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Abstract. Feature selection has two main objectives of maximising the
classification performance and minimising the number of features. How-
ever, most existing feature selection algorithms are single objective wrap-
per approaches. In this work, we propose a multi-objective filter feature
selection algorithm based on binary particle swarm optimisation (PSO)
and probabilistic rough set theory. The proposed algorithm is compared
with other five feature selection methods, including three PSO based sin-
gle objective methods and two traditional methods. Three classification
algorithms (näıve bayes, decision trees and k-nearest neighbours) are
used to test the generality of the proposed filter algorithm. Experiments
have been conducted on six datasets of varying difficulty. Experimental
results show that the proposed algorithm can automatically evolve a set
of non-dominated feature subsets. In almost all cases, the proposed algo-
rithm outperforms the other five algorithms in terms of both the number
of features and the classification performance (evaluated by all the three
classification algorithms). This paper presents the first study on using
PSO and rough set theory for multi-objective feature selection.

Keywords: Particle Swarm Optimisation, Feature Selection, Rough Set
Theory, Multi-objective Optimisation.

1 Introduction

Classification tasks are to classify a given instance in the dataset to one of
the known classes according to the information described by features. However,
some of them are irrelevant or redundant features, which may even increase the
classification error rate. Feature selection is to select a subset of relevant features
to achieve similar or even better classification performance [6]. By reducing or
eliminating the irrelevant and redundant features, feature selection can reduce
the dimensionality of the data, simplify the learnt classifier, reduce the training
time, and/or increase the classification accuracy [4,17].

Based on the evaluation criteria, feature selection methods are generally clas-
sified into two categories: wrapper and filter approaches [6]. Wrapper approaches
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include a learning/classification algorithm in the evaluation procedure while fil-
ter approaches do not. Therefore, wrappers usually achieve better results than
filter approaches, but they are computationally expensive. Filter approaches are
more general and computationally cheaper than wrapper approaches, but an
appropriate evaluation criterion is needed in filter approaches [4,6].

A challenge in feature selection is that the size of the search space is 2n, where
n is the total number of features. Most of the existing feature selection algorithms
suffer from the problems of stagnation in local optima and high computational
cost [4,17], especially for wrapper approaches. Evolutionary computation (EC)
techniques are well-known for their global search ability. Particle swarm optimi-
sation (PSO) [14] is a relatively recent EC technique, which is computationally
less expensive than other EC algorithms. Therefore, PSO has recently gained
more attention for solving feature selection problems [17,11].

Feature selection is a multi-objective problem, which aims to maximise the
classification performance and minimise the number of features selected. How-
ever, most of the existing EC based feature selection algorithms are wrapper
based single objective approaches. The use of wrapper algorithms is limited in
real-world applications because of their high computational cost. Meanwhile,
from a theoretical point of view, Yao and Zhao [21] have shown that probabilis-
tic rough set can be a good measure in feature selection. Therefore, it is thought
to develop a filter based multi-objective feature selection approach using PSO
and probabilistic rough set theory.

1.1 Goals

The overall goal of this paper is to develop a filter based multi-objective feature
selection approach to obtaining a set of non-dominated solutions, which include
a smaller number of features and achieve similar or even better classification
performance than using all features. To achieve this goal, we propose a multi-
objective feature selection algorithm based on PSO and probabilistic rough set
theory. Specifically, we will investigate

– whether using PSO and probabilistic rough set theory can reduce the number
of features and maintain or even increase the classification performance, and
can outperform the algorithm using PSO and standard rough set theory,

– whether considering the number of features in the fitness function can further
reduce the number of features and maintain the classification performance,

– whether the proposed multi-objective algorithm can obtain a set of non-
dominated feature subsets, and can outperform two traditional methods and
the above three single objective methods, and

– whether the proposed algorithm is general to different learning algorithms.

