
Lecture Notes in Computer Science 7832
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Martin Middendorf Christian Blum (Eds.)

Evolutionary Computation
in Combinatorial Optimization

13th European Conference, EvoCOP 2013
Vienna, Austria, April 3-5, 2013
Proceedings

13

Volume Editors

Martin Middendorf
University of Leipzig
Department of Computer Science
Johannisgasse 26, 04103 Leipzig, Germany
E-mail: middendorf@informatik.uni-leipzig.de

Christian Blum
University of the Basque Country
IKERBASQUE, Basque Foundation for Science
Department of Computer Science and Artificial Intelligence
Paseo Manuel Lardizabal 1, 20018 Donostia, Spain
E-mail: christian.c.blum@gmail.com

Front cover EvoStar 2013 logo by Kevin Sim, Edinburgh Napier University

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-37197-4 e-ISBN 978-3-642-37198-1
DOI 10.1007/978-3-642-37198-1
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013933104

CR Subject Classification (1998): G.1.6, F.2, G.2, F.1, I.2.8

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in ist current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Algorithms from the field of metaheuristics have been shown to be provenly
effective for an ever-broadening range of difficult combinatorial optimization
problems arising in a wide variety of industrial, economic, and scientific do-
mains. Prominent examples of metaheuristics include, but are not liminted to,
ant colony optimization, evolutionary algorithms, greedy randomized adaptive
search procedures, iterated local search, simulated annealing, tabu search, and
variable neighborhood search. Applications of metaheuristics can be found in a
wide variety of fields such as scheduling, timetabling, network design, transporta-
tion and distribution, vehicle routing, the travelling salesman problem, packing
and cutting, satisfiability, and general mixed integer programming.

The series of EvoCOP workshops/conferences was initiated in 2001 and has
been held annually since then. In fact, EvoCOP is the first event specifically
dedicated to the application of evolutionary computation and related methods
to combinatorial optimization problems. Originally held as a workshop, Evo-
COP became a conference in 2004. Past events gave researchers an excellent
opportunity to present their latest research and to discuss current developments
and applications. Following the general trend of hybrid metaheuristics and di-
minishing boundaries between different classes of metaheuristics, EvoCOP has
broadened its scope in recent years and has solicited papers on any kind of
metaheuristic for combinatorial optimization.

This volume contains the proceedings of EvoCOP 2013, the 13th European
Conference on Evolutionary Computation in Combinatorial Optimization. It was
held in Vienna, Austria, during April 3–5, 2013, jointly with EuroGP 2013, the
16th European Conference on Genetic Programming, EvoBIO 2013, the 11th Eu-
ropean Conference on Evolutionary Computation, Machine Learning and Data
Mining in Bioinformatics, EvoMUSART 2013, the Second International Con-
ference and 11th European Event on Evolutionary and Biologically Inspired
Music, Sound, Art and Design, and EvoApplications 2013 (formerly EvoWork-
shops), which consisted of 12 individual tracks ranging from complex systems
over games to risk management. From 2007, all these events are grouped under
the collective name EvoStar, and constitute Europe’s premier co-located event
on evolutionary computation and metaheuristics.

Accepted papers of previous EvoCOP editions were published by Springer
in the series Lecture Notes in Computer Science (LNCS – Volumes 2037, 2279,
2611, 3004, 3448, 3906, 4446, 4972, 5482, 6022, 6622, 7245). Statistics for each
conference are as follows:

VI Preface

EvoCOP Submitted Accepted Acceptance Ratio

2001 31 23 74.2%
2002 32 18 56.3%
2003 39 19 48.7%
2004 86 23 26.7%
2005 66 24 36.4%
2006 77 24 31.2%
2007 81 21 25.9%
2008 69 24 34.8%
2009 53 21 39.6%
2010 69 24 34.8%
2011 42 22 52.4%
2012 48 22 45.8%
2013 50 23 46.0%

The rigorous, double-blind reviewing process of EvoCOP 2013 resulted in the
selection of 23 out of 50 submitted papers; the acceptance rate was 46.0%. It
is worth pointing out that the number of submissions was higher than at last
year’s event. Given the current times of crisis, this is a remarkable achievement.
Each paper was reviewed by a sufficient number of members of the international
Program Committee. In fact, their work is essential for the continuing success of
EvoCOP. Moreover, acceptance/rejection decisions were not only based on the
received referee reports but also on a personal evaluation of the Program Chairs.
At this point we would like to thank all authors for submitting their work to
this EvoCOP edition.

There are various persons and institutions that have contributed to the suc-
cess of the conference and to whom we would like to express our appreciation.
First of all, we thank the local organizers of EvoStar 2013, Günther R. Raidl,
Bin Hu, and Doris Dicklberger, from the Vienna University of Technology. They
did an extraordinary job. Furthermore, we would like to thank Marc Schoenauer
from INRIA (France) for his continuing support concerning the MyReview con-
ference management system. We also thank Kevin Sim from Edinburgh Napier
University and A. Şima Etaner-Uyar from the Istanbul Technical University
for the excellent website and publicity material. Thanks are also due to Jen-
nifer Willies and the Institute for Informatics and Digital Innovation at Napier
University in Edinburgh, Scotland, for administrative support and event coordi-
nation. Finally, we gratefully acknowledge the Vienna University of Technology
for its support of EvoStar.

Last, but not least, we would like to thank Carlos Cotta, Peter Cowling, Jens
Gottlieb, Jin-Kao Hao, Jano van Hemert, Peter Merz, and Günther R. Raidl for
their hard work and dedication at past editions of EvoCOP, which contributed to
making this conference one of the reference events in evolutionary computation
and metaheuristics.

April 2013 Martin Middendorf
Christian Blum

Organization

EvoCOP 2013 was organized jointly with EuroGP 2013, EvoBIO 2013, Evo-
MUSART 2013, and EvoApplications 2013.

Organizing Committee

Program Committee Chairs

Martin Middendorf University of Leipzig, Leipzig, Germany
Christian Blum IKERBASQUE, Basque Foundation for

Science, and University of the Basque
Country, San Sebastian, Spain

Local Organization

Günther R. Raidl Vienna University of Technology, Austria
Bin Hu Vienna University of Technology, Austria
Doris Dicklberger Vienna University of Technology, Austria

Publicity Chair

A. Şima Etaner-Uyar Istanbul Technical University, Turkey

EvoCOP Steering Committee

Carlos Cotta Universidad de Málaga, Spain
Peter Cowling University of York, UK
Jens Gottlieb SAP AG, Germany
Jin-Kao Hao University of Angers, France
Jano van Hemert University of Edinburgh, UK
Peter Merz University of Applied Sciences and Arts,

Hannover, Germany
Günther Raidl Vienna University of Technology, Austria

Program Committee

Adnan Acan Eastern Mediterranean University,
Gazimagusa, Turkey

Hernán Aguirre Shinshu University, Nagano, Japan
Enrique Alba Universidad de Málaga, Spain
Mehmet Emin Aydin University of Bedfordshire, UK

VIII Organization

Ruibin Bai University of Nottingham, UK
Thomas Bartz-Beielstein Cologne University of Applied Sciences,

Germany
Maria Blesa Universitat Politècnica de Catalunya, Spain
Christian Blum IKERBASQUE and University of the

Basque Country, Spain
Rafael Caballero University of Málaga, Spain
Alexandre Caminada UTBM, France
Pedro Castillo Universidad de Granada, Spain
José Francisco Chicano Garcia Universidad de Málaga, Spain
Carlos Coello Coello CINVESTAV-IPN, Mexico
Peter Cowling University of York, UK
Keshav Dahal University of Bradford, UK
Karl Doerner Universität Wien, Austria
Benjamin Doerr Max-Planck-Institut für Informatik,

Germany
Anton V. Eremeev Omsk Branch of Sobolev Institute of

Mathematics, Russia
Antonio J. Fernández Universidad de Málaga, Spain
Francisco Fernández de Vega University of Extremadura, Spain
Bernd Freisleben University of Marburg, Germany
Philippe Galinier Ecole Polytechnique de Montreal, Canada
Jens Gottlieb SAP, Germany
Walter Gutjahr University of Vienna, Austria
Jin-Kao Hao University of Angers, France
Geir Hasle SINTEF Applied Mathematics, Norway
István Juhos University of Szeged, Hungary
Graham Kendall University of Nottingham, UK
Joshua Knowles University of Manchester, UK
Mario Köppen Kyushu Institute of Technology, Japan
Jozef Kratica University of Belgrade, Serbia
Rhyd Lewis Cardiff University, UK
Arnaud Liefooghe Université des Sciences et Technologies de

Lille, France
Arne Løkketangen Molde College, Norway
José Antonio Lozano University of the Basque Country, Spain
Zhipeng Lu HUST, China
Penousal Machado University of Coimbra, Portugal
Dirk C. Mattfeld University of Braunschweig, Germany
Barry McCollum Queen’s University Belfast, UK
Juan Julián Merelo University of Granada, Spain
Peter Merz University of Applied Sciences and Arts,

Hannover, Germany
Martin Middendorf Universität Leipzig, Germany
Julian Molina University of Málaga, Spain

Organization IX

Pablo Moscato The University of Newcastle, Australia
Christine L. Mumford Cardiff University, UK
Nysret Musliu Vienna University of Technology, Austria
Yuichi Nagata Tokyo Institute of Technology, Japan
Giuseppe Nicosia University of Catania, Italy
Mario Pavone University of Catania, Italy
Francisco J. B. Pereira Universidade de Coimbra, Portugal
Daniel Cosmin Porumbel University of Artois, France
Jakob Puchinger Arsenal Research, Vienna, Austria
Günther Raidl Vienna University of Technology, Austria
Marcus Randall Bond University, Queensland, Australia
Marc Reimann Warwick Business School, UK
Andrea Roli Università degli Studi di Bologna, Italy
Eduardo Rodriguez-Tello CINVESTAV-Tamaulipas, Mexico
Patrick Siarry Université Paris-Est Créteil Val-de-Marne,

France
Jim Smith University of the West of England, UK
Giovanni Squillero Politecnico di Torino, Italy
Thomas Stützle Université Libre de Bruxelles, Belgium
El-ghazali Talbi Université des Sciences et Technologies de Lille,

France
Kay Chen Tan National University of Singapore, Singapore
Jorge Tavares MIT, USA
Jano van Hemert University of Edinburgh, UK
Sebastien Verel Université de Nice Sophia Antipolis, France
Takeshi Yamada NTT Communication Science Laboratories,

Japan
Shengxiang Yang De Montfort University, UK

Additional Referees

Pablo Garćıa-Sánchez
Jean-Philippe Hamiez
Raúl Lara-Cabrera

Antonio M. Mora
Mariela Nogueira
Martin Zaefferer

Table of Contents

A Hyper-heuristic with a Round Robin Neighbourhood Selection 1
Ahmed Kheiri and Ender Özcan

A Multiobjective Approach Based on the Law of Gravity and Mass
Interactions for Optimizing Networks . 13

Álvaro Rubio-Largo and Miguel A. Vega-Rodŕıguez

A Multi-objective Feature Selection Approach Based on Binary
PSO and Rough Set Theory . 25

Liam Cervante, Bing Xue, Lin Shang, and Mengjie Zhang

A New Crossover for Solving Constraint Satisfaction Problems 37
Reza Abbasian and Malek Mouhoub

A Population-Based Strategic Oscillation Algorithm for Linear
Ordering Problem with Cumulative Costs . 49

Wei Xiao, Wenqing Chu, Zhipeng Lü, Tao Ye, Guang Liu, and
Shanshan Cui

A Study of Adaptive Perturbation Strategy for Iterated Local Search . . . 61
Una Benlic and Jin-Kao Hao

Adaptive MOEA/D for QoS-Based Web Service Composition 73
Mihai Suciu, Denis Pallez, Marcel Cremene, and
Dumitru Dumitrescu

An Analysis of Local Search for the Bi-objective Bidimensional
Knapsack Problem . 85

Leonardo C.T. Bezerra, Manuel López-Ibáñez, and Thomas Stützle

An Artificial Immune System Based Approach for Solving the Nurse
Re-rostering Problem . 97

Broos Maenhout and Mario Vanhoucke

Automatic Algorithm Selection for the Quadratic Assignment Problem
Using Fitness Landscape Analysis . 109

Erik Pitzer, Andreas Beham, and Michael Affenzeller

Balancing Bicycle Sharing Systems: A Variable Neighborhood Search
Approach . 121

Marian Rainer-Harbach, Petrina Papazek, Bin Hu, and
Günther R. Raidl

XII Table of Contents

Combinatorial Neighborhood Topology Particle Swarm Optimization
Algorithm for the Vehicle Routing Problem . 133

Yannis Marinakis and Magdalene Marinaki

Dynamic Evolutionary Membrane Algorithm in Dynamic
Environments . 145

Chuang Liu and Min Han

From Sequential to Parallel Local Search for SAT . 157
Alejandro Arbelaez and Philippe Codognet

Generalizing Hyper-heuristics via Apprenticeship Learning 169
Shahriar Asta, Ender Özcan, Andrew J. Parkes, and
A. Şima Etaner-Uyar

High-Order Sequence Entropies for Measuring Population Diversity in
the Traveling Salesman Problem . 179

Yuichi Nagata and Isao Ono

Investigating Monte-Carlo Methods on the Weak Schur Problem 191
Shalom Eliahou, Cyril Fonlupt, Jean Fromentin,
Virginie Marion-Poty, Denis Robilliard, and Fabien Teytaud

Multi-objective AI Planning: Comparing Aggregation and Pareto
Approaches . 202

Mostepha R. Khouadjia, Marc Schoenauer, Vincent Vidal,
Johann Dréo, and Pierre Savéant

Predicting Genetic Algorithm Performance on the Vehicle Routing
Problem Using Information Theoretic Landscape Measures 214

Mario Ventresca, Beatrice Ombuki-Berman, and Andrew Runka

Single Line Train Scheduling with ACO . 226
Marc Reimann and Jose Eugenio Leal

Solving Clique Covering in Very Large Sparse Random Graphs by
a Technique Based on k-Fixed Coloring Tabu Search 238

David Chalupa

Solving the Virtual Network Mapping Problem with Construction
Heuristics, Local Search and Variable Neighborhood Descent 250

Johannes Inführ and Günther R. Raidl

The Generate-and-Solve Framework Revisited: Generating by
Simulated Annealing . 262

Rommel D. Saraiva, Napoleão V. Nepomuceno, and
Plácido R. Pinheiro

Author Index . 275

A Hyper-heuristic with a Round Robin

Neighbourhood Selection

Ahmed Kheiri and Ender Özcan

University of Nottingham, School of Computer Science
Jubilee Campus, Wollaton Road, Nottingham, NG8 1BB, UK

{axk,exo}@cs.nott.ac.uk

Abstract. An iterative selection hyper-heuristic passes a solution
through a heuristic selection process to decide on a heuristic to apply
from a fixed set of low level heuristics and then a move acceptance pro-
cess to accept or reject the newly created solution at each step. In this
study, we introduce Robinhood hyper-heuristic whose heuristic selec-
tion component allocates equal share from the overall execution time
for each low level heuristic, while the move acceptance component en-
ables partial restarts when the search process stagnates. The proposed
hyper-heuristic is implemented as an extension to a public software used
for benchmarking of hyper-heuristics, namely HyFlex. The empirical re-
sults indicate that Robinhood hyper-heuristic is a simple, yet powerful
and general multistage algorithm performing better than most of the
previously proposed selection hyper-heuristics across six different Hyflex
problem domains.

