
A New Implementation of Geometric Semantic GP
and Its Application to Problems in Pharmacokinetics

Leonardo Vanneschi1,2,3, Mauro Castelli1,2, Luca Manzoni3, and Sara Silva2,4

1 ISEGI, Universidade Nova de Lisboa, 1070-312 Lisboa, Portugal
2 INESC-ID, IST / Universidade Técnica de Lisboa, 1000-029 Lisboa, Portugal

3 D.I.S.Co., Università degli Studi di Milano-Bicocca, 20126 Milano, Italy
4 CISUC, Universidade de Coimbra, 3030-290 Coimbra, Portugal

lvanneschi@isegi.unl.pt

Abstract. Moraglio et al. have recently introduced new genetic operators for ge-
netic programming, called geometric semantic operators. These operators induce
a unimodal fitness landscape for all the problems consisting in matching input
data with known target outputs (like regression and classification). This feature
facilitates genetic programming evolvability, which makes these operators ex-
tremely promising. Nevertheless, Moraglio et al. leave open problems, the most
important one being the fact that these operators, by construction, always produce
offspring that are larger than their parents, causing an exponential growth in the
size of the individuals, which actually renders them useless in practice. In this
paper we overcome this limitation by presenting a new efficient implementation
of the geometric semantic operators. This allows us, for the first time, to use them
on complex real-life applications, like the two problems in pharmacokinetics that
we address here. Our results confirm the excellent evolvability of geometric se-
mantic operators, demonstrated by the good results obtained on training data.
Furthermore, we have also achieved a surprisingly good generalization ability,
a fact that can be explained considering some properties of geometric semantic
operators, which makes them even more appealing than before.

1 Introduction

In the last few years researchers have dedicated several efforts to the definition of Ge-
netic Programming (GP) [5,8] methods or systems based on the semantics of the so-
lutions, where by semantics we generally intend the behaviour of a program once it is
executed, or more particularly the set of its output values on input training data [9].
In particular, very recently new genetic operators, called geometric semantic operators,
have been proposed by Moraglio et al. [10]. These operators have the interesting prop-
erty of inducing a unimodal fitness landscape on any problem consisting in finding the
match between a set of input data and a set of known outputs (like for instance in re-
gression and classification). As a consequence, in principle all these problems should
be easily solvable by GP [8], independently of how complex they are. Nevertheless, as
stated by Moraglio et al. [10], these operators have a serious limitation: by construction,
they always produce offspring that are approximately the double size of their parents
(expressed as the total number of tree nodes), and this makes the size of the individ-
uals in the population grow exponentially with generations. In this way, after a few

K. Krawiec et al. (Eds.): EuroGP 2013, LNCS 7831, pp. 205–216, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



206 L. Vanneschi et al.

generations the population is composed by individuals so big that the computational
cost of evaluating their fitness is unmanageable. This limitation makes these operators
impossible to use in practice, in particular on complex real-life applications.

The solution suggested [10] to overcome this drawback is to integrate in the GP algo-
rithm a “simplification” phase, aimed at transforming each individual in the population
into an equivalent (i.e. with the same semantics) but smaller one. Even though this is an
interesting and challenging study, depending on the language used to code individuals
simplification can be very difficult, and it is often a very time consuming task. For this
reason, in this paper we propose a different strategy to solve the problem: we develop
a GP system incorporating an implementation of geometric semantic genetic operators
that makes them usable in practice, and does so very efficiently, without requiring any
simplification of the individuals during the GP run. With this system we are able, for
the first time, to exploit the great potentialities of the geometric semantic operators on
complex real-life problems. In order to experimentally validate our new GP system, we
apply it to problems in the field of pharmacokinetics, comparing the results with the
ones obtained by standard GP. The two problems addressed are the prediction of human
oral bioavailability and protein-plasma binding levels of medical drugs.

The paper is organized as follows: Section 2 presents the state of the art concerning
the use of semantics to improve GP. Section 3 describes the geometric semantic oper-
ators introduced by Moraglio et al., while Section 4 presents our new GP system that
overcomes the current limitations of these operators, making them usable and efficient.
Section 5 presents the test problems, the experimental settings and the obtained results,
offering in particular a discussion about the generalization ability to out-of-sample data
provided by geometric semantic operators. Finally, Section 6 concludes the paper and
provides hints for future research.

