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Abstract. A method that uses Ant Colonies as a Model-based Search to
Cartesian Genetic Programming (CGP) to induce computer programs is
presented. Candidate problem solutions are encoded using a CGP repre-
sentation. Ants generate problem solutions guided by pheromone traces
of entities and nodes of the CGP representation. The pheromone values
are updated based on the paths followed by the best ants, as suggested in
the Rank-Based Ant System (ASrank). To assess the evolvability of the
system we applied a modified version of the method introduced in [9] to
measure rate of evolution. Our results show that such method effectively
reveals how evolution proceeds under different parameter settings. The
proposed hybrid architecture shows high evolvability in a dynamic envi-
ronment by maintaining a pheromone model that elicits high genotype
diversity.

Keywords: Ant Colonies, Cartesian Genetic Programming, Rank-Based
Ant System, Hybrid Architectures, Evolvability, Dynamic Environments.

1 Introduction

Dynamic problems are those in which the solution changes over time. In such do-
mains, the ability of a population to evolve to a new region in the solution space
is key. Tracking a moving optimum or moving from a local to a global optimum
is facilitated when the problem representation and optimization methodology
interact in ways to provide a high level of evolvability. In natural evolution,
evolvability is the capacity for an adaptive response to a dynamic environment
(fitness function) [1]. In genetic programming, a machine learning methodol-
ogy concerned with evolving computer programs, the fitness function is in many
cases static, so there is little selection pressure for “evolvability” in the biological
sense. In the work presented here we set out to investigate the evolvability of a
hybrid methodology that combines the Cartesian Genetic Programming (CGP)
[10] representation and the probabilistic techniques for searching the solution
space used in Ant Colony Optimization (ACO) [4].

Inspired on the Ants System introduced in [3], Ant Programming (AP) [11] ex-
tended ACO to Genetic Programming (GP) tree style representations. The AP
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system builds and modifies candidate problem solutions in accordance to the
pheromone model referred as pheromone tree. The pheromone tree is composed
of a number of pheromone tables for each tree node containing the pheromone
values for the possible functions and terminals for the corresponding node. Us-
ing a similar approach, but based on different pheromone model, Dynamic Ant
Programming (DAP) [14] introduced a dynamic tabular pheromone model which
holds the pheromone values for the possible functions and terminals at each node
and uses a tabu list restricting the selection of a non-terminal that has already
been selected, thereby enabling the system to create diverse individuals. The
pheromone table size changes dynamically in each iteration and nodes with low
pheromone levels are deleted. This results in the system creating programs of
smaller size on average.

In the work presented here, we propose a methodology that extends to CGP
the representations introduced in probabilistic model building GP methodolo-
gies introduced in [8,5] and combines it with ACO. We begin by presenting in
Section 2 the background materials regarding CGP and ACO. Then, in Section
3 we present how we take advantage of the CGP representation to propose a
pheromone model that elicits genotype redundancies which have shown to be
crucial for the evolvability of problem solutions [7,16]. We also introduce our
learning algorithm, which draws on the Rank-Based Ant System (ASrank) [2],
where ants are ranked according to the quality of the CGP genomes they gen-
erate and the best ranked ants are used to update the pheromone table. The
proposed method is similar to Cartesian Ant Programming (CAP) [6], where a
pheromone model is sampled to create the genome of a CGP individual and the
Max-Min Ant System (MMAS) [15] is used as the learning algorithm to update
the pheromone model. To analyze the evolvability of our system, in Section 3 we
propose a variant of the nonsynoymous to synonymous substitution ratio ka/ks
introduced in [9]. In Section 4 we present the experimental design used to bench-
mark CAP against our approach. Our results show that in a static environment
variability helps our system to converge to an optimal solution and neutrality
helps preserve the optimal solution met. In a dynamic environment our system
is able to maintain genotype diversity throughout the run which makes it highly
adaptable to changes in the environment.