1 Introduction

A hyper-heuristic is a heuristic that performs a search over a space of heuristics,
as opposed to space of solutions directly. Although the term hyper-heuristic
was coined recently, the idea of combining the strengths of different heuristics
(neighbourhood operators) dates back to the 1960s [10]. An aim of the hyper-
heuristic research is to raise the level of generality by providing a high level
strategy that is applicable across different problem domains rather than a single
one. There are two main types of hyper-heuristics in the academic literature:
methodologies used for generation or selection of heuristics [5,6,23].

A selection hyper-heuristic methodology combines heuristic selection and move
acceptance processes under a single point search framework [1,2,8,20,21]. A can-
didate solution is improved iteratively by selecting, applying a heuristic (neigh-
bourhood operator) from a set of low level heuristics, then passing the new
solution through move acceptance to replace the solution in hand at each step.
[5,7] are the recent surveys on hyper-heuristics. In this study, a new simple se-
lection hyper-heuristic is introduced and tested across a variety of problem do-
mains using Hyflex (Hyper-heuristics Flexible framework) [18], a software tool
for hyper-heuristic development and research.

M. Middendorf and C. Blum (Eds.): EvoCOP 2013, LNCS 7832, pp. 1–12, 2013.
© Springer-Verlag Berlin Heidelberg 2013

2 A. Kheiri and E. Özcan

1.1 Hyflex

Hyflex provides an interface for the implementation of not only hyper-heuristics
but also other (meta)heuristics and problem domains. Any problem domain de-
veloped for Hyflex is required to define a set of low level heuristics (neighobour-
hood operators) which should be classified as mutational (MU), hill climbing
(HC), ruin and re-create (RC) or crossover (XO). A mutational heuristic makes
a random perturbation producing a new solution and this process does not nec-
essarily generate an improvement over the input solution. Local search or hill
climbing is often an iterative procedure searching different neighbourhoods start-
ing from a given solution. A ruin and re-create operator produces a partial solu-
tion from a given complete solution and then rebuilds a new complete solution.
Crossover is a well known operator in evolutionary computation, which takes
two solutions and produces a new solution. In general, crossover yields two new
solutions and the best new solution is returned in Hyflex.

HyFlex provides utilities to control the behaviour of some low level heuristics
to a limited extent. It is possible to increase or decrease the intensity of some mu-
tational and ruin and re-create operations by adjusting a control parameter from
0.0 to 1.0. Changing the value of the intensity parameter could mean changing
the range of new values that a variable can take in relation to its current range
of values or changing the number of solution variables that will be processed by
a heuristic. There is also another similar control parameter for some local search
operators for changing the depth of search which relates to the number of hill
climbing steps.

HyFlex currently provides an implementation of six minimisation problem do-
mains: Boolean Satisfiability (MAX-SAT), One Dimensional Bin Packing (BP),
Permutation Flow Shop (PFS), Personnel Scheduling (PS), Travelling Salesman
Problem (TSP) and Vehicle Routing Problem (VRP) each with different in-
stances and a set of low-level heuristics. The nature of each low level heuristic
for each Hyflex problem domain is summarised in Table 1. Currently, there are
12 different instances for the first four problem domains and 10 for the last two
problem domains. What is left is to design and implement a high-level strategy
(hyper-heuristic) that intelligently selects and applies suitable low-level heuris-
tics from the set provided to each instant from the given domain to get the
minimum objective function value in ten minutes. Hyflex was used for Cross-
domain Heuristic Search Challenge (CHESC)1 in 2011. The hyper-heuristics
entered into this competition and made it to the finals serve as a benchmark for
newly developed hyper-heuristics targeting generality.

2 Related Work

There is a growing number of work on selection hyper-heuristics which have been
designed and tested using hyflex. Before CHeSC 2011 (Cross-Domain Heuristic

1 http://www.asap.cs.nott.ac.uk/chesc2011/

http://www.asap.cs.nott.ac.uk/chesc2011/

A Hyper-heuristic with a Round Robin Neighbourhood Selection 3

Table 1. The nature of the low level heuristics used in each problem domain. The bold
entries for each problem domain mark the last low level heuristic of each type.

Heuristic IDs LLH0 LLH1 LLH2 LLH3 LLH4 LLH5 LLH6 LLH7

MAX-SAT MU0 MU1 MU2 MU3 MU4 MU5 RC0 HC0

Bin Packing MU0 RC0 RC1 MU1 HC0 MU2 HC1 XO0

PS HC0 HC1 HC2 HC3 HC4 RC0 RC1 RC2

PFS MU0 MU1 MU2 MU3 MU4 RC0 RC1 HC0

TSP MU0 MU1 MU2 MU3 MU4 RC0 HC0 HC1

VRP MU0 MU1 RC0 RC1 HC0 XO0 XO1 MU2

Heuristic IDs LLH8 LLH9 LLH10 LLH11 LLH12 LLH13 LLH14

MAX-SAT HC1 XO0 XO1

PS XO0 XO1 XO2 MU0

PFS HC1 HC2 HC3 XO0 XO1 XO2 XO3

TSP HC2 XO0 XO1 XO2 XO3

VRP HC1 HC2

Search Challenge), a mock competition was organised with hyflex and the perfor-
mance of several well known previously proposed hyper-heuristics were compared
across a subset of CHeSC problem domains. Burke et al. [3] reported that the
best performing hyper-heuristic was an iterated local search approach which ap-
plied a randomly selected mutational and ruin and re-create heuristic and then
the hill climbers in a predefined sequence. This framework is based on the most
successful hyper-heuristic framework reported to perform the best in [21]. Özcan
and Kheiri [22] provide a greedy heuristic selection strategy named dominance-
based heuristic selection which aims to determine low level heuristics with good
performance based on the trade-off between the change (improvement) in the
solution quality and the number of steps taken. The approach attempts to re-
duce the number of low level heuristics. It performs well with respect to the
mock competition hyper-heuristics on four problem domains of HyFlex. Nguyen
et al. [17] tested an evolutionary approach to generate hyper-heuristics across
three HyFlex problem domains and according to the experimental results, they
obtained only one improving solution over the top two hyper-heuristics from the
mock competition.

In the mock competition, each algorithm was run once for each instance,
while 31 runs were performed in CHeSC and the median results were compared
to determine the best performing hyper-heuristic among the CHeSC partici-
pants generalising well across all six (four public and two hidden) HyFlex prob-
lem domains given 10 minutes of execution time per instance. The algorithm
description of the approaches developed by CHeSC competitors are provided
in (http://www.asap.cs.nott.ac.uk/external/chesc2011/results.html). The win-
ner of the competition, denoted as AdapHH was a hyper-heuristic which com-
bines a learning adaptive heuristic selection method with an adaptive iteration
limited list-based threshold move accepting method ([15]). This hyper-heuristic
does not make use of the type information provided for the low level heuristics.

4 A. Kheiri and E. Özcan

A hyper-heuristic based on Variable Neighborhood Search (VNS-TW) ranked
the second at the competition [11]. This approach applies shaking heuristics
followed by hill-climbers to solve the problems. The third ranking algorithm
(ML) was based on a self-adaptive meta-heuristic using multiple agents. The
fourth approach (PHUNTER) was inspired by the pearl hunting utilising two
phases diversification and intensification. The fifth hyper-heuristic (EPH)
was based on evolutionary programming which evolves population of solutions
and heuristics. The other hyper-heuristics were inspired from well known popu-
lation based and single point-based search metaheuristics: Iterated Local Search
driven by Evolutionary Algorithms (ISEA) [14], Hybrid Adaptive Evolutionary
Algorithm (HAEA), Genetic Hive Hyper-heuristic (GenHive), Ant Colony Opti-
mization based hyper-heuristic (ACO), Simulated Annealing Hyper-Heuristic
with Reinforcement Learning and Tabu-Search (KSATS-HH), Reinforcement
Learning (AVEG-Nep) [9] and Generic Iterative Simulated-Annealing Search
(GISS). More on these approaches can be found at the competition webpage.

After the CHeSC 2011 competition, a number of researchers attempted to
improve previously proposed hyper-heuristics. Kalender et al. [13] proposed a
hyper-heuristic which combines a learning greedy gradient approach for heuris-
tic selection and simulated annealing move acceptance. The results show that
this approach performs slightly better than a Choice Function hyper-heuristic
whose performance is improved by Drake et al. [12] substantially with a mi-
nor adjustment. Although, these approaches improved the performance of the
traditional Choice Function and Greedy hyper-heuristics on HyFlex problem do-
mains, their performances still on average as compared to the hyper-heuristics of
CHeSC competitors. In [4,19], the authors proposed an adaptive neighbourhood
iterated local search algorithm based on Hyflex and its variant.

The proposed hyper-heuristic in this study is also implemented as an exten-
sion to HyFlex. Its performance is compared to the mock competition hyper-
heuristics as well as hyper-heuristics provided by the CHeSC competitors.

3 Methodology

This study introduces a multi-stage selection hyper-heuristic framework based on
a round-robin neighbourhood selection mechanism (Algorithm 1). This frame-
work gives a chance for each low level heuristic in a selected subset of low level
heuristics to execute for a certain duration at a stage. A low level heuristic is
chosen in a round robin fashion. Depending on the strategy whole set of low
level heuristics can be used and the order of low level heuristics can be fixed
or varied. Any move acceptance method could be used within this framework.
We describe an easy-to-implement yet powerful selection hyper-heuristic based
on this framework which will be referred to as Robinhood hyper-heuristic in this
section. The Robinhood hyper-heuristic is implemented for Hyflex accommodat-
ing performance testing across domain implementations and comparison to the
top hyper-heuristics competed in CHeSC.

The Robinhood hyper-heuristic is composed of components inspired from
previously proposed approaches. The heuristic selection methods presented by

A Hyper-heuristic with a Round Robin Neighbourhood Selection 5

Algorithm 1. Robinhood hyper-heuristic framework

1: procedure Robinhood

2: initialise();
3: while (terminationCriteriaNotSatisfied1()) do � e.g., terminate when the

given overall execution time is exceeded
4: update1(); � set/update relevant parameter/variable values before entering

into a stage or no-op
5: for (i =nextLowLevelHeuristicID()) do � entry of the stage
6: while (terminationCriteriaNotSatisfied2()) do � e.g., terminate when

the given time for a heuristic is exceeded
7: S′ =applyLLH(i, S); � S and S′ are the current and new solutions,

respectively
8: moveAcceptance(S, S′);
9: end while
10: update2(); � set/update relevant parameter/variable values after

employing a low level heuristic or no-op
11: end for
12: update3(); � set/update relevant parameter/variable values after a stage

or no-op
13: end while
14: end procedure

Cowling et al. [8] includes Random Permutation and Random Permutation Gra-
dient. This method applies a low level heuristic one at a time sequentially in a
randomly generated permutation order. Random Permutation Gradient operates
in the same with a minor change that is as long as the chosen heuristic makes
an improvement in the current solution the same heuristic is employed. Given a
time limit of t (Algorithm 1, line 3), and n low level heuristics, the Robinhood
hyper-heuristic fixes the number of stages as k and applies all low level heuris-
tics (line 5) to the current solution in a given order for t/(n.k) time unit at a
stage (line 6). Hyflex does not provide any annotation for the low level heuristics
in a given domain, indicating whether they operate on a given solution with a
stochastic or deterministic approach. Although this could be detected with a
level of certainty using some initial tests over the set of heuristics, we assumed
that all operators are stochastic and so each heuristic is given an equal amount
of time to process a given solution at each stage.

We classified all ruin and re-create low level heuristics provided in a given
problem domain as mutational heuristics, since Hyflex does not provide any in-
dication whether a ruin and re-create heuristic is a mutational or local search
operator. The proposed hyper-heuristic aims to use all low level heuristics as-
suming that the domain implementers chose reasonable heuristics which will
not be misleading for the search process. Consequently, we randomly order the
low level heuristics within each group of heuristics: mutational, crossover and
hill climbing. Inspired by memetic algorithms [16,24], in which solutions are

6 A. Kheiri and E. Özcan

improved through successive application of mutation, crossover and hill climbing,
the Robinhood hyper-heuristic uses the same ordering of groups and randomly
fixing the ordering of heuristics within each group at a stage. There is also a
strong empirical evidence in the literature that this ordering is a good choice even
for selection hyper-heuristics as reported in [3,21]. Our hyper-heuristic uses the
same ordering in the subsequent stage if there is an improvement in the solution
quality at a given stage. Otherwise, without changing the group ordering, another
random ordering of low level heuristics within each group is generated for the
subsequent stage.