2 Background

2.1 Binary Particle Swarm Optimisation

In PSO [14], a particle represents a candidate solution. Particles move in the
D-dimensional search space to search for the best solutions. Particle i has a
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position denoted by xi = (xi1, xi2, ..., xiD) and a velocity denoted by vi =
(vi1, vi2, ..., viD). During the search process, the best position visited so far by the
particle is its personal best (pbest) and the best position obtained by the popu-
lation thus far is called global best (gbest). Particles share information through
pbest and gbest to update their positions and velocities to search for the optimal
solutions. In binary PSO (BPSO) [9], xi, pbest and gbest are restricted to 1 or
0. The position and velocity updating equations can be seen as follows:

vt+1
id = w ∗ vtid + c1 ∗ r1 ∗ (pid − xt

id) + c2 ∗ r2 ∗ (pgd − xt
id) (1)

xid =

{
1, if rand() < 1

1+e−vid

0, otherwise
(2)

where t represents the tth iteration in the evolutionary process. d ∈ D represents
the dth dimension in the search space. w is the inertia weight. c1 and c2 are
acceleration constants. r1 and r2 are random constants uniformly distributed in
[0, 1]. pid and pgd denote the values of pbest and gbest in the dth dimension.
rand() is a random number selected from a uniform distribution in [0,1].

2.2 Rough Set Theory

Rough set theory [13] is an intelligent mathematical tool to handle uncertainty,
imprecision and vagueness. One of the strengths of rough set theory is that it
does not need any prior knowledge about data.

In rough set theory, knowledge and information is represented as an in-
formation system, which can be denoted as I = (U,A), where U is a finite
non-empty set of objects and A is the attributes/features that describe each
object. For any P ⊆ A and X ⊆ U , there is an equivalence relation de-
fined as IND(P ) = {(x, y) ∈ U ∗ U |∀a ∈ P, a(x) = a(y)}. If two objects
in U satisfy IND(P ), they are indiscernible with regards to P . The equiva-
lence relation IND(P ) induces a partition of U denoted by U/P , which induces
the equivalence classes. The equivalence class of U/P containing x is given by
[x]P = [x]A = y ∈ U |(x, y) ∈ IND(P ). The equivalence classes are the basic
blocks to construct rough set approximations. For X ⊂ U , a lower approxima-
tion PX and an upper approximation PX of X with respect to IND(P ) are
defined as follows [13]:

PX = {x ∈ U |[x]P ⊆ X} PX = {x ∈ U |[x]P ∩X �= ∅} (3)

PX contains all the objects, which are surely belong to the target set X . PX
contains the objects, which are surely or probably belong to the target set X .

An ordered pair (PX,PX) is called a rough set. The concept of the reduct is
fundamental in rough sets theory. A reduct is the essential part of I = (U,A),
which can achieve similar approximation power of classification as all the original
features A. There could be many different reducts and feature selection using
rough set theory is to remove redundant and irrelevant features to search for the
smallest reduct (feature subset).
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PX and PX in standard rough set theory were defined as two extreme cases
in terms of the relationship of a equivalence class and the target set [13]. The
degree of their overlap is not taken into account, which will unnecessarily limit
its applications. Therefore, researchers investigate probabilistic rough set theory
to relax the definitions of the lower and upper approximation [21]. The lower
approximation is re-defined as Equation 4, where μP [x] shown is defined as a
way to measure the fitness of a given instance x ∈ X .

apr
P
X = {x|μP [x] ≥ α} (4)

where

μP [x] =
|[x]P ∩X|

|[x]P | (5)

α can be adjusted to restrict or relax the lower approximation. If a large number
of instances X are in the target set but a small number are not in a given
equivalence class, it can include them in the lower approximation. apr

P
X = PX

when α = 1.
From theoretical point of view, Yao and Zhao have claimed that probabilistic

rough set can be a good way for feature selection problems [21]. However, it has
not been proved by any experiment.

2.3 Related Work on Feature Selection

Traditional Feature Selection Approaches. Hall [7] proposes a filter feature
selection method (Cfs) based on the correlation between features and class la-
bels. FOCUS algorithm [1], a filter algorithm, exhaustively examines all possible
feature subsets, then selects the smallest feature subset. However, the FOCUS
algorithm is computationally inefficient because of the exhaustive search. Two
commonly used wrapper methods are greedy search based sequential forward
selection (SFS) [19] and sequential backward selection (SBS) [10]. In SFS (SBS),
once a feature is selected (eliminated) it cannot be eliminated (selected) later,
which causes the problem of so-called nesting effect. The “plus-l-take away-r”
method proposed by Stearns [16] could overcome this limitation by performing l
times forward selection followed by r times backward elimination. However, the
determination of the optimal values of (l, r) is a difficult problem.