2 Previous Work on Semantics in GP

Several recent contributions have been aimed at using the notion of semantics to study,
or improve, GP. McPhee et al. [9] showed that many applications of crossover often do
not have any effect on semantics (i.e., basically crossover tends to produce offspring
that have the same behaviour as their parents). These results have cast a shadow on
the use of traditional genetic operators, and paved the way to the definition of new,
semantic-based, operators. A first step in this direction was made by Beadle and John-
son [2], where semantics is used to define an algorithm called Semantically Driven
Crossover. With this method, if the offspring are semantically equivalent to their par-
ents, the children are discarded and the crossover is repeated. This process is iterated
until semantically different children are found. The authors argue that this results in
increased semantic diversity in the evolving population, and a consequent improvement
in the GP performance. Nguyen et al. [13] investigated the role of syntactic and se-
mantic locality of crossover in GP. The results showed that improving syntactic locality
reduces code growth, which leads to a slight improvement of the ability to generalize.
By comparison, improving semantic locality significantly enhances GP performance,
reduces code growth and substantially improves the ability of GP to generalize. This
work was the starting point in the search for new operators to directly act on semantics.



A New Implementation of Geometric Semantic GP 207

Under this perspective, Nguyen et al. [11] proposed Semantics Aware Crossover (SAC),
a crossover operator promoting semantic diversity, that was subsequently extended to
Semantic Similarity based Crossover (SSC) [14] and to Semantic Similarity based Mu-
tation (SSM) [12]. Krawiec [6] proposed a class of geometric crossover operators for
GP, i.e. operators aimed at making offspring programs semantically intermediate (me-
dial) with respect to parent programs (a property shared also by the operators considered
here). Krawiec and Lichocki [7] have also used a notion of semantic distance to propose
a crossover operator for GP that is approximately a geometric crossover

3 Geometric Semantic Operators of Moraglio et al.

While the semantically aware methods cited in the previous section often exhibited
superior performance with respect to traditional methods, most of them are indirect:
search operators act on the syntax of the parents to produce offspring that are only
accepted if some semantic criterium is satisfied. To provide operators able to work
directly on the semantic, Moraglio et al. introduced new operators [10] To explain the
idea, we first provide an example using Genetic Algorithms (GAs). Let us consider a
GA problem in which the target solution is known and the fitness of each individual
corresponds to its distance to the target (our reasoning holds for any distance measure
used). This problem is characterized by a very good evolvability and it is in general easy
to solve for GAs. In fact, for instance, if we use point mutation, any possible individual
different from the global optimum has at least one neighbor (individual resulting from
its mutation) that is closer to the target than itself, and thus is fitter. So, there are no
local optima. In other words, the fitness landscape is unimodal and the fitness-distance
correlation [3] is equal to 1, because fitness and distance to the goal are identical, which
indicates the problem is easy to solve. Similar considerations hold for many types of
crossover, including various kinds of geometric crossover [7].

Now, let us consider the typical GP problem of finding a function that maps sets of
input data into known target outputs (regression and classification are particular cases).
The fitness of an individual for this problem is typically a distance between its pre-
dicted output values and the expected ones (error measure). Now let us assume that we
are able to find a transformation on the syntax of an individual whose effect is just a
random perturbation of one of its predicted output values. In other words, let us assume
that we are able to transform an individual G into an individual H whose output val-
ues are like the outputs of G, except for one value, that is randomly perturbed. Under
this hypothesis, we are able to map the considered GP problem into the GA problem
discussed above, in which point mutation is used. So, this transformation, if known,
would induce a unimodal fitness landscape on every problem like the considered one
(e.g. regressions and classifications), allowing GP to have a good evolvability on those
problems, at least on training data. The same also holds for transformations on pairs of
solutions that correspond to GA semantic crossovers.

This idea of looking for such operators is very ambitious and extremely challenging:
finding those operators would allow us to directly search the space of semantics, at the
same time working on unimodal fitness landscapes. Although not without limitations,
the work of Moraglio et al. [10] accomplishes this task, defining new operators that have



208 L. Vanneschi et al.

Fig. 1. An illustration of the fact that geometric semantic crossover creates an offspring that is at
least not worse than the worst of its parents. In this example, offspring O (which stands between
parents P1 and P2 in the semantic space by construction) is clearly closer to target T (training
points represented by “×” symbols) than parent P2. In Section 5 we also discuss the geometric
properties of this operator on test data, represented by τ (test points represented by “∗” symbols).

exactly these characteristics. Here we report the definition of the geometric semantic
operators as given by Moraglio et al. for real functions domains, since these are the
operators we will use in the experimental phase. For applications that consider other
types of data, the reader is referred to [10].