In this study, we discretised the choices for the control parameters provided
in Hyflex into five different levels of intensity and depth of search: {0.1, 0.3, 0.5,
0.7, 0.9}. A low level heuristic with the chosen parameter setting is treated as a
different heuristic, hence producing five heuristics instead of one. The crossover
operator is not commonly used by single point-based search techniques. In order
to be able to apply a crossover heuristic, an extra solution (argument) is required.
In our approach, the current solution is always used as one of the solutions passed
to the crossover operator. To decide on the second solution, we used a circular
queue containing M best solutions so far. Again, the round robin strategy is
employed. A pointer is used to indicate which solution will be used from this
queue during crossover. After a crossover operation, the pointer advances to the
next item in the list for the next crossover.

A modified version of the adaptive acceptance method in [3] is introduced
for the move acceptance. This acceptance method accepts all improvements as
usual, but the deteriorations are accepted with respect to an adaptively chang-
ing rate, denoted as acceptanceRate. Assuming a minimisation problem, let f(x)
denote the quality of a given solution x, then if f(S′) is less than f(S), then S′ is
accepted, otherwise S′ is accepted with a uniform probability of acceptanceRate
(Algorithm 1, line 8). Initially, only strictly improving moves are accepted. How-
ever, if the solution does not improve for one stage, only the moves generating
improving or equal quality new solutions are accepted. If the solution does not
improve for another following stage, then threshold move acceptance is activated
based on acceptanceRate. A reinforcement learning mechanism is used for adapt-
ing the value of acceptanceRate. If the solution gets stuck at a local optimum for
a given stage, then acceptanceRate is increased by a δ value for the next stage,
making it more likely that a worsening solution is accepted. Conversely, if the
solution in hand worsens in a given stage, then the acceptanceRate is reduced
by δ, making it less likely for a worsening solution to be accepted. the value of
δ is fixed arbitrarily as 0.01 during the experiments. The acceptanceRate value
updates are intended to help the search navigate out of local optima, and focus
the search if it is progressing well.

4 Empirical Results

In all the cases, a run terminates after t = 600 seconds or equivalent to 10
minutes as the competition requires. The equivalent value is obtained using the

A Hyper-heuristic with a Round Robin Neighbourhood Selection 7

benchmarking tool provided at the competition website. Initial experiments are
performed for parameter tuning of number of stages, k. Testing different values of
k = {1, 2, 10, 20, 30, ..., 100, 200, 300, 1000} revealed that the best k value is 200
in the current. Due to the memory limitation, the size of the stored solutions M
has fixed arbitrarily as 50. The Formula1 scoring system is used for comparing
the performance of hyper-heuristics. The top hyper-heuristic receives 10 points,
the second one gets 8 and then 6, 5, 4, 3, 2, 1, respectively. The remaining
approaches get zero point. These points are accumulated as a score for a hyper-
heuristic over all instances.

4.1 Performance Comparison to the Mock Competition
Hyper-heuristics

The performance of the Robinhood hyper-heuristic (RHH) is compared to the
performances of eight different previous hyper-heuristics (HH1-HH8) across four
problem domains, each with 10 different instances, as provided for the mock
competition at: www.asap.cs.nott.ac.uk/external/chesc2011/defaulthh.html The
problem domains used in the mock competition are Boolean Satisfiability (MAX-
SAT), One Dimensional Bin Packing (BP), Personnel Scheduling (PS) and Per-
mutation Flow Shop (PFS). A single run is performed using each problem in-
stance in the mock competition.

The Robinhood selection hyper-heuristic outperforms the mock competition
hyper-heuristics with a Formula 1 score of 264.25 in the overall (Figure 1). It
obtains the best results in 7 out of 10 instances with 2 draws in the MAX-SAT
and with no draws in the 1D Bin Packing. In the personnel scheduling problem,
RHH produces the best results in 2 instances. RHH delivers a relatively poor
performance in the permutation flow shop problem domain as compared to its
performance on the other domains. RHH is the winner in the MAX-SAT and
1D Bin Packing problem domains and looses to the other hyper-heuristics in the
rest of the problem domains.

HH1
HH4RHH

RHH

RHH

0

50

100

150

200

250

300

MAX-SAT 1D Bin
Packing

Personnel
Scheduling

Permutation
Flow Shop

Overall

HH1

HH2

HH3

HH4

HH5

HH6

HH7

HH8

RHH

Score

Fig. 1. Comparisons of the different hyper-heuristics over each domain based on For-
mula1 scores

8 A. Kheiri and E. Özcan

4.2 Analysis of RHH and Its Performance Comparison
to the CHESC Competitors

The Robinhood selection hyper-heuristic is run for 31 times across six prob-
lem domains including Boolean Satisfiability (MAX-SAT), One Dimensional Bin
Packing (BP), Personnel Scheduling (PS), Permutation Flow Shop (PFS), Trav-
elling Salesman Problem (TSP) and Vehicle Routing Problem (VRP). We have
initially analysed whether the proposed heuristic selection method makes effec-
tive use of the low level heuristics. Figure 2 shows the percentage utilisation of
the low level heuristics considering improving moves only with respect to the
number of times a heuristic gets selected while solving an arbitrary instance
from each problem domain as an example. A similar phenomena is observed for
the other instances. Not all the low level heuristics are useful in improving a
solution. For example, in 1D Bin Packing, LLH1, LLH5 and LLH7 generates no
improvements. Most of the improving moves are due to mutational heuristics
rather than hill climbers across all problem domains. Ruin and recreate heuris-
tics are more successful for creating improving moves in the Permutation Flow
Shop domain, while a hill climbing heuristic creates the most improvements in
1D bin packing problem domain. Although a heuristic that does not generate
any improvement could still be useful when used in combination with another
heuristic, so there is a lot of research scope for methodologies attempting to
reduce the number of low level heuristics before and during a run.

LLH0
4% LLH1

8%
LLH2
12%

LLH3
2%

LLH5
72%

LLH7
2%

MAX-SAT
LLH0
12%

LLH2
12%

LLH3
1%

LLH4
3%

LLH6
72%

1D Bin Packing
LLH1
5%

LLH2
4%

LLH3
35%LLH4

26%

LLH5
4%

LLH6
4%

LLH7
22%

Personnel Scheduling

LLH0
9%

LLH1
12%

LLH2
8%LLH5

35%

LLH6
15%LLH9

1%

LLH10
13%

LLH11
1%

LLH12
2%

LLH13
4%

Permutation Flow Shop

LLH0
29%

LLH1
10%

LLH4
37%

LLH5
1%

LLH7
1%

LLH8
8%

LLH9
9%

LLH10
4%

LLH12
1%

Travelling Salesman

LLH0
44% LLH1

1%
LLH4
8%

LLH5
3%

LLH7
1%

LLH8
38%

LLH9
5%

Vehicle Routing

Fig. 2. Percentage utilisation of low level heuristics obtained from a sample run while
solving an arbitrary instance from each problem domain

We have investigated the behavior of RHH based on the proposed acceptance
method. In most of the cases, RHH rapidly improves the quality of the solution
in hand. After a while, the improvement process slows down as the approach
reaches a local optimum. Still, it seems that the proposed move acceptance works
well as a part of the proposed hyper-heuristic, allowing further improvement in
time even if takes a while to obtain an improved solution. The proposed move
acceptance allows partial restarts and the extension of these restarts change

A Hyper-heuristic with a Round Robin Neighbourhood Selection 9

if there is no improvement and in general there is some improvement. This
behaviour is illustrated in Figure 3 for an arbitrarily selected instance from each
problem domain. Similar phenomena are observed in the other instances. RHH
seems to require partial restarts while solving problems from the MAX-SAT,
Permutation Flow Shop and Personnel Scheduling problem domains more than
the others. For the Vehicle Routing and somewhat 1D Bin Packing problem
domains, RHH generates continuous improvement via the heuristics.

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

time

MAX-SAT

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

time

1D Bin Packing

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

time

Personnel Scheduling

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

time

Permutation Flow Shop

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

time

Travelling Salesman

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

time

Vehicle Routing

0 75 150 0 300 600 0 300 600

0 300 600 0 50 100 0 75 150

Fig. 3. Plots of the objective value versus time from a sample run while solving an
arbitrary instance from each problem domain

The performance of the Robinhood selection hyper-heuristic is compared to
the performances of CHeSC hyper-heuristics as provided at the competition
website. The comparison is based on the Formula1 scoring system using the
median of 31 runs for each instance. The points are accumulated as a score
for each hyper-heuristic over five instances from six problem domains including
Boolean Satisfiability (MAX-SAT), One Dimensional Bin Packing (BP), Per-
sonnel Scheduling (PS), Permutation Flow Shop (PFS), Travelling Salesman
Problem (TSP) and Vehicle Routing Problem (VRP). Table 2 summarises the
results. The table shows that RHH is ranking the fourth when compared to the
algorithms implemented by the CHeSC competitors with a total score of 93.70.

The normalized function values based on the median of 31 runs for each
instance can also be used to evaluate the performance of the different hyper-
heuristics [9]. The objective values are calculated and rescaled in [0,1] as a score
to rank the different approaches for each problem domain. Figure 4 illustrates
the normalized function for the problem domains in which Robinhood hyper-
heuristic performs the best and worst. The results are still consistent with the
previous findings. The Robinhood hyper-heuristic is the top in the VRP problem
domain. In the MAX-SAT and 1D Bin Packing problem domains, the RHH
produces good quality of solutions comparing to other approaches. In the other
domains, RHH produces a relatively poor performance. It delivers the worst
performance, particularly in the permutation flow shop problem domain.

10 A. Kheiri and E. Özcan

Table 2. Formula 1 scores of the top ten hyper-heuristics among CHeSC finalists and
Robinhood hyper-heuristic (RHH) across six problem domains

HH SAT BP PS PFS TSP VRP TOT

AdapHH 33.10 45.00 8.00 37.00 40.25 11.00 174.35
VNS-TW 33.60 2.00 37.50 34.00 16.25 4.00 127.35
ML, 11.00 8.00 29.50 39.00 13.00 21.00 121.50
RHH 22.70 26.00 16.00 0.00 3.00 26.00 93.70
PHUNTER 8.00 3.00 11.50 9.00 26.25 29.00 86.75
EPH 0.00 7.00 9.50 21.00 36.25 12.00 85.75
HAHA 31.10 0.00 23.50 3.50 0.00 13.00 71.10
NAHH 11.50 19.00 1.00 22.00 12.00 5.00 70.50
ISEA 3.50 28.00 14.50 3.50 11.00 4.00 64.50
KSATS-HH 21.70 7.00 7.50 0.00 0.00 19.00 55.20

AdapHH

ML

VNS-TW

NAHH

EPH

HAEA

HAHA

ISEA

PHUNTER

GenHive

ACO-HH

DynILS

SelfS

KSATS

RHH

ShafiXCJ

AVEGNep

SA-ILS

MCHH-S

GISS

Ant-Q

0.00 0.25 0.50 0.75 1.00

Normalized function value

H
y
p

e
r-

h
e

u
ri
s
ti
c

FlowShop

RHH

PHUNTER

HAEA

AdapHH

ML

ShafiXCJ

GISS

HAHA

KSATS

ISEA

NAHH

SA-ILS

GenHive

EPH

DynILS

VNS-TW

MCHH-S

AVEGNep

ACO-HH

SelfS

Ant-Q

0.00 0.25 0.50 0.75 1.00

Normalized function value

H
y
p

e
r-

h
e

u
ri
s
ti
c

VRP

Fig. 4. Normalized function values

5 Conclusion and Future Work

Hyper-heuristics have been shown to be effective solution methods across many
problem domains. In this study, an easy-to-implement selection hyper-heuristic
combining a round-robin strategy-based neighbourhood selection and an adap-
tive move acceptance methods is introduced. The Robinhood hyper-heuristic
allocates equal share from the overall time for each low level heuristic ordering
them randomly within their categories of mutation, crossover and local search.
In this manner, memetic algorithm is imitated under a single point-based search
framework with multiple operators. The Robinhood hyper-heuristic operates in
stages and prior to each stage, relevant decisions are made for the ordering of
heuristics within groups and parameters of the system components, such as move
acceptance. The experimental results show that proposed hyper-heuristic is a
simple yet very powerful and general strategy outperforming many previously

A Hyper-heuristic with a Round Robin Neighbourhood Selection 11

proposed selection hyper-heuristics across six different domains. As for the future
work, we plan to work on more learning components within this framework to
further improve its performance without introducing additional parameters and
making the hyper-heuristic more complicated. The Robinhood hyper-heuristic
has only three parameters: δ, M and k. All these values are currently tuned
after some experimentation, but of course, the question is whether it is possible
to adapt them during the search process, in particular the duration allocated
for each stage and get improved performance. We have observed that some of
the heuristics are almost useless at different stages of the search process, then
by reducing the number of heuristics involved in the search process at a stage
would be a good idea.

