refrigerator graphic
in Fig. 1). Thus, the associated sparseness degree of these consumptions would
never be very high. Consequently, an accurate representation would correspond
to lower values for the parameter in the sparse code learning process. In this
work, it is named of regularization parameter to be consistent with [3].

Since the real contribution of the sparsity condition is still unclear for energy
disaggregation, this paper presents a study of the true relevance of this parame-
ter. Towards this end, a computational experience was outlined using real world
data in order to evaluate the influence of this condition in an accurate disag-
gregation. Therefore, representations were learned by the approach proposed in
[3] considering several degrees of sparseness and statistical tests were used to
validate the conclusions.

The remainder of this paper is organized as follows. Next section introduces
the necessary background, followed by a discussion about the sparsity condi-
tion considered by the approach under study in Section 3. Section 4 presents
the experimental setup, results and correspondent discussion. Conclusions and
directions of future work are given in Section 5.
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2 Preliminaries

The goal of a source separation problem is to recover the original source signals
from the several mixed signals sensed. It is assumed that some knowledge about
the sources or the mixing process is available. In the following we considered
that the mixed (aggregated) and source (device) signals are given for the initial
training phase whereas at the testing phase only the mixed signals are known.

Given a signal x̄ = [x̄ (1) , x̄ (2) , . . . , x̄ (T )]
T
corresponding to the aggregated

electrical consumption during a period of time T , the goal is to recover the k
signals xi = [xi (1) , xi (2) , . . . , xi (T )]

T
, i = 1, . . . , k associated to each device

i = 1, . . . , k. Moreover, we consider that x̄ =
∑k

i=1 xi. Similarly, given a set of m
aggregated signals and the correspondent m device signals, each column of X̄ ∈
IRT×m is the m-th aggregated signal and likewise each column of Xi ∈ IRT×m is
the m-th signal for device i. Again, X̄ =

∑k
i=1Xi.

To solve this source separation problem, a model is trained considering that
matrices X̄ and Xi are available. At the test step, the only accessible data is

a new set of m′ aggregated signals, forming X̄ ′ ∈ IRT×m′
where the goal is to

obtain its decomposition into X ′
i, i = 1, . . . , k, that is, the signals associated

to each source. Regarding that energy consumption is always a non-negative
quantity, matrices X̄, X̄ ′, Xi, i = 1, . . . , k and X ′

i are non-negative. Hence, non-
negative approaches are more suitable to solve the task at hand.

3 Sparsity Modeling Approach for Energy Disaggregation

3.1 Sparse Condition

In a sparse model, a given signal x ∈ IRT is represented by a set of r basis vectors
B ∈ IRT×r, known as dictionary, and by a sparse vector a ∈ IRr (sparse code)
such that x ≈ Ba. The objective function of this decomposition is

min
a∈IRr

1

2
‖x−Ba‖22 + λφ (a)

where λφ (a) is a sparsity inducing regularization for a, which represents a trade-
off between sparseness and accurate reconstruction [7]. Usually, a sparse coding
framework for source separation consists in training separate models for each
class i, which are then concatenated and used in the test step in order to separate
the aggregated signal. Formally, we start by defining sparse models for device
i such that Xi ≈ BiAi, where the columns of Bi ∈ IRT×r represent r basis
functions and the columns of Ai ∈ IRr×m consist in the activations (sparse
codes) of this dictionary. Within the electrical disaggregation context, and as
explained earlier, a restriction for non-negativity of the bases and activations
matrices is added.

Sparse coding is an interesting solution for energy disaggregation but still it
demands the definition of a degree of sparseness. Observing the data in anal-
ysis (Fig. 1) we deduced that the sparsity in Xi and X̄ is low, with exception
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of particular devices. Thereby also the λ associated to an accurate disaggrega-
tion would be low. Consequently, the imposition of sparseness would be of little
significance for the learning process of each model, apart from being time con-
suming [3]. Moreover, approaches that learn representations based on the data
enforce the sparseness by itself. For instance, “the non-negativity constraint by
itself already enforces some sparseness on the resulting representation of data
when using NMF” [8]. A NMF algorithm can not control the sparsity included.
In order to support these observations, we tested the method by exploring the
importance of the value of λ for enforcing sparseness in the learning process.

3.2 Discriminative Disaggregation Sparse Coding

The Discriminative Disaggregation Sparse Coding (DDSC) [3], is a sparse coding
based approach for energy disaggregation. The DDSC is described in Algorithm
1 and has three main steps: i) sparse coding pre-training, ii) discriminative dis-
aggregation training and iii) test phase. Firstly, a sparse model for each device

Data: Xi, i = 1, . . . , k, X̄, X̄′, λ ∈ IR+, α ∈ IR+ r ∈ N , e ∈ IR+

Result: X̂′
1, . . . , X̂

′
k ∈ IRT×m′

/* Pre-training: */
1 Initialize Bi and Ai with positive values ;
2 Columns of Bi must have unit norm;
3 for each i = 1, . . . , k do
4 while |Objective value of iteration j − Objective value of iteration j − 1| > e do
5 Ai ← arg minAi≥0 ‖Xi − BiA‖2

F + λ
∑

p,q Ap,q ;

6 Bi ← argminBi≥0 ‖Xi − BAi‖2
F ;

7 Objective value of iteration j = 1
2 ‖Xi − BiAi‖2

F + λ
∑

p,q Ai{p, q}
8 end

9 end
/* Discriminative disaggregation training: */

10 Set A∗
1:k ← A1:k, B̃1:k ← B1:k;

11 while |Objective value of iteration j − Objective value of iteration j − 1| > e do

12 Â1:k ← arg minA1:k
F

(
X̄, B̃1:k, A1:k

)
;

13 B̃ ←
[
B̃ − α

((
X̄ − B̃Â

)
ÂT −

(
X̄ − B̃A∗

)
A∗T

)]
+
;

14 for all the columns of B̃, b̃
(j)
i do

15 b̃
(j)
i ← b̃

(j)
i∥∥∥∥b̃(j)i

∥∥∥∥
2

16 end

17 Objective value of iteration j = 1
2

∥∥∥X̄ − B̃Â
∥∥∥2

F
+ λ

∑
p,q Âp,q

18 end
/* Test: */

19 Â′
1:k ← argminA1:k

F
(
X̄′, B̃1:k, A1:k

)
;

20 Predict X̂′
i = BiÂ

′
i ;

Algorithm 1. The DDSC algorithm [3]

is computed using a coordinate descent approach [9,10] for the activations and
the multiplicative NMF update proposed in [8] to obtain the optimization over
Bi. Note that λ ∈ IR+ is a regularization parameter, ‖•‖F is the Frobenius
norm and ‖•‖2 is the l2 norm. Next, the discriminative disaggregation training
incorporates data supplied by X̄ in the bases Bi, i = 1, . . . , k, considering
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Â1:k = argmin
A1:k

∥∥∥∥∥∥∥X̄ − [B1 . . . Bk]

⎡⎢⎣A1

...
Ak

⎤⎥⎦
∥∥∥∥∥∥∥
2

F

+ λ
∑
i,p,q

(Ai)p,q (1)

≡ arg min
A1:k≥0

F
(
X̄, B1:k, A1:k

)
,

where X1:k, B1:k and A1:k represent X1, . . . , Xk, B1, . . . , Bk and A1, . . . , Ak,
respectively. Â1, . . . , Âk are the activations associated to the aggregated signal.
The best value for Âi is A

∗
i = Ai. Thereby, B1:k is optimized such that Â1:k and

A∗
1:k are as close as possible. Moreover, the reconstruction bases B1:k learned in

the pre-training, are replaced by the disaggregation bases B̃1:k in Equation 1.
Finally, given a set of aggregated signals X̄ ′ and the bases B̃, the activations
Â′

1:k are calculated as well as the signals of the ith device X̂ ′. Further details
can be found in [3].

4 Computational Experiments

4.1 Experimental Setup

REDD1 consists of whole-home and circuit/device specific electricity consump-
tion for a number of real houses over several months time. For each monitored
house, the whole home electricity signal up to 24 individual circuits in the home,
each labeled with its category of appliance were recorded [11]. A preprocessing
phase selected only the common periods of sampling for both aggregated and
individual signals. They were then downsampled using a median filter such that
each sample became spaced 5 minutes apart. The data of similar equipments
was added and, based on the percentage that each group represents in the to-
tal electricity consumed, the five ones presenting higher impact were selected.
The sixth one contains the remaining data that was not measured by individ-
ual meter and also data of remaining equipments. The signals were subjected
to a normalization step assuring that the relative importance of each group in
the aggregated signal was maintained. The elements of each signal (aggregated
and device ones) were normalised regarding the norm of the aggregated signal.
Table 1 describes the post-processed dataset and the number of daily signals
used for training and test, this is, the number of columns in X̄,Xi and X̄ ′. For
this experiment, the DDSC was implemented in Matlab, the maximum num-
ber of iterations was set to 1000 and the error value to 0.00001. Regarding our
goal, we fixed α, one of the hyper-parameters of DDSC, to 0.0001 and a grid
search was used to test several values for the number of bases r and for the
degree of sparseness λ. In particular, we used values of r ∈ {10, 15, 20, 25, 30}
and λ ∈ {0.0001, 0.0005, 0.001, 0.005, 0.01}.

We evaluated the performance of the DDSC in terms of i) disaggregation error;
ii) root-mean-square error (RMSE) for the aggregated signal and individual sig-
nals of the appliances; and iii) correlation between the estimated and true signals.

1 http://redd.csail.mit.edu

http://redd.csail.mit.edu
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Table 1. Post-processed REDD Dataset

House 1 House 2 House 3 House 4 House 5 House 6
#Days 23 16 23 25 8 16

#Training 16 11 16 17 6 11
#Test 7 5 7 8 2 5

Groups

Refrigerator � � � � �
Dishwasher � � � �

Kitchen outlets � � �
Lighting � � � � � �

Washer Dryer � �
Microwave �
Electronics � �
Furnace � �
Stove �

Subplane �
Outlet unknown �
Electric Heat �

Air Conditioning �
Others � � � � � �

An interesting measure would be the disaggregation error:
∑k

i=1
1
2

∥∥∥Xi − X̂i

∥∥∥2
F

where Xi is the matrix of measured signals for equipment i and X̂i its predicted
version. We also compute the RMSE, which provides a measure of the error
between the predicted values and the actually observed ones. In this work, for

a general overview of the error, we used RMSE(X̄, ˆ̄X) =

√∑T
t

∑m
d

(
X̄− ˆ̄X

)2

T∗m
where X̄ is the aggregated signal and ˆ̄X its predicted version. For a more de-
tailed analysis we also calculated the correspondent RMSEi associated to each

group i = 1, . . . , k of devices replacing X̄ by Xi and
ˆ̄X by the prediction X̂i. For

each device, the relation between each daily predicted signal and the measured
consumption was accessed by the correlation coefficient. The reported values
represent the mean correlation coefficient of the signals for each appliance.

4.2 Results and Discussion

The following results are the mean of 30 runs. Due to the small number of signals
associated to the test set for House 5, the results were not used for this analysis.
Also, regarding the similar results of House 1 and House 2, we report only those
associated to House 1. We first look into the disaggregation error obtained by the
DDSC for each of the 5 houses in study (Fig. 2). A decreasing trend is clear for
the training results: as the r value increases, the disaggregation error decreases
along the several λ values. For a fixed value for r value we can observe that the
lower λ becomes, the lower the disaggregation errors is. For instance, in House
6 and with r = 30, the disaggregation error for λ = 0.01 is 4.20 times higher
than the corresponded value for λ = 0.0001. For all the houses, λ = 0.01 has
the highest disaggregation error for every r. Regarding the test results, a similar
decreasing trend along the r is noticed for House 3 and 4. For the latter, λ = 0.01
corresponds to the highest disaggregation errors. Nevertheless, for House 6 with
r = 30, the disaggregation error for λ = 0.01 represents 84.54% of the value
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Fig. 2. The disaggregation error for each house in training and test

obtained for λ = 0.0001. Notice that these observations are similar to the ones
that can be drawn for the remaining houses. Apart from House 4, which has
similar ranges for the training and test results, the test disaggregation values
range between [0.07, 0.17] while the training ones range from 0 to 0.05.

We also investigated RMSE values for the aggregated signal (Fig. 3). Here the
trend is also obvious: for all the houses, either in training or in test, the RMSE
values decrease as r increases. Furthermore, the higher the value of λ, the higher
is the associated RMSE value, with the exception of the test results in House 4.
In general, RMSE values for λ = 0.01 and λ = 0.005 surpass the RMSE for the
remaining λs. Again, apart from House 4 which has similar ranges for the train-
ing and test results, the RMSE values for test exceed by far the training ones, in
particular for House 6. In this case, for r = 30 the RMSE associated to λ = 0.01
corresponds to 3.0227 times the RMSE of λ = 0.0001, for the training and 1.1450
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Fig. 3. The aggregated RMSE for each house in training and test

times for the test. For further details, we computed the RMSE by devices with
r = 30. We noticed a common decreasing trend, in training, as the degree of
sparseness decreases, in accordance with the observations of aggregated RMSE.
Nevertheless, no significant decrease was observed for the test results. This par-
ticular analysis allows us to identify the groups poorly disaggregated: “Others”,
“Dishwasher” and “Washer Dryer” for House 1, “Lighting” and “Washer Dryer”
for House 3, “Others” and “Lighting” for House 5 and “Air Conditioning” for
House 6.

To clarify the true importance of a higher degree of sparseness, statistical
tests were performed to analyse the existence of similarities between the RMSE
values of all the houses in the dataset for λ = 0.0001 and λ = 0.01, considering
r = 30. According to the Kolmogorov-Smirnov test at a significance level of 0.05,
the RMSE values of each λ value for training and test are far from a normal
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Fig. 4. The correlation coefficient for House 6 (r = 30, λ = 0.0001 and λ = 0.01)

distribution (all the p − values < 0.001). Therefore, a Mann-Whitney test was
used. According to its results, the distribution associated to RMSE is not the
same for both λs, neither in training nor in test at a significance level of 0.05.
In fact, and regarding the mean values (Mdn), the RMSE values for λ = 0.01
(Mdn = 0.0018) are higher than the ones for λ = 0.0001 (Mdn = 0.0006) for the
training, U = 4077.00, z = −9.548. Moreover, for the test, similar observations
can be drawn: the RMSE values associated λ = 0.01 (Mdn = 0.0077) differ from
the ones for λ = 0.0001 (Mdn = 0.0074), U = 8202.00, z = −4.057. To conclude,
Fig. 4 reinforces the idea that, in general, forcing a higher sparsity degree does
not imply better results for the energy disaggregation.

5 Conclusions

Recently sparse coding methods for energy disaggregation have successfully been
proposed. Yet the adequacy of the sparse condition for the signals in analysis is
not obvious. In fact, when using real-world data, periods of very low consump-
tion are not very significant mainly due to stand-by consumptions and “always
on” appliances. This study focus on the sparseness regularization parameter and
its importance for successful electrical source separation using sparse coding.
For this purpose, we analysed the results obtained by a method designed of en-
ergy disaggregation based on a sparse coding framework for source separation.
Experiments used a dataset composed by residential electrical signals for which
several degrees of sparseness were considered to learn a electrical representation
for energy disaggregation. The results indicated that a statistical significant dif-
ference exists between the lower and the higher sparsity degree tested in terms
of root-mean-square-error of the signals. Furthermore, in this context, the best
results were obtained when imposing the lowest sparseness degrees. Even though
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the presented analysis indicates that a representation learned by an approach
without (or with very low) sparsity requirements can be better suited for energy
disaggregation, we will proceed exploring this conjecture in future work, as well
as a solution involving output-weight regularization.

Acknowledgments. FCT (Foundation for Science and Technology) is grate-
fully acknowledged for funding the first author with the grant SFRH/BD/
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Abstract. Background subtraction, is a widely used method for identifying 
moving objects in multimedia applications such as video surveillance. Determi-
nistic approaches are the first applications in literature, and they followed statis-
tical approaches; however, more recently prediction-based filter approaches are 
preferred by researchers. The methods suggested for background subtraction in 
traffic surveillance applications, which are subject to many uncertainties, such 
as illumination noise, sudden changes in ambient light and structural changes, 
have to date failed to satisfy the requirements. Fuzzy approaches in the Artifi-
cial Intelligence method are widely used by researchers to eliminate uncertain-
ties within the problem. In this study, a fuzzy background subtraction method, 
using choquet integral that process certain group of pixels together in order to 
eliminate uncertainties is suggested. The method is tested on traffic surveillance 
dataset, leading to satisfying results. 

Keywords: Background Subtraction, Fuzzy Measure, Choquet Integral, Traffic 
Surveillance Camera. 

1 Introduction 

The background of a video can be defined as the static part on the scene that has no 
belong to any moving object being depicted. Once the background parts in a video are 
distinguished, it becomes much easier to perceive, recognize and classify moving 
objects. Even though the background is expressed as the static parts of a video, prob-
lems such as lighting conditions, camera oscillation, periodic movement, such as 
shaking leaves or the motion on the sea, become distorted, and structural changes in 
the background (e.g. road paving) make background subtraction more difficult. As 
backgrounds change always over time, their estimation is not an element of work that 
can be carried out once and then disregarded, as it must be repeated constantly over 
time. Background subtraction has been the subject to much research, and many ap-
proaches have been developed to date that can be divided among four groups [1]. 

─ Deterministic Methods 
─ Statistical Methods 
─ Filter-Based Estimation Methods 
─ Fuzzy Methods  
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The method proposed by Valestin and Cuchiara in [2, 3] is assigning as background 
the median and mean values of n number of past data for each pixel. This method 
requires a large amount of memory depending on the n value. In the running average 
method, past values are not stored in the memory, and new values affect the back-
ground in proportion with the learning coefficient, which reduces memory require-
ment. Pfinder algorithm named by Wren et al in [4] depends on the assumption that 
the background color value will fit normal distribution. By computing to what extent 
the new incoming color value is similar to the Gaussian distribution representing 
background color probability, based on this similarity measurement; the variance and 
mean values of the Gaussian distribution in question are updated. By improving this 
method, Stauffer and Grimson in [5] have developed several background methods. In 
this way, backgrounds with multiple situations such as wavy sea, moving leaves can 
model. The method proposed by Han et al in [6] is a mean-shift based background 
subtraction. This method calculates the probable background values through iterative 
operations by working on the histogram of n number of past color value at each pixel. 
In the method proposed by Karmann and Brant in [7], the time-varying value at each 
pixel is assumed to be an indicator, and what this indicator is supposed to be for the 
subsequent time step is estimated using the Kalman filter. Thus, the background is 
estimated for the subsequent frame. Proposed study in [8], kalman filter is used to 
extract the background from traffic surveillance camera. 

Uncertainties may be eliminated when attempting to resolve problems through the 
use of fuzzy background subtraction systems, which consist of fuzzy rules [9]. Back-
ground subtraction requires many uncertainties to be addressed, such as illumination 
noise, sudden changes in daylight levels and structural changes. The use of fuzzy 
logic is suggested in the studies of Fida E. Baf [10, 11, 12] as a means of eliminating 
such uncertainties, specifically the pixel-based fuzzy background subtraction  
approach. In these studies, the feature vector at each pixel contains three elements: the 
values of the pixel in the Cb, Cr color band, and texture information obtained from the 
Local Binary Pattern which describe in [13]. Fuzzy similarity criteria used for deter-
mining the similarities of these three values, between current frame and background 
frame. The similarity measure can be expressed as a single similarity by combining 
these three similarity criteria by a discrete Choquet integral.  

This study proposes an effective fuzzy background subtraction method, specifically 
for traffic surveillance applications, and evaluates the method by applying it to videos 
taken from actual traffic surveillance cameras. The method is defined in the second 
section, which contains sub-headings of Feature Represent and Similarity, Aggrega-
tion Operator and Background Updating. The results of the application are presented 
in the third section, and conclusions are made in section four. 

2 Fuzzy Background Subtraction: A Region Based Method 

The key stages in the generic background subtraction framework are: determining the 
background model, determining how to assign the first value to the background, de-
termining the feature vector to be used, and determining how to update the back-
ground [14]. The steps to be applied in this study are presented in Fig1. 
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Fig. 1. Diagram of Background Subtraction 

Symbols I and B in the diagram represent respectively the current frame taken 
from the video and background frame, while t denotes the time index. 

2.1 Feature Represent and Similarity 

Feature extraction is the most important stage in machine learning algorithms [15], 
and is also the most influential step in background/foreground classification during 
background subtraction. The features to be determined on this step should allow the 
above-mentioned separation. In previous literature, color components in RGB, YCbCr 
and HSV spaces have been used, although some studies have adopted the Ohta color 
space such as [16]. In addition to color component, features such as texture, edges, 
corners and motion are also influential [17], and so in this study, aside from magni-
tude and angle of luminance vector; information on motion is also determined as fea-
tures.      

Luminance Vector. Since information directly taken from a camera sensors are in the 
grayscale or RGB color space, these color bands are widely used as features, howev-
er, they may be affected significantly by changes in lighting levels, in that if grayscale 
or RGB components are evaluated pixel based, they will not represent the global in-
formation about the object. Luminance vector is a 1x25 row vector, which is consisted 
of 5x5 sub-region's grayscale value, and it is expressed as Eq1.    
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=  (1) 

→
rL , I represent the luminance vector of the sub-region r and luminance of image 

respectively in Eq1, in which x and y refers to pixel index of image, also (x, y) is the 
center of sub-region r.  

Magnitude Component. Distance from end point of vector to origin point is called 
magnitude of vector, and it is calculate as Eq.2. Furthermore it referred to as the norm 

of the vector. In Eq.2 
→
L  represents the luminance vector,  represents norm oper-

ator and i refers the index of vector.  

 =
→

i
iLL 2  (2) 

The similarity of two scalar or vectors is a function of the distance between them, and 
so measurements of similarity can be defined as many as distance measures. Euclid, 
Manhattan, Cosine and Mahalanobis distances are all commonly used forms of mea-
surement. A ratio-based similarity function is used for scalar feature. According to the 
study [16], the ratio based similarity is calculated by dividing the smaller value by the 
greater value. Calculation of the ratio based similarity is shown in Eq3. 

 














=
→→→→→→

cbcbcb LLLLLLM ,max/,min),(  (3) 

L, M represent the luminance vector and similarity of magnitude function respective-
ly. Addition to this, b and c sub-scripts represent the background and current frames 
respectively.  

Angle Component. Although, magnitude of luminance vector expressed important 
feature of sub-region, But it is directly affected by the illumination change definitely. 
On the other hand, angle of luminance vector is define as angles difference between 
luminance vector to reference vector, and it is not affected by any scale factor  (illu-
mination change). The cosine of angles difference between two vectors is calculated 
as Eq4.  
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In Eq.4, A and L represents the cosine of angle function (cosine similarity function), 
and luminance vector respectively. Index of i , b, c represents index of vector, back-
ground and current frames respectively.   
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In proposed methods, addition to the difference between background and current 
frame, the difference between current frame and previous frame also used for motion 
information. For that reason, general similarity vector represents as Eq5. 
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Sr, Lr, M, A represent general similarity vector of region r, luminance vector of region 
r, magnitude similarity, cosine similarity respectively. B, It, It-1  sub-scripts represent 
background, current frame and previous frame respectively.  

2.2 Aggregation Operator 

The combining operator is a function that degrades a set of numbers to a single repre-
sentative, or a meaningful number [18]. The combining operator maps a vector of the 
size n, of which the components are taken from a specific set to an element in this set. 
Thus, pieces of information obtained from various sources can be used at the same 
time [19]. For example, in evaluations of weight, width or length of an object, or ra-
tios of how much heavier, wider or longer one object is when compared to another, 
the arithmetic, geometric or harmonic averages of these specialties can be calculated 
to obtain a general idea of these features in what can be referred to as a combining 
process. The most widely known and commonly used combining operator for the 
combining of numerical information is the arithmetic average calculation, which was 
first formulated by Aczel in 1984. Such operators calculate the linear combination of 
a given set of values using a set of weights representing the importance or reliability 
of the source from where the values were obtained. This method leads to satisfactory 
results when resources are independent, in other words, when there is no dependency 
between the resources [18]. In cases where there is a dependency, it may be preferable 
to use statistical combination operators or fuzzy integrals for the combination process 
[20].  

The approaches of Bayes and Dempster-Schafer are the most widely known me-
thods of resource combination [21]. In statistical combinations, it is necessary for the 
statistics from all sources to be clear. While all statistics are required for the Bayes 
approach, Dempster-Schafer approach only needs upper and lower limits of statistics. 
Clarity of the statistics is not necessary [22].  

Sugeno or Choquet integrals can be used when no statistics are available, but when 
there is some expert knowledge [23]. According to Zhang and Xu, the Choquet 
integral is more effective when the values of the resources to be combined to have a 
meaning with each other, and thus these resources are in a cardinal relationship. On 
the other hand, the Sugeno integral is satisfactory when the arrangement of resources 
is important, and thus in an ordinal relationship. For the purposes of this study, the 
Choquet integral is used, and the method is presented in the following section. 

Choquet Integral. Choquet and Sugeno integrals are the two basic classes of fuzzy 
integrals, the weights of which are the calculated fuzzy measures that explain the 
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dependency between resources [24]. For this reason, the effectiveness of redundant 
resources is reduced. The most important and complex step in this method is the de-
termination of fuzzy measure, which is the functions that map all power sets of re-
source to intervals of [0,1]. Fuzzy measure is defined as follows: 

Let set S, expressing k similarities as S={S1,S2,...,Sk}. If the power set representing 
all sub-sets of set S is shown as P(S), g, the function of the fuzzy measure is ex-
pressed as in Eq.6.  

 ]1,0[)(: →SPg  (6) 

Additionally, function g is required to satisfy the three items specified in Eq.7.  
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When k is the number of resources, function g is required to satisfy condition for  2k 
discrete inputs. Here, it is important that the identification of function g be made by 
an expert who can express the effect of resources on the results. Once the fuzzy 
measure function has been determined, the Choquet integral is calculated. The expres-
sion of the integral is given below. 

By defining the similarity vector with a number of k of the pixel in the specific re-
gion to combine similarities, as S={S1,S2,...,Sk}, let the vector in which the compo-
nents are arranged in ascending order be as in Eq.8. 

 { } )()2()1()()2()1( ...,...,,ˆ
kk SSSSSSS ≤≤≤=  (8) 

The Choquet integral value is calculated as in Eq.9, where g represents the fuzzy 
measure function. 

 ( ) ( )[ ]
=

+−=
k

i
kikii SSgSSgSC

1
)()1()()()( },..,{},..,{.  (9) 

C is used in the combination of similarity value of the interested region. When index 
value i, is equal to k in the summation expression, the second value in the square 
brackets shall be the fuzzy measure value of the set from the element from k+1 to k. 
The result shall be a null set, since k+1 is greater than k. Accordingly, the fuzzy 
measure value of the null set shall be 0, as defined in the first statement of Eq.7. 

2.3 Background Update 

Update methods, refer to how the background updates itself automatically, for which 
three methods have been defined in previous literature: blind, selective and adaptive 
[11]. In the blind background update method; new background pixel value is  
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considered to be a linear combination of the current frame and previous background 
frame. In this case, whether the related pixel of the current frames is the background 
or foreground is meaningless, making this approach unsuccessful [25]. Since pixels 
known to be in the foreground distort the background, selective methods, updated in 
different linear combinations depending on whether the related pixel belongs to the 
background or the foreground, are developed. Since the determination of whether the 
pixel classification is binary condition (background or foreground), uncertainties in 
the problem are far from eliminated. 

The fuzzy background update process is defined in Eq.10. By Fμ  and Bμ , be-

ing membership functions of foreground and background fuzzy sets respectively, 
with, I and B being current and background frames respectively,  being learned coef-
ficient and r being the sub-region of the frame [11]. 

 ( )r
t

r
t

rr
t

rr
t IBCBBCFB .).1().().( 11 ααμμ +−+= −−  (10) 

The )(1)( xBxF μμ −=  relationship being valid, both functions are a function of 

the similarity value obtained through the Choquet integral. 

3 Results 

The suggested method assumes that the background is completely known at the be-
ginning of iterations; however, this may not be possible for all applications. In such 
cases, the background is first estimated using median value of each pixel through 300 
iterations, after proposed method can be applied. The main difference of this study 
from previous examples in literature is its use throughout the region based feature 
vector instead of pixels based approach, and its use different feature vector and differ-
ent similarity measure too.  

Table 1. Fuzzy Measure Value 

subsets Fuzzy outputs subsets Fuzzy outputs 

{0} 0 {S2 ,S3} 0.9

{S1} 0.7 {S2 ,S4} 0.9 

{S2} 0.8 {S3 ,S4} 0.95 

{S3} 0.7 {S1,,S2,S3} 0.93 

{S4} 0.8 {S1,,S2,S4} 0.94 

{S1,,S2} 0.9 {S1,,S3,S4} 0.96 

{S1 ,S3} 0.9 {S2,,S3,S4} 0.98 

{S1 ,S4} 0.9 {S1,,S2,,S3,S4} 1 

In addition, the 16-element fuzzy measure function suggested for the combining of 
four different features is also unique in this study, and it is shown in Table1. 
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Various performance criteria have been suggested in literature to evaluate how 
well the background has been determined [11]. The expression of metric used in this 
evaluation is given in Eq.11 [26]. 

 
BB

BB
BBP 


∪
∩=),(  (11) 

Here, BB


,  denote respectively the ground-truth value of the background and the 

background predicted by the method, while P denotes performance. As can be seen in 
Eq.11, the success criteria is in the interval of [0 1]. The performances of our method 
and Gauss Mixture Model (GMM) which explain in [5], are given in Table 2, and the 
representative outputs are shown in Fig.2.  

 

 

Fig. 2. a) Sample frame of video, b) Background with proposed method, c) Foreground objects 

Table 2. Performance of Methods 

 GMM Method Fuzzy Pixel 
Based Method 

Fuzzy Region 
Based Method 

Performance %82 %85 %93 
Time Consumption 0.015sn/fr 0.019sn/fr 0.1sn/fr 

 
Tests were performed on PC, which have four cores 2.20 GHz CPU, and 6GB 

Ram. The length of the video is nearly 20 minutes. Resolution of image is 576x720 
and color space is RBG. All the videos obtained from [27]. According to Table.1, 
region based fuzzy background subtraction methods performance is the highest. On 
the other hand, because of the region process, the method needs much more CPU 
time.  

4 Conclusion 

Traffic cameras are today in common use for the recording of statistics at intersec-
tions, junctions and highways; however, extraction of statistical parameters which are 
necessary for traffic simulation models, from these cameras is both time-consuming 
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and unreliable. Processing camera data automatically and identifying the required 
parameters is not always possible due to such factors as environmental noise, exces-
sive traffic intensity in the case of traffic jams and sudden changes in light intensity. 
The method suggested throughout this study constitutes a new approach to getting 
over these difficulties, the success of which has been proven in empirical studies. 
Rule-based methods and their effects on background subtraction by a type-2 fuzzy 
sets are to be examined in further studies. 

Acknowledgement. This work is supported in part by the Scientific and Technologi-
cal Research Council of Turkey (TUBITAK) under the project 'Hybrid models of 
neural network method for road safety regulations: Safety index calibration and Intel-
ligent Transportation Systems based safety control' with no. 108M299.  
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Abstract. The paper presents a general methodology of adaptive con-
trol based on soft computing models to deal with unknown plants. The
problem of parameter estimation is solved using a direct approach, i.e.,
the controller parameters are adapted without explicitly estimating plant
parameters. Thus, very simple adaptive and control laws are constructed
within the Lyapunov stability framework. The proposed control ensures
global stability of the overall system and convergence of the tracking
error to a residual set that depends on the size of unmodelled dynam-
ics. The generality of the approach is substantiated by Stone-Weierstrass
theorem, which indicates that any continuous function can be approxi-
mated by fuzzy basis function expansion. The hallmarks of the approach
are its simplicity and transparency. The paper shows the efficiency of the
proposed approach on the control of a heat exchanger.

Keywords: adaptive control, fuzzy model, Takagi-Sugeno model,
model-reference adaptive control.

1 Introduction

Many successful applications of fuzzy and neural network-based controllers
[9,11,8] have shown their ability to control nonlinear plants. A lot of effort has
been put to neuro-fuzzy identification of complex plants, which cannot be easily
theoretically modelled. Based on neuro-fuzzy representation of the plant dynam-
ics the neuro-fuzzy adaptive control approaches appeared in literature [6] where
a detailed discussion of identification and control of dynamical systems based
on neural networks is given. In [15] and [12] a stable adaptive fuzzy controller
for nonlinear systems is designed and explained; in [7] an adaptive control using
multiple models is developed and investigated. A direct adaptive fuzzy-model-
based control algorithm is presented in [1]. In this case the controller is based on
an inverse semi-linguistic fuzzy process model which is identified and adapted
via input-matching technique using a general gradient-descent algorithm.

In this paper, robustness analysis of the controlled system plays a central role.
The combination of adaptive control theory based on models obtained by fuzzy
basis function expansion results in direct model-reference fuzzy adaptive control
which provides higher adaptation ability than basic adaptive control systems.

M. Tomassini et al. (Eds.): ICANNGA 2013, LNCS 7824, pp. 297–306, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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The proposed control algorithm is an extension of direct model-reference fuzzy
adaptive control to nonlinear plants. Direct fuzzy adaptive control directly ad-
justs the parameters of a fuzzy controller to achieve approximate asymptotic
tracking of the model-reference input. The generality of the proposed algorithm
is substantiated by Stone-Weierstrass theorem which indicates that any con-
tinuous function can be approximated by fuzzy basis function expansion. This
reconstruction error acts as a disturbance in the adaptive law. Robust adaptive
control was proposed to overcome the problem of disturbances and unmodelled
dynamics [4]. Similar solutions have also been used in adaptive fuzzy and neural
controllers, i.e. projection [14], dead zone [5], leakage [3], adaptive fuzzy back-
stepping control [13] etc. have been included in the adaptive law to prevent
instability due to reconstruction error. In this paper, not only reconstruction er-
ror and disturbances but also error due to high-order parasitic dynamics (which
are inevitable) is treated explicitly. The latter is especially problematic since
it can become unbounded [4]. The proposed control ensures global stability of
the overall system and convergence of the tracking error to the residual set that
depends on the unmodelled dynamics. The rationale behind the study of the
influence of parasitics is that the control plant is assumed to be nonlinear and
predominantly of the first order (higher-order parasitics are catered for by the
robustness properties of the controller). In our opinion, such plants occur quite
often in process industries.

In section 2 the class of plants under investigation is presented, in Section 3
the control algorithm is given, in Section 4 the stability issues are discussed, in
Section 5 the plant model is depicted, and in Section 6 the results are presented.

2 The Class of Nonlinear Plants

Our goal is to design control for a class of plants that include nonlinear time-
invariant systems where the model behaves similarly to a first-order system at
low frequencies. If the plant were the first-order system, it could be described
by a fuzzy model in the form of if-then rules:

if z1 is Aia and z2 is Bib then ẏp = −aiyp + biu

ia = 1, . . . , na ib = 1, . . . , nb i = 1, . . . , k
(1)

where u and yp are the input and the output of the plant respectively, Aia and
Bib are fuzzy membership functions, and ai and bi are the plant parameters in
the i-th fuzzy domain. The antecedent variables that define the fuzzy domain in
which the system is currently situated are denoted by z1 and z2 (actually there
can be only one such variable or there can also be more of them, but this does not
affect the approach described in this paper). There are na and nb membership
functions for the first and the second antecedent variables, respectively. The
product k = na×nb defines the number of fuzzy rules. The membership functions
have to cover the whole operating area of the system. The output of the Takagi-
Sugeno model is then given by the following equation
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ẏp =

∑k
i=1

[
β0
i (ϕϕϕ)(−aiyp + biu)

]∑k
i=1 β

0
i (ϕϕϕ)

(2)

where ϕϕϕ represents the vector of antecedent variables zi (in the case of fuzzy
model given by Eq. (1), ϕϕϕ = [z1 z2]

T ). The degree of fulfilment β0
i (ϕϕϕ) is obtained

using the T-norm, which in this case is a simple algebraic product of membership
functions

β0
i (ϕϕϕ) = T (μAia

(z1), μBib
(z2)) = μAia

(z1) · μBib
(z2) (3)

where μAia
(z1) and μBib

(z2) stand for degrees of fulfilment of the corresponding
fuzzy rule. The degrees of fulfilment for the whole set of fuzzy rules can be
written in a compact normalised form as

βββT =

[
β0
1 β

0
2 . . . β

0
k

]T∑k
i=1 β

0
i

∈ R
k (4)

Due to (2) and (4), the first-order plant can be modelled in fuzzy form as

ẏp = −(βββTa)yp + (βββTb)u (5)

where a =
[
a1 a2 . . . ak

]T
and b =

[
b1 b2 · · · bk

]T
are vectors of unknown plant

parameters in respective fuzzy domains (a,b ∈ R
k).

To assume that the controlled system is of the first order is a quite huge
idealisation. Parasitic dynamics and disturbances are therefore included in the
model of the plant. The fuzzy model of the first order is generalised by adding
stable factor plant perturbations and disturbances, which results in a following
model [2]:

ẏp(t) = −(βββT (t)a)yp(t) + (βββT (t)b)u(t) −Δy(p)yp(t) +Δu(p)u(t) + d(t) (6)

where p is a differential operator d/dt, Δy(p) andΔu(p) are stable strictly proper
linear operators, while d is bounded signal due to disturbances [2].

Eq. (6) represents the class of plants to be controlled by the approach proposed
in the following sections. The control is designed based on the model given by
Eq. (5) while the robustness properties of the algorithm prevent the instability
due to parasitic dynamics and disturbances.

3 The Proposed Fuzzy Adaptive Control Algorithm

The fuzzy model reference adaptive control is proposed in the paper to achieve
tracking control for the class of plants described in the previous section. The
control goal is that the plant output follows the output ym of the reference
model. The latter is defined by a first order linear system Gm(p):

ym(t) = Gm(p)w(t) =
bm

p+ am
w(t) (7)
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where w(t) is the reference signal while bm and am are the constants that define
desired behaviour of the closed system. The tracking error

ε(t) = yp(t)− ym(t) (8)

therefore represents some measure of the control quality. To solve the control
problem simple control and adaptive laws are proposed in the following subsec-
tions.

3.1 Control Law

The control law is the same as the one proposed in [2]:

u(t) =
(
βββT (t)̂f (t)

)
w(t) −

(
βββT (t)q̂(t)

)
yp(t) (9)

where f̂(t) ∈ R
k and q̂(t) ∈ R

k are the control gain vectors to be determined by
the adaptive law. This control law is obtained by generalising the model reference
adaptive control algorithm for the first order linear plant to the fuzzy case.

3.2 Adaptive Law

The adaptive law proposed in this paper is based on the adaptive law from [2].
The e1-modification was used in the leakage term in [2]. The alternative approach
is proposed here:

˙̂
fi =− γfibsignεwβi − γfiσ

′w2β2
i (f̂i − f∗

i ) i = 1, 2, . . . k

˙̂qi =γqibsignεypβi − γqiσ
′y2pβ

2
i (q̂i − q∗i ) i = 1, 2, . . . k

(10)

where γfi and γqi are positive scalars referred to as adaptive gains, σ′ > 0 is
the parameter of the leakage term, f∗

i and q∗i are the a priori estimates of the

control gains f̂i and q̂i, respectively, and bsign is the sign of all the elements in
vector b. If the signs of all elements in vector b are not the same, the plant is
not controllable for some βββ (βββTb is equal to 0 for this βββ) and the control is not
possible using this approach.

It is possible to rewrite the adaptive law (10) in the compact form if the
control gain vectors f̂ and q̂ are defined. Then the adaptive law (10) takes the
following form:

˙̂
f =− ΓΓΓ fbsignεwβββ − ΓΓΓ fσ

′w2 diag(βββ) diag(βββ)(̂f − f̂∗)
˙̂q =ΓΓΓ qbsignεypβββ −ΓΓΓ qσ

′y2p diag(βββ) diag(βββ)(q̂− q̂∗)
(11)

where ΓΓΓ f ∈ R
k ×R

k and ΓΓΓ q ∈ R
k ×R

k are positive definite matrices, diag(x) ∈
R

k × R
k is the diagonal matrix with the elements of vector x on the main

diagonal, while f̂∗ ∈ R
k and q̂∗ ∈ R

k are the a priori estimates of the control
gain vectors.
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4 Stability Issues of the Proposed Control Algorithm

It is not possible in general to find vectors f̂ and q̂ that would permit zero
tracking error in each operating point since fuzzy modelling only guarantees
arbitrary small tracking errors. This means that we should always study the
influence of modelling errors. In the case of unmodelled dynamics the adaptive
schemes may easily go unstable. The lack of robustness is primarily due to the
adaptive law which is nonlinear in general and therefore more susceptible to
modelling error effect.

The robustness of the adaptive control scheme can be improved by converting
the pure integral action of the adaptive law to a leaky integration (this exten-
sion is referred to as the leakage modification). But an arbitrary leakage (e.g.,
sigma-modification) alone is not enough to cope with the dynamical unmodelled
dynamics such as parasitics that can result in an unbounded modelling error.
Dynamical signal normalisation is utilized for this reason. In our approach, the
normalisation is introduced through a quadratic term in the leakage which re-
sults in the globally stable system.

It can be proven that the proposed approach results in the following properties
of the controlled system:

ε, f̂ , q̂,
˙̂
f , ˙̂q ∈ L∞

ε ∈ S(σ′2 + ||Δu(s)||22 + ||Δy(s)||22 + d̄2) (12)

if the reference signal is continuous and the antecedent variables are continuous.
Comparing this result with the algorithm in [2], there are less restrictions on the
part of the complex plane where Δu(s) and Δy(s) should be analytic. This is
due to a new form of the adaptive law.

5 The Model of a Nonlinear Heat-Exchanger Plant

The simulation study was done on a heat-exchanger plant control which together
with sensors and actuators limitation represents a serious problem from the
point of optimal energy consumption. The problem lies in the nonlinearity of
the system. The object of our investigation, a real temperature plant, consists
of: a plate heat-exchanger, a reservoir with heated water, two thermocouples
and a motor driven valve. The plate heat exchanger, through which hot water
from an electrically heated reservoir is continuously circulating in the counter-
current flow to cold process fluid (cold water). The thermocouples are located
at the inlet and outlet flows of the exchanger. Power to the heater may be
controlled by time proportioning control using the external control loop. The
flow of the heating fluid can be controlled by the proportional motor driven
valve. A schematic diagram of the plant is shown in Fig. 1. The temperature
of heated water Tsp(k) is measured on the temperature sensor TC4 which is at
the outlet of the secondary circuit, the temperature of cold water at the inlet of
secondary circuit Tep(k) is measured on the temperature sensor TC3 and Tec(k)
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Fig. 1. The heat-exchanger pilot plant

represents the temperature of hot water at the inlet of the primary circuit which
is measured on the temperature sensor TC1. The primary circuit flow Fc(k) is
measured on optical flow sensor F2 and is defined by motor driven valve and the
secondary flow Fp(k) is measured on the optical flow sensor F1.

The controlled variable of our problem is the temperature in the secondary
circuit Tsp which is manipulated with the flow Fc. The heat-exchanger is just
one part of the plant, so the sensors and the actuators should also be modelled.
For nonlinear systems with well-understood physical phenomena fundamental
modelling is preferable. Although the physical phenomena in the case of heat-
exchanger are well investigated, there are still some physical parameters which
should be estimated assuming a certain structure of the process dynamics. The
simplified first-principle model of heat-exchanger is described by the following
differential equations

τ2(Tsp)Ṫsp + Tsp = γTep + (1− γ)Tec (13)

where the generalized formula for γ is given in the literature [10] and can be
written as

γ =
1 + kc(

1
Fc
)m

1 + kc((
1
Fc
)m + ( 1

Fp
)m)

(14)

where kc andm are unknown constants and τ2 is an unknown function of operat-
ing point. All those parameters are unknown and should be estimated somehow.

Our main goal is to control the temperature Tsp by changing the primary
circuit flow Fp. Although the process is very complex, it could be presented as
a model with approximately first order dynamics. It should be noted, however,
that parasitic dynamics are also present as a consequence of actuators, sensors,
heat junctions, mass flows etc.
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6 Simulation Study of Fuzzy Model-Reference Adaptive
Control

Our goal was to design control algorithm that would enable that the closed-loop
system behaves as close to a linear reference model as possible. Two different
approaches were compared: fuzzy model reference adaptive control (FMRAC)
described by Eqs. (9) and (11), and classical model reference adaptive control for
linear plants. To make the latter robust to unmodelled dynamics, disturbances,
and noise, the robust adaptive law with e1-modification was used.

The simulation study will be described next. The reference signal was periodic
and piece-wise constant. As proposed in the paper, the first order reference model
was chosen. Even if the plant has high order parasitics, it was forced to follow
reference model, described by transfer function

Gm(s) =
0.01

s+ 0.01
(15)

It is known a priori that perfect following cannot be achieved, but the results
will show that this simplification is justified.
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Fig. 2. The last period of the signals in the MRAC case

The choice of proper adaptive gain is very important when one deals with
adaptive systems. In nonlinear case this is even more obvious, since adaptive
parameters do not converge to specific values. Rather, they tend to change when
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2.384 2.386 2.388 2.39 2.392 2.394 2.396 2.398 2.4

x 10
6

30

40

50

60

70

y p, y
m

, w

2.384 2.386 2.388 2.39 2.392 2.394 2.396 2.398 2.4

x 10
6

−2

−1

0

1

2

e

2.384 2.386 2.388 2.39 2.392 2.394 2.396 2.398 2.4

x 10
6

0

5

10

15

20

t

u

Fig. 3. The last period of the signals in the FMRAC case

0 0.5 1 1.5 2 2.5

x 10
6

0

0.5

1

f
1

f
2

f
3

f
4
f
5

f

0 0.5 1 1.5 2 2.5

x 10
6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

q
1

q
2

q
3

q
4

q
5

t

q

Fig. 4. The trajectories of the fuzzified adaptive parameters

the operating point changes. Our approach reduces these oscillations since dif-
ferent parameters are estimated in different fuzzy domains. Unfortunately, fuzzy
model fails to achieve perfect modelling of the plant, and the parameters still
oscillate a little. These oscillations can be even further amplified by choosing
adaptive gains too high. If, on the other hand, the adaptive gains are too low,
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the estimation is too slow, and, especially in the linear MRAC case, the param-
eters fail to follow rapid changes of the operating point. This problem is not so
serious in the fuzzy adaptive case, since fuzzy domains have to be chosen such
that the plant parameters do not differ much in the neighbouring domain. The
following adaptive gains were used in our experiments: γf = 10−5 and γq = 10−5.
The choice of the leakage parameter was not so critical in this case and σ′ = 1
was used. The adaptive parameters were initialized to 0 in all cases.

First, classical MRAC was tested. It turned out that the adaptive gain was
too high in the beginning and the response of the system was not acceptable.
After reducing adaptive gains, the parameters converged slower, but quite good
performance was achieved. Reducing adaptive gains further made the results
worse. The optimal values are used in the experiments. Figure 2 shows the signals
after a longer period. In the upper part of the figure, controlled variable is
shown, together with reference signal and reference model output. To see the
difference more clear, tracking error is shown in the middle part of the figure.
The manipulated variable is shown in the lower part of the figure. It can be seen
that the results are acceptable, but the system start to oscillate when reference
signal becomes large. These oscillations are also present in other operating points,
they can be seen easier from the manipulated variable.

The proposed approach was also tested under the same conditions. The orig-
inal adaptive gain was used in the beginning of the experiment. The estimated
parameters were quite oscillatory, but that did not affect plant responses. The
plant response at the end of the experiment is shown in Fig. 3. By comparing the
signals in Fig. 2 and Fig. 3, it can be said that the latter are more acceptable,
since almost perfect tracking is obtained, and the unwanted oscillations in the
manipulated variable are not present. One has to realize that the actuator in this
case is a pump, and oscillations on the manipulated variable are not admissible.
Note the tracking error when the reference signal changes (Fig. 3). It cannot be
suppressed by any control algorithm since it is a consequence of the fact that the
plant of the second order is forced to follow reference model of the first order.

The adaptive parameters are shown in Fig. 4. Huge oscillations can be seen
in the beginning, but the parameters still quasy-settle. Then, the adaptive gains
were reduced to obtain better convergence of the parameters. This was done
twice in the experiment, and these two points can be identified as a decrease of
parameter oscillations in Fig. 4.

7 Conclusion

In this paper a fuzzy model-reference adaptive control system is presented. A
novel adaptive law is introduced. It is based on Lyapunov stability analysis. The
adaptive parameters of the system are fuzzified. The combination of adaptive
control theory based on models obtained by fuzzy basis function expansion re-
sults in fuzzy model-reference adaptive control which provides higher adaptation
ability than basic adaptive control systems. The proposed leakage term intro-
duces nonlinearity which provides the ability of dynamic signal normalisation.
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The main advantage of the proposed approach is simplicity together with high
performance. The development of the novel algorithm has been tested using sim-
ulation on different nonlinear systems that include unmodelled and unmeasured
dynamics.
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Abstract. Extension of the efficient Model Predictive Control (MPC)
algorithm, which uses fuzzy approximations of nonlinear models, with
mechanisms of disturbance measurement utilization is proposed. Two
methods of disturbance measurement utilization are considered. The first
method utilizes a fuzzy model of disturbance influence on the control
plant, whereas the second one – a nonlinear model used to obtain the free
response. In both methods only the free response generated during the
prediction calculation is influenced. Therefore, the prediction has such a
form that the MPC algorithm remains to be numerically efficient. Only
a quadratic optimization problem must be solved at each iteration in
order to derive the control signal. The proposed methods of disturbance
measurement utilization can significantly improve control performance
offered by the algorithm what is demonstrated in the example control
system of a nonlinear chemical CSTR reactor with inverse response.

Keywords: fuzzy control, fuzzy systems, model predictive control, non-
linear control, constrained control.

1 Introduction

The paper describes continuation of research of the algorithm based on fuzzy
and nonlinear models proposed in [9]. The algorithm is numerically efficient
because it uses the nonlinear model to derive the free response of the control
plant (response to past values of the control signal) and the approximate, easy
to obtain, fuzzy model to calculate the influence of future control action. Thanks
to such an approach the algorithm offers control performance very close to that
offered by the algorithm with nonlinear optimization. At the same time, the
algorithm is formulated as the easy to solve quadratic optimization problem [9].