Definition 1. (Geometric Semantic Crossover). Given two parent functions T1, T2 :
R

n → R, the geometric semantic crossover returns the real function TXO = (T1 ·
TR) + ((1− TR) · T2), where TR is a random real function whose output values range
in the interval [0, 1].

The interested reader is referred to [10] for a formal proof of the fact that this operator
corresponds to a geometric crossover on the semantic space, in the sense that it produces
an offspring that stands between its parents in this space. We do not report the proof here,
but we limit ourselves to remark that, even without a formal proof, we can have an intu-
ition of it considering that the (only) offspring generated by this crossover has a semantic
vector that is a linear combination of the semantics of the parents with random coeffi-
cients included in [0, 1] and whose sum is equal to 1. Moraglio et al. [10] also prove an
interesting consequence of this fact: the fitness of the offspring cannot be worse than the
fitness of the worst of its parents. Also in this case we do not replicate the proof here,
but we limit ourselves to giving a visual intuition of this property: in Figure 1 we rep-
resent a simple two-dimensional semantic space in which we draw a target function T
(training points are represented by “×” symbols), two parentsP1 andP2 and one of their
offspringO (which by construction stands between its parents), plus a test set (composed
by test points represented by “∗” symbols) that will be discussed in the final part of Sec-
tion 5. It is immediately apparent from Figure 1 that O is closer to T than P2 (which is
the worst parent in this case). The generality of this property is proven in [10].

Definition 2. (Geometric Semantic Mutation). Given a parent function T : Rn → R,
the geometric semantic mutation with mutation step ms returns the real function TM =
T +ms · (TR1 − TR2), where TR1 and TR2 are random real functions.

Moraglio et al. [10] formally prove that this operator corresponds to a box mutation on
the semantic space, and induces a unimodal fitness landscape. Even without a formal



A New Implementation of Geometric Semantic GP 209

proof it is not difficult to have an intuition of it, considering that each element of the
semantic vector of the offspring is a “weak” perturbation of the corresponding element
in the parent’s semantics. We informally define this perturbation as “weak” because it
is given by a random expression centred on zero (the difference between two random
trees). Nevertheless, by changing parameter ms, we are able to tune the ”step” of the
mutation, and thus the importance of this perturbation.

We highlight the fact that these operators create offspring that contain the complete
structure of the parents, plus one or more random trees and some additional arithmetic
operators: the size of the offspring is thus clearly much larger than the size of their
parents. The exponential growth of the individuals in the population, demonstrated by
Moraglio et al. [10], makes these operators unusable in practice: after a few generations
the population becomes unmanageable because the fitness evaluation process becomes
unbearably slow. The solution suggested in [10] consists in performing an automatic
simplification step after each generation in which the individuals are replaced by (hope-
fully smaller) semantically equivalent ones. However, this additional step adds to the
computational cost of GP and is only a partial solution to the progressive size growth.
Last but not least, depending on the particular language used to code individuals and
the used primitives, automatic simplification can be a very hard task.

In the next section, we present a novel implementation of GP using these operators
that overcomes this limitation, making them efficient without performing any simplifi-
cation step.

4 Novel Implementation of Geometric Semantic GP

Here we describe the proposed implementation of Geometric Semantic GP. Note that,
although we describe the algorithm assuming the representation of the individuals is
tree based, the implementation fits any other type of representation.

In a first step, we create an initial population of (typically random) individuals, ex-
actly as in standard GP. We store these individuals in a table (that we call P from now
on) as shown in Figure 2(a), and we evaluate them. To store the evaluations we create
a table (that we call V from now on) containing, for each individual in P , the values
resulting from its evaluation on each fitness case (in other words, it contains the seman-
tics of that individual). Hence, with a population of n individuals and a training set of
k fitness cases, table V will be made of n rows and k columns.