2 Background Materials

CGP is an artificial evolution methodology where the individuals are represented
as a graph addressed on the Cartesian co-ordinate system and can be executed
as a computer program. CGP distinguishes between genotype and phenotype
unlike canonical genetic programming. In CGP, the genotype is a string of in-
tegers of fixed size which maps to the phenotype which is an executable graph.
The genotype represents the graph’s input and output connections. Each node
consists of inputs and a function, each of which is represented by an integer
number.
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A CGP system needs prior definition of the following set of parameters {G,ni,
no, nn, F, nf , nr, nc, l}, where G is the genotype (fixed set of integers); ni are the
program inputs; no is the number of program output connections; nn is the
number of node input connections; F is the set of functions; nf is the number
of functions; nr is the number of nodes in each row; nc is number of nodes in
each column; l is the level back parameter defining how many previous columns
of nodes may have their output connected to the input of a node in the current
column. In this paper only feed-forward connectivity is considered. The genotype
size is fixed and can be calculated as nr ∗ nc ∗ (nn + 1) + no.

ACO is a swarm optimization technique inspired by the behavior of some ants
species. An ant moves from source to destination guided by the pheromone levels
on the available paths the ant can travel. If a path is constantly being used by
several ants, then more pheromone gets deposited on that path. Therefore, there
is a greater possibility that an ant that comes along this path will choose the
path to find its food. Similarly, the lower the pheromone levels on a path the
smaller the possibility that an ant will choose that path.

For artificial ants a pheromone model is maintained that holds the pheromone
values at each node for the paths possible for the ant to travel from that node.
This model is updated after every iteration where the paths traveled by the ant
that lead to better solutions have a level of pheromone deposited and the re-
maining paths have a level of their pheromone value evaporated. Pheromone
update is the process where good solutions are rewarded by adding to the
level of pheromone on paths chosen to reach that solution and evaporating the
pheromone level on paths that did not yield a good solution.

3 Methods

The central hypothesis put forth in this work is that the CGP representation
combined with an ACO algorithm that elicits redundancies in genotype to phe-
notype mapping imparts better evolvability of solutions. In the underlying al-
gorithm, artificial ants iteratively generate quality solutions by updating the
pheromone model used to create the programs. The model is updated after each
iteration by rewarding the most fit programs of the previous iteration. Such re-
warding is achieved by increasing the pheromone level of the inputs and function
used in each node, and decreasing the pheromone of unvisited nodes.

Drawing on the work presented in [9] we propose a measurement for rate of
evolution. We show that it effectively reflects how evolution is driven by the
underlying algorithm, and we perform a study case of the system’s evolvability.

Pheromone Model. The pheromone model contains the pheromone values for
all available inputs and functions needed in generating a node of the program.
All pheromone values are initialized at the start to τd for all the available in-
puts and functions for a node. The inputs that are unavailable to a node have
their pheromone value set to zero to refrain them from being selected and gen-
erating cyclic graphs, i.e., programs with loops. Table 1 shows an example of
a pheromone model for a symbolic regression representation. In the example,
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Table 1. Representation of the pheromone model

Node
Input 1 Input 2 Function Output Node

1.0 X 0 1 2 1.0 X 0 1 2 + - × ÷ 1.0 X 0 1 2 3
0 τd τd 0 0 0 τd τd 0 0 0 τd τd τd τd

τd τd τd τd τd τd
1 τd τd τd 0 0 τd τd τd 0 0 τd τd τd τd
2 τd τd τd τd 0 τd τd τd τd 0 τd τd τd τd
3 τd τd τd τd τd τd τd τd τd τd τd τd τd τd

ni = {1.0, X}, F = {+,−,×,÷}, nn = 2, nr = 1, nc = 4, no = 1 and l = 3.
These inputs and functions are available for all nodes which are initialized to τd
at the start.

Genome Creation: Each ant creates an individual’s genotype by sampling
the pheromone model. The ant samples the pheromone table and selects the
appropriate input or function available, for each position in the genotype. The
probability pi that the ant selects a particular input or function i is given by
pi =

τi∑nn
j=1 τj

, where nn is the number of available inputs and functions.