In the paper, the efficient fuzzy MPC (FMPC) algorithm is supplemented
with the mechanisms of taking the disturbance measurement into consideration.
Two methods of disturbance measurement utilization are considered. The first
method is designed to be used with an existing (already designed) algorithm, to
extend its capabilities; it is based on a fuzzy model of disturbance influence on
the process. The second method can be used if the nonlinear model employed
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to calculate the free response contains both: control and disturbance inputs to
the process. Thanks to utilization of the disturbance measurement the control
quality offered by the MPC algorithm can be significantly improved.

The next section contains description of the MPC algorithm which utilizes
nonlinear and fuzzy models to derive the prediction. In Sect. 3 methods of ex-
tension of the algorithm based on fuzzy and nonlinear models are detailed. Re-
sults of simulation experiments illustrating efficacy of the proposed approach are
presented in Sect. 4. The paper is summarized in the last section.

2 MPC Algorithm Based on Fuzzy and Nonlinear Models

The Model Predictive Control (MPC) algorithms derive future values of manip-
ulated variables predicting future behavior of the control plant many sampling
instants ahead. The values of manipulated variables are calculated in such a way
that the prediction fulfills assumed criteria. Usually, the minimization of a per-
formance function is demanded subject to the constraints put on manipulated
and output variables [3,7,11,13]:

argmin
Δu

⎧⎨⎩JMPC =

ny∑
j=1

p∑
i=1

κj

(
yjk − yjk+i|k

)2

+

nu∑
m=1

s−1∑
i=0

λm

(
Δumk+i|k

)2

⎫⎬⎭ (1)

subject to:
Δumin ≤ Δu ≤ Δumax , (2)

umin ≤ u ≤ umax , (3)

ymin ≤ y ≤ ymax , (4)

where yjk is a set–point value for the jth output, yjk+i|k is a value of the jth output

for the (k + i)th sampling instant predicted at the kth sampling instant using a
control plant model, Δumk+i|k are future changes in manipulated variables, κj ≥ 0

and λm ≥ 0 are weighting coefficients for the predicted control errors of the jth

output and for the changes of the mth manipulated variable, respectively; p and
s denote prediction and control horizons, respectively; ny, nu denote numbers
of output and manipulated variables, respectively;

y =
[
y1, . . . ,yny

]T
, yj =

[
yjk+1|k, . . . , y

j
k+p|k

]
, (5)

Δu =
[
Δu1, . . . , Δunu

]T
, Δum =

[
Δumk|k, . . . , Δu

m
k+s−1|k

]
, (6)

u =
[
u1, . . . ,unu

]T
, um =

[
umk|k, . . . , u

m
k+s−1|k

]
, (7)
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Δumin, Δumax, umin, umax, ymin, ymax are vectors of lower and upper bounds
of changes and values of the control signals and of the values of output variables,
respectively. As a solution to the optimization problem (1)–(4) the optimal vector
of changes in the manipulated variables Δu is obtained. From this vector, the
Δumk|k elements are applied in the control system and the algorithm passes to
the next iteration.

If the predicted values of output variables yjk+i|k are derived by directly using

a nonlinear process model then the optimization problem (1)–(4) is, in general,
non–convex nonlinear optimization problem; examples of such algorithms are
described e.g. in [1,5,6]. In such a Nonlinear MPC (NMPC) algorithm, different
kinds of process models can be used but they are exploited in a similar way.

On the other hand, application of the MPC algorithm based on a linear model
(LMPC) to obtain the prediction causes that the optimization problem (1)–(4)
becomes a standard quadratic optimization problem. Unfortunately, application
of an LMPC algorithm to a nonlinear process may result in unsatisfactory control
performance, especially if operation in different operating points is demanded.
Therefore, the fuzzy MPC (FMPC) algorithm being a combination of the LMPC
and NMPC algorithms was proposed in [9]. Its formulation will be now shortly
reminded. Two models are used in this algorithm. The original, nonlinear one
is used to calculate the free response, whereas the fuzzy one, being a set of a
few step responses, is used to calculate the dynamic matrix, updated at each
algorithm iteration.

2.1 Generation of the Free Response

Let us suppose that a nonlinear process model is given (it can be practically any
type of model usable in the NMPC algorithm):

ŷk+1|k = f(yk,yk−1, . . . ,yk−na
,uk−1,uk−2, . . . ,uk−nb

) , (8)

where yk−i =
[
y1k−i, . . . , y

ny

k−i

]T
is the vector of measured values of output

variables at the (k − i)th sampling instant, uk−i =
[
u1k−i, . . . , u

nu

k−i

]T
is the

vector of values of manipulated variables at the (k − i)th sampling instant;
let us also denote outputs of the model at the (k + i)th sampling instant as

ŷk+i|k =
[
ŷ1k+i|k, . . . , ŷ

ny

k+i|k
]
, na, nb determine, how long the history of signals

used by the model is.
The model (8) is then employed to obtain the free response, for the whole

prediction horizon, in an iterative way, i.e.:

– First, the process model is used to obtain ŷk+1|k (formula (8)).
– Then in the subsequent iterations, the values ŷk+1|k, . . . , ŷk+i−1|k are used,

as the output values in the sampling instants from (k+1) up to (k + i− 1).
Moreover, as the free response is calculated, the assumption that control
signal does not change (uk+i = uk−1, i = 0, 1, ...) is utilized. Therefore one
obtains:
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ŷk+i|k = f (ŷk+i−1|k, ŷk+i−2|k, . . . ,yk−na+i−1,uk−1,uk−1, . . . ,uk−nb+i−1) .
(9)

– Then, the free response is calculated taking into consideration the estimated
influence of unmeasured disturbances dk = yk − ŷk|k−1, containing also
influence of modeling errors. Thus, the final formula describing the elements
of the free response is given by the formula:

ỹk+i|k = ŷk+i|k + dk , (10)

where ỹk+i|k =
[
ỹ1k+i|k, . . . , ỹ

ny

k+i|k
]
. It is thus assumed that dk is the same

for all instants in the prediction horizon – an approach proposed in the
Dynamic Matrix Control (DMC) algorithm and therefore called the DMC–
type disturbance model.

2.2 Generation of the Dynamic Matrix

After calculating the free response in the way described above, the dynamic
matrix, needed to predict the influence of the future control changes (generated
by the algorithm) is derived using an easy to obtain Takagi–Sugeno fuzzy model.
The fuzzy model has local models in the form of step responses. Therefore, its
design process is very simple. It is sufficient to collect a few sets of step responses
(around a few operating points). Then, using expert knowledge, the premises can
be formulated and, subsequently, they can be tuned using, e.g. a fuzzy neural
network. The fuzzy model is composed of the following rules:

Rule f : (11)

if y
jy
k is B

f,jy
1 and . . . and y

jy
k−n+1 is Bf,jy

n and

ujuk is Cf,ju
1 and . . . and ujuk−m+1 is Cf,ju

m

then ŷj,fk =

nu∑
m=1

pd−1∑
n=1

aj,m,f
n ·Δumk−n + aj,m,f

pd
· umk−pd

,

where y
jy
k is the jy

th output variable value at the kth sampling instant, ujuk is

the ju
th manipulated variable value at the kth sampling instant, B

f,jy
1 , . . . , B

f,jy
n ,

Cf,ju
1 , . . . , Cf,ju

m are fuzzy sets, aj,m,f
n are the coefficients of step responses in the

f th local model, jy = 1, . . . , ny, ju = 1, . . . , nu, f = 1, . . . , l, l is number of rules.
The output values of the fuzzy model (11) are calculated at each iteration

using the following formula:

ŷjk =

nu∑
m=1

pd−1∑
n=1

ãj,mn ·Δumk−n + ãj,mpd
· umk−pd

, (12)

where ãj,mn =
∑l

f=1 w̃f · aj,m,f
n , w̃f are the normalized weights calculated using

fuzzy reasoning, see e.g. [10,12].
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The model (12) may be interpreted as the step response describing behavior of
the control plant near the current operating point. This model is used to obtain
at each sampling instant of the FMPC algorithm a new dynamic matrix:

Ak =

⎡⎢⎢⎢⎣
A11

k A12
k . . . A1nu

k

A21
k A22

k . . . A2nu

k
...

...
. . .

...

A
ny1
k A

ny2
k . . . A

nynu

k

⎤⎥⎥⎥⎦ , Ajm
k =

⎡⎢⎢⎢⎣
ãj,m1 0 . . . 0 0

ãj,m2 ãj,m1 . . . 0 0
...

...
. . .

...
...

ãj,mp ãj,mp−1 . . . ã
j,m
p−s+2 ã

j,m
p−s+1

⎤⎥⎥⎥⎦ .

(13)

2.3 Formulation of the Optimization Problem

Then, the free response (10) and the dynamic matrix (13) are used to obtain the
prediction:

y = ỹ +Ak ·Δu , (14)

where ỹ =
[
ỹ1, . . . , ỹny

]T
, ỹj =

[
ỹjk+1|k, . . . , ỹ

j
k+p|k

]
. After using the prediction

(14) in the performance function from (1), one obtains:

JFMPC = (y − ỹ −Ak ·Δu)T ·K · (y − ỹ −Ak ·Δu) +ΔuT ·Λ ·Δu , (15)

where y =
[
y1, . . . ,yny

]T
, yj =

[
yjk, . . . , y

j
k

]
, yj are vectors of length p,

K =
[
K1, . . . ,Kny

]
· I; Ki = [κi, . . . , κi] have p elements,

Λ = [Λ1, . . . ,Λnu ] · I; Λi = [λi, . . . , λi] have s elements.

Note that the performance function (15) depends quadratically on decision vari-
ables Δu and after using prediction (14) in the constraints (3) all constraints
depend linearly on decision variables. Thus, one obtains a standard linear–
quadratic optimization problem which is easy to solve by means of standard
numerical routines.

3 Mechanisms of Disturbance Measurement Utilization

3.1 A Method Utilizing the Fuzzy Model

The first method consists in using the same approach as in the Fuzzy DMC
(FDMC) algorithm detailed in [8]. This method is useful when one wants to ex-
tend the existing algorithm with the disturbance measurement utilization mech-
anism. Then the fuzzy process model (11) should be extended with the part
which describes influence of the disturbance on the control plant. Thus, the
local models have now the following form:

ŷj,fk =

nu∑
m=1

pd−1∑
n=1

aj,m,f
n ·Δumk−n+a

j,m,f
pd

·umk−pd
+

pz−1∑
i=1

ej,fi ·Δudk−i+e
j,f
pz

·udk−pz
, (16)
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where ej,fi (i = 1, . . . , pz, j = 1, . . . , ny, f = 1, . . . , l) are the coefficients of step
responses to the change of disturbance, in the f th local model, udk−i are values

of the disturbance measured in the (k − i)th sampling instant. Outputs of the
extended fuzzy model can be thus calculated using the formula:

ŷjk =

nu∑
m=1

pd−1∑
n=1

ãj,mn ·Δumk−n + ãj,mpd
· umk−pd

+

pz−1∑
i=1

ẽji ·Δudk−i + ẽjpz
· udk−pz

, (17)

where ẽjn =
∑l

f=1 w̃f · ej,fi . The model (17) can be used to obtain the free
response in a way as in the algorithm detailed in [8]. In such a case, a part of
the free response dependent on the disturbance signal can be easily singled out;
see [8]. This part of the free response can be used to extend the prediction (14):

y = ỹ +Ek ·Δud +Ak ·Δu , (18)

where

Ek =

⎡⎢⎢⎢⎣
E1

k

E2
k
...

E
ny

k

⎤⎥⎥⎥⎦ ,Ej
k =

⎡⎢⎢⎢⎢⎣
ẽj1 ẽj2 − ẽj1 ẽj3 − ẽj2 . . . ẽjpz−1 − ẽjpz−2 ẽ

j
pz

− ẽjpz−1

ẽj2 ẽj3 − ẽj1 ẽj4 − ẽj2 . . . ẽjpz
− ẽjpz−2 ẽjpz

− ẽjpz−1
...

...
...

. . .
...

...

ẽjp ẽ
j
p+1 − ẽj1 ẽ

j
p+2 − ẽj2 . . . ẽjpz

− ẽjpz−2 ẽjpz
− ẽjpz−1

⎤⎥⎥⎥⎥⎦ ,
and

Δud =
[
Δudk, Δu

d
k−1, Δu

d
k−2, . . . , Δu

d
k−pz+2, Δu

d
k−pz+1

]T
.

Thus, as a result the prediction changes and the following performance function
in the optimization problem (1)–(4) should be now used:

JFMPC = (y − ỹ −Ek ·Δud −Ak ·Δu)T ·K · (y − ỹ −Ek ·Δud −Ak ·Δu)

+ΔuT ·Λ ·Δu . (19)

Remark. Note that the mechanism described in this subsection can be simplified.
If only one model of disturbance influence on the process is obtained, then in
all local models the same values of ej,fi coefficients are used, i.e. ej,fi = eji for
f = 1, . . . , l, then (17) is modified:

ŷjk =

nu∑
m=1

pd−1∑
n=1

ãj,mn ·Δumk−n + ãj,mpd
· umk−pd

+

pz−1∑
i=1

eji ·Δvk−i + ejpz
· vk−pz . (20)

As the consequence, the prediction is obtained using the following formula:

y = ỹ +E ·Δud +Ak ·Δu , (21)

where

E =

⎡⎢⎢⎢⎣
E1

E2

...
Eny

⎤⎥⎥⎥⎦ ,Ej =

⎡⎢⎢⎢⎢⎣
ej1 ej2 − ej1 ej3 − ej2 . . . ejpz−1 − ejpz−2 e

j
pz

− ejpz−1

ej2 ej3 − ej1 ej4 − ej2 . . . ejpz
− ejpz−2 ejpz

− ejpz−1
...

...
...

. . .
...

...

ejp e
j
p+1 − ej1 e

j
p+2 − ej2 . . . ejpz

− ejpz−2 ejpz
− ejpz−1

⎤⎥⎥⎥⎥⎦ .
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Note that this time E is the matrix which is constant in each iteration and can
be derived only once. Thus, calculations can be simplified.

3.2 A Method Utilizing the Nonlinear Model

The second method of disturbance measurement utilization is in fact easier to
apply. Notice that if the disturbance is one of the inputs of the model used to
obtain the free response, then it is sufficient to use measured values of the distur-
bance during calculation of the free response. If one does not have information
about future values of the disturbance, then they should be assumed unchanged,
like in the case of control inputs. Otherwise, estimate of future disturbance can
be easily used during derivation of the free response. In the former case, the
formulas given in [9] and reminded in Sect. 2.1 can be simply applied, but this
time it is assumed that the vectors of inputs of the model (8) are extended:

ũk−i =
[
u1k−i, . . . , u

nu

k−i, u
d
k−i

]T
, (22)

where udk−i is value of disturbance in the (k − i)th sampling instant. Thus, the
nonlinear process model is now given by:

ŷk+1|k = f(yk,yk−1, . . . ,yk−na
, ũk−1, ũk−2, . . . , ũk−nb

) , (23)

and the elements of the free response – by:

ŷk+i|k = f (ŷk+i−1|k, ŷk+i−2|k, . . . ,yk−na+i−1, ũk−1, ũk−1, . . . , ũk−nb+i−1) .
(24)

4 Simulation Experiments

The methods of disturbance measurement utilization were tested in the control
system of the isothermal CSTR in which the van de Vusse reaction carries out
[4], used for tests also in [9]. The process model of the reactor contains two
composition balance equations

dCA

dt = −k1 · CA − k3 · C2
A + F

V (CAf − CA) ,
dCB

dt = k1 · CA − k2 · CB − F
V CB ,

(25)

where CA, CB are the concentrations of components A and B, respectively, F is
the inlet flow rate (equal to the outlet flow rate), V is the volume in which the re-
action takes place (it is assumed constant and V = 1 l), CAf is the concentration
of component A in the inlet flow stream (it is assumed that CAf = 10 mol/l).
The values of parameters are: k1 = 50 1/h, k2 = 100 1/h, k3 = 10 l/(h ·mol).
The output variable is the concentration CB of substance B, the manipulated
variable is the inlet flow rate F of the raw substance, and CAf concentration is
the disturbance variable.
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The FMPC controller used in [9] was extended with the mechanisms of dis-
turbance measurement utilization. Thus, during the experiments the sampling
period was assumed equal to Ts = 3.6 s; tuning parameters were assumed as
follows: prediction horizon p = 70, control horizon s = 35, weighting coefficient
λ = 0.001. The fuzzy model used in the FMPC algorithm, for derivation of the
dynamic matrix, is composed of three step responses obtained near the following
operating points:

P1) CB0 = 0.91 mol/l, CA0 = 2.18 mol/l, F0 = 20 l/h;
P2) CB0 = 1.12 mol/l, CA0 = 3 mol/l, F0 = 34.3 l/h;
P3) CB0 = 1.22 mol/l, CA0 = 3.66 mol/l, F0 = 50 l/h.

The membership functions, assumed after analysis of the steady–state charac-
teristics of the control plant, are shown in Fig. 1.

Fig. 1. Membership functions of the fuzzy model used in the FMPC controller

During the experiments the operation of the control system with the FMPC
algorithm extended with mechanisms of disturbance measurement was tested.
The responses to the change of the disturbance CAf by 10% from CAf0 = 10 mol/l
to CAf1 = 11 mol/l were obtained. The disturbance changed at the 6th minute
of simulation. In the case of the method based on the fuzzy model its simplified
version was used.

First, the experiment near the set–point value CB = 1.02 was done. In the
case of both mechanisms of disturbance measurement utilization significant im-
provement of the responses was obtained comparing to the case when none of
the mechanisms was used (dotted lines in Fig. 2). The maximum control error is
around two times smaller when any of the two mechanisms is used. The mech-
anism based on the nonlinear model (solid lines in Fig. 2) works better than
the one based on the fuzzy model (dashed lines in Fig. 2) – the output value
achieves the set–point faster (before the 8th minute), and changes of the con-
trol signal are smaller. Moreover, in the case of the method based on the fuzzy
model oscillations occur. The next experiment, was done near the set–point
value CB = 1.22. This time, both methods also prove to be effective but both
give very similar result. It is because the simplified model of the influence of
the disturbance on the control plant reflects the real dependencies in the control
plant near the current operating point well. It illustrates the importance of the
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Fig. 2. Responses of the control system to the change of the disturbance by 10%
to CAf1 = 11 mol/l near the set–point value CB = 1.02; mechanism of disturbance
measurement utilization: not used – dotted lines, based on the fuzzy model – dashed
lines, based on the nonlinear model – solid lines

Fig. 3. Responses of the control system to the change of the disturbance by 10%
to CAf1 = 11 mol/l near the set–point value CB = 1.22; mechanism of disturbance
measurement utilization: not used – dotted lines, based on the fuzzy model – dashed
lines, based on the nonlinear model – solid lines

quality of the model for the control performance and capabilities lurking in the
method based on the fuzzy model.

5 Summary

The mechanisms of disturbance measurement utilization added to the efficient
predictive algorithm based on fuzzy and nonlinear models are discussed in the
paper. The first mechanism can be used to extend capabilities of the existing
algorithm implementation. It utilizes a relatively easy–to–obtain fuzzy model of
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influence of a disturbance on the control plant. The second mechanism can give
better results than the first one because it exploits a nonlinear model used to ob-
tain the free response. The algorithm is modified in such a way that its numerical
efficiency is maintained. It is because the mechanisms consist in modifications
affecting only the free response. Therefore, the control signal is still calculated
as a solution of the quadratic optimization problem. Example experiments show
that the discussed mechanisms of disturbance measurement utilization, though
simple, can bring significant improvement of control performance.
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Abstract. We present an unsupervised nearest neighbors (UNN) vari-
ant for continuous latent spaces that allows to embed patterns in different
submanifolds. The problem to simultaneously assign patterns to models
and learn the embeddings can be very challenging, as the manifolds may
lie closely to each other and can have different dimensions and arbitrary
curvature. The UNN-based submanifold learning approach (SL-UNN)
that is proposed in this paper combines a fast constructive K-means
variant with the UNN manifold learning approach. The resulting speedy
approach depends on only few parameters, i.e., a distance threshold to
allow the definition of new clusters and the usual UNN parameters. Ex-
tensions of SL-UNN are able to automatically determine parameter of
each submanifold based on the data space reconstruction error.

1 Introduction

Efficient and robust dimensionality reduction methods are required to process
high-dimensional patterns, e.g., for visualization, as preprocessing for classifi-
cation and other methods like symbolic algorithms. With increasing data sets
and improved sensor systems, dimensionality reduction becomes an important
problem class in machine learning. Dimensionality reduction methods perform a
mapping F : Rd → R

q from a high-dimensional data space R
d to a latent space

of lower dimensionality R
q with q < d. The goal is that the latent representations

maintain neighborhoods and distances of the high-dimensional data patterns.
Patterns may lie in different submanifolds. To allow the simultaneous as-

signment to clusters and learning of submanifolds, we introduce a submanifold
variant of KUNN in this section. Before we introduce the UNN-based variant for
submanifold learning, we describe the manifold clustering problem and present
related work in this area. In this paper we present an extension of kernel unsu-
pervised nearest neighbors (KUNN) [4] to submanifold learning. In KUNN latent
points are iteratively and stochastically embedded. Distances in data space are
employed as standard deviation for Gaussian sampling in latent space, neigh-
borhoods are preserved with the KNN-based data space reconstruction error. A
kernel function implicitly maps patterns to a feature space of higher dimension-
ality, where patterns are potentially linearly separable.
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1.1 Submanifold Learning

Given a matrix of N patterns Y = [yi]
N
i=1 ∈ R

d×N lying in τ different manifolds
{Mj}τj=1 with intrinsic dimensions {dj}τj=1, the submanifold learning problem
is the task to simultaneously assign the patterns to clusters and solve the man-
ifold learning problem independently within each cluster. We seek for a low-
dimensional representation, i.e., a matrix of latent points X = [xi]

N
i=1, such that

a regression function f applied to matrix X point-wise optimally reconstructs the
patterns Y, i.e., f maps from R

q×N to R
d×N . The optimization problem can be

formalized as follows

minimize E(X) :=
1

N
‖Y − f(X)‖2F (1)

with Frobenius norm ‖ ·‖2F . Error E(X) is called data space reconstruction error
(DSRE). The latent points X define the low-dimensional representation. The
regression function f applied to the latent points should optimally reconstruct the
high-dimensional patterns and induces its characteristic to the learning result.

The problem to simultaneously learn submanifolds and their embeddings is
difficult to solve. First, clusters have to be identified, second low-dimensional rep-
resentations of the patterns have to be learned. Further, in each cluster possibly
varying parameters may be necessary. Vidal [9] summarizes challenges of the
submanifold learning problem. An essential characteristic of submanifold learn-
ing is the coupling between segmentation of patterns and model estimation. A
known segmentation would simplify the model estimation process, as it would
be clear, which patterns belong to which manifold. In turn, a known distribution
would simplify the estimation process, as the model would allow to determine
the assignment to manifolds. In general, the distribution within the clusters is
unknown. Furthermore, closeness between subspaces, or intersections extremely
complicate the decomposition and the model estimation process. The perspec-
tive of the data space as collection of submanifolds with varying characteristics
is similar to the concept of local models that allow separate parameterizations.
In [5] we proposed a kernel regression approach with multiple local models and
independent kernel parameters.

1.2 Related Work

Numerous submanifold learning algorithms have been presented in the past.
Algebraic methods are based on matrix factorization [2,3] and polynomial al-
gebra, e.g., fitting polynomials to the submanifolds [10]. Iterative methods are
often extensions of K-means, alternately fitting PCA-models to each submani-
fold and then assigning each pattern to its closest submanifold. K-planes [1] and
K-subspaces [8] are instances of these algorithms. To handle noise, statistical
models like mixtures of probabilistic PCA [7] assume that data within sub-
manifolds are generated with independent Gaussian distributions employing the
maximum likelihood principle. The assumption of Gaussian mixtures is the ba-
sis of the agglomerative lossy compression approach [6], which minimizes coding
length required for fitting the Gaussians.
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2 Submanifold Learning UNN

2.1 Constructive K-Means

A fast variant of K-means is an iterative algorithm that does not require the ini-
tial specification of the number of clusters. To determine if new patterns belong
to a novel cluster, a distance threshold ζ ∈ R

+ must be defined. The idea of
the fast constructive K-means variant is to iteratively assign each pattern to the
cluster of the closest codebook vector and then to update the center. The first
pattern y1 becomes the first cluster center c1 = y1, and we set I(y1, c1) = 1.

Let n be the number of patterns that have been assigned to clusters. For
all remaining patterns yi with i = n + 1 ≤ N , the algorithm looks for the
closest codebook vector c∗. If the distance to pattern yi exceeds a threshold
‖yi − c∗‖2 > ζ, it becomes a new cluster center. We increase the number of
clustersK = K+1 and set cK = yi, as well as I(yi, cK) = 1. Otherwise, pattern
yi is assigned to the cluster of codebook vector c∗, i.e., we set I(yi, c

∗) = 1.
Further, the cluster has to be updated

c∗ =

∑n+1
i=1 I(yi, c

∗) · yi∑n+1
i=1 I(yi, c∗)

. (2)

This process is repeated until all patterns are assigned to clusters. The result of
the iterative method depends on the order of elements. The algorithm requires
the specification of threshold ζ to determine, if it is reasonable to start a new
cluster. The clustering result is very sensitive to this parameter. The experimen-
tal analysis in Section 3 will show that too large values result in too few clusters,
while too small values generate too many small clusters. For ζ ≤ min ‖yi −yj‖2
with i, j = 1, . . . , N and i �= j, constructive K-means returns N submanifolds.

2.2 SL-UNN

The new submanifold learning approach SL-UNN is based on the idea to combine
constructive K-means with UNN. The iterative construction scheme of K-means
can easily be combined with the iterative UNN scheme. A pattern is assigned to
a submanifold Mj and immediately embedded in Mj. Algorithm 1.1 shows the
pseudocode of SL-UNN.

The first pattern y1 is assigned to the first manifold and embedded at an
initial latent position, i.e., M1 = {(0,y1)}. Let n be the number of patterns
that have been assigned to submanifolds. For all remaining patterns yi with
i = n + 1 ≤ N , constructive K-means assigns yi to a manifold Mj , where the
pattern is embedded with UNN. An arbitrary latent position xi can be chosen,
when a new manifold is started. In the experimental part, we will place the
latent submanifold centers on a lattice with reasonable distances between the
grid points that allow to distinguish between different manifolds.

The embedding is only based on the patterns that are assigned to Mj , i.e.,
only the patterns of Mj are used for the neighborhood search and the DSRE
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computation, while patterns that are not part of the submanifold are neglected.
For each manifold, separate parameterizations allow to improve the model esti-
mations. In the experimental part, we will allow to use different kernel functions
with separate parameters.

Algorithm 1.1. Submanifold Learning UNN

Require: Y, ζ
1: K = 1
2: c1 = y1

3: M1 = {(0,y1)}
4: for i = 2 to N do
5: constructive K-means: j is index of last cluster
6: embed yi in Mj with UNN and κ, σ∗

j → xi

7: Mj = Mj

⋃
{(xi,yi)}

8: if |Mj | = ϑ then
9: choose parameters σ∗

j for manifold Mj

10: end if
11: end for

The runtime complexity of the approach lies in the same class as UNN. SL-
UNN iteratively assigns a pattern to the closest codebook vector, whose number
is upper bounded by τ , in O(τ) = O(1) steps and embeds a pattern in the
assigned manifold Mj in O(logN) resulting in an overall runtime of O(N · τ +
N logN) = O(N logN).

The parameters in each manifold can be adapted to allow better manifold
learning results. For this purpose, we introduce the following approach. When ϑ
patterns have been embedded in submanifold Mj with j = 1, . . . , τ , the al-
gorithm optimizes the corresponding settings, which can be dimensionalities
{dj}τj=1, kernel functions {k}τj=1, and corresponding kernel parameters. The
two most important variants for the parameter adaptation process are: (1) the
-definition of parameter sets {σ}gf=1 that are successively tested and (2) opti-
mization of parameters within defined bounds. We will employ the first variant in
the following experimental analysis. The latter is recommendable for parameter
sets that are too large to be enumerated completely.

3 Experimental Analysis

In this section, we analyze SL-UNN experimentally on the typical data sets of
the previous experiments and compare to KUNN without manifold clustering.

3.1 Digits

The first experimental part focuses on the visualization of the submanifold learn-
ing results on the Digits data set. We expect that SL-UNN identifies different
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SL-UNN, ζ = 60

(a)

SL-UNN, ζ = 50

(b)

SL-UNN, ζ = 47

(c)

SL-UNN, ζ = 35

(d)

Fig. 1. Comparison of SL-UNN embeddings of the Digits data set (’0’, ’3’, and ’7’) in
2-dimensional manifolds with varying ζ

clusters corresponding to the different classes of Digits, and embeds the patterns
within each cluster. As first data set, we consider an example consisting of three
classes. Figure 1 shows the results of SL-UNN with various settings for ζ on the
Digits data set with N = 539 patterns and digits ’0’, ’3’, and ’7’. We choose
κ = 20 and neighborhood size K = 10. For a too large threshold ζ = 60.0,
only one manifold has been found. Hence, the result corresponds to standard
UNN without clustering. For ζ = 50.0, two manifolds have been identified. In
particular, the ’0’s are separated from the rest of the patterns with exception of
few outliers. For ζ = 47.0, the number of manifolds is identical with the number
of classes, i.e., τ = 3. This is the optimal setting, which reflects the different
classes and corresponding reasonable embeddings. However, we can observe few
false patterns in some manifolds. This is caused by errors of the constructive K-
means clustering procedure. For too small threshold values, too many manifolds
are found, e.g., τ = 21 manifolds in case of ζ = 35.0.

For a further data set composed of the Digits data set with six classes (digits
from ’0’ to ’5’), we can observe similar results, see Figure 2. For too large distance
thresholds like ζ = 47.0, only two clusters were found, while for ζ = 45.0 already
four clusters have been detected and even τ = 25 in case of ζ = 35.0. But with
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SL-UNN, ζ = 47

(a)

SL-UNN, ζ = 45

(b)

SL-UNN, ζ = 43

(c)

SL-UNN, ζ = 35

(d)

Fig. 2. Comparison of SL-UNN embeddings of the Digits data set with six classes (’0’
to ’5’) in 2-dimensional manifolds with varying ζ

the setting ζ = 43.0, SL-UNN identifies a number of manifolds that corresponds
to the number of classes.

3.2 DSRE in Submanifolds

In the following, we analyze the DSRE within the submanifolds. The parameters
for the model of each manifold are adapted according to the following scheme
after ϑ patterns have been assigned to manifold Mj :

1. linear kernel,
2. polynomial kernel with p = 2,
3. RBF-kernel with parameters γ = 102l, 0 ≤ l ≤ 4,
4. hyperbolic tangent kernel with a = 10−l, 1 ≤ l ≤ 6, and b = −10−2.

For each manifold {Mj}τj=1, the setting {σ∗
j }τj=1 that achieves a minimal DSRE

with ϑ = 50 patterns is chosen.
Table 1 shows the experimental comparison between SL-UNN with ζ = 43.0

and KUNN without manifold clustering in 25 runs. The figures show the
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Table 1. Analysis of overall DSRE∗ and submanifold DSRE∗ within {Mj}τj=1 for the
Digits data set with neighborhood sizes K = 5, 10, 30, κ = 30, and ζ = 43.0.

Digits M1 M2 M3 M4 M5 M6 SL-UNN (1,083) KUNN (180) KUNN (1,083)

k DSRE∗ DSRE∗ DSRE∗ DSRE∗

5 2.53 8.12 22.39 6.22 11.86 17.64 14.49 ± 0.12 16.16 ± 0.25 13.83 ± 0.11

10 3.06 9.96 27.41 7.43 13.97 20.46 17.51 ± 0.30 20.94 ± 0.50 16.48 ± 0.065

30 3.63 10.94 35.86 9.33 17.74 23.52 22.44 ± 0.34 28.76 ± 1.28 22.71 ± 1.39

average pattern-wise DSRE∗ E(X) = 1
N

∑N
i=1

√
‖f(xi)− yi‖2, which is not de-

creasing with an increasing number of patterns. This measure is reasonable as
the submanifolds contain less patterns than the overall manifold. The results are
compared to the DSRE of the submanifolds {Mj}τj=1. In Table 1, the average
DSRE∗ in each manifold is presented, as well as the DSRE∗ of the whole embed-
ding. We compare SL-UNN with ζ = 43.0 and κ = 30 on N = 1, 083 patterns
to KUNN on N = 180 patterns with one manifold (τ = 1) corresponding to the
average number of patterns in one manifold (N = 180 ≈ 1080/6). Further, we
compare to KUNN (1,083) with τ = 1 employing all N = 1, 083 patterns.

The results show that SL-UNN assigns the patterns to six submanifolds. In
four of the six submanifolds, significantly lower errors are achieved than (1) the
average DSRE∗ of the whole embedding and than (2) KUNN with N = 180
patterns (which corresponds to the average number of patterns in each subman-
ifold). The overall DSRE∗ is slightly higher than the overall DSRE∗ of KUNN
on the whole data set. The reason is that the submanifolds are placed on dis-
crete grid positions not taking into account a sorting w.r.t. the DSRE. Hence,
the neighborhood preservation for patterns in different submanifolds can be vi-
olated. A modification of SL-UNN could be to sort the clusters w.r.t. the DSRE
when a new cluster is started. SL-UNN chose the hyperbolic tangent kernel in
four of the submanifolds, while the kernel function choice for the other two man-
ifolds varied from RBF-kernel with different settings to the polynomial kernel.
The KUNN variants chose the hyperbolic tangent kernel in each experiment.

3.3 ISOMAP-Faces

The embedding results of SL-UNN on the ISOMAP-Faces data set are shown
in Figure 3. The figures show the embeddings of SL-UNN with two parameter
settings, i.e., ζ = 20.0 and ζ = 17.0. In all experiments, the settings κ = 20
and neighborhood size K = 5 have been chosen. In contrast to the Digits data
set, no labels are known in advance, and we cannot draw conclusions about the
correct number of manifolds. But we can observe that patterns embedded in
each manifold have similar characteristics, i.e., similar poses and similar lights.
Further, within the manifolds neighbored patterns are neighbored in latent space.
Both observations underline that SL-UNN learns reasonable submanifolds.
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SL-UNN, ζ = 20

(a)

SL-UNN, ζ = 17

(b)

Fig. 3. SL-UNN embeddings of the ISOMAP-Faces data set with the two parameters
ζ = 20.0 and ζ = 17.0

4 Conclusions

Patterns may lie in different submanifolds with varying characteristics. To al-
low the assignment of patterns to submanifolds, we have extended UNN by a
constructive clustering approach. The novel algorithm called SL-UNN assigns
patterns to submanifolds based on a simple yet efficient K-means variant and
simultaneously embeds them with UNN. Submanifolds allow the management of
separate parameterizations, e.g., kernel functions and kernel parameters in case
of KUNN. The overall runtime complexity is still O(N logN), if space partition-
ing data structures offer neighborhood requests in O(logN). The experimental
results have shown that SL-UNN achieves low learning errors in the majority of
the submanifolds, as each local model can employ separate parameters. Further,
a speedup can be observed, as the submanifolds, where the embeddings take
place, are smaller than the whole data set. If low errors are required in local
neighborhoods, the employment of SL-UNN can be recommended. However, the
overall DSRE could not be decreased. The clustering mechanism can be extended
by further clustering and manifold criteria that may be appropriate for specific
scenarios, e.g., by density-based measures. The prize of higher clustering accu-
racies and possibly lower embedding errors might be paid with worse runtime
complexities.
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Abstract. Multiple sequence alignment and RNA folding are two im-
portant tasks in the field of bioinformatics. Solving those problems si-
multaneously leads to biologically more significant results. The only one
currently known precise algorithm (Sankoff) is too much computationaly
expensive for such long sequences. In this work we introduce a new algo-
rithm, that is a combination of well known Nussinov folding algorithm
and Sankoff quadratic alignment algorithm and a speed-up for this algo-
rithm that is inspired by the Carrillo-Lipman algorithm for the multiple
sequence alignment problem. This approach may allow us to simultane-
ously align and fold more than two sequences in a better time than we
can do it using the Sankoff algorithm.

Keywords: multiple sequence alignment, RNA folding.

1 Multiple Sequence Alignment

Multiple sequence alignments are an essential tool for protein structure and
function prediction, phylogeny inference and other common tasks in sequence
analysis. The computation of multiple sequence alignment is not a trivial task,
because it is hard to precisely define the properties of biologically optimal align-
ment. The standard computational formulation of the pairwise problem is to
identify the alignment that maximizes sequence similarity, which is typically de-
fined as the sum of substitution matrix scores for each aligned pair of residues,
minus some penalties for gaps. This approach is generalized to the multiple se-
quence case by seeking an alignment that maximizes the sum of similarities for
all pairs of sequences (the sum-of pairs, or SP, score)[1].

2 Dynamic Programming

Algorithms based on the SP scores produce a mathematically, but not neces-
sarily biologically exact alignment. Wang & Jiang in 1994 [2] showed that the
minimal time and memory required to find the alignment with maximal SP score
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grows exponentially with growing number of sequences. The basic dynamic pro-
gramming algorithm finding the pairwise sequence alignment(alignment of two
sequences) from Needleman & Wunsch [3] fills in a two dimensional table D. Let
R1 and R2 be two sequences, that we want to align. The value of D[i, j] is the
maximal possible value of aligning first i bases of R1 with first j bases of R2.
There are 3 different ways to fill in the value D[i, j]:

– Align base i of R1 with space. In this case we have to add the space penalty
y to the alignment of first i− 1 bases of R1 and first j bases of R2.

– Align base j of R2 with space. In this case we have to analogically add the
space penalty y to the alignment of first i bases of R1 and first j − 1 bases
of R2.

– Align base i of R1 with base j of R2. The value of D[i, j] will be the sum of
the alignment value of first i− 1 bases of R1 and j − 1 bases of R2 and the
value of aligning base i with base j (C[i, j]).

D[i, j] = max

⎧⎪⎨⎪⎩
D[i− 1, j − 1] + C(R1,i, R2,j)

D[i− 1, j] + y

D[i, j − 1] + y

(1)

D[i, 0] = i ∗ y,D[0, j] = j ∗ y (2)

The matrix is then filled using equation (1) and the initial condition (2). The
time and space complexity of Needleman-Wunsch algorithm is O(n2).

This algorithm can be generalized for N sequences (3), but the number of
cases is growing up exponentially with growing number of sequences.

D[
−→
i ] = maxp∈PermN{0,1}

{
D[

−−→
i− p] +

∑N
j=1 pj ∗ (N −

∑N
j=1 pj) ∗ y

+
∑

m,l∈{1,...,N},pm=pl=1 C(Rm,im , Rl,il)
(3)

The space complexity of generalized algorithm is O(nN ) and the time complexity
is O(2N ∗N2 ∗ nN).

2.1 Carrillo-Lipman

The idea of Carrillo-Lipman heuristic [4] is to search only among those align-
ments whose value is higher then some constant U . If we set U to be the value of
some unoptimal alignment found by some faster heuristic alignment algorithm,
then the result will be optimal. The main idea is to count the matrix values in
a different way. After improving cell D[i1, i2, ..., iN ] improve all cells that can be
affected by this change only if their value will be ”high enough”.

Lets take a look about what it means ”high enough”. If we count the value of
optimal pairwise alignment for all pairs of sequences such that dm,l[im, il] will
be the maximal value for aligning subsequences Rm[im, ..., nm] and Rl[il, ..., nl],
then it is obvious that:

D[−→n ]−
N∑

m=1

N∑
l=1

dm,l[im, il] ≤ D[
−→
i ] (4)
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Suppose we know some possible value of searched multiple alignment U . We
can exclude the cell D[i1, i2, ..., iN ] from the computation if its value is so small
that even if the alignment value of subsequences R1[i1, ..., n1], R2[i2, ..., n2],...,

RN [iN , ..., nN ] is maximal(
∑N

m=1

∑N
l=1 dm,l[im, il]), then the whole alignment

value will be less than U :

D[
−→
i ] +

N∑
m=1

N∑
l=1

dm,l[im, il] < U (5)

2.2 Sankoff Quadratic Alignment

Sankoff quadratic pairwise alignment is based on comupting matrix of size O(n4).
The value of D[i, j; k, l] is the maximal value for aligning subsequences R[i, ..., j]
with R′[k, ..., l]. This method is computationally worse then Needleman-Wunsch
algorithm, but we will need it later. The equations for filling it in are:

D[i, j; k, l] = max

⎧⎪⎨⎪⎩
D[i, j; k, l− 1] + y

D[i, j − 1; k, l] + y

D[i, j − 1; k, l− 1] + C(Rj , R
′
k)

(6)

D[i, i; k, k] = C(i, k), D[0, j; 0, 0] = j ∗ y,D[0, 0; 0, k] = k ∗ y (7)

Sankoff quadratic alignment algorithm can be generalized for N sequences as
well as Needleman-Wunsch algorithm(equation (8)). Its space complexity will
be O(n2∗N ) a needs O(n2∗N ∗ 2N ∗N2) time.

D[
−→
i, j] = maxp∈PermN{0,1}

{
D[

−−−−→
i, j − p] +

∑N
k=1 pk ∗ (N −

∑N
k=1 pk) ∗ y

+
∑

m,l∈{1,...,N},pm=pl=1 C(Rm,im , Rl,il)
(8)

2.3 Applying Carrillo-Lipman Approach to Sankoff Multiple
Alignment

If we want to apply the Carrillo-Lipman approach to the last mentioned algo-
rithm, we need to divide the alignment to three parts instead of two. So we have
to precompute dm,l[im, il] that will be the maximal possible pairwise alignment
value of subsequences Rm[0, ..., im] and Rl[0, ..., il], and d′m,l[jm, jl] will be the
maximal possible pairwise alignment value of subsequences Rm[jm, ..., nm] and
Rl[jl, ..., nl]. Analogically to equation (4), we can see, that:

D[
−→
0, n]−

N∑
m=1

N∑
l=1

dm,l[im, il]−
N∑

m=1

N∑
l=1

d′m,l[jm, jl] ≤ D[
−→
i, j] (9)

The cell D[
−→
i, j] can then be excluded from the computation if its value is so

small that even if the alignment value of subsequences R1[0, ..., i1], R2[0, ..., i2],...,
RN [0, ..., iN ] and the alignment value of subsequences R1[j1, ..., n1],R2[j2, ..., n2],...,
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RN [jN , ..., nN ] are maximal(
∑N

m=1

∑N
l=1 dm,l[im, il] and

∑N
m=1

∑N
l=1 d

′
m,l[jm, jl]),

then the whole alignment value will be less than U :

D[
−→
i, j] +

N∑
m=1

N∑
l=1

dm,l[im, il] +
N∑

m=1

N∑
l=1

d′m,l[jm, jl] < U (10)

3 RNA Folding

The three-dimensional(secondary) structure of a RNA sequence has a functional
role for many molecules and since knowing the sequence is not sufficient to
determine the structure, it is important to be able to predict the most probable
structures.

Definition 1 (Folding). A secondary structure on a sequence a = a1, ..., an
is a set of pairs (i, j), where 1 ≤ i < j ≤ n satisfying the knot constraint - if
i ≤ i′ ≤ j ≤ j′, then (i, j) and (i′, j′) cannot be two distinct elements of S [5].

3.1 Nussinov Algorithm

The Nussinov algorithm predicts the secondary structure of RNA by maximizing
of the number of base pairs, according to the assumption that the more base pairs
contains the sequence the more stable it is.

Let R be the input RNA sequence of lenth n. The algorithm fills in the
matrix F of size n ∗ n, where the value of F [i, j] is the maximum number of
possible base pairs in subsequence R[i...j]. The best structure for subsequence
R[i...j] is calculated from the previously calculated best structures for smaller
subsequences [6]. There are four following ways to fill in the value of F [i, j]:

– Add unpaired base i to the best secondary structure for subsequence R[i+
1, j](F [i, j] = F [i+ 1, j]).

– Add unpaired base j to the best secondary structure for subsequence R[i, j−
1](F [i, j] = F [i, j − 1]).

– Add base pair (i, j) to the best secondary structure for subsequence R[i +
1, j− 1](F [i, j] = F [i+1, j − 1] + δ(i, j), where δ(i, j) is value of adding this
kind of pair).

– Combination of the best secondary substructures for subsequences R[i, k]
and R[k+ 1, j] for some k ∈ {i+ 1, ..., j − 1}. (F [i, j] = F [i, k] + F [k+ 1, j])

This leads to following equations, where 1 ≤ i ≤ n and i < j ≤ n :

F (i, j) = max

⎧⎪⎪⎪⎨⎪⎪⎪⎩
F [i+ 1, j]

F [i, j − 1]

F [i+ 1, j − 1] + δ(i, j)

maxi<k<j{F [i, k] + F [k + 1, j]}

(11)

F (i, i) = F (i, i+ 1) = 0 (12)
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The matrix is filled, beginning with the initialization according to (12) and then
computing the lower half from smaller to longer subsequences [6]. After filling the
matrix the solution is recieved via backtracking beginning with F [1, n] what is
the maximum number of base pairs for the whole sequence. The time complexity
of Nussinov algorithm is O(n3) because of filling in n2 cells by looking at O(n)
cells filled before. The space complexity is O(n2).

4 Automated Comparative Sequence Analysis

The secondary structure found by one of the algorithms from the previous sec-
tion do not have to be the right one. We can predict the secondary structure
much better if we know the alignment of given sequences. And we can find bet-
ter multiple alignment if we know the consensus secondary structure. Usually
we have only sequences and we know neither the alignment nor the secondary
structure. If we want to find them both we can use three different approaches:

– Align sequences using classical multiple alignment tools and then predict
the structure for found alignment according to structure neutral mutations.
This method can be used only if sequences are well conserved. (RNAalifold
[7][8], Pfold [9][10][11], ILM [12][13])

– If sequences are not well conserved, then predict seconadary structure for
each sequence separately and directly align the structures(RNA forester
[14][15], MARNA [16][17])

– Simultaneous alignment and folding(Sankoff [5])

The first two methods can lead to inaccurate results. This is why more complex
algorithms were developed, that solves both problems in one time.

4.1 Sankoff Algorithm

Sankoff in 1985 introduced a dynamic programming algorithm [5] that combines
the objective functions for alignment and minimal free energy folding to solve the
alignment of finite sequences, their folding and the reconstruction of ancestral
sequences on a phylogenetic tree.

Dynamic programming for complex problems is usually computationally ex-
pensive. Sankoff avoids this by the combination of biologically well motivated
constraints on the set of possible alignment and folding solutions.

This algorithm is based on Sankoff’s quadratic alignment algorithm ([18]),
distance function for evaluating alignments by Sellers ([19] and [20]) and on
the Zuker and Sankoff paper [21], who synthesize and advance a series of im-
provements in algorithmic efficiency including Nussinov algorithm and Zuker
algorithm.

When biologists say that two RNA sequences have the same secondary struc-
ture, it does not mean that they are identical. For example the stems or loops
does not have exactly the same length, but they can vary a bit. Let i1 < i2 <
... < iv be the positions in sequence a of all terms which form part either of
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an external pair or of an accessible pair in a multiple loop in structure A. Let
j1 < j2 < ... < jw be the same for structure B on sequence b. For A and B
to be equivalent in terms of branching configurations, we require v = w and
(if , ig) ∈ A if and only if (jf , jg) ∈ B. Another requirement is that any k-loop
have to be aligned with a single k-loop in the other structure, or be inserted or
deleted in toto. [5]

The goal is to find equivalent structures and constrained alignment such that
the entire found configuration is optimal. Sankoff introduced an objective op-
timization function representing a trade-off between free energy and alignment
cost.

They extended the definition of D(i1, j1; i2, j2)(minimizing cost of an align-
ment between ai1 , ..., aj1 and bi2 , ..., bj2) to refer the cost of inserting the entire
sequence bi2 , ..., bj2 if i1 > j1 and to refer the cost of deleting ai1 , ..., aj1 if i2 > j2.

Let P (i1, j1; i2, j2) be the minimum cost for (i1, j1) ∈ S1 and (i2, j2) ∈ S2

without the cost of aligning a
(1)
i1

, a
(1)
j1

, a
(2)
i2

and a
(2)
j2

. If no such pairs exists then

P (i1, j1; i2, j2) = ∞.

P (i1, j1; i2, j2) = min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

eH(i1, j1) + eH(i2, j2) +D(i1 + 1, j1 − 1; i2 + 1, j2 − 1))

mini1<p1<q1<j1;i2<p2<q2<j2{eL(i1, j1, p1, q1) + eL(i2, j2, p2, q2)

+P (p1, q1; p2, q2)

+D(i1 + 1, p1; i2 + 1, p2) +D(q1, j1 − 1; q2, j2 − 1)}
mini1+1<k1<j1−1;i2+1<k2<j2−1{M(i1 + 1, k1; i2 + 1, k2)

+M(k1 + 1, j1 − 1; k2 + 1, j2 − 1) + 2 ∗A}
(13)

M(i1, j1; i2, j2) = min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P (i1, j1; i2, j2) + 2 ∗B +D(i1, i1; i2, i2) +D(j1, j1; j2, j2)

mini1<k1<j1;i2<k2<j2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(k1 − i1 + k2 − i2 + 1) ∗ C
+M(k1 + 1, j1; k2 + 1, j2)

M(i1, k1; i2, k2)

+M(k1 + 1, j1; k2 + 1, j2)

M(i1, k1; i2, k2)

+(j1 − k1 + j2 − k2) ∗ C
(14)

Let F (i1, j1; i2, j2) be the minimum cost possible for a pair of equivalent sec-
ondary structures S1 and S2 on positions i1, ..., j1 and i2, ..., j2 of sequences
a(1) and a(2) respectively, where the cost is the sum of the free energies and a
constrained alignment cost.

F (i1, j1; i2, j2) = min

{
P (i1, j1; i2, j2) + D(i1, i1; i2, i2) + D(j1, j1; j2, j2)

mini1≤k1<j1;i2≤k2<j2
{F (i1, k1; i2, k2) + F (k1 + 1, j1; k2 + 1, j2)}

D(i1, j1; i2, j2)

(15)

The initial conditions are P (i1, j1; i2, j2) = ∞ and M(i1, i1; i2, j2) =
M(i1, j1; i2, i2) = ∞.

Lets take a look at the complexity of Sankoff algorithm for 2 sequences. The
complexity of computing D is O(n2

1 ∗ n2
2) what is approximately O(n4) if n1 ≈
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n2 ≈ n. The time complexity of counting P (i1, j1; i2, j2) is O(n2) if we bound
possible loop length by some constatnt U . Time needed to count M(i1, j1; i2, j2)
and F (i1, j1; i2, j2) is O(n2) too. Totally O(n4) cells of P,M,F matrices have to
be filled. So the overal time complexity of the algorithm is O(n4+3∗n6) = O(n6)
and space complexity is O(4 ∗ n4) = O(n4).