Then, for every generation, a new empty table V ′ is created. Whenever a new in-
dividual T must be generated by crossover between selected parents T1 and T2, T is
represented by a triplet T = 〈ID(T1), ID(T2), ID(R)〉, where R is a random tree and,
for any tree τ , ID(τ) is a reference (or memory pointer) to τ (using a C-like notation).
This triplet is stored in an appropriate structure (that we call M from now on) that also
contains the name of the operator used, as shown in Figure 2c. The random tree R is cre-
ated, stored in P , and evaluated in each fitness case to reveal its semantics. The values
of the semantics of T are also easily obtained, by calculating (T1 ·R)+((1−R)·T2) for
each fitness case, according to the definition of geometric semantic crossover, and stored
in V ′. Analogously, whenever a new individual T must be obtained by applying muta-
tion to an individual T1, T is represented by a triplet T = 〈ID(T1), ID(R1), ID(R2)〉



210 L. Vanneschi et al.

(stored in M), where R1 and R2 are two random trees (newly created, stored in P and
evaluated for their semantics). The semantics of T is calculated as T1+ms · (R1−R2)
for each fitness case, according to the definition of geometric semantic mutation, and
stored in V ′. In the end of each generation, table V ′ is copied into V and erased. All
the rows of P and M referring to individuals that are not ancestors1 of the new pop-
ulation can also be erased. Note that, while M grows at every generation, by keeping
the semantics of the individuals separated we are able to use a table V whose size is
independent from the number of generations.

Summarizing, this algorithm is based on the idea that, when semantic operators are
used, an individual can be fully described by its semantics (which makes the syntactic
component much less important than in standard GP), a concept discussed in depth
in [10]. Therefore, at every generation we update table V with the semantics of the new
individuals, and save the information needed to build their syntactic structures without
explicitly building them. In terms of computational time, we emphasize that the process
of updating table V is very efficient as it does not require the evaluation of the entire
trees. Indeed, evaluating each individual requires (except for the initial generation) a
constant time, which is independent from the size of the individual itself. In terms of
memory, tables P and M grow during the run. However, table P adds a maximum of
2 × n rows per generation (if all new individuals are created by mutation) and table
M (which contains only memory pointers) adds a maximum of n rows per generation.
Even if we never erase the “ex-ancestors” from these tables (and never reuse random
trees, which is also possible), we can manage them efficiently for several thousands of
generations. Let us briefly consider the cost in terms of time and space of evolving a
population of n individuals for g generations. At every generation, we need O(n) space
to store the new individuals. Thus, we need O(ng) space in total. Since we need to do
only O(1) operations for any new individual (since the fitness can be computed using
the fitness of the parents), the time complexity is also O(ng). Thus, we have a linear
space and time complexity with respect to population size and number of generations.

The final step of the algorithm is performed after the end of the last generation. In
order to reconstruct the individuals, we may need to “unwind” our compact represen-
tation and make the syntax of the individuals explicit. Therefore, despite performing
the evolutionary search very efficiently, in the end we may not avoid dealing with the
large trees that characterize the standard implementation of geometric semantic opera-
tors. However, most probably we will only be interested in the best individual found, so
this unwinding (and recommended simplification) process may be required only once,
and it is done offline after the run is finished. This greatly contrasts with the solution
proposed by Moraglio et al. of building and simplifying every tree in the population
at each generation online with the search process. If we are not interested in the form
of the optimal solution, we can avoid the “unwinding phase” and we can evaluate an
unseen input with a time complexity is O(ng). In this case the the individual is used as
a “black-box” which, in some cases, may be sufficient.

Excluding the time needed to build and simplify the best individual, the proposed
implementation allowed us to evolve populations for thousands of generations with a

1 We abuse the term “ancestors” to designate not only the parents but also the random trees used
to build an individual by crossover or mutation.



A New Implementation of Geometric Semantic GP 211

Id Individual
T1 x1 + x2x3

T2 x3 − x2x4

T3 x3 + x4 − 2x1

T4 x1x3

T5 x1 − x3

Id Individual
R1 x1 + x2 − 2x4

R2 x2 − x1

R3 x1 + x4 − 3x3

R4 x2 − x3 − x4

R5 2x1

Id Operator Entry
T6 crossover 〈ID(T1), ID(T4), ID(R1)〉
T7 crossover 〈ID(T4), ID(T5), ID(R2)〉
T8 crossover 〈ID(T3), ID(T5), ID(R3)〉
T9 crossover 〈ID(T1), ID(T5), ID(R4)〉
T10 crossover 〈ID(T3), ID(T4), ID(R5)〉

(a) (b) (c)

Fig. 2. Illustration of the example described in Section 4. (a) The initial population P ; (b) The
random trees used by crossover; (c) The representation in memory of the new population P ′

considerable speed up with respect to standard GP. Future work will provide a compar-
ison of the execution times of the different methods.