Pheromone Update: The pheromone table is updated at the end of every
iteration. The ants are ranked according to the quality of the solution they
generate. Out of the m ants in each iteration only the (n − 1) best-ranked ants
and the best ant, i.e., the ant that produced the best solution so far (this ant
could be from the current iteration or from a previous iteration) update the
pheromone table as given by the following expression:

τij(t+ 1) = τij(t) +

n−1∑

r=1

(w − wr)Δτrij(t) + wΔτbest (1)

where: τij(t) is the current pheromone level of input(or function) i at node j
at iteration t; w is a constant weight assigned at the start of the experiment; r
is the rank of the ant; wr = w/(n − r); (w − wr) is the weight calculated that
rewards higher ranked ants; and Δτrij(t) is equal to the fitness of rth-best ant, if
ant selects input or function i at node j; otherwise it is zero. Analogously, Δτbest
is equal to the fitness of best ant.

Measuring Rate of Evolution: The nonsynonymous to synonymous substi-
tution ratio ka/ks is a concept used to measure genetic substitution in molecular
biology. This measurement has been used in [9] to quantitatively assess evolv-
ability in Linear Genetic Programming (LGP). A change in the genome of an
individual that brings about a change in its fitness is known as a nonsynonymous
change, where as if a genome change does not cause a change in fitness, then
it is called a synonymous change. We use the same terminology and a similar
approach in the work presented here. One key difference, is that in the context
of Ants (and Estimation of Distribution Algorithms) changes are brought about
by probabilistic sampling of the pheromone table rather than by the application
of genetic operators, which is the case in [9].
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In our simulated studies we measure the ka/ks ratio by observing the changes
brought about in the best-ranked ants. To determine the value of nonsynony-
mous (and synonymous) change we compare each individual I and individual
J that were brought about by the N best-ranked ants of iteration t and t − 1,
respectively. The value of nonsynonymous change mI

ak(t) on each gene k of each
individual I from iteration t is calculated as follows: if gene k did not change,
i.e., Ik = Jk, then mI

ak(t) = mI
sk(t) = 0. Otherwise, if change was silent, i.e.,

individuals I and J have same fitness, then mI
ak(t) = 0,mI

sk(t) = 1. If change
was not silent, then mI

ak(t) = 1,mI
sk(t) = 0.

We compute the number of nonsynonymous substitutions Ma(t) and the num-

ber of synonymous substitutionsMs(t) as follows:Ma(t) =
∑N

i=1 m
i
ak(t), Ms(t) =∑N

i=1 m
i
sk(t)

Like in [9], we keep a record of all changes to each gene during the iter-
ations of the algorithm. We compute such accumulated numbers of nonsyn-
chronous cak(t) and synchronous csk(t) changes in gene k up to iteration t, as
follows: initially cak(0) = csk(0) = 0, for all genes k in the genome. We update
these values for each gene k and individual I brought about by the N best-
ranked ants of iteration t, as follows: cak(t) = cak(t − 1) + mI

ak(t), csk(t) =
csk(t−1)+mI

sk(t).And we compute the potential of a gene k being changed non-
synonymously or synonymously (also called the sensitivity of a gene) as follows:

nak(t) =
cak(t)

cak(t)+csk(t)
, nsk(t) =

csk(t)
cak(t)+csk(t)

We add up the sensitivities of all genes in the representation to obtain the
total nonsynonymous and synonymous sensitivities Na(t) and Ns(t): Na(t) =∑N

k=1 nak(t), Ns(t) =
∑N

k=1 nsk(t)
Finally, we compute the nonsynonymous and the synonymous substitution

rates ka and ks of iteration t as ka(t) = Ma(t)/Na(t), ks(t) = Ms(t)/Ns(t) , which
enables us to obtain the rate of evolution Re in iteration t:

Re(t) = ka(t)/ks(t) (2)

4 Experimental Design and Results

We begin by testing how effectively the rate of evolution reflects the dynamics
of the underlying algorithm. We then compare the evolvability of our method
with that of CAP in two different environmental conditions: a fixed target and
a moving target environment.

4.1 Rate of Evolution under Different Parameter Settings

In this section we describe the experimental setting we have designed to study
the influence of different parameter settings on factors related to the Rate of
Evolution in a symbolic regression (SR) problem
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In these experiments the target expression is the polynomial x4+x3+x2+x.
The training set, i.e., the fitness cases, consists of 40 equidistant example points
in the interval [−2.0,+2.0]. Fitness of an individual is computed as the inverse of
the accumulated error between the actual example points and the values output
by the individual. Formally, let the output of the ith training example be oi. Let
the output of individual g on the ith example from the training set be gi. Then,
for a training set of n = 40 examples the fitness fg of g is calculated as follows:
fg = 1

1+
∑n

i=1 |oi−gi|
The parameters chosen for this experiment are shown in Table 2. The expo-

nentially weighted moving average method, with a smoothing factor 0.1, is used
to smoothen the curves.

