
Lecture Notes in Computer Science 7831
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Krzysztof Krawiec Alberto Moraglio
Ting Hu A. Şima Etaner-Uyar Bin Hu (Eds.)

Genetic
Programming
16th European Conference, EuroGP 2013
Vienna, Austria, April 3-5, 2013
Proceedings

13

Volume Editors

Krzysztof Krawiec
Poznan University of Technology, Institute of Computing Science
Piotrowo 2, 60-965 Poznań, Poland
E-mail: krawiec@cs.put.poznan.pl

Alberto Moraglio
The University of Birmingham, School of Computer Science
Edgbaston, Birmingham B15 2TT, UK
E-mail: a.moraglio@cs.bham.ac.uk

Ting Hu
Dartmouth College, Geisel School of Medicine
Hanover, NH 03755, USA
E-mail: ting.hu@dartmouth.edu

A. Şima Etaner-Uyar
Istanbul Technical University, Department of Computer Engineering
Masla, 34469 Istanbul, Turkey
E-mail: etaner@itu.edu.tr

Bin Hu
Vienna University of Technology, Institute of Computer Graphics and Algorithms
1040 Vienna, Austria
E-mail: hu@ads.tuwien.ac.at

Front cover EvoStar 2013 logo by Kevin Sim, Edinburgh Napier University.

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-37206-3 e-ISBN 978-3-642-37207-0
DOI 10.1007/978-3-642-37207-0
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013933136

CR Subject Classification (1998): F.2, F.1, I.2.6, I.2.8, I.5, J.3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in ist current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The 16th European Conference on Genetic Programming (EuroGP) took place
during April 3-5, 2013, in the beautiful city of Vienna, Austria, a world-famous
travel destination and a delightful place for the conference. Being the only confer-
ence exclusively devoted to genetic programming and the evolutionary generation
of computer programs, EuroGP attracts scholars from all over the world.

The unique character of genetic programming has been recognized from its
very beginning. Presently, with over 8,000 articles in the online GP bibliography
maintained by Bill Langdon, it is clearly a mature form of evolutionary compu-
tation. EuroGP has had an essential impact on the success of the field, by serving
as an important forum for expressing new ideas, meeting fellow researchers, and
starting collaborations. Many are the success stories witnessed by the now 16
editions of EuroGP. To date, genetic programming is essentially the only ap-
proach that has demonstrated the ability to automatically generate and repair
computer code in a wide variety of problem areas. It is also one of the leading
methodologies that can be used to “automate” science, helping researchers to
find hidden complex models behind observed phenomena. Furthermore, genetic
programming has been applied to many problems of practical significance, and
has produced human-competitive solutions.

EuroGP 2013 received 47 submissions from 24 different countries across five
continents. The papers underwent a rigorous double-blind peer review process,
each being reviewed by at least three members of the international Program
Committee from 20 countries. The selection process resulted in this volume,
with 18 papers accepted for oral presentation (38% acceptance rate) and five for
poster presentation (49% global acceptance rate for talks and posters combined).
The wide range of topics in this volume reflects the current state of research in
the field, including different genres of GP (tree-based, linear, grammar-based,
Cartesian), theory, novel operators, and applications.

Together with four other co-located evolutionary computation conferences,
EvoCOP 2013, EvoBIO 2013, EvoMusArt 2013, and EvoApplications 2013, Eu-
roGP 2013 was part of the Evo* 2013 event. This meeting could not have taken
place without the help of many people.

First to be thanked is the great community of researchers and practitioners
who contributed to the conference by both submitting their work and reviewing
others’ as part of the Program Committee. Their hard work, in evolutionary
terms, provided both variation and selection, without which progress in the field
would not be possible!

The papers were submitted, reviewed, and selected using the MyReview con-
ference management software. We are sincerely grateful to Marc Schoenauer of
INRIA, France, for his great assistance in providing, hosting, and managing the
software.

VI Preface

We would like to thank the local organizing team: Bin Hu, Doris Dicklberger,
and Günther Raidl from the Data Structures Group, Institute of Computer
Graphics and Algorithms, Vienna University of Technology.

We thank Kevin Sim from the Institute for Informatics and Digital Infor-
mation, Edinburgh Napier University for creating and maintaining the official
Evo* 2013 website, and A. Şima Etaner-Uyar from the Department of Computer
Engineering, Istanbul Technical University, for being responsible for Evo* 2013
publicity.

We especially want to express our genuine gratitude to Jennifer Willies of the
Institute for Informatics and Digital Innovation at Edinburgh Napier University,
UK. Her dedicated and continued involvement in Evo* since 1998 has been and
remains essential for the image, status, and unique atmosphere of this series of
events.

April 2013 Krzysztof Krawiec
Alberto Moraglio

Ting Hu
A. Şima Etaner-Uyar

Bin Hu

Organization

Administrative details were handled by Jennifer Willies, Edinburgh Napier Uni-
versity, Institute for Informatics and Digital Innovation, Scotland, UK.

Organizing Committee

Program Co-chairs

Krzysztof Krawiec Poznan University of Technology, Poland
Alberto Moraglio University of Birmingham, UK

Publication Chair

Ting Hu Dartmouth College, USA

Publicity Chair

A. Şima Etaner-Uyar Istanbul Technical University, Turkey

Local Chair

Bin Hu Vienna University of Technology, Austria

Program Committee

Alex Agapitos University College Dublin, Ireland
Lee Altenberg University of Hawaii at Manoa, USA
Lourdes Araujo UNED, Spain
R. Muhammad Atif Azad University of Limerick, Ireland
Wolfgang Banzhaf Memorial University of Newfoundland, Canada
Mohamed Bahy Bader University of Portsmouth, UK
Helio Barbosa LNCC / UFJF, Brazil
Anthony Brabazon University College Dublin, Ireland
Nicolas Bredeche Université Paris-Sud XI / INRIA / CNRS,

France
Stefano Cagnoni University of Parma, Italy
Pierre Collet LSIIT-FDBT, France
Ernesto Costa University of Coimbra, Portugal
Luis Da Costa Université Paris-Sud XI, France
Antonio Della Cioppa University of Salerno, Italy
Stephen Dignum University of Essex, UK

VIII Organization

Federico Divina Pablo de Olavide University, Spain
Marc Ebner Ernst-Moritz-Arndt Universität Greifswald,

Germany
Aniko Ekart Aston University, UK
Anna Esparcia-Alcazar S2 Grupo, Spain
Daryl Essam University of New South Wales, Australia
Francisco Fernandez de Vega Universidad de Extremadura, Spain
Gianluigi Folino ICAR-CNR, Italy
James A. Foster University of Idaho, USA
Christian Gagné Université Laval, Québec, Canada
Steven Gustafson GE Global Research, USA
Jin-Kao Hao LERIA, University of Angers, France
Simon Harding Memorial University of Newfoundland, Canada
Inman Harvey University of Sussex, UK
Malcolm Heywood Dalhousie University, Canada
Ting Hu Dartmouth College, USA
David Jackson University of Liverpool, UK
Colin Johnson University of Kent, UK
Tatiana Kalganova Brunel University, UK
Ahmed Kattan Um Alqura University, Saudi Arabia
Graham Kendall University of Nottingham, UK
Michael Korns Korns Associates, USA
Jan Koutnik IDSIA, Switzerland
Krzysztof Krawiec Poznan University of Technology, Poland
Jiri Kubalik Czech Technical University in Prague,

Czech Republic
William B. Langdon University College London, UK
Kwong Sak Leung The Chinese University of Hong Kong, China
John Levine University of Strathclyde, UK
Evelyne Lutton INRIA, France
Penousal Machado University of Coimbra, Portugal
Radek Matousek Brno University of Technology, Czech Republic
James McDermott University College Dublin, Ireland
Bob McKay Seoul National University, Korea
Nic McPhee University of Minnesota Morris, USA
Jorn Mehnen Cranfield University, UK
Julian Miller University of York, UK
Alberto Moraglio University of Birmingham, UK
Xuan Hoai Nguyen Hanoi University, Vietnam
Miguel Nicolau INRIA, France
Julio Cesar Nievola Pontificia Universidade Catolica do Parana,

Brazil
Michael O’Neill University College Dublin, Ireland
Una-May O’Reilly MIT, USA
Fernando Otero University of Kent, UK

Organization IX

Ender Ozcan University of Nottingham, UK
Andrew J. Parkes University of Nottingham, UK
Clara Pizzuti Institute for High Performance Computing and

Networking, Italy
Gisele Pappa Federal University of Minas Gerais, Brazil
Riccardo Poli University of Essex, UK
Thomas Ray University of Oklahoma, USA
Denis Robilliard Université Lille Nord de France, France
Marc Schoenauer INRIA, France
Lukas Sekanina Brno University of Technology, Czech Republic
Yin Shan Medicare Australia
Sara Silva INESC-ID Lisboa, Portugal
Moshe Sipper Ben-Gurion University, Israel
Alexei N. Skurikhin Los Alamos National Laboratory, USA
Terence Soule University of Idaho, USA
Lee Spector Hampshire College, USA
Ivan Tanev Doshisha University, Japan
Ernesto Tarantino ICAR-CNR, Italy
Jorge Tavares Microsoft, Germany
Theo Theodoridis University of Essex, UK
Leonardo Trujillo Instituto Tecnológico de Tijuana, Mexico
Leonardo Vanneschi Universidade Nova de Lisboa, Portugal, and

University of Milano-Bicocca, Italy
Sebastien Verel University of Nice-Sophia Antipolis/CNRS,

France
Katya Vladislavleva University of Antwerp, Belgium
Man Leung Wong Lingnan University, Hong Kong
Lidia Yamamoto University of Strasbourg, France
Mengjie Zhang Victoria University of Wellington, New Zealand

Table of Contents

Oral Presentations

Adaptive Distance Metrics for Nearest Neighbour Classification
Based on Genetic Programming . 1

Alexandros Agapitos, Michael O’Neill, and Anthony Brabazon

Controlling Bloat through Parsimonious Elitist Replacement and
Spatial Structure . 13

Grant Dick and Peter A. Whigham

Generation of VNS Components with Grammatical Evolution for
Vehicle Routing . 25

John H. Drake, Nikolaos Kililis, and Ender Özcan

Understanding Expansion Order and Phenotypic Connectivity in
πGE . 37

David Fagan, Erik Hemberg, Michael O’Neill, and Sean McGarraghy

PhenoGP: Combining Programs to Avoid Code Disruption 49
Cyril Fonlupt and Denis Robilliard

Reducing Wasted Evaluations in Cartesian Genetic Programming 61
Brian W. Goldman and William F. Punch

Balancing Learning and Overfitting in Genetic Programming with
Interleaved Sampling of Training Data . 73

Ivo Gonçalves and Sara Silva

Automated Design of Probability Distributions as Mutation Operators
for Evolutionary Programming Using Genetic Programming 85

Libin Hong, John Woodward, Jingpeng Li, and Ender Özcan

Robustness and Evolvability of Recombination in Linear Genetic
Programming . 97

Ting Hu, Wolfgang Banzhaf, and Jason H. Moore

On the Evolvability of a Hybrid Ant Colony-Cartesian Genetic
Programming Methodology . 109

Sweeney Luis and Marcus Vinicius dos Santos

Discovering Subgroups by Means of Genetic Programming 121
José M. Luna, José Raúl Romero, Cristóbal Romero, and
Sebastián Ventura

XII Table of Contents

Program Optimisation with Dependency Injection . 133
James McDermott and Paula Carroll

Searching for Novel Classifiers . 145
Enrique Naredo, Leonardo Trujillo, and Yuliana Mart́ınez

Learning Reusable Initial Solutions for Multi-objective Order
Acceptance and Scheduling Problems with Genetic Programming 157

Su Nguyen, Mengjie Zhang, Mark Johnston, and Kay Chen Tan

Automated Problem Decomposition for the Boolean Domain with
Genetic Programming . 169

Fernando E.B. Otero and Colin G. Johnson

A Multi-objective Optimization Energy Approach to Predict the
Ligand Conformation in a Docking Process . 181

Angelica Sandoval-Perez, David Becerra, Diana Vanegas,
Daniel Restrepo-Montoya, and Fernando Nino

Semantic Bias in Program Coevolution . 193
Tom Seaton, Julian F. Miller, and Tim Clarke

A New Implementation of Geometric Semantic GP and Its Application
to Problems in Pharmacokinetics . 205

Leonardo Vanneschi, Mauro Castelli, Luca Manzoni, and Sara Silva

Posters

A Grammar-Guided Genetic Programming Algorithm for Multi-Label
Classification . 217

Alberto Cano, Amelia Zafra, Eva L. Gibaja, and Sebastián Ventura

Global Top-Scoring Pair Decision Tree for Gene Expression Data
Analysis . 229

Marcin Czajkowski and Marek Kretowski

Asynchronous Evaluation Based Genetic Programming: Comparison of
Asynchronous and Synchronous Evaluation and Its Analysis 241

Tomohiro Harada and Keiki Takadama

How Early and with How Little Data? Using Genetic Programming to
Evolve Endurance Classifiers for MLC NAND Flash Memory 253

Damien Hogan, Tom Arbuckle, and Conor Ryan

Examining the Diversity Property of Semantic Similarity Based
Crossover . 265

Tuan Anh Pham, Quang Uy Nguyen, Xuan Hoai Nguyen, and
Michael O’Neill

Author Index . 277

Adaptive Distance Metrics

for Nearest Neighbour Classification
Based on Genetic Programming

Alexandros Agapitos, Michael O’Neill, and Anthony Brabazon

Financial Mathematics and Computation Research Cluster
Complex and Adaptive Systems Laboratory

University College Dublin, Ireland
{alexandros.agapitos,m.oneill,anthony.brabazon}@ucd.ie

Abstract. Nearest Neighbour (NN) classification is a widely-used, ef-
fective method for both binary and multi-class problems. It relies on
the assumption that class conditional probabilities are locally constant.
However, this assumption becomes invalid in high dimensions, and se-
vere bias can be introduced, which degrades the performance of the
method. The employment of a locally adaptive distance metric becomes
crucial in order to keep class conditional probabilities approximately uni-
form, whereby better classification performance can be attained. This
paper presents a locally adaptive distance metric for NN classification
based on a supervised learning algorithm (Genetic Programming) that
learns a vector of feature weights for the features composing an instance
query. Using a weighted Euclidean distance metric, this has the effect of
adaptive neighbourhood shapes to query locations, stretching the neigh-
bourhood along the directions for which the class conditional probabil-
ities don’t change much. Initial empirical results on a set of real-world
classification datasets showed that the proposed method enhances the
generalisation performance of standard NN algorithm, and that it is a
competent method for pattern classification as compared to other learn-
ing algorithms.

1 Introduction

In a classification problem, we are given C classes and N training observations.
Each training observation x is usually a vector of d features x = (x1, . . . , xd) ∈ Rd

along with the known class labels y ∈ {1, 2, . . . , C}. The task is to predict the
class label of a given query instance. The k Nearest Neighbour (kNN) classifi-
cation technique, a popular instance-based learning method [14], was originally
proposed by Fix and Hodges in 1951 [6]. It determines the k nearest neighbours
(“closeness” is usually defined in terms of a distance metric on the Euclidean
space) of instance query q, and then predicts the class label of q as the most
frequent one occurring among the k neighbours. In contrast to learning meth-
ods that induce a function approximation designed to perform well in the entire

K. Krawiec et al. (Eds.): EuroGP 2013, LNCS 7831, pp. 1–12, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 A. Agapitos, M. O’Neill, and A. Brabazon

instance space, the kNN method simply stores the training examples (memory-
based classification); generalisation beyond these examples is postponed until a
new instance must be classified.

An important issue that hinders the application of kNN to high-dimensional
datasets is the learning algorithm’s inductive bias – the set of assumptions that
a learner uses to predict outputs given inputs that it has not encountered [14]
– which assumes that the class conditional probabilities are roughly locally con-
stant, that is, the classification of an instance query q will be most similar to the
classification of other instances that are nearby in Euclidean space. This assump-
tion becomes false in high-dimensional spaces, where the nearest neighbours of
a point can be very far away, introducing severe bias in the estimates [18].

The method we are developing in this paper deals with the problem of kNN’s
inductive bias, and falls into the family of methods that employ locally adaptive
metrics in order to maintain the class conditional probabilities approximately
uniform in the neighbourhood of an instance query. Genetic programming (GP)
is employed to learn a model that outputs a real-valued vector, whose com-
ponents represent individual feature relevances for single features composing a
query pattern. This vector is then transformed into a vector of feature weights
allowing for a weighted Euclidean distance metric computation, thus enabling a
kNN neighbourhood to adapt its shape in different parts of the feature space.
This results in enhanced classification performance. We would like to point out
that while there exists a plethora of methods for dealing with the generalisation
of models induced by GP alone (some studies are found in [1–3, 13, 17, 19, 20],
this work focusses on hybridising GP and kNN in an attempt to learn even
better-generalising models that exploit the power of both learning algorithms.

The rest of the paper is organised as follows. Section 2 formalises the inef-
ficiency that can arise from kNN’s inductive bias, and motivates the need to
introduce adaptive distance metrics when forming neighbourhoods. Hence, it
outlines previous research efforts towards that goal. Section 3 presents the pro-
posed method for dealing with the problem of locally adaptive distance metrics,
outlines the experiment setup, the real-world application datasets, and the learn-
ing algorithms used to compare against the proposed method. Section 4 analyses
the experimental results, and finally Section 5 draws our conclusions and sketches
future work.

2 The Need for Distance Metric Adaptation

Formally, in a kNN classification problem, the learner is presented with N train-
ing examples x ∈ Rd, each mapped to a corresponding class label y, y ∈
{1, 2, . . . , C}. It is assumed that there exists an unknown probability distri-
bution P (x, y) that generated the training data. In order to predict the class
label of an instance query q, we need to estimate the class posterior probabil-
ities {P (c|q)}Cc=1. kNN methods are based on the assumption that the target
function is smooth, meaning that the class posterior probabilities P (c|q) are lo-
cally constant [4]. That is: P (c|q + δq) � P (c|q), for ‖δq‖ small enough. Then,

Adaptive Distance Metrics for Nearest Neighbour Classification 3

P (c|q) � ((
∑

x∈N(q) P (c|x)/|N(q)|)), where N(q) is a neighbourhood of q that

contains points x that are “close” to q, and |N(q)| denotes the number of points
in N(q). This motivates the estimate:

P̂ (c|q) =
∑N

i=1 1(xi ∈ N(q))1(yi = c)∑N
i=1 1(xi ∈ N(q))

(1)

where 1(·) in an indicator function that returns 1 if its argument is true, and 0
otherwise.

The assumption of locally uniform class conditional probabilities becomes
false when the instance query approaches the class boundaries. We present an
example that explains how the choice of a distance measure becomes crucial
in determining the outcome of kNN classification. Consider the binary, linearly
separable dataset in Figure 1(a), where patterns from each class are represented
by the green and yellow circles respectively. Each input pattern resides in a
2-dimensional feature space formed by the horizontal and vertical axes X and
Y . The class boundary is represented by the black vertical line and is parallel
to the Y axis. The new query to be classified using a 5-NN classifier is shown
with the black solid dot. The commonly used Euclidean distance metric assigns
equal weight to individual pair-wise feature squared differences, implying that
the input space is isotropic or homogenous [14]. This distance metric results in
hyper-spherical neighbourhoods – in our 2-dimensional feature space is denoted
by the circular strip. We note that the 5-NN neighbourhood has extended into
the red-class region, and is dominated by points of the wrong class (3 from the
red class and 2 from the green class), thereby causing a misclassification.

If we carefully inspect the dataset in Figure 1(a), we will observe that the class
conditional probabilities vary only in the horizontal direction (i.e. a slight move
along the horizontal axis may change the class label). In lieu of this knowledge,
we should constrict the neighbourhood in the horizontal direction, and elongate
it along the vertical direction (direction where the class conditional probabilities
do not change), as shown by the vertical strip in the example. This will reduce
the bias of the estimate, and leave the variance the same (the neighbourhood is
still based on the same number of 5 points). As a result, we observe that the
distance metric should not assign equal weights or the same proportions in all
directions of the feature space; the weights/proportions during distance compu-
tation are query-specific. Capturing such information is of great importance to
kNN classification in high-dimensional feature spaces. Figure 1(b) shows exam-
ples of different neighbourhood shapes required in different parts of the input
space, ranging from circular neighbourhoods, to elliptical ones, and contrasts
them against kNN neighbourhoods formed using a standard, unweighted, Eu-
clidean distance metric. Note that the amount of elongation/restriction decays
as the instance query moves further away from areas where a decision bound-
ary would lie. The above examples call for locally adapting the distance metric
so that the resulting neighbourhood is elongated along the axis direction that
provides less class-discrimination information, and is constricted in the opposite
case.

4 A. Agapitos, M. O’Neill, and A. Brabazon

(a) (b)

Fig. 1. (a) The vertical line represents the class boundaries between classes red and
green. The vertical strip denotes the 5-NN region of a neighbourhood for the query in-
stance (solid black dot), which is constricted along the horizontal axis of the feature
space. Figure(a) is adapted from the figure found in page 476 in [18]. (b) Different neigh-
bourhood shapes required to minimise the bias of estimates. The little triangles are the
instance query points to be classified. The navy-blue ellipses represent the adaptive 6-NN
neighbourhoods, while the orange circles are the standard 6-NN neighbourhoods. Note
how the shape varies with instance query locations in the 2-dimensional feature space.

2.1 Previous Work

There has been a variety of studies aiming at locally adapting the distance met-
ric so that a neighbourhood of approximately constant a posteriori probability
can be produced. The techniques proposed in [5, 8, 10, 12, 15, 23] are based
on estimating feature relevance locally at each instance query. The locally esti-
mated feature relevance leads to a weighted metric for computing the distance
between the instance query and the training data. As a result, neighbourhoods
get constricted along most relevant dimensions, and elongated along less impor-
tant ones. Although these methods improve upon the original kNN algorithm,
the time-complexity cost of such improvement is high due to the local feature
relevance being estimated on the fly with costly procedures whenever a new
query is to be classified. This makes it difficult to scale up in large datasets.

An improvement to this time inefficiency is presented in the work of [4] that
utilises support vector machines (SVMs) to estimate local feature weighting. The
global decision boundary is determined offline, leaving only local refinements to
be performed online. The proposed technique offers accuracy improvements over
the SVMs alone. Additional work [21] attempted to address the time inefficiency
issue in online local feature relevance estimation by introducing a very simple
locally adaptive distance metric that normalises the ordinary Euclidean or Man-
hattan distance from an instance query to each training example by the closest
distance between the corresponding training example to training examples of a
different class. Results showed comparable performance to SVMs.

Adaptive Distance Metrics for Nearest Neighbour Classification 5

In addition to the works for determining local distance metrics, there has been
considerable research interest in directly learning distance metrics from training
examples. The work of [9] proposed a method for learning a Mahalanobis dis-
tance measure by directly maximising a stochastic variant of the leave-one-out
kNN classification performance on the training data. In [22] the authors devel-
oped a method for inducing a Mahalanobis distance metric using semidefinite
programming. Both of these methods induce a global distance metric that is
employed in every kNN application irrespective of the location of the instance
query.

3 Methods

3.1 Supervised Learning of Local Feature Weights

The method we are proposing revolves around the general notion of adapting
the shape of the neighbourhood via the computation of a weighted Euclidean
distance metric. As discussed in Section 2, a “closeness” criterion that is based
on a weighted Euclidean distance metric computation has the effect of stretch-
ing/elongating the axis of the feature space. The proposed technique has the
potential of scaling up to large datasets, by learning offline a model that outputs
a real-valued vector, whose components represent individual feature relevances
for every feature describing a query pattern. These relevance values can then be
transformed to weights associated with each pair-wise squared feature-value dif-
ference in a weighted Euclidean distance computation. Note that the technique
is query-based because the learned model outputs a vector of feature relevances
for a particular instance query.

Formally, assume that we want to classify patterns defined in a d-dimensional
feature space. Each pattern x is a d-dimensional vector of real-valued features,
that is, x = (x1, . . . , xd). For every pattern there is an associated class label y,
y ∈ {1, 2, . . . , C}. The learning task is to approximate a function h(x) that maps
an input vector representing a pattern into an output vector of feature relevances
denoted as x′ = (x′

1, . . . , x
′
d) driven by an error measure that concerns the classi-

fication accuracy as described below. Using the output vector (x′
1, . . . , x

′
d) from

h(x), a measure of relative relevance can be given using the following exponential
weighting scheme:

wi(x) =
exp(x′

i)∑d
i=1 exp(x

′
i)

(2)

We follow [4] and adopt the exponential weighting scheme as it has been shown
to be more sensitive in local feature relevance, and in general results in better
performance improvement. The weights from Equation 2 can then be associated
with features in a weighted Euclidean distance computation:

D(x, y) =

√√√√ d∑
i=1

wi(xi − yi)2 (3)

6 A. Agapitos, M. O’Neill, and A. Brabazon

This adaptive distance metric can then be used in the kNN algorithm to form
a neighbourhood around query pattern x, and classify it accordingly. The learn-
ing algorithm needs to induce a model that uncovers the relationship between
an output vector of feature relevances x′ = (x′

1, . . . , x
′
d) and the classification

accuracy (defined as the number of correct classifications divided by the number
of examples in a learning set) of the kNN algorithm that employs the adaptive
distance metric accruing from the use of x′ = (x′

1, . . . , x
′
d). The goal is to learn to

output feature relevance vectors x′ that result in high classification accuracy. In
summary, once a model for assigning feature weights has been learned, the pro-
posed system is a two-layer classifier: given input x, in the first layer we use the
learned model to induce feature weights for x, and in the second layer we invoke
the standard kNN classifier that employs the weighted Euclidean distance.

3.2 Multiple-Output Program Representation for GP

We used a supervised learning algorithm, Genetic Programming (GP) [16], to
learn such a model. The model needs to output a vector of feature relevances,
and for that we used a program representation that was introduced in [24] by
the name of a modi expression-tree. A modi program representation can simu-
late the effect of a directed acyclic graph, and consists of two main parts: (a) an
expression-tree, and (b) an associated vector for holding outputs, as shown in
Figure 2. Similar to standard GP, a modi tree has function nodes representing
operations (i.e. arithmetic, conditionals, trigonometry), and terminal nodes rep-
resenting variables and constants. However, unlike the standard expression-tree
structure, which outputs a single value through the root, a modi program utilises
its output vector, hence producing multiple values, each of which corresponds
to a single feature relevance in our case. The two parts of a modi program are
connected through some special function nodes, called modi nodes (grey nodes
in Figure 2). A modi node has two roles: (1) it updates an element in the output
vector that the node is pre-associated with, by adding its node value to the value
of the vector element; (2) it passes the value of its right child node to its parent
node, so the expression-tree structure can be preserved.

The output vector is in effect an array of memory locations where modi nodes
are allowed to write into. Figure 2 shows what happens when an example modi
program is evaluated. Before the evaluation starts, the output vector’s elements
are all initialised with ones. During the evaluation, each non-modi node passes
its value to its parent, exactly the same way as in standard GP. On the other
hand, each modi node firstly uses its node value to update the output vector
(shown as curved solid arrows), and then passes on the value of its right child to
its parent node (shown as dashed arrows). The side-effect of program evaluation
is the update of the output vector – we are not concerned with the value returned
at the root of the tree. The value of each output vector’s element corresponds
to a pattern feature’s relevance, so starting from the value of one, the higher a
value at the end of the program evaluation procedure, the higher the feature’s

Adaptive Distance Metrics for Nearest Neighbour Classification 7

relevance for a particular input pattern. Once the values of the output vector
are set, the exponential weighting scheme of Equation 2 is used to transform
each vector element into a weight that will be subsequently used in a weighted
Euclidean distance.

Fig. 2. Example illustration of the way the output vector, representing feature rele-
vances, is updated through the evaluation of a modi program, and how this is trans-
formed into a set of feature weights w that will be used in the weighted Euclidean
distance computation (Equation 3) for determining the neighbourhood during kNN
classification. Here we are considering a pattern with four features [X,Y, Z,W] =
[−1.0, 2.0, 1.6,−2.0]. The output vector allocates a cell index for each of the four
features; these are indices 0, 1, 2, 3 for features X, Y , Z, W respectively. Prior to
program evaluation, all vector elements are initialised to 1.0. Feeding the input vector
[−1.0, 2.0, 1.6,−2.0] into the modi program produces the output vector [10.7, 3.9, 1.0,
7.7]. Note that the value of the third vector element resulted in a negative number
(-1.0 shown in red font), and has been set back to the lower bound of 1.0. Invoking
Equation 2 using the output vector we get a vector of weights w=[0.951, 0.001, 5.8E-5,
0.047] for features X,Y, Z,W respectively. (The figure is adapted from the figure found
in page 4 of [24]).

The detailed method for initialising modi trees can be found in [24]. It is
worth noting that for the case of intermediate nodes, the probability of a node
being set to a modi node is governed by a parameter μ ∈ [0, 1], the modi rate.
In addition, we are constraining the values that can be held by vector elements
within the range of [1.0, 100.0]. During program execution, vector values are
incremented by the value returned from a modi node, and this can result in
certain vector cell indices being assigned very large values – a situation that can
degrade the performance of the exponential weighting scheme by zeroing certain
feature weights. A very simple check is employed that sets the value of a vector
cell back to the lower bound of 1.0 if the last update resulted in a value that
was less than the lower bound, and sets the value to the upper bound of 100.0
if the last update resulted in a value that was bigger than the upper bound.

8 A. Agapitos, M. O’Neill, and A. Brabazon

3.3 Experiment Design

In the experiments we used eight real-world datasets (Table 2) obtained from
the UCI Machine Learning repository [7]. These were carefully picked to test
our method in problems with high-dimensional input spaces. In all datasets,
input values were standardised to have zero mean and unit variance. For each
dataset we compared the performance of our system AdaptiveKNN against the
performance of other learning algorithms via stratified 10-fold or 5-fold cross
validation (in case data were limited for a particular dataset – see Table 2).

Table 1. GP system setup

EA used in GP system elitist, generational, modi expression-tree representation
modi rate 0.4
Function set +, −, ∗, % (protected), sin, cos, ex, log, sqrt
Terminal set feature values, 10 random constants in [0.0, 1.0]
No. of generations 51
Population size 100
Tournament size 2
Tree creation ramped half-and-half (depths of 2 to 6)
Max. tree depth 20
Subtree crossover 30% (90% inner nodes, 10% leaf-nodes)
Subtree mutation 40%
Point mutation 30%
Fitness function classification accuracy

Table 2. UCI Machine Learning Datasets

Dataset Size Classes Input dimensionality Cross-validation folds
Australian credit appr. (Statlog) 690 2 14 10

Sonar (Mines vs. Rocks) 208 2 60 10
Ionosphere 351 2 33 10

Vehicle Silhouettes (Statlog) 946 4 18 10
Heart (Stallog) 270 2 13 10

Hepatitis 155 2 19 5
Vote 435 2 16 10
Glass 214 7 9 5

The first stage of applying AdaptiveKNN to classification consists of learning
a model of feature weights using GP. For each test fold we treat the remaining
folds as our learning set. This learning set is further divided into two disjoint sets
of training and validation with proportions of 80% and 20% respectively. The
training set is used to fit the model, while the validation set is used for model
selection at the end of an evolutionary run. In the second stage, after learning
the model, we can assess the generalisation error using the instance queries of
the test fold, and using the data in the remaining folds as a memory in the
standard kNN methodology. Table 1 summarises the setup of the GP system.

We contrasted the performance of AdaptiveKNN against several classification
algorithms implemented in the WEKA software [11]:

1. kNN (StdKNN) using the standard Euclidean distance metric. Value of pa-
rameter k for number of neighbours was determined via cross validation.

Adaptive Distance Metrics for Nearest Neighbour Classification 9

2. SVM with Radial Basis Function kernel (SVM-RBF) trained with sequential

minimal optimisation. Values of parameters γ in K(x, c) = e−γ‖x−c‖2

, and c
for soft-margin were determined via cross validation.

3. SVM with Polynomial kernel (SVM-POLY) trained with sequential minimal
optimisation. Values of parameters c for soft-margin, and n for polynomial
order were determined via cross validation.

4. Naive Bayesian classifier (NaiveBayes).
5. Gaussian Radial Basis Function Network (RBFN). Values of parameters σ2

in the Gaussian kernel, and k in k-means clustering were determined via
cross validation.

6. Feed forward multilayer perceptron (MLP) trained with back-propagation.
Network structure determined via cross validation.

7. C4.5 decision tree method (with post-pruning).
8. Classification and Regression Tree (CART) method (with post-pruning).

4 Results

For training the AdaptiveKNN, we performed 30 independent cross-validated
runs with each dataset in order to account for the stochastic nature of the GP
learning algorithm. The same number of runs were performed for MLP (after
parameter tuning) that also exhibits a stochastic element. Thus, is order to cal-
culate cross-validated performance in Table 3, we used the best models out of 30
models learned for each fold, and then average their test-fold performances. For
the remaining of the learning algorithms, we first performed parameter tuning
and then reported their cross-validated accuracies. Table 3 shows that Adap-
tiveKNN achieves the best performance in five out of eight datasets. In two
cases (Ionosphere and Sonar datasets) it obtained the second best performance
following the SVM-RBF. However, in the case of Vehicles dataset, AdaptiveKNN
achieved the lowest performance as compared to SVMs and MLP, and it was only
comparable with the tree-based methods C4.5 and CART. Looking at the gen-
eralisation performance enhancement that AdaptiveKNN offers over StdKNN,
we found that this reaches the level of 13.6% (averaged among datasets), with
the lowest percentage increases of 3% and 1% obtained for Australian credit and
Vehicles datasets respectively. Finally, Figure 3 contrasts the cross-validated

Table 3. Cross-validated Classification Accuracies

Australian credit Sonar Ionosphere Vehicles Heart Hepatitis Vote Glass
AdaptiveKNN 89.1 88.6 94.5 73.4 88.5 97.8 99.2 78.3

StdKNN 86.5 63.6 84.0 72.3 84.4 84.4 92.9 61.7
NaiveBayes 77.1 67.8 82.6 44.7 83.3 87.5 92.7 49.5

RBFN 85.8 87.5 93.7 71.5 84.1 92.5 97.0 70.1
MLP 84.9 82.2 91.4 82.5 78.1 81.2 94.7 67.3

SVM-POLY 86.4 84.6 91.7 84.5 84.8 86.2 97.0 71.5
SVM-RBF 85.5 89.4 94.8 84.9 83.7 86.2 97.0 70.1

C4.5 85.4 71.1 91.4 72.6 76.7 86.2 96.5 67.3
CART 85.6 71.1 89.7 69.4 78.5 82.5 97.0 70.6

10 A. Agapitos, M. O’Neill, and A. Brabazon

5 10 15 20 25 50
0.8

0.85

0.9

K neighbours

C
ro

ss
−

va
lid

at
ed

 c
la

ss
ifi

ca
tio

n
ac

c.

Adaptive kNN
Standard kNN

(a)

5 10 15 20 25 50
0.6

0.65

0.7

0.75

0.8

0.85

0.9

K neighbours

C
ro

ss
−

va
lid

at
ed

 c
la

ss
ifi

ca
tio

n
ac

c.

Adaptive kNN
Standard kNN

(b)

5 10 15 20 25 50
0.7

0.75

0.8

0.85

0.9

0.95

1

K neighbours

C
ro

ss
−

va
lid

at
ed

 c
la

ss
ifi

ca
tio

n
ac

c.

Adaptive kNN
Standard kNN

(c)

5 10 15 20 25 50

0.65

0.7

0.75

K neighbours

C
ro

ss
−

va
lid

at
ed

 c
la

ss
ifi

ca
tio

n
ac

c.

Adaptive kNN
Standard kNN

(d)

5 10 15 20 25 50
0.8

0.82

0.84

0.86

0.88

0.9

K neighbours

C
ro

ss
−

va
lid

at
ed

 c
la

ss
ifi

ca
tio

n
ac

c.

Adaptive kNN
Standard kNN

(e)

5 10 15 20 25 50
0.4

0.5

0.6

0.7

0.8

K neighbours

C
ro

ss
−

va
lid

at
ed

 c
la

ss
ifi

ca
tio

n
ac

c.

Adaptive kNN
Standard kNN

(f)

Fig. 3. Cross-validated classification accuracies at different values of k neighbours. (a)
Australian credit; (b) Sonar; (c) Ionosphere; (d) Vehicles; (e) Heart; (f) Glass.

classification accuracies at different values of k neighbours for AdaptiveKNN
and StdKNN in a sample of datasets. We observe that AdaptiveKNN performs
better that StdKNN for all values of k considered.

5 Conclusion

In this work we combined (a) kNN, an instance-based learning algorithm that
constructs a local approximation to the target function which then applies to the
neighbourhood of each individual query instance, with (b) GP, a very powerful
global (i.e. fits a model to the entire instance space) function approximator that
is able to learn local relative feature relevances from examples. Transforming
these into adaptive distance metrics for use with kNN allows a complex target
function to be described as a collection of less complex approximations that are
locally tuned to achieve better classification performance.

While there is a cost associated with effective training of GP models (i.e.
evolutionary algorithm’s parameter tuning through cross-validation, actual cost
of performing a significant amount of runs to account for GP’s stochastic na-
ture), this process is performed offline once (in contrast to other locally adaptive
algorithms that require a considerable amount of online computation), and sub-
sequently allows for a time-efficient computation of local weights. This enhances
scalability to large datasets.

Initial empirical results on a collection of real-world datasets showed that (a)
the gain in performance over the simple kNN method outweighs this extra cost
of offline model learning, and that (b) the proposed method is competent in
pattern classification as opposed to other learning algorithms.

Adaptive Distance Metrics for Nearest Neighbour Classification 11

There are several avenues for further development of AdaptiveKNN. First, we
are planing to compare it against other locally adaptive kNN methods found in
literature. Our GP system uses a program representation that hasn’t received
much attention from the GP community – it falls under the general category of
programs with side-effects. We are currently working on optimising two crucial
aspects of the system (i.e. modi rate, variation operators tailored to this program
presentation).

On a more general note, the local feature relevances implicitly touched on the
issue of feature selection, which can be essentially performed by zeroing certain
feature weighs. Adaptive distance metrics for kNN classifiers consist an approach
to ameliorate the problem arising from the curse of dimensionality by performing
local dimensionality reduction. We plan to investigate this in our future research.

Acknowledgement. This publication has emanated from research conducted
with the financial support of Science Foundation Ireland under Grant Number
08/SRC/FM1389.

References

1. Agapitos, A., Brabazon, A., O’Neill, M.: Controlling Overfitting in Symbolic Re-
gression Based on a Bias/Variance Error Decomposition. In: Coello Coello, C.A.,
Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part
I. LNCS, vol. 7491, pp. 438–447. Springer, Heidelberg (2012)

2. Agapitos, A., O’Neill, M., Brabazon, A.: Evolutionary Learning of Technical Trad-
ing Rules without Data-Mining Bias. In: Schaefer, R., Cotta, C., Ko�lodziej, J.,
Rudolph, G. (eds.) PPSN XI, Part I. LNCS, vol. 6238, pp. 294–303. Springer,
Heidelberg (2010)

3. Agapitos, A., O’Neill, M., Brabazon, A., Theodoridis, T.: Maximum Margin Deci-
sion Surfaces for Increased Generalisation in Evolutionary Decision Tree Learning.
In: Silva, S., Foster, J.A., Nicolau, M., Machado, P., Giacobini, M. (eds.) EuroGP
2011. LNCS, vol. 6621, pp. 61–72. Springer, Heidelberg (2011)

4. Domeniconi, C., Gunopulos, D., Peng, J.: Large margin nearest neighbor classifiers.
IEEE Transactions on Neural Networks 16(4), 899–909 (2005)

5. Domeniconi, C., Peng, J., Gunopulos, D.: Locally adaptive metric nearest-
neighbor classification. IEEE Transactions on Pattern Analysis and Machine In-
telligence 24(9), 1281–1285 (2002)

6. Fix, E., Hodges Jr., J.L.: Discriminatory analysis. nonparametric discrimination:
Consistency properties. International Statistical Review 57(3), 238–247 (1989)

7. Frank, A., Asuncion, A.: UCI machine learning repository (2010),
http://archive.ics.uci.edu/ml

8. Friedman, J.H.: Flexible metric nearest neighbour classification. Tech. rep., De-
partment of Statistics. Stanford University (1994)

9. Goldberger, J., Roweis, S., Hinton, G., Salakhutdinov, R.: Neighbourhood com-
ponents analysis. In: Advances in Neural Information Processing Systems 17, pp.
513–520. MIT Press (2004)

10. Guo, R., Chakraborty, S.: Bayesian adaptive nearest neighbor. Stat. Anal. Data
Min. 3(2), 92–105 (2010)

http://archive.ics.uci.edu/ml

12 A. Agapitos, M. O’Neill, and A. Brabazon

11. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The
weka data mining software: An update. SIGKDD Explorations 11(1) (2009)

12. Hastie, T., Tibshirani, R.: Discriminant adaptive nearest neighbor classification.
IEEE Trans. Pattern Anal. Mach. Intell. 18(6), 607–616 (1996)

13. Kattan, A., Agapitos, A., Poli, R.: Unsupervised Problem Decomposition Using
Genetic Programming. In: Esparcia-Alcázar, A.I., Ekárt, A., Silva, S., Dignum, S.,
Uyar, A.Ş. (eds.) EuroGP 2010. LNCS, vol. 6021, pp. 122–133. Springer, Heidelberg
(2010)

14. Mitchell, T.: Machine Learning. McGraw-Hill (1997)
15. Peng, J., Heisterkamp, D.R., Dai, H.K.: Lda/svm driven nearest neighbor classifi-

cation. IEEE Transactions on Neural Networks 14(4), 940–942 (2003)
16. Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming.

Lulu Enterprises, UK Ltd (2008)
17. Theodoridis, T., Agapitos, A., Hu, H.: A gaussian groundplan projection area

model for evolving probabilistic classifiers. In: Genetic and Evolutionary Compu-
tation Conference, GECCO 2011, Dublin, July 12-16. ACM (2011)

18. Trevor, H., Robert, T., Jerome, F.: The Elements of Statistical Learning, 2nd edn.
Springer (2009)

19. Tuite, C., Agapitos, A., O’Neill, M., Brabazon, A.: A Preliminary Investigation
of Overfitting in Evolutionary Driven Model Induction: Implications for Financial
Modelling. In: Di Chio, C., Brabazon, A., Di Caro, G.A., Drechsler, R., Farooq,
M., Grahl, J., Greenfield, G., Prins, C., Romero, J., Squillero, G., Tarantino, E.,
Tettamanzi, A.G.B., Urquhart, N., Uyar, A.Ş. (eds.) EvoApplications 2011, Part
II. LNCS, vol. 6625, pp. 120–130. Springer, Heidelberg (2011)

20. Tuite, C., Agapitos, A., O’Neill, M., Brabazon, A.: Early stopping criteria to coun-
teract overfitting in genetic programming. In: Genetic and Evolutionary Compu-
tation Conference, GECCO 2011, Dublin, July 12-16. ACM (2011)

21. Wang, J., Neskovic, P., Cooper, L.N.: Improving nearest neighbor rule with a simple
adaptive distance measure. Pattern Recogn. Lett. 28(2), 207–213 (2007)

22. Weinberger, K.Q., Saul, L.K.: Distance metric learning for large margin nearest
neighbor classification. J. Mach. Learn. Res. 10, 207–244 (2009)

23. Zhang, G.-J., Du, J.-X., Huang, D.-S., Lok, T.-M., Lyu, M.R.: Adaptive Nearest
Neighbor Classifier Based on Supervised Ellipsoid Clustering. In: Wang, L., Jiao,
L., Shi, G., Li, X., Liu, J. (eds.) FSKD 2006. LNCS (LNAI), vol. 4223, pp. 582–585.
Springer, Heidelberg (2006)

24. Zhang, Y., Zhang, M.: A multiple-output program tree structure in genetic pro-
gramming. In: Mckay, R.I., Cho, S.B. (eds.) Proceedings of the Second Asian-
Pacific Workshop on Genetic Programming, Cairns, Australia, p. 12

Controlling Bloat through Parsimonious Elitist

Replacement and Spatial Structure

Grant Dick and Peter A. Whigham

Department of Information Science,
University of Otago,

Dunedin, New Zealand
grant.dick@otago.ac.nz

Abstract. The concept of bloat — the increase of program size with-
out a corresponding increase in fitness — presents a significant drawback
to the application of genetic programming. One approach to controlling
bloat, dubbed spatial structure with elitism (SS+E), uses a combination
of spatial population structure and local elitist replacement to implicitly
constrain unwarranted program growth. However, the default implemen-
tation of SS+E uses a replacement scheme that prevents the introduction
of smaller programs in the presence of equal fitness. This paper intro-
duces a modified SS+E approach in which replacement is done under a
lexicographic parsimony scheme. The proposed model, spatial structure
with lexicographic parsimonious elitism (SS+LPE), exhibits an improve-
ment in bloat reduction and, in some cases, more effectively searches for
fitter solutions.

1 Introduction

A central component of genetic programming (GP) is the use of variable-length
representations, which frees the end-user from completely constraining the struc-
ture of the problem prior to search [5]. A consequence of using variable-length
representations is the phenomenon of bloat, which is best described as the ten-
dency for programs evolved through GP to increase in size at a rate dispropor-
tionate to their increase in fitness. Managing bloat is therefore important for the
successful application of GP to most problems. However, most solutions to the
control of bloat require problem-specific calibration to achieve optimal perfor-
mance, implying the need for a priori knowledge of the problem that may not
be available. While there has been some work exploring generalised parameters
for prominent bloat control methods [7], there remains a need for effective bloat
control methods that do not require excessive problem-specific calibration. One
such method is the recently proposed SS+E method, which uses a combination
of spatial population structure and local elitist replacement to implicitly con-
trol bloat [18]. While the SS+E method has demonstrated useful bloat control
properties, its elitist replacement scheme precludes individuals from entering
the population when they present no change in fitness but possess a smaller
program size. The goal of this paper is to explore a modification to SS+E that

K. Krawiec et al. (Eds.): EuroGP 2013, LNCS 7831, pp. 13–24, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

14 G. Dick and P.A. Whigham

incorporates lexicographic parsimony [6] into the replacement scheme, thereby
allowing smaller individuals with equal fitness to enter the population. The re-
sults presented suggest a consistent reduction in program size over SS+E on a
range of problems, without compromising the fitness of evolved programs. In-
deed, on some problems, the evolved programs are in fact fitter using the revised
replacement scheme.

The rest of the paper is structured as follows: §2 presents an overview of bloat
and methods used to control code growth in GP; §3 outlines the SS+Emodel, and
introduces the proposed method using lexicographic parsimony within replace-
ment (SS+LPE); §4 discusses the empirical behaviour of the proposed method
in relation to its counterparts; finally, §5 draws conclusions and proposes some
directions for future work.

2 Bloat Control in Genetic Programming

Initial work on GP attempted to manage bloat by setting an upper bound on
the depth of evolved trees [5], or applying a parsimony pressure that adjusts the
fitness of individuals by a tradeoff between performance and size [5,19]. Sub-
sequent research into GP has placed a strong emphasis on bloat, and a range
of methods have been introduced to manage excessive code growth, including:
treating fitness and size as a multi-objective optimisation [1]; applying explicit
fitness penalties to above-average sized individuals [10]; analysing and simplify-
ing individuals [13,17]; dynamically extending maximum tree depths in response
to fitness [12]; and applying specific genetic operators to reduce the size of large
individuals or maintain the size of children to parents [4]. A review and compar-
ison of the most common methods is given in [7], while discussion on the causes
of bloat may be found in [14] and the Field Guide to Genetic Programming [11].

2.1 Lexicographic Parsimony Pressure

Applying parsimony pressure in GP is typically achieved through parametric
means, whereby fitness becomes a weighted combination of fitness and size. An
exception to this is lexicographic parsimony [6], which views fitness as the pri-
mary consideration for comparison of individuals, and favours size only in the
presence of equal fitness. Implementation of lexicographic parsimony is remark-
ably simple, and has been shown to provide effective bloat control in many
problems. Additionally, lexicographic parsimony requires no parameters over
standard GP, and so does not require calibration when applied to new prob-
lems.

Empirical analysis of lexicographic parsimony suggests that it provides strong
bloat control when the search space presents discrete levels of fitness, upon which
many different sized programs may reside. In this situation, the secondary ob-
jective of size is considered more frequently, promoting strong control over bloat.

Controlling Bloat through SS+LPE 15

However, in situations where the fitness levels of the search space are fine-grained,
such as in symbolic regression, lexicographic parsimony is presented few opportu-
nities to perform size comparisons, and so bloat is poorly controlled. Because of
this, lexicographic parsimony is typically not recommended as a general purpose
bloat control method [7].

3 Spatial Population Structure and Elitist Replacement

With the notable exception of lexicographic parsimony, bloat control methods
typically require some form of problem-specific calibration to achieve good per-
formance. A recent addition to the family of bloat control methods uses a combi-
nation of spatial population structure and local elitist replacement to implicitly
control bloat [16]. This method, dubbed spatial structure with elitism (SS+E),
is particularly interesting as it requires almost no problem-specific calibration
beyond standard GP. SS+E has been shown to offer good bloat control in con-
junction with strong search capabilities, with particularly good performance on
symbolic regression. Recently, SS+E has also been shown to outperform other
methods in a complex image analysis problem [18].

The general algorithm for SS+E is shown in Algorithm 1. The operators
InitialIndividual and Recombination are the same as those used in standard
GP. Other than the choice of topology, SS+E requires few design choices from
the user to be applied to new problems. Previous work on SS+E adopted a torus
structure as the basis for its implementation, as previous work has demonstrated
the usefulness of this topology over a range of problem domains [3]. Through
this topology, the Neighbourhood operator identifies the Moore neighbourhood
(the eight surrounding locations, along with the current location) around a given
location, and then SelectParent performs binary tournament selection (without
replacement) within this neighbourhood. The operator PickSurvivor is used
to determine which individual at the current location will pass onto the next
generation. The default implementation of PickSurvivor (Algorithm 2) is very
simple; an offspring is placed at a location under the condition that it is strictly
fitter than the individual currently residing at that location.

3.1 Lexicographic Parsimonious Elitist Replacement

An important consequence of the default implementation of PickSurvivor is
that the only trajectory for code growth is through a corresponding increase in
fitness (as poor performing large offspring are rejected by the method). How-
ever, this implementation of PickSurvivor has one weakness in that it does
not permit the entry of offspring into the population if they are equal in fitness
but smaller than the current occupant. If such a mechanism were in place, then
we could expect a direct size pressure to be applied to the population, potentially

16 G. Dick and P.A. Whigham

Algorithm 1. The basic SS+E algorithm.
Input: A given problem, and a population structure defined by W
Output: A set of evolved candidate solutions to the problem
1: population ← {}
2: for all locations l in W do
3: population[l] ← InitialIndividual()
4: end for
5: while termination condition not met do
6: generation ← {}
7: for all locations l in W do
8: Wl ← Neighbourhood(l,W)
9: p1 ← SelectParent(population,Wl)

10: p2 ← SelectParent(population,Wl)
11: o ← Recombination(p1 ,p2)
12: generation[l] ← PickSurvivor(population[l], o)
13: end for
14: population ← generation
15: end while
16: return population

Algorithm 2. The standard PickSurvivor(c,o) algorithm for determining the program
that is copied into the next generation for SS+E.
Input: Two programs, the current occupant c and the candidate replacement o
Output: The program that survives into the next generation
1: if Fitness(c) > Fitness(o) then //note: assuming minimisation of fitness
2: return o
3: else
4: return c
5: end if

Algorithm 3. The revised PickSurvivor(c,o) algorithm that incorporates lexico-
graphic parsimony into the replacement process and defines SS+LPE.
Input: Two programs, the current occupant c and the candidate replacement o
Output: The program that survives into the next generation
1: if Fitness(c) > Fitness(o) then
2: return o
3: else if Fitness(c) = Fitness(o) and Size(c) > Size(o) then
4: return o
5: else
6: return c
7: end if

improving the bloat control performance of SS+E. The resulting modification to
PickSurvivor to achieve this is shown in Algorithm 3, where a secondary com-
parison of size is performed in the presence of equal fitness. This implementation
is in essence an example of lexicographic parsimony, so we refer to this approach
as spatial structure with lexicographic parsimonious elitism (SS+LPE).

Controlling Bloat through SS+LPE 17

4 Experiments and Results

To test the performance of SS+LPE, we compared its performance to that of
canonical GP, GP using lexicographic parsimony, and SS+E on four benchmark
problems used in previous bloat studies [7,16] — the Artificial Ant problem
(using the Sante Fe trail), the 11-bit BooleanMultiplexer problem, the 5-bit Even
Parity problem, and the Quartic symbolic regression problem. All test problems
were run with the typical sets of functions and terminals as defined by Koza [5].
For our analysis, we consider four primary measurements: the fitness of the
best individual in the population at each generation, the rate of successful runs
against generations (“success” being where an optimal solution was discovered),
the mean “effective” size of individuals within the population (that is, the mean
number of executed nodes in an individual), and finally the mean “total” size
of the individuals. Recent work suggests that measuring the success rate of an
algorithm is not necessarily a good measure of performance [8], however we
include it here to demonstrate some of the long-run characteristics of the tested
algorithms. In §4.2, we explore the performance of the algorithms on problems
in which we do not expect the system to find optimal solutions during any run.

The global parameter settings used across all test problems and algorithms
are shown in Table 1. In line with recommendations of previous work [7], all the
tested algorithms are augmented with tree depth limiting, even when a specific
bloat control measure is used. The choice of a run length of 500 generations may
seem odd, as it is greater than that used in typical GP tests. However, it has
been adopted specifically to highlight some of the properties of the algorithms
in long-duration runs. As shown in §4.1, the introduction of the bloat control
methods alters the overall search characteristics in ways that may permit the
effective use of longer runs.

Table 1. GP Parameter settings

Number of Runs 100
Population Size 500 for canonical GP and lexicographic parsimony,

484 (a 22 × 22 torus) for SS+E and SS+LPE
Initialisation Ramped half-and-half (depth ranging from 2–6)
Depth Limit 17
Crossover Probability 0.9 for canonical GP and lexicographic parsimony,

1.0 for SS+E and SS+LPE
Mutation Probability 0.0
Max. Generations 500
Selection Tournament (Size=7) for canonical GP and lexicographic

parsimony, binary tournament (without replacement) for
SS+E and SS+LPE

Each algorithm was applied to each problem 100 times and the values plotted
in the next section are the mean observations of these runs. In the figures that
follow, the shaded area around the plot represents the 95% confidence interval
of the mean.

18 G. Dick and P.A. Whigham

4.1 Results

The results of each algorithm applied to each of our four test problems is shown
in Figs. 1–4. A general trend can be observed from these results: consistent with
previous work SS+E is able to provide good search performance while providing
a smaller overall program size than canonical GP. For all the considered bloat
control methods, the greatest contributor to bloat control appears to be a reduc-
tion in non-executed (so-called “intron”, or dormant) subtrees. The introduction
of the revised elitism scheme in SS+LPE appears to offer an increased ability
over SS+E to prune out these redundant subtrees, without introducing a reduc-
tion in fitness. Compared to straight lexicographic parsimony, SS+LPE typically
produces slightly larger trees, but the comparison is not entirely straightforward
as SS+LPE typically produces trees of greater fitness. The comparison of suc-
cess rates across the four GP methods is particularly interesting; here, SS+LPE
consistently produces the most runs in which an optimal solution is identified. In
the case of the 11-bit Multiplexer problem, the number of successful runs using
SS+LPE is almost twice that of the next best algorithm (SS+E).

Effect of Bloat Control on Search — Fitness Preserving Operations.
The results presented suggest that the introduction of parsimony pressure alters
the structure of the evolved trees so that they present fewer non-executed sub-
trees. This has a potentially useful side-effect: typical runs of standard GP are
short, as the evolved trees rapidly gain significant portions of redundant code, so
crossover tends to create large numbers of functionally-equivalent offspring, thus
stagnating the search process. If the non-executed regions of trees are proactively
reduced, then we can expect more function-modifying crossover and mutation
to take place, meaning that the search of new regions of the search space can
continue for longer. This, coupled with the elitist replacement of SS+LPE, may
explain the long-run success of the SS+LPE approach.

To test this, we counted the number of crossover operations that took place
within redundant subtrees for each algorithm on each problem. As such crossovers
produced offspring that were functionally equivalent to their parents, this mea-
sure is referred to as a fitness preserving operation (FPO) count [2]. The mea-
sured FPO counts for each of the four problems is shown in Fig. 5; as anticipated,
the methods using lexicographic parsimony are able to produce functionally-
different offspring for longer periods, thus continuing the exploration of the
search space. It would be expected that the majority of these functionally-
different offspring would in fact be of lower fitness than their parents, but since
SS+LPE does not allow these individuals to enter the population, then they
should not impact negatively on the search. Essentially, SS+LPE can use this
lower FPO count to take a “high-risk” approach to creating offspring in later
generations and rely on elitist replacement to prevent poor performing individ-
uals from entering the population.

Controlling Bloat through SS+LPE 19

(a) Best Fitness (b) Success Rate

(c) Mean Size (d) Effective Size

Fig. 1. Performance of the analysed methods on the artificial ant problem

(a) Best Fitness (b) Success Rate

(c) Mean Size (d) Effective Size

Fig. 2. Performance of the analysed methods on the 11-bit multiplexer problem

20 G. Dick and P.A. Whigham

(a) Best Fitness (b) Success Rate

(c) Mean Size (d) Effective Size

Fig. 3. Performance of the analysed methods on the 5-bit even parity problem

(a) Best Fitness (b) Success Rate

(c) Mean Size (d) Effective Size

Fig. 4. Performance of the analysed methods on the quartic symbolic regression prob-
lem

Controlling Bloat through SS+LPE 21

(a) Artifical Ant (b) 11-bit Multiplexer

(c) 5-bit Even Parity (d) Quartic Regression

Fig. 5. Observed fitness-preserving operation rates on the given test problems

4.2 Bloat Control on Difficult Problems

The four benchmark problems examined in this paper have a long-established
use within GP analysis, dating back to Koza’s initial work [5]. Although these
benchmark problems offer insights into the different behaviour of the examined
methods, they are in some ways trivial and may not reflect the behaviour of a
given method on more difficult problems. Recent work has argued the case for
testing GP systems on a greater range of problem difficulties [8]. In line with this
view, we have tested the examined algorithms under two problems that present
a somewhat greater challenge than that posed by our four benchmarks — the
“Pagie 1” symbolic regression problem [8,9], and Teller’s Tartarus path planning
problem [15]. These problems were examined using the parameters outlined in
Table 1, and were implemented as described in their respective works, with the
exception that automatically-defined functions (ADFs) were not used in the
Tartarus problem.

The results for these harder problems are shown in Figures 6 and 7. For both
problems, direct comparisons of program size is difficult, as in each case the
spatially-structured algorithms produced individuals of greater fitness than the
non-spatial methods, but at the expense of greater program size than those pro-
duced using straight lexicographic parsimony. However, it is noted that SS+LPE
was able to produce smaller programs with equivalent fitness to SS+E, suggesting
that the introduction of parsimony into elitist replacement should help to further

22 G. Dick and P.A. Whigham

(a) Best Fitness (b) FPO Count

(c) Mean Size (d) Effective Size

Fig. 6. Performance of the analysed methods on the “Pagie 1” symbolic regression
problem

(a) Best Fitness (b) FPO Count

(c) Mean Size (d) Effective Size

Fig. 7. Performance of the analysed methods on the Tartarus problem

Controlling Bloat through SS+LPE 23

constrain program growth. It should also be noted that, on both problems, both
SS+LPE and SS+E were able to evolve programs that were simultaneously fitter
and smaller than those produced by canonical GP. It is also interesting that
straight lexicographic parsimony was effective at controlling bloat on the “Pagie
1” problem, despite previous work suggesting that it would fail [6,7].

5 Conclusion and Future Work

Successfully controlling bloat remains an important issue for the application of
genetic programming. The most desirable scenario is bloat control methods that
do not require excessive calibration to the given problem, such as the recently
proposed SS+E method. This paper introduces an extension to SS+E that intro-
duces lexicographic parsimony pressure into the local elitist replacement scheme.
This revised approach, dubbed SS+LPE, retains the effective search qualities of
SS+E in terms of fitness, and offers an improved level of bloat control, while
remaining essentially free of parameters. On the test problems examined, it dis-
covered simultaneously fitter and smaller programs compared to standard GP.
When compared to straight lexicographic parsimony, the programs evolved by
SS+LPE are generally slightly larger, but this is offset by improved fitness. While
testing on more problems is required, the evidence presented here suggests that
SS+LPE is a good choice for general purpose GP work.

The results presented in this paper suggest that the introduction of bloat con-
trol methods alters the search trajectory to encourage the evolution of programs
that present significantly smaller proportions of redundant code. In later gen-
erations, this means that crossover and mutation are more likely to take place
in regions that will produce functionally-different offspring, meaning that these
operators will continue to explore the search space for longer than GP without
bloat control. Most analysis on bloat control appears to focus purely on program
size, with an implied view that the overall characteristic of the evolved trees does
not change. This work demonstrates that the ratio of effective to redundant code
in trees is altered through the use of bloat control, suggesting substantial differ-
ences in the shapes of trees that are produced. Future work should examine this
concept in more detail.

References

1. Bleuler, S., Brack, M., Thiele, L., Zitzler, E.: Multiobjective genetic programming:
Reducing bloat using SPEA2. In: Proceedings of the 2001 Congress on Evolutionary
Computation, CEC 2001, pp. 536–543. IEEE Press (2001)

2. Jackson, D.: The identification and exploitation of dormancy in genetic program-
ming. Genetic Programming and Evolvable Machines 11, 89–121 (2010)

3. Jong, K.A.D., Sarma, J.: On decentralizing selection algorithms. In: Eshelman, L.J.
(ed.) Proceedings of the 6th International Conference on Genetic Algorithms, pp.
17–23. Morgan Kaufmann Publishers Inc., San Francisco (1995)

24 G. Dick and P.A. Whigham

4. Kennedy, C.J., Giraud-Carrier, C.: A depth controlling strategy for strongly typed
evolutionary programming. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H.,
Honavar, V., Jakiela, M., Smith, R.E. (eds.) Proceedings of the Genetic and Evo-
lutionary Computation Conference, July 13-17, vol. 1, pp. 879–885. Morgan Kauf-
mann, Orlando (1999)

5. Koza, J.R.: Genetic Programming: On the Programming of Computers by Natural
Selection. MIT Press, Cambridge (1992)

6. Luke, S., Panait, L.: Lexicographic parsimony pressure. In: Langdon, W.B., et al.
(eds.) Proceedings of the Fourth International Conference on Genetic and Evolu-
tionary Computation, GECCO 2002, pp. 829–836. Morgan Kaufmann (2002)

7. Luke, S., Panait, L.: A comparison of bloat control methods for genetic program-
ming. Evolutionary Computation 14(3), 309–344 (2006)

8. McDermott, J., White, D.R., Luke, S., Manzoni, L., Castelli, M., Vanneschi, L.,
Jaskowski, W., Krawiec, K., Harper, R., De Jong, K., O’Reilly, U.M.: Genetic
programming needs better benchmarks. In: Proceedings of the Fourteenth Interna-
tional Conference on Genetic and Evolutionary Computation, GECCO 2012, pp.
791–798. ACM, New York (2012)

9. Pagie, L., Hogeweg, P.: Evolutionary consequences of coevolving targets. Evolu-
tionary Computation 5(4), 401–418 (1997)

10. Poli, R.: A Simple but Theoretically-Motivated Method to Control Bloat in Genetic
Programming. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E., Poli, R., Costa, E.
(eds.) EuroGP 2003. LNCS, vol. 2610, pp. 204–217. Springer, Heidelberg (2003)

11. Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guild to Genetic Programming,
pp. 102–103. Lulu.com (2008)

12. Silva, S., Almeida, J.: Dynamic Maximum Tree Depth: A Simple Technique for
Avoiding Bloat in Tree-Based GP. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis,
D., Roy, R., O’Reilly, U.M., Beyer, H.G., Standish, R., Kendall, G., Wilson, S.,
Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A.C., Dowsland,
K., Jonoska, N., Miller, J. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1776–1787.
Springer, Heidelberg (2003)

13. Soule, T., Foster, J., Dickinson, J.: Code growth in genetic programming. In: Koza,
J., Goldberg, D., Fogel, D., Riolo, R. (eds.) Genetic Programming 1996: Proceed-
ings of the First Annual Conference, pp. 215–223. MIT Press, Stanford University
(1996)

14. Soule, T., Heckendorn, R.: An analysis of the causes of code growth in genetic
programming. Genetic Programming and Evolvable Machines 3(3), 283–309 (2002)

15. Teller, A.: The evolution of mental models. In: Kinnear Jr., K.E. (ed.) Advances
in Genetic Programming, ch. 9, pp. 199–217. MIT Press (1994)

16. Whigham, P.A., Dick, G.: Implicitly controlling bloat in genetic programming.
IEEE Transactions on Evolutionary Computation 14(2), 173–190 (2010)

17. Wong, P., Zhang, M.: Algebraic simplification of GP programs during evolution. In:
Proceedings of the Eighth International Conference on Genetic and Evolutionary
Computation, GECCO 2006, pp. 927–934. ACM Press, Seattle (2006)

18. Yamaguchi, H., Hiroyasu, T., Nunokawa, S., Koizumi, N., Okumura, N., Yokouchi,
H., Miki, M., Yoshimi, M.: Comparison study of controlling bloat model of GP in
constructing filter for cell image segmentation problems. In: 2012 IEEE Congress
on Evolutionary Computation, CEC, pp. 3468–3475 (2012)

19. Zhang, B.T., Mühlenbein, H.: Balancing accuracy and parsimony in genetic pro-
gramming. Evolutionary Computation 3(1), 17–38 (1995)

Generation of VNS Components

with Grammatical Evolution for Vehicle Routing

John H. Drake, Nikolaos Kililis, and Ender Özcan

School of Computer Science, University of Nottingham
Jubilee Campus, Wollaton Road, Nottingham, NG8 1BB, UK

{psxjd2,nxk09u,ender.ozcan}@nottingham.ac.uk

Abstract. The vehicle routing problem (VRP) is a family of problems
whereby a fleet of vehicles must service the commodity demands of a set
of geographically scattered customers from one or more depots, subject
to a number of constraints. Early hyper-heuristic research focussed on
selecting and applying a low-level heuristic at a given stage of an optimi-
sation process. Recent trends have led to a number of approaches being
developed to automatically generate heuristics for a number of combina-
torial optimisation problems. Previous work on the VRP has shown that
the application of hyper-heuristic approaches can yield successful results.
In this paper we investigate the potential of grammatical evolution as
a method to evolve the components of a variable neighbourhood search
(VNS) framework. In particular two components are generated; construc-
tive heuristics to create initial solutions and neighbourhood move oper-
ators to change the state of a given solution. The proposed method is
tested on standard benchmark instances of two common VRP variants.

1 Introduction

Optimisation problems often explore a search space which is too large to enu-
merate and exhaustively search for an optimal solution. Various heuristics and
meta-heuristics have been successfully applied to such problems. One drawback
of such approaches is the necessity to manually adapt the method used to solve
different problem domains or classes of problem. Hyper-heuristics are a class of
high-level search techniques which automate the heuristic design process and
aim to raise the level of generality at which search methods operate [31]. Hyper-
heuristics are broadly split into two main categories, those which select a low-
level heuristic to apply at a given point in a search and those which create
new heuristics from a set of low level components [5]. Here we are concerned
with the second category, those methodologies which generate new heuristics.
Whilst most research effort in this field has been on developing heuristics which
construct a solution from scratch, a less studied area is the generation of per-
turbative or local search heuristics. Genetic Programming (GP) [23] has been
widely used in the literature to generate heuristics for strip packing [7], bin
packing [9, 11, 8], job shop scheduling [18], knapsack problems [24] and boolean

K. Krawiec et al. (Eds.): EuroGP 2013, LNCS 7831, pp. 25–36, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

26 J.H. Drake, N. Kililis, and E. Özcan

satisfiability [2, 14–16]. Grammatical Evolution [27] is a grammar-based varia-
tion of GP which has been used to automatically design local search heuristics
for bin packing and stock cutting problems. The vehicle routing problem (VRP)
is an NP-Complete [17] combinatorial optimisation problem, which requires the
determination of the optimal set of routes to be followed by a fleet of vehicles
in order to service the commodity demands of a set of customers. Previously,
hyper-heuristic methods [28] have shown to perform particularly well on a num-
ber of variants of the VRP. In this paper we explore the potential of grammatical
evolution as a method to generate both constructive and perturbative heuristics
for the VRP and embed these ideas in a variable neighbourhood search (VNS)
framework.

2 Hyper-heuristics

The underlying principles of hyper-heuristics were used as early as the 1960’s
in the work of Fisher and Thompson [13], where combining job-shop schedul-
ing rules by selecting an appropriate rule for the given state of a problem was
shown to outperform using each of the rules individually. The term was first
used in the field of combinatorial optimisation by Cowling et al. [12] defining
hyper-heuristics as heuristics to choose heuristics. Unlike traditional computa-
tional search methods which operate directly on a search space of solutions,
hyper-heuristics operate exclusively on a search space of heuristics or heuristic
components. Burke et al. [5, 4] define a hyper-heuristic as a search method or
learning mechanism for selecting or generating heuristics to solve computational
search problem. This definition distinguishes between the two main classes of
hyper-heuristics, those which intelligently select a heuristic to apply to a prob-
lem and those which are concerned with automatically generating new heuristics.

The automated generation of heuristics is a relatively new field attracting an
increasing amount of attention. Genetic Programming (GP) has been success-
fully used to evolve heuristics for a wide range of problems. In genetic program-
ming, populations of computer programs are evolved using the naturally inspired
notions of inheritance, selection and variation. Unlike Genetic Algorithms which
produce fixed-length encoded representations of candidate solutions to a given
problem, the evolved program itself when executed is the solution. Geiger et
al. [18] used GP to evolve dispatching rules for a job shop scheduling problem.
Burke et al. create heuristics for for strip packing [7] and bin packing prob-
lems [9, 11, 8] with human-competitive results. Bader-El-Din and Poli [2] also
used GP to quickly generate ‘disposable’ heuristics for the satisfiability problem
generating heuristics again with comparable performance to human-designed
methods. Fukunaga [14–16] also used GP to generate local search heuristics for
boolean satisfiability. Drake et al. [20] managed a constructive heuristic by us-
ing GP to evolve the order in which to add items to a knapsack solving the
MKP. Further information on using genetic programming as a hyper-heuristic is
provided by Burke et al. [6].

Generation of VNS Components with Grammatical Evolution 27

3 Grammatical Evolution

Grammatical Evolution (GE) [27] is a recently developed grammar-based form
of genetic programming. The evolutionary process in a grammatical evolution
system is performed on binary or decimal integer strings of variable length rather
than on actual programs. Such strings are then mapped to a sentence (in our case
a program) using the production rules of a grammar expressed in BNF (Backus
Naur Form). Unlike GP, GE provides a distinction between the genotype and
phenotype as is the case in nature. In GE the search process is performed over
the genotype (a binary or decimal integer string) and the fitness function eval-
uates the program (the phenotype) which is obtained. There are a number of
advantages to approaching the search process in this way. Any strategy that
operates on binary strings can be used to perform the search, this is not strictly
limited to evolutionary approaches. The search is also not limited by tree struc-
ture and the need to ensure solutions are valid. Within the BNF notation a
possible production rule can be defined as:

<symbolA> ::= <symbolB> | (symbolC)

In the example above, <symbolA> is a non-terminal which expands to either
<symbolB> or (symbolC). <symbolB> is also a non-terminal, while (symbolC)
is a terminal symbol indicated by brackets. The process typically starts with a
single non-terminal start symbol and a set of production rules that define with
which symbols this non-terminal can be replaced. A sentence can consist of any
number of non-terminal and terminal symbols. Terminals are atomic components
of a sentence containing no production rules as they will not be replaced. Each
non-terminal is replaced with any non-terminal symbols produced subsequently
replaced using their own corresponding production rules. Often there are mul-
tiple production rules to replace the current non-terminal symbol in question
and a number of choices for terminal symbols. In order to select a production
rule at a given point the variable length binary or decimal integer string repre-
senting the genotype in the GE system is used. In the case of a binary string,
the genome is split into 8-bit portions known as codons. The integer value of
a single codon can then take any value between 0 and 255. If the genotype is
represented directly as a decimal integer string then this conversion is unneces-
sary. Each codon is used with the grammar to decide which choice to make when
replacing a non-terminal symbol using a given production rule. The first codon
is used to select which of the production rules will replace the first non-terminal
symbol. This is done by calculating the value of the codon modulus the number
of production rules to choose from. As an example, for a codon with value 43
given 6 production rules, production rule 1 is chosen (note that the first pro-
duction rule is at index 0) as 43 mod 6 is 1. If this production rule creates a
sentence containing further non-terminal symbols the second codon is used to
select the production rule for the first non-terminal set in the new sentence. This
process is continued until the sentence is made up of only terminal symbols and
the mapping process is complete. In this study, the sentences produced take the

28 J.H. Drake, N. Kililis, and E. Özcan

form of Java code representing portions of low-level heuristics. A more detailed
explanation of a GE system is provided by O’Neill and Ryan [27].

Recently, Burke et al. [10] have used Grammatical Evolution to generate low-
level heuristics for bin packing. This paper generates heuristics which can con-
sistently obtain solutions which use only one bin more than the optimal lower
bound and often the optimal number of bins itself. GE was also seen to be suit-
ably flexible enough to generate different move operators for different classes of
bin packing problems as appropriate. Keller and Poli [21, 22] also use a grammar-
based genetic programming system to evolve solvers for the travelling salesman
problem.

4 Vehicle Routing Problems

The vehicle routing problem (VRP) is an NP-Complete [17] combinatorial opti-
misation problem where a number of customers are to be serviced by a fleet of
vehicles subject to a number of constraints. Different objectives can be considered
depending on the goal of the problem. Typical objectives include; minimisation
of cost with respect to distance travelled, minimisation of the global travel time,
minimisation of the number of vehicles required to service all customers, min-
imisation of the penalty costs associated with partial service of customers. The
objective could also be a weighted combination of such objectives. Real-world
commodity distribution in logistics is a complex problem with constrains varying
depending on the application. It is therefore natural that many different variants
of the VRP exist, each simplifying the problem to a smaller set of constraints
which impose the most important restrictions in each specific application of the
problem. A large number of exact [25, 33] and meta-heuristic [19, 3] methods
have been applied in the literature to solve such problems.

Recently there has been an increasing gain of emphasis on solution methods
which operate across different VRP variants. One of the state-of-the-art results
obtained by such unified heuristics is the hyper-heuristic approach of Pisinger
and Ropke [28]. This work is based on the Adaptive Large Neighbourhood Search
(ALNS) framework initially presented by Ropke and Pisinger [30]. The proposed
framework is a selection hyper-heuristic which when given a complete solution,
traverses the search space through the application of heuristics which remove a
number of requests from the solution and subsequently, heuristics to re-insert
the removed requests. The selection of the next removal or insertion heuristic
to use is based on statistical information gathered during the search. This work
also provided a unified model for the VRP allowing five VRP variants to be
tested following transformation to the Rich Pickup and Delivery Problem with
Time Windows (RPDPTW). Here we will use this model to test our method
on the two best known VRP variants. The first is the vehicle routing problem
with time windows (VRPTW), this problem requires a number of deliveries to
be made at different locations with the added constraint that each delivery has
a specific a period (window) of time within which it must take place. The second
variant is the capacitated vehicle routing problem (CVRP). In the CVRP, each

Generation of VNS Components with Grammatical Evolution 29

vehicle in the fleet has the restriction of a limited carrying capacity which must
be respected in order to obtain a valid solution.

5 Grammatical Evolution Hyper-heuristics for the VRP

Variable Neighbourhood Search (VNS) [26] is a well studied meta-heuristic
methodology for global optimisation. A basic VNS algorithm is outlined in
Algorithm 1.

Algorithm 1. Outline of a standard VNS algorithm

N: set of k neighbourhood structures, {N1, N2,...,Nk};
f : solution evaluation function (minimisation);
x ← Construct initial solution;
repeat

k ← 1;
repeat

Shaking: x′ ← new point in neighbourhood Nk(x);
Local Search: x′′ ← result of local search from x′;
if f(x′′) < f(x) then

x ← x′′ ;
k ← 1 ;

else
k ← k + 1;

until k = kmax;

until stopping criteria met ;

Operating on a complete solution initialised using a chosen method, VNS
explores increasingly distant neighbours of the current solution using a pre-
defined set of neighbourhood move operators. This process is known as ‘shaking’.
Following this, local search is performed to reach a local optimum from the
point reached by the shaking procedure. The incumbent solution is replaced
by a solution generated by a given neighbourhood move and subsequent local
search if such a move will yields improvement in solution quality. This can be
considered as a random descent, first improvement method. In the case where
an improved solution is not found, the size of neighbourhood move is increased,
thus effectively changing the neighbourhood structure used. This ensures the
search is diversified sufficiently by performing increasingly larger neighbourhood
moves in order to reach more promising areas of the search space when stuck in
local optima.

Within this framework we will use grammatical evolution to generate the
construction heuristic initialising a solution and ruin and insertion heuristics to
perform the shaking procedure. Essentially we will evolve the order in which
nodes are inserted into and removed from a solution through the use of a gram-
mar. The grammar used is outlined in Figure 1. From the starting symbol <S>,

30 J.H. Drake, N. Kililis, and E. Özcan

three heuristic components are evolved using a single genome to select produc-
tion rules. The set of terminal functions representing information fields which
must be retrieved from the current solution state is shown in Table 1. Some
of the information fields are not used by some problem variants and will con-
tain null values however it is still important to include such fields to enable
the hyper-heuristic to generate heuristics across a broader class of routing prob-
lems. Those symbols prefixed ‘rqi-’ correspond to information about individual
requests whilst those prefixed ‘rti-’ correspond to information information about
a route.

<S> ::= <InitialSolution> <Ruin> <Recreate>

<InitialSolution> ::= <Recreate> | (empty-solution)

<Recreate> ::= <RecreateOrdered> | <RecreateStepwise>

<RecreateOrdered> ::= <RequestFieldOp> <Order>

<RecreateStepwise> ::= <Steps> <StepEnd>

<Ruin> ::= <RuinOrdered> | <RuinConditional> | <RequestSelection>

<RuinOrdered> ::= <RouteSelectionLength> <RouteFieldOp> <Order> <RequestSelection>

<RuinConditional> ::= <RouteFieldOp> <RelationalOp> <RouteFieldOp> <RequestSelection>

<RequestSelection> ::= <RequestSelectionOrdered> | <RequestSelectionConditional>

<RequestSelectionOrdered> ::= <RequestFieldOp> <Order>

<RequestSelectionConditional> ::= <RequestFieldOp> <RelationalOp> <RequestFieldOp>

<RouteSelectionLength> ::= (numroutes-RC) | (percentage-RC)

<op> ::= (add) | (sub) | (mul) | (div) | <MaxMin>

<Steps> ::= <NextStep> <Steps> | <NextStep>

<NextStep> ::= <MaxMin> <RequestFieldOp>

<MaxMin> ::= (max) | (min)

<StepEnd> ::= (step-cycle) | (repeat-last)

<RouteFieldOp> ::= <op> <RouteFieldOp> <RouteFieldOp> | <RouteField>

<RouteField> ::= (rti-iuc) | (rti-d) | (rti-rc)

<RequestFieldOp> ::= <op> <RequestFieldOp> <RequestFieldOp> | <RequestField>

<RequestField> ::= (rqi-d) | (rqi-pat) | (rqi-pdt) | (rqi-puc) | (rqi-dat) | (rqi-ddt) |

(rqi-duc) | (rqi-prc) |(rqi-drc) | (rqi-pwt) | (rqi-pindx) |

(rqi-dwt) | (rqi-dindx) | (rqi-pst) | (rqi-ptws) | (rqi-ptwe) |

(rqi-pprevd) | (rqi-pnextd) | (rqi-dst) | (rqi-dtws) | (rqi-dtwe) |

(rqi-dprevd) | (rqi-dnextd)

<Order> ::= (ascending) | (descending)

<RelationalOp> ::= (lt) | (gt) | (lte) | (gte) | (eq) | (neq)

Fig. 1. The grammar defining the components and structure of the heuristics

A standard set of non-terminal symbols is used to represent a number of
basic binary arithmetic and relational operators shown in Table 2. Instead of
the traditional divide function here we use protected divide. As there is always
a possibility that the denominator could be zero, protected divide replaces zero
with 0.001. In the case of relational operators the comparison is always made
from left to right.

The constructive component of the heuristic constructs an initial feasible so-
lution from an empty solution, it is also possible to leave the initial solution
empty. The recreate component works in much the same way without the option
of leaving the solution empty. Following the RPDPTW model unallocated re-
quests are permitted however they are associated with a high penalty cost. Two
methods for selecting the next request to insert are used, ordered and stepwise.
Ordered selection uses a component composed of binary arithmetic operators
and solution state information to rank each unallocated request. The order in
which requests are inserted into the solution is derived from this ranking with
the direction in which requests are considered determined by one of two terminal
symbols, (ascending) and (descending). Stepwise selection evolves a sequence of

Generation of VNS Components with Grammatical Evolution 31

Table 1. Set of terminal symbols which correspond to information request and route
information within a solution

Symbol Description

rqi-d Commodity demand of a request
rqi-pat Arrival time of the vehicle at the pickup node
rqi-pdt Departure time of the vehicle at the pickup node
rqi-puc Used vehicle capacity when leaving the pickup node
rqi-dat Arrival time of the vehicle at the delivery node
rqi-ddt Departure time of the vehicle at the delivery node
rqi-duc Used vehicle capacity when leaving the delivery node
rqi-prc Residual vehicle capacity when leaving the pickup node
rqi-drc Residual vehicle capacity when leaving the delivery node
rqi-pwt Time the vehicle must wait at the pickup node
rqi-pindx The visit index of the pickup node within the route
rqi-dwt Time the vehicle must wait at the delivery node
rqi-dindx The visit index of the delivery node within the route
rqi-pst Service time of the pickup node of the request
rqi-ptws Opening time of the pickup node time window
rqi-ptwe Closing time of the pickup node time window
rqi-pprevd Distance between pickup node and previous node within the route
rqi-pnextd Distance between the pickup and following node within the route
rqi-dst Service time of the delivery node of the request
rqi-dtws Opening time of the delivery node time window
rqi-dtwe Closing time of the delivery node time window
rqi-dprevd Distance between the delivery and previous node within the route
rqi-dnextd Distance between the delivery and following node within the route
rti-iuc The used capacity when vehicle leaves depot
rti-irc The residual capacity when vehicle leaves depot
rti-d Total distance of route

Table 2. Set of non-terminals which represent binary arithmetic and relational oper-
ators

Symbol Description

add Add two inputs
sub Subtract second input from first input
mul Multiply two inputs
div Protected divide function
max Maximum value between two inputs
min Minimum value between two inputs
lt Less than (<)
gt Greater than (>)
lte Less than or equal to (≤)
gte Greater than or equal (≥)
eq Equal
neq Not equal

32 J.H. Drake, N. Kililis, and E. Özcan

different criteria to use at each ’step’ when considering which request to insert.
If the number of potential requests to insert is greater than the number of se-
lection steps defined one of two options are available, (step-cycle) will return to
the first step and cycle through the sequence of criteria again and (repeat-last)
will re-use the last criteria in the sequence until all requests are inserted.