References

1. Burke, E.K., Hart, E., Kendall, G., Newall, J., Ross, P., Schulenburg, S.: Hyper-
heuristics: An emerging direction in modern search technology. In: Glover, F.,
Kochenberger, G. (eds.) Handbook of Metaheuristics, pp. 457–474. Kluwer (2003)

2. Burke, E., Kendall, G., Misir, M., Özcan, E.: Monte carlo hyper-heuristics for
examination timetabling. Annals of Operations Research, 1–18 (2010)

3. Burke, E.K., Curtois, T., Hyde, M.R., Kendall, G., Ochoa, G., Petrovic, S.,
Rodŕıguez, J.A.V., Gendreau, M.: Iterated local search vs. hyper-heuristics: To-
wards general-purpose search algorithms. In: IEEE Congress on Evolutionary Com-
putation, pp. 1–8 (2010)

4. Burke, E.K., Gendreau, M., Ochoa, G., Walker, J.D.: Adaptive iterated local search
for cross-domain optimisation. In: Proceedings of the 13th Annual Conference on
Genetic and Evolutionary Computation, GECCO 2011, pp. 1987–1994. ACM, New
York (2011)

5. Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Qu, R.:
Hyper-heuristics: A survey of the state of the art. Technical report (2013)

6. Burke, E., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Woodward, J.: A clas-
sification of hyper-heuristics approaches. In: Gendreau, M., Potvin, J.-Y. (eds.)
Handbook of Metaheuristics, vol. 146, pp. 449–468. Springer (2010)

7. Chakhlevitch, K., Cowling, P.: Hyperheuristics: Recent Developments. In: Cotta,
C., Sevaux, M., Sörensen, K. (eds.) Adaptive and Multilevel Metaheuristics. SCI,
vol. 136, pp. 3–29. Springer, Heidelberg (2008)

8. Cowling, P., Kendall, G., Soubeiga, E.: A Hyperheuristic Approach to Scheduling
a Sales Summit. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079,
pp. 176–190. Springer, Heidelberg (2001)

9. Di Gaspero, L., Urli, T.: Evaluation of a Family of Reinforcement Learning Cross-
Domain Optimization Heuristics. In: Hamadi, Y., Schoenauer, M. (eds.) LION
2012. LNCS, vol. 7219, pp. 384–389. Springer, Heidelberg (2012)

10. Fisher, H., Thompson, G.L.: Probabilistic learning combinations of local job-shop
scheduling rules. In: Muth, J.F., Thompson, G.L. (eds.) Industrial Scheduling, pp.
225–251. Prentice-Hall, Inc., New Jersey (1963)

11. Hsiao, P.C., Chiang, T.C., Fu, L.C.: A vns-based hyper-heuristic with adaptive
computational budget of local search. In: IEEE Congress on Evolutionary Compu-
tation (CEC), pp. 1–8 (June 2012)

12 A. Kheiri and E. Özcan

12. Drake, J.H., Özcan, E., Burke, E.K.: An Improved Choice Function Heuristic Se-
lection for Cross Domain Heuristic Search. In: Coello, C.A.C., Cutello, V., Deb, K.,
Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part II. LNCS, vol. 7492,
pp. 307–316. Springer, Heidelberg (2012)

13. Kalender, M., Kheiri, A., Özcan, E., Burke, E.K.: A greedy gradient-simulated
annealing hyper-heuristic for a curriculum-based course timetabling problem. In:
2012 12th UK Workshop on Computational Intelligence (UKCI), pp. 1–8 (Septem-
ber 2012)

14. Kubaĺık, J.: Hyper-Heuristic Based on Iterated Local Search Driven by Evolu-
tionary Algorithm. In: Hao, J.-K., Middendorf, M. (eds.) EvoCOP 2012. LNCS,
vol. 7245, pp. 148–159. Springer, Heidelberg (2012)

15. Misir, M., Verbeeck, K., De Causmaecker, P., Vanden Berghe, G.: A new hyper-
heuristic implementation in HyFlex: a study on generality. In: Fowler, J., Kendall,
G., McCollum, B. (eds.) Proceedings of the 5th Multidisciplinary International
Scheduling Conference: Theory & Application, pp. 374–393 (August 2011)

16. Moscato, P., Norman, M.G.: A memetic approach for the traveling salesman prob-
lem implementation of a computational ecology for combinatorial optimization on
message-passing systems. In: Proceedings of the International Conference on Par-
allel Computing and Transputer Applications, pp. 177–186. IOS Press (1992)

17. Nguyen, S., Zhang, M., Johnston, M.: A genetic programming based hyper-heuristic
approach for combinatorial optimisation. In: Proceedings of the 13th Annual Con-
ference on Genetic and Evolutionary Computation, GECCO 2011, pp. 1299–1306.
ACM, New York (2011)

18. Ochoa, G., Hyde, M., Curtois, T., Vazquez-Rodriguez, J.A., Walker, J., Gendreau,
M., Kendall, G., McCollum, B., Parkes, A.J., Petrovic, S., Burke, E.K.: HyFlex: A
Benchmark Framework for Cross-Domain Heuristic Search. In: Hao, J.-K., Midden-
dorf, M. (eds.) EvoCOP 2012. LNCS, vol. 7245, pp. 136–147. Springer, Heidelberg
(2012)

19. Ochoa, G., Walker, J., Hyde, M., Curtois, T.: Adaptive Evolutionary Algorithms
and Extensions to the HyFlex Hyper-heuristic Framework. In: Coello Coello, C.A.,
Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part
II. LNCS, vol. 7492, pp. 418–427. Springer, Heidelberg (2012)

20. Özcan, E., Bilgin, B., Korkmaz, E.E.: Hill Climbers and Mutational Heuristics in
Hyperheuristics. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós,
J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 202–211.
Springer, Heidelberg (2006)

21. Özcan, E., Bilgin, B., Korkmaz, E.E.: A comprehensive analysis of hyper-heuristics.
Intelligent Data Analysis 12(1), 3–23 (2008)

22. Özcan, E., Kheiri, A.: A hyper-heuristic based on random gradient, greedy and
dominance. In: Gelenbe, E., Lent, R., Sakellari, G. (eds.) Computer and Informa-
tion Sciences II, pp. 557–563. Springer London (2012)

23. Özcan, E., Parkes, A.J.: Policy matrix evolution for generation of heuristics. In:
Proceedings of the 13th Annual Conference on Genetic and Evolutionary Compu-
tation, GECCO 2011, pp. 2011–2018 (2011)

24. Özcan, E., Parkes, A.J., Alkan, A.: The interleaved constructive memetic algorithm
and its application to timetabling. Comput. Oper. Res. 39(10), 2310–2322 (2012)

A Multiobjective Approach Based

on the Law of Gravity and Mass Interactions
for Optimizing Networks

Álvaro Rubio-Largo and Miguel A. Vega-Rodŕıguez

Department of Technologies of Computers and Communications,
University of Extremadura, Polytechnic School, Cáceres, 10003 Spain

{arl,mavega}@unex.es

Abstract. In this work, we tackle a real-world telecommunication
problem by using Evolutionary Computation and Multiobjective Op-
timization jointly. This problem is known in the literature as the Traffic
Grooming problem and consists on multiplexing or grooming a set of
low-speed traffic requests (Mbps) onto high-speed channels (Gbps) over
an optical network with wavelength division multiplexing facility. We
propose a multiobjective version of an algorithm based on the laws of
motions and mass interactions (Gravitational Search Algorithm, GSA)
for solving this NP-hard optimization problem. After carrying out sev-
eral comparisons with other approaches published in the literature for
this optical problem, we can conclude that the multiobjective GSA (MO-
GSA) is able to obtain very promising results.

Keywords: Multiobjective optimization, Gravitational Search Algorithm,
Traffic Grooming, WDM optical networks.

1 Introduction

Optical networks have attracted more attention in the last years. This is due to
the fact that our current data networks do not provide enough bandwidth for
allocating the enormous number of current data requests. However, the band-
width in optical networks is in the range of Tbps, which is sufficient for solving
this bandwidth problem.

In optical networks the most common technology to make the most of the
bandwidth is the Wavelength Division Multiplexing (WDM). This technology
allows us to divide each fiber (Tbps) into several wavelengths of light (λ) or
channels (Gbps). A lightpath is defined as the physical path from a source node
to a destination node over a specific wavelength of light, see Figure 1.

Unfortunately, the requirements of the majority of data requests are in the
range of Mbps (low-speed requests), which is translated into a waste of band-
width per channel. The use of access station at each optical node allows us to
groom several low-speed requests onto high-speed lightpaths in order to minimize
the waste of bandwidth [12]. This problem of grooming requests onto high-speed
channels is known in the literature as the Traffic Grooming problem [13].

M. Middendorf and C. Blum (Eds.): EvoCOP 2013, LNCS 7832, pp. 13–24, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

14 Á. Rubio-Largo and M.A. Vega-Rodŕıguez

Fig. 1. Lightpath concept

Many authors have dealt with this telecommunication problem in the last
years. A formal description of the Traffic Grooming by using integer linear pro-
gramming is presented in [13]. Furthermore, they proposed two efficient heuris-
tics that have resulted to be reference methods for testing new approaches, they
are: Maximizing Single-hop Traffic (MST) and Maximizing Resource Utilization
(MRU). A INtegrated Grooming PROCedure (INGPROC) based on an auxil-
iary graph model is reported in [11]. This problem has been also tackled by using
the Clique Partitioning concept in [2]. Other authors have solved this problem
by using multiobjective optimization. A well-known Multiobjective Evolution-
ary Algorithm (MOEA) is presented in [7], the Strength Pareto Evolutionary
Algorithm (SPEA). Recently, in [9], the authors propose two innovative MOEAs
based on the Differential Evolution (DE) and Variable Neighbourhood Search
(VNS). Furthermore, they present a multiobjective comparison among these
two MOEAs and two standard MOEAs in the multiobjective domain: the Fast
Non-Dominated Sorting Genetic Algorithm (NSGA-II) and the Strength Pareto
Evolutionary Algorithm 2 (SPEA2).

The main contribution of this work is the proposal of an innovative MOEA
based on the Gravitational Search Algorithm (GSA) [8] for solving the Traffic
Grooming problem in WDM optical networks. The GSA is a Swarm Intelligence
evolutionary algorithm based on the laws of gravity and mass interactions. How-
ever, we present a multiobjective version of the GSA (MO-GSA). We demon-
strate the effectiveness of the MO-GSA by comparing it with other heuristics
and metaheuristics published in the literature.

The rest of this paper is organized as follows. A description of the Traffic
Grooming problem is presented in Section 2. Section 3 is devoted to describe the
Multiobjective Gravitational Search Algorithm. In Section 4, we present a com-
parison between the MO-GSA and several methods published in the literature.
Finally, we summarize the conclusions of the work and discuss possible lines of
future work in Section 5.

2 Traffic Grooming Problem

In this paper, we define an optical network topology as a directed graph G=(N ,
E), where N is the set of optical nodes and E is the set of physical links
connecting nodes.

A Multiobjective Gravitational Search Algorithm for Optimizing Networks 15

The following assumptions have been taken into account in this paper:

– The set of low-speed data requests is known in advance and cannot be split
into lower speed requests and routed separately. Furthermore, the granu-
larity of each low-speed request is OC-x, x ∈{1, 3, 12, and 48}, where
x× 51.84Mb/s.

– Multi-hop grooming facility [13]. Several concatenated lightpaths can be used
with the aim of accommodating a low-speed request.

– Wavelength continuity constraint [5]. The same wavelength of light (λ) must
be used across all physical fibers traversed in a lightpath. Thus, none of the
nodes in N supports wavelength conversion.

– For all links in E, the number of wavelengths (W) is the same, as well as the
capacity (C). Furthermore, we suppose that in every link (m,n)∈ E where
m,n ∈ N , the propagation delay is equal to one (dmn=1).

– For all nodes in N , the number of outgoing links is equal to the number of
incoming links. Furthermore, at each node the number of transceivers (Ti/Ri

or T) will be greater than or equal to one.

The more relevant parameters in the Traffic Grooming problem are listed below:

– Λ: traffic demand matrix

Λx = [Λx
sd; s, d ∈ N]|N |×|N |,

where Λx
sd is the number of OC-x connection requests between node pair

(s, d).
– Sx

sd, x ∈ {1, 3, 12, and 48}, ∀s, d ∈ N : number of OC-x streams requested
from node s to node d that are successfully routed.

– Pmn, ∀m,n ∈ N : number of fibers interconnecting nodes m and n.
– V w

ij , ∀w ∈ {1 . . .W}, ∀i, j ∈ N : number of lightpaths from node i to node j
on wavelength w (Virtual Topology).

– P ij,w
mn , ∀w ∈ {1 . . .W}, ∀i, j,m, n ∈ N : number of lightpaths between node

i to node j routed through fiber link (m,n) on wavelength w (Physical
Topology route).

Thus, given an optical network topology, a set of connection requests with dif-
ferent bandwidth granularity, a fixed number of available wavelengths per fiber,
a capacity of each wavelength, and a fixed number of transmitters and receivers
at each node, the Traffic Grooming problem may be stated as a Multiobjective
Optimization Problem (MOOP) [3], in which our objective functions are:

– Traffic Throughput (y1): Maximize the total successfully routed low-speed
traffic demands on virtual topology, see equation 1.

– Number of Transceivers or Ligthpaths (y2): Minimize the total number of
transceivers used or the number of lightpaths established, see equation 2.

– Average Propagation Delay (APD, y3). Minimize the average hop count of
lightpaths established, due to we assume dmn = 1 in all physical fiber links
(m,n), see equation 3.

16 Á. Rubio-Largo and M.A. Vega-Rodŕıguez

y1 = Max
∑|N |

s=1

∑|N |
d=1

∑Λx
sd

t=1 (x× Sx,t
sd)

x ∈ {1, 3, 12, and 48}
(1)

y2 = Min

|N |∑
i=1

|N |∑
j=1

W∑
w=1

V w
ij (2)

y3 = Min

∑|N |
i=1

∑|N |
j=1

∑|N |
m=1

∑|N |
n=1 (dmn ×

∑W
w=1 P

ij,w
mn)∑|N |

i=1

∑|N |
j=1

∑W
w=1 V

w
ij

(3)

For a complete formulation of the Traffic Grooming problem, including all pa-
rameters, variables, constraints, objective functions, and an illustrative example,
please see [9].

3 Multiobjective Gravitational Search Algorithm

The Gravitational Search Algorithm (GSA) is a population based algorithm
created by Rashedi et al. [8] in 2009. This new optimization algorithm is based
on the law of gravity and mass interactions. The searcher agents (individuals)
are a collection of masses which interact with each other based on the Newtonian
gravity laws of motion. In this work, the individuals have been designed as in
[9], for further information, please refer to [9].