The equations (13), (14) and (15) can be generalized forN sequences as follows:

P (
−→
i, j) = min

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑N
r=0 eH(ir, jr) +D(

−−−−−−−→
i+ 1, j − 1)

minir<pr<qr<jr{
∑N

r=0 eL(ir, jr, pr, qr) + P (−→p, q)
+D(

−−−−→
i+ 1, p) +D(

−−−−→
q, j − 1)}

minir+1<k1<jr−1{M(
−−−−→
i+ 1, k)

+M(
−−−−−−−−→
k + 1, j − 1) +N ∗A}

(16)

M(
−→
i, j) = min

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
P (

−→
i, j) +N ∗B + γ(a

(1)
i1
, a

(2)
i2
, ..., a

(N)
iN

) + γ(a
(1)
j1
, a

(2)
j2
, ..., a

(N)
jN

)

minir<kr<jrmin

⎧⎪⎨⎪⎩
∑N

r=0 (kr − ir + 1) ∗ C +M(
−−−−→
k + 1, j)

M(
−→
i, k) +M(

−−−−→
k + 1, j)

M(
−→
i, k) +

∑N
r=0 (jr − kr) ∗ C

(17)

F (
−→
i, j) = min

⎧⎪⎨⎪⎩
P (

−→
i, j) + γ(a

(1)
i1
, a

(2)
i2
, ..., a

(N)
iN

) + γ(a
(1)
j1
, a

(2)
j2
, ..., a

(N)
jN

)

minir≤kr<jr{F (
−→
i, k) + F (

−−−−→
k + 1, j)}

D(
−→
i, j)

(18)

The initial conditions are P (
−→
i, i) = ∞ and M(

−→
i, j) = ∞ if any ir = jr. And the

time complexity of generalized algorithm is O(n3∗N ) and it needs O(n2∗N ) space.

4.2 Simultaneous Alignment and Nussinov Folding

Our objective is to explore, whether it is possible to apply the Carrillo-Lipman
approach for multiple sequence alignment to speed up simultaneous alignment
and folding. We decided to try it at first with the Nussinov folding algorithm.
The first step to this is to design an equation for simultaneous alignment and
Nussinov folding.

We combine the Sankoff quadratic alignment algorithm with Nussinov folding
algorithm like Sankoff[5] combined it with Zuker folding algorithm. For two
sequences we distinguish five cases when filling in the value of F [i, j; k, l]:

– Add pairs of bases i, j and k, l, base i will be aligned to base k and base j will
be aligned to base l. Then the value will be computed as sum of the value
F [i + 1, j − 1; k + 1, l − 1], the values of created base pairs δ(i, j) + δ(k, l),
and the value of aligned bases C(R1,i, R2,k) + C(R1,j , R2,l)

– Align unpaired nucleotides i and k to the best aligned structures of sequences
R1[i+ 1, ..., j] and R2[k + 1, ..., l].
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– Align unpaired nucleotides j and l to the best aligned structures of sequences
R1[i, ..., j − 1] and R2[k, ..., l − 1].

– There are no base pairs in subsequences R1[i, ..., j] and R2[k, ..., l] so we have
just to count the value of aligning those sequences.

– Combine two previously counted substructures F [i, h; k, p] and F [h+1, j; p+
1, l].

This four cases leads to the following equation:

F [i, j; k, l] = max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

F [i+ 1, j − 1; k + 1, l − 1] + δ(i, j) + δ(k, l)

+C(R1,i, R2,k) +C(R1,j , R2,l)

F [i+ 1, j; k + 1, l] + C(R1,i, R2,k)

F [i, j − 1; k, l − 1] + C(R1,j , R2,l)

D[i, j; k, l]

maxi<h<j;k<p<lF [i, h; k, p] + F [h+ 1, j; p+ 1, l]

(19)

∀i, j : F [i, i− 1; j, j − 1] = 0 (20)

The space complexity here is O(n4) and the time complexity goes to O(n6)
because of the fifth case.

We can also generalize it for N sequences (21). It needs O(n2∗N ) space and
O(n3∗N ) time.

F [
−→
i, j] = max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F [
−−−−−−−→
i+ 1, j − 1]

+
∑N

k=1 δ(ik, jk)

+
∑N

m=1

∑N
k=m+1 (C(Rm,im , Rk,ik ) + C(Rm,jm , Rk,jk ))

F [
−−−−→
i+ 1, j] +

∑N
m=1

∑N
k=m+1 C(Rm,im , Rk,ik)

F [
−−−−→
i, j − 1] +

∑N
m=1

∑N
k=m+1 C(Rm,jm , Rk,jk )

D[
−→
i, j]

maxim<hm<jmF [
−→
i, h] + F [

−−−−→
h+ 1, j]

(21)

4.3 Applying Carrillo-Lipman Approach to Simultaneous Alignment
and Nussinov Folding

Suppose we have some unoptimal alignment and folding of sequences R1, R2, ..., Rn

with value U . We want to apply the Carrillo-Lipman approach to our algorithm.
At first we have to find the upper bound for the value of simultaneous alignment
and folding. The upper bound of alignment value for subsequences R1[0, ..., i1],
R2[0, ..., i2], ... , RN [0, ..., iN ] is the sum of maximal pairwise alignments values
for all pairs of sequences, same like in Carrillo-Lipman algorithm. The upper
bound for simultaneous algorithm will be equal to sum of the upper bound for
alignment and the upper bound for secondary structures. The value of secondary
structure is added only in the first case. The value of every base pair in every
sequence is added exactly once. Let fm(im, jm) be the value of best secondary
structure of subsequence Rm[0, ..., im − 1, jm + 1, ..., nm]. So we can say, that:

F [
−→
0, n]−

N∑
m=1

fm(im, jm))−
N∑

m=1

N∑
l=1

dm,l[im, il]−
N∑

m=1

N∑
l=1

d′m,l[jm, jl] ≤ F [
−→
i, j] (22)
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The cell F [
−→
i, j] can then be excluded from the computation if its value is so small

that even if the alignment and folding value of subsequencesR1[0, ..., i1, j1, ..., n1],
R2[0, ..., i2, j2, ..., n2], ... , RN [0, ..., iN , jN , ..., nN ] are maximal:

N∑
m=1

N∑
l=m+1

dm,l[im, il] +
N∑

m=1

fm(im, jm) +
N∑

m=1

N∑
l=m+1

d′m,l[jm, jl] (23)

then the whole alignment and folding value will be less than U :

F [
−→
i, j] +

N∑
m=1

fm(im, jm) +

N∑
m=1

N∑
l=m+1

dm,l[im, il] +

N∑
m=1

N∑
l=m+1

d′m,l[jm, jl] < U (24)

The preprocessing complexity depends on the heuristical method used for finding
the unoptimal alignment and folding. Except of that it needs O(2 ∗N2 ∗ n2) =
O(N2 ∗ n2) space and O(2 ∗N2 ∗ n2) = O(N2 ∗ n2) time for pairwise alignment
using Needleman-Wunsch algorithm, and O(N ∗ n2 ∗ n2) = O(N ∗ n4) space
and O(N ∗ n2 ∗ n3) = O(N ∗ n5) time for finding best secondary structure for
each sequence using Nussinov algorithm. The most expensive part is counting
the Sankoff multiple alignment matrix D. It needs O(n2∗N ) space and O(n2∗N ∗
2N ∗N2) time, but it is also a part of the computation of unimproved algorithm.

This approach allows us to simultaneously align and fold sequences in more
reasonable time. Testing results for 3 sequences from RNA family HIV-1 SD are
in following table. We can see, that increasing the value of U rapidly decreased
number of counted cells in F . First used value of U (49.0) was the value of multi-

ple alignment(D[
−→
0, n]) counted in preprocessing phase. The value of simultaneous

alignment and folding is never less than D[
−→
0, n].

Table 1. Computation times for HIV-1 SD family

U # counted cells # skipped cells preprocess. main comput. totall time result

49.0 457 062 9 600 830 87 s 1 687 s 1 774 s 71.0
55.0 143 061 9 196 462 86 s 217 s 303 s 71.0
60.0 36 410 9 046 724 85 s 145 s 230 s 71.0
65.0 3 889 9 002 811 85 s 140 s 225 s 71.0

5 Conclusion

In this work we proposed an algorithm for simultaneous alignment and folding
using the Nussinov folding algorithm. We also proposed a speed-up of this al-
gorithm that cuts off unnecessary computations according to Carrillo-Lipman
multiple sequence alignment algorithm. Our approach leads to an optimal solu-
tion of alignment and folding for more than two sequences using the Nussinov
scoring scheme for folding in better time than the Sankoff simultaneous align-
ment and folding algorithm. In our future work we want to find out whether it
is possible to use this approach with more complex Zuker folding scheme [21].
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Abstract. Genome-scale metabolic models of several microbes have
been reconstructed from sequenced genomes in the last years. These
have been used in several applications in Biotechnology and biological
discovery, since they allow to predict the phenotype of the microorgan-
ism in distinct environmental or genetic conditions, using for instance
Flux Balance Analysis (FBA). This work proposes an analysis workflow
using a combination of FBA and Data Mining (DM) classification meth-
ods, aiming to characterize the metabolic behaviour of microorganisms
using the available models. This framework allows the large scale com-
parison of the metabolism of different organisms and the prediction of
gene expression patterns. Also, it can provide insights about transcrip-
tional regulatory events leading to the predicted metabolic behaviour.
DM techniques, namely decision tree and classification rules inference,
are used to provide patterns of gene expression based on environmental
conditions (presence/ absence of substrates in the media). The meth-
ods proposed are applied to the study of the metabolism of two related
microbes: Escherichia coli and Salmonella typhimurium.

Keywords: Genome-scale Metabolic Models, Transcriptional Regula-
tion, Systems Biology, Flux Balance Analysis, Rule inference.

1 Introduction

Recent efforts in Bioinformatics and Systems Biology allowed the development
of genome-scale metabolic models for several microorganisms [4]. These mod-
els have been used to guide biological discovery promoting the comparison be-
tween predicted and experimental data, to foster Metabolic Engineering efforts
in finding appropriate genetic modifications to synthesize desired compounds, to
analyze global network properties and to study bacterial evolution [5].

The most popular approach to phenotype simulation considers the cell to be
in steady-state and takes reaction stoichiometry/ reversibility in a constraint-
based framework to restrict the set of possible values for the reaction fluxes.
Cellular behaviour is thus predicted using for instance Flux Balance Analysis
(FBA), based on the premise that microorganisms have maximized their growth
along natural evolution, a premise that has been validated experimentally [6].

M. Tomassini et al. (Eds.): ICANNGA 2013, LNCS 7824, pp. 336–345, 2013.
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Using FBA, it is possible to predict the behaviour of microbes under distinct
environmental/ genetic conditions.

The aim of this paper is to use metabolic models and phenotype simulation
methods to provide for large scale analysis of the metabolism of an organism, to
allow the prediction of gene expression patterns consistent with those data and,
finally, to gain insights on the transcriptional regulatory events that need to be in
place to achieve the determined metabolic behaviours. These tools can be applied
to several organisms enabling the comparative analysis of their metabolic and
genetic behaviours. Data Mining (DM) tools will play a central role in extracting
patterns from the large datasets of simulations provided by FBA.

Regarding regulation, the basic idea of this paper is based on the following
question: if the metabolic behaviour of an organism can be determined, what
can we infer about its regulatory machinery? In other words, what kind of regu-
latory mechanisms do we need to provide in order to explain a given metabolic
behaviour. We will assume that FBA provides a reasonable approximation to
the metabolic behaviour and will try to infer some features about the regulatory
machinery that could lead to this behaviour.

In the experiments provided in this work, we will use two microbes, both
with validated genome-scale metabolic models: Escherichia coli and Salmonella
typhimurium. The first is a well known bacterium that also has a well established
regulatory model that will serve as a gold standard; the second is an important
pathogen, with high similarity to E. coli but with no regulatory model available.

Given the two organisms and their genome-scale metabolic models, the simu-
lation of the phenotype in a wide range of environmental conditions is performed.
The set of environmental conditions is created to span a large number of possible
media where the organisms can grow. For each condition, a simulation is per-
formed using FBA, allowing the determination of which reactions and genes will
be active under those conditions. This allows the creation of a map, indicating
the pattern of expression expected for each metabolic gene and, consequently,
the determination of the overall activity of each gene, i.e. in what proportion of
conditions it is active. Since one of the focus of the study will be on the genes that
are a target of regulation, all genes that are expressed in nearly all conditions
or almost none are filtered from further analyses. Restricting to the remaining
genes, the next logical step is to determine groups of genes that show a similar
pattern of co-expression, i.e. are expressed in the same set of conditions.

Also, taking into account, for each condition, which is the set of substrates
(external metabolites) that are available for uptake by the organism, patterns
of gene expression based on the external metabolites presence/ absence can be
extracted. This is achieved by the use of Data Mining (DM) classification al-
gorithms, taking as inputs a set of binary attributes representing the presence/
absence of a given substrate and as outputs the expression/ not expression of
a given gene. These classifiers are given by decision rules with a condition in-
cluding the presence/ absence of substrates on the left hand side and the binary
expression value of the gene in the right hand side. This allows checking the
dependencies of gene expression on the environmental conditions.
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If the target organism has an available regulatory model or a set of known
regulatory interactions, these results can be compared to this information, by:

– Comparing clusters of co-expressed genes from the simulations, with sets of
genes sharing regulatory mechanisms (e.g. controlled by the same transcrip-
tion factors);

– Comparing the dependencies of the gene expression on external metabolites
with the reciprocal variables that constrain the regulatory model for the
same genes.

2 Methods and Models

2.1 Models

In this work, the following genome-scale models were used:

– a metabolic model for Escherichia coli - iAF1260, containing 1260 genes,
2077 reactions and 1039 metabolites [3];

– a metabolic model for Salmonella typhimurium - iMA945, including 945
genes, 1964 reactions and 1036 metabolites [1];

– regulatory model for E. coli - iMC1010 - proposed by Covert et al [2], con-
taining 1010 genes, integrated with the corresponding metabolic model.

The metabolic models contain information about all the reactions that can occur
in the cell, including the substrates and products, their stoichiometry and re-
versibility. Also, for each reaction the corresponding gene-reaction rule is given,
which is a Boolean expression stating if the reaction is active as a function of
the genes involved in the encoding of the respective enzymes.

The regulatory model is also given in terms of Boolean logic: the left hand side
corresponds to regulated genes, while the right-hand sides are Boolean expres-
sions involving regulatory genes and external variables (e.g. presence/ absence
of metabolites in the media or other events such as stress responses).

To allow the comparison between the two organisms, a table of orthologous
genes was created, enabling to convert gene mentions from one organism to the
other. This table was generated using the well known Bidirectional Best Hit
method, that works as follows for every gene :

1. for each gene in organism 1 (noted A), perform an homology search (using
for instance BLAST) against the genome of organism 2 and keep the best
hit (B);

2. B is then used as a query and a search against the genome of organism 1 is
done achieving the best hit A*;

3. if A* is the original gene A, then A and B are orthologs.

Using this method, it was possible to find 871 ortholog pairs (93% of the total
number of genes in the S. typhimurium model).
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2.2 Flux Balance Analysis

The Flux Balance Analysis (FBA) [6] approach is based on a steady state ap-
proximation to the concentrations of internal metabolites, which reduces the
corresponding mass balances to a set of linear homogeneous equations. For a
network of M metabolites and N reactions, this is expressed as:

N∑
j=1

Sijvj = 0 (1)

where Sij is the stoichiometric coefficient for metabolite i in reaction j and vj
the flux over the reaction j. The limits of the fluxes can be set by additional
constraints in the form αj ≤ vj ≤ βj , also used to specify nutrient availability.

The set of linear equations obtained usually leads to an under-determined sys-
tem. However, if a linear function over the fluxes is chosen to be maximized, it
is possible to obtain a single solution by applying standard algorithms (e.g. sim-
plex) for Linear Programming. The most common flux chosen for maximization
is the biomass given the premise of optimal evolution that underlies FBA.

2.3 Workflow

The workflow for the in silico analysis conducted in this work was the following:

1. A large set of environmental conditions (ECs) were created (corresponding
to different media). A set of external metabolites (carbon/ nitrogen sources)
was identified (list given on supplementary material). ECs are created as
all combinations of a carbon and a nitrogen source. Aerobic and anaerobic
variants of each EC were created. Some metabolites are always considered
to be present, namely SO4, Pi, H2O, H , ions, CO2.

2. Using FBA, phenotype simulationswere conducted using each of themetabolic
models (E. coli and S. typhimurium) for those ECs. The flux value for each
reaction in each of the simulations was determined.

3. All simulations where the organism does not grow (biomass flux less than
1% of the typical wild type growth in glucose) were removed.

4. The simulation results were binarized, i.e. changed to value 1, if reaction has
flux larger than zero in that simulation and 0 otherwise. This step creates a
binary matrix of ECs × reactions

5. Using the gene-reaction rules from the metabolic models, a set of entailments
was defined in the form IF (reaction = On) ⇒ (gene = On). Only cases
where this can be assumed with 100% certainty are used: cases of one gene-
one reaction; cases where reaction is On and rule is a logical conjunction.

6. Based on these entailments, and taking as input the binary matrix of reac-
tions, the value of each metabolic gene in the model, for each condition was
determined. The possible alternatives are:
– ON - if the state of the gene is determined by one of the gene entailments
– OFF - if no gene entailment can provide a value for the gene

The result is a matrix of ECs x genes, where each cell has value ON or OFF.
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7. Number of ECs where each gene is ON was calculated; genes were ranked.

8. The expression levels of genes (from the last step) in E. coli were compared
with the levels of orthologous genes in S. typhimurium.

9. The binary gene matrix was filtered, removing genes that are very frequently
ON (more than 99% of the ECs) and genes that are very rarely ON (less
than 1% ). The remaining genes are the ones that change significantly when
the environment changes; these were chosen to study how their expression is
regulated. Orthologous genes that are present in both lists were identified.

10. For all pairs of the remaining genes, co-expression values were computed,
using Jaccard coefficient (JC). For genes (g1 and g2), JC is given by:

JC(g1, g2) =
M11

M11 +M10 +M01
(2)

where: M11 is the number of conditions where both genes are ON ; M10 is
the number of conditions where g1 is ON and g2 is OFF ; M01 is the number
of conditions where g1is OFF and g2 is ON .

11. All pairs of genes with JC larger than a given threshold were listed. A graph
was defined with all those genes, where each pair is connected by a link if
the JC is larger than the threshold (in this case, 97%). Each connected
component of this graph is identified to provide a cluster. Resulting clusters
were analysed computing:

(a) the mean value of the percentage of ECs for which the genes in the
cluster are expressed (measures the level of expression of the cluster);

(b) the mean Jaccard value for all pairs of genes in the cluster (this measures
the compactness of the cluster);

(c) the percentage of all possible pairs of genes in the cluster, where the
Jaccard value is larger than the threshold (measures the coherence).

12. The clusters obtained using the E. coli and the S. typhimurium model were
compared, following the steps below:

(a) for each S. typhimurium cluster, we calculated an equivalent cluster
transforming all genes in their orthologs in E. coli;

(b) for each of those clusters we searched for the cluster in E. coli that has
the largest intersection (if any);

(c) for each of these matches, we calculated the size of the intersection, the
coverage of the intersection in both sets and the JC;

(d) global statistics for all clusters were generated.

13. The results of step 11 were compared with the regulatory model for E. coli:

(a) checking pairs of genes that share the same rule in the regulatory model
and comparing these pairs with the ones from step 11;

(b) creating clusters from the pairs in the regulatory model in a way similar
to the one followed in step 11;

(c) comparing clusters of E. coli from step 11 with clusters in the regulatory
model;

(d) comparing clusters of S. typhimurium with regulatory clusters in E. coli.
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14. For each gene, Data Mining algorithms were used to infer rules in the form:
gene is ON if external metabolite is present/absent in the EC. The idea is
to characterize all the conditions for which a given gene is expressed. Two
classifiers taken from the Weka DM platform [7] are used: (i) J48, which
provides a decision tree; (ii) JRip, which provides a set of rules. The latter
was selected since it provided more accurate classifiers, in preliminary tests
using 10-fold cross validation (results not shown). This process was done in
two steps:
(a) the rules for the genes in a given cluster (from step 11) will be very

similar and therefore only one set of rules is extracted for each cluster;
(b) rules were extracted for each gene not belonging to any clusters.

15. The DM classifiers obtained for both organisms were compared. The com-
parison is based on the set of external metabolites in the right hand side of
the rules from the previous step. The list of genes to be considered will be
the intersection of the genes in both models (from step 9).

16. For each cluster where there was a match (complete or partial) in step 13 c)
or d), we compared the set of external metabolites in the rules extracted in
step 14 with the set of external metabolites that control the gene expression
in the matching cluster in the model (including all upstream transcription
factors). The process was repeated for the list of unclustered genes (step 14)
and all genes in clusters where there was no match with the model.

3 Results

In this section, an overview of the main results obtained by following the previous
workflow is provided. The supplementary files mentioned along the text and the
full results of the study are provided in the URL: http://darwin.di.uminho.pt/
icannga13. All results files for a single organism are given in the form
model-filename.txt, where model is EC for the results related to the E. coli model
and it is ST for the results obtained using the S. typhimurium model.

3.1 Environmental Conditions and Growth Analysis

In the experiments, to create the ECs, 71 carbon sources and 38 nitrogen sources
(files carbonSources.txt and nitrogenSources.txt) were identified and used in both
models, providing a total of 5354 distinct ECs (step 1). These were organized
in a binary substrate matrix of ECs × external metabolites, indicating which
external metabolites (substrates) are taken from the media in a given EC (files
named model-substrateMatrix.txt in supplementary material).

The results of step 2 indicate the growth values obtained running FBA in
the set of ECs for each of the models. The file ECST-comparisonBiomass.xlsx
summarizes these results, showing the growth value obtained in each EC for
each of the models. From the simulations, 3885 ECs resulted in growth for E.
coli, while in the case of S. typhimurium the number is 3462 (73% and 65%
respectively). These are the ECs kept for further analysis (step 3).

http://darwin.di.uminho.pt/icannga13
http://darwin.di.uminho.pt/icannga13
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Also, we can calculate the overlap of the conditions where both models have a
similar outcome (growth/ no growth) to be around 82% showing a high level of
similarity between the metabolic behaviour of both organisms. To further analyse
these results, we used DM classifiers to characterize the conditions where one of
the organisms is able to grow, while the other is unable to do it. The idea is to have
a set of rules that represent which ECs are in those conditions, thus highlighting
the major differences in the overall metabolic capabilities of both organisms. The
results from the classifier are shown in file ECST-comparisonGrowth.txt. Step 4
creates a binary matrix of ECs × reactions showing which reactions are active in
each simulation (files model-fluxesBinary.txt).

3.2 Gene Expression Analysis

Steps 5 and 6 provide results similar to the previous at the level of the genes,
creating binary matrices of ECs × genes (files model-GenesMatrix.txt). Based
on these data, the activity level of each gene is calculated, i.e. the percentage of
ECs where the gene is expressed (files model-GeneActivity.txt (step 7). The genes
were divided into classes according to their frequency. Results are given in Table
1. After filtering the very rarely and very frequently expressed genes, the number
of genes kept for the analysis was 290 for E. coli and 256 for S. typhimurium
(23% and 27% of the genes in the model, respectively). One conclusion is that
the number of genes that are regulated seems to be relatively low. The main
part of the genes are either always active or inactive.

Table 1. Analysis of gene expression level for both organisms

Level S. typhimurium E. coli

Never expressed 457 (49%) 748 (59%)
Rare (<5%) 144 (15%) 148 (12%)
Low (5-50%) 68 (7%) 100 (8%)
High (50-95%) 54 (6%) 59 (5%)

Very High (95%-99.9%) 49 (5%) 44 (3%)
Always (100%) 164 (18%) 162 (13%)

To further analyse these data, we checked the expression of the orthologous
genes from the two organisms. The expression levels of each pair of orthologs
was compared. The results are given in file ECST-OrthologsExpression.xlsx A
good match between the two models is clear, measured by the low differences in
the overall expression and the high values of the intersection of the expression
patterns (measured by the application of the Jaccard coefficient to each pair).
From this analysis it was possible to identify two groups: a large group with genes
that are highly co-expressed in both organisms (high JC and low differences of
global expression levels) and a small group that shows significant differences
between the expression patterns in both organisms.
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3.3 Co-expression Analysis and Cluster Formation

The Jaccard coefficient was used to identify pairs of co-expressed genes (step
10) that were further grouped into clusters of genes with high JC values (step
11). This analysis allowed to reach the number of clusters given in Table 2 for
each organism. An analysis of some metrics related with the clusters cohesive-
ness and compactness (calculated in step 11) are summarized in files model-
ClusterAnalysis.txt. Summarizing the contents of these files, the clusters found
are quite compact (most of the possible intra-cluster interactions are present)
and the mean Jaccard value of the possible pairs is quite elevated.

Table 2. Number of clusters found for each model

S. typhimurium E. coli

Number of clusters 48 59
Genes within clusters 149 (58%) 190 (66%)

The comparison of the clusters for the two organisms (considering the ortholo-
gous pairs) shows a high level of agreement. Indeed, when considering the match
of the orthologs, 81% of the clusters have a partial match, while 52% have a full
match. Also, the coverages of cluster elements from one organism to the other are
77% and 74%. The full metrics are given in ECST-OrthologsClustersMatch.txt.

3.4 Comparison with the Regulatory Model

The clusters previously determined for E. coli are analysed by comparing with
the known transcriptional regulatory network (TRN) for the same organism (step
13). To enable this comparison, clusters are created from the TRN by gathering
genes that are co-regulated by the same transcription factors (i.e. share the same
right hand side of the regulatory rule in the TRN).

A comparison of the clusters from the TRN with the ones reached in step 11
leads to the conclusion that our method is able to recover a significant number of
regulatory interactions. In fact, 59% of the clusters have a partial match and 25%
have a complete match, while the coverage of the TRN clusters by our clusters
is around 49%. The full analysis is provided in file EC-MatchClustersTRN.txt.
The same exercise was provided for S. typhimurium (step 13 d). While no TRN
is available, the one for E. coli is used as a template (assuming that it will be
similar). The results are somewhat surprising, since the match of the clusters
for S. typhimurium with the E. coli TRN is even better than the E. coli itself.
Indeed, 65% of the clusters have a partial match and 27% have a complete
match, while the coverage is around 55%. The full analysis results are given
in ST-MatchClustersTRN.txt. This provides a strong evidence of the possible
conservation of the TRN in both organisms, a fact that can be used to help in
the reconstruction of a TRN for S. typhimurium.
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3.5 Data Mining Analysis of Gene Expression

In step 14, DM classifiers are used to get rules for each gene, in terms of the
substrates used in the ECs. This allows to infer which genes are necessary for
growth in a given condition. The analyses provided for each cluster are given in
files model-ClusterDMAnalysis.txt for the JRip classifier. Also, the same results
were also calculated for individual genes not present in any cluster, being given
in files model-NoClusterDMAnalysis.txt. A comparison was done of the classifiers
obtained for both organisms, taking into account the set of attributes (external
metabolites) used in each pair of orthologous genes. The result is given in file
ECST-DMAttributesMatch.txt. An analysis of these results shows again a high
level of agreement: 90% of partial match and 47% of full match.

Finally, we have compared the attributes used in the rules extracted using
DM (for each cluster) with the available regulatory information. To achieve this,
the rules available in the E. coli TRN were analysed and all dependencies of
regulated gene to external metabolite presence/ absence were collected. Thus, for
each gene, a set of external metabolites that influence its expression pattern was
gathered. This was compared with the set of attributes used in the DM classifier
of the same gene. The process was repeated for E. coli and S. typhimurium.
Results are provided in the files: model-DMAttsMatchTRN.txt.

The results are summarized in Table 3 for both models. The high values
obtained show that the proposed methods are able to correctly identify a signif-
icant number of regulatory interactions between the presence/absence of certain
metabolites in the media and gene expression.

Table 3. Results of the comparison of DM attributes with TRN dependencies on
external metabolites

S. typhimurium E. coli

Partial match 81% 83%
Full match 14% 13%

Coverage DM clusters 61% 55%
Coverage TRN clusters 42% 525

4 Conclusions and Further Work

In this work, a workflow for the large scale analysis of the metabolic behaviour
of organisms where a genome-scale model exists has been proposed. These meth-
ods allow to characterize the gene expression of metabolic genes, based on the
compounds available in the environment. We have shown that this method can
be used to infer regulatory interactions, in the form of clusters of co-expressed
genes, and also to infer the control of gene expression by the presence/ absence
of external metabolites in the media. In the case studies, the methods allowed
to recover a significant number of regulatory interactions that were confirmed
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by an existing regulatory network. Also, the use of DM classifiers for external
metabolite dependency identification is a powerful technique to characterize the
space of media where a given gene/ reaction is required. Overall, these methods
seem a good way to establish hypotheses on regulatory events.

This work suggests an approach for recovering regulatory interactions in S.
typhimurium from the template TRN of E. coli that would involve the steps:

– check orthologous genes that show the same pattern of expression;
– check the regulatory interactions known for those genes in E. coli;
– infer that the same type of interactions exist in S. typhimurium;
– validate with expression data or pre-existent knowledge in databases.

This method can be very useful in uncovering regulatory models, a Bioinformat-
ics task far less studied comparing to the reconstruction of metabolic models.
Also, the results obtained in these large scale simulations can be used to vali-
date the metabolic model by comparing patterns from model predictions to the
measurements of gene expression (e.g. from DNA microarrays or RNAseq).

In future work, we intend to enlarge the methods proposed to a broader set
of organisms, providing tools for the use of genome-scale metabolic models in
comparative analysis of metabolic behaviour and regulatory mechanisms.
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Abstract. Ecological Niche Modeling (ENM) is a branch of biology that
uses algorithms to predict the distribution of species in a geographic area
on the basis of a numerical representation of their preferred habitat and
environment. Algorithmic maps can be produced for suitable or native
habitats and require a review by human experts. During the review oper-
ation biologists use their knowledge about a species to modify the maps.
They usually take algorithmic maps as starting point in the review. In
this paper we provide a methodology for biologists to use the automatic
maps as references also during and after the review process. Our approach
is based on a comparison between the reviewed map and two systems: an
expert system and a Feed Forward Neural Network. Furthermore we sug-
gest an evaluation procedure of the quality of the environmental features
used as training set, for assessing the models reliability.

Keywords: Ecological Niche Modeling, Feed Forward Neural Networks,
AquaMaps, Maps Review.

1 Introduction

The term Ecological Niche Modeling (ENM) refers to a set of methods that use
algorithms to predict the distribution of species in a geographic area. ENM tech-
niques focus on a numerical representation of a species habitat, which should be
complete and made up of independent variables. Several approaches have been
used for this task, ranging from physiological to mathematical models [16]. Re-
sults are usually produced in the form of GIS heat maps, where a color gradient
represents a range of probabilities and hotter colors correspond with higher prob-
abilities. These maps can be generated by automatic procedures using different
kinds of approaches [15]. Automatically generated maps are usually reviewed by
a biologist in order to correct inconsistencies. The biologist uses his/her knowl-
edge about the species to make little corrections or to completely redesign the
distribution map. Such corrections can consist of adjusting models parameters
or in manually editing distribution values.

In this article, we propose a methodology that can help biologists in dis-
covering gaps in their knowledge when reviewing a map. They can investigate
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inconsistencies and revise some assumptions made during a review. Furthermore,
the method proposes statistical analysis techniques for validating the quality of
the map. The method has been applied to marine species. It is based on a com-
parison between the reviewed map and two systems: an automatically generated
distribution based on Feed Forward Neural Networks, and an expert system
(Aquamaps [12]) for marine species distribution prediction. A features process-
ing technique, based on Principal Component Analysis, is then used for assessing
the reliability of the models and consequently of the reviewed map.

In Section 2 we report an overview of common approaches for producing
species maps. In Section 3 we describe the methodology and propose an example
of application. In Section 4 we draw the conclusions.

2 Overview

Ecological Niche Modeling is usually a complex and iterative process including
[8]: (i) identification of relevant data, (ii) modeling, (iii) projection of predictions
onto a geographic space. The first step is crucial and usually involves the identi-
fication of environmental features related to species preferences. In this paper we
don’t focus on features selection as our method is applied after the projection
step. For what regards modeling, techniques are usually based on occurrence
records (presence points), i.e. places where the species has been observed in its
habitat. Some approaches need even to use absence points, i.e. locations where
the environment is considered unsuitable for a species [9]. Models need represen-
tative occurrence data and independent and complete environmental parameters.
These possibly give robustness and reliability to the models [11,8]. The choice of
a suitable modeling technique for a specific scenario is not trivial. There is not a
general pattern to follow when designing an ENM experiment: each species can
be specific in terms of habitat and presence/absence information. In [8] the au-
thors report several applications and eventually indicate possible directions for
producing robust models. Such directions involve (i) improvement of methods
for modeling presence-only data, (ii) accounting for biotic interactions and (iii)
assessing model uncertainty. Similar advices come from the BAM diagram for
Biotic Interactions described in [17]. Other issues involve the choice of the kind of
modeling technique to apply: a model could try to explicitly catch the behavior of
a species and its physiological limits and tolerances [4] (mechanistic approaches).
Otherwise it could automatically extract the correlations between the environ-
mental features vectors and the species presence (correlative approaches) [16].
In our methodology a scientist is suggested to use a particular algorithm for
simulating the opinion of another biologist on the reviewed map. This algorithm
uses a partial mechanistic approach that involves expert knowledge about the
species. On the other side we use a correlative technique for generating maps
according to different inputs sets.
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2.1 ENM Algorithms: Aquamaps and Feed Forward Neural
Networks

Several tools allow scientists to produce maps by applying Niche Modeling al-
gorithms [19,5]. In [16] a big collection of techniques is presented along with the
kind of scenarios these should be applied to. Artificial Neural Networks (ANNs),
in particular, have demonstrated to gain high performances when absence and
presence points are available for the species to model. ANNs implement a cor-
relative approach as they try to automatically simulate the probability for a
species given certain environmental conditions. Also other models, like SVMs,
have gained very good results in ENM [7], but we chose to rely on the advices
in [16] and to use ANNs in our method at first stage.

In [18] the authors report a comparison among the most used correlative ap-
proaches applied to some marine species of commercial and scientific interest.
Among these, the Aquamaps algorithm [13,12] is a presence-only species model,
that allows the incorporation of expert knowledge about the species habitat.
The Aquamaps distributions are generated using information about species pref-
erences on environmental properties like depth, salinity, temperature, primary
production, distance from land and sea ice concentration. Maps are produced
at 0.5 degrees resolution. The expert knowledge is used in modeling the habitat
parameters and the species preferences. The environmental features values are
manually edited before applying the model, then a trapezoidal function is traced
for each of them. This function represents the species ‘preferred’ values for that
parameter and can be automatically produced by processing the values ranges
associated to the presence points. In particular, the trapezoid is traced on 4
values called minimum, preferred minimum, preferred maximum and maximum.
These values are calculated, for each parameter, by a rule-based procedure [12]
using percentiles of the values observed at the presence points. In some cases the
trapezoid can be manually traced by a biologist. The probabilities are produced
by multiplying the values of the functions at a certain 0.5 degrees cell in the
oceans. Aquamaps presents mechanistic assumptions combined with automatic
estimation of parameters values. After the model projection, a scientist can re-
view a map by manually changing the trapezoidal curves or by modifying the
values in the produced distribution table. Aquamaps is a reference algorithm
for marine species distribution modeling, as it gains high performances if com-
pared to other purely automatic procedures [6]. For such reason we used it for
simulating the point of view of another biologist in our method.

2.2 Features Analysis: PCA and HRS

Features analysis is crucial in ENM. A preliminary processing of the features
vectors constituting the training set could highlight useless features or could
evaluate the potential robustness of the models to produce. One of the most
used techniques is the Principal Component Analysis (PCA) [10] a mathemat-
ical procedure that aims to reduce the number of dimensions of the features
space. PCA uses an orthogonal transformation in the features space for produc-
ing independent variables called principal components. This transformation can
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be useful for investigating the correlations among the environmental features
used in ENM. Adding more dependent variables, in fact, usually does not result
in better models. PCA is not specific to biological applications, but other topic-
oriented transformations can rely on it. The Habitat Representativeness Score
(HRS) [14] is an algorithm based on PCA that applies to marine species environ-
mental features. It measures how much representative sampled habitats are for a
certain area of study. HRS has been used for assessing the minimum number of
surveys on a study area that are needed to cover a good heterogeneity of species
habitat variables. HRS can be applied to two datasets of environmental features,
one representing a sampled area and the other a geographical region of interest.
A score is produced for each feature, ranging from 0 to 2, with 2 representing
completely non-overlapping distributions of values. The lower the HRS the more
similar data obtained from a survey to the study area. In this paper we show how
HRS can be useful for investigating the robustness of trained models. We applied
HRS for assessing how much the features associated to species occurrence points
represent a projection area.

3 Methodology

The proposed methodology aims to assist biologists in the evaluation of their
manually created maps. The basic assumption is that biologists use their ex-
pert knowledge about the species spatial distribution and environmental pref-
erences. This knowledge could be general or specific about some place in which
the species lives. In the case of local knowledge it could be that the training
set of a model contains indications about a disjoint location. In this case, the
biologist and the automatic system start from different assumptions, referring to
completely dissimilar environments. This can be generalized by considering the
expert knowledge and the automatic system’s training set as two sets of multi-
dimensional points, where each dimension refers to a separate environmental
feature. This leads to one of the following: (i) the biologist’s knowledge includes
the training set, (ii) the biologist’s knowledge and the training set are disjoint,
(iii) the biologist’s knowledge is completely included in the training set.

The first part of our methodology aims to suggest to biologists in which of
these cases the reviewed map could fall. For such aim, they could follow these 6
steps:

1. produce an Aquamaps distribution for the species;
2. review the distribution and produce a reviewed map;
3. variate the training set of a Feed Forward Neural Network in order to simu-

late a spot knowledge or a wide knowledge about the species. Take the best
performing network topology in each case;

4. perform a numeric comparison between the reviewed map and the Neural
Network maps;

5. use a statistical quality analysis for evaluating similarities among the maps;
6. compare the maps with the Aquamaps distribution as this was the opinion

of another biologist.
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Fig. 1. Manually reviewed Aquamaps distribution for the Basking Shark taken from
the AquaMaps website [2]

The second part of the proposed methodology then assesses the reliability of
the automatic maps. In order to produce a robust model, the training set has to
cover the projection area in terms of the variations in the environmental features
values. For example if a Neural Network was trained on a partial set of knowledge
(e.g. some points in the Mediterranean sea) but must be projected on a totally
different environment (e.g. the Arctic Ocean), then its performances are likely
to be unreliable. If a biologist finds the reviewed map to be similar to a possibly
unreliable map then he/she might consider to revise it. The final steps in our
method can be resumed as follows:

1. apply the HRS to the training sets used for the Neural Networks respect to
the projection area;

2. evaluate, numerically, which is the most representative training set;
3. consider the reliability of the reviewed map by looking at the nearest correla-

tive map, the representativeness of its training set and the simulated opinion
of another expert.

In the next subsection we show a use case in which the described methodology
has been applied to a manually created map for the Basking Shark.

3.1 Use Case

We performed an experiment on the Basking Shark (Cetorhinus maximus) ma-
rine species starting from the manually created map reported in figure 1. The
AquaMaps website [2] provides (i) 449 occurrence points, (ii) a manually re-
viewed map and (iii) a map generated by the Aquamaps Suitable algorithm
[12]. We used the Aquamaps Suitable distribution as a reference to simulate
the opinion of another biologist. Figure 2 depicts the presence data distribution
(Presences set), while figure 3 depicts the Aquamaps Suitable distribution. The
maps illustrate that the Aquamaps and the reviewed map are very different.

Following the approach described in Section 3, we trained a Feed Forward
Neural Network with the same environmental information used by the Aquamaps
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Fig. 2. Presence points for the Basking Shark, provided by Fish-Base [3] and AquaMaps
[2]

Fig. 3. Aquamaps Suitable range for the Basking Shark

Table 1. Performances of the Neural Networks trained on Dense and Sparse Absences

Accuracy Sensitivity Specificity

NN Dense 64% 96% 33%

NN Sparse 72% 49% 95%

Suitable algorithm. The inputs were vectors of 10 real numbers reporting (for
0.5 degrees oceans cells): the minimum, maximum and mean depth, the mean
annual water values for salinity, bottom salinity, surface temperature, bottom
temperature, primary production, distance from land and sea ice concentration.
Thus, the network had 10 input neurons and 1 output neuron, returning real
numbers ranging from 0 to 1. Hidden layers were necessary because the function
to be simulated by the network was not linear.

We decided to simulate two variations in the knowledge about the species, by
selecting two sets of 449 absence points: (i) a Dense Absences set, where absence
points were close together, (ii) a Sparse Absences set, where absence points were
widely distributed in the oceans. Figure 4 shows the Dense Absences set (left)
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Fig. 4. Dense and Sparse Absences sets for the Basking Shark

and the Sparse Absences set (right). Absence points were necessary because in
our case Neural Networks required both positive and negative cases. We chose
to variate the absence points sets because presence points are usually reliable
information. Reliable absences are much more difficult to find, and it is likely that
biologists rely on undocumented knowledge about them. Absence points were
not available for the Basking Shark on [2], thus we used the reviewed map for
generating them. We took locations with probability lower than 0.1 and higher
than 0 to simulate places where the Basking Shark has very low probability of
occurrence. We trained a Feed Forward Neural Network on the Presences and
Dense Absences sets (NN-Dense), and another one on the Presences and Sparse
Absences sets (NN-Sparse). In the training sessions we changed the number of
hidden layers and of neurons in each layer. We adopted a growing approach,
in which we added neurons and layers as far as the performances on the test
set increased. Eventually we took the best performing topologies. We wanted
the evaluation to be independent on other maps, therefore we used the 80%
of the points for training and 20% for testing. The sets were not overlapping
and the best performing model was chosen on the basis of the accuracy on the
test set. The best NN-Dense model had 2 hidden layers with 100 neurons in
the first layer and 2 neurons in the second, while the best NN-Sparse model
had 1 hidden layer with 300 neurons. Table 1 reports the performances of the
two models. The accuracy indicates the correct classification rate, the sensitivity
the true positives fraction and the specificity the true negatives fraction. The
accuracies are comparable, but while the NN-Dense model fits better to true
positive classifications, the NN-Sparse prefers true negative classifications.

Figure 5 depicts the NN-Dense model projected on the world oceans, while
figure 6 shows the map by the NN-Sparse model. The NN-Dense projection is
widespread while the NN-Sparse one seems more similar to the Aquamaps Suit-
able distribution. We evaluated the similarities among the maps by considering
as true positives the points in which the reviewed map reported at least a 0.8
probability and as true negatives the less than 0.1 probability points. The accu-
racy of NN-Dense respect to the reviewed map was 96.08% while NN-Sparse
gained 66.75%. Taking the Aquamaps Suitable map as reference, NN-Dense
gained 82.41% while NN-Sparse gained 93.71%. This evaluation can indicate
that the NN-Dense model is more similar to the reviewed map while NN-Sparse
is more similar to the Aquamaps Suitable map. For biologists this can be crucial
information. The method indicates that the reviewed map is similar to another
one generated by an automatic model that uses only limited and local knowl-
edge. A wider knowledge is instead in agreement with an expert system (the
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Fig. 5. Neural Network Dense model projected on the world oceans

Fig. 6. Neural Network Sparse model projected on the world oceans

Table 2. Overall Habitat Representativeness Score between the projecting area and
the training sets

HRS on world oceans

Presences + Dense Absences 4.49

Presences + Sparse Absences 3.39

Aquamaps Suitable distribution). At this point the biologists choose if the re-
viewed map has to be revised or if both the expert and the automatic systems
are wrong.

As second step, we applied the Habitat Representativeness Score (HRS) tech-
nique between the projected area and the presences and absences sets. An overall
score was calculated by summing the HRS scores of the involved features. This is
different respect to the original procedure. In [14] the author suggests to weigh
each score by the inverse of the eigenvalues of the PCA transformation. We
avoided this inverse weighting because in our case (i) the eigenvalues depended
on the ordering of the vectors used for calculating the PCA, (ii) we kept all the
principal components, because we considered all the features as independent and
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equally important, (iii) the HRS scores of the parameters were commensurable
and an inverse weighting would have given too much importance to less variable
dimensions. Table 2 reports the overall HRS of the projection area respect to
two combinations of points. As we used 10 environmental features, the maxi-
mum (worst) HRS was 20, and the minimum (best) was 0. The combination of
Presences and Sparse Absences offer the best performances but according to [14]
the score is still high. The maps generated by the Neural Networks might not be
robust because the training set does not represent the projection area. On the
other side this does not mean they are performing badly, as the scores on the
test sets are not low (table 1). At this point the technique offers a more complete
scenario about the review: the manual map is similar to a map trained on a local
knowledge which is not robust. Furthermore a simulated expert opinion agrees
on using a wider knowledge. It is then on the biologists’ side the decision to
revise or to confirm the reviewed map.

4 Conclusions

We have described a method for using automatic techniques to evaluate a man-
ually reviewed map for a species distribution. The method aims at scientists
who want additional tools to revise their maps. We used Feed Forward Neural
Networks to simulate different scenarios and calculated the similarity between
the processed and the manual maps. By highlighting the similarities a biologist
can quickly notice inconsistencies in the manually reviewed map. Furthermore,
we used an expert system to simulate the point of view of another scientist that
could be taken into account. Finally, by using a PCA based technique we eval-
uated the reliability of the automatic models by indicating the completeness of
the training set. In the Basking Shark experimental case, we demonstrated that
the reviewed map was similar to a map trained on a local knowledge and gen-
erated by an incomplete training set. Furthermore, by using a more distributed
training set with the same dimension, the resulting map was more similar to
an expert system’s one. This methodology has been adopted in the i-Marine
project [1] and is currently used on its stored data sources. Our future activity
will concentrate on analyzing the application of our methodology by real users in
order to collect more examples and to extend it. Feed Forward Neural Networks
may be substituted by better performing models [7] or by presence points-based
models [18]. Moreover, the current approach can be combined with additional
analytical techniques that can reveal further qualitative information about the
feature set, and thus improve the reliability of the maps.
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Abstract. Cancer cells present several mutations that allow them to
grow faster than normal cells, at the time that enables them to avoid
apotosis and other control processes. Cancer cell may be affected by
synthetic lethality, which refers to the induction of one or more mutations
that affect them, but affect normal cells as little as possible. It is one of
the goals of bioinformatics to identify synthetic mutations in order to
target specific cancers. If synthetic mutations affect several cancer cells,
then it is possible that also some normal cells may be affected. In this
contribution, we describe a methodology able to identify a small set of
those mutations that affect in a differential way several breast cancer
lines. Our methodology is an instance of the feature selection problem
and based in genetic algorithms for the exploration of the solution space,
but guided by mutual information. Our results show that cancer lines can
be profiled with only a small subset of mutations from an original list of
hundreds of mutations.

Keywords: cancer profiles, neural networks, genetic algorithms, feature
selection.

1 Introduction

Cancer is one of the first causes of death in the developed countries, and it
is growing in the developing ones [1]. Among the existing treatments to fight
cancer, the directed mutation of cancer cells is one of the most promising ones
[2]. Cancer cells present several mutations that do not compromise their viability,
and lead them to reproduce at higher speeds than normal cells. Also, some of
those mutations eliminate apoptosis so cancer cells are not prone to die, or not
to do so in a regular way [2]. The aim of molecular and personalized medicine
is to generate other mutations on cancer cells that, together with the already
existing mutations in them, affect viability [3]. This is called synthetic lethality.
The general idea is that those new mutations that compromise cancer cells at
the time that do not affect normal cells, are candidate for drug development.

The general assumption is that a mutation caused by the interference of the
messenger RNA by means of small interfering RNA (siRNA) in some kinase af-
fects viability by perturbing a relevant pathway [4]. For the different cancer cells,
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including breast cancer, several mutations are present and several pathways may
had suffered perturbations. By creating new mutations through interference, sci-
entist expect to decrease the viability of cancer cells. Any new mutation can also
affect normal cells, which is of course undesirable. Thus, scientist are interested
in the minimum set of perturbations (mutations) that may kill cancer cells (see
fig. 1-a)).

Those new mutations can be inflected by siRNA, as they affect the expression
of some genes by down(up)regulating them. Scientists have explored several of
those mutations aiming to attack cancer cells while affecting as little as possible
the normal ones. In order to do so, a first option could be to select the siRNA
that presents the highest effect in cancer cell viability. For example, for BT20
cancer line, the targeted kinase that impacts the most is PK11. However, that
kinase also affects other cancer lines.

If a mutation affects viability of several cancer lines, then the assumption we
follow in this project, is that it is affecting different pathways. That affection may
also affect pathways relevant for normal cells. We are interested then in finding
mutations (kinase targeting siRNAs) that affect differentially all cancer lines.
In fig. 2 it is observed that the siRNA targeting kinase PLK1 affects viability
in twelve different cancer lines. By affecting that wide range of cancer cells,
from our assumption follows that relevant pathways for normal cells may be also
affected. That affection may lead to damage on normal cells and thus constitute
a constraint for the use of that kinase as a drugable target.

Also, some of the replicates of the same cancer line are mainly affected by
different siRNA. This fact contradicts the presumption that the same targeted
kinase may be affected in all replicates (instances of the same class).

We studied the data from [5] which consists of 20 breast cancer lines profiled
with 719 kinases and kinase-related genes. Each cancer line was profiled by
affecting the kinases and its viability was measured with the Z-score. In short,
each kinase was targeted using the biological phenomena of RNA interference
(RNAi), which happens when a small RNA (mainly small interfering RNA or
siRNA) is attached to a messenger RNA (mRNA) and thus the expression of the
associated gene is down(up) regulated. This interference can be though of as a
perturbation in the natural pathway in the cell. If that perturbation compromises
the cell viability, the cell will die or decrease its activity and a way to measure
it is ATP consumption. By screening hundreds of siRNA that targets different
kinases scientists can identify which siRNAs (and thus, which genes) affect cancer
lines and thus, constitute candidate drugs [4]. Fig. 2 shows a general description
of the data mined and reported in this contribution.

In this contribution we intend to answer at least the following questions.
How does different breast cancer lines are affected by kinases? A subsequent
question arise naturally from the previous ones: Expressed in computational
terms: What is the minimum set of kinase-targeting siRNA (variables) able to
classify the different cancer lines (classes). This is an instance of the feature
selection problem. If we want to rephrase that question in order to highlight
its biomedical relevance then we can ask: What small set of kinases presents
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a differential effect in the viability of cancer lines as to become a signature of
cancer lines? To answer these question, we applied a self-organizing maps as
visualization method.