Example. Let us consider the simple initial populationP shown in table (a) of Figure 2
and the simple pool of random trees that are added to P as needed, shown in table (b).
For simplicity, we will generate all the individuals in the new population (that we call P ′

from now on) using only crossover, which will require only this small amount of random
trees. Besides the representation of the individuals in infix notation, these tables contain
an identifier (Id) for each individual (T1, ..., T5 and R1, ..., R5). These identifiers will
be used to represent the different individuals, and the individuals created for the new
population will be represented by the identifiers T6, ..., T10.

The individuals of the new population P ′ are simply represented by the set of entries
exhibited in table (c) of Figure 2. This table contains, for each new individual, a refer-
ence to the ancestors that have been used to generate it and the name of the operator
used to generate it (either “crossover” or “mutation”). For example, the individual T6 is
generated by the crossover of T1 and T4 and using the random tree R1.

Let us assume that now we want to reconstruct the genotype of one of the individuals
in P ′, for example T10. The tables in Figure 2 contain all the information needed to do
that. In particular, from table (c) we learn that T10 is obtained by crossover between
T3 and T4, using random tree R5. Thus, from the definition of geometric semantic
crossover, we know that it will have the following structure: (T3 ·R5)+((1−R5) ·T4).
The remaining tables (a) and (b), that contain the syntactic structure of T3, T4, and
R5, provide us with the rest of the information we need to completely reconstruct the
syntactic structure of T10, which is ((x3 + x4 − 2x1) · (2x1)) + ((1− (2x1)) · (x1x3))
and upon simplification becomes −x1(4x1 − 3x3 − 2x4 + 2x1x3).

5 Experimental Study

Problems in Pharmacokinetics. The implementation described in the previous sec-
tion allows the geometric semantic operators to be used, for the first time, in com-
plex real-life applications. We have chosen two hard regression problems in the field
of pharmacokinetics: prediction of human oral bioavailability and prediction of the
protein-plasma binding levels of medical drugs. Both have already been tackled by
GP in published literature, e.g. [1]. Human oral bioavailability (represented as %F) is



212 L. Vanneschi et al.

the parameter that measures the percentage of the initial orally submitted drug dose
that effectively reaches the systemic blood circulation after passing through the liver.
Being able to reliably predict the %F value for a potential new drug is outstandingly
important, given that the majority of failures in compounds development from the early
nineties to nowadays are due to inaccurate predictions of this pharmacokinetic param-
eter during the drug discovery process [4]. The %F dataset consists of 359 instances,
where each instance is a vector of 242 elements (241 molecular descriptor values iden-
tifying a drug, followed by the known value of %F for that drug). This dataset is freely
available from the GP Benchmarks website, gpbenchmarks.org. Protein-plasma
binding level (represented as %PPB) quantifies the percentage of the initial drug dose
that reaches the blood circulation and binds to the proteins of plasma. This measure
is fundamental for good pharmacokinetics, both because blood circulation is the major
vehicle of drug distribution into human body and since only free (unbound) drugs can
permeate the membranes reaching their targets [1]. The %PPB dataset consists of 131
instances, where each instance is a vector of 627 elements (626 molecular descriptor
values identifying a drug, followed by the known %PPB for that drug).

Experimental Settings. We have tested our implementation of GP with geometric
semantic operators (GS-GP) against a standard GP system (STD-GP). A total of 30 runs
were performed with each technique using different randomly generated partitions of
the dataset into training (70%) and test (30%) sets. All the runs used populations of 100
individuals allowed to evolve for 2000 generations. It is worth noting that the goal was
not to achieve the best possible results, so the parameter settings were not tuned for each
technique, save one exception described below. Tree initialization was performed with
the Ramped Half-and-Half method [5] with a maximum initial depth equal to 6. The
function set contained the four binary arithmetic operators +, −, ∗, and / protected as
in [5]. Fitness was calculated as the root mean squared error (RMSE) between predicted
and expected outputs. The terminal set contained the number of variables corresponding
to the number of features in each dataset. Tournaments of size 4 were used to select
the parents of the new generation. To create new individuals, STD-GP used standard
(subtree swapping) crossover [5] and (subtree) mutation [5] with probabilities 0.9 and
0.1, respectively.For GS-GP the mutation rate was 0.5. Preliminary tests have shown
that the geometric semantic operators require a relatively high mutation rate in order to
be able to effectively explore the search space. The ms step used was 0.001 as in [10].
For both systems, survival was elitist as it always copied the best individual into the
next generation. No maximum tree depth limit has been imposed during the evolution.