Since the Traffic Grooming is a MOOP, we have adapted the standard GSA
to the multiobjective context (MO-GSA) as follows:

1. We set the output set of non-dominated solutions (PF) as empty.
2. We generate NA searcher agents randomly, x1, x2, . . . , xNA.
3. The input parameters of the MO-GSA are initialized: Kbest, α, and G0. The

Kbest parameter is used to control the exploration and exploitation of the
algorithm, in this work, it is initialized as NA. On the other hand, G0 is
the initial value of the Gravitational constant (G) and α is a parameter for
decreasing the value of G throughout the execution of the algorithm. Note
that G will control the search accuracy of the MO-GSA.

4. We compute, for each searcher agent xi in {x1, x2, . . . , xNA}, its value of
MOFitness according to equation 4. In equation 4, Rank and CrowdingDis-
tance are well-known concepts in the multiobjective field; so, for further
information about them, please refer to [4].

MOFitness(xi) =

(
2Rank(xi) +

1

1 + CrowdingDistance(xi)

)−1

(4)

A Multiobjective Gravitational Search Algorithm for Optimizing Networks 17

5. We update the value of the Gravitational constant (G), see equation 5. Note
that, in equation 5, tr is the elapsed time and Tr is the total runtime estab-
lished.

G = G0e
−α tr

Tr (5)

6. We sort the agents {x1, x2, . . . , xNA} by MOFitness and we look for the
best (xbest) and worst (xworst) searcher agent. To decide which is the best
or the worst, we use the value of MOFitness. Since the value of MOFitness
needs to be maximized, we select the individual with higher and lower value
of MOFitness; respectively.

7. We compute the mass for each agent xi in {x1, x2, . . . , xNA}, see equations
6 and 7.

Q(xi) =
MOFitness(xi)−MOFitness(xworst)

MOFitness(xbest)−MOFitness(xworst)
(6)

Mass(xi) =
Q(xi)∑NA
j=1 Q(xj)

(7)

8. For each agent xi in {x1, x2, . . . , xNA}, we calculate the force exerted by
each agent xj in x1 . . . xKbest

, see equation 8 and 9.

F (xi, xj) = G · Mass(xi)×Mass(xj)

rij
· (xj − xi) (8)

Force(xi) =

Kbest∑
j=1

rand[0, 1]× F (xi, xj) (9)

Note that, x1 . . . xKbest
is the set of the first Kbest agents with best value of

MOFitness. In equation 8, rij refers to the Euclidean distance between the
agents xi and xj .

9. We calculate the acceleration of each searcher agent xi in {x1, x2, . . . , xNA}
according to equation 10:

Acceleration(xi) =
Force(xi)

Mass(xi)
(10)

10. We update each agent xi in {x1, x2, . . . , xNA}, see equations 11 and 12.

V elocity(xi) = rand[0, 1]× PreviousV elocity(xi) +Acceleration(xi) (11)

xi = xi + V elocity(xi) (12)

11. We update the set of non-dominated solutions (PF) with each agent xi in
{x1, x2, . . . , xNA}. We remove from PF all searcher agents dominated by xi.
Then, we add xi to PF only if no other searcher agent dominates it.

18 Á. Rubio-Largo and M.A. Vega-Rodŕıguez

12. We decrease linearly Kbest to 1.
13. If the stopping criterion is satisfied, then stop and output PF . Otherwise,

go to Step 4.

As we observe, the input parameters of the MO-GSA are determinant to achieve
a good balance between exploration and exploitation. After a parameter tuning,
for this particular problem, the best configuration found for the MO-GSA is:
NA=100 searcher agents, G0=1000, α=2, and Kbest is initialized as NA (total
number of agents).

Table 1. Specifications for the topologies 6-node and NSF

6-node Network
|N|: 6
|E|: 16
C: OC-48
Traffic: 988 OC-1 units
T={3, 4, 5, 7} W={3}
T={3, 4, 5} W={4}
Norm. Points: Max=(988,T*6,6) Min=(1,1,1)

NSF Network
|N|: 14
|E|: 42
C: OC-192
Traffic: 5724 OC-1 units
T={3, 4, 5} W={3}
T={4, 5, 6} W={4}
Norm. Points: Max=(5724,T*14,9) Min=(1,1,1)

4 Experimental Results

A comparison between the MO-GSA and several approaches published in the
literature is shown in this section.

We start comparing the MO-GSA with the MOEAs proposed in [9]: Dif-
ferential Evolution with Pareto Tournaments (DEPT), Multiobjective Variable
Neighbourhood Search (MO-VNS), Fast Non-Dominated Sorting Genetic Algo-
rithm (NSGA-II), and Strength Pareto Evolutionary Algorithm 2 (SPEA2). The
comparison among these five MOEAs is conducted by using two well-known
multiobjective metrics, the Hypervolume quality indicator (HV) [15] and the
Set Coverage (SC) indicator [14]. Furthermore, we have used the 6-node net-
work and the National Science Foundation (NSF) network. The specifications
for both topologies, as well as the scenarios tested are shown in Table 1. The
sets of low-speed requests are the same as in [9] for both topologies, with a
total amount of 988 and 5724 OC-1 units for the topologies 6-node and NSF,
respectively. The configuration of the algorithms DEPT, MO-VNS, NSGA-II,
and SPEA2 is presented in [9].

A Multiobjective Gravitational Search Algorithm for Optimizing Networks 19

Table 2. Average value of HV in 30 independent runs. The notation used for pointing
the statistically non-significant differences between pairs of algorithms is the following::
(*) DEPT and MO-VNS, (**) DEPT and MO-GSA, (†) MO-VNS and MO-GSA, (‡)
NSGA-II and SPEA2.

6-node Network
DEPT MO-VNS NSGA-II SPEA2 MO-GSA

T=3 W=3 37.95% 38.16% 36.16% 35.73% 37.76% **
T=4 W=3 48.89% 48.50% 46.64% 45.88% 48.63% †
T=5 W=3 56.95% 55.52% 54.41% 53.07% 57.11% **
T=7 W=3 64.81% 63.36% 62.40% 60.68% 66.50%
T=3 W=4 38.27% 38.20% 36.20% 35.69% 37.83% *
T=4 W=4 49.02% 48.58% 46.38% 45.95% 48.64% †
T=5 W=4 58.22% 56.56% 55.82% 54.95% 57.85%
Average 50.59% 49.84% 48.29% 47.42% 50.62%

NSF Network
DEPT MO-VNS NSGA-II SPEA2 MO-GSA

T=3 W=3 29.10% 19.11% 28.61% 28.36% 32.01%
T=4 W=3 39.32% 32.65% 38.55% 37.88% 42.48%
T=5 W=3 48.78% 40.68% 46.70% 46.32% 51.40%
T=4 W=4 39.91% 26.04% 38.35% 36.73% 42.24%
T=5 W=4 48.03% 34.65% 46.92% 46.22% 51.00%
T=6 W=4 54.72% 42.57% 53.34% 53.15% 57.61% ‡
Average 43.31% 32.62% 42.08% 41.44% 46.12%

All MOEAs were run using g++ (GCC) 4.4.5 on a 2.3GHz Intel PC with 1GB
RAM. Furthermore, the number of independent runs of the MOEAs is 30 for
each data set, where the stopping criterion is based on the runtime and depend
on the topology: 30s (6-node) and 360s (NSF).

Firstly, we compare the algorithms DEPT, MO-VNS, NSGA-II, SPEA2, and
MO-GSA by using the HV indicator. This indicator is not free from arbitrary
scaling of objective; thus, we have to normalize the set of solutions achieved by
each approach. In this work, to normalize the solutions we have used different
maximum and minimum normalization points, depending on the scenario. In
Table 1, we report the maximum and minimum points to normalize each scenario.
For example, in data set NSF T=4 W=3, the maximum and minimum points
are: (5724, 56, 9) and (1, 1, 1); respectively. Note that the normalization points
are different than in [9].

In Table 2, we present the average value of HV obtained by each MOEA in the
different scenarios. On the one hand, we may observe that, in the small 6-node
network topology, the DEPT algorithm obtains higher values than the MO-GSA
in five out of seven data sets. However, we can notice that the results obtained
by the MO-GSA are close to the results of the DEPT algorithm; in fact, the
MO-GSA presents a higher final average HV for this network topology.

20 Á. Rubio-Largo and M.A. Vega-Rodŕıguez

(a) 6-node Network (W=3) (b) 6-node Network (W=4)

(c) NSF Network (W=3) (d) NSF Network (W=4)

Fig. 2. Illustrative Hypervolume comparison among the MOEAs

On the other hand, we may observe that, for the large NSF network topology,
the values of HV achieved by the MO-GSA are higher than those obtained by
the DEPT, MO-VNS, NSGA-II, and SPEA2 in all scenarios. The final average
shows that there exists a difference around 3% of HV between the MO-GSA and
the second best MOEA (DEPT algorithm).

Furthermore, with the aim of making the comparison with a certain level of
confidence, we have carried out the same statistical analysis as in [9]. In the sta-
tistical test, we consider a significance level of 5% (p-value under 0.05); therefore,
the differences are unlikely to have occurred by chance with a probability of 95%.
In Table 2, we have pointed those data sets in which the differences between two
algorithms are not statistically significant.

In Figure 2 we plot the average value of HV obtained by each MOEA in order
to clarify the comparison of HV among the five MOEAs.

In the second place, we compare the algorithms by using the SC indicator. This
indicator is devoted to measure the fraction of non-dominated solutions obtained
by an algorithm B which are covered by the non-dominated solutions obtained
by an algorithm A. In Table 3, we present a comparison by pair of MOEAs
using this multiobjective indicator. We may observe that the DEPT algorithm
dominates the solutions of the MO-GSA in the small network topology; however,

A Multiobjective Gravitational Search Algorithm for Optimizing Networks 21

Table 3. Comparison among the MOEAs by using the SC indicator (A�B)

6-node Network

A B T=3 W=3 T=4 W=3 T=5 W=3 T=7 W=3 T=3 W=4 T=4 W=4 T=5 W=4 SC

DEPT MO-VNS 41.82% 60.34% 75.00% 82.35% 58.33% 66.20% 76.62% 65.81%
NSGA-II 94.34% 98.36% 100.00% 90.77% 100.00% 91.38% 96.25% 95.87%
SPEA2 97.73% 98.36% 98.31% 98.11% 100.00% 95.00% 93.94% 97.35%
MO-GSA 46.97% 53.25% 76.67% 75.95% 58.57% 64.44% 53.85% 61.38%

MO-VNS DEPT 48.10% 35.48% 21.59% 19.79% 37.66% 36.36% 22.81% 31.69%
NSGA-II 73.58% 75.41% 59.70% 67.69% 76.60% 68.97% 57.50% 68.49%
SPEA2 65.91% 72.13% 62.71% 60.38% 80.36% 71.67% 66.67% 68.55%
MO-GSA 46.97% 42.86% 37.78% 44.30% 38.57% 45.56% 34.07% 41.44%

NSGA-II DEPT 8.86% 2.15% 1.14% 5.21% 2.60% 9.09% 1.75% 4.40%
MO-VNS 16.36% 8.62% 20.00% 22.06% 11.67% 8.45% 14.29% 14.49%
SPEA2 47.73% 60.66% 64.41% 54.72% 62.50% 60.00% 50.00% 57.14%
MO-GSA 9.09% 1.30% 4.44% 11.39% 5.71% 7.78% 3.30% 6.15%

SPEA2 DEPT 1.27% 3.23% 2.27% 5.21% 2.60% 5.05% 5.26% 3.55%
MO-VNS 10.91% 6.90% 18.33% 14.71% 10.00% 7.04% 12.99% 11.55%
NSGA-II 32.08% 16.39% 25.37% 26.15% 27.66% 25.86% 32.50% 26.57%
MO-GSA 6.06% 1.30% 4.44% 11.39% 2.86% 6.67% 4.40% 5.30%

MO-GSA DEPT 59.49% 54.84% 22.73% 18.75% 28.57% 29.29% 43.86% 36.79%
MO-VNS 43.64% 53.45% 40.00% 38.24% 51.67% 35.21% 53.25% 45.06%
NSGA-II 94.34% 98.36% 95.52% 89.23% 95.74% 87.93% 97.50% 94.09%
SPEA2 90.91% 96.72% 94.92% 88.68% 96.43% 93.33% 98.48% 94.21%

NSF Network

A B T=3 W=3 T=4 W=3 T=5 W=3 T=4 W=4 T=5 W=4 T=6 W=4 SC

DEPT MO-VNS 40.74% 50.56% 40.09% 67.15% 42.77% 62.05% 50.56%
NSGA-II 61.11% 64.32% 81.67% 68.67% 74.11% 77.14% 71.17%
SPEA2 46.46% 41.41% 59.60% 50.51% 44.44% 49.49% 48.65%
MO-GSA 14.84% 18.67% 15.43% 25.38% 14.95% 21.61% 18.48%

MO-VNS DEPT 31.49% 36.29% 37.07% 14.35% 35.27% 19.49% 28.99%
NSGA-II 41.67% 57.79% 46.67% 39.76% 42.13% 42.86% 45.15%
SPEA2 15.15% 32.32% 24.24% 11.11% 19.19% 16.16% 19.70%
MO-GSA 19.53% 21.52% 18.88% 15.90% 20.92% 17.73% 19.08%

NSGA-II DEPT 12.71% 12.10% 6.23% 12.66% 8.36% 5.88% 9.66%
MO-VNS 8.33% 4.49% 15.09% 7.30% 15.66% 4.82% 9.28%
SPEA2 37.37% 35.35% 26.26% 31.31% 24.24% 26.26% 30.13%
MO-GSA 1.17% 0.00% 1.33% 1.53% 0.54% 1.39% 0.99%

SPEA2 DEPT 8.84% 11.29% 7.48% 17.30% 13.82% 10.66% 11.56%
MO-VNS 11.11% 2.81% 6.60% 8.03% 9.64% 1.81% 6.67%
NSGA-II 23.61% 26.13% 25.00% 22.89% 30.46% 28.57% 26.11%
MO-GSA 0.00% 0.63% 2.13% 0.31% 0.82% 1.66% 0.92%

MO-GSA DEPT 69.61% 62.10% 78.19% 64.14% 76.73% 71.69% 70.41%
MO-VNS 49.07% 58.43% 59.91% 56.20% 59.64% 51.81% 55.84%
NSGA-II 98.61% 99.00% 97.22% 96.99% 97.97% 96.57% 97.73%
SPEA2 95.96% 95.96% 92.93% 96.97% 93.94% 92.93% 94.78%

22 Á. Rubio-Largo and M.A. Vega-Rodŕıguez

(a) 6-node Network, T=5 W=4 (b) NSF Network, T=6 W=4

Fig. 3. Pareto fronts obtained by the algorithms DEPT and MO-GSA

(a) W=3

(b) W=4

Fig. 4. Maximum throughput comparison (y1) among MO-GSA, MST, MRU, ING-
PROC (LCF, MUF, and MAF), SPEA, and TGCP in the 6-node Network

we can see that the MO-VNS only dominates 41.44% of the solutions obtained
by the MO-GSA, and the well-known NSGA-II and SPEA2 less than 7%. If we
focus on the large network topology (NSF), we can see that the MO-GSA clearly
dominates the Pareto fronts achieved by the approaches published in [9].