As the ruin phase works with a complete solution, selecting the routes from
which to remove requests is not a trivial decision. A simple solution is to allow
requests to be removed from any route however here we also allow the heuristic
to evolve a subset of routes from which to choose. The number of routes to be
selected is one of two random constants, either a number between 1 and the total
number of routes (numroutes-RC) or a number between 0 and 1 representing the
percentage of routes to be selected (percentage-RC). The order in which a subset
of routes are considered is either ordered or conditional. Conditional selection
iterates over the complete set of routes and returns a subset of routes which
satisfy a condition set by a criteria evolved in the grammar. If number of routes
selected is less than the number specified by the random constant, the remaining
routes are selected randomly. The ruin heuristic is parametric with the number
of requests to remove determined by the value of k taken from the overall VNS
framework. Once the routes are selected the order in which requests are removed
must be defined. Two methods for selecting the next request to remove are used,
ordered selection as defined previously and conditional selection (as with the
selection of routes however the iteration is performed over requests rather than
routes). In the case of conditional selection, if less than k requests are selected
using the evolved condition the remaining requests are removed randomly.

The parameters of the VNS search algorithm in which the generated con-
struction, ruin and insertion heuristics operate, are set to initial k = 1, maxi-
mum k = 30 with k increased by 1 for each non-improving step. k is reset to 1
when an improving move is made. The local search used is a hill-climber which
removes a request from an existing route, and relocates it to a different route
so that the best improvement was achieved. Finally the stopping criterion used
was 10 consecutive iterations of non-improvement after 30 non-improving steps.
All experiments were performed in an offline manner i.e. a separate run of the
GE system is performed on each individual instance. The parameters used in
the GE runs are summarised in Table 3.

Table 3. Summary of Grammatical Evolution Parameters

Parameter Value

Generations 50
Population Size 1024
Crossover Probability 0.9
Mutation Probability 0.05
Reproduction Probability 0.05
Maximum Tree Depth 17
Selection Method Tournament Selection, size 7

Generation of VNS Components with Grammatical Evolution 33

6 Results

Table 4 shows the results of the GE hyper-heuristic (GE-PHH) on the first 10
instances for the CVRP from Augerat et al. [1]1. These instances contain either
5 or 6 vehicles and between 31 and 38 customers. The optimal solution is known
for all of these instances and has been obtained by a number of methods in the
literature [29]. ‘Proximity’ is calculated as Optimal V alue/Result Obtained. To
make some assessment of the generality of our method, experiments are also
performed on instances taken from Solomon [32] with results shown in Table 5.
There are three types of instance in this set; ‘R’ instances contain customers
whose geographic locations have been randomly generated, ‘C’ instances com-
prise of clusters of customers and ‘RC’ instances consist of a mixture of both
types of customers.

Table 4. Results of GE-PHH on the first 10 instances of Augerat et al. [1]

Instance Name Optimal Value GE-PHH (Vehicles) Proximity

A-n32-k5 784 811.80 (5) 0.97
A-n33-k5 661 664.79 (5) 0.99
A-n33-k6 742 785.45 (6) 0.94
A-n34-k5 778 828.01 (5) 0.94
A-n36-k5 799 849.22 (5) 0.94
A-n37-k5 669 678.92 (5) 0.99
A-n37-k6 949 1020.06 (6) 0.93
A-n38-k5 730 826.83 (5) 0.88
A-n39-k5 822 905.23 (5) 0.91
A-n39-k6 831 838.75 (6) 0.99

Average 0.95

Table 5. Results of GE-PHH on a selection of instances from Solomon [32]

Instance Name Optimal Value GE-PHH (Vehicles) Proximity

C101.100 827.3 902.64716 (10) 0.92
C102.100 827.3 1198.97254 (10) 0.69
R101.100 1637.7 1766.807 (20) 0.93
R102.100 1466.6 1596.96749 (18) 0.92
RC101.100 1619.8 1871.2241 (15) 0.87
RC102.100 1457.4 1771.4629 (14) 0.82

Average 0.86

In all cases the best solutions obtained for each instance use the optimal
number of vehicles. From these results we can see that the generated heuristics
are able to reach promising regions of the search space however this does not

1 These instances and optimal solutions were taken from
www.coin-or.org/SYMPHONY/branchandcut/VRP/data/index.htm

www.coin-or.org/SYMPHONY/branchandcut/VRP/data/index.htm

34 J.H. Drake, N. Kililis, and E. Özcan

necessarily lead to global optima. This limitation may be due to the nature of the
local search operator used. As the local search only considers moving a request
from one route to another. In some near optimal solutions requests must be
exchanged within a single route to reach the global optimum. We observe that
the application of the system on VRPTW does not seem to produce as high
quality results as for the CVRP. This could be due to the set of components
not being well suited to cover the temporal requirements of time window related
problems. The system performs particularly poorly on the ‘C102.100’ instance
having a negative impact on the average proximity.

7 Conclusions and Future Work

In this preliminary work we have shown that grammatical evolution shows po-
tential as a hyper-heuristic to generate components of a VNS system to solve
the VRP. This method is defined as a hyper-heuristic as it operates on a search
space of heuristics rather than directly on a search space of solutions. To our
knowledge, this is the first time in literature a GE hyper-heuristic has been used
to solve the vehicle routing problem. This method has shown that automatically
generating heuristics for the VRP could be an interesting future research direc-
tion. We are currently working on evolving each of the components in isolation
rather than using a single genome and grammar to evolve the whole system. As
mentioned in the previous section this method was restricted somewhat by the
choice of local search operator. There are a large number of operators in the lit-
erature for the travelling salesman problem (TSP) which could be implemented
to also allow request swaps within a route. There are also a variety of standard
construction heuristics for the VRP in the literature. These could replace the
constructive phase of our method leaving the focus on evolving the ruin and
recreate heuristics within the VNS framework.

References

1. Augerat, P., Rinaldi, G., Belenguer, J., Benavent, E., Corberan, A., Naddef, D.:
Computational results with a branch and cut code for the capacitated vehicle
routing problem. Tech. rep., RR 949-M, Universite Joseph Fourier, Grenoble (1995)

2. Bader-El-Den, M., Poli, R.: Generating SAT Local-Search Heuristics Using a GP
Hyper-Heuristic Framework. In: Monmarché, N., Talbi, E.-G., Collet, P., Schoe-
nauer, M., Lutton, E. (eds.) EA 2007. LNCS, vol. 4926, pp. 37–49. Springer,
Heidelberg (2008)

3. Bräysy, O., Gendreau, M.: Vehicle routing problem with time windows, part ii:
Metaheuristics. Transportation Science 39(1), 119–139 (2005)

4. Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Qu, R.: Hyper-heuristics:
A survey of the state of the art. Tech. Rep. No. NOTTCS-TR-SUB-0906241418-2747,
School of Computer Science and Information Technology, University of Nottingham
(2010)

5. Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Woodward, J.: A Clas-
sification of Hyper-heuristics Approaches. In: Handbook of Metaheuristics, 2nd
edn., pp. 449–468. Springer (2010)

Generation of VNS Components with Grammatical Evolution 35

6. Burke, E.K., Hyde, M.R., Kendall, G., Ochoa, G., Ozcan, E., Woodward, J.R.:
Exploring Hyper-heuristic Methodologies with Genetic Programming. In: Mum-
ford, C.L., Jain, L.C. (eds.) Computational Intelligence. ISRL, vol. 1, pp. 177–201.
Springer, Heidelberg (2009)

7. Burke, E.K., Hyde, M., Kendall, G., Woodward, J.: A genetic programming hyper-
heuristic approach for evolving 2-d strip packing heuristics. IEEE Transactions on
Evolutionary Computation 14(6), 942–958 (2010)

8. Burke, E.K., Hyde, M., Kendall, G., Woodward, J.: Automating the packing heuris-
tic design process with genetic programming. Evolutionary Computation 20(1),
63–89 (2012)

9. Burke, E.K., Hyde, M.R., Kendall, G.: Evolving Bin Packing Heuristics with
Genetic Programming. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-
Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp.
860–869. Springer, Heidelberg (2006)

10. Burke, E.K., Hyde, M.R., Kendall, G.: Grammatical evolution of local search
heuristics. IEEE Transactions on Evolutionary Computation 16(3), 406–417 (2012)

11. Burke, E.K., Woodward, J., Hyde, M., Kendall, G.: Automatic heuristic generation
with genetic programming: Evolving a jack-of-alltrades or a master of one. In:
GECCO 2007, pp. 1559–1565 (2007)

12. Cowling, P.I., Kendall, G., Soubeiga, E.: A Hyperheuristic Approach to Scheduling
a Sales Summit. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079,
pp. 176–190. Springer, Heidelberg (2001)

13. Fisher, M., Thompson, G.: Probabilistic learning combinations of local job-shop
scheduling rules. In: Factory Scheduling Conference (1961)

14. Fukunaga, A.S.: Automated discovery of composite sat variable-selection heuris-
tics. In: Artificial Intelligence, pp. 641–648 (2002)

15. Fukunaga, A.S.: Evolving Local Search Heuristics for SAT Using Genetic Program-
ming. In: Deb, K., Tari, Z. (eds.) GECCO 2004. LNCS, vol. 3103, pp. 483–494.
Springer, Heidelberg (2004)

16. Fukunaga, A.S.: Automated discovery of local search heuristics for satisfiability
testing. Evolutionary Computation 16(1), 31–61 (2008)

17. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

18. Geiger, C.D., Uzsoy, R., Aytug, H.: Rapid modeling and discovery of priority dis-
patching rules: An autonomous learning approach. Journal of Scheduling 9(1), 7–34
(2006)

19. Cordeau, J.-F., Gendreau, M., Laporte, G., Potvin, J.-Y., Semet, F.: A guide to
vehicle routing heuristics. The Journal of the Operational Research Society 53(5),
512–522 (2002)

20. Drake, J.H., Hyde, M., Ibrahim, K., Özcan, E.: A genetic programming hyper-
heuristic for the multidimensional knapsack problem. In: CIS 2012, pp. 76–80
(2012)

21. Keller, R.E., Poli, R.: Linear genetic programming of metaheuristics. In: GECCO
2007, p. 1753. ACM (2007)

22. Keller, R.E., Poli, R.: Linear genetic programming of parsimonious metaheuristics.
In: CEC 2007, pp. 4508–4515 (2007)

23. Koza, J.R.: Genetic programming: on the programming of computers by means of
natural selection. The MIT Press, Cambridge (1992)

24. Kumar, R., Joshi, A.H., Banka, K.K., Rockett, P.I.: Evolution of hyperheuristics
for the biobjective 0/1 knapsack problem by multiobjective genetic programming.
In: GECCO 2008, pp. 1227–1234. ACM (2008)

36 J.H. Drake, N. Kililis, and E. Özcan

25. Laporte, G.: The vehicle routing problem: An overview of exact and approximate
algorithms. European Journal of Operational Research 59(3), 345–358 (1992)

26. Mladenovic, N., Hansen, P.: Variable neighborhood search. Computers and Oper-
ations Research 24(1), 1097–1100 (1997)

27. O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Program-
ming in a Arbitrary Language, Genetic programming, vol. 4. Kluwer Academic
Publishers (2003)

28. Pisinger, D., Ropke, S.: A general heuristic for vehicle routing problems. Computers
and Operations Research 34(8), 2403–2435 (2007)

29. Ralphs, T., Kopman, L., Pulleyblank, W., Trotter Jr., L.: On the capacitated
vehicle routing problem. Mathematical Programming Series B 94, 343–359 (2003)

30. Ropke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows. Transportation Science 40(4),
455–472 (2006)

31. Ross, P.: Hyper-heuristics. In: Burke, E.K., Kendall, G. (eds.) Search Methodolo-
gies: Intrd. Tut. in Optimization and Decision Support Tec., ch. 17, pp. 529–556.
Springer (2005)

32. Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with
time window constraints. Operations Research 35(2), 254–265 (1987)

33. Toth, P., Vigo, D.: Models, relaxations and exact approaches for the capacitated
vehicle routing problem. Discrete Applied Mathematics 123(1-3), 487–512 (2002)

Understanding Expansion Order and Phenotypic

Connectivity in πGE

David Fagan1, Erik Hemberg2, Michael O’Neill1, and Sean McGarraghy1

1 Natural Computing Research & Applications Group
University College Dublin, Ireland

2 MIT CSAIL
{david.fagan,m.oneill,sean.mcgarraghy}@ucd.ie, hembergerik@csail.mit.edu

Abstract. Since its inception, πGE has used evolution to guide the or-
der of how to construct derivation trees. It was hypothesised that this
would allow evolution to adjust the order of expansion during the run and
thus help with search. This research aims to identify if a specific order
is reachable, how reachable it may be, and goes on to investigate what
happens to the expansion order during a πGE run. It is concluded that
within πGE we do not evolve towards a specific order but a rather dis-
tribution of orders. The added complexity that an evolvable order gives
πGE can make it difficult to understand how it can effectively search,
by examining the connectivity of the phenotypic landscape it is hoped
to understand this. It is concluded that the addition of an evolvable
derivation tree expansion order makes the phenotypic landscape associ-
ated with πGE very densely connected, with solutions now linked via a
single mutation event that were not previously connected.

1 Introduction

Position Independent Grammatical Evolution[11], or πGE, has been shown to
exhibit performance on a par with and in many cases exceeds the performance of
Grammatical Evolution (GE)[13] on a wide range of problem domains[2,3,5,11].
πGE is an extension of GE where the order of expansion of the derivation tree
is controlled by evolution. It was proposed that this added dimension to the
standard GE genotype-phenotype map would allow for search to be performed
in the derivation order space of solutions, overcoming the left-most expansion
bias exhibited by GE[6].

While there have been many papers dealing with πGE[2,3,5,11], this paper
presents the first in depth look into the expansion order in πGE. What orders
are actually explored? How does the order of πGE change over a run? Does the
algorithm evolve towards a certain order? To answer these questions a metric
must be used to determine the distance from a known order. The Order Bias
Distance Metric is proposed for this task and then used to examine how πGE
behaves. As well as investigating the order behaviour, the first steps are taken
to quantify the cost of this order overhead to the search compared with GE.

K. Krawiec et al. (Eds.): EuroGP 2013, LNCS 7831, pp. 37–48, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

38 D. Fagan et al.

Another important aspect of πGE is to explore how does a more complex
representation effect the connectivity of the algorithm. Does the addition of po-
sition independent expansion order provide πGE with a more connected solution
space, thus is it easier or harder for πGE to move about the solution space than
it is for GE. Previous work by Murphy et al.[9] investigated the connectivity
of TAGE compared to that of GE. It was found that the richer representa-
tion of TAGE provided it with a much more connected phenotypic space. This
is of interest as both TAGE and πGE share a very similar evolution controlled
position independent mapping. It has been shown that visualising the program
space can be useful in understanding how an algorithm works[7], and through
the processes outlined in Murphy’s work it is hoped that further understanding
of πGE may be gained.

The remainder of the paper is structured as follows. An overview of GE is
provided in Section 2, before examining the differences between the GE and
πGE genotype-phenotype mappings in Section 3. The new distance metric used
in this paper is outlined in Section 4. The results are outlined and explained in
Section 5, firstly the order experiments in Section 5.1 followed by the connectivity
experiments in Section 6. This is followed by a discussion in Section 6 and finally
some conclusions and future work are outlined in Section 7.

2 Grammatical Evolution

Grammatical Evolution(GE)[2,13], is a grammar based form of Genetic
Programming(GP)[8]. Whilst GP[14] relies upon the constructing of expression
trees, and performing operations on the expression trees, GE takes inspiration
from DNA-Protein mapping in its approach to the generation of solutions. GE
relies upon the use of a list of integers referred to as a chromosome, or geno-
type. This chromosome is then mapped to a phenotype, or solution, through the
application of a grammar to the chromosome as described in detail in Section 3.

O’Neill[10] presented a series of arguments for the adoption of a genotype-
phenotype map for GP, as it can provide a number of advantages. These include
a generalised encoding that can represent a variety of structures allowing GP
to generate structures in an arbitrary language, efficiency gains for evolutionary
search (e.g. through neutral evolution), maintenance of genetic diversity through
many-to-one maps, preservation of functionality while allowing continuation of
search at a genotypic level, reuse of genetic material potentially allowing infor-
mation compression, and positional independence of gene functionality.

3 Genotype-Phenotype Maps - GE, πGE

In GE we begin the mapping process by finding the start symbol in the grammar.
This non terminal (NT) in the case of the example grammar shown in Fig. 1,
<e> is then evaluated using Eq. 1. By taking the first codon value of the GE
chromosome (12) and the number of expansions possible for the state <e> (2),
we get the first expansion of the tree, where <e> expands to <e><o><e> (12%2).

Understanding Expansion Order and Phenotypic Connectivity in πGE 39

From this point on the leftmost NT is always expanded first in the derivation
process. This action will continue to be performed until no NTs remain to be
expanded. An example of this mapping is shown in Fig. 2 based on the example
grammar shown in Fig. 1 where the order of expansion is indicated by a set
of numbers on the arrows between the blocks on the diagram, in the form of
1(12%2) where 1 is the expansion order and 12%2 is the application of Eq. 1.

New Node = Codon value % Number of rules for NT (1)

<e> ::= <e> <o> <e> | <v>

<o> ::= + | *

<v> ::= 0.5 | 5

Chromosome ::= 12,8,3,11,7,6,11,8,4,3,
3,11,15,7,9,8,10,3,7,4

Fig. 1. Example Grammar and Chro-
mosome

<e>

<e> <o> <e>

 1(12%2)

<e> <o> <e>

 2(8%2)

<v>

 13(15%2)

*

 12(11%2)

<e> <o> <e>

 6(6%2)

<v>

 3(3%2)

*

 5(7%2)

<v>

 7(11%2)

<v>

 10(3%2)

+

 9(4%2)

5

 4(11%2)

0.5

 8(8%2)

5

 11(3%2)

5

 14(7%2)

Fig. 2. Standard GE Genotype to Phe-
notype Mapping

The only difference between standard GE and πGE in its purest form is in
the mapping process from genotype to phenotype. πGE’s mapping process dif-
fers from that of GE in that each expansion of a NT requires two codons. The
standard GE chromosome is essentially split into pairs of values where the first
codon of the pair is used to choose which NT to expand and the second is used
to choose what to expand the NT to, based on the rules available for a NT of
that type. The chromosome shown in Fig. 1 can be viewed as a list of paired
values such as ((12,8),(3,11)........), where the first value of the pair (The
Order Codon) is used to determine the next NT to expand by using Eq. 2 and
this will return which NT to choose from a list of unexpanded NTs. Once the NT
to be expanded has been chosen, the second codon (Content Codon) is used in
conjunction with Eq. 1 (the standard GE expansion rule) to determine what the
NT expands to; and if this node happens to be an NT, it is added to the list of
unexpanded NTs. Figs. 3 and 4 show the expansion of the example grammar in
Fig. 1 using the πGE mapping process. The number associated with each branch
of the tree is a reference to the numbered steps shown in Fig. 3 which show how

40 D. Fagan et al.

1. [(e)] <- (12%1=0)
2. [(e),o,e] <- (3%3=0)
3. [o,(e),v] <- (7%3=1)
4. [o,(v),e,o,e]<- (11%5=1)
5. [(o),e,o,e] <- (4%4=0)
6. [(e),o,e] <- (3%3=0)
7. [(o),e,v] <- (15%3=0)
8. [e,(v)] <- (9%2=1)
9. [(e)] <- (10%1=0)
10. [(v)] <- (7%1=0)

Fig. 3. NT selection process in πGE

<e>

<e> <o> <e>

 1(8%2)

<e> <o> <e>

 3(6%2)

<v>

 2(11%2)

*

 5(3%2)

<v>

 6(11%2)

<v>

 9(3%2)

*

 7(7%2)

0.5

 4(8%2)

0.5

 8(8%2)

0.5

 10(4%2)

Fig. 4. Standard πGE Genotype to
Phenotype Mapping

each choice of NT to expand comes about. It is interesting to note the different
shape and size of the examples based on just a change in mapping.

NT to expand = Codon value % Number of NT ′s (2)

4 Order Bias Distance Metric

Order Bias Distance Metric (OBDM) is a measure that shows how far away from
a desired derivation order a πGE order is. The metric is measured in terms of
the average percentage distance away from the desired order. The metric is very
dependent on the πGE algorithms implementation. In πGE, all non terminals
are added to a list of possible expansion sites and selection from this list is con-
trolled by the chromosome. When a non terminal is expanded any non terminals
generated from the expansion are then placed in the list in the position the
parent NT was taken from.

Considering this, it needs to be determined what, if any, orders can an ex-
plicit distance from be calculated. Due to the variable length of the list of NTs,
selecting a codon value that can always select the correct position in the list
means that the only orders that are allowed for comparison to πGE are orders
that are constructed by selecting the first NT in the list. As the πGE expansion
rule, Eq. 2, can only be set to consistently select the first item in the list and
no other position, only orders that rely on using zero codon values for the order
codons and select the first codon in the list can be measured.

With this knowledge it can be determined that from the default implemen-
tation of the algorithm the only order that can be initialised to and a distance
measured from using OBDM is Left-Most Depth First, also known as the stan-
dard GE mapping. To ascertain how far from the desired order the current order
is, the position selected by Eq. 2, NT Choice, at each step of the πGE derivation

Understanding Expansion Order and Phenotypic Connectivity in πGE 41

is converted into a percentage by using, (100/|NT list|) ∗NT Choice. The idea
is that the desired order, or 0% distance, is always position zero in the list and
then 100% distance would be selecting the last item in the list. The distance
at each expansion is noted and at the end averaged to provide the percentage
distance from the desired order for each individual.

4.1 Alternative Orders

To initialise the initial πGE population to any other desired order requires fun-
damental changes to the mapping algorithm. Right Most First Order can be
achieved if the NT list order is reversed so that when the first element is se-
lected in the list it is always the rightmost non terminal. Breadth First Mapping
can be achieved by appending the new non terminals to the end of the list and
then always selecting the first item in the list, allowing the algorithm to process
all NT’s at the first depth of the tree before moving onto the lower levels. Breadth
First Right Most can be achieved by reversing the Breath First list above.

The monitoring of any other order becomes far too computationally intensive
if a method other than an OBDM style of measurement is used. A metric for any
type of non fixed expansion order would have to store all possible outcomes of all
possible trees and then see how far away from the original tree the resulting tree
was. The branching factor that πGE’s order brings makes this task exponen-
tially increasing in difficulty. On a test run trying to monitor all possible valid
πGE trees, to a chromosome length of twelve with a simple symbolic regression
grammar, the algorithm was using in excess of 20GB of RAM and substantially
increased runtime in the order of several hours. OBDM provides a metric that
requires zero extra online monitoring and doesn’t slow down the algorithm.

5 Results

In this section the result for this study are reported regarding order and connec-
tivity in πGE. Firstly the results for the experiment relating to the understanding
of how order works and behaves in πGE is examined. This is then followed by
the reporting of the other facet of this study, how does this added order change
the connectivity of the πGE representation when compared to GE. For all ex-
periments reported here GEVA v2.0[12] was used and modified as needed to
produce the required output.

5.1 Order and πGE

To ascertain what is happening to the πGE expansion order during evolution,
a method of recording the expansion process is needed. For this it was decided
to store the NT list choice that was taken to first select the parent NT for
expansion and the list length when this was taken as well as the tree depth of
the parent in every child node. Once this was done the parsing of the data was
done and represented using the OBDM above. At each expansion the distance

42 D. Fagan et al.

from standard GE order was calculated and then compressed and represented
on a population level per generation.

The general setting for the experiments are displayed in Table 1. There were
four setups examined of varying population size and generation length. These
setups were then applied to three problem domains, Santa Fe Ant Trail, Even
5 Parity and Symbolic Regression. The experiments were then repeated using a
fixed order initialisation, setting every expansion codon to zero so as to guarantee
a standard GE order, and then examined to see how the order would change
starting from a fixed order. Would it maintain the order or something close to
it, or would it follow the behaviour of standard πGE?

Table 1. Parameter settings adopted for the order experiments

Parameter Value

Setup A 100 Generations 100 Population

Setup B 400 Generations 100 Population

Setup C 100 Generations 400 Population

Setup D 400 Generations 400 Population

Replacement strategy Generational with elitism (10%)

Selection Tournament size=2

Mutation probability 0.01 (integer mutation)

Crossover probability 0.0 & 0.9 (variable single point)

Initial chromosome length 200 codons (random init)

Runs 100 per setup & problem

In Fig. 7 the results for Setup D are displayed on the Even 5 Parity Problem.
Results for other setups and problems where omitted due to space constraints.
By examining the figure it can be seen that πGE starts off with a large amount
of individuals that have a very GE like mapping order. This anomaly comes from
the fact that πGE and GE generate a lot of small individuals at the start of a
randomly initialised run and it can be seen that these individuals are greatly
reduced after 100 generations. This trend was seen across all setups and prob-
lems. Examining Fig. 7, focusing on the left hand side of the figure it shows
how the order of the πGE population changes during the run. In fact by the
end of the 400 generations it looks like a slightly offset normal distribution of
orders is seen. Examining the right hand side of the figure the order of the fixed
initialiser is shown. The population starts off with a GE order of expansion but
over time this order moves to be more like the order seen in πGE. These findings
were seen across all setups and problems. One thing of note was that with a
reduced amount of generations the populations drift away from the GE order
was reduced but there was no way to stop the drift. The stopping of this drift
towards a πGE order is discussed further in Section 6.

Understanding Expansion Order and Phenotypic Connectivity in πGE 43

5.2 Connectivity and πGE

To fully understand an algorithm it is helpful to visualise the connectivity of the
phenotypic space associated with the algorithm. In this experiment the aim is to
try and represent a single mutation event in the πGE genotypic space and map
the resulting move in the phenotypic space. Through this it is hoped to gain an
understanding of how the added search that the evolvable order in πGE causes
can lead to results on a par with and in many cases better than GE.

In this experiment GEVA was extended to incorporate the Mutate and Store
operation as described in detail by Murphy[9]. Mutate and Store basically starts
off with an all zero chromosome and then iterates along the chromosome finding
all valid chromosomes and storing them in a neighbourhood. The operator then
calls these neighbours and does the same process finding all valid genotypes.
This continues until all valid genotypes have been mapped and explored. Once
this process is done all the individual neighbourhoods are compressed into a
single neighbourhood. The operator removes all degeneracy in the genotypes by
only allowing the codon values at each point of the chromosome to represent
the choices available thus removing the neutral mutations that GE can take
advantage of. For example a GE codon valued 62 is mutated to 64 and this
codon is applied to a binary grammar rule, the mutation results in no change to
the expansion of the tree. The grammar used for this experiment is similar to
the one shown in Fig. 3 except now < o >::= + | − and < v >::= x0 | x1 | 1.0.
Mutate and Store was run on GE and πGE and was setup in such a way as to
limit both algorithms to the same phenotype space.

−
1.

01
.0

−
1.

0x
0

−
1.

0x
1

−
x0

1.
0

−
x0

x0

−
x0

x1

−
x1

1.
0

−
x1

x0

−
x1

x1

+
1.

01
.0

+
1.

0x
0

+
1.

0x
1

+
x0

1.
0

+
x0

x0

+
x0

x1

+
x1

1.
0

+
x1

x0

+
x1

x1 1.
0 x0 x1

−1.01.0

−1.0x0

−1.0x1

−x01.0

−x0x0

−x0x1

−x11.0

−x1x0

−x1x1

+1.01.0

+1.0x0

+1.0x1

+x01.0

+x0x0

+x0x1

+x11.0

+x1x0

+x1x1

1.0

x0

x1

Fig. 5. GE Adjacency Matrix. The x-
axis and y-axis are the same and display
the phenotypes attainable from the avail-
able chromosome length

−
1.

01
.0

−
1.

0x
0

−
1.

0x
1

−
x0

1.
0

−
x0

x0

−
x0

x1

−
x1

1.
0

−
x1

x0

−
x1

x1

+
1.

01
.0

+
1.

0x
0

+
1.

0x
1

+
x0

1.
0

+
x0

x0

+
x0

x1

+
x1

1.
0

+
x1

x0

+
x1

x1 1.
0 x0 x1

−1.01.0

−1.0x0

−1.0x1

−x01.0

−x0x0

−x0x1

−x11.0

−x1x0

−x1x1

+1.01.0

+1.0x0

+1.0x1

+x01.0

+x0x0

+x0x1

+x11.0

+x1x0

+x1x1

1.0

x0

x1

Fig. 6. πGE Adjacency Matrix. The x-
axis and y-axis are the same and display
the phenotypes attainable from the avail-
able chromosome length.

44 D. Fagan et al.

The first examination of the connectivity of πGE versus GE was performed by
converting the connections to a graph and representing the graph as an adjacency
matrix or connectivity map as in the Murphy study. Adjacency matrices are
good for showing how connected the valid phenotypes are. An algorithm whose
phenotype space has a densely populated adjacency matrix will have an easier
time moving from phenotype to phenotype and thus it can more easily search the
space. Fig. 5 shows the adjacency matrix for GE and Fig. 6 the adjacency matrix
for πGE. It is obvious when the two figures are compared that πGE’s phenotype
space is more densely connected than GE’s phenotype space, also worth noting
is how GE has no neutral mutation but with the addition of order πGE exhibits
neutral mutation. A phenotype of x1 cannot exhibit neutral mutation as the NT
list for such a tree never exceeds a size of one thus the left-most nonterminal is
always picked.

The adjacency matrix representation is good for quickly showing connectivity
but it lacks the ability to show multiple connections between the same pheno-
types. By examining Fig. 8 and 9 and the actual graph of the neighbourhood
for both algorithms it becomes very clear how connected both are. From these
figures a couple of interesting things can be seen. Firstly we can see the density
of the connections is far more in πGE, also the neutral mutation are clearly
displayed. Finally it is also clear that there are multiple edges between the same
vertices. These edges are distinct in that they represent clearly different ways to
make the same transition, this feature is not seen in GE’s graph. A more detailed
comparison is done in Table 2 where it is shown that πGE has a much larger
total graph degree, the amount of connections to the vertices in the graph, as
well as more edges and that every vertex in the graph has a degree, the number
of connections coming from a vertex, on average double that of GE.

Table 2. Table outlining features of the connectivity graphs shown in both Fig. 5 and
Fig. 6. Of note is the more than double increase in connections for πGE.

Graph Features GE Graph - Fig. 5 πGE Graph - Fig. 6
∑n

i=0 V ertex Degree 98 198
∑n

i=0 Edges 49 99
∑n

i=0 V ertices 21 21

V ertexDegree 4.67 9.43

6 Discussion - Restricting Order Drift in πGE

It has been shown in the experimental section of this paper that with πGE,
evolution does not evolve towards a specific mapping order. πGE instead evolves
to a population of individuals with a distribution of mappings orders. However
is there a way to limit this drift and force πGE to maintain a mapping order?

Understanding Expansion Order and Phenotypic Connectivity in πGE 45

0−10 20−30 40−50 60−70 80−90

Dist. of Order piGE Std Init

% from LM Order

in

ds
 a

fte
r

0
ge

ns

0
50

15
0

0−10 20−30 40−50 60−70 80−90

Dist. of Order piGE LM Init

% from LM Order

in

ds
 a

fte
r

0
ge

ns

0
15

0
30

0

0−10 20−30 40−50 60−70 80−90

% from LM Order

in

ds
 a

fte
r

10
0

ge
ns

0
10

0
25

0

0−10 20−30 40−50 60−70 80−90

% from LM Order

in
ds

 a
fte

r
10

0
ge

ns

0
10

0
20

0

0−10 20−30 40−50 60−70 80−90

% from LM Order

in

ds
 a

fte
r

20
0

ge
ns

0
10

0
25

0

0−10 20−30 40−50 60−70 80−90

% from LM Order

in

ds
 a

fte
r

20
0

ge
ns

0
10

0
25

0

0−10 20−30 40−50 60−70 80−90

% from LM Order

in

ds
 a

fte
r

30
0

ge
ns

0
10

0
20

0

0−10 20−30 40−50 60−70 80−90

% from LM Order

in

ds
 a

fte
r

30
0

ge
ns

0
10

0
25

0

0−10 20−30 40−50 60−70 80−90

% from LM Order

in

ds
 a

fte
r

40
0

ge
ns

0
10

0
20

0

0−10 20−30 40−50 60−70 80−90

% from LM Order

in

ds
 a

fte
r

40
0

ge
ns

0
10

0
25

0

Fig. 7. Figure displays how the order of πGE varies during evolution using the OBDM.
For each sub graph the x-axis shows the distance from the fixed order, while the y-axis
shows the number of individuals

In previous work[4], a mutation operation was proposed that could focus on
order codons or content codons of a πGE chromosome and the algorithm could
be setup in such a way as to turn off mutation of the order codons completely.
Upon further inspection of how the mapping process works for πGE, even if the

46 D. Fagan et al.

+x0x1

+x01.0

+x0x0

x1

-x0x1

+1.0x1

+1.01.0-x01.0

-x1x1

-x1x0

-1.0x1 -x11.0

x0

-1.0x0

-x0x0

+x11.0

-1.01.0

+1.0x0

1.0

+x1x0

+x1x1

Fig. 8. GE - Single Mutation Graph

+x0x1

+x01.0

-x1x1

-1.0x1

+x0x0

-x11.0

x0

x1

+x1x0

+x1x1

-x0x1

+1.0x0

+1.0x1

+x11.0

-1.01.0

+1.01.0

-x01.0

-x1x0

-1.0x0

-x0x0

1.0

Fig. 9. πGE - Single Mutation Graph

mutation of order codons is not allowed the order of the individual will change
with the mutation of the content codons. In πGE the order of the individual
is linked to not only the order codon but also the number of NT’s left to be
expanded. So if a content mutation changes the number of NT’s in the list then
this may change the expansion order that follows from that point on. This is a
similar ripple effect to that noted in standard GE mutation[1], but in this case
the ripple is caused by the change in the number of NT’s to be expanded.

Consider the following example, there is a section of chromosome and the
algorithm is currently pointed at the codon with the value 5, Chromosome :
[3, 5, 9, 7, 8] , and a current NT list mid run: NT ′s = [e, o, e, o, v]. Applying the
πGE order rule, 5%5 = 0, leads to the mapper selecting NT zero in the list to

Understanding Expansion Order and Phenotypic Connectivity in πGE 47

expand, NT ′s = [e, o, e, o, v]. Applying the GE expansion rule, 9%2 = 0, results
in this e being replaced by v and sets the NT list for the next expansion in the
derivation tree, NT ′s = [v, o, e, o, v]. Next the mapper selects index 2, 7%5 = 2,
and continues on from there. However if the codon valued 9, that controls what
the first e expanded to, is mutated to 4 the list now looks drastically different,
NT ′s = [e, o, e, o, e, o, v] and so when we apply the πGE NT selection equation
to choose the next codon, 7%7 = 0, the NT at position zero is now selected and
thus the ripple is started and all the following order choices will be effected.

In general it can be shown that if a content codon is mutated and this mutation
results in the number of NT’s available for expansion being changed then a
resulting ripple will change the order of expansion for πGE.

7 Conclusions

The main aim of this paper was to further investigate what goes on within πGE
with regards to the expansion orders used in the algorithm. The orders of πGE
individuals during evolution was recorded, from a random order initialisation and
a fixed order initialisation, on a range of setups and problems. It was shown that
πGE drifts towards a distribution of orders rather than one particular order,
this exhibits behaviour similar to that of crossover in GP whereby crossover
causes evolution to a distribution of tree sizes. However the drift away from a
fixed order can be reduced if a shorter number of generations are used during
evolution. The monitoring of other orders was also discussed and some other fixed
order initialisations for πGE were discussed, but they would require fundamental
changes to the algorithm due to the sensitivity of the order to the size of the NT
list. Finally the idea of trying to constrain the order was discussed but again the
sensitivity to the NT list size makes this a computationally prohibitive idea.

Given the search overhead the order gives to πGE it was decided to investigate
if the order added anything to πGE and try to gain further understanding into
how πGE works. By creating graphs of the neighbourhood of single mutation
events in GE and πGE it was shown that with the addition of order a significant
increase in connectivity was seen. A more densely connected algorithm has the
benefit of easier movement within the search space. The order also added pure
degeneracy and neutral mutation unlike GE that relies upon codons to provide
this, while πGE benefits from both GE’s neutral mutations and the ones it gains
from the use of variable order. In conclusion it can be said that the overhead of
the added search space could represent a problem for πGE to search the solution
space, but the increased connectivity could be said to counteract this.

In the future, further examination of the order with πGE is desirable focusing
on the behaviour of the elites in the population. It would be good to see how
big an impact mutation and crossover would have on fitness and order. The con-
nectivity of πGE presented in this paper while clearly greater than GE presents
some interesting ideas. Firstly a more efficient way to explore the connectiv-
ity needs to be investigated to allow for much larger phenotype space. Finally
repeating this study using crossover may provide more insight into πGE.

48 D. Fagan et al.

Acknowledgments. This research is based upon works supported by the Sci-
ence Foundation Ireland under Grant No. 08/IN.1/I1868.

References

1. Byrne, J.: Approaches to Evolutionary Architectural Design Exploration Using
Grammatical Evolution. Ph.D. thesis, University College Dublin, Ireland (2012)

2. Dempsey, I., O’Neill, M., Brabazon, A.: Foundations in Grammatical Evolution for
Dynamic Environments. SCI, vol. 194. Springer, Heidelberg (2009)

3. Fagan, D., O’Neill, M., Galván-López, E., Brabazon, A., McGarraghy, S.: An Anal-
ysis of Genotype-Phenotype Maps in Grammatical Evolution. In: Esparcia-Alcázar,
A.I., Ekárt, A., Silva, S., Dignum, S., Uyar, A.Ş. (eds.) EuroGP 2010. LNCS,
vol. 6021, pp. 62–73. Springer, Heidelberg (2010)

4. Fagan, D., Nicolau, M., O’Neill, M., Galvan-Lopez, E., Brabazon, A., McGarraghy,
S.: Investigating mapping order in piGE. In: WCCI 2010, July 18-23, pp. 3058–
3064. IEEE Press, Barcelona (2010)

5. Galvan-Lopez, E., Fagan, D., Murphy, E., Swafford, J.M., Agapitos, A., O’Neill,
M., Brabazon, A.: Comparing the performance of the evolvable pigrammatical evo-
lution genotype-phenotype map to grammatical evolution in the dynamic ms. pac-
man environment. In: WCCI 2010, pp. 1587–1594. IEEE Press, Barcelona (2010)

6. Hemberg, E.: An Exploration of Grammars in Grammatical Evolution. Ph.D. the-
sis, University College Dublin, Ireland (September 17, 2010)

7. Koza, J.R., Poli, R.: Genetic programming. In: Search Methodologies: Introductory
Tutorials in Optimization and Decision Support Techniques, ch. 5, pp. 127–164.
Springer (2005)

8. McKay, R.I., Hoai, N.X., Whigham, P.A., Shan, Y., O’Neill, M.: Grammar-based
genetic programming: a survey. Genetic Programming and Evolvable Machines
11(3/4), 365–396 (2010), Tenth Anniversary Issue: Progress in Genetic Program-
ming and Evolvable Machines

9. Murphy, E., O’Neill, M., Brabazon, A.: Examining Mutation Landscapes in Gram-
mar Based Genetic Programming. In: Silva, S., Foster, J.A., Nicolau, M., Machado,
P., Giacobini, M. (eds.) EuroGP 2011. LNCS, vol. 6621, pp. 130–141. Springer,
Heidelberg (2011)

10. O’Neill, M.: Automatic Programming in an Arbitrary Language: Evolving Pro-
grams with Grammatical Evolution. Ph.D. thesis, University Of Limerick (2001)

11. O’Neill, M., Brabazon, A., Nicolau, M., Garraghy, S.M., Keenan, P.: πGrammatical
Evolution. In: Deb, K., Tari, Z. (eds.) GECCO 2004. LNCS, vol. 3103, pp. 617–629.
Springer, Heidelberg (2004)

12. O’Neill, M., Hemberg, E., Gilligan, C., Bartley, E., McDermott, J., Brabazon, A.:
GEVA: Grammatical Evolution in Java. SIGEVOlution 3(2) (2008)

13. O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Program-
ming in a Arbitrary Language. Genetic programming. Kluwer (2003)

14. Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic programming. Pub-
lished via http://lulu.com and freely available at http://www.gp-field-guide.

org.uk (2008), (With contributions by J. R. Koza)

http://lulu.com
http://www.gp-field-guide.org.uk
http://www.gp-field-guide.org.uk

PhenoGP: Combining Programs

to Avoid Code Disruption

Cyril Fonlupt and Denis Robilliard

Univ Lille Nord de France
ULCO, LISIC, BP 719
F-62228 Calais, France

{fonlupt,robilliard}@lisic.univ-littoral.fr

Abstract. In conventional Genetic Programming (GP), n programs are
simultaneously evaluated and only the best programs will survive from
one generation to the next. It is a pity as some programs might contain
useful code that might be hidden or not evaluated due to the presence of
introns. For example in regression, 0× (perfect code) will unfortunately
not be assigned a good fitness and this program might be discarded due
to the evolutionary process. In this paper, we develop a new form of
GP called PhenoGP (PGP). PGP individuals consist of ordered lists of
programs to be executed in which the ultimate goal is to find the best
order from simple building-blocks programs. If the fitness remains stalled
during the run, new building-blocks programs are generated. PGP seems
to compare fairly well with canonical GP.

1 Introduction

Genetic Programming (GP) is a technique aiming at the automatic generation
of programs. It was successfully used to solve a wide variety of problems, and
it can be now viewed as a mature method as even patents for old and new
discovery have been filled. GP is used in fields as different as quantum comput-
ing [12], software engineering, classification [6] and even for finite algebras in
mathematics [13].

The most widely used scheme in GP is the tree paradigm also known as Tree
Based GP where each evolved program is coded as a Lisp-like tree. Different al-
ternatives to the tree based schemes were devised in recent years. For instance,
one of the most successful paradigm is Linear Genetic Programming (LGP) [2]
where individuals in the population are sequences of high-level languages in-
structions. The representation (or genotype) of programs in LGP is usually a
bounded-length list of integers. This list is subsequently mapped into a sequence
imperative instructions.

Unfortunately all these population-based schemes have a significant weak-
ness inherent to their structures. An individual (i.e. a program) score which
determines its presence in future generations is only based on its own features
regardless of any combinations it may form with other programs or good code
it may have inside. Another way of seeing this weakness is the disruption of

K. Krawiec et al. (Eds.): EuroGP 2013, LNCS 7831, pp. 49–60, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

50 C. Fonlupt and D. Robilliard

program structure caused by the application of genetic operators. Main genetic
operators like crossover in the GP paradigm work by modifying the tree struc-
ture in case of Tree based GP or by swapping instruction or parts of instruction
in case of LGP. There is disruption when use of genetic operators has a negative
impact on the execution.

Many researchers have tackled this problem as code disruption may retard the
evolutionary process because it may completely make “good code” disappear.
Some clever schemes have been proposed these last years to limit the impact
of disruption either by limiting the disrupting power of the crossover (size fair
crossover,...) or by controlling it.

In this work, we make the following assumption that as the disruption is
inherently present in the evolution process, we must use it to our benefit. In
this work, we propose to reverse the use of disruption. Instead of watching the
evolutionary process to monitor the disruption process, we believe that many if
not all individuals in the population might give birth to “good” code.

Another weakness in the GP approach is that while all high-level languages
(like C, Java, ...) support loop constructs that allow iterations over data struc-
tures, loops are still regarded as difficult instructions to manipulate during the
GP evolution even if many problems require repetitive tasks to be solved.

Loops or iterations have received some attention over the last years but, as
using loops in GP remains relatively complex and requires Boolean condition,
the use of loops and recursion in GP is still uncommon. Even if loops were in-
troduced by Koza in [7], only a few papers were dedicated to the use of loops in
GP. Chen and Zhang in [3] showed than using a while-loop structure improved
the performance of GP on some classification problem. In the same way, Ciesiel-
ski and Li [4] showed that for some modified problems, the for-loops structure
can reduce the complexity of the solution. Lately, Larres et al [9] proposed to
introduce the concept of unrestricted nested loops for image classification. Even,
if all these works proved that using loops provides new and interesting results in
the GP field, loops or iteration in GP is still rarely used due to its complexity.

To cope with the above issues this paper aims to investigate a new GP ap-
proach where disruption is controlled and iteration is implicitly available, with-
out needing complex modifications to the GP scheme. Instead of using a pool
of programs and making them evolve, this approach seeks to combine the pro-
grams of the pool and to possibly repeat some of the best building blocks of
this pool. This may look superficially similar to the GP teams of [10], but it is
different since we construct a composition of functions, while [10] combine not
the functions but their results.

The rest of this paper is organised in the following way. Section 2 briefly de-
scribes the Linear Genetic Programming (LGP) principles and the disruption
process. Section 3 describes our new GP approach called PhenoGP (PGP). Sec-
tion 4 presents the experiments and results on a set of benchmarks: regression
problems, the artificial ant problem and the tower of Hanoi problem. Finally, we
conclude in Section 5 and give future research directions.

PhenoGP: Combining Programs to Avoid Code Disruption 51

2 Background

2.1 Linear Genetic Programming

Basically LGP is a subset of GP. Unlike canonical GP [7] also called Tree-GP
where programs are coded as trees, in the LGP paradigm, individuals in the
populations (i.e. programs) consist of a sequence of imperative instructions [2],
usually expressed in a high-level language like C.

Each imperative instruction is a 3-register instruction. This means that every
instruction consists of an operation on two operand registers, one of them (and
only one) could be holding a constant value, and a destination register that the
result is assigned to :

r[i] = r[j] op (r[k]|ck)
where r[i] is the destination register, r[j] and r[k] are the calculation registers
and ck is a constant.

Constants are typically initialized at the beginning of the run with values
in the range [−1.0,+1.0]. A subset of the registers contains the inputs to our
problem, that means that if the solution is a n-dimensional vector, registers
r[0] to r[n − 1] will be used to hold the inputs values. As explained in [2],
besides the required minimal number of registers, an additional set of registers
is sometimes used for calculation purpose and storing constants. In the standard
case, the output values are stored in the registers r[0] . . . r[n] according to the
dimensionality of the problem. Figure 1 gives an overview of an LGP program
execution on a 2-dimensional problem.

2.2 Disruption

As explained in the first section, it is not our intention to exhaustively describe
all the ways to prevent the disruption process in GP. Many interesting schemes
were devised these last years to diminish the disruption process

In [5], Downey and Zhang introduced a clever way to cope with the disrup-
tion process. In their work, called Parallel LGP (PLGP), a program consists
of n LGP programs which are evaluated independently and provide n results
vectors. These vectors are then summed to produce a single results vector. The
idea behind LGP is that by separating the program into multiple independent
small blocks of program, the final program will be much more insensitive to the
disruption process. Experiments on some classification problem chosen from the
UCI machine learning repository showed that PLGP gave rise for most problems
to better fitness solutions than LGP.

3 PhenoGP (PGP)

3.1 Motivation - PhenoGP Scheme

As explained in section 1, PhenoGP (PGP) is devised to combine programs in
an effective way and thus to limit the code disruption and to allow the reuse of
the same program several times.

52 C. Fonlupt and D. Robilliard

PGP is an LGP system where two populations evolve. The first population
(called LGP pool) consists of n LGP programs which are evaluated in the
usual way while the second population (called master pool) consists of n lists of
integers that indicate the sequence of LGP programs to execute.

Program
Inputs
r[0] r[1]

1.0 2.0

LGP program
r[0] = r[1] + 1.27

r[1] = r[0] + r[1]

r[0] = r[1] × r[0]

Program
Outputs

r[0] r[1]

17.23 5.27

Fig. 1. LGP overview. r[0] = 1.0 and r[1] = 2.0 are the two input values to the
problem. After execution of the LGP program, results are stored in the same registers
(r[0] = 17.23 r[1] = 5.27)

Let us have a look at a basic example to explain our topic: the aim of the
problem is to solve a classic regression problem, for instance x2+x− 1. Suppose
there are two individuals (namely program1 and program2) in our LGP pool.
Suppose, the r[0] and r[1] registers are inputs of our program while output is
obtained through the r[0] register.

program 1

r[0] = r[0] - 1

r[1] = r[0] + 3

program 2

r[0] = r[0] * r[1]

r[0] = r[0] + 1

These two programs are moderately fit (the first program is equivalent to x+ 2
while the second one is x2+1) and may or may not be kept in future generations
due to the evolutionary process. But if we look closely at these two programs,
it is straightforward that executing program2 just after program1 will provide a
perfect solution to the problem.

r[0] = r[0]− 1 r[0] = x− 1
r[1] = r[0] + 3 r[1] = x+ 2
r[0] = r[0] ∗ r[1] r[0] = x2 + x− 2
r[0] = r[0] + 1 r[0] = x2 + x− 1

Execution in sequence of program1 followed by program2
Actually, we do not want to avoid the disruption process. As we think dis-

ruption is central to GP, the programs will not evolve as in any GP scheme but
be part of a larger structure that can use any of the individuals zero time, once,
twice or as many times as needed to find a good solution.

On the implementation level, an individual will be a list of integers that
indicates which and when to execute each program. For instance, if the list
of integers is equal to {1 5 1 10 6}, the programs in the LGP pool that will be
executed in sequence are: 1 5 1 10 6. Note that in this example, the first program
to be executed is the program labelled 1 and that outputs of this program will
be inputs of the program labelled 5 and so on... Iteration or repetition of the
same program is possible and can easily be evolved.

PhenoGP: Combining Programs to Avoid Code Disruption 53

Another problem that might occur in GP is the tendency to bloat (programs
have significant amounts of non-effective code that tends to increase during evo-
lution). The GP community is divided, some argue that bloat might be useful
to protect good portion of code as others believe it is only harmful. Note, that
in the case PGP, bloat cannot occur during evolution as the size of programs
remains fixed during the run.

3.2 Program Structure

An example of an PGP program is given in figure 2. In PGP, each program
may be executed zero, once, twice or as many times according to the evolution
process. An individual in the master pool decides which program in the LGP
pool to execute and in which order. All programs are executed in sequence and
outputs of the nth program are the inputs of the n+ 1 th program.

Pool of LGP Programs:

Program 1
r[0] = r[1] + 1.27

r[1] = r[0] + r[1]

Program 2
r[1] = r[1] / 0.5

r[0] = r[1] * r[1]

PGP program execution list: {1, 1, 2}

Combined PhenoGP Program:

Program
Inputs
r[0] r[1]

1.0 2.0

PGP execution
r[0] = r[1] + 1.27

r[1] = r[0] + r[1]

r[0] = r[1] + 1.27

r[1] = r[0] + r[1]

r[1] = r[1] / 0.5

r[0] = r[1] * r[1]

Program
Outputs
r[0] r[1]

?? ??

Fig. 2. PhenoGP principles

In this approach, if an LGP program owns a portion of “efficient” code even
if it is moderately fit, there is a probability that this program will be used in
future generations and will not disappear during evolution.

The heart of our scheme is a (μ+ λ)-ES (Evolution Strategy) that makes the
master pool evolve. An important issue in the case of an ES is how mutation
will be performed. In our case, the mutation operator works on a list of integers
and is used to modify which sequence of programs to execute in the LGP pool.

We decided to allow the mutation of any integer so that any LGP program
of the LGP pool may have the chance to appear zero, once or as many times

54 C. Fonlupt and D. Robilliard

as needed. Moreover, we decided to allow the mutation operator to have a “no-
operation” effect. In other words it means that the mutation can turn one integer
of the list into a “do the number of executable program is dynamic. In our opinion
this is an advantage over standard LGP where the size of the program is fixed
offline and that if smaller programs are needed to solve a problem it might be a
more difficult challenge for evolution to get rid off useless code.

For example, before being mutated, programs 1, 2, 1 and 4 are executed in
sequence. After mutation, programs 1, 4 and 4 are executed in sequence (−1
means “do nothing”).

1 2 1 4 −→ Mutation −→ 1 -1 4 4

Table 1. PGP algorithm

Initialize LGP pool Pμ1 = {a1, . . . , aμ1} // population of LGP programs
Initialize master pool Mμ2 = {m1, . . . ,mμ2} // population of lists of integers
Initialize constants
while (termination criterion not fulfilled)
begin

Randomly select λ1 parents from Pμ1

Mutate these λ1 parents to form the offspring population Pλ1

Select new parent population from the offspring Pλ1

and parent Pμ1 based on the fitness of individuals
if best fitness unchanged then

//make a diversification on the LGP pool (see section 3.3)
assign a fitness score to each individual of the LGP pool based on its frequency

in the 10% best lists of integers
Randomly select λ2 parents from Pμ2

Mutate these λ2 parents to form the offspring population Pλ2

Select new parent population from the offspring Pλ2

and parent Pμ2 based on the fitness of individuals
end if

end while

3.3 Diversity for PhenoGP

An important issue to consider in our new scheme is how diversity will be pre-
served during evolution. If the LGP pool is created during the initialization and
does not evolve during the run, we may face a problem of a lack of diversity in
the LGP pool.

To solve this problem we chose to make the LGP pool evolve after a few
generations of unchanged best fitness. Each LGP program inside the LGP pool
will be assigned a fitness that is directly dependent on the number of times it is
used in the master pool.

The higher the fitness, the more frequently it is used in the master pool.
In our case we chose to only look at the best 10% individuals in the master

pool to give a reward. Figure 3 explains how fitness is assigned. Once fitness has
been evaluated, an ES is used inside this pool to evolve a new LGP pool.

PhenoGP: Combining Programs to Avoid Code Disruption 55

Fig. 3. Overview of the diversification scheme. Fitness is assigned to individuals in the
LGP pool based on their frequency in the 10% best individuals of the master pool.

It is clear that this approach might induce a bias towards LGP individuals
that are already good and there is a risk that evolution will never change these
individuals which provide a good fitness. However our experiments show that
this approach seems quite robust. Pseudo-code of our algorithm is presented in
table 1.

4 Experiments

In order to validate our scheme, a series of classic experiments were conducted: 6
symbolic regression problems, the famous Santa Fe artificial ant problem and the
tower of Hanoi problem. For all problems we measured the average best fitness of
40 independent. The ratio of so-called “hits” was also computed. For regression
problems, fitness is evaluated by computing the sum of deviations over all points
while for the Hanoi tower problem fitness is simply 4 minus the number of rows
on the last peg (a perfect solution is reached when 4 rows are on the last peg).

All problems were also run with standard GP, using the well-known ECJ
library 1.

The main parameters for standard GP and for our new scheme PGP are :

– the ES PGP is based on is a canonical version of the (μ + λ)-ES where μ
denotes the number of parents and λ the number of offspring. The parents
are deterministically selected using a tournament selection. Child is inserted
in the parent of the next generation, only if its fitness is better than the
parents fitness, otherwise it is discarded. The parameters for our ES are:

1 Evolutionary Computation in Java, http://cs.gmu.edu/~eclab/projects/ecj/

http://cs.gmu.edu/~eclab/projects/ecj/

56 C. Fonlupt and D. Robilliard

μ = 50 and λ = 5. This means that in our case in the master pool, 50 list of
integers were evolving in parallel.

– the number of individuals in the LGP population was arbitrarily set to 10
times the size of the LGP population. (i.e. 500 LGP programs are available).

– the size of each list in the master pool was set to 10. This means that each
individual in the master pool will execute at most a sequence of 10 programs.
In order to avoid execution of very large programs, each program in the LGP
pool was limited to 12 instructions

– for all regression problems and the tower of Hanoi problem 50, 000 evalua-
tions were permitted and 200, 000 for the Santa Fe trail problem.

– for regression 10 read/write registers were used for calculation purpose (from
r[0] to r[9]), r[0] being the output register. They were all initialized for each
training case (xk, yk) with the input value xk.

– in the symbolic regression problems the constant probability was set to 0.20
meaning that on average 20% of the instructions will use a constant value.

– the GP parameters were set to 50 generations, 1000 individuals for the regres-
sion problem, and 4000 individuals for the artificial ant. Genetic operators
were tuned according to the usual practice: 80% for crossover, 10% for sub-
tree mutation and 10% for duplication. The maximum tree depth was set to
11, and we kept the best (elite) individual from one generation to the next.
For the regression problems, we defined 4 input terminals against only one
ephemeral constant (ERC) terminal.

4.1 Symbolic Regression

The aim of a symbolic regression problem is to find some mathematical expres-
sion in symbolic form that associates input and output on a given set of training
pairs. In our case, 20 evenly distributed data points xk in the range [−1.0,+1.0]
are chosen as inputs, the outputs being given by the following test functions :

f1 = x+ x+ x f2 = x+ x+ x+ x
f3 = x5 + x+ x+ x+ x f4 = x4 − 2x+ x
f5 = π f6 = x

π + x
π + 2xπ

The set of operators is {+,−,×,÷} with ÷ being the protected division (i.e.
a÷ b = a/b if b �= 0 else a÷ b = 0).

Evaluation is done in the typical way, that is computing the sum of deviations
over all points, i.e. fitness =

∑
k |f(xk)−P (xk)| where P is the evolved program

and k the number of input/output pairs. A hit means that the fitness function
is less than 10−4 on each training pair.

Results can be seen in Table 2 and as it can be seen results are mitigated. On
one hand for the first 3 problems (f1 to f3) GP clearly provides the best results
with the overall most precise approximation, on the other hand PGP provides
the best results for the last 3 problems (f4 to f6).

It is interesting to see that GP outperforms PGP for the easiest regression
problems while for the most difficult problems involving finding non trivial con-
stant values PGP provides very good results and even delivers in some cases a
100% perfect hits program for f5 and f6.

PhenoGP: Combining Programs to Avoid Code Disruption 57

Table 2. Results

PGP standard GP

Problem Fitness % hits Fitness % hits

f1 0.04 82.5% 0.002 98%
f2 0.15 45% 0.0 100%
f3 0.28 22.5% 0.02 93%

PGP standard GP

Problem Fitness % hits Fitness % hits

f4 0.12 30% 0.33 23%
f5 0.017 47.5% 0.07 0%
f6 0.177 2.5% 0.21 0%

In our opinion this can be explained by noting that the first three regression
problems can be solved using short programs. And as it was noted in [5] short
programs will not suffer from code disruption or non-effective code in the way
larger programs do. This means that it is not very useful to limit the disruption
process as the target program can be expressed in a compact way. Another
weakness of PGP for finding short programs it that the list of programs to
execute was set to ten and each program held 12 instructions. Even if in the
list sequence could be filled with the nop value, on average 120 instructed were
executed and this represents too many instructions for finding a short program.

However in the case of more difficult problems when discovering constants is
needed PGP clearly outperforms standard GP and is even able to find perfect
solutions for f5 and f6. These results confirm that PGP is an interesting heuristic
particularly when longer programs are needed.

4.2 Santa Fe Ant Trail

The Santa Fe ant trail is one of the most famous problem in the GP field and
often used as a benchmark. The objective is to find a computer program that is
able to control an artificial ant so that it can find all 89 pieces of food located
on a discontinuous trail within a specified number of time steps. The trail is
situated on a 32× 32 toroidal grid. The problem is known to be rather hard, at
least for standard GP (see [8]), with many local and global optima.

Only a few actions are allowed to the ant that each consumes one time step. A
maximum time steps threshold is set at start (either 400 or 600). If the program
finishes before the exhaustion of the time steps, it is restarted. The fitness func-
tion is simply the remaining food (89 minus the number of food pellets taken by
the ant).

We do not need mathematical operators nor registers, only the following in-
structions are available:

MOVE: moves the ant forward one step in the direction the ant is facing, re-
trieving an eventual food pellet in the cell of arrival; LEFT: turns the ant on
place 45 degrees anti-clockwise; RIGHT: turns the ant on place 45 degrees clock-
wise; IF-FOOD-AHEAD: conditional statement that executes the next instruction
or group of instructions if a food pellet is located on the cell in front of the
ant, else the next group of instruction is skipped; PROGN2: groups the two in-
structions that follow in the program vector, notably allowing IF-FOOD-AHEAD

to perform several instructions if the condition is true; PROGN3: same as the
previous operator, but groups the following three instructions.

58 C. Fonlupt and D. Robilliard

Table 3. Results for the artificial ant problem and the tower of Hanoi

Artif. ant PGP standard GP

steps Fitness % hits Fitness % hits

400 21.28 15% 8.87 37%
600 9.06 40% 1.175 87%

Hanoi PGP standard GP

Fitness % hits Fitness % hits

0.81 17.5% 1.18 15%

Each MOVE, RIGHT and LEFT instructions require one time step.
Programs are just list of integers. Each integer represents an instruction that is

decoded sequentially, and the virtual machine is refined to handle jumps over an
instruction or group of instructions, so that it can deal with the IF-FOOD-AHEAD,
PROGN2 and PROGN3 instructions. Incomplete programs may be encountered, for
example if a PROGN instruction is decoded for the last value of a program vector.
On this case incomplete instruction is simply dropped and we consider that the
program has reached normal termination.

Results are given in Table 3. It is clear in these results that our scheme
PGP is not ease with the artificial ant problem and that standard GP clearly
outperforms PGP. We think that once again short programs are better for solving
this problem. To test if this was correct, we decided to drop the size of each LGP
program from 12 to 3. In this case, the average fitness was slightly better and the
number of hits increased from 40% to 66%. Even if PGP is still outperformed
by standard GP, the results are closer to those provided by standard GP and
show that the size of each LGP program is a sensitive parameter.

When looking closely at the results provided by PGP, we saw that the diversity
scheme we add to PGP to avoid being trapped in local optima has sometimes a
bad side-effect. Some runs were not very far from the perfect solution with a few
pellets remaining when the diversity scheme triggered and delivered bad results.
We think that the lack of elitism is a probable cause of PGP bad behavior, on a
very chaotic fitness landscape.

4.3 Tower of Hanoi

This problem consists of three pegs, labeled by position, and 4 uniquely sized
disks. The initial state has all disks on the first peg such that no disk is on top
of a smaller disk. The goal is to reconstruct the tower of the initial configuration
on the third peg by moving the disks, one a a time, such that a larger disk never
rests on a smaller disk.

We used the same primitive language for the genotype that was introduced
in [1] The possible moves for this problem consist of the 6 possibles moves from
one peg to another (i.e. from peg 1 to 2, from peg 3 to 1,....). A solution is then
simply a sequence of single disk move in an order that reconstructs the tower
on the third peg. Additionally a limit of 32 time steps was chosen, each move
requires one time step.

The following parameters were used for the tower of Hanoi problem: a limit
of 32 time steps was fixed, each move requires one time step (This means that

PhenoGP: Combining Programs to Avoid Code Disruption 59

the evaluation of the program was stopped after 32 moves either legal or illegal);
illegal moves (moving a larger disk on a smaller disk) were not executed but
consumed one time step; 50, 000 evaluations were allowed; the fitness function
was proportional to the number of disks on the last peg after 32 time steps (i.e.
4− the number of disks on the last peg).

The results for the tower of Hanoi problem are shown in Table 3. Unlike
the artificial ant problem, PGP provides the best performance among the two
methods: an average fitness of 0.81 and 17.5% of perfect solution. This shows
that PGP is an interesting approach for complex solutions.

5 Conclusion and Future Works

The goal of this paper was to investigate a new GP approach where moderately fit
individuals were not systematically discarded during the evolution. The goal was
partly successfully achieved and this new scheme was examined and compared
with the standard GP approach.

The results show that PGP is an interesting heuristic and that can be favor-
ably compared to canonical GP for the most difficult problems. For problems
with short solutions (first three regression problems and the artificial ant prob-
lem) GP seems to perform better while PGP achieves reasonable performance
for the most complex problems (difficult regression problems and the tower of
Hanoi problem).

The disadvantage of PGP over standard GP is that this is a new scheme and
that many parameters need to be tuned to achieve good performance. This is
particularly true in the case of the artificial ant problem where decreasing the
size of each LGP individual increased a lot the overall performance of PGP.

We think that there are some connections between this work and Cartesian
Genetic Programming (CGP) [11] as CGP tries to create links between a set of
functions, the set of input nodes and the set of output nodes. It remains to see
if PGP is some kind of super-set to CGP.

For future work, we will apply this new approach to more complex problems
like classification problems. It will also be interesting to investigate how PGP
behaves if LGP programs are not randomly generated during the initialization
but are tuned according to the problem.

References

1. Angeline, P.J., Pollack, J.B.: Coevolving high-level representations. In: Langton,
C.G. (ed.) Artificial Life III, Santa Fe, New Mexico, June 15-19. SFI Studies in the
Sciences of Complexity, vol. XVII, pp. 55–71. Addison-Wesley (1992, 1994)

2. Brameier, M., Banzhaf, W.: Linear Genetic Programming. Genetic and Evolution-
ary Computation. Springer (2007)

3. Chen, G., Zhang, M.: Evolving While-Loop Structures in Genetic Programming
for Factorial and Ant Problems. In: Zhang, S., Jarvis, R.A. (eds.) AI 2005. LNCS
(LNAI), vol. 3809, pp. 1079–1085. Springer, Heidelberg (2005)

60 C. Fonlupt and D. Robilliard

4. Ciesielski, V., Li, X.: Experiments with explicit for-loops in genetic programming.
In: Proceedings of the 2004 IEEE Congress on Evolutionary Computation, Port-
land, Oregon, pp. 494–501. IEEE Press (2004)

5. Downey, C., Zhang, M.: Parallel Linear Genetic Programming. In: Silva, S., Fos-
ter, J.A., Nicolau, M., Machado, P., Giacobini, M. (eds.) EuroGP 2011. LNCS,
vol. 6621, pp. 178–189. Springer, Heidelberg (2011)

6. Kadar, I., Ben-Shahar, O., Sipper, M.: Evolution of a local boundary detector for
natural images via genetic programming and texture cues. In: Proceedings of the
11th Annual Conference on Genetic and Evolutionary Computation, GECCO 2009,
pp. 1887–1888. ACM, New York (2009)

7. Koza, J.: Genetic Programming II: Automatic Discovery of Reusable Programs.
The MIT Press (1994)

8. Langdon, W.B., Poli, R.: Why ants are hard. In: Genetic Programming 1998: Pro-
ceedings of the Third Annual Conference, University of Wisconsin, Madison, Wis-
consin, USA, July 22-25, pp. 193–201. Morgan Kaufmann (1998)

9. Larres, J., Zhang, M., Browne, W.: Using unrestricted loops in genetic program-
ming for image classification. In: Proceedings of the IEEE Congress on Evolution-
ary Computation, pp. 1–8 (2010)

10. Lichodzijewski, P., Heywood, M.I.: Managing team-based problem solving with
symbiotic bid-based genetic programming. In: Proceedings of the Genetic and Evo-
lutionary Computation Conference, pp. 363–370. Morgan Kaufmann (2008)

11. Miller, J.: Cartesian Genetic Programming. Springer (2011)
12. Spector, L.: Automatic Quantum Computer Programming: A Genetic Program-

ming Approach. Springer (2006)
13. Spector, L., Clark, D.M., Lindsay, I., Barr, B., Klein, J.: Genetic programming

for finite algebras. In: Proceedings of the 10th Annual Conference on Genetic and
Evolutionary Computation, GECCO 2008, pp. 1291–1298. ACM, New York (2008)

Reducing Wasted Evaluations

in Cartesian Genetic Programming

Brian W. Goldman and William F. Punch

BEACON Center for the Study of Evolution in Action,
Michigan State University, U.S.A.

brianwgoldman@acm.org, punch@msu.edu

Abstract. Cartesian Genetic Programming (CGP) is a form of Genetic
Programming (GP) where a large proportion of the genome is identifiably
unused by the phenotype. This can lead mutation to create offspring that
are genotypically different but phenotypically identical, and therefore do
not need to be evaluated. We investigate theoretically and empirically
the effects of avoiding these otherwise wasted evaluations, and provide
evidence that doing so reduces the median number of evaluations to
solve four benchmark problems, as well as reducing CGP’s sensitivity
to the mutation rate. The similarity of results across the problem set in
combination with the theoretical conclusions supports the general need
for avoiding these unnecessary evaluations.

Keywords: cartesian genetic programming, mutation.

1 Introduction

In Genetic Programming (GP) the most common metric for measuring algorithm
complexity is the number of fitness evaluations required to solve a black box prob-
lem. This metric assumes that the cost of evaluating an individual will dominate
search times on real world problems. Under this metric, search algorithms that
best exploit evaluation information and avoid unnecessary evaluations will re-
ceive the best results. Cartesian Genetic Programming (CGP), a branch of GP,
has a particular structure that allows for the detection of some phenotypically
identical genotypes without requiring fitness evaluation. No previous work has
investigated if this property can be exploited to meaningfully improve CGP
efficiency. After discussing the potential theoretical gains of avoiding these eval-
uations, we propose and investigate three novel techniques designed to improve
CGP’s search.

2 Cartesian Genetic Programming

Cartesian Genetic Programming is a variant of genetic programming in which
individuals encode directed acyclic graphs (DAG). An in-depth explanation of
CGP is provided in [4], but for our purposes the important features are:

K. Krawiec et al. (Eds.): EuroGP 2013, LNCS 7831, pp. 61–72, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

62 B.W. Goldman and W.F. Punch

– DAGs are represented by a collection of nodes and genes specifying output
locations.

– Nodes contain genes describing both what function they perform and how
they connect to other nodes.

– Offspring are created using mutation.
– Offspring replace parents if they are of the same or greater fitness.

CGP’s encoding method does not require a node to connect to an output lo-
cation, which is required for it to affect the phenotype of the individual. These
unconnected nodes and their genes are commonly called “inactive” and the con-
nected nodes and their genes are called “active.” As the topology of the DAG is
constantly evolving, the number and location of active nodes can change from
parent to child. There have been numerous studies on the usefulness of inactive
nodes [7,9] including an argument that it is desirable to have up to 95% of the
genome inactive [5].

CGP’s canonical variation operator is point mutation. Unfortunately the de-
tails of this operator are often ambiguously stated. For instance, in some papers
this operator chooses a set number of genes at random to be mutated [4], while
in other papers each gene can be mutated with a certain probability, allowing
any number of genes to be mutated at once [2]. Also, mutation in CGP can either
force a mutated gene’s value to change [2,4], or randomly reset it to any valid
value including the genes previous value [5]. As much of our analysis hinges on
the behavior of mutation, we specify mutation as follows: when performing mu-
tation, all genes use the mutation rate as the probability that they are changed
to a different value.

The most common form of CGP uses a 1 + λ strategy, where all offspring
are mutants of the parent. The most fit offspring replaces the parent only if
its fitness is no worse than the parent. Ties between offspring are broken by
random selection and ties between the offspring and the parent are awarded to
the offspring: in this manner inactive genes are allowed to drift, which has been
shown to significantly improve performance [9]. We will refer to this standard
form of mutation and replacement as Normal.

3 Wasted Evaluations

Preventing search from repeatedly evaluating the same search point can improve
any search that is limited by the number of evaluations it can perform. In an
evolutionary search employing indirect phenotype encoding, as CGP does, the
same search point can be represented by multiple different genotypes making
duplicate detection more difficult. While it does not catch all identical pheno-
types, if two CGP individuals are actively identical (contain the same active
genes) then their phenotypes must be identical. Miller [4] theorized that this
may lead to wasted evaluations as any number of actively identical individuals
can be evaluated even though they will receive identical fitnesses. He did not,
however, provide any analysis for how frequently these unnecessary evaluations
may occur.

Reducing Wasted Evaluations in Cartesian Genetic Programming 63

Fig. 1. Probability of no active gene being mutated for different mutation rates

3.1 Detection

Before evaluating a CGP individual, it is common practice to determine which
nodes are active allowing inactive nodes to be ignored during evaluation, lead-
ing to a reduction in runtime [6]. By storing the set of active genes as part of
the individual, it is trivial to determine when active genes are mutated. More
generally, it takes O(N) additional time to determine if two randomly chosen
individuals contain different active genes, where N is the number of active nodes,
assuming at least one of the individuals has been evaluated.

A reasonable heuristic to avoid duplicate evaluations is to determine if a
parent’s active genes are identical to its offspring. This will catch the majority
of cases, as the probability of two individuals being actively identical decreases
as the number of mutation applications between them increases. This also has
the advantage that extra individuals need not be stored in memory. Due to
these advantages, we only compare an offspring against its parent to detect
unnecessary evaluations.

3.2 Frequency of Offspring Actively Identical to Their Parent

Using the definition of point mutation given in Section 2, it is possible to quantify
the probability that an offspring is actively identical to its parent.

(1−mutation rate)
active genes

(1)

64 B.W. Goldman and W.F. Punch

Equation 1 shows the probability that none of the active genes are mutated at
the given mutation rate. To help display the effects of this relationship, Figure 1
illustrates the probability that an offspring is actively identical to its parent
for various mutation rates and number of active genes. Figure 1 shows that as
the mutation rate and the number of active genes decreases, the probability
of an offspring being actively identical to a parent greatly increases. While the
other versions of mutation discussed in Section 2 will change the details of this
equation, the overall relationship between the variables will be the same.

4 Methods to Avoid Wasting Evaluations

4.1 Skip

The most straightforward method to use existing evaluation results is to set the
offspring’s fitness to the parent’s if they are actively identical. This method will
be referred to as Skip. As Skip makes no modification to evolutionary mecha-
nisms, any problem solvable by Normal will be solvable by Skip, and vice versa.
The primary difference is only that Normal will always use at least as many eval-
uations as Skip, with the potential to use significantly more. As a result, Skip
may solve problems Normal cannot if given a maximum number of evaluations.

A significant theoretic advantage to this technique is that it lowers CGP’s
sensitivity to the mutation rate. In Normal, as the mutation rate decreases the
potential for wasted evaluations increases creating an evaluation penalty. As the
mutation rate increases the expected number of modified active genes increases
making small changes in phenotype less probable. From this, Normal will likely
be most effective when the mutation rate is high enough to expect at least one
active gene to be modified by mutation, but low enough to allow the small
phenotypic moves required to reach optimal values. Unlike Normal, Skip can
use mutation rates expected to produce frequent offspring that are not actively
different from their parents without penalty. As such Skip can use very fine
grained mutation allowing it to potentially hill climb much more effectively.

4.2 Accumulating Mutation

As was stated in Section 2, some of CGP’s success stems from allowing genetic
drift of inactive genes [9]. This raises the following question: will evolution in
CGP improve if inactive genes are allowed to change at an increased rate?

To test this possibility we propose a method of mutation called Accumulate.
The primary concept behind this technique is to allow inactive genes to drift
multiple generations worth of distance in a single actual generation of CGP. For
our example we will refer to one of the offspring produced by the parent as F0.
If F0 is actively identical to its parent, F0 produces a mutant offspring F1 in
the same generation. This chain continues with Fi mutating to produce Fi+1

until an individual is produced that has one or more active genes different from
the original parent. This actively different individual is called Fn. Fn is then

Reducing Wasted Evaluations in Cartesian Genetic Programming 65

evaluated. If Fn is no worse than the original parent, it replaces F0 and CGP
continues evolution and selection as normal. If Fn is worse than the original
parent Fn−1 replaces F0. Thus accumulate’s offspring can have zero to multiple
active genes changed.

By chaining mutations each Fi will probabilistically have more changes to
inactive genes than Fi−1 when compared with the original parent. By using Fn−1

or Fn instead of F0, Accumulate can drift faster than Normal and Skip. This can
be advantageous on problems that benefit from high exploration of the neutral
space, with the potential drawback that previously active useful structures are
less likely to survive to be reintegrated.

4.3 Single Active Mutation

Skip and Accumulate have the potential, similar to Normal, to generate large
numbers of individuals with no active differences, which can be computationally
expensive even if they are not evaluated. To avoid this potential overhead, we
propose a method to ensure a Single active gene is mutated every time an off-
spring is generated. Creating an offspring using Single is an iterative process.
Until an active gene has been mutated, select a gene at random in the individual
and mutate its value. This has the following properties:

– Exactly one active gene is mutated for all offspring.
– Zero or more inactive genes can be mutated.
– A gene that is active will be mutated more frequently than one that is not.
– No mutation rate is required.

Many of these properties make Single distinct from the other described mutation
methods. By forcing only a single active gene to change, Single may have better
results on problems where incremental improvements are possible with single
gene changes and worse results on problems where larger changes are necessary.
This is in contrast to all of the other methods that have the potential to change
multiple active genes. Limiting mutation to a single active gene change does not,
however, prevent Single from making large phenotypic changes, which are still
possible by connecting in inactive nodes.

Single has the property that the effective mutation rate is always 1
a for ac-

tive genes and 1
a+1 for inactive genes, resulting in n−a

a+1 + 1 expected mutations,
where a is the number of active genes and n is the total number of genes. This
means that the number of inactive genes does not affect the probability of an
inactive gene being mutated, just the expected number of inactive genes that
are mutated. Furthermore, as the number of active genes approaches zero, the
expected number of mutations increases dramatically, even though it is still lim-
ited to changing a single active gene. As the evolved number of active genes is
likely to be highly problem dependent, the behavior of Single will likely change
significantly from problem to problem, with some problems having very little
changes to inactive genes, and others changing a great deal. It is also possible
that this will create a selective pressure on the number of active genes which
may only become apparent if multiple parents are used.

66 B.W. Goldman and W.F. Punch

In comparison with Skip, Single is even easier to apply to new problems as it
completely removes the need to set the mutation rate, but does so at the potential
expense of lower maximum effectiveness. In comparison with Accumulate, Single
mutates inactive genes less often with respect to active genes, making it better
at preserving useful inactive structures but worse at exploring the inactive space.

5 Experimental Setup

In order to empirically test the suggested benefits of Skip, Accumulate, and Sin-
gle in comparison with Normal, we evaluated their performance on four bench-
marks: Parity, Multiplier, Binary Decode and Binary Encode. Both Parity and
Multiplier have been used extensively to test CGP [8,5]. The 3-bit even parity
is included as it is the most commonly used benchmark for CGP and to help
provide some level of comparability with previous work. In order to try a more
challenging binary problem, we chose to do the 3-bit multiplier, which has 6
inputs and 6 outputs.

Binary Decode is effectively a demultiplexer, where N input lines specify
which of the 2N output lines should have a value of one, with all others set to
zero. For example, if 101 is the input to a 3-bit Binary Decode problem, the
output is 00100000. Binary Encode is the reverse of Binary Decode. Given 2N

input lines, where exactly one line has a bit set to one and all others are zero,
the binary value index of the one bit is output using N lines. An example of this
mapping is that 00100000 should return the output of 101. The reason we use
Binary Decode and Binary Encode as benchmarks is their asymmetric number
of inputs to outputs and their relatively small number of test cases. For example,
on the 16 to 4 Binary Encode and the 4 to 16 Binary Decode (the instances we
use) only 16 test cases are needed.

All problems used the operators {and, or, nand, nor} and determine fitness
as the average percentage of correct bits across all possible inputs. While this
is a common function set used by CGP for these problems, [8] used a different
set of operators for Multiplier. Preliminary testing shows our operator set makes
Multiplier harder than theirs, but, as always, conclusions drawn by comparing
experiments using different operator sets should be minimal.

While a few of these benchmarks may be overly simple, with parity especially
being considered for obsolescence [3], they are used here for the specific reason
of their simplicity. The primary difference between Normal and Skip is not that
one can solve harder problems than the other, rather it is that Skip is thought
to solve problems in less evaluations than Normal. Being able to compare each
method’s median number of evaluations until success makes for the most logical
metric in this case, so these problems are useful in that they can be solved often.
While much of the previous work on CGP uses Koza’s computational effort
to analyze experimental results, [1] explains how that can introduce significant
underestimates, especially when using small population sizes.

In order to compare with the effective standard CGP, we use the 1 + 4 evo-
lutionary strategy. We use a genotype size of 3000 nodes, similar to those found

Reducing Wasted Evaluations in Cartesian Genetic Programming 67

optimal in [5]. Each run was allowed up to 10 million evaluations before being
terminated, and 50 runs of each experiment were performed. To help focus the
differences between each mutation method, all starting individuals on the same
problem were identical for the same run number, meaning that the 50 different
individuals Normal started with were identical to the 50 starting individuals
for Skip, Accumulate, and Single. For statistical purposes this means all results
should be compared as paired tests. As the number of evaluations to success is
likely not normally distributed, we choose the Wilcoxon signed-rank test to com-
pare each mutation method with Normal. As an attempt to cover a wide range
of mutation rates, the 16 mutation rates listed in Figure 1 were used for each
method. These cover from 0.0001 to 0.8 on a log scale, and should encompass
all previous levels of mutation used with CGP.

6 Results

To summarize the results of testing each mutation rate, Figures 2, 3, 4, and 5
show the median number of evaluations required over 50 runs to solve the Parity,
Multiply, Binary Encode, and Binary Decode problems. Note that both axes are
presented on a log scale. In the event that the median run of a configuration did
not find the optimal value before termination, the value is not displayed in the
graph. This can be clearly observed in Figure 3 for mutation rates greater than
0.01. As Single does not use a mutation rate, its data is assumed constant for all
mutation rates. Table 1 shows fine details about the best configurations found
for each mutation method. This includes the mutation rate with the lowest
median evaluations until success and the median evaluations it required, the
median absolute deviation from that median, the single tailed P-value received
from comparing with the best Normal configuration using the Wilcoxon signed-
rank test, and the median number of active genes in the solution. Note that the
number of active genes is a different measure from the number of active nodes,
which has been reported in other work, and is used here for compatibility with
Equation 1. A complete package of our results as well as the source code used
in testing is available from our website.1

7 Discussion

Even though the Parity, Multiplier, Binary Encode, and Binary Decode problems
have very different numbers of inputs and outputs, different input to output
ratios, different evolved numbers of active genes (see Table 1), and different
levels of difficulty, Figures 2, 3, 4, and 5 present surprisingly similar results.
The steep increases in median evaluations for Normal corresponds with the
prediction that overly high mutation rates will significantly increase the number
of evaluations until success, while low mutation rates will create a significant
portion of wasted evaluations. On Multiply, Binary Encode, and Binary Decode,

1 https://github.com/brianwgoldman/ReducingWastedEvaluationsCGP

https://github.com/brianwgoldman/ReducingWastedEvaluationsCGP

68 B.W. Goldman and W.F. Punch

Fig. 2. Median evaluations to success for each method on the Parity problem

Fig. 3. Median evaluations to success for each method on the Multiply problem

Reducing Wasted Evaluations in Cartesian Genetic Programming 69

Fig. 4. Median evaluations to success for each method on the Binary Encode problem

Fig. 5. Median evaluations to success for each method on the Binary Decode problem

70 B.W. Goldman and W.F. Punch

overly high mutation rates prevent Normal from reaching the optimum. Parity is
the only problem CGP could solve using exceptionally high mutation rates, with
even a slight improvement at the very top of the tested range. This likely happens
as the Parity problem we are using is so simple that a CGP using effectively
random search is able to solve it. Skip and Accumulate’s tendency to mirror
Normal ’s effectiveness as the mutation rate increases is because the probability
of creating actively identical offspring approaches zero. As the divergence point
is always near Normal ’s optimum mutation rate, it can be inferred that Normal ’s
significant decrease in quality when using lower mutation rates is likely caused
by wasted evaluations. As Skip also decreases somewhat in quality, some of the
impaired fitness can also likely be attributed to improbability of making large
enough genotypic changes to escape local optima with small mutation rates.

All four figures suggest that Skip andAccumulate have a lower sensitivity to the
mutation rate than Normal. As the mutation rate goes below the optimal value,
Skip and Accumulate encounter a relatively minor increase in their median num-
ber of evaluations when compared with Normal. As confirmation of Equation 1
we recorded the predicted number of wasted evaluations and found the aggregate
predicted waste was nearly identical to the differences between Normal and Skip.