EC Algorithms for Features Selection. EC techniques have been ap-
plied to address feature selection problems. Based on genetic algorithms (GAs),
Chakraborty [3] proposes a feature selection algorithm using a fuzzy sets based
fitness function. Kourosh and Zhang [12] propose a genetic programming based
filter method as a multi-objective approach for feature selection in binary clas-
sification problems. Based on ant colony optimisation and fuzzy-rough theory,
Jensen [8] proposes a filter feature selection method for web content classification
and complex systems monitoring.

Unler and Murat [17] propose a PSO based feature selection algorithm with an
adaptive selection strategy. Mohemmed et al. [11] propose a hybrid method that
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incorporates PSO with an AdaBoost framework to search for the best feature
subset and determine the decision thresholds of AdaBoost simultaneously. Wang
et al. [18] propose a filter feature selection algorithm based on an improved binary
PSO and rough set. However, the feature subset is only tested on one learning
algorithm, which can not show the advantage that filter algorithms are more
general.

Most of the existing feature selection algorithms are single objective, wrapper
approaches, which are computationally more expensive and less general than fil-
ter approaches. Meanwhile, the performance of the probabilistic rough set theory
for feature selection has not been investigated in multi-objective feature selec-
tion. Therefore, the development of using PSO and probabilistic rough set for
multi-objective feature selection is still an open issue.

3 Proposed Multi-objective Method

In this section, three feature selection algorithms [2] based on PSO and proba-
bilistic rough set theory is firstly described, which are used as the baseline to test
the performance of the proposed algorithm. Then we propose a multi-objective
algorithm (MOPSOPRS) based on PSO and probabilistic rough set theory.

3.1 PSORS, PSOPRS and PSOPRSN

When using rough set theory for feature selection, a dataset can be regarded
as an information system I = (U,A), where all features can be considered as
A in the rough set theory. Based on the equivalence described by A, U can be
partitioned to U1, U2, U3, ..., Un, where n is the number of classes in the dataset.
After feature selection, the achieved feature subset can be considered as P ⊆ A.
Therefore, the fitness of P can be evaluated by how well P represents each target
set in U , i.e., a class in the dataset.

PSORS. In standard rough set theory, for U1 ⊆ U and P ⊆ A, PU1 = {x ∈
U |[x]P ⊆ U1} is the lower approximation of P according to U1 if [x]P only con-
tains instances in U1. PU1 measures the number of instances that have been
completely separated from instances of other classes. Therefore, how well P de-
scribes each target in U can be calculated by Equation 6, which is the fitness
function in PSOPRS. A feature subset with Fitness1(P ) = 1.0 means this fea-
ture subset can completely separate each class from the other classes.

Fitness1(P ) =

∑n
i=1 |PUi|
|U| (6)

PSOPRS. As discussed in Section 2.2, the definitions of lower approximation
and upper approximation limit the application of standard rough set theory.
Therefore, a filter feature selection algorithm (PSOPRS) based on PSO and
probabilistic rough set theory was proposed in [2]. In probabilistic rough set
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Algorithm 1. Pseudo-Code of MOPSOPRS

begin
initialise the set of leaders LeaderSet and Archive
calculate the crowding distance of each member in LeaderSet;
while Maximum Iteration is not reached do

for each particle do
select a leader (gbest) from LeaderSet for each particle by using a
binary tournament selection based on the crowding distance;
update the velocity and the position of particle i;
apply bit-flip mutation;
evaluate two objective values of each particle; /* number of

features and Fitness2(P ) value of the feature subset) */

update the pbest of each particle;

identify the non-dominated solutions (particles) to update LeaderSet;
send leaders to Archive;
calculate the crowding distance of each member in LeaderSet;

calculate the classification error rate of solutions in Archive on the test set;
return the solutions in Archive and their training and test classification
error rates;

theory, for the target set U1, μP [x] =
|[x]P∩U1|

|[x]P | . μP [x] quantifies the proportion

of [x]P is in U1. aprPU1 = {x|μP [x] ≥ α} defines the lower approximation of P
according to U1 rather than PU1. [x]P does not have to completely contained in
U1. α can be adjusted to restrict or relax apr

P
U1. When α = 1.0, apr

P
U1 = PU1.

The fitness function of PSOPRS is shown by Equation 7.

Fitness2(P ) =

∑n
i=1 |aprPUi|

|U| (7)

PSOPRSN. PSOPRS using probabilistic rough set theory can avoid the prob-
lems caused by standard rough set, but the number of features is not considered
in the fitness function. For the same α value, if there are more than one feature
subsets that have the same fitness, PSOPRS does not intend to search for the
smaller feature subset. Therefore, the number of features was added to the fitness
function to form another algorithm (PSOPRSN) [2], which aims to maximise the
representation power of the feature subset and also to minimise the number of
features.