Finally, in Figure 3 we present the Pareto front obtained by the two best
algorithms (DEPT and MO-GSA) in the scenarios 6-node T=5 W=4 and NSF
T=6 W=4.

A Multiobjective Gravitational Search Algorithm for Optimizing Networks 23

On the other hand, we compare the MO-GSA with several methods proposed
in the literature which deal with the Traffic Grooming by only optimizing the
total successfully routed low-speed traffic demands (y1) over the 6-node net-
work. Therefore, for each scenario, we compare the maximum values of y1 ob-
tained by the MO-GSA and by the following methods: Maximizing Single-Hop
Traffic (MST) [13], Maximizing Resource Utilization (MRU) [13], INtegrated
Grooming PROCedure (INGPROC) [11] with several traffic policies (Least Cost
First (LCF), Maximum Utilization First (MUF), and Maximum Amount First
(MAF)), Strength Pareto Evolutionary Algorithm (SPEA) [7], and the Traffic
Grooming based on Clique Partitioning (TGCP) [2].

In Figure 4 we present an illustrative comparison among the approaches in
different scenarios (W = 3 and W = 4). As we may observe, the MO-GSA is
able to obtain a maximum throughput higher than or equal to other approaches
published in the literature which are only focused on optimizing this objective
function (y1). Note that, the MO-GSA not only optimizes this objective function,
but also minimizes the number of transceivers used and the average propagation
delay at the same time.

5 Conclusions and Future Works

In this work we propose the use of a Multiobjective Evolutionary Algorithm
based on the laws of motions and mass interactions for optimizing a real-world
telecommunication problem: the Traffic Grooming problem. The selected algo-
rithm is a multiobjective version of the Gravitational Search Algorithm, we refer
to it as MO-GSA.

After performing a comparative study between the MO-GSA and several ap-
proaches published in the literature, we can conclude that this algorithm is an
effective MOEA for solving the Traffic Grooming problem. As we have observed,
it seems that it works better than the other algorithms when the network com-
plexity increases because it generates new individuals taking not only parts from
its parent, but also from the rest of the population, increasing the richness of
search as a result. Furthermore, a maximum throughput comparison between the
MO-GSA and other seven methods published in the literature has been carried
out with successful results for the MO-GSA.

From the positive results obtained in this paper, it seems reasonable to think
that the multiobjective proposals of this manuscript could be applied not only in
other Telecommunication problems that involve routing [6], but also in diverse
Engineering multiobjective problems [10].

As future work, we intend to apply the MO-GSA to the Traffic Grooming
problem by using the large network Nippon Telegraph and Telephone (NTT)
and make more comparisons with the MOEAs published in [9]. Furthermore,
we would attempt to use another metaheuristic, such as Greedy Randomized
Adaptive Search Procedure (GRASP), which seems to be more suitable for graph
search [1].

24 Á. Rubio-Largo and M.A. Vega-Rodŕıguez

Acknowledgements. This workwas partially funded by the SpanishMinistry of
Economy and Competitiveness and the ERDF (European Regional Development
Fund), under the contract TIN2012-30685 (BIO project). Álvaro Rubio-Largo is
supported by the research grant PRE09010 fromGobierno de Extremadura (Con-
sejeŕıa deEconomı́a,Comercio e Innovación) and theEuropeanSocial Fund (ESF).

References

1. Arroyo, J., Vieira, P., Vianna, D.: A grasp algorithm for the multi-criteria minimum
spanning tree problem. Annals of Operations Research 159, 125–133 (2008)

2. De, T., Pal, A., Sengupta, I.: Traffic Grooming, Routing, and Wavelength Assign-
ment in an Optical WDM Mesh Networks Based on Clique Partitioning. Photonic
Network Communications 20, 101–112 (2010)

3. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wi-
ley & Sons, Inc., New York (2001)

4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast Elitist Multi-Objective
Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6,
182–197 (2000)

5. Gagnaire, M., Koubaa, M., Puech, N.: Network Dimensioning under Scheduled
and Random Lightpath Demands in All-Optical WDM Networks. IEEE Journal
on Selected Areas in Communications 25(S-9), 58–67 (2007)

6. Gong, Y.J., Zhang, J., Liu, O., Huang, R.Z., Chung, H.H., Shi, Y.H.: Optimizing
the Vehicle Routing Problem With Time Windows: A Discrete Particle Swarm
Optimization Approach. IEEE Transactions on Systems, Man, and Cybernetics,
Part C: Applications and Reviews 42(2), 254–267 (2012)

7. Prathombutr, P., Stach, J., Park, E.K.: An Algorithm for Traffic Grooming in
WDM Optical Mesh Networks with Multiple Objectives. Telecommunication Sys-
tems 28, 369–386 (2005)

8. Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: GSA: A Gravitational Search Al-
gorithm. Information Sciences 179(13), 2232–2248 (2009), Special Section on High
Order Fuzzy Sets

9. Rubio-Largo, A., Vega-Rodŕıguez, M.A., Gomez-Pulido, J.A., Sanchez-Perez, J.M.:
Multiobjective Metaheuristics for Traffic Grooming in Optical Networks. IEEE
Transactions on Evolutionary Computation (available online since June 2012), 1–
17 (2012)

10. Xue, F., Sanderson, A., Graves, R.: Multiobjective Evolutionary Decision Support
for Design Supplier Manufacturing Planning. IEEE Transactions on Systems, Man
and Cybernetics, Part A: Systems and Humans 39(2), 309–320 (2009)

11. Zhu, H., Zang, H., Zhu, K., Mukherjee, B.: A Novel Generic Graph Model for Traffic
Grooming in Heterogeneous WDM Mesh Networks. IEEE/ACM Transaction on
Networking 11, 285–299 (2003)

12. Zhu, K., Mukherjee, B.: A Review of Traffic Grooming in WDM Optical Networks:
Architectures and Challenges. Optical Networks Magazine 4(2), 55–64 (2003)

13. Zhu, K., Mukherjee, B.: Traffic Grooming in an Optical WDM Mesh Network.
IEEE Journal on Selected Areas in Communications 20(1), 122–133 (2002)

14. Zitzler, E., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutionary Algo-
rithms: Empirical Results. Evolutionary Computation 8, 173–195 (2000)

15. Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative
Case Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary
Computation 3(4), 257–271 (1999)

A Multi-objective Feature Selection Approach

Based on Binary PSO and Rough Set Theory

Liam Cervante1, Bing Xue1, Lin Shang2, and Mengjie Zhang1

1 School of Engineering and Computer Science, Victoria University of Wellington,
PO Box 600, Wellington 6140, New Zealand

{Bing.Xue,Liam.Cervante,Mengjie.Zhang}@ecs.vuw.ac.nz
2 State Key Laboratory of Novel Software Technology, Nanjing University, Nanjing

210046, China
shanglin@nju.edu.cn

Abstract. Feature selection has two main objectives of maximising the
classification performance and minimising the number of features. How-
ever, most existing feature selection algorithms are single objective wrap-
per approaches. In this work, we propose a multi-objective filter feature
selection algorithm based on binary particle swarm optimisation (PSO)
and probabilistic rough set theory. The proposed algorithm is compared
with other five feature selection methods, including three PSO based sin-
gle objective methods and two traditional methods. Three classification
algorithms (näıve bayes, decision trees and k-nearest neighbours) are
used to test the generality of the proposed filter algorithm. Experiments
have been conducted on six datasets of varying difficulty. Experimental
results show that the proposed algorithm can automatically evolve a set
of non-dominated feature subsets. In almost all cases, the proposed algo-
rithm outperforms the other five algorithms in terms of both the number
of features and the classification performance (evaluated by all the three
classification algorithms). This paper presents the first study on using
PSO and rough set theory for multi-objective feature selection.

Keywords: Particle Swarm Optimisation, Feature Selection, Rough Set
Theory, Multi-objective Optimisation.

1 Introduction

Classification tasks are to classify a given instance in the dataset to one of
the known classes according to the information described by features. However,
some of them are irrelevant or redundant features, which may even increase the
classification error rate. Feature selection is to select a subset of relevant features
to achieve similar or even better classification performance [6]. By reducing or
eliminating the irrelevant and redundant features, feature selection can reduce
the dimensionality of the data, simplify the learnt classifier, reduce the training
time, and/or increase the classification accuracy [4,17].

Based on the evaluation criteria, feature selection methods are generally clas-
sified into two categories: wrapper and filter approaches [6]. Wrapper approaches

M. Middendorf and C. Blum (Eds.): EvoCOP 2013, LNCS 7832, pp. 25–36, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

26 L. Cervante et al.

include a learning/classification algorithm in the evaluation procedure while fil-
ter approaches do not. Therefore, wrappers usually achieve better results than
filter approaches, but they are computationally expensive. Filter approaches are
more general and computationally cheaper than wrapper approaches, but an
appropriate evaluation criterion is needed in filter approaches [4,6].

A challenge in feature selection is that the size of the search space is 2n, where
n is the total number of features. Most of the existing feature selection algorithms
suffer from the problems of stagnation in local optima and high computational
cost [4,17], especially for wrapper approaches. Evolutionary computation (EC)
techniques are well-known for their global search ability. Particle swarm optimi-
sation (PSO) [14] is a relatively recent EC technique, which is computationally
less expensive than other EC algorithms. Therefore, PSO has recently gained
more attention for solving feature selection problems [17,11].

Feature selection is a multi-objective problem, which aims to maximise the
classification performance and minimise the number of features selected. How-
ever, most of the existing EC based feature selection algorithms are wrapper
based single objective approaches. The use of wrapper algorithms is limited in
real-world applications because of their high computational cost. Meanwhile,
from a theoretical point of view, Yao and Zhao [21] have shown that probabilis-
tic rough set can be a good measure in feature selection. Therefore, it is thought
to develop a filter based multi-objective feature selection approach using PSO
and probabilistic rough set theory.

1.1 Goals

The overall goal of this paper is to develop a filter based multi-objective feature
selection approach to obtaining a set of non-dominated solutions, which include
a smaller number of features and achieve similar or even better classification
performance than using all features. To achieve this goal, we propose a multi-
objective feature selection algorithm based on PSO and probabilistic rough set
theory. Specifically, we will investigate

– whether using PSO and probabilistic rough set theory can reduce the number
of features and maintain or even increase the classification performance, and
can outperform the algorithm using PSO and standard rough set theory,

– whether considering the number of features in the fitness function can further
reduce the number of features and maintain the classification performance,

– whether the proposed multi-objective algorithm can obtain a set of non-
dominated feature subsets, and can outperform two traditional methods and
the above three single objective methods, and

– whether the proposed algorithm is general to different learning algorithms.

2 Background

2.1 Binary Particle Swarm Optimisation

In PSO [14], a particle represents a candidate solution. Particles move in the
D-dimensional search space to search for the best solutions. Particle i has a

A Multi-objective Feature Selection Approach 27

position denoted by xi = (xi1, xi2, ..., xiD) and a velocity denoted by vi =
(vi1, vi2, ..., viD). During the search process, the best position visited so far by the
particle is its personal best (pbest) and the best position obtained by the popu-
lation thus far is called global best (gbest). Particles share information through
pbest and gbest to update their positions and velocities to search for the optimal
solutions. In binary PSO (BPSO) [9], xi, pbest and gbest are restricted to 1 or
0. The position and velocity updating equations can be seen as follows:

vt+1
id = w ∗ vtid + c1 ∗ r1 ∗ (pid − xt

id) + c2 ∗ r2 ∗ (pgd − xt
id) (1)

xid =

{
1, if rand() < 1

1+e−vid

0, otherwise
(2)

where t represents the tth iteration in the evolutionary process. d ∈ D represents
the dth dimension in the search space. w is the inertia weight. c1 and c2 are
acceleration constants. r1 and r2 are random constants uniformly distributed in
[0, 1]. pid and pgd denote the values of pbest and gbest in the dth dimension.
rand() is a random number selected from a uniform distribution in [0,1].

2.2 Rough Set Theory

Rough set theory [13] is an intelligent mathematical tool to handle uncertainty,
imprecision and vagueness. One of the strengths of rough set theory is that it
does not need any prior knowledge about data.