Single, the only method without a mutation rate, is clearly not as generally
effective as the other methods where mutation rate can be optimized. However,
when the optimal mutation rate is not known, Single does show significant ad-
vantages. When compared against the entire space of tested mutation rates,
Single almost always requires the least number of evaluations to succeed. Be-
low the optimum mutation rates for each, Skip and Accumulate are reasonable
approximations of Single, but come with the disadvantage that they are more
computationally expensive. As the number of evaluations required to solve a
problem increases, Single appears to improve in performance relative to Nor-
mal. Parity required the least number of evaluations to be solved, followed by
Binary Encode and Binary Decode, with Multiply requiring by far the most. This
ordering mirror’s Single’s relative scaling with Normal, as it goes from a lower
peak performance than Normal on Parity and Binary Encode to surpassing it
on Binary Decode and Multiply.

Using Table 1, it is clear that Normal is never the best option. In all cases
Skip and Accumulate can obtain better results, with even Single doing better
on Binary Decode and Multiply. Furthermore, Skip always had a lower median
absolute deviation than Normal, with Accumulate lower on all problems except
Binary Decode. The statistical analysis is less clear as the deviations are so large,
but Skip’s improvements are definitely significant on all problems except Binary
Decode, with Single statistically better than Normal on Multiply. As support
that our configuration for Normal is valid to compare against, our peak quality
is approximately 6 times better than results published in [8] for their standard
CGP and ECGP on Parity.

While the true complexity measure for a GP implementation is how many
evaluations it requires to solve a problem, we also performed preliminary timing
tests to ensure our new techniques were less computationally complex than the

Reducing Wasted Evaluations in Cartesian Genetic Programming 71

Table 1. Comparisons of Best Mutation Rate for Each Mutation Method on Each
Benchmark. All results are from 100% successful configurations.

Normal Skip Accumulate Single
Mutation Rate 0.02 0.02 0.01 N/A

3-bit Median Evaluations 1,018 959 928 1358
Parity Median Absolute Deviation 614 564 416 733

P value N/A 0.0000 0.4875 0.0790
Median Final Active Genes 250 250 262 223

Mutation Rate 0.004 0.002 0.0008 N/A
3-bit Median Evaluations 503,424 398,354 421,859 340,165

Multiplier Median Absolute Deviation 191,037 184,979 165,218 151,063
P value N/A 0.0212 0.3632 0.0065

Median Final Active Genes 627 629 684 620

Mutation Rate 0.004 0.004 0.008 N/A
16 to 4 Median Evaluations 24,057 19,732 21,563 26,031
Encode Median Absolute Deviation 8,829 7,425 7,449 10,170

P value N/A 0.0000 0.0864 0.3578
Median Final Active Genes 472 472 499 510

Mutation Rate 0.004 0.002 0.004 N/A
4 to 16 Median Evaluations 73,351 70,023 65,347 69,564
Decode Median Absolute Deviation 17,889 17,036 18,411 21,131

P value N/A 0.415 0.3276 0.2398
Median Final Active Genes 1,117 1,027 1,050 1,090

evaluations they avoid. When using the best found mutation rate on Multiply,
Normal required the most time (4597 minutes) to complete all 50 runs, with
Skip using 9% less time, Accumulate 16% less, and Single 29% less.

8 Conclusions and Future Work

CGP’s current mutation operator has the potential to create offspring which can
be identified as phenotypically identical to their parents without invoking the
evaluation function. Evaluating these offspring creates waste, as we can assign
their fitness to be identical to their parent. Through careful definition of how the
mutation operator works, we have shown how the probability of having wasted
evaluations is dependent on the mutation rate and the number of active genes.
We predicted and then provided empirical evidence that avoiding this waste can
reduce how many evaluations CGP requires to solve problems as well as reduce
CGP’s sensitivity to the mutation rate parameter.

We proposed Skip and Accumulate as two methods for what to do when
actively identical offspring are detected, and Single as a method to ensure they
are never created. On four fairly diverse benchmark problems we showed that
Skip and Accumulate do at least as well as Normal using a variety of mutation
rates and are frequently vastly more efficient than Normal. As there was little

72 B.W. Goldman and W.F. Punch

discernible difference in their overall quality, for now we suggest Skip be used
as a replacement to Normal, as it is less complex than Accumulate, although
future experimentation may suggest otherwise. In situations where the mutation
rate cannot be optimized, we suggest Single, as while it did not achieve the best
peak performance on all problems, it has the least overhead with the widest
applicability. Furthermore, Single achieved the best results on the hardest test
problem, suggesting more extensive testing of this method on difficult problems
should be performed.

Even though the results appear to be problem independent, Skip, Accumulate,
and Single should be tested on a wider range of problem classes to make sure.
More advanced techniques for handling or avoiding wasted evaluations may also
improve results, such as a modified version of Single to allow multiple active
genes to be mutated at once. Nevertheless, we feel that the theoretic and empir-
ical evidence sufficiently supports a need to avoid wasting evaluations on actively
identical individuals.

References

1. Christensen, S., Oppacher, F.: An Analysis of Koza’s Computational Effort Statis-
tic for Genetic Programming. In: Foster, J.A., Lutton, E., Miller, J., Ryan, C.,
Tettamanzi, A.G.B. (eds.) EuroGP 2002. LNCS, vol. 2278, pp. 182–191. Springer,
Heidelberg (2002)

2. Harding, S., Graziano, V., Leitner, J., Schmidhuber, J.: MT-CGP: mixed type carte-
sian genetic programming. In: GECCO 2012: Proceedings of the Fourteenth Interna-
tional Conference on Genetic and Evolutionary Computation Conference, Philadel-
phia, Pennsylvania, USA, July 7-11, pp. 751–758. ACM (2012)

3. McDermott, J., White, D.R., Luke, S., Manzoni, L., Castelli, M., Vanneschi, L.,
Jaskowski, W., Krawiec, K., Harper, R., De Jong, K., O’Reilly, U.M.: Genetic pro-
gramming needs better benchmarks. In: GECCO 2012: Proceedings of the Four-
teenth International Conference on Genetic and Evolutionary Computation Confer-
ence, Philadelphia, Pennsylvania, USA, July 7-11, pp. 791–798. ACM (2012)

4. Miller, J.F.: Cartesian genetic programming. In: Cartesian Genetic Programming,
ch. 2. Natural Computing Series, pp. 17–34. Springer (2011)

5. Miller, J.F., Smith, S.L.: Redundancy and computational efficiency in cartesian
genetic programming. IEEE Transactions on Evolutionary Computation 10(2), 167–
174 (2006)

6. Vaš́ıček, Z., Slaný, K.: Efficient Phenotype Evaluation in Cartesian Genetic Pro-
gramming. In: Moraglio, A., Silva, S., Krawiec, K., Machado, P., Cotta, C. (eds.)
EuroGP 2012. LNCS, vol. 7244, pp. 266–278. Springer, Heidelberg (2012)

7. Vassilev, V.K., Miller, J.F.: The Advantages of Landscape Neutrality in Digital
Circuit Evolution. In: Miller, J.F., Thompson, A., Thompson, P., Fogarty, T.C.
(eds.) ICES 2000. LNCS, vol. 1801, pp. 252–263. Springer, Heidelberg (2000)

8. Walker, J.A., Miller, J.F.: The automatic acquisition, evolution and reuse of modules
in cartesian genetic programming. IEEE Transactions on Evolutionary Computa-
tion 12(4), 397–417 (2008)

9. Yu, T., Miller, J.: Neutrality and the Evolvability of Boolean Function Landscape.
In: Miller, J., Tomassini, M., Lanzi, P.L., Ryan, C., Tetamanzi, A.G.B., Langdon,
W.B. (eds.) EuroGP 2001. LNCS, vol. 2038, pp. 204–217. Springer, Heidelberg
(2001)

Balancing Learning and Overfitting

in Genetic Programming
with Interleaved Sampling of Training Data

Ivo Gonçalves1 and Sara Silva2,1

1 CISUC, Department of Informatics Engineering, University of Coimbra, Portugal
2 INESC-ID Lisboa, IST, Technical University of Lisbon, Portugal

icpg@dei.uc.pt, sara@kdbio.inesc-id.pt

Abstract. Generalization is the ability of a model to perform well on
cases not seen during the training phase. In Genetic Programming gen-
eralization has recently been recognized as an important open issue, and
increased efforts are being made towards evolving models that do not
overfit. In this work we expand on recent developments that showed that
using a small and frequently changing subset of the training data is ef-
fective in reducing overfitting and improving generalization. Particularly,
we build upon the idea of randomly choosing a single training instance at
each generation and balance it with periodically using all training data.
The motivation for this approach is based on trying to keep overfitting
low (represented by using a single training instance) and still presenting
enough information so that a general pattern can be found (represented
by using all training data). We propose two approaches called interleaved
sampling and random interleaved sampling that respectively represent
doing this balancing in a deterministic or a probabilistic way. Experi-
ments are conducted on three high-dimensional real-life datasets on the
pharmacokinetics domain. Results show that most of the variants of the
proposed approaches are able to consistently improve generalization and
reduce overfitting when compared to standard Genetic Programming.
The best variants are even able of such improvements on a dataset where
a recent and representative state-of-the-art method could not. Further-
more, the resulting models are short and hence easier to interpret, an
important achievement from the applications’ point of view.

Keywords: Genetic Programming, Overfitting, Generalization, Phar-
macokinetics, Drug Discovery.

1 Introduction

Genetic Programming (GP) [13] is now a mature technique that routinely pro-
duces results that have been characterized as human-competitive [8]. However,
a few open issues remain, one of them being the lack of generalization, or over-
fitting, of the evolved models [12]. Overfitting is said to occur when a model
performs well on the training cases but poorly on unseen cases. This indicates

K. Krawiec et al. (Eds.): EuroGP 2013, LNCS 7831, pp. 73–84, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

74 I. Gonçalves and S. Silva

that the underlying relationships of the whole data were not learned, and instead
a set of relationships existing only on the training cases were learned, but these
have no correspondence over the whole known cases. Notably, in Koza [7] most
of the problems presented did not use separate training and testing datasets, so
performance was never evaluated on unseen cases [9]. Other non-evolutionary
machine learning methods have dedicated a larger amount of research effort to
generalization than GP, although the number of publications dealing with over-
fitting in GP has been increasing in the past few years. For a review of the
state-of-the-art in avoiding overfitting in GP the reader is referred to [4].

Part of the lack of generalization efforts can be related to another issue occur-
ring in GP - bloat. Bloat can be defined as an excess of code growth without a
corresponding improvement in fitness [14]. This phenomenon occurs in GP as in
most other progressive search techniques based on discrete variable-length repre-
sentations. Bloat was one of the main areas of research in GP, not only because
its occurrence hindered the search progress but also because it was hypothesized,
in light of theories such as Occam’s razor and the Minimum Description Length,
that a reduced code size could lead to better generalization ability. Researchers
had a common agreement that these two issues were related and that counter-
acting bloat would lead to positive effects on generalization. This, however, has
been recently challenged. Contributions show that, on the same problem, bloat
free GP systems can still overfit, while highly bloated solutions may generalize
well [16]. This leads to the conclusion that bloat and overfitting are in most
part two independent phenomena. In light of this finding, new approaches to
improve GP generalization ability are needed, particularly ones not based on
merely biasing the search towards shorter solutions.

In this work we build on recent developments in this domain. We explore how
we can balance keeping overfitting low and still reaching models with general
patterns. We do that by interleaving the usage of the training data between a
single instance and all the instances. This approach is inspired by a state-of-the-
art method to control overfitting called Random Sampling Technique (RST) [4].
In order to experimentally validate our approach, we apply it to hard high-
dimensional problems in the field of pharmacokinetics, comparing the results
with the ones obtained by standard GP and by RST. The three problems ad-
dressed are the prediction of median lethal dose, protein-plasma binding levels,
and human oral bioavailability of medical drugs [1]. Section 2 describes the
proposed approaches and the experiments conducted. Section 3 presents and
discusses the results and section 4 concludes.

2 Approaches and Experiments

This section describes the motivation, the proposed approaches, the experimental
parameters and the datasets used.

2.1 Motivation

Using a varying subset of the training data was previously shown to have positive
effects. In [2] it was shown that this type of approach could reduce the speed of

Balancing Learning and Overfitting in GP 75

a GP run and still achieve similar results to the standard GP approach of using
all training data in a static manner. In a particular configuration, it was even
possible to improve generalization. In [11] the usage of a varying subset of the
training data was shown to reduce overfitting in a software quality classification
task. [2] used between 10% and 15% of the total training data depending on the
variant, while [11] used 50%. More recently, even smaller percentages of the total
training data were shown to be able to reduce overfitting and improve general-
ization. In particular, even using only a single training instance and changing
it every generation was shown to be able to achieve these same outcomes. This
was shown in [4] in high-dimensional symbolic regression real-life datasets, as
well as in artificial datasets in [10] and [3]. In [4] besides the reduced overfitting
and improved generalization, it was also shown that the evolved solutions were
smaller than those from standard GP.

In this work, we are mainly interested in the idea of choosing the subset of
the training data randomly. This kind of approach is called Random Sampling
Technique (RST) or Random Subset Selection (RSS). Here, we will use the term
RST. Particularly, we build upon the idea of using a single randomly chosen
training instance at each generation and balance it with periodically using all
the training data. The motivation for this approach is based on trying to keep
overfitting low (represented by using a single training instance) and still pre-
senting enough information so that a general pattern can be found (represented
by using all training data). We propose two approaches called interleaved sam-
pling and random interleaved sampling that respectively represent doing this
balancing in a deterministic or a probabilistic way.

2.2 Interleaved Sampling

This approach is based on deterministically interleaving between using one or all
training instances. We propose three variants respectively naming them: inter-
leaved, interleaved single and interleaved all. The first variant is based on using
all training instances in the first generation, then changing to a single training
instance in the next generation and proceeding with the same interleaving for
the remaining generations. As such, and provided that the number of genera-
tions is even, this variant always evolves half of the generations with all training
instances and the other half with a single instance. The interleaved single vari-
ant is based on giving preference to using a single training instance and can
consequently be understood as interleaving with a bias towards a single training
instance. A parameter is added in order to define how many generations using
a single training instance are conducted for each generation where all training
instances were used. The values tested for this parameter were 5%, 10%, 15%,
20% and 25%, where each value represents the percentage over the total number
of generations. Conversely, the interleaved all variant is based on giving pref-
erence to using all training instances. The parameter for this variant is similar
to the previous, and in this case defines how many generations using all train-
ing instances are conducted for each generation where a single training instance

76 I. Gonçalves and S. Silva

was used. The values tested for this parameter are the same as in the interleaved
single variant.

2.3 Random Interleaved Sampling

This approach is based on probabilistically interleaving between using a single
or all training instances. At each generation the decision of how many training
instances to use is taken. The probability of using a single training instance
is given as a parameter. The values tested for this parameter were 5%, 25%,
50%, 75% and 95%. It should be noted that using 100% as a parameter would
be equivalent to the RST using a single training instance and changing it ev-
ery generation. Similarly, using 0% as a parameter would be equivalent to the
standard GP approach of always using all training data.

2.4 Parameters and Datasets

The experimental parameters used are provided in Table 1. Furthermore,
crossover and mutation points are selected with uniform probability. Fitness
is calculated as the Root Mean Squared Error between predicted and expected
outputs. Statistical significance of the null hypothesis of no difference was de-
termined with Mann-Whitney U tests at p = 0.05. Standard GP and RST 1/1
are used as baselines for comparison. Standard GP uses all the training data at
every generation. RST 1/1 is also used as a baseline because it is a representative
state-of-the-art method, as recently shown in [4]. It works by randomly choosing
a new single training instance at each generation. For each dataset 30 different
random partitions are used. Each method uses the same 30 partitions.

Table 1. GP parameters used in the experiments

Runs 30

Population 500

Generations 200

Training - Testing division 50% - 50%

Crossover operator Standard subtree crossover, probability 0.9

Mutation operator Point mutation, probability 0.1,

mutation probability per node 0.05

Tree initialization Ramped Half-and-Half,

maximum depth 6

Function set +, -, *, and /, protected as in [13]

Terminal set Input variables,

constants -1.0, -0.5, 0.0, 0.5 and 1.0

Selection for reproduction Tournament selection of size 10

Elitism Best individual always survives

Maximum tree depth 17

Balancing Learning and Overfitting in GP 77

Experiments are conducted on three multidimensional symbolic regression
real-life datasets, all of which on the pharmacokinetics domain. They have al-
ready been used in GP studies (e.g. [1]).

Toxicity. The goal of this application is to predict, in the context of a drug
discovery study, the median lethal dose (represented as LD50) of a set of candi-
date drug compounds on the basis of their molecular structure. LD50 refers to
the amount of compound required to kill 50% of the considered test organisms
(cavies). Reliably predicting this and other pharmacokinetics parameters would
permit to reduce the risk of late stage research failures in drug discovery, and
enable to decrease the number of experiments and cavies used in pharmacologi-
cal research [1]. The LD50 dataset consists of 234 instances, where each instance
is a vector of 627 elements (626 molecular descriptor values identifying a drug,
followed by the known LD50 for that drug). This dataset is freely available at
http://personal.disco.unimib.it/Vanneschi/toxicity.txt. We will refer
to this dataset as LD50.

Plasma Protein Binding. As in the toxicity application, also here the goal is
to predict the value of a pharmacokinetics parameter of a set of candidate drug
compounds on the basis of their molecular structure, this time the plasma protein
binding level. Protein-plasma binding level (represented as %PPB) quantifies the
percentage of the initial drug dose that reaches the blood circulation and binds
to the proteins of plasma. This measure is fundamental for good pharmacoki-
netics, both because blood circulation is the major vehicle of drug distribution
into human body and since only free (unbound) drugs can permeate the mem-
branes reaching their targets [1]. The %PPB dataset consists of 131 instances,
where each instance is a vector of 627 elements (626 molecular descriptor values
identifying a drug, followed by the known %PPB for that drug). We will refer
to this dataset as PPB.

Bioavailability. In this dataset the pharmacokinetics parameter to predict is
the human oral bioavailability. Human oral bioavailability (represented as %F)
is the parameter that measures the percentage of the initial orally submitted
drug dose that effectively reaches the systemic blood circulation after passing
through the liver. Being able to reliably predict the %F value for a potential
new drug is outstandingly important, given that the majority of failures in com-
pounds development from the early nineties to nowadays are due to a wrong
prediction of this pharmacokinetic parameter during the drug discovery pro-
cess [6,5]. The %F dataset consists of 359 instances, where each instance is a
vector of 242 elements (241 molecular descriptor values identifying a drug, fol-
lowed by the known value of %F for that drug). This dataset is freely available at
http://personal.disco.unimib.it/Vanneschi/bioavailability.txt. We
will refer to this dataset as Bio.

3 Results and Discussion

This section presents and discusses the results achieved. For the remainder of
this paper, the terms training and testing fitness are to be interpreted in the

http://personal.disco.unimib.it/Vanneschi/toxicity.txt
http://personal.disco.unimib.it/Vanneschi/bioavailability.txt

78 I. Gonçalves and S. Silva

following way: training fitness is the fitness of the best individual in the training
set; testing fitness is the fitness of that same individual in the testing set. For
the purpose of further comparisons we have considered the overfitting measure
described in [4]. According to this measure, overfitting is simply calculated as
the absolute value of the difference between testing and training fitness. This
measure is associated with the intuitive notion that overfitting is related to the
discrepancy between the performance of a model on the data seen during the
training phase and the unseen data. Tree size is calculated as the number of
nodes of a solution. The evolution plots present the results based on the median
of the fitness, overfitting, tree size and tree depth of the best individuals in
the training data at each generation over 30 runs. These plots can be found in
figures 1, 2 and 3.

3.1 Interleaved Single and Interleaved All Variants

The interleaved single and the interleaved all variants are not shown in the
evolution plots as they are very similar to, respectively, RST 1/1 and Standard
GP. These similarities apply regardless of the parameterization.

For the interleaved single, statistical results confirm that this variant is supe-
rior in terms of overfitting reduction, across all datasets, to standard GP, being
also superior in testing fitness on the LD50 and the PPB datasets. There is no
statistically significant difference in terms of testing fitness on the Bio dataset.
The comparisons between the RST 1/1 and standard GP reach the same conclu-
sions. Therefore, the interleaved single variant, in these tested parameterizations,
can be seen as equivalent to the RST 1/1. It seems that the effect of presenting
all training data with this periodicity to the algorithm is negligible. In terms of
tree size and tree depth, the interleaved single variant produces smaller and shal-
lower trees when compared to standard GP. These results are also statistically
significant across all datasets.

The interleaved all variant produced similar results to standard GP, across all
datasets, in terms of training and testing fitness and overfitting. The statistical
results show that there are almost no statistically significant differences between
these methods and standard GP. The only statistically significant differences in
testing fitness and overfitting occurred on the Bio dataset where standard GP is
superior in both measures when compared to parameterizations 15% and 25%.
From these results we conclude that providing a bias towards using all training
data and periodically using a single instance is not an effective approach of
improving generalization and reducing overfitting.

3.2 Interleaved and Random Interleaved Variants

As we can see from the evolution plots, the random interleaved approach has the
expected behavior in regard to its parameterization. The closer the parameter is
to 100%, the closer the method behaves as the RST 1/1. Conversely, the closer
the parameter is to 0%, the closer the method behaves as the standard GP ap-
proach. Statistical results confirm that the 5% parameterization is very similar to

Balancing Learning and Overfitting in GP 79

0 50 100 150 200

1500

2000

2500

3000

3500

Generations

T
ra

in
in

g
fit

ne
ss

0 50 100 150 200

1500

2000

2500

3000

3500

Generations

T
es

tin
g

fit
ne

ss

Standard
Interleaved
RI 5%
RI 25%
RI 50%
RI 75%
RI 95%
RST 1/1

Standard
Interleaved
RI 5%
RI 25%
RI 50%
RI 75%
RI 95%
RST 1/1

0 20 40 60 80 100 120 140 160 180 200
0

500

1000

1500

2000

2500

Generations

O
ve

rf
itt

in
g

Standard
Interleaved
RI 5%
RI 25%
RI 50%
RI 75%
RI 95%
RST 1/1

0 50 100 150 200
0

50

100

150

200

250

300

350

400

450

500

Generations

T
re

e
si

ze

0 50 100 150 200
0

5

10

15

20

25

30

Generations

T
re

e
de

pt
h

 Standard
Interleaved
RI 5%
RI 25%
RI 50%
RI 75%
RI 95%
RST 1/1

Standard
Interleaved
RI 5%
RI 25%
RI 50%
RI 75%
RI 95%
RST 1/1

Fig. 1. Training fitness, testing fitness, overfitting, tree size and tree depth evolution
plots for: Standard GP, Interleaved, Random Interleaved (RI) 5% 25% 50% 75% 95%
and RST 1/1 on the LD50 dataset

80 I. Gonçalves and S. Silva

0 50 100 150 200
20

25

30

35

40

45

50

Generations

T
ra

in
in

g
fit

ne
ss

0 50 100 150 200
20

25

30

35

40

45

50

Generations

T
es

tin
g

fit
ne

ss

Standard
Interleaved
RI 5%
RI 25%
RI 50%
RI 75%
RI 95%
RST 1/1

Standard
Interleaved
RI 5%
RI 25%
RI 50%
RI 75%
RI 95%
RST 1/1

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

Generations

O
ve

rf
itt

in
g

Standard
Interleaved
RI 5%
RI 25%
RI 50%
RI 75%
RI 95%
RST 1/1

0 50 100 150 200
0

50

100

150

200

250

300

Generations

T
re

e
si

ze

0 50 100 150 200
0

2

4

6

8

10

12

14

16

18

Generations

T
re

e
de

pt
h

Standard
Interleaved
RI 5%
RI 25%
RI 50%
RI 75%
RI 95%
RST 1/1

Standard
Interleaved
RI 5%
RI 25%
RI 50%
RI 75%
RI 95%
RST 1/1

Fig. 2. Training fitness, testing fitness, overfitting, tree size and tree depth evolution
plots for: Standard GP, Interleaved, Random Interleaved (RI) 5% 25% 50% 75% 95%
and RST 1/1 on the PPB dataset

Balancing Learning and Overfitting in GP 81

0 50 100 150 200

25

30

35

40

45

50

55

60

65

Generations

T
ra

in
in

g
fit

ne
ss

0 50 100 150 200

25

30

35

40

45

50

55

60

65

Generations

T
es

tin
g

fit
ne

ss

Standard
Interleaved
RI 5%
RI 25%
RI 50%
RI 75%
RI 95%
RST 1/1

Standard
Interleaved
RI 5%
RI 25%
RI 50%
RI 75%
RI 95%
RST 1/1

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

Generations

O
ve

rf
itt

in
g

Standard
Interleaved
RI 5%
RI 25%
RI 50%
RI 75%
RI 95%
RST 1/1

0 50 100 150 200
0

100

200

300

400

500

600

Generations

T
re

e
si

ze

0 50 100 150 200
0

2

4

6

8

10

12

14

16

18

Generations

T
re

e
de

pt
h

Standard
Interleaved
RI 5%
RI 25%
RI 50%
RI 75%
RI 95%
RST 1/1

Standard
Interleaved
RI 5%
RI 25%
RI 50%
RI 75%
RI 95%
RST 1/1

Fig. 3. Training fitness, testing fitness, overfitting, tree size and tree depth evolution
plots for: Standard GP, Interleaved, Random Interleaved (RI) 5% 25% 50% 75% 95%
and RST 1/1 on the Bio dataset

82 I. Gonçalves and S. Silva

the standard GP approach and it is unable to improve generalization and reduce
overfitting. All other parameterizations are able, with statistical significance, to
improve generalization and reduce overfitting over the standard GP approach on
the LD50 and PPB datasets. However, only the 50% and the 75% parameteri-
zations can achieve an increase in generalization on the Bio dataset. The RST
1/1 is unable to achieve this same statistically significant result on this dataset.
This shows that depending on the dataset, different probabilities of choosing a
single training instance may be helpful. Nevertheless, from the results we can see
that the most promising area for looking for a good parameterization to a given
dataset revolves around the 50% parameterization. The interleaved results are
similar to the random interleaved 50%, having also the same statistical signifi-
cance over the standard GP approach. This was somewhat expected since both
methods use on average the same number of generations with a single training
instance. As we can see from the RST 1/1 results on the Bio dataset, although it
is able to avoid overfitting, it also presents a slow learning of both training and
testing data. In comparison, interleaved and random interleaved 50% and 75%
are able to increase the rate of learning of the training data while also improving
testing fitness. In terms of tree size and tree depth, the interleaved variant and
the random interleaved variant with 50%, 75% and 95% parameterizations, pro-
duce smaller and shallower trees when compared to standard GP. These results
are also statistically significant across all datasets.

3.3 Final Remarks

Overall, and across all the datasets, the methods that showed to be more con-
sistent were: interleaved and random interleaved 50% and 75%. These three
methods showed to be superior to standard GP in terms of reducing overfitting
and improving generalization. Furthermore, they have also improved generaliza-
tion where the RST 1/1 and the interleaved single methods could not: the Bio
dataset. This dataset showed to be the most difficult of the three in terms of
improving the testing fitness over standard GP. These facts allow us to conclude
that these three methods are superior to standard GP and more robust than the
RST 1/1 approach and hence contribute to an incremental improvement of the
state of the art in this field.

From the point of view of the applications, the fact that these methods also
produce relatively short models is a major advantage. At the end of the run,
random interleaved 75% provides models with median size around 50 for the
LD50 and PPB problems, and around 150 for the Bio problem. These are very
short models when we consider the dimensionality of the data (626 features for
LD50 and PPB, 241 for Bio). For the Bio problem this size is similar to the sizes
obtained with the very successful bloat control technique Operator Equalisation
(OpEq) [15]. For LD50 it is actually better, i.e. lower, than the sizes obtained by
OpEq [16]. For PPB, to our knowledge no results are reported in the literature
for the median tree size of the best individual.

Balancing Learning and Overfitting in GP 83

4 Conclusions

In this work we expanded on recent developments in terms of overfitting re-
duction and generalization improvement. These developments have showed that
using a small and frequently changing subset of the training data is effective
in reducing overfitting and improving generalization. Particularly, we have built
upon the idea of using a single randomly chosen training instance at each gen-
eration and balance it with periodically using all training data. The motivation
for this approach is based on trying to keep overfitting low (represented by us-
ing a single training instance) and still presenting enough information so that a
general pattern can be found (represented by using all training data). We have
proposed two approaches called interleaved sampling and random interleaved
sampling that respectively represent doing this balancing in a deterministic or a
probabilistic way. Experiments were conducted in three high-dimensional real-
life problems on the pharmacokinetics domain. The results have shown that most
of the proposed approaches were able to consistently improve generalization and
reduce overfitting when compared to the standard GP approach. In particular,
three methods have shown these improvements even on a dataset where a state-
of-the-art technique failed. These results were confirmed as being statistically
significant. From the point of view of the applications, the winning methods
have the additional advantage of producing relatively short models, hence easier
to interpret.

In conclusion, we have found that both the deterministic and the probabilis-
tic approach of balancing the usage of training data were helpful in improving
generalization and reducing overfitting. We have also found that, in most cases,
and in order to achieve these improvements, a preference has to be given towards
using only a single training instance. The prevalence of this preference is depen-
dent on the dataset but, in general, using a single training instance in more or
less half of the generations is enough.

Acknowledgments. This work was partially supported by national funds
through FCT under contract Pest-OE/EEI/LA0021/2011. The authors also ac-
knowledge project PTDC/EIA-CCO/103363/2008 from FCT, Portugal. The
first author work is supported by Fundação para a Ciência e a Tecnologia (FCT),
Portugal, under the grant SFRH/BD/79964/2011.

References

1. Archetti, F., Lanzeni, S., Messina, E., Vanneschi, L.: Genetic programming for
computational pharmacokinetics in drug discovery and development. Genetic Pro-
gramming and Evolvable Machines 8(4), 413–432 (2007)

2. Gathercole, C., Ross, P.: Dynamic Training Subset Selection for Supervised Learn-
ing in Genetic Programming. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.)
PPSN 1994. LNCS, vol. 866, pp. 312–321. Springer, Heidelberg (1994)

3. Gonçalves, I., Silva, S.: Experiments on controlling overfitting in genetic program-
ming. In: Proceedings of the 15th Portuguese Conference on Artificial Intelligence:
Progress in Artificial Intelligence, EPIA 2011 (2011)

84 I. Gonçalves and S. Silva

4. Gonçalves, I., Silva, S., Melo, J.B., Carreiras, J.M.B.: Random Sampling Tech-
nique for Overfitting Control in Genetic Programming. In: Moraglio, A., Silva, S.,
Krawiec, K., Machado, P., Cotta, C. (eds.) EuroGP 2012. LNCS, vol. 7244, pp.
218–229. Springer, Heidelberg (2012)

5. Kennedy, T.: Managing the drug discovery/development interface. Drug Discovery
Today 2(10), 436–444 (1997)

6. Kola, I., Landis, J.: Can the pharmaceutical industry reduce attrition rates? Nat.
Rev. Drug Discov. 3(8), 711–716 (2004)

7. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection (Complex Adaptive Systems), 1st edn. The MIT Press (1992)

8. Koza, J.R.: Human-competitive results produced by genetic programming. Genetic
Programming and Evolvable Machines 11(3-4), 251–284 (2010)

9. Kushchu, I.: An evaluation of evolutionary generalisation in genetic programming.
Artif. Intell. Rev. 18, 3–14 (2002)

10. Langdon, W.B.: Minimising testing in genetic programming. Tech. Rep. RN/11/10,
Computer Science, University College London, Gower Street, London WC1E 6BT,
UK (2011)

11. Liu, Y., Khoshgoftaar, T.: Reducing overfitting in genetic programming models for
software quality classification. In: Proceedings of the Eighth IEEE International
Conference on High Assurance Systems Engineering, HASE 2004, pp. 56–65. IEEE
Computer Society, Washington, DC (2004)

12. O’Neill, M., Vanneschi, L., Gustafson, S., Banzhaf, W.: Open issues in genetic
programming. Genetic Programming and Evolvable Machines 11, 339–363 (2010)

13. Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic programming
(2008)

14. Silva, S., Costa, E.: Dynamic limits for bloat control in genetic programming and
a review of past and current bloat theories. Genetic Programming and Evolvable
Machines 10, 141–179 (2009)

15. Silva, S., Vanneschi, L.: Bloat free genetic programming: Application to human
oral bioavailability prediction. International Journal of Data Mining and Bioinfor-
matics 6(6), 585–601 (2012)

16. Vanneschi, L., Silva, S.: Using Operator Equalisation for Prediction of Drug Toxic-
ity with Genetic Programming. In: Lopes, L.S., Lau, N., Mariano, P., Rocha, L.M.
(eds.) EPIA 2009. LNCS, vol. 5816, pp. 65–76. Springer, Heidelberg (2009)

Automated Design of Probability Distributions

as Mutation Operators for Evolutionary
Programming Using Genetic Programming

Libin Hong1, John Woodward1, Jingpeng Li1, and Ender Özcan2

1 Department of Computer Science, University of Nottingham P.R.C.
2 Department of Computer Science, University of Nottingham U.K.
{Libin.HONG,John.WOODWARD,Jingpeng.LI}@nottingham.edu.cn

Ender.Ozcan@nottingham.ac.uk

Abstract. The mutation operator is the only source of variation in Evo-
lutionary Programming. In the past these have been human nominated
and included the Gaussian, Cauchy, and the Lévy distributions. We auto-
matically design mutation operators (probability distributions) using Ge-
netic Programming. This is done by using a standard Gaussian random
number generator as the terminal set and and basic arithmetic operators
as the function set. In other words, an arbitrary random number gen-
erator is a function of a randomly (Gaussian) generated number passed
through an arbitrary function generated by Genetic Programming.

Rather than engaging in the futile attempt to develop mutation oper-
ators for arbitrary benchmark functions (which is a consequence of the
No Free Lunch theorems), we consider tailoring mutation operators for
particular function classes. We draw functions from a function class (a
probability distribution over a set of functions). The mutation probabil-
ity distribution is trained on a set of function instances drawn from a
given function class. It is then tested on a separate independent test set
of function instances to confirm that the evolved probability distribution
has indeed generalized to the function class.

Initial results are highly encouraging: on each of the ten function
classes the probability distributions generated using Genetic Program-
ming outperform both the Gaussian and Cauchy distributions.

Keywords: Evolutionary Programming, Genetic Programming, Func-
tion Optimization, Machine Learning, Meta-learning, Hyper-heuristics,
Automatic Design.

1 Introduction

Evolutionary Programming (EP) is one of the branches of Evolutionary Compu-
tation and is used to evolve numerical values in order to find a global optimum of
a function. The only genetic operator is mutation. The probability distributions
used as mutation operators include Gaussian, Cauchy and Lévy, among others.

K. Krawiec et al. (Eds.): EuroGP 2013, LNCS 7831, pp. 85–96, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

86 L. Hong et al.

In 1992 and 1993, Fogel and Bäck et al. [4][1] indicated that Classical Evolution-
ary Programming (CEP) with adaptive mutation usually performs better than
CEP without adaptive mutation.

In 1996, a new mutation operator, the Cauchy distribution, was proposed
to replace the Gaussian distribution. The authors Yao and Yong have done
experiments which followed Bäck and Schwefel’s algorithm [1]. Fast EP (FEP)
[14] uses a Cauchy distribution as mutation operator. The aim of this paper
is to develop a Genetic Programming (GP) system which has a function set
and terminal set which is capable of (easily) expressing either the Gaussian or
Cauchy distribution, and then embracing the search utility of GP to discover
more suitable mutation probability distributions.

In recent years, many improvements on EP have been proposed. Improved
FEP (IFEP) [13], mixes mutation operators, and uses both Gaussian and Cauchy
distributions. Later a mixed mutation strategy (MSEP) [3] was proposed: four
mutation operators are used and the mutation operator is selected according to
their probabilities during the evolution.

In 2004, EP that uses Lévy probability distribution Lα,γ (y) as mutation
operator was proposed [5]. According to their experimental results, they obtained
the following conclusion: Lévy based mutation can lead to a large variation and
a large number of distinct values in evolutionary search, in comparison with
traditional Gaussian mutation [5]. From 2007, Ensemble strategies with adaptive
EP (ESAEP), Novel adaptive EP on four constraint handling techniques, and
EP using a mixed mutation strategy were proposed [7][6][3]. Thus research into
EP is still very much an active area of research.

This paper proposes a novel method to generate new mutation operators to
promote the convergence speed of EP. It applies GP to train EP’s mutation
operators, and then use the new GP-generated distribution (GP-distribution) as
new mutation operator for EP on functions similar (i.e. drawn from the same
function class) to functions in the training set, which we now explain.

In previous work on function optimization, typically an algorithm is applied
to a single function to be optimized. As the algorithm is applied, it learns better
values for its best-so-far value. We regard a function instance as a single function
drawn from a probability distribution over functions, which we call a function
class. In this paper we are employing a meta-learning approach consisting of a
base-level and meta-level [9] [10]. EP sits at the base-level, learning about the
specific function, and GP sits at the meta-level, which is applied across function
instances, learning about the function class as a whole. By taking this approach
we can say that one mutation operator developed by GP on one function class
is suitable for function instances drawn from that class, while another mutation
operator is more suited to function instances drawn from a different function
class. To phrase it differently, a mutation operator developed on one function
class will be able to exploit characteristics of functions that are drawn from that
function class.

In Section 2 we describe function optimization and the EP algorithm. In
Section 3 we describe how GP is applied to the task of finding a probability

Automated Design of Probability Distributions as Mutation Operators for EP 87

distribution which can be used as a mutation operator in EP, and define the
Function Classes used in this study are also presented. In Section 4 we compare
Gaussian, Cauchy and the GP-distributions found by GP, and plot histograms of
GP-distributions. We also list the experimental results. In Section 5 we discuss
and explain future work. In Section 6 we summarize and conclude the article.

2 Function Optimization by Evolutionary Programming

Global minimization can be formalized as a pair (S, f), where S ∈ R
n is a

bounded set on R
n and f : S −→ R is an n-dimensional real-valued function.

The aim is to find a point xmin∈ S such that f(xmin) is a global minimum on
S. More specifically, it is required to find an xmin∈ S such that

∀x ∈ S : f(xmin) ≤ f(x)

Here f does not need to be continuous or differentiable but it must be bounded.
According to the description by Bäck et al [1], the EP is implemented as follows:

1. Generate the initial population of p individuals, and set k = 1. Each indi-
vidual is taken as a pair of real-valued vectors, (xi, ηi), ∀i ∈ {1, · · ·, μ}.The
initialization value of the strategy parameter η is set to 3.0.

2. Evaluate the fitness value for each (xi, ηi), ∀i ∈ {1, · · ·, μ}.
3. Each parent (xi, ηi), ∀i ∈ {1, · · ·, μ}, creates λ/μ offspring on average, so

that a total of λ offspring are generated: for i=1, · · ·, μ, j=1, · · ·, n.

xi
′(j) = xi(j) + ηi(j)Dj (1)

η′(j) = ηi(j)exp(γ
′N(0,1) + γNj(0,1)) (2)

The above two equations are used to generate new offspring. Objective func-
tion is used to calculate the fitness value, the survival offspring is picked up
according to the fitness value. The factors γ and γ′ have set to (

√
2
√
n)−1

and (
√
2n)−1.

4. Evaluate the fitness of each offspring (x′
i, η

′
i), ∀i ∈ {1, · · ·, μ}, according to

f(x′).
5. Conduct pairwise comparison over the union of parents (xi, ηi) and offspring

(x′
i, η

′
i), ∀i ∈ {1, · · ·, μ}. Q opponents are selected randomly from the par-

ents and offspring for each individual. During the comparison, the individual
receives a “win” if its fitness is no greater than those of opponents.

6. Pick the μ individuals out of parents and offspring, i ∈ {1, · · ·, μ}, that have
the most wins to be parents, to form the next generation.

7. Stop if the stopping criterion is satisfied; otherwise, k++ and goto Step3.

If Dj in Eq.(1) is the Gaussian distribution, then the algorithm is CEP. If Dj

is the Cauchy distribution, it is FEP [14]. If Dj is the Lévy distribution, it is
LEP [5]. Thus this algorithm acts as a template into which we can substitute
distributions evolved by GP, which is the contribution of this paper.

88 L. Hong et al.

3 Genetic Programming to Train Mutation Operators for
Function Classes

In this section, we give the details of how we use GP to train an EP mutation
operator. In the past, candidate distributions have been nominated by humans
and tested on a set of benchmark function instances. Here we automate this pro-
cess by using GP to generate-and-test the distributions. The research question
we are addressing in this paper is the following: is it possible for GP to auto-
matically generate mutation operators (i.e. probability distributions) which can
be used in EP to outperform the human generated distributions? As we have a
terminal set containing a Gaussian distribution, it is not surprising that we can
evolve a new distribution which can outperform a Gaussian distribution. Nor
is it surprising that we can evolve a new distribution which can outperform a
Cauchy distribution, as a Cauchy distribution can be generated by dividing a
Gaussian distribution by another and can easily be generated by GP containing
division in its function set.

At this stage we should also point out that we are doing more than “just”
parameter tuning. That is, we are not just altering the numerical parameters
(mean and variance) of a Gaussian distribution, but actually generating new
distributions which do not belong to the Gaussian distribution.

3.1 Genetic Programming and Automatic Design

GP can be considered a specialization of the more widely known Genetic Algo-
rithms (GAs) where each individual is a computer program [8]. GP automatically
generates computer programs to solve specified tasks. It is a method of searching
a space of computer programs, and therefore is an automatic way of producing
computable probability distributions [8]. Over last few years, the application of
GP has become more ambitious, and has been applied to other branches like
combinatorial optimization [9][2]. However this new direction is probably due
largely to the availability faster machines on which our implementations can be
executed, rather than any break through or deep understanding of the search
mechanisms of GP. In particular GP can be applied to the task of automated
design of components of search algorithms [12] [11] though in these cases random
search and iterative hill-climbing were used.

3.2 Function Classes

In the past, researchers use particular functions as a benchmark to test the
performance of their algorithms. Our work differs markedly in this respect. We
define a set of function classes from which functions are drawn from. In this
way, we can train an EP mutation operator and tune it to that function class.
It would not make sense to apply an EP algorithm (or any other optimization
algorithm for that matter) to arbitrary functions and hope for good performance,
a consequence of the No Free Lunch theorems.

Automated Design of Probability Distributions as Mutation Operators for EP 89

As an example of a function class (a
∑n

i=1 x
2
i), where a is a random variable

in the range [1, 2], and f(x) =
∑n

i=1 x
2
i is an instance of a function from this

function class (i.e. when a = 1). The motivation for defining a function class like
this is that we can then evolve a mutation operator which is fit-for-purpose i.e.
as a mutation operator on functions drawn from that function class. Evolution
is adapting the distribution to fit the environment (function class).

3.3 Algorithm Using GP to Train EP Mutation Operator

Below is the pseudo-code of the training algorithm:

1: Initial gp population

2: while gpGen < gpMaxGen do

3: gpPop = 1 /*Set GP iteration*/

4: while (gpPop < gpMaxPop) do /*Evaluate individuals in GP*/

5: epIteration = 1 /*Set EP iteration*/

6: while (epIteration < epMaxIteration) do

7: Randomly generate a (and b)

8: Evaluate fitness of pop[gpPop]/*Compute fitness values by EP*/

9: Set fitness value to fitness[epIteration]

10: epIteration++

11: end while

12: Calculate mean fitness value meanFitness[epMaxIteration]

13: gpPop++

14: end while

15: Select best pop by meanFitness[epMaxIteration]

16: Crossover pop /*Crossover pop in GP*/

17: Mutate pop /*Mutation pop in GP*/

18: end while

The terminal set consists of the Gaussian distribution N(μ, σ2). We set the value
of μ = 0 and the value of σ is randomly assigned from the range [0, 5]. The value
of μ could be allowed to alter, but it was deemed not necessary in these initial
experiments. The value of σ was fixed for a given GP run, but could be allowed
to vary between GP programs and within GP programs. We assign the function
set as {+,−,×,÷}, where ÷ is protected, if a value a is divided by zero, then the
value is a. This simple function set is expressive enough to be able to generate a
wide range of functions (and therefore probability distributions). In Step 8, we
use EP as fitness function to evaluate the GP-distribution. In Step 9 we assign it
the best fitness of each EP run, averaged over the 20 EP runs. When evaluating
the fitness value, EP runs 20 times and we calculate the mean value in last
generation as fitness value for GP as was done in the original work by Yao [14].

3.4 Unimodal and Multimodal Function Classes

In Table 1, we list all the function classes used in this paper. In the function
class suite, f1-f7 are unimodal function classes, f8-f10 are multimodal function

90 L. Hong et al.

classes. f8 is a special case , the fmin for function class 8 is not fixed. However
for an instance of function class 8, the value of fmin is fixed, and depending on
the value of a.

Table 1. The 10 function classes used in our experimental studies, where n is the
dimension of the function, fmin is the minimum value of the function, and S ⊆ R

n.
n is 30, a is random number in the range [1, 2], and b is random number from the
specified range or N/A.

Function Classes S b fmin

f1(x) = a
∑n

i=1 x
2
i [−100, 100]n N/A 0

f2(x) = a
∑n

i=1 | xi | +b
∏n

i=1 | xi | [−10, 10]n b ∈ [0, 10−5] 0

f3(x) =
∑n

i=1(a
∑i

j=1 xj)
2 [−100, 100]n N/A 0

f4(x) = maxi{a | xi |, 1 ≤ i ≤ n} [−100, 100]n N/A 0
f5(x) =

∑n
i=1[a(xi+1−x2

i)
2+(xi−1)2] [−30, 30]n N/A 0

f6(x) =
∑n

i=1(�axi + 0.5)2 [−100, 100]n N/A 0
f7(x) = a

∑n
i=1 ix

4
i + random[0, 1) [−1.28, 1.28]n N/A 0

f8(x) =
∑n

i=1 −(xi sin(
√
|xi|) + a) [−500, 500]n N/A [-12629.5, -

12599.5]
f9(x) =

∑n
i=1[ax

2
i + b(1− cos(2πxi))] [−5.12, 5.12]n b ∈ [5, 10] 0

f10(x) = −a exp(−0.2
√

1
n

∑n
i=1 x

2
i)

− exp(1n
∑n

i=1 cos 2πxi) + a+ e

[−32, 32]n N/A 0

4 Experimental Studies

In previous work, most of the authors have tested their algorithms on a bench-
mark suit of 23 function instances. In this paper, we use the first 10 (see Table 1).
This is largely due to the fact that we have to repeatedly run GP to train a mu-
tation operator for each function class. We run EP 20 times with each mutation
operator, and use the mean value of all 20 runs as the fitness value for GP. If a
mutation operator (GP-distribution) found by GP which has good performance
on a function class, it should have good performance on other function instance
drawn from that function class.

The new methods we proposed has successfully found a new mutation operator
for each function class. All the mutation operators found beat both Cauchy and
Gaussian mutation operator. The only function on which good results were not
found was f10, but this may be because GP was either over-fitting or under-
fitting and is discussed in future work.

4.1 Parameters Setting

A different maximum number of generations is used as a termination criterion in
EP as provided in section 4.3. Table 2 provides the rest of the parameter values

Automated Design of Probability Distributions as Mutation Operators for EP 91

that we used in our approach. We regard the parameters of EP as fixed for this
experiment (in the sense we are comparing a method against others for these
EP parameter settings). We are not claiming optimality for the GP parameter
settings, which are set rather low compared to traditional values, however we did
find in these preliminary experiments that these settings were adequate enough
to obtain human competitive results.

Table 2. Parameter settings for GP and EP

Parameter Meanings Settings Parameter Name in Section 3.3

Max Generation of GP 5 gpMaxGen
Population Size of GP 9 gpMaxPop

Operators of GP Crossover Mutation N/A
GP Function Set {+,−,×,÷} N/A
GP Terminal Set N(0, [0, 5]2) N/A

Number of Iteration of EP 20 epMaxIteration
Population Size of EP 100 N/A

Tournament Size of EP 10 N/A

4.2 Analysis and Comparisons

The best GP-distribution found for each of the ten function classes is listed
in Table 3. In our test, μ has a fixed value 0, σ is randomly generated in the
range [0, 5]. To compare the difference between GP-distributions, Gaussian and
Cauchy, we plot all distributions in Fig.1 and Fig.2. For each distribution we
plot it for 3000 samples (please note the scale of x-axis).

Table 3. All GP-distributions for function classes

Function
Class

Best Distribution Survived in GP (GP-distribution) Value of σ

f1(x) (÷ (÷ (−(0 N(0, σ2))) N(0, σ2)) N(0, σ2)) 0.171281
f2(x) N(0, σ2) 0.010408
f3(x) N(0, σ2) 1.749545
f4(x) (+(N(0, σ2) (−(÷(÷(+(N(0, σ2) N(0, σ2)) N(0, σ2))

N(0, σ2)) N(0, σ2)))))
2.962383

f5(x) N(0, σ2) 0.056501
f6(x) (+(N(0, σ2) (−(N(0, σ2) N(0, σ2))))) 3.879682
f7(x) N(0, σ2) 4.851848
f8(x) (÷(÷(×(×(N(0, σ2)× (N(0, σ2)N(0, σ2))) N(0, σ2))

N(0, σ2))N(0, σ2)))
4.918542

f9(x) (÷(N(0, σ2) (−(÷(N(0, σ2) (−(N(0, σ2) N(0, σ2))))
N(0, σ2)))))

0.157557

f10(x) (+(N(0, σ2) (+(N(0, σ2) N(0, σ2))))) 0.276311

92 L. Hong et al.

Fig. 1. Histograms of the distributions for 3000 samples

Fig. 2. Histograms of the distributions for 3000 samples

4.3 Test Function Classes

The results in Table 4 show that GP-distribution outperforms both Cauchy and
Gaussian on all function classes. The results in Table 5 show that GP-distribution
statistically outperforms both Cauchy and Gaussian on all function classes except
f10 at the 0.05 level of confidence. In these initial experiments (which will form
the start of a PhD thesis), even by allowing just σ of the Gaussian distribution
to be altered we can outperform standard mutation operators on this set of
function classes.

Automated Design of Probability Distributions as Mutation Operators for EP 93

Table 4. The results for GP-distribution, FEP and CEP on f1-f10. All results have
been averaged over 50 test runs, where “Mean Best” is the mean best function values
found in the last generation, and “Std Dev” is the standard deviation.

Function FEP CEP GP-distribution
Class Mean Best Std Dev Mean Best Std Dev Mean Best Std Dev

f1 1.24×10−3 2.69×10−4 1.45×10−4 9.95×10−5 6.37×10−55.56×10−5

f2 1.53×10−1 2.72×10−2 4.30×10−2 9.08×10−3 8.14×10−48.50×10−4

f3 2.74×10−2 2.43×10−2 5.15×10−2 9.52×10−2 6.14×10−38.78×10−3

f4 1.79 1.84 1.75×10 6.10 2.16×10−16.54×10−1

f5 2.52×10−3 4.96×10−4 2.66×10−4 4.65×10−5 8.39×10−71.43×10−7

f6 3.86×10−2 3.12×10−2 4.40×10 1.42×102 9.20×10−31.34×10−2

f7 6.49×10−2 1.04×10−2 6.64×10−2 1.21×10−2 5.25×10−28.46×10−3

f8 -11342.0 3.26×102 -7894.6 6.14×102 -12611.6 2.30×10
f9 6.24×10−2 1.30×10−2 1.09×102 3.58×10 1.74×10−34.25×10−4

f10 1.67 4.26×10−1 1.45 2.77×10−1 1.38 2.45×10−1

Table 5. 2-tailed t-tests comparing EP with GP-distributions, FEP and CEP on f1-f10

Function Number of GP-distribution vs FEP GP-distribution vs CEP
Class Generations t-test t-test

f1 1500 2.78×10−47 4.07×10−2

f2 2000 5.53×10−62 1.59×10−54

f3 5000 8.03×10−8 1.14×10−3

f4 5000 1.28×10−7 3.73×10−36

f5 20000 2.80×10−58 9.29×10−63

f6 1500 1.85×10−8 3.11×10−2

f7 3000 3.27×10−9 2.00×10−9

f8 9000 7.99×10−48 5.82×10−75

f9 5000 6.37×10−55 6.54×10−39

f10 1500 9.23×10−5 1.93×10−1

Note that if we had only allowed EP to alter σ, then this method would
have been regarded as parameter tuning (i.e. σ is simply a parameter of the al-
gorithm). However we are automatically synthesizing new distributions by com-
bining (by adding, subtracting, dividing and multiplying) Gaussian distributions
so are engaging in an activity more expressive than tuning a numerical param-
eter. We have only allowed the Gaussian distributions to vary in their standard
deviation, and while it makes complete sense to allow their means to be evolved
too, this result supports the approach of the automatic design of algorithms, or
a component of (in this case probability distributions). As it is sufficient to out-
perform human designed heuristics. Further work will address the shortcomings
of these initial experiments, which we will now consider.

94 L. Hong et al.

5 Discussion and Future Work

The initial aim of this paper is to build a system which is capable for synthe-
sizing distributions for use as a mutation operator in EP. So far we have only
compared it with FEP and CEP which has been successful. Later work therefore
will address comparisons with more recent developments in EP including LEP
[5], IFEP [13] and MSEP [3].

We have run the GP system for a fixed number of iterations, but have not
optimized these parameters. Hence there is further scope for improvement of
results in this regard. Further work includes using more sophisticated methods
of terminating the meta-search (i.e. GP), such as early stopping to prevent either
under-fitting or over-fitting. This is a more crucial issue than with traditional
base-level only approaches as each evaluation is itself done over 20 EP runs.

We have defined function classes in terms of a random variable which is a
coefficient in the function. This provides a source of related functions to be
optimized. Each of these function classes (see Table 1) are either unimodal or
multimodal functions. None of the currently defined function classes contain
both, so it would be interesting to evolve a distribution capable of performing
well on both types of function instances.

In the GP terminal set we used a normal distribution with fixed μ (μ=0) and
allowed σ to be set in the training phase. However, just by allowing σ to vary
was enough to generate distributions which could beat Gaussian or Cauchy. Due
to not allowing μ to vary meant, we could only generate symmetric distributions
(see Fig.1 and Fig.2), but this is a reasonable assumption in the knowledge that
all of the functions we are optimizing are symmetrical (why would be bias the
search in one direction over another). However a hypothesis that comes out of
this is the following: if we know a function is symmetrical (due to some real
world domain knowledge) then a symmetric mutation operator will outperform
an asymmetrical distribution. Similarly if we have little or no knowledge about
the functions we are optimizing, then restricting the GP system to only produce
symmetric distributions might over-constrain it.

One avenue of further work in GP is always to examine the parameters and
components in more detail. In this paper we used a Gaussian distribution in the
terminal set, but obviously it would be interesting to see if other distributions
would give better results. However, we do not want to get involved in a circular
argument, as we could try a Cauchy distribution in the GP terminal set (instead
of a Gaussian). However nominating specific distributions (in the context of EP)
is what we are trying to avoid in the first place (i.e. the whole point of the
paper), and we are just raising the level of abstraction from the base-level to
the meta-level [10]. Regardless of this dilemma we have still produced a system
which outperforms the two human proposed systems we are comparing with.

6 Summary and Conclusions

EP is a robust method of solving numerical optimization problems. In the
past this has involved using probability distributions (Gaussian and Cauchy)

Automated Design of Probability Distributions as Mutation Operators for EP 95

nominated by researchers as the mutation operator. In this paper we automati-
cally generate probability distributions using GP, in a meta-learning approach,
for use in EP. GP operates at the meta-level and contains a population of prob-
ability distributions which are inserted into an EP algorithm operating at the
base-level and contains a population of numerical vectors. The fitness of a proba-
bility distribution is given by its performance over a number of function instances
optimized by it in an EP algorithm. While EP is learning about values of single
functions, GP is learning about distributions to be used by EP on functions
drawn from a particular function class.

In a deviation from the approach used by other researcher, who tackle single
isolated benchmark instances, we tackle function instances drawn from a func-
tion class by effectively implementing a probability distribution over function
instances. During the training and testing phases the same function is highly
unlikely to be seen twice. This is to demonstrate that the mutation operator has
learned to generalize to the function class as a whole, rather than to any single
instances.

Our initial results are highly encouraging. While we cannot claim that the
distributions our method produces outperforms either Gaussian or Cauchy dis-
tributions on a single function (due to the statistical nature of EP), we can claim
that on all but one function class (f10) our method does produce distributions
which statistically outperform the others (at a confidence level of 0.05) and at
least does not under-perform on function class f10.

One possible criticism of this method is the long training time required to
evolve the distributions. After all we are evolving an evolutionary process itself.
One line of future research is to speed-up this method, which is a central question
for the GP community. For example, are GP trees the best representation for
distributions? However, we claim that the amount of processor time required to
generate distributions is still vastly less than the number of man-hours typically
used in the design phase of new mutation operators (though of course the two
are not directly comparable), and therefore the methodology proposed in this
paper is a viable one.

References

1. Back, T., Schwefel, H.P.: An overview of evolutionary algorithms for parameter
optimization. Evolutionary Computation 1, 1–23 (1993)

2. Burke, E.K., Hyde, M.R., Kendall, G., Ochoa, G., Ozcan, E., Woodward, J.R.:
Exploring Hyper-heuristic Methodologies with Genetic Programming. In: Mum-
ford, C.L., Jain, L.C. (eds.) Computational Intelligence. ISRL, vol. 1, pp. 177–201.
Springer, Heidelberg (2009)

3. Dong, H., He, J., Huang, H., Hou, W.: Evolutionary programming using a mixed
mutation strategy. Information Science, 312–327 (2007)

4. Fogel, D.B.: Evolving artificial intelligence. PhD thesis, University of California,
San Diego (1992)

5. Lee, C.Y., Yao, X.: Evolutionary programming using mutations based on the lévy
probability distribution. IEEE Transactions on Evolutionary Computation 8 (2004)

96 L. Hong et al.

6. Mallipeddi, R., Suganthan, P.N.: Evaluation of novel adaptive evolutionary pro-
gramming on four constraint handling techniques. In: IEEE Congress on Evolu-
tionary Computation, pp. 4045–4052 (2008)

7. Mallipeddi, R., Mallipeddi, S., Suganthan, P.N.: Ensemble strategies with adaptive
evolutionary programming. Information Science, 1571–1581 (2010)

8. Poli, R., Langdon, W.B., et al.: A field guide to genetic programming (2008) ISBN
978-1-4092-0073-4

9. Su Nguyen, M.Z., Johnston, M.: A genetic programming based hyper-heuristic
approach for combinatorial optimization. In: Proceedings of the 13th Annual Con-
ference on Genetic and Evolutionary Computation, pp. 1299–1306 (2011) ISBN
978-1-4503-0557-0

10. Woodward, J.: The necessity of meta bias in search algorithms. In: IEEE Interna-
tional Conference on Computational Intelligence and Software Engineering, CiSE
(2010)

11. Woodward, J., Swan, J.: Automatically designing selection heuristics. In: ACM
Proceedings of the 13th Annual Conference Companion on Genetic and Evolution-
ary Computation, pp. 583–590 (2011)

12. Woodward, J., Swan, J.: The automatic generation of mutation operators for ge-
netic algorithms. In: ACM Proceedings of the Fourteenth International Confer-
ence on Genetic and Evolutionary Computation Conference Companion, pp. 67–74
(2012)

13. Xin Yao, Y.L., Lin, G.: Evolutionary programming made faster. IEEE Transactions
on Evolutionary Computation 3, 82–102 (1999)

14. Yao, X., Liu, Y.: Fast evolutionary programming. In: Proceedings of the Fifth
Annual Conference on Evolutionary Programming, pp. 451–460. MIT Press (1996)

Robustness and Evolvability of Recombination

in Linear Genetic Programming

Ting Hu1, Wolfgang Banzhaf2, and Jason H. Moore1

1 Computational Genetics Laboratory, Geisel School of Medicine, Dartmouth College,
Lebanon, NH 03756, USA

{ting.hu,jason.h.moore}@dartmouth.edu
2 Department of Computer Science, Memorial University,

St. John’s, NL, A1B 3X5, Canada
banzhaf@mun.ca

Abstract. The effect of neutrality on evolutionary search is known to
be crucially dependent on the distribution of genotypes over pheno-
types. Quantitatively characterizing robustness and evolvability in geno-
type and phenotype spaces greatly helps to understand the influence of
neutrality on Genetic Programming. Most existing robustness and evolv-
ability studies focus on mutations with a lack of investigation of recombi-
national operations. Here, we extend a previously proposed quantitative
approach of measuring mutational robustness and evolvability in Linear
GP. By considering a simple LGP system that has a compact representa-
tion and enumerable genotype and phenotype spaces, we quantitatively
characterize the robustness and evolvability of recombination at the phe-
notypic level. In this simple yet representative LGP system, we show
that recombinational properties are correlated with mutational proper-
ties. Utilizing a population evolution experiment, we demonstrate that
recombination significantly accelerates the evolutionary search process
and particularly promotes robust phenotypes that innovative phenotypic
explorations.

Keywords: Robustness, Evolvability, Accessibility, Neutrality, Recom-
bination, Genetic Programming.

1 Introduction

In natural systems, the term evolvability is usually put forward to describe the
capacity of a population to produce heritable and beneficial phenotypic varia-
tions [16,25,31]. Although the mechanisms and origins of evolvability are still
largely under debate, another pervasive property of natural systems, robustness,
is often discussed in connection with evolvability and is assigned explanatory
power for some of the high evolvability of living systems [18,21]. Despite the
fact that most random mutations to genetic material are deleterious, random
mutations are the fundamental fuel of long-term evolutionary innovation and
adaptation. Robustness enables living systems to remain intact in the face of
constant genetic perturbations through allowing genetic variants to expand in

K. Krawiec et al. (Eds.): EuroGP 2013, LNCS 7831, pp. 97–108, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

98 T. Hu, W. Banzhaf, and J.H. Moore

neutral spaces. These neutral spaces are genotypic regions in which mutations
do not change phenotype or fitness and are the consequence of a redundant
genotype-to-phenotype mapping [32]. Such neutrality augments evolvability, by
accumulating genetic variations that might be non-neutral under changes of the
environmental context [7,8,17,22,35].

A redundant mapping from genotype to phenotype is also pervasive in Genetic
Programming (GP), where multiple genotypes encode identical phenotypes. A
genetic change to a genotype, either mutation or crossover, is considered as neu-
tral if it does not alter the phenotype or fitness. Extensive investigations and
discussions have been carried through on how to characterize and utilize such
neutrality in GP [1,3,4,11,28]. It has been recognized that neutrality enables phe-
notypes to be robust to genetic perturbations [29,36] and, more importantly, that
it promotes the evolvability of phenotypes by expanding genotypes in neutral
genotypic space without subjecting them to selection pressure [9,13].

In addition to extensive studies on mutational robustness and evolvability,
it has been proposed recently in the context of gene regulatory circuits that
recombination can create novel phenotypes more efficiently with a much less
disruptive effect than mutation [20,33]. It is argued that recombination reorga-
nizes genes and gene circuits and thus has greater phenotypic consequences than
point mutation. Meanwhile it is less deleterious since it reuses existing genetic
materials. In terms of expanding neutral spaces, recombination is also consid-
ered to be able to promote evolvability better than mutation. Neutral genetic
variations by mutations are also called cryptic genetic variations that possess
potential for creating novel phenotypes [21]. Such mutational robustness pro-
vides the quantitative staging ground for long-term adaptation and innovation.
Recombination has a powerful effect augmenting those cryptic genetic variations
to make qualitative changes [2,23,24].

Recombination has long been the center of the discussion on effective genetic
operations in GP [5,19,27,30,34]. Similar to observations in gene regulatory cir-
cuits, it is well accepted in GP community that recombination is less destructive
and has a larger phenotypic effect compared to point mutation. However, most
robustness and evolvability studies in GP only consider mutations, and little has
been done on quantifying recombinational robustness and evolvability and in-
vestigating the correlation between mutational and recombinational properties.

In a previous study [14], a quantitative characterization of mutational robust-
ness and evolvability was performed in a simple Linear GP (LGP) system, where
the entire genotype and phenotype spaces are finite and enumerable. In the cur-
rent study, we adopt the same LGP system to utilize its compact properties and
extend the quantitative metrics to recombination. In particular, we are inter-
ested to see whether different phenotypes have varying resilience or innovation
potential under recombination. That is, if crossover is applied to a genotype from
a given phenotype, is the individual more likely to stay in the same phenotype
or to reach a novel phenotype? Are the probabilities to reach different novel
phenotypes evenly distributed? Which phenotypes are more accessible from re-
combining genotypes of other phenotypes? Can recombination promote robust

Robustness and Evolvability of Recombination 99

phenotypes to generate high evolvability? We answer these questions by charac-
terizing phenotypic recombinational properties in genotype and phenotype space
under a special recombination operator as well as utilizing a population evolution
scheme to look into the interplay between mutation and crossover in evolutionary
dynamics.

2 Methods

2.1 Linear Genetic Programming on Boolean Search

We consider a simple Linear Genetic Programming system as in the previous
study [14]. In the LGP representation, an individual (or computer program) con-
sists of a set of L instructions, which are structurally similar to those found in
register machine languages. Each instruction has an operator, a set of operands,
and a return value. To further restrict the search space, we use the LGP sys-
tem on a Boolean search problem where each instruction consists of an oper-
ator drawn from the Boolean function set {AND, OR, NAND, NOR}, two Boolean
operands, and one Boolean return value. The inputs, operands, and return val-
ues are stored in registers with varying read/write permissions. Specifically, R0
and R1 are calculation registers that can be read and written, whereas R2 and R3
are input registers that are read-only. Thus, a calculation register can serve in
an instruction as an operand or a return, but an input register can only be used
as an operand. An example program of length L = 4 is given here:

R1 = R2 AND R3

R0 = R2 OR R1

R1 = R1 NOR R2

R0 = R3 NAND R0

Instructions are executed sequentially from top to bottom. Prior to program
execution, the values of R0 and R1 are initialized to FALSE. Registers R2 and R3
read two Boolean input values. After program execution, the final value in R0 is
returned as output.

2.2 Genotype and Phenotype Space

We consider each LGP program as a genotype and the binary Boolean function f :
B2 → B, whereB= {TRUE, FALSE}, represented by the program as its phenotype.
As described in the previous section, we allow two calculation registers, R0 and
R1, two input registers, R2 and R3, and four possible Boolean operators, AND,
OR, NAND, NOR. For the four loci on each instruction, only the two calculation
registers can serve as the return (first locus), but all four registers can serve as
operands (second and fourth locus), and all four Boolean functions can serve as
the operator (third locus), which means there are 2 × 4 × 4 × 4 = 27 possible
instructions and thus 228 possible programs of length L = 4. These 228 programs

100 T. Hu, W. Banzhaf, and J.H. Moore

R1 = R2 R3

R0 = R2 R1

R1 = R1 R2

R0 = R3 R0

R1 = R1 R3

R1 = R2 R3

R0 = R1 R2

R0 = R0 R1

Parents

R1 = R2 R3

R0 = R2 R1

R0 = R1 R2

R0 = R0 R1

R1 = R1 R3

R1 = R2 R3

R1 = R1 R2

R0 = R3 R0

Offspring

Fig. 1. Symmetric recombination. The crossover point is chosen at half length of a LGP
program. Two parent programs (left) swap their third and forth instructions with each
other to form two new offspring (right). A offspring is called phenotypically neutral
with its parents if it does not map to a novel phenotype different from its parents.

define the finite genotype space mapping to the 16 possible binary Boolean
functions f : B2 → B as phenotypes. Such a highly redundant genotype-to-
phenotype mapping suggests great robustness in the system.

We can expect that the distribution of genotypes among different phenotypes
is highly heterogeneous. We use si to denote the size of a phenotype i, i.e.
the total number of genotypes that map to the same phenotype i. si ranges
from a minimum of 24,832 genotypes (for phenotype EQUAL and NOTEQUAL) to
a maximum of 60,393,728 genotypes (for FALSE), occupying between � 1% and
23% of the genotype space, respectively. As examined previously [14], for this
particular Boolean LGP system, all phenotypes are connected to each other in
the mutational genotypic space. That is, for any given phenotype, there exists a
genotype that belongs to this phenotype and can transform to another genotype
in any other phenotypes through a point mutation.

2.3 Symmetric Recombination

In the current study, we only consider a single-point recombination [10,12,26]
and always choose half of program length as the crossover point (Fig. 1). This
allows all offspring resulting from crossover to have the same length as their
parents and thus to limit recombination dynamics to within the finite genotype
space we have defined. We restrict the crossover point in the current study in
order to reduce the computational load of monitoring all possible recombination
events. Recombinations are allowed for genotypes within a phenotype and across
different phenotypes. Two parent programs generate two offspring through a
recombination event.

We investigate crossover events for genotypes from each of the
(
16
2

)
+16 = 136

different unordered phenotype pairs, denoted 〈i, j〉, where i, j ∈ {1, 2, 3, ..., 16}.
A phenotype pair 〈i, j〉 has a finite number ri,j of possible recombination events,
i.e. ri,i = si × (si − 1)/2 if i = j and ri,j = si × sj otherwise, where si is
the size of phenotype i as defined previously. Although the genotype space is
finite, enumerating all possible recombination events for all pairs of phenotypes
would be computationally prohibitive. For instance, there are more than 308
million possible recombination events for choosing two genotypes from even the
smallest phenotype EQUAL. Therefore, we sample S = 1, 000, 000 crossover events

Robustness and Evolvability of Recombination 101

(without replacement) for genotypes from each phenotype pair 〈i, j〉. Among all
the offspring generated by recombining a parent from phenotype i and a parent
from phenotype j, we use x(i,j),k to denote the number of offspring that belong
to phenotype k. Since we sample the same number S of crossover events across
all possible phenotype pairs, we normalize x(i,j),k by adjusting it for different
phenotype pairs, i.e. x′

(i,j),k =
ri,j
S × x(i,j),k.

2.4 Metrics on Recombinational Properties of Phenotypes

Intuitively, a phenotype is more robust under recombination if its crossover off-
spring are less likely to be phenotypically different from their parents. We define
recombinational robustness R of phenotype i as the average fraction of pheno-
typically neutral offspring over all offspring,

Ri =
1

16
×

16∑
j=1

∑
k=i,j x

′
(i,j),k∑16

k=1 x
′
(i,j),k

. (1)

Similar to mutational metrics [6,14,15], we capture recombinational evolvability
as the potential to change from one phenotype to another (different) phenotype.
Let

f(i,j),k =

⎧⎨
⎩

x′
(i,j),k∑

l �=i,l �=j x
′
(i,j),l

, if k �= i and k �= j

0, otherwise
(2)

denote the fraction of offspring that result in genotypes of phenotype k by recom-
bining genotypes from phenotypes i and j. We define recombinational evolvability
E of a phenotype i as

Ei = 1−
∑
j,k

(
f(i,j),k∑
l,m f(i,l),m

)2

. (3)

Since
∑

j,k

f(i,j),k∑
l,m f(i,l),m

= 1 for each i, Eq.(3) describes the diversity of the

connections from phenotype i to other phenotypes via recombination. In other
words, Ei captures the probability that randomly chosen genotypes from pheno-
type i generate recombination offspring with distinct phenotypes. This evolvabil-
ity measure takes on a higher value if a phenotype has a more evenly distributed
potential to reach other phenotypes through recombinations.

In addition to measuring the propensity to leave a phenotype, we also use
recombinational accessibility Ak to describe how easily a phenotype k can be
reached via recombination events from other phenotypes, formally defined as,

Ak =
∑
i,j

f(i,j),k. (4)

102 T. Hu, W. Banzhaf, and J.H. Moore

Recombinational robustness

R
ec

om
bi

na
tio

na
l e

vo
lv

ab
ili

ty

10−1 100

0.85

0.90

0.95

1.00
A

Recombinational robustness

R
ec

om
bi

na
tio

na
l a

cc
es

si
bi

lit
y

10−1 100
10−2

10−1

100

101

B

Fig. 2. A) recombinational evolvability and B) recombinational accessibility relative to
recombinational robustness. Each data point represents a phenotype. Linear-log scale is
chosen for A) and log-log scale is chosen for B) based on their best fitting relationship.
The lines show the best fitting curves and provide a guide for the eye.

2.5 Population Evolution

In addition to sampling recombination events in the static genotype and pheno-
type spaces, we also perform population evolution experiments to investigate the
interplay between mutation and recombination in a population under evolution.
We choose the least represented phenotype EQUAL as the target phenotype to
allow evolution to proceed over a longer time.

A non-overlapping generational evolution model with a fixed population size
|P | is adopted in this study. After population initialization, a new generation
of offspring is produced sequentially. We randomly choose an individual with
replacement, mutate according to a certain rate, and place it into the next gen-
eration. This is repeated |P | times until the next generation of the population is
filled. When both mutation and recombination are applied, for each generation,
we randomly choose two individuals with replacement, cross them over at a given
rate, mutate their crossover offspring at a given rate, and place both offspring

into the next generation. This is repeated |P |
2 times until the next generation

of the population is filled. The evolution process is terminated when the target
phenotype is reached, and the required number of generations is recorded for
each run.

3 Results

3.1 Recombinational Robustness, Evolvability, and Accessibility

Through the extensive sampling, this LGP problem instance is found having
complete recombinational connections. That is, for any given phenotype pair,
there exist pairs of their genotypes that can generate recombinational offspring of
any other phenotypes. Fig. 2 shows the correlations among the recombinational

Robustness and Evolvability of Recombination 103

Mutational robustness

R
ec

om
bi

na
tio

na
l a

cc
es

si
bi

lit
y

10−1

100

101

104 105 106 107 108

C
Mutational robustness

R
ec

om
bi

na
tio

na
l r

ob
us

tn
es

s

10−1

100

104 105 106 107 108

A

Mutational robustness

R
ec

om
bi

na
tio

na
l e

vo
lv

ab
ili

ty

0.85

0.90

0.95

1.00

104 105 106 107 108

B

Fig. 3. A) recombinational robustness, B) recombinational evolvability, and C) re-
combinational accessibility relative to mutational robustness. Log-log, linear-log, and
log-log scales are chosen accordingly based on the best-fitting relationships. Each data
point represents a phenotype and the lines depict the best fitting curves.

metrics. Recombinational evolvability is weakly and negatively correlated with
recombinational robustness with linear-log fitting r2 = 0.02395, p = 0.5671
(Fig. 2-A). Phenotypes that have low recombinational robustness are highly
evolvable, and robust phenotypes can have either high or low recombinational
evolvability. In contrast, recombinational accessibility is strongly and positively
correlated with recombinational robustness with a log-log fitting r2 = 0.8262,
p = 1.09 × 10−6 (Fig. 2-B). This suggests that phenotypes that are resilient
to recombination are also very accessible from recombining genotypes of other
phenotypes.

3.2 Comparisons of Recombinational and Mutational Measures

We now compare the recombinational measures to the previously investigated
mutational measures [14,15]. Fig.3 shows recombinational robustness, evolvabil-
ity, and accessibility relative to mutational robustness. Recall that phenotypic
mutational robustness is defined as the size of a phenotype, i.e. its total number
of underlying genotypes.

104 T. Hu, W. Banzhaf, and J.H. Moore

mutation rate

ge
ne

ra
tio

n

0.2 0.4 0.6 0.8 1

300

600

900

1200

1500

A
mutation only
mutation & crossover

crossover rate

ge
ne

ra
tio

n

0.2 0.4 0.6 0.8 1

300

600

900

1200

1500

B
mutation rate 0.1
mutation rate 1

Fig. 4. The generations required to reach the target as a function of A) mutation rate
and B) crossover rate. A) Mutation rate varies from 0.1 to 1 and crossover rate is
fixed to 1. Two sets of experimental results are included, population evolution with
mutation only (circles) and population evolution with both mutation and crossover
(solid points). B) When both mutation and crossover are applied, we fix mutation rate
to 0.1 and 1 and vary crossover rate from 0.1 to 1.

Recombinational robustness is positively correlated with mutational robust-
ness (Fig. 3-A), which suggests that mutationally robust phenotypes are also
resilient to recombinations (r2 = 0.8732, p = 1.172 × 10−7). Similar to the
weak relationship between recombinational evolvability and recombinational ro-
bustness, recombinational evolvability is weakly and negatively correlated with
mutational robustness (Fig. 3-B with r2 = 0.06805, p = 0.3291). As seen in the
upper-left corner of the figure, less mutationally robust phenotypes that have
fewer underlying genotypes are highly evolvable through recombination. Among
mutationally robust phenotypes, some are also highly evolvable through recombi-
nation, but some only have very biased recombinational connections to other phe-
notypes. Interestingly, recombinational accessibility has a very strong positive
correlation with mutational robustness (Fig. 3-C). In addition to the previously
found strong positive relationship between mutational robustness and mutational
accessibility [14], this very strong correlation (r2 = 0.9915, p = 7.021 × 10−16)
suggests that phenotypes with a large number of underlying genotypes are highly
accessible from other phenotypes by both mutation and by recombination.

3.3 Population Dynamics Results

We compare two evolution scenarios with mutation only and with both mutation
and crossover. Population size is set to 100 for both cases. Fig. 4 shows the
population evolution results. Each data point is an averaged value of 100 runs for
each configuration. We first vary mutation rate from 0.1 to 1 and fix crossover
rate to 1. In general, increasing mutation rate accelerates the search process,
and applying both mutation and crossover allows to reach the target faster than

Robustness and Evolvability of Recombination 105

mutational robustness

ge
ne

ra
tio

n
(r

ed
uc

ed
 e

vo
lu

tio
n

tim
e)

104 105 106 107 108

0

500

1000

1500

A

recombinational robustness

ge
ne

ra
tio

n
(r

ed
uc

ed
 e

vo
lu

tio
n

tim
e)

10−1 100

0

500

1000

1500

B

Fig. 5. The reduced evolution time, obtained by comparing mutation-only evolution
and mutation-and-crossover evolution, relative to A) mutational robustness and B)
recombinational robustness of the starting phenotypes. Data points represent different
starting phenotypes, the line depicts the best linear-log fitting curve.

applying mutation alone. We then fix mutation rate and vary crossover rate
(Fig. 4-B). Mutation rate is set to 0.1 and 1, and for each fixed mutation rate,
crossover rate varies from 0.1 to 1. As seen in the figure, increasing crossover rate
also accelerates the evolution process. The trend is more significant for mutation
rate 0.1 than for mutation rate 1 in the figure, but it is clearly observable for
both cases when one takes a closer look at appropriate scales.

Since it is shown that combining mutation and crossover significantly accel-
erates evolution, next we are interested to see if this improvement is correlated
with the robustness of the starting phenotype. We choose a representative set-
ting with mutation rate 0.1 and crossover rate 1, and obtain the reduced evo-
lution time by taking the difference between mutation-only evolution time and
mutation-and-crossover evolution time. As shown in Fig. 5, the reduced evolution
time is positively correlated with the starting phenotypic mutational robustness
(r2 = 0.7756, p = 1.513 × 10−5) and recombinational robustness (r2 = 0.6772,
p = 1.644 × 10−4). This suggests that recombination improves the evolvability
of phenotypes, and this improvement is more significant for more robust phe-
notypes. In other words, recombination promotes robust phenotypes to be more
evolvable.

4 Discussion

This study examines the phenotypic robustness and evolvability subject to re-
combination. Utilizing a simple LGP system that has compact and finite geno-
type and phenotype spaces allows us to quantitatively characterize robustness

106 T. Hu, W. Banzhaf, and J.H. Moore

and evolvability at the phenotypic level. We also investigate the interplay be-
tween mutation and recombination in evolution dynamics by performing a gen-
erational population evolution experiment.

The phenotypes of our LGP system have varying recombinational robustness.
Some of them are more tolerant to recombinations but some of them are not.
Recombination-sensitive phenotypes are found highly evolvable by possessing a
relatively evenly distributed potential to reach other phenotypes via recombi-
nation. Recombination-robust phenotypes are very accessible from recombining
genotypes of other phenotypes. Recombinational robustness is positively cor-
related with mutational robustness, which suggests that over-represented phe-
notypes that have a great number of underlying genotypes are robust to both
mutation and recombination. These over-represented phenotypes are also very
accessible via both mutation and crossover. Through investigating population
dynamics, recombination is found to be able to significantly accelerate evolu-
tionary search if added to mutation. This acceleration is more significant when
a population is initialized from a more robust phenotype.

Our results agree with findings from biological systems and also provide in-
sights into our own computational systems. The ease of finding a target pheno-
type considerably depends on whether this target phenotype is over-represented
by many genotypes. Less-represented phenotypes might be hard to reach, but
they could serve as important bridges accessing other novel phenotypes. Robust
phenotypes enhance the innovative power of recombination as they provide rich
cryptic genetic variations for phenotypic exploration.

Future work will consider applying different recombinational operations such
as a crossover point different from the mid-point adopted in this study or a non-
symmetric crossover operation. We want to test if the current observations still
hold in other scenarios and if our quantitative measures are sensitive to the choice
of recombinational operation. It is also important to extend our quantitative
measures to larger and more realistic systems. The results obtained here using
a simple LGP system showcase the effectiveness of the quantitative approach
and also generate hypotheses on how real and large-scale computational systems
could behave. It would be very beneficial to test the scalability of our approach
on more complex problem instances. An advantage of using larger-scale problem
instances is that evolution will have a longer trajectory, and thus we could make
observations on the detailed evolution dynamics at the individual level and see
whether crossover leads to the prevalence of robust genotypes/phenotypes. We
also would like to include fitness selection in our next step in particular with
larger-scale problem instances. Finally, a varying selection pressure may have an
impact on the evolution towards high robustness.

Acknowledgments. This work was supported by National Institute of Health
(USA) grants R01-LM009012, R01-LM010098, and R01-AI59694 to J.H.M. W.B.
acknowledges support from NSERC Discovery Grants, under RGPIN 283304-
2012.