The rest of the contribution goes as follows In section 2 we briefly introduce the
tools and algorithms applied for seeking an answer to the mentioned questions.
In section 3 we present results in which small sets of kinases are enough to
discriminate cancer cell lines, and in section 4 we state some conclusions.

2 Methodology and Tools

Feature selection (FS) is a field in machine learning and data mining which
impacts in several fields [6]. Mathematically, it can be stated as follows. Let
N be the number of potentially relevant variables or attributes that explain or
determine the class ci to which each analyzed vector xi belongs to and let V the
set of variables or measures take for each vector. It is assumed that the class an
object belongs to can be discerned from the attributes that describe that object:
ci = f(Vi) where Vi is the description of the vector i and Vi = {v0, v1, ..., vN−1}
is composed of N measures or variables, and f(.) is a function whose domain is
that of the possible classes.

If a subset of the N variables in V , named W (W ⊂ V, |V | = N, |W | = n)
can be identified such that there is a function that correlates the class of an
object and its description then those n < N variables are the ones relevant for
the classification problem. In mathematical terms, FS tries to identify a set of
n variables such that ci = g(Wi) = f(Vi). Two tasks that are embedded have to
be solved: the identification of W and the identification of the function g that
classifies vectors from W .

Lets callW the space generated byK attributes from space V . The number of
possible spaces W is the number of permutations of K positions available to D
different attributes C(D;K). The exhaustive search for the case here presented
is prohibitively time consuming for K > 3. Thus, a search scheme is needed.
We applied an heuristic search method, the genetic algorithm, in order to find
at most K attributes from V that generate a space such that the statistical
correlation between K and the class is maximum. Here, we will measure that
statistical correlation in terms of mutual information. Thus, we aim to find a
minimum number of variables such that MI(K;Class) is maximum.

There are three schemes to face the FS task: Filter, Wrapper, and embedded
methods [7]. We propose here the use of a wrapper method, and, as described be-
low, the evaluation of the selected features is done by means of a non-linear corre-
lation measure.We propose a genetic algorithm able to identify n variables . As an
approximation of the classification function g we propose the use of mutual infor-
mation (MI). Fig. 1 shows te general algorithm for feature selection. As a variant of
the existing FS algorithms, our proposal is based in MI, and the inclusion of vari-
ables is probabilistic: the more the MI between a variable and the class, the more
probable the variable will be selected to become part of an individual.
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Fig. 1. Feature selection scheme implemented by a genetic algorithm. Each individual
represents in its chromosomes the siRNA considered for the complete identification of
the cancer class.

For visualizing purposes we applied self-organizing maps (SOM). SOM are
able to generate non-linear projections of high-dimensional data into low-
dimensional spaces. Those projections are in general good approximations of
the data distribution in the high-dimensional space [11].

Fig. 1-b shows the general workflow we followed to identify those features
(kinases and kinase-related genes) that differentially affect the cancer lines. Once
again, one of our goals is to find a subset of the 719 kinases that differentially
affects the 20 different cancer lines. By doing so, our workflow is in a position
to suggest to biomedical experts a subset of the studied kinases that may affect
specific breast cancer cells.

3 Results

We decided to apply mutual information instead of the more common correla-
tion measures (Spearman, Pearson) as it is able to detect non-linear and subtle
correlations [8]. Mutual information between two random variables X and C
is expressed as MI(X ;C), where X is in this work refers to one of the siRNA
measures of viability, and C is the class or cancer cell line MI is defined as:

MI(X ;Z) =

#statesinX∑
i

#statesinC∑
j

P (i, j)log
P (i, j)

P (i)P (j)
(1)
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For the case of classification, the number of states in C is just the number of
classes, and ns is the number of states in X . If X is a continuous variable, then
it can be discretized into ns different states. In information-theoretic algorithms
the guiding quantity to be minimized is the Renyi Quadratic Entropy of the
error between the output of the system and the actual label [13].

In general, for artificial datasets with no noise, all entropy in the label can be re-
moved from the list of attributes X̄ that define the high-dimensional feature space.
That is,MI(X̄;C) = H . Mutual information between the compound system of all
attributes or variables andC (MI(X̄ ;C)) tends to disipate all entropy in the label.
That is, when ns → ∞,MI(X̄;Z) → H . When the guiding quantity of an adap-
tive systemF (suchMLP) is themutual information, we are considering high-order
momentum able to capture non-linear correlations in data [9,8].

In the analyzed dataset, there are 59 vectors belonging to 20 different classes.
The entropy of the dataset is H = 4.14 bits. In fig. 2 it is shown the probability
distribution of the number of siRNA and the MI for the class (cancer cell line).
MI was obtained in this case with a discretization of viability into 20 states. The
maximum MI is 2.7023 obtained between siRNA targeting kinase CHKB. Note
that this kinase is not listed as one of the kinases presenting the highest effect
for any of the cancer lines (see fig. 2).

Our dataset consists of a high-throughput screening (HTS) of 20 breast cancer
cell lines (20 classes). On each screening, 719 kinases were targeted. In a typical
HTS, plates are filled with such that on each well of the plate a certain cancer line
is present and also one of the 719 siRNA that targets the associated kinase. That is,
on each well a siRNA will mutate (affect) the cell, and the impact of that interac-
tion will be measured. If the viability of the cancer cell is compromised, a negative
measure is obtained. Ameasure of -2.0 or less indicates that the cancer cell was not
able to survive, and thus, the targeted kinase may be relevant for the cancer cell.
Each well on the plate is considered an independent experiment, and hundreds or
thousands of simultaneous experiments can be performed. Each experiment was
performed two or three times. Thus, for each cancer cell the dataset contains one
or two technical replicates. In total, there are 59 input vectors, that correspond to
19 cancer lines with two replicates (three experiments) and one cancer line with
only one replicate(two experiments).

In the first set of analysis, the 59 cancer lines were the input vectors, and
the measure of viability for each of the 719 siRNA targeting the kinases were
considered as the variables. That is, a given cancer line is described as a vector
of 719 real values, in which each one of those values represent the impact that
the associated siRNA presented on the cell viability.

Fig. 3 shows the map obtained by SOM on a lattice of size 12×12 units for of
the 59 cancer cells. Those 59 input vectors are described by 719 measures, which
define a 719-dimensional space. It is observed that replicates from the same
cancer line tend to be located in the same area, but there are some exceptions.
One interpretation of this map is that the 719 siRNA affect in different ways the
59 cancer lines. However, as stated in the introduction, by targeting different
kinases, the viability of normal cells may be affected. Thus, we are interested in
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Fig. 2. Kinases with the highest effect on cancer lines. For each of the replicates it is
shown the most influential targeted kinase. It is observed that replicates of the same
cancer line may present different most influential kinases. Also, one kinase is the ost
influential in 12 different cancer lines. b) Probability distribution of mutual information
between kinases and class. One kinase presents MI in the range 2.43 – 2.702, whereas
four kinases present a MI below 0.27.

selecting some of those 719 siRNA that are still able to target in a differential
fashion the 20 cancer cells.

The data reflecting the siRNA effect can be filtered more, as values above -1
mean that there was not effect on the cell viability. From the original dataset,
we constructed a second one in which siRNAs that do not present a value of -1
or less for at least 15 of the 59 cancer lines are filtered out. This reduced dataset
contains 25 siRNA and thus, cancer profiles are located now in a 25-dimensional
space. Fig. 4 shows the SOM formed over a 12x12 lattice.

Again, it is observed in fig. 4 that the selected 25 siRNA have a more or less
differential influence in the cancer lines. It is observed that some cell lines are
very similar at the time that replicates of the same cancer are not as similar as
expected. We are interested in finding a subset of those 25 variables that can
determine with less error the cancer cell. That is, we want to select features from
the list of 25 selected siRNA that have effect in the majority of the cancer lines.

A näive method to select n < N siRNA from the list of the filtered N = 25
variables would be to select the n with the highest correlation measure. That
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Fig. 3. SOM for the 20 breast cancer lines. There are three instances for each one of the
20 cancer types, except for BT474, which only presents two instances. Each cancer line
is described by 719 variables, that represent the viability on the cell when targeting
independently 719 kinases or kinase-related genes. The measures (planes) for three
siRNA are shown. It is observed that these three siRNA have a differential impact in
the different cancer lines.

Fig. 4. SOM for the 20 breast cancer lines. There are three instances for each one
of the 20 cancer types, except for BT474, which only presents two instances. Each
cancer line is described by 25 variables, that represent the viability on the cell when
targeting independently 25 kinases or kinase-related genes. The measures (planes) for
three siRNA are shown.
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Fig. 5. a) The estimated class from the 7 variables (siRNA) with the highest mutual
information. MLP was of 7 inputs, two hidden layers, each one with 10 neurons (that
was the combination with best results). MLP was trained with genetic algorithms for
5000 epochs and with a population of 200 individuals.b) The estimated class fro the 7
variables (siRNA) selected by the FS algorithm.

Fig. 6. The number of times each one of the 25 siRNA were selected by the FS algo-
rithm. The five most informative variables, accordingly to equation 1, are marked in
blue.

measure can be Spearman, Pearson or MI, but that selection criteria is a poor
decision as it does not take into account dependencies between variables. A
methodology to establish if a class can be inferred from the existing variables is
to use an universal approximation formalism. We applied multilayer perceptrons
(MLP) in order to compute the class (cancer line) from the specified siRNAs
values. Fig. 5-a shows the predicted class from the n = 7 variables with the
highest MI to the class (class is normalized). The approximation task was ob-
tained with a MLP with two hidden layers and several number of units on each
layer were tested. MLP was trained with a genetic algorithm for 5000 epochs,
200 individuals and a probability of mutation of 0.05. It is presented the best
case, and it is observed that the approximation is not a good one (MSE = 0.4).

In contrast with the results achieved when a näive scheme is followed, we
present in fig. 5-b the predicted class when n = 7 variables were selected fol-
lowing the FS algorithm depicted in the previous section. Again, the MLP was
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trained by genetic algorithms for 5000 epochs with a population of size 200 and
probability of mutation of 0.05. The error is lower for

We ran 200 times the FS algorithm and we present in fig. 6 the probability
for each siRNA of being part of the subspace. It is observed that the most
informative variables, shown with a surrounding blue box, are not the most
selected features. The fact that variables not as informative as those are selected
ost frequently is explained by the fact that those less informative variables, when
combined with other variables, may offer more information. That is exactly what
the proposed FS algorithm does.

Counting with a small number of variables (< 719) that are enough to classify
the cancer cell lines is relevant because those few variables conform a manageable
profile. With that profile a detailed biological explanation is more accessible.
From this point, the biological relevance of the siRNA selected by the proposed
algorithm can be tracked.

4 Conclusions

The identification of biological variables that impact in a given process is a
relevant task. Here, we have described a workflow that was able to identify a set
of small interfering RNA affecting differentially a group of 20 cancer lines. The
relevance of identifying that small subset of variables is not only a computational
benchmark, but also, it pinpoints specific genes for further study.

We proposed a feature selection algorithm based on evolutionary computation
and guided by mutual information. The algorithm was applied with success in
real data from the cancer biology field.

Acknowledgments. A. Neme thanks ICyTDF for a postdoctoral fellowship.
Also, A. Neme is in the SNI - CONACYT México.
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Abstract. In this paper we address the recently outlined field of Quan-
tum Image Processing and propose a novel model for representing a
quantum image. In our approach we use multilevel quantum systems
to store and process images because of their advantages in terms of
dimension of the available Hilbert space, computational power, physi-
cal implementation and security of quantum cryptographic protocols. In
particular, we focus on the quantum image representation using qutrits
(3-level quantum systems) and discuss possible implementations for ba-
sic image processing tasks such as image complement, image binarization
and histogram computation.

Keywords: Quantum Information, Image Processing, Multilevel Quan-
tum Logic, Qutrits.

1 Introduction

The quantum technology seems to be one of the most promising technologies
for building future computing systems. A direct consequence of the principles
of quantum physics is the immense computing power of a quantum machine
compared to that of a classical one. This is due to three remarkable quantum
resources that have no classical counterparts: quantum parallelism, quantum
interference and entanglement of quantum states. The remarkable properties of
quantum systems recently led to the emergence of innovative ideas in all major
fields of computing, including graphics processing and most of them are based
on two major results: Shor’s factorization algorithm [1] and Grover’s search
algorithm [2].

As for Quantum Image Processing, the research in the field has encountered
fundamental difficulties as it is still in its infancy. The confronted problems refer
to the mechanisms of representing and storing an image on a quantum computer
and to the basic preparation and processing operations. Concepts of quantum
image representation have been proposed: Qubit Latice [3, 4], Real Ket [5], FRQI
[6] and also a method for storing and representing binary geometrical forms [7].

It has also been proven that there are quantum processing transformations
more efficient than their classical versions: quantum Fourier transform, quantum
wavelet transform [8] and the quantum cosine transform [9]. Using these efficient
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operations in image processing could prove the potential of the quantum image
processing field. Still, there are fundamental differences between classical and
quantum operations, the latter being necessarily invertible due to the reversible
nature of quantum computation. Therefore there are classical image process-
ing operations such as convolution and correlation that cannot be applied to
quantum images [10].

All these ideas are formulated using the binary quantum logic which is consis-
tent with most approaches to quantum computing. Nevertheless, recent studies
have indicated several advantages in expanding the quantum computer from
qubits (the binary unit of information in quantum logic) to multilevel systems,
named qudits. It seems that currently, the major obstacle in quantum comput-
ing is posed by the small limit of coupled quantum bits realizable in a practical
physical system. The use of higher-dimensional quantum states enables an expo-
nential increase of the available Hilbert space with the same amount of physical
resources. Moreover, some of the quantum computational technologies proposed
so far, such as ion traps or quantum dots, are not intrinsically binary. Thus,
in practice, qubits are often realized in higher dimensional physical systems by
truncating excess levels. In particular, ternary quantum systems offer several
benefits over binary and other multilevel quantum systems, such as enhanced
security in some quantum information processing protocols [11–13], optimiza-
tion of Hilbert space dimensionality of an entangled quantum system [14] and
more efficient logical gates implementation [15, 16]. Also Bell inequalities were
developed for arbitrarily high-dimensional systems [17] and it seems that the
systems of entangled qutrits are expected to produce larger violations of the
nonlocality principle [18]. Moreover, the experimental realizations of multilevel
quantum systems that have been recently reported prove that the physical im-
plementation of high-dimensional quantum logic is feasible[16, 19–22].

In this paper we investigate the use of ternary quantum logic for representing a
quantum image and provide ternary quantum circuits for basic image processing
tasks such as image complement and binarization. We also describe a procedure
for computing the histogram of a quantum image and discuss the advantages
of using ternary instead of binary quantum computing systems for such a task.
We show that these advantages mainly arise from the increase in state space
and in precision of ternary variants for the quantum Fourier transform, Grover’s
operator and phase estimation.

2 Preliminaries - Quantum Information and Quantum
Computation

2.1 Binary Quantum Logic

The unit of information in binary quantum logic is the qubit, the quantum analo-
gous of the classical bit. In Dirac notation, the state of a qubit can be completely
described by the superposition of two orthonormal basis states, labeled |0〉 and
|1〉 (in a Hilbert space H = C2, |0〉 = (1 0)T , |1〉 = (0 1)T ). Any state |Ψ〉
can be described as a linear combination of the basis states:
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|Ψ〉 = α|0〉+ β|1〉, |α|2 + |β|2 = 1, (1)

where α and β are complex numbers and represent probability amplitudes with
respect to the {|0〉, |1〉} computational basis. When measuring a qubit either the
result 0 is obtained, with probability |α|2, or 1 with probability |β|2.

A collection of n qubits is called a quantum register with dimension n. The
general state of a n-qubit register is

|Ψ〉 =
2n−1∑
i=0

ai|i〉, (2)

where ai ∈ C,
∑2n−1

i=0 |ai|2 = 1. This means that the state of a n-qubit register
is represented by a complex unit vector in Hilbert space H2n .

To achieve a coherent computation, the quantum registers need to be isolated
such that there is no interference with the environment. Changes in the state of
the system should be produced adiabatically which implies that all computation
processes have to be reversible. Any reversible operation can be described by a
unitary operator, U , with U−1 = U∗. The composition of unitary operators is
also unitary because (UV )−1 = V ∗U∗. A general unitary transformation, U , in
the bi-dimensional Hilbert space C2 can be represented by gates like in classical
circuits. Elementary quantum gates include single qubit gates (Not, Hadamard,
phase-shift, rotations), controlled gates (C-Not, C-Phase) and the Toffoli gate.
For a quantum register with several qubits, the evolution of the system can be
described using the tensor product of single qubit unitary operators.

The only irreversible operation allowed in a quantum computational process is
the measurement operation. Measuring the state of n qubits reduces the dimen-
sionality of the H space with a factor of 2n. In other words, after measurement
the system collapses to one of the basis states and the values of the probability
amplitudes cannot be recovered.

2.2 Ternary Quantum Logic

In multi-valued quantum logic, the unit of information is the qudit. A 3-level
qudit, called qutrit, is implemented by a quantum system having three mutually
orthogonal states |0〉, |1〉 and |2〉 that form a basis in the Hilbert space C3. The
superposition state of a qutrit can be described by

|Ψ〉 = α|0〉+ β|1〉+ γ|2〉, |α|2 + |β|2 + |γ|2 = 1, (3)

where α, β and γ are the complex probability amplitudes of the basis states and
|0〉 = (1 0 0)T , |1〉 = (0 1 0)T , |2〉 = (0 0 1)T . Analogous to the binary
quantum system, a measurement of the qutrit yields |0〉 with probability |α|2,
|1〉 with probability |β|2 and |2〉 with probability |γ|2.

An n-qutrit quantum system can be represented by a superpositon of 3n

basis states, thus a quantum register of size n can hold 3n values simultaneously,
whereas an n-qubit register can only hold 2n values.
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In order to build quantum circuits for implementing ternary operations, a set
of universal gates is required. Even though multi-level quantum computing is a
new field, there are several works done on developing multi-level and specifically
ternary quantum logic synthesis methods. There are several proposals for univer-
sal multi-level quantum gates: two qudit Muthukrishnan-Stroud (M-S) gates to-
gether with arbitrary one-qudit gates [23], control gates [24–27], Ternary Swap,
the Ternary NOT and the Ternary Toffoli [28], generalized ternary gates and
projection operations [29]. Minimization of gate cost was shown to be achievable
using quantum multiplexers and the method of iterative deepening depth first
search [30] .

3 Representation of Quantum Images

In order to represent the quantum image we will use a quantum register prepared
in the state

|I〉 = |C〉 ⊗ |ψ〉. (4)

This quantum state integrates both color and position information. Pixel posi-
tions are coded in |ψ〉 using 2n qutrits if we consider, without loss of generality,
that there are N = 3n × 3n pixels in the image.

In previous work regarding quantum image representation the color informa-
tion is encoded using a single qubit [4], [6]:

|φ〉 = cos
θ

2
|0〉+ eiγ sin

θ

2
|1〉. (5)

The real parameter θ encodes the frequency of the electromagnetic wave while
γ is left uninitialized. We could employ a similar representation using qutrits,
but the problem with this approach is that such a protocol produces general
quantum states. Even though the color of a pixel is not necessarily a basis state,
the visual information can be accurately retrieved using a statistical procedure
involving multiple measurements of identically prepared states. Nevertheless, as
discussed in the final section, we envision the application of quantum ampli-
tude amplification in order to achieve image processing tasks such as histogram
computation. In order to apply such a mechanism, the marked states need to
be computational basis states, so we find such a representation of the quantum
image unsuitable for this purpose.

In order to overcome this problem we propose that m = log3 L qutrits are
used to encode the L gray levels present in the image, meaning that C is an
m-qutrit register. In comparison to using qubits for implementing the proposed
representation scheme the state space is increased by a factor of (32 )

m since the
Hilbert space of m qutrits has the same dimensionality as m log2 3 qubits. Even
though the necessary state space is larger than in the representation suggested in
[4], the possibilities for processing operations are much more valuable. Moreover,
a partial state space recoup is achieved by qutrit codification of pixel positions.



370 S. Caraiman and V. Manta

(a) (b)

Fig. 1. (a) Quantum circuit implementing the image negative. (b) Truth table, matrix
and graphical representation for the action of the ternary NOT gate.

4 Quantum Image Processing

4.1 Complement of a Quantum Image

The complement, or the negative, is a basic image processing operation that
comes handy when trying to enhance white or gray detail embedded in dark
regions of an image, especially in the case of images with dominant black areas.
It can be achieved with the following transform:

s = T (r) = L− 1− r, (6)

where r and s are the pixel values before and after processing, respectively.
A quantum circuit that achieves this operation can be built using a ternary

NOT gate as described in Fig. 1(a). The truth table and graphical representation
of the ternary NOT gate are presented in Fig. 1(b). This gate is equivalent to
the Z3(02) one-qutrit permutative gate introduced in [26].

4.2 Image Binarization

Even though binarization is a basic image processing task, it is of great impor-
tance due to its extensive use in the segmentation process. It has the purpose
of transforming a gray level image in a binary one which has only two possi-
ble values for each pixel, typically black and white. This transformation uses a
threshold value and classifies all pixels with values above the threshold as white
and all the other pixels as black:

s = T (r) =

{
0, 0 ≤ r ≤ thres

L− 1, thres < r ≤ L− 1
. (7)

In order to implement the binarization operation a quantum gate formalism
needs to be described for the if − then− else conditional structures. In binary
quantum logic such structures can be built out of NOT and controlled-U gates.
Quantum controlled gates use a control input to determine whether a specific
unitary action is applied to a target input.
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(a) (b)

Fig. 2. (a) Graphical representation for the action of the M-S gate. (b) Ternary quan-
tum circuit for implementing the image binarization operation. The ternary quantum
comparator has a quantum cost of 56n + 6 [31]. The output f of the comparator is
used as a control qutrit in the M-S gate that complements the output pixel value, i.e.
here the Z3 gate is the X gate presented in Fig. 1(b).

A basic version of the controlled-U operation is given by the M-S gate [23],
which is the generalized ternary correspondent of the binary CNOT gate. Its
quantum cost is assumed to be 1 and its action is described in Fig. 2(a). The
control input, |q1〉, passes unchanged while the target qutrit, |q0〉, is transformed
with a one-qutrit permutation gate, Z3, if |q1〉 = |2〉. Otherwise it also passes
unchanged.

In the case of binarization the conditional operation is controlled by an in-
equality. A quantum circuit implementing a conditional operation controlled by
a ’greater-than’ expression can be built using a quantum comparator and a M-S
gate.

The design of ternary quantum comparator circuits has been addressed in [32]
and [31]. Individual quantum circuits for ’less-than’, ’equal’ and ’greater-than’
were proposed in [32], based on 1-qutrit, 2-qutrit and M-S gates. On the other
hand, a single circuit that outputs all the three comparison results at once was
described in [31]. It has a lower quantum cost and uses fewer ancilla qutrits by
exploiting a ternary quantum full adder, 1-qutrit permutation gates, M-S and
3-qutrit Toffoli gates.

The resulting image will be stored in an additional output register, initially
prepared in state |0〉. Because the output image is binary, a single qutrit per
pixel is enough to hold the color information.

Using the quantum comparator described in [31] the quantum binarization
circuit is presented in Fig. 2(b) and has the following behavior:

Ubin|t〉|r〉|0⊗5m+3〉|0〉|0〉 = |t〉|r〉|ψ〉|f〉|s〉, (8)

where r is the input gray level, s is the output pixel value, t is the gray level
used as threshold, |f〉 is the comparator output and |ψ〉 is a 5m+3 qutrit ancilla
register required by the comparator. The quantum cost of the binarization circuit
is given by the comparator cost plus the final M-S gate, i.e. a total of 56m+ 7.
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4.3 Histogram Computation

The histogram of an image represents the relative frequency of occurrence of the
various colors (gray levels) in the image. Mathematically speaking, for a digital
image with gray levels in the range [0, L−1], the histogram is a discrete function

h(gk) =
nk

N
, k = 0, 1, ..., L− 1, (9)

that is the number of pixels nk having greyscale intensity gk as a fraction of the
total number of pixels N .

In the histogram definition given above it is assumed that each possible in-
tensity value of the image corresponds to a single bin of the histogram. For
purposes of computing the histogram when there are many possible color values,
several values can be grouped into a single bin. A classical procedure for his-
togram computation involves initializing the bins of the histogram to zero and
then computing the values associated to each bin by accumulation.

A quantum variant for the histogram computation can be devised if we rein-
terpret it in the terms of a search problem with multiple solutions. The value
associated with a bin is obtained by searching the image pixels having a certain
color and counting the solutions. In this case the quantum counting algorithm
can be used for each bin thus providing a quadratic speedup over the classic
procedure as the actual retrieval of the solutions to the search problem, i.e. the
pixels with a certain color, is not necessary.

The quantum counting algorithm is an inspired combination of quantum
search with the quantum Fourier transform that appears in the eigenvalue esti-
mation problem. Specifically, the quantum counting algorithm exploits the fact
that the eigenvalues of Grover’s amplitude amplification operator are related
to the number of solutions, t, to the search problem [33]. This allows the for-
mulation of an algorithm that approximately counts the solutions of the search
problem in O(

√
N) time, with a success probability of at least 8/π2, where N

represents the dimension of the search space. In the quantum counting algorithm
we must pick the number of bits of precision to which we wish to estimate the
eigenvalues (and hence the precision with which we can estimate the number of
solutions). Various relations that bound the accuracy with which the number of
solutions can be estimated are summarized in [34].

Ternary variants for the quantum Fourier transform are proposed in [23], [35],
[36]. Besides the state space increase, compared to traditional binary QFT, the
ternary transform also improves approximation properties by a factor of ( 32 )

n

[36]. Generalizations of Grover’s search algorithm to multi-value logic were pro-
posed in [37] and [38]. Both approaches allow for a reduction in memory register
size by using fewer qudits to represent more information states. Moreover, the
method described in [38] needs fewer iteration steps to find the marked items
compared to the qubits encoding procedure, thus leading to less dissipations and
errors in the physical systems. Also, the authors describe how such a scheme
could be achieved efficiently within current state-of-the-art technology.

The strategy for eigenvalue estimation that appears in the quantum counting
algorithm is to create a quantum state, called the ’phase state’, in which the
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desired eigenvalue appears as a phase factor and to extract this phase factor
with the help of a technique called quantum phase estimation. Thus, estimating
the eigenvalues of a quantum operator reduces to a two-step process of creating
the special phase state and then performing phase estimation on it [34]. A mul-
tivalued quantum logic version for the phase estimation problem was developed
in [39]. When compared to the binary quantum logic version, the multivalued
algorithm turns out to be more robust, with a significant decrease in the number
of required qudits and with a drastic improvement in the precision and success
probability.

5 Conclusions and Future Work

In this work we have suggested a new model for representing quantum images
and provided an insight on how to realize image processing tasks. Our method
exploits the advantages of ternary quantum systems and allows for a significant
decrease of the state space needed to represent quantum images while provid-
ing the means for faster and more efficient operations. We have shown that
implementing the image complement and image binarization operations can be
achieved using elementary ternary quantum gates such as 1-qutrit permutation
gates, Muthukrishnan-Stroud and Toffoli gates.

Extending the results obtained in this paper to other image processing tasks
is desirable and would contribute further to investigating the feasibility of im-
plementing the quantum computing paradigm using higher dimensional quan-
tum systems. One example would be to explore a similar approach for ex-
pressing other histogram processing operations such as histogram equalization.
Threshold-based segmentation would then be one step closer to being formulated
using the ternary quantum logic.

As pointed out in the first section of the paper, systems of qutrits have several
advantages over higher dimensional ones. One such advantage relies in the high
degree of entanglement that can be produced between these particular systems.
A natural development would be to extend the results obtained in [3] by investi-
gating how qutrit entanglement could be exploited in order to enhance quantum
image processing tasks.

Even though both Quantum Image Processing and Multilevel Quantum Logic
are still in an early stage of development, blending these two fields could result in
interesting ideas for the advent of the main framework of Quantum Information
Processing. This would have a significant impact on the exploration of theoretical
concepts of quantum information, the design of new quantum algorithms and
the development of novel applications for quantum information processing. It
could also represent an overall justification for the immense efforts needed for
building working quantum computers.
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Abstract. Synchrony is an important requirement in wireless sensor
networks. Biologically inspired synchronization has received significant
scientific attention for its simplicity and robustness. This paper presents a
self-organized approach based on two established synchronization meth-
ods, Phase-Advance and the Reachback Firefly Algorithm, that can be
used if the phase and the period length of a node must both be ad-
justed. By considering nodes with different period lengths, we account
for and synchronize nodes with variable delays and clock inaccuracies.
We evaluate our modifications through extensive simulations with a re-
alistic model.

Keywords: Biologically inspired synchronization, wireless sensor net-
works.

1 Introduction

Synchronization has been observed in many organisms: fireflies in South-East
Asia flash in unison during mating [1], snowy tree crickets synchronize their
chirps [2]. These creatures use simple cues from other individuals to adapt and
synchronize themselves. A large amount of scientific work is based upon biolog-
ically inspired synchronization: they also use simple interactions, such as light
impulses from other nodes, and achieve synchrony in a similar manner.

Previous work that uses bio-inspired approaches to synchronize the phase of
wireless nodes assumes that their period lengths are either identical [3], [4], or
that nodes are able to exchange some information about their period lengths [5],
[6]. In the following, when we refer to periods for brevity, we are referring to the
length (the duration in a certain time frame, possibly seconds) of the period.

This paper presents a novel approach that can be used if both, the phase and
the period of a node must be adjusted. This allows, for example, the synchro-
nization of nodes with not negligible clock inaccuracies. Synchrony is achieved
without exchanging any information between the nodes (beyond physical layer
information that a pulse has been emitted by some node). The synchronization
algorithm presented in this paper achieves synchrony even if synchronization
signals collide, and synchronizes nodes with different periods, different clock
inaccuracies and different initial phases. Extensive simulations with a realistic
model are used to evaluate our modifications.

M. Tomassini et al. (Eds.): ICANNGA 2013, LNCS 7824, pp. 376–385, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Firefly-Inspired Sync. of Sensor Networks with Variable Period Lengths 377

2 Related Work

Biologically inspired synchronization has received significant scientific attention.
Mirollo and Strogatz introduced a mathematical model, Phase-Advance (PA),
showing that two oscillators, responding to other synchronization signals by ad-
vancing their own phase (and thus emitting their pulse earlier), will synchronize
under almost all conditions [7]. This also holds for a larger population of oscilla-
tors, under the condition that the network is fully connected (all oscillators can
sense each others pulses). Two synchronized oscillators that trigger at the same
time are perceived as a single oscillator emitting stronger pulses. The strengths
of the pulses does not need to be additive (for example, the combined pulses of
two synchronized oscillators is not perceived as twice as strong by other nodes).
The proof in [7] also holds for multi-hop networks that are not fully connected
[8].

Both models uses several assumptions that are not realistic in wireless sensor
networks [3]: specifically, they assume that emitting and observing a pulse, as
well as computation, occur instantaneously. Medium access control (MAC) may
cause delays that are not negligible. The Reachback Firefly Algorithm (RFA) [3]
considers these latencies by making nodes only record the time they observe a
pulse from another node, without adjusting their current phase. When their cur-
rent phase completes, they adjust their following phase based on all the recorded
pulses. Such an adjustment must still be computed based on a “smooth, mono-
tonically increasing, and concave down” state correction function [7], but the
amount of computations each node must perform is reduced to one operation.
In addition, the computation occurs directly after the node emits a pulse, thus a
time where its duration is not as critical. Preemptive Message Staggering is used
to reduce the likelihood that all nodes transmit their synchronization pulses at
the same time. A modification of their state correction function has been per-
formed by [9], which achieves faster convergence time by indirectly clustering the
pulses. It should be noted that for both approaches, this adjustment is only ap-
plied to the following phase - the “default period” of a node remains unchanged.
As a result, it is necessary that all nodes have the same period P .

Another interesting approach is the S-MAC protocol [5] that reduces the four
major sources of energy waste in mobile nodes: (i) collisions (nodes transmit at
the same time, rendering the received signal useless), (ii) overhearing (a node
receives data targeted at another node), (iii) control overhead (management data
that must be sent for medium access) and (iv) idle listening (a node listens for
potential data but receives nothing).

Under the assumption that sensor networks are idle most of the time (unless
the sensors detect something) and some latency is acceptable, the S-MAC proto-
col allows nodes to sleep for a fraction of their duty cycle. As a result, a sending
node may need to repeat its transmission at a different time in order to ensure
that the target node is listening. Each node periodically broadcasts its sleeping
schedule. The first node to broadcast its schedule on the medium becomes the
synchronizing node. New nodes listen to the medium for a “certain period” to
receive this schedule, and become followers. If nodes fail to discover each other,
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Fig. 1. Illustration of a node’s phase ϕ, during which three flashes (f0..2) are received

they adopt multiple schedules, reducing the energy saved. However, collision
avoidance must be performed for synchronization messages, which contain data
needed by other nodes, thus limiting the scalability of the approach.

3 Synchronization Algorithm

Our approach differs from the aforementioned ones in two main features: first,
we do not transmit any data in our synchronization pulses and thus do not re-
quire any collision avoidance protocol. Second, and more importantly, we do not
require that all nodes have the same period P . In fact, nodes using our algorithm
synchronize their phases, as well as their periods. In this section, we present our
adaptations that allow nodes to gradually increase their synchronization periods,
reducing the energy wasted on control overhead, even in the presence of clock in-
accuracies. Based on the common notion of P , nodes can then apply established
techniques to reduce idle listening, overhearing, and collision. Our approach is
separated into three stages: the core of the algorithm is an initial synchronization
stage, followed by a pre-data stage, during which any node not yet synchronized
is detected, and finally the data stage, during which nodes exchange data.

Referring to Figure 1, we assume that a node has an initial period length p0
at which it emits synchronization signals. Based on the signals the node receives
from other nodes (f0, f1 and f2) during its ith period (pi), it adjusts its i+ 1th

period (pi+1). No specific type of signal is required for synchronization, it is
sufficient that nodes can detect its presence. In particular, no data needs to be
encoded in a signal. Nodes do not exchange any information about what their
periods are, which allows us to, for example, implicitly account for clock drift
or other hardware delays. Furthermore, a node may “miss” signals: other than
increasing the time needed to synchronize, this has no lasting effect.

3.1 Synchronization Stage

During the first stage (the synchronization stage), we synchronize the periods of
the nodes by using an adaptation of RFA, and the phases by using an adaptation
of PA.

Adapted Phase Advance Algorithm. It is suggested that applying PA to
mobile nodes is difficult for two reasons [3]: PA assumes a node is able to compute
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how much the current phase must be advanced instantaneously, and that it can
emit a signal immediately if needed. In our adapted version these assumptions
are relaxed. First, PA is only used at most once per phase: if a signal is received
after a threshold h (which a node computes at the beginning of its phase), the
timestamp for the RFA is recorded, and the node emits its signal. Therefore,
expensive computations during the phase are not necessary. h is based on a
node’s current period, p, and a dampening variable, d, which is initially set to
0.6. Every time after a node emits a synchronization signal, it increases d by
a constant factor cd, adjusts its period based on RFA, and calculates the new
threshold h = d · p. Effectively, increasing d ensures that nodes rely less on only
aligning the phases as time advances, and more on the modified RFA, which
both aligns the phases, and adjusts the periods.

Second, we do not require that a node flashes immediately. For example, a
node may have a computational delay of ε (see Figure 1) before it emits the
signal. In our simulations, we added a random delay of up to 0.3s if a node
rescheduled its period. Synchronization is still possible because while PA is used
in conjunction with RFA to speed up synchronization, the final synchronization
is achieved with RFA. One could argue that PA should not be included. However,
the speed up even with this adapted version of PA is substantial. In preliminary
experiments with 10 nodes, using the adapted version of PA in conjunction with
RFA reduced the time spent to reach the data stage by 63.11%.

Adapted Reachback Fireflies Algorithm. A node adjusts its period with
an adapted version of RFA1. Recall that RFA resets the records after every flash.
Since a node that detects no other signal returns to its original period p0, nodes
with different periods cannot be synchronized with this approach.

To tackle this issue, we modified RFA to not only change the following phase,
but also the period of a node. Essentially, a node using our adapted algorithm
no longer returns to p0. This permits synchronizing nodes with different periods.
A naive solution is to modify RFA so that the phase change not only affects a
node’s current phase, but also all of its following phases. However, this causes
nodes to synchronize at a very short period (the exact period is then determined
by other factors such as propagation delay, recharge time and the duration of
the synchronization signals), which are not desirable due to energy concerns and
the overhead of keeping nodes synchronized.

One reason that periods can become this short is that PA and RFA only
decrease the duration of a phase, and never increase it. The obvious approach to
avoid this, namely to also increase its length, is not an option, because in that
case the synchronization of the system is no longer guaranteed [7].

Instead, we follow a different approach: in order to ensure that periods do not
become too short, we apply a dampening factor to the adjustment a calculated by

1 A node following the original RFA records the time of every synchronization signal
it receives, without shortening its phase. Only after the node has emitted its own
signal, it reduces the time of its next phase, based on its records of the signals
it received. The time each signal was received affects how much the next phase is
reduced by; signals received later in the phase result in a larger reduction.



380 S. Wieser, P.L. Montessoro, and M. Loghi

RFA. This allows nodes with very different periods to align themselves quickly,
without causing nodes with already short periods to decrease them even more.
A node uses this dampening factor to modify its ith period pi at the end of each
phase, as shown in (1).

pi+1 = pi −
a · (wpi)2

C
(1)

Several factors are used to weight the aforementioned adjustment a. This is
done to prevent periods from becoming too short. w is a weight from 0 to 1 that
indicates how close to p the last period was. For example, in Figure 1 f2 triggers
PA and ends its current period, therefore w = f2/p0. If PA is used to advance the
phase, w decreases, and period adjustment is slowed. This helps synchronizing a
system where the periods are almost equal, but the phases are not yet aligned. C
is a constant that influences how quickly the system synchronizes, and also the
final period the nodes synchronize at. When C is increased, the time required
until the system stabilizes and the final period P both increase as well. We
found that for our simulations, setting C = 100 adjusts a node’s period quickly,
resulting in fast synchronization times, without lowering the final period P too
much. Finally, a node determines the new adjusted period pi+1 by subtracting
this weighted adjustment from its current period pi.

Another change in our approach is the lack of preemptive message staggering.
RFA transmits a timestamp in the synchronization signal to estimate the delay
of the medium. In addition to requiring synchronized clocks, situations in which
multiple synchronized nodes emit signals at the same time must also be avoided,
as a collision would render the transmitted data useless. RFA uses preemptive
message staggering to avoid collisions. We found that explicitly considering the
medium delay was not necessary because adjusting the phases and the periods
already consider it implicitly. We do not need to transmit any data in the signals;
the presence of a signal is all the information we require. As a result, collisions
have no detrimental effect on our algorithm and neither collision avoidance, nor
collision detection, nor preemptive message staggering are needed.

Essentially, a node follows the steps outlined in Algorithm 1.

Algorithm 1. Synchronization Stage. t represents the current time.

1: At the beginning of phase:
2: p ← p− a · (wpi)

2/C � Adjust p based on previous phase
3: d ← d+ cd, h ← d · p, ts ← t � Set threshold and record beginning of phase
4: If a signal is received during the phase, before the end of the period:
5: a ← a+ 0.08 · (t− ts) � PA (a linear function is used for simplicity)
6: if t ≥ ts + h: emit signal and end phase
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3.2 The Pre-data Stage

In order to determine when to switch to the pre-data stage, we distinguish be-
tween nodes that are leaders and followers. A node considers itself a leader if
it detected no signals from other nodes during its last phase before it emits its
own signal; otherwise it considers itself a follower. Note that it is possible several
nodes consider themselves leaders at the same time, if they emit their signals
near-simultaneously, so that propagation and processing delays prevent a node
from receiving signals from other nodes before emitting its own. This effect is
desirable for our algorithm, as it prevents simultaneous signals of other synchro-
nized nodes from affecting the node’s following phase, and occurs frequently once
nodes are synchronized. Similar to MEMFIS [10], nodes in our simulation use a
refractory period of 12μs after they finish emitting their signals, during which
they do not consider signals from other nodes.

When a node determines that is a leader, it immediately switches to the
pre-data stage. During the pre-data stage, it increases the length of its period
by a small amount of time, Δ, every time it emits a synchronization signal.
If it receives any other synchronization signal outside the refractory period, it
switches back to the synchronization stage.

Increasing the period serves three important purposes: first, it allows a node
to detect other nodes that are not in the same stage. A node that is still in the
synchronization stage will either keep the same period (if it receives no other
signals), or decrease its period, but never increase it. If it detects nodes that
are not yet synchronized, the node switches back to the synchronization stage.
Second, a longer period between synchronization messages allows a node to save
energy, as it does not need to wake up frequently. We can make periods as long
as desired by increasing the time that nodes spend in the pre-data stage. Third,
note that RFA and PA both only reduce the phase of a node, and therefore
the periods in the synchronization stage get shorter, not longer. The pre-data
stage allows such nodes to synchronize, without reducing the periods of other
existing nodes. This is particularly important for late joining nodes, discussed
later, which are not permitted to flash until they are synchronized. If a node joins
that has a shorter period than any other node in the system, it will determine
that it is the leader, switch to the pre-data stage, and begin increasing its period.

Assume, for now, that all nodes are synchronized, but still in the synchro-
nization stage. Due to the propagation and processing delay, and the refractory
period after emitting a signal, none of the nodes will detect a synchronization
signal from any other node. As a result, all nodes consider themselves leaders,
do not change their period, and therefore switch to the data stage. During the
pre-data phase, all nodes begin increasing the length of their period, again in
perfect synchronization.

Consider the case where a one node is not yet synchronized (for example,
a node that arrives late, or a node that missed signals and thus considers it-
self synchronized). This node detects the signal from the synchronized nodes
increasing the length of their periods, and uses RFA to shorten its own. This
is, in turn, detected by the already synchronized nodes, which return to their
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synchronization stage to synchronize with the aforementioned node. It should be
noted that gradually increasing the periods is not equivalent to simply setting
the periods of all nodes to a fixed value (such as three seconds). Our adaptations
ensure that the actual periods are equal, even if individual nodes have a different
understanding of time. This can occur, for example, if a node’s clock is fast, or
slow, or because it experiences a waking up delay that is different from the delay
experienced by other nodes. Our simulations show that a node experiencing a
0.5s delay will synchronize at P = 2.5s if other nodes have a period of P = 3.0s.
This effect is achieved without explicitly considering such delay.

3.3 The Data Stage

After a node has remained in the pre-data stage for a predefined number of peri-
ods, it switches to the data stage. In the data stage, a node only considers signals
for synchronization that are received in a short-time span δ before and after it
emits its own synchronization signals. For the remaining time, the medium is
used for transmitting data. We do not require a specific MAC protocol; any pro-
tocol (such as TDMA or CDMA) may be used, provided that it is modified to
not transmit during P ± δ. Note that it is necessary that nodes consider propa-
gation delay and the refractory period. Therefore, nodes must stop transmitting
slightly earlier than δ before the next signal is due.

Late Joining Nodes. Nodes that join the network must first sense the medium
for a predefined amount of time (the “initial observation period”), which must
be no shorter than the period of the slowest node. In case it detects any data
transmissions between the synchronization signals, it determines that it is a late
joining node. In this case, it follows the same algorithm described above, with
the exception of that it does not flash until it has determined itself to be leader
for two subsequent periods, for a duration no shorter than the initial observation
period. This simply prevents the late joining node from interrupting the data
transmission of the existing, synchronized nodes.

4 Evaluation

We evaluated our modifications through simulations, using varying numbers of
nodes with different phases and periods. In our model, nodes are placed in ran-
dom locations in a three-dimensional space. A node can only detect a limited
number of concurrent signals. In order to assume the worst case for our evalua-
tions, we set the number of concurrent signals a node can detect to one. There-
fore, if a node senses a signal, it will not sense signals from any other node, until
the first node stops emitting the signal. Furthermore, we assume that nodes
are not able to distinguish between signal strengths. These restrictions make
it more difficult for a node to synchronize, as they are no longer able to distin-
guish between a stray, unsynchronized node, and a group of already synchronized
nodes. Finally, the model includes a probability nodes may miss signals entirely,



Firefly-Inspired Sync. of Sensor Networks with Variable Period Lengths 383

Fig. 2. Synchronization of the phases and periods of a 5 node system

based on the distance between two nodes, and considers propagation delay of the
MAC, and processing delay of the nodes. For our simulations, nodes are placed
in a 106m3 air-filled cube, and use electromagnetic waves to communicate. We
measured the time required to reach the data stage, and the final period nodes
synchronize at. Table 1 shows that the initial periods are vastly different: for
example, node 8 initially emits a signal every 5.7s, whereas node 2 uses a period
of 11.0s. The difference in periods used during our experiments is far greater
than what is reasonable for actual hardware (±0.1s [9]). However, it serves to
prove the robustness of our approach.

Table 1. Phase offset and periods (in seconds) of a 10 node simulation

Node 1 2 3 4 5 6 7 8 9 10

Offset 7.0281 4.0556 1.1924 3.0100 9.2154 6.5981 8.5397 9.1894 6.5822 5.0822

Period 9.2 11.0 6.8 4.2 10.2 9.2 9.4 5.7 8.1 9.4

We performed Monte-Carlo simulations with 5, 10, 20, 50 and 100 nodes,
which are system sizes comparable to what is used in recent related work [9].
The nominal period of every node is set to 8.0s, with a timing error of ±50%.
The synchronization signal is a 0.1s electro-magnetic pulse, and a node switches
to the data stage if it remained in the pre-data stage for ten periods. Each
simulation was repeated several times to obtain some statistical significance.

In our simulations, nodes that attempt to flash immediately are subjected a
random delay of up to 0.3s to account for delays in hard- and software. This
is illustrated in Figure 2, which shows the synchronization of five nodes over
time. Squares in the graph represent flashes. Light lines are associated which
each flash, showing when the nodes flash (in respect to the other nodes). The
number on each flash indicates the node’s current period. The actual period can
be shorter due to PA, if a signal is received after the threshold h. For example,
consider the bottommost node. The node initially has a period of p0 = 12.11. It
receives two signals (after 0.2 and 5 seconds), however since they were received
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(a) Time to synchroniza-
tion

(b) Final periods P (c) Final period P for vary-
ing C

Fig. 3. Experimental results with varied number of nodes and dampening constant C

before the threshold h (not shown in the graph), it only records their times for
RFA. The next signal it receives, after the 9 second mark, is received after the
threshold h. Therefore, it flashes immediately. Due to the aforementioned delay ε,
its signal is only emitted near the 10 second mark. Based on the signals received
it then calculates its new period p1 = 7.45. Notice that the initial periods of
the nodes are very different (14.81s versus 6.71s), and that the random delay
introduced for PA prevents nodes from flashing at the same time. Still, the
primitive implementation of PA helps synchronizing the phases. In the following
periods, nodes synchronize their period lengths, and rely on PA less.

Figure 3a displays the number of periods needed to reach the data stage when
varying the numbers of nodes. The bars correspond to the 50th percentile of the
simulations, whereas the error bars represent the 90th percentile. Figure 3b illus-
trates the final period P that nodes synchronize at upon reaching the data stage.
Most importantly, note that the number of periods needed for synchronization
increases with the number of nodes. This is a contrast to other synchronization
methods, such as [9], in which the number of periods remain comparable, or even
decrease with the addition of nodes. The reason for the increase in our approach
is that we also synchronizes the period length, which becomes more difficult with
an increasing number of nodes.

Another observation is that the final periods P decrease the longer nodes take
to synchronize. This is expected, as both PA and RFA only decrease the length of
a phase, and do not increase it. However, the decreasing in period length remains
reasonable, thanks to the dampening factor C, introduced in Section 3.1.

It should be noted that in our experiments, we set C = 100 on all nodes.
However, it is possible that nodes use different values of C (think, for example,
a factor introduced by clock inaccuracies). Therefore, we performed a separate
set of experiments with 10 nodes that use initial periods of 8.0s ± 50%. We
set a percentage of nodes to C = 50, while the remaining nodes use C = 80.
Figure 3c shows the average final period P , if the percentage of nodes using
C = 50 changes. The error bars represent the 95% confidence interval. Note
that the final period, which nodes synchronize at, gradually decreases as the
percentage of nodes using the C = 50 increases. This demonstrates that the
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algorithm is not only able to synchronize nodes with different periods, but also
nodes with different timing, and that the resulting periods in this situation are
reasonable.

5 Conclusion and Future Work

In this paper we presented an adaptation of RFA and PA that synchronizes nodes
where both phase and period are different. We showed that synchronization
with large numbers of nodes with periods that differ by over 100% is feasible. A
notable observation is that in the experiments where half of the nodes used the
dampening constant C = 50 and the other half used C = 80, the resulting final
period was close to the average of what we measured when all nodes used the
same C (i.e. C = 50 or C = 80). An interesting extension is exploring how C,
the nodes’ initial periods and the adjustment from RFA interact. However, this
is subject of ongoing research.
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Abstract. We show that the emergence of different structures in com-
plex networks can be represented in terms of a phase transition for quan-
tum gases. In particular, we propose a model of fermionic networks that
allows to investigate the network evolution and its dependence on the sys-
tem temperature. Simulations, performed in accordance with the cited
model, illustrate that the transition from classical random networks to
scale-free networks mimics a cooling process in quantum gases. Further-
more, we found that, at very low temperatures, a winner-takes-all struc-
ture emerges. We deem this model useful for studying the evolution of
complex networks and also for representing competitive dynamics.

Keywords: complex networks, quantum statistics, network evolution,
competitive dynamics.