In rough set theory, knowledge and information is represented as an in-
formation system, which can be denoted as I = (U,A), where U is a finite
non-empty set of objects and A is the attributes/features that describe each
object. For any P ⊆ A and X ⊆ U , there is an equivalence relation de-
fined as IND(P) = {(x, y) ∈ U ∗ U |∀a ∈ P, a(x) = a(y)}. If two objects
in U satisfy IND(P), they are indiscernible with regards to P . The equiva-
lence relation IND(P) induces a partition of U denoted by U/P , which induces
the equivalence classes. The equivalence class of U/P containing x is given by
[x]P = [x]A = y ∈ U |(x, y) ∈ IND(P). The equivalence classes are the basic
blocks to construct rough set approximations. For X ⊂ U , a lower approxima-
tion PX and an upper approximation PX of X with respect to IND(P) are
defined as follows [13]:

PX = {x ∈ U |[x]P ⊆ X} PX = {x ∈ U |[x]P ∩X �= ∅} (3)

PX contains all the objects, which are surely belong to the target set X . PX
contains the objects, which are surely or probably belong to the target set X .

An ordered pair (PX,PX) is called a rough set. The concept of the reduct is
fundamental in rough sets theory. A reduct is the essential part of I = (U,A),
which can achieve similar approximation power of classification as all the original
features A. There could be many different reducts and feature selection using
rough set theory is to remove redundant and irrelevant features to search for the
smallest reduct (feature subset).

28 L. Cervante et al.

PX and PX in standard rough set theory were defined as two extreme cases
in terms of the relationship of a equivalence class and the target set [13]. The
degree of their overlap is not taken into account, which will unnecessarily limit
its applications. Therefore, researchers investigate probabilistic rough set theory
to relax the definitions of the lower and upper approximation [21]. The lower
approximation is re-defined as Equation 4, where μP [x] shown is defined as a
way to measure the fitness of a given instance x ∈ X .

apr
P
X = {x|μP [x] ≥ α} (4)

where

μP [x] =
|[x]P ∩X|

|[x]P | (5)

α can be adjusted to restrict or relax the lower approximation. If a large number
of instances X are in the target set but a small number are not in a given
equivalence class, it can include them in the lower approximation. apr

P
X = PX

when α = 1.
From theoretical point of view, Yao and Zhao have claimed that probabilistic

rough set can be a good way for feature selection problems [21]. However, it has
not been proved by any experiment.

2.3 Related Work on Feature Selection

Traditional Feature Selection Approaches. Hall [7] proposes a filter feature
selection method (Cfs) based on the correlation between features and class la-
bels. FOCUS algorithm [1], a filter algorithm, exhaustively examines all possible
feature subsets, then selects the smallest feature subset. However, the FOCUS
algorithm is computationally inefficient because of the exhaustive search. Two
commonly used wrapper methods are greedy search based sequential forward
selection (SFS) [19] and sequential backward selection (SBS) [10]. In SFS (SBS),
once a feature is selected (eliminated) it cannot be eliminated (selected) later,
which causes the problem of so-called nesting effect. The “plus-l-take away-r”
method proposed by Stearns [16] could overcome this limitation by performing l
times forward selection followed by r times backward elimination. However, the
determination of the optimal values of (l, r) is a difficult problem.

EC Algorithms for Features Selection. EC techniques have been ap-
plied to address feature selection problems. Based on genetic algorithms (GAs),
Chakraborty [3] proposes a feature selection algorithm using a fuzzy sets based
fitness function. Kourosh and Zhang [12] propose a genetic programming based
filter method as a multi-objective approach for feature selection in binary clas-
sification problems. Based on ant colony optimisation and fuzzy-rough theory,
Jensen [8] proposes a filter feature selection method for web content classification
and complex systems monitoring.

Unler and Murat [17] propose a PSO based feature selection algorithm with an
adaptive selection strategy. Mohemmed et al. [11] propose a hybrid method that

A Multi-objective Feature Selection Approach 29

incorporates PSO with an AdaBoost framework to search for the best feature
subset and determine the decision thresholds of AdaBoost simultaneously. Wang
et al. [18] propose a filter feature selection algorithm based on an improved binary
PSO and rough set. However, the feature subset is only tested on one learning
algorithm, which can not show the advantage that filter algorithms are more
general.

Most of the existing feature selection algorithms are single objective, wrapper
approaches, which are computationally more expensive and less general than fil-
ter approaches. Meanwhile, the performance of the probabilistic rough set theory
for feature selection has not been investigated in multi-objective feature selec-
tion. Therefore, the development of using PSO and probabilistic rough set for
multi-objective feature selection is still an open issue.

3 Proposed Multi-objective Method

In this section, three feature selection algorithms [2] based on PSO and proba-
bilistic rough set theory is firstly described, which are used as the baseline to test
the performance of the proposed algorithm. Then we propose a multi-objective
algorithm (MOPSOPRS) based on PSO and probabilistic rough set theory.

3.1 PSORS, PSOPRS and PSOPRSN

When using rough set theory for feature selection, a dataset can be regarded
as an information system I = (U,A), where all features can be considered as
A in the rough set theory. Based on the equivalence described by A, U can be
partitioned to U1, U2, U3, ..., Un, where n is the number of classes in the dataset.
After feature selection, the achieved feature subset can be considered as P ⊆ A.
Therefore, the fitness of P can be evaluated by how well P represents each target
set in U , i.e., a class in the dataset.

PSORS. In standard rough set theory, for U1 ⊆ U and P ⊆ A, PU1 = {x ∈
U |[x]P ⊆ U1} is the lower approximation of P according to U1 if [x]P only con-
tains instances in U1. PU1 measures the number of instances that have been
completely separated from instances of other classes. Therefore, how well P de-
scribes each target in U can be calculated by Equation 6, which is the fitness
function in PSOPRS. A feature subset with Fitness1(P) = 1.0 means this fea-
ture subset can completely separate each class from the other classes.

Fitness1(P) =

∑n
i=1 |PUi|
|U| (6)

PSOPRS. As discussed in Section 2.2, the definitions of lower approximation
and upper approximation limit the application of standard rough set theory.
Therefore, a filter feature selection algorithm (PSOPRS) based on PSO and
probabilistic rough set theory was proposed in [2]. In probabilistic rough set

30 L. Cervante et al.

Algorithm 1. Pseudo-Code of MOPSOPRS

begin
initialise the set of leaders LeaderSet and Archive
calculate the crowding distance of each member in LeaderSet;
while Maximum Iteration is not reached do

for each particle do
select a leader (gbest) from LeaderSet for each particle by using a
binary tournament selection based on the crowding distance;
update the velocity and the position of particle i;
apply bit-flip mutation;
evaluate two objective values of each particle; /* number of

features and Fitness2(P) value of the feature subset) */

update the pbest of each particle;

identify the non-dominated solutions (particles) to update LeaderSet;
send leaders to Archive;
calculate the crowding distance of each member in LeaderSet;

calculate the classification error rate of solutions in Archive on the test set;
return the solutions in Archive and their training and test classification
error rates;

theory, for the target set U1, μP [x] =
|[x]P∩U1|

|[x]P | . μP [x] quantifies the proportion

of [x]P is in U1. aprPU1 = {x|μP [x] ≥ α} defines the lower approximation of P
according to U1 rather than PU1. [x]P does not have to completely contained in
U1. α can be adjusted to restrict or relax apr

P
U1. When α = 1.0, apr

P
U1 = PU1.

The fitness function of PSOPRS is shown by Equation 7.

Fitness2(P) =

∑n
i=1 |aprPUi|

|U| (7)

PSOPRSN. PSOPRS using probabilistic rough set theory can avoid the prob-
lems caused by standard rough set, but the number of features is not considered
in the fitness function. For the same α value, if there are more than one feature
subsets that have the same fitness, PSOPRS does not intend to search for the
smaller feature subset. Therefore, the number of features was added to the fitness
function to form another algorithm (PSOPRSN) [2], which aims to maximise the
representation power of the feature subset and also to minimise the number of
features.

Fitness3(P) = γ ∗
∑n

i=1 |aprPUi|
|U| + (1− γ) ∗ (1− #features

#totalFeatures
) (8)

where γ ∈ (0, 1] shows the relative importance of the representation power while
(1− γ) shows the relative importance of the number of features.

A Multi-objective Feature Selection Approach 31

Table 1. Datasets

Dataset #Features#Classes #InstancesDataset #Features#Classes #Instances
Spect 22 2 267 Dermatology 33 6 366
Soybean Large 35 19 307 Chess 36 2 3196
Statlog 36 6 6435 Waveform 40 3 5000

3.2 MOPSOPRS

PSOPRSN combines the two main objectives of feature selection into a single
fitness function. However, γ needs to be predefined and its best value is problem-
dependent. Therefore, we propose a multi-objective PSO based feature selection
algorithm. However, PSO was originally proposed for single objective optimisa-
tion. Sierra and Coello [15] proposed a multi-objective PSO based on the ideas
of mutation, crowding and dominance, which is a continuous algorithm and has
achieved good performance. In this work, we extend it to a binary version of
multi-objective PSO based on which we propose a multi-objective feature se-
lection algorithm using probabilistic rough set theory (MOPSOPRS). The two
objectives in MOPSOPRS is to maximise the representation power of the feature
subset evaluated by Fitness2 and to minimise the number of features.

Algorithm 1 shows the pseudo-code of MOPSOPRS. To select a gbest for each
particle, MOPSOPRS employs a leader set to store the non-dominated solutions
as the potential leaders. A crowding factor is employed to decide which non-
dominated solutions should be added into the leader set and kept during the
evolutionary process. A binary tournament selection is used to select two solu-
tions from the leader set and the less crowded solution is chosen as the gbest.
The maximum number of non-dominated solutions in the leader set is usually set
as the same as the population size. In order to keep the diversity of the swarm
and improve the search ability of the algorithm, MOPSOPRS randomly divides
the whole swarm into three different groups in the initialisation procedure. The
first group does not have any mutation. The second group employs uniform mu-
tation to keep the global search ability and the third group employs non-uniform
mutation to keep the local search ability. Furthermore, the three groups have the
same leader set, which allows them to share their success to take advantages of
different behaviors to search for the Pareto non-dominated solutions.

In all the algorithms, the dimensionality of the search space is the total number
of features. Each particle is encoded in a binary string, where the “1” means the
corresponding feature is selected, otherwise the feature is removed.

4 Experimental Design

As rough set theory only works on discrete values, six categorical datasets (Ta-
ble 1) of varying difficulty are chosen from UCI machine learning repository
[5] to test the performance of the algorithms. In each dataset, 70% of the in-
stances are randomly chosen as the training set and others (30%) are the test set.

32 L. Cervante et al.

Table 2. Results of PSOPRS and PSOPRS with DT as the learning algorithm

Dataset Spect Dermatology Chess
Method Size Ave(Min) Std Size Ave(Min) Std Size Ave(Min) Std

All 22 19.1 33 17.21 36 1.5
PSORS 17.5 19.03(15.73) 2.28 21 13.99(2.46) 4.76 30.8 1.68(1.31) 0.261
PSOPRS
α = 0.9 17.3 19.44(15.73) 2.21 21 13.99(2.46) 4.76 30.7 1.6(1.31) 0.221
α = 0.8 17.5 19.96(17.98) 1.96 21 13.99(2.46) 4.76 29.97 1.72(1.5) 0.279
α = 0.75 15.57 18.2(17.98) 0.841 21 13.99(2.46) 4.76 30.3 1.53(1.31) 0.129
α = 0.5 16.6 19.96(15.73) 2.11 20.73 13.99(2.46) 5.07 28.8 1.9(1.31) 0.525

All the algorithms firstly run on the training set to select a feature subset(s). The
classification performance of the selected feature subset(s) will be evaluated by
a learning/classification algorithm on the unseen test set. To test the claim that
filter feature selection methods are general, three different learning algorithms,
DT, näıve bayes (NB) and KNN with K=5 (5NN), are used in the experiments.

In all algorithms, the fully connected topology is used, the maximum velocity
vmax = 6.0, the population size is 30 and the maximum iteration is 500. w =
0.7298, c1 = c2 = 1.49618. These values are chosen based on the common settings
in the literature [14]. The algorithm has been conducted for 30 independent runs
on each dataset. In PSOPRS, five different α values (1.0, 0.9, 0.8, 0.75, 0.5)
are used in the experiments. When α = 1, PSOPRS is the same as PSORS.
Therefore, the results of α = 1 in PSOPRS is not presented in Section 5. In
PSOPRSN, the results of γ = 0.9 and γ = 0.5 are used to compare with that of
the multi-objective algorithm (MOPSOPRS).

To further examine the performance of MOPSOPRS, two conventional filter
feature selection methods (CfsF and CfsB) [7] implemented in Weka [20] are
used for comparison and the classification performance is calculated by DT.

5 Experimental Results and Discussions

5.1 Experimental Results of PSORS and PSOPRS

Experiments about PSORS andPSOPRS have been conducted on the six datasets
and DT, NB and 5NN were used for classification on the test sets. Due to the page
limit, only the results of three datasets (Spect, Dermatology and Chess) using DT
for classification are presented in Table 2. In the table, “All” means that all of the
available features are used for classification. “Size” means the average number of
features selected in the 30 independent runs. “Ave”, “Min” and “Std” represent
the average, the lowest and the standard deviation of the classification error rates
achieved by DT across the 30 runs.

Results of PSORS. According to Table 2, in most cases, PSORS selected
feature subsets, which included around two thirds of the available features and
achieved similar classification performance to all features. In almost all datasets,
the best classification performance of PSOPRS (Min) is better than all features.
The results suggest that PSORS based on PSO and standard rough set theory
can be successfully used for feature selection.

A Multi-objective Feature Selection Approach 33

Results of PSOPRS. According to Table 2, in most cases, PSOPRS with
different α can achieve similar classification performance to all features. The
number of features generally decreases when α reduces. Meanwhile, the best
results achieved by PSOPRS are always better than all features in all cases.
The results suggests that by using probabilistic rough set for feature selection,
PSOPRS can further reducing the number of features without reducing its clas-
sification performance. A smaller α means more relax on the lower and upper
approximations, which usually can slightly remove more unnecessary features to
further reduce dimensionality of the datasets.