Experimental Results. The experimental results are reported using curves of the fit-
ness (RMSE) on the training and test sets and boxplots obtained in the following way.
For each generation the training fitness of the best individual, as well as its fitness in the
test set (that we call test fitness) were recorded. The curves in the plots report the me-
dian of these values for the 30 runs. The median was preferred over the mean because
of its higher robustness to outliers. The boxplots refer to the fitness values in generation
500, for reasons explained later. In the following text we may use the terms fitness,
error and RMSE interchangeably. Plots (a) and (b) of Figure 3 show the evolution of
training and test error for STD-GP and GS-GP on the bioavailability problem. They

gpbenchmarks.org


A New Implementation of Geometric Semantic GP 213

0 500 1000 1500 2000

20

30

40

50

60

70

Generations

T
ra

in
in

g 
E

rr
or

(a)

 

 
STD−GP
GS−GP

0 500 1000 1500 2000

20

40

60

Generations

T
es

t E
rr

or

(b)

 

 

STD−GP GS−GP
20

30

40

50

60

T
ra

in
in

g 
E

rr
or

(c)

STD−GP GS−GP
20

30

40

50

60

T
es

t E
rr

or

(d)

Fig. 3. Results on the bioavailability problem. Evolution of (a) training and (b) test errors for each
technique, median of 30 runs. Boxplots of (c) training and (d) test fitness at generation 500. In
boxplot (d) STD-GP has three outliers located at 157, 485 and 843 (not shown).

clearly show that GS-GP outperforms STD-GP on both training and test sets. We could
informally say that on the training set both techniques “learn well”, in the sense that
the error curves in plot (a) are steadily decreasing during the whole considered runs,
although GS-GP reaches lower error. On the other hand, on the test set, while STD-GP
reveals a major loss of generalization ability, GS-GP exhibits a “desirable” behavior
where the curve of the test error is regular and monotonically decreasing during the en-
tire evolutionary process. We interpret these results saying that, unlike STD-GP, GS-GP
does not overfit the training data on the bioavailability problem. The boxplots (c) and
(d) of Figure 3 refer to the fitness values at generation 500, where both techniques have
achieved more or less the same training fitness, and GS-GP is not improving test fitness
anymore. The boxplots show that GS-GP has less dispersion of results than STD-GP,
in particular on the test set. To analyse the statistical significance of these results, a set
of tests has been performed. The Kolmogorov-Smirnov test has shown that the data are
not normally distributed and hence a rank-based statistic has been used. The Wilcoxon
rank-sum test for pairwise data comparison has been used under the alternative hypoth-
esis that the samples do not have equal medians. The p-values obtained were 0.70 when
training fitness of STD-GP is compared to training fitness of GS-GP and 6.3 × 10−6

when test fitness of STD-GP is compared to test fitness of GS-GP. Therefore, when us-
ing the usual significance level α = 0.01 (or even if we use a much smaller one), we
can state that at generation 500 the studied techniques have comparable fitness on the
training data and GS-GP has significantly lower (i.e., better) fitness than STD-GP on
the test data. Plots (a) and (b) of Figure 4 show the evolution of training and test error
for STD-GP and GS-GP on the protein-plasma binding problem. As in the bioavailabil-
ity problem, GS-GP reveals to be superior to STD-GP, this time with a wide difference
also on the training set, where GS-GP is able to reach a minimal error. The behaviour
on the test set is very similar to the one reported for the bioavailability problem.



214 L. Vanneschi et al.

0 500 1000 1500 2000
0

20

40

60

Generations

T
ra

in
in

g 
E

rr
or

(a)

 

 
STD−GP
GS−GP

0 500 1000 1500 2000
0

20

40

60

Generations

T
es

t E
rr

or

(b)

 

 

STD−GP GS−GP
0

20

40

60

T
ra

in
in

g 
E

rr
or

(c)

STD−GP GS−GP
0

20

40

60

T
es

t E
rr

or

(d)

Fig. 4. Results on the protein-plasma binding problem. Evolution of (a) training and (b) test errors
for each technique, median of 30 runs. Boxplots of (c) training and (d) test fitness at generation
500. In boxplot (d) STD-GP has six outliers located at 236, 259, 339, 456, 4402 and 5441 (not
shown).