1 Introduction

Many natural and man-made complex systems can be modeled by complex net-
works, i.e., biological cells and their interactions, social dynamics, world wide
web, and every other system containing a notable number of interacting ele-
ments ([1][2][3]). In general, complex networks allow to represent systems at a
non-equilibrium state, meaning that new nodes and/or new links can be added
over time during an evolutionary, often irreversible, process. In [1], Albert and
Barabasi illustrated the central role of statistical mechanics for analysing these
networks. One of the first models for random graphs dynamics has been devel-
oped by Erdos and Renyi, see [4]. This kind of networks, called ER graphs, has
low clustering coefficient and a binomial degree distribution of nodes, converging
to a Poissonian distribution for large number of nodes. Later on, in their WS
model, Watts and Strogatz [5] interpolated random networks with a regular ring
lattice, achieving networks characterized by short average path lengths, high
clustering coefficient, and homogeneous degree distribution of nodes. Observing
that in many real networks the degree distribution of nodes follows a power-
law, Barabasi and Albert developed the BA model [1], defining the concept of
scale-free networks. The power-law equation is the following:

P (k) ∼ c · k−γ (1)

where k is the node degree, c is a normalizing constant and γ is a parameter,
known as scaling parameter, usually in the range (2, 3). A notable consequence is
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that, in these networks, only few nodes (called hubs) have a big number of links.
The evolutionary process of networks has been studied by many authors, often
resorting to theoretical physics. For the sake of brevity, let us cite only few. Bian-
coni and Barabasi [6] compared Bose-Einstein Condensation phenomena (BEC)
to winner-takes-all policies; Bianconi [7] discussed the symmetric construction of
bosonic and fermionic networks, asserting that the former networks are scale-free
and the latter are growing Cayley trees. Kriukov et al. [8] developed a geometric
framework to study the structure and functions of complex networks, interpret-
ing edges as non-interacting fermions whose energies are hyperbolic distances
between nodes. Shen Yi et al. [9] discussed an inverse approach to network evo-
lution defining a relation with their model and Fermi-Dirac statistics. Baronchelli
et al. [10] defined a framework using bosonic reaction-diffusion processes, with
the aim of analysing dynamical systems on complex networks. Perseguers et al.
[11] developed a model of quantum complex networks, drawing a link between
the field of complex networks and that of quantum computing.

In thisworkwepropose a theoreticalmodel of network evolutionbased onFermi-
Dirac statistics, obtained by mapping complex networks to fermionic gases. The
proposed model, called fermionic networks, which can be seen as dual with re-
spect to bosonic networks ([6]), shows that the emergence of different struc-
tures can be represented in terms of a phase transition for quantum gases. In
particular, at low temperatures networks are winner-takes-all, at intermediate
temperatures are scale-free, whereas at high temperatures they become classi-
cal random networks. We consider fermionic networks useful also to represent
competitive dynamics since, at low temperatures, few winners nodes arise. The
remainder of the paper is organized as follows: Section 2 gives a brief introduc-
tion to quantum statistics. Section 3 describes some existing models of networks
as non-interacting particle systems. Section 4 introduces the proposed model of
network dynamics, based on Fermi-Dirac statistics. Section 5 shows the results
of the corresponding simulations. Conclusions (i.e., Section 6) end the paper.

2 Quantum Statistics

Statistical mechanics assumes a central role when dealing with systems com-
posed by many particles, the underlying assumption being that particles are
identical and indistinguishable. Moreover, their quantum energy levels are ex-
tremely closely spaced, with a cardinality much greater then the number of
particles. Energy levels can be grouped in bundles with the approximation that
levels in the same bundle have the same energy. Particles with a symmetric wave
function, called bosons, obey Bose-Einstein statistics, whereas particles with an
antisymmetric wave function, called fermions, obey to Fermi-Dirac statistics –see
[12]. Given a system with N particles of the same type, we can build an N -body
wave function, with several admissible states. For each state α, the correspond-
ing number of particles, say nα (also called occupation number), is given by the
following equation:
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nα =

{
0, 1, ...,∞ bosons

0, 1 fermions
(2)

and
∑

α nα = N . In the event that a gas is composed by fermions, we must
consider also the Pauli exclusion principle. Overall, the number of microstates
in a macrostate is computed by the equation:

Ωf = Πi
gi!

ni!(gi − ni)!
(3)

with gi representing the i-th bundle. The distribution of particles follows the
Fermi-Dirac statistics:

nf
i =

gi

e
εi−μ

kbT + 1
(4)

where εi denotes the energy of the i-th bundle, μ the chemical potential, and kb
the Boltzmann constant.

This distribution approaches the classical behaviour in proximity of the high-
temperature limit, showing a quantum-classical transition. This phenomenon
occurs when particles occupy excited states sparsely. In particular, considering
the thermal wavelength λ and the density ρ, the following conditions can be
stated: {

ρλ3 � 1 classical regime

ρλ3 ≈ 1 onset of quantum effects

The classical regime is described by the Maxwell-Boltzmann distribution. In

particular, with Z =
∑

j gje
− εj

kbT partition function, we write:

nmb
i =

N

Z
gie

− εi
kbT (5)

3 Networks as Particle Systems

Under certain assumptions, complex networks can be considered as thermody-
namic systems that evolve from one state to another [13]. In this section we
give a synthetic overview of some existing models of network dynamics based on
quantum statistics.

3.1 Bosonic Networks

In this model, Bianconi and Barabasi [6] compared network evolution to phase
transition of bosonic gases. Two main structures, i.e., fit-get-rich and winner-
takes-all, are identified as two different phases at low temperatures. In this model,
each node is interpreted as an energy level and each link as a pair of particles.
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Starting from a fitness parameter η, energy is computed according to the follow-
ing equation:

ε = − 1

β
log η (6)

with β = 1
T . Here, the fitness parameter η describes the ability of each node

to compete for new links. In particular, for the i-th node, the probability of
connection with new nodes is proportional to:

Πi =
ηiki∑
j ηjkj

(7)

with ki degree of the i-th node. Notably, new nodes tend to link with pre-existing
nodes having high values of (η, k). The generation of a scale-free network in the
fit-get-rich phase is characterized by Equation (1) and entails the presence of
few nodes with a high degree connected to many others with low degree. In
a bosonic gas, when the temperature decreases, particles aim to occupy lower
energy levels. Then, at a temperature below the critical temperature, the Bose-
Einstein condensation takes place. In this model, as T decreases, many particles
move to lower levels while keeping the corresponding particles at upper levels.
In doing so, links concentrate on few nodes, until they condensate in the winner-
takes-all phase, characterized by the fact that only one node predominates. In
[7], Bianconi discussed the differences between bosonic and fermionic networks,
showing that the former are scale-free, whereas the latter can be represented by
Cayley trees.

3.2 Fermi-Dirac Statistics of Complex Networks

In this work [9], the authors proposed an inverse approach to network evolution,
starting from a random network with an average degree equal to 2m. Using
an illness model, at each step, one randomly-selected node becomes “ill”, then
its illness causes a loss of links. An illness parameter I is defined and assigned
randomly to each node. The probability for each node to lose a link depends on
I and on the node degree. Hence, the number of links decreases with time. Each
node has an energy defined by:

ε = − 1

β
log I (8)

with β = 1
kbT

. A link between two nodes corresponds to a couple of non-
interacting particles placed in two energy levels whose value is computed by
Equation 8. When a new node joins the network, a new energy level is added,
with m new particles, and other m links are deleted, due to the illness. Au-
thors showed that the behavior of such system can be approximated by a Fermi
distribution, so that the network can be seen as a Fermi gas.
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4 Fermionic Networks

Let us now introduce a novel proposal for modeling network dynamics, inspired
from the physics of fermions. Given a network G = (V,E), with V non empty
set of nodes and E non empty set of links, let us represent each link as a particle
and each node as a degenerate bundle of energy levels. Usually, the number gi
of available states in the i-th bundle is much bigger than the number pi of its
particles. Let us assume that the i-th bundle has an energy εi. This value can
be assigned randomly or depends on a property of the system –e.g. a fitness
parameter η or any other function deemed relevant, with the trivial constraint
that it must be computable for each node of the network. In the proposed model,
lower bundles have more energy levels. In particular, the first bundle has n− 1
levels, the second has n− 2 levels, and so on and so forth. Note that the link lij ,
which connects nodes i and j, is represented only by a single energy level, i.e.,
εij , which in turn belongs to the i-th bundle (under the assumption that the i-th
bundle is deeper than the j-th). In so doing, the last node, say y0, is represented
by a bundle without energy levels, although it can be linked in the event that a
particle stays at the εxy0 level, with x corresponding to one of the other nodes.

4.1 Modeling Network Evolution

Let us consider an evolving network, i.e., a network that changes over time. Almost
all real networks evolve over time; examples are social networks (where people find
or lose friends or co-workers) and the web (where web-sites compete to gain more
inlinks). Furthermore, let us consider this network a closed system, so that the num-
ber of nodes and the number of links remain constant over time. As discussed be-
fore, for every node, a bundle is defined –whose energy is computed with Eq. (6). In
so doing, the relative position of each bundle depends on the value of its energy, so
that deeper bundles embodymore states. Considering the ability of the particles to
jump between energy levels as the temperature varies, at high temperatures parti-
cles follow the classical Maxwell-Boltzmann distribution, being spread among the
available states according to Eq. (5). On the other hand, as temperature decreases,
many particlesmove to lower energy levels (see Figure 1). During a cooling process,
few nodes gain new links and their degree ki is increased. Hence, as temperature
decreases, and assuming that the number of particles approximates the number of
bundles, the WTA phase takes place (see also [6]). For every variation of the tem-
perature, the probability for a particle to jump from the i-th to the j-th bundle is
computed according to the following equation:

p(i → j) =
ΔT

T
· 1

ΔB(j, i)
· f(gj) (9)

where T denotes the temperature of the system before the variation, ΔT the
variation of temperature, ΔB(j, i) is the distance between the bundles j and i,
and f(gj) is the function:
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Fig. 1. On the left, from top to bottom, the evolution of a network with 10 nodes and
9 links from a classical random network to a WTA network. On the right, their corre-
sponding fermionic models, which result from a cooling process that pushes particles
to low energy levels.

f(gj) =

{
0 if gj = 0

1 if gj ≥ 1
(10)

with gj number of available states in the j-th bundle. Hence, considering that
a particle in the i-th bundle can jump to i − 1 underlying bundles, each with a
probability given by Eq. (9), the probability pJ to jump from the i-th to another
bundle is:

pJ(i) =

i−1∑
z=1

p(i → z) (11)

and the probability pS to stay in the same bundle is

pS(i) = 1− pJ(i) (12)

Then, the final bundle of each particle is chosen by a weighted random selection
among all candidate bundles (including the bundle in which the particle is lo-
cated). In our model, the temperature corresponds to a phenomenon that leads
to an evolution (e.g., the evolution of relations among people or a competition
for new inlinks among web-sites). To complete the model, let us assume that
each network has the structure of an E-R graph when generated at time t = 0.

5 Results

The proposed fermionic model has been tested with many simulations. In par-
ticular, we generated networks of different sizes with an Erdos-Renyi graph
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structure. These networks are implemented by connecting nodes randomly –
giving rise to a graph G(n, ζ), where n is the number of nodes and ζ is the
probability of an edge to be drawn (note that an edge is drawn independently
from other edges). Their degree distribution of nodes is binomial, converging
to a poissonian distribution for a large number of nodes and small values of ζ,
according to the following definition:

P (k) ∼ e−ζn · (ζn)
k

k!

To generate these networks we used the following simple algorithm:

1. Define the number of n of nodes and the probability ζ for each edge
2. Draw each edge with probability ζ

Simulations have been performed with a number of nodes ranging from 100

to 5000, ζ = 〈k〉
n−1 with 〈k〉 average degree of the network (see [14]) and an

initial temperature ranging from 100K to 500K. For each simulation the network
evolved for 50 time steps, decreasing the temperature at each step of the 10%
and computing new positions of the particles. Figure 2 illustrates the evolution
of the degree distribution of a network with 5000 nodes and 〈k〉 = 20, generated
at 100K. The normalizing costant c and the scaling parameter γ are computed
at each time step. The former is computed by the following equation:

Fig. 2. On the left, from top to bottom, the evolution of the degree distribution of a
network with 5000 nodes and 〈k〉 = 20, generated at 100K. a the network at t = 0,
it has a ER graph structure. b the network at t = 3. c the network at t = 5, it has
a scale-free structure with a scaling parameter γ ≥ 2. d the network at t = 10. e the
network at t = 20. f the network at t = 43, it has a WTA structure with a scaling
parameter γ ≥ 7.25. Continuous black lines are used to highlight data interpolation.
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c =
1

∞∫
km

k−γdk

(13)

where km is the minimum degree estimated. The scaling parameters have been
estimated, as suggested in [15], by the following equation:

γ̂ = 1 + n ·
[

n∑
i=1

ln
ki
km

]−1

(14)

After few time steps (see Figure 2 - rectangle B), the degree distribution changes
drastically, converging to that of a scale-free. Similar results have been achieved
also for networks with a different number of nodes and/or generated at different
initial temperatures. Figure 3 shows the number of particles that, at each time
step, change their energy level. As temperature decreases, particles move to lower
energy levels until they occupy the deeper bundle, hence the number of particles
that change their position falls to zero.

Fig. 3. Number of particles that change their energy level (indicated as nr of jumps)
along time, whereas the system temperature decreases

5.1 Discussion

Fermionic networks show that the emergence of different structures can be rep-
resented as a phase transition for quantum gases. In particular, a WTA structure
corresponds to a fermionic gas at low temperatures. On the other hand, a classi-
cal random network corresponds to the same gas at high temperatures. During
a cooling process, at intermediate temperatures, a scale-free structure emerges.
As shown in Figure 2, the E-R structure rapidly changes into a scale-free, with
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a scaling parameter of about 2. As temperature decreases, the structure begins
to converge to the WTA structure characterized by a high value of the scaling
parameter. In particular, a homogeneous structure emerges, with the presence
of hubs (i.e., nodes with high degree). At the end of the cooling process, few
nodes have a very high degree (∼ n) and the remaining nodes have low degree.
Other analyses about the connection between classical random and scale-free
networks have been reported in [8]. In the cited paper, the authors show that,
for cold regime, their network is scale-free, but as the temperature increases the
network loses its metric structure and its hierarchical heterogeneous organiza-
tion, becoming a classical random network. Considering that many real complex
networks are scale-free while others are not (see for example [16]), we deem that
the proposed fermionic model can be considered a good candidate for represent-
ing their evolution, at low and high temperatures. As shown in Figure 3, we
analyzed also the dynamics of particles during the cooling process. We observed
that the number of particles changing position is very high from the first time
step, but it decreases rapidly.

6 Conclusions

In this work, we define a fermionic network model that allows to represent com-
plex networks as quantum gases. Using this model, we show that network evo-
lution is a temperature-dependent process characterized by three main phases:
classical random, scale-free and WTA. The transition from classical random to
scale-free networks mimics a cooling process of a physical system and, when a
winner-takes-all structure is obtained, the system achieves equilibrium, despite
the non-equilibrium nature of the network evolution. We deem that mapping
complex networks to quantum systems, can be useful to analyze some of their
properties. Furthermore, this model allows also to represent competitive dynam-
ics among nodes. In particular, nodes are characterized by a fitness parameter
and, during cooling processes, only few of them gain the majority of links. As
for future work, we are planning to develop a model in which the fitness of each
node can vary over time.
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Abstract. This paper presents an extensive study on the pre- and post-
selection schemes in a memetic algorithm (MA) for solving the vehicle
routing problem with time windows. In the MA, which is a hybridiza-
tion of the genetic and local optimization algorithms, the population
of feasible solutions evolves with time. The fitness of the individuals is
measured based on the fleet size and the total distance traveled by the
vehicles servicing a set of geographically scattered customers. Choosing
the proper selection schemes is crucial to avoid the premature conver-
gence of the search, and to keep the balance between the exploration
and exploitation during the search. We propose new selection schemes to
handle these issues. We present how the various selection schemes affect
the population diversity, convergence of the search and solutions quality.
The quality of the solutions is measured as their proximity to the best
currently-known feasible solutions. We present the experimental results
for the well-known Gehring and Homberger’s benchmark tests.

1 Introduction

The vehicle routing problem with time windows (VRPTW) is a bi-criterion dis-
crete optimization problem belonging to the NP-hard class. It consists in finding
a set of feasible routes for a set of homogenous vehicles servicing the customers
dispersed on the map. The customers must be visited within their time windows
and the vehicle capacities cannot be exceeded. The VRPTW is a hierarchical
optimization problem. The first objective is to minimize the number of routes
whereas the second one is to minimize the total traveled distance. The VRPTW
has numerous practical applications including the bus planning, parcels and food
delivering, cash delivering to banks and ATM terminals and many more.

A number of exact and approximate algorithms for solving the VRPTW have
been proposed in the recent years due to its wide practical applicability. An
extensive review of the exact methods can be found in Kallehauge [1]. The
current state-of-the-art heuristic algorithms to solve the VRPTW can be divided
into the construction and improvement methods. In the construction heuristic
algorithms the customers are inserted iteratively into a partial solution, until
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a feasible set of routes is generated. Several construction heuristics have been
proposed [2]. In the improvement heuristics an initial feasible solution is modified
to decrease the number of vehicles and the traveled distance. An example of
such approach is given in Potvin and Rousseau [3]. In the metaheuristics, the
mechanisms to explore and to exploit the search space are applied. The feasible
solutions may be perturbed and deteriorated to escape the local minima. A
survey on the metaheuristic algorithms can be found in Bräysy and Gendreau [4].

The memetic algorithms (MAs) are the population-based approaches combin-
ing the evolutionary algorithms for the exploration of the search space S with
the local optimizations for the exploitation of S. The EAX-based MA has been
proposed by Nagata and Bräysy [5] and later improved [6, 7]. In the work re-
ported here we use the parallel heuristic algorithm [7] to generate a population
of solutions. We study the influence of various pre- and post-selection schemes
on the performance of a sequential MA [7] to minimize the travel distance, apply
new schemes to diversify the search and evaluate them experimentally.

Choosing the proper selection schemes and measuring the population diver-
sity for the population-based approaches appear crucial to avoid the premature
convergence of the search. The most common measures of the diversity include
pair-wise Hamming distance calculations in the genotypic space, calculating the
fitness standard deviation in the phenotypic space or measuring the number of
distinct individuals in a population. The moment of inertia method for estimat-
ing the diversity has been introduced by Morrison and De Jong [8].

The paper is organized as follows. The VRPTW is formulated in Section 2.
The memetic algorithm and the selection schemes are presented in Section 3.
Section 4 discusses the experimental results. Conclusions and directions for the
future work are given in Section 5.

2 Problem Formulation

The VRPTW is defined on a directed graph G = (V,E) with a set V of
N + 1 vertices representing the customers and the depot, along with a set of
edges E = {(vi, vi+1)|vi, vi+1 ∈ V, vi �= vi+1} representing the connections be-
tween the travel points. Each vehicle starts and finishes at the depot v0. The
travel costs are given as ci,j , where i �= j, i, j ∈ {0, 1, ..., N}. The non-negative
customer demands di, i ∈ {0, 1, ..., N}, where d0 = 0 and the time windows
[ei, li], i ∈ {0, 1, ..., N} are defined. The customers have their service times si,
i ∈ {1, 2, ..., N}. A fleet of vehicles with a constant capacity Q is given. Let K
denote a size of the fleet. The route is defined as a set of customers serviced by a
single vehicle (v0, v1, ..., vn+1), where v0 = vn+1. A solution σ (a set of routes) is
feasible if (i) the total amount of goods delivered to the customers within each
route does not exceed the vehicle capacity Q, (ii) the service of a customer vi is
started before the time window [ei, li] elapses, (iii) every customer vi is serviced
in exactly one route, and (iv) every vehicle leaves and returns to the depot within
its time window [e0, l0]. The penalty function F (σ) is introduced to determine
the degree of the constraint violations in the infeasible solutions [5].
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The primary objective of the VRPTW is to minimize the fleet size K. The
lower bound for the number of vehicles is given by Kmin =  D/Q!, where D =∑N

i=1 di. The secondary objective is to minimize the total distance T =
∑K

i=1 Ti,
where K is the number of routes and Ti is the distance of the i-th route.

3 Memetic Algorithm and Selection Schemes

The initial population of size N of feasible solutions (individuals) is generated
using a construction parallel heuristic algorithm based on the heuristics proposed
by Nagata and Bräysy [5] (Fig. 1, lines 1–2). In this section we present the
outline of the MA for the total distance minimization (its detailed description
is given in [7]). We propose some new selection schemes used in the MA. The
pre-selection scheme defines how the mating pool is generated and how the pairs
of individuals are chosen for the edge-assembly crossover (EAX) operator. In the
post-selection step we determine which individuals from the i-th generation and
the children pool survive and form the (i+ 1)-th generation.

3.1 Memetic Algorithm Outline

The minimal number of routesK in a feasible solution is determined at first using
the parallel heuristic algorithm [7] (Fig. 1, line 1). Then, N individuals with the
number of routes K are generated (line 2). The fitness η(pi) of an individual pi
corresponds to the travel distance Ti (K is constant within a population), thus
a lower distance Ti is considered as a better fitness η(pi).

The individuals from the i-th generation are used to create the (i+1)-th gener-
ation. Once the chromosomes pA and pB are selected, they are recombined using
the EAX operator (line 7) to generate Nc offspring solutions, each composed of
K routes (Fig. 2). If the child solution pc is infeasible, i.e. if F (pc) > 0, where
F (pc) is the penalty function of pc, then the feasibility of the solution is restored
by performing the local repairing moves (Fig. 1, line 8). The moves, either inter-
or intra-route, are based on exchanging the edges between two routes ri and rj ,
where i �= j, or within a single route ri. Only moves decreasing the value of
F (pc) are performed. Finally, if the solution pc is feasible then it is improved
by at most I perturbation moves (only the feasible moves decreasing the total
distance are accepted) (line 9). The best child pbc is chosen for each pair of par-
ents (lines 10–12). The offspring solutions inherit the features of both parents pA
and pB, thus the post-selection scheme has a strong impact on the population
diversity and the search convergence. Depending on the approach, the (i+1)-th
generation is a set of N best children or a mixed set of individuals belonging
to the i-th generation and the children pool (line 15). The algorithm continues
until the termination condition is met (line 16). Finally, the best individual in
the last population is returned (line 18).

3.2 Selection Schemes

If the population is saturated with similar individuals then the probability of
exploring the search space S drops. Thus, escaping the local minima becomes
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1: Determine a number of routes K using a parallel heuristic algorithm;
2: Generate an initial population of solutions (individuals) of size N (each solution

consists of K routes);
3: while not finished do
4: Determine N reproduction pairs (pA, pB); {Pre-selection}
5: for each pair (pA, pB) do
6: for i ← 1 to Nc do
7: pc ← EAX(pA, pB);
8: pc ← Repair(pc);
9: p′c ← LocalSearch(pc);
10: if η(p′c) > η(pbc) then
11: pbc ← p′c;
12: end if
13: end for
14: end for
15: Form the next population; {Post-selection}
16: finished ← VerifyTerminationCondition();
17: end while
18: return best individual in the last population;

Fig. 1. The MA for the total distance minimization

impossible and the population should be re-generated or perturbed if it is in
the diversity crisis. This induces a trade-off between the exploration and the
exploitation of S. Here we present the selection schemes explored in this work:

1. AB-selection. Each individual pi, i = 1, 2, . . . , N , is selected as pA at first.
Then, the individual p′i is chosen as pB, where pA �= pB. Each individual pi
can be selected once as pA and once as pB. The parent pA is replaced by the
best offspring solution pc only if Tc < TA.

2. High-low fit. The original version of this method was proposed by Elamin
in [9]. The parent pA is selected from the ch · N fittest individuals, where
ch, 0 < ch < 1, is the high-low selection coefficient. The second parent is
drawn from the less-fitted part (1− ch) ·N of the sorted population. The N
fittest individuals survive. We propose to sort a set of individuals of size 2N
containingN offspring solutions and the individuals from the i-th generation,
and select the Nd,Nd ≤ N , fittest, but distinct individuals to form the (i+1)-
th generation. If Nd < N then remaining N −Nd individuals, starting from
the fittest, are selected and perturbed by at most Ip perturbation moves (if
the feasible ones exist) to increase the population diversity.

3. Sexual selection. In this scheme introduced by Goh et al. [10] the sex of
each individual is determined randomly at first – we create N/2 females and
N/2 males. Then, each female is selected twice as pA for N EAX pairs. The
tournament selection with the tournament size 2 is applied to select a male
as pB for each female. The N best children form a new population.

4. Enhanced truncation. In the standard truncation scheme [11], the parents
pA and pB are drawn from the ct ·N fittest individuals, where ct, 0 < ct < 1,
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Selection EAX Local search

pA

pB

pc p′c

N individuals

Fig. 2. Generation of a child solution

is the truncation coefficient, and the child population is composed of the
best child solutions. The enhanced truncation was proposed by Kawulok
and Nalepa [12]. The cr · N pairs pA and pB are selected from the ce · N
fittest individuals, where cr, 0 < cr < 1, is the reproduction coefficient and
ce, 0 < ce < 1, is the enhanced truncation coefficient. The best offspring
solutions for cr · N pairs of parents survive to the next generation. The
remaining N − cr · N individuals are generated randomly, what simulates
additional mutation within the population of size N .

5. Adaptive selection. In this selection scheme we apply the enhanced trunca-
tion scheme for the exploration of the search space with the elitist approach.
In the elitist approach [13], the cb · N , 0 < cb < 1, best individuals are
copied from the i-th generation to the (i+ 1)-th generation, where cb is the
elitist coefficient. If the best individual in the population is not improved for
the gs consecutive generations, then the selection scheme is changed to the
AB-selection to exploit the search space.

4 Experimental Results

The proposed selection schemes have been used in the MA to solve the Gehring
and Homberger’s (GH) benchmark tests containing 200 customers. The GH tests
are divided into six groups, namely: C1, C2, R1, R2, RC1 and RC2. Clusters of
customers are given in the C class problems. Customers are randomly scattered
around the map in case of the R class. The RC class contains both clustered
and randomized customers. Each class is further divided into two subclasses
containing the problems with small vehicle capacities and short time windows
(C1, R1, RC1) and these with larger vehicle capacities and wider time windows
(C2, R2, RC2). Each subclass contains 10 problem instances.

The MA was implemented in C++ and the experiments were performed on
a computer equipped with an Intel Core i7 2.3 GHz (16 GB RAM) processor.
The population was composed of N = 80 individuals for each test. The MA
parameters were tuned experimentally to the following values:Nc = 20, ch = 0.5,
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Table 1. Average number of distinct individuals n vs. generation g: (a) AB-selection,
(b) High-low fit, (c) Sexual selection, (d) Enhanced truncation, (e) Adaptive selection,
for GH subclasses C1, C2, R1, R2, RC1, RC2 (200 customers)

g = 1 g = 50 g = 100 g = 150 g = 200
(a) (b) (c) (d) (e) (a) (b) (c) (d) (e) (a) (b) (c) (d) (e) (a) (b) (c) (d) (e) (a) (b) (c) (d) (e)

C1 74 74 72 73 74 58 77 52 43 48 44 78 46 49 47 44 79 46 52 44 41 78 43 52 45
C2 79 80 80 78 79 47 80 46 41 45 42 80 38 44 44 41 80 39 39 41 43 80 41 41 43
R1 80 80 80 79 80 64 80 56 46 45 42 80 45 53 44 39 80 38 54 39 43 80 38 54 41
R2 80 80 80 80 80 51 80 48 39 46 35 80 34 46 34 35 80 34 37 31 35 80 36 40 31
RC1 80 80 79 80 80 65 80 56 47 39 50 80 42 50 42 43 80 40 51 41 45 80 40 60 38
RC2 80 80 78 79 80 55 80 55 33 55 34 80 33 39 34 34 80 35 42 31 33 80 35 42 34

I = Ip = 300, cr = 0.9, ce = 0.5, cb = 0.05, gs = 10, gmax = 200, where gmax is
the maximal number of generations. Each GH test was run 5 times using each
selection scheme to solve each problem instance. The averages of the distances
T of the best individuals in the populations, of the numbers of distinct ones n,
n ≤ N , and of the standard deviations s of the total distances were computed.
Then, the results were averaged for each subclass (C1, C2, R1, R2, RC1, RC2).
The average numbers of distinct individuals are given in Tab. 1, the average
travel distance of the best individual and the standard deviation of the travel
distance are shown in Fig. 3(a–f) and Fig. 4(a–f) respectively. The best-known
travel distances are averaged for each subclass and presented in Fig. 3. The
number of routes K was equal to the best-known number Kb for each GH test1.

The experiments showed that the GH tests with wide time windows and large
vehicle capacities (C2, R2, RC2) can be solved in relatively small number of
generations (Fig. 3(b,d,f)). It is easy to note that the average travel distances
drive towards the average best-known distance quickly (in approx. 80 genera-
tions). The GH tests belonging to the C1, R1 and RC1 subclasses with short
time windows and smaller vehicle capacities turned out to be harder to solve to
good accuracy in short time (Fig. 3(a,c,e)). The main objective was to investi-
gate how the schemes discussed in Section 3.2 influenced the search convergence
and the population diversity. We measured the population diversity by n and s.

At the beginning of each search process, the population was composed of a
large number (n ≈ N) of distinct solutions (Tab. 1, g = 1). The n was sub-
sequently decreased during the algorithm execution for most of the selection
schemes. In case of the high-low selection (Tab. 1(b)) the additional perturbing
moves were applied and n remained at constant level. It is worth noting that con-
sidering only the number of distinct individuals for the estimation of the popula-
tion diversity may be misleading. It can been seen in Fig. 4(a–f) and Tab. 1 that
the standard deviation for the AB-selection scheme for 100 < g < 200 is close
to 0. Moreover, for this range we have 33 ≤ n ≤ 50, thus 0.41N ≤ n ≤ 0.63N .
This indicates that the population was saturated with similar (well-fitted) in-
dividuals as a result of intensive exploitation of the search space. The large
values of s were observed for the sexual and the enhanced truncation schemes.

1 The best-known solutions of the GH benchmark tests are published on the Sintef
website: http://www.sintef.no/Projectweb/TOP/VRPTW/Homberger-benchmark/

http://www.sintef.no/Projectweb/TOP/VRPTW/Homberger-benchmark/
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Fig. 3. Average travel distance T of the best individual vs. generation g for GH
subclasses C1, C2, R1, R2, RC1, RC2 (200 customers)
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Fig. 4. Average standard deviation s of the travel distance T vs. generation g for GH
subclasses C1, C2, R1, R2, RC1, RC2 (200 customers)

In case of the adaptive selection, the standard deviation was dependent on the
search stage. During the initial exploration of the search space, the value of s was
quite large. Once the scheme switched from the elitist enhanced truncation to
the AB-selection, the s started decreasing (the exploitation stage). Finally, the
standard deviation approached zero and the population was composed of well-
fitted individuals. The average number of distinct individuals n became similar
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(Tab. 1) for the AB-selection and the adaptive selection during the exploitation
(g � 100).

As mentioned earlier, the GH tests can be divided into two groups: tests that
can be solved fast to good accuracy (C2, R2, RC2) and those converging slower
(R1, R2, RC1). The intensive exploitation yielded approaching the best solutions
for the tests of the first group (Fig. 3(b,d,f)). The experiments indicated that
the adaptive and AB-selection schemes proved to be the best among the schemes
under investigation, in terms of convergence and accuracy of final results. These
selection schemes guided the search towards the best solutions and s started
decreasing relatively fast, thus the population contained well-fitted and similar
individuals. The application of the other selection schemes resulted in increasing
the population diversity, however the search converged slower. In case of the
more difficult tests (C1, R1, RC1), the speed of converging to the best-known
results dropped for the AB-selection. Applying the selection schemes that en-
sured the large values of s (the high-low fit and the enhanced truncation) led to
obtaining the better solutions faster (Fig. 3(a,c,e)). However, they were not fur-
ther improved significantly. Although the AB-selection scheme converged slower
than the high-low fit and the enhanced truncation, the steady-state solutions
were of higher accuracy. It is worth noting that the adaptive selection scheme
outperformed other schemes in terms of the convergence speed (without worsen-
ing the final solutions accuracy). It combined the advantages of the initial search
space exploration and its further exploitation. It can be seen that in case of the
sexual selection it may happen that the best individuals in the i-th generation
do not survive to the (i+1)-th generation, thus the best-individual fitness in the
(i+ 1)-th generation can decrease with respect to the i-th generation.

5 Conclusions and Future Work

We proposed new selection schemes for the memetic algorithm to solve the vehi-
cle routing problem with time windows. We showed how the choice of a scheme
affects the final solutions accuracy, the convergence speed and the diversity of the
population. During the experiments the Gehring and Homberger’s benchmark
tests containing 200 customers were used. The adaptive and the AB-selection
schemes proved to be the best among the considered ones. The adaptive selection
scheme outperformed other schemes in terms of the search convergence speed.
The travel distances of the best individuals were approximately the same for the
AB-selection and the adaptive selection schemes, however the former required
much larger number of generations to converge to solutions of high quality.

Our ongoing research includes performing the time complexity analysis and
running the full GH tests using the parallel version of the MA to compare the
execution times in practice. The influence of the algorithm settings on its perfor-
mance is to be clarified. Also, our aim is to conduct the sensitivity analysis for the
proper adjustment of the settings allowing for their automatic tuning. Finally,
we want to expand the schemes to explicitly utilize the diversity measures [14].
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Abstract. Involvement of mathematical and engineering methods in medicine 
makes it possible to perform research into processes in the human body by non-
invasive methods. Our team cooperates with neurologists in the domain of 
developmental dysphasia. We search for correlations between the results of 
EEG, magnetic resonance (MR) tractography, speech signal analysis, clinical 
speech therapy and psychology. Our aim is to verify a hypothesis of the 
possibility of classifying and visual representing changes in pathological speech 
by means of artificial neural networks. This contribution concentrates on one 
part of this research: disordered children’s speech analysis and results from MR 
tractography. We try to divide the patients into three groups according to 
disorder relevance. For classification, we use PCA and SSOM. Evaluation of 
the results and preparation of a software pack with a user-friendly interface can 
facilitate the emergence of disease monitoring and improve the quality of 
therapy.  

Keywords: SSOM, PCA, MR tractography, developmental dysphasia, patho-
logical children speech. 

1 Introduction 

At present, mathematical-engineering methods are used in many medical disciplines. 
Improvement of diagnostic and therapeutic methods is the result of rapid advances in 
informatics, new technologies, and device techniques. We wanted to utilize our years 
of experience about speech from the beginning of our collaboration with neurologists, 
because language impairment can be caused by a number of brain disorders. For eight 
years, collaboration has been underway between Laboratory of the Neural Network 
Applications (CTU FEE in Prague) and the Paediatric neurology department from the 
2nd Faculty of Medicine of CU in Prague. Recently, collaboration has included the 
Department of Radiology from the same clinic as well. 

We search for relations between speech signal characteristics and cerebral activi-
ty, which are important for an understanding of pathological speech demonstration in 
joint research. Pathological speech is one of the symptoms of the neurological 
disorder named Developmental Dysphasia (DD). An implication of early cerebral 
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damage, DD is a central disorder of speech processing which affects all speech 
modalities (phonetic-phonologic, morphological-syntactic, lexical-semantic and 
memory) and also other developmental aspects of the child’s personality. The disor-
der interferes with speech zones (Broca's area and Wernicke's center) of the 
developing child’s brain in the prenatal period, and patients show a deficiency of 
speech production and understanding. DD is found to affect about 5% of the 
paediatric population [1]. This contribution describes the results of the analysis of 
disordered speech from 14 children with DD in the pilot study.  

To the best of our knowledge, our investigation is the first project in a search for 
correlations between computer child speech processing and MR tractography. Nerolo-
gists, speech therapists and other interested experts study the problem of pathological 
speech as a consequence of cerebral activity from a language-based point of view [2], 
[3], not from the engineering approach of speech signal processing. Here, MR 
tractography data are processed and analysed by standard statistical methods, usually 
see [4] or by Support Vector Machines (SVM) [5]. The first method describes a 
problem similar to our research, while the second one is often used for patients with 
Alhei-mer’s disease. Our approach is different in that we proceed from our experi-
ences with computer signal processing and from KSOM (Kohonen Self-Organizing 
Maps) or SSOM (Supervised Self-Organizing Maps) applications [6] for data classifi-
cation of child neurological patients [1]. 

2 Hypothesis 

Our point of departure is the hypothesis that the underlying factor is the changes of 
movement of speech organs in the articulation of children with neurological disorders, 
which in turn impacts formant generation. Shifting of formants in the frequency spec-
trum is one effect of this process. Formant location is primarily characteristic for vo-
wel generation, but also has an influence on the co-articulation surface at dislocation 
and pronunciation of consonants. We have supposed that the movement of formants 
can be revealed through SSOM [1]. One advantage of these maps is their very strong 
visualisation ability. Graphic representation of phonemes (cluster visualization) by 
graphic display in 2D is suitable for diagnosis of disease by medical practitioners. 
Analysis of the layout and movement of the features in SSOM can uncover one of the 
symptoms for neurological disease identification. The other advantage common to all 
ANN paradigms is the robustness of the solution for real methods. The method using 
principle component analysis (PCA) [7] was created based on promising results of 
SSOM. The idea of PCA was based on the same principle, and tries to use the 
standard methods for comparison. It is necessary to find out the optimal principal 
components, whether using Mel-frequency-cepstral coefficients (MFCC) or LPC and 
many other parameters of the model, which detects degree of DD. In addition, certain 
parameters of MR tractography (Diffusion Tensor Imaging - DTI method) [8] can be 
used for patient classification. The first idea is to separate all obtained data into 3 
groups by KSOM, using all parameters. The second idea is to choose only those data 
that are assumed to correspond with the DD (according to doctors) and apply the 
same method (KSOM). The third method is to classify data into 3 groups entirely 
from the original parameters – choosing the promising ones. 
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3 Methods 

KSOM and SSOM were used for the first experiments [1], [6].  Both types of SOMs 
are based on clustering. These maps and their subsequent visualisation serve to 
monitor the progress of trends and the magnitude of the degree of impairment. The 
object of the search is for correlations between results from computer speech analysis 
of the children with DD, and the other methods surveyed in the project (MR tracto-
graphy in this contribution). ANNs were selected for the reason of their notable 
robustness and very good ability to perform data visualisation, hence they can also 
process less qualitative signals. The quality of recorded utterances is impacted by the 
real environment during the recording, namely non-professional speakers, environ-
ments with strong noise, even children’s age). Data visualization enables the 
following of changes at the generation of formant frequencies, which has an influence 
on input vector mapping into particular clusters. SSOMs are utilized to find identical 
characteristic features in utterances. Features in the signal that are spatially or tempo-
rally adjacent are represented by patterns. If the maps are trained with healthy 
children’s utterances, the patterns represent the distribution of the feature in their 
speech. The differences between healthy and DD children could be enumerated in 
proportion to the progress of treatment being described: in cases of effective therapy, 
the differences tend to decrease. SSOMs create clusters of all input vectors with 
common or close labels. Clusters characterize particular phonemes and when allo-
cated to the map they show partial numbers of the dominant characteristics (frequency 
distribution of particular phone-mes) over one training process. We can divide 
patients into three groups according to the classification success. These groups 
correspond with relevance to the disorder to the described task (light, middle and 
severe DD). A characteristic of the task consists in the accentuation of errors and 
deviations of standard values among healthy children.  

3.1 Analysis of The Children’s Speech Signal 

We study the ability of phoneme classification, regarding phonemes that are pronoun-
ced separately and as well as part of words. Recorded speech is pre-processed by me-
thods frequently used in a speech signal processing in engineering applications [9]. 
SSOM [6], [10] and PCA [7], [11] are used for phoneme classification. Our first 
experiments [1] provided proof for the veracity of our previous hypothesis. The 
SSOM consists of m units located on a regular, low-dimensional grid. Each unit is 
connected to a number of neighbouring units with a neighbourhood relation. Super-
vised learning means that the input vector is formed of two parts, x0 and xc, where x0 

=[x01, x02,…, x0n]
T, x0 

n is an original input vector of dimension n and xc = [xc1; 
xc2,…, xck]

T , xc , k is assigned as a known class of xc (supervisor) in a training set 
(indication of vowels in our experiments). Each element of vector xc represents one of 
k classes. A new vector x = [x0, xc]

T, x   will have a dimension (n + k), which 
is valid for a prototype vector m = [m1,m2,…,mn+k]

T, m   as well. During the 
classification of an unknown input vector x, only its x0 part was compared with the 
corresponding part of the prototype vectors. The class of each unit is found by taking 
the maximum over these added elements. Spoken speech is a time-dependent se-
quence of phonemes, so as a result it is necessary to process the input data to ANN in 
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a batch form: this method is significantly faster and does not require any specification 
of a learning-rate factor. New prototype vectors are calculated as a weighted average 
of the input vectors, where the weight of each input vector is the neighbourhood func-
tion value hi,m (j) at its winner m j: m t 1) = 

∑ ,N∑ ,N  ,                                             (1) 

where t is the number of iterations, xj is the input vector, N is the number of input vec-
tors. The most usual neighbourhood function is the Gaussian one. During the training, 
the map adjusts to the data by adapting the prototype vectors. After the training phase, 
each map unit will be automatically assigned the most probable labels which contain 
the information about classes of the training set. The labelling process is based on the 
searching maximum of the second part of the training data set. Finally, the second 
part of the training data set is removed, as the elements were useful only for labelling 
the map units. The method has been used for training of maps for each patient.  

The PCA model is created in steps: 

1.   Calculate MFCC and LPC coefficients from utterances of all healthy children  
   (after vowel extraction). 

2.   Use PCA to create a new dimension space based on principal components (PCs). 
3.   Split data into two groups – the validation data set and the training data set. 
4.   Now the data model is created, and it is possible to plot it into 2D (according to 

the selection of principal components). 
5.   Find out the parameters of the model (cluster information for each vowel). 

 
The parameters of the model contain the mean value of the cluster (centroid) and its 
covariance matrix, which is represented by Gaussian distribution. Table 1 is an example 
of a child, in which the main diagonal represents the correct classification (values in 
rows represent actual data and values in columns represent output of VD). Each 
segment is classified as a vowel based on the closest centroid (the highest probability 
among Gaussian distributions). Table 2 represents the gravity of classifications based on 
the vocalic triangle [9] – value 1 for correct classification, value 5 for misclassification 
among close vowels and value 25 for misclassifications among distant vowels. The 
gravity values in Table 2 are defined from our linguistic experience.  
 

Table 1. Classification [%] Table 2. Gravity of misclassification 

 a e i o u 
a 99.8 0.2 0 0 0 

e 4,6 95,4 0 0 0 

i 0 0 99.8 0 0,2 

o 0 0 0,7 65.1 34.2 

u 0 0 9.1 0 90,9 
 

 a e i o u 
a 1 5 25 5 25 

e 5 1 5 25 25 

i 25 5 1 25 25 

o 5 25 25 1 5 

u 25 25 25 5 1 

 



410 J. Tuckova et al. 

Table 3. Classification with gravity 

 a e i o u 
a 1 0 0 0 0 

e 0.2 1 0 0 0 

i 0 0 1 0 0 

o 0 0 0,2 0,7 1.8 

u 0 0 2.3 0 0.9 

 

Table 3 is the multiple of values in tables 1 and 2. The misclassification between 
neighbour vowels in the vocalic triangle is not as serious (these misclassifications are 
usual as well among healthy children). By contrast, the misclassification between \i\ 
and \u\ (see 4.1.) is one of the DD symptoms (note the values in bold in the tables), 
see [1]. Finally, the summarization of all numbers in Table 3 is the “sickness” 
parameter. The “sickness” parameter is determined for each child in the validation set 
(healthy children). The parameters of the model were determined according to the 
“sickness” parameter, in which the best model has the lowest “sickness parameter”. 
The best vowel detector (VD) model was created in the following steps: 

 
1. set/reset all model parameters, 
2. create model, 
3. determine the mean of the sickness parameter among all children in validation set, 
4. remember the value of the sickness parameter and go to step 1, 
5. if all parameters are tested, choose the model with the lowest sickness parameter. 

Formation of the Utterance Database  
The database contains the records of utterances of 44 female and 28 male healthy 
children and 67 children with DD, and was built for an assessment of a degree of a 
speech impairment. The children’s age is from 4 to 10 years [12]. Recordings of the 
utterances were realized at kindergartens and a primary school (healthy children) or at 
a speech therapist’s surgery or a child neurological clinic. Separated maps are trained 
for different types of utterances. The records contain isolated phonemes, multisyllabic 
words and also whole sentences. Speech parameters were calculated from the labelled 
data - 16 MFCC and 8 LPC, 20ms long, 50% overlap, and Hamming window. The 
data of healthy children are used for training and validation, while the data of children 
with DD are used for testing. Both part of the database are accessible for authorised 
users via the web. For the pilot study presented here, we use records of healthy and 
DD children from 6 to 10 years old from our database. 

3.2 MR Diffusion-Weighted Contrast and Tractography 

The magnetic resonance method is used for the quantitative description and visualiza-
tion of white-matter brain structures - Arcuate Fasciculus [8]. This is a bundle of ner-
ve fibres, myelin-insulated neurons, which connects two - relatively distant - of the 
most important centres of the cerebral cortex for speech processing, specifically the 
Broca's area in the frontal cortex (Brodmann area 44 and 45) and the Wernicke's 
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center in interface temporal and parietal lobe (Brodmann area 22). Using a special 
measuring sequence of magnetic resonance, the diffusivity of water molecules in the 
structures of white matter is detected, based on the assumption that the diffusion of 
water molecules in the white-matter structures is strongly anisotropic due to move-
ment re-strictions in specific directions – i.e. the diffusion rate along the nerve fibres 
will be much greater than the diffusion of molecules in the transverse direction. The 
used measuring sequence determines the size of diffusion in sixteen different direc-
tions. Evaluation for a particular voxel obtains information about the overall direction 
of diffusion and its size. Quantitative description of the diffusion in the individual 
voxels is obtained by calculating parameters such as the Apparent Diffusion -
Coefficient (ADC) and the Fractional Anisotropy (FA). When these parameters are 
known, further computer processing can reconstruct the tensor model and the 
probable path of the nerve fibres and obtain a visual representation of nerve bundles 
(called tractography). From the diffusion-weighted magnetic resonance data, the ten-
sor model was obtained, and the subsequent method of tractography obtained an 
image of all neural pathways of white matter in the brain. Parameters such as Frac-
tional Anisotropy FA, Apparent Diffusion Coefficient (ADC), length and number of 
threads were measured. Other parameters were determined from the final volumes. 
Volumes were coloured (red, left, right, blue) and reconstructed into anatomically 
arranged 3D structural T2-weighted TSE transversal data.  

MR Tractography Analysis: The method can be described in the following steps: 

1. Select all parameters / select only the promising parameters for all children. 
2. Use KSOM to create 2D hexagonal map. 
3. Separate data into groups using K-means in SOM toolbox [13]. 

The second idea is to compare the left and the right hemisphere using the amount of 
fibres and the volume of Arcuate Fasciculus.  

4 Results 

We evaluated 72 healthy children and 14 patients in treatment. Our goal was the dis-
tribution of the patients into 3 classes according to DD level (L1-mild, L2-medium, 
L3-severe). We compared the results from the speech analysis (from SSOM training 
and PCA analysis) with MR tractography results (processed by KSOM). 

4.1 Classification of Children with Developmental Dysphasia Based on Speech 
Signal Analysis 

We analyzed the vowel mapping for experiments with disordered children’s speech – 
by SSOM and by PCA. 

Classification by SSOM: SSOM was formed by a two-dimensional map contains  
24 x 24 units in a hexagonal grid (in our experiment), a random initialization of the 
prototype vectors. Two training stages were used for our experiment: 



412 J. Tuckova et al. 

1.  The first rough stage: the Batch Map algorithm, the Gaussian neighbourhood 
function decreasing monotonically from 24 to 1. The number of training steps 
was 5000. 

2.  The second fine stage: the Batch Map algorithm, the Gaussian neighbourhood 
function decreasing monotonically from 2 to 0. The number of training steps 
was 1000. 

The dimension of training data set was 31475 x N (N is equal to a number of speech 
coefficients), the number of wav-files in the training data set was 1495, the number of 
phonemes in the training data set was 2299.  Fig. 1 shows the results of the classifica-
tion. Each figure shows the trained SSOM for vowels for the patient (2-D map on the 
left, U-matrix on the right).  The particular clusters of vowels are represented by 
colours (red for \a\, orange for \e\, blue for \i\, green for \o\ and yellow for \u\).  

 

Fig. 1. SSOM maps for classification vowels from child patients speech 

The training set consists of the utterances of all healthy children in the database. 
Utterances from a child with DD are then classified and shown within the map. White 
units indicate the successful classification; black units represent classification errors 
(wrong vowel indications are written in units). Afflicted children are not able to pro-
nounce certain vowels or they replace them by other vowels. Characteristic replace-
ments are \o\ for \e\ and \u\ for \i\, these replacements are typical for DD patients, but 
doesn’t occur among healthy persons. 

Classification by PCA: The value mean and variance of the “sickness” parameter 
among the validation sets is compared with the “sickness” parameter of each child in 
the testing set (children with DD). The result is the cumulative density function 
(CMD), in which it holds that t higher CMD, the higher degree of DD. The results are 
in Table 1, in column 4 and 5. 
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4.2 MR – Tractography Results 

Four particular maps on Fig.2 show, that a volume and a number of fibres in the 
Arcuate Fasciculus in Fig. 2a, 2b (left hemisphere) and in Fig. 2c, 2d (right 
hemisphere) are different. Maps are symmetrical along the y-axis as follows from the 
figures. We can suppose that this fact is associated with Fig.3a, which typifies the 
groupings. Knowledge of this finding can help doctors to determine the degree of 
disorder, as this assumption is confirmed in the future for many more patients. Fig.3b 
is the visualization of the Arcuate Fasciculus in a child’s brain. 
 

Fig. 2.  SOM. The first two images are for the left hemisphere; the rest are for the right hemi-
sphere. The first and third images represent the volume parameter and the second and fourths 
are the amount of fibres. 

4.3 Comparison of Methods 

KSOM classification to the three groups is presented in Fig. 3a. The map classifies 
patients into three groups based on the four selected parameters (volume and amount 
of fibres of both hemispheres) of MR tractography (see 3.2). The patient’s labels are 
highlighted in the hexagonal cells. At present, it is not possible to pair groups (la-
belled as \A\, \B\, \C\ in Table 4 – eighth columns) with the degree of DD, because we 
do not have enough data to perform the correct correlations. Nevertheless, we assume 
that the methodology should bring us useful results, because we have good experience 
with KSOM in medical issues. Table 4 contains the results of MR tractography 
(second, third, eighth and ninth column), PCA (fourth and fifth column) and SSOM 
(sixth and seventh column). The second and third columns represent the ratio between 
maximum and minimum value (volume or amount of fibres) of the left and right 
hemisphere. The yellow colour means that the right hemisphere is larger and the red 
colour respectively the larger left hemisphere. 