Table 2. Parameter values for experiments SR, FTE and MTE

Parameter Experiment
SR FTE MTE

ni {x, 1.0} ditto ditto
F {+,−,×,÷} ditto ditto
Number of Runs 100 ditto ditto
Number of Iterations 1000 ditto ditto
Number of Individuals 50 100 100
τd 1.0 ditto ditto
Number of best-ranked ants 10 ditto ditto
# of equidistant fitness cases 40 ditto ditto
Interval [−2.0, 2.0] ditto ditto

Population Size. In this experiment we alter the population sizes to 50, 100
and 200. From Figure 1(b) we see having a system with a larger population
converges to the solution faster than a system with a smaller population.

The rate of evolution (Re) in Figure 1(a) is synchronous with natural evo-
lutions as it continues to be at the maximum value slightly above 1.0. As the
run progresses the value of Re continues to descend till it reaches zero evolution.
The system with a larger population size reached zero evolution quicker than a
system with a smaller population.

Initial Pheromone Level. In this experiment we study the influence of the
initial pheromone value on Re. The initial pheromone level is set to 0.1, 0.5 and
1.0 and analyze the effect on the rate of evolution and average fitness. From
Figure 2(b) we see, a setup with a lower initial pheromone level converges to a
solution quicker which reflects the findings in [14]. Observing Re in Figure 2(a)
in all conditions the maximum value is around 1.0 and proceeds towards zero
evolution. With a lower initial pheromone level zero evolution reaches quicker
than with a setup where the initial pheromone level is higher.
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(a) Re = ka/ks (b) Average fitness

Fig. 1. Varying population sizes

4.2 CGP-ACO vs. CAP

Our approach differs from Cartesian Ant Programming (CAP) [6] in two key
aspects: the learning algorithm and the method of updating the pheromone
model.

CAP uses Max-Min Ant System (MMAS) [15] as the learning algorithm, where
the best ant updates the pheromone model at the end of the iteration and the
unused pheromone trails are subjected to evaporation. In MMAS, the pheromone
model is updated according to the equation below:

τij(t+ 1) = (1 − ρ)τij(t) +Δτbestij (t) (3)

where: τij(t) is the current pheromone level of input(or function) i at node j at
iteration t; ρ is the evaporation rate; Δτbestij is equal to the fitness of the best
ant, if best ant selects input or function i at node j; otherwise it is zero.

In regards to the method of updating the pheromone model, after evaluating
the individual, CAP traverses the model beginning from the output nodes and
proceeds backwards towards the input nodes, only updating the model for the
nodes that appear in the individuals phenotype. As such, only the pheromone
values of the used nodes are updated. In our method, however, we update the
pheromone model in a forward manner beginning from the input nodes and
moving towards the output nodes, updating the pheromone values for all nodes
that appear in the individual’s genotype.

Fixed Target Evolution (FTE). In this experiment we evolve the expression
x5−2x3+x. Figure 3(d) shows that our approach attains maximum fitness faster
with a steady convergence rate throughout the run than the approach used in
CAP.

Figure 3(a) shows that our method engenders a high number of nonsynony-
mous substitutions from the start of the run, and that number increases after the
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(a) Re = ka/ks (b) Average fitness

Fig. 2. Varying initial pheromone level

system converges to a solution. Using the method of updating the pheromone
model as described in CAP, the system fixates on making a maximum number of
nonsynonymous substitutions at the start of the run which results in the synony-
mous substitutions to be low at the start of the run and increase as the system
converges to a solution of maximum fitness. In Figure 3(b) we plot the synony-
mous substitutions which shows us that using the CGP-ACO approach results
in making a larger number of substitutions throughout the run which increases
after the system converges to a solution. The method used in CAP involves
making a fewer number of substitutions compared to the CGP-ACO approach,
the system makes most of the substitutions after the system has converged to
a solution. The result of the substitutions is seen in the rate of evolvability Re

in Figure 3(c), the CGP-ACO approach has a higher rate of Re throughout the
run where the system converges to zero evolvability towards the end of the run.
Using the pheromone update method as used in CAP the model the system has
a high value of Re at the start of the run and reaches zero evolvability sooner
than the CGP-ACO approach.