The boxplots (c) and (d) of Figure 4 once again refer to the values measured in gener-
ation 500, which is more or less the point when GS-GP has stabilized its fitness values
both in training and test data. They show similar characteristics to the ones observed
on the bioavailability problem, with GS-GP once again exhibiting a lower dispersion
of results then STD-GP. They also show that GS-GP performs better than STD-GP in
both training and test data. Using the same statistical tests as before, the comparative
p-values obtained on the protein-plasma binding problem were 3.0×10−11 when train-
ing fitness of STD-GP is compared to training fitness of GS-GP and 5.1 × 10−6 when
test fitness of STD-GP is compared to test fitness of GS-GP. This allows us to conclude
that on the protein-plasma binding problem GS-GP outperforms STD-GP both on the
training and test set in a statistically significant way.

Discussion. The good results that GS-GP has obtained on training data were expected:
the geometric semantic operators induce an unimodal fitness landscape, which facili-
tates evolvability. On the other hand, on a first analysis, we have been surprised by the
excellent results we have obtained on test data. These results even appeared a bit coun-
terintuitive to us: we were expecting that the good evolvability on training data would
entail an overfitting of those data.

However, an explanation of the excellent generalization ability shown by GS-GP
on the two studied applications, we have realized one feature of geometric semantic
operators that was not so obvious previously. Namely, the geometric properties of those
operators hold independently of the data on which individuals are evaluated, and thus
they hold also on test data. In other words, geometric semantic crossover produces an
offspring that stands between the parents also in the semantic space induced by test data.
As a direct implication, following exactly the same argument as Moraglio et al. [10],



A New Implementation of Geometric Semantic GP 215

each offspring is, in the worst case, not worse than the worst of its parents on the test set.
This can be seen by looking back at Figure 1, where a simple test set τ is drawn (testing
data are represented by “∗” symbols) and where it is clear that offspring O is closer
to data in τ than parent P2. Analogously, as it happens for training data, geometric
semantic mutation produces an offspring that is a “weak” perturbation of its parent also
in the semantic space induced by test data (and the maximum possible perturbation
is, again, expressed by the ms step). The immediate consequence for the behaviour of
GS-GP on test data is that, while geometric semantic operators do not guarantee an
improvement in test fitness each time they are applied, they at least guarantee that the
possible worsening of the test fitness is bounded (by the test fitness of the worst parent
for crossover, and by ms for mutation). In other words, geometric semantic operators
help control overfitting. Of course overfitting may still happen, as seen in plot (b) of
Figure 4 for GS-GP (slight but visible), but there are no big “jumps” in test fitness
like the ones observed in plots (b) of Figures 3 and 4 for STD-GP. We remark that,
without the novel implementation that allowed us to use geometric semantic GP on
these complex real-life problems, this interesting property would probably remained
unnoticed.

6 Conclusions and Future Work

New genetic operators, called geometric semantic operators, have been proposed for
genetic programming (GP). They have the extremely interesting property of inducing a
unimodal fitness landscape for any problem consisting in matching input data to known
target outputs (regression and classifications are instances of this general problem). This
should make all the problems of this kind easily evolvable by GP. Nevertheless, as
demonstrated in the literature, in their first definition these new operators have a strong
limitation that makes them unusable in practice: they produce offspring that are larger
than their parents, and this results in an exponential growth of the size of the individuals
in the population. In this paper we have proposed a novel implementation of GP that
uses the geometric semantic operators in a very efficient manner, in terms of computa-
tional time and memory. This new GP system evolves the semantics of the individuals
without explicitly building their syntax. It does so by keeping a set of trees (of the initial
population and the random ones used by geometric semantic crossover and mutation)
in memory and a set of pointers to them, representing the “instructions” on how to build
the new individuals. Thanks to this compact representation, it was possible to explore,
for the first time, the great potential of geometric semantic GP to solve complex real-life
problems. We have used two problems in the field of pharmacokinetics: the prediction
of human oral bioavailability and the prediction of protein-plasma binding levels of
medical drugs. The experimental results demonstrate that the new system outperforms
standard GP. Besides the fact that the new GP system has excellent results on training
data (which was expected, given that its fitness landscape is unimodal), we were sur-
prised by its excellent generalization ability on the studied applications, which in ret-
rospect can be explained by considering the geometric properties of the new operators.
This encourages us to pursue the study: besides additional experimental validations on
new data and different applications, we plan to orient our future activity towards more
theoretical studies of the generalization ability of geometric semantic GP. In particular,



216 L. Vanneschi et al.

we are interested in studying the “shape” of the functions produced by semantic GP
with respect to the one generated by standard GP, and how this influences the general-
ization ability. On the more practical side, we are interested in comparing the runtime
performance of geometric semantic GP with standard GP also considering the effect of
a simplification phase at the end of the algorithm for when a “black-box” individual
cannot be used.