The results of PCA in the fourth column (explained in chapter 4.1) define the 
degree class of DD. The sixth column represents the correct classification by SSOM 
as a percentage. Based on the classification rate, we separated children into three 
groups using the linear method according to the results of healthy children. These 
values (degree of DD) will be re-valued after we obtain more data. The last two 
columns are related to Fig.3a (A – all data of MR tractography, B – number and 
volume of fibres of both hemispheres). 
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Fig. 3. The left figure represents the patient in clusters in KSOM and the right figure represents 
the Arcuate Fasciculus in a hemisphere 

Table 4. Results 

Child 
# 

(L/R) 
vol 

(L/R) 
fib 

PCA 
CMD 

PCA 
class 

SSOM 
% 

SSOM
class 

SOM  MR  
A-GROUP 

SOM  MR 
B-GROUP 

1 104,6 171,1 66,6 2 42,11 2 B C 

2 220,7 781,8 65,7 2 37,61 3 A C 

3 482,5 1220,0 71,7 3 39,69 2 A A 

4 103,6 204,9 54,7 1 39,75 2 B C 

5 128,6 178,5 76,0 3 41,10 2 B A 

6 186,7 183,3 55,4 1 56,48 1 A A 

7 158,3 195,5 53,3 1 39,14 2 B B 

8 112,3 145,4 61,7 2 38,03 3 B A 

9 610,0 1580,0 53,1 1 41,10 2 A A 

10 123,4 106,6 66,6 2 46,03 1 C A 

11 362,0 481,8 73,9 3 46,15 1 C A 

12 249,8 545,8 51,1 1 38,46 3 A C 

13 119,2 122,2 68,2 2 38,14 3 C A 

14 109,2 186,4 64,1 2 39,04 2 B B 

4.4 Software 

The modular system SOMLab [10] using the MATLAB 7, Release 14 performed the 
analysis and some experiments. The requirement for a user-friendly graphic 
environment for SOM initialization and training, and for visualization of classification 
results, was an incentive for its creation. SAS Institute Inc. SAS/Stat® software was 
used for statistical computation. The SOM Toolbox was applied for creating and 
visualizing the SOMs. It was developed in the Laboratory CIS in the Helsinki 
University of Technology and is built using the MATLAB script language. The 
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Toolbox is available free of charge under the General Public License (GNU) from 
[13]. For the project, new special M-files, which should be a part of the supporting 
program package, were created [10]. The bilateral Arcuate fasciculus structures were 
manually detected, using the MedINRIA software Version 1.9.0. 

5 Conclusion 

We expect that the results achieved in the project will facilitate the objectivity of the 
disorder diagnosis process, and that a software pack will be found with a user-friendly 
interface for doctors or other medical staff. The current software will serve for proce-
ssing of information about children with DD diagnosis and will specify the identifi-
cation of logopaedic rehabilitation and its interpretation. We have suggested the use 
of automatic methods based on the symptoms of DD, for which the results are 
promising, and we assume more accurate results in a year, because we should obtain 
twice or even three times more extensive data of children with DD. The most 
promising method is SSOM, on account of the method’s robustness and its 
visualization ability. Our aim is to find more information and correlations in the MR 
tractography data available at present. We assume that we can train KSOM to split 
data into three groups based on the data of MR tractography. In the future, we will 
supplement the results described in this contribution with the classifications made by 
psychologists and speech therapists, and with EEG results.  
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Abstract. Similarity assessment between financial time series is one of 
problems where the proper methodological choice is very important. The 
typical correlation approach can lead to misleading results. Often the similarity 
measure is opposite to the visual observations, expert’s knowledge and even a 
common sense. The reasons of that can be associated with the properties of the 
correlation measure and its adequateness for analyzed data, as well as in terms 
of methodological aspects. In this article, we indicate disadvantages associated 
with the use of correlation to assess the similarity of financial time series and 
propose an alternative solution based on divergence measures. In particular, we 
focus on the Bose-Einstein divergence. The practical experiments conducted on 
simulated and real data confirmed our concept. 
Keywords: time series similarity, divergence measures, Bose-Einstein 
divergence. 

1 Introduction 

The similarity between variables, vectors or functions can be defined in different 
ways. In case of the real economic problems modeling it is often expected that 
mathematical quantitative similarity measure corresponds to its colloquial definition. 
In this sense, the issue of similarity between financial instruments represented by the 
time series is generally recognized in two ways.  

The most popular and thus the most widely explored and described are correlation 
methods. The similarity here is interpreted in terms of the second order statistics 
dependencies. This approach has a long tradition and has contributed to the solution 
of many fundamental issues. Its importance is not without significance for the second 
order statistics and the normal distribution in the data analysis. Normal distribution 
with its well-established statistical significance in the central statistical theorem is 
fully defined by the second-order statistics. Relatively simple estimation of second-
order statistics, in case of Gaussian distribution, allows obtaining complete statistical 
information about the empirical problem. Additionally, based on the Gaussian 
distribution and the dominating estimation paradigm in the form of the maximum 
likelihood method, “comfortable” linear statistical models can be obtained [12]. 
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However, there are number of issues, where the correlation approach is not 
adequate. Such conditions and assumptions like non-linear dependence, data with 
cluster structure, nonstationarity of variables, in case of correlation analysis may lead 
to wrong conclusions [2,10]. In turn, transformations of variables can lead to 
deformation of the original relationships between variables. As a result, correlation 
approach requires caution and individual supervision, what makes it difficult to use in 
automatic pattern recognition systems [8,9]. Also on the basis of statistical methods 
we find some issues when the variance is by definition ambiguous. One of the 
examples is the use of independent component analysis (ICA). It is a multi-
dimensional method addressed to non-Gaussian variables (except one possible in the 
set) exploring the higher-order statistics. The components obtained in this method are 
characterized by ambiguity with the respect to the variance. This means that it can be 
freely scalable, which makes that many algorithms performing ICA standardize the 
variances to unity [4]. At the same time, "visual" characteristics of the variability of 
these components can be highly different. 

An alternative approach to assess the similarity can be formulated as 
a segmentation or clustering problem (grouping). This leads to a wide range of 
different techniques, in which the similarity is assessed usually with the Euclidean 
distance between the objects, or in the general case, the similarity is referred as the 
distance measured with a particular p-norm. 

Let’s note that it is quite popular approach, but the main drawback is the ambiguity 
of the obtained results. In case of two variables (time series or signals) it is difficult, 
based on the information about the distance between them, to assess the degree of 
their similarity. One solution may be to take the reference variable and to calculate the 
distance between these two variables and the reference signal. However, the overall 
similarity obtained in this way is far from ambiguity and remains relative. 

These limitations were (and still are) the motivation to look for a new similarity 
measures. Recently, divergence measures are intensively investigated. The 
development of the methods based on divergences is associated due to the spectacular 
success of their applications, i.e. the issue of non-negative matrix factorization for 
images processing and patterns recognition. This opened new possibilities for pattern 
recognition systems used for communication with paralyzed people, by brain waves 
analysis [3]. 

One of the characteristics of divergences is the general lack of symmetry, which 
can be used to assess the similarity of signals (time series). In this article, we propose 
the method for similarity assessment in time series (signals) based on Bose-Einstein 
divergence. This will reveal the natural limitations of correlation analysis. The 
practical experiments carried out both, on simulated and real financial data confirmed 
the usefulness of the proposed solutions. 

2 Bose-Einstein Divergence and Similarity 

Divergence )||( zyD , is a function of two arguments estimated on non-negative 

variables z i y, which  satisfies the condition 0)||( ≥zyD , where 0)||( =zyD  if and 
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only if zy =  [1,6,7]. Divergence does not have to meet the triangle 

inequality )||()||()||( zxDxyDzyD +≤  and the condition of the symmetry does not 

have to be met, too )||()||( yxDxyD ≠ . For some divergences it is needed to satisfy 

the condition of summation of the z and y  variables to unity. Divergences may be 

defined for both, discrete and interval variables.  
Currently, divergence functions are used to evaluate the similarity (or lack thereof) 

between the non-negative variables, vectors, matrices or functions. The most popular 
divergence classes include Bregman’s and Csiszar’s divergences [5,6]. The other 
popular divergence is Bose-Einstein divergence which, for vectors 

],...,,[ 21 Lzzz=z and ],...,,[ 21 Lyyy=y , where  ]1,0[, ∈ii zy , is defined as [6]:  
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where parameter )1,0(∈α . 

This divergence possesses a number of interesting properties like 

)||()||( /1 zyzy αα
BEBE DD =  and )||()||( zyzy KLBE DD =∞→α , where KLD  means Kullback-

Leibler divergence.  
The essence of divergence (1) is its lack of symmetry, which can be used to assess 

the similarity of signals. For the signals, which are "statistically similar" in a general 
sense, it is expected that the order of the arguments does not matter. In particular, for 
the random signals, which by definition do not have patterns or regularities, it can be 
assumed that the order of arguments in the asymmetric divergence (1) plays no role. 

This means that for noisy signals 21,vv with the same distribution, the divergence 

measure (1) should be symmetric )||()||( 1221 vvDvvD BEBE = . The symmetry of 

standardized signals [0,1], can be measured as  
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By studying symmetry, using Bose-Einstein divergence, the impact of the parameter 
α on its value, should be presented. Note that the expression under the sign of the 
sum in (1) can be expressed as 
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For )1,0(∈α , all the values being logarithmized take the values of the )2,0(  range. In 

this case it is possible to expand )ln(x  into Taylor series:  
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As a result we obtain: 
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Taking into account (1) and (5) for )1,0(∈α  we have  

where R is the rest of the approximation, wherein taking into account (6) it means that  
R is responsible for the asymmetry )||( zyα

BED .  

This allows us to conclude that the selection of the α  parameter affects sensitivity 
of the method for the similarity evaluation. However, in case we don’t have any 
premises to the choice of the α  parameter we can adopt 5.0=α . 

3 Self-similarity of Signals  

The similarity approach based on the divergences can be used also for a single signal. 
For this purpose, we use a splitting technique known from rescaled range analysis 
(R/S) that splits the signal (time series) into parts and then measures the similarity 
between these fragments. 

For the signal ],...,,[ 21 Nxxx=x  with nmN =  observations we take m parts, each 

having count of n  and as a result we have ],...,,[ 21 mxxx=x , where 

],...,,[ 211 nxxx=x , ],...,,[ 2212 nnn xxx ++=x , ],...,,[ 2)1(1)1( mnnmnmm xxx +−+−=x .  

At this point, we have a set of signals among which we can calculate similarity based 
on divergences. That is, we can use the procedure described in paragraph 2. 
In order to obtain the complete information about the structure of the signal 
similarities we need to repeat the procedure several times dividing time series into 
different number of n . 

Having 0)||( =iiBED xx , all the information about these relationships can be 

represented in the form of a set of matrices: 

then symmetry coefficients determined for the respective values of the matrix (7) 
have the following form:  

while the average value of the similarity between the signal fragments having  
n count  is: 

RDBE +−= 2
2)||( xyzy αα  (6) 
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where t runs over all indices.  
The method presented above requires taking into account the number of 

observations when comparing the time series. 

4 Practical Experiment  

4.1 Areas of Application  

The methods presented above can be used to assess the degree of randomness of the 
time series. This is important issue when choosing investment strategies on financial 
markets. On these markets an automated trading systems are focused on historical 
data analysis and patterns recognition. However, searching for patterns is reasonable 
in case of markets on which, indeed, these patterns are present. In terms of financial 
theory such markets are considered as ineffective. This means that the random walk 
process must take into account statistical characteristics other than those provided by 
the white noise model. In practice, this means testing the financial instrument 
(particular stocks or indices) in terms of its similarity or dissimilarity in relation to the 
white noise. 

The possibility to assess the degree of randomness or similarity to white noise can 
be used also to analyze investment risk within the Value at Risk (VaR) concept. This 
concept involves estimation of VAR in a specific period of time. The key issue here is 
to estimate the probabilities of future returns. The common approach is to create a 
stochastic model of the financial instrument and then to conduct simulations. Here, 
the problem of adequate model selection usually concerns fitting it to the historical 
data. A part of the models based on Box-Jenkins approach requires that the signal 
(time series) is stationary. Testing the stationarity can be difficult to perform because 
the basic technique used for this purpose which is autocorrelation function testing, 
requires the existence of second-order statistics, and also, to some extent, it takes into 
account the long-term memory effects. Additionally, the approach based on 
autocorrelation function requires an individual assessment (introspection) of the 
signal characteristics and thus it is difficult to use in automatic learning. 

As alternative approach to the correlation an R/S analysis with Hurst exponent 
interpretation can be proposed. It can be obtained by dividing signal into parts with 
n -observations each, calculate the variance 2S  and the range )min()max( yyR −=  in 

each part what lead us to H
n cnSRE =}/{ where c  is a constant and expectation is 

taken over the all parts. The H value derived from regression has the following 
meaning. The value near 0.5 means pure white noise whereas value near 1 means the 
deterministic signal.  

The approach to measure similarity using divergences avoids most of the 
problems associated with the computational aspect and the interpretation based on 
the autocorrelation function and the R/S analysis. It allows assessing similarity of 
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the time series to any reference signal, including the white noise. Additionally, it is 
not necessary to verify the assumptions about stationarity and ergodicity of the 
time series; therefore, the test can be done directly on the real prices or the return 
rates. 

4.2 Application on Simulated Data  

These considerations will be presented in the context of computer-simulated tests. 
The problem defined above, which is aimed at looking for a good and "intuitive", but 
also a quantitative measure of similarity. In other words, we test the ability to group 
the time series automatically, in a way that is consistent with human perception. Fig. 1 
presents six signals which are independent (and thus decorrelated) with individual 
unity variances. It can be seen that the correlation, given in Table 1, does not 
correspond to the visual evaluation, in particular with regard to the last two signals 
(S5, S6) of the Fig.1. On the other hand, the use of distance-based p-norm 
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yx , with p = 2, leads to the results showed in Table 2. 
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Fig. 1. Signals tested for similarity problem 

Table 1. Correlation coefficients corresponding to signals presented in Fig.1 

 S1 S2 S3 S4 S5 S6 

S1 1.0000 0.0594 -0.0526 -0.0030 -0.0502 -0.0033 

S2  1.0000 -0.0098 0.0098 0.0420 0.0142 

S3   1.0000 0.0226 -0.0460 -0.0087 

S4    1.0000 -0.0108 -0.0204 

S5     1.0000 -0.0084 

S6      1.0000 
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Table 2. The distances between the signals measured with p-norm, for p=2 

 S1 S2 S3 S4 S5 S6 

S1 0 0.0333 0.0409 0.0316 0.0287 0.0287 

S2 0.0333 0 0.0379 0.0267 0.0226 0.0239 

S3 0.0409 0.0379 0 0.0351 0.0331 0.0335 

S4 0.0316 0.0267 0.0351 0 0.0184 0.0197 

S5 0.0287 0.0226 0.0331 0.0184 0 0.0153 

S6 0.0287 0.0239 0.0335 0.0197 0.0153 0 

 
The results in Table 2 show that although the distance between the signals S5 and 

S6 (given in bold) is relatively accurately assessed but the symmetry of this measure 
significantly reduces further interpretation. It is also impossible to assess the nature of 
the analyzed signals.  

Table 3. The distances between the signals measured with Bose-Einstein divergence for 
5.0=α  

 S1 S2 S3 S4 S5 S6 

S1 0 0.2354 0.4102 0.2038 0.1661 0.1674 

S2 0.2415 0 0.3855 0.1525 0.1113 0.1241 

S3 0.375 0.3406 0 0.2978 0.2756 0.2809 

S4 0.2197 0.1641 0.3541 0 0.0663 0.0764 

S5 0.1876 0.1264 0.3398 0.071 0 0.0435 

S6 0.1881 0.1392 0.3437 0.0812 0.0428 0 

 
Distance measure using Bose-Einstein divergence allows clearly differentiate 

similar signals what is shown in Table 3. The distances between signals S5 and S6 are 
given in bold and the values close to 0 indicate high similarity (accordance with the 
divergence definition). 

In addition, the degree of symmetry for the similarity with the Bose-Einstein 
divergence, allows for inference about signal randomness. This is due to the fact that 
the noise signals have the same similarity regardless the order of the arguments used 
in BED divergence.  

Table 4. The degree of symmetry (q) for the distances between the signals measured with 
Bose-Einstein divergence for 5.0=α  

 S1 S2 S3 S4 S5 S6 

S1 0 0.0255 0.0898 0.0751 0.1216 0.1165 

S2  0 0.1237 0.0738 0.1272 0.1147 

S3   0 0.1731 0.2095 0.202 

S4    0 0.0684 0.0606 

S5     0 0.0158 

S6      0 
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The result of the symmetry assessment to measure the similarity with parameter q  

(2) is presented in Table 4. The symmetry factor (q) between signals S5 and S6 is 
given in bold and it indicates a high similarity to noise. 

4.3 Application on Financial Data  

In this section we will verify the presented approach on financial data. We consider 
sixteen time series including stock indices and foreign exchange rates against Polish 
zloty, both covering the time span 04/01/2008 – 01/08/2012. Stock indices were 
represented by the markets of Brasil (BOVESPA), France (CAC40), Germany 
(DAX), London (FTSE100), Japan (Nikkei), USA (NASDAQ and SP500), Hong 
Kong (Hang Seng), Hungary (BUX) and Poland (WIG). Foreign exchange rates 
against Polish zloty included: BRLPLN, EURPLN, GBPPLN, JPYPLN, USDPLN 
and HUFPLN. Please, see Fig. 2 for their characteristics, Fig. 3 for their logarithmic 
return rates and Fig. 4 for their rescaled range analysis (R/S).  
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Fig. 2. Characteristics of the time series 
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Fig. 3. Logarithmic return rates of the time series 
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Fig. 4. Rescaled range (R/S) analysis applied to time series represented by R/S value on vertical 
axis and number of observations in a range on horizontal axis 

For each of the time series we analyzed the degree of their randomness and then we 
assessed their similarity to the white noise. Table 5 presents the results of similarity 
assessment measured with symmetry factor (based on return rates and prices) and 
Hurst value (on logarithmic return rates). 

Table 5. Similarity assessed by symmetry factors (q) for the return rates, for the prices and 
Hurst value calculated on logarithmic return rates 

Instrument Return rate q Price q Hurst value

WIG 55.670 78.170 0.6081

CAC40 56.194 70.351 0.5161

DAX 58.209 72.280 0.5429

Nikkei 55.192 77.096 0.5189

BOVESPA 62.018 85.953 0.6070

FTSE100 54.370 85.042 0.5153

SP500 61.392 79.640 0.5668

BRLPLN 49.280 75.962 0.5337

EURPLN 49.197 67.890 0.6084

GBPPLN 52.066 58.691 0.5704

JPYPLN 50.039 70.344 0.5913

USDPLN 47.838 73.647 0.6482

Hang Seng 59.190 79.363 0.5843

NASDAQ 53.008 88.155 0.5632

BUX 48.145 78.305 0.5957

HUFPLN 53.149 63.295 0.5298
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Due to the editorial constraints the R/S approach is focused only on presenting 
basic characteristics in a graphical form. Based on Fig. 4, we can see that there is no 
evidence to differentiate or perform grouping of analyzed time series taking into 
account the degree of randomness. The information synthesis related to the R/S 
analysis and represented by the Hurst exponent, due to the number of possible 
regression lines fitting to the data, is neither clear. 

The advantage of the divergence based approach concerns the results that are 
unambiguous. In addition, due to lack of assumptions regarding stochastic 
characteristics all the calculations can be performed both, on the return rates as well 
as the prices of the instruments (bearing in mind the difference in interpretation). At 
the same time, the results based on symmetry factor q  are relatively well-

interpretable in economic terms. 
The lowest value (47.838), that is considered to be the most random, is currency 

pair USD/PLN. In this case we deal with liquid market, supposed to be the most 
effective, what in fact implies its similarity to random walk models. In case of the 
markets in which strong trends are present, such as the stock markets, the highest 
values of q  factor (for return rates) indicate the existence of patterns in SP500 

(61.392) and BOVESPA (62.018), for instance. Similar interpretation can be made for 
the q  factor values calculated directly on instruments’ prices except that the 

emphasis here is on the regularities and trends. 

5 Conclusions  

This paper presents an approach for similarity assessment using asymmetric 
properties of the divergence measures. Proposed Bose-Einstein divergence as a 
typical example of asymmetric divergence may be easily replaced by another type of 
divergence. Bose-Einstein divergence has interesting symmetry properties depending 
on the value of alpha parameter. Its changes allow differentiating the degree of 
asymmetry measure, which helps to adjust the sensitivity of the method depending on 
the data. It should be also noted that the non-negativity of the signals is not an 
essential restriction, since we compare and evaluate the real shape of the data 
sequence. 
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Abstract. We present an approach for comparing human-made and automati-
cally generated semantic representations with an assumption that neither of these
has a primary status over the other. In the experimental part, we compare the
results gained by using independent component analysis and the self-organizing
map algorithm on word context analysis with a semantically labeled dictionary
called BLESS. The data-driven methods are useful in assessing the quality of the
hand-created semantic resources and these resources can be used to evaluate the
outcome of the automated process. We present a number of specific findings that
go beyond typical quantitative evaluations of the results of data-driven methods
in which the manually created resources are usually taken as a gold standard.

1 Introduction

When the objective is to create linguistic models and theories, a traditional approach
is to rely on individual linguistic intuition and knowledge building based on commu-
nication among linguists. In corpus linguistics, linguistic theories are the starting point
and statistical analysis on corpus data are used to confirm, reject and refine these theo-
ries. In such a paradigm, basic linguistic categories such as noun and verb are taken as
given and assumed to have a certain kind of objective status. Similarly, when computer
scientists work on some linguistic data, they very often use human-constructed cate-
gories and labels as a ground truth to evaluate the performance of the computational
apparatus. This kind of one-directional view on knowledge formation within computa-
tional linguistics can be seen as problematic. There is no generally accepted theory of
semantics at the level of semantic categories or primitives. As a conclusion, we must
consider any semantic category system or a semantically labeled corpus as a represen-
tation which may have well motivated alternatives. Based on the availability of text and
speech corpora as well as sophisticated computational tools, an increasingly popular
approach is data-driven: Linguistic models are created using statistical and machine
learning methods.

In this article, we explore the relationship between 1) manually defined semantic cat-
egories and human judgments about whether a word belongs to a particular semantic
category or another and 2) data-driven analysis of word features using unsupervised
learning methods. The general architecture of this work is presented in Fig. 1. We aim
to see a) whether the representations automatically generated in a data-driven manner

M. Tomassini et al. (Eds.): ICANNGA 2013, LNCS 7824, pp. 428–437, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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coincide with manually constructed semantic categories, and b) critically assess man-
ually constructed semantic categories and semantically annotated data using statistical
machine learning and visualization methods.

We are particularly interested in methods that are applicable without strong linguis-
tic assumptions. Therefore, we focus on the unsupervised learning approach rather than
any supervised learning (classification) methods. More specifically, we use independent
component analysis (ICA) [7] and the self-organizing map (SOM) [9]. The ICA method
can be used to extract components that correspond to different categories, either syntac-
tic [5] or semantic [12]. The SOM method is well suited for analyzing and visualizing
high-dimensional data. It can show in an intuitive manner the relationships between
prototypical representations of the original data points. In our application, this means
that the method can visualize the relationships between different linguistic phenomena,
and more specifically, between different semantic categories.

Fig. 1. The process architecture for comparing data driven and human semantic judgments

2 Semantic Similarity Judgments

In psychology, similarity judgment is considered to be one of the most central functions
in human cognition (see, e.g., [4]). Humans use similarity to store and retrieve informa-
tion, and to compare new situations to similar experiences in the past. Category learn-
ing and concept formation also depend on similarity judgment [18]. Research has been
carried out to obtain information of human similarity judgments and different types of
similarity have been identified: synonymy (automobile:car), antonymy (good:bad), hy-
pernymy (vehicle:car), meronymy (car:wheel). A special case is a category (VEHICLE:
car, bicycle), where the members are perceived as having some similar characteristics.
Based on research in psychology and cognitive science, data sets that list words that
are judged similar have been used to evaluate vector space models (see for example
[1,12].), with an intuition that the similarity perceived by humans should be translated
as proximity in a word vector space.

In this article, we use the BLESS (Baroni-Lenci Evaluation of Semantic Spaces) [1]
test set, which is based on a body of earlier work on human similarity judgments. The
data set contains 200 concepts in 17 broader classes or categories with 5-21 words per
class: AMPHIBIAN REPTILE, APPLIANCE, BIRD, BUILDING, CLOTHING, CONTAINER,
FRUIT, FURNITURE, GROUND MAMMAL, INSECT, MUSICAL INSTRUMENT, TOOL,
TREE, VEGETABLE, VEHICLE, WATER ANIMAL, and WEAPON. Each concept is further
linked with other words that are in a certain defined relation with the concept: Attribu-
tive (ATTR, describing a property of the concept), coordinating (COORD belongs to the
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same category), event (EVENT, a verb related to the concept), hypernymous (HYPER, a
super-ordinate concept), or meronymous (MERO, in a part-whole relation with the con-
cept). Thus, the concept alligator has a COORD relation with crocodile, an ATTR with
carnivorous, an EVENT with attack, a HYPER with animal, and a MERO with eye and
tooth. In total, there are 14 400 word-relation pairs in the data set.

3 Unsupervised Learning in Exploratory Text Analysis

Miller and Charles [13] have presented a well-known hypothesis on the relationship
between semantic similarity and context data: ”two words are semantically similar to
the extent that their contextual representations are similar”. This basic idea is behind
the corpus-based vector representations or vector space models (VSM). They capture
meaning through word usage and are widely used in computational linguistics (see for
example [5,11,16,17,19]). Moreover, it is assumed that relatedness equals proximity in
the vector space [17]. To obtain the raw word co-occurrence count representation for
N target words, the number of context words C occurring inside a window of length l
positioned around each occurrence of the target words is counted. The accumulation of
the context words creates a word-occurrence matrix XC×N . For a review on the current
state of the art for vector space models, see [19]. In high-dimensional vector spaces, the
most common similarity measure [19] used is the cosine similarity [11], which is also
used throughout this article. The choice of the size of context around a target word is
relevant when a vector space model is built. The context used can be a document, or a
more immediate context around the target word. Different context sizes are systemati-
cally explored in [2]. Sahlgren [16] concludes that a small context around a target word
gives rise to paradigmatic relations between words, whereas larger context allows syn-
tagmatic relations to be more prominent. As our the concepts in categories are mostly
in paradigmatic relationship, we use a bag-of-words representation with a window of
length w = 3, i.e. the left and right adjacent word around the target word. The positive
pointwise mutual information (PPMI) [14] weighting was reported to give best results
[2] and is used as a weighting scheme for the VSM here.

Our corpus is built from all the documents in the English Wikipedia1 that were
over 2kB in size. In pre-processing, all wikimedia markup is removed, the words are
changed into their lower case counterparts and punctuation is removed except for hy-
phens and apostrophes. In general VSM research, the representations are often very
high-dimensional: including tens or hundreds of thousands of features. In this work, we
use the 5 000 most common words as features. This choice reduces the computational
load in the ICA and SOM calculation as the matrix size does not grow too large. The
vocabulary contains the 200 000 most frequent words. The vector space performance
has been evaluated earlier using several syntactic and semantic test sets [12]. We use a
subset of the complete vector space: the words that are in the BLESS vocabulary. Within
the 14 400 relations of the BLESS there are 1 673 unique word forms that appear within
the 200 000 most frequent words of the Wikipedia corpus. Each word is labeled with a
combination of the relation and the category, and multiple labels per word are allowed.

1 We used the October 2008 edition, which is no longer available at the Wikipedia dump down-
load site http://dumps.wikimedia.org/enwiki/

http://dumps.wikimedia.org/enwiki/
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For example, a word aeroplane is labeled with VEHICLE-COORD and VEHICLE-HYPER,
and back with CLOTHING-MERO, FURNITURE-MERO, MUSICAL INSTRUMENT-MERO,
and VEHICLE-MERO. We could have used even more specific labels by including the
concept as well, but the number of labels would have grown too large.

The independent component analysis (ICA) [3,7] is a blind source separation method
which represents a matrix of observed signals XC×N as XC×N = AS, where AC×d is a
mixing matrix, and Sd×N contains the independent components. The columns for the
matrix Sd×N give a d-dimensional representation for the target words. The FastICA al-
gorithm used estimates the model by first using dimensionality reduction and whitening
and then finding a rotation that maximizes the statistical independence of the compo-
nents [8]. The dimensionality reduction and de-correlation step can be computed, for
instance, with principal component analysis. Earlier, ICA has been used to find com-
ponents that match the syntactic categories [5] and semantic categories in the Battig-
Montague category test set [12]. The premise of the ICA method is that the components
can be interpreted. Often the words for which the values are high in a given component
are similar, which can be evaluated using known category labels.

The self-organizing map (SOM) is an unsupervised learning method which typically
produces a two-dimensional discretized representation of the input space [9]. It pre-
serves the topological properties of the input space, which makes it a useful tool for
visualizing high-dimensional data. The vector space model representations are usually
very high-dimensional, which make dimensionality reduction methods such as the SOM
practical tools for the text data exploration (see [6,15] as examples of early works). In
the SOM, the high-dimensional contexts have often been approximated with the ran-
dom projection model, see e.g., [6,15]. In this article, we only use a considerably small
number of the most frequent words as our context words, and thus we do not need to
apply random projection.

The SOM has earlier been carefully compared with several other methods, including
principal component analysis (PCA), Isomap, curvilinear component analysis (CCA),
locally linear embedding (LLE) regarding their trustworthiness and continuity of the
visualization. The results indicate that the SOM produces a trustworthy visualization.
[21]. When the performance of the SOM algorithm is evaluated in a domain-independent
manner using error resolution (quantization error) and topology preservation, these
measures provide only a partial view on the goodness of the mapping in the case of
a specific application such as natural language processing.

4 Finding Category Information with ICA

In this article, we compare the BLESS category and the ICA results using a similar
methodology to [12]. We run ICA with 50 components for the vector representations
of the 1 673 words in the BLESS vocabulary. The label information is only used in
evaluation phase. We report results of one ICA run, but repeated runs yield very similar
results.

In the analysis, we study the words with highest values for each independent com-
ponent. As the ICA component values are usually skewed in one direction, we use the
maximum values in the direction of the maximum skewness of the component. Then 10
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words with largest values for each component are selected and the number of words be-
longing to the same category (cat), relation (rel) or joint category-relationship (cat-rel)
class are calculated. Multiple labels for each word are taken into account: A word with
two labels is counted once for each group. Then different thresholds are checked ( 10

10 ,
9
10 etc.) to see how many categories meet each threshold condition. In [12], a minimum
of 9

10 words belong to the same class was defined as a strict threshold and a minimum
of 6

10 a lax threshold.
Fig. 2 a) shows the results for different types of categories. We can see that 33

50 com-
ponents describe 12 out of the 17 categories meeting at least the lax criterion. Similarly,
41
50 components describe the five relation types. When we combine the categories and
relations separately, there are 23

85 different cat-rel types that meet the lax criterion. They
cover 10 separate categories, but there are several relation types for some of the cate-
gories, sometimes even several components describe the same cat-rel type: four compo-
nents for words with a GROUND MAMMAL-ATTRI label, three for VEHICLE-MERO, and
two for VEHICLE-COORD and WATER ANIMAL-COORD each. If the category types are
examined separately, we notice that five categories are not covered by any component:
BIRD, CONTAINER, FURNITURE, TOOL and VEGETABLE. We will return to the analysis
of these categories later.

Earlier work has shown that the ICA method can be used to find components that
correspond to different parts of speech [5]. Therefore, it is interesting to see how this
is reflected in the results, and how especially the EVENT and ATTR relations behave.
In Fig. 2 b), the total number of relations covered by the independent components are
shown. The height of the bar corresponds to the total number of components, which
meet the lax criterion for this relation type, and the gray scale stacked bars show further
details. Words labeled with COORD, HYPER and MERO are mostly nouns. Our initial
hypothesis was that the results would be mixed between these classes. The MERO class
separated fairly well, but not necessarily within a given category. Especially the several
of the animal categories have overlap. The method did not separate between COORD and
HYPER, only one component describes hypernyms, but mostly they are mixed. For other
classes the results are the following: four in total for EVENT and 12 for ATTR, COORD

and MERO each. Nine components do not have a majority label according to this test.
The ICA results can be explored beyond checking the correspondence to the class la-

bels. In Table 1 words with maximum values for some sample components are shown.
For example, fruits are nicely found from component 18 and trees in component 32.
Component 2 contains action verbs, which are correctly labeled with EVENT. In addi-
tion to those, there is for example a component for verbs example related to owning
things. Earlier we noticed that several components contain attributes. Component 23
is one of them we’ll look at more closely. It is difficult to draw category judgments
for adjectives in a similar way to nouns, but we can note that the adjectives in this
group are all short and the list contains some synonyms and antonyms: pretty/cute-ugly
and funny-stupid. Other components contain different attributes: Component 7 contains
materials, (wooden, plastic, concrete...), whereas component 12 contains adjectives that
describe behavior or status. Colors can be found in component 22 and geographical or
cultural attributes in component 24. Component 18 is the only one that has a majority
of hypernyms: all of them are animal category hypernyms. Some components describe
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Fig. 2. a) ICA results for BLESS categories, relations and joint category-relation labels. The
results indicate how many words in each component have the same category label for 10/10 to
6/10 per category type. b) A further breakdown for the five different relation types.

categories beyond predefined labels: Component 11 is an example of this. If we only
look at the BLESS labels, words in this group do not seem to belong to any common
category: rock is a FURNITURE-EVENT (to rock a chair), pop is an APPLIANCE-EVENT

(to pop corn), and hop is a AMPHIBIAN REPTILE-EVENT (a frog hops). Other words
in this list, e.g,dance, music, show that the sense interpreted is MUSIC rather than the
one they were labeled with. There were other similar examples, left out due to limited
space. This phenomenon illustrates how one cannot solely rely on the predefined labels.
In addition to these, we must note that in six components the words grouped together
did not seem to form any meaningful category.

Table 1. Words with maximum values for sample ICA components

2 7 11 12 18 22 24 28 32
dive steel rock male strawberry red christian insect pine
jump wooden pop healthy pineapple blue medieval mammal cedar
crawl ceramic music young banana yellow indian vertebrate oak
swim plastic dance solitary citrus white ancient invertebrate cypress
kick metal acoustic female mango purple modern aquatic poplar
glide concrete hop intelligent grape black american carnivorous willow
walk glass jam timid peach pink religious reptile evergreen
climb cardboard metal shy apricot green asian amphibian birch

fly copper mix faithful watermelon grey african bird elm
float iron swing peaceful lemon golden roman animal acacia

Different senses of a word also may show in the ICA representation: a polysemous
word may have several components with high values that correspond to different senses
of a word. In the following, we briefly illustrate this phenomenon with a polysemous
sample word lime (labeled in the data with FRUIT-COORD). Fig. 3 shows the ICA com-
ponent representation for this word. Here, we have applied thresholding, setting all the
components for which the value was less than 20% of the maximum value for that com-
ponent to zero (see [20] for a more detailed description of this technique). Component
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Fig. 3. Example of an ambiguous word and ICA thresholding. The components with highest
values correspond to three different senses of the word lime. Comp. 32:TREE, Comp 18:FRUIT

and Comp 7: MATERIAL.

32 has the highest value: the words in this component belong to the category TREE, so
we might apply this label to lime as well. Component 18 has the second highest value,
and indeed, words in this component have a label FRUIT. The third largest value, com-
ponent 7 has a label CONTAINER-MERO. This is not enough to deduce the sense of the
word, but looking at the words in this component (see Table 1) we can conclude that
lime might be a material of some kind, hence yielding with three different senses of the
word lime. The results are preliminary, but they suggest that the method is potentially
useful in sense induction.

5 Visualization of Categories and Relations with the SOM

The self-organizing map has been used for visualizing collections of words and rela-
tionships between them [15,6]. In this paper, we use the SOM for an analysis of spe-
cial cases highlighted by the ICA analysis to reveal additional structure. We trained the
SOM of 200 nodes with the same word vectors of the BLESS vocabulary, using hexago-
nal neighborhood and a Gaussian neighborhood function. The initialization of the map
is based on the largest variance of the data, according to current best practices [10].
Visualizing the complete vocabulary with the SOM and then inspecting the relations
between words is easy on a computer, when the map can be examined interactively,
but it is poorly suited to be presented on paper. Hence, we present here only example
visualizations between categories or relations.

First, we can examine how similar the relation classes are. Fig. 4 shows hit histogram
for each relation class on a grid of the trained map. The size of each dot corresponds to
the number of hits in that node. A completely filled node contains five or more hits. Syn-
tactic properties play a role in the organization of the map: verbs (EVENT) are mostly
found in the the upper parts of the map, whereas nouns (COORD, MERO, HYPER) are at
the bottom parts of the map, COORD mostly on right and MERO on right. Some of the
ATTR words form a cluster at the middle left, but this group is quite spread out, possibly
due to the fact that some of the attributes are also nouns.
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a) b) c) d) e)

Fig. 4. Hit histograms for the five relation types. From left a) ATTR, b) COORD, c) EVENT, d)
HYPER and e) MERO.

The visualization can be also used to examine the the [CATEGORY]-COORD classes
(each containing 10-57 words), for example to see a) how spread out the categories are
or b) which categories are overlapping or close to each other. Again, the similarity of
different categories should translate into proximity on the map. Earlier, we noticed that
there were five categories which were not represented by any ICA component: BIRD,
CONTAINER, FURNITURE, TOOL and VEGETABLE. We can now study those categories
further to find possible explanations. Fig. 5 a) shows a hit histogram for category TOOL.
We can see that the there are three different centres with three hits each, and additional
hits in the category have spread all over the map. This can be compared to an example
of a concise hit histogram of the category TREE in Fig. 5 b). The hit histograms of
the categories CONTAINER and FURNITURE is similarly scattered. The case of category
the VEGETABLE in Fig. 5 c) is different. Here the category formed is fairly concise,
with two separate centers. Here we compare it to a related category, FRUIT, shown in
Fig. 5 d). This analysis shows that these categories overlap, and indeed, the independent
component that mostly contains words in the FRUIT class covers some VEGETABLE

category words as well. In a similar way, the category BIRD overlaps with other animal
categories.

a) b) c) d)

Fig. 5. Examples of category visualization with the SOM. In TOOL, most instances of the category
have spread out on the map Compare with a concise category TREE (b). The pair VEGETABLE (c)
and FRUIT (d) are an example of overlapping categories.

6 Conclusions and Discussion

We have compared the structure found with independent component analysis to seman-
tic labels of the BLESS semantic dictionary, and found out that ICA is able to find
components that are semantically interpretable. ICA cannot find all manually defined
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class labels in an unsupervised way. Instead, it finds structures from the data that may
or may not correspond to class labels. Comparison of the automatically generated struc-
tures and manually defined classes provides useful information. In order to explore this
relationship in more detail, we have demonstrated how the SOM can be used for this
purpose. It serves as a visualization tool for category information, which can yield in-
formation on the conciseness of the categories or relations between different categories.
This work can be further extended by combining different separate data for more labeled
data or comparing the ICA results with other manually built resources such as ontolo-
gies. In addition, the choice of the number of independent components with regard to
the size of the data set could be inspected in more detail.
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Abstract. Reduction of bit error rates in optical transmission systems
is an important task that is difficult to achieve. As speeds increase, the
difficulty in reducing bit error rates also increases. Channels have differ-
ing characteristics, which may change over time, and any error correction
employed must be capable of operating at extremely high speeds. In this
paper, a linear support vector machine is used to classify large-scale
data sets of simulated optical transmission data in order to demonstrate
their effectiveness at reducing bit error rates and their adaptability to
the specifics of each channel. For the classification, LIBLINEAR is used,
which is related to the popular LIBSVM classifier. It is found that it is
possible to reduce the error rate on a very noisy channel to about 3 bits
in a thousand. This is done by a linear separator that can be built in
hardware and can operate at the high speed required of an operationally
useful decoder.

Keywords: Error correction, classification, optical communication,
adaptive signal processing.

1 Introduction

Fibre optic communication links are extensively used for high-speed and long-
distance data transmission [7]. For example, the internet backbone primarily
consists of fibre optics trunk lines, bundles of fibre optic cables combined together
to provide increased capacity (e.g. Trans-Atlantic links). Furthermore, Nielsen’s
Law of Internet bandwidth [9] states that “a high end user’s connection speed
grows by 50% per year”, an exponential growth of bandwidth year on year.
Dutton highlights the problem in [4]: The faster the link the lower we need
the error rate to be! But the harder that low error rate becomes to deliver.
Therefore, improving the performance (lowering the Bit Error Rate, BER) of
fibre optic links is not only an important task but is one that is also difficult
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to achieve. Fibre optic link performance is affected by a variety of phenomena,
described in the next section, which may combine to cause signal degradation. In
addition, each particular link has its own characteristic signature of transmission
impairments [10] [6]. As stated by Hunt et al in [7]: There is great value in a
signal post-processing system that can undo some of these signal distortions,
or that can separate line-specific distortions from non-recoverable errors. Signal
post-processing in optical data communication can offer new margins in system
performance in addition to other enabling techniques.

In this paper we build on our earlier work by using a much bigger and noisier
data set than we have previously analysed. In order to work with such a data
set we have used an optimised linear SVM which improves upon our previous
use of a neural network approach using a pereptron based method.

2 Background

Communication of digital signals along physical media typically requires that the
bits are encoded into a time-varying signal at the transmitter, transmitted along
the medium, and then decoded back into a digital signal at the receiver. The basic
operation of an optical communication system is as follows (see Figure 1)[4]: A
serial bit stream in electrical form is presented to a modulator, which encodes the
data appropriately for fibre transmission. A light source (laser or Light Emitting
Diode - LED) is driven by the modulator and the light focused into the fibre.
The light travels down the fibre (during which time it may experience dispersion
and loss of strength). At the receiver end the light is fed to a detector and
converted to electrical form. The signal is then amplified and fed to another
detector, which isolates the individual state changes and their timing. It then
decodes the sequence of state changes and reconstructs the original bit stream.
The timed bit stream so received may then be fed to a using device.

Fig. 1. The process of optical transmission
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There are three broad categories of signal degradation in optical systems [1]:
Attenuation – decay of signal strength, or loss of light power, as the signal propa-
gates through the fiber. Chromatic dispersion – spreading of light pulses as they
travel down the fiber. Nonlinear effects – cumulative effects from the interaction
of light with the material through which it travels, resulting in changes in the
light wave and interactions between the light waves.

In this paper we attempt to use a trainable classifier to help reduce the number
of bits that are incorrectly decoded due to degradation.

One important feature of this problem domain is that if the resulting trained
classifier is going to be useful it must be extremely fast. Optical channels can
operate at speeds of over 50GHz. Clearly a classifier will only be useful if it is built
in hardware. To this end we have used a simple linear separator, which can easily
be built in hardware. In a related application this speed requirement is discussed
and an SVM is instantiated on a FPGA (Field-Programmable Gate Array) board
and classification is done at over 10GHz (see [8]). In our earlier work we found the
linear separator using perceptron learning in a neraul network abased approach.
However training a perceptron to find a good separator, particularly on a large
data set is known to be difficult [3]. So in this work we use a linear SVM to find
an effective linear separator.

3 The Data

The data is of the form described in [7], consisting of a large number of bits
encoded as the electrical signal produced following the conversion of the optical
signal into an electrical current. Each bit is therefore encoded as a waveform.
The waveform is represented by using 32 evenly spaced samples of the intensity
level within a bit time slot, producing a 32-ary vector of real numbers. The sum
of these 32 values is the energy of the signal. Figure 2 shows an example of a
stream of five bits. The original bit stream is also recorded so that each wave
has an associated binary label.

The data was produced by a simulation of a single transmission channel,
which was deliberately made to have a high level of noise, in order to produce
misclassifications. So the data set we use is large, consisting of a sequence of
611,430 bits of which 105,890 or 17.32% are misclassified by an optimal energy
thresholder. We divided this data set into 4/5 training and 1/5 testing, by using
the last 122,286 bits as the test set. For the whole data set we searched for the
energy threshold (a value below/above which a wave is decoded as a 0/1) that
gave the best decoding of the data stream, that is it gave the best reconstruction
of the original binary data stream. As this is a very noisy channel the error rate
even with the best threshold is high. We denote those bits in the data stream that
are correctly decoded by the threshold as easy, and those that are incorrectly
decoded as hard. Table 1 gives a breakdown of the data set.
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Fig. 2. An Example bit stream

Table 1. The breakdown of the data set

Data Set Training Testing
Easy 404,432 101,108
Hard 84,712 21,178
Total 489,144 122,286

Easy(%) 82.68
Hard(%) 17.32

The hard bits usually come from either the sequence “101” or “010” where the
central bit is often distorted by the energy of the bits surrounding it. Figure
3 shows some examples of the “010” subsequence. It can be seen that the red
misclassifications do not have sufficient energy to be classified as 1’s.

In order to represent this data for a trainable classifier we simple took the
32-ary wave vector for each bit and catenated the representation of the bits to
its left and right, giving a 96-ary real vector. The motivation for this was that
the surrounding bits have a clear influence on the wave of the bit between them
and this information could be of use to the classifier. In summary our data set
consists of 611,430 96-ary labelled real valued vectors.
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Fig. 3. Waves where the central bit is correctly or incorrectly decoded by the threshold

4 The Classifier

As we have said earlier we use a linear SVM to find a good separator of our data.

4.1 Software Used

The actual tool we used is LIBLINEAR [5] which is a linear classifier produced by
the authors of the well known LIBSVM [2]. It supports the same data formats as
LIBSVM but is more suited to classification of large data sets with [5]: “millions
of instances and features”.

4.2 Training

The only hyper parameter in a linear SVM is the regularising cost parameter C.
To find a good value for C we simply undertook an empirical search using 5 fold
cross validation in the training set.

5 Results

The first thing to note is that LIBLINEAR handled this huge data set without
difficulty. This is quite impressive as the training set alone contained 489,144
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96-ary vectors, or 46,957,824 real numbers. The search for a good value for C
took about an hour on an Intel QX6700 Core 2 Extreme processor. Table 2 gives
the final classification rates on the test set.data in order to demonstrate their
effectiveness at reducing bit error. The error split for the Thresholder is not
given since by definition the easy set are the bits correctly thresholded and the
hard set those incorrectly thresholded.

Table 2. Final Results

Classifier Accuracy (%) Error Rate (%) Error Split
Threshold 82.68 17.32 easy set (%) hard set (%)

LIBLINEAR 99.62 0.38 62.7 37.3

We can see that the SVM has corrected many of the original errors. In numer-
ical terms the 21,178 original errors have been reduced to just 437. We cannot
make a direct comparison with our earlier work, using perceptrons, as we have
never before used such a large data set. However on a subset of this data, about
one fifth, we were previously able to get a best error rate of 1.15% [6], as against
0.38% here.

Figure 4 shows a wave that the SVM was able to correct and one that it could
not correct. For example it is able to correct the red wave (B) which has poor
alignment but in context is recognisably a “one”. However the magenta wave (C)
has both poor alignment and poor shape and the classifier is unable to correct
it.

Fig. 4. The Classification of various waves
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Table 3 shows the number of incorrectly identified 3 bit sequences (in which
the middle bit is incorrectly identified). Notice that, as is usually the case it is the
“101” and ’010” sequences that present the biggest problem for both thresholder
and the SVM. Nevertheless the classifier is able to correct many of the errors
of the thresholder. For example the 6,411 thresholder decoding errors for the
“010” sequence are reduced to just 128 by the SVM. The thresholder makes
no misclassifications of the “000” bit sequences. It does make a small number
misclassification of “011” and “100”. Notice that the SVM does a little worse
than the thresholder for these three cases, presumably so as not to overfit the
training data so that many of the other errors can be corrected.

Table 3. Number of Errors Made

Sequence Threshold Errors SVM Errors
000 0 1
001 4,102 35
010 6,411 128
011 19 34
100 16 26
101 6,439 179
110 3,987 20
111 138 14

6 Discussion

6.1 Analysis of Results

The results of the paper show, quite definitively, that error correction of optical
signals using linear support vector machines can approach the target BER (as
stated in [10]) of 0.1%, or less than one erroneous bit in a 1000. This is true even
in the case of a very noisy channel with high thresholded BER, as demonstrated
by the massive reduction in error produced by the SVM. In the experiments
the linear kernel SVM (LIBLINEAR) achieved significant gains over the pre-
viously achieved results using neural networks and other trainable classifiers.
Importantly it is possible to build a hardware based classifier that can work at
speeds of over 10GHz, and by parallelising the classification in an appropriate
way speeds of over 100GHz should be possible. Moreover a FPGA board based
classifier can be reprogrammed should the characteristics of the data channel,
being decoded, change.

6.2 Linear Kernel SVM

The performance of LIBLINEAR was notable due to both its improvement over
the previous results in [6], a 70% reduction of the BER, and its high operating
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speed. It by far outstripped the training and prediction speeds of other classifiers
we have used, making it possible to analyse the very large data set presented
here. This indicates that it may be more easy to implement in hardware and
certainly that, due to its reduced dimensionality, its computational cost is low.
While it didn’t achieve the target BER of 0.1% it is certainly worth further
investigation. In other work [10] we have used different representations of the
wave, for example adding the energy of the waves to the input and it would be
interesting to try this out with LIBLINEAR. Also, a more extensive search of
the C space may locate more optimal settings as a number of local minima were
observed.
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Abstract. Previous work has demonstrated that distinct gaze patterns
precede certain driving manoeuvres [1,2] and that they can be used to
build an artificial neural network model which predicts a driver’s in-
tended manoeuvres [3,4]. This study seeks to move closer towards the
goal of using gaze data in Advanced Driver Assistance Systems (ADAS)
so that they can correctly infer the intentions of the driver from what
is implied by the available incoming data. Drivers’ gaze behaviour was
measured in a dynamic driving simulator. The amount of gaze data re-
quired to make predictions that manoeuvres will occur and the reliablity
of these predictions at increasing pre-manoeuvre times were investigated
by using various sized windows of gaze data. The relative difficulty of pre-
dicting different manoeuvres and the accuracy of the models at different
pre-manoeuvre times are discussed.

Keywords: Advanced Driver Assistance Systems, Driver Inference,
Driver Intent, Gaze Patterns, Manoeuvre Recognition, Artificial Neural
Networks.