Note that considering all experimental results on PSOPRS (not only the
results in Table 2), in most cases, α = 0.75 achieved better classification perfor-
mance than other α values. Therefore, α = 0.75 is used in the experiments in
PSOPRSN and MOPSOPRS.

5.2 Experimental Results of PSOPRSN and MOPSOPRS

PSOPRSN obtains a single solution in each of the 30 independent runs. MOP-
SOPRS obtains a set of non-dominated solutions in each run. To compare these
two kinds of results, the 30 solutions (from 30 runs) resulted from PSOPRSN
are presented in this section. 30 sets of feature subsets achieved by MOPSOPRS
are firstly combined into one union set. In the union set, for the feature subsets
including the same number of features (e.g. m), their classification error rates are
averaged. Therefore, a set of average solutions is obtained by using the average
classification error rates and the corresponding numbers (e.g. m). The set of av-
erage solutions is called the average Pareto front and presented here. Meanwhile,
the non-dominated solutions in the union set are called the best Pareto front and
are also presented to compare with the solutions achieved by PSOPRSN.

Figure 1 shows the experimental results of MOPSOPRS and PSOPRSN with
γ = 0.5 and γ = 0.9 on the test sets, where DT was used as the classification
algorithm. In the figure, each chart corresponds to one of the dataset used in
the experiments. On the top of each chart, the numbers in the brackets show the
number of available features and the classification error rate using all features.
In each chart, the horizontal axis shows the number of features selected and the
vertical axis shows the classification error rate. As the results of using NB and
5NN are similar to that of using DT, the results of using NB and 5NN are not
presented here due the page limit.

In Figure 1, “AvePar” and “BestPar” stand for the average and the best
Pareto fronts resulted from MOPSOPRS in the 30 independent runs. γ = 0.5 and
γ = 0.9 show the results of PSOPRSN with γ = 0.5 and γ = 0.9, respectively.
In some datasets, PSOPRSN may evolve the same feature subset in different
runs and they are shown in the same point in the chart. Therefore, although 30
results are presented in γ = 0.5 and γ = 0.9, there may be less than 30 distinct
points shown in one chart.

Results of PSOPRSN. As can be seen from Figure 1, in most cases, PSO-
PRSN with both γ = 0.5 and γ = 0.9 selected feature subsets with a smaller

34 L. Cervante et al.

Spect (22, 19.1%)

Number of features

E
rr

or
 R

at
e

(%
)

AvePar
BestPar
γ=0.5
γ=0.9

1 5 10 14
14.6

16.1

17.6

19.1

20.6

22.1

23.6

Dermatology (33, 17.2%)

Number of features

E
rr

or
 R

at
e

(%
)

AvePar
BestPar
γ=0.5
γ=0.9

1 3 5 7 9 10
4.1

10.6

17.1

23.6

30.1

36.7

43.2

Soybean (35, 18.1%)

Number of features

E
rr

or
 R

at
e

(%
)

AvePar
BestPar
γ=0.5
γ=0.9

1 5 10 14
11.0

19.2

27.3

35.5

43.6

51.8

59.9

Chess (36, 1.5%)

Number of features

E
rr

or
 R

at
e

(%
)

AvePar
BestPar
γ=0.5
γ=0.9

1 5 10 15 20 25 30
1.03

7.84

14.60

21.50

28.30

35.10

41.90

Statlog (36, 13.62%)

Number of features

E
rr

or
 R

at
e

(%
)

AvePar
BestPar
γ=0.5
γ=0.9

1 5 10 14 20
13.2

14.7

16.2

17.7

19.2

20.7

22.2

Waveform (40, 25.22%)

Number of features

E
rr

or
 R

at
e

(%
)

AvePar
BestPar
γ=0.5
γ=0.9

1 5
24.8

31.4

38.0

44.6

51.2

57.8

64.3

Fig. 1. Results of MOPSOPRS and PSOPRSN on test sets evaluated by DT

number of features and achieved similar or even better classification performance
than using all features. γ = 0.9 achieved similar or better classification than
γ = 0.5 and γ = 0.5 usually achieved a smaller number of features than γ = 0.9.
The reason is that the number of features is assigned more important in γ = 0.5
than in γ = 0.9.

Results of MOPSOPRS. According to Figure 1, in three of the six datasets,
the average Pareto front of MOPSOPRS (AvePar) includes two or more solu-
tions, which selected a smaller number of features and achieved a similar or even
lower classification error rate than using all features. For the same number of
features, there are a variety of combinations of features with different classifica-
tion performances. The feature subsets obtained in different runs may include
the same number of features but different classification error rates. Therefore,
although the solutions obtained in each run are non-dominated, some solutions
in the average Pareto front may dominate others. This also happens when using
5NN or NB as the classification algorithms.

According to Figure 1, in all datasets, the non-dominated solutions in MOP-
SOPRS (BestPar) selected one or more feature subsets, which included less than
one third of features and achieved better classification performance than using
all features.

Comparisons Between MOPSOPRS and PSOPRSN. In most datasets,
solutions in AvePar achieved similar results to both γ = 0.5 and γ = 0.9 in terms
of both the number of features and the classification performance, but AvePar
included more different sizes of feature subsets. In five of the six datasets, BestPar
achieved better classification performance with a smaller number of features than
both γ = 0.5 and γ = 0.9, especially in the datasets with a large number of
features, such as the Statlog and Waveform datasets.

Figure 1 shows that MOPSOPRS can further reduce the number of features
and increase the classification performance, which indicates that MOPSOPRS

A Multi-objective Feature Selection Approach 35

Table 3. Results of CfsF and CfsB with DT as the learning algorithm

Dataset Spect Dermatology Soybean Chess Statlog Waveform
Method Size Error (%) Size Error (%) Size Error (%) Size Error (%) Size Error (%) Size Error (%)
CfsF 4 30 17 12.73 12 19.51 5 21.9 5 28.38 32 28
CfsB 4 30 17 12.73 14 14.63 5 21.9 5 28.38 32 28

as a multi-objective technique can explore the search space of a feature selection
problem better than the single objective algorithm, PSOPRSN.

Note that the results of using the three classification algorithms (DT, NB and
5NN) show that the performance of MOPSOPRS and PSOPRSN are consistent
when using different classification algorithms, which suggests the proposed filter
algorithm with probabilistic rough set as the evaluation criterion are general to
these three classification algorithms.

5.3 Comparisons with Two Traditional Algorithms

Table 3 shows the results of CfsF and CfsB for feature selection, where DT was
used for classification. Comparing MOPSOPRS (results of using DT shown in
Figure 1) with CfsF and CfsB, it can be seen that in all datasets, MOPSO-
PRS (BestPar) outpormed both CfsF and CfsB in terms of the classification
performance and the number of features.

6 Conclusions

This work conducted the first study on PSO and rough set theory for multi-
objective feature selection. We proposed a novel feature algorithm (MOPSO-
PRS) based on a multi-objective PSO and probabilistic rough set theory with
the goal of obtaining a set of non-dominated feature subsets, which reduced the
number of features and achieved similar or even better classification performance
than all features. MOPSOPRS was examined and compared with three single
objective algorithms (PSOPRS, PSOPRS and PSOPRSN) and two traditional
methods on six datasets of varying difficulty. DT NB and 5NN were used to
test the generality of MOPSOPRS. Experimental results show that in almost
all cases, MOPSOPRS can automatically evolve a set of non-dominated feature
subsets that include a smaller number of features and achieve better classifica-
tion performance (evaluated by the three classification methods) than using all
features. MOPSOPRS outperformed the three PSO based single objective and
the two traditional algorithms in terms of both the number of features and the
classification performance. The results also show that MOPSOPRS are general
to the three different classification algorithms. This study finds that as a multi-
objective algorithm, MOPSOPRS can search the solution space effectively to
obtain a set of non-dominated solutions instead of a single solution. Examining
the Pareto front achieved by the multi-objective algorithm can assist users in
choosing their preferred solutions to meet their own requirements.

In future, we will further investigate the use of multi-objective PSO and prob-
abilistic rough set for feature selection to better explore the Pareto front of
non-dominated solutions in feature selection problems.

36 L. Cervante et al.

References
1. Almuallim, H., Dietterich, T.G.: Learning boolean concepts in the presence of many

irrelevant features. Artificial Intelligence 69, 279–305 (1994)
2. Cervante, L., Xue, B., Shang, L., Zhang, M.: A Dimension Reduction Approach to

Classification Based on Particle Swarm Optimisation and Rough Set Theory. In:
Thielscher, M., Zhang, D. (eds.) AI 2012. LNCS, vol. 7691, pp. 313–325. Springer,
Heidelberg (2012)

3. Chakraborty, B.: Genetic algorithm with fuzzy fitness function for feature selection.
In: International Symposium on Industrial Electronics, vol. 1, pp. 315–319 (2002)

4. Dash, M., Liu, H.: Feature selection for classification. Intelligent Data Analy-
sis 1(4), 131–156 (1997)

5. Frank, A., Asuncion, A.: UCI machine learning repository (2010)
6. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. The

Journal of Machine Learning Research 3, 1157–1182 (2003)
7. Hall, M.A.: Correlation-based Feature Subset Selection for Machine Learning.

Ph.D. thesis, The University of Waikato, Hamilton, New Zealand (1999)
8. Jensen, R.: Performing Feature Selection with ACO. In: Abraham, A., Grosan,

C., Ramos, V. (eds.) Swarm Intelligence in Data Mining. SCI, vol. 34, pp. 45–73.
Springer, Heidelberg (2006)

9. Kennedy, J., Eberhart, R.: A discrete binary version of the particle swarm al-
gorithm. In: IEEE International Conference on Systems, Man, and Cybernetics,
vol. 5, pp. 4104–4108 (1997)

10. Marill, T., Green, D.: On the effectiveness of receptors in recognition systems.
IEEE Transactions on Information Theory 9(1), 11–17 (1963)

11. Mohemmed, A., Zhang, M., Johnston, M.: Particle swarm optimization based ad-
aboost for face detection. In: IEEE Congress on Evolutionary Computation (CEC
2009), pp. 2494–2501 (2009)

12. Neshatian, K., Zhang, M.: Pareto front feature selection: using genetic programming
to explore feature space. In: Proceedings of the 11th Annual Conference on Genetic
and Evolutionary Computation, New York, NY, USA, pp. 1027–1034 (2009)

13. Pawlak, Z.: Rough sets. International Journal of Parallel Programming 11, 341–356
(1982)

14. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: IEEE International
Conference on Evolutionary Computation (CEC 1998), pp. 69–73 (1998)

15. Sierra, M.R., Coello Coello, C.A.: Improving PSO-Based Multi-objective Opti-
mization Using Crowding, Mutation and ε-Dominance. In: Coello Coello, C.A.,
Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 505–
519. Springer, Heidelberg (2005)

16. Stearns, S.: On selecting features for pattern classifier. In: Proceedings of the 3rd
International Conference on Pattern Recognition, pp. 71–75 (1976)

17. Unler, A., Murat, A.: A discrete particle swarm optimization method for feature
selection in binary classification problems. European Journal of Operational Re-
search 206(3), 528–539 (2010)

18. Wang, X., Yang, J., Teng, X., Xia, W., Jensen, R.: Feature selection based on rough
sets and particle swarm optimization. Pattern Recognition Letters 28(4), 459–471
(2007)

19. Whitney, A.: A direct method of nonparametric measurement selection. IEEE
Transactions on Computers C-20(9), 1100–1103 (1971)

20. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques, 2nd edn. Morgan Kaufmann (2005)

21. Yao, Y., Zhao, Y.: Attribute reduction in decision-theoretic rough set models. In-
formation Sciences 178(17), 3356–3373 (2008)

A New Crossover for Solving Constraint

Satisfaction Problems

Reza Abbasian and Malek Mouhoub

Department of Computer Science
University of Regina

Regina, Canada
{abbasiar,mouhoubm}@cs.uregina.ca

Abstract. In this paper we investigate the applicability of Genetic Al-
gorithms (GAs) for solving Constraint Satisfaction Problems (CSPs).
Despite some success of GAs when tackling CSPs, they generally suf-
fer from poor crossover operators. In order to overcome this limitation
in practice, we propose a novel crossover specifically designed for solv-
ing CSPs. Together with a variable ordering heuristic and an integration
into a parallel architecture, this proposed crossover enables the solving of
large and hard problem instances as demonstrated by the experimental
tests conducted on randomly generated CSPs based on the model RB. We
will indeed demonstrate, through these tests, that our proposed method
is superior to the known GA based techniques for CSPs. In addition,
we will show that we are able to compete with the efficient MAC-based
Abscon 109 solver for random problem instances.

Keywords: Parallel Genetic Algorithms, Constraint Satisfaction Prob-
lem (CSP), Evolutionary Techniques.

1 Introduction

Many real life applications under constraints can be efficiently represented and
solved through a Constraint Satisfaction Problem (CSP). More formally, a CSP
consists of a finite set of variables with finite domains, and a finite set of con-
straints restricting the possible combinations of variable values [2]. A solution
tuple to a CSP is a set of assigned values to variables that satisfy all the con-
straints. A binary CSP is a CSP where each constraint involves at most two
variables. A binary CSP is often represented by a graph where vertices corre-
spond to variables while edges represent the constraints between these variables.
In this paper we focus on the case of binary CSPs using the graph representation.

A CSP is known to be an NP-complete problem in general1, a backtrack search
algorithm of exponential time cost is needed to find a complete solution. In or-
der to overcome this difficulty in practice, systematic solving methods based on
constraint propagation techniques have been proposed in the literature [2]. The

1 There are special cases where CSPs are solved in polynomial time, for instance, the
case where the related constraint network is a tree [2].

M. Middendorf and C. Blum (Eds.): EvoCOP 2013, LNCS 7832, pp. 37–48, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

38 R. Abbasian and M. Mouhoub

goal here is to reduce the size of the search space before and during the back-
track search. While these proposed techniques have a