Acknowledgments. This work was supported by national funds through FCT
under contract Pest-OE/EEI/LA0021/2011 and by projects EnviGP (PTDC/EIA-
CCO/103363/2008) and MassGP (PTDC/EEI-CTP/2975/2012), Portugal.

References

1. Archetti, F., Lanzeni, S., Messina, E., Vanneschi, L.: Genetic programming for computational
pharmacokinetics in drug discovery and development. Genetic Programming and Evolvable
Machines 8, 413–432 (2007)

2. Beadle, L., Johnson, C.: Semantically driven crossover in genetic programming. In: Proc. of
the IEEE World Congress on Comput. Intelligence, pp. 111–116. IEEE Press (2008)

3. Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem difficulty for
genetic algorithms. In: Proceedings of the Sixth International Conference on Genetic Algo-
rithms, pp. 184–192. Morgan Kaufmann (1995)

4. Kennedy, T.: Managing the drug discovery/development interface. Drug Discovery To-
day 2(10), 436–444 (1997)

5. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural
Selection. MIT Press, Cambridge (1992)

6. Krawiec, K.: Medial Crossovers for Genetic Programming. In: Moraglio, A., Silva, S., Kraw-
iec, K., Machado, P., Cotta, C. (eds.) EuroGP 2012. LNCS, vol. 7244, pp. 61–72. Springer,
Heidelberg (2012)

7. Krawiec, K., Lichocki, P.: Approximating geometric crossover in semantic space. In:
GECCO 2009, July 8-12, pp. 987–994. ACM (2009)

8. Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer (2002)
9. McPhee, N.F., Ohs, B., Hutchison, T.: Semantic Building Blocks in Genetic Programming.

In: O’Neill, M., Vanneschi, L., Gustafson, S., Esparcia Alcázar, A.I., De Falco, I., Della
Cioppa, A., Tarantino, E. (eds.) EuroGP 2008. LNCS, vol. 4971, pp. 134–145. Springer,
Heidelberg (2008)

10. Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric Semantic Genetic Programming. In:
Coello Coello, C.A., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN
XII, Part I. LNCS, vol. 7491, pp. 21–31. Springer, Heidelberg (2012)

11. Nguyen, Q.U., Nguyen, X.H., O’Neill, M.: Semantic Aware Crossover for Genetic Pro-
gramming: The Case for Real-Valued Function Regression. In: Vanneschi, L., Gustafson, S.,
Moraglio, A., De Falco, I., Ebner, M. (eds.) EuroGP 2009. LNCS, vol. 5481, pp. 292–302.
Springer, Heidelberg (2009)

12. Quang, U.N., Nguyen, X.H., O’Neill, M.: Semantics based mutation in genetic program-
ming: The case for real-valued symbolic regression. In: Matousek, R., Nolle, L. (eds.) 15th
Intern. Conf. on Soft Computing, Mendel 2009, pp. 73–91 (2009)

13. Uy, N.Q., Hoai, N.X., O’Neill, M., McKay, B.: The Role of Syntactic and Semantic Locality
of Crossover in Genetic Programming. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G.
(eds.) PPSN XI. LNCS, vol. 6239, pp. 533–542. Springer, Heidelberg (2010)

14. Uy, N.Q., Hoai, N.X., O’Neill, M., McKay, R.I., Galvan-Lopez, E.: Semantically-based
crossover in genetic programming: application to real-valued symbolic regression. Genetic
Programming and Evolvable Machines 12(2), 91–119 (2011)


	A New Implementation of Geometric Semantic GPand Its Application to Problems in Pharmacokinetics
	Introduction
	Previous Work on Semantics in GP
	Geometric Semantic Operators of Moraglio et al.
	Novel Implementation of Geometric Semantic GP
	Experimental Study
	Conclusions and Future Work
	References