1 Introduction

Advanced Driver Assistance Systems (ADAS) must deliver correct and timely
assistance to the driver. False alarms and any subsequent intervention or the cor-
rect assistance delivered too late can cause additional driving errors to be made,
for example, the case of an intended overtaking manoeuvre being mistaken for an
impending collision with the car to be overtaken. An ADAS is therefore required
to make robust predictions of the drivers’ intentions. The problem considered
here is that of predicting lane change manoeuvres. A Markov chain analysis of
driver gaze data demonstrated that there are distinct patterns of gaze prior to
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the onset of specific manoeuvres [1,2]. Using the fact that gaze behaviour is
an indicator of information gathering [5], it was demonstrated previously that
driver gaze data can be used as a stand-alone source of training and test data
when producing artificial neural network models (ANN) which predict the occu-
rance of driving manoeuvres [4]. These ANNs thereby inferred the drivers’ intent
from the gaze data. In this study as with the previous study [4], one task was
to predict whether the driver would change lane left or keep in the lane, the
other task was to predict whether the driver would change lane right or keep
in the lane. Here, the ANNs were trained using a moving window of gaze data
which was varied in size from 0.5 seconds to 10.0 seconds and was positioned at
increasing time from the onset of the manoeuvre in order to ascertain the effect
on the ability of the ANN models to predict the occurance of a manoeuvre. The
cockpit of the car visible to the driver was divided into five non-overlapping
viewing zones described in section 3.3. For each instance of a manoeuvre to be
predicted, a 10 second section of driver gaze data was available prior to its com-
mencement. In the previous study [4,3], the results of using only the 5 seconds
of data prior to the manoeuvre occuring and the full 10 seconds of data were
compared for pre-manoeuvre times ranging from 0.0 seconds to 2.0 seconds. In
the study presented here, windows of the 10 second gaze data samples formed
the input vectors used to train and test the ANN models. These windows ranged
in size from 0.5 seconds to 5 seconds increasing in 0.5 second increments. The
range of pre-manoeuvre times investigated was restricted by the data window in
use, ranging from 0 seconds to (10− window) seconds. This allowed the effect
upon predictive ability to be explored in terms of the amount of gaze data used
at different pre-manoeuvre times.

2 Recognition of Driving Manoeuvres

It was noted that Driver Intent Inference (DII) is distinct from Trajectory Fore-
casting (TF) approaches [6]. A DII approach infers if / when a driver is inten-
tionally about to execute a lane change whereas a TF approach predicts whether
the vehicle trajectory is likely to cross the lane boundary in the near future (ir-
respective of driver awareness level). It was also stated in [6] that most other
approaches perform TF using the results as a proxy for DII. This can be sum-
marised by stating that the absence of data derived from measurement of the
driver means that nothing can be inferred about the driver’s intent.

A number of studies have been carried out in real traffic as well as in driv-
ing simulators, focussing on recognising and identifying driving manoeuvres by
incorporating driver data. Sparse Bayesian Learning was used to predict lane
change manoeuvres when using car data alone and when incorporating driver
state information in the form of head movement data [6]. It was found that
the inclusion of this driver state information resulted in the predictions of lane
change manoeuvre at 3.0 seconds before manoeuvre that were as accurate as
the predictions made at 2.5 seconds before manoeuvre using car data only. Hid-
den Markov Models (HMMs) were applied to vehicle data from real traffic in



448 F. Lethaus et al.

order to recognise and identify driving manoeuvres using a batch algorithm [7].
Contextual information, such as gaze behaviour, lane, and surrounding traffic
were used as inputs to the models. Gaze was fed into the model as a discrete
signal with six possible values (front road, rear view mirror, right mirror, left
mirror, right, and left). Drivers’ gaze behaviour was identified to be a relevant
feature for driving manoeuvre prediction and recognition, predominantly in con-
nection with lane changes, overtaking, and executing turns. A combination of
vehicle and gaze data delivered the best results. Further results showed that the
discrimination of manoeuvres, such as Overtaking and Lane Change Left, is rel-
atively poor, if only based on vehicle data, and that recognising turns and lane
changes requires contextual information. On average, driving manoeuvres were
recognised one second prior to a significant change. ANN models were trained
to predict the onset of Lane Change Left (LCL) and Lane Change Right (LCR)
manoeuvres using driver gaze data alone [3,4]. Both 10 second and 5 second
sections of pre-manoeuvre gaze data were used to investigate predictive ability
at times before manoeuvre ranging from 0 to 2 seconds before manoeuvre onset.
Predictive ability well above that obtained from random guessing was achieved
for all times before manoeuvre onset that were trialled.

These previous studies did not investigate the limit at which any degree of
prediction can still be seen to take place, which is important if future work is to
be focussed correctly on where to improve. This study aims to find the limits of
predictive ability with the models and data available.

3 Simulator Study

The driving task carried out by each driver took place in a dynamic driving sim-
ulator allowing the volume of traffic to be controlled, which is a known problem
when conducting real-world studies. The use of a simulated environment also
ensured that all drivers were exposed to the same driving conditions, that many
safe opportunities to change lane could be created and that the scenarios the
drivers were presented with could be safely repeated.

3.1 Driving Task

The study included a total of ten participants (five female, five male) aged 23 to
36 years (M=29.8, SD=4.6). All had normal vision, had held their driving licence
for at least 5 years and drove more than 10,000 kilometres p.a. (∼6250 miles
p.a.). Informed consent was obtained from each driver who participated prior to
testing. The driving task took place in simulated traffic and comprised a drive on
a three-lane and two-lane motorway each having a length of 70 kilometres (∼43.5
miles). Drivers were instructed to drive on the right-most lane throughout the
experiment and to only use the centre lane (for three-lane motorway) or the left-
most lane (two-lane motorway) for the purpose of overtaking lead cars. Each
drive took approximately 40 minutes and started with overtaking a group of
lead cars, which was repeated ten times, was followed by 10 kilometres (∼6.2
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miles) of car following, and ended with overtaking a single lead car, also repeated
ten times. Prior to the beginning of the experiment, drivers were given oral and
written instructions, followed by a gaze calibration procedure of the eye tracking
system.

3.2 Equipment

The driving task was performed in a dynamic driving simulator, a motion system
based on a hexapod system, which allows motion with six degrees of freedom and
which is illustrated in Fig. 1 and described in detail in [4]. Eye movements were
recorded using a head-mounted eye tracking system, SMI iView XTM HED, and
five non-overlapping viewing zones were defined inside the vehicle (windscreen,
left window/wing mirror, rear view mirror, speedometer, right window/wing
mirror) in order to analyse the driver’s gaze behaviour. All data was recorded
at a sampling rate of 30Hz.

Fig. 1. Dynamic driving simulator at the German Aerospace Center

3.3 Data Processing

The section of the car cockpit that was visible to the driver was divided into five
viewing zones as illustrated in Fig. 2 (1 = windscreen, 2 = left window/wing
mirror, 3 = rear-view mirror, 4 = speedometer, 5 = right window/wing mirror).
For each driver, the gaze data collected formed a time series of the zones looked
into as the driving task was performed. The data gathered from each driver was
analysed and the point at which any of the manoeuvres of interest was found to
begin was noted. For each of these manoeuvre events, the 10 second section of
data which preceded it was stored.

Previous work [1,2] has shown that the 10 second window of data preceding
the manoeuvre was rich enough in information that distinct gaze patterns could
be recognised. Redundancy within this 10 second sample length was investigated
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Fig. 2. Illustration of the locations of the five viewing zones inside the vehicle cockpit

further in [4] where it was shown that better predictive ANN models could be
trained using data only from the 5 seconds preceding the onset of the manoeu-
vres. It was concluded that the additional information in the full 10 seconds of
data constituted noise. The aim here was to establish the limits of the data in
producing predictive models which provide a result better than chance, specifi-
cally: How much data is needed? How far in advance of the manoeuvre’s onset
can predictions be made? This was achieved by training ANNs using moving
windows of data selected from the 10 second sample available prior to the ma-
noeuvre onset. ANNs were trained using windows of data ranging in size from
0.5 seconds to 5 seconds with the window size increasing in 0.5 second incre-
ments. Each window of data was moved from 0.0 seconds before the manoeuvre
to (10− window) seconds before the manoeuvre, e.g. a 0.5 second window would
take positions 0.0 seconds before manoeuvre to 9.5 seconds before manoeuvre
moving in 0.5 second increments. For each window size and for each time before
manoeuvre (TBM) onset the test error rate reported was obtained by dividing
the data set into 10 equal portions and training and testing as per 10-fold cross-
validation. For each fold, the train and test procedure was repeated 10 times,
each time using a ANN which had a different set of randomly assigned weights,
so that the effect of the initial weights could be ameliorated (see section 5). The
distribution of gaze behaviour across all five viewing zones from a 10 second
sample of data prior to a LCL manoeuvre is shown in Fig. 3 where a 3 second
window positioned at 2.5 seconds before manoeuvre onset has been overlayed
onto this gaze data series.
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Fig. 3.Moving window applied to gaze data used from a section of typical gaze patterns
prior to a LCL manoeuvre

The data in the selected windows was encoded into a format suitable for use
in supervised learning, i.e. a vector of input and target data. The input section
of the vector described the proportion of time spent looking in the five viewing
zones within the selected window of data (i.e. the inputs summed to 1.0), the
target section of the vector indicated the ’class’ represented by the input vector
and used a binary encoding, i.e. if the data represented lane keeping the target
output was 0 and if it represented one of the lane change manoeuvres then the
target was denoted as 1. The result was three groups of data each consisting of
284 (input, target) vectors of instances of LCL, LCR, and lane keeping.

4 Artificial Neural Networks

Feedforward ANNs with two hidden nodes and a single output node (which used
the Sigmoid transfer function) were trained using the Backpropagation algorithm
[8] to be binary classifiers ideally outputting 1 when an instance of the manoeuvre
of interest was detected in the input data and 0 when the inputs indicated that
the car was keeping to the lane. The weights were randomly initialised in the
range [−1.0, 1.0]. The actual output of the ANNs was a real number in the range
[0.0, 1.0], which can be taken as a measure of probability that the manoeuvre of
interest has been detected. A threshold T , was then used in order to decide which
of the two classes (lane change, lane keeping) the ANN output represented, i.e.
the output of the ANN is P (C|x) where C is the class lane change and x is the
input vector, hence the threshold T can be used to decide which class the ANN
output represents as follows:

IF P (C|x) > T → lane change
ELSE → lane keeping
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5 Analysis and Results

The aim of this study was not to establish where the ANN models obtained
produced the best results. The aim was to establish the limits at which useful
predictive models can be obtained, i.e. how far in advance of manoeuvre onset
can predictive models produce results that are better than chance? What in-
fluence does the amount of data used have on the ability to predict? Here, the
aim was to ascertain at what point the models produced cease to predict, i.e
where the output reaches the limit of what would be obtained with random
guessing. Balanced datasets were used, i.e. 50% lane change manoeuvre and
50% lane keeping manoeuvre, which meant that when the level of mean test
classification error reached 0.5, the output was no better than random guessing.
Fig.s 4 and 5 contain plots showing the effect of TBM and threshold value on
the mean test error rate obtained for the selection of the data window sizes tri-
alled. Table 1 summarises, for each data window size the maximum TBM and
threshold value T at which the ANN model still produces predictions better than
random guessing. By comparing the diagrams in Fig.s 4 and 5, which show the
results for LCL and LCR respectively, a similar pattern of degradation in test
error rate, i.e. it increases, can be seen to occur with changing T and increasing
TBM. It should, however, be noted that the test error rate for LCR is greater
for any given TBM and window size combination compared with the test error
rate for LCL. Common to both LCL and LCR for any given TBM, is that the
use of a larger window of data results in a lower test error rate. In addition, for
any given window size, the values of T at which the lower test error rates are
found, occur within a gradually smaller range (which centres at 0.5) as TBM
increases.

Table 1. Maximum time before manoeuvre (TBM) and threshold value T

Lane Change Lane Change
Left Right

Window TBM T
Size

0.5 3.5 0.5
1.0 4.0 0.5
1.5 5.0 0.5
2.0 5.0 0.5
2.5 5.0 0.5
3.0 5.0 0.5
3.5 5.0 0.5
4.0 5.0 0.5
4.5 5.0 0.45
5.0 5.0 0.45

TBM T

2.5 0.5
2.5 0.5
3.0 0.5
3.0 0.5
3.0 0.5
3.0 0.5
3.0 0.5
3.0 0.5
3.0 0.5
3.0 0.5
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Fig. 4. Results for distinguishing Lane Change Left manoeuvres from Lane Keeping
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Fig. 5. Results for distinguishing Lane Change Right manoeuvres from Lane Keeping
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6 Conclusion

This investigation has demonstrated again that gaze data is viable as a ’stand
alone’ data source for building predictive models of lane change behaviour. The
ability of the ANNs to accurately classify the impending manoeuvre has been
demonstrated to decline with increasing distance from the manoeuvre onset. It
is, however, also noted that a level of predictive accuracy is maintained that
is above that obtained by random guessing to a distance of 3.5 to 5 seconds
before manoeuvre onset for distinguishing LCL from Lane Keeping and up to a
distance of 2.5 to 3 seconds when distinguishing LCR from Lane Keeping. It was
noted in the previous study that LCR is harder to predict and it is theorised
that this is due to the fact that the distinctive gaze behaviour occurs closer to
the time at which manoeuvre onset occurs than in the case of LCL. Increasing
the size of the window of data has been shown to decrease the level of error
for all times before manoeuvre onset. This is likely due to the fact that when a
larger window of data is used the chances of capturing the pertinent gaze data
are increased allowing accurate predictions to be made. Future work will also
seek to combine gaze data with other available car data and investigate other
methods of encoding the input data in order to produce models with improved
predictive capability at the largest TBM onset that is possible.
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Sweden (2009)
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Abstract. In this paper, we consider the problem of auto-localization
of the nodes of a static Wireless Sensor Network (WSN) where nodes
communicate through Ultra Wide Band (UWB) signaling. In particu-
lar, we investigate auto-localization of the nodes assuming to know the
position of a few initial nodes, denoted as “beacons”. In the considered
scenario, we compare the location accuracy obtained with the widely used
Two-Stage Maximum-Likelihood algorithm with that achieved with an
algorithm based on Particle Swarming Optimization (PSO). Accurate
simulation results show that the latter can significantly outperform the
former.

Keywords: Auto-localization, Particle Swarm Optimization, Maximum-
Likelihood Algorithms.

1 Introduction

The location of sources in an indoor environment is of great interest because it
has applications in many areas, such as monitoring of people in hospitals or in
high security areas, search of victims or firefighters in emergency situations, home
security, and finding people or vehicles in a warehouse. Wireless Sensor Networks
(WSNs) are a leading option to address this problem, since they combine low to
medium rate communications with positioning capabilities [1]. As a matter of
fact, radio signal exchanges between nodes enables them to estimate the distance
to each other, by extracting some physical quantities, such as the Received Signal
Strength (RSS), the Angle Of Arrival (AOA), or the Time Of Flight (TOF) from
the signals travelling between them.

Assuming to know the exact positions of a sufficiently large number of nodes,
the position of a new node can be estimated by measuring its distances from
a few nodes with known positions. Of course, wireless communications are af-
fected by noise, especially in indoor environments, because of non-line-of-sight,
multipath and multiple access interference. Ultra Wide Band (UWB) signaling

M. Tomassini et al. (Eds.): ICANNGA 2013, LNCS 7824, pp. 456–465, 2013.
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seems a promising technology in this area, since the large bandwidth allows to re-
solve multipath components and the high time resolution improves their ranging
capability (thus making the position estimate more accurate) [2].

In this paper, we consider an indoor scenario, which may be, for instance,
a warehouse, in which a certain number of fixed Anchor Nodes (ANs) is used
to locate Target Nodes (TNs), such as moving people and vehicles. In order to
guarantee accurate TN estimation in every accessible point inside the building,
which might be very large, a huge number of accurately positioned ANs would
be necessary and this could be very demanding also from an economic point
of view. Moreover, if the geometry of the warehouse changes, (e.g., for varying
quantities of stored goods) the ANs might be replaced and/or new fixed ANs
might be added. In order to overcome this problem, we consider auto-localization
of the ANs under the assumption of initially knowing exactly the positions of
only a few ANs, denoted as “beacons”. UWB signaling is used and we consider
a TOF approach to estimate the distances between pairs of nodes. In particular,
we focus on a Time Difference Of Arrival (TDOA) approach, which is based on
the estimation of the difference between the arrival times of signals traveling
between each node to locate and nodes with known position (beacons or nodes
whose position has already been estimated).

Many location estimate techniques, based on range measurement, have been
proposed in the literature. Among them, it is worth recalling iterative methods,
such as those based on Taylor-series expansion [3], or the steepest-descent algo-
rithm [4]. These methods guarantee fast convergence for an initial value close
to the true solution (which is often difficult to obtain in practice), but they are
computationally expensive and convergence is not guaranteed, since, for instance,
ignoring higher order terms in the Taylor-series expansion may lead to significant
errors. To overcome these limitations, closed-form algorithms have been stud-
ied, such as least-square methods, approximated maximum-likelihood method
[5], the plane intersection method [6] and the Two-Stages Maximum-Likelihood
(TSML) method [7] [8]. In particular, the TSML method is one of the most com-
monly used, since it has been proved that it can attain the Cramer-Rao lower
bound [9]. By observing that the initial system of equations of the TSML can
be re-interpreted as an optimization problem, we thus solve it through the use
of Particle Swarming Optimization (PSO). The proposed approach is shown to
perform better than the TSML method.

This paper is organized as follows. In Section 2 the TSML method and the
PSO algorithm are described. In Section 3 numerical results are presented. Sec-
tion 4 concludes the paper.

2 Description of the Scenario

Throughout the paper, it is assumed that all the ANs lay on a plane, e.g.,
the ceiling of a warehouse. As anticipated in Section 1, a sufficient (but small)
number of known “beacons” is used to get the position estimate of each AN with
unknown position. Define: si = [xi, yi]

T , ∀i = 1, . . . ,M as the (known) positions
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of M ANs (the “beacons”); ue = [xe, ye]
T as the true position of a generic AN

whose position needs to be estimated; ûe = [x̂e, ŷe]
T as its estimated position.

The true and estimated distances between the i−th beacon and the AN with
position to be estimated are, respectively:

ri =
√
(ue − si)

T (ue − si) r̂i =
√
(ûe − si)

T (ûe − si). (1)

As we are considering UWB signaling, it can be shown that r̂i = ri + νi, where
νi = εi+b where εi ∼ N (0, σ2

i ) and εi is independent from εj if i �= j, and b is the
synchronization bias [10]. Moreover, according to [10], the standard deviation of
the position error estimation between two UWB nodes can be approximated as
a linear function of the distance between them, namely

σi = σ0ri + β. (2)

In the following, the values σ0 = 0.01 m and β = 0.08 m are considered. These
values are obtained in [10] by considering Channel Model 3 described in [11]
and the energy detection receiver presented in [12], which is composed by a
band-pass filter followed by a square-law device and an integrator, in which the
integration interval was set equal to Ts = 1 s. Therefore, the results presented
in the following hold under these channel and receiver conditions.

2.1 TSML Method

The position estimation is carried on by using a simplification of the two step al-
gorithm proposed in [8]. Note that at least 4 ANs positions must be known
in order to start applying the following algorithm. Defining Δ1i = ri − r1,
∀ i = 2, . . . , M , and observing that r2i = (Δ1i + r1)

2, the following TDOA
non-linear equations can be derived:

Δ2
1i + 2Δ1ir1 = −2xixe − 2yiye + x2e + y2e −Ki − r21 i = 2, . . . ,M (3)

where Ki = x2i + y2i . When using estimated distances instead of real ones, the
set of equations (3) can be written as

Ĝ ûe = ĥ (4)

where

Ĝ = −

⎛⎜⎜⎜⎝
x2 − x1 y2 − y1 Δ̂12

x3 − x1 y3 − y1 Δ̂13

...
...

...

xM − x1 yM − y1 Δ̂1M

⎞⎟⎟⎟⎠ ĥ =
1

2

⎛⎜⎝ K1 −K2 + Δ̂2
12

...

K1 −KM + Δ̂2
1M

⎞⎟⎠ (5)

and Δ̂1i = r̂i − r̂1, ∀i = 2, . . . ,M . The system (4) would be a linear system in
the three unknowns xe, ye and r1 if r1 did not depend on xe and ye (which is
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instead the case, since by definition r1 =
√
(xe − x1)2 + (ye − y1)2). In order

to take into account this dependence, the solution is determined in 2 steps.
First, it is supposed that xe, ye, and r1 are three independent variables and
the (linear) system is solved by using the Least Square (LS) technique. Defining

φ̂
1

= [x̂e, ŷe, r̂1]
T and φ

1
= [xe, ye, r1]

T leads to the error vector

ψ = Ĝ(φ̂
1
− φ

1
). (6)

The Maximum Likelihood (ML) solution of (6) is

φ̂
1
= (Ĝ

T
Ψ−1Ĝ)−1Ĝ

T
Ψ−1ĥ (7)

where
Ψ = E[ψ ψT ] = BQB, (8)

and B = diag(r2, . . . , rM ), Q = E[ε1ε
T
1 ] where (ε1)j = Δ̂1j −Δ1j [8]. Omitting

non linear perturbation, from (7) one obtains

ûe − ue = (GTΨ−1G)−1GTΨ−1(ĥ− Ĝ ue) = (GTΨ−1G)−1GTΨ−1(ψ).

Since E[ψ] = 0, it can be noticed that E[ûe] = ue and the covariance matrix of

φ̂
1
is then [9]

cov(φ̂
1
) � E[(φ̂

1
− φ

1
)(φ̂

1
− φ

1
)T] = (GTΨ−1G)−1. (9)

Now taking into account the relation between xe, ye, and r1 the following set of
equations is obtained:

ψ′ = h′ −G′φ
2

(10)

where

h′ = [([φ̂
1
]
1
− x1)

2, ([φ̂
1
]
2
− y1)

2, [φ̂
1
]
2

3
]T G′ =

⎛⎝1 0
0 1
1 1

⎞⎠
φ
2
= [(xe − x1)

2, (ye − y1)
2]T .

The ML solution of (10) is

φ̂
2
= (G′TΨ ′−1G′)−1G′TΨ ′−1h′ (11)

where Ψ ′ � E[ψ′ψ′T ] = 4B′cov(φ̂
1
)B′, B′ = diag(xe − x1, ye − y1, r1) and [9]

cov(φ̂
2
) = (G′TΨ′−1G′)−1. (12)

This leads to

ue = U

[√
[φ̂

2
]1,

√
[φ̂

2
]2

]T
+ s1
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where U = diag[sgn(φ̂
1
− s1)]. The covariance matrix of the error is then given

by

Φ =
1

4
(B′′−1cov(φ̂

2
)B′′−1) (13)

where B′′ = diag(u− s1) [9].

2.2 PSO Algorithm

The starting point for the previous method was the system (4) defined in Sec-
tion 2.1. Through simple algebraic manipulations, it can be written as

A ûe = t̂ (14)

where

A = −2

⎛⎜⎜⎜⎝
x2 − x1 y2 − y1
x3 − x1 y3 − y1

...
...

xM − x1 yM − y1

⎞⎟⎟⎟⎠ t̂ =

⎛⎜⎜⎜⎝
r̂22 − r̂21 +K1 −K2

r̂23 − r̂21 +K1 −K3

...
r̂2M − r̂21 +K1 −KM

⎞⎟⎟⎟⎠ . (15)

Notice that in this way, the measurements affected by noise only appear in vector
t̂, while matrix A cointains known parameters. On the contrary, in (4) both the

matrix Ĝ and the vector ĥ contain noisy data. The solution of the system (14)
can be found by formulating it as an optimization problem, with the following
solution:

ue = argminuF (u) (16)

where

F (u) � ||t̂−Au||.

To solve this problem, the PSO algorithm, introduced in [13], can be used. Ac-
cording to this algorithm, the set of potential solutions of an optimization prob-
lem can be modeled as a swarm of particles, and the aim is to produce computa-
tional intelligence (thus to guide all the particles towards the optimal solution of
the given problem), by exploiting social interactions between individuals [14]. It
is assumed that the swarm is composed by S individuals, and that every particle
i, i = 1, . . . , S at any given instant t is associated with a position xi(t) in the
region of interest and with a velocity vi(t), which are both randomly initialized
at the beginning with values xi(0) and vi(0) and which are updated at each
iteration [15]. Moreover, it is supposed that the entire system has a memory,
which allows each particle to know, at every step, not only its own best position
reached so far, but also the best position among the ones reached by any other
particle in the swarm (or by any other particle in a given neighbourhood of the
swarm) in previous iterations. Each particle also keeps track of the values of the
function to optimize corresponding both to its best position and to the global
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best position. These values are used to update the velocity (and thus the posi-
tion) of every particle in each step. The updating rule for the velocity of particle
i is [16]

vi(t+1) = ω(t)vi(t)+c1R1(t)(y
i(t)−xi(t))+c2R2(t)(y(t)−xi(t)) i = 1, . . . , S

(17)
where ω(t) is a weight called inertial factor, c1 and c2 are positive real parameters
called cognition parameter and social parameter, respectively, R1(t) and R2(t)
are random variable drawn at each step from the uniform (0, 1) distribution
and yi(t) and y(t) are the position of the i−th particle with the best objective
function and the position of the best (among all particles) objective function
reached until instant t [14]. They can be described as

yi(t) = argminz∈{xi(0),... xi(t)}F (z)

y(t) = argminz∈{y1(t),... yS(t)}F (z).
(18)

The meaning of formula (17) is to add to the previous velocity (which is weight-
ened by means of a multiplicative factor) a stochastic combination of the direc-
tion to the best position of the i−th particle and to the best global position.
The definition of the velocity given in (17) is then used to update the position
of the i−th particle, according to the rule

xi(t+ 1) = xi(t) + vi(t) i = 1, . . . , S.

This process is iterated until a stopping criterion (which might be the achieve-
ment of a satisfying value of F or a maximum number of iterations) is met. The
position of the particle which best suits the optimization requirements in the
last iteration is then considered as the optimal solution.

In Section 3, this algorithm is applied to the function F (u) defined in (16). The
number of particles in the simluations is S = 40, and the number of iterations
has been set to 50. The parameters c1 and c2 in (17) are both set equal to
2, which is a recommended choice since it makes the weights for social and
cognition parts to be 1 on average [13]. The inertial factor ω(t) has been chosen
to be a decreasing function in the number of iterations. As a matter of fact, a
large value of the inertial factor corresponds to low dependece of the solution
on initial population, and any good optimization algorithm should possess more
exploitation ability at the beginning. Decreasing the value of ω(t) reduces the
capability of PSO to exploit new areas, thus making the method more simliar to
a local search as the number of iteration increases, which is a good property for
an optimization algorithm. In the following simulations it is assumed that the
initial value of the inertial factor is ω(0) = 0.9 and that it decreases linearly to
0.5, reached in the last iteration.

3 Simulation Results

In this section, we compare, through simulations, the two localization approaches,
namely TSML and PSO, described in Section 2. The performances of the
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algorithms are evaluated in terms of the Mean Square Error (MSE), which is
defined as follows:

MSE � E[(x̂e − xe)
2 + (ŷe − ye)

2]. (19)

While in [17] the impact of the number of beacons is investigated, we now want
to investigate the impact of the distance between beacons and ANs to be esti-
mated. Two scenarios are considered, in which 4 beacons are used to estimate
16 unknown ANs around them. In the first scenario, the distance between the
baricenter of the beacons and the remaining ANs is 4 m, while in the second case
a longer distance (8 m) is considered. This two scenarios are shown in Fig. 1 (a.)
and Fig. 1 (b.), respectively.
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(a.) (b.)

Fig. 1. Possible scenarios where beacons (full squares) and ANs with unknown position
(empty squares) are represented. The distance between the baricenter of the beacons
(red dot) and the ANs is 4 m in (a.), and 8 m in (b.).

Fig. 2 (a.) represents the MSE relative to each AN when using only the beacons
to get the location estimate. It can be noticed that the TSML method is far too
unreliable, while the accuracy obtained using the PSO algorithm is satisfactory.
The resulting estimated positions of the ANs are represented in Fig. 2 (b.),
both in case of TSML method and PSO algorithm. Instead of considering only
the beacons, a possible idea which can improve the accuracy is to consider the
already estimated ANs as known ones, and to use them to calculate the position
of the remaining nodes. Fig. 2 (c.) represents the MSE relative to each AN when
using this second strategy and comparing the results with the ones of Fig. 2 (a.)
shows that performances are improved. In particular, the accuracy of the location
estimate when using TSML method significantly improves as the number of ANs
assumed to be known increases. Less significant but still remarkable improvement
can be noticed also in the behaviour of the MSE when using the PSO algorithm.
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Notice that in both cases the PSO gives a better approximation of the real
position of the ANs. The position estimates of the ANs obtained when following
this strategy are represented in Fig. 2 (d.).

Fig. 3 represents the analogous results when the scenario is the one described
in Fig. 1 (b.), so when the ANs are further from the beacons. Once again, from
Fig. 3 (a.) and Fig. 3 (c.) it can be noticed that the PSO algorithm outperforms
the TSML mehtod. Comparing these results with the analogous ones represented
in Fig. 2 (a.) and Fig. 2 (c.), respectively, shows that a bigger distance between
beacons and ANs leads to worst accuracy, especially when the TSML method is
used. As a matter of fact, even when also the already estimated ANs are used to
localize the remaining ones (as in Fig. 3 (c.)), the accuracy obtained with this
method is not satisfactory. On the other hand, the accuracy obtained when using
the PSO algorithm is still good, and in this case the distance between ANs does
not seem to impact much on the solutions. Fig. 3 (b.) and Fig. 3 (d.) represent
the obtained position estimate, analogous to Fig. 2 (b.) and Fig. 2 (d.).
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Fig. 2. The MSE of the ANs relative to the scenario described in Fig. 1 (a.) is plotted
in (a.) and (c.). Fig. 2 (a.) refers to the case when only the beacons are used to estimate
the position of all the ANs, both when TSML method is used (magenta dots) and when
PSO algorithm is used (green triangles). The resulting position estimate are represented
in Fig. 2 (b.), both in case of TSML method (magenta dots) and PSO algorithm (green
triangles). Fig. 2 (c.) refers to the case in which also already estimated ANs are used
to get the position of the remaining ones, both when TSML method is used (red dots)
and when PSO algorithm is used (blue triangles). The resulting position estimate are
represented in Fig. 2 (d.), both in case of TSML method (red dots) and PSO algorithm
(blue triangles).
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Fig. 3. The MSE of the ANs relative to the scenario described in Fig. 1 (a.) is plotted
in (a.) and (c.). Fig. 2 (a.) refers to the case when only the beacons are used to estimate
the position of all the ANs, both when TSML method is used (magenta dots) and when
PSO algorithm is used (green triangles). The resulting position estimate are represented
in Fig. 2 (b.), both in case of TSML method (magenta dots) and PSO algorithm (green
triangles). Fig. 2 (c.) refers to the case in which also already estimated ANs are used
to get the position of the remaining ones, both when TSML method is used (red dots)
and when PSO algorithm is used (blue triangles). The resulting position estimate are
represented in Fig. 2 (d.), both in case of TSML method (red dots) and PSO algorithm
(blue triangles).

4 Conclusion

Two different approaches to UWB-signaling-based auto-localization of nodes in
a static WSN have been considered. Besides solving the non-linear system of
the localization equations by means of the TSML method, which is widely used
for this kind of application, the trasformation of the original problem into an
optimization one allows to solve it by means of the PSO algorithm. Our results
show that the novel approach based on the use of the PSO algorithm allows to
achieve better accuracy in the position estimate.
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Abstract. In recent years, multi-label classification has attracted a sig-
nificant body of research, motivated by real-life applications such as text
classification and medical diagnoses. However, rule-based methods, and
especially Learning Classifier Systems (LCS), for tackling such problems
have only been sparsely studied. This is the motivation behind our cur-
rent work that introduces a generalized multi-label rule format and uses
it as a guide for further adapting the general Michigan-style LCS frame-
work. The resulting LCS algorithm is thoroughly evaluated and found
competitive to other state-of-the-art multi-label classification methods.

Keywords: multi-label classification, learningclassifier systems, genetics-
based machine learning, classification, evolutionary computation.

1 Introduction

One of the most extensively studied knowledge extraction tasks is classification,
wherein problems can be either multi-class (single-label) or multi-label. Single-
label problems, where data samples are associated with a single class, have been
thoroughly explored, with various Machine Learning algorithms [1–3]. On the
other hand, literature on multi-label classification – an extension of the single-
label case, where each sample is associated with one or more categories, named
labels – is far less abundant. Multi-label classification tasks are, however, com-
mon in real-life and, lately, there have been important developments, including
algorithms for efficiently tackling such problems [4] and a wide range of applica-
tions, ranging from text classification and medical diagnoses to protein function
prediction and the processing of semantic scenes.

Regardless of the kind of problem (single- or multi-label) being tackled, rule-
based solutions to classification problems are highly desirable, due to the inherent
ability of rule-inducing algorithms to provide human readable representations. In
this direction, Learning Classifier Systems (LCS) [5], a Genetics-based Machine
Learning method combining evolutionary computing and reinforcement [6] or
supervised learning [7–9], can be an effective alternative. Indeed, in recent years,
LCS have been modified for data mining [10] and single-step classification prob-
lems, notably in UCS [8], while an approach to multi-label classification with
LCS has been explored in [11] with promising results.

M. Tomassini et al. (Eds.): ICANNGA 2013, LNCS 7824, pp. 466–476, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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In the current work, we effectively tackle multi-label classification using rule-
based methods and, more specifically, LCS. In this direction, we employ a su-
pervised framework, partly based on UCS, and extend it, to render it directly
applicable to multi-label classification, without the need for any problem trans-
formation. We avoid the extra complexity of default hierarchies and organiza-
tional learning added in [11] and provide a more extensive evaluation. Our main
contributions, detailed after briefly presenting the relevant background (Section
2), are: (i) a generalized multi-label rule format (Section 3) that has several
distinct advantages over those used in other multi-label classification methods;
(ii) a multi-label Learning Classifier System (Section 4), named MlUCS, whose
components allow for efficient and accurate multi-label classification through ex-
pressive multi-label rulesets; and (iii) an experimental evaluation (Section 5) of
our proposed LCS approach, against other state-of-the-art algorithms on widely
used datasets, that validates its potential.

2 Background

2.1 Multi-label Classification

Multi-label classification is a generalization of the multi-class case where samples
are associated with a set of mutually non-exclusive categories or labels Y⊆L.
Thus, a multi-label classification model approximates f : X→L∗ where X is the
feature space and L∗ is the powerset of the set of all labels L (label space).

There are two main approaches to multi-label classification [4]. Problem
transformation methods transform a multi-label classification problem into a
set of single-label ones and, thus, involve trade-offs between training time and
label correlation representation. Various transformations have been proposed,
including the Binary Relevance (BR), Ranking by Pairwise Comparison, and
Label Powerset (LP) transformations, the Classifier Chains method [12], and
RAkEL [13]. Algorithm transformation methods, on the other hand, adapt
learning algorithms to directly handle multi-label data. Such methods include
MlkNN [14], Adaboost.MH [15] and multi-label decision trees [16], as well as
the LCS proposed in our current work.

For evaluating multi-label classifiers, several traditional metrics are used, after
being properly modified. For a dataset D – consisting of multi-label instances of
the form (xi, Yi), where i = 1 . . . |D| and Yi ⊆ L (Yi ∈ L∗) – and a prediction
function Ŷi = H(xi), accuracy is defined as the mean, over all instances, ratio
of the size of the intersection and union sets of actual and predicted labels:

Accuracy(H,D) = 1/|D|
|D|∑
i=1

|Yi ∩ Ŷi|/|Yi ∪ Ŷi| (1)

while exact match (or subset accuracy) is a simpler, yet stricter, metric, cal-
culated as the label-set-based accuracy:

Exact-Match(H,D) = |C|/|D| (2)

where C is the set of correctly classified instances for which Yi ≡ Ŷi.
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2.2 Learning Classifier Systems

Learning Classifier Systems are an evolutionary approach to supervised and rein-
forcement learning. Since multi-label classification is a supervised task, we tackle
the corresponding problems using supervised LCS following the “Michigan ap-
proach”. Such LCS maintain a cooperative population of condition-action rules,
termed classifiers, and combine supervised learning with a Genetic Algorithm
(GA). The GA works on classifier conditions trying to adequately decompose
the target problem into a set of subproblems, while supervised learning eval-
uates classifiers in each of them. The most prominent example of this class of
systems is UCS, which we have, thus, chosen as the basis for our current work.

UCS is an accuracy-based LCS [7] that inherits the primary features of the
“reinforcement learner” XCS [6], but specializes them for supervised learning.
UCS employs a population of rules that gradually evolve through the interplay
of various cooperating components: (i) an Update Component responsible for
updating rule-specific parameters, such as accuracy and fitness; (ii) a Discov-
ery Component exploring the search space and producing new rules through a
steady-state GA; and (iii) a Performance Component exploiting the developed
rules to classify previously unseen examples. UCS also employs fitness sharing [8].
The fitness Fcl of a classifier cl is computed by Eq. 3, where β, α, ν and acc0 are
user-defined parameters, k

′
cl is the relative accuracy of cl, numcl its numerosity

and M a set of classifiers:

Fcl ← Fcl + β(k
′
cl − Fcl) (3)

k
′
cl =

kcl · numcl∑
cli∈M kcli · numcli

with kcl∈C =

{
1 if acccl > acc0
a · (acccl/acc0)ν otherwise

3 Rules for Multi-label Classification

To tackle multi-label classification with rule-based methods, such as LCS, we
need an expressive rule format, able to capture correlations both between the
features and labels and among the labels. In this Section, we introduce a format
with such properties that forms the basis of MlUCS detailed in Section 4.

3.1 Generalized Multi-label Rule Representation

Single-label classification rules traditionally follow the production system form
ri: conditioni → Yi, where conditioni comprises a conjunction of tests on at-
tribute values and the consequent Yi contains a single label Yi = {yi

∣∣ yi∈L}.
For zero-order rules the condition takes the form (X1op1u1) ∧ · · · ∧ (Xkopkuk),
where Xi is an attribute, opi an operator, ui a constant set, number or range of
numbers, and 0 ≤ k ≤ |X |.

For rules to handle multi-label classifications, we modify the consequent Yi,
such that Thus, each rule may advocate for (li=1) or be opposed to (li=0)
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a certain label, but it may also be agnostic (not know/care) about it (li=#).
In other words, the modified rule format is capable of mapping conditions to
arbitrary label subspaces.

3.2 Generalized Multi-label Rule(set) Properties

Rules following our proposed Generalized Multi-label Representation have two
unique properties. They (i) are easy to interpret, rendering the discovered knowl-
edge equally usable for humans and computers, and (ii) have a flexible label-
correlation representation, i.e., they variably correlate the maximum possible
number of labels to any given condition.

A ruleset R for single-label classification comprises cooperative rules that col-
lectively solve the target problem, while being maximally compact, i.e., contain
the minimum number of rules for solving the problem. Equivalently, all rules
ri ∈ R havemaximally general conditions and, thus, the greatest possible feature
space coverage. Finally, a ruleset R is an effective solution if it contains rules that
are adequately correct, given a specific performance/correctness metric. While
all aforementioned properties remain desirable, generalized multi-label rulesets
additionally need to exhaustively cover the label space. In other words, rules in a
multi-label rulesetR should be able to collectively decide about all labels of every
instance. This latter desirable property, together with the compactness require-
ment, indicates that multi-label rules should have maximally general conditions
and maximally specific consequents. Thus, algorithms building multi-label rule-
sets have to consider the trade-off between condition generalization, consequent
specialization and rule correctness.

4 LCS for Multi-label Classification

Our current work targets offline multi-label classification problems – i.e., prob-
lems that do not involve online interactions – which we tackle using a “Michigan-
style” supervised LCS, named MlUCS. Based on Section 3.2, in this Section, we
present and justify our design choices towards MlUCS.

4.1 Description of the MlUCS Algorithm

MlUCS employs a population P of gradually evolving, cooperative classifiers
(rules) that collectively solve the target classification task, by each encoding a
fraction of the problem. Associated with each classifier is a number of parameters:
the numerosity num, i.e., the number of the classifier’s copies (or microclassifiers)
currently present in the ruleset; the correct set size cs that estimates the average
size of the correct sets the classifier has participated in; the time step ts of
the last occurrence of a GA in a correct set the classifier has belonged to; the
experience exp, measured as the classifier’s number of appearances in match sets;
the number of the classifier’s correct (incorrect) decisions tp (fp); the accuracy
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Algorithm 1. Training Cycle for MlUCS

1: MlUCSUpdate(P, Instancej)
2: M ← generateMatchSet(P, l, Instancej)
3: for each l ∈ L do
4: Cl ← generateLabelCorrectSet(M, l, Instancej)
5: for each rule ∈ M do
6: updateF itness(rule)
7: if ∃li ∈ L : rule ∈ Cli then updateCs(rule)
8: rule.exp ← rule.exp+ 1
9: for each l ∈ L do
10: if Cl �= ∅ then evolve(Cl) else cover(Instancej , l)
11: deleteIfNecessary(P)

acc that estimates the probability of a classifier predicting the correct class; and
the fitness F that is a measure of the classifier’s quality.

At each learning time-step t, MlUCS receives an instance Xi along with
its labels Yi (Xi→Yi

∣∣ Yi⊆L) and follows a cycle (summarized in Alg. 1) of
performance, update and discovery component activation. Overall, the evolution
of multi-label rules in MlUCS is iterative. First, a match set M is created
containing the rules of the population P whose condition matches the current
input. Next, for each label l∈L, a correct set Cl is formed containing the rules
of M that correctly predict l for the current instance. Given these sets, rule
parameters (including the fitness F ) are updated per label and cs is updated only
for those rules belonging to at least one Cl. Finally, the discovery component
is activated (at most) once per label: for every non-empty Cl the evolve()

function executes a steady-state GA that produces two offspring and adds them
to the population P. In case of an empty Cl, the covering operator cover()

creates a new rule based on the current input and appropriately generalizes it.

4.2 Components of the MlUCS Algorithm

Performance Component. Upon receipt of an instance Xi→Yi, MlUCS scans
the population P for rules whose condition matches Xi and forms the match set
M. Next, for each label, a correct set Cl is formed containing the rules ofM that
correctly predict label l for the current instance. The rest of the classifiers in M
are placed in the incorrect set !Cl. If the system is in test mode1, a classification
decision is produced based on the labels advocated by rules in M.

The classification of a new sample based on multi-label rules is not straight-
forward, because: (i) a bipartition of the label-set L, rather than a single class,
has to be decided upon based on some threshold, while (ii) rulesets evolved with
LCS may contain contradicting or low-accuracy rules. Therefore, a “vote and
threshold” method is required [17]. More specifically, an overall vote wl for each
l∈L is obtained by letting each rule vote according to its fitness. The votes vector

1 Under test mode, the population does not undergo changes; that is, the update and
discovery components are disabled.
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Algorithm 2. Rule fitness and cs update for MlUCS

1: updateFitness(rule)
2: for each l ∈ L do
3: rule.tp ← rule.tp+ correctness(rule, l, Instj)
4: rule.msa ← rule.msa+msaV alue(rule, l, Instj)
5: rule.acc ← rule.tp/rule.msa

6: krule = rule.num · (rule.acc)ν
7: rule.F ← rule.F + β (krule − rule.F )

1: updateCs(cl)
2: minCs ← argmin

l∈L

∑
cl.num
cl∈Cl

3: cl.cs ← cl.cs+ β (minCs− cl.cs)

w is normalized, such that
∑

l∈L w̄l = 1 and wl∈[0, 1], ∀l∈L, and a threshold
t∈(0, 0.5] is selected. Finally, all labels l for which w̄l≥t are activated, yielding
the required bipartition of labels. For MlUCS, we employed internal valida-
tion that searches for threshold values maximizing a metric (in our case the
multi-label accuracy), based on consecutive internal tests.

Update Component. In training or explore mode, each classification of a data
instance is associated with an update of the matching classifiers’ parameters.
More specifically: (i) for all classifiers belonging to at least one Cl, their correct
set size cs is updated, so that it estimates the average size of all correct sets the
classifier has participated in so far; and (ii) for all classifiers in M, their experi-
ence exp is increased by one and their fitness F is updated. The update strategies
for fitness F and correct set size cs are implemented in the updateFitness()

and updateCs() methods of Alg. 2.
Fitness calculation in MlUCS involves computing the accuracy (acc) of clas-

sifiers as the percentage of their correct classifications (lines 5-7 of Alg. 2). More-
over, motivated by the need to distinguish between rules that provide concrete
decisions (positive or negative) and those that are “indifferent”, we introduce
the notion of correctness for rule decisions. The correctness value of a rule r for
a label l and an instance i is calculated by the equation:

correctness(r, l, i) =

⎧⎨⎩
1 if r correctly predicts l for i
0 if r incorrectly predicts l for i
ω if r does not decide on l for i

where 0 ≤ ω ≤ 1 (4)

Equivalently, the match set appearances (msa) of a rule r for a label l and an
instance i depends on whether r provides a concrete decision or not:

msaV alue(r, l, i) =

{
φ if r does not decide on l for i
1 otherwise

with φ ≤ 1 (5)

Regarding the update of the rule overall correct-set size (updateCs()), we use a
strict estimation, employing the size of the smallest label correct set that the rule
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participates in. The rationale of our choice is the need to exert fitness pressure
in P towards complete label-space coverage, by rewarding rules that explicitly
advocate for or against “unpopular” labels.

Discovery Component.MlUCS employs two rule discovery mechanisms: (i) a
steady-state niche genetic algorithm and (ii) a covering operator.

The genetic algorithm (part of evolve() in Alg. 1) is applied iteratively on all
correct setsCl and invoked at a rate θGA, where θGA is a threshold on the average
time since the last GA invocation of classifiers in Cl. The evolutionary process
employs parent selection based on tournaments of size τs=r·|C|, r∈(0, 1). Two
parent classifiers, selected based on their fitness, are copied to form two offspring
after (single-point) crossover and mutation operators have been applied to them
with probabilities χ and μ, respectively. Before insertion into the population P,
the offspring are checked for subsumption against each of their parents. If either
of the parents is sufficiently experienced (cl.exp>θsub), accurate (cl.acc>acc0)
and more general than the offspring, the latter is not introduced into P, but
the parent’s numerosity is incremented by one instead. If the offspring are not
subsumed by either parent, they are introduced into P. The generality condition
for subsumption is extended for the multi-label case, such that a rule ri can
only subsume a rule rj, if ri’s condition is equivalent or more general and its
consequent is equivalent or more specific than those of the rule rj being subsumed.

The covering operator (cover() in Alg. 1) is activated only during training
and introduces new rules to the population when the system encounters an
empty Cl. Covering produces one rule with a random condition matching the
current input instance and generalized with a given probability P# per locus.
This process is followed by a generalization process applied to the consequent.
All labels in the newly created rule’s consequent are set to 0 or 1 according to
the current input and then converted to “don’t cares” with probability Plabel#

per label, except for the current label l that remains specific.
Overall, the discovery component is responsible for evolving the ruleset and

creating new rules. The system, however, maintains a constant population size
(at the microclassifier level) by employing a deletion mechanism. A rule cl is
selected for deletion with probability Pdel (δ and θdel are user-defined):

cl.Pdel =
cl.d∑

cli∈P cli.d
, where cl.d =

{
e−cl.cs · cl.Fmicro if cl.exp > θdel
δ · cl.Fmicro otherwise

(6)

5 Experimental Validation of the Proposed Approach

In this Section, we present an experimental evaluation of MlUCS against other
state-of-the-art methods. We experiment with two versions of MlUCS: MlUCS0
(φ=ω=0) does not penalize #s in the rule consequent, whereasMlUCS# slightly
penalizes “indifferent” rules by considering #s as partial (ω=0.9) matches (φ=1).
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5.1 Experimental Setup

For all datasets2 in Table 1, except enron, we performed ten-fold cross validation.
For enron, because of its size, a single train-test evaluation was performed. The
basic parameters used through all experiments for both MlUCS0 and MlUCS#

were: μ=0.04, χ=0.8, β=0.2, ν=10, p=5, θdel=20, θsub=10, acc0=0.99 and 500∗
|D| learning iterations. The population size |P |, number of iterations N , GA
invocation rate θGA and generalization probabilities P# and Plabel# were varied
per dataset, based on the latter’s properties.

Table 1. Benchmark dataset statistics: number of instances |D|, number of nomi-
nal (C) or numeric (N) attributes |X|, number of labels |L|, number of distinct label
combinations, label density and cardinality |LCA|.

Dataset Domain |D| |X| |L| distinct density |LCA|
music media 593 72 N 6 27 0.31 1.87
genbase biology 662 1186 C 27 32 0.05 1.25
yeast biology 2417 103 N 14 198 0.30 4.24
enron text 1702 1001 C 53 753 0.06 3.38
CAL500 media 502 68 N 174 502 0.15 26.04

The rival algorithms against which the MlUCS algorithms are compared are
BR-J48, RAkEL and MlkNN and, more specifically, their implementations pro-
vided by the Mulan Library for Multi-label Learning. BR-J48 is a binary-relation
transformation using C4.5 and serves as our baseline. RAkEL [13] is a state-of-
the-art method that transforms problems using k-sized label-sets, for which we
used a subset size k=3, m=2L models and C4.5 as the base classifier. Finally,
MlkNN [14] is a multi-label version of the well known “k-nearest-neighbors”,
for which we chose k=10 neighbors.

Finally, regarding the statistical significance of the measured differences in
algorithm performance, we employ the procedure suggested by Demšar [18] for
comparing classifiers across multiple datasets. This procedure involves a Fried-
man test to establish the significance of the differences between classifier ranks
and, potentially, a post-hoc test to compare classifiers to each other. In our case,
the evaluation goal is two-fold: i) compare the performance of all algorithms to
each other and ii) compare the two versions of the proposed MlUCS algorithm.
For the first goal the Nemenyi test was selected as the appropriate post-hoc test,
while for the second we used the Wilcoxon signed-rank test.

5.2 Comparative Analysis of Results

Table 2 reports the results of the comparison of the studied MlUCS algorithms
with their rivals, summarizing the obtained values for two evaluation metrics.
Based on accuracy, the average rank provides a clear indication of the studied

2 The datasets are available at the Mulan web-site:
http://mulan.sf.net/datasets.html.

http://mulan.sf.net/datasets.html
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Table 2. Algorithm comparison. The best value per problem is marked in bold. Su-
perscripts refer to algorithm ranks (per problem) according to the Friedman test. ”Av”
reports each algorithm’s average rank and ”Pos” its position in the final ranking.

(a) Algorithm evaluation based on the “Accuracy” metric

music genbase yeast enron CAL500 Av. Pos.

BR-J48 46.235.0 98.622.5 43.955.0 36.713.0 20.673.0 3.7 4
RAkEL-J48 50.914.0 98.622.5 48.744.0 41.041.0 22.941.0 2.5 2
MlkNN 53.263.0 94.115.0 51.622.0 31.855.0 19.705.0 4.0 5
MlUCS0 57.851.0 98.871.0 51.661.0 38.132.0 21.242.0 1.4 1
MlUCS# 56.802.0 98.504.0 50.403.0 36.284.0 20.424.0 3.4 3

(b) Algorithm evaluation based on the “Exact Match” metric

music genbase yeast enron CAL500 Av. Pos.