Robustness and Evolvability of Recombination 107

References

1. Altenberg, L.: The evolution of evolvability in genetic programming. In: Advances
in Genetic Programming, pp. 47–74. MIT Press, Cambridge (1994)

2. Azevedo, R.B., Lohaus, R., Srinivasan, S., Dang, K.K., Burch, C.L.: Sexual re-
production selects for robustness and negative epistasis in artificial gene networks.
Nature 440(2), 87–90 (2006)

3. Banzhaf, W.: Genotype-phenotype mapping and neutral variation - a case study
in genetic programming. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN
1994. LNCS, vol. 866, pp. 322–332. Springer, Heidelberg (1994)

4. Banzhaf, W., Leier, A.: Evolution on neutral networks in genetic programming. In:
Yu, T., Riolo, R., Worzel, B. (eds.) Genetic Programming Theory and Practice III,
ch. 14, pp. 207–221. Springer (2006)

5. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming: An
Introduction. Morgan Kaufmann (1998)

6. Cowperthwaite, M.C., Economo, E.P., Harcombe, W.R., Miller, E.L., Meyers, L.A.:
The ascent of the abundant: How mutational networks constrain evolution. PLoS
Computational Biology 4(7), e1000110 (2008)

7. De Visser, J.A.G.M., Hermission, J., Wagner, G.P., Meyers, L.A., Bagheri-
Chaichian, H., et al.: Evolution and detection of genetic robustness. Evolu-
tion 57(9), 1959–1972 (2003)

8. Draghi, J.A., Parsons, T.L., Wagner, G.P., Plotkin, J.B.: Mutational robustness
can facilitate adaptation. Nature 463, 353–355 (2010)

9. Ebner, M., Shackleton, M., Shipman, R.: How neutral networks influence evolv-
ability. Complexity 7(2), 19–33 (2002)

10. Francone, F.D., Conrads, M., Banzhaf, W., Nordin, P.: Homologous crossover in
genetic programming. In: Banzhaf, W., Daida, J.M., Eiben, A.E., Garzon, M.H.,
Honavar, V., Jakiela, M.J., Smith, R.E. (eds.) Proceedings of the Genetic and
Evolutionary Computation Conference, pp. 1021–1026 (1999)

11. Galvan-Lopez, E., Poli, R.: An empirical investigation of how and why neutrality
affects evolutionary search. In: Cattolico, M. (ed.) Proceedings of the Genetic and
Evolutionary Computation Conference, pp. 1149–1156 (2006)

12. Hansen, J.V.: Genetic programming experiments with standard and homologous
crossover methods. Genetic Programming and Evolvable Machines 4, 53–66 (2003)

13. Hu, T., Banzhaf, W.: Neutrality and variability: two sides of evolvability in lin-
ear genetic programming. In: Rothlauf, F. (ed.) Proceedings of the Genetic and
Evolutionary Computation Conference, pp. 963–970 (2009)

14. Hu, T., Payne, J.L., Banzhaf, W., Moore, J.H.: Robustness, Evolvability, and Ac-
cessibility in Linear Genetic Programming. In: Silva, S., Foster, J.A., Nicolau, M.,
Machado, P., Giacobini, M. (eds.) EuroGP 2011. LNCS, vol. 6621, pp. 13–24.
Springer, Heidelberg (2011)

15. Hu, T., Payne, J.L., Banzhaf, W., Moore, J.H.: Evolutionary dynamics on multi-
ple scales: a quantitative analysis of the interplay between genotype, phenotype,
and fitness in linear genetic programming. Genetic Programming and Evolvable
Machines 13, 305–337 (2012)

16. Kirschner, M., Gerhart, J.: Evolvability. Proceedings of the National Academy of
Sciences 95, 8420–8427 (1998)

17. Landry, C.R., Lemos, B., Rifkin, S.A., Dickinson, W.J., Hartl, D.L.: Genetic prop-
erties influcing the evolvability of gene expression. Science 317, 118–121 (2007)

108 T. Hu, W. Banzhaf, and J.H. Moore

18. Lenski, R.E., Barrick, J.E., Ofria, C.: Balancing robustness and evolvability. PLoS
Biology 4(12), e428 (2006)

19. Luke, S., Spector, L.: A comparison of crossover and mutation in genetic program-
ming. In: Koza, J.R., Deb, K., Dorigo, M., Fogel, D.B., Garzon, M., Iba, H., Riolo,
R.L. (eds.) Proceedings of the Annual Conference on Genetic Programming, pp.
240–248 (1997)

20. Martin, O.C., Wagner, A.: Effects of recombination on complex regulatory circuits.
Genetics 183, 673–684 (2009)

21. Masel, J., Trotter, M.V.: Robustness and evolvability. Trends in Genetics 26, 406–
414 (2010)

22. McBride, R.C., Ogbunugafor, C.B., Turner, P.E.: Robustness promotes evolvability
of thermotolerance in an RNA virus. BMC Evolutionary Biology 8, 231 (2008)

23. Neher, R.A., Shraiman, B.I., Fisher, D.S.: Rate of adaptation in large sexual pop-
ulations. Genetics 184, 467–481 (2010)

24. Otto, S.P.: The evolutionary enigma of sex. The American Naturalist 174(s1), s1–
s14 (2009)

25. Pigliucci, M.: Is evolvability evolvable? Nature Review Genetics 9, 75–82 (2008)
26. Platel, M.D., Clergue, M., Collard, P.: Maximum Homologous Crossover for Linear

Genetic Programming. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R.,
Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 194–203. Springer, Heidelberg
(2003)

27. Poli, R., Langdon, W.B.: On the search properties of different crossover opera-
tors in genetic programming. In: Koza, J.R., Banzhaf, W., Chellapilla, K., Deb,
K., Dorigo, M., Fogel, D.B., Garzon, M.H., Goldberg, D.E., Iba, H., Riolo, R.L.
(eds.) Proceedings of the Annual Conference on Genetic Programming, pp. 293–301
(1998)

28. Rothlauf, F., Goldberg, D.E.: Redundant representations in evolutionary compu-
tation. Evolutionary Computation 11(4), 381–415 (2003)

29. Soule, T.: Resilient individuals improve evolutionary search. Artificial Life 12, 17–
34 (2006)

30. Soule, T., Heckendorn, R.B.: An analysis of the causes of code growth in genetic
programming. Genetic Programming and Evolvable Machines 3, 283–309 (2002)

31. Wagner, A.: Robustness, evolvability, and neutrality. Federation of European Bio-
chemical Societies Letters 579(8), 1772–1778 (2005)

32. Wagner, A.: Robustness and evolvability: A paradox resolved. Proceedings of The
Royal Society B 275(1630), 91–100 (2008)

33. Wagner, A.: The low cost of recombination in creating novel phenotypes. BioEs-
says 33(8), 636–646 (2011)

34. White, D.R., Poulding, S.: A Rigorous Evaluation of Crossover and Mutation in
Genetic Programming. In: Vanneschi, L., Gustafson, S., Moraglio, A., De Falco, I.,
Ebner, M. (eds.) EuroGP 2009. LNCS, vol. 5481, pp. 220–231. Springer, Heidelberg
(2009)

35. Wilke, C.O.: Adaptive evolution on neutral networks. Bulletin of Mathematical
Biology 63, 715–730 (2001)

36. Yu, T., Miller, J.F.: Through the interaction of neutral and adaptive mutations,
evolutionary search finds a way. Artificial Life 12, 525–551 (2006)

On the Evolvability of a Hybrid Ant

Colony-Cartesian Genetic Programming
Methodology

Sweeney Luis and Marcus Vinicius dos Santos

Department of Computer Science, Ryerson University
Toronto, Canada

{sluis,m3santos}@ryerson.ca

Abstract. A method that uses Ant Colonies as a Model-based Search to
Cartesian Genetic Programming (CGP) to induce computer programs is
presented. Candidate problem solutions are encoded using a CGP repre-
sentation. Ants generate problem solutions guided by pheromone traces
of entities and nodes of the CGP representation. The pheromone values
are updated based on the paths followed by the best ants, as suggested in
the Rank-Based Ant System (ASrank). To assess the evolvability of the
system we applied a modified version of the method introduced in [9] to
measure rate of evolution. Our results show that such method effectively
reveals how evolution proceeds under different parameter settings. The
proposed hybrid architecture shows high evolvability in a dynamic envi-
ronment by maintaining a pheromone model that elicits high genotype
diversity.

Keywords: Ant Colonies, Cartesian Genetic Programming, Rank-Based
Ant System, Hybrid Architectures, Evolvability, Dynamic Environments.

1 Introduction

Dynamic problems are those in which the solution changes over time. In such do-
mains, the ability of a population to evolve to a new region in the solution space
is key. Tracking a moving optimum or moving from a local to a global optimum
is facilitated when the problem representation and optimization methodology
interact in ways to provide a high level of evolvability. In natural evolution,
evolvability is the capacity for an adaptive response to a dynamic environment
(fitness function) [1]. In genetic programming, a machine learning methodol-
ogy concerned with evolving computer programs, the fitness function is in many
cases static, so there is little selection pressure for “evolvability” in the biological
sense. In the work presented here we set out to investigate the evolvability of a
hybrid methodology that combines the Cartesian Genetic Programming (CGP)
[10] representation and the probabilistic techniques for searching the solution
space used in Ant Colony Optimization (ACO) [4].

Inspired on the Ants System introduced in [3], Ant Programming (AP) [11] ex-
tended ACO to Genetic Programming (GP) tree style representations. The AP

K. Krawiec et al. (Eds.): EuroGP 2013, LNCS 7831, pp. 109–120, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

110 S. Luis and M.V. dos Santos

system builds and modifies candidate problem solutions in accordance to the
pheromone model referred as pheromone tree. The pheromone tree is composed
of a number of pheromone tables for each tree node containing the pheromone
values for the possible functions and terminals for the corresponding node. Us-
ing a similar approach, but based on different pheromone model, Dynamic Ant
Programming (DAP) [14] introduced a dynamic tabular pheromone model which
holds the pheromone values for the possible functions and terminals at each node
and uses a tabu list restricting the selection of a non-terminal that has already
been selected, thereby enabling the system to create diverse individuals. The
pheromone table size changes dynamically in each iteration and nodes with low
pheromone levels are deleted. This results in the system creating programs of
smaller size on average.

In the work presented here, we propose a methodology that extends to CGP
the representations introduced in probabilistic model building GP methodolo-
gies introduced in [8,5] and combines it with ACO. We begin by presenting in
Section 2 the background materials regarding CGP and ACO. Then, in Section
3 we present how we take advantage of the CGP representation to propose a
pheromone model that elicits genotype redundancies which have shown to be
crucial for the evolvability of problem solutions [7,16]. We also introduce our
learning algorithm, which draws on the Rank-Based Ant System (ASrank) [2],
where ants are ranked according to the quality of the CGP genomes they gen-
erate and the best ranked ants are used to update the pheromone table. The
proposed method is similar to Cartesian Ant Programming (CAP) [6], where a
pheromone model is sampled to create the genome of a CGP individual and the
Max-Min Ant System (MMAS) [15] is used as the learning algorithm to update
the pheromone model. To analyze the evolvability of our system, in Section 3 we
propose a variant of the nonsynoymous to synonymous substitution ratio ka/ks
introduced in [9]. In Section 4 we present the experimental design used to bench-
mark CAP against our approach. Our results show that in a static environment
variability helps our system to converge to an optimal solution and neutrality
helps preserve the optimal solution met. In a dynamic environment our system
is able to maintain genotype diversity throughout the run which makes it highly
adaptable to changes in the environment.

2 Background Materials

CGP is an artificial evolution methodology where the individuals are represented
as a graph addressed on the Cartesian co-ordinate system and can be executed
as a computer program. CGP distinguishes between genotype and phenotype
unlike canonical genetic programming. In CGP, the genotype is a string of in-
tegers of fixed size which maps to the phenotype which is an executable graph.
The genotype represents the graph’s input and output connections. Each node
consists of inputs and a function, each of which is represented by an integer
number.

CGP-ACO 111

A CGP system needs prior definition of the following set of parameters {G,ni,
no, nn, F, nf , nr, nc, l}, where G is the genotype (fixed set of integers); ni are the
program inputs; no is the number of program output connections; nn is the
number of node input connections; F is the set of functions; nf is the number
of functions; nr is the number of nodes in each row; nc is number of nodes in
each column; l is the level back parameter defining how many previous columns
of nodes may have their output connected to the input of a node in the current
column. In this paper only feed-forward connectivity is considered. The genotype
size is fixed and can be calculated as nr ∗ nc ∗ (nn + 1) + no.

ACO is a swarm optimization technique inspired by the behavior of some ants
species. An ant moves from source to destination guided by the pheromone levels
on the available paths the ant can travel. If a path is constantly being used by
several ants, then more pheromone gets deposited on that path. Therefore, there
is a greater possibility that an ant that comes along this path will choose the
path to find its food. Similarly, the lower the pheromone levels on a path the
smaller the possibility that an ant will choose that path.

For artificial ants a pheromone model is maintained that holds the pheromone
values at each node for the paths possible for the ant to travel from that node.
This model is updated after every iteration where the paths traveled by the ant
that lead to better solutions have a level of pheromone deposited and the re-
maining paths have a level of their pheromone value evaporated. Pheromone
update is the process where good solutions are rewarded by adding to the
level of pheromone on paths chosen to reach that solution and evaporating the
pheromone level on paths that did not yield a good solution.

3 Methods

The central hypothesis put forth in this work is that the CGP representation
combined with an ACO algorithm that elicits redundancies in genotype to phe-
notype mapping imparts better evolvability of solutions. In the underlying al-
gorithm, artificial ants iteratively generate quality solutions by updating the
pheromone model used to create the programs. The model is updated after each
iteration by rewarding the most fit programs of the previous iteration. Such re-
warding is achieved by increasing the pheromone level of the inputs and function
used in each node, and decreasing the pheromone of unvisited nodes.

Drawing on the work presented in [9] we propose a measurement for rate of
evolution. We show that it effectively reflects how evolution is driven by the
underlying algorithm, and we perform a study case of the system’s evolvability.

Pheromone Model. The pheromone model contains the pheromone values for
all available inputs and functions needed in generating a node of the program.
All pheromone values are initialized at the start to τd for all the available in-
puts and functions for a node. The inputs that are unavailable to a node have
their pheromone value set to zero to refrain them from being selected and gen-
erating cyclic graphs, i.e., programs with loops. Table 1 shows an example of
a pheromone model for a symbolic regression representation. In the example,

112 S. Luis and M.V. dos Santos

Table 1. Representation of the pheromone model

Node
Input 1 Input 2 Function Output Node

1.0 X 0 1 2 1.0 X 0 1 2 + - × ÷ 1.0 X 0 1 2 3
0 τd τd 0 0 0 τd τd 0 0 0 τd τd τd τd

τd τd τd τd τd τd
1 τd τd τd 0 0 τd τd τd 0 0 τd τd τd τd
2 τd τd τd τd 0 τd τd τd τd 0 τd τd τd τd
3 τd τd τd τd τd τd τd τd τd τd τd τd τd τd

ni = {1.0, X}, F = {+,−,×,÷}, nn = 2, nr = 1, nc = 4, no = 1 and l = 3.
These inputs and functions are available for all nodes which are initialized to τd
at the start.

Genome Creation: Each ant creates an individual’s genotype by sampling
the pheromone model. The ant samples the pheromone table and selects the
appropriate input or function available, for each position in the genotype. The
probability pi that the ant selects a particular input or function i is given by
pi =

τi∑nn
j=1 τj

, where nn is the number of available inputs and functions.

Pheromone Update: The pheromone table is updated at the end of every
iteration. The ants are ranked according to the quality of the solution they
generate. Out of the m ants in each iteration only the (n − 1) best-ranked ants
and the best ant, i.e., the ant that produced the best solution so far (this ant
could be from the current iteration or from a previous iteration) update the
pheromone table as given by the following expression:

τij(t+ 1) = τij(t) +

n−1∑
r=1

(w − wr)Δτrij(t) + wΔτbest (1)

where: τij(t) is the current pheromone level of input(or function) i at node j
at iteration t; w is a constant weight assigned at the start of the experiment; r
is the rank of the ant; wr = w/(n − r); (w − wr) is the weight calculated that
rewards higher ranked ants; and Δτrij(t) is equal to the fitness of rth-best ant, if
ant selects input or function i at node j; otherwise it is zero. Analogously, Δτbest
is equal to the fitness of best ant.

Measuring Rate of Evolution: The nonsynonymous to synonymous substi-
tution ratio ka/ks is a concept used to measure genetic substitution in molecular
biology. This measurement has been used in [9] to quantitatively assess evolv-
ability in Linear Genetic Programming (LGP). A change in the genome of an
individual that brings about a change in its fitness is known as a nonsynonymous
change, where as if a genome change does not cause a change in fitness, then
it is called a synonymous change. We use the same terminology and a similar
approach in the work presented here. One key difference, is that in the context
of Ants (and Estimation of Distribution Algorithms) changes are brought about
by probabilistic sampling of the pheromone table rather than by the application
of genetic operators, which is the case in [9].

CGP-ACO 113

In our simulated studies we measure the ka/ks ratio by observing the changes
brought about in the best-ranked ants. To determine the value of nonsynony-
mous (and synonymous) change we compare each individual I and individual
J that were brought about by the N best-ranked ants of iteration t and t − 1,
respectively. The value of nonsynonymous change mI

ak(t) on each gene k of each
individual I from iteration t is calculated as follows: if gene k did not change,
i.e., Ik = Jk, then mI

ak(t) = mI
sk(t) = 0. Otherwise, if change was silent, i.e.,

individuals I and J have same fitness, then mI
ak(t) = 0,mI

sk(t) = 1. If change
was not silent, then mI

ak(t) = 1,mI
sk(t) = 0.

We compute the number of nonsynonymous substitutions Ma(t) and the num-

ber of synonymous substitutionsMs(t) as follows:Ma(t) =
∑N

i=1 m
i
ak(t), Ms(t) =∑N

i=1 m
i
sk(t)

Like in [9], we keep a record of all changes to each gene during the iter-
ations of the algorithm. We compute such accumulated numbers of nonsyn-
chronous cak(t) and synchronous csk(t) changes in gene k up to iteration t, as
follows: initially cak(0) = csk(0) = 0, for all genes k in the genome. We update
these values for each gene k and individual I brought about by the N best-
ranked ants of iteration t, as follows: cak(t) = cak(t − 1) + mI

ak(t), csk(t) =
csk(t−1)+mI

sk(t).And we compute the potential of a gene k being changed non-
synonymously or synonymously (also called the sensitivity of a gene) as follows:

nak(t) =
cak(t)

cak(t)+csk(t)
, nsk(t) =

csk(t)
cak(t)+csk(t)

We add up the sensitivities of all genes in the representation to obtain the
total nonsynonymous and synonymous sensitivities Na(t) and Ns(t): Na(t) =∑N

k=1 nak(t), Ns(t) =
∑N

k=1 nsk(t)
Finally, we compute the nonsynonymous and the synonymous substitution

rates ka and ks of iteration t as ka(t) = Ma(t)/Na(t), ks(t) = Ms(t)/Ns(t) , which
enables us to obtain the rate of evolution Re in iteration t:

Re(t) = ka(t)/ks(t) (2)

4 Experimental Design and Results

We begin by testing how effectively the rate of evolution reflects the dynamics
of the underlying algorithm. We then compare the evolvability of our method
with that of CAP in two different environmental conditions: a fixed target and
a moving target environment.

4.1 Rate of Evolution under Different Parameter Settings

In this section we describe the experimental setting we have designed to study
the influence of different parameter settings on factors related to the Rate of
Evolution in a symbolic regression (SR) problem

114 S. Luis and M.V. dos Santos

In these experiments the target expression is the polynomial x4+x3+x2+x.
The training set, i.e., the fitness cases, consists of 40 equidistant example points
in the interval [−2.0,+2.0]. Fitness of an individual is computed as the inverse of
the accumulated error between the actual example points and the values output
by the individual. Formally, let the output of the ith training example be oi. Let
the output of individual g on the ith example from the training set be gi. Then,
for a training set of n = 40 examples the fitness fg of g is calculated as follows:
fg = 1

1+
∑n

i=1 |oi−gi|
The parameters chosen for this experiment are shown in Table 2. The expo-

nentially weighted moving average method, with a smoothing factor 0.1, is used
to smoothen the curves.

Table 2. Parameter values for experiments SR, FTE and MTE

Parameter Experiment
SR FTE MTE

ni {x, 1.0} ditto ditto
F {+,−,×,÷} ditto ditto
Number of Runs 100 ditto ditto
Number of Iterations 1000 ditto ditto
Number of Individuals 50 100 100
τd 1.0 ditto ditto
Number of best-ranked ants 10 ditto ditto
of equidistant fitness cases 40 ditto ditto
Interval [−2.0, 2.0] ditto ditto

Population Size. In this experiment we alter the population sizes to 50, 100
and 200. From Figure 1(b) we see having a system with a larger population
converges to the solution faster than a system with a smaller population.

The rate of evolution (Re) in Figure 1(a) is synchronous with natural evo-
lutions as it continues to be at the maximum value slightly above 1.0. As the
run progresses the value of Re continues to descend till it reaches zero evolution.
The system with a larger population size reached zero evolution quicker than a
system with a smaller population.

Initial Pheromone Level. In this experiment we study the influence of the
initial pheromone value on Re. The initial pheromone level is set to 0.1, 0.5 and
1.0 and analyze the effect on the rate of evolution and average fitness. From
Figure 2(b) we see, a setup with a lower initial pheromone level converges to a
solution quicker which reflects the findings in [14]. Observing Re in Figure 2(a)
in all conditions the maximum value is around 1.0 and proceeds towards zero
evolution. With a lower initial pheromone level zero evolution reaches quicker
than with a setup where the initial pheromone level is higher.

CGP-ACO 115

(a) Re = ka/ks (b) Average fitness

Fig. 1. Varying population sizes

4.2 CGP-ACO vs. CAP

Our approach differs from Cartesian Ant Programming (CAP) [6] in two key
aspects: the learning algorithm and the method of updating the pheromone
model.

CAP uses Max-Min Ant System (MMAS) [15] as the learning algorithm, where
the best ant updates the pheromone model at the end of the iteration and the
unused pheromone trails are subjected to evaporation. In MMAS, the pheromone
model is updated according to the equation below:

τij(t+ 1) = (1 − ρ)τij(t) +Δτbestij (t) (3)

where: τij(t) is the current pheromone level of input(or function) i at node j at
iteration t; ρ is the evaporation rate; Δτbestij is equal to the fitness of the best
ant, if best ant selects input or function i at node j; otherwise it is zero.

In regards to the method of updating the pheromone model, after evaluating
the individual, CAP traverses the model beginning from the output nodes and
proceeds backwards towards the input nodes, only updating the model for the
nodes that appear in the individuals phenotype. As such, only the pheromone
values of the used nodes are updated. In our method, however, we update the
pheromone model in a forward manner beginning from the input nodes and
moving towards the output nodes, updating the pheromone values for all nodes
that appear in the individual’s genotype.

Fixed Target Evolution (FTE). In this experiment we evolve the expression
x5−2x3+x. Figure 3(d) shows that our approach attains maximum fitness faster
with a steady convergence rate throughout the run than the approach used in
CAP.

Figure 3(a) shows that our method engenders a high number of nonsynony-
mous substitutions from the start of the run, and that number increases after the

116 S. Luis and M.V. dos Santos

(a) Re = ka/ks (b) Average fitness

Fig. 2. Varying initial pheromone level

system converges to a solution. Using the method of updating the pheromone
model as described in CAP, the system fixates on making a maximum number of
nonsynonymous substitutions at the start of the run which results in the synony-
mous substitutions to be low at the start of the run and increase as the system
converges to a solution of maximum fitness. In Figure 3(b) we plot the synony-
mous substitutions which shows us that using the CGP-ACO approach results
in making a larger number of substitutions throughout the run which increases
after the system converges to a solution. The method used in CAP involves
making a fewer number of substitutions compared to the CGP-ACO approach,
the system makes most of the substitutions after the system has converged to
a solution. The result of the substitutions is seen in the rate of evolvability Re

in Figure 3(c), the CGP-ACO approach has a higher rate of Re throughout the
run where the system converges to zero evolvability towards the end of the run.
Using the pheromone update method as used in CAP the model the system has
a high value of Re at the start of the run and reaches zero evolvability sooner
than the CGP-ACO approach.

We conduct the Multiple Hypothesis Testing [13] to compare the performance
of the two approaches. We test for the average fitness at different points of the
run using a significance level α = 0.05. We find CAP has a better performance in
the initial stages of the run (at iteration 250, the p-value equals 0.012). However
in the middle (at iteration 500, p-value = 0.58) and final stages (at iteration 750,
p-value = 0.33) of the run there is no evidence of statistical difference between
the two approaches.

Moving Target Evolution (MTE). In this experiment we create a moving
target by increasing the degree n of the polynomial

∑n
i=1 x

i at regular intervals.
We start our target for the first 200 iterations at i = 3 where the target expression
is x3 + x2 + x. From iteration 200 to 500 i = 4 and iteration 500 onwards i = 5.

CGP-ACO 117

(a) ka (b) ks

(c) Re = ka/ks (d) Average fitness

Fig. 3. FTE: CGP-ACO vs CAP

We use an enhanced version of the ASrank model update method that includes
evaporation. We incorporate evaporation to balance the effects of depositing a
large amount of pheromone when the target is small which hinders exploration
of alternative paths when the target is changed. For this experiment we set the
evaporation rate to ρ = 0.2.

We emulate CAP’s methodology using MMAS as the learning algorithm and
with an evaporation rate of ρ = 0.1.

In Figure 4(d) we plot the average fitness for both systems. We take note that
the convergence of the solution is almost identical for both systems. Analyzing
the substitution rates in Figure 4(a) and 4(b) we see that both systems follow
a similar trend in evolvability from iteration 0 to 200 where the target is an ex-
pression of a lower degree. From iteration 200 to the end of the run, as the target
is changed and the degree of the polynomial keeps increasing, we notice that the
rate of nonsynonymous substitutions in CAP is greater than in CGP-ACO. Also
the number of synonymous substitutions made during this period in CAP is low
compared to CGP-ACO. Moreover, Figure 4(d) shows that immediately after

118 S. Luis and M.V. dos Santos

the target change CGP-ACO is able to produce solutions with higher fitness
than CAP, which makes one wander if the CGP-ACO pheromone model elicits a
more diverse genotype than the CAP pheromone model. Figure 4(e) shows that
there is strong evidence pointing in that direction. Genotype diversity, in this
case, was calculated using the diversity measure introduced by Shapiro in [12]
(section 3 of that paper).

To assess the statistical significance we conduct the same Multiple Hypothesis
Test as in the previous section (with α = 0.05). Testing for the average fitness at
different points of the run we find no evidence of statistical difference between
the two approaches (at iteration 100, p-value = 0.71; at iteration 350, p-value
= 0.3 and at iteration 750, p-value = 0.76). Testing for diversity at different
points of the run we find very strong evidence of a statistical difference between
the two approaches, showing CGP-ACO elicits higher diversity as the p-value at
different points of the run are extremely small.

(a) ka (b) ks (c) Re = ka/ks

(d) Average Fitness (e) Diversity

Fig. 4. MTE: CGP-ACO vs CAP

5 Conclusion

In this work we introduced a hybrid optimization algorithm that combines Carte-
sian genetic programming with ant colonies. Using the rate of evolution we tested
the evolvability of our system under different parameter settings and compared
our results with CAP in two different environmental conditions

CGP-ACO 119

Analyzing the results we observed that a lower level of initial pheromone and
a bigger population size helps in faster convergence. CGP-ACO has shown to be
highly adaptable to the aforementioned environmental conditions. Our results
also showed that CGP-ACO is on par with CAP with regards to average fitness of
the evolved population. CGP-ACO, however, showed better adaptiveness when
faced with a dynamic environment by maintaining a highly diverse genotype
population.

The system imposes variability as a driving force when it needs to attain
an optimal solution, where as neutrality helps the system preserve an optimal
solution. Adaptiveness is a major characteristic of our system as changes in
the environment causes the system to reflect those changes in the pheromone
model, thus resulting in the creation of individuals that are highly fit for the
environmental conditions.

References

1. Altenberg, L.: The evolution of evolvability in genetic programming. In: Advances
in Genetic Programming, pp. 47–74. MIT Press, Cambridge (1994)

2. Bullnheimer, B., Hartl, R.F., Strauß, C.: A new rank based version of the ant
system - a computational study. Central European Journal for Operations Research
and Economics 7, 25–38 (1997)

3. Colorni, A., Dorigo, M., Maniezzo, V.: Distributed Optimization by Ant Colonies.
In: European Conference on Artificial Life, pp. 134–142 (1991)

4. Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization – artificial ants as a
computational intelligence technique. IEEE Comput. Intell. Mag. 1, 28–39 (2006)

5. Ghoulbeigi, E., dos Santos, M.V.: Probabilistic developmental program evolution.
In: Proceedings of the 2010 ACM Symposium on Applied Computing, SAC 2010,
pp. 1138–1142. ACM, New York (2010)

6. Hara, A., Watanabe, M., Takahama, T.: Cartesian ant programming. In: SMC, pp.
3161–3166 (2011)

7. Harding, S., Miller, J.F., Banzhaf, W.: Smcgp2: self modifying cartesian genetic
programming in two dimensions. In: GECCO, pp. 1491–1498 (2011)

8. Holker, G., dos Santos, M.V.: Toward an estimation of distribution algorithm for
the evolution of artificial neural networks. In: Proceedings of the Third C* Con-
ference on Computer Science and Software Engineering, C3S2E 2010, pp. 17–22.
ACM, New York (2010)

9. Hu, T., Banzhaf, W.: Neutrality and variability: two sides of evolvability in lin-
ear genetic programming. In: Proceedings of the 11th Annual Conference on Ge-
netic and Evolutionary Computation, GECCO 2009, pp. 963–970. ACM, New York
(2009)

10. Miller, J.F., Thomson, P.: Cartesian genetic programming (2000)
11. Roux, O., Fonlupt, C.: Ant programming: Or how to use ants for automatic pro-

gramming. In: From Ant Colonies to Artificial Ants 2nd International Workshop
on Ant Colony Optimization (2000)

12. Shapiro, J.L.: Diversity Loss in General Estimation of Distribution Algorithms. In:
Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D.,
Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 92–101. Springer, Heidelberg
(2006)

120 S. Luis and M.V. dos Santos

13. Shilane, D., Martikainen, J., Dudoit, S., Ovaska, S.J.: A general framework for
statistical performance comparison of evolutionary computation algorithms. Inf.
Sci. 178(14), 2870–2879 (2008)

14. Shirakawa, S., Ogino, S., Nagao, T.: Dynamic ant programming for automatic con-
struction of programs. IEEJ Transactions on Electrical and Electronic Engineering
TEEE 3, 540–548 (2008)

15. Stützle, T., Hoos, H.H.: MAX-MIN Ant System (November 1999)
16. Woodward, J.R.: Complexity and cartesian genetic programming. In: Mirkin, B.,

Magoulas, G. (eds.) The 5th Annual UK Workshop on Computational Intelligence,
London, September 5-7, pp. 273–280 (2005)

Discovering Subgroups

by Means of Genetic Programming

José M. Luna, José Raúl Romero, Cristóbal Romero, and Sebastián Ventura

Dept. of Computer Science and Numerical Analysis,
University of Cordoba, Rabanales Campus, Albert Einstein building,

14071 Cordoba, Spain
{jmluna,jrromero,cromero,sventura}@uco.es

Abstract. This paper deals with the problem of discovering subgroups
in data by means of a grammar guided genetic programming algorithm,
each subgroup including a set of related patterns. The proposed algo-
rithm combines the requirements of discovering comprehensible rules
with the ability of mining expressive and flexible solutions thanks to
the use of a context-free grammar. A major characteristic of this algo-
rithm is the small number of parameters required, so the mining process
is easy for end-users.

The algorithm proposed is compared with existing subgroup discovery
evolutionary algorithms. The experimental results reveal the excellent
behaviour of this algorithm, discovering comprehensible subgroups and
behaving better than the other algorithms. The conclusions obtained
were reinforced through a series of non-parametric tests.

Keywords: Data mining, subgroup discovery, genetic programming,
grammar guided genetic programming.

1 Introduction

Data mining (DM) is a very popular research area in the field of computer
science. The aim of DM is the discovery of non-trivial information usually hidden
in data. Two are the main tasks in DM, descriptive [10] (mining interesting
patterns and association rules in a dataset) and predictive [11] (obtaining an
accurate classifier). For quite some time now, DM also includes new tasks at the
intersection of descriptive induction and predictive induction, subgroup discovery
(SD) [4] being one of these tasks.

In its original description, SD was defined by Klösgen [7] and Wrobel [13]
as follows: “Given a population of individuals (customers, objects, etc.) and a
property of those individuals that we are interested in, the task of SD is to find
population subgroups that are statistically most interesting for the user, e.g.,
subgroups that are as large as possible and have the most unusual statistical
characteristics with respect to a target attribute of interest”. SD combines the
features of supervised and unsupervised learning tasks, finding explicit subgroups
via rules easily understandable by users. Therefore, these rules should have a

K. Krawiec et al. (Eds.): EuroGP 2013, LNCS 7831, pp. 121–132, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

122 J.M. Luna et al.

clear structure and few variables or attributes [5], comprising an antecedent and
a consequent, i.e., the left and right hand side of the rule.

Since the concept of SD was firstly introduced, it has been widely studied
by many researchers and a number of algorithms have been proposed [1,2,6,8].
Among these algorithms, there exists a number of them that are extensions of
classification algorithms, others are extensions of algorithms for mining asso-
ciation rules and, finally, some follow an evolutionary methodology. All these
algorithms are detailed in a comprehensive survey on SD approaches [4], where
authors also describe a wide variety of quality measures that could be classified as
measures of complexity, generality, precision or interest. Complexity measures
are related to the interpretability and simplicity of the knowledge extracted
from each subgroup. Two measures in this regard are the number of rules and
the number of variables of the antecedent. As for the generality measures, they
quantify the quality of the subgroups according to the patterns covered, and
the most commonly used is support, representing the proportion of the number
of transactions satisfying both the antecedent and consequent (target variable).
Regarding the precision measures, they include the confidence or reliability of
the rule as one of the most commonly used in SD. As far as the interest measures
is concerned, a commonly one used in SD is the significance, which indicates the
importance of a finding if measured by the likelihood ratio of a rule. Finally,
it is also possible to find quality measures trying to obtain a trade-off between
generality, interest and precision. An example of this kind of measures is the
unusualness of a rule [4].

Recently, the descriptive induction perspective was studied by using a gram-
mar guided genetic programming (G3P) approach [9]. In this approach, authors
demonstrated that the use of a grammar to represent association rules allows of
mining frequent and reliable rules having an expressive and flexible structure.
The goal of this paper is to demonstrate that this interesting feature could be
shared with SD, where the interpretability of the extracted knowledge is a major
issue for the user. To this end, we propose a G3P approach for mining subgroups
statistically interesting for the user, making use of a context-free grammar to
represent rules conformant to this grammar. This algorithm, called G3P-SD,
provides the possibility of satisfying the SD requirements with the features of
G3P. This synergy brings about a novel algorithm which behaves well in terms
of statistical measures, discovering subgroups having a simple and flexible struc-
ture, and including few variables.

In order to demonstrate the effectiveness of G3P-SD, a series of evolutionary
and classic SD algorithms were compared in detail. In this analysis, a number
of non-parametric tests were performed, demonstrating the effectiveness of the
proposed approach and its ability to discover subgroups including few variables.

This paper is structured as follows: a description of the model proposed as
well as its main characteristics is included in Section 2; Section 3 describes the
experiments, including the datasets used, the algorithm set-up, and discusses
the results obtained; finally, in Section 4, some concluding remarks are outlined.

Discovering Subgroups by Means of Genetic Programming 123

G = (ΣN , ΣT , P , S) with:

S = Subgroup
ΣN = {Subgroup, Conditions, Class, Condition, Nominal, Numerical }
ΣT = {‘AND’, ‘Attribute’, ‘Attribute class’, ‘value’, ‘Class value’, ‘=’, ‘IN’,

‘Min value’, ‘Max value’, ‘Class value’ }
P = {Subgroup = Conditions, Class ;

Conditions = Condition | ‘AND’, Condition, Conditions ;
Condition = Nominal | Numerical ;
Nominal = ‘Attribute’, ‘=’, ‘value’ ;
Numerical = ‘Attribute’, ‘IN’, ‘Min value’, ‘Max value’ ;
Class = ‘Attribute class’, ‘=’, ‘Class value’; }

Fig. 1. Context-free grammar expressed in extended BNF notation

2 On the Use of Genetic Programming for Mining Rules
in Subgroup Discovery

In this section, the proposed algorithm is described in depth. The strength of
this algorithm is its ability to combine the interpretability of using a context-
free grammar thanks to G3P with the typical capacity to optimize thanks to
the use of evolutionary algorithms. This synergy brings about an approach that
discovers comprehensible subgroups having a simple and flexible structure.

2.1 Encoding Criterion

In any G3P algorithm, the individuals or feasible solutions to the problem are
represented by means of a genotype and a phenotype. The genotype is presented
as a derivation tree structure conformant to a context-free grammarG, providing
different shapes and sizes. On the other hand, the phenotype represents the
meaning of the tree structure, so the phenotype indicates a rule comprising an
antecedent and a consequent.

A context-free grammar could be formally defined as a four-tuple (ΣN , ΣT ,
P , S), ΣN being the non-terminal symbol alphabet, ΣT denoting the terminal
symbol alphabet, P standing for the set of production rules, S for the start
symbol, and ΣN and ΣT being disjoint sets, i.e., ΣN ∩ΣT = ∅. Any production
rule follows the format α → β where α ∈ ΣN , and β ∈ {ΣT ∪ΣN}∗. Beginning
from the start symbol S, each individual is represented in a derivation tree as a
sentence conformant to the grammar (see Figure 1). The benefits of using gram-
mars consist in the ability to define syntax constraints, providing expressiveness,
flexibility, and the ability to restrict the search space. To obtain individuals, a
number of production rules is applied from the set P . This process begins from
the start symbol Subgroup, which always has a child node representing the an-
tecedent of the rule, i.e., the conjunction of conditions, and the target attribute
or consequent. Considering the grammar defined in this approach, the following

124 J.M. Luna et al.

Fig. 2. Sample derivation tree conformant to the grammar defined in the proposed
algorithm

language is obtained L(G) = {(ANDCondition)nCondition → Class : n ≥ 0}.
Therefore, any rule having at least one condition in the antecedent is obtained.

A major characteristic of using grammars is its ability to be adapted to dif-
ferent application domains or problems. Analysing the proposed grammar, it is
stated that the algorithm is able to mine any subgroup containing either numer-
ical or nominal features. Given an attribute x and the values y1, y2, ..., yn in the
unordered domain D of x, the following expression is valid: x = yn, indicating
that x takes the value yn in D. Furthermore, numerical attributes are used by
applying the operator IN, and randomly selecting two feasible values.

For the sake of clarifying the individual representation, it is interesting to show
a sample individual generated through the application of a series of production
rules from the set P (see Figure 2). The leaf nodes represent terminal symbols
according to thee metadata of the dataset used each time. As mentioned above,
the phenotype of an individual represents the meaning of the derivation tree,
i.e., the rule obtained by eliminating non-terminal genotype symbols. Therefore,
focusing on the sample tree depicted, the phenotype represents the following
rule:

IF Attributej IN [Numberi, Numberj] ∧ Attributek = V aluek
THEN Attributeclass = V aluet

2.2 Evaluation of the Derivation Tree Individuals

One of the major tasks in any evolutionary model is the assignment of a fitness
value to each solution, determining how close a given solution is to achieve
the aim. This task is a core process in SD, which has been studied by many
authors [4], originating a wide variety of quality measures.

Discovering Subgroups by Means of Genetic Programming 125

The goal of the proposed algorithm is not to optimize a specific quality mea-
sure but many of them. In the SD task, it is interesting to mine highly related or
reliable subgroups of patterns that cover a high percentage of correctly classified
examples from the whole set T . We propose the use of support and confidence
as measures to calculate the fitness function (see Equation 1) of any subgroup
represented as a rule A → C, A and C state for the antecedent and consequent,
respectively. In such a way, a higher fitness function value implies an optimiza-
tion of generality and precision measures. Additionally, the mere fact of searching
for high frequent subgroups implies an optimization in measures of complexity,
especially in the number of variables in the antecedent of the rule. Notice that
the higher the length of the rule, the lower its support is, i.e., more specific the
rule is, so the complexity of the rule is higher.

fitness(A → C) =
|{A ∪ C ⊆ T}|

|T | ∗ |{A ∪ C ⊆ T}|
|{A ⊆ T}| (1)

2.3 Genetic Operators

In any evolutionary algorithm, the genetic operators play an important role
in the search for the best solutions, guiding the searching process to solutions
having better fitness values. In this paper, we propose two genetic operators
(crossover and mutation) whose main feature is that they do not need a fixed
probability to determine whether the genetic operator is applied or not. Instead,
these probabilities are adjusted based on the population requirements, i.e., it
depends on the diversity of the population, as described below.

Crossover. In this genetic operator (see its pseudocode in Algorithm 1), the goal
is to obtain a new individual comprising conditions from two parents. It works
by swapping the condition with the lowest frequency in one parent with the

Algorithm 1. Proposed crossover operator

Require: parents
Ensure: offsprings
1: offsprings ← ∅
2: for all individuals in parents do
3: ind1, ind2 ← getIndividuals(parents)
4: if random() < crossoverProbability then
5: att1 ← getBestAttribute(ind1)
6: att2 ← getWorstAttribute(ind2)
7: newInd1 ← exchange(ind1,att1, att2)
8: offsprings ← offsprings ∪ newInd1
9: newInd2 ← exchange(ind2,att1, att2)

10: offsprings ← offsprings ∪ newInd2
11: end if
12: end for
13: return offsprings

126 J.M. Luna et al.

Algorithm 2. Proposed mutation operator

Require: parents
Ensure: offsprings
1: offsprings ← ∅
2: for all individuals in parents do
3: ind ← getIndividual(parents)
4: if random() < mutationProbability then
5: att ← getWorstAttribute(ind)
6: newAtt ← newAttribute(ind,att)
7: newInd ← exchange(ind,att, newAtt)
8: offsprings ← offsprings ∪ newInd
9: end if

10: end for
11: return offsprings

condition with the highest frequency in the other parent. Except for the class or
target attribute, any condition could be selected. It does not matter the shape
of the tree structure or the domain of the condition to be swapped.

Mutation. The principal aim of this genetic operator is to modify the genotype
of an individual in order to change its worst condition (the one having a lower
frequency). To do so, the procedure searches for the worst condition of the parent
and changes it trying to improve its fitness value. The pseudocode of this genetic
operator is shown in Algorithm 2.

As mentioned above, a major feature of the proposed algorithm is its ability
to automatically update the genetic operator probabilities, not requiring a pre-
fixed parameter. In order to update these probabilities, the algorithm checks,
in each generation, whether the average fitness value of the population has in-
creased or decreased. If this value is greater than that calculated in the previous
generation, then the crossover probability will be increased since a depth search
or exploitation is required. On the contrary, if the average fitness value is less
than or equal to that obtained in the previous generation, then the crossover
probability should be decreased since it is required to include diversity in the
population.

2.4 Proposed Algorithm

In previous subsections, the encoding criterion, the evaluation process, and the
genetic operators proposed in the algorithm were described. Now, it is necessary
to properly describe the complete evolutionary model, discussing how the dif-
ferent procedures described are combined prompting a promising evolutionary
algorithm for SD.

The first interesting procedure to be described is the one responsible for creat-
ing the initial population by using the context-free grammar defined in Figure 1
and the metadata extracted from the dataset. The main objective of this initial

Discovering Subgroups by Means of Genetic Programming 127

procedure is to allow of starting the evolutionary process with quality individu-
als. To do so, it originates an individual and evaluate it to determine its fitness
function value. If this value is equal to 0, i.e., an invalid individual having a sup-
port value or a confidence value of 0, then the procedure creates a new individual
and the invalid one is rejected. Once the created individual has a valid fitness
value, this individual is kept in the population. The procedure continues until
a number of quality individuals is obtained, making the evolutionary process
better since it starts having a high quality population.

The algorithm proposed in this paper is an iterative algorithm that mines
subgroups of an specific target attribute in each iteration (Figure 3 graphically
shows the iterative model). In such a way, its aim is to discover the best sub-
groups (induced as rules in the form of a derivation tree) for each class or target
attribute. The algorithm runs iteratively a complete evolution of the rules for a

Fig. 3. The flowchart for the proposed iterative G3P algorithm for mining subgroups

128 J.M. Luna et al.

specific class, i.e., the individuals evolve along a number of generations in order
to obtain the best ones. Once this generational procedure is finished, a new set
of individuals satisfying a new class is created. This iterative process is repeated
as many times as number of classes or target variable values are available in the
dataset.

In each generation of proposed algorithm, a selection procedure working as an
elitist selection allows some of the best individuals discovered from the current
generation to carry over to the next, unaltered. The fact of selecting the best
individuals from a set is not a trivial procedure since it is necessary not only to
select the best one but also to select the most representative ones. In such a way,
individuals are compared by using Equation 2, considering that two individuals
are equivalent if they cover the same instances. Therefore, two individuals are
compared by using their vectors of covered instances (V1 and V2), where V1 · V2

is the product of both vectors and |Vn| is the norm of the n-th vector. In this
sense, the range of the values is [0, 1], and the closer to one the value is, the
more similar these individuals are.

comparator(V1, V2) =
V1 · V2

|V1| · |V2| (2)

For a better understanding, consider two sample rules that cover the following
instances (V1 and V2) in a sample dataset of ten instances (a logic “1” implies
that the rule satisfies the instance, a logic “0” otherwise).

Instances 1 2 3 4 5 6 7 8 9 10

V1 0 0 1 1 0 0 1 1 1 0
V2 0 0 0 1 0 0 1 0 1 0

In such a situation, the value of V1 · V2 is 3, whereas the values of |V1| and
|V2| are

√
5 and

√
3, respectively. Once these values are obtained, the similarity

between these two individuals is defined by Equation 2 as comparator(V1 ,V2) =
3/(

√
5*

√
3) = 0.775. In consequence, since the range of the values is [0, 1], both

individuals tend to cover the same instances.
The aim of SD is the discovery of interesting subgroups for the user, so the

fact of giving a huge set of subgroups covering the same instances could not be
a good idea. In such a way, we propose the use of a 0.8 threshold to determine
whether two subgroups are similar or not. This threshold should be as high
as possible, but allowing the extraction of overlapped rules. In SD overlapped
subgroups may be interesting since they can show properties of a group from a
different perspective.

Finally, once the algorithm reaches the number of target features in the dataset
under study, it runs a final procedure to increase or decrease the width of the
intervals –if any numeric feature is considered– in order to discover a high qual-
ity intervals satisfying more instances or prompting to a more reliable rules.
Once this procedure is carried out, the algorithm returns the set of subgroups
discovered in each iteration.

Discovering Subgroups by Means of Genetic Programming 129

3 Experimental Study

In this experimental study, the behaviour of the proposed algorithm — it was
written by using JCLEC [12], a Java library for evolutionary computation1 —
is shown with respect to a number of quality measures including measures of
complexity, generality, precision and interest. In this experimental stage, a se-
ries of evolutionary algorithms were compared in detail, including SDIGA [5],
NMEEF-SD [1], and MESDIF [2]. Finally, several non-parametric tests were per-
formed, demonstrating the effectiveness of the proposed approach and its ability
to discover subgroups having a low complexity.

Table 1. A set of 12 datasets obtained from the well-known UCI repository

Dataset #V ar #Disc #Cont #Class #Inst

Australian 14 8 6 2 690
Breast-w 9 9 0 2 699
Bupa 6 0 6 2 345
Car 6 6 0 4 1728
Cleveland 13 0 13 5 303
Diabetes 8 0 8 2 768
Echo 6 1 5 2 131
German 20 13 7 2 1000
Iris 4 0 4 3 150
Led 7 0 7 10 500
Tic-tac-toe 9 9 0 2 958
Vote 16 16 0 2 435

The experimentation was undertaken using 12 datasets from the UCI repos-
itory2. Table 1 shows the features of each dataset used in this experimental
stage, describing the number of variables (#V ar), number of discrete attributes
(#Disc), number of continuous attributes (#Cont), number of classes (#Class)
and number of instances (#Inst). All the experiments were carried out over a
ten fold cross validation for each dataset. As far as the evolutionary algorithms
are concerned, the optimal parameters are those given by the authors as optimal
parameters. On the contrary, the optimal parameters for the proposed algorithm
were established from various experimental studies, being a population size of
50 individuals and a maximum number of 100 generations. Notice that there is
no probability for the genetic operators.

The results obtained (see Table 2) are the average results obtained from the
set of subgroups discovered when running each algorithm thirty times using
different seeds each time. Notice that the best results are set in bold typeface.

1 JCLEC is freely available for download from http://jclec.sf.net
2 Machine learning repository. http://archive.ics.uci.edu/ml/

http://jclec.sf.net
http://archive.ics.uci.edu/ml/

130 J.M. Luna et al.

T
a
b
le

2
.

A
v
er

a
g
e

re
su

lt
s

o
b

ta
in

ed
b
y

th
e

ev
o
lu

ti
o
n

a
ry

a
lg

o
ri

th
m

s
u

si
n

g
d

iff
er

en
t

m
ea

su
re

s

N
u

m
b

er
o
f

ru
le

s
N

u
m

b
er

o
f

va
ri

a
b

le
s

S
ig

n
ifi

ca
n

ce

D
a
ta

se
t

N
M

E
E

F
-S

D
M

E
S

D
IF

S
D

IG
A

G
3
P

-S
D

N
M

E
E

F
-S

D
M

E
S

D
IF

S
D

IG
A

G
3
P

-S
D

N
M

E
E

F
-S

D
M

E
S

D
IF

S
D

IG
A

G
3
P

-S
D

A
u

st
ra

li
a
n

3
.5

8
1
0
.0

0
2
.6

4
2
.0
4

2
.9

2
3
.5

2
3
.2

8
2
.1
9

2
3
.1
7

7
.5

9
1
6
.3

4
2
0
.9

2
B

re
a
st

-w
2
.9

0
1
1
.9

0
2
.5

2
2
.0
2

2
.3

8
2
.4

2
2
.4

3
2
.0
6

2
2
.7

2
1
9
.4

0
1
7
.3

2
2
3
.4
5

B
u

p
a

3
.4

6
1
0
.0

0
2
.0

0
1
.6
4

2
.2

2
3
.4

0
2
.0

4
2
.0
1

0
.8

8
0
.8

2
0
.9

4
2
.8
1

C
a
r

1
.1
0

1
0
.4

0
1
9
.1

4
1
.1
0

2
.0
0

3
.3

4
5
.1

0
2
.0
0

3
7
.8
4

1
3
.5

1
1
.7

7
3
7
.8
4

C
le

v
el

a
n

d
1
.4
0

4
8
.2

6
1
9
.2

6
1
.4

4
3
.0

0
4
.4

9
5
.1

3
2
.2
5

1
0
.0
3

3
.9

5
1
.0

5
6
.4

4
D

ia
b

et
es

8
.3

8
2
0
.0

0
2
.0
0

2
.2

4
3
.4

6
4
.0

7
2
.2

5
2
.1
9

3
.2

0
2
.5

1
5
.2

3
6
.8
1

E
ch

o
3
.6

2
1
9
.9

4
2
.0
0

2
.2

6
2
.3

5
3
.7

0
2
.6

5
2
.1
8

1
.2
9

0
.7

5
1
.0

0
0
.8

3
G

er
m

a
n

8
.8

0
2
0
.0

0
8
.5

6
1
.1
6

2
.7

7
4
.3

0
4
.4

0
2
.1
0

3
.0

7
2
.8

1
0
.6

1
7
.5
4

Ir
is

4
.5

0
8
.5

0
3
.0
0

3
.0

4
2
.5

4
2
.4

7
2
.3
3

2
.5

1
9
.1

9
6
.4

5
7
.9

7
9
.6
5

L
ed

4
.7

0
7
8
.5

4
1
0
.0

4
4
.3
4

3
.3

7
3
.5

7
4
.5

5
3
.0
0

1
7
.2

2
1
7
.0

0
1
5
.9

9
1
7
.7
0

T
ic

-t
a
c-

to
e

1
.0
0

6
.0

0
7
.9

0
1
.1

2
2
.0
0

3
.1

4
3
.9

8
2
.2

8
5
.2

4
5
.0

0
6
.1
4

5
.0

1
V

o
te

1
.1
0

7
.8

6
3
.0

6
2
.0

0
2
.0
5

3
.4

4
3
.1

9
2
.2

3
2
1
.9

7
1
9
.9

3
1
8
.2

4
2
2
.8
7

R
a
n

k
in

g
2
.2

9
3
.8

3
2
.3

7
1
.5

2
.1

2
3
.4

5
3
.0

8
1
.3
3

1
.8

7
3
.5

3
.0

8
1
.5
4

S
u

p
p

o
rt

C
o
n

fi
d

en
ce

U
n
u

su
a
ln

es
s

D
a
ta

se
t

N
M

E
E

F
-S

D
M

E
S

D
IF

S
D

IG
A

G
3
P

-S
D

N
M

E
E

F
-S

D
M

E
S

D
IF

S
D

IG
A

G
3
P

-S
D

N
M

E
E

F
-S

D
M

E
S

D
IF

S
D

IG
A

G
3
P

-S
D

A
u

st
ra

li
a
n

0
.7

8
0
.5

7
0
.5

9
0
.8
5

0
.9
3

0
.8

0
0
.7

9
0
.8

5
0
.1

7
0
.0

6
0
.1

2
0
.1
8

B
re

a
st

-w
0
.8
4

0
.7

1
0
.6

7
0
.6

7
0
.9

5
0
.8

9
0
.8

5
0
.9
6

0
.1
6

0
.1

1
0
.1

1
0
.1

3
B

u
p

a
0
.9

0
0
.5

9
0
.9
6

0
.2

7
0
.6

2
0
.5

1
0
.5

5
0
.8
6

0
.0

3
0
.0

1
0
.0

3
0
.0
5

C
a
r

0
.4
3

0
.3

5
0
.0

4
0
.4
3

1
.0
0

0
.3

1
0
.2

1
1
.0
0

0
.0
9

0
.0

2
0
.0

1
0
.0
9

C
le

v
el

a
n

d
0
.6

8
0
.4

9
0
.1

3
0
.7
2

0
.8
6

0
.2

7
0
.1

2
0
.7

5
0
.1
3

0
.0

2
0
.0

1
0
.1

1
D

ia
b

et
es

0
.8
6

0
.5

3
0
.8

1
0
.5

5
0
.6

9
0
.6

9
0
.6

7
0
.7
9

0
.0

3
0
.0

2
0
.0

3
0
.0
7

E
ch

o
0
.6

2
0
.4

7
0
.7
0

0
.4

1
0
.7
5

0
.5

8
0
.5

9
0
.6

4
0
.0
4

0
.0

2
0
.0

3
0
.0

3
G

er
m

a
n

0
.7
4

0
.5

1
0
.1

7
0
.4

8
0
.7

8
0
.6

4
0
.3

1
0
.8
8

0
.0

4
0
.0

2
0
.0

1
0
.0
7

Ir
is

0
.9
8

0
.8

4
0
.9

7
0
.9

5
0
.9
8

0
.9

2
0
.9

1
0
.9

4
0
.1

9
0
.1

3
0
.1

6
0
.2
0

L
ed

0
.7

8
0
.8

1
0
.7

1
0
.8
4

0
.6

2
0
.3

7
0
.7
2

0
.6

5
0
.0

6
0
.0

4
0
.0

6
0
.0
7

T
ic

-t
a
c-

to
e

0
.5
8

0
.3

0
0
.1

5
0
.5

6
0
.7

9
0
.7

4
0
.8
2

0
.7

7
0
.0
6

0
.0

4
0
.0

3
0
.0

5
V

o
te

0
.9
4

0
.8

2
0
.8

0
0
.9
4

0
.9
7

0
.9

5
0
.8

9
0
.9

5
0
.2
1

0
.1

8
0
.1

8
0
.2
1

R
a
n

k
in

g
1
.5
8

3
.0

0
3
.0

4
2
.3

7
1
.6
6

3
.2

5
3
.3

3
1
.7

5
1
.7

0
3
.5

8
3
.2

5
1
.4
5

Discovering Subgroups by Means of Genetic Programming 131

In order to analyze the results obtained, a series of statistical tests [3] were
carried out. The Friedman test is used to compare the results obtained and to
be able to precisely analyse whether there are significant differences among the
four algorithms. This test first ranks the jth of k algorithms on the ith of N
datasets, and then calculates the average rank according to the F-distribution
(FF) throughout all the datasets, and calculates the Friedman statistics. If the
Friedman test rejects the null-hypothesis indicating that there are signicant dif-
ferences, then a Bonferroni-Dunn test is performed to reveal these differences.

The Friedman average ranking statistics distributed according to FF with
k − 1 and (k − 1)(N − 1) degrees of freedom for quality measures are: 14.42,
13.55, 12.39, 24.43, 4.27 and 11.12, for the measures number of rules, num-
ber of variables, significance, unusualness, support and confidence, respectively.
Except for the support measure, none of them belong to the critical interval
[0,(FF)0.01,3,33 = 4.43]. Thus, we reject the null-hypothesis that all algorithms
perform equally well for these measures. In order to analyse whether there are
significant differences among them, the Bonferroni-Dunn test is used to reveal
the difference in performance, 1.12 being the critical difference (CD) value for
p = 0.1; 1.26 for p = 0.05; and 1.54 for p = 0.01.

The proposed algorithm behaves better than MESDIF and SDIGA at a sig-
nificance level of p = 0.01 (i.e., with a probability of 99%) in all the measures
used in this analysis. Once the proposed algorithm is compared to NMEEF-SD,
it is not possible to assert that there are significant differences between these
two algorithms. However, despite the fact that it is not possible to assert it, the
ranking obtained by the proposed algorithm is better than the one obtained by
the MESDIF algorithm by almost all the measures under study.

The proposed algorithm obtains the best results for the complexity and in-
terest measures. It also obtains great results in unusualness, which is a trade-off
between generality, interest and precision. Therefore, the proposed algorithm
appears as a promising proposal for mining comprehensible subgroups and be-
having better than the existing algorithms in most of the quality measures.

4 Concluding Remarks

In this paper, a novel G3P algorithm, named G3P-SD, for mining subgroups was
presented and described in depth. The aim of this algorithm is to harness the
features of G3P to solve the requirements of SD, i.e., the mining of rules having
a clear and flexible structure, obtaining interesting subgroups according to a
number of quality measures, which could be classified in complexity, generality,
precision and interest measures. G3P-SD makes use of a grammar to properly
encode the individuals, allowing to carry out the mining process in any domain.
The algorithm also defines two genetic operators whose probabilities are self-
adapted depending on the quality of the rules discovered in each generation.

A complete experimental study was performed, making an exhaustive compar-
ison between the proposed algorithm and other existing algorithms (NMEEF-
SD, MESDIF, and SDIGA). The experimental results, which were backed up

132 J.M. Luna et al.

with the corresponding non-parametric tests, reveal the effectiveness of G3P-
SD, discovering comprehensible subgroups and behaving better than the other
algorithms regarding to the measures of complexity, interest, and precision.

Acknowledgments. This work has been supported by the Regional Govern-
ment of Andalusia and the Ministry of Science and Technology projects P08-TIC-
3720 and TIN-2011-22408, respectively, FEDER funds and the Spanish Ministry
of Education under the FPU grant AP2010-0041.

References

1. Carmona, C.J., González, P., del Jesus, M.J., Herrera, F.: NMEEF-SD: Non-
dominated multiobjective evolutionary algorithm for extracting fuzzy rules in sub-
group discovery. IEEE Transactions on Fuzzy Systems 18(5), 958–970 (2010)

2. Carmona, C.J., González, P., del Jesus, M.J., Nav́ıo-Acosta, M., Jiménez-Trevino,
L.: Evolutionary fuzzy rule extraction for subgroup discovery in a psychiatric emer-
gency department. Soft Computing 15(12), 2435–2448 (2011)

3. Garćıa, S., Fernández, A., Luengo, J., Herrera, F.: Advanced nonparametric tests
for multiple comparisons in the design of experiments in computational intelligence
and data mining: Experimental analysis of power. Information Sciences 180(10),
2044–2064 (2010)

4. Herrera, F., Carmona, C.J., González, P., del Jesus, M.J.: An overview on sub-
group discovery: Foundations and applications. Knowledge and Information Sys-
tems 29(3), 495–525 (2011)

5. del Jesus, M.J., González, P., Herrera, F., Mesonero, M.: Evolutionary fuzzy rule
induction process for subgroup discovery: A case study in marketing. IEEE Trans-
actions on Fuzzy Systems 15(4), 578–592 (2007)

6. Kavšek, B., Lavrač, N.: APRIORI-SD: Adapting association rule learning to sub-
group discovery. Applied Artificial Intelligence 20(7), 543–583 (2006)

7. Klösgen, W.: Explora: A multipattern and multistrategy discovery assistant. In:
Advances in Knowledge Discovery and Data Mining, pp. 249–271 (1996)

8. Lavrač, N., Kavšek, B., Flach, P., Todorovski, L.: Subgroup discovery with cn2-sd.
Journal of Machine Learning Research 5, 153–188 (2004)

9. Luna, J.M., Romero, J.R., Ventura, S.: Design and behavior study of a grammar-
guided genetic programming algorithm for mining association rules. Knowledge
and Information Systems 32(1), 53–76 (2012)

10. Romero, C., Luna, J.M., Romero, J.R., Ventura, S.: RM-Tool: A framework for dis-
covering and evaluating association rules. Advances in Engineering Software 42(8),
566–576 (2011)

11. Romero, C., Ventura, S., Espejo, P., Hervás, C.: Data mining algorithms to classify
students. In: Proceedings of the First International Conference on Educational
Data Mining, EDM 2008, Montreal, Quebec, Canada, pp. 182–185 (2008)

12. Ventura, S., Romero, C., Zafra, A., Delgado, J.A., Hervás, C.: JCLEC: A java
framework for evolutionary computation. Soft Computing 12(4), 381–392 (2008)

13. Wrobel, S.: An Algorithm for Multi-Relational Discovery of Subgroups. In: Ko-
morowski, J., Żytkow, J.M. (eds.) PKDD 1997. LNCS, vol. 1263, pp. 78–87.
Springer, Heidelberg (1997)

Program Optimisation

with Dependency Injection

James McDermott and Paula Carroll

Management Information Systems, Quinn School of Business,
University College Dublin, Ireland

jmmcd@jmmcd.net

Abstract. For many real-world problems, there exist non-deterministic
heuristics which generate valid but possibly sub-optimal solutions. The
program optimisation with dependency injection method, introduced here,
allows such a heuristic to be placed under evolutionary control, allowing
search for the optimum. Essentially, the heuristic is “fooled” into using
a genome, supplied by a genetic algorithm, in place of the output of its
random number generator. The method is demonstrated with genera-
tive heuristics in the domains of 3D design and communications network
design. It is also used in novel approaches to genetic programming.

1 Introduction

In software engineering, unit testing is the practice of providing known-good
input-output pairs as tests for individual functions. When a function is non-
deterministic, each input does not correspond to a single output, so unit testing
cannot be used. The dependency injection design pattern provides a solution:
the random number generator used by the function is shadowed by a source of
non-random numbers, so each input again corresponds to one correct output.

This inspires the idea of searching among the outputs of any non-deterministic
program (NDP) by searching among the sequences of values returned by the non-
random number generator (NRNG). A genetic algorithm (GA) can be used to
supply genomes, and each genome then used as an NRNG, as shown in Fig. 1.
This is program optimisation with dependency injection (PODI).

For the remainder of this paper, the goals are to define the PODI idea and to
demonstrate that it can be used for search and optimisation in diverse domains.
Sect. 2, next, describes some related work. The PODI method is defined in
Sect. 3. Several examples of applying PODI in diverse domains are described
in Sect. 4; Sect. 5 analyses the PODI search space; and Sect. 6 gives conclusions.

2 Related Work

Many authors have pursued genetic programming (GP) representations other
than the standard tree-based GP of Koza [9]. Examples include linear GP

K. Krawiec et al. (Eds.): EuroGP 2013, LNCS 7831, pp. 133–144, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

134 J. McDermott and P. Carroll

NDP Output 1

Output 2

Output 0

GA NDP Output 1Genome 1 NRNG 1

NDP Output 2Genome 2 NRNG 2

NDP Output 0Genome 0 NRNG 0

Fig. 1. A non-deterministic program (NDP) can produce multiple outputs (left). In
PODI (right), a GA supplies genomes, each giving rise to a non-random number gener-
ator (NRNG): given an NRNG instead of an RNG, the NDP produces a single output.
The GA searches for genomes leading to good outputs.

(LGP) [1], Cartesian GP (CGP) [12], and grammatical evolution (GE) [14]. Each
uses a linear genome and a specialised genome-program mapping to produce a
program. In PODI, the same idea is used, but any non-deterministic program
(NDP) whose output is a program can play the role of the genome-programmap-
ping. PODI can also be used in non-GP domains, using an NDP whose outputs
are the objects of the domain’s search space.

Another strand of research closely related to PODI is the “programming by
optimisation” method [5]. A template program is written by hand, in which
some parts are concrete and fixed, and for other parts, alternative algorithms
and implementations are provided. Optimisation proceeds by searching among
the possible fully concrete programs. The aim is to allow the human program-
mer to work in the familiar creative domain (writing programs by hand), while
the computer carries out the tedious and difficult job of determining which al-
ternatives are faster or more correct in a given context. PODI has a similar
goal, in that it allows the programmer to work by programming. However, it
does not require a specialised template language, and the search mechanism is
different.

3 Method

The PODI representation consists of two parts: a GA to be described below, and
a pre-written non-deterministic program (NDP).

Running the NDP produces some output to be evaluated as a candidate so-
lution. Depending on the domain, it could be a string, a vector, a program,
or any data structure. Running the NDP multiple times will produce multiple
candidate solutions: they will differ because the NDP is non-deterministic. By
injecting (passing in) an extra argument which will play the role of the random
number generator, the NDP can be made deterministic. This new argument is
an instance of a non-random number generator (NRNG)1.

1 An example of dependency injection is given by Peter Norvig: http://www.udacity.
com/view#Course/cs212/CourseRev/apr2012/Unit/292001/Nugget/315001

http://www.udacity.com/view#Course/cs212/CourseRev/apr2012/Unit/292001/Nugget/315001
http://www.udacity.com/view#Course/cs212/CourseRev/apr2012/Unit/292001/Nugget/315001

Program Optimisation with Dependency Injection 135

The NRNG has the same interface as a standard random number generator
(RNG): randint(a, b) returns an integer in [a, b); random() returns a floating-
point number in [0, 1); choice(L) returns an element of the list L; and so on.
The NDP can therefore run without modification. However, the values returned
by the NRNG are not random, nor even pseudo-random. Instead, they are de-
termined by a stored list of integers which come from a genome2. The NDP can
therefore be regarded as a mapping from genomes to outputs (such as vectors,
programs, or other data structures).

PODI searches using a GA where genomes are variable-length integer arrays.
Mutation is per-gene int-flip, and crossover selects one crossover point per parent
within the section which was used when the parent was passed to the NDP
(compare the used codons concept in GE). However, PODI is not just a GA. It
uses a potentially complex genome-phenotype mapping, the NDP. An NDP can
use loops and conditionals to divert control flow, and can call its NRNG any
number of times. Therefore there is no direct and fixed correspondence between
the genome loci and the sequence of NRNG calls. This is the key distinction
between PODI and a typical GA. PODI can also do true GP in at least three
ways (one is demonstrated in Sect. 4.1, and two in Sect. 4.2).

It might appear that in PODI, the genome’s control of the NDP’s behaviour
is no different from the control that would be exerted by a random seed for a
typical RNG. After all, in both cases the input (the genome, or the seed) fully
determines the behaviour of the NDP. However, PODI is not random search. The
difference is in the fact that the space of PODI genomes has structure, whereas
the space of random seeds does not. That is, small mutations to a random seed
will not result in small changes to the NDP’s behaviour, and crossover between
a pair of random seeds will not lead to behaviour intermediate between the two.
The opposite is true of the PODI operators. This argument is developed with
experimental support in Sect. 5.

4 Examples

4.1 Emulating Grammatical Evolution

The PODI framework can be seen as a generalisation of GE. To see this, consider
Algorithm 1, a standard method (in non-EC contexts) of deriving a string from

2 It is useful to explain a little of the workings of the NRNG. In an object-oriented
language such as Python or Java, the NRNG is a subclass of the language’s standard
RNG. The NRNG constructor accepts an extra argument, a list of integers, which
is stored. Only one method needs to be overridden: in Python, it is the RNG’s
random() method, which is required to return a floating-point value in [0, 1). At
every call to random(), the next of the stored integers is used. It is divided by the
constant maxval. This constant usually stores the largest representable integer, such
as 231 − 1. However if the user wishes to use a GA with gene values limited to,
say, [0, 100], then maxval will be set to 100. The result of the division is in [0, 1),
as required, and is returned. Methods other than random, such as randint() and
choice(), call random(), possibly multiple times, and use its output as needed.

136 J. McDermott and P. Carroll

Algorithm 1. Derive: derive a string from a grammar.

Require: Grammar G = (R,S, T) where R is a mapping from non-terminal symbols
to lists of productions, S is a non-terminal start symbol, and T is the terminal set;

Require: Stateful random number generator RNG.
1: if S ∈ T then
2: return S
3: end if
4: P ← R[S] {# P is a list of items producible from S}
5: if length(P) = 1 then
6: p ← P [0]
7: else
8: p ←RNG.choice(P)
9: end if

10: return Concatenate([Derive((R, S′, T), RNG) for S′ in p]) {# The square brackets
indicate a comprehension: it makes a new list by recursing on each element.}

a non-deterministic grammar. It is non-deterministic, thus stretching the strict
definition of “algorithm”. Therefore, it can serve as an NDP in PODI. In fact,
PODI with Algorithm 1 mimics the behaviour of GE with the “bucket rule” [7].
Replacing line 8 with the following mimics GE’s standard mod rule instead:

8: p ← P [RNG.randint(0, C) % length(P)]

where C is the maximum value for GE codons, often set to 127 in previous work.
Note that PODI genes are in [0, maxval), whereas the codons returned by

the randint() call are in [0, C). Therefore, it is not possible to reproduce a
particular GE run precisely in PODI by setting identical random seeds. Instead,
we wish to demonstrate experimentally that PODI, with the modified version of
Algorithm 1 as the NDP, emulates standard GE behaviour.

For standard GE we use an existing implementation3. In both standard GE
and PODI-GE we do not use any special initialisation such as ramped half-
and-half: instead, we randomly initialise the integer-valued genomes. The initial
length is 100 genes. The maximum codon value is 127. Population size is 1000,
the number of generations is 40, the one-point crossover probability is 0.7 (one
crossover point is chosen in each parent, within the portion of its genome used
when it was mapped), the per-gene mutation probability is 0.01, the number of
elite individuals is 1, and the tournament size is 3. The fitness function is the
two-dimensional symbolic regression problem

f(x, y) =
1

1 + x−4
+

1

1 + y−4

used by Pagie and Hogeweg [15]. There are 676 fitness cases distributed in an
even grid across [−5, 5]× [−5, 5].

3 http://ponyge.googlecode.com

http://ponyge.googlecode.com

Program Optimisation with Dependency Injection 137

The grammar is as follows (in division, if the denominator is zero, the numer-
ator is returned):

<code> ::= function(x, y) <expr>

<expr> ::= <bop>(<expr>, <expr>) | <uop>(<expr>) | <var> | <const>

<bop> ::= add | subtract | multiply | divide

<uop> ::= square | sin | cos

<var> ::= x | y

<const> ::= 0.1 | 0.2 | 0.3 | 0.4 | 0.5

The results are shown in Fig. 2: there is a close correspondence in behaviour be-
tween the two methods, both in best fitness values and the number of codons used
in the best individuals. There are some small differences in overall behaviour,
such as PODI-GE spending a few more generations with a wider standard de-
viation in the number of used codons (generations 31–35 versus generation 33).
Re-running the experiment has not demonstrated a trend in this. We conclude
that PODI-GE emulates standard GE behaviour.

Fig. 2. Mean and standard deviation of best fitness (top) and number of used codons
(bottom) across 30 runs. The behaviour of PODI-GE (left) closely matches that of
standard GE (right).

4.2 Tree-Based Genetic Programming

PODI can also be used for non-grammatical, tree-based forms of GP. It is suf-
ficient to define an NDP which creates GP-style trees. Many GP initialisation
operators are suitable, and we have investigated two.

138 J. McDermott and P. Carroll

One is the grow operator, which recursively chooses nodes randomly from
non-terminals and terminals until the depth reaches a limit, then chooses only
from terminals. It is well-known, so to save space we do not describe it in detail.

The other is the bubble-down operator [4], which (similar to grow) creates a tree
one node at a time. A new node is created with a randomly-chosen non-terminal
label. It is “bubbled down” through the tree according to randomly-generated
direction and slots values which are associated with the existing and new nodes
(see Fig. 3) until it reaches an external position. As yet it lacks children. When
the number of nodes plus the number of missing children equals the desired
tree size, new nodes are given randomly-chosen terminal labels and put in place
at external positions in left-to-right order. The direction and slots values, used
only during tree generation, are then deleted. A complete implementation of the
bubble-down algorithm is available online4.

b

c

d(0.2)

[0.1, 0.6]

a [0.4]

[0.5]
0.0 0.1 0.6 1.0

slot 0 slot 1 slot 2

0.0 0.4 1.0

slot 0 slot 1

a

b

Fig. 3. The bubble-down algorithm. The partially-formed tree so far consists of nodes
labelled a, b, and c, with arities 2, 3 and 2. They have randomly-chosen slots values,
shown in square brackets. A new node has now been created with label d, chosen
randomly from the non-terminal labels. It has a randomly-chosen direction value 0.2
(shown in round brackets). Its slots values are not shown. It must now be bubbled
down, and begins at node a (top arrow). Since 0.2 lies in slot 0 of node a (see right),
d is bubbled-down to child 0, i.e. it reaches node b (middle arrow). The procedure
repeats. Node b has arity 3, hence 2 slots values, sorted. Since 0.2 lies in slot 1 of node
b (see right), d moves to child 1 (bottom arrow). Since d is now external, it stops.

We wish to test PODI where the role of the NDP is played by the grow and
the bubble-down algorithms. The test problem is the same symbolic regression
problem as in Sect. 4.1, and the settings are the same. The non-terminals and
terminals are as in the grammar of that section. For grow, the maximum depth
is 6; for bubble-down, the tree size is fixed at 30 nodes. The results are shown
in Fig. 4: the mean best fitness for both grow and bubble-down is better than
the results shown in Sect. 4.1 for standard GE (t-test with p < 0.01).

4.3 Communications Networks

The ring-spur assignment problem (RSAP) is a problem in the field of next-
generation telecommunications networks. Since this is not an applications paper,

4 Download PODI implemented in Python from https://github.com/jmmcd/PODI

https://github.com/jmmcd/PODI

Program Optimisation with Dependency Injection 139

Fig. 4. Results using tree-based GP: mean and standard deviation of the best individ-
ual per generation over 30 runs using PODI with grow (left), and bubble-down (right).

only a brief description will be given. Starting with an existing physical network,
the goal is to form a logical overlay network with a resilient structure, of the
lowest possible cost. It must consist of a subset of the physical edges, and conform
to a “ring-spur” structure (see Fig. 5). The ring-spur structure means that there
is one “tertiary” ring; multiple disjoint “local” rings of up to 8 nodes which each
intersect with the tertiary ring; and possibly several “spurs”, each a single edge
connecting one isolated node to a local ring. The cost is the sum of costs of the
edges used, with a penalty per spur.

local
ringlocal

ring
tertiary
ring

spur

spur

Fig. 5. A valid ring-spur assignment so-
lution: all nodes are included, and the
edges form a single tertiary ring inter-
secting multiple local rings, with some
(optional) spurs.

The RSAP was described by Carroll and McGarraghy [3], and integer pro-
gramming (IP) formulations were given. However for some test problems, the IP
method is excessively slow. Kilmartin and Flynn [8] used a variable neighbour-
hood search method for the problem. They give a non-deterministic initialisation
heuristic which attempts to generate valid solutions, and several neighbourhood
operators: each generates a new solution, given an existing one.

The initialisation heuristic consists of over 600 lines of Java and works as
follows (see [8] for details sufficient for replication). A random node is chosen,
and a greedy algorithm over edge costs is used to create a local ring. If it suc-
ceeds, the nodes used are removed from the node list. If it fails, the node is
removed from the node list and added to a list of spur candidates. The process
is repeated: eventually the node list becomes empty. For each spur candidate, a
spur is attempted to some local ring. Finally, a tertiary ring is created starting
at a random local ring, and again running a greedy algorithm. In the following
experiment, this heuristic is used as the NDP of the PODI method.

140 J. McDermott and P. Carroll

For comparison, we also implement a naive GA approach. Here, genomes are
of length 3m where m is the number of physical edges. Each of the first m genes
is a bit and determines whether the corresponding edge is used on the tertiary
ring. Each of the next m genes determines whether the corresponding edge is
used as a spur. Each of the final m genes is an integer and indicates the index
of the local ring on which the corresponding edge occurs, or 0 if unused. In this
encoding, a large majority of genomes correspond to invalid networks.

Table 1. Results on the RSAP problem. Lower costs are better.

Problem IP PODI GA Problem IP PODI GA

pdh 1.36e+06 1.36e+06 3.14e+06 dfn-bwin 105810 113818 195473
pioro40 9586 * 9749 None di-yuan 412300 412300 None
janos-us 16672 23541 None ta1 1.14e+07 1.29e+07 None
newyork 1.51e+06 1.77e+06 None sun 694.99 1277.82 None
cost266 1.236e+07 1.65e+07 None polska 3487 3740 None
atlanta 5.55e+07 1.042e+08 None giul39 946 * 1021 None
france 20800 26000 None dfn-gwin 15724 17428 79868
germany50 549150 * 574460 None norway 596070 808290 None
nobel-eu None None None janos-us-ca None None None
zib54 None None None ta2 7.38e+07 * None None

Table 1 shows results achieved on the problem instances used in previous
work [3,8]. The IP results are known to be optimal [3] except where marked *.
For PODI and the GA, these are the best (lowest cost) results out of 30 runs, with
population 1000 and 100 generations, tournament size 10, crossover probability
0.9, mutation probability 0.05, and elitism of 10 individuals.

For some problems, IP methods show that no valid solution exists (those where
IP achieves “None” in Table 1). In a few cases PODI achieves the known opti-
mum. The GA approach is the weakest, usually finding no solution. We conclude
that PODI is inferior to the IP method, but because of the use of a domain-
specific NDP, it is a better starting point than a naive GA. An applications-
oriented paper with full details of this experiment is in preparation.

4.4 Generative 3D Design

The design of 3D structures is an interesting application domain for interactive
EC. GP has been applied by several authors for this application, e.g. [6]. One
line of research used GE to explore spaces of 3D designs such as bridges and
pylons consisting of uniform variable-length beams [2,11].

Here, the goal is to explore a space of radially symmetric designs of uni-
form variable-length beams. An incremental process of hacking and testing led
to the creation of an NDP capable of generating many of the desired designs.
It is roughly 170 lines long, badly written and difficult to understand, so is
not reproduced here in either code or algorithm form5. It seems impossible to

5 Download from https://gist.github.com/4055990

https://gist.github.com/4055990

Program Optimisation with Dependency Injection 141

produce an equivalent parametric model, grammar, or any other explicit repre-
sentation. Instead, we see this NDP as a black box, implicitly defining a design
space amenable to PODI search. Fig. 6 shows a selection of evolved images and
a population after 6 generations. No claim is made that the results are optimal
in any sense: the evolution was driven by interactive aesthetic selection. Instead,
the claim is that the use of the NDP has resulted in a rich and varied search
space (Fig. 6 top). Large numbers of undesired (e.g. non-radially symmetric)
designs, which would be present in typical naive encodings for this problem,
have been eliminated. This greatly improves the interactive evolutionary search.
Also, the PODI operators have been shown to have the capacity to converge the
population (Fig. 6 bottom).

Fig. 6. A selection of evolved results (top 2 rows), demonstrating a wide and varied
search space. A single population (bottom 2 rows), demonstrating some convergence.

5 Analysis: The Structure of the PODI Search Space

We have asserted that the PODI search space of integer arrays has structure, and
in particular that mutation and crossover are useful operators. In experimental
settings, mutation is generally considered useful if it has locality, i.e. the semantic
distance between an individual and a mutated version is small [16]; crossover is
considered useful if it is geometric, i.e. the semantic distance between parents

142 J. McDermott and P. Carroll

Table 2. Median distances between tree-based GP individuals generated using the grow
algorithm and the bubble-down algorithm: in all cases, the pairs created by mutation or
crossover are closer together than the random pairs. Statistical significance at p < 0.01
is indicated by * (see text).

NDP Distance Random Mutation Crossover

Grow Genotype 1e+02 1 * 59 *
Grow Phenotype 45 5 * 36 *
Grow Semantic 26 1 * 23 *
Grow Fitness 0.9 0.011 * 0.62 *
Bubble-down Genotype 1e+02 1 * 59 *
Bubble-down Phenotype 72 6 * 61 *
Bubble-down Semantic 26 0 * 24 *
Bubble-down Fitness 0.79 0 * 0.59 *

and children is minimised [10]. These properties have been formally defined by
Moraglio et al. [13].

The partially converged population of Fig. 6 gives some visual support for the
claim that the PODI operators are useful. In order to test the claim experimen-
tally, we will perform many mutations and crossovers on randomly-generated
individuals and study the distances between the original and new individuals.
Our mutation hypothesis is that the expected semantic distance between an indi-
vidual and a mutated version is less than that between two randomly-generated
individuals. Our crossover hypothesis is that the expected semantic distance be-
tween a parent and a child is less than that between two randomly-generated
individuals. These relatively weak hypotheses, if proven, are sufficient to show
that search with PODI is distinct from random search.

This study is restricted to the GP domain as in Sect. 4.2 (a comparison with
GE behaviour is left to future work). For each tree-generating NDP (grow and
bubble-down), three methods of creating pairs of individuals are used: random
generation of the pair; random generation of the first, and mutation to create the
second; and random generation of two parents, crossover to create two children,
and then taking all four parent-child pairs. For this experiment one-point mu-
tation is used, rather than a per-gene mutation probability. That is, a mutation
changes precisely one gene (as in crossover, the mutation is constrained to occur
within the used section of the genome).

Four types of distance between pairs are calculated:

– genome distance is the Levenshtein (edit) distance between genomes;
– phenotype distance is the tree-edit distance between generated trees;
– semantic distance is the Euclidean distance between the vectors of the indi-

viduals’ values at the fitness cases;
– fitness distance is the difference between the fitness values.

10,000 trials are run for each NDP and each method of creating pairs. Trials
where an individual is invalid or a change is genotypically or phenotypically
neutral are discarded. Table 2 shows the median results (not the mean, because

Program Optimisation with Dependency Injection 143

semantics and fitness results are liable to include very large outliers). The low
values including zero for the median are not unexpected, since a genotypically or
phenotypically non-neutral change can still be neutral in semantics or fitness. In
all cases, the mutation and crossover pairs are closer together than the randomly
generated pairs. Significance is tested using the Mann-Whitney U test with p <
0.01. We conclude that search with PODI is not random search.

6 Conclusions and Future Work

A highly general evolutionary algorithm, program optimisation with dependency
injection, has been introduced and studied. It has been shown to function as a
generalisation of GE, and to be capable of performing tree-based GP in two ways.
It has been applied to problems in 3D design and in communications network
design, and the structure of its search space has been analysed.

One of the main advantages of EC in general is that it is a useful “black-box”
method: it makes many domains amenable to search and optimisation which are
inaccessible to some more specialised methods. In a similar way, PODI opens
up a broader class of problems to evolutionary approaches. It is not limited to
domains where we can define all three typical EC genetic operators (initialisation,
crossover and mutation). With PODI, only an NDP is required. Since an NDP is
non-deterministic and outputs an object of the solution space without requiring
any “parents”, it is functionally similar to an initialisation operator.

One of the main disadvantages of EC in general is that more specialised meth-
ods can often out-perform it where they are applicable. An example is gradient-
descent methods, which generally out-perform EC when an explicit gradient can
be defined on a convex fitness landscape. Similarly, PODI will often be out-
performed by specialised methods in particular domains, as we have seen in the
RSAP. However, when faced with a new problem or a variant of an existing one
such that no existing heuristics have been developed and shown to solve it well,
PODI provides a potentially useful starting-point.

PODI is a generative method, in that the NDP is a complex functional map-
ping from genome to phenotype. The NDP can range from very simple algo-
rithms, such as grow, to complex ones such as those used here for 3D design and
communications network design. Both newly-written and third-party programs
have been used as NDPs. The NDP can be used as a medium for the expression
of domain-specific knowledge. It has the advantage in this regard that directly
writing programs (as opposed to creating representations) is a natural way of
working for many domain experts.

The results when running PODI on a symbolic regression problem using grow
and bubble-down as NDPs are surprisingly good. The latter also offers a po-
tential advantage related to avoiding bloat: tree size can be placed under direct
evolutionary control. This idea will be explored in future work.

144 J. McDermott and P. Carroll

Acknowledgements. Thanks are due to Erik Hemberg and Edgar Galván-
Lopéz for reading drafts, and to anonymous reviewers, and to the authors of [8]
for publishing their code.