We conduct the Multiple Hypothesis Testing [13] to compare the performance
of the two approaches. We test for the average fitness at different points of the
run using a significance level α = 0.05. We find CAP has a better performance in
the initial stages of the run (at iteration 250, the p-value equals 0.012). However
in the middle (at iteration 500, p-value = 0.58) and final stages (at iteration 750,
p-value = 0.33) of the run there is no evidence of statistical difference between
the two approaches.

Moving Target Evolution (MTE). In this experiment we create a moving
target by increasing the degree n of the polynomial

∑n
i=1 x

i at regular intervals.
We start our target for the first 200 iterations at i = 3 where the target expression
is x3 + x2 + x. From iteration 200 to 500 i = 4 and iteration 500 onwards i = 5.
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(a) ka (b) ks

(c) Re = ka/ks (d) Average fitness

Fig. 3. FTE: CGP-ACO vs CAP

We use an enhanced version of the ASrank model update method that includes
evaporation. We incorporate evaporation to balance the effects of depositing a
large amount of pheromone when the target is small which hinders exploration
of alternative paths when the target is changed. For this experiment we set the
evaporation rate to ρ = 0.2.

We emulate CAP’s methodology using MMAS as the learning algorithm and
with an evaporation rate of ρ = 0.1.

In Figure 4(d) we plot the average fitness for both systems. We take note that
the convergence of the solution is almost identical for both systems. Analyzing
the substitution rates in Figure 4(a) and 4(b) we see that both systems follow
a similar trend in evolvability from iteration 0 to 200 where the target is an ex-
pression of a lower degree. From iteration 200 to the end of the run, as the target
is changed and the degree of the polynomial keeps increasing, we notice that the
rate of nonsynonymous substitutions in CAP is greater than in CGP-ACO. Also
the number of synonymous substitutions made during this period in CAP is low
compared to CGP-ACO. Moreover, Figure 4(d) shows that immediately after



118 S. Luis and M.V. dos Santos

the target change CGP-ACO is able to produce solutions with higher fitness
than CAP, which makes one wander if the CGP-ACO pheromone model elicits a
more diverse genotype than the CAP pheromone model. Figure 4(e) shows that
there is strong evidence pointing in that direction. Genotype diversity, in this
case, was calculated using the diversity measure introduced by Shapiro in [12]
(section 3 of that paper).

To assess the statistical significance we conduct the same Multiple Hypothesis
Test as in the previous section (with α = 0.05). Testing for the average fitness at
different points of the run we find no evidence of statistical difference between
the two approaches (at iteration 100, p-value = 0.71; at iteration 350, p-value
= 0.3 and at iteration 750, p-value = 0.76). Testing for diversity at different
points of the run we find very strong evidence of a statistical difference between
the two approaches, showing CGP-ACO elicits higher diversity as the p-value at
different points of the run are extremely small.

(a) ka (b) ks (c) Re = ka/ks

(d) Average Fitness (e) Diversity

Fig. 4. MTE: CGP-ACO vs CAP

5 Conclusion

In this work we introduced a hybrid optimization algorithm that combines Carte-
sian genetic programming with ant colonies. Using the rate of evolution we tested
the evolvability of our system under different parameter settings and compared
our results with CAP in two different environmental conditions
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Analyzing the results we observed that a lower level of initial pheromone and
a bigger population size helps in faster convergence. CGP-ACO has shown to be
highly adaptable to the aforementioned environmental conditions. Our results
also showed that CGP-ACO is on par with CAP with regards to average fitness of
the evolved population. CGP-ACO, however, showed better adaptiveness when
faced with a dynamic environment by maintaining a highly diverse genotype
population.

The system imposes variability as a driving force when it needs to attain
an optimal solution, where as neutrality helps the system preserve an optimal
solution. Adaptiveness is a major characteristic of our system as changes in
the environment causes the system to reflect those changes in the pheromone
model, thus resulting in the creation of individuals that are highly fit for the
environmental conditions.
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