BR-J48 18.385.0 97.132.5 6.835.0 8.642.0 0.003.0 3.5 5
RAkEL-J48 24.784.0 97.132.5 11.714.0 10.711.0 0.003.0 2.9 2
MlkNN 28.313.0 90.645.0 18.741.0 6.223.0 0.003.0 3.0 3
MlUCS0 32.031.0 97.581.0 12.293.0 5.184.0 0.003.0 2.4 1
MlUCS# 30.382.0 96.374.0 14.152.0 2.595.0 0.003.0 3.2 4

algorithms relative performance: MlUCS0 ranks first, outperforming all its ri-
vals in 3 out of the 5 studied problems, and MlUCS# ranks third, performing
better, on average, than the baseline BR-J48 method and MlkNN. As far as
the two versions of our proposed MlUCS algorithm are concerned, obtained
results indicate that their performance is similar, with MlUCS0, however, out-
performing MlUCS# on all datasets. The comparison results are less favorable
for MlUCS# when based on exact match, as it ranks fourth. Still, MlUCS0
remains the best performing algorithm, achieving the best exact match value for
2 out of the 4 problems with non-zero achievable metric values.

Regarding the statistical significance of the measured differences, the Fried-
man test does not reject the null hypothesis (at α=0.1) that all algorithms per-
form equivalently, when applied to rankings based on the exact match metric.
On the other hand, the same null hypothesis is rejected (at α=0.05) when the
studied algorithms are ranked based on accuracy, but the Nemenyi post-hoc test
only detects a significant performance difference between MlUCS0 and MlkNN.
However, based on the more powerful Wilcoxon signed-ranks test, MlUCS0 is
found to perform better than 3 of its rivals, that is all except RAkEL, at a level
of confidence greater than 90%. The same test confirms a statistically significant
(α=0.1875) performance difference between MlUCS# and MlkNN.

Overall, we consider the obtained results indicative of (i) the potential of
MlUCS for effective multi-label classification, as well as (ii) the flexibility of the
generalized multi-label rule format that can mimic the knowledge representations
induced by both RAkEL and MlkNN, depending on the problem type.
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6 Conclusions

In this paper we presented a generalized rule format for generating compact and
accurate rulesets in multi-label settings, employing a multi-label LCS algorithm
named MlUCS. MlUCS is based on a supervised learning framework, properly
designed to meet the requirements posed by the multi-label classification domain.
Its experimental evaluation revealed that it is capable of consistently effective
classification, thus highlighting it as an interesting alternative to other multi-
label classification methods. Major improvements in the training time of MlUCS
are possible by exploiting the parallelization potential of genetic algorithms,
while additional performance improvements may be achieved through the study
of alternative approaches to fitness calculation.
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Abstract. In this paper the method of analytical form linear dynamic system 
identification is considered. The sample of the output measurements and the in-
put control function are the only information that is required. The main problem 
was reduced to complex global optimization problem. Any solution that deliv-
ers an extremum to the criteria is a representation of a model structure and its 
parameters in the form of real numbers vector. The complexity of the reduced 
problem and its characteristics lead one to search for some special optimization 
technique. In the current research extremum seeking is based on a modification 
of the evolutionary strategies algorithm. 

Keywords: differential equation, linear dynamic system, evolutionary strate-
gies, identification. 

1 Introduction 

There are many different approaches for linear differential equation parameters esti-
mation. But since there is no a priori information about the system itself and its struc-
ture, most of these approaches become useless or need a special treatment. For some 
tasks there are special techniques that were designed to solve the problem. In this 
paper we consider approach for the case when system’s output observations can be 
noised and the structure is unknown. For given problem, for example, stochastic dif-
ference equations can be used, i.e. [1]. But there are some restrictions in using this 
approach: we still need the information about the order of differential equation and we 
must observe the system output on the unit step function. The specific problem of 
hysteresis identification is described in [2], where the implementing of dynamic neur-
al network models sufficiently inreased efficiency oft he model. To simply estimate 
the reaction of linear dynamic system on different control input or smooth the output 
data we can use nonparametric methods, neural network of fuzzy output modelling. 
Also, there is a possibility to estimate the solution of differential equation for the  
described situation via genetic programming, [3]. As for nonparametric or neural 
network approaches it is possible to define the system output for different control 
function using the Cauchy equation, but the system cannot be presented in an analyti-
cal form. As for genetic programming technique we still have a possibility to find the 
output for different control, but since then, it can be found numerically. Moreover, the 
models are very complex and the analytical solution for estimation of differential 
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equation seems to be very long and have a superior size. In this article seeking the 
model in differential equation form is suggested. The benefits are the following: it 
would be easy to estimate the system output numerically for any control function with 
any desired precision, in some cases it would be easy to define an analytical solution 
via eigenvalues evaluation, and there are plenty of control methods and analysis tech-
niques for the models in differential equation form.  

In article [4] the dynamic system approximation with second order linear differen-
tial equation via genetic algorithm is examined. The genetic algorithm is well known 
as effective global optimization technique. The only problem with it is that seeking 
works on a compact with given boarders and the real values ought to be quantized. In 
this paper we suggest to use an evolutionary strategies algorithm with local optimiza-
tion and some modifications to approximate not only the parameters, but also the 
structure of an ordinary differential equation (ODE). Moreover, if the system’s order 
is fixed one will get the best dynamic model with order less than the fixed value. 

2 Identification of the Linear Dynamic System via Modified 
Evolutionary Strategies Algorithm 

Let us have a sample { }, , , 1,i i iy u t i s= , where s is its size, iy R∈  are dynamic sys-

tem output measurements at it  and ( )i iu u t=  are control measurements. It is also 

known, that the system is linear and dynamic, so it can be described with the ordinary 
differential equation (ODE): 

 ( ) ( 1)
1 0 ( )k k

k ka x a x a x b u t−
−⋅ + ⋅ + + ⋅ = ⋅ , 0(0)x x= . (1) 

Here the 0x  vector is supposed to be known. In the case of the transition process 

observing, one can put forward a hypothesis about the initial point values: the system 
output is known at initial time and the derivative values can be set to zero, because 
commonly the measurements of the system output begins while it is in a steady state. 
Generally, the initial point can be approximated or be a part of identification problem. 

Using only the sample data it is necessary to identify parameters and the system 
order m , which is assumed to be limited, so ,m M M N≤ ∈ . This variable limits the 

ODE order. It is also assumed that there is an additive noise : ( ) 0, ( )E Dξ ξ = ξ < ∞ , 

that affects the output measurements: 

 ( )i i iy x t= + ξ . (2) 

Without information about the system order, we would not be able to solve the identi-
fication problm, but because of the maximum order limitation, the task can be par-
tially parameterized. The maximum order is supposed to be chosen a priori. It would 
specify the optimization problem space dimension. 

Without loss of the generality, let the leading coefficient of ODE be the constant 
and be equal to 1, so that 

 ( ) ( 1)
1 ( )k k

kx a x a x b u t−+ ⋅ + + ⋅ = ⋅  . (3) 
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Then we can seek the solution of the identification task as a linear differential equa-
tion with the order m , 

 ( ) ( 1)
1 0ˆ ˆ ˆ ˆ ˆ ˆ ( )m m

mx a x a x a u t−+ ⋅ + + ⋅ = ⋅ , 0ˆ(0)x x= , (4) 

where the vector of equation parameters ( )1 0ˆ ˆ ˆ ˆ0, , 0, , , ,
T n

ma a a a R= ∈  , 

1n M= + , delivers an extremum to the functional 

 
1 ˆ

ˆ( ) ( ) min
n

N

i i
a Ri a a

I a y x t
∈= =

= − → . (5) 

In general case, the solution ˆ( )x t  is evaluated with a numerical integration technique, 

because the control function has no analytical from, rather is given algorithmically. 
We prefer the criterion (5) instead of quadratic criteria, since absolute value of error is 
more robust in case of abnormal measurements than quadratic criteria. For the correct 
numerical scheme realization, let us have a coefficient restriction for equation (3), 

0.05ka > . Otherwise, this parameter is going to be equal to zero, and calculation 

scheme changes the parameters 0, 1ka m m= = − . That condition prevents algorithm 

from extra computational efforts that would appear in the numerical evaluation 
scheme. Also, the given rule is necessary for the local optimization technique, since 
numerical optimization techniques commonly do not achieve the exact values of  
extremum point, but be in the local areas. 

The reason why the main idea of optimization technique was borrowed from evolu-
tionary strategies algorithm, [5] is that the identification problem leads to solution 
seeking for the multimodal optimization task. Moreover, there is no any information 
about the edges for the field of solutions, that is why, generally, optimization algo-
rithms that works on the compact cannot satisfy our needs. The goal of the given ap-
proach is the identification of the parameters and the structure simultaneously. The 
system structure and its parameters are defined with one vector. The criterion (5) on 
the vector field is a complex mapping and it is sensitive to changes of the vector val-
ues, those are changing by stochastic search operators. That is the reason why it is 
important to implement the specific modifications for the global optimization tech-
nique, which could improve the searching efficiency. 

Let every individual be represented with the tuple 
______

, , ( ) , 1,i i i
i IH op sp fitness op i N= = , 

where 
____

, 1,i
jop R j k∈ =  is the set of objective parameters of the differential equation, 

____

, 1,i
jsp R j k+∈ =  is the set of strategic parameters, IN  is the population size, 

1
( ) : (0,1], ( )

1 ( )
kfitness x R fitness x

I x
→ =

+
 is the fitness function. 

Proportional, rank-based and tournament-based selections were implemented. The 
algorithm produces one offspring from two parents and every next population have 
the same size as previous. Recombination types are intermediate and discrete. 



480 I. Ryzhikov and E. Semenkin 

The mutation of every offspring’s gene takes place with the chosen probability mp . 

The random value {0,1}, ( 1) mz P z p= = = , which is generated for every current objec-
tive gene and its strategic parameter, make it possible to control the level of mutation 

(0, )offspring offspring offspring
i i iop op z N sp= + ⋅ ; 

(0,1)offspring offspring
i isp sp z N= + ⋅ , 

where 2( , )N m σ  is the normally distributed random value with the mean m  and the 

variance 2σ . 
We suggest a new operation that could increase the efficiency of the given algo-

rithm. For every individual, the real value is rounded down to the nearest integer. This 
provides searching for solutions with near the same structure. 

Also for 1N  randomly chosen individuals and for 2N  randomly chosen objective 

chromosomes we make 3N  iterations of local search with the step lh  to determine the 
better solution. Current technique is the random coordinate-wise optimization. 

There was an investigation of efficiency for different optimization algorithms with 
modifications that are described below. For the investigation 100 systems were gener-
ated: 10 for every order from first to tenth. Parameters of the systems were randomly 

generated: ( 5,5),i
ka U= −

 ( 5,5),b U= −
 ______

1,10,i =
___

1,k i= , where ( 5,5)U −  is gener-
ated uniformly distributed value. The time of the process was set to 5. The control 
function was the step function and we know what was the control for every system, so 

( ) 1u t = . Let { }, , 1, /i i ix t i T h=  be the numerical solution for the differential equa-

tion. We take / , 100is T h s< =  points randomly. For every system 10 runs of the 
algorithm were executed with every combination of its parameters. To estimate the 
efficiency of different approaches we considered the identification without any noise. 
Having different types of the selection and the crossover, we would also vary the mp  
to find out the most effective combination of the algorithm settings. As a pre-set we 
use the population size in 50, the number of populations in 50, 1 50N = , 2 50N =  and 

3 1N =  with 0.05lh = . 
We compared the efficiency of following algorithms: 1 – the evolutionary strate-

gies (ES) algorithm; 2 – ES with the local optimization, hybrid evolutionary strategies 
(HES); 3 – HES with modified mutation; 4 – HES with turning real numbers into 
integer numbers; 5 - HES with modified mutation and turning real numbers to integer 
ones. After testing the algorithms on different samples effective settings were found. 

For the proper structure and parameters estimation we need an adequate sample 
that reflects all the transient process. Let us take some stable systems that come into 
the steady state in time 5T = . There is an efficiency investigation for the modified 
HES algorithm that shows the relation between the fitness function and identifying 
probability of exactly the same structure and parameters as differential equation has. 
20 runs of the algorithm were made for every system. We will say that the algorithm 
determines the structure and parameters if ˆmax( ) 0.05a a− < . The earlier investiga-
tion results proved that the fitness function is not correlated with probability of identi-
fying exactly the same parameters and structure. On the figure 1 the efficiency of 
different optimization algorithms are presented for the testing sample – 100 samples. 
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Fig. 1. The means of fitness function value for different orders and different optimization  
techniques 

Let us highlight that for many solutions which were found for stable systems, the 
order was found correctly. Actually, the miss in the real parameters identification 
does not mean that the system was identified completely wrong. The fact that fitness 
function is close to 1 means that the transient process itself is found correctly so the 
solution for identification problem is adequate and could be useful for control prob-
lems at least if the time interval is the same as the time the system was observed. 

Without the operation of rounding the parameters the different evolutionary algo-
rithm could be used simultaneously in a following way: every distinct evolutionary 
strategies algorithm is to solve the identification problem only for model with fixed 
order of differential equation. So the whole identification scheme works as brute force 
for every order and it uses stochastic search for its parameters. For the case when the 
system order is known the efficient parameters of the optimization algorithm were 
estimated and used in the general scheme. It is important to highlight that the numeri-
cal resources were nearly the same as with any of the previously described algo-
rithms. Since the algorithms work on vector fields with different dimensions, the  
increasing only of the local optimization steps number were used to equalize the effi-
ciency. Managing the amount of resources for local optimization is the easiest and the 
most effective way to keep the quality of found solutions. Actually, there could be 
different ways to control the efficiency in case of the problem dimension increasing, 
but more detailed research is the main part of the further investigation. On figures 2 
and 3 the comparements on the algorithm schemes are demonstrated. 

 

Fig. 2. The means of fitness function value for HMES and Brute force – based algorithms 
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Fig. 3. The proper structure and parameters identification probability estimation 

As it is shown on the figures, the mean of fitness function are slightly different, but 
the quality of the identification problem solutions is not the same. In the further inves-
tigation the testing sample would be increased and the new statistical characteristics 
would be under consideration.  

It is more likely to be true that with the same computational resources algorithms 
are not equal. To find the reason and a way to improve the multi-ES scheme is a very 
important problem. 

3 Hexadecane Disintegration Reaction Identification 

Let us describe the identification problem for hexadecane chemical reaction. The 
disintegration of the hexadecane gives the following products: the spirits and carbonyl 
compounds. The initial point is known. There is no control input in this identification 
problem. We set the maximum order for the first equation to 10. The 50 runs of the 
algorithm gave us some different solutions that are shown in Table 1.  

As we can see, the found parameters and system structure forms the first order dif-
ferential equation, and that fact does not contradict the hypothesis [6], which states 
that disintegration chemical reactions can be presented as first order linear differential 
equation. 

Knowing the structure of the equations we can identify the system itself in a matrix 
form. The given optimization procedure is a stochastic algorithm, that is why the best 
solution from the 20 runs was taken. The system outputs and the sample are shown on 
figure 4 for hexadecane, spirits and carbonyl compounds. As it is shown on figure, the 
measurement at the point 7t =  seems to be an abnormal measurement, but it did not 
effect on the model.  

In earlier researches the ODE model for the disintegration process was found. Now 
we put forward a hypothesis about existing of free coefficient in every equation in the 
system. The modified evolutionary strategies algorithm without rounding after 20 
restarts for the identification of parameters for the system of linear differential equa-
tions found the following solution: 

0.2136 0.8448 0.5420 0.5795

0.0899 0.4785 0.0545 0.7155

0.0772 0.7317 0.4720 0.4408

x x

− −   
   ′ = − − − ⋅ +   
   − −   

. 
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Table 1. The hexadecane disintegration model 

 
 
 
 
 
 

 
 
 

 

The criterion value lessen by 3% by adding the free coefficients. On the figure 4 
the model output and the sample are presented. As it can be seen the abnormal mea-
surement at the point 7t =  did no effect to the model.  
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Fig. 4. Hexadecane (a), spirits (b) and carbonyl compounds (c) concentration measurements 
and model output, respectively. 

Modifications of evolutionary strategies algorithm increased the accuracy of model 
and allowed solving two tasks at the same time: the system order and parameters es-
timation. The further investigation focuses on comparing different evolution-based 
algorithms for the linear dynamic system identification problem. Effective settings 
estimation and the recommendations how to choose ones is an important problem for 
identification and optimization needs in case of using different algorithms for differ-
ent structures of differential equations.  
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Abstract. Column-oriented database systems, usually referred to as
column stores, organize data in a column-wise manner. Column-wise
data can be compressed efficiently, improving the performance of large
read-mostly data repositories such as data warehouses. Many compres-
sion algorithms exploit the similarity among the column values, where
repeats of the same value form columnar runs. In this paper we present a
genetic algorithm for determining an optimal column sorting order which
will minimize the number of columnar runs in a column store table and
therefore maximize the RLE-based table compression. Experiments show
that the algorithm performs consistently well on synthetic table instances
as well as realistic datasets, resulting with higher run-reduction efficiency
compared to existing heuristic for solving the given problem.

Keywords: column stores, RLE-based compression, columnar runs,
run-reduction, genetic algorithms, permutation representation.

1 Introduction

Traditional database systems use row-oriented data storage where values from
different columns of a record (row) are stored together. This enables high perfor-
mance writes which is especially beneficial for OLTP applications. However, it
does not work well with systems, such as data warehouses, which are oriented to-
wards ad-hoc querying of large amounts of data. In this case, better performance
is achieved by using a column-wise data organization [2].

In column-oriented database systems, referred to as column stores, values from
a single column in different records are stored contiguously, typically densely
packed, whereas the traditional database systems store entire records one after
another [1]. This reduces the data processed by a query because it reads only
the columns it needs. Column-oriented data are highly amenable to compression,
enabling column stores to optimize their storage space and utilize the storage
optimization to improve their performance for a read-mostly query workload.

Storing data by columns greatly increases the similarity between adjacent
column values, which enhances the compressibility of the data [3]. Many com-
pression algorithms exploit this similarity by minimizing the number of columnar
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runs, that is, the number of repeats of the same value in each column. There
are two general approaches to minimize the number of columnar runs. The first
is minimization by row reordering, which refers to rearranging the rows in such
a way that the number of columnar runs in the table is as minimal as possi-
ble. The second is minimization by table sorting, based on the idea that sorting
the table improves compression, and permuting the columns in the right order
before sorting can reduce the number of columnar runs by a factor of two or
more. The problem of determining an optimal row reordering and the problem
of determining an optimal column sorting order are both known to be NP-hard
[12]. This makes them good candidates for applying metaheuristic optimization
methods such as genetic algorithms.

In this paper we address the problem of minimizing the number of columnar
runs by sorting a column store table in an optimal column sorting order. An often
recommended heuristic for solving this problem is by lexicographic sorting with
”low cardinality columns serving as the leftmost sort orders” [3]. This empirical
recommendation is justified and the heuristic is proven to give good results [12].
We develop a genetic algorithm to solve the given problem and demonstrate
that this approach produces better quality solutions for experiments performed
on realistic datasets. Our algorithm shows improved run-reduction efficiency up
to a factor of 4 compared to the reduction achieved by the given heuristic [12].

The paper is organized as follows. Section 2 defines the problem of minimizing
the number of columnar runs by using table sorting to achieve the minimization.
Section 3 describes the design and implementation details of the proposed genetic
algorithm. In Section 4 we present the experiments made both on synthetic data
and realistic datasets and analyze the obtained results. Finally, we give some
conclusions and directions for future work in Section 5.

2 Problem Definition

One advantage of column stores is data compression which helps to reduce stor-
age space as well as I/O times. An attractive approach for compressing sorted
data in a column store is the run-length encoding (RLE) where repeats (runs) of
the same value are stored as a single data value and count. RLE performs lossless
compression: the original data can be reconstructed from the compressed data.

Columns in column stores can be compressed by using the repetition and
similarity among values within a column, where sequences of adjacent column
cells with identical values form columnar runs. Each columnar run is stored
as an RLE pair (value, run-length). Accessing a random position in this kind
of data structure requires an O(r) operation for a column with r runs. The
search bounds can be improved to O(log2(r)) by enabling binary search. This
is achieved by using redundant data: each columnar run can be represented as
an RLE triple (value, start-position, run-length) or (value, start-position, end-
position). Storing the columnar runs as RLE triples ensures preservation of the
original row structure and eases the process of table reconstruction.

RLE-based table compression is more efficient for tables with fewer columnar
runs. Thus the number of columnar runs can be used as a general model for
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RLE-based table compression, i.e. the problem of RLE-based compression of
column store tables can be viewed as the problem of minimizing the number of
columnar runs defined as follows: Given a column store table with M columns,
find the optimal column sorting order which minimizes the total number of

columnar runs

M∑
i=1

ri, where ri is the number of columnar runs in the i-th column,

i = 1, 2, ...,M .
For example, Table 1 represents the table Customer whose total number of

columnar runs is 23, however this number is not optimal. Table 2 shows the same
table after sorting its columns in one possible optimal order when the number of
columnar runs is minimized and is 15, whereas Table 3 displays the corresponding
RLE-based compression of the table.

Table 1. The original Customer table
(before sorting)

Row 1 2 3 4

Col Name City Color Gender

1 Nick Amsterdam Blue M

2 Mary Zurich Purple F

3 Tom Rome Blue M

4 Nick London White M

5 Cris Zurich Blue F

6 Tomas Amsterdam White M

Table 2. The Customer table after
sorting in an optimal column order

Row 1 2 3 4

Col Name City Color Gender

1 Nick Amsterdam Blue M

2 Nick London White M

3 Tom Amsterdam White M

4 Tomas Rome Blue M

5 Cris Zurich Blue F

6 Mary Zurich Purple F

Table 3. The Customer table compressed using RLE-based compression

Row 1 2 3 4

Col Name City Color Gender

1 Nick[1,2] Amsterdam[1,1] Blue[1,1] M[1,4]

2 Tomas[3,4] London[2,2] White[2,3] F[5,6]

3 Cris[5,5] Amsterdam[3,3] Blue[4,5]

4 Mary[6,6] Rome[4,4] Purple[6,6]

5 Zurich[5,6]

6

3 The Genetic Algorithm

3.1 Representation of the Solution Domain

The problem of finding an optimal column sorting order for a table with M
columns consists of determining a permutation of the non-repeating sequence
1, 2, ...,M that represents the order in which the columns are sorted such that
the total number of columnar runs in the table is minimized. Each permuta-
tion element is assigned a flag value to note the order of sorting (ascending,
descending or none).
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Therefore, the chromosomes that represent candidate solutions of the problem
consist of an ordered set {(ci, si) |i = 1, 2, ...,M} where {c1, c2, ..., cM} is a per-
mutation on the set {1, 2, ...,M} representing the order in which the M columns
of the table are sorted, and {s1, s2, ..., sM} is a permutation with repetition of
M elements on the set {0, 1, 2} denoting no sorting, ascending and descending
sorting respectively. Hence the search space of the problem contains in total
M ! · 3M possible chromosomes.

For example, the chromosome {(4, 2) , (1, 1) , (2, 1) , (3, 0)} represents one op-
timal column sorting order for Table 2. Initially the sorting is done by the 4th
column (Gender) in decreasing order; table rows with same values for Gender are
then sorted by column 1 (Name) in ascending order; finally rows with same val-
ues for Name are sorted in ascending order by column 2 (City). This corresponds
to the following SQL ORDER BY clause:

SELECT *

FROM Customer

ORDER BY Gender DESC, Name ASC, City ASC

3.2 Fitness Function

In the given problem, the objective function is the total number of columnar
runs in a table. If the table has M columns, the fitness function is defined as:

f(x) =

M∑
i=1

ri(x) ,

where ri(x) gives the number of runs of identical value in the i-th column for a
column sorting order corresponding to a chromosome x, for i = 1, 2, ...,M .

3.3 Initial Population

We implemented two approaches for generation of the initial population.

Random Generation. For a population size of Kpop chromosomes, the initial
population is generated using the following procedure.Kpop−1 chromosomes are
chosen randomly as follows: for each chromosome, a random permutation of M
elements is generated using the Knuth shuffle algorithm [10] (any permutation
ofM elements will be produced with probability of exactly 1/M !, thus yielding a
uniform distribution over all such permutations). Then, for each of the elements
in the permutation a randomly selected element from the set {0, 1, 2} is assigned.
The chromosome {(1, 0) , (2, 0) , ..., (M, 0)} formed by the identity permutation
which corresponds to the original table is added to the initial population, to
ensure that the initial population’s best fitness value is at least as good as the
fitness value of the original table and that no good results are being lost.

Heuristic-Based Generation. The cardinality of a column denotes the num-
ber of distinct values in the column. There are three types of cardinality related
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to columnar value sets: low cardinality which refers to columns with few unique
values (e.g. status flags, boolean values or major classifications), normal cardi-
nality referring to columns with values that are uncommon but never unique (e.g.
names or street addresses), and high cardinality which refers to columns with
values that are very uncommon or unique (e.g. id numbers, emails or usernames).
To formalize these notions, let R1, R2 ∈ (0, 1), R1 ≤ R2. Given a table with N
rows, a column with cardinality r is said to have low cardinality if r

N ∈ (0, R1]
and high cardinality if r

N ∈ (R2, 1]. Otherwise, it will have normal cardinality.
Columns with low (high) cardinality are likely to form longer (shorter) runs

of identical values and produce smaller (greater) number of runs upon sorting.
Following this reasoning, a heuristic based on column cardinalities can be em-
ployed to seed the initial population as follows. One chromosome represents the
original table and the other Kpop − 1 chromosomes are generated as in the first
approach, however the sorting flag value is defined by applying the following
heuristic: low cardinality columns are always considered for sorting and their
corresponding permutation elements are assigned a flag value from the subset
{1, 2}, whereas high cardinality columns are not sorted (flag value 0). Columns
with normal cardinality are randomly assigned any value from the set {0, 1, 2}.

3.4 Genetic Operators

The design choices for the genetic operators are briefly described below.

Selection. The selection of individuals for the mating pool is performed by ex-
ploiting the tournament selection method, implemented by holding a tournament
between k ≥ 2 randomly chosen individuals. This algorithm is computationally
more efficient (no sorting is required) and more amenable to parallel implemen-
tation compared to other selection algorithms [14].

Crossover. Our genetic algorithm implements the three most simple and com-
monly used crossover operators which ensure permutation chromosome feasi-
bility: Cycle Crossover (CX), Order Crossover (OX) and Partially Matched
Crossover (PMX) [16,11]. CX performs a recombination under the constraint
that each gene comes from one of the parents. OX constructs an offspring by
choosing a subsequence of one parent and preserving the relative order of the
genes of the other parent, while PMX maps a portion of one parent’s genes into
a portion of the other parent’s genes and exchanges the remaining information.
Crossover is applied with a probability Pc, hence for a population of Kpop chro-
mosomes,  Pc ·Kpop! offspring chromosomes will be produced with crossover.

Mutation. If the population size is Kpop and the mutation probability is Pm,
then #Pm ·Kpop$ offspring chromosomes will be subject of mutation. Three muta-
tion operators that preserve the ordering property of permutation chromosomes
were implemented: Insertion Mutation (IM), Simple Inversion Mutation (SIM)
and Swap Mutation (SM) [16,11]. IM removes a randomly chosen gene and rein-
serts it in a random location in the chromosome. SIM reverses the chromosome
section between two randomly chosen cut points, while SM exchanges (swaps)
the content of two randomly selected genes in the chromosome.
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Replacement. Our algorithm uses generational updates of the population as
well as elitism strategy to improve the performance. Namely, #(1− Pc) ·Kpop$ of
the best individuals of the parent population are retained in the new population,
while the remaining  Pc ·Kpop! chromosomes in the new population are produced
by crossover from chromosomes in the parent population. This ensures that
the best individuals from each population are not lost or destroyed [14] and
significantly improves the algorithm’s performance.

4 Experimental Results

We present two groups of experiments with the purpose of evaluating the per-
formance of the proposed genetic algorithm approaches. First, we use synthetic
data to compare and assess GA-R (the GA using randomly generated initial pop-
ulation) and GA-H (the GA using heuristic for seeding the initial population)
for different combinations of the crossover and mutation operators in order to
find the one that gives best results. Then we exploit these results to demonstrate
that our genetic algorithm performs better than the existing heuristic H-LK [12].
Eventually we show that the theoretical results obtained on synthetic data are
appealing and applicable on realistic datasets as well.

All experiments were performed using the following parameters which proved
to be robust in preliminary tests. The process of optimization was run using a
crossover probability of 90 % (Pc = 0.9) and a mutation rate of 5 % (Pm =
0.05), over a population of 100 chromosomes (Kpop = 100). The tournament
size in the tournament selection was chosen to be k = 2. GA-H was employed
with cardinality parameters R1 = 0.1 and R2 = 0.9. For each experiment 10
independent trials were performed and the standard deviation of the resulting
data was observed in order to examine the stability of the algorithm. The overall
performance measure used for comparisons was the run-reduction percentage
averaged over the 10 independent trials.

4.1 Experiments with Synthetic Data

For uniformly distributed tables with M columns whose cardinalities are r1,
r2, ..., rM , any value within column i can take one of ri distinct values with
probability 1/ri, for i = 1,M . We generated 16 such tables, with 1000, 10000,
30000 and 50000 rows, using 10, 15, 20 and 25 independently generated columns
with uniform distribution of their values. Our first objective was to find which
combination of crossover and mutation operators gives best quality solutions for
GA-R and GA-H and which of these two genetic algorithms performs better. For
that purpose, both GA-R and GA-H were run over the 16 uniformly distributed
tables for each of the 9 combinations of crossover (CX, OX, PMX) and mutation
(IM, SIM, SM) operators, yielding 288 different experiments with 10 independent
trials for each experiment, for a total of 2880 experimental trials. The maximum
deviation value of the obtained data was observed to be 3.9 %. Fig. 1(a) shows
the averaged reduction of the number of columnar runs achieved by GA-R and
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Fig. 1. Average run-reduction of GA-R and GA-H vs. crossover and mutation

GA-H for each combination of crossover and mutation operators. As it can be
seen from the figure, GA-H performs better on average than GA-R with highest
reduction achieved for PMX and SM operators in 81.25 % of the experiments.

These results assume uniformity, thus there is a need to assess the reliabil-
ity of the obtained results also for skewed data. The Zipfian distribution and
its modifications are commonly used to model value distributions in databases
[5,9]. The frequency of the i-th value within a column is proportional to 1/i. If
the table has N rows, then each column can have N possible distinct values,
however not all of them will normally appear. Following this, we generated 16
Zipfian-distributed tables for the same number of rows and columns as in the
uniformly distributed case. Each table column was generated independently with
the skeweness parameter varying between z = 0.2 (low skew) and z = 2.0 (high
skew). These tables were subject to 288 experiments, with 10 independent trials
each, observing maximum standard deviation of 4.2 % for the obtained experi-
mental data. The averaged run-reduction results obtained by GA-R and GA-H
for the different crossover and mutation operators is provided in Fig. 1(b). These
results show that GA-H again outperforms GA-R for the combination of PMX
and SM operators, giving highest reduction in 75 % of the experiments.

Generalizing the results jointly for all experiments performed on uniformly and
Zipfian-distributed tables, GA-H (PMX+SM) has best reduction performance
in 78.13 % of the cases compared to the other genetic algorithm variants that
were taken into consideration. Therefore, GA-H (PMX+SM) will be used as our
genetic algorithm of choice in all further experimental applications.

Following these analytical results, our next aim is to compare the performance
of GA-H (PMX+SM) with the performance of the heuristic H-LK. We performed
the comparison both for uniform and skewed data, using the tables generated
before. The results from the comparative analysis of the average run-reduction
per number of rows for the uniformly distributed tables are presented in Fig. 2(a)
and for the Zipfian-distributed tables in Fig. 2(b). This shows that the run-
reduction efficiency grows with the number of rows both for uniform and Zipfian-
distributed tables. Furthermore, the results obtained demonstrate that in 100 %
of the experiments GA-H achieves better results compared to H-LK for uniform
data, with a maximum reduction gain of 5.47 % and 3.89 % on average. Similar
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findings hold for Zipfian-distributed data as well: GA-H always results with
higher run-reduction compared to H-LK. This reduction difference in the Zipfian
case is 8.05 % on average, with maximum reduction of 12.04 %. Here we see
improved gains compared to the uniform model because a Zipfian model implies
more opportunities to create long runs of identical values in several columns.
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Fig. 2. Average run-reduction of H-LK and GA-H per number of rows

4.2 Experiments with Realistic Datasets

We demonstrated above that our genetic algorithm GA-H (using PMX and SM
operators) outperforms the existing heuristic H-LK in terms of higher reduction
of the number of columnar runs when applied on uniform and skewed synthetic
data. In order to assess the reliability and applicability of this assertion, we per-
formed some experiments on realistic datasets as well. We used five publicly avail-
able datasets representative of real-life data tables: BCUMB and CUMB1881 [6],
Census-Income [8], and Nursery and Poker-Hand [7]. BCUMB contains records
about the birth registrations in Cumberland County. CUMB1881 represents
records from the Cumberland County Census 1881. Census-Income contains
weighted census data extracted from the 1994 and 1995 current population sur-
veys conducted by the U.S. Census Bureau. Nursery dataset was derived from a
hierarchical decision model originally developed to rank applications for nursery
schools in Slovenia [15]. In Poker-Hand each record is an example of a hand
consisting of five playing cards drawn from a standard deck of 52 [4]. The char-
acteristics of these datasets are given in Table 4. The parameter ρ0 is a simple
measure of the statistical dispersion of the frequency of the table values [13],

and for N rows and M columns is computed as ρ0 =

M∑
i=0

f (vi)

NM
, where f (vi) is

the frequency of the most frequent value vi within a column i, for i = 1,M .
The experimental results are summed in Table 5. They demonstrate that our

genetic algorithm achieves higher run-reduction compared to H-LK in all cases.
The reduction improvements are up to 24.6 % in the best case. Most noteworthy
are the improvements for the CUMB1881 dataset with a reduction of nearly
factor 4 (33.13 % vs 8.53 %) and for the BCUMB dataset with a reduction of
nearly a factor 2 (12.42 % vs 6.57 %).
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Table 4. Characteristics of the realistic datasets used in the experiments

rows columns min. card. max. card. ρ0
BCUMB 5953 20 34 1357 0.12
Nursery 12960 9 2 6 0.32

CUMB1881 27363 9 22 5018 0.06
Census-Income 199523 42 2 99800 0.65

Poker-Hand 1025010 11 4 13 0.19

Table 5. Performance of GA-H (PMX+SM) and H-LK on realistic datasets

Initial fitness Heuristic H-LK GA-H (PMX+SM)

BCUMB 80880 75567 (6.57 %) 70835 (12.42 %)
Nursery 29617 19439 (34.37 %) 17668 (40.35 %)

CUMB1881 122519 112071 (8.53 %) 81931 (33.13 %)
Census-Income 3764757 1053819 (72.01 %) 947872 (74.82 %)

Poker-Hand 9157488 3179577 (65.28 %) 3148680 (65.62 %)

All these experiments performed both on synthetic data and realistic datasets
ascertain that our genetic algorithm approach is better in terms of quality of
the obtained solutions compared to the existing heuristic. However, it is fair
to mention that the GA approach is more computationally expensive due to
the fact that evaluating each candidate solution implies sorting of the table,
unlike the existing heuristic which considers only a few easily computed statistics
such as column cardinality. Nevertheless, in the case of data warehouses, any
compression gain can be useful regardless of the computational time because the
compression is done once and is used as such afterwards.

5 Conclusions and Future Work

In this paper we presented a generational genetic algorithm for determining an
optimal column sorting order which minimizes the number of columnar runs in a
column store table. The algorithm employs permutation representation, pairwise
tournament selection, elitism, and three different crossover and mutation opera-
tors. It was implemented and tested using both random and column cardinalities-
based heuristic generation of the initial population. The experiments performed
on uniform and skewed data revealed that best results are achieved when us-
ing heuristic-based initial population with PMX crossover and SM mutation.
Moreover, it was shown that this algorithm performs consistently well both on
synthetic data and on realistic datasets and can achieve up to 4 times higher
reduction compared to existing heuristic for solving the given problem.

Future work is currently underway to investigate the possibility of incorpo-
rating the H-LK heuristic in the initial population and some problem-specific
variation operators which could possibly make the algorithm more powerful.
Furthermore, the main advantage of any genetic algorithm lies in its intrinsic
parallelism nature and therefore different island models for parallelization should
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be implemented and tested. It could be also interesting to mine the results from
experiments conducted on various data distributions in order to develop an an-
alytical decision support tool which will help us to associate given data with the
most appropriate approach to minimize the number of columnar runs.
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Abstract. Determining the exact point of ripening and harvesting of
the grapes is essential for obtaining a wine of quality. Recent methods
for determining the ripening of the grapes are based on visual inspec-
tion of the seed. These methods have the advantage of being simple and
of low-cost, but they are prone to human error, and a large number of
samples are required to be analyzed in order to obtain representative in-
formation of the reality. Currently, the analysis of the seed is made using
images obtained with a digital camera, which have major problems as
the existence of shadows and highlights. This paper proposes a segmen-
tation method of grape seed in complex images based on artificial neural
networks and color images. The method is robust to imperfections in the
images, which permits that this type of analysis is installed in reality.

Keywords: Shadow Detection, Wine Grape Seed Segmentation, Neural
Networks.

1 Introduction

Wine is a highly valued beverage because of its natural origin. In wine-producing
countries, to improve its production process has economic and social relevance.
One of the key factors for a quality wine is to correctly determine the time at
which the grapes must be harvested. Traditionally the estimation of optimum
ripeness is performed by a human expert (wine expert) that analyzes the color
and flavor of the grape, or by laboratory chemical analysis. Methods to determine
ripeness based on visual inspection of the seed have been proposed recently [1],
showing a high correlation between color, texture and shape of the seed with
respect to the ripeness state of the grapes.

Recent work in the line of the inspection of the seed is in [2], where it is
proposed to compare the color of the seed skin on a color scale developed in the
same work. The proposed methodology is simple and low-cost, so its implemen-
tation in reality is of interest. Visual inspection of the seed is very susceptible to
human error, in the sense that color perception is not always correct. Moreover,
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a significant amount of seeds must be analyzed so that the findings of the test
are relevant. To address the above problems, this paper intends to make visual
inspection of the seed as a Pattern Recognition problem in color images. Digital
images of the seed are obtained, and then segmentation and later classification of
the seed in types of ripeness of interest for the expert. In particular this research
addresses the segmentation stage of the grape seed.

The images discussed in this paper are those acquired in [2]. These images
have various problems such as the presence of projected shadow [3], and low
contrast between the object and shadow. The proper removal of shadows is a
difficult task and it is relevant for proper segmentation of objects in the image.
For the classification of shadows there is a strong trend which consists of apply-
ing of color models invariant to lighting. An initial work with this approach is
in [4], where it is proposed to detect and classify shadows for a static image. De-
tection of edges and morphological operators are used to extract the regions of
shadow. In [5] the previous work is extended to motion images. In [6] a method
to remove shadows based on a representation of the color image using an in-
variant model in grayscale is proposed. Edges are detected in both the invariant
and the original image, and those edge pixels that are in the original image but
not present in the invariant are considered as edge of the shadow. The problem
with this method is that to generate the invariant it is necessary to know the
angle of projection of the shadow, which can be very complex. In [7] a tech-
nique that combines the use of two invariant models is proposed, the first one
is based on a normalization of the RGB and the second is the model proposed
in [6]. Methods based on invariant to lightning are interesting because they are
simple to implement. However, in very complex images such as grape seed good
results are not obtained. In this paper, an improvement to the methods that use
invariants to detect shadows based on Neural Networks is proposed. The object
is segmented through supervised learning and through the invariant, and both
results are combined to yield substantial improvements in the implementation
of the methods separately.

The experiments of this work were done in Matlab, Toolbox Balu for Pattern
Recognition was particularly used1. The structure of the paper is as follows:
section 2 presents details of the proposal, section 3 shows the results of the
method, and finally section 4 outlines the conclusions of the study and future
works arising from this research.

2 Hybrid Method for Shadow Detection

The focus of this section is to describe in detail the hybrid method for detecting
shadows. This method combines an unsupervised approach based on color models
invariant to lightning and a supervised approach based on neural networks.

1 Toolbox available from http://dmery.ing.puc.cl/index.php/balu/

http://dmery.ing.puc.cl/index.php/balu/
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2.1 Identification of Relevant Features for Classification

A first approach to separate the seed and the shadow in the image was to study
the characteristics of color. For this purpose, samples of pixels of both seed and
shadow in different images. The values of these pixels were transformed into
various color models (RGB, HSV, YIQ, YCbCr, XYZ, CMYK, Lab, Luv, etc.),
including invariant models proposed in [8]. To determine which channels allow
greater separation between seed and shadow, the algorithm Sequential Forward
Selection (SFS) was used [9]. This algorithm gives a ranking of the features that
most contribute to the separation of classes, in this case, seed and shadow.

After apply SFS algorithm, invariant models obtain a better separability be-
tween shadow and seed pixels, however the performance obtained was very low.
This means that is not enough the use of invariant color models for shadow pixel
segmentation. Because of this, texture features are included in the analysis, and
taking Haralick texture descriptors [10] was adopted. These descriptors were se-
lected after comparing their performance with respect to other texture features
through SFS algorithm.

The procedure for determining the relevant features is as follows: thousand
samples of both shadow and seed were taken in different images (500 of seeds
and 500 of shadow), each sample corresponding to a window of 41 × 41 pixels.
28 texture descriptors were initially computed and by using the algorithm SFS
it was established that 9 characteristics allow a good separation of the classes.

2.2 Segmentation through a Neural Classifier

A Multilayer Perceptron was considered as a classifier because this architecture
corresponds to a universal function estimator, and permits to classify nonlinearly
separable patterns. For the training, the Bayesian Regularization method was
adopted [11]. The advantage of this method is that it provides a criterion for
determining the number of neurons in the hidden layer based on the effective
parameters of the network. The method of obtaining the amount of the hidden
layer neurons is the following: Gradually increase the number of the neurons in
the hidden layer until the stabilization of the effective parameters of the neural
network. The lowest number of neurons in the hidden layer which produces the
stabilization of the effective parameters is chosen. Obtaining a reduced number
of neurons allows to avoid overfitting and improve network generalization.

The neural classifier has 9 inputs (one for each texture descriptor), 1 output
to discriminate between 2 classes (seed and no seed). To segment the seed by
the neural network, a grid with cells of 41 × 41 pixels is set in the image. For
each cell, the selected 9 Haralick texture descriptors are computed, which are
assigned as inputs to the neural network. The segmentation process is shown in
Figure 1. Figure 1(a) shows an example of sed image, and it can be easily seen
that there is very little difference between the edge of the seed and the shadow.
Figure 1(b) shows the window used in the original image, showing that the size
of the window allows a good approximation to the ideal segmentation. Figure
1(c) shows the binary image product of the segmentation, and Figure 1(d) shows
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(a) (b) (c) (d)

Fig. 1. Neural Network Segmentation

the edges of the segmented zone in the original image. It is noted that a large
amount of shadow has been eliminated, but the method introduces errors in the
border areas of the seed and the shadow.

2.3 Segmentation Based on an Invariant Color Model

Invariant color model c1c2c3 proposed in [4] was adopted due to its good perfor-
mance against shadows and the highlights elimination. This type of models have
this name because is possible obtain the same configuration of color with differ-
ence condition in the image such as visualization position and lighting changes.
The terms of the model are:

c1i,j = arctan
Ri,j

max (Gi,j , Bi,j)
(1)

c2i,j = arctan
Gi,j

max (Ri,j , Bi,j)
(2)

c3i,j = arctan
Bi,j

max (Gi,j , Ri,j)
(3)

where Ri,j , Gi,j and Bi,j represents a pixel in the components red, green and
blue in the image I. Applying the above equation over I, a new image I ′ with
three channels(c1,c2 and c3 ) is obtained.

The results of applying this model to an image are presented in figure 2.
Figure 2(a) shows the original image of the seed in the RGB model. Figure 2(b)
shows the image generated by applying the equations described above. Figure
2(c) shows channel c3 of the invariant color model (this channel is chosen because
it had the best ranking when applying the algorithm SFS). Finally, figure 2(d)
shows the automatic segmentation of channel c3 using the well-known Otsu
method. In the last image, it can be seen that the segmentation of the invariant
does not completely eliminate the shadow, and it fails in the inner part of the
seed.
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(a) (b) (c) (d)

Fig. 2. Invariant Color Model Segmentation

2.4 Segmentation Based on a Hybrid Model

In order to improve the results taken from both techniques separately, it is
proposed to combine the supervised and unsupervised segmentation. For the
particular case of the models involved in this work, the following combination
scheme is proposed:

Ifusion(i, j) =

{
1 if Iseg−inv(i, j) = 1 y Iseg−net(i, j) = 1
0 otherwise

(4)

where Ifusion is the image resulting from the combination of both methods,
Iseg−inv is the image generated by segmenting in channel c3, and Iseg−net is the
segmentation obtained by the neural network. In order to improve the results
obtained to this point, a sequence of binary morphological operations is proposed
to eliminate the noise in the image.

Figure 3 shows the stages of the image enhancement resulting from the com-
bination of methods. Figure 3(a) shows the image fusion, figure 3(b) the mor-
phological opening, figure 3(c) the morphological closing, figure 3(d) the filling
of hollows, and finally figure 3(e) the edge of the segmented zone in the original
image. It is seen in the last image, that thanks to the improvement, the result
is closer to the ideal segmentation than when using both methods separately.

3 Results

To quantify the results obtained through the hybrid method, the ground truth
image was obtained manually for a number of seed images (in this case 20 images)
as shown in figure 4.

To evaluate the outcome of the methods with respect to the ideal segmentation
(ground truth) a performance function widely used in the literature is adopted
[12]. This function involves the hits, the false positives and the false negatives.
The expression of the performance function is:

ρ =
card(TP )

card(TP ) + card(FP ) + card(FN)
(5)
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(a) (b)

(c) (d) (e)

Fig. 3. Enhancement of the Combination Method

(a) (b)

Fig. 4. Manual Segmentation: (a) Original Image (b) Ground Truth

where ρ is the performance function, card (X) is the cardinal of a set X, TP is
the set of true positives, FP is the set of false positives, and FN is the set of
false negatives. The performance function ρ is close to 1 if there are many hits
and few errors, and is close to 0 if there are few hits and many errors.

Figure 5 shows the performance function for all 20 images showing for each
one of them the value of the function for the three methods. Considering the
data of an image, the first bar corresponds to the hybrid method, the second
bar to the neural network method, the third bar to the invariant. The average
of the performance function for the hybrid method is 0.8, for the invariant is
0.75, and 0.7 for the neural network. The hybrid method is superior in the
75% of cases, the invariant in the 25%, and the network in a 0%. The above
information numerically shows the benefit that the combination of methods has
for the problem.
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Fig. 5. Evaluation of the Segmentation

(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 6. Global Results
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Figure 6 shows the overall results of the method for other images, showing
that the segmented zone corresponds to regions belonging to the seed. It is
noted that, despite the fact that the edge shape of the segmented region does
not coincide perfectly with the actual shape of the seed, the encountered zone
is representative of the target region. From the encountered region, color and
texture descriptors that may be related to the state of ripeness of the grape can
be extracted properly.

4 Conclusions

This paper has proposed a hybrid method to segment shadows in complex im-
ages, and its application to the segmentation of wine grape seeds. The method
consists of combining the results of an unsupervised segmentation based on in-
variant models to lightning, and the results of a supervised segmentation based
on neural networks.

It is shown that the combination of both methods permits to obtain superior
results than when applying the methods independently. The hybrid approach
yields appropriate results for the segmentation of the seed, being possible to use
the segmented zone in subsequent stages of analysis.

The results of this research are relevant in the sense that they provide the
basis for future work in developing a method of classification of seeds based on
their ripeness, and in estimating by computational methods and digital images
the optimal point of wine grape harvest.

References

1. Ristic, R., Iland, P.: Relationships between Seed and Berries Development of Vitis
Vinifera L. cv Shiraz: Developmental Changes in Seed Morphology and Phenolic
Composition. Australian Journal of Grape and Wine Reseach 11, 43–58 (2005)

2. Fredes, C., Bennewitz, E.V., Holzapfel, E., Saavedra, F.: Relation between Seed
Appearance and Phenolic Maturity: A Case Study Using Grapes cv. Carmenere.
Chilean Journal of Agricultural Research 70, 381–389 (2010)

3. Xu, L., Qi, F., Jiang, R., Hao, Y., Wu, G.: Shadow Detection and Removal in Real
Images: A Survey (2006)

4. Salvador, E., Cavallaro, A., Ebrahimi, T.: Shadow Identification and Classification
using Invariant Color Models. In: Proceedings of IEEE International Conference
the on Acoustics, Speech, and Signal Processing, vol. 03, pp. 1545–1548 (2001)

5. Salvador, E., Andrea, A.C., Ebrahimi, T.: Cast Shadow Segmentation using In-
variant Color Features. Computer Vision and Image Understanding 95, 238–259
(2004)

6. Finlayson, G.D., Hordley, S.D., Lu, C., Drew, M.S.: On the Removal of Shadows
from Images. IEEE Transactions on Pattern Analysis and Machine Intelligence 28,
59–68 (2006)

7. Xu, L., Qi, F., Jiang, R.: Shadow Removal from a Single Image. In: Proceedings of
International Conference on Intelligent Systems Design and Applications, vol. 2,
pp. 1049–1054 (2006)



Shadow Detection Using Neural Networks 503

8. Gevers, T.: Color-based Object Recognition. Pattern Recognition 32, 453–464
(1999)

9. Jain, A., Robert, P., Duin, M.J.: Statistical Pattern Recognition: A Review. Intelli-
gent Data Analysis 22, 4–34 (1999)

10. Haralick, R.: Statistical and structural approaches to texture. Proceedings of the
IEEE (67)

11. Forensee, F., Hagan, M.: Gauss-Newton Approximation to Bayesian Learning. In:
Proceedings of the International Joint Conference on Neuronal Networks, vol. 3,
pp. 1930–1935 (1997)

12. Grigorescu, C., Petkov, N., Westenberg, M.: Contour Detection based on Non-
classical Receptive Field Inhibition. IEEE Transactions on Image Processing 12,
729–739 (2003)



Author Index

Adams, Rod 438
Allamanis, Miltiadis 466
Amos, Martyn 110
Angulo, Eusebio 80
Antunes, Mário 226
Armano, Giuliano 386
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Šimǎlová, Mária 326
Škrjanc, Igor 297
Sluga, Davor 189
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