References

1. Brameier, M., Banzhaf, W.: Linear genetic programming. Springer (2006)
2. Byrne, J., Fenton, M., Hemberg, E., McDermott, J., O’Neill, M., Shotton, E., Nally,

C.: Combining Structural Analysis and Multi-Objective Criteria for Evolutionary
Architectural Design. In: Di Chio, C., Brabazon, A., Di Caro, G.A., Drechsler,
R., Farooq, M., Grahl, J., Greenfield, G., Prins, C., Romero, J., Squillero, G.,
Tarantino, E., Tettamanzi, A.G.B., Urquhart, N., Uyar, A.Ş. (eds.) EvoApplica-
tions 2011, Part II. LNCS, vol. 6625, pp. 204–213. Springer, Heidelberg (2011)

3. Carroll, P., McGarraghy, S.: A decomposition algorithm for the ring spur assign-
ment problem. International Transactions in Operational Research (2012)

4. Hemberg, E., Veeramachaneni, K., McDermott, J., Berzan, C., O’Reilly, U.M.: An
investigation of local patterns for estimation of distribution genetic programming.
In: Proc. GECCO. ACM (2012)

5. Hoos, H.H.: Programming by optimisation. Tech. Rep. TR-2010, Department of
Computer Science, University of British Columbia (2010)

6. Hornby, G.S., Pollack, J.B.: The advantages of generative grammatical encodings
for physical design. In: Proc. CEC, pp. 600–607. IEEE (2001)

7. Keijzer, M., O’Neill, M., Ryan, C., Cattolico, M.: Grammatical Evolution Rules:
The Mod and the Bucket Rule. In: Foster, J.A., Lutton, E., Miller, J., Ryan, C.,
Tettamanzi, A.G.B. (eds.) EuroGP 2002. LNCS, vol. 2278, pp. 123–130. Springer,
Heidelberg (2002)

8. Kilmartin, P., Flynn, M.: Quantum Annealing in Management Science & Analytics:
An investigation of applying QA Techniques to the Ring Spur Assignment Problem.
Master’s thesis, University College Dublin Business School (2012)

9. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. The MIT Press, Cambridge (1992)

10. Krawiec, K., Lichocki, P.: Approximating geometric crossover in semantic space.
In: Proc. GECCO, pp. 987–994. ACM, New York (2009)

11. McDermott, J., Byrne, J., Swafford, J.M., Hemberg, M., McNally, C., Shotton, E.,
Hemberg, E., Fenton, M., O’Neill, M.: String-rewriting grammars for evolutionary
architectural design. Environment and Planning B: Planning and Design 39(4),
713–731 (2012), http://www.envplan.com/abstract.cgi?id=b38037

12. Miller, J.F., Thomson, P.: Cartesian Genetic Programming. In: Poli, R., Banzhaf,
W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000.
LNCS, vol. 1802, pp. 121–132. Springer, Heidelberg (2000)

13. Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric Semantic Genetic Program-
ming. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M.
(eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 21–31. Springer, Heidelberg (2012)

14. O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Program-
ming in an Arbitrary Language. Kluwer Academic Publishers (2003)

15. Pagie, L., Hogeweg, P.: Evolutionary Consequences of Coevolving Targets. Evolu-
tionary Computation 5, 401–418 (1997)

16. Rothlauf, F.: Representations for Genetic and Evolutionary Algorithms, 2nd edn.
Physica-Verlag (2006)

http://www.envplan.com/abstract.cgi?id=b38037

Searching for Novel Classifiers

Enrique Naredo, Leonardo Trujillo�, and Yuliana Mart́ınez

Doctorado en Ciencias de la Ingenieŕıa, Departamento de Ingenieŕıa Eléctrica y
Electrónica, Instituto Tecnológico de Tijuana, Blvd. Industrial y Av. ITR Tijuana

S/N, Mesa Otay C.P. 22500, Tijuana B.C., México
{enriquenaredo,ysaraimr}@gmail.com, leonardo.trujillo@tectijuana.edu.mx

Abstract. Natural evolution is an open-ended search process without
an a priori fitness function that needs to be optimized. On the other
hand, evolutionary algorithms (EAs) rely on a clear and quantitative
objective. The Novelty Search algorithm (NS) substitutes fitness-based
selection with a novelty criteria; i.e., individuals are chosen based on
their uniqueness. To do so, individuals are described by the behaviors
they exhibit, instead of their phenotype or genetic content. NS has mostly
been used in evolutionary robotics, where the concept of behavioral space
can be clearly defined. Instead, this work applies NS to a more general
problem domain, classification. To this end, two behavioral descriptors
are proposed, each describing a classifier’s performance from two different
perspectives. Experimental results show that NS-based search can be
used to derive effective classifiers. In particular, NS is best suited to
solve difficult problems, where exploration needs to be encouraged and
maintained.

Keywords: Novelty Search, Classification, Genetic Programming.

1 Introduction

Research in Evolutionary Computation (EC) has produced search and optimiza-
tion algorithms that frequently achieve promising new results in diverse domains
[4]. Therefore, the practical value of evolutionary algorithms (EAs) is by now
widely accepted. Nonetheless, for some within the field a conceptual, or even
philosophical, problem remains regarding most EAs. At their core, EAs are sim-
ple abstractions of Neo-Darwinian evolution. However, instead of the open-ended
nature of biological evolution, EAs are objective driven, just like any conven-
tional optimization algorithm. Therefore, EAs are expected to converge on a
small subset of local optima within a static fitness landscape.

This difference, however, is not a general one. In fact, some of the earliest
EAs were open-ended techniques [1]. While such EAs are still abstract simplifi-
cations of evolution, they do integrate an open-ended feature not present in most
standard algorithms. Open-ended algorithms have mostly been used in special-
ized domains, such as artificial life environments [10] and interactive search [3].

� Corresponding author.

K. Krawiec et al. (Eds.): EuroGP 2013, LNCS 7831, pp. 145–156, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

146 E. Naredo, L. Trujillo, and Y. Mart́ınez

Only recently have open-ended algorithms been proposed to solve mainstream
problems. In particular, Lehman and Stanley [5–7] proposed novelty search (NS),
an EA where the objective function is abandoned. Instead, selective pressure con-
siders the novelty, or ”uniqueness”, of each individual by describing its behavior.
Thus, fitness in NS is implicitly captured within the behavioral description of
each individual. While such an approach might seem counterintuitive, experi-
mental results are promising and show that highly fit solutions can emerge from
a search that does not consider fitness explicitly.

Despite the success of NS, it might also appear to be a niche strategy that
is well-suited for a small subset of domains. This paper explores the usefulness
of NS on a common type of problem: classification. The core element of NS is
that each individual is described by a behavioral descriptor, which is then used
to measure the novelty that each solution introduces into the search. This paper
proposes two behavioral descriptors for a Genetic Programming (GP) classifier.
Each descriptor introduces a different behavioral space and corresponding fit-
ness landscapes. Experimental results are encouraging, NS-based classification
achieves competitive results compared to a canonical GP. Moreover, the paper
analyzes some of the practical considerations that must be accounted for if NS
is to be used successfully.

The paper is organized as follows. First, Section 2 describes the NS algorithm.
Afterwards, Section 3 presents the proposed NS-based GP algorithm for data
classification and two behavioral descriptors for evolved classifiers. Then, Section
4 presents the experiments and an analysis of the results. Finally, a summary of
the paper and concluding remarks are given in Section 5.

2 Novelty Search

The main idea behind NS is to eliminate the objective function from a search
[5–7]. In other words, evolution is not guided by the measured quality of each
individual, instead it is guided by a measure of uniqueness ; i.e., how novel each
individual is with respect to what has been found earlier by the search. A known
limitation of the traditional objective-based search is a tendency to converge
and stagnate on local optima, particularly in multi-modal problems with irregu-
lar fitness landscapes. Within EC, diversity preservation techniques are usually
incorporated within an EA to overcome the above shortcoming. However, most
proposals can be regarded as ad-hoc solutions that must continuously attempt
to balance exploration and exploitation during the search . Conversely, through
the search for novelty alone, diversity preservation introduces the sole selective
pressure during the search.

NS operates based on the concept of behavior, where each individual is de-
scribed based on the functional behavior it exhibits. Therefore, individuals are
described in behavioral space, instead of the more common genotypic, pheno-
typic or fitness spaces that are used for diversity preservation [13, 14]. Behaviors
are expressed by a domain dependent descriptor, such that each individual is
mapped to a single point in behavioral space. A behavior implicitly represents

Searching for Novel Classifiers 147

the fitness of an individual, providing a fine grained view of its performance
or just a different domain specific perspective. Since many individuals in geno-
typic space express the same behavior, and are thus mapped to the same point
in behavioral space, the search for novelty is often feasible. Lehman and Stan-
ley argue that since the number of simple behaviors for any given problem is
relatively small, then the search for novelty must necessarily lead to more func-
tionally complex solutions. The concept of behavior as described above is closely
related to the concept of semantics in GP [15].

In summary, NS uses a measure of novelty to characterize each individual.
More precisely, the sparseness of each individual within behavioral space is mea-
sured, with respect to other individuals within the population and novel solutions
from previous generations. An important observation is that such a measure of
novelty is dynamic; i.e., it can produce different results for the same individual
depending on the population state and search progress at a given generation. NS
measures the sparseness ρ around each individual i, described by its behavioral
descriptor x, using the average distance to the k -nearest neighbors in behavioral
space, with k an algorithm parameter, given by

ρ(x) =
1

k

k∑
i=0

dist(x, μi) , (1)

where μi is the ith-nearest neighbor of x with respect to distance metric dist,
a domain-dependent measure of behavioral difference between two descriptors.
If the average distance is large then the individual lies within a sparse region of
behavioral space and it lies in a dense region when the measure is small.

In NS, sparseness is computed based on the contents of the current popu-
lation and an archive of individuals that at one moment were considered to be
novel. Therefore, an individual is added to the archive if its sparseness is above a
minimal threshold ρmin, the second parameter of the NS algorithm. The archive
can also mitigate backtracking by the search process. This can also be seen as
a shortcoming of the approach, since if the archive grows then a higher com-
putational cost is incurred to compute sparseness. To address this problem, [6]
implements the archive as a fixed size FIFO queue.

The NS algorithm provides an open-ended evolutionary approach to solve
mainstream scientific and engineering problems. However, since its proposal in
[5], and later works [6, 7], most applications of NS have focused on robotics,
[5–8]. All of these works are part of a wider area of research known as evolutionary
robotics (ER), where evolutionary algorithms are used to solve problems related
to robot design and control. Within ER, the topic of evolving a diverse set of
behaviors has also been addressed in other ways. For instance, [13, 14] propose
to integrate speciation techniques to evolve a diverse set of robot behaviors. A
good review on this topic is given by Mouret and Doncieux [9]. Search algorithms
that explicitly contemplate behaviors seem well suited for robotics, since most
high-level tasks can usually be solved in structurally different ways, guaranteeing
multi-modal search spaces.

148 E. Naredo, L. Trujillo, and Y. Mart́ınez

On the other hand, NS has not been used in most domains. A noteworthy
exception is [16], where NS is integrated with an interactive evolutionary system.
To the authors knowledge, however, applying NS to mainstream problems is not
yet common. The present work proposes the use of NS for a ubiquitous pattern
analysis problem, data classification.

3 Classification with Novelty Search

This section presents the proposed behavioral descriptors for GP-based classifiers
and discusses the fitness landscape of each.

3.1 Static Range Selection GP Classifier

This work uses the Static Range Selection GP Classifier (SRS-GPC) described
by Zhang and Smart [17]. In a classification problem, a pattern x ∈ R

P has to
be classified as belonging to a single class from Ω = {ω1, ..., ωM}, where each
ωi represents a distinct class label. Then, in a supervised learning approach the
goal is to build a mapping g(x) : R

P → Ω, that assigns each pattern x to
a corresponding class ωi, where g is derived based on evidence provided by a
training set T of N P -dimensional patterns with a known classification. In this
work, only two-class classification problems are considered. In SRS-GPC, R is
divided into M non-overlapping regions, one for each class. Then, GP evolves a
mapping g(x) : RP → R, such that the region in R where pattern x is mapped
to, determines the class to which it belongs. For a two-class problem, if g(x) > 0
then x belongs to class ω1, and belongs to ω2 otherwise. The fitness function is
simple, it consists on maximizing the classification accuracy of g.

3.2 Novelty Search Extension of SRS-GPC

As stated above, to apply NS with SRS-GPC the fitness function is substituted
by the sparseness measure of Equation 1. Therefore, a proper domain specific
behavioral descriptor must be proposed [2]. Two descriptors are proposed next,
each inducing a different fitness landscape and behavioral neighborhoods.

Class Descriptor (CD): The training set T used by SRS-GPC contains sample
patterns from each class. Then, for a two-class problem with Ω = {ω1, ω2} the
CD is constructed in the following way. If T = {y1,y2, ...yL}, then the behavioral
descriptor for each GP classifier Ki is a binary vector ai = (a1, a2, ...aL) of size
L, where each vector element aj is set to 1 if classifier Ki assigns label ω1 to
pattern yj and is set to 0 otherwise.

Accuracy Descriptor (AD): The second descriptor considers the accuracy of
a classifier at a fine scale. If T = {y1,y2, ...yL}, then the behavioral descriptor
for each GP classifier Ki is a binary vector bi = (b1, b2, ...bL) of size L, where
each vector element bj is set to 1 if classifier Ki correctly classifies sample yj

and is set to 0 otherwise.

Searching for Novel Classifiers 149

0

L/4

L/2

0

L/4

L/2
0

0.2

0.4

0.6

0.8

1

U
L
(x)U

R
(x)

(a) Class Descriptor

0 L/2 L
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u(x)

F
it

n
es

s

(b) Accuracy Descriptor

Fig. 1. Fitness landscape in behavioral space for each descriptor

While both descriptors are binary vectors of size L, each induces a different
fitness landscape in behavioral space. Suppose that the number of training ex-
amples from each class is L

2 , and suppose that they are ordered in such a way

that the first L
2 elements in T correspond to class label ω1. Let x represent a

binary vector, and function u(x) return the number of 1s in x. Moreover, let KO

be the optimal classifier that achieves a perfect accuracy on the training set.
Then, the CD ofKO is given by a1 = (11, 12, ...1L

2
, 0L

2 +1....0L). The AD of KO

is given by b1 where u(b1) = L. Moreover, for a two-class problem, an equally
useful solution is to take the opposite (complement) behaviors and invert the
classification, such that a 1 is converted to a 0 and vice-versa. These mirror
behaviors are a0 = (01, 02, ...0L

2
, 1L

2 +1....1L) for the CD and b0 with u(b0) = 0

for the AD. The fitness landscapes in behavioral space are depicted in Figure 1.
For a two-class problem with a reasonable degree of difficulty, the initial gen-

erations of a GP search should be expected to contain close to random classifiers,
with roughly a 50% accuracy. For the CD descriptor, behavioral space is orga-
nized on a two dimensional surface, such that one axis uL considers the number
of ones on the left hand side, first L

2 bits, of a behavior descriptor a, and uR

considers the remaining L
2 bits; see Figure 1(a). Notice that the middle valley of

the fitness landscape corresponds to random classifiers, with worst case perfor-
mance. Hence, NS will push the search towards either of the two global optima,
a1 and a0 On the other hand, for the AD descriptor, early behaviors will mostly
exhibit descriptors with equal proportions of zeros and ones; see Figure 1(b).
Then, NS will progressively explore towards two opposite points in behavioral
space, b1 or b0. The effect on performance of these differences, between the CD
and the AD, are explored experimentally in the following section.

Finally, given the above binary descriptors, a natural dist() function for Equa-
tion 1 is the Hamming distance, that counts the number of bits that differ be-
tween two binary vectors. This similarity measure has been used to measure
behavioral diversity in ER [9].

150 E. Naredo, L. Trujillo, and Y. Mart́ınez

−6 −5 −4 −3 −2 −1 0 1 2 3
−6

−5

−4

−3

−2

−1

0

1

2

3

(a) Trivial Problem
−8 −6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

(b) Easy Problem
−10 −5 0 5
−6

−4

−2

0

2

4

6

(c) Moderate Problem

−6 −4 −2 0 2 4 6
−8

−6

−4

−2

0

2

4

6

(d) Hard Problem
−10 −5 0 5

−10

−8

−6

−4

−2

0

2

4

6

8

(e) Hardest Problem

Fig. 2. Five synthetic 2-class problems used to evaluate each algorithm in ascending
order of difficulty from left to right

4 Experiments

The performance of the NS-based GP classifier is examined. Several different
versions are tested and compared. First, the basic SRS-GPC classifier. Second,
the NS variant with CD in two different versions. One configuration uses a
novelty archive of unbounded size, while the second one used a FIFO archive
with limited size as in [6]. Hereafter, the former is referred to as NS-CD and the
latter as NS-CD-L. Similarly, two NS variants with AD are tested, NS-AD and
NS-AD-L.

Gaussian Mixture Models are used to generate five random synthetic prob-
lems, each with different amounts of class overlap and geometry. All problems are
set in the R

2 plane with x, y ∈ [−10, 10] and 200 sample points were randomly
generated for each class. The parameters for the GMM of each class were also
randomly chosen, following the same strategy reported in [12]. The five prob-
lems are of increasing difficulty, denoted as: Trivial ; Easy; Moderate; Hard ; and
Hardest ; these problems are graphically depicted in Figure 2.

As stated above, five different algorithms are experimentally compared: SRS-
GPC, NS-CD, NS-CD-L, NS-AD and NS-AD-L. All algorithms share the same
GP representation and genetic operators, a tree-based Koza style algorithm with
subtree mutation and crossover. The parameters shared by all algorithms are
summarized in Table 1. Additionally, SRS-GPC also uses a keep-best elitism
strategy.

Searching for Novel Classifiers 151

Table 1. Parameters for the GP-based search

Parameter Description

Population size 200 individuals.
Generations 200 generations.
Initialization Ramped Half-and-Half,

with 6 levels of maximum depth.
Operator probabilities Crossover pc = 0.8, Mutation pµ = 0.2.
Function set

{
+ , − , × , ÷ , | · | , x2 ,

√
x , log , sin , cos , if

}
.

Terminal set {x1, ..., xi, ..., xp}, where xi is a dimension of the data patterns
x ∈ R

n.
Bloat control Dynamic depth control.
Initial dynamic depth 6 levels.
Hard maximum depth 20 levels.
Selection Tournament.

Table 2. Average classification error and standard error of the best solution found by
each algorithm on each problem; NS-based algorithms use k = 15 and ρmin = 80

Problem SRS-GPC NS-CD NS-CD-L NS-AD NS-AD-L

Trivial 0.005 ± 0.006 0.006 ± 0.008∗ 0.006 ± 0.010∗ 0.002 ± 0.005∗ 0.006 ± 0.007∗

Easy 0.080 ± 0.026 0.131 ± 0.035 0.128 ± 0.031 0.115 ± 0.034 0.136 ± 0.033
Moderate 0.129 ± 0.030 0.150 ± 0.030 0.132 ± 0.041∗ 0.152 ± 0.050∗ 0.133 ± 0.041∗

Hard 0.255 ± 0.049 0.279 ± 0.044∗ 0.287 ± 0.039 0.282 ± 0.044 0.272 ± 0.057∗

Hardest 0.374 ± 0.048 0.342 ± 0.037∗ 0.381 ± 0.053∗ 0.367 ± 0.049∗ 0.380 ± 0.045∗

Table 3. Average classification error and standard error of the best solution found by
each algorithm on each problem; NS-based algorithms use k = 15 and ρmin = 40

Problem SRS-GPC NS-CD NS-CD-L NS-AD NS-AD-L

Trivial 0.005 ± 0.006 0.004 ± 0.006∗ 0.001 ± 0.004∗ 0.005 ± 0.006∗ 0.005 ± 0.007∗

Easy 0.080 ± 0.026 0.124 ± 0.032 0.152 ± 0.124 0.130 ± 0.034 0.134 ± 0.037
Moderate 0.129 ± 0.030 0.153 ± 0.045 0.180 ± 0.146∗ 0.148 ± 0.044∗ 0.149 ± 0.036∗

Hard 0.255 ± 0.049 0.281 ± 0.051∗ 0.330 ± 0.155∗ 0.271 ± 0.053∗ 0.271 ± 0.053∗

Hardest 0.374 ± 0.048 0.383 ± 0.045∗ 0.406 ± 0.111∗ 0.385 ± 0.050∗ 0.365 ± 0.037∗

For the NS-based algorithms two different parameter settings are used. In
particular, two different values for the archive threshold ρmin are used, 40 and
80. Parameter k is set to 15 for all algorithms. Finally, all algorithms were coded
using Matlab 2009a and the GPLAB toolbox [11].

For each algorithm, 30 different runs were executed for each problem shown
in Figure 2. In each run, the data set is randomly dividing into training and
testing sets, with the former containing 70% of the data samples.

First, tables 2 and 3 compare the performance of every algorithm on each
problem, considering the test data from each run and presenting the average
classification error ± the standard error. In Table 2 the NS-based algorithms
use k = 15 and ρmin = 80, while in Table 3 k = 15 and ρmin = 40. To verify
statistical significance, the Wilcoxon rank-sum test is performed between the
control algorithm SRS-GPC and each of the NS algorithms. In tables 3 and 2
an asterisk indicates that the corresponding NS-algorithm achieves statistically

152 E. Naredo, L. Trujillo, and Y. Mart́ınez

50 100 150 200

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Generations

F
itn

es
s

(a) Fitness

50 100 150 200
0

10

20

30

40

50

60

70

80

90

Generations

Sp
ar

se
ne

ss

Trivial
Easy
Moderate
Hard
Hardest
Treshold

(b) Sparseness

Fig. 3. Evolution of NS-CD with parameters k = 15 and ρmin = 80

50 100 150 200

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Generations

F
itn

es
s

(a) Fitness

50 100 150 200
0

10

20

30

40

50

60

70

80

90

Generations

Sp
ar

se
ne

ss

Trivial
Easy
Moderate
Hard
Hardest
Treshold

(b) Sparseness

Fig. 4. Evolution of NS-CD-L with parameters k = 15 and ρmin = 80

50 100 150 200

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Generations

F
itn

es
s

(a) Fitness

50 100 150 200
0

10

20

30

40

50

60

70

80

90

Generations

Sp
ar

se
ne

ss

Trivial
Easy
Moderate
Hard
Hardest
Treshold

(b) Sparseness

Fig. 5. Evolution of NS-AD with parameters k = 15 and ρmin = 80

equivalent results with SRS-GPC at the α = 0.05 significance level. In general,
these results show that AD produces better performance than CD and that
limiting the size of the archive does not affect performance, and in some cases
improves it. Additionally, a lower ρmin encourages better performance in most
algorithms. Moreover, with respect to each problem we can state the following.

Searching for Novel Classifiers 153

50 100 150 200

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Generations

F
itn

es
s

(a) Fitness

50 100 150 200
0

10

20

30

40

50

60

70

80

90

Generations

Sp
ar

se
ne

ss

Trivial
Easy
Moderate
Hard
Hardest
Treshold

(b) Sparseness

Fig. 6. Evolution of NS-AD-L with parameters k = 15 and ρmin = 80

50 100 150 200

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Generations

F
itn

es
s

(a) Fitness

50 100 150 200
0

10

20

30

40

50

60

Generations

Sp
ar

se
ne

ss

Trivial
Easy
Moderate
Hard
Hardest
Treshold

(b) Sparseness

Fig. 7. Evolution of NS-CD with parameters k = 15 and ρmin = 40

50 100 150 200

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Generations

F
itn

es
s

(a) Fitness

50 100 150 200
0

10

20

30

40

50

60

Generations

Sp
ar

se
ne

ss

Trivial
Easy
Moderate
Hard
Hardest
Treshold

(b) Sparseness

Fig. 8. Evolution of NS-CD-L with parameters k = 15 and ρmin = 40

First, for the trivial problem, all of the algorithms can solve it nearly perfectly.
Second, for the easy problem NS produces slightly worse results than standard
search. However, both problems are quite easy, far from the type of data generally
encountered in real-world scenarios. Finally, for themoderate and hard problems,
the NS-algorithm achieves equal performance with respect to SRS-GPC.

154 E. Naredo, L. Trujillo, and Y. Mart́ınez

50 100 150 200

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Generations

F
itn

es
s

(a) Fitness

50 100 150 200
0

10

20

30

40

50

60

Generations

Sp
ar

se
ne

ss

Trivial
Easy
Moderate
Hard
Hardest
Treshold

(b) Sparseness

Fig. 9. Evolution of NS-AD with parameters K = 15 and S = 40

50 100 150 200

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Generations

F
itn

es
s

(a) Fitness

50 100 150 200
0

10

20

30

40

50

60

Generations

Sp
ar

se
ne

ss

Trivial
Easy
Moderate
Hard
Hardest
Treshold

(b) Sparseness

Fig. 10. Evolution of NS-AD-L with parameters K = 15 and S = 40

Figures 3-10 examines the evolution of the NS-based algorithms. Each figure
contains two plots that show averages over all runs; these are: (1) evolution of fit-
ness and (2) evolution of sparseness. First, with respect to the fitness of the best
solution at each generation, the difference in performance between each problem
is evident and consistent across all algorithms. The second plot in each figure
shows the sparseness value associated to the best solution at each generation. A
horizontal line in these plots shows the corresponding threshold value, set to 80
in figures 3-6 and set to 40 in figures 7-10. In the former group, on average, the
best solution does not reach the threshold. This exhibits the importance of ρmin,
if it is not set correctly then the best solution might not be saved in the archive;
thus explaining the overall worse performance shown in Table 2. It is appar-
ent that ρmin should be lower, as is the case in figures 7-10. Nonetheless, with
ρmin = 40 the sparseness value of the best individual rises above the threshold
only on the more difficult problems. This illustrates the main assumption behind
the usefulness of NS, that random solutions will mostly exhibit bad fitness, and
thus good solutions will tend to also be novel ones. Nonetheless, even if the best
solution at each generation is not incorporated into the archive, it appears that
sufficiently good solutions are saved, based on the test performance summarized
in tables 2 and 3, that is mostly equivalent to the standard GP search.

Searching for Novel Classifiers 155

5 Conclusions

This paper uses a GP system based on the NS algorithm to search for data
classifiers. To the authors knowledge, the work represents the first attempt to
leverage NS to solve a common problem in pattern analysis and recognition,
since previous applications of NS were primarily focused on robotic tasks. This
line of research follows other recent works where solution behavior [14, 9], or so-
lution semantics [15], are explicitly considered during a population-based search.
To do so, two domain-specific behavioral descriptors were proposed, the Class
Descriptor and the Accuracy Descriptor. In general, both descriptors appear to
produce equivalent performance, in most cases statistically similar to a canonical
GP search. Moreover, it appears that NS-based search exhibits the best results
when confronted with difficult problems. It seems that the reason for this is that
generating a high-quality solution at random is less probable for difficult prob-
lems, then the incentive for behavioral exploration is incremented and the search
for novelty will indeed lead towards quality during the search. For simple prob-
lems, however, the explorative capacity of NS is mostly unexploited or even a
detriment to the search; i.e., if random solutions have a high fitness then novelty
could easily lead the search towards worse results. Finally, while both descrip-
tors, AD and CD, achieve similar performance on these tests, their differences
must be studied and exploited further. In particular, the AD descriptor can only
be used in supervised learning problems since it assumes knowledge of a ground
truth set or classified samples. The CD descriptor, however, is less restrictive in
this sense. Therefore, future work will center on exploring the usefulness of NS
on the more difficult problem of non-supervised learning.

Acknowledgments. This research was supported by CONACYT (Mexico) Ba-
sic Science Research Grant No. 178323, ”Prediccón de Rendimiento y Dificultad
de Problemas en Programación Genética”. First and third authors were sup-
ported by PRONABES-DGEST (Mexico) scholarships, respectively No.
20120000634 and No. 20120000735.

References

1. Dawkins, R.: Climbing Mount Improbable. W.W. Norton & Company (1996)
2. Kistemaker, S., Whiteson, S.: Critical factors in the performance of novelty search.

In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Com-
putation, GECCO 2011, pp. 965–972. ACM (2011)

3. Kowaliw, T., Dorin, A., McCormack, J.: Promoting creative design in interac-
tive evolutionary computation. IEEE Transactions on Evolutionary Computa-
tion 16(4), 523–536 (2012)

4. Koza, J.: Human-competitive results produced by genetic programming. Genetic
Programming and Evolvable Machines 11(3), 251–284 (2010)

5. Lehman, J., Stanley, K.O.: Exploiting open-endedness to solve problems through
the search for novelty. In: Proceedings of the Eleventh International Conference on
Artificial Life. ALIFE XI. MIT Press, Cambridge (2008)

156 E. Naredo, L. Trujillo, and Y. Mart́ınez

6. Lehman, J., Stanley, K.O.: Efficiently evolving programs through the search for
novelty. In: Proceedings of the 12th Annual Conference on Genetic and Evolution-
ary Computation, GECCO 2010, pp. 837–844. ACM (2010)

7. Lehman, J., Stanley, K.O.: Abandoning objectives: Evolution through the search
for novelty alone. Evol. Comput. 19(2), 189–223 (2011)

8. Lehman, J., Stanley, K.O.: Evolving a diversity of virtual creatures through novelty
search and local competition. In: Proceedings of the 13th Annual Conference on
Genetic and Evolutionary Computation, GECCO 2011, pp. 211–218. ACM (2011)

9. Mouret, J.B., Doncieux, S.: Encouraging behavioral diversity in evolutionary
robotics: An empirical study. Evol. Comput. 20(1), 91–133 (2012)

10. Ofria, C., Wilke, C.O.: Avida: a software platform for research in computational
evolutionary biology. Artif. Life 10(2), 191–229 (2004)

11. Silva, S., Almeida, J.: Gplab–a genetic programming toolbox for matlab. In:
Gregersen, L. (ed.) Proceedings of the Nordic MATLAB Conference, pp. 273–278
(2003)

12. Trujillo, L., Mart́ınez, Y., Galván-López, E., Legrand, P.: Predicting problem dif-
ficulty for genetic programming applied to data classification. In: Proceedings of
the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO
2011, pp. 1355–1362. ACM, New York (2011)

13. Trujillo, L., Olague, G., Lutton, E., Fernández de Vega, F.: Discovering Several
Robot Behaviors through Speciation. In: Giacobini, M., Brabazon, A., Cagnoni,
S., Di Caro, G.A., Drechsler, R., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M.,
Fink, A., McCormack, J., O’Neill, M., Romero, J., Rothlauf, F., Squillero, G.,
Uyar, A.Ş., Yang, S. (eds.) EvoWorkshops 2008. LNCS, vol. 4974, pp. 164–174.
Springer, Heidelberg (2008)

14. Trujillo, L., Olague, G., Lutton, E., Fernández de Vega, F., Dozal, L., Clemente,
E.: Speciation in behavioral space for evolutionary robotics. Journal of Intelligent
& Robotic Systems 64(3-4), 323–351 (2011)

15. Uy, N.Q., Hoai, N.X., O’Neill, M., Mckay, R.I., Galván-López, E.: Semantically-
based crossover in genetic programming: application to real-valued symbolic re-
gression. Genetic Programming and Evolvable Machines 12(2), 91–119 (2011)

16. Woolley, B.G., Stanley, K.O.: Exploring promising stepping stones by combining
novelty search with interactive evolution. CoRR abs/1207.6682 (2012)

17. Zhang, M., Smart, W.: Using gaussian distribution to construct fitness func-
tions in genetic programming for multiclass object classification. Pattern Recogn.
Lett. 27(11), 1266–1274 (2006)

Learning Reusable Initial Solutions

for Multi-objective Order Acceptance and
Scheduling Problems with Genetic Programming

Su Nguyen1, Mengjie Zhang1, Mark Johnston1, and Kay Chen Tan2

1 Victoria University of Wellington, Wellington, New Zealand
2 National University of Singapore, Singapore
{su.nguyen,mengjie.zhang}@ecs.vuw.ac.nz,

mark.johnston@msor.vuw.ac.nz, eletankc@nus.edu.sg

Abstract. Order acceptance and scheduling (OAS) is an important is-
sue in make-to-order production systems that decides the set of orders
to accept and the sequence in which these accepted orders are processed
to increase total revenue and improve customer satisfaction. This pa-
per aims to explore the Pareto fronts of trade-off solutions for a multi-
objective OAS problem. Due to its complexity, solving this problem is
challenging. A two-stage learning/optimising (2SLO) system is proposed
in this paper to solve the problem. The novelty of this system is the use
of genetic programming to evolve a set of scheduling rules that can be
reused to initialise populations of an evolutionary multi-objective opti-
misation (EMO) method. The computational results show that 2SLO is
more effective than the pure EMO method. Regarding maximising the
total revenue, 2SLO is also competitive as compared to other optimisa-
tion methods in the literature.

Keywords: genetic programming, scheduling, multiple objective.

1 Introduction

Order acceptance and scheduling (OAS) is an important operation in make-to-
order production systems. The aim of OAS is to determine whether to accept or
reject orders from customers to optimise the use of the limited capacity of the
shop based on requirements (due dates, processing times, etc.) and revenues of
the orders. OAS is motivated by practical situations in make-to-order systems
such as customised packing material producers [18] or logistic systems where
customer selection is important to effectively utilise the available capacity [4]. It
is noted that simultaneously dealing with both acceptance and scheduling deci-
sions is necessary to have a proper assessment of the influences of orders on the
production activities in the shop. OAS is more challenging than the traditional
scheduling problems [1–3, 7, 15, 21, 27] since not only does the processing se-
quence of orders need to be determined, but also the combination of accepted
orders must be decided.

This paper focuses on the OAS problems in the single machine shop with n
orders. The goal of OAS is to determine which orders within the n orders are

K. Krawiec et al. (Eds.): EuroGP 2013, LNCS 7831, pp. 157–168, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

158 S. Nguyen et al.

accepted (must be processed and delivered) and how the accepted orders are
scheduled to optimise certain performance measures. Each order has a release
time rj , a processing time pj , a due date dj , a weight/penalty wj , a maximum
revenue ej , and a deadline d̄j . A specific setup time sij for order j is incurred if
order j is processed immediately after order i (s0j is the setup time of order j
in the case that order j is processed first). If the order is completed before the
due date dj , the revenue revj obtained from order j is the maximum revenue
ej . Otherwise, revj is the remaining revenue after deducting the penalty caused
by the tardiness Tj = max(0, Cj − dj) from ej, where Cj is the completion time
of order j. Generally, the revenue obtained by an order j can be calculated by
revj = ejIj − wjTj in which Ij is 1 if order j is accepted; and 0 otherwise. If
orders are finished after their deadline d̄j , no revenue is gained. This problem is
the same as those in [18] and [4].

Different methods have been proposed in the literature to deal with OAS.
Slotnick and Morton [22] studied OAS in a single machine environment without
preemption to maximise the total revenue (which includes costs caused by order
lateness). An exact branch and bound method and two heuristic procedures were
proposed. The myopic heuristic was shown to be effective and efficient as com-
pared to the branch and bound method which is very computationally expensive.
Slotnick andMorton [23] extended their work by considering costs caused by tardi-
ness instead of lateness. Ghosh [10] showed that OAS is NP-hard and proposed two
pseudo-polynomial time algorithms and approximate methods to deal with some
special cases of this problem. Rom and Slotnick [19] proposed a hybrid genetic
algorithm with local search heuristic to handle the same problem which showed
very promising results. Oguz et al. [18] investigated OASwith sequence dependent
setup times in printing operations for a customised packing material producer and
developed a mixed integer linear programming (MILP) formulation. Since opti-
mal solutions can only be obtained for a limited number of orders, Oguz et al. [18]
proposed ISFAN, a heuristic based on simulated annealing to handle sequencing
decisions. Cesaret et al. [4] proposed a tabu search (TS) method to handle the
same problem and the experimental results showed that the proposed TS method
outperformed ISFAN especially for instances with a large number of orders. OAS
problems in the job shop environment have also been investigated byWester et al.
[26] and Roundy et al. [20]. Different from studies previously discussed, Wester et
al. [26] performed a simulation to evaluate different order acceptance strategies
when orders arrive according to some stochastic process over time. Roundy et al.
[20] examined acceptance decisions when an order arrives to determine whether
the production system has the capacity.

1.1 Goals

This paper presents the first work on the multi-objective OAS problem which
has not been previously investigated in the literature. We focus on two objec-
tives: (1) total revenue TR =

∑
j∈A

revj and (2) mean absolute error MAE =
(
∑

j∈A
|Cj − dj |)/n where A is the set of accepted orders. Maximising total rev-

enue is unarguably important for any producers. However, with the current

Learning Reusable Initial Solutions 159

emphasis on the just-in-time (JIT) [6] production concept, where both earli-
ness and tardiness are undesirable, meeting the target job due date would be
of significance for the practice of JIT philosophy. The reason is that early jobs
increase the inventory costs [5] while tardy jobs result in penalties, such as loss
of customer goodwill and damaged reputation [12]. Because of the complexity
of this problem, exploring the Pareto front of trade-off solutions is challenging.
To deal with this issue, we propose a genetic programming based hyperheuristic
(GPHH) method to generate effective reusable initial populations for the evolu-
tionary multi-objective optimisation (EMO) methods. The aim of this approach
is to quickly identify potential trade-off solutions to effectively guide the search of
the EMO methods to better solutions and reduce their computational cost. This
is inspired by the success of GPHH methods [9, 11, 13, 16, 17, 24] for evolving
reusable dispatching rules for scheduling problems. These methods employed ge-
netic programming (GP) to evolve dispatching rules which are priority functions
based on attributes of jobs and machines to solve the scheduling problems. The
results from these studies showed that the dispatching rules are effective even
for unseen instances. The proposed GPHH in this paper is similar to that devel-
oped by Nguyen et al. [16] to evolve Pareto fronts of non-dominated scheduling
policies. However, instead of directly applying the evolved rules [16], we use the
evolved rules as the input for EMO methods. In this new approach, we develop a
two-stage learning/optimising (2SLO) system to deal with OAS. The first stage
performs offline learning to generate resuable non-dominated scheduling rules for
OAS. Then the second stage uses EMO methods to solve specific OAS instances
based on rules obtained from the first stage.

The research objectives of this paper are as follows.

1. Developing the two-stage learning/optimising system to deal with the multi-
objective OAS problem.

2. Developing a GPHH method to learn reusable non-dominated rules for OAS.
3. Developing an EMO method to explore the Pareto front of non-dominated

solutions for each specific OAS problem instance.
4. Comparing the performance of the proposed system with other optimisation

methods.

1.2 Organisation

The rest of this paper is organised as follows. In Section 2 we describe the
proposed 2SLO, GPHH, and EMO methods, and show how scheduling rules are
represented in GPHH and how OAS solutions are represented in the proposed
EMO method. The performance of the proposed system is compared to those
in the literature and the results are shown in Section 3. Finally, we provide the
conclusions and discussions for future research in Section 4.

2 Methodology

Fig. 1 presents the conceptual structure of the proposed system. In the first
stage, the system applies the proposed GPHH (more details are provided in

160 S. Nguyen et al.

Learning Optimising

Training OAS
instances

GPHH
evolving

OAS Instance needs
to be solved

Resuable non-dominated
scheduling rules

Rule #1

Rule #2

Rule #3

...

Rule #M

EMO
searching

Obtained
Pareto front

Construct initial
OAS solutions

...

Rule #1 ...S1

Rule #2 ...S2

Rule #3 ...S3

Rule #M ...SM

Randomise ...SM+1

Randomise ...SN

...

Fig. 1. Conceptual structure of the proposed 2SLO system

Section 2.1) to generate a set of non-dominated scheduling rules. The rules will
be evaluated based on a training set of OAS instances. After the non-dominated
rules are obtained by GPHH, they are stored in an archive for future use. It
is noted that the purpose of this stage is not to find the optimal solutions for
any particular OAS instance but to discover effective reusable rules which can
help determine potential trade-off solutions when we deal with unseen instances.
The reason that GP is used for the learning stage is that the rules generated by
GP can be applied to any instance regardless of scale (number of orders) and
GP, as an evolutionary computation method, can utilise the available search
mechanisms proposed in the literature such as NSGA-II [8], SPEA2 [29], etc. to
explore the non-dominated rules.

The second stage of the system is applied whenever an OAS decision needs to
be made. In this case, the production planning and control system will collect
relevant information of orders to form an OAS instance. The data of this OAS
instance will be sent to the archive of reusable rules. Each rule in the archive
will construct an OAS solution based on the input data. Solutions constructed
by reusable rules are transformed into the form of solutions represented by the
proposed EMO method (more details are provided in Section 2.2). After all
solutions from rules in the archive are obtained, if these solutions did not fill
up the population of the employed EMO method, the remaining solutions are
randomly generated. This is to ensure that there are sufficient genetic materials
to help explore the whole Pareto front.

It is noted that the second stage does not need to run right after the first
stage. In practice, the first stage can be performed whenever the computational
resources are available (e.g. overnight or during the weekend). Meanwhile, the
EMO method in the second stage is applied immediately when a new OAS
instance needs to be solved. Without the input from the learning process in

Learning Reusable Initial Solutions 161

+

P %

E S

Assign priority

Each order
has been assigned

a priority ?

Go to the next
unprocessed order

Select order j with the
highest priorityNo

Process order j

Build a list of
unprocessed orders
which can complete

before their deadlines

The list is
empty ?

Stop and calculate
objective values

Yes

Yes

Select the first
order in the list

No

Fig. 2. Representation and evaluation of an evolved scheduling rule

the first stage, the application of the second stage is similar to that of any
optimisation method. Different from previous proposed machine learning based
evolutionary algorithms [28] where machine learning methods are used as the
preprocessing step when solving a particular problem instance, our proposed
system takes advantage of OAS features to generate reusable rules through offline
learning and thus can reduce the computational cost caused by machine learning
methods in the optimising stage.

2.1 GPHH for OAS

The scheduling rules evolved by GP are priority functions to calculate the prior-
ities of orders which determine the sequence in which orders are processed. Fig.
2 shows how a rule is represented by GP and how it can be used to solve an OAS
instance. The function and terminal sets used to generate scheduling rules are
shown in Table 1. The procedure in Fig. 2 starts by building a list of unprocessed
orders which can be processed before their deadlines. Then, the evolved rule cal-
culates the priority of each order in the list using the corresponding information
of that order. After priorities are assigned to all orders in the list, the order with
the highest priority will be processed (and certainly this order is accepted). The
current time of the schedule (ready time to process the next order) is adjusted.
The list of unprocessed orders are updated and the procedure stops if no order
can be completed before its deadline.

Algorithm 1 shows how the proposed GPHH evolves a set of non-dominated
scheduling rules. This algorithm employs the population updating scheme based

Table 1. Terminal and function sets for scheduling rules

Symbol Description Symbol Description

R release time rj P processing time pj
E revenue ej W penalty wj

S setup time sij d due date dj
D deadline d̄j t current time
random number from 0 to 1

Function set +,−,×, % (protected division), If

162 S. Nguyen et al.

Algorithm 1. GPHH to evolve scheduling rules for OAS problems

load training OAS instances D ← {D1, D2, . . . , DT }
randomly initialise the population P ← {R1,R2, . . . ,RN}
Pe ← {} and generation ← 0
while generation ≤ maxGeneration do

foreach Ri ∈ P do
Ri.objectives ← apply Ri to each OAS instance Dk ∈ D

calculate the crowding distance and ranks for individuals in P
⋃Pe

Pe ← select(P
⋃Pe)

P ← apply crossover, mutation to Pe

generation ← generation + 1

return Pe

on crowding distance and non-dominated ranks from NSGA-II [8]. It is noted
that other approaches to explore the Pareto front can also be used here but
the NSGA-II approach is chosen because of its simplicity and popularity in
the EMO literature. At first, a number of training instances are loaded and
the initial archive Pe (parent population) is empty. These training instances
will be used to evaluate the performance of an evolved scheduling rule. The
initial GP population is created using the ramped-half-and-half method [14]. In
each generation of GPHH, all individuals in the population will be evaluated by
applying them to solve each training instance. The quality of each individual in
the population will be measured by the average values of the objectives across
all training instances.

After all individuals have been evaluated, we calculate the crowding distance
[8] for each individual. Then, individuals in both archive Pe and population
P are selected to update the archive Pe based on the crowding distance and
the non-dominated rank [8]. The new population will be generated by applying
crossover and mutation to the current population. For crossover, GP uses the
subtree crossover [14], which creates new individuals for the next generation by
randomly recombining subtrees from two selected parents. Mutation is performed
by subtree mutation [14], which randomly selects a node of a chosen individual
in the population and replaces the subtree rooted at that node by a newly
randomly-generated subtree. Binary tournament selection [8] is used to select the
parents for the two genetic operations. Based on pilot experiments, the crossover
rate and mutation rate used in the three methods are 90% and 10%, respectively,
and the maximum depth of GP trees is 8. A population size of 10,000 is used
to ensure that there are enough genetic materials to explore the search space
of non-dominated rules. The results will be obtained after the proposed method
runs for 100 generations. The obtained Pe is the archive of reusable scheduling
rules in 2SLO.

2.2 EMO for OAS

Different from the first stage, the second stage aims to solve a particular OAS
instance. In this case, solutions for an OAS instance are represented by arrays

Learning Reusable Initial Solutions 163

0.231 0.512 0.644 0.01 0.872 0.421 0.712

0 1 1 0 1 0 1

Priority

Ij

Sequence

Order #1 Order #2 Order #3 Order #4 Order #5 Order #6 Order #7

5 7 3 2

Fig. 3. Representation of OAS solutions

of real numbers (from 0 to 1). An example of an OAS solution is shown in
Fig. 3. The dimension of the array is the number of orders n of the OAS in-
stance. Similar to the representation of solutions in pure scheduling problems
and that in Rom and Slotnick [19], the real value represents the priority of each
corresponding order to determine the sequence in which orders are processed.
In our method, the real number array decides both the sequence decisions and
acceptance decisions of OAS. In the array, if the value is greater than 0.5, the
corresponding order is accepted. After the set of accepted orders are determined,
the values corresponding to these orders are treated as the priorities to decide
the processing sequence (orders with higher priorities will be processed earlier).
This modification is made to maintain a balance between the quality of accep-
tance decisions and sequencing decisions. It is noted that after the reusable rules
are applied, the obtained solutions will be transformed to the form which can
be used as the initial solution of NSGA-II. The transformation is performed by
assigned random numbers in the range (0.5, 1] to the accepted order such that
the orders which are processed earlier have higher values. Random numbers in
[0, 0.5] are assigned to other rejected orders.

Since real-code representation is quite popular in the evolutionary computa-
tion community, many EMO methods can be employed to search for the Pareto
front for a particular OAS instance. Based on our pilot experiments with some
popular EMO methods, NSGA-II [8] showed very promising results for the OAS
problem in this paper. Therefore, we apply NSGA-II as the EMO method in the
optimising stage of Fig. 1. Based on our preliminary experiments, the popula-
tion size of NSGA-II is 500 and the maximum number of solution evaluations is
100,000. Simulated binary crossover (SBX) and real-parameter mutation [8] are
used to generate new solutions with probabilities of 100% and 1% respectively.
Binary tournament selection is applied to select solutions for genetic operations.

3 Computational Results

To examine the effectiveness of the proposed 2SLO system (coded in Java and run
on Intel i5, 3.10GHzCPUs), the system is applied to solve the benchmark instances
from Casaret et al. [4]. These instances are generated based on tardiness factor
τ and due date range R (details about instance generation are provided in [4]).

164 S. Nguyen et al.

The test bed contains different sets (each has 10 instances) generated from differ-
ent combinations of τ and R and the number of orders n. In this paper, we only
focus on the sets with the largest number of ordersn = 100.We use the tuple 〈τ, R〉
to indicate the set of 10 instances with tardiness factor τ and due date rangeR. For
the learning stage of 2SLO, we will use the first five instances of a particular set
denoted as 〈τ, R〉Tr. In order to investigate the influence of the training set on the
reusability of the evolved rules and the performance of the 2SLO system, we will
apply the system with three training sets 〈0.1, 0.1〉Tr, 〈0.5, 0.5〉Tr, and 〈0.9, 0.9〉Tr.
The performance of the proposed 2SLO system is comparedwith the pureNSGA-II
method (with the same settings as the NSGA-II used in the second stage of 2SLO)
by applying them to solve 25 sets of instances (combinations of five values of τ and
five values ofR) with n = 100. The proposed 2SLO system performed 30 indepen-
dent runs. In each run, a set of resuable rules are obtained and the performance
of 2SLO is measured by performing the optimising stage to each test instance 30
times. For each test instance, Pareto fronts obtained by 2SLOand the pure NSGA-
II are compared by using the hypervolume ratio (HVR) [25]. The reference Pareto
front used to calculate HVR is obtained by extracting non-dominated solutions
from all Pareto fronts found by 2SLO and NSGA-II. The solutions obtained by
2SLO regarding the total revenue is also compared to those found by ISFAN [18],
MILP, m-ATCS, and TS [4].

3.1 Multi-objective Performance

Table 2 shows the performance of the proposed 2SLO system and that of the
pure NSGA-II method. The values in this table are HVR which is the average
HVR (higher HVR is better) corresponding to each set of OAS instances. 2SLO-
〈τ, R〉Tr indicates 2SLO in which GPHH in the first stage uses the training
set 〈τ, R〉Tr. Columns min, avg, and max show the minimum, average, and
maximum of HVR from 30 independent runs of 2SLO. The results show that
the proposed 2SLO methods outperform NSGA-II in many cases with different
combinations of τ and R, especially for the case with high τ and R. Comparing
the results obtained by 2SLO with different training sets also shows that training
sets do have a large impact on the performance of 2SLO. For example, 2SLO
trained with 〈0.1, 0.1〉Tr provides very good results with the instances with low τ
and R. The effectiveness of 2SLO-〈0.1, 0.1〉Tr reduces as τ and R increase (but are
still better than NSGA-II in most cases). 2SLO-〈0.5, 0.5〉Tr and 2SLO-〈0.9, 0.9〉Tr
are also more effective when they are applied to sets with τ and R close to those
of the training set. Examples of Pareto fronts obtained by 2SLO and NSGA-II
are provided in Fig. 4. It is obvious that the Pareto fronts obtained by 2SLO are
much better than that of NSGA-II. Fig. 4(a) and Fig. 4(b) show that the obtained
Pareto fronts are well-spread and close to the reference Pareto front. In Fig. 4(c),
although the extreme value for each objective is not found by 2SLO, the Pareto
front found by 2SLO contains the most potential compromise solutions since a
slight improvement in any objective will rapidly deteriorate the other objective.
These experiments have confirmed the effectiveness of the learning/optimising
methods in 2SLO to deal with multi-objective OAS problems.

Learning Reusable Initial Solutions 165

Table 2. Quality of Pareto fronts found by 2SLO (highlighed results indicate that
training and test instances come from the same set 〈τ,R〉)

τ R
2SLO-〈0.1, 0.1〉Tr 2SLO-〈0.5, 0.5〉Tr 2SLO-〈0.9, 0.9〉Tr

NSGA-II

min avg max min avg max min avg max

0.1 0.1 0.85 0.88 0.91 0.66 0.74 0.81 0.63 0.68 0.72 0.73
0.3 0.77 0.84 0.89 0.74 0.82 0.88 0.67 0.73 0.80 0.76
0.5 0.77 0.83 0.89 0.75 0.82 0.88 0.72 0.76 0.82 0.77
0.7 0.73 0.81 0.87 0.73 0.78 0.86 0.71 0.75 0.80 0.75
0.9 0.62 0.78 0.84 0.69 0.74 0.81 0.71 0.74 0.79 0.70

0.3 0.1 0.86 0.88 0.90 0.79 0.82 0.86 0.78 0.80 0.81 0.81
0.3 0.82 0.86 0.90 0.82 0.86 0.89 0.81 0.82 0.85 0.83
0.5 0.83 0.86 0.90 0.84 0.87 0.90 0.83 0.85 0.88 0.83
0.7 0.83 0.86 0.90 0.85 0.88 0.91 0.86 0.87 0.90 0.83
0.9 0.81 0.87 0.90 0.86 0.89 0.91 0.90 0.91 0.93 0.84

0.5 0.1 0.87 0.88 0.91 0.86 0.88 0.90 0.87 0.88 0.89 0.85
0.3 0.85 0.88 0.91 0.89 0.90 0.92 0.88 0.89 0.90 0.86
0.5 0.85 0.87 0.90 0.90 0.92 0.93 0.88 0.89 0.91 0.85
0.7 0.82 0.87 0.90 0.89 0.90 0.91 0.90 0.91 0.93 0.82
0.9 0.78 0.86 0.90 0.88 0.90 0.92 0.91 0.92 0.93 0.78

0.7 0.1 0.82 0.87 0.89 0.87 0.88 0.91 0.89 0.89 0.90 0.75
0.3 0.79 0.87 0.90 0.87 0.89 0.90 0.89 0.90 0.91 0.74
0.5 0.70 0.85 0.89 0.87 0.89 0.90 0.90 0.90 0.92 0.72
0.7 0.65 0.81 0.87 0.84 0.87 0.89 0.87 0.89 0.90 0.71
0.9 0.67 0.79 0.86 0.83 0.87 0.88 0.88 0.90 0.91 0.71

0.9 0.1 0.56 0.72 0.79 0.79 0.82 0.86 0.81 0.84 0.85 0.37
0.3 0.65 0.76 0.85 0.82 0.86 0.88 0.87 0.89 0.90 0.64
0.5 0.59 0.76 0.83 0.82 0.85 0.87 0.87 0.88 0.89 0.66
0.7 0.59 0.75 0.81 0.80 0.84 0.86 0.87 0.88 0.90 0.67
0.9 0.61 0.74 0.80 0.79 0.82 0.84 0.86 0.88 0.89 0.67

260 280 300 320 340 360 380 400

80
0

85
0

90
0

95
0

10
00

MAE

T
R

Ref. Pareto Front
NSGA−II
2SLO−<0.1,0.1>Tr

2SLO−<0.5,0.5>Tr

2SLO−<0.9,0.9>Tr

(a) 〈0.1, 0.1〉

50 100 150 200 250

60
0

70
0

80
0

90
0

10
00

11
00

MAE

T
R

Ref. Pareto Front
NSGA−II
2SLO−<0.1,0.1>Tr

2SLO−<0.5,0.5>Tr

2SLO−<0.9,0.9>Tr

(b) 〈0.5, 0.5〉

0 50 100 150

20
0

40
0

60
0

80
0

MAE

T
R

Ref. Pareto Front
NSGA−II
2SLO−<0.1,0.1>Tr

2SLO−<0.5,0.5>Tr

2SLO−<0.9,0.9>Tr

(c) 〈0.9, 0.9〉

Fig. 4. Examples of Pareto fronts from one run of the EMO methods for three partic-
ular problem instances

166 S. Nguyen et al.

3.2 Total Revenue

This section will investigate the performance of 2SLO for maximising the total
revenue. Table 3 shows the % deviations (100× (UB−TR)/UB) from the upper
bound (UB), which is determined by MILP and relaxed LP [4] for each OAS
instance, of the maximum total revenue in the Pareto fronts obtained by 2SLO
and the total revenue obtained by other methods. It is easy to see that the
average total revenue obtained by 2SLO is much better than those of MILP
(found by the CPLEX solver within 3600 s time limit), m-ATCS, and ISFAN
for most combinations of τ and R. 2SLO performs better in the set with τ and
R that are close to those of the training set. Although 2SLO performed slightly
worse than TS [4] in most cases, it obtained slightly better total revenue in some
cases. The reason is that TS is especially designed for maximising total revenue
of OAS problems. Moreover, 2SLO focuses on finding the whole Pareto front,
which makes it more difficult to find the extreme values for each objectives (as
shown in Fig. 4(c)). However, the computational time of 2SLO (for the optimising
stage) is much smaller than that of TS in most sets, especially the ones with
high τ and R. These results suggest that 2SLO provides good performance on
the total revenue objective as compared to the specialised methods proposed in
the literature.

Table 3. % Deviations from upper bound of total revenues

τ R
MILP m-ATCS ISFAN TS 2SLO-0.1 2SLO-0.5 2SLO-0.9 Time (s)

a b c a b c a b c a b c a b c a b c a b c 2SLO TS

0.1 0.1 37 44 56 9 15 19 8 9 13 1 2 3 0 1 3 0 2 5 1 5 11 13 16
0.3 42 51 88 11 17 20 7 9 10 1 2 3 1 2 6 0 1 3 1 4 10 8 17
0.5 43 51 60 11 14 19 6 9 11 0 1 2 0 2 5 0 1 2 0 2 8 8 10
0.7 46 54 60 5 11 16 6 9 12 0 0 0 0 1 4 0 0 1 0 1 5 8 6
0.9 38 60 70 0 6 11 8 12 16 0 0 0 0 0 2 0 0 1 0 0 3 9 3

0.3 0.1 52 62 68 15 19 24 10 12 13 1 2 3 0 3 8 1 4 10 1 7 13 8 22
0.3 52 64 75 15 18 23 11 13 17 1 2 5 1 4 10 0 3 8 1 6 13 8 20
0.5 56 66 76 14 18 21 10 14 17 1 2 3 1 5 11 0 2 5 1 5 12 8 16
0.7 63 73 84 15 20 32 12 14 15 0 1 2 0 4 10 0 1 5 0 3 13 8 9
0.9 47 66 82 10 15 18 9 13 17 0 0 2 0 2 9 0 1 5 0 2 8 8 7

0.5 0.1 71 77 87 17 22 24 12 16 18 2 3 5 2 7 16 3 8 17 3 10 17 8 25
0.3 47 61 86 17 23 28 12 15 18 2 3 5 3 7 13 2 5 10 3 9 16 9 28
0.5 56 70 88 20 24 31 14 17 19 2 3 4 3 8 17 2 4 8 2 8 19 8 20
0.7 55 71 92 10 23 34 13 17 21 1 2 4 1 6 17 0 3 8 0 5 15 9 15
0.9 48 66 100 15 24 36 12 18 24 0 2 4 1 6 19 0 3 11 1 5 17 11 12

0.7 0.1 49 67 86 17 22 28 13 17 19 2 4 6 3 8 18 3 8 15 4 9 18 8 33
0.3 45 57 66 18 24 34 13 17 21 3 6 10 3 9 20 2 9 16 3 10 18 9 26
0.5 46 55 65 20 26 37 14 18 24 4 6 12 5 12 41 3 9 22 4 11 24 9 22
0.7 42 60 76 22 31 38 16 19 23 3 7 13 6 15 42 3 11 24 4 12 28 12 26
0.9 39 53 64 23 31 37 15 18 24 5 8 12 5 16 39 4 12 25 4 12 24 9 17

0.9 0.1 31 37 48 18 22 25 14 17 20 7 9 11 7 16 35 7 13 23 6 13 23 9 29
0.3 28 40 50 25 31 36 16 20 26 7 13 17 12 27 54 9 20 36 10 18 29 8 26
0.5 23 38 54 25 33 39 19 21 25 10 15 18 11 29 56 11 22 38 10 20 34 10 21
0.7 27 38 48 26 36 40 15 21 24 10 15 19 13 29 57 10 21 36 11 19 31 7 22
0.9 27 35 39 28 35 40 13 21 28 11 15 22 11 28 54 8 22 39 7 18 32 7 17

∗ a, b, c represent minimum, average and maximum % deviations, respectively
∗∗2SLO-x represents 2SLO-〈x, x〉Tr

Learning Reusable Initial Solutions 167

4 Conclusions

This paper develops a two-stage learning/optimising system to deal with multi-
objective OAS problems. This is the first time that multiple conflicting objectives
are considered for OAS. The learning stage of the proposed system helps extract
useful information in OAS to build effective scheduling rules. Meanwhile, the op-
timising stage takes advantage of the reusable rules to initialise populations of
EMOmethods. The experimental results have shown that the proposed system is
effective as compared to other methods in the literature. This confirms the poten-
tial of using offline machine learning methods such as GP in this paper to improve
the performance of EMO methods. In practical applications of OAS, the learning
stage of 2SLO can be employed in a much higher extent than the one in our ex-
periments here. Different combinations of τ and R can be used to train reusable
scheduling rules which can be stored in multiple archives. Then, the optimising
stage will analyse the instance at hand to decide which archive or combination of
archives should be applied. Regarding the optimising stage, we can utilise local
search heuristics to further improve the quality of the obtained Pareto fronts.

References

1. Allahverdi, A., Gupta, J.N., Aldowaisan, T.: A review of scheduling research in-
volving setup considerations. Omega 27(2), 219–239 (1999)

2. Bilge, U., Kurtulan, M., Kirac, F.: A tabu search algorithm for the single ma-
chine total weighted tardiness problem. European Journal of Operational Re-
search 176(3), 1423–1435 (2007)

3. Boejko, W., Grabowski, J., Wodecki, M.: Block approach-tabu search algorithm
for single machine total weighted tardiness problem. Computers & Industrial En-
gineering 50(1-2), 1–14 (2006)

4. Cesaret, B., Oguz, C., Salman, F.S.: A tabu search algorithm for order acceptance
and scheduling. Computers & Operations Research 39(6), 1197–1205 (2012)

5. Cheng, T.C.E., Jiang, J.: Job shop scheduling for missed due-date performance.
Computers & Industrial Engineering 34, 297–307 (1998)

6. Cheng, T.C.E., Podolsky, S.: Just-in-Time Manufacturing: An Introduction. Chap-
man and Hall, London (1993)

7. Choobineh, F.F., Mohebbi, E., Khoo, H.: A multi-objective tabu search for a single-
machine scheduling problem with sequence-dependent setup times. European Jour-
nal of Operational Research 175(1), 318–337 (2006)

8. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computa-
tion 6(2), 182–197 (2002)

9. Geiger, C.D., Uzsoy, R., Aytug, H.: Rapid modeling and discovery of priority dis-
patching rules: An autonomous learning approach. Journal of Heuristics 9(1), 7–34
(2006)

10. Ghosh, J.B.: Job selection in a heavily loaded shop. Computers & Operations
Research 24(2), 141–145 (1997)

11. Hildebrandt, T., Heger, J., Scholz-Reiter, B.: Towards improved dispatching rules
for complex shop floor scenarios: a genetic programming approach. In: GECCO
2010: Proceedings of the 12th Annual Conference on Genetic and Evolutionary
Computation, pp. 257–264 (2010)

168 S. Nguyen et al.

12. Hino, C.M., Ronconi, D.P., Mendes, A.B.: Minimizing earliness and tardiness
penalties in a single-machine problem with a common due date. European Journal
of Operational Research 160(1), 190–201 (2005)

13. Jakobović, D., Jelenković, L., Budin, L.: Genetic Programming Heuristics for
Multiple Machine Scheduling. In: Ebner, M., O’Neill, M., Ekárt, A., Vanneschi,
L., Esparcia-Alcázar, A.I. (eds.) EuroGP 2007. LNCS, vol. 4445, pp. 321–330.
Springer, Heidelberg (2007)

14. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press (1992)

15. Lee, Y.H., Bhaskaran, K., Pinedo, M.: A heuristic to minimize the total weighted
tardiness with sequence-dependent setups. IIE Transactions 29(1), 45–52 (1997)

16. Nguyen, S., Zhang, M., Johnston, M., Tan, K.C.: A coevolution genetic program-
ming method to evolve scheduling policies for dynamic multi-objective job shop
scheduling problems. In: CEC 2012: Proceedings of the IEEE Congress on Evolu-
tionary Computation, pp. 3261–3268 (2012)

17. Nguyen, S., Zhang, M., Johnston, M., Tan, K.C.: Evolving Reusable Operation-
Based Due-Date Assignment Models for Job Shop Scheduling with Genetic Pro-
gramming. In: Moraglio, A., Silva, S., Krawiec, K., Machado, P., Cotta, C. (eds.)
EuroGP 2012. LNCS, vol. 7244, pp. 121–133. Springer, Heidelberg (2012)

18. Oguz, C., Sibel Salman, F., Bilginturk Yalcin, Z.: Order acceptance and schedul-
ing decisions in make-to-order systems. International Journal of Production Eco-
nomics 125(1), 200–211 (2010)

19. Rom, W.O., Slotnick, S.A.: Order acceptance using genetic algorithms. Computers
& Operations Research 36(6), 1758–1767 (2009)

20. Roundy, R., Chen, D., Chen, P., Cakanyildirim, M., Freimer, M.B., Melkonian, V.:
Capacity-driven acceptance of customer orders for a multi-stage batch manufac-
turing system: models and algorithms. IIE Transactions 37(12), 1093–1105 (2005)

21. Selim Akturk, M., Ozdemir, D.: An exact approach to minimizing total weighted
tardiness with release dates. IIE Transactions 32(11), 1091–1101 (2000)

22. Slotnick, S.A., Morton, T.E.: Selecting jobs for a heavily loaded shop with lateness
penalties. Computers & Operations Research 23(2), 131–140 (1996)

23. Slotnick, S.A., Morton, T.E.: Order acceptance with weighted tardiness. Comput-
ers & Operations Research 34(10), 3029–3042 (2007)

24. Tay, J.C., Ho, N.B.: Evolving dispatching rules using genetic programming for
solving multi-objective flexible job-shop problems. Computer & Industrial Engi-
neering 54, 453–473 (2008)

25. Van Veldhuizen, D.A., Lamont, G.B.: Multiobjective evolutionary algorithm test
suites. In: SAC 1999: Proceedings of the 1999 ACM Symposium on Applied Com-
puting, pp. 351–357 (1999)

26. Wester, F.A.W., Wijngaard, J., Zijm, W.R.M.: Order acceptance strategies in a
production-to-order environment with setup times and due-dates. International
Journal of Production Research 30(6), 1313–1326 (1992)

27. Yang, W.H.: Survey of scheduling research involving setup times. International
Journal of Systems Science 30(2), 143–155 (1999)

28. Zhang, J., Zhan, Z.H., Lin, Y., Chen, N., Gong, Y.J., Zhong, J.H., Chung, H., Li,
Y., Shi, Y.H.: Evolutionary computation meets machine learning: A survey. IEEE
Computational Intelligence Magazine 6(4), 68–75 (2011)

29. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evo-
lutionary algorithm for multiobjective optimization. In: Evolutionary Methods
for Design, Optimisation and Control with Application to Industrial Problems,
EUROGEN 2001, pp. 95–100 (2002)

Automated Problem Decomposition for the

Boolean Domain with Genetic Programming

Fernando E.B. Otero and Colin G. Johnson

School of Computing, University of Kent, Canterbury, UK
{F.E.B.Otero,C.G.Johnson}@kent.ac.uk

Abstract. Researchers have been interested in exploring the regulari-
ties and modularity of the problem space in genetic programming (GP)
with the aim of decomposing the original problem into several smaller
subproblems. The main motivation is to allow GP to deal with more
complex problems. Most previous works on modularity in GP empha-
sise the structure of modules used to encapsulate code and/or promote
code reuse, instead of in the decomposition of the original problem. In
this paper we propose a problem decomposition strategy that allows the
use of a GP search to find solutions for subproblems and combine the
individual solutions into the complete solution to the problem.

1 Introduction

Many problems in the genetic programming (GP) literature have demonstrated
the scalability issues of GP algorithms—e.g., it is relatively easy to find a solution
for the even-4-parity problem [7], while a solution for the even-8-parity problem is
much harder to find using a traditional GP. In order to be able to deal with larger
and more complex problems, researchers have been interested in exploring the
regularities and modularity of the problem space with the aim of decomposing
the original problem into several smaller (more tractable) subproblems.

One of the first approaches for exploiting the problem regularities is Koza’s
Automatic Defined Functions (ADFs) [7,8]. In ADFs, the structure of program
trees is defined in a way that subtrees with different roles are evolved in parallel—
e.g., there are function-defining subtrees and a result-producing subtree, which
can contain references to the different function-defining subtrees mimicking func-
tion calls. Other authors investigated the creation of modules (functions) by
identifying subtrees on existing individuals [1,16,15,6]. The main idea is to create
modules based on fit or useful subtrees, either encapsulating their functionality
or creating parameterised modules.

In this paper, we investigate the use of an automated problem decomposition
strategy in the context of GP. The motivation is to use a heuristic to modularise
the GP search—i.e., use a GP search to explicitly find solutions to subproblems,
which can then be combined to create the solution to the original problem.
Therefore, the GP is not concerned with searching for the complete solution; the
original problem is decomposed in a series of smaller subproblems.

K. Krawiec et al. (Eds.): EuroGP 2013, LNCS 7831, pp. 169–180, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

170 F.E.B. Otero and C.G. Johnson

The remainder of this paper is organised as follows. Section 2 reviews prior
efforts to explore the regularities and modularity of the problem space in GP.
Section 3 discusses the proposed strategy to modularise the GP search and Sec-
tion 4 gives details of a specific implementation of this strategy. The computa-
tional results are presented in Section 5. Finally, Section 6 concludes this paper
and presents future research directions.

2 Background

Automatically Defined Functions (ADFs) were introduced by Koza [7,8] as a
technique to explore the regularities and modularities of the problem space
in order to deal with complex problems, and it is probably the most popular
and studied automatic approach to create modules (sub-routines) in GP. Koza
proposed the use of ADFs to decompose the problem into several smaller sub-
problems. The solution of the original (complete) problem is then obtained by
combining the individual solutions to the subproblems. This process, defined by
Koza as hierarchical problem-solving process, is illustrated in Figure 1. There are
three important steps in this process: the first one is where the original prob-
lem is decomposed, the second is where the solutions of each subproblem are
obtained, and the third one is where the complete solution is built by combining
the individual solutions of the subproblems. Koza’s ADF approach implements
these three steps within a run of a GP algorithm: a modular ADF architecture
based on ‘function-defining branches’ is determined prior to evolving the solu-
tions (decomposition of the problem); the body of each ADF is evolved during
the run (subproblem solution search); these ADFs are available to the ‘result-
producing branch’ of candidate solutions (combination of subsolutions), which
is also being evolved during the run.

While Koza’s ADF approach allows the GP to exploit the problem regular-
ities through a modular architecture, the problem decomposition into an ADF
architecture (i.e., number of ADFs, the number of arguments of each ADF) is
done manually before the run of the GP. This also includes the definition of the
interaction between ADFs—which ADFs are allowed to call which other ADFs.
Therefore, the architecture of the candidate solutions is fixed to a pre-defined
number of ADFs and the ‘result-producing branch’. In [9], a set of architecture
altering operations relaxed this restriction, allowing candidate solutions to have
a different number of ADFs and each ADF to have a different number of param-
eters, although the maximum number of ADFs and arguments of each ADF are
restricted by user-defined values.

Other works have proposed the creation of modules based on the genetic
material from individuals of the population. Koza [7] proposed the use of a
subtree encapsulation operator. The approach consists in randomly selecting a
subtree from a fit individual and creating a terminal primitive to reference the
subtree—i.e., a terminal that encapsulates the behaviour of the subtree. The
motivation is to protect the encapsulated subtree from potential changes as a
result of genetic operators, and to facilitate its reuse by allowing the mutation

Automated Problem Decomposition for the Boolean Domain with GP 171

operator to incorporate new references in the population. The terminal primitive
created by the encapsulation operator can be seen as a module (function) with
no arguments. Angeline and Pollack [1,2] proposed the Genetic Library Builder
(GLiB) system, which employs special mutation operators to define new modules
based on subtrees from individuals. The first mutation operator is compression,
which consists of randomly selecting a subtree to define a new module. The newly
created module is then stored in a global module library and the occurrence of
the subtree is replaced by a reference to the module. The arguments of the
module are determined based either on the maximum depth of the module or by
the terminal (leaf) nodes used in the subtree. The second mutation operator is
expand, which consists in expanding the module by replacing its reference with
the subtree stored in the module library that defines the module. While module
definitions in GLiB are selected at random, Rosca and Ballard [16] proposed
a method to create new modules using heuristics to identify ‘useful’ building
blocks: fit blocks (blocks with high fitness value) and frequent blocks (blocks
that appear frequently in the entire population). Once a block has been identified
and its arguments determined (based on the terminals used in the subtree), its
definition is added to the function set as a new function and a replacement
operator introduces new individuals using the extended function set.

The idea of identifying building blocks in the population to create a library of
modules was extended further to include information accumulated from multiple
runs of a GP algorithm. Roberts et al. [15] proposed the use of a subtree database
to monitor the frequency of use of each subtree during the GP run. At the end
of the run, the most frequent subtrees are encapsulated as terminal primitives
in a similar manner as the encapsulation operator proposed by Koza [7]. The
subsequent runs can then take advantage of the subtree database by using an
extended terminal set incorporating the encapsulated subtrees. Keijzer et al.
[6] introduced the idea of Run Transferable Libraries (RTL), in which the GP
system uses the RTL in two phases: (1) training of the library, where a number
of runs is used to refine the randomly generated candidate modules (referred
to as Tag Addressable Functions) of the RTL; (2) subsequent runs of the GP
use the modules of the RTL. The motivation is that the RTL can be trained
in smaller (simpler) problem instances and then be applied to larger (harder)
problem instances. A similar idea was used by Christensen and Oppacher [3],
where a ‘training phase’ consisting in generating all small trees in the search
space of GP creates a library of useful modules. Christensen and Oppacher’s
approach explores the fact that there are more solutions of small size for the
Santa Fe Trail problem compared to larger ones. The generated modules (small
trees) are then used in the search for the complete solution.

Several other approaches for the creation/identification of modules have been
proposed in the literature—e.g., in the context of grammar-based GP (gram-
matical evolution) [4,18], in Cartesian Genetic Programming (CGP) [19] and
in GP systems using the Push language [17]; other approaches are discussed in
[13]. The majority of approaches for modularity (including the ones discussed
above) focus on the discovery of modules rather than on the use of modules to

172 F.E.B. Otero and C.G. Johnson

original problem subproblems subproblems
solutions

original problem
solution

problem
decomposition

solving
subproblems

combining
subproblem
solutions

1 2 3

P
S

p1

p2

p3

p4

s1

s2

s3

s4

Fig. 1. The hierarchical problem-solving process (adapted from [7]): the original prob-
lem P is decomposed in a set of subproblems (step 1); the goal is then to solve each of
the subproblems (step 2); finally, the solution S to the original problem P is created
by using the solutions to the subproblems (step 3)

decompose the problem into smaller (more tractable) subproblems, relying on
the idea that if modules can be created/identified, their usefulness will emerge
through the GP search. An indication of this is the fact that modules are usually
created/identified during the run of the GP, at the same time that the GP is
searching for a solution to the problem. There is no control to check whether dif-
ferent modules are solving different parts of the problem or not, and the quality
of the modules is evaluated indirectly by evaluating how well an individual that
contains the module reference solves the problem.

This emphasis on the structure of modules to encapsulate code and/or pro-
mote code reuse of most previous works in GP modules motivated Jackson and
Gibbons [5] to propose the use of layered learning—an approach that aims at
solving simpler problems in order to deal with harder problems—in the context
of GP. The idea is to first use a layer to solve a lower-order version of the orig-
inal problem. Then, when a solution to the first layer is found, it is converted
to a parameterised module. Finally, a second layer is used to search for the so-
lution to the original problem, which can invoke the module created by the first
layer. Drawing a comparison with ADFs, the first layer in the layered learning
approach can be seen as a function-defining branch and the second layer can be
seen as the result-producing branch. The main difference between ADFs and the
layered learning approach is that in the latter, all computational effort is first
focused in the function-defining branch (layer 1) until it evolved into something
potentially useful, and then switched to the result-producing branch (layer 2),
while in ADFs both function-defining and result-producing branches are evolved
simultaneously. One limitation of the layered learning is the need to manually
identify (and specify) a lower-order of the problem to be solved by the first
layer. A second limitation is that there is a single decomposition step, and more
complex problems may require multiple decomposition steps.

Automated Problem Decomposition for the Boolean Domain with GP 173

3 Modularisation of the GP Search

The problem-solving procedure of GP can be viewed as a supervised learning
procedure:

(1) the training data is represented by a set of input-output pairs, which corre-
spond to the desired behaviour;

(2) the fitness function is used to evaluate how good a candidates solutions’
predictions are (i.e., how many correct predictions are made or how close
the predictions are to the correct output);

(3) the goal of the GP search is to find a program that can predict the correct
output for each of the inputs or, in cases where it cannot find the program
that generates the correct output, find one that provides the best fitness
score given by the fitness function.

Many supervised learning methods employ a strategy to decompose the problem
at hand into smaller subproblems. For example, decision tree induction algo-
rithms usually employ a divide-and-conquer strategy to build a decision tree in
a top-down fashion. Starting from the root node, a test is selected to divide the
training instances—a descendant of the root node is created for each possible
outcome of the test and the training instances are sorted to the appropriate de-
scendant node. This procedure is then repeated for each descendant node using
the subset of the training instances associated with the node—a test is selected
for each of the descendant nodes to further divide the training instances. Another
example is the strategy used by rule induction algorithms. Instead of attempt-
ing to create a complete list or set of rules at once, they employ a sequential
covering strategy to reduce the problem into to a sequence of simpler problems,
each consisting in creating a single rule. The sequential covering is an iterative
procedure in which a single rule is created and the training instances correctly
classified by the rule are removed from the training data, effectively reducing
the search space for the next iterations of the procedure.

Most works in GP focuses on searching for a complete solution. While the use
of ADFs (or other module/building block creation method) provides a syntactic
modularisation, where different subtrees might focus on different parts of the
problem, there is still an evolutionary pressure to solve all parts of the problem
at once. McKay [11] argues that this pressure tends to reduce diversity and
in some cases prevents the search from converging to an optimal solution. To
counteract this effect, McKay uses the concept of partial functions—functions
whose values are not defined for some inputs—combined with the use of fitness
sharing to promote diversity and allow the GP search to explore subproblem
solutions. The use of partial functions can be seen as an explicit attempt to
modularise the GP search, i.e., focus the search on solutions of subproblems.

The hierarchical problem-solving process presented by Koza as a motivation to
use ADFs is closely related to both divide-and-conquer and sequential covering
strategies commonly used in machine learning, although ADFs do not use a
heuristic to decompose the problem. The use of layered learning by Jackson
and Gibbons [5] can also be seen as a divide-and-conquer, but it involves a

174 F.E.B. Otero and C.G. Johnson

single decomposition step represented by the manually identified lower-order
version of the original problem. A natural question then arises: could we apply a
heuristic to decompose the problem into smaller problems and use GP to find a
solution to subproblems? Assuming that we successfully decompose the problem
and find solutions to the subproblems, we then have a second question: how do we
combine the individual solutions to the subproblems into the complete solution?
In the next section we discuss how we can combine both the sequential covering
strategy and the concept of partial functions to modularise the GP search—use
GP to solve several smaller subproblems and combine the solutions to create the
complete solution to the problem—and address the aforementioned questions.

4 Sequential Covering Genetic Programming

In this section we present the general idea behind the proposed sequential cov-
ering GP (SCGP). There are three distinct steps: (i) the decomposition of the
problem; (ii) the search for a subproblem solution; and (iii) the combination of
subproblem solutions into the complete solution. Figure 2 presents the high-level
pseudocode of the SCGP procedure.

The overall SCGP procedure mimics a sequential covering: starting with the
complete list of input cases (training data) and an empty solution tree,1 evolves
a partial solution using GP, adds the partial solution to the solution tree and
removes the cases for which it gives the correct output. The procedure is repeated
until there are no input cases remaining. The removal of cases at each iteration
effectively changes the search space for the next iterations, which allows the GP
to evolve solutions to different parts of the problem—i.e., reduces (decomposes)
the problem into a sequence of simpler problems, each consisting in creating a
solution for a subset of the input cases.

At each iteration of the SCGP procedure, a partial solution is evolved using a
GP.2 The fitness cases for the GP consists of the available input cases—the ones
that have not been correctly predicted previously. The best (fittest) candidate
solution evolved by the GP is designated as the partial solution of the iteration.
There are two possible outcomes as a result of the GP search: the partial solution
produces the correct output for all available input cases (i.e., it is the optimal
solution for the subproblem represented by the available input cases), or the
partial solution produces the correct output for a subset of the input cases. If
the partial solution is the optimal solution for the subproblem, it is added as
a leaf component to the solution tree and the SCGP procedure finishes, since
the solution tree is able to generate the correct output for all input cases. If the
partial solution only solves a subset of the input cases, a mask selector is created
to combine the newly created partial solution with the remaining solutions of the
solution tree. The cases for which the (extended) solution tree gives the correct
output are removed and a new iteration of the procedure starts.

1 Here we assume that the solution tree is where all the partial solutions (the solution
to individual subproblems) are combined into the complete solution to the problem.

2 Each iteration of SCGP involves the execution of a GP algorithm, which also evolve
for a number of iterations.

Automated Problem Decomposition for the Boolean Domain with GP 175

1. training ← all input cases;
2. solution ← ∅;
3. while |training| not empty do
4. partial ← EvolveSolution(training);
5. if Errors(partial, training) = 0 then
6. solution ← AddLeafComponent(partial, solution);
7. else
8. mask ← GenerateTestMask(partial, training);
9. solution ← AddMaskComponent(partial, mask, solution);

10. end if
11. training ← RemoveCorrectCases(solution, training);
12. end while
13. solution ← Simplify(solution); /* optional */

14. return solution;

Fig. 2. High-level pseudocode of the Sequential Covering GP (SCGP)

So far, we have demonstrated how we can use a heuristic to decompose the
problem and use a GP to produce the solutions to the subproblems, which an-
swers our first posed question. The remaining issue is how to combine the solu-
tions to the subproblem into a single solution. We have mentioned that individual
solutions are structured in a solution tree and combined together using a mask
selector. Given that each partial solution in the solution tree is solving a different
subproblem, their output vectors (the vector V of the outputs of the partial solu-
tion Pi when queried with the input cases C, i.e., V (Pi) = {Pi(c1), . . . , Pi(cN)})
are complementary.3 Therefore, a natural way of combining the partial solutions
is to combine their output vectors. To that end, we use the semantic crossover
proposed by Moraglio et al. [12] to generate mask selectors, which act as tests
to inform which of the partial solutions to use for a given input.

The geometric semantic crossover [12] is a semantic operator that works on the
output vector of two individuals (candidate solutions). For the Boolean domain,
the semantic crossover (SGXB) returns an individual T3 = (M ∧ T1) ∨ (M ∧
T2), where M is a randomly generated boolean crossover mask. The Boolean
expression represented by individual T3 outputs the value of T1 or T2 depending
on the value of M—i.e., for each input case c, it outputs the value T1(c) if M(c)
evaluates to true; otherwise it outputs the value T2(c). The construction of the
individual T3 is illustrated in Figure 3. We will focus on the Boolean domain
from now on; refer to [12] for details of how to apply the semantic crossover in
other domains.

Recall that solutions are sequentially discovered by the SCGP procedure, so
when a partial solution Ti (the solution created in the i-th iteration) is added
to the solution tree, the Ti+1 solution is unknown. The semantic crossover is
usually incomplete, i.e., we do not have two individuals to recombine. To solve

3 There might be overlaps between different vectors, but the important aspect is that
for every input case at least one of the vectors provides the correct output.

176 F.E.B. Otero and C.G. Johnson

ANDAND

OR

M

M NOT

(a)

ANDAND

OR

T1 T2

M

M NOT

(b)

Fig. 3. In (a), the semantic crossover scheme for Boolean functions (M is the randomly
generated crossover mask); in (b), the resultant individual T3 obtained by applying the
semantic crossover with individuals T1 and T2

SGXB
(M1)

undefT1

(a) iteration 1

SGXB
(M1)

SGXB
(M2)

T2

T1

undef

(b) iteration 2

SGXB
(M1)

SGXB
(M2)

T2 T3

T1

(c) iteration 3

Fig. 4. The sequential solution construction procedure of SCGP: in (a) the solution
tree after the first iteration, consisting of the partial solution T1 and an incomplete
semantic crossover using mask M1; (b) the solution tree after the second iteration,
after the addition of the partial solution T2 and the incomplete semantic crossover
using mask M2; the complete solution tree, obtained by adding the partial solution T3

this dependency, we use the concept of partial solutions and assume that the
solution tree returns an undef value for the cases where the mask Mi evaluates
to false. Therefore, the crossover mask Mi acts as a selector to inform when the
output of individual Ti should be used, independently of the other individuals.
To ensure this property of the crossover mask, we need to impose a restriction
on the creation of the (random) crossover mask Mi: Mi is a randomly generated
boolean crossover mask that, for every input case c, if Mi(c) evaluates to true,
Ti(c) produces the correct output.