Fitness3(P ) = γ ∗
∑n

i=1 |aprPUi|
|U| + (1− γ) ∗ (1− #features

#totalFeatures
) (8)

where γ ∈ (0, 1] shows the relative importance of the representation power while
(1− γ) shows the relative importance of the number of features.
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Table 1. Datasets

Dataset #Features#Classes #InstancesDataset #Features#Classes #Instances
Spect 22 2 267 Dermatology 33 6 366
Soybean Large 35 19 307 Chess 36 2 3196
Statlog 36 6 6435 Waveform 40 3 5000

3.2 MOPSOPRS

PSOPRSN combines the two main objectives of feature selection into a single
fitness function. However, γ needs to be predefined and its best value is problem-
dependent. Therefore, we propose a multi-objective PSO based feature selection
algorithm. However, PSO was originally proposed for single objective optimisa-
tion. Sierra and Coello [15] proposed a multi-objective PSO based on the ideas
of mutation, crowding and dominance, which is a continuous algorithm and has
achieved good performance. In this work, we extend it to a binary version of
multi-objective PSO based on which we propose a multi-objective feature se-
lection algorithm using probabilistic rough set theory (MOPSOPRS). The two
objectives in MOPSOPRS is to maximise the representation power of the feature
subset evaluated by Fitness2 and to minimise the number of features.

Algorithm 1 shows the pseudo-code of MOPSOPRS. To select a gbest for each
particle, MOPSOPRS employs a leader set to store the non-dominated solutions
as the potential leaders. A crowding factor is employed to decide which non-
dominated solutions should be added into the leader set and kept during the
evolutionary process. A binary tournament selection is used to select two solu-
tions from the leader set and the less crowded solution is chosen as the gbest.
The maximum number of non-dominated solutions in the leader set is usually set
as the same as the population size. In order to keep the diversity of the swarm
and improve the search ability of the algorithm, MOPSOPRS randomly divides
the whole swarm into three different groups in the initialisation procedure. The
first group does not have any mutation. The second group employs uniform mu-
tation to keep the global search ability and the third group employs non-uniform
mutation to keep the local search ability. Furthermore, the three groups have the
same leader set, which allows them to share their success to take advantages of
different behaviors to search for the Pareto non-dominated solutions.

In all the algorithms, the dimensionality of the search space is the total number
of features. Each particle is encoded in a binary string, where the “1” means the
corresponding feature is selected, otherwise the feature is removed.

4 Experimental Design

As rough set theory only works on discrete values, six categorical datasets (Ta-
ble 1) of varying difficulty are chosen from UCI machine learning repository
[5] to test the performance of the algorithms. In each dataset, 70% of the in-
stances are randomly chosen as the training set and others (30%) are the test set.
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Table 2. Results of PSOPRS and PSOPRS with DT as the learning algorithm

Dataset Spect Dermatology Chess
Method Size Ave(Min) Std Size Ave(Min) Std Size Ave(Min) Std

All 22 19.1 33 17.21 36 1.5
PSORS 17.5 19.03(15.73) 2.28 21 13.99(2.46) 4.76 30.8 1.68(1.31) 0.261
PSOPRS
α = 0.9 17.3 19.44(15.73) 2.21 21 13.99(2.46) 4.76 30.7 1.6(1.31) 0.221
α = 0.8 17.5 19.96(17.98) 1.96 21 13.99(2.46) 4.76 29.97 1.72(1.5) 0.279
α = 0.75 15.57 18.2(17.98) 0.841 21 13.99(2.46) 4.76 30.3 1.53(1.31) 0.129
α = 0.5 16.6 19.96(15.73) 2.11 20.73 13.99(2.46) 5.07 28.8 1.9(1.31) 0.525

All the algorithms firstly run on the training set to select a feature subset(s). The
classification performance of the selected feature subset(s) will be evaluated by
a learning/classification algorithm on the unseen test set. To test the claim that
filter feature selection methods are general, three different learning algorithms,
DT, näıve bayes (NB) and KNN with K=5 (5NN), are used in the experiments.