Let us consider a simple example: assume that we would like to search for
a boolean function with the following output [1, 1, 0, 1, 0, 1]. The first
iteration of SCGP produces an individual T1 with the output vector [0, 1, 0,

0, 1, 0] (an individual that generates the correct output for input cases 2 and
3). If we generate a crossover mask M1 that returns true for input cases 2 and
3 and add both to the the solution tree, we end up with a partial solution with
the output vector [undef, 1, 0, undef, undef, undef]. Before we start the
next iteration of the SCGP, we remove the input cases for which the solution tree
is generating the correct output, so the desired output is [1, -, -, 1, 0, 1]

Automated Problem Decomposition for the Boolean Domain with GP 177

(the positions marked as ‘-’ are not used in the evaluation). This will focus the
search on the input cases where the (current) solution tree is not generating
the correct output (the input cases for which an undef value is generated). The
second iteration of SCGP produces an individual T2 with the output vector [1,
0, 0, 0, 1, 1]. Applying the same procedure to generate a mask M2 and
adding both T2 and M2 to the solution tree, we end up with a partial solution
with the output vector [1, 1, 0, undef, undef, 1]. Removing the correct
input cases, the desired output is [-, -, -, 1, 0, -]. The next iteration of
SCGP produces an individual T3 with the output vector [1, 1, 1, 1, 0, 0].
Since T3 generates the correct output for the remaining input cases, we don’t
need to create a crossover mask. Adding T3 to the solution tree completes the
SCGP procedure (there are no input cases for which the solution tree generates
an undef value) and the solution tree represents the Boolean function with
the desired output. The sequential solution construction procedure of SCGP is
illustrated in Figure 4.

Note that the sequential construction of the solution avoids the problem of
exponential growth of the size of GP individuals and the need for a simplification
step [12], observed when semantic operators are used (especially the semantic
crossover, since both parents are included in the offspring). The sequential proce-
dure of the SCGP decomposes (reduces) the original problem, and each iteration
is searching for a solution to a subproblem. The subproblem solutions are not
used during the search of the GP, therefore the size of the current solution tree
(the solution being sequentially constructed) does not affect the GP search. On
the other hand, the complete solution (solution tree at the end of SCGP) can
become syntactically large, depending on the number of iterations required to
create the optimal solution. For applications where the size of the complete so-
lution is important, a single simplification step can be used at the end of SCGP.

5 Computational Results

In this section we present the results of the proposed SCGP in two Boolean logic
problems.4 We used a standard tree GP to create a solution at each iteration of
SCGP, using a generational scheme with tournament selection (size 5), ramped-
half-and-half initialisation, subtree crossover (0.9 probability), subtree mutation
(0.1 probability) and elitism (1 individual). We varied the GP parameters popula-
tion size {10, 50, 100, 500, 1000}, maximum number of iterations {1, 10, 50, 100}
and the maximum tree depth {2, 4, 8} to determine their effects on the overall
performance of the SCGP. Greater values of the population size and the maximum
number of iterations only increased the total number of fitness evaluationswithout
any improvements on the overall performance of SCGP. The only GP parameter
that seems to directly affect the performancewas themaximum tree depth, where a
greater value allows the SCGP algorithm to create a complete solution in a smaller
number of sequential covering iterations. The results reported in this section cor-
respond to the runs of SCGP using a GP with a population size of 10, maximum

4 The SCGP algorithm was implemented using the EpochX framework [14].

178 F.E.B. Otero and C.G. Johnson

Table 1. Average (average ± standard deviation) number of SCGP iterations and
fitness evaluations required by SCGP to create the complete correct (optimal) solution
for each problem, calculated over 30 runs. In all problems, the total number of fitness
evaluations required is below the allocated maximum (budget) evaluations

problem avg. SCGP iterations avg. evaluations budget

even-5-parity 23.4 ± 2.0 224.2 ± 20.1 320

even-6-parity 46.7 ± 4.4 457.1 ± 44.6 768

even-7-parity 90.5 ± 3.7 895.0 ± 10.4 1792

even-8-parity 181.7 ± 9.3 1814.1 ± 17.3 4096

even-9-parity 374.5 ± 7.5 3735.0 ± 75.4 9216

even-10-parity 767.6 ± 11.5 7666.6 ± 95.0 20480

multiplexer-6 20.9 ± 5.3 199.0 ± 53.4 768

multiplexer-11 136.1 ± 12.4 1350.7 ± 22.4 45056

Table 2. Average percentage (average ± standard deviation) of input cases correctly
predicted by the best solution for each of the algorithms, calculated over 30 runs

problem GP SGP SSHC SCGP

even-5-parity 52.9 ± 2.4 98.1 ± 2.1 99.7 ± 0.9 100.0 ± 0.0

even-6-parity 50.5 ± 0.7 98.8 ± 1.7 99.7 ± 0.6 100.0 ± 0.0

even-7-parity 50.1 ± 0.2 99.5 ± 0.6 99.9 ± 0.2 100.0 ± 0.0

even-8-parity 50.1 ± 0.2 99.7 ± 0.3 100.0 ± 0.0 100.0 ± 0.0

even-9-parity 50.0 ± 0.0 99.5 ± 0.3 100.0 ± 0.0 100.0 ± 0.0

even-10-parity 50.0 ± 0.0 99.4 ± 0.2 100.0 ± 0.0 100.0 ± 0.0

multiplexer-6 70.8 ± 3.3 99.5 ± 0.8 99.8 ± 0.5 100.0 ± 0.0

multiplexer-11 76.4 ± 7.9 99.9 ± 0.1 100.0 ± 0.0 100.0 ± 0.0

number of iterations of 1 and maximum tree depth of 8—the combination that
produced the best average number of fitness evaluations.

The SCGP was compared against a standard tree GP, semantic GP (SGP)
and semantic stochastic hill climber (SSHC), using the same setup as in [12]:
GP and SGP using a generational scheme with tournament selection (size 5),
crossover and mutation; other parameters set to ECJ’s defaults [10]. We selected
two standard GP Boolean benchmark problems, the even-parity and multiplexer
[7]. These problems present scalability issues for standard GP—solutions for
lower-order versions are easily found, while solutions for higher-order versions
are not found in most cases using standard GP. The function set used for both
problems comprised the Boolean operators {AND, OR, NOT}. All algorithms were
allocated a maximum of 2n × 2n fitness evaluations, where n is the number of
input variables of the problem.

Automated Problem Decomposition for the Boolean Domain with GP 179

Discussion: Table 1 presents the average number of SCGP (sequential covering)
iterations and fitness evaluations required by SCGP to create the complete op-
timal solution for each problem, calculated over 30 runs of the algorithm. In all
problems, the total number of fitness evaluation required is below the allocated
maximum evaluations. The average number of SCGP iterations can be seen as the
number of semantic crossover operations required to create the optimal solution.
This shows an interesting aspect of SCGP: while the SGP algorithm applies the
semantic crossover selecting two individuals at random, the SCGP algorithm ap-
plies the semantic operator in a more directed way. It first selects an individual
and the crossover mask, and then tries to evolve the best individual that would fit
the remaining input cases to complete the crossover. This advantage is highlighted
in the results concerning the average number of training examples correctly pre-
dicted by the best solution, presented in Table 2. SCGP is the only algorithm to be
able to find the optimal solution in all the problems; neither SGP or SSHC, which
also use the semantic crossover, found an optimal solution to all the problems.

6 Conclusions and Future Work

We presented a new problem decomposition strategy in the context of GP. This
new strategy relies on a sequential covering approach, commonly used in ma-
chine learning, to divide the original problem into smaller subproblems. A GP
was used to find solutions for the subproblems and the individual subproblems’
solutions are combined using a semantic crossover operator. We conducted exper-
iments in two standard GP Boolean benchmark problems, comparing the SCGP
(sequential covering GP) against a standard tree GP, semantic GP (SGP) and
semantic stochastic hill climber (SSHC). The proposed SCGP algorithm was the
only algorithm to find an optimal solution for all problems within the allocated
maximum number of fitness evaluations.

There are several future research directions. The increase in the number of
iterations of the GP search did not improve the overall performance of SCGP,
which could be an indication that the crossover mask is limiting the use of an
individual (one of the individuals in the crossover is only used when the mask
evaluates to true); it would be interesting to investigate the use of different
mask generation procedures. Another approach is to first select the crossover
mask, which effectively is responsible to divide the input cases, and then search
for each individual to complete the crossover; this would be similar to the top-
down approach commonly used by decision tree induction algorithms. Given the
nature of the sequential covering solution construction strategy, there is a risk
of overfitting the training data. Therefore it will be interesting to investigate
how the solutions found by SCGP generalise to unseen input cases. Addition-
ally, a semantic analysis of the crossover masks, responsible for partitioning the
input cases, might give interesting insights about the problems (e.g., characterise
different regions of the problem space).

Acknowledgements. The authors gratefully acknowledge the financial support
from the EPSRC grant EP/H020217/1.

180 F.E.B. Otero and C.G. Johnson

References

1. Angeline, P.J., Pollack, J.B.: The evolutionary induction of subroutines. In: Proc.
of the 14th Annual Conference of the Cognitive Science Society, pp. 236–241 (1992)

2. Angeline, P.J., Pollack, J.B.: Coevolving High-level Representations. In: Langton,
C. (ed.) Artificial Life III, pp. 55–71. Addison-Wesley (1994),
http://www.isrl.uiuc.edu/~amag/langev/paper/

angeline94coevolvingHigh.html
3. Christensen, S., Oppacher, F.: Solving the Artificial Ant on the Santa Fe Trail

Problem in 20,696 Fitness Evaluations. In: Proc. of GECCO, pp. 1574–1579 (2007)
4. Hemberg, E., Gilligan, C., O’Neill, M., Brabazon, A.: A Grammatical Genetic Pro-

gramming Approach to Modularity in Genetic Algorithms. In: Ebner, M., O’Neill,
M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.) EuroGP 2007. LNCS,
vol. 4445, pp. 1–11. Springer, Heidelberg (2007)

5. Jackson, D., Gibbons, A.P.: Layered Learning in Boolean GP Problems. In: Ebner,
M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.) EuroGP
2007. LNCS, vol. 4445, pp. 148–159. Springer, Heidelberg (2007)

6. Keijzer, M., Ryan, C., Cattolico, M.: Run Transferable Libraries — Learning Func-
tional Bias in Problem Domains. In: Deb, K., Tari, Z. (eds.) GECCO 2004. LNCS,
vol. 3103, pp. 531–542. Springer, Heidelberg (2004)

7. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press (1992)

8. Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs.
MIT Press (1994)

9. Koza, J.R., Bennett III, F.H., Andre, D., Keane, M.: Genetic Programming III:
Darwinian Invention and Problem Solving. Morgan Kaufmann (1999)

10. Luke, S.: ECJ: A Java-based Evolutionary Computation Research System (2012),
http://cs.gmu.edu/~eclab/projects/ecj/

11. McKay, R.: Partial Functions in Fitness-Shared Genetic Programming. In: Proc.
of CEC, pp. 349–356 (2000)

12. Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric Semantic Genetic Program-
ming. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M.
(eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 21–31. Springer, Heidelberg (2012)

13. O’Neill, M., Vanneschi, L., Gustafson, S., Banzhaf, W.: Open issues in genetic
programming. Genetic Programming and Evolvable Machines 11, 339–363 (2010)

14. Otero, F., Castle, T., Johnson, C.: EpochX: Genetic Programming in Java with
Statistics and Event Monitoring. In: Proc. GECCO Companion, pp. 93–100 (2012)

15. Roberts, S.C., Howard, D., Koza, J.R.: Evolving Modules in Genetic Programming
by Subtree Encapsulation. In: Miller, J., Tomassini, M., Lanzi, P.L., Ryan, C.,
Tetamanzi, A.G.B., Langdon, W.B. (eds.) EuroGP 2001. LNCS, vol. 2038, pp.
160–175. Springer, Heidelberg (2001)

16. Rosca, J., Ballard, D.: Learning by adapting representations in genetic program-
ming. In: Proc. of the IEEE WCCI, pp. 407–412 (1994)

17. Spector, L., Martin, B., Harrington, K., Helmuth, T.: Tag-Based Modules in Ge-
netic Programming. In: Proc. of GECCO, pp. 1419–1426 (2011)

18. Swafford, J., Hemberg, E., O’Neill, M., Nicolau, M., Brabazon, A.: A Non-
Destructive Grammar Modification Approach to Modularity in Grammatical Evo-
lution. In: Proc. GECCO, pp. 1411–1418 (2011)

19. Walker, J., Miller, J.: The automatic acquisition, evolution and reuse of modules
in cartesian genetic programming. IEEE Transactions on Evolutionary Computa-
tion 12(4), 397–417 (2008)

http://www.isrl.uiuc.edu/~amag/langev/paper/angeline94coevolvingHigh.html
http://www.isrl.uiuc.edu/~amag/langev/paper/angeline94coevolvingHigh.html
http://cs.gmu.edu/~eclab/projects/ecj/

A Multi-objective Optimization Energy

Approach to Predict the Ligand Conformation
in a Docking Process

Angelica Sandoval-Perez1,2,�, David Becerra1,3,�, Diana Vanegas1,
Daniel Restrepo-Montoya1, and Fernando Nino1

1 Universidad Nacional de Colombia, Bioinformatics and Intelligent Systems
Research Laboratory, Bogota, Colombia

2 Universität Erlangen-Nürnber, Computational Biology, Department Biologie,
Erlangen, Germany

3 McGill University, McGill Centre for Bioinformatics, Montreal, Canada

Abstract. This work proposes a multi-objective algorithmic method for
modelling the prediction of the conformation and configuration of lig-
ands in receptor-ligand complexes by considering energy contributions
of molecular interactions. The proposed approach is an improvement
over others in the field, where the principle insight is that a Pareto front
helps to understand the tradeoffs in the actual problem. The method is
based on three main features: (i) Representation of molecular data us-
ing a trigonometric model; (ii) Modelling of molecular interactions with
all-atoms force field energy functions and (iii) Exploration of the con-
formational space through a multi-objective evolutionary algorithm. The
performance of the proposed model was evaluated and validated over a
set of well known complexes. The method showed a promising perfor-
mance when predicting ligands with high number of rotatable bonds.

Keywords: MOEA, rotatable bonds, bonding and non-bonding energy
terms.

1 Introduction

Molecular docking can be defined as the prediction of complexes formed by the
interaction between two molecules, a receptor and a ligand [2]. Receptors are
typically transmembrane molecules involved in a specific biochemical pathway,
while ligands are mostly organic molecules that bind to a receptor in such a way
that the function of such receptor is modified and/or regulated [17,23].

Computational modelling has contributed to decreasing the time and re-
sources invested in finding molecules with pharmacological activity by helping
to elucidate the structural conformation of a molecule inside a living organ-
ism, making it a possible computer-aided drug design [13]. However, simulation
of receptor-ligand biological systems demands different simplifications and as-
sumptions, either to simulate the binding process or to select the molecules that

� These authors contributed equally.

K. Krawiec et al. (Eds.): EuroGP 2013, LNCS 7831, pp. 181–192, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

182 A. Sandoval-Perez et al.

bind to a receptor. Specifically, two that have had a great impact are those on
the dynamics of the biological system, and the ones on the energy functions used
to calculate the stability of the formed complexes [2,25].

A multi-objective evolutionary algorithm (MOEA) is considered as an ade-
quate approach for the docking problem given the possibility to optimize more
than one conflicting objective function simultaneously. By considering different
objectives in the fitness function, MOEAs are able to accurately optimize dif-
ferent variables of the modelled system. Previous works have done molecular
optimizations using similar multi-objective models [21], but the proposed algo-
rithm implements new alternatives to model the dynamics and energy measures
of the receptor-ligand biological system.

Although docking models usually evaluate the energy by using a force field
scoring function as a single objective, the proposed model is based on the idea
that non-covalent bonds are critical for maintaining the three-dimensional (3D)
structure of large molecules [18] and that non-covalent bonds can stabilize un-
usual conformations in small ligands when they are bound to a receptor causing
a detriment in the internal energy. Therefore, a multi-objective optimization ap-
proach was chosen to predict protein ligand structures (complexes), where the
objective functions to be optimized are the non-bond and bond energy terms.

In the proposed work, the ligand and the receptor are modeled at an atomic
level, the ligand as a flexible body and the receptor as a rigid body. Accordingly,
the number of rotatable bonds defines the flexibility of the ligand, so that changes
occurring in those bonds result in all possible molecular conformations for the
ligand. In turn, an MOEA implements a stochastic search of the complexes by
performing random changes on contiguous rotatable bonds. The MOEA uses an
energy function based on the force fields to predict protein-ligand structures.
Then, it optimizes the energy contributions of the non-bonding and bonding
energy terms. The proposed model was implemented by adapting some existing
software tools combined with others developed in this work. Our approach is
flexible to the use of different search algorithms and energy functions; it predicts
ligand localizations on the receptor binding site and the ligand conformations
that form adequate complexes with the receptor.

2 Methodology

The goal of the proposed approach was to find an energetically stable complex
formed between a protein and a ligand. The proposed method involves three
main stages which are explained next.

First, the known three-dimensional structures of both molecules were used as
data inputs. Specifically, the inputs of the model are: (i) a mapping from the
cartesian coordinates (algebraic representation) to the rotatable angles (trigono-
metric representation); the ligand is then represented as an undirected graph
(see Fig. 1(a)); (ii) the rigid protein modelled by its algebraic representation.

Once the molecular representation is set, the modelling of molecular interac-
tions and the exploration of the conformational space are performed (see Fig.

A Multi-objective Optimization Energy Approach 183

1(b)). Three important elements of the optimization process need to be defined:
the decision space, the objective space and the constraints. The decision space
represents all the attainable molecular complexes; the solution is coded as an ar-
ray representing a possible conformation and configuration of the ligand-receptor
system through its torsion angles γi. The objective space contains the images
of the solutions to be optimized, and the MOEA optimizes the energy contribu-
tions from the bonding and non-bonding terms. In addition, the feasible region
is limited by some geometric and energetic constraints.

Finally, a set of energetically stable complexes was obtained, but only one
complex (the predicted conformation) was selected. Particularly, the identifica-
tion of the knees was used as the method to select the predicted complex. This
knee identification was based on angles constituted by consecutive predicted
conformations (see Fig. 1(c)) [1].

Molecular Representation Exploration of the Search Space

ProteinLigand Decision Space

Obejective Space

Feasible Regions

IDγ2γ1 γ3

Bond Non-bond+

Multi-Objective
Optimizer

Predicted
Complex

High-level
Information

Geometric
and

Energetic

energies terms

NON-BOND

B
O
N
D

B
O
N
D

NON-BOND

B
O
N
D

Prediction

Fig. 1. The proposed methodology

2.1 Molecular Representation

The receptor, which remains rigid, is represented in two ways: (i) as a cavity the
ligand fits into and (ii) as an x-, y- and z-axes representation of all atoms. The
binding sites were identified by using the DMS program1 and the sphgen cpp
tool from DOCK [15]. It is important to stress that the selected binding sites
were the ones with experimental reportes in the literature [3,16,22,24].

In contrast to the receptor, the ligand is considered to be flexible. Conse-
quently, the ligand conformations and configurations are expressed in terms of
combinations of rotatable bond angles (see Fig. 1(a)), which makes it easier to
track down changes in the ligand’s molecular conformations.

A representation of all atoms based on their x, y and z coordinates (algebraic
representation) is required to calculate the energy value of the receptor-binding
complex. To alternate between the algebraic and the trigonometric representa-
tions, the algorithm first defines the number of rotatable bonds in the ligand.
These bonds were defined based on the works at [10,19]. Once both of the atoms
involved in a rotatable bond are identified, two additional contiguous atoms need

1 http://www.cgl.ucsf.edu/chimera/docs/UsersGuide/midas/dms1.html

http://www.cgl.ucsf.edu/chimera/docs/UsersGuide/midas/dms1.html

184 A. Sandoval-Perez et al.

to be considered to calculate the dihedral angle; such angles are then computed
for each rotatable bond to obtain a trigonometric representation of the molecule.

The ligand trigonometric representation data was arranged using an undi-
rected graph. Thus, each atom is a vertex while covalent bonds are the edges
(see Fig. 1(a)). The relevant torsion angles needed are those formed between the
four atoms involved in a rotatable bond.

The molecular reconstruction of a conformation consists of finding the new x, y
and z coordinates of the atoms after a random change in a torsional angle occurs.
Specifically, it is performed by computing the localization of a fourth atom in
the graph based on information about their coordinates, the distances between
them, the bond angles and the dihedral angles of the three previous atoms. The
transformation from the trigonometric to the algebraic representation is done
based on the method proposed by Dong and Wu [8].

2.2 Exploration of the Search Space

In any multi-objective problem, two spaces need to be defined: the decision space
(the set of all solutions), and the objective space (the objective values). To model
any specific problem as an MOEA, three basic sets must be modelled: a set of
objective functions, a set of decision variables and a set of constraints [7,21].

Decision Space. In an MOEA, the decision variables are represented as chro-
mosomes that contain the information of the solutions. In this work, the chromo-
somes represent the conformations and localization of the ligand on the receptor
binding site. The complexes are represented as an array of real values that cor-
respond to the location of the ligand with respect to the receptor and to the lig-
and’s conformation through the dihedral angles of rotatable bonds. Specifically,
an identifier operator (labeled as ID) models the combinatorial of all possible
translations and rotations over each of the x, y and z axes (see Fig. 1(b)).

The ID genetic operator is proposed to modify the variable in the chromosome
that models the combinatorial of all 64 possible translations and rotations over
each of the x, y and z axes, in order to find the new coordinates of the atoms
after random changes in a torsional angle. By using the ID operator it is possible
to represent a geometric transformation that consists of a rotation and/or a
translation. The genetic operators over the individuals are the ones typically
used in an MOEA, except for the ID operator, in which six variables can be
mutated: three for translations and three for rotations over the x, y and z axes.

Objective Space. An MOEA was implemented to deal with the conflicting
terms in the energy function [11]. The all atoms force fields AMBER [4] and
GAFF [26] were selected as the energy functions to be optimized, however, our
method is flexible to work with other force fields. The proposed approach does
not consider the energy function as a unique value, instead it optimizes the en-
ergy contributions from the bonding and non-bonding terms (see Equation 1).
The first objective corresponds to the energy contributions from the covalent
bonds between the atoms (bonding terms), such as bonds, bond angles and tor-
sion angles (see Equation 2). The second objective is related to the molecular

A Multi-objective Optimization Energy Approach 185

interactions where a covalent bond does not occur, such as electrostatic attrac-
tions, repulsion forces, and van der Waals forces (see Equation 3).

Epair = Ebond + Enon−bond (1)

Ebond =
∑
bonds

kr(r−req)
2+

∑
angles

kθ(θ−θeq)
2+

∑
dihedral

vn
2
×[1 + cos(nφ− γ)] (2)

Enon−bond =
∑
i<j

[
Aij

R12
ij

− Bij

R6
ij

+
qiqj
εRij

]
(3)

The NSGA-II [6] algorithm implemented in the Java-based framework jMetal [9]
was used to evolve the conformations and localizations of the ligand on the re-
ceptor binding site. NSGA-II is a multi-objective evolutionary algorithm which
uses an elite-preservation strategy and an explicit diversity-preserving mecha-
nism. NSGA-II creates a random initial population and iteratively improves its
quality until some level of acceptability is met. Then, the solutions in the final
set are expected to be of high quality and non-dominated with respect to one
another (called a Pareto front) [6].

In the proposed method, a high-level analysis algorithm was included in order
to choose one of the solutions in the final Pareto front. Such selection focuses on
the identification of the knees, i.e., the regions in the Pareto front where small
displacements produce a big detriment on at least one of the objectives. To find
the knees the method based on angles in [1] was considered.

Feasible Regions. Some steric and geometric constraints define the feasible
solutions. Specifically, the steric constraints are represented by the collisions be-
tween atoms from the molecule and atoms from the receptor. These collisions
are penalized by the scoring function. On the other hand, the geometric con-
straints are related to infeasible localizations of the ligand, which are defined by
delimiting the binding site to such an extent that solutions outside this physical
limit can not be generated.

To thoroughly study the performance of the proposed method, some param-
eters were fixed. The values of those parameters are summarized in Table 1.

2.3 Evaluation of the Proposed Method

The proposed model was evaluated over a set of complexes reported in the lit-
erature (see Table 2). These complexes were chosen based on: (1) the proteins
involved have a remarkable importance in pharmacology or industry; (2) the
molecular structures have a high resolution and (3) the complexes have been
widely used in the evaluation of previous methods.

Two aspects were taken into account in the evaluation of the proposed method:
The behavior of the Pareto fronts and the Root Mean Square Deviation (RMSD)
values of the predictedmolecular complexes at different generations of theMOEA.
Even though the MOEA is able to obtain a set of solutions, only one experimen-
tally reported complex to perform the evaluation of the method is available at the

186 A. Sandoval-Perez et al.

Table 1. MOEA’s parameters for the proposed approach

Parameter Value

MOEA algorithm NSGA-II [6]
Number of evaluations At most 20000

Population size 100
Fitness Function Two Objectives (Bond and Non-Bond interactions)

Chromosome Torsion angles plus the identified operator (ID)
Genetic Operators SBX Crossover (ηc = 5, pc = 0.9)

Polynomial Mutation (ηm = 10, pm = 0.01)
Rotation and Translation operator

Table 2. Information about the complexes used to test the model

PDB Atoms Rotatable bonds Method Resolution

1ABE 20 4 X-Ray 1.7
1ACM 26 6 X-Ray 2.8
1BAF 35 4 X-Ray 2.9
1CDG 45 12 X-Ray 2.0

Protein Data Bank2. Then, only one solution is selected and compared with its
experimental counterpart based on the two mentioned criteria. In addition, since
Pareto-optimal solutions for the considered complexes are not known, the volume
of the dominated portion of the objective space (i.e., hypervolume) is used as an
indicator of the coverage of the Pareto front.

In this work, the Superimpose script included in the set of programs TINKER3

was used to evaluate how similar the complex conformation predicted by the
proposed method was with respect to the one reported in the literature. It is
important to stress that only the distances between the atoms of the ligand were
taken into account to compare the molecular complexes because the receptor
is kept fixed. Furthermore, the reported RMSD is measured without inducing
translation or rotation changes in any of the two molecule conformations.

3 Results and Discussion

Figure 2 shows the dynamics of the Pareto fronts at different stages of the
algorithm. In addition, Fig. 3 depicts the relation between the RMSD and the
energy values for each of the complexes.

The proposed method performed an appropriate exploration of the search
space given that it was able to push the initial population in the direction of
the Pareto optimal solutions and the volume of the dominated portion of the
objective space increased as the algorithm ran (see Fig. 2(a)). In biological terms

2 http://www.rcsb.org/pdb/home/home.do
3 http://dasher.wustl.edu/tinker/

http://www.rcsb.org/pdb/home/home.do
http://dasher.wustl.edu/tinker/

A Multi-objective Optimization Energy Approach 187

-4005

-4000

-3995

-3990

-3985

-3980

-3975

-3970

-3965

-3960

 4087.5 4088 4088.5 4089 4089.5 4090 4090.5 4091 4091.5 4092

N
on

-B
on

d
(k

ca
l/m

ol
)

Bond (kcal/mol)

2000 evaluations
4000 evaluations
6000 evaluations
8000 evaluations

10000 evaluations
PDB Solution

Predicted Solution

(a) 1ABE complex

-9300

-9200

-9100

-9000

-8900

-8800

 4629 4630 4631 4632 4633 4634 4635 4636

N
on

-B
on

d
(k

ca
l/m

ol
)

Bond (kcal/mol)

20000 evaluations
Reported Solution

Selected Solution

(b) 1ACM complex

-12000

-11980

-11960

-11940

-11920

-11900

 8390.5 8390.55 8390.6 8390.65 8390.7 8390.75 8390.8

N
on

-B
on

d
(k

ca
l/m

ol
)

Bond (kcal/mol)

20000 evaluations
PDB Solution

Predicted Solution

(c) 1BAF complex

-16730

-16725

-16720

-16715

-16710

-16705

-16700

-16695

-16690

 9520 9522 9524 9526 9528 9530 9532 9534

N
on

-B
on

d
(k

ca
l/m

ol
)

Bond (kcal/mol)

18000 evaluations
PDB Solution

Predicted Solution

(d) 1CDG complex

Fig. 2. Pareto fronts for the tested complexes

it means that this approach found a balance between the bonding and non-
bonding interactions in a receptor-ligand complex.

The diversity of the results in the Pareto fronts was different in each studied
complex, but it is important to establish that the parameters of the algorithm
were fixed under the same conditions. For example, the diversities of the Pareto
fronts in Figs. 2(b), 2(c), and 2(d) were smaller as compared to the ones in
Fig. 2(a). This can be explained by the fact that the set of feasible solutions is
different for each complex as they have to meet different constraints.

The Pareto fronts also contribute to understand the decision making process.
Specifically, the Pareto front in Fig. 2(a) is convex, while the ones in Figs. 2(b),
2(c), and 2(d) lack of convex parts. It is important to highlight that although
there are a few individuals in the optimal set presenting high energy levels, the
knee-based algorithm was able to discard them. Additionally, the knee-based
algorithm was not so sensitive to non-convex parts of the Pareto front, where
only the complex reported in Fig. 2(d) showed a clear bias towards the sharpest
edge of the Pareto front.

188 A. Sandoval-Perez et al.

 80

 90

 100

 110

 120

 130

 140

150

 160

 170

 0 2 4 6 8 10 12 14

E
ne

rg
y

(k
ca

l/m
ol

)

RMSD (Armstrongs)

200 evaluations
2000 evaluations
4000 evaluations
5000 evaluations

10000 evaluations
PDB Solution

Predicted Solution

(a) 1ABE complex

-4600

-4400

-4200

-4000

-3800

-3600

-3400

 0 2 4 6 8 10 12 14 16

E
ne

rg
y

(k
ca

l/m
ol

)

RMSD (Armstrongs)

200 evaluations
5000 evaluations

10000 evaluations
15000 evaluations
20000 evaluations

PDB Solution
Predicted Solution

(b) 1ACM complex

-3600

-3400

-3200

-3000

-2800

-2600

 0 2 4 6 8 10 12 14

200 evaluations
1000 evaluations
5000 evaluations

10000 evaluations
20000 evaluations

PDB Solution
Predicted Solution

E
ne

rg
y

(k
ca

l/m
ol

)

RMSD (Armstrongs)

(c) 1BAF complex

-7200

-7150

-7100

-7050

-7000

 0 2 4 6 8 10 12 14 16

E
ne

rg
y

(k
ca

l/m
ol

)

RMSD (Armstrongs)

200 evaluations
5000 evaluations

10000 evaluations
15000 evaluations
18000 evaluations

PDB Solution
Predicted Solution

(d) 1CDG complex

Fig. 3. Relationship between Energy and RMSD

The MOEA was able to find molecular complexes with 3D structures relatively
close to the ones previously reported (see Figs. 2 and 3). Particularly, in Fig. 3 the
search space exploration begins with highly disperse solutions, which converge to
lower energy and RMSD values as the number of evaluations increases. Although
in the case of the 1ACM complex, the conformations were not close to the
reported one (see Fig. 3(b)); such behavior could be related to atom ligand
collisions against the protein surface structure (see Fig. 4).

In Fig. 2(b) and 3(b) it can be seen that the algorithm was not able to get
close enough to the energy terms of the reported complex. In contrast, the 1BAF
complex (see Fig. 2(c) and 3(c)) had a lower energy value with respect to its
reported counterpart; then it is worth noting that it is possible to produce lower
energy complexes than the ones previously reported. The results for the 1ABE
and 1CDG complexes (see Figs. 2(a), 3(a), 2(d) and 3(d)) show the expected
behaviour of a Pareto front, where the energy terms of both, predicted and
reported conformations, are located very close to each other.

A Multi-objective Optimization Energy Approach 189

(a) 1ABE (b) 1ACM (c) 1BAF (d) 1CDG

Fig. 4. The best location of the ligands in their corresponding receptors. (a) The re-
ceptor surface (black points) and the ligand surface (solid pink body). (b) The receptor
(white surface), the reported ligand (pink molecular surface in the middle of the re-
ceptor), and the other solutions found by the model (surfaces in other colors). (c) The
receptor (white surface) and the ligand: (magenta surface). Atoms and sticks represent
other ligand conformations and locations. (d) The complex below shows the possible
solutions that were found by the algorithm.

Table 3. Comparison of the RMSD values obtained with different docking models

Approach 1ABE 1ACM 1BAF 1CDG

DOCK [20] 0.20 1.11 −−− −−−
GOLD [12] 0.86 0.81 6.12 −−−
FLEXX [14] 3.03 0.5 − 1.0 > 3 > 3

Proposed Approach 0.0 7.95 4.93 0.85

The best location of the ligands in their corresponding receptors can be ob-
served in Fig. 4. For the 1ABE complex, the best location for the ligand was
inside the binding site because the remaining space is occupied by the receptor
(see Fig. 4(a)). Some of the 1ACM and 1BAF conformations fitted inside the
binding site, but since the atoms collided, they were penalized and the ligands
were located outside the protein surface (see Figs. 4(b) and 4(c)). Figure 4(d)
shows that in the cavity of the 1CDG receptor, unlike in 1ACM and 1BAF, there
are lesser collisions between atoms from both molecules.

In the prediction of the complexes, it was difficult to establish a relationship
between the RMSD errors and energy values, specially when the binding site is
a cavity where several collisions between protein and ligand atoms can occur, as
it was the case of the 1BAF and 1ACM complexes (see Figs. 4(b) and 4(c)). In
contrast, when there are not so many collisions between the protein and ligand
in the receptor cavity, as was the case of the 1ABE and 1CDG complexes, the
optimization process had a better performance and the predicted complexes were

190 A. Sandoval-Perez et al.

closer to the reported ones (see Figs. 4(a) and 4(d)). A remarkable aspect of the
proposed approach is its ability to converge to a set of complexes with similar
energy values but different RMSD errors, as shown in Fig. 4(d).

Table 3 shows the comparison between the RMSD values of the complexes
predicted by the proposed approach and other docking models. The comparison
was carried out using docking models based on evolutionary algorithms to ex-
plore the search space, such as DOCK and GOLD, as well as the model FLEXX,
which uses a different approach.

It is important to notice that all of the models used in the comparison had
at least one energy function based on force fields such as the one used in the
proposed approach [5]. The other models also included additional energy and
scoring functions to evaluate the geometric complementarity between the recep-
tor and the ligand. However, the predicted complexes had similar RMSD errors
for the different models (see Table 3). Only for the 1ACM complex, the RMSD
error was higher in the proposed approach than in the other models. In contrast,
for the 1ABE complex, the method was able to find a complex with an RMSD
equal to 0, which means that the model was able to predict and select the exact
complex reported experimentally. For the 1BAF complex, the proposed approach
had a similar performance to the other models.

An interesting result was the one obtained for the 1CDG complex, in which
the ligand has a high number of rotatable bonds. Generally, docking models have
problems in correctly predicting complexes formed with a ligand that had more
than seven rotatable bonds [12].

4 Conclusions

This work contributes proposing an optimization energy approach to predict the
ligand conformation and configuration in the docking problem. Particularly, we
introduced a novel method for predicting molecular complexes based on a multi-
objective approach at an atomic conformational level. By analyzing the results,
it is possible to establish that the proposed model was capable of optimizing the
energy values of complexes formed between a ligand and a receptor.

It can be concluded that: (i) The method proposed for representing small or-
ganic molecules is adequate for the search of the conformational space because it
reduces the number of variables that need to be considered by the evolutionary
algorithm. (ii) The use of an MOEA enabled the identification of molecular com-
plexes with 3D structures relatively close to the ones previously reported for the
analyzed structures. (iii) The proposed method was able to find good complexes
when the ligand had a high number of rotatable bonds; this is of remarkable im-
portance because other available methods have problems under these situations.
(iv) Further work is needed to consider additional scoring functions that evalu-
ate the solutions and penalize collisions; also some geometric constraints can be
included to avoid ignoring possible good locations by allowing the exploration
of cavities, which either can not be accessible to the solvent or whose shape can
produce collisions between the ligand and the receptor.

A Multi-objective Optimization Energy Approach 191

Acknowledgement. We would like to sincerely thank Nora Martinez for proof-
reading this manuscript. AS-P, DB and DR-M are supported by Colciencias’s
Francisco Jose de Caldas scholarships.

References

1. Branke, J., Deb, K., Dierolf, H., Osswald, M.: Finding Knees in Multi-objective
Optimization. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós,
J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN
2004. LNCS, vol. 3242, pp. 722–731. Springer, Heidelberg (2004),
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.76.9689

2. Brooijmans, N., Kuntz, I.D.: Molecular recognition and docking algorithms. Annu.
Rev. Biophys. Biomol. Struct. 32, 335–373 (2003)

3. Brünger, A.T., Leahy, D.J., Hynes, T.R., Fox, R.O.: The 2.9 Å resolution structure
of an anti-dinitrophenyl-spin-label monoclonal antibody fab fragment with bound
hapten. J. Mol. Biol. 221(1), 239–256 (1991)

4. Case, D., Darden, T., Cheatham Iii, T., Simmerling, C., Wang, J., Duke, R., Luo,
R., Crowley, M., Walker, R., Zhang, W., et al.: Amber 10, vol. 32. University of
California, San Francisco (2008)

5. Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Ferguson, D.M.,
Spellmeyer, D.C., Fox, T., Caldwell, J.W., Kollman, P.: A second generation
force field for the simulation of proteins, nucleic acids, and organic molecules.
JACS 117(19), 5179–5197 (1995), http://dx.doi.org/10.1021/ja00124a002

6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation 6(2),
182–197 (2002)

7. Dehuri, S., Cho, S.B.: Multi-criterion pareto based particle swarm optimized poly-
nomial neural network for classification: A review and state-of-the-art. Comp. Sci.
Rev. 3(1), 19–40 (2009)

8. Dong, Q., Wu, Z.: A linear-time algorithm for solving the molecular distance ge-
ometry problem with exact inter-atomic distances. J. Global Opt. 22(1), 365–375
(2002), http://dx.doi.org/10.1023/A:1013857218127

9. Durillo, J., Nebro, A., Luna, F., Dorronsoro, B., Alba, E.: jmetal: a java frame-
work for developing multi-objective optimization metaheuristics. Departamento de
Lenguajes y Ciencias de la Computación, University of Málaga, ETSI Informática,
Campus de Teatinos, Tech. Rep. ITI-2006-10 (2006)

10. Hanser, T., Jauffret, P., Kaufmann, G.: A new algorithm for exhaustive ring per-
ception in a molecular graph. J. Chem. Inf. Comput. Sci. 36(6), 1146–1152 (1996)

11. Ishida, M., Asakura, T., Yokoi, M., Saito, H.: Solvent-and mechanical-treatment-
induced conformational transition of silk fibroins studies by high-resolution solid-
state carbon-13 nmr spectroscopy. Macromolecules 23(1), 88–94 (1990)

12. Jones, G., Willett, P., Glen, R.C., Leach, A.R., Taylor, R.: Development and val-
idation of a genetic algorithm for flexible docking. J. Mol. Biol. 267(3), 727–748
(1997), http://view.ncbi.nlm.nih.gov/pubmed/9126849

13. Kapetanovic, I.M.: Computer-aided drug discovery and development (caddd): in
silico-chemico-biological approach. Chemico-Biological Interact. 171(2), 165–176
(2008)

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.76.9689
http://dx.doi.org/10.1021/ja00124a002
http://dx.doi.org/10.1023/A:1013857218127
http://view.ncbi.nlm.nih.gov/pubmed/9126849

192 A. Sandoval-Perez et al.

14. Kramer, B., Rarey, M., Lengauer, T.: Evaluation of the FLEXX incremental con-
struction algorithm for protein–ligand docking. Proteins 37(2), 228–241 (1999),
http://dx.doi.org/10.1002/(SICI)1097-0134(19991101)

37:2<228::AID-PROT8>3.0.CO;2-8

15. Kuntz, I.D., Blaney, J.M., Oatley, S.J., Langridge, R., Ferrin, T.E.: A geomet-
ric approach to macromolecule-ligand interactions. J. Mol. Biol. 161(2), 269–288
(1982)

16. Lawson, C.L., Van Montfort, R., Strokopytov, B., Rozeboom, H., Kalk, K., de
Vries, G., Penninga, D., Dijkhuizen, L., Dijkstra, B.W.: Nucleotide sequence and
X-ray structure of cyclodextrin glycosyltransferase from Bacillus circulans strain
251 in a maltose-dependent crystal form. J. Mol. Biol. 236(2), 590–600 (1994)

17. Lepre, C.A., Moore, J.M., Peng, J.W.: Theory and applications of nmr-based
screening in pharmaceutical research. Chem. Rev. 104(8), 3641–3676 (2004)

18. Lodish, H., Baltimore, D., Berk, A., Darnell, J.: Molecular cell biology. WH Free-
man, New York (1995)

19. Makino, S., Kuntz, I.D.: Automated flexible ligand docking method and its appli-
cation for database search. J. Comp. Chem. 18(14), 1812–1825 (1997)

20. Moustakas, D., Lang, P., Pegg, S., Pettersen, E., Kuntz, I.D., Brooijmans, N.,
Rizzo, R.: Development and validation of a modular, extensible docking program:
DOCK5. J. Comput. Aided Mol. Des. 20, 601–619 (2006),
http://dx.doi.org/10.1007/s10822-006-9060-4 ,
doi:10.1007/s10822-006-9060-4

21. Nicolaou, C.A., Brown, N., Pattichis, C.S.: Molecular optimization using compu-
tational multi-objective methods. Curr. Opin. Drug Discov. Dev. 10(3), 316 (2007)

22. Quiocho, F.A., Vyas, N.K.: Novel stereospecificity of the l-arabinose-binding pro-
tein. Nature 310(5976), 381–386 (1984)

23. Sams-Dodd, F.: Target-based drug discovery: is something wrong? Drug Discov.
Today 10(2), 139–147 (2005)

24. Stebbins, J., Robertson, D., Roberts, M., Stevens, R., Lipscomb, W., Kantrowitz,
E.: Arginine 54 in the active site of Escherichia coli aspartate transcarbamoylase
is critical for catalysis: A site-specific mutagenesis, nmr, and x-ray crystallographic
study. Prot. Sci. 1(11), 1435–1446 (2008)

25. Subasi, E., Basdogan, C.: A new haptic interaction and visualization approach for
rigid molecular docking in virtual environments. Presence 17(1), 73–90 (2008)

26. Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A., Case, D.A.: Development
and testing of a general amber force field. J. Comp. Chem. 25(9), 1157–1174 (2004)

http://dx.doi.org/10.1002/(SICI)1097-0134(19991101)37:2$<$228::AID-PROT8$>$3.0.CO;2-8
http://dx.doi.org/10.1002/(SICI)1097-0134(19991101)37:2$<$228::AID-PROT8$>$3.0.CO;2-8
http://dx.doi.org/10.1007/s10822-006-9060-4

Semantic Bias in Program Coevolution

Tom Seaton, Julian F. Miller, and Tim Clarke

Department of Electronics
University of York

{tas507,julian.miller,tim.clarke}@york.ac.uk

Abstract. We investigate two pathological coevolutionary behaviours,
disengagement and cycling, in GP systems. An empirical analysis is car-
ried out over constructed GP problems and the Game of Tag, a historical
pursuit and evasion task. The effects of semantic bias on the occurence of
pathologies and consequences for performance are examined in a coevo-
lutionary context. We present findings correlating disengagement with
semantic locality of the genotype to phenotype map using a minimal
competitive coevolutionary algorithm.

Keywords: Coevolution, Genetic Programming, Semantics, Benchmarks.

1 Introduction

Pathological or unintended behaviours are a well-established issue in the design
of coevolutionary algorithms (CoEA) [12]. Coevolutionary pathologies are pro-
cesses, distinct to coevolutionary systems, that interfere with progress of the
search towards a desired goal state. Analysis of these pathological behaviours in
systems of minimal complexity has been a principal component of coevolution-
ary research in genetic algorithm (GA) representations, focusing on both their
theoretical basis [4] and mitigation [3]. In this paper, we examine how coevo-
lutionary pathologies can influence progress in coevolutionary forms of genetic
programming (GP). Although pathological behaviours have been addressed in
GP [8], to our knowledge no studies exist which explicitly recreate these concepts
using a quantifiable, controlled approach under program representations. Our in-
tention is to bridge this gap with an initial study demonstrating and analysing
pathologies in a minimal form of GP.

Disengagement and cycling are patterns of search behaviour that occur in
systems lacking an objective method of fitness evaluation. Informally, coevolu-
tionary algorithms determine a search gradient through the interaction of sets
of individuals rather a single individual. Disengagement therefore occurs when
an element of the system has entered a state for which no search gradient can
be induced by reference to the other coevolving elements. Cycling behaviour
occurs when previously visited interactions recur so that the search is led to
return repeatedly to a previous set of individuals. The former pathology results
in a period of unguided search. The latter pathology wastes computational effort
by re-evaluating previously visited states. We postulate that disengagement and

K. Krawiec et al. (Eds.): EuroGP 2013, LNCS 7831, pp. 193–204, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

mailto:tas507@york.ac.uk

194 T. Seaton, J.F. Miller, and T. Clarke

cycling are particularly significant in coevolutionary systems which use GP repre-
sentations. Disengagement has been suggested to occur with greater frequency in
situations where it is more difficult to make objective progress in some coevolved
components than others [1]. Because most GP expressions are far from uniformly
represented, such asymmetry may be common. Cycling behaviour is costly be-
cause (in general) re-evaluating GP structures is associated with more compu-
tation than their binary counterparts. However, it is not presently known which
factors in the GP paradigm influence disengagement and cycling behaviours.
This empirical work focuses on one possible factor, semantic bias. Research on
semantics and the genotype-phenotype map in GP has been a prominent area
since GP’s inception [11,14,20], but it is not clear how previous findings in clas-
sical single population GP extend to coevolutionary systems. The experiments
described here examine the effect of local and non-local semantic topology on
disengagement, cycling and performance in a coevolutionary GP system.

The structure of this paper is as follows. In Section 2, we introduce a set of
suitable, simple, benchmark coevolutionary problems. These have been selected
to elicit measurable forms of pathological behaviour when using GP in a coevolu-
tionary setting. Section 3 describes our experimental configuration and treatment
of parameters. Section 4 summarises the results for each pathological case. The
final section discusses how the relationships observed between pathological be-
haviour, semantic constraints and performance have informed our understanding
of coevolution in GP.

2 Benchmark Selection

Few established benchmarks exist for coevolutionary forms of GP. Historically,
one natural source of problems has been competitive pursuit and evasion games,
where the objective is to develop strategies to intercept or escape an opponent.
An example is the Serengeti problem, first analysed in GP by Haynes and Sen
[5], which presents a classic predator-prey scenario. Strategies are developed for
multiple predators (‘lions’) to capture a prey-agent (a ‘gazelle’) on a simulated
grid-world. Serengeti is considered to be difficult to solve without a degree of
cooperation between predators [9]. Pursuit and evasion is frequently used in the
coevolutionary literature, but has been criticised as a method of benchmarking
[2], primarily due to the complexity of interactions between different strategies
and the ensuing difficulties when defining measures of progress. However given
the breadth of practical applications, it remains an attractive area within which
to analyse CoEA, provided a sufficiently simplified problem instance can be
defined.

Another commonly employed class of coevolutionary GP problem is a ‘game
vs. environment’ where programs are coevolved for the purpose of controlling
an agent in conjunction with an increasingly challenging structure, such as a
maze or series of obstacles. The Tartarus grid-world game proposed by Teller
[17, 18] presents such a situation, in which an agent must manoeuvre a series
of blocks into positions around the edges of the world. A more recent example

Semantic Bias in Program Coevolution 195

can be found in Cartlidge [1], in which a maze navigation problem was defined
where strategies to control robots to escape a maze are coevolved simultaneously
with increasingly difficult maps. Both problems are examples of asymmetric
problem difficulty in GP (challenging worlds are easier to obtain than good
controllers.) However, the utility of established problems such as Serengeti and
Tartarus is questionable when investigating coevolutionary pathologies. Firstly,
both Serengeti and Tartarus lack a clearly defined notion of optimal behaviour
or solution concept against which to measure progress. Secondly, their solutions
require complex components whose contribution to the problem difficulty is not
well understood. Notably, the Tarturus game requires that solutions incorporate
memory, for example in the form of a finite state machine. It is unclear how
these requirements interact with GP performance.

Given the paucity of suitable benchmarks, for this work we introduce two
new minimal constructed problems after the style of existing analysis in GA sys-
tems, the GP Greater Than Game and Simple Cycler. These games are designed
specifically to explore disengagement and cycling in a GP context. The problems
are derived from the concept of GA ‘number games’ following a similar principle
to those analysed in [3] and [19]. We will also consider a more complex historical
pursuit and evasion task, the Game of Tag.

2.1 Problem Set

GP Greater-Than Game (GP-GTG). To investigate the pathology of dis-
engagement in GP, the GA Greater-Than (GT) game described by [1] was gener-
alised to the context of GP representations (GP-GTG). GP-GTG uses two sym-
metric populations of programs. Each program operates on real values formed
from a constrained function set {+,-} accepting a single terminal input fixed at
unity. Programs have a single output, derived by evaluating the expression at the
root node of the program. The outcome of comparing a pair of programs (p, p′)
is given as a function of the program outputs g. We term this the interaction
function:

g(p, p′) =

⎧⎨
⎩

1.0 o(p) > o(p′)
0.5 o(p) = o(p′)
0.0 o(p) < o(p′)

(1)

where o(p) and o(p′) are the real valued outputs of each program. The expressions
are constrained to a maximum depth n, measured from root to terminal nodes.
The game is solved after a program is found from the subset of programs which
maximises the output.1

Simple Cycler (SC). Informally, we define cycling behaviour in coevolutionary
GP as exiting and revisiting the same phenotypic state in a program search space.
Simple Cycler is an elementary game which is designed to simulate measurable,
irregular cycles in a coevolutionary GP algorithm. Evolved programs operate on

1 GP-GTG is superficially similar to the GP ‘MAX’ problem [7]. The key distinction
is that programs are evaluated using only their relative rather objective fitness.

196 T. Seaton, J.F. Miller, and T. Clarke

boolean values and are constructed from the function set {AND,OR,NOT,IF},
where the IF function accepts three arguments: a condition, response if the
condition is true and response if the condition is false. The input is a fixed
terminal with value TRUE. Programs are required to output a string of n boolean
values (for example, from n selected output nodes). This output is mapped onto
an unsigned integer o ∈ {1 : 2n}, using a binary encoding. The interaction
function is computed as:

g(p, p′) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1.0 o(p) > o(p′) except o(p) = 2n and o(p′) = 1
1.0 o(p) = 1, o(p′) = 2n

0.5 o(p) = o(p′)
0.0 o(p) < o(p′) except o(p) = 1 and o(p′) = 2n

0.0 o(p) = 2n, o(p′) = 1

(2)

This expression states that the program corresponding to the greatest integer
wins, except for the cases where the maximum integer (2n) value is compared
to the minimum integer (1). Therefore under this function all programs can be
positioned on a single transitive chain of length 2n. A cycle is said to occur when
a program has changed from a structure corresponding to the smallest integer
to the largest and back, traversing the intermediate states. Cycling behaviour is
monitored by measuring the average period over a fixed number of generations.

The Game of Tag (GoT). The Game of Tag is a two dimensional GP pur-
suit and evasion game introduced by Reynolds [13]. Games consist of an idealised
scenario in which control programs are developed which provide pursuit and eva-
sion strategies. Analogous to the children’s game, the objective for each control
program is to minimise the length of time during which a program is designated
as ‘it’ (the pursuer). Play occurs between pairs of competitors, which are point
objects able to move at a fixed speed over a number of discrete timesteps. No
account is made for momentum or limitations in change of heading. If the com-
petitor designated as ‘it’ enters a certain capture radius of its opponent, the
opponent is ‘tagged’ and the roles are exchanged. Successful programs must si-
multaneously evolve pursuit and evasion behaviours, depending on their role at
that timestep. Effective algorithms should increase the capability of competi-
tors in both roles progressively over time.2 Our implementation closely follows
Reynold’s original version. At the start of a game, one competitor is placed
at the centre of the two-dimensional play area. The other competitor is placed
uniformly at random in a square region with width w centered on this posi-
tion. Whilst a competitor is in pursuit, it is set to move at twice the speed of the
evader. Inputs to each program are restricted to a real-valued vector (x, y) in the
local coordinate system of the competitor and a boolean value, which specifies
whether the competitor is in pursuit or not at that timestep. Programs provide
a single real number output, which is interpreted as an updated heading. A score

2 In this work we do not consider external methods of assisting progress, such as
archives. Understanding the components of GP that impact on pathological be-
haviours may provide systems which are less reliant on these approaches.

Semantic Bias in Program Coevolution 197

Fig. 1. Pure and proportional navigation pursuit strategies. The pursuer is shown
against a fixed trajectory evader is shown over a discrete timestep t → t + 1.

s is awarded to each competitor at the end of the game, equal to the number of
timesteps spent as the evader. During training, the interaction function between
two programs is evaluated as the average score obtained over a set of S games.
In the first half of the set the first program p begins as the evader and in the
second half the initial role is swapped.

g(p, p′) =
1

|S|
∑
i∈|S|

si(p, p
′) (3)

Reynolds assessed the objective quality of competitors by comparison against a
robust artificial strategy, pure-pursuit. Competitors implementing pure-pursuit
move directly towards their opponent whilst the pursuer and directly away whilst
the evader. In the game of tag deviation by either adversary to any other strategy
results in poorer performance, because a route other than the shortest path
must be traversed (in game-theoretic terms this is a Nash equilibrium.) The
present work includes an additional measure of solution quality using a further
guidance strategy, proportional navigation. Proportional navigation is a widely
applied guidance law, backed by a large body of analysis [15, 22]. The strategy
employs the principle that an interception between the trajectories of two objects
traveling with fixed speed will occur if the bearing between them is constant. In
proportional navigation, the heading is updated at each timestep proportional
to a constant N , which controls the magnitude of response (we assume N=3, see
analysis in [15]). The angle γ gives the heading of the adversary. The angle θ gives
the current heading. Angles are measured with respect to the local coordinate
system. An example contrasting both strategies is sketched in Figure 1.

3 Experiment

3.1 Algorithm and Representation

An intentionally minimal GP algorithm was used for ease of comparison with
other techniques. An integer genotype representation, Cartesian Genetic Pro-
gramming (CGP), was selected across all problems [10]. Standard CGP uses only
a truncation selection strategy followed by uniform mutation without crossover.
In addition, CGP has recently been applied to a coevolutionary setting [16].

198 T. Seaton, J.F. Miller, and T. Clarke

Fig. 2. Example contrasting the effects of the semantic bias on distances of mutated
offspring. Illustrated for 105 sampled mutation operations in Simple Cycler.

Two populations of CGP programs were initialised uniformly and evaluated
through the simplest coevolutionary interaction scheme (complete mixing) in
which programs are tested versus all members of the other population P :

f(p) =
∑
p′∈P

g(p, p′) (4)

Fitness values are given by the outcomes accumulated over all interactions.

3.2 Semantic Bias

A semantic bias was introduced to the mutation operator. A parameterised tech-
nique similar to the methods of Nguyen [11] was used, which has been previously
applied to CGP to introduce a syntactic bias in [14]. A metric approximating the
semantic difference between programs was defined for each problem, dGP−GTG,
dSC and dGoT respectively:

dGP−GTG = |o(p)− o(p′)| (5)

dSC = min

{
|o(p)− o(p′)|
2n − |o(p)− o(p′)|.

(6)

dGoT =
∑
K

|θ(p)− θ(p′)| (7)

Equation 5 is the absolute difference in the output of each program. Equation
6 is the shortest distance measured around the transitive cycle. Equation 7 is
the absolute difference between output headings summed over a set of K input
vectors to both programs. The set of vectors point to a grid of uniformly dis-
tributed fixed positions across the square starting region in the Game of Tag.
A sigmoid function is used to bias the probability of mutating to individuals at
particular semantic differences. The function gives the probability of accepting a

Semantic Bias in Program Coevolution 199

Table 1. Fixed Algorithm Parameters and Game Properties

Parameter GP-GTG SC GoT

Nodes 20 20 50

Function Set {+,-} {AND, OR, NOT, TRUE} Reynolds [13]

Terminal Set {0,1} {TRUE} {x, y, isIt, [0.2:1.0]}
Mutation Rate 0.05 0.05 0.02

Selection Strategy 4+6 ES 1+1 ES 1+4 ES

Output Type o ∈ {1 : 2n} o ∈ {1 : 2n} o ∈ R, mapped onto [0:2π]

Populations 2 × 10 2 × 1 2 × 5

Runs 500 200 500

Max Generations 500 1000 500

β 1 1 0.05

Games/Opponent 1 1 Training: 5, Testing: 100

Game length N/A N/A 100 timesteps

Startbox Size w N/A N/A 7

Pursuer speed N/A N/A 2

Evader speed N/A N/A 1

Capture radius N/A N/A 1

prospective mutated individual, with respect to the semantic distance between
parent and child. Control is provided by a pair of parameters (α, β) ∈ R2, β ≥ 0.
The parameter α alters the slope of the sigmoid function, where α << 0 and
α >> 0 correspond to a bias towards small and large semantic changes in each
mutation. The parameter β offsets the function, giving the semantic distance
at which there is a 50% chance of accepting a mutation, i.e. sigmoid(β) = 0.5.
An example of the effects of the biased mutation operator on the distribution of
mutation distances is illustrated in Figure 2, for SC with β = 1.

3.3 Summary of Fixed and Variable Parameters

In preliminary experiments, fixed algorithm parameters were tuned indepen-
dently for each problem to give a locally optimal set of parameters for the CGP
system, under no semantic bias (α = 0). The range of values given in [10] was
used as a basis. The Game of Tag parameters are based on those originally fixed
by Reynolds [13]. Following the original work, the root node of all programs
evolved in the Game of Tag is seeded with the ‘IF-IT’ function to provide a sep-
arate flow of execution for pursuit and evasion. Because there is no standardised
approach to providing constants in CGP, the simplest technique is adopted here:
the introduction of a small array of fixed constants as terminal values {0.2, 0.4,
0.6, 0.8, 1.0}. Although a full-factorial analysis of all parameters is outside the
feasible scope of this work, in Section 4.2 we test the sensitivity of our exper-
imental outcomes to mutation rate and length of CGP genotype. The offset β
was fixed to the minimum semantic difference in the constructed problems and
a representative small angular difference of 0.05 revolutions (18◦) in the GoT,

200 T. Seaton, J.F. Miller, and T. Clarke

to give semantically local differences in the limit α << 0. A summary of all the
parameters used in each problem case is given in Table 1.

4 Results

4.1 Disengagement in the GP Greater than Game

The definition in [1] states that two populations can be considered to be disen-
gaged when the variance of the accumulated fitness values across each population
is zero. Figure 3 contrasts the probability of disengagement in GP-GTG and the
magnitude of expected program output (performance), averaged over all runs
as a function of α. A strong sensitivity to the semantic bias was observed. For
α < 0, the probability of disengagement is high and the evolved program output
is low. Performance and disengagement were strongly correlated with the value
of α (resp. Spearman 0.99 and -0.95, p ≤ 0.005, exact). We infer that using a
mutation operator with a high probability of making a small semantic change
increases the likelihood of disengagement. Highest performance is observed for
this case when the mutation operator is biased towards larger semantic changes.

Fig. 3. Disengagement in the GP-GTG case. Top left: Expected output of the best
evolved program. Top right: Probability of disengagement. Bottom left: Sensitivity
of expected output to semantic locality. Bottom right: Sensitivity of probability of
disengagement to semantic locality (reported at 250 generations).

Semantic Bias in Program Coevolution 201

4.2 Periodicity in the Simple Cycler Game

Cycling is characterised by measuring the mean number of generations for each
population to transition between the maximum program state 2n and back. Use
of a 1+1 EA ensures that each population is at a single position at any given
instance.3 Figure 4 shows the period obtained over 200 runs, for transitive chains
of increasing length. As n is increased, the time to traverse the chain is larger. The
effect on cycle rate of mutation rate and α is shown in the bottom two images.
Predictably, in the limit of very low mutation rates the cycle frequency tends
to zero (no change in state). Biasing the semantic mutation operator towards
larger semantic changes (α ≥ 1) corresponded to longer periods. In the limit
of high mutation rates and small α, the average frequency tended to ∼ 1

2n , or
one generation per program state in the transitive chain. The fastest cycling
behaviour was apparent in both mutation operators which produced very small
semantic changes in programs and also those approaching random search.

4.3 Performance in the Game of Tag

Performance in the Game of Tag was measured by relative evaluation with re-
spect to four pursuit and evasion strategies. These included pure-pursuit (PP)
and proportional navigation (PN). In addition, progress was also evaluated
against a noisy control (R), which returned a randomised heading for all input
vectors. Finally a mixed strategy was defined to give an intermediate quality
opponent, which returned either a randomised response or the pure pursuit re-
sponse with equal probability (PR). Figure 5 (left) shows the expected progress
of unbiased CGP against these metrics. Best performance was achieved against
the randomised and proportional navigation strategies (evolved strategies are ex-
pected to win ≈ 90% of games versus random opponents). Weakest performance
is evident against the PP and PR strategies. A modest expected performance
(≈ 20%) was observed against the pure pursuit case, though higher success rates
were achieved in individual cases, similar to that of Reynolds [13]). A direct
comparison with the performance of Reynold’s implementation is not possible
because only 5 individual runs were reported in the original work. The sensitivity
of the CGP algorithm in the Game of Tag to semantic bias was examined. No
significant change was observed when measuring against the PP strategy. A weak
response was measurable against the PR, R and PN strategies. The measured
Spearman correlation coefficients in each case are (PP = -0.17, PR = -0.82, PN
= -0.79, R = -0.62) where the correlations in PR, PN and R are significant at
p ≤ 0.005 (exact). Figure 5 (right) shows the change in expected performance
at 250 generations for each of the significant results. Best performance was ob-
served at α = −50, which corresponds to a strong bias towards small phenotypic
changes. However, the net performance change is small (≈ 5− 10% difference in
win ratio) and the effect of varying semantic locality in this case is marginal.

3 Devising an unambigious definition of cycling behaviour in larger populations of
practical interest is an open issue for GP, which we leave for future debate.

202 T. Seaton, J.F. Miller, and T. Clarke

Fig. 4. Cycle rate in the Simple Cycler case. Top left: Scaling of unbiased cycle rate
with problem size. Top right: Extract of a coevolutionary run, illustrating irregular
cycling in both populations. Bottom left: Response to mutation rate. Bottom right:
Response to semantic bias.

Fig. 5. Game of Tag Performance. Left: Unbiased CGP performance. Right: Sensitivity
of performance to semantic bias.

Semantic Bias in Program Coevolution 203

5 Discussion

The strong correlation between performance and disengagement in GP-GTG
supports our hypothesis that disengagement is a significant factor in program co-
evolution. The probability of disengagement increases for small changes because
programs are less likely to be distinguished using the coevolving population. Al-
though we must be wary of generalising too far from this simplified example, the
result suggests there may be a tradeoff between the use of semantically local map-
pings and operators which permit sufficient diversity to ensure populations of pro-
grams remain engaged.An interesting result from the Simple Cycler example is the
trend towards faster cycling in both random (high mutation rate) and highly local
search (small α). Inspection of individual runs showed that this is a consequence
of two distinct search behaviours. Under random search, programs do not traverse
the chain of states and instead revisit each state with fixed probability. For small
n this probability is high, therefore giving a short period. In contrast, when mu-
tations are constrained to programs with a small difference in output, the search
tends towards hillclimbing through the intermediate states, also giving fast cycles.
The result implies that, because cycling in GP is a pathologywhich occurs when an
algorithm follows a transitive chain of programs, mappings biased towards small
semantic changes may worsen this behaviour. Varying semantic bias in the Game
of Tag problem introduced only aminor change to performance.We theorise this is
due to two issues. Firstly, relative to the constructed problems, the semantic map-
ping in the Game of Tag is significantly more complex. The relationship between
the outcome of a game and changes to program output is not transparent. It is
therefore not clear whether our metric for semantic difference is the most suitable
for this case. Secondly, the randomised starting configuration introduces noise into
each outcome. This reduces the measured likelihood of disengagement in this case
because of the increased variation in fitness values.

6 Conclusions and Further Work

These experiments highlight that pathological behaviours are a factor in the
performance of coevolutionary forms of GP and that semantic biases in the GP
genotype-phenotype map can influence their occurence. We introduced two new
constructed problems based on the concept of coevolutionary number games in
GA systems. Disengagement in coevolving populations was strongly related to
semantic locality. We showed that semantic locality changed the frequency of cy-
cling in a simple GP system. A weak response to semantic bias was also observed
in a more realistic coevolutionary system, the Game of Tag. The scope of this
work could be extended by analysing further GP algorithms, problem sets and
other pathological behaviours which have been characterised in binary represen-
tations (for example, overgeneralisation [21]). At present, archiving techniques
are used to provide theoretical guarantees of progress in coevolutionary EAs.
However, examining the genotype to phenotype map used in methods of GP
which have achieved good results without archives [6] may indicate how repre-
sentations inherently robust to coevolutionary pathologies can be developed.

204 T. Seaton, J.F. Miller, and T. Clarke

References

1. Cartlidge, J., Ait-boudaoud, D.: Coevolutionary Optimization. IEEE Transactions
on Evolutionary Computation 15(2), 215–229 (2011)

2. Cliff, D., Miller, G.F.: Co-evolution of Pursuit and Evasion II: Simulation Meth-
ods and Results. In: From Animals to Animats: Proc. of the Fourth International
Conference on Simulation of Adaptive Behaviour. University of Sussex (1995)

3. De Jong, E.: A Monotonic Archive for Pareto-Coevolution. Evolutionary Compu-
tation 15(1), 61–93 (2007)

4. Ficici, S.G.: Solution Concepts in Coevolutionary Algorithms. Ph.D. thesis, Bran-
deis University (2004)

5. Haynes, T., Sen, S., Schoenefeld, D., Wainwright, R.: Evolving multiagent coor-
dination strategies with genetic programming. Tech. Rep. UTULSA-MCS-95-04,
The University of Tusla (May 31, 1995)

6. Jaśkowski, W., Krawiec, K., Wieloch, B.: Winning Ant Wars: Evolving a Human-
Competitive Game Strategy Using Fitnessless Selection. In: O’Neill, M., Vanneschi,
L., Gustafson, S., Esparcia Alcázar, A.I., De Falco, I., Della Cioppa, A., Tarantino,
E. (eds.) EuroGP 2008. LNCS, vol. 4971, pp. 13–24. Springer, Heidelberg (2008)

7. Langdon, W., Poli, R.: Foundations of Genetic Programming. Springer (2002)
8. Lipson, H., Bongard, J., Zykov, V.: Co-Evolutionary Methods in System Design

and Analysis. In: 15th International CIRP Design Seminar, Shanghai (2005)
9. Luke, S., Spector, L.: Evolving Teamwork and Coordination with Genetic Pro-

gramming. In: GECCO 1996, pp. 150–156 (July 1996)
10. Miller, J.F. (ed.): Cartesian Genetic Programming, 1st edn. Springer (2011)
11. Nguyen, Q.U.: Examining Semantic Diversity and Semantic Locality of Operators

in Genetic Programming. Ph.D. thesis, University College Dublin (2011)
12. Popovici, E., Bucci, A., Wiegand, R.P., De Jong, K.: Coevolutionary Principles.

In: Handbook of Natural Computing. Springer, Berlin (2010)
13. Reynolds, C.W.: Competition, Coevolution and the Game of Tag. In: Artificial Life

IV, pp. 59–69 (1994)
14. Seaton, T., Miller, J.F., Clarke, T.: An Ecological Approach to Measuring Local-

ity in Linear Genotype to Phenotype Maps. In: Moraglio, A., Silva, S., Krawiec,
K., Machado, P., Cotta, C. (eds.) EuroGP 2012. LNCS, vol. 7244, pp. 170–181.
Springer, Heidelberg (2012)

15. Shukla, U., Mahapatra, I.R.: The proportional navigation dilemma-pure or true?
IEEE Transactions on Aerospace and Electronic Systems 26(2), 382–392 (1990)

16. Šikulová, M., Sekanina, L.: Coevolution in Cartesian Genetic Programming. In:
Moraglio, A., Silva, S., Krawiec, K., Machado, P., Cotta, C. (eds.) EuroGP 2012.
LNCS, vol. 7244, pp. 182–193. Springer, Heidelberg (2012)

17. Teller, A.: Learning Mental Models. In: Proceedings of the Fifth Workshop on
Neural Networks (1993)

18. Trenaman, A.: Concurrent Genetic Programming, Tartarus and Dancing Agents.
In: Langdon, W.B., Fogarty, T.C., Nordin, P., Poli, R. (eds.) EuroGP 1999. LNCS,
vol. 1598, pp. 270–282. Springer, Heidelberg (1999)

19. Watson, R., Pollack, J.: Coevolutionary Dynamics in a Minimal Substrate. In:
GECCO 2001, pp. 702–709. Morgan Kaufmann (2001)

20. Whigham, P.: Search bias, language bias and genetic programming. In: First An-
nual Conference on Genetic Programming, pp. 230–237. MIT Press (1996)

21. Wiegand, R.P.: An Analysis of Cooperative Coevolutionary Algorithms. Ph.D.
thesis, George Mason University (2003)

22. Yuan, L.C.L.: Homing and Navigational Courses of Automatic Target-Seeking De-
vices. Journal of Applied Physics 19(12), 1122–1129 (1948)

A New Implementation of Geometric Semantic GP
and Its Application to Problems in Pharmacokinetics

Leonardo Vanneschi1,2,3, Mauro Castelli1,2, Luca Manzoni3, and Sara Silva2,4

1 ISEGI, Universidade Nova de Lisboa, 1070-312 Lisboa, Portugal
2 INESC-ID, IST / Universidade Técnica de Lisboa, 1000-029 Lisboa, Portugal

3 D.I.S.Co., Università degli Studi di Milano-Bicocca, 20126 Milano, Italy
4 CISUC, Universidade de Coimbra, 3030-290 Coimbra, Portugal

lvanneschi@isegi.unl.pt

Abstract. Moraglio et al. have recently introduced new genetic operators for ge-
netic programming, called geometric semantic operators. These operators induce
a unimodal fitness landscape for all the problems consisting in matching input
data with known target outputs (like regression and classification). This feature
facilitates genetic programming evolvability, which makes these operators ex-
tremely promising. Nevertheless, Moraglio et al. leave open problems, the most
important one being the fact that these operators, by construction, always produce
offspring that are larger than their parents, causing an exponential growth in the
size of the individuals, which actually renders them useless in practice. In this
paper we overcome this limitation by presenting a new efficient implementation
of the geometric semantic operators. This allows us, for the first time, to use them
on complex real-life applications, like the two problems in pharmacokinetics that
we address here. Our results confirm the excellent evolvability of geometric se-
mantic operators, demonstrated by the good results obtained on training data.
Furthermore, we have also achieved a surprisingly good generalization ability,
a fact that can be explained considering some properties of geometric semantic
operators, which makes them even more appealing than before.

1 Introduction

In the last few years researchers have dedicated several efforts to the definition of Ge-
netic Programming (GP) [5,8] methods or systems based on the semantics of the so-
lutions, where by semantics we generally intend the behaviour of a program once it is
executed, or more particularly the set of its output values on input training data [9].
In particular, very recently new genetic operators, called geometric semantic operators,
have been proposed by Moraglio et al. [10]. These operators have the interesting prop-
erty of inducing a unimodal fitness landscape on any problem consisting in finding the
match between a set of input data and a set of known outputs (like for instance in re-
gression and classification). As a consequence, in principle all these problems should
be easily solvable by GP [8], independently of how complex they are. Nevertheless, as
stated by Moraglio et al. [10], these operators have a serious limitation: by construction,
they always produce offspring that are approximately the double size of their parents
(expressed as the total number of tree nodes), and this makes the size of the individ-
uals in the population grow exponentially with generations. In this way, after a few

K. Krawiec et al. (Eds.): EuroGP 2013, LNCS 7831, pp. 205–216, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

206 L. Vanneschi et al.

generations the population is composed by individuals so big that the computational
cost of evaluating their fitness is unmanageable. This limitation makes these operators
impossible to use in practice, in particular on complex real-life applications.

The solution suggested [10] to overcome this drawback is to integrate in the GP algo-
rithm a “simplification” phase, aimed at transforming each individual in the population
into an equivalent (i.e. with the same semantics) but smaller one. Even though this is an
interesting and challenging study, depending on the language used to code individuals
simplification can be very difficult, and it is often a very time consuming task. For this
reason, in this paper we propose a different strategy to solve the problem: we develop
a GP system incorporating an implementation of geometric semantic genetic operators
that makes them usable in practice, and does so very efficiently, without requiring any
simplification of the individuals during the GP run. With this system we are able, for
the first time, to exploit the great potentialities of the geometric semantic operators on
complex real-life problems. In order to experimentally validate our new GP system, we
apply it to problems in the field of pharmacokinetics, comparing the results with the
ones obtained by standard GP. The two problems addressed are the prediction of human
oral bioavailability and protein-plasma binding levels of medical drugs.

The paper is organized as follows: Section 2 presents the state of the art concerning
the use of semantics to improve GP. Section 3 describes the geometric semantic oper-
ators introduced by Moraglio et al., while Section 4 presents our new GP system that
overcomes the current limitations of these operators, making them usable and efficient.
Section 5 presents the test problems, the experimental settings and the obtained results,
offering in particular a discussion about the generalization ability to out-of-sample data
provided by geometric semantic operators. Finally, Section 6 concludes the paper and
provides hints for future research.

2 Previous Work on Semantics in GP

Several recent contributions have been aimed at using the notion of semantics to study,
or improve, GP. McPhee et al. [9] showed that many applications of crossover often do
not have any effect on semantics (i.e., basically crossover tends to produce offspring
that have the same behaviour as their parents). These results have cast a shadow on
the use of traditional genetic operators, and paved the way to the definition of new,
semantic-based, operators. A first step in this direction was made by Beadle and John-
son [2], where semantics is used to define an algorithm called Semantically Driven
Crossover. With this method, if the offspring are semantically equivalent to their par-
ents, the children are discarded and the crossover is repeated. This process is iterated
until semantically different children are found. The authors argue that this results in
increased semantic diversity in the evolving population, and a consequent improvement
in the GP performance. Nguyen et al. [13] investigated the role of syntactic and se-
mantic locality of crossover in GP. The results showed that improving syntactic locality
reduces code growth, which leads to a slight improvement of the ability to generalize.
By comparison, improving semantic locality significantly enhances GP performance,
reduces code growth and substantially improves the ability of GP to generalize. This
work was the starting point in the search for new operators to directly act on semantics.

A New Implementation of Geometric Semantic GP 207

Under this perspective, Nguyen et al. [11] proposed Semantics Aware Crossover (SAC),
a crossover operator promoting semantic diversity, that was subsequently extended to
Semantic Similarity based Crossover (SSC) [14] and to Semantic Similarity based Mu-
tation (SSM) [12]. Krawiec [6] proposed a class of geometric crossover operators for
GP, i.e. operators aimed at making offspring programs semantically intermediate (me-
dial) with respect to parent programs (a property shared also by the operators considered
here). Krawiec and Lichocki [7] have also used a notion of semantic distance to propose
a crossover operator for GP that is approximately a geometric crossover

3 Geometric Semantic Operators of Moraglio et al.

While the semantically aware methods cited in the previous section often exhibited
superior performance with respect to traditional methods, most of them are indirect:
search operators act on the syntax of the parents to produce offspring that are only
accepted if some semantic criterium is satisfied. To provide operators able to work
directly on the semantic, Moraglio et al. introduced new operators [10] To explain the
idea, we first provide an example using Genetic Algorithms (GAs). Let us consider a
GA problem in which the target solution is known and the fitness of each individual
corresponds to its distance to the target (our reasoning holds for any distance measure
used). This problem is characterized by a very good evolvability and it is in general easy
to solve for GAs. In fact, for instance, if we use point mutation, any possible individual
different from the global optimum has at least one neighbor (individual resulting from
its mutation) that is closer to the target than itself, and thus is fitter. So, there are no
local optima. In other words, the fitness landscape is unimodal and the fitness-distance
correlation [3] is equal to 1, because fitness and distance to the goal are identical, which
indicates the problem is easy to solve. Similar considerations hold for many types of
crossover, including various kinds of geometric crossover [7].

Now, let us consider the typical GP problem of finding a function that maps sets of
input data into known target outputs (regression and classification are particular cases).
The fitness of an individual for this problem is typically a distance between its pre-
dicted output values and the expected ones (error measure). Now let us assume that we
are able to find a transformation on the syntax of an individual whose effect is just a
random perturbation of one of its predicted output values. In other words, let us assume
that we are able to transform an individual G into an individual H whose output val-
ues are like the outputs of G, except for one value, that is randomly perturbed. Under
this hypothesis, we are able to map the considered GP problem into the GA problem
discussed above, in which point mutation is used. So, this transformation, if known,
would induce a unimodal fitness landscape on every problem like the considered one
(e.g. regressions and classifications), allowing GP to have a good evolvability on those
problems, at least on training data. The same also holds for transformations on pairs of
solutions that correspond to GA semantic crossovers.

This idea of looking for such operators is very ambitious and extremely challenging:
finding those operators would allow us to directly search the space of semantics, at the
same time working on unimodal fitness landscapes. Although not without limitations,
the work of Moraglio et al. [10] accomplishes this task, defining new operators that have

208 L. Vanneschi et al.

Fig. 1. An illustration of the fact that geometric semantic crossover creates an offspring that is at
least not worse than the worst of its parents. In this example, offspring O (which stands between
parents P1 and P2 in the semantic space by construction) is clearly closer to target T (training
points represented by “×” symbols) than parent P2. In Section 5 we also discuss the geometric
properties of this operator on test data, represented by τ (test points represented by “∗” symbols).

exactly these characteristics. Here we report the definition of the geometric semantic
operators as given by Moraglio et al. for real functions domains, since these are the
operators we will use in the experimental phase. For applications that consider other
types of data, the reader is referred to [10].

Definition 1. (Geometric Semantic Crossover). Given two parent functions T1, T2 :
R

n → R, the geometric semantic crossover returns the real function TXO = (T1 ·
TR) + ((1− TR) · T2), where TR is a random real function whose output values range
in the interval [0, 1].

The interested reader is referred to [10] for a formal proof of the fact that this operator
corresponds to a geometric crossover on the semantic space, in the sense that it produces
an offspring that stands between its parents in this space. We do not report the proof here,
but we limit ourselves to remark that, even without a formal proof, we can have an intu-
ition of it considering that the (only) offspring generated by this crossover has a semantic
vector that is a linear combination of the semantics of the parents with random coeffi-
cients included in [0, 1] and whose sum is equal to 1. Moraglio et al. [10] also prove an
interesting consequence of this fact: the fitness of the offspring cannot be worse than the
fitness of the worst of its parents. Also in this case we do not replicate the proof here,
but we limit ourselves to giving a visual intuition of this property: in Figure 1 we rep-
resent a simple two-dimensional semantic space in which we draw a target function T
(training points are represented by “×” symbols), two parentsP1 andP2 and one of their
offspringO (which by construction stands between its parents), plus a test set (composed
by test points represented by “∗” symbols) that will be discussed in the final part of Sec-
tion 5. It is immediately apparent from Figure 1 that O is closer to T than P2 (which is
the worst parent in this case). The generality of this property is proven in [10].

Definition 2. (Geometric Semantic Mutation). Given a parent function T : Rn → R,
the geometric semantic mutation with mutation step ms returns the real function TM =
T +ms · (TR1 − TR2), where TR1 and TR2 are random real functions.

Moraglio et al. [10] formally prove that this operator corresponds to a box mutation on
the semantic space, and induces a unimodal fitness landscape. Even without a formal

A New Implementation of Geometric Semantic GP 209

proof it is not difficult to have an intuition of it, considering that each element of the
semantic vector of the offspring is a “weak” perturbation of the corresponding element
in the parent’s semantics. We informally define this perturbation as “weak” because it
is given by a random expression centred on zero (the difference between two random
trees). Nevertheless, by changing parameter ms, we are able to tune the ”step” of the
mutation, and thus the importance of this perturbation.

We highlight the fact that these operators create offspring that contain the complete
structure of the parents, plus one or more random trees and some additional arithmetic
operators: the size of the offspring is thus clearly much larger than the size of their
parents. The exponential growth of the individuals in the population, demonstrated by
Moraglio et al. [10], makes these operators unusable in practice: after a few generations
the population becomes unmanageable because the fitness evaluation process becomes
unbearably slow. The solution suggested in [10] consists in performing an automatic
simplification step after each generation in which the individuals are replaced by (hope-
fully smaller) semantically equivalent ones. However, this additional step adds to the
computational cost of GP and is only a partial solution to the progressive size growth.
Last but not least, depending on the particular language used to code individuals and
the used primitives, automatic simplification can be a very hard task.

In the next section, we present a novel implementation of GP using these operators
that overcomes this limitation, making them efficient without performing any simplifi-
cation step.

4 Novel Implementation of Geometric Semantic GP

Here we describe the proposed implementation of Geometric Semantic GP. Note that,
although we describe the algorithm assuming the representation of the individuals is
tree based, the implementation fits any other type of representation.

In a first step, we create an initial population of (typically random) individuals, ex-
actly as in standard GP. We store these individuals in a table (that we call P from now
on) as shown in Figure 2(a), and we evaluate them. To store the evaluations we create
a table (that we call V from now on) containing, for each individual in P , the values
resulting from its evaluation on each fitness case (in other words, it contains the seman-
tics of that individual). Hence, with a population of n individuals and a training set of
k fitness cases, table V will be made of n rows and k columns.

Then, for every generation, a new empty table V ′ is created. Whenever a new in-
dividual T must be generated by crossover between selected parents T1 and T2, T is
represented by a triplet T = 〈ID(T1), ID(T2), ID(R)〉, where R is a random tree and,
for any tree τ , ID(τ) is a reference (or memory pointer) to τ (using a C-like notation).
This triplet is stored in an appropriate structure (that we call M from now on) that also
contains the name of the operator used, as shown in Figure 2c. The random tree R is cre-
ated, stored in P , and evaluated in each fitness case to reveal its semantics. The values
of the semantics of T are also easily obtained, by calculating (T1 ·R)+((1−R)·T2) for
each fitness case, according to the definition of geometric semantic crossover, and stored
in V ′. Analogously, whenever a new individual T must be obtained by applying muta-
tion to an individual T1, T is represented by a triplet T = 〈ID(T1), ID(R1), ID(R2)〉

210 L. Vanneschi et al.

(stored in M), where R1 and R2 are two random trees (newly created, stored in P and
evaluated for their semantics). The semantics of T is calculated as T1+ms · (R1−R2)
for each fitness case, according to the definition of geometric semantic mutation, and
stored in V ′. In the end of each generation, table V ′ is copied into V and erased. All
the rows of P and M referring to individuals that are not ancestors1 of the new pop-
ulation can also be erased. Note that, while M grows at every generation, by keeping
the semantics of the individuals separated we are able to use a table V whose size is
independent from the number of generations.

Summarizing, this algorithm is based on the idea that, when semantic operators are
used, an individual can be fully described by its semantics (which makes the syntactic
component much less important than in standard GP), a concept discussed in depth
in [10]. Therefore, at every generation we update table V with the semantics of the new
individuals, and save the information needed to build their syntactic structures without
explicitly building them. In terms of computational time, we emphasize that the process
of updating table V is very efficient as it does not require the evaluation of the entire
trees. Indeed, evaluating each individual requires (except for the initial generation) a
constant time, which is independent from the size of the individual itself. In terms of
memory, tables P and M grow during the run. However, table P adds a maximum of
2 × n rows per generation (if all new individuals are created by mutation) and table
M (which contains only memory pointers) adds a maximum of n rows per generation.
Even if we never erase the “ex-ancestors” from these tables (and never reuse random
trees, which is also possible), we can manage them efficiently for several thousands of
generations. Let us briefly consider the cost in terms of time and space of evolving a
population of n individuals for g generations. At every generation, we need O(n) space
to store the new individuals. Thus, we need O(ng) space in total. Since we need to do
only O(1) operations for any new individual (since the fitness can be computed using
the fitness of the parents), the time complexity is also O(ng). Thus, we have a linear
space and time complexity with respect to population size and number of generations.

The final step of the algorithm is performed after the end of the last generation. In
order to reconstruct the individuals, we may need to “unwind” our compact represen-
tation and make the syntax of the individuals explicit. Therefore, despite performing
the evolutionary search very efficiently, in the end we may not avoid dealing with the
large trees that characterize the standard implementation of geometric semantic opera-
tors. However, most probably we will only be interested in the best individual found, so
this unwinding (and recommended simplification) process may be required only once,
and it is done offline after the run is finished. This greatly contrasts with the solution
proposed by Moraglio et al. of building and simplifying every tree in the population
at each generation online with the search process. If we are not interested in the form
of the optimal solution, we can avoid the “unwinding phase” and we can evaluate an
unseen input with a time complexity is O(ng). In this case the the individual is used as
a “black-box” which, in some cases, may be sufficient.

Excluding the time needed to build and simplify the best individual, the proposed
implementation allowed us to evolve populations for thousands of generations with a

1 We abuse the term “ancestors” to designate not only the parents but also the random trees used
to build an individual by crossover or mutation.

A New Implementation of Geometric Semantic GP 211

Id Individual
T1 x1 + x2x3

T2 x3 − x2x4

T3 x3 + x4 − 2x1

T4 x1x3

T5 x1 − x3

Id Individual
R1 x1 + x2 − 2x4

R2 x2 − x1

R3 x1 + x4 − 3x3

R4 x2 − x3 − x4

R5 2x1

Id Operator Entry
T6 crossover 〈ID(T1), ID(T4), ID(R1)〉
T7 crossover 〈ID(T4), ID(T5), ID(R2)〉
T8 crossover 〈ID(T3), ID(T5), ID(R3)〉
T9 crossover 〈ID(T1), ID(T5), ID(R4)〉
T10 crossover 〈ID(T3), ID(T4), ID(R5)〉

(a) (b) (c)

Fig. 2. Illustration of the example described in Section 4. (a) The initial population P ; (b) The
random trees used by crossover; (c) The representation in memory of the new population P ′

considerable speed up with respect to standard GP. Future work will provide a compar-
ison of the execution times of the different methods.

Example. Let us consider the simple initial populationP shown in table (a) of Figure 2
and the simple pool of random trees that are added to P as needed, shown in table (b).
For simplicity, we will generate all the individuals in the new population (that we call P ′

from now on) using only crossover, which will require only this small amount of random
trees. Besides the representation of the individuals in infix notation, these tables contain
an identifier (Id) for each individual (T1, ..., T5 and R1, ..., R5). These identifiers will
be used to represent the different individuals, and the individuals created for the new
population will be represented by the identifiers T6, ..., T10.

The individuals of the new population P ′ are simply represented by the set of entries
exhibited in table (c) of Figure 2. This table contains, for each new individual, a refer-
ence to the ancestors that have been used to generate it and the name of the operator
used to generate it (either “crossover” or “mutation”). For example, the individual T6 is
generated by the crossover of T1 and T4 and using the random tree R1.

Let us assume that now we want to reconstruct the genotype of one of the individuals
in P ′, for example T10. The tables in Figure 2 contain all the information needed to do
that. In particular, from table (c) we learn that T10 is obtained by crossover between
T3 and T4, using random tree R5. Thus, from the definition of geometric semantic
crossover, we know that it will have the following structure: (T3 ·R5)+((1−R5) ·T4).
The remaining tables (a) and (b), that contain the syntactic structure of T3, T4, and
R5, provide us with the rest of the information we need to completely reconstruct the
syntactic structure of T10, which is ((x3 + x4 − 2x1) · (2x1)) + ((1− (2x1)) · (x1x3))
and upon simplification becomes −x1(4x1 − 3x3 − 2x4 + 2x1x3).

5 Experimental Study

Problems in Pharmacokinetics. The implementation described in the previous sec-
tion allows the geometric semantic operators to be used, for the first time, in com-
plex real-life applications. We have chosen two hard regression problems in the field
of pharmacokinetics: prediction of human oral bioavailability and prediction of the
protein-plasma binding levels of medical drugs. Both have already been tackled by
GP in published literature, e.g. [1]. Human oral bioavailability (represented as %F) is

212 L. Vanneschi et al.

the parameter that measures the percentage of the initial orally submitted drug dose
that effectively reaches the systemic blood circulation after passing through the liver.
Being able to reliably predict the %F value for a potential new drug is outstandingly
important, given that the majority of failures in compounds development from the early
nineties to nowadays are due to inaccurate predictions of this pharmacokinetic param-
eter during the drug discovery process [4]. The %F dataset consists of 359 instances,
where each instance is a vector of 242 elements (241 molecular descriptor values iden-
tifying a drug, followed by the known value of %F for that drug). This dataset is freely
available from the GP Benchmarks website, gpbenchmarks.org. Protein-plasma
binding level (represented as %PPB) quantifies the percentage of the initial drug dose
that reaches the blood circulation and binds to the proteins of plasma. This measure
is fundamental for good pharmacokinetics, both because blood circulation is the major
vehicle of drug distribution into human body and since only free (unbound) drugs can
permeate the membranes reaching their targets [1]. The %PPB dataset consists of 131
instances, where each instance is a vector of 627 elements (626 molecular descriptor
values identifying a drug, followed by the known %PPB for that drug).

Experimental Settings. We have tested our implementation of GP with geometric
semantic operators (GS-GP) against a standard GP system (STD-GP). A total of 30 runs
were performed with each technique using different randomly generated partitions of
the dataset into training (70%) and test (30%) sets. All the runs used populations of 100
individuals allowed to evolve for 2000 generations. It is worth noting that the goal was
not to achieve the best possible results, so the parameter settings were not tuned for each
technique, save one exception described below. Tree initialization was performed with
the Ramped Half-and-Half method [5] with a maximum initial depth equal to 6. The
function set contained the four binary arithmetic operators +, −, ∗, and / protected as
in [5]. Fitness was calculated as the root mean squared error (RMSE) between predicted
and expected outputs. The terminal set contained the number of variables corresponding
to the number of features in each dataset. Tournaments of size 4 were used to select
the parents of the new generation. To create new individuals, STD-GP used standard
(subtree swapping) crossover [5] and (subtree) mutation [5] with probabilities 0.9 and
0.1, respectively.For GS-GP the mutation rate was 0.5. Preliminary tests have shown
that the geometric semantic operators require a relatively high mutation rate in order to
be able to effectively explore the search space. The ms step used was 0.001 as in [10].
For both systems, survival was elitist as it always copied the best individual into the
next generation. No maximum tree depth limit has been imposed during the evolution.

Experimental Results. The experimental results are reported using curves of the fit-
ness (RMSE) on the training and test sets and boxplots obtained in the following way.
For each generation the training fitness of the best individual, as well as its fitness in the
test set (that we call test fitness) were recorded. The curves in the plots report the me-
dian of these values for the 30 runs. The median was preferred over the mean because
of its higher robustness to outliers. The boxplots refer to the fitness values in generation
500, for reasons explained later. In the following text we may use the terms fitness,
error and RMSE interchangeably. Plots (a) and (b) of Figure 3 show the evolution of
training and test error for STD-GP and GS-GP on the bioavailability problem. They

gpbenchmarks.org

A New Implementation of Geometric Semantic GP 213

0 500 1000 1500 2000

20

30

40

50

60

70

Generations

T
ra

in
in

g
E

rr
or

(a)

STD−GP
GS−GP

0 500 1000 1500 2000

20

40

60

Generations

T
es

t E
rr

or

(b)

STD−GP GS−GP
20

30

40

50

60

T
ra

in
in

g
E

rr
or

(c)

STD−GP GS−GP
20

30

40

50

60

T
es

t E
rr

or

(d)

Fig. 3. Results on the bioavailability problem. Evolution of (a) training and (b) test errors for each
technique, median of 30 runs. Boxplots of (c) training and (d) test fitness at generation 500. In
boxplot (d) STD-GP has three outliers located at 157, 485 and 843 (not shown).

clearly show that GS-GP outperforms STD-GP on both training and test sets. We could
informally say that on the training set both techniques “learn well”, in the sense that
the error curves in plot (a) are steadily decreasing during the whole considered runs,
although GS-GP reaches lower error. On the other hand, on the test set, while STD-GP
reveals a major loss of generalization ability, GS-GP exhibits a “desirable” behavior
where the curve of the test error is regular and monotonically decreasing during the en-
tire evolutionary process. We interpret these results saying that, unlike STD-GP, GS-GP
does not overfit the training data on the bioavailability problem. The boxplots (c) and
(d) of Figure 3 refer to the fitness values at generation 500, where both techniques have
achieved more or less the same training fitness, and GS-GP is not improving test fitness
anymore. The boxplots show that GS-GP has less dispersion of results than STD-GP,
in particular on the test set. To analyse the statistical significance of these results, a set
of tests has been performed. The Kolmogorov-Smirnov test has shown that the data are
not normally distributed and hence a rank-based statistic has been used. The Wilcoxon
rank-sum test for pairwise data comparison has been used under the alternative hypoth-
esis that the samples do not have equal medians. The p-values obtained were 0.70 when
training fitness of STD-GP is compared to training fitness of GS-GP and 6.3 × 10−6

when test fitness of STD-GP is compared to test fitness of GS-GP. Therefore, when us-
ing the usual significance level α = 0.01 (or even if we use a much smaller one), we
can state that at generation 500 the studied techniques have comparable fitness on the
training data and GS-GP has significantly lower (i.e., better) fitness than STD-GP on
the test data. Plots (a) and (b) of Figure 4 show the evolution of training and test error
for STD-GP and GS-GP on the protein-plasma binding problem. As in the bioavailabil-
ity problem, GS-GP reveals to be superior to STD-GP, this time with a wide difference
also on the training set, where GS-GP is able to reach a minimal error. The behaviour
on the test set is very similar to the one reported for the bioavailability problem.

214 L. Vanneschi et al.

0 500 1000 1500 2000
0

20

40

60

Generations

T
ra

in
in

g
E

rr
or

(a)

STD−GP
GS−GP

0 500 1000 1500 2000
0

20

40

60

Generations

T
es

t E
rr

or

(b)

STD−GP GS−GP
0

20

40

60

T
ra

in
in

g
E

rr
or

(c)

STD−GP GS−GP
0

20

40

60

T
es

t E
rr

or

(d)

Fig. 4. Results on the protein-plasma binding problem. Evolution of (a) training and (b) test errors
for each technique, median of 30 runs. Boxplots of (c) training and (d) test fitness at generation
500. In boxplot (d) STD-GP has six outliers located at 236, 259, 339, 456, 4402 and 5441 (not
shown).

The boxplots (c) and (d) of Figure 4 once again refer to the values measured in gener-
ation 500, which is more or less the point when GS-GP has stabilized its fitness values
both in training and test data. They show similar characteristics to the ones observed
on the bioavailability problem, with GS-GP once again exhibiting a lower dispersion
of results then STD-GP. They also show that GS-GP performs better than STD-GP in
both training and test data. Using the same statistical tests as before, the comparative
p-values obtained on the protein-plasma binding problem were 3.0×10−11 when train-
ing fitness of STD-GP is compared to training fitness of GS-GP and 5.1 × 10−6 when
test fitness of STD-GP is compared to test fitness of GS-GP. This allows us to conclude
that on the protein-plasma binding problem GS-GP outperforms STD-GP both on the
training and test set in a statistically significant way.

Discussion. The good results that GS-GP has obtained on training data were expected:
the geometric semantic operators induce an unimodal fitness landscape, which facili-
tates evolvability. On the other hand, on a first analysis, we have been surprised by the
excellent results we have obtained on test data. These results even appeared a bit coun-
terintuitive to us: we were expecting that the good evolvability on training data would
entail an overfitting of those data.

However, an explanation of the excellent generalization ability shown by GS-GP
on the two studied applications, we have realized one feature of geometric semantic
operators that was not so obvious previously. Namely, the geometric properties of those
operators hold independently of the data on which individuals are evaluated, and thus
they hold also on test data. In other words, geometric semantic crossover produces an
offspring that stands between the parents also in the semantic space induced by test data.
As a direct implication, following exactly the same argument as Moraglio et al. [10],

A New Implementation of Geometric Semantic GP 215

each offspring is, in the worst case, not worse than the worst of its parents on the test set.
This can be seen by looking back at Figure 1, where a simple test set τ is drawn (testing
data are represented by “∗” symbols) and where it is clear that offspring O is closer
to data in τ than parent P2. Analogously, as it happens for training data, geometric
semantic mutation produces an offspring that is a “weak” perturbation of its parent also
in the semantic space induced by test data (and the maximum possible perturbation
is, again, expressed by the ms step). The immediate consequence for the behaviour of
GS-GP on test data is that, while geometric semantic operators do not guarantee an
improvement in test fitness each time they are applied, they at least guarantee that the
possible worsening of the test fitness is bounded (by the test fitness of the worst parent
for crossover, and by ms for mutation). In other words, geometric semantic operators
help control overfitting. Of course overfitting may still happen, as seen in plot (b) of
Figure 4 for GS-GP (slight but visible), but there are no big “jumps” in test fitness
like the ones observed in plots (b) of Figures 3 and 4 for STD-GP. We remark that,
without the novel implementation that allowed us to use geometric semantic GP on
these complex real-life problems, this interesting property would probably remained
unnoticed.

6 Conclusions and Future Work

New genetic operators, called geometric semantic operators, have been proposed for
genetic programming (GP). They have the extremely interesting property of inducing a
unimodal fitness landscape for any problem consisting in matching input data to known
target outputs (regression and classifications are instances of this general problem). This
should make all the problems of this kind easily evolvable by GP. Nevertheless, as
demonstrated in the literature, in their first definition these new operators have a strong
limitation that makes them unusable in practice: they produce offspring that are larger
than their parents, and this results in an exponential growth of the size of the individuals
in the population. In this paper we have proposed a novel implementation of GP that
uses the geometric semantic operators in a very efficient manner, in terms of computa-
tional time and memory. This new GP system evolves the semantics of the individuals
without explicitly building their syntax. It does so by keeping a set of trees (of the initial
population and the random ones used by geometric semantic crossover and mutation)
in memory and a set of pointers to them, representing the “instructions” on how to build
the new individuals. Thanks to this compact representation, it was possible to explore,
for the first time, the great potential of geometric semantic GP to solve complex real-life
problems. We have used two problems in the field of pharmacokinetics: the prediction
of human oral bioavailability and the prediction of protein-plasma binding levels of
medical drugs. The experimental results demonstrate that the new system outperforms
standard GP. Besides the fact that the new GP system has excellent results on training
data (which was expected, given that its fitness landscape is unimodal), we were sur-
prised by its excellent generalization ability on the studied applications, which in ret-
rospect can be explained by considering the geometric properties of the new operators.
This encourages us to pursue the study: besides additional experimental validations on
new data and different applications, we plan to orient our future activity towards more
theoretical studies of the generalization ability of geometric semantic GP. In particular,

216 L. Vanneschi et al.

we are interested in studying the “shape” of the functions produced by semantic GP
with respect to the one generated by standard GP, and how this influences the general-
ization ability. On the more practical side, we are interested in comparing the runtime
performance of geometric semantic GP with standard GP also considering the effect of
a simplification phase at the end of the algorithm for when a “black-box” individual
cannot be used.

Acknowledgments. This work was supported by national funds through FCT
under contract Pest-OE/EEI/LA0021/2011 and by projects EnviGP (PTDC/EIA-
CCO/103363/2008) and MassGP (PTDC/EEI-CTP/2975/2012), Portugal.

References

1. Archetti, F., Lanzeni, S., Messina, E., Vanneschi, L.: Genetic programming for computational
pharmacokinetics in drug discovery and development. Genetic Programming and Evolvable
Machines 8, 413–432 (2007)

2. Beadle, L., Johnson, C.: Semantically driven crossover in genetic programming. In: Proc. of
the IEEE World Congress on Comput. Intelligence, pp. 111–116. IEEE Press (2008)

3. Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem difficulty for
genetic algorithms. In: Proceedings of the Sixth International Conference on Genetic Algo-
rithms, pp. 184–192. Morgan Kaufmann (1995)

4. Kennedy, T.: Managing the drug discovery/development interface. Drug Discovery To-
day 2(10), 436–444 (1997)

5. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural
Selection. MIT Press, Cambridge (1992)

6. Krawiec, K.: Medial Crossovers for Genetic Programming. In: Moraglio, A., Silva, S., Kraw-
iec, K., Machado, P., Cotta, C. (eds.) EuroGP 2012. LNCS, vol. 7244, pp. 61–72. Springer,
Heidelberg (2012)

7. Krawiec, K., Lichocki, P.: Approximating geometric crossover in semantic space. In:
GECCO 2009, July 8-12, pp. 987–994. ACM (2009)

8. Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer (2002)
9. McPhee, N.F., Ohs, B., Hutchison, T.: Semantic Building Blocks in Genetic Programming.

In: O’Neill, M., Vanneschi, L., Gustafson, S., Esparcia Alcázar, A.I., De Falco, I., Della
Cioppa, A., Tarantino, E. (eds.) EuroGP 2008. LNCS, vol. 4971, pp. 134–145. Springer,
Heidelberg (2008)

10. Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric Semantic Genetic Programming. In:
Coello Coello, C.A., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN
XII, Part I. LNCS, vol. 7491, pp. 21–31. Springer, Heidelberg (2012)

11. Nguyen, Q.U., Nguyen, X.H., O’Neill, M.: Semantic Aware Crossover for Genetic Pro-
gramming: The Case for Real-Valued Function Regression. In: Vanneschi, L., Gustafson, S.,
Moraglio, A., De Falco, I., Ebner, M. (eds.) EuroGP 2009. LNCS, vol. 5481, pp. 292–302.
Springer, Heidelberg (2009)

12. Quang, U.N., Nguyen, X.H., O’Neill, M.: Semantics based mutation in genetic program-
ming: The case for real-valued symbolic regression. In: Matousek, R., Nolle, L. (eds.) 15th
Intern. Conf. on Soft Computing, Mendel 2009, pp. 73–91 (2009)

13. Uy, N.Q., Hoai, N.X., O’Neill, M., McKay, B.: The Role of Syntactic and Semantic Locality
of Crossover in Genetic Programming. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G.
(eds.) PPSN XI. LNCS, vol. 6239, pp. 533–542. Springer, Heidelberg (2010)

14. Uy, N.Q., Hoai, N.X., O’Neill, M., McKay, R.I., Galvan-Lopez, E.: Semantically-based
crossover in genetic programming: application to real-valued symbolic regression. Genetic
Programming and Evolvable Machines 12(2), 91–119 (2011)

A Grammar-Guided Genetic Programming

Algorithm for Multi-Label Classification

Alberto Cano, Amelia Zafra, Eva L. Gibaja, and Sebastián Ventura

Department of Computer Science and Numerical Analysis
University of Cordoba, 14071 Cordoba, Spain
{acano,azafra,egibaja,sventura}@uco.es

Abstract. Multi-label classification is a challenging problem which
demands new knowledge discovery methods. This paper presents a
Grammar-Guided Genetic Programming algorithm for solving multi-
label classification problems using IF-THEN classification rules. This al-
gorithm, called G3P-ML, is evaluated and compared to other multi-label
classification techniques in different application domains. Computational
experiments show that G3P-ML often obtains better results than other al-
gorithms while achieving a lower number of rules than the other methods.

Keywords: Multi-label classification, grammar-guided genetic program-
ming, rule learning.

1 Introduction

Classification is a common task in supervised learning. Traditional classification
associates a single label to the examples from a set of disjoint labels L. This
problem is known as binary classification when |L| = 2 whereas it is known as
multi-class classification when |L| > 2. Multi-label classification [16] is a clas-
sification paradigm where examples are simultaneously associated with a set of
labels Y ⊆ L. Nowadays, many different challenging applications motivate multi-
label classification methods [2,6,12,15,22]. According to Tsoumakas et al. [16],
the existing methods for multi-label classification are grouped in two main cat-
egories: algorithm adaptation and problem transformation.

Algorithm adaptation methods extend traditional algorithms in order to han-
dle multi-label data directly [3,23]. Problem transformation methods transform
the multi-label classification problem into one or more single-label classification
problems, which can be solved using traditional classifiers. Binary Relavance
(BR) and Label Powerset (LP) are two of the most applied problem transfor-
mation methods.

On the one hand, BR employs a single-label classifier for each label, resulting
in |L| independent binary classifiers. However, it assumes label independency and
ignores label correlations that exist in the data. On the other hand, LP generates
each unique combination of the original labels as a new label. LP transformation
directly takes into account label correlations but suffers from the large number
of label subsets, the majority of which are associated with very few examples.

K. Krawiec et al. (Eds.): EuroGP 2013, LNCS 7831, pp. 217–228, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

218 A. Cano et al.

Genetic Programming (GP) [11] is a learning methodology belonging to the
family of evolutionary computation [21] and it has valuable characteristics such
as its great flexibility for representing solutions, and the fact that a priori knowl-
edge is not needed about the statistical distribution of the data (data distribu-
tion free). These characteristics convert GP into a paradigm of growing interest
for obtaining classification rules [8] showing that GP is a mature field that effi-
ciently achieves low error rates in supervised learning. These results suggest that
it would be interesting to adapt this paradigm to multi-label classification and
check its performance, since GP has not been applied to multi-label classification
yet.

This paper presents a new Grammar-Guided Genetic Programming (G3P) [20]
algorithm called G3P-ML to deal with multi-label classification. G3P-ML ob-
tains a set of IF-THEN classification rules which provide a natural and human-
understandable representation of the knowledge discovered.

The proposal employs a context-free grammar, which establishes a formal
definition of the syntactical restrictions of the problem to be solved and its pos-
sible solutions, so that only grammatically correct individuals are generated.
The comprehensibility of the knowledge discovered has been an area of growing
interest and this comprehensibility is currently considered to be just as impor-
tant as obtaining high predictive accuracy. This way, the user can understand
the system’s results and combine them with his/her knowledge to make a well-
informed decision, rather than blindly trusting the incomprehensible output of
a black box system. Therefore, G3P-ML has the advantage of being able to add
comprehensibility and clarity to the knowledge discovery process.

The proposal is analyzed, evaluated and compared to other rule-based multi-
label classification techniques in a collection of multi-label data sets. Experi-
mental results shows that G3P-ML often obtains better results than the other
algorithms while keeping the number of rules lower than the other methods, i.e.,
providing more simple and comprehensible classifiers.

The paper is structured as follows. Section 2 describes the proposed algo-
rithm. Section 3 evaluates and compares our algorithm to rule-based techniques
implemented in six data sets. Section 4 presents the experimental study setup.
Finally, Section 5 presents the conclusions of this work.

2 G3P-ML Algorithm

This section presents the algorithm, the individual and the classifier representa-
tion, the genetic operators, the fitness function and the evolutionary process.

2.1 Individual Representation

G3P-ML employs an individual = IF-THEN rule representation. The IF part of
the rule (antecedent) contains a logical combination about the values of predict-
ing attributes, and the THEN part (consequent) contains the predicted class for
the concepts satisfied by the antecedent of the rule. The rule determines whether

A G3P Algorithm for Multi-Label Classification 219

an example is considered to belong to the class from the consequent. The an-
tecedent represents the individual genotype, while the phenotype represents the
entire rule that is applied to the examples. Figure 1 shows the rules’ grammar.

〈S〉 → 〈cmp〉 | OR 〈S〉 〈cmp〉 | AND 〈S〉 〈cmp〉
〈cmp〉 → 〈op num〉 〈variable〉 〈value〉 | 〈op cat〉 〈variable〉 〈value〉
〈op num〉 → ≥ | > | < | ≤
〈op cat〉 → = | =
〈variable〉 → Any valid attribute in dataset
〈value〉 → Any valid value

Fig. 1. Grammar used for representing the individuals’ genotypes in G3P-ML

2.2 Classifier Representation

The classifier provided by G3P-ML is a rule base that consists of several IF-
THEN classification rules obtained from the evolutionary process. The predicted
labels for an example are the aggregation of the consequents from the rules whose
antecedent satisfies the example. The number of rules is undetermined and the
evolutionary process is responsible to discover the most appropiate ones. This
classification model induction is shown in Figure 2.

IF rule1 covers example THEN example belongs to labeli
IF rule2 covers example THEN example belongs to labelj
IF rule3 covers example THEN example belongs to labelk

Example belongs to {labeli, labelj , labelk}

Fig. 2. Multi-label classifier by means of IF-THEN classification rules

2.3 Initialization

The initialization process generates the initial population. Our algorithm em-
ploys a simple and commonly used approach to generate the individuals by
means of the context-free grammar. This approach employs the production rules
of the language defined by the grammar, generating only valid individuals and
guaranteeing that the syntax tree generated adopts the size set by the user be-
tween a maximum and minimum number of derivations.

The creation of a new individual consists of two steps: the former selects a
valid derivation value for the current individual, the latter derivates the produc-
tion rules to generate the syntax tree within the selected number of derivations.
The derivations of the production rules start with the initial symbol of the gram-
mar (axiom), and then choose one of the available productions for this axiom.
The process continues derivating the non-terminal symbols of the production
rules until all the non-terminal symbols have been derivated to terminal ones.

220 A. Cano et al.

The choice of the production rules to generate new individuals is not made to-
tally at random. In order to guarantee that the syntax tree generated is valid and
uses the appropriate number of derivations, the algorithm calculates a selection
probability for each symbol according to the allowed number of derivations.

2.4 Genetic Operators

G3P-ML uses two genetic operators to generate new individuals in a given gen-
eration of the evolutionary algorithm. These operators are based on selective
crossover and selective mutation as proposed by Whigham [19], and their basic
principles and functioning are briefly described in this section.

Crossover Operator. The crossover operator creates new rules by mixing the
contents of two parent rules. To do so, a non-terminal symbol is chosen at random
with uniform probability from among the available non-terminal symbols in the
grammar and two sub-trees (one from each parent) are selected whose roots
coincide with the symbol adopted or with a compatible symbol.

All non-terminal symbols (excepting the root symbol) have the same prob-
ability of being selected as the symbol from which swap the sub-trees. On the
other hand, in order to reduce bloating, if one of the new offspring surpasses
the maximum size allowed, one of the two parents is randomly selected to pass,
without modification, to the next generation. If both offspring surpass this size
or at least one of them does not contain a symbol compatible with the chosen
symbol, the crossover is aborted and both parents are reproduced.

Mutation Operator. The mutation operator is responsible for preventing the
loss of genetic diversity in the population, which is highly significant in the
genetic convergence process. It produces small random changes in an individual
to engender a new offspring and continue the search process. This operator
randomly selects the node in the tree where the mutation is to take place. If
the node is terminal symbol, it will be replaced by another compatible terminal.
More precisely, two nodes are compatible if they are derivations of the same
non-terminal.

When the selected node is a non-terminal symbol, the subtree underneath
this node will substitute any other valid derivation subtree as a result. For that
reason, a new production of the grammar is derived for this non-terminal symbol.
The procedure used to generate this subtree is the same as the one used to
create new individuals and guarantees that the individual does not exceed the
maximum size allowed.

2.5 Fitness Function

The fitness function measures the effectiveness of the rule represented by an
individual. The results of the matching of the rules and the examples from the
data set are used to build the confusion matrix, which is a table with two rows
and two columns that reports the number of true positives (TP), false positives

A G3P Algorithm for Multi-Label Classification 221

(FP), true negatives (TN), and false negatives (FN). There are several measures
to evaluate the quality of the rules using the data from the confusion matrix. Our
fitness function combines two commonly used indicators, namely precision and
recall. Precision measures the number of examples correctly labelled as belonging
to the class divided by the number of examples that the rule has considered
as belonging to the label, whereas recall, also called sensitivity in some fields,
measures the number of examples correctly labelled as belonging to the class
divided by the number of examples that belong to the label.

Precision =
TP

TP + FP
Recall =

TP

TP + FN

Fitness = F–Measure = 2 · Precision ·Recall

Precison+ Recall

The fitness function computes the harmonic mean of precision and recall, known
as the F-Measure. The goal of the algorithm is to maximize both precision and
recall, which evaluate different and conflicting characteristics in the classification
process. In addition, to ensure the better simplicity of the rules, for equally fitness
rules, the simplest with the lower number of conditions prevails.

2.6 Evolutionary Algorithm

The algorithm is run several times to find classification rules, focussing each
run on a particular label, and labelling as negative examples all the examples
relative to the other classes. Therefore, the minimum number of runs required to
cover all the labels is equal to the number of labels |L|. However, one rule may
not be sufficient to cover the majority of the examples of a label. In that case,
the algorithm focusses on learning rules over the uncovered examples from that
label. This behaviour is controlled by a parameter which defines the minimum
label coverage. The algorithm will continue finding rules for the label until its
minimum coverage has been achieved. Once a rule is learned, it is necessary
to evaluate its suitability for being included in the classifier, by checking its
own coverage. Thus, the algorithm also defines a parameter for the minimum
coverage of the rules. When the minimum label coverage has been exceeded or
the rule learned does not achieve the minimum coverage required, the algorithm
continues with the next label until all the labels have been covered.

The main steps of our algorithm are based on a classical generational and
elitist evolutionary algorithm. A population of classification rules is initially
generated following the initialization procedure described in Section 2.3. The
population is evaluated using the fitness function described in Section 2.5. The
main loop of the algorithm is composed of the following phases. First, the parent
selection phase where individuals are selected by means of binary tournaments.
Then, the recombination and mutation processes described in Section 2.4 are
carried out with a certain degree of probability, obtaining the offspring, whose
individuals are evaluated. Finally, the population is updated by direct replace-
ment, that is, the resulting offspring replace the current population. The algo-
rithm employs elitism to keep the best individual.

222 A. Cano et al.

The algorithm run finishes when one of the four following conditions is met.
Two of them are related to the minimum coverage: the accumulated coverage of
the current label exceed the minimum required, or if the rule coverage does not
achieve the minimum required. The other two are related to evolutionary perfor-
mance: the maximum number of generations is reached or if the best individual
in the population achieves the optimal of the fitness function. Once the run has
finished, the best individual (rule) obtained is appended to the classifier.

3 Experimental Study

This section describes the details of the experiments performed to evaluate the
capabilities of the proposal and compare it to other ML classification methods.

3.1 Problem Domains

Six data sets are used in the experiments to evaluate the proposal and com-
pare to other methods. The data sets have been selected from the MULAN [17]
and KEEL [1] repository website and they are very varied in their degree of
complexity, number of labels, number of attributes, and number of examples.

Table 1 summarises the information about these data sets, including the label
cardinality and density which indicate how multi-labelled a dataset is. Label
cardinality is the average number of labels of the examples in D whereas label
density of D is the average number of labels in D divided by |L|.

Table 1. Data sets information

Data set Examples Attributes Labels Cardinality Density

Emotions 593 72 6 1.8684 0.3114

Enron 1702 1001 53 3.3783 0.0637

Genbase 662 1186 27 1.2522 0.0463

Medical 978 1449 45 1.2453 0.0276

Scene 2407 294 6 1.0739 0.1789

Yeast 2417 103 14 4.2370 0.3026

3.2 Comparison of the Algorithms and Experimental Settings

MULAN is built on top of WEKA [10] and it provides the Binary Relevance
(BR) and Label Powerset (LP) transformation methods to prepare the multi-
label data for the classical classifiers. There are three well-known classification
algorithms from WEKA that produce classification rules: J48 [13], JRIP [4],
and PART [9]. The problem transformation methods together with the base
classifiers result in the BR-J48, BR-JRIP, BR-PART, LP-J48, LP-JRIP, and
LP-PART combinations. The parameters for the base classifiers are the default
provided by WEKA.

A G3P Algorithm for Multi-Label Classification 223

Our proposal has been implemented in the JCLEC software [18] and its main
parameters are shown in Table 2. All experiments are repeated with 10 different
seeds and the average results are shown in the result tables. The data sets are
partitioned using the 10-fold cross-validation procedure.

Table 2. G3P-ML parameters

Parameter Value Parameter Value

Population size 1000 Parents selector Binary tournament

Number of generations 250 Maximum tree depth 100

Crossover probability 95% Minimum label coverage 90%

Mutation probability 30% Minimum rule coverage 5%

4 Results

This section presents and discusses the experimental results from the experimen-
tal studies, which evaluate and compare our method to the different algorithms.

In order to analyse the results from the experiments, some non-parametric
statistical tests are used to validate the results. The Iman and Davenport test
is performed to evaluate whether there are significant differences in the results.
This useful non-parametric test, recommended by Demsar [5], is applied to rank
the algorithms over the data sets according to the F -distribution. When the
Iman and Davenport test indicates that the results are significantly different,
the Bonferroni–Dunn post hoc test [7] is used to find the significant differences
occurring between algorithms in the multiple comparison.

Table 3 shows the average Hamming loss [14] results (to minimize) from the
10-fold cross validation test folds for the different methods (rows) and data sets
(columns). The Hamming loss considers the prediction error (an incorrect label is
predicted) and missing error (a label is not predicted) at the same time. G3P-ML
often obtains the best results with the lowest Hamming loss value whereas LP-
J48 obtains the worst results. The difference is especially noticeable in Emotions,
Genbase and Medical datasets.

The Iman and Davenport statistic (distributed according to the F -distribution
with 6 and 30 degrees of freedom) is 11.9127 for Hamming loss. This test es-
tablishes an F -distribution value = 2.4205 for a significance level of alpha =
0.05. This value is lower than the statistic critical value 11.9127. Thus, the test
rejects the null hypothesis and therefore it can be said that there are statistically
significant differences between the Hamming loss results of the algorithms.

Figure 3 shows the application of the Bonferroni–Dunn test to the Hamming
loss with alpha = 0.05, whose critical difference is 3.2901. This graph repre-
sents a bar chart, whose values are proportional to the mean rank obtained from
each algorithm. The critical difference value is represented as a thicker horizon-
tal line and those values that exceed this line are algorithms with significantly
different results than the control algorithm, which is G3P-ML. Therefore, the

224 A. Cano et al.

Table 3. Hamming loss results from the test folds of the 10-fold cross-validation

Data set Emotions Enron Genbase Medical Scene Yeast

G3P-ML 0.1587 0.0515 0.0002 0.0052 0.1161 0.2906

BR-J48 0.2510 0.0603 0.0011 0.0114 0.1289 0.2499

BR-JRIP 0.2522 0.0564 0.0012 0.0118 0.1132 0.2158

BR-PART 0.2529 0.0668 0.0014 0.0124 0.1170 0.2203

LP-J48 0.2749 0.0711 0.0711 0.0142 0.1415 0.2786

LP-JRIP 0.2869 0.0652 0.0050 0.0154 0.1292 0.2633

LP-PART 0.2653 0.0737 0.0025 0.0157 0.1358 0.2907

Table 4. Accuracy results from the test folds of the 10-fold cross-validation

Data set Emotions Enron Genbase Medical Scene Yeast

G3P-ML 0.4999 0.3898 0.9896 0.7328 0.5559 0.4426

BR-J48 0.4491 0.3883 0.9862 0.7333 0.5526 0.4353

BR-JRIP 0.4362 0.3604 0.9851 0.7031 0.5700 0.4403

BR-PART 0.4274 0.3780 0.9834 0.7164 0.5938 0.4620

LP-J48 0.4396 0.3521 0.3521 0.7209 0.5952 0.4108

LP-JRIP 0.4255 0.2645 0.9650 0.6876 0.6279 0.4332

LP-PART 0.4589 0.3312 0.9766 0.6927 0.6128 0.3904

algorithms right beyond the critical difference from the proposal value are signif-
icantly worse. Observing this figure, G3P-ML obtains statistically significantly
better results than all Label Powerset methods. On the other hand, G3P-ML
achieves better results than Binary Relevance methods, but the differences are
lower than the statistical critical difference.

G3PML BR-JRIP
BR-J48 BR-PART LP-JRIP LP-J48

LP-PART

Fig. 3. Bonferroni–Dunn test for Hamming loss

Table 4 shows the average example-based accuracy results. The accuracy differ-
ences are less significant and valuable in this case. G3P-ML achieves the highest
average accuracy, followed closely by BR-PART. On the other hand, LP-JRIP ob-
tains among the worst results, and LP-J48 fails most of the predictions in Genbase.

The Iman and Davenport statistic is 1.7741 for the accuracy. Thus, it accepts
the null-hynothesis that all algorithms perform equally well respect to accuracy.

Table 5 and Table 6 show the example-based precision and recall results. G3P-
ML does not achieve a high precisionwhen comparedwith the othermethods since
their policy is very conservative, i. e., they run away from the risk of failing predic-
tions. This behaviour manages them to maintain a high precision, but at the cost
of a much lower recall. On the other hand, G3P-ML obtains the highest recall.

A G3P Algorithm for Multi-Label Classification 225

Table 5. Precision results from the test folds of the 10-fold cross-validation

Data set Emotions Enron Genbase Medical Scene Yeast

G3P-ML 0.5687 0.4535 0.9966 0.7952 0.6059 0.4842

BR-J48 0.5988 0.5649 0.9947 0.8395 0.6978 0.6014

BR-JRIP 0.6175 0.5972 0.9970 0.8544 0.7561 0.7011

BR-PART 0.6066 0.5159 0.9927 0.8251 0.7328 0.6712

LP-J48 0.5452 0.4749 0.4749 0.7699 0.6182 0.5387

LP-JRIP 0.5291 0.4124 0.9706 0.7391 0.6510 0.5675

LP-PART 0.5748 0.4497 0.9920 0.7409 0.6342 0.5192

Table 6. Recall results from the test folds of the 10-fold cross-validation

Data set Emotions Enron Genbase Medical Scene Yeast

G3P-ML 0.7495 0.7096 0.9930 0.8519 0.7722 0.8188

BR-J48 0.5879 0.5133 0.9914 0.8062 0.6445 0.5753

BR-JRIP 0.5406 0.4573 0.9882 0.7568 0.6354 0.4970

BR-PART 0.5521 0.5379 0.9907 0.7956 0.6800 0.5527

LP-J48 0.5496 0.4660 0.4660 0.7480 0.6163 0.5430

LP-JRIP 0.5360 0.2947 0.9665 0.7036 0.6483 0.5527

LP-PART 0.5758 0.4483 0.9800 0.7264 0.6319 0.5145

The Iman and Davenport statistic is 14.8425 for precision and 13.2278 for
recall, both lower than the statistic critical value. Figure 4 shows the application
of the Bonferroni–Dunn test to the precision and recall. BR-JRIP obtains the
highest precision ranking, and BR transformations demonstrate to perform much
better than LP ones, which achieves similar results than G3P-ML. G3P-ML ob-
tains the highest recall ranking, and always obtains better recall results than the
other methods. On the other hand, BR-JRIP, which obtained the best precision
ranking, now obtains significantly lower ranking regarding to the recall values.
Since precision and recall are conflicting characteristics, none of the algorithms
is clearly performing better than the others and therefore the harmonic mean of
precision and recall (F-Measure) is used to evaluate together, which represents
a balance among them.

Table 7 shows the macro and micro averaged F-Measures [16]. G3P-ML of-
ten achieves better F-Measure values than the other methods whereas Label
Powerset transformations obtain the worst.

G3PMLBR-JRIP BR-J48 BR-PART
LP-J48LP-PART

LP-JRIP

(a) Precision

G3PML BR-JRIPBR-J48 BR-PART
LP-J48LP-PART
LP-JRIP

(b) Recall

Fig. 4. Bonferroni–Dunn test for the precision and recall

226 A. Cano et al.

Table 7. F-measure results from the test folds of the 10-fold cross-validation

Data set Emotions Enron Genbase Medical Scene Yeast

G3P-ML Macro 0.6261 0.5319 0.9958 0.8065 0.6497 0.4783

Micro 0.6347 0.5360 0.9913 0.7772 0.6310 0.5913

BR-J48 Macro 0.5849 0.4272 0.9942 0.8426 0.6481 0.4529

Micro 0.5942 0.5107 0.9883 0.7936 0.6379 0.5817

BR-JRIP Macro 0.5569 0.4156 0.9951 0.8185 0.6678 0.4025

Micro 0.5706 0.5060 0.9876 0.7760 0.6635 0.5841

BR-PART Macro 0.5534 0.4157 0.9941 0.8205 0.6831 0.4224

Micro 0.5817 0.4980 0.9857 0.7760 0.6719 0.6024

LP-J48 Macro 0.5431 0.3617 0.3617 0.8017 0.6159 0.4246

Micro 0.5580 0.4371 0.4371 0.7394 0.6051 0.5407

LP-JRIP Macro 0.5227 0.3060 0.9500 0.7835 0.6501 0.4143

Micro 0.5361 0.3174 0.9447 0.7102 0.6379 0.5599

LP-PART Macro 0.5580 0.3413 0.9807 0.7827 0.6321 0.3986

Micro 0.5752 0.4228 0.9733 0.7152 0.6211 0.5180

The Iman and Davenport statistic is 5.7692 and 10.7009 for the F-Measure,
both lower than the statistic critical values. Figure 5 shows the application of
the Bonferroni–Dunn test to the F-Measure.

G3PML BR-JRIPBR-J48
BR-PART

LP-J48
LP-PART
LP-JRIP

(a) Macro-averaged

G3PML BR-JRIP
BR-J48 BR-PART

LP-J48LP-PART
LP-JRIP

(b) Micro-averaged

Fig. 5. Bonferroni–Dunn test for the F-Measure

Table 8 shows the average number of rules from the classifiers. Classifica-
tion with rule-based systems comes with two contradictory requirements in the
obtained model: the complexity and the exactness (accuracy, precision, recall,
F-Measure). The higher number of rules, the more capability to faithfully rep-
resent the data, but also the more complexity of the rule base and therefore the
lower interpretability and comprehensibility of the model and knowledge dis-
covered. It is interesting to highlight these results and compare the number of
labels from the data sets with the number of rules employed by the classifiers.
G3P-ML obtains classifiers with a significantly lower number of rules than the
other methods. On the other hand, BR-J48 obtains the highest number of rules.

Figure 6 shows the application of the Bonferroni–Dunn test to the number
of rules. G3P-ML obtains statistically significantly better results than BR-J48,
BR-PART, and LP-J48. On the other hand, G3P-ML achieves better results
than BR-JRIP, LP-JRIP and LP-PART, but the differences are lower than the
statistical critical difference.

A G3P Algorithm for Multi-Label Classification 227

Table 8. Number of rules results from the 10-fold cross-validation

Data set Emotions Enron Genbase Medical Scene Yeast

G3P-ML 12.6 227.1 26.6 69.0 14.8 34.3

BR-J48 209.8 2390.9 54.2 257.3 429.7 1504.1

BR-JRIP 75.6 364.6 54.0 160.6 93.1 116.8

BR-PART 98.1 2164.8 66.7 252.8 168.0 242.6

LP-J48 134.8 537.0 537.0 143.3 262.7 653.4

LP-JRIP 78.6 176.4 23.7 99.7 97.9 312.2

LP-PART 120.7 517.8 31.6 157.9 186.2 616.4

G3PML BR-JRIP BR-J48BR-PARTLP-JRIP LP-J48LP-PART

Fig. 6. Bonferroni–Dunn test for the number of rules

5 Conclusion

In this paper we presented a new Grammar-Guided Genetic Programming al-
gorithm, called G3P-ML, for solving multi-label classification problems using
comprehensible IF-THEN classification rules. Our proposal is compared to other
rule-based multi-label classification techniques, considering the problem transfor-
mation techniques for multi-label data, over six data sets. Experimental results
show that our proposal obtains better results than other algorithms in most of
the performance metrics considered. Moreover, it achieves the lowest number
of rules and therefore the more simplicity and interpretability of the knowl-
edge model extracted. The results were validated using non-parametric statisti-
cal tests, whose reports support the better performance of our proposal. Another
interesting conclusion obtained in this study, it is that BR problem transforma-
tions have demonstrated to perform much better than LP ones, achieving better
results in all the metrics evaluated. However, they produce classifiers with a high
number of rules, considering the number of labels.

Acknowledgments. This work has been supported by the Regional Govern-
ment of Andalusia and the Ministry of Science and Technology, projects P08-
TIC-3720 and TIN-2011-22408, FEDER funds, and FPU grant AP2010-0042.

References

1. Alcalá-Fdez, J., Fernandez, A., Luengo, J., Derrac, J., Garćıa, S., Sánchez, L.,
Herrera, F.: KEEL Data-Mining Software Tool: Data Set Repository, Integration
of Algorithms and Experimental Analysis Framework. Journal of Multiple-Valued
Logic and Soft Computing 17, 255–287 (2011)

2. Boutell, M.R., Luo, J., Shen, X., Brown, C.M.: Learning multi-label scene classifi-
cation. Pattern Recognition 37(9), 1757–1771 (2004)

228 A. Cano et al.

3. Chen, B., Ma, L., Hu, J.: An improved multi-label classification method based on
svm with delicate decision boundary. International Journal of Innovative Comput-
ing, Information and Control 6(4), 1605–1614 (2010)

4. Cohen, W.W.: Fast Effective Rule Induction. In: 12th International Conference on
Machine Learning, pp. 1–10 (1995)

5. Demšar, J.: Statistical Comparisons of Classifiers over Multiple Data Sets. Machine
Learning Research 7, 1–30 (2006)

6. Diplaris, S., Tsoumakas, G., Mitkas, P.A., Vlahavas, I.P.: Protein Classification
with Multiple Algorithms. In: Bozanis, P., Houstis, E.N. (eds.) PCI 2005. LNCS,
vol. 3746, pp. 448–456. Springer, Heidelberg (2005)

7. Dunn, O.J.: Multiple Comparisons Among Means. Journal of the American Sta-
tistical Association 56(293), 52–64 (1961)

8. Espejo, P.G., Ventura, S., Herrera, F.: A survey on the application of genetic pro-
gramming to classification. IEEE Transactions on Systems, Man, and Cybernetics,
Part C: Applications and Reviews 40(2), 121–144 (2010)

9. Frank, E., Witten, I.H.: Generating Accurate Rule Sets Without Global Optimiza-
tion. In: 15th International Conference on Machine Learning, pp. 144–151 (1998)

10. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemannr, P., Witten, I.H.: The
WEKA Data Mining Software: An Update. SIGKDD 11, 10–18 (2009)

11. Koza, J.: Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press (1992)

12. Ngan, P.S., Wong, M.L., Lam, W., Leung, K.S., Cheng, J.C.: Medical data mining
using evolutionary computation. Artificial Intelligence in Medicine 16(1), 73–96
(1999)

13. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publish-
ers, San Francisco (1993)

14. Schapire, R.E., Singer, Y.: BoosTexter: A Boosting-based System for Text Cate-
gorization. Machine Learning 39, 135–168 (2000)

15. Trohidis, K., Tsoumakas, G., Kalliris, G., Vlahavas, I.: Multilabel classification of
music into emotions. In: 9th Int. Conf. on Music Information Retrieval (2008)

16. Tsoumakas, G., Katakis, I.: Multi-label classification: An overview. International
Journal of Data Warehousing and Mining 3(3), 1–13 (2007)

17. Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining Multi-label Data. In: Data Mining
and Knowledge Discovery Handbook, pp. 667–685 (2010)

18. Ventura, S., Romero, C., Zafra, A., Delgado, J.A., Hervás, C.: JCLEC: A Java
Framework for Evolutionary Computation. Soft Computing 12, 381–392 (2007)

19. Whigham, P.A.: Schema theorem for context-free grammars. In: 2nd IEEE Con-
ference on Evolutionary Computation, vol. 1, pp. 178–181 (1995)

20. Wong, M.L., Leung, K.S.: Data Mining Using Grammar Based Genetic Program-
ming and Applications. Kluwer Academic Publisher (2000)

21. Yu, X., Gen, M.: Introduction to Evolutionary Algorithms. Springer (2010)
22. Zhang, M.L., Zhou, Z.H.: Multilabel neural networks with applications to func-

tional genomics and text categorization. IEEE Transactions on Knowledge and
Data Engineering 18, 1338–1351 (2006)

23. Zhang, M.L., Zhou, Z.H.: Ml-knn: A lazy learning approach to multi-label learning.
Pattern Recognition 40, 2038–2048 (2007)

Global Top-Scoring Pair Decision Tree

for Gene Expression Data Analysis

Marcin Czajkowski and Marek Kretowski

Faculty of Computer Science, Bialystok University of Technology
Wiejska 45a, 15-351 Bia�lystok, Poland

{m.czajkowski,m.kretowski}@pb.edu.pl

Abstract. Extracting knowledge from gene expression data is still a
major challenge. Relative expression algorithms use the ordering rela-
tionships for a small collection of genes and are successfully applied for
micro-array classification. However, searching for all possible subsets of
genes requires a significant number of calculations, assumptions and lim-
itations. In this paper we propose an evolutionary algorithm for global
induction of top-scoring pair decision trees. We have designed several spe-
cialized genetic operators that search for the best tree structure and the
splits in internal nodes which involve pairwise comparisons of the gene
expression values. Preliminary validation performed on real-life micro-
array datasets is promising as the proposed solution is highly compet-
itive to other relative expression algorithms and allows exploring much
larger solution space.

Keywords: evolutionary algorithms, decision tree, top-scoring pair,
classification, gene expression, micro-array.

1 Introduction

DNA chips [16] may be used to assist diagnosis and to discriminate cancer sam-
ples from normal ones [17]. Extracting accurate and simple decision rules that
contains marker genes are of great interest for biomedical applications. However,
finding a meaningful and robust classification rule is a real challenge, since in
different studies of the same cancer, diverse genes consider to be marked [23].

Dimensionality and redundancy are one of the most typical statistical prob-
lems that often occur with micro-array analysis. In particular, we are faced with
the ”small N, large P problem” [27] of statistical learning. The number of sam-
ples (denoted by N) comparing to the number of genes (P) remains quite small
as N usually does not exceeded one or two hundreds where P is usually sev-
eral thousands. The high ratio of features/observations may influence the model
complexity and can cause the classifier to over-fit the training data. Further-
more, most of genes are known to be irrelevant so the gene selection prior to
classification should be considered [17] to: simplify calculations, decrease model
complexity and often to improve accuracy of the following classification.

Recently, a large number of supervised solutions have been described in lit-
erature for micro-array classification, including: nearest neighbors [8], neural

K. Krawiec et al. (Eds.): EuroGP 2013, LNCS 7831, pp. 229–240, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

230 M. Czajkowski and M. Kretowski

networks [3], Support Vector Machine [20] and random forests [7]. Most of ma-
chine learning methods provide ”black box” decision rules, which usually involve
many genes combined in a highly complex fashion and therefore are difficult to
interpret from medical point of view. There is a need for simple models like de-
cision trees or rule extraction systems which may actually help in understanding
and identifying casual relationships between specific genes.

In this paper we propose a hybrid solution called Global Top-Scoring Pair De-
cision Tree (GTSPDT) that combines the power of evolutionary approach, rel-
ative expression algorithms and decision trees. It combines different top-scoring
extensions, eliminates their restrictions and allows exploring much larger so-
lution space. Evolutionary algorithm (EA) globally searches for the best tree
structure and tests which involve pairwise comparisons of the gene expression
values. The general structure of our solution follows a typical framework of EA
with an unstructured population and a generational selection. We have designed
several specialized operators to mutate and cross-over individuals and a fitness
function that helps mitigating the over-fitting problem.

The rest of the paper is organized as follows. In the next section the relative
expression algorithms and decision tree classifiers for gene expression analysis
are briefly recalled. Section 3 describes in detail the GTSPDT solution and
section 4 presents preliminary experimental validation on real-life micro-array
datasets. In the last section, the paper is concluded and possible future works
are sketched.

2 Background and Motivation

In this section the decision trees and the family of top-scoring algorithms are
presented and their application for gene expression data is discussed.

2.1 Decision Trees

Decision trees (also known as classification trees) [22] represent one of the main
techniques of classification analysis in data mining and knowledge discovery.
They predict the class membership (dependent variable) of an instance using its
measurements of predictor variables.

In the literature, there are several attempts to use decision trees for the clas-
sification analysis on gene expression data. In [8] the author compares some
classification principles, among which there is the CART system and in [28] the
application of C4.5, bagged and boosted decision trees are presented. In [32] the
author compares decision trees with SVMs on gene expression data and con-
cludes that bagging and boosting decision tress perform as well as or close to
SVM algorithms. However ensemble methods and decision trees with complex
multivariate tests based on linear or non-linear combination splits are much more
difficult to understand or interpret by human experts. Although higher accuracy
than single-tree solutions, their potential for scientific modeling of underlying
processes is limited.

Global TSP Decision Tree for Gene Expression Data Analysis 231

2.2 A Family of Top-Scoring Algorithms

Relative expression algorithms [10] are simple yet powerful classifiers. The use
of the ordering relationships for a small collection of genes has potential for
identify gene-gene interactions with plausible biological interpretation and direct
clinical applicability [15]. The most popular solution is called Top-Scoring Pair
(TSP) [10] and has many applications in identifying marker genes in micro-
array datasets [26] or as a feature selection in more complex classifiers [32]. In
addition, the TSP solution is parameter free, data driven learning approach
that is invariant to any simple transformation of data like normalization and
standardization.

TSP is extended in two main directions, each having its pros and cons. First
technique called k−TSP [29] increases the number of top-scoring pairs included
in the final prediction. This solution was later extended by weight pairwise com-
parisons Weight k − TSP [4] and Top-Scoring Pair Decision Tree (TSPDT)
[5]. Different approaches called Top-Scoring Triplet (TST) [15] and Top-Scoring
’N’ (TSN) [19] search for more than two ordering relationships between genes.
Multiple implementation of these solutions may be found as R package [31].

Top-Scoring Pair. The TSP method proposed by Donald Geman [10] is based
on pairwise comparisons of gene expression values. Discrimination between two
classes depends on finding pairs of genes that achieve the highest ranking value
called ”score”. Consider a gene expression profile consisting of P genes and
N samples participating in the training micro-array dataset. Let the data be
represented as a P ×N matrix in which expression value of u-th gene from v-th
sample is denoted as xuv. Each row represents observations of a particular gene
over N training samples, and each column represents a gene expression profile
composed from P genes. Each profile has a true class label denoted Cm ∈ C =
{C1, . . . , CM}. For the simplicity of calculations it is assumed that there are only
two classes (M = 2) and profiles with indexes from 1 to N1 (N1 < N) belong to
the first class (C1) and profiles from range 〈N1 +1, N〉 to the second class (C2).

The TSP method focuses on gene pair matching (i, j) (i, j ∈ {1, . . . , P}, i �= j)
for which there is the highest difference in probability p of an event xin < xjn

(n = 1, 2, . . . , N) between class C1 and C2. For each pair of genes (i, j) two
probabilities are calculated pij(C1) and pij(C2):

pij(C1) =
1

|C1|

N1∑
n=1

I(xin < xjn),

pij(C2) =
1

|C2|

N∑
n=N1+1

I(xin < xjn),

where |Cm| denotes a number of profiles from class Cm and I(xin < xjn) is the
indicator function defined as:

I(xin < xjn) =

{
1, if xin < xjn

0, if xin ≥ xjn

232 M. Czajkowski and M. Kretowski

TSP is a rank-based method, so for each pair of genes (i, j) the ”score” denoted
Δij is calculated as:

Δij = |pij(C1)− pij(C2)|.

In the next step of the algorithm, pairs with the highest score are chosen.
There should be only one top pair in the TSP method, however it is possible

that multiple gene pairs achieve the same top score. In that case a secondary
ranking, based on the rank differences in each class and samples, is used to
eliminate draws.

γij (C1) =

∑N1

n=1(xin − xjn)

|C1|
,

γij (C2) =

∑N
n=N1+1(xin − xjn)

|C2|
.

For each pair of genes (i, j) the second ranking is calculated and pair with the
highest score τij is chosen:

τij = |γij (C1)− γij (C2)|,

The TSP prediction is made by comparing the relation between expression val-
ues of two genes (i, j) marked as ”top-scoring pair” in new test sample w. If we
observe that pij(C1) ≥ pij(C2) and xiw < xjw , then TSP votes for class C1,
however if xiw ≥ xjw then TSP votes for class C2. An opposite situation is when
pij(C1) < pij(C2), cause if xiw < xjw TSP votes for C1 and if xiw ≥ xjw TSP
chooses C2.

Top-Scoring Extensions. There are two main ways to extend the TSP solu-
tion: application of multiple pairs of genes or comparison relationships for more
than two genes. One of the solutions that uses the first approach is k−TSP [29]
which applies no more than k top-scoring pairs in classification. The parameter
k can be set up a priori or can be determined by a cross-validation. Next, the
k−TSP classifier uses no more than k top scoring disjoint gene pairs that have
the highest score and simple majority vote for a final decision.

The Weight k−TSP [4] solution modifies rankings of k−TSP and calculates
the ratio of two genes in order to find optimal top-scoring pairs.

Solution called TSPDT [5] is a hybrid of k − TSP and a top-down induced
decision tree [24]. At first, a test analogous to the k − TSP method is searched
for the root node. Then, the set of instances is split according to decision of the
best pair (or pairs) of genes in the current node and then each derived subset
goes to the corresponding branch. The process is recursively repeated for each
branch until leaf node is reached.

Different approach for the TSP extension is discussed in [15] where authors
focused on the predicting germline BRCA1 mutations in breast cancer. A three-
gene version of relative expression analysis called Top-Scoring Triplet (TST) [15]
was proposed as potentially more discriminating than TSP since there are six
possible orderings that must be analyzed.

Global TSP Decision Tree for Gene Expression Data Analysis 233

Next, the general idea of pairwise or triplet rank comparisons was proposed
in [19]. The top-scoring N (TSN) algorithm uses generic permutations and dy-
namically adjust the size to control both the permutation and combination space
available for classification. Variable N denotes the size of the classifier, there-
fore in the case where N = 2 the TSN algorithm simply reduces to the TSP
method and when N = 3, the TSN can be seen as TST . The classifier’s size can
be chosen by a user or by an internal cross-validation that checks classification
accuracy for the different values of N (on a training data, in a range specified
by the user) and selects the classifier with the highest score.

2.3 Motivation

There are two main drawbacks of TSP extensions. The first one is enormous
computational requirements because the general complexity of aforementioned
algorithms is O(k ∗ PN), where k is the number of top-scoring groups, P is the
number of features and N is the size of group of genes which ordering relation-
ships is compared. There are some attempts of improving TSP performance by
parallelization the algorithm and using graphic processing unit (GPU) for cal-
culations [18], however the parameters k or/and N must be small (upper limit
of the test was equal: N = 4, k = 1 but only when P was significantly reduced
by the feature selection).

The second drawback is finding accurate value of the parameters k and N . In
TSP extensions they are defined by the user or determined by internal cross-
validation. However, it is time consuming and decreases the set of instances
which is already very small. In addition, it is also not clear which extension
should be prefered: k − TSP or TSN . It should be noted that the k − TSP
algorithms cannot replace the TSN with N > 2 as the k − TSP has restriction
to use only disjoint gene pairs. On the other side, the k−TST or k−TSN were
not proposed in the literature, probably because of it’s huge complexity.

In the TSPDT system k − TSP algorithm is calculated in each non-terminal
tree node, therefore the general complexity must be multiplied by the number of
internal nodes. In addition, the TSPDT like most of practical decision-tree induc-
ers is based on heuristics such as greedy approach where locally optimal decisions
are made in each node and cannot guarantee to return optimal classifier.

Previously performed research showed that decision trees [11,6], extension of
TSP [4] and hybrid solution called TSPDT [5] may be successfully applied to
the gene expression data. In this paper we would like to unite aforementioned
extensions of TSP through the evolutionary approach. We propose a hybrid
solution called Global Top-Scoring Pair Decision Tree (GTSPDT) that combines
the power of evolutionary approach, relative expression algorithms and decision
trees.

Our goal is to improve classification accuracy and help in identifying genomic
”marker interactions”. Evolutionary algorithm searches for the best tree struc-
ture and tests which involve multiple pairwise comparisons of the gene expression
values. The number of top-scoring pairs applied in each split is determined by
the evolution and by removing restrictions on disjoint gene pairs, the splits may

234 M. Czajkowski and M. Kretowski

compare relationships for more than two genes like in TSN . Application of evo-
lutionary algorithms to the TSP solutions can decrease computation time and
allows to explore larger solution space.

3 Global Top-Scoring Pair Decision Tree

General structure of GTSPDT follows a typical framework of evolutionary al-
gorithms [21] with an unstructured population and a generational selection.

Representation. Decision trees are quite complicated tree structures, in which
number of nodes, type of the tests and even number of test outcomes are not
known in advance. Therefore, representing individuals in their actual form (as
potential tree-solutions) seems more adequate than encoding them in the fixed-
size (usually binary) chromosomes.

Figure 1 illustrates the single individual. Each test in a non-terminal node is
composed of a group of top-scoring pairs. Similarly to TSPDT and k − TSP ,
the final decision in each node depend on a simple majority voting where each
top-scoring pair vote has the same weight. Therefore, the TST solution can
be represented by the 3 top-scoring pairs that involve only three genes. In the
analogous way, TSN , k− TSP or even a variation k− TSN representation can
be found by the GTSPDT . In every node information about learning vectors
associated with the node is also stored. This enables the algorithm to perform
more efficiently local structure and tests modifications during applications of
genetic operators.

Initialization. Initial population could be generated randomly to cover the
entire range of possible solutions, however due to the large solution space, seeding
the initial population with good solutions may speed up evolutionary search.
Each individual in the initial population is generated by the classical top-down,

Fig. 1. An example representation of a single individual with different tests in internal
nodes

Global TSP Decision Tree for Gene Expression Data Analysis 235

greedy approach. Split in each internal node is based on a mixed dipole strategy
[13] and constructed as follows. Among feature vectors located in the node two
objects from different classes are randomly chosen. Next, an effective top-scoring
pair test (one pair of genes which separates this two objects) constructed on
randomly selected attributes constitute a split. The recursive partitioning is
finished when the node is pure (all training objects in the node are from the
same class) or the number of objects is lower than the predefined value (default
value: 5).

Selection and Termination Condition. Ranking linear selection [21] is ap-
plied as a selection mechanism. In each iteration, single individual with the
highest value of fitness function in current population is copied to the next one
(elitist strategy). Evolution terminates when the fitness of the best individual in
the population does not improve during the fixed number of generations (default
value: 1000). In case of a slow convergence, maximum number of generations is
also specified (default value: 10000), which allows to limit the computation time.

Genetic Operators. To maintain genetic diversity, we have proposed two spe-
cialized genetic operators corresponding to the classical mutation and cross-over.
Each evolutionary iteration starts with randomly choosing the operator type
where the default probability to select mutation equals 0.8 and to select cross-
over equals 0.2. Both operators have impact on the tree structure and the tests
in non-terminal nodes. After each operation it is usually necessary to relocate
learning vectors between parts of the tree rooted in the altered node. This can
cause that certain parts of the tree does not contain any learning vectors and
has to be pruned.

Cross-over starts with selecting positions in two affected individuals. We have
adapted three variants of recombination [13]:

– subtrees starting in the selected nodes are exchanged;
– tests associated with the nodes are exchanged (only when non-terminal nodes

are chosen);
– branches which start from the selected nodes are exchanged in random order

(only when non-terminal nodes are chosen).

Mutation solution starts with randomly choosing the type of node (equal proba-
bility to select leaf or internal node). Next, the ranked list of nodes of the selected
type is created and a mechanism analogous to ranking linear selection is applied
to decide which node will be affected. Depending on the type of node, ranking
takes into account two elements:

– location (level) of node. It is evident that modification of the test in the
root node affects whole tree and has a great impact, whereas mutation of an
internal node in lower parts of the tree has only a local impact. Therefore,
internal nodes in lower parts of the tree are mutated with higher probability;

– classification accuracy of the node - worse in terms of prediction accuracy
leaves and internal nodes are mutated with higher probability (homogeneous
leaves are not included).

236 M. Czajkowski and M. Kretowski

Each leaf can be transformed into an internal node with a new dipole test,
similar to one used in population initialization. As for the internal nodes, we
have propose a few variants of mutation:

– node can be transformed (pruned) into a leaf,
– test in node is replaced by new top-scoring pair,
– one of the attributes from top-scoring pair is replaced by random one which

effectively separates at least two objects in the node,
– new top-scoring pair is added or removed from the test in the node,
– tests between father and son exchanged,
– all subtrees are replaced with randomly chosen one.

Fitness Function. Specification of a suitable fitness function is one of the most
important and sensitive element in the design of evolutionary algorithm. It drives
the evolutionary search process and measures how good a single individual is in
terms of meeting the problem objective. Direct minimization of the prediction
error measured on the learning set usually leads to the over-fitting problem. In
typical top-down tree inducers it is partially mitigated by a stopping condition
and an application of the post-pruning [9].

In case of evolutionary induced classification trees, we need to balance the
reclassification quality and the complexity of the tree. A similar idea is used
in cost complexity pruning in the CART system [2]. The fitness function is
maximized and has the following form:

Fitness(T) = QReclass(T)− α · (2 ∗ S(T) +K(T)),

where QReclass(T) is the reclassification quality of the tree T , S(T) is the size
of the tree expressed as a number of nodes, K is the number of unique genes
that were used to build the classifier and α is the relative importance of the
complexity term specified by user (default value is 0.05). Penalty associated
with the classifier complexity increases proportionally with the tree size and the
number of different genes that constitute the top-pairs to prevent over-fitting.

It should be noticed that there is no optimal value of α for all possible datasets
and tuning it may lead to the improvement of results for the specific problem.
Further research to determine the appropriate value of complexity penalty term
for proposed solution is required and other commonly used measures such as
Akaikes information criterion (AIC) [1] or Bayesian information criterion (BIC)
[25]should be considered.

4 Results and Discussions

Performance of classifiers was investigated on public available micro-array
datasets, summarized in Table 1. We have extend previous comparison of TSP -
family algorithms [5] by enclosing the accuracy and the size of proposed solution
GTSPDT . To check and compare results of other popular decision trees and
rule classifiers on analyzed data please also refer to [5].

Global TSP Decision Tree for Gene Expression Data Analysis 237

Table 1. Details of Kent Ridge Bio-medical gene expression datasets

Datasets Symbol Attributes Train Test

Breast Cancer BC 24481 34/44 12/7
Central Nervous System CNS 7129 21/39 -
Colon Tumor CT 6500 40/22 -
DLBCL vs Follicular Lymphoma DF 6817 58/19 -
Leukemia ALL vs AML LA 7129 27/11 20/14
Lung Cancer Brigham LCB 12533 16/16 15/134
Lung Cancer University of Michigan LCM 7129 86/10 -
Lung Cancer - Totonto, Ontario LCT 2880 24/15 -
Ovarian Cancer OC 15154 91/162 -
Prostate Cancer PC 12600 52/50 27/8

Datasets and Setup. Proposed solution was tested on Kent Ridge Bio-medical
Repository [12] and the datasets refer to the studies of human cancer, includ-
ing: leukemia, colon tumor, prostate cancer, lung cancer, breast cancer, ovarian
cancer etc. If datasets, described in Table 1 were not pre-divided into the train-
ing and the testing sets we use typical 10-fold cross-validation. To ensure stable
results, for all datasets average score of 10 runs is shown.

In the experiments, we have compared proposed solution with TSP , k−TSP
and TSPDT . The maximum number of top-scoring pairs (parameter k) for
k − TSP and TSPDT was set to 9. Classification was performed with default
parameters for all algorithms through all datasets and was preceded by a step
known as feature selection, where a subset of relevant features is identified. We
decided to use popular method called Relief-F [14] for micro-array analysis with
its default parameters and 1000 features subset size.

Comparison of Top-Scoring Family Algorithms Methods. Table 2 sum-
maries classification performance for the proposed solution TSP , k − TSP ,
TSPDT and GTSPDT . Preliminary results show that on most of datasets,
the classification accuracy increased (or did not change) when decision trees
with TSP were applied. However, for some datasets, like Colon Tumor, both
decision tree solutions did not work well which may suggest over-fitting to the
training data. In general GTSPDT managed to increase classification accuracy
(average on all datasets over 3%). The greatest improvement of GTSPDT can
be noticed on the Lung Cancer datasets. According to the Friedman test, there
is a statistically significant difference (p-value of 0.0019) in the accuracy between
TSP and GTSPDT .

Number of internal nodes and the average number of top-scoring pairs used
in GTSPDT classifier presented in Table 2 allows to compare the sizes of tested
solutions. The TSP algorithm uses only one pair of genes and k−TSP no more
than 9 pairs. The TSPDT tree uses no more than k = 9 pairs in each internal
node, so this value must be multiplied by the tree size. The proposed solution
managed to slightly decrease the tree size comparing to TSPDT and used less
pairs of genes in each internal node (an average: 2.2).

238 M. Czajkowski and M. Kretowski

Table 2. Comparison of top-scoring algorithms, including accuracy, number of internal
nodes and the number of gene pairs

Classifiers accuracy and size of the solution
Datasets TSP k-TSP TSPDT GTSPDT

accuracy accuracy nodes accuracy nodes pairs accuracy

BC 52.63 68.42 2.0 78.95 1.1 2.9 77.37
CNS 49.00 58.50 3.0 63.00 1.1 3.1 65.00
CT 83.64 88.93 2.0 84.88 1.8 2.6 82.26
DF 72.75 87.82 1.6 95.25 1.4 3.2 97.70
LA 73.53 91.18 1.0 91.18 1.0 1.0 91.18
LCB 76.51 83.89 1.0 83.89 1.0 2.5 93.02
LCM 95.87 95.23 1.1 97.77 1.0 1.1 98.96
LCT 50.92 58.42 2.4 55.33 1.6 2.7 78.46
OC 99.77 100.00 1.0 100.00 1.0 1.0 99.60
PC 76.47 91.18 2.0 94.12 2.2 1.9 91.76

Average 73.11 82.36 1.7 84.44 1.3 2.2 87.53

5 Conclusion

In this paper we propose theGTSPDT system for solving classification problems
on micro-array data. The evolutionary approach of the hybrid solution combines
the power of decision trees and popular top-scoring algorithms. EA globally
searches for the best tree structure and the top-scoring pairs which are used
as splitting tests in non-terminal nodes. We have designed several specialized
operators to mutate and cross-over individuals (trees) and a fitness function
that helps mitigating the over-fitting problem. The GTSPDT solution is highly
competitive to other relative expression algorithms in terms of accuracy and
the model complexity. It can explore much larger permutation and combination
space and therefore has potential to discover new biological connections between
genes.

In this paper we only focus on the general concept of GTSPDT . We do not
enclose any biological aspects of the rules generated by proposed system or case
studies on particular datasets. Furthermore improvement is still required. Ap-
plication of local optimizations (memetic algorithms), new specialized operators
and self-adaptive parameters should speed up convergence of the evolutionary al-
gorithm. We also want to test different fitness functions based on e.g. information
criterion and extended GTSPDT to handle cost-sensitive and multi-class prob-
lems. More work on preprocessing datasets, gene selection and using additional
problem-specific knowledge is also required to improve GTSPDT classification
and rule discovery.

Acknowledgements. This work was supported by the grant S/WI/2/13 from
Bialystok University of Technology.

Global TSP Decision Tree for Gene Expression Data Analysis 239

References

1. Akaike, H.: A New Look at Statistical Model Identification. IEEE Transactions on
Automatic Control 19, 716–723 (1974)

2. Breiman, L., Friedman, J.: Classification and Regression Trees. Wadsworth Int.
Group (1984)

3. Cho, H.S., Kim, T.S.: cDNA Microarray Data Based Classification of Cancers
Using Neural Networks and Genetic Algorithms. Nanotech 1 (2003)

4. Czajkowski, M., Kretowski, M.: Novel Extension of k − TSP Algorithm for Mi-
croarray Classification. In: Nguyen, N.T., Borzemski, L., Grzech, A., Ali, M. (eds.)
IEA/AIE 2008. LNCS (LNAI), vol. 5027, pp. 456–465. Springer, Heidelberg (2008)

5. Czajkowski, M., Kretowski, M.: Top Scoring Pair Decision Tree for Gene Expression
Data Analysis. In: Software Tools and Algorithms for Biological Systems. Advances
in Experimental Medicine and Biology, vol. 696, pp. 27–35 (2011)

6. Czajkowski, M., Grześ, M., Kretowski, M.: Multi-Test Decision Trees for Gene Ex-
pression Data Analysis. In: Bouvry, P., K�lopotek, M.A., Leprévost, F., Marciniak,
M., Mykowiecka, A., Rybiński, H. (eds.) SIIS 2011. LNCS, vol. 7053, pp. 154–167.
Springer, Heidelberg (2012)

7. Diaz-Uriarte, R., Alvarez de Andres, S.: Gene selection and classification of mi-
croarray data using random forest. BMC Bioinformatics 7, 3 (2006)

8. Dudoit, S.J., Fridlyand, J.: Comparison of discrimination methods for the classifi-
cation of tumors using gene expression data. Journal of the American Statistical
Association 97, 77–87 (2002)

9. Esposito, F., Malerba, D., Semeraro, G.: A comparative analysis of methods for
pruning decision trees. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 19(5), 476–491 (1997)

10. Geman, D., d’Avignon, C., Naiman, D.Q., Winslow, R.L.: Classifying gene expres-
sion profiles from pairwise mRNA comparisons. Statistical Applications in Genetics
and Molecular Biology 3(19) (2004)

11. Grześ, M., Kretowski, M.: Decision Tree Approach to Microarray Data Analysis.
Biocybernetics and Biomedical Engineering 27(3), 29–42 (2007)

12. Kent Ridge Bio-medical Dataset Repository,
http://datam.i2r.a-star.edu.sg/datasets/index.html

13. Kretowski, M., Grześ, M.: Evolutionary Induction of Mixed Decision Trees. Inter-
national Journal of Data Warehousing and Mining 3(4), 68–82 (2007)

14. Kononenko, I.: Estimating Attributes: Analysis and Extensions of RELIEF. In:
Bergadano, F., De Raedt, L. (eds.) ECML 1994. LNCS, vol. 784, pp. 171–182.
Springer, Heidelberg (1994)

15. Lin, X., Afsari, B., Marchionni, L., Cope, L., Parmigiani, G., Naiman, D., Ge-
man, D.: The ordering of expression among a few genes can provide simple cancer
biomarkers and signal BRCA1 mutations. BMC Bioinformatics 10(256) (2009)

16. Lockhart, D.J., Winzeler, E.A.: Genomics, gene expression and DNA arrays. Na-
ture 405, 827–836 (2000)

17. Lu, Y., Han, J.: Cancer classification using gene expression data. Information Sys-
tems 28(4), 243–268 (2003)

18. Magis, A.T., Earls, J.C., Ko, Y., Eddy, J.A., Price, N.D.: Graphics processing
unit implementations of relative expression analysis algorithms enable dramatic
computational speedup. Bioinformatics 27(6), 872–873 (2011)

19. Magis, A.T., Price, N.D.: The top-scoring ‘N’ algorithm: a generalized relative
expression classification method from small numbers of biomolecules. BMC Bioin-
formatics 13(1), 227 (2012)

http://datam.i2r.a-star.edu.sg/datasets/index.html

240 M. Czajkowski and M. Kretowski

20. Mao, Y., Zhou, X.: Multiclass Cancer Classification by Using Fuzzy Support Vector
Machine and Binary Decision Tree With Gene Selection. Journal of Biomedicine
and Biotechnology, 160–171 (2005)

21. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs,
3rd edn. Springer (1996)

22. Murthy, S.: Automatic construction of decision trees from data: A multi-
disciplinary survey. Data Mining and Knowledge Discovery 2, 345–389 (1998)

23. Nelson, P.S.: Predicting prostate cancer behavior using transcript profiles. Journal
of Urology 172, 28–32 (2004)

24. Rokach, L., Maimon, O.: Top-down induction of decision trees classifiers - A survey.
IEEE Transactions on Systems, Man, and Cybernetics - Part C 35(4), 476–487
(2005)

25. Schwarz, G.: Estimating the Dimension of a Model. The Annals of Statistics 6,
461–464 (1978)

26. Shi, P., Ray, S., Zhu, Q., Kon, M.A.: Top scoring pairs for feature selection in ma-
chine learning and applications to cancer outcome prediction. BMC Bioinformatics
12(375) (2011)

27. Simon, R., Radmacher, M.D.: Pitfalls in the use of DNA microarray data for di-
agnostic and prognostic classification. Journal of the National Cancer Institute 95,
14–18 (2003)

28. Tan, A.C., Gilbert, D.: Ensemble machine learning on gene expression data for
cancer classification. Applied Bioinformatics 2, 75–83 (2003)

29. Tan, A.C., Naiman, D.Q.: Simple decision rules for classifying human cancers from
gene expression profiles. Bioinformatics 21, 3896–3904 (2005)

30. Quinlan, R.: Inductive knowledge acquisition: A case study, vol. 9, pp. 157–173.
Addison-Wesley (1987)

31. Yang, X., Liu, H.: Top Scoring Pair based methods for classification (BigTSP R
package) (2012), http://cran.r-project.org

32. Yoon, S., Kim, S.: k-Top Scoring Pair Algorithm for feature selection in SVM
with applications to microarray data classification. Soft Computing - A Fusion of
Foundations, Methodologies and Applications, 151–159 (2009)

http://cran.r-project.org

Asynchronous Evaluation Based Genetic

Programming: Comparison of Asynchronous
and Synchronous Evaluation and Its Analysis

Tomohiro Harada1 and Keiki Takadama2

1 The University of Electro-Communications, Japan
Research Fellow of the Japan Society for the Promotion of Science DC

harada@cas.hc.uec.ac.jp
2 The University of Electro-Communications, Japan

keiki@inf.uec.ac.jp

http://www.cas.hc.uec.ac.jp

Abstract. This paper compares an asynchronous evaluation based GP
with a synchronous evaluation based GP to investigate the evolution abil-
ity of an asynchronous evaluation on the GP domain. As an asynchronous
evaluation based GP, this paper focuses on Tierra-based Asynchronous
GP we have proposed, which is based on a biological evolution simula-
tor, Tierra. The intensive experiment compares TAGP with simple GP
by applying them to a symbolic regression problem, and it is revealed
that an asynchronous evaluation based GP has better evolution ability
than a synchronous one.

Keywords: genetic programming, tierra, asynchronous evaluation, sym-
bolic regression.

1 Introduction

Conventional Evolutionary Algorithms (EAs) like Genetic Algorithms (GAs) [4]
and Genetic Programmings (GPs) [8] search solution by generating population
through a reproduction and a deletion based on evaluations of all individu-
als at the same time. In contrast to this, EAs such as Differential Evolution
(DE) [14], and MOEA/D [16] are recently attracted attention, and their high
search abilities have been revealed. The common feature of these approaches
is to asynchronously evolve individuals independent of other individuals, unlike
the conventional approaches requires evaluations of all other individuals.

From the viewpoint of GPs, it is assumed that the asynchronous evaluation
has advantages for the program evolution because (1) the asynchronous evalu-
ation based GP can delete incomplete programs which include infinite loops or
multiple-loops and (2) can reproduce faster executed programs which is desired
to evolve. Focusing on these advantage, the previous researches have proposed
Tierra-based Asynchronous Genetic Programming (TAGP) [5,6,11] as a novel GP
approach that asynchronously evaluates and evolves programs, which is based
on a biological evolution simulator, Tierra [12], proposed by T. S. Ray.

K. Krawiec et al. (Eds.): EuroGP 2013, LNCS 7831, pp. 241–252, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.cas.hc.uec.ac.jp

242 T. Harada and K. Takadama

The purpose of this paper is to analyze the difference between the synchronous
evaluation and the asynchronous evaluation and to investigate the better evo-
lution ability of the asynchronous evaluation on the GP domain. Toward this
purpose, this paper compares TAGP as the asynchronous evaluation based GP
with simple steady-state GP (SGP) [13] as the synchronous evaluation based
GP. The experiment is conducted with the assembly language program and ap-
plies these two methods to a symbolic regression problem which is well known
and easy benchmark.

This paper is organized as follows. Section 2 discusses the difference between
the synchronous and the asynchronous evaluation EAs and clarifies the advan-
tage of the asynchronous evaluation on the GP domain. Section 3 explains a
biological evolution simulator, Tierra, which is base of TAGP, and Section 4
explains the algorithm of TAGP. Section 5 conducts an experiment to compare
TAGP with SGP and shows its result. Section 6 discusses the result and analyzes
the difference of two methods, and Section 7 finally gives conclusions and future
works.

2 Motivation

It is usual that conventional Evolutionary Algorithms (EAs) like Genetic Al-
gorithms (GAs) [4] and Genetic Programmings (GPs) [8] search solution by
generating new population through a reproduction and a deletion based on eval-
uations of all individuals in a current population. These approaches require to
evaluate all individuals before the reproduction and the deletion at the same
time, because selection is conducted based on the evaluations. Therefore, it is
necessary for the conventional EAs to synchronize evaluations of all individuals
in a population.

In contrast to this, EAs like Differential Evolution (DE) [14], and MOEA/D
[16] are recently attracted attention. The common feature of these approach
is that each individual in population independently generates a child and next
population is generated from them, unlike the conventional EAs. When gener-
ating children, evaluations of all individuals are unnecessary, and children can
be generated only based on evaluation of a focused or a few other individual(s).
From this feature, since these approaches need not synchronize evaluations of all
individuals, they can asynchronously evolve each individual.

This paper defines the former EAs as synchronous evaluation based EAs
(SEEAs), while the latter as asynchronous evaluation based EA (AEEAs). In
previous researches, it has been revealed that the AEEAs has better search abil-
ity than the SEEAs. One main reason is independent evolution of individuals.
Since evolving individual independently contributes to maintain diversity of a
population, the AEEAs can search a large area and are prevented from falling
into the local optimal. Additionally, one more advantage of the AEEAs is to
be easily able to parallelize algorithms. Since the AEEAs evolve each individual
not considering other individuals or using a part of other evaluation, they can
decrease overhead of parallelization [15] [2].

Asynchronous Evaluation Based GP 243

As a novel GP approach which applies the asynchronous evaluation, the previ-
ous researches have proposed Tierra-based Asynchronous Genetic Programming
(TAGP) [5,6,11] which is based on a biological evolution simulator, Tierra [12],
proposed by T. S. Ray. The advantage to apply the asynchronous evaluation to
GP, without mentioned above, is (1) deletion of incomplete programs, and (2)
priority reproduction of faster program because of the feature of the program
evolution.

(1) Deletion of incomplete programs. When evolving programs including
loops, it is possible that programs which cannot be evaluated are generated
with genetic operators because of an infinite loop or a multiple-loop. Since
the SEEAs require all evaluations in a population to generate next popula-
tion, it is usual to restrict upper execution steps and to impose a penalty
on programs which exceed the limitation. It is, however, difficult to appro-
priately configure the restriction and the penalty. On the other hand, the
AEEAs can continue to evolve programs even if program which does not
finish its execution because all programs are independently evaluated and
programs can be reproduced without waiting for other program evaluation.

(2) Priority reproduction of faster program. In program evolution, since
programs which can be executed faster are usually evaluated better, it is ex-
pected that giving a lot of reproduction chance to such programs performs
effective. Since the AEEAs can reproduce programs in order of finishing exe-
cution, faster executed programs can be naturally given a lot of reproduction
chance.

To verify the feature and the advantage of the asynchronous evaluation in GP,
this paper compares TAGP as the AEEA with simple steady-state GP (SGP) [13]
as the SEEA.

3 Tierra

Tierra [12] proposed by T. S. Ray is a biological evolution simulator, where dig-
ital creatures are evolved through a cycle of a self-reproduction, deletion and
genetic operators such as a crossover or a mutation. Digital creatures live in
a memory space corresponding to the nature land on the earth, and they are
implemented by a linear structured computer program such as the assembly
language to reproduce (copy) themselves to a vacant memory space. CPU time
corresponding to energy like actual creatures is given to each creature, and they
execute instructions of a self-reproduction program within allocated CPU time.
Since given CPU time is shorter for execution time of programs, all programs are
executed in parallel. Lifespan of a program is decided with a reaper mechanism.
All programs are arranged in a queue, named as reaper queue, and a reproduced
program is added to the end of the reaper queue. While program execution, a pro-
gram which can correctly execute its instruction moves its position in the reaper
queue to lower, while one which cannot correctly execute its instruction moves
its position to upper. Then, when a memory space is filled, a program which

244 T. Harada and K. Takadama

is at a top of the reaper queue is deleted from the memory. Due to the reaper
mechanism, programs which cannot reproduce themselves within allocated CPU
time or include some incorrect instructions are deleted from the memory, while
creatures which can reproduce themselves propagate in the memory.

As results of such evolution, Tierra generates, for example, programs, called
parasite, which reproduce themselves by using other program’s instructions, or
ones, called hyper-parasite, which have immunity to the parasites. Note that this
evolution is not pre-programmed in Tierra but is caused by emergence [9]. As the
final stage of Tierra, programs which have shorter program size or have efficient
algorithm are generated, which require less CPU time than an initial program
to reproduce themselves [1].

4 Tierra-Based Asynchronous Genetic Programming

4.1 Overview

The previous researches focus on the feature of Tierra that can evolve programs,
i.e., digital creatures, with asynchronous execution, and have proposed a novel
GP based on Tierra mechanism, named as Tierra-based Asynchronous Genetic
Programming (TAGP) [5, 6, 11]. To apply Tierra to evolving programs with a
given task, the previous research introduces fitness commonly used in EAs to
evaluate programs, and also introduces reproduction and deletion mechanisms
depending on fitness into Tierra. This is because it is impossible to give any
purposes to programs in Tierra whose purpose is only to reproduce themselves,
and reproduction and deletions is decided depending on self-reproduction.

Figure 1 shows an image of TAGP. TAGP firstly starts from one program
which completely accomplishes the given task. Programs which consist of a lin-
ear structured instructions and some registers are stored in a limited memory
space. Each program executes a small number of instructions, which is precon-
figured, e.g., three instructions, to simulate a parallel execution. All programs
are arranged on reaper queue which controls lifespan of programs. When an
execution of one program is finished, i.e., all instructions in its program are
executed, its fitness is evaluated depending on its execution result, and the re-
production and the reaper queue control are conducted. Then if a memory is
filled with programs, programs which are arranged at the upper of the reaper
queue are removed from the memory while a vacant memory space exceeds a
certain threshold, e.g., 20% of a memory, and its space become free.

4.2 Algorithm

TAGP evolves programs through the following selection, reaper queue control,
reproduction, and deletion algorithms. The algorithm of TAGP is shown in Al-
gorithm 1. In Algorithm 1, prog.acc fit and prog.fitness respectively indicate
accumulated and evaluated fitness of evaluated fitness, and rand(0, 1) indicates
random real value between 0 to 1.

Asynchronous Evaluation Based GP 245

program

ALU

SIZE

IP

registers

memory

A B

C

D

E

F
reproduction

reaper queue

C E D A B F

deletion

Fig. 1. An image of TAGP

Selection and Reaper Queue Control. When an execution of one program
is finished, its fitness is evaluated depending on its register value. Each program
accumulates fitness in every evaluations, and whether a program is selected or
not is determined based on the accumulated fitness. Here the maximum fitness
is represented as fmax, and if the accumulated fitness of a program exceeds
fmax, it is selected as a reproduction candidate, and fmax is subtracted from
its accumulated fitness (the 1st and 2nd lines in Algorithm 1). While if not,
a program is not selected. Depending on this selection condition, a program
which completely accomplishes the given task, i.e., its fitness is equal to fmax, is
invariably reproduced. High fitness programs are easy to be reproduced because
the accumulated fitness frequently exceeds fmax, while low fitness ones are hard
to satisfy this condition. Then, a position in the reaper queue of a program
that satisfies the selection condition becomes lower than the current one, i.e.,
its deletion probability decreases (the 3rd ∼ 5th lines), while one that does not
satisfies the condition becomes upper, i.e., its deletion probability increases (the
20th ∼ 22nd lines). The move distance is determined by the move rate represented
as Pdown and Pup which are calculated as the following equation based on fitness,

Pdown(f) =
f

fmax
× Pr, Pup(f) =

fmax − f

fmax
× Pr, (1)

where Pr is the maximum probability of Pdown and Pdown, which is preconfig-
ured. Depending on these equations, higher fitness programs are arranged on
lower position in the reaper queue, i.e., survive long, while lower ones are ar-
ranged on upper, i.e., are easily removed.

Reproduction. Programs which are selected depending on the selection con-
dition become a reproduction candidate. To reproduce better program asyn-
chronously, TAGP only compares two programs which are recently evaluated.
A better program generates a offspring with the genetic operator such as a
crossover and a mutation, and is reproduced to a vacant memory space which
is larger than a program size of the offspring (the 6th ∼ 7th lines). Additionally,
to preserve programs which can accomplish the given task, the elite preserving
strategy [7] is applied (the 8th ∼ 15th lines). Concretely, if a current program
is evaluated as fmax, it is compared with one which is recently evaluated as fmax.

246 T. Harada and K. Takadama

Algorithm 1. The algorithm of TAGP

1: if prog.acc fit ≥ fmax then
2: prog.acc fit ← prog.acc fit − fmax

3: repeat
4: down reaper queue position
5: until rand(0, 1) < Pdown(prog.fitness)
6: reproduce better program of prog and prev prog with genetic operators
7: prev prog ← prog
8: if prog.fitness = fmax then
9: if prog is better than prev elite then

10: reproduce prog without any genetic operators
11: else
12: reproduce prog with genetic operators
13: end if
14: prev elite ← prog
15: end if
16: else

17: if rand(0, 1) < rand(
prog.fitness

fmax
, 1) then

18: remove prog from memory
19: end if
20: repeat
21: up reaper queue position
22: until rand(0, 1) > Pup(prog.fitness)
23: end if

Then if the current one is better, it is reproduced as an elite program with-
out the genetic operators to preserve better program, while even if not, it is
reproduced with the genetic operators. TAGP employs four genetic operators, a
crossover, a mutation, and an instruction insertion/deletion. The crossover oper-
ator combines a reproduced program with previously reproduced program. The
mutation operator changes one random instruction in a reproduced program to
other random instruction. The insertion operator inserts one random instruction
into a reproduced program, while the deletion operator removes one instruction
selected at random in a reproduced program.

Deletion. TAGP conducts two deletion. One is a reaper queue based deletion
which is conducted during the reproduction process. If a vacant memory space is
not found during the reproduction process, programs which is arranged upper in
the reaper queue are removed until a total vacant memory space becomes grater
than a certain threshold, which is preconfigured and is usually set as 20% of the
memory. This deletion remove elder and lower fitness program depending on the
reaper queue control.

While another deletion is a natural death which is applied to programs which
do not satisfied the selection condition. The natural death mechanism is em-
ployed in sugarscape [3], and removes program according to the 17th ∼ 19th line
in Algorithm 1, where rand(a, 1) indicates random real value between a(≤ 1) to
1. This deletion remove lower fitness program even if the memory is not filled.

Asynchronous Evaluation Based GP 247

5 Experiment

To validate the effectiveness of the AEEA, and to analyze the difference of the
AEEA and the SEEA, this paper compares TAGP and simple steady-state GP
(SGP) [13] by applying two methods to a symbolic regression problem.

5.1 Example and Settings

This paper applies these methods to a symbolic regression problem. Concretely,
we use Quartic [8] which is well known and easy benchmark problem represented
as f(x) = x4 + x3 + x2 + x. As a training set, we use 16 data point from
x = {0, 1, . . . , 15}. Fitness is evaluated as the following equation

fitness = fmax − 1

N

N∑
i=1

|f(xi)− resi| , (2)

where fmax indicates the maximum fitness, N indicates the number of the train-
ing data, i.e., 16 in this experiment, f(xi) indicates the function value calculated
from xi, while resi indicates the execution result of a program in respect to the
input value xi.

This paper employs a program written by actual assembly language embedded
on PIC16 micro-controller unit [10] developed by Microchip Technology Inc..
This is 12bits word assembly language, and has 33 simple instructions which
consist of add-subtract, logical, bit, and branch operations. Note that since this
language does not include a multiplication instruction, calculating multiplication
has to combine some instructions and loop structures.

Parameter settings in this experiment are shown in Table 1, 2, and 3. This
experiment compares the AEEA and the SEEA with the same number of the
evaluations. Both of TAGP and SGP employ same parameters for the crossover,
mutation, insertion, and deletion rate, while two point crossover is employed, and
the maximum fitness is set as 100. In SGP, the population size is set as 100, and
the upper execution steps are restricted to 50000 and if execution steps exceed,
its fitness becomes 0. While in TAGP, the memory size is set as 6400, 12800, and
25600 instructions, the deletion removes programs until the total vacant memory
exceeds 20% of the memory size, while Pr which is the maximum probability of
Pdown and Pup, is set as 0.9. Note that the maximum program size is configured
as 256 and the population size of SGP is configured as 100, an allocated memory
space of SGP is 256 × 100 = 25600, which is the same size with the maximum
memory size of TAGP.

The experiment conducts 30 trials in both GPs, and to evaluate the effective-
ness of the proposed method, we compare an average number of the execution
steps of the best program in the memory/population to evaluate whether an
faster program is generated.

248 T. Harada and K. Takadama

Table 1. Common parameter settings

Parameter value

of evaluations 200 × 5000
Crossover rate 0.8
Mutation rate 0.05
Insertion rate 0.05
Deletion rate 0.05

Crossover method Two point crossover
Max. program size 256

fmax 100

Table 2. Parameter settings of SGP

Parameter value

Population size 100
Upper execution steps 50000

Table 3. Parameter settings of TAGP

Parameter value

6400
Memory size 12800

25600
Removing threshold 20% of memory

Pr 0.9

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 1000 2000 3000 4000 5000

av
er

ag
e

of

 e
xe

cu
tio

n
st

ep
s

of evaluation

SGP
TAGP(6400)

TAGP(12800)
TAGP(25600)

Fig. 2. The result of the average number of the execution steps

5.2 Result

Figure 2 shows the average number of the execution steps in each GP and each
memory size. In Figure 2, the abscissa indicates the number of the evaluations,
while the ordinate indicates the average number of the shortest execution steps
of the maximum fitness program. The solid line shows the result of SGP, while
the dotted lines show the results of TAGP of the different memory sizes. Note
that all evolved programs can correctly solve the given problem. As shown in
Figure 2, in all memory sizes of TAGP, the average execution step is less than the
one of SGP. This result indicates that TAGP performs better evolution ability
than SGP. Concretely, in contrast to the evolution of SGP slows down at about
500 evaluations, TAGP keeps evolving programs and can generate the efficient
program which finishes the execution about 3000 steps. Comparing the difference
between the memory sizes of TAGP, smaller memory space get better evolution

Asynchronous Evaluation Based GP 249

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

SGP TAGP(6400) TAGP(12800) TAGP(25600)

ex
ec

ut
io

n
st

ep

Fig. 3. A boxplot of the execution steps for each GP method

ability. From these results, it is revealed that TAGP has better evolution ability
than SGP on the symbolic regression problem, and additionally, the smaller
memory size accelerates the program evolution.

Figure 3 shows a boxplot of the execution steps finally given by the best
program in the memory/population after 200×5000 evaluations. In Figure 3, the
abscissa indicates the difference of the GP methods, while the ordinate indicates
the execution steps finally given by the best program in the memory/population.
As shown in Figure 3, it is indicated that the execution step of evolved programs
with TAGP is shorter than 3500, while the one with SGP is weighted from
3200 to 4200. Focusing on the difference between the memory size of TAGP, the
variability of the execution steps is small in the case that the memory size is 6400,
while in the case that the memory size is 12800 and 25600, shorter execution step
programs which is about 2300∼2400 are generated that are not generated with
small memory size TAGP or SGP. From these results, it is revealed that TAGP
can generate shorter execution step programs than SGP, and the small memory
size enables stable program evolution, while the large memory size enables to
generate shorter step programs than the small memory size or SGP.

6 Discussion

The average program size of the best program in the memory/population is
shown in Figure 4. In Figure 4, the abscissa indicates the number of the eval-
uation, while the ordinate indicates the average program size of the maximum
fitness and the shortest execution steps program. The solid line shows the result
of SGP, while the dotted lines show the results of TAGP of the different mem-
ory sizes. As shown in Figure 4, the average program size increases at the early
evolution period. This is because the program evolution of this problem mainly

250 T. Harada and K. Takadama

 0

 50

 100

 150

 200

 250

 300

 0 1000 2000 3000 4000 5000

av
er

ag
e

pr
og

ra
m

 s
iz

e

of evaluation

SGP
TAGP(6400)

TAGP(12800)
TAGP(25600)

Fig. 4. The result of the average program size

expand loop structures. Since a loop expansion can reduce a number of judge
of a termination condition, it decreases the execution steps. Comparing TAGP
with SGP, although TAGP decreases the program size after size increasing, SGP
keeps large program size. From the viewpoint of the program size, since the max-
imum program size is limited to 256, programs which is larger than the limit
cannot be generated. However, although it is required to expand loops to evolve
program in this experiment, a large program cannot expand its loop because of
the size limitation. Therefore, since it is hard for a large program to be evolved
by expanding the loops unless become small by removing inefficient instructions,
the program evolution of SGP which keeps large program size slows down. In
contrast to this, since TAGP can decreases the program size and leaves space
for the evolution, TAGP can keep evolving the program. The reason why TAGP
can decrease the program size is that TAGP restricts the large program size be-
cause of controlling the population based on the memory size, where the smaller
program easily survives.

Finally, to clarify the difference of the diversity between TAGP and SGP, the
standard deviation of the execution steps in the memory/populaiton is shown in
Figure 5. In Figure5, the abscissas indicate the number of the evaluation, while
the ordinates indicate the average of the standard deviation of the execution
steps in the memory/population. The solid line shows the result of SGP, while the
dotted lines show the results of TAGP of the different memory sizes. As shown
in Figure 5, the standard deviation of the execution steps in TAGP is larger than
the one in SGP, which indicates that the diversity of the programs in TAGP is
larger than the one in SGP. This is because since TAGP selects programs based
on fitness and execution completion, faster programs have selection probability
even if they are not the best, in contrast to SGP selects programs with absolute
comparison based on fitness and actual execution steps where it is very hard

Asynchronous Evaluation Based GP 251

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 1000 2000 3000 4000 5000

av
er

ag
e

of
 s

ta
nd

ar
d

de
vi

at
io

n
of

 e
xe

cu
tio

n
st

ep
s

of evaluation

SGP
TAGP(6400)

TAGP(12800)
TAGP(25600)

Fig. 5. The average of the standard deviation of the execution steps

for slower programs to be selected. This feature is the common advantage of
the AEEA approaches to be able to preserve the diversity of population because
of the asynchronous evaluation. It is revealed that the asynchronous evaluation
also contributes better evolution ability in the GP domain.

7 Conclusion

This paper focused on the asynchronous evaluation on the GP domain, ana-
lyzed the difference between the synchronous and the asynchronous evaluation
based GPs. Concretely, this paper compares TAGP as the asynchronous evalu-
ation based GP we proposed with simple steady-state GP as the synchronous
evaluation based GP. The intensive experiment is conducted to investigate the
effectiveness of the asynchronous evaluation on the GP domain by applying
these two methods to the symbolic regression problem. The experiment has re-
vealed that TAGP has better evolution ability than SGP, and the small memory
size accelerates the program evolution, while the large memory size generates
shorter execution step programs than the small memory or SGP. The reason
of this improvement is that TAGP can naturally restrict to generate the larger
size program because of the memory size based population control, while TAGP
can also preserve the diversity of the population because of the asynchronous
evaluation.

The following issues should be pursued in the near future: (1) experiments on
other benchmark problems such as boolean and classification and a comparison
with other GP methods, and (2) an improvement of evolution ability of TAGP.

Acknowledgments. This work was supported by JSP KAKENHI Grant Num-
ber 249376.

252 T. Harada and K. Takadama

References

1. ATR Evolutionary Systems Department: Artificial Life and Evolutional System.
Tokyo Denki University Press (1998)

2. Durillo, J.J., Zhang, Q., Nebro, A.J., Alba, E.: Distribution of Computational
Effort in Parallel MOEA/D. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683,
pp. 488–502. Springer, Heidelberg (2011),
http://dx.doi.org/10.1007/978-3-642-25566-3_38

3. Epstein, J.M., Axtell, R.L.: Growing Artificial Societies: Social Science from
the Bottom Up (Complex Adaptive Systems), 1st printing edn. The MIT Press
(November 1996), http://www.amazon.com/exec/obidos/
redirect?tag=citeulike07-20&path=ASIN/0262550253

4. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston (1989)

5. Harada, T., Otani, M., Matsushima, H., Hattori, K., Sato, H., Takadama, K.: Ro-
bustness to Bit Inversion in Registers and Acceleration of Program Evolution in
On-Board Computer. Journal of Advanced Computational Intelligence and Interl-
ligent Informatics (JACIII) 15(8), 1175–1185 (2011)

6. Harada, T., Otani, M., Matsushima, H., Hattori, K., Takadama, K.: Evolving Com-
plex Programs in Tierra-based On-Board Computer on UNITEC-1. In: 2010 61st
World Congress on International Astronautical Congress (IAC) (2010)

7. Jong, D., Alan, K.: An Analysis of the Behavior of a Class of Genetic Adaptive
Systems. Ph.D. thesis, Department of Computer and Communications Sciences,
University of Michigan (1975)

8. Koza, J.: Genetic Programming On the Programming of Computers by Means of
Natural Selection. MIT Press (1992)

9. Langton, C.G.: Artificial Life. Addison-Wesley (1989)
10. Microchip Technology Inc.: PIC10F200/202/204/206 Data Sheet 6-Pin, 8-bit Flash

Microcontrollers. Microchip Technology Inc. (2007),
http://ww1.microchip.com/downloads/en/DeviceDoc/41239D.pdf

11. Nonami, K., Takadama, K.: Tierra-based Space System for Robustness of Bit In-
version and Program Evolution. In: SICE, 2007 Annual Conference, pp. 1155–1160
(2007)

12. Ray, T.S.: An approach to the synthesis of life. Artificial Life II XI, 371–408 (1991)
13. Reynolds, C.W.: An evolved, vision-based behavioral model of coordinated group

motion. In: Proc. 2nd International Conf. on Simulation of Adaptive Behavior, pp.
384–392. MIT Press (1993)

14. Storn, R., Price, K.: Differential Evolution - A Simple and Efficient Heuristic for
Global Optimization over Continuous Spaces. J. of Global Optimization 11(4),
341–359 (1997), http://dx.doi.org/10.1023/A:1008202821328

15. Tasoulis, D., Pavlidis, N., Plagianakos, V., Vrahatis, M.: Parallel differential evolu-
tion. In: Congress on Evolutionary Computation, CEC 2004, vol. 2, pp. 2023–2029
(June 2004)

16. Zhang, Q., Li, H.: MOEA/D: A Multiobjective Evolutionary Algorithm Based on
Decomposition. IEEE Trans. Evolutionary Computation 11(6), 712–731 (2007)

http://dx.doi.org/10.1007/978-3-642-25566-3_38
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0262550253
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0262550253
http://ww1.microchip.com/downloads/en/DeviceDoc/41239D.pdf
http://dx.doi.org/10.1023/A:1008202821328

How Early and with How Little Data? Using

Genetic Programming to Evolve Endurance
Classifiers for MLC NAND Flash Memory

Damien Hogan, Tom Arbuckle, and Conor Ryan

Computer Science and Information Systems,
University of Limerick,

Ireland
{damien.t.hogan,tom.arbuckle,conor.ryan}@ul.ie

Abstract. Despite having a multi-billion dollar market and many oper-
ational advantages, Flash memory suffers from a serious drawback, that
is, the gradual degradation of its storage locations through use. Manufac-
turers currently have no method to predict how long they will function
correctly, resulting in extremely conservative longevity specifications be-
ing placed on Flash devices.

We leverage the fact that the durations of two crucial Flash opera-
tions, program and erase, change as the chips age. Their timings, recorded
at intervals early in chips’ working lifetimes, are used to predict whether
storage locations will function correctly after given numbers of opera-
tions. We examine how early and with how little data such predictions
can be made. Genetic Programming, employing the timings as inputs, is
used to evolve binary classifiers that achieve up to a mean of 97.88% cor-
rect classification. This technique displays huge potential for real-world
application, with resulting savings for manufacturers.

Keywords: Genetic Programming, Binary Classifier, Flash Memory.

1 Introduction

The NAND Flash memory [19] market is projected to be worth US$24 billion
for 2013 [23], with recent application areas such as smart-phones, tablet PCs,
and Solid State Drives (SSDs) continuing to increase market value. NAND Flash
memory, which is used primarily for data storage, is more expensive than tra-
ditional forms of memory such as hard-disk drives (HDDs) but offers numerous
advantages including faster performance and lower power consumption. However,
a significant drawback is that storage locations (cells) in Flash devices have a
limited working lifetime, and slowly degrade [6] through repeated use, eventually
becoming unreliable. A difficulty posed by this is the fact that the rate at which
cells wear out varies significantly between devices and even between cells within
the same device.

In Flash devices, data is read and programmed one page (group of bytes) at
a time, but is erased a block (group of pages) at a time. Programming and then

K. Krawiec et al. (Eds.): EuroGP 2013, LNCS 7831, pp. 253–264, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

254 D. Hogan, T. Arbuckle, and C. Ryan

erasing a block is known as a program/erase (p/e) cycle, and the longevity of
a block, its endurance, is measured by the number of p/e cycles it completes
before it becomes unreliable. It is hugely time consuming to measure the en-
durance of blocks since they must be cycled to destruction in order to find the
actual number of cycles completed. This means it is not economical for manufac-
turers to perform tests to accurately specify endurance, resulting in extremely
conservative estimates being used for the specifications of Flash devices.

Since manufacturers cannot be sure of the actual number of p/e cycles blocks
within their devices will complete, a significant amount of internal redundancy,
known as over-provisioning, must be included in items such as SSDs. This ensures
that when the weakest blocks fail, others will be available to take their place and
maintain the specified capacity. A technique to allow manufacturers predict the
quality of blocks without requiring time consuming tests would mean that the
endurance specification of Flash devices could be increased.

As the blocks within Flash devices are p/e cycled, the cells within them de-
grade, making it easier to program and erase them. This results in the time
taken to perform these operations decreasing as the number of cycles completed
increases. In previous work [13], we established that the duration of the program
and erase operations could be used to predict the quality of blocks. In particu-
lar, Genetic Programming (GP) [17] was used to evolve binary classifiers which
predicted whether blocks would successfully complete a predefined number of cy-
cles based only on program and erase timing information. That work, essentially
a proof-of-concept, investigated only timing data recorded upon completion of
1,000 and 10,000 p/e cycles.

The research presented in this paper, in collaboration with partners in in-
dustry, extends our previous work and investigates the effect of using timing
information recorded at many different p/e cycling intervals. A significant com-
ponent of this research is the destructive testing of blocks on actual Flash devices
in order to accumulate data to train and test the classifiers. This paper confirms
that program and erase times can be used as an indication of the endurance
capability of a block, and, going beyond our previous results, that the number
of cycles at which the times are recorded has a significant effect on predictions
made. The results illustrate that endurance predictions can be made early in the
lifecycles of the chips and show how little data is needed to do so. They establish
the success of this approach and its huge potential for real-world application.

This paper comprises the following sections: Background, Related Research,
Destructive Testing of Flash Devices, Evolving Endurance Classifiers Using GP,
Results, Future Work, and Conclusions.

2 Background

Flash memory [4] is a non-volatile, solid state, form of memory. Non-volatile
memory retains its contents when power is removed, while solid-state memory
has no moving parts, being purely electronic in nature. The advantages of Flash
over HDDs include faster read and write speed, lower power consumption, greater

Using Genetic Programming to Evolve Endurance Classifiers 255

durability, lower noise emission, and lower weight. However, Flash-based devices
remain significantly more expensive and offer much smaller storage capacities
than HDDs.

Data is stored within Flash devices in cells whose main component is a floating
gate transistor [15]. An insulating oxide layer maintains the charge on the floating
gate even when power is removed, with the level of charge determining the
bit or bits stored by that cell. A cell is programmed by placing charge on its
floating gate, while it is erased by removing charge from the gate. This requires
electrons to be forced through/over the transistor’s insulating oxide layer and on
to the floating gate using techniques such as Fowler-Nordheim (FN) tunneling [9].
However, these operations gradually degrade the oxide layer until eventually the
cell can no longer reliably store charge.

Flash often uses multi-step approaches to operations. That is, to program a
value, a voltage is repeatedly applied until the operation succeeds. If a certain
number of retries has been reached and the operation has not succeeded, then
program failure is deemed to occur. Due to the manner in which the oxide
degrades, it becomes progressively easier to program (and erase) a location,
so the time taken to perform these operations decreases. However, once the
degradation has reached a certain level, it is no longer possible to store data at
that location.

Traditional forms of Flash memory store one bit per cell, and are known as
single-level cell (SLC) Flash. SLC cells are regarded as programmed if their
charge exceeds a particular voltage threshold and erased if it does not. However,
in order to increase capacity, the standard has now become multi-level cell (MLC)
Flash which stores 2 bits per cell. Rather than having a single threshold like
SLC cells, MLC implements three thresholds in order to differentiate between 4
voltage levels representing 00, 01, 10, and 11. This requires the ability to program
and sense precise amounts of charge, reducing the margin for error associated
with the single threshold in SLC and resulting in the necessity for advanced error
correcting code (ECC) [20].

ECC is required to detect and correct single bit errors occurring within NAND
Flash memory. The MLC NAND Flash devices examined in this paper implement
12-bit per 528 byte ECC meaning they are capable of correcting 11,915 single bit
errors per storage block. As the cells within blocks degrade, the number of errors
detected in data read from the blocks increases until eventually the number of
errors correctable through ECC is exceeded and the block must be marked as
bad and removed from service.

3 Related Research

It is important to be able to characterise Flash memory behaviour, given the
various reliability issues to which Flash is prone [10]. Earlier work on character-
ising Flash [11,7] showed both that program times vary predictably with wear
and that erase times are dependent upon it. More recent work has studied the
effects of baking the chips at temperature and p/e cycling [21] as well as the
complex error patterns [5] that Flash exhibits during its working lifetime.

256 D. Hogan, T. Arbuckle, and C. Ryan

Predictions of performance can then be based on characterisations. For ex-
ample, testing of chips followed by analysis of measurements of their latency has
been used for predicting endurance [3], and models of trapped charge [8] and
of the lifetimes of the tunnel oxide [16] have been employed similarly. A recent
paper by Grupp et al. [12] characterises the performance of 45 chips from six
manufacturers to make predictions of the future tradeoffs to be made as a result
of the drive towards increasing NAND Flash chips’ capacity.

Concerning the use of evolutionary computation, including GP, to solve prob-
lems related to non-volatile memory, there are still comparatively few publica-
tions. Our recent papers (project sketch [2,1]) show how GP can be used to
predict NAND Flash endurance (trial results [13]) and retention [14]. Genetic
Algorithms can also optimise the operating parameters of NOR memory [22].

4 Destructive Testing of MLC NAND Flash Devices

This research is unique in that the data used for the machine learning phase
of the process is acquired through the destructive testing of MLC NAND Flash
chips. Over the course of approximately one month, blocks within six Flash
devices were p/e cycled until failure using a purpose built Flash test platform,
capable of measuring errors and the duration of program and erase operations.

The endurance of random blocks within the test devices was evaluated by p/e
cycling them until failure. Each block was repeatedly programmed and erased
until the number of errors, or bit-error-rate (BER), recorded in data read from
the block exceeded the number of errors correctable through ECC. The BER
was calculated by writing a specific data pattern to the block and immediately
reading it back, recording the number of single bit differences introduced by this
action. The BER and the average program and erase timings since the previous
interval were recorded upon completion of 10 p/e cycles, 500 cycles, 1,000 cycles,
and every 1,000 cycles thereafter until the BER surpassed the maximum level
of ECC. Recording the average timing information meant, for example, that the
program and erase values recorded at 1,000 cycles were the average values for
all program and erase operations performed between 501 and 1,000 cycles.

Fifty blocks were randomly selected and tested from each of six test devices.
All devices were of the same specification and from the same manufacturer,
with two devices being selected from each of three different production batches.
However, on completion of the hardware testing phase of the research, one test
block was found to be bad (faulty) resulting in the accumulation of a data-set
describing 299 blocks.

4.1 Data Analysis

The duration of program and erase operations serves as input data to a bi-
nary classifier evolved using GP. This classifier predicts whether test blocks will

Using Genetic Programming to Evolve Endurance Classifiers 257

function correctly beyond some predefined number of cycles, or decision bound-
ary. Our goal is to investigate the effect of using different combinations of timing
information as input data when evolving classifiers. In particular, since we know
the program and erase times decrease as blocks degrade, we investigate how
early in the lifecycles of the chips such predictions can be made. We also exam-
ine how little timing data is required for these predictions.

Fig. 1 shows the distribution of endurance values recorded from 299 randomly
selected blocks across six MLC NAND Flash devices. The violin plot shows the
minimum, maximum, median (white dot), all data points within the first and
third percentiles (black rectangle), and also the density distribution (grey shaded
area). The endurance not only varies significantly between blocks on different
devices but also between blocks within the same device. It should be noted that
the endurance values recorded from blocks on two of the chips (both from the
same production batch) were easily distinguishable from the endurance values
from the remaining four chips since their endurance was significantly lower than
the rest. The values recorded from these two ‘weaker’ chips can be identified in
the region with high density to the left of the violin plot.

0 50000 100000 150000 200000

Ra
nd

om
 B

lo
ck

s

Cycles Completed (Endurance)

Fig. 1. The violin plot shows the distribution of the endurance values evaluated across
all six test chips. This varied between a minimum of 25,000 and a maximum of 191,000
cycles, having a mean value of 81,615 and a median of 82,000.

Fig. 2a and Fig. 2b show the distribution of program and erase times recorded
at regular intervals up to 10,000 cycles. The plots highlight the variation in val-
ues recorded from blocks at each interval and also the fact that the program
and erase time for each block decrease as the device is p/e cycled. At the point
when blocks were deemed to have failed, the program time was, on average, ap-
proximately 18% faster than the initial recorded program time for each block.
However, the pattern displayed by the erase time differed from that of the pro-
gram time in that it initially decreased (on average by approximately 34%) before
later increasing significantly and finishing on average 27% slower than the initial
recorded erase time. It is important to note, however, that since only timing
information recorded up to the completion of 10,000 cycles is being used in our
GP experiments, the increase in erase time will not be applicable here (and is
not visible in Fig. 2b) since it only occurs later in the lifetime of blocks.

258 D. Hogan, T. Arbuckle, and C. Ryan

70
0

75
0

80
0

10 500 1000 2000 3000 4000 5000 6000 7000 8000 9000

Cycles Completed

Pr
og

ra
m

 T
im

e
(µ

s)

10000

(a) Distribution of the program times at regular intervals up to 10,000 cycles.

18
00

22
00

26
00

10 500 1000 2000 3000 4000 5000 6000 7000 8000 9000

Cycles Completed

Er
as

e
Ti

m
e

(µ
s)

10000

(b) Distribution of the erase times at regular intervals up to 10,000 cycles.

Fig. 2. Distribution of Program and Erase operation durations

5 Evolving Endurance Classifiers Using GP

GP is a member of the Evolutionary Algorithms family of machine learning
techniques while binary classifiers divide data-sets into two groups, assigning
each item to be a member of one group or the other. This research utilises GP
to evolve binary classifiers to identify blocks that will still function correctly
upon completion of some predefined number of p/e cycles, or decision boundary.
In particular, we investigate how early in a block’s lifetime (and with how little
data) accurate classifications can be made of its potential endurance.

Prior to starting the GP process, the data set was randomly divided into four
equal parts, or folds. Data points from each of the six chips were distributed
as equally as possible across the four folds. This 4-fold cross validation process
permitted training and testing on four different compositions of the data set.
Each composition used three different folds for training data with the remaining
fold providing test data. Following the training phase, the single best performing
individual was chosen to be evaluated using the testing data. The test data

Using Genetic Programming to Evolve Endurance Classifiers 259

results across all four folds were averaged since the system may have performed
better on some folds than others.

Decision boundaries denote the number of cycles at which the classifications of
blocks or data-points change from pass to fail. If they have successfully completed
at least that number of cycles, they achieve a pass. Otherwise, they are considered
to have failed. The five decision boundaries listed in Table 1 allow the evaluation
and comparison of different inputs across a number of decision boundaries with
each providing a different composition of pass/fail data-points.

Table 1. Five decision boundaries provided a wide range of pass/fail rates

Decision Boundary Data Points Pass Data Points Fail

35,000 Cycles ∼75% ∼25%

50,000 Cycles ∼66% ∼34%

82,000 Cycles ∼50% ∼50%

98,000 Cycles ∼34% ∼66%

110,000 Cycles ∼25% ∼75%

The inputs available for use in these GP experiments are the program and
erase times recorded at regular intervals up to 10,000 cycles. As listed in Table 2
over the page, a number of sets of input combinations were tested, with ‘No
Ref.’ (no reference points, see below) being the program and erase times (just
two inputs) at each interval up to and including 10,000 cycles. The second set
of tests, ‘pt10, et10 Ref.’, used four inputs; the first two remained fixed at 10
cycles, essentially forming reference points with the second two being formed in
turn by the various intervals available. By using four inputs, the system could
learn from the rate of change of the pair of program times and the pair of erase
times. The ‘pt1k, et1k Ref.’ input combinations followed the same pattern as
the previous set but used the timing information recorded at 1,000 cycles as
a fixed reference point. Finally, ‘pt10k, et10k Ref.’ took the opposite approach
and retained the 10,000 cycles inputs in every batch of runs while selecting the
remaining two inputs from the other available intervals. Every combination of
inputs was used to evolve classifiers for all five decision boundaries.

ECJ [18], a Java-based evolutionary computation research system, was used
to perform the GP experiments described above. Thirty GP runs were performed
per fold, giving a total of 120 GP runs for every set of inputs on each of the five
decision boundaries. Table 3 lists the GP parameters used for all the experiments.

6 Results

Fig. 3 shows the results for the test-sets listed in Table 2. The ‘No Ref.’ line in
Fig. 3a shows the results achieved when using just two inputs, with no reference
points, meaning the system could not learn from the rate of change. In this case,
the x-axis represents the number of cycles from which the input data is taken.

260 D. Hogan, T. Arbuckle, and C. Ryan

Table 2. Classifier Inputs: A total of 43 input combinations were evaluated

Inputs

No. No Ref. pt10, et10 Ref. pt1k, et1k Ref. pt10k, et10k Ref.

1 p10, e10 p10, e10, p500, e500 p1k, e1k, p2k, e2k p10, e10, p10k, e10k

2 p500, e500 p10, e10, p1k, e1k p1k, e1k, p3k, e3k p500, e500, p10k, e10k

3 p1k, e1k p10, e10, p2k, e2k p1k, e1k, p4k, e4k p1k, e1k, p10k, e10k

4 p2k, e2k p10, e10, p3k, e3k p1k, e1k, p5k, e5k p2k, e2k, p10k, e10k

5 p3k, e3k p10, e10, p4k, e4k p1k, e1k, p6k, e6k p3k, e3k, p10k, e10k

6 p4k, e4k p10, e10, p5k, e5k p1k, e1k, p7k, e7k p4k, e4k, p10k, e10k

7 p5k, e5k p10, e10, p6k, e6k p1k, e1k, p8k, e8k p5k, e5k, p10k, e10k

8 p6k, e6k p10, e10, p7k, e7k p1k, e1k, p9k, e9k p6k, e6k, p10k, e10k

9 p7k, e7k p10, e10, p8k, e8k p1k, e1k, p10k, e10k p7k, e7k, p10k, e10k

10 p8k, e8k p10, e10, p9k, e9k p8k, e8k, p10k, e10k

11 p9k, e9k p10, e10, p10k, e10k p9k, e9k, p10k, e10k

12 p10k, e10k

Table 3. Tableau showing GP parameters and settings

Parameter Details

Objective Correctly classify data points using a given boundary.

Terminal Set
Program and erase timing information, See Table 2.
�, where the ephemeral random integer constant (�)
ranges over the interval [-100, +100].

Function Set +, -, *, %

Fitness The percentage of data points correctly classified.

Generations 100 Population 1000

Crossover Rate 0.8 Mutation Rate 0.15

Reproduction Rate 0.05 Max Tree Depth 10

We can see from this plot that, using a decision boundary of 35,000 cycles, inputs
of pt10 and et10 reached approximately 83.5% while, at the right hand side of
the plot, pt10000, et10000 achieved around 87.75% correct classification.

The remaining three lines represent the batches of tests performed when using
a pair of fixed inputs to allow the system to learn from the rate of change. In
these cases, the x-axis represents the two variable inputs. The ‘pt10, et10, Ref.’
line in Fig. 3a shows the effect of changing the third and fourth inputs while the
first two inputs (pt10, and et10) remain static. The left most point on this line
shows the results with inputs of pt10, et10, pt500, and et500 while, as we move
from left to right along the x-axis, the success rate initially decreases (at pt10,
et10, pt1000, et1000). However, we can see that as the two variable inputs are
taken from incrementally higher levels of cycling, the classification success rate
steadily increases, reaching its highest point at pt10, et10, pt10000, et10000.

Fig. 3a and Fig. 3b show that at the two lower boundaries, classifiers evolved
without reference points are capable of achieving reasonable results (>80%). As
can be seen in Fig. 3b, using just the timing information recorded at 500 cycles

Using Genetic Programming to Evolve Endurance Classifiers 261

0 2000 4000 6000 8000 10000

70
75

80
85

90
95

10
0

Data Interval (Cycles Completed)

%
 C

or
re

ct

No Ref. Points
pt10, et10 Ref.
pt1k, et1k Ref.
pt10k, et10k Ref.

(a) Decision Boundary = 35,000 Cycles.

0 2000 4000 6000 8000 10000

70
75

80
85

90
95

10
0

Data Interval (Cycles Completed)

%
 C

or
re

ct

No Ref. Points
pt10, et10 Ref.
pt1k, et1k Ref.
pt10k, et10k Ref.

(b) Decision Boundary = 50,000 Cycles.

0 2000 4000 6000 8000 10000

70
75

80
85

90
95

10
0

Data Interval (Cycles Completed)

%
 C

or
re

ct

No Ref. Points
pt10, et10 Ref.
pt1k, et1k Ref.
pt10k, et10k Ref.

(c) Decision Boundary = 82,000 Cycles.

0 2000 4000 6000 8000 10000

70
75

80
85

90
95

10
0

Data Interval (Cycles Completed)

%
 C

or
re

ct

No Ref. Points
pt10, et10 Ref.
pt1k, et1k Ref.
pt10k, et10k Ref.

(d) Decision Boundary = 98,000 Cycles.

0 2000 4000 6000 8000 10000

70
75

80
85

90
95

10
0

Data Interval (Cycles Completed)

%
 C

or
re

ct

No Ref. Points
pt10, et10 Ref.
pt1k, et1k Ref.
pt10k, et10k Ref.

(e) Decision Boundary = 110,000 Cycles.

Fig. 3. Results using various combinations of inputs at the five boundaries

262 D. Hogan, T. Arbuckle, and C. Ryan

(two inputs - pt500, et500), almost 86% of the blocks are correctly classified at
a boundary of 50,000 cycles. This result shows the potential of this approach
since, even with so little data, we can predict the future status of blocks at such
an early stage in their lifetime. However, still better results are possible if a
fixed reference point is used to allow the system to learn from the rate of change
of the program and erase times. Table 4 presents a summary of the best results
achieved for each decision boundary. These results show that a mean of 91.56%
correct classification was reached for the 35,000 cycle decision boundary while
at the 50,000 cycles boundary a mean of 97.88% was achieved.

Table 4. The best results achieved for each decision boundary

Decision Boundary Best Inputs Result

35,000 Cycles pt10, et10, pt10000, et10000 91.56 %

50,000 Cycles pt10, et10, pt9000, et9000 97.88 %

82,000 Cycles pt6000, et6000, pt10000, et10000 86.36 %

98,000 Cycles pt5000, et5000, pt10000, et10000 83.60 %

110,000 Cycles pt4000, et4000, pt10000, et10000 87.93 %

The three higher decision boundaries proved more difficult than the earlier
ones. Fig. 3c, Fig. 3d, and Fig. 3e show that in order to evolve classifiers for
boundaries later in the lifetime of blocks, the system must also train on data
recorded after the completion of larger numbers of cycles. However, care must
be taken to ensure the data intervals, or inputs, are not too close together since
in this case they do not provide enough information about the rate of change of
the program and erase time.

We have investigated the use of combinations of timing information from
various intervals up to 10,000 cycles. Excellent results were achieved when iden-
tifying weak blocks (blocks which will complete fewer than 50,000 cycles). Huge
potential is also shown at higher boundaries considering a mean classification
rate of 87.93% was achieved using inputs recorded as early as 4,000 and 10,000
cycles to predict the status of test blocks after the completion of 110,000 cycles.

7 Future Work

Having established that the current technique provides excellent classification
results at lower decision boundaries, identifying ‘weak’ chips, we will proceed to
enhance the system in order achieve a reliable estimate of the number of cycles
at which a test block will fail. Switching from a classification to a regression
approach, we will use GP to provide an initial rough estimate of the number of
cycles a block will complete based on timing data taken early in the block’s life-
time. Moreover, as the block continues to be used, and more timing information
at later numbers of cycles becomes available, we will verify that the calculated
time-to-failure becomes more accurate.

Using Genetic Programming to Evolve Endurance Classifiers 263

8 Conclusions

Our previous work confirmed that program and erase timing information could
be used as a predictor for block endurance. This paper expands on that work and
shows that the number of cycles completed when timing information is recorded
has a significant effect on the quality of the evolved classifier.

In total, 43 combinations of timing inputs were examined for each of five
decision boundaries. Results show that the use of timing data recorded early in
the lifetime of blocks allows the evolution of excellent classifiers at lower decision
boundaries. For example, a mean of 97.88% of blocks were correctly classified
using previously unseen test data at a boundary of 50,000 cycles. Indeed, even
when using as little as a timing data pair recorded at 500 cycles, almost 86% of
the blocks can be correctly classified at this boundary. The results also confirm
that better classifier performance is achieved in these tests when using four
inputs. The first pair act as points of reference so that the system can determine
the rate of change of the program and erase times using the second pair of inputs.
The findings at higher decision boundaries are also extremely encouraging. Using
only inputs up to 10,000 cycles, a mean success rate of 87.93% was achieved to
predict the operating status of test blocks after the completion of 110,000 cycles.

We have proposed a technique to allow manufacturers to optimise the use
of existing Flash chips without requiring any modifications to the underlying
hardware. Successful classification of chips will allow manufacturers to increase
their specified endurance values and also, by reducing over-provisioning, increase
the specified capacity of devices which use Flash memory (such as SSDs).

Acknowledgements. The authors thank the numerous reviewers for their help-
ful comments. This research was funded by Enterprise Ireland under contract
IP/2008/0591.

References

1. Arbuckle, T., Hogan, D., Ryan, C.: Optimising Flash Memory for Differing Usage
Scenarios: Goals and Approach. In: Lee, G., Howard, D., Śl ↪ezak, D., Hong, Y.S.
(eds.) ICHIT 2012. CCIS, vol. 310, pp. 137–140. Springer, Heidelberg (2012)

2. Arbuckle, T., Hogan, D., Ryan, C.: Optimising Flash non-volatile memory using
machine learning: A project overview. In: Proceedings of the 5th Balkan Conference
on Informatics (BCI 2012), pp. 235–238 (2012)

3. Boboila, S., Desnoyers, P.: Write endurance in Flash drives: Measurement and
analysis. In: 8th USENIX Conference on File and Storage Technologies (FAST
2010), San Jose, California, pp. 115–128 (2010)

4. Brewer, J., Gill, M.: Nonvolatile Memory Technologies with Emphasis on Flash
(A Comprehensive Guide to Understanding and Using Flash Memory Devices).
Wiley-IEEE Press (2008)

5. Cai, Y., Haratsch, E., Mutlu, O., Mai, K.: Error patterns in MLC NAND Flash
memory: Measurement, characterization, and analysis. In: Design, Automation
Test in Europe Conference Exhibition (DATE 2012), pp. 521–526 (2012)

264 D. Hogan, T. Arbuckle, and C. Ryan

6. Cappelletti, P., Bez, R., Cantarelli, D., Fratin, L.: Failure mechanisms of Flash
cell in program/erase cycling. In: Technical Digest, International Electron Devices
Meeting (IEDM 1994), San Francisco, CA, USA, pp. 291–294 (1994)

7. Desnoyers, P.: Empirical evaluation of NAND Flash memory performance. SIGOPS
Oper. Syst. Rev. 44, 50–54 (2010)

8. Fayrushin, A., Lee, C., Park, Y., Choi, J., Choi, J., Chung, C.: Endurance predic-
tion of scaled NAND Flash memory based on spatial mapping of erase tunneling
current. In: 3rd IEEE International Memory Workshop (IMW 2011), pp. 1–4 (2011)

9. Fowler, R.H., Nordheim, L.: Electron emission in intense electric fields. Proceedings
of the Royal Society of London. Series A 119(781), 173–181 (1928)

10. Ghidini, G.: Charge-related phenomena and reliability of non-volatile memories.
Microelectronics Reliability 52, 1876–1882 (2012)

11. Grupp, L.M., Caulfield, A.M., Coburn, J., Swanson, S., Yaakobi, E., Siegel, P.H.,
Wolf, J.K.: Characterizing Flash memory: anomalies, observations, and applica-
tions. In: Proceedings of the 42nd Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO 42, pp. 24–33. ACM, New York (2009)

12. Grupp, L., Davis, J., Swanson, S.: The bleak future of NAND Flash memory. In:
Proceedings of the 10th USENIX Conference on File and Storage Technologies,
San Jose, California, pp. 17–24 (2012)

13. Hogan, D., Arbuckle, T., Ryan, C.: Evolving a storage block endurance classifier
for Flash memory: A trial implementation. In: Proc. 11th IEEE Int. Conference on
Cybernetic Intelligent Systems (CIS 2012), pp. 12–17 (2012)

14. Hogan, D., Arbuckle, T., Ryan, C., Sullivan, J.: Evolving a retention period clas-
sifier for use with Flash memory. In: Proc. 4th Int. Conf. on Evolutionary Compu-
tation Theory and Applications (ECTA 2012), pp. 24–33 (2012)

15. Kahng, D., Sze, S.: A floating-gate and its application to memory devices. The Bell
System Technical Journal 46(6), 1288–1295 (1967)

16. Kitahara, Y., Hagishima, D., Matsuzawa, K.: Reliability of NAND Flash memories
induced by anode hole generation in floating-gate. In: International Conference on
Simulation of Semiconductor Processes and Devices (SISPAD 2011), pp. 131–134
(2011)

17. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. The MIT Press (1992)

18. Luke, S.: ECJ 20. A Java-based evolutionary computation research system (2010),
http://cs.gmu.edu/~eclab/projects/ecj/

19. Micheloni, R., Crippa, L., Marelli, A.: Inside NAND Flash Memories. Springer
(2010)

20. Micheloni, R., Marelli, A., Ravasio, R.: Error Correction Codes for Non-Volatile
Memories. Springer (2010)

21. Moon, J., No, J., Lee, S., Kim, S., Yang, J., Chang, S.H.: Noise and interference
characterization for MLC Flash memories. In: International Conference on Com-
puting, Networking and Communications (ICNC 2012), pp. 588–592 (2012)

22. Sullivan, J., Ryan, C.: A destructive evolutionary algorithm process. Soft Comput-
ing – A Fusion of Foundations, Methodologies and Applications 15, 95–102 (2011)

23. Trendforce: eMMC and SSD to contribute to 15% NAND Flash output value
growth in 2013 (2012), http://press.trendforce.com/en/node/4931 (accessed
January 11, 2013)

http://cs.gmu.edu/~eclab/projects/ecj/
http://press.trendforce.com/en/node/4931

Examining the Diversity Property

of Semantic Similarity Based Crossover

Tuan Anh Pham1, Quang Uy Nguyen2,
Xuan Hoai Nguyen3, and Michael O’Neill4

1 Centre of Information Technology, Military Academy of Logistics, Vietnam
2 Faculty of IT, Military Technical Academy, Vietnam

3 IT Research and Development Center, Hanoi University, Vietnam
4 Natural Computing Research & Applications Group,

University College Dublin, Ireland
{anh.pt204,quanguyhn,nxhoai}@gmail.com, m.oneill@ucd.ie

Abstract. Population diversity has long been seen as a crucial factor for
the efficiency of Evolutionary Algorithms in general, and Genetic Pro-
gramming (GP) in particular. This paper experimentally investigates the
diversity property of a recently proposed crossover, Semantic Similarity
based Crossover (SSC). The results show that while SSC helps to im-
prove locality, it leads to the loss of diversity of the population. This
could be the reason that sometimes SSC fails in achieving superior per-
formance when compared to standard subtree crossover. Consequently,
we introduce an approach to maintain the population diversity by com-
bining SSC with a multi-population approach. The experimental results
show that this combination maintains better population diversity, lead-
ing to further improvement in GP performance. Further SSC parameters
tuning to promote diversity gains even better results.

Keywords: Genetic Programming, Semantic, Diversity, Locality.

1 Introduction

Similar to other evolutionary algorithms, it has been found for Genetic Program-
ming (GP) that there two crucial properties that strongly affect its performance,
namely, the diversity of a population [4,8] and the locality of operators [5,14].
The diversity of a population, which is directly affected by search operators, rep-
resents its ability to explore different parts of the search space while the locality
of an operator exhibits its ability to focus on exploiting a specific area of the
search space. Intuitively, these two properties seem to be contradictory. It means
that an approach that maintains high diversity in the population often has low
locality in search operators and vice versa.

In a recent work [10], Uy et al. proposed a new semantic based crossover for
GP, Semantic Similarity based Crossovers (SSC), with the main objective to
improve the locality of the standard subtree crossover. It has been shown [10]
that SSC achieved its objective and increased locality in the crossover opera-
tor leading to a significant improvement in GP performance. To counter the

K. Krawiec et al. (Eds.): EuroGP 2013, LNCS 7831, pp. 265–276, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

266 T.A. Pham et al.

effect of reducing search diversity while enforcing locality, SSC also forbid the
exchange of two semantically equivalent subtrees. However, there are still three
open questions related to SSC [10], which are:

1. How the diversity of the population is impacted by SSC with its focus on
operator locality?

2. Is there a way to reduce this impact on diversity while maintaining SSC
locality?

3. If we can balance operator locality with population diversity will we then
see additional gains in the performance of GP?

This paper tries to address these three questions. We first analyse the diver-
sity of GP populations when the crossover operator is SSC. We then propose
an approach to retain the population diversity by combining SSC with multi-
population Genetic Programming. The remainder of the paper is organised as
follows. In the next section, we briefly review the previous work on diversity in
GP. Section 3 details Semantic Similarity based Crossovers. The experimental
settings are detailed in Section 4. The results of the experiments are presented
and discussed in Section 5. Finally, Section 6 concludes the paper and highlights
some potential future work.

2 Related Work

It is widely believed that maintaining high population diversity is important for
evolutionary algorithms [4]. Rapid loss of diversity, especially semantic diversity,
has been suggested as the main cause for premature convergence of GP evolu-
tionary search [12]. Consequently, GP systems may be trapped into local optima.
When considering the diversity in GP populations, it is important to distinguish
between two types of diversity. The first is syntactic or genotypic diversity and
the second is the behavioural or phenotypic diversity. In this paper, we will focus
on the later type of diversity. We argue that the second type of diversity is more
critical to GP’s behaviour than the first, as it is easy to find programs that are
all syntactically distinct, yet have identical semantics.

Controlling (syntactic) diversity has been considered since the early days of
GP. Much of earlier work focused on the initialisation phase of GP. Koza intro-
duced the well-known Ramped-Half-and-Half technique for creating the initial
GP population to reduce the occurrence of duplicated trees [6]. O’Reilly and
Oppacher [11] and Poli and Langdon [12] tested various crossover operators to
study their impact on syntactic diversity, They showed that standard crossover
(SC) often leads to loss of diversity, hence is not an ideal operator.

Rosca [13] proposed a method to measure semantic diversity in GP population
using phenotype entropy. Langdon [7] used (explicit) fitness sharing to preserve
diversity. It clusters the population into a number of groups, based on their
similarity with respect to a fitness-based metric. Members of the same group are
penalized by being forced to share fitness, while isolated individuals retain their
full fitness. McKay [9] used implicit fitness sharing, in which the reward for each
fitness case is shared by all individuals that give the same output.

Examining the Diversity Property of SSC 267

More recently, semantic diversity has received more attention from GP re-
searchers. Burke et al. [2] conducted an analysis on the effect of different di-
versity measures on fitness. They showed that there is a strong correlation be-
tween entropy and the edit distance on the one hand, and change in fitness on
the other. Gustafson et al. [4] examined the possible effects of sampling both
unique structures and behaviours in GP. The behaviour sampling results helped
to explain previous diversity research and suggest new ways to improve search.
Similarly, Looks [8] proposed a new method for sampling semantically unique
individuals in GP, by generating a number of unique minimal programs, then
combining random programs with these minimal programs to generate the pop-
ulation. He argued that it increases the behavioral diversity of the population,
leading to significant gains in GP performance. Beadle and Johnson proposed
Semantic Driven Crossover (SDC) [1]. In SDC, the semantic equivalence of the
offspring produced by crossover with their parents is checked by transforming
them to Reduced Ordered Binary Decision Diagrams (ROBDDs). If two trees
reduce to the same ROBDD, they are semantically equivalent. If the offspring
are equivalent to their parents, they are discarded and the crossover is restarted.
This process is repeated until semantically new children are found. The authors
argued that this results in increased semantic diversity in the evolving popu-
lation, and a consequent improvement in GP performance. Overall, promoting
diversity, especially semantic diversity, is important and often leads to beneficial
results.

3 Methods

This section briefly presents Semantic Similarity based Crossover (SSC) more
details of SSC could be found in [10]

3.1 Measuring Semantics

The Sampling Semantics of any (sub)tree could be defined as follows:
Let F be a function expressed by a (sub)tree T on a domain D. Let P be a

set of points sampled from domain D, P = {p1, p2, ..., pN}. Then the Sampling
Semantics of T on P on domain D is the set S = {s1, s2, ..., sN} where si =
F (pi), i = 1, 2, ..., N .

The values of two parameters N and P are dependent on problem. In this
paper, N is set as the number of fitness cases of problems (20 points), and we
choose the set of points P uniformly randomly from the problem domain.

Based on sampling semantics (SS), Sampling Semantics Distance (SSD) be-
tween two subtrees could be defined. Let U = {u1, u2, ..., uN} and V = {v1, v2, ...,
vN} be the SS of Subtree1(St1) and Subtree2(St2) on the same set of evaluating
values, then the SSD between St1 and St2 is defined as follows [10]:

268 T.A. Pham et al.

SSD(St1, St2) =
|u1 − v1|+ |u2 − v2|++ |uN − vN |

N
(1)

Thanks to SSD, a relationship between two subtree called Semantic Similarity
is defined. Two subtrees are semantically similar on a domain if their SSD on
the same set of points in that domain lies within a positive interval. The formal
definition of semantic similarity (SSi) between subtrees St1 and St2 is as follows:

SSi(St1, St2) = if α < SSD(St1, St2) < β

then true

else false

here α and β are two predefined constants, known as the lower and upper bounds
for semantic sensitivity, respectively. In this paper, we set α = 10−4 and β = 0.4
which are good values found in the previous experiments [10].

3.2 Semantic Similarity Based Crossover

In [10], SSC was proposed to improve the locality of crossover. It was an exten-
sion of Semantic Aware Crossover [17] in two ways. Firstly, when two subtrees
are selected for crossover, their semantic similarity, rather than semantic equiv-
alence as in SAC, is checked. Secondly, as semantic similarity is more difficult
to satisfy than semantic equivalence, so repeated failures may occur. Thus SSC
uses multiple trials to find a semantically similar pair, only reverting to random
selection after passing a bound on the number of trials. Algorithm 1 shows how
SSC operates in detail. In our experiments, the value of Max Trial was set to
12, with this value having been calibrated by earlier experiments as the value
for its good performance [10].

4 Experimental Settings

To investigate the diversity property of SSC, we used eight real-valued symbolic
regression problems. The problems and training data are shown in Table 1. These
functions were taken from previous work on using semantics based operators in
GP [10].

The GP parameters used for our experiments are shown in Table 2. It should
be noted that the raw fitness is the mean of absolute error on all fitness cases.
Therefore, the smaller values are better. For each problem and each parameter
setting, 100 runs were performed.

We divided our experiments into two sets. The first is to analyse the diversity
property of SSC and the second aims to test a method for maintaining diversity
of the population by combining SSC with multi-population GP.

Examining the Diversity Property of SSC 269

Algorithm 1. Semantic Similarity based Crossover

select Parent 1 P1;
select Parent 2 P2;
Count=0;
while Count<Max Trial do

choose a random crossover point Subtree1 in P1;
choose a random crossover point Subtree2 in P2;
generate a number of random points (P) on the problem domain;
calculate the SSD between Subtree1 and Subtree2 on P
if Subtree1 is similar to Subtree2 then

execute crossover;
add the children to the new population;
return true;

else
Count=Count+1;

if Count=Max Trial then
choose a random crossover point Subtree1 in P1;
choose a random crossover point Subtree2 in P2;
execute crossover;
return true;

5 Results and Discussion

This section first analyses the diversity property of SSC and then introduce a
method for maintaining the diversity of the population using SSC. After that,
the issue of parameter tuning of SSC is addressed.

5.1 Diversity Analysis

As previously discussed, phenotypic diversity is often more important than geno-
typic diversity, in this paper, we analyse the diversity property of SSC using the
phenotypic measurement proposed in Rosca [13]. The population phenotypic
diversity is measured as

E(P) = −
∑
k

pk.log(pk) (2)

where the population is partitioned according to fitness value, and pk is the
proportion of the population that have the fitness value in the fitness partition
kth. In this experiment we partitioned the population into 10 equal parts from
the smallest fitness value to the greatest.

Figure 1 shows how the diversity of the population changed in GP with SSC
(shorthanded as SGP) and GP with standard crossover for functions F2 and

270 T.A. Pham et al.

Table 1. Symbolic Regression Functions

Functions Training Data

F1 = x3 + x2 + x 20 random points ⊆ [-1,1]
F2 = x4 + x3 + x2 + x 20 random points ⊆ [-1,1]
F3 = x5 + x4 + x3 + x2 + x 20 random points ⊆ [-1,1]
F4 = x6 + x5 + x4 + x3 + x2 + x 20 random points ⊆ [-1,1]
F5 = (x+ 1)3 20 random points ⊆ [-1,1]
F6 = cos(3x) 20 random points ⊆ [-1,1]
F7 = 2sin(x)cos(y) 20 random points ⊆ [-1,1]
F8 = x4 − x3 + y2/2− y 20 random points ⊆ [-1,1]

Table 2. Run and Evolutionary Parameter Values

Parameter Value

Population size 500
Generations 50
Selection Tournament
Tournament size 3
Crossover probability 0.9
Mutation probability 0.05
Initial Max depth 6
Max depth 15
Max depth of mutation tree 5
Non-terminals +, -, *, / (protected version),

sin, cos, exp, log (protected version)
Terminals X, 1
Raw fitness mean absolute error on all fitness cases
Trials per treatment 100 independent runs for each value

F4 1. It can be seen from the figure that as the evolution progressed the popu-
lation diversity decreased and population diversity of SGP was constantly lower
than GP. It is understandable as the main objective of SSC is to improve the
locality of crossover in GP, i.e to generate children that are not largely different
from their parents. This results confirm our intuition that GP with SSC has to
sacrifice some diversity for its contradictory counterpart - locality.

5.2 Maintaining Diversity for SSC

The previous subsection showed that using SSC in GP results in the loss of
population diversity. Therefore, improving its diversity while maintaining its

1 The figures for other test functions are similar and due to space limits, they are not
shown here.

Examining the Diversity Property of SSC 271

0

0.1

0.2

0.3

0.4

0.5

0.6

5 10 15 20 25 30 35 40 45 50

D
iv

er
si

ty

Generations

F2

GP

SGP

0

0.1

0.2

0.3

0.4

0.5

0.6

5 10 15 20 25 30 35 40 45 50

D
iv

er
si

ty

Generations

F4

GP

SGP

Fig. 1. The diversity of SSC compared to standard crossover

locality is potentially performance advantageous. To achieve this objective it
is tempting to combine SSC with some diversity promotion mechanism which
does not modify the crossover operator (e.g., a mechanisms that operates on the
population structure). In this paper, we combine a multi-population approach
with SSC to improve the diversity of SGP.

The idea of dividing a large population into several sub-populations is not
new in itself e.g., see [15], which describes an island model approach. Individu-
als are allowed to migrate among sub-populations with a given frequency. This
model helps to explore different parts of the search space through different sub-
populations and maintaining diversity within a subpopulation thanks to the
introduction of immigrants. The island model for GP was empirically studied
[3,16] and the authors showed that it helped to improve GP performance by
improving the diversity of GP population.

272 T.A. Pham et al.

0

0.1

0.2

0.3

0.4

0.5

0.6

5 10 15 20 25 30 35 40 45 50

D
iv

er
si

ty

Generations

F2

GP

SGP

MGP

MSGP

0

0.1

0.2

0.3

0.4

0.5

0.6

5 10 15 20 25 30 35 40 45 50

D
iv

er
si

ty

Generations

F4

GP

SGP

MGP

MSGP

Fig. 2. The diversity of SSC in multi-population GP compared to other methods

In order to implement multi-population GP, some parameters need to be
tuned. These parameters include the number of subpopulations, the number
of the individuals that migrate among subpopulations and the frequency for
migrating individuals. In this paper, these values were calibrated by experiments
and the values for the good performance of multi-population GP are as follows:
10 subpopulations, 20 individuals in each subpopulation were migrated to others,
and the frequency for migrating individuals is 2.

We implemented SSC in a multi-population GP with the above configuration
and the resultant system is labelled MSGP in the following results. Figure 2
presents the comparative population diversity of four tested systems, GP, SGP,
MGP (GP with muti-population) and MSGP (GP with multi-population and
SSC) 2. It can be observed from Figure 2 that MGP maintained higher diversity

2 Again, we only show the results for F2 and F4 due to space limits.

Examining the Diversity Property of SSC 273

than standard GP. This is consistent with the previous results in [16]. What
is more important is that by combining SSC with MGP (MSGP), we could
maintain the higher diversity in the population compared to SGP. Although
the improvement of diversity of MSGP compared to SGP was not remarkably
significant, this enhancement led to the better performance of SSC as shown in
the following.

To compare the performances of all systems in the experiments, we use two
classic metrics namely mean of the best fitness and the number of successful
runs. These results are shown in Table 3 and Table 4.

Table 3. Number of successful runs

Methods F1 F2 F3 F4 F5 F6 F7 F8

GP 46 12 9 1 4 36 11 0

MGP 58 34 14 7 7 62 18 0

SGP 65 28 19 8 15 48 45 0

MSGP 68 35 29 13 19 65 54 0

Table 4. Mean best fitness of four methods. Note that the values are scaled by 102.

Methods F1 F2 F3 F4 F5 F6 F7 F8

GP 1.30 1.56 1.61 2.03 2.64 1.85 3.10 13.7

MGP 0.96 1.27 1.35 1.69 1.99 1.35 1.73 10.6

SGP 0.81 0.99 1.01 1.26 1.43 1.02 1.37 9.80

MSGP 0.62 0.85 0.90 1.01 1.21 0.93 0.95 9.21

It can be seen from these tables that implementing SSC in a multi-population
GP helped to further improve the performance of SSC. Obviously, the number
of successful runs of MSGP was always greater than those of SGP and the
quality of solutions found by MSGP was also better than ones of SGP. We also
statistically tested the significance of the results in Table 4 using a Wilcoxon
signed rank test with a confidence level of 95%. The statistical results show that
all the improvements of MSGP, MGP and SGP over standard GP are significant.
However, MSGP performance is not significantly better than SGP and MGP
though it is the best method among four tested systems in terms of the number
of runs which solved the problem in each instance.

5.3 Tuning SSC Parameters for Better Diversity

The previous section showed that MSGP helped to improve the performance of
GP compared to SGP, nevertheless, the margin of the improvement, in terms of

274 T.A. Pham et al.

mean best fitness, was not remarkable. The reason may lie in the fact that MSGP
had only slightly higher population diversity than SGP and still rather lower
than standard GP. Therefore, we hypothesized that by reducing the value of
Max Trial in SSC we can further increase its diversity and this potentially lead
to further improvements of MSGP performance. We tested this hypothesis by
conducting an experiment with smaller values ofMax Trial, namely 6, 8, and 10.
MSGP with these configurations are denoted as MSGP6, MSGP8 and MSGP10
respectively. We measured the performance of these MSGP configurations and
compared them with other systems in the previous subsection. The results are
shown in Table 5 and Table 6 3.

Table 5. Number of successful runs of three new configurations

Methods F1 F2 F3 F4 F5 F6 F7 F8

GP 46 12 9 1 4 36 11 0

MGP 58 34 14 7 7 62 18 0

SGP 65 28 19 8 15 48 45 0

MSGP 68 35 29 13 19 65 48 0

MSGP6 74 39 26 17 20 68 50 0
MSGP8 68 43 36 23 15 68 54 0
MSGP10 68 52 32 17 21 58 51 0

Table 6. Mean best fitness of three new configurations. Note that the values are scaled
by 102.

Methods F1 F2 F3 F4 F5 F6 F7 F8

GP 1.30 1.56 1.61 2.03 2.64 1.85 3.10 13.7

MGP 0.96 1.27 1.35 1.69 1.99 1.35 1.73 10.6

SGP 0.81 0.99 1.01 1.26 1.43 1.02 1.37 9.80

MSGP 0.62 0.85 0.90 1.01 1.21 0.93 0.95 9.21

MSGP6 0.26 0.52 0.68 0.90 1.04 0.60 0.86 9.17
MSGP8 0.27 0.54 0.55 0.86 1.12 0.54 0.65 9.20
MSGP10 0.26 0.42 0.67 0.87 0.96 0.68 1.01 9.04

It can be seen from these tables that the new configurations of MSGP helped
to improve the performance of GP to a further extent. The number of successful
runs of MSGP6, MSGP8 and MSGP10 was often greater than MSGP and the
mean best fitness was usually far smaller than that of MSGP. We also statistically

3 We also measured the performance of SGP6, SGP8, SGP10 and their performances
are inferior to SGP12. These results are consistent with the results in [10].

Examining the Diversity Property of SSC 275

tested the significance of improvement of the results in Table 6 using a Wilcoxon
signed rank test with a confidence level of 95%. In this table, if a result of
MSGP6, MSGP8 and MSGP10 is significantly better than the result of SGP, it
is printed in bold face. The results of statistical tests show that in most cases,
the improvement of MSGP6, MSGP8 and MSGP10 over SGP is statistically
significant.

6 Conclusions and Future Work

In this paper, we investigated the diversity property of Semantic Similarity based
Crossover (SSC). Since SSC aims to improve locality, it may lead to the loss of
diversity and the experimental results presented in the paper confirmed this. We
then proposed an approach to maintain diversity for SSC by combining it with
multi-population GP (MSGP). We tested the new method on eight symbolic
regression problems and the results showed that multi-population GP with SSC
has higher diversity than standard GP with SSC (SGP). This led to the superior
performance of MSGP to SGP. However, the improvement was not significant.
Then, we tuned the parameter of SSC to achieve higher diversity and resulted
in better performance of MSGP.

There are a number of areas for future work which arise from this paper. First,
we want to test more values of Max Trail of SSC to figure out the suitable
values for a class of problems. Second, we would like to combine SSC with other
methods for promoting diversity such as fitness sharing [7] to see if it gains
further improvement. Last but not least, we aim to investigate the impact of this
method on some more difficult problems such as text summarization, time series
prediction, etc. For these problems, we predict that maintaining high diversity
along with locality is critical for GP performance.

Acknowledgments. This work was funded by The Vietnam National Founda-
tion for Science and Technology Development (NAFOSTED), under grant num-
ber 102.01-2011.08.Michael O’Neill is grateful for the financial support of Science
Foundation Ireland under grant numbers 08/IN.1/I1868 and 08/SRC/FM1389.

References

1. Beadle, L., Johnson, C.: Semantically driven crossover in genetic programming.
In: Proceedings of the IEEE World Congress on Computational Intelligence, pp.
111–116. IEEE Press (2008)

2. Burke, E.K., Gustafson, S., Kendall, G.: Diversity in genetic programming: An
analysis of measures and correlation with fitness. IEEE Transactions on Evolu-
tionary Computation 8(1), 47–62 (2004)

3. Fernandez, F., Tomassini, M., Vanneschi, L.: An empirical study of multipopulation
genetic programming. Genetic Programming and Evolvable Machines 4(1), 21–51
(2003)

4. Gustafson, S., Burke, E.K., Kendall, G.: Sampling of Unique Structures and Be-
haviours in Genetic Programming. In: Keijzer, M., O’Reilly, U.-M., Lucas, S.,
Costa, E., Soule, T. (eds.) EuroGP 2004. LNCS, vol. 3003, pp. 279–288. Springer,
Heidelberg (2004)

276 T.A. Pham et al.

5. Hoai, N.X., McKay, R.I., Essam, D.: Representation and structural difficulty in
genetic programming. IEEE Transaction on Evolutionary Computation 10(2), 157–
166 (2006)

6. Koza, J.: Genetic Programming: On the Programming of Computers by Natural
Selection. MIT Press, MA (1992)

7. Langdon, W.B.: Genetic Programming and Data Structures: Genetic Programming
+ Data Structure = Automatic Programming! Kluwer Academic, Boston (1998)

8. Looks, M.: On the behavioral diversity of random programs. In: GECCO 2007: Pro-
ceedings of the 9th Annual Conference on Genetic and Evolutionary Computation,
July 7-11, vol. 2, pp. 1636–1642. ACM Press (2007)

9. McKay, B.: An investigation of fitness sharing in genetic programming. The Aus-
tralian Journal of Intelligent Information Processing Systems 7(1/2), 43–51 (2001)

10. Nguyen, Q.U., Nguyen, X.H., O’Neill, M., McKay, R.I., Galvan-Lopez, E.:
Semantically-based crossover in genetic programming: application to real-valued
symbolic regression. Genetic Programming and Evolvable Machines, 91–119 (2011)

11. O’Reilly, U.M., Oppacher, F.: Program Search with a Hierarchical Variable Length
Representation: Genetic Programming, Simulated Annealing and Hill Climbing. In:
Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp.
397–406. Springer, Heidelberg (1994)

12. Poli, R., Langdon, W.B.: On the search properties of different crossover operators in
genetic programming. In: Genetic Programming: Proceedings of the Third Annual
Conference, pp. 293–301. Morgan Kaufmann (1998)

13. Rosca, J.P.: Entropy-driven adaptive representation. In: Proceedings of the Work-
shop on Genetic Programming: From Theory to Real-World Applications, July 9,
pp. 23–32 (1995)

14. Rothlauf, F.: Representations for Genetic and Evolutionary Algorithms, 2nd edn.
Springer (2006)

15. Tenese, R.: Parallel genetic algorithms for a hypercube. In: Greenstette, J.J. (ed.)
Genetic Algorithms and Their Applications: Proceedings of the Second Interna-
tional Conference on Genetic Algorithms, pp. 177–183. Lawrence Erlbaum

16. Tomassini, M., Vanneschi, L., Fernández, F., Galeano, G.: A Study of Diversity
in Multipopulation Genetic Programming. In: Liardet, P., Collet, P., Fonlupt, C.,
Lutton, E., Schoenauer, M. (eds.) EA 2003. LNCS, vol. 2936, pp. 243–255. Springer,
Heidelberg (2004)

17. Nguyen, Q.U., Nguyen, X.H., O’Neill, M.: Semantic Aware Crossover for Genetic
Programming: The Case for Real-Valued Function Regression. In: Vanneschi, L.,
Gustafson, S., Moraglio, A., De Falco, I., Ebner, M. (eds.) EuroGP 2009. LNCS,
vol. 5481, pp. 292–302. Springer, Heidelberg (2009)

Author Index

Agapitos, Alexandros, 1
Arbuckle, Tom, 253

Banzhaf, Wolfgang, 97
Becerra, David, 181
Brabazon, Anthony, 1

Cano, Alberto, 217
Carroll, Paula, 133
Castelli, Mauro, 205
Clarke, Tim, 193
Czajkowski, Marcin, 229

Dick, Grant, 13
dos Santos, Marcus Vinicius, 109
Drake, John H., 25

Fagan, David, 37
Fonlupt, Cyril, 49

Gibaja, Eva L., 217
Goldman, Brian W., 61
Gonçalves, Ivo, 73

Harada, Tomohiro, 241
Hemberg, Erik, 37
Hogan, Damien, 253
Hong, Libin, 85
Hu, Ting, 97

Johnson, Colin G., 169
Johnston, Mark, 157

Kililis, Nikolaos, 25
Kretowski, Marek, 229

Li, Jingpeng, 85
Luis, Sweeney, 109
Luna, José M., 121

Manzoni, Luca, 205
Mart́ınez, Yuliana, 145

McDermott, James, 133
McGarraghy, Sean, 37
Miller, Julian F., 193
Moore, Jason H., 97

Naredo, Enrique, 145
Nguyen, Quang Uy, 265
Nguyen, Su, 157
Nguyen, Xuan Hoai, 265
Nino, Fernando, 181

O’Neill, Michael, 1, 37, 265
Otero, Fernando E.B., 169
Özcan, Ender, 25, 85

Pham, Tuan Anh, 265
Punch, William F., 61

Restrepo-Montoya, Daniel, 181
Robilliard, Denis, 49
Romero, Cristóbal, 121
Romero, José Raúl, 121
Ryan, Conor, 253

Sandoval-Perez, Angelica, 181
Seaton, Tom, 193
Silva, Sara, 73, 205

Takadama, Keiki, 241
Tan, Kay Chen, 157
Trujillo, Leonardo, 145

Vanegas, Diana, 181
Vanneschi, Leonardo, 205
Ventura, Sebastián, 121, 217

Whigham, Peter A., 13
Woodward, John, 85

Zafra, Amelia, 217
Zhang, Mengjie, 157

	Title
	Preface
	Organization
	Table of Contents
	Oral Presentations
	Adaptive Distance Metrics for Nearest Neighbour Classification Based on Genetic Programming
	Introduction
	The Need for Distance Metric Adaptation
	Previous Work

	Methods
	Supervised Learning of Local Feature Weights
	Multiple-Output Program Representation for GP
	Experiment Design

	Results
	Conclusion
	References

	Controlling Bloat through Parsimonious Elitist Replacement and Spatial Structure
	Introduction
	Bloat Control in Genetic Programming
	Lexicographic Parsimony Pressure

	Spatial Population Structure and Elitist Replacement
	Lexicographic Parsimonious Elitist Replacement

	Experiments and Results
	Results
	Bloat Control on Difficult Problems

	Conclusion and Future Work
	References

	Generation of VNS Components with Grammatical Evolution for Vehicle Routing
	Introduction
	Hyper-heuristics
	Grammatical Evolution
	Vehicle Routing Problems
	Grammatical Evolution Hyper-heuristics for the VRP
	Results
	Conclusions and Future Work
	References

	Understanding Expansion Order and Phenotypic Connectivity in GE
	Introduction
	Grammatical Evolution
	Genotype-Phenotype Maps - GE, GE
	Order Bias Distance Metric
	Alternative Orders

	Results
	Order and GE
	Connectivity and GE

	Discussion - Restricting Order Drift in GE
	Conclusions
	References

	PhenoGP: Combining Programs to Avoid Code Disruption
	Introduction
	Background
	Linear Genetic Programming
	Disruption

	PhenoGP (PGP)
	Motivation - PhenoGP Scheme
	Program Structure
	Diversity for PhenoGP

	Experiments
	Symbolic Regression
	Santa Fe Ant Trail
	Tower of Hanoi

	Conclusion and Future Works
	References

	Reducing Wasted Evaluations in Cartesian Genetic Programming
	Introduction
	Cartesian Genetic Programming
	Wasted Evaluations
	Detection
	Frequency of Offspring Actively Identical to Their Parent

	Methods to Avoid Wasting Evaluations
	Skip
	Accumulating Mutation
	Single Active Mutation

	Experimental Setup
	Results
	Discussion
	Conclusions and Future Work
	References

	Balancing Learning and Overfitting in Genetic Programming with Interleaved Sampling of Training Data
	Introduction
	Approaches and Experiments
	Motivation
	Interleaved Sampling
	Random Interleaved Sampling
	Parameters and Datasets

	Results and Discussion
	Interleaved Single and Interleaved All Variants
	Interleaved and Random Interleaved Variants
	Final Remarks

	Conclusions
	References

	Automated Design of Probability Distributions as Mutation Operators for Evolutionary Programming Using Genetic Programming
	Introduction
	Function Optimization by Evolutionary Programming
	Genetic Programming to Train Mutation Operators for Function Classes
	Genetic Programming and Automatic Design
	Function Classes
	Algorithm Using GP to Train EP Mutation Operator
	Unimodal and Multimodal Function Classes

	Experimental Studies
	Parameters Setting
	Analysis and Comparisons
	Test Function Classes

	Discussion and Future Work
	Summary and Conclusions
	References

	Robustness and Evolvability of Recombination in Linear Genetic Programming
	Introduction
	Methods
	Linear Genetic Programming on Boolean Search
	Genotype and Phenotype Space
	Symmetric Recombination
	Metrics on Recombinational Properties of Phenotypes
	Population Evolution

	Results
	Recombinational Robustness, Evolvability, and Accessibility
	Comparisons of Recombinational and Mutational Measures
	Population Dynamics Results

	Discussion
	References

	On the Evolvability of a Hybrid Ant Colony-Cartesian Genetic Programming Methodology
	Introduction
	Background Materials
	Methods
	Experimental Design and Results
	Rate of Evolution under Different Parameter Settings
	CGP-ACO vs. CAP

	Conclusion
	References

	Discovering Subgroups by Means of Genetic Programming
	Introduction
	On the Use of Genetic Programming for Mining Rules in Subgroup Discovery
	Encoding Criterion
	Evaluation of the Derivation Tree Individuals
	Genetic Operators
	Proposed Algorithm

	Experimental Study
	Concluding Remarks
	References

	Program Optimisation with Dependency Injection
	Introduction
	Related Work
	Method
	Examples
	Emulating Grammatical Evolution
	Tree-Based Genetic Programming
	Communications Networks
	Generative 3D Design

	Analysis: The Structure of the PODI Search Space
	Conclusions and Future Work
	References

	Searching for Novel Classifiers
	Introduction
	Novelty Search
	Classification with Novelty Search
	Static Range Selection GP Classifier
	Novelty Search Extension of SRS-GPC

	Experiments
	Conclusions
	References

	Learning Reusable Initial Solutions for Multi-objective Order Acceptance and Scheduling Problems with Genetic Programming
	Introduction
	Goals
	Organisation

	Methodology
	GPHH for OAS
	EMO for OAS

	Computational Results
	Multi-objective Performance
	Total Revenue

	Conclusions
	References

	Automated Problem Decomposition for the Boolean Domain with Genetic Programming
	Introduction
	Background
	Modularisation of the GP Search
	Sequential Covering Genetic Programming
	Computational Results
	Conclusions and Future Work
	References

	A Multi-objective Optimization Energy Approach to Predict the Ligand Conformation in a Docking Process
	Introduction
	Methodology
	Molecular Representation
	Exploration of the Search Space
	Evaluation of the Proposed Method

	Results and Discussion
	Conclusions
	References

	Semantic Bias in Program Coevolution
	Introduction
	Benchmark Selection
	Problem Set

	Experiment
	Algorithm and Representation
	Semantic Bias
	Summary of Fixed and Variable Parameters

	Results
	Disengagement in the GP Greater than Game
	Periodicity in the Simple Cycler Game
	Performance in the Game of Tag

	Discussion
	Conclusions and Further Work
	References

	A New Implementation of Geometric Semantic GP and Its Application to Problems in Pharmacokinetics
	Introduction
	Previous Work on Semantics in GP
	Geometric Semantic Operators of Moraglio et al.
	Novel Implementation of Geometric Semantic GP
	Experimental Study
	Conclusions and Future Work
	References

	Posters
	A Grammar-Guided Genetic Programming Algorithm for Multi-Label Classification
	Introduction
	G3P-ML Algorithm
	Individual Representation
	Classifier Representation
	Initialization
	Genetic Operators
	Crossover Operator.
	Mutation Operator.

	Fitness Function
	Evolutionary Algorithm

	Experimental Study
	Problem Domains
	Comparison of the Algorithms and Experimental Settings

	Results
	Conclusion
	References

	Global Top-Scoring Pair Decision Tree for Gene Expression Data Analysis
	Introduction
	Background and Motivation
	Decision Trees
	A Family of Top-Scoring Algorithms
	Motivation

	Global Top-Scoring Pair Decision Tree
	Results and Discussions
	Conclusion
	References

	Asynchronous Evaluation Based Genetic Programming: Comparison of Asynchronous and Synchronous Evaluation and Its Analysis
	Introduction
	Motivation
	Tierra
	Tierra-Based Asynchronous Genetic Programming
	Overview
	Algorithm

	Experiment
	Example and Settings
	Result

	Discussion
	Conclusion
	References

	How Early and with How Little Data? Using Genetic Programming to Evolve Endurance Classifiers for MLC NAND Flash Memory
	Introduction
	Background
	Related Research
	Destructive Testing of MLC NAND Flash Devices
	Data Analysis

	Evolving Endurance Classifiers Using GP
	Results
	Future Work
	Conclusions
	References

	Examining the Diversity Property of Semantic Similarity Based Crossover
	Introduction
	Related Work
	Methods
	Measuring Semantics
	Semantic Similarity Based Crossover

	Experimental Settings
	Results and Discussion
	Diversity Analysis
	Maintaining Diversity for SSC
	Tuning SSC Parameters for Better Diversity

	Conclusions and Future Work
	References

	Author Index