In all algorithms, the fully connected topology is used, the maximum velocity
vmax = 6.0, the population size is 30 and the maximum iteration is 500. w =
0.7298, c1 = c2 = 1.49618. These values are chosen based on the common settings
in the literature [14]. The algorithm has been conducted for 30 independent runs
on each dataset. In PSOPRS, five different α values (1.0, 0.9, 0.8, 0.75, 0.5)
are used in the experiments. When α = 1, PSOPRS is the same as PSORS.
Therefore, the results of α = 1 in PSOPRS is not presented in Section 5. In
PSOPRSN, the results of γ = 0.9 and γ = 0.5 are used to compare with that of
the multi-objective algorithm (MOPSOPRS).

To further examine the performance of MOPSOPRS, two conventional filter
feature selection methods (CfsF and CfsB) [7] implemented in Weka [20] are
used for comparison and the classification performance is calculated by DT.

5 Experimental Results and Discussions

5.1 Experimental Results of PSORS and PSOPRS

Experiments about PSORS andPSOPRS have been conducted on the six datasets
and DT, NB and 5NN were used for classification on the test sets. Due to the page
limit, only the results of three datasets (Spect, Dermatology and Chess) using DT
for classification are presented in Table 2. In the table, “All” means that all of the
available features are used for classification. “Size” means the average number of
features selected in the 30 independent runs. “Ave”, “Min” and “Std” represent
the average, the lowest and the standard deviation of the classification error rates
achieved by DT across the 30 runs.

Results of PSORS. According to Table 2, in most cases, PSORS selected
feature subsets, which included around two thirds of the available features and
achieved similar classification performance to all features. In almost all datasets,
the best classification performance of PSOPRS (Min) is better than all features.
The results suggest that PSORS based on PSO and standard rough set theory
can be successfully used for feature selection.
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Results of PSOPRS. According to Table 2, in most cases, PSOPRS with
different α can achieve similar classification performance to all features. The
number of features generally decreases when α reduces. Meanwhile, the best
results achieved by PSOPRS are always better than all features in all cases.
The results suggests that by using probabilistic rough set for feature selection,
PSOPRS can further reducing the number of features without reducing its clas-
sification performance. A smaller α means more relax on the lower and upper
approximations, which usually can slightly remove more unnecessary features to
further reduce dimensionality of the datasets.

Note that considering all experimental results on PSOPRS (not only the
results in Table 2), in most cases, α = 0.75 achieved better classification perfor-
mance than other α values. Therefore, α = 0.75 is used in the experiments in
PSOPRSN and MOPSOPRS.

5.2 Experimental Results of PSOPRSN and MOPSOPRS

PSOPRSN obtains a single solution in each of the 30 independent runs. MOP-
SOPRS obtains a set of non-dominated solutions in each run. To compare these
two kinds of results, the 30 solutions (from 30 runs) resulted from PSOPRSN
are presented in this section. 30 sets of feature subsets achieved by MOPSOPRS
are firstly combined into one union set. In the union set, for the feature subsets
including the same number of features (e.g. m), their classification error rates are
averaged. Therefore, a set of average solutions is obtained by using the average
classification error rates and the corresponding numbers (e.g. m). The set of av-
erage solutions is called the average Pareto front and presented here. Meanwhile,
the non-dominated solutions in the union set are called the best Pareto front and
are also presented to compare with the solutions achieved by PSOPRSN.

Figure 1 shows the experimental results of MOPSOPRS and PSOPRSN with
γ = 0.5 and γ = 0.9 on the test sets, where DT was used as the classification
algorithm. In the figure, each chart corresponds to one of the dataset used in
the experiments. On the top of each chart, the numbers in the brackets show the
number of available features and the classification error rate using all features.
In each chart, the horizontal axis shows the number of features selected and the
vertical axis shows the classification error rate. As the results of using NB and
5NN are similar to that of using DT, the results of using NB and 5NN are not
presented here due the page limit.

In Figure 1, “AvePar” and “BestPar” stand for the average and the best
Pareto fronts resulted from MOPSOPRS in the 30 independent runs. γ = 0.5 and
γ = 0.9 show the results of PSOPRSN with γ = 0.5 and γ = 0.9, respectively.
In some datasets, PSOPRSN may evolve the same feature subset in different
runs and they are shown in the same point in the chart. Therefore, although 30
results are presented in γ = 0.5 and γ = 0.9, there may be less than 30 distinct
points shown in one chart.

Results of PSOPRSN. As can be seen from Figure 1, in most cases, PSO-
PRSN with both γ = 0.5 and γ = 0.9 selected feature subsets with a smaller
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Fig. 1. Results of MOPSOPRS and PSOPRSN on test sets evaluated by DT

number of features and achieved similar or even better classification performance
than using all features. γ = 0.9 achieved similar or better classification than
γ = 0.5 and γ = 0.5 usually achieved a smaller number of features than γ = 0.9.
The reason is that the number of features is assigned more important in γ = 0.5
than in γ = 0.9.

Results of MOPSOPRS. According to Figure 1, in three of the six datasets,
the average Pareto front of MOPSOPRS (AvePar) includes two or more solu-
tions, which selected a smaller number of features and achieved a similar or even
lower classification error rate than using all features. For the same number of
features, there are a variety of combinations of features with different classifica-
tion performances. The feature subsets obtained in different runs may include
the same number of features but different classification error rates. Therefore,
although the solutions obtained in each run are non-dominated, some solutions
in the average Pareto front may dominate others. This also happens when using
5NN or NB as the classification algorithms.

According to Figure 1, in all datasets, the non-dominated solutions in MOP-
SOPRS (BestPar) selected one or more feature subsets, which included less than
one third of features and achieved better classification performance than using
all features.

Comparisons Between MOPSOPRS and PSOPRSN. In most datasets,
solutions in AvePar achieved similar results to both γ = 0.5 and γ = 0.9 in terms
of both the number of features and the classification performance, but AvePar
included more different sizes of feature subsets. In five of the six datasets, BestPar
achieved better classification performance with a smaller number of features than
both γ = 0.5 and γ = 0.9, especially in the datasets with a large number of
features, such as the Statlog and Waveform datasets.

Figure 1 shows that MOPSOPRS can further reduce the number of features
and increase the classification performance, which indicates that MOPSOPRS
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Table 3. Results of CfsF and CfsB with DT as the learning algorithm

Dataset Spect Dermatology Soybean Chess Statlog Waveform
Method Size Error (%) Size Error (%) Size Error (%) Size Error (%) Size Error (%) Size Error (%)
CfsF 4 30 17 12.73 12 19.51 5 21.9 5 28.38 32 28
CfsB 4 30 17 12.73 14 14.63 5 21.9 5 28.38 32 28

as a multi-objective technique can explore the search space of a feature selection
problem better than the single objective algorithm, PSOPRSN.

Note that the results of using the three classification algorithms (DT, NB and
5NN) show that the performance of MOPSOPRS and PSOPRSN are consistent
when using different classification algorithms, which suggests the proposed filter
algorithm with probabilistic rough set as the evaluation criterion are general to
these three classification algorithms.

5.3 Comparisons with Two Traditional Algorithms

Table 3 shows the results of CfsF and CfsB for feature selection, where DT was
used for classification. Comparing MOPSOPRS (results of using DT shown in
Figure 1) with CfsF and CfsB, it can be seen that in all datasets, MOPSO-
PRS (BestPar) outpormed both CfsF and CfsB in terms of the classification
performance and the number of features.

6 Conclusions

This work conducted the first study on PSO and rough set theory for multi-
objective feature selection. We proposed a novel feature algorithm (MOPSO-
PRS) based on a multi-objective PSO and probabilistic rough set theory with
the goal of obtaining a set of non-dominated feature subsets, which reduced the
number of features and achieved similar or even better classification performance
than all features. MOPSOPRS was examined and compared with three single
objective algorithms (PSOPRS, PSOPRS and PSOPRSN) and two traditional
methods on six datasets of varying difficulty. DT NB and 5NN were used to
test the generality of MOPSOPRS. Experimental results show that in almost
all cases, MOPSOPRS can automatically evolve a set of non-dominated feature
subsets that include a smaller number of features and achieve better classifica-
tion performance (evaluated by the three classification methods) than using all
features. MOPSOPRS outperformed the three PSO based single objective and
the two traditional algorithms in terms of both the number of features and the
classification performance. The results also show that MOPSOPRS are general
to the three different classification algorithms. This study finds that as a multi-
objective algorithm, MOPSOPRS can search the solution space effectively to
obtain a set of non-dominated solutions instead of a single solution. Examining
the Pareto front achieved by the multi-objective algorithm can assist users in
choosing their preferred solutions to meet their own requirements.

In future, we will further investigate the use of multi-objective PSO and prob-
abilistic rough set for feature selection to better explore the Pareto front of
non-dominated solutions in feature selection problems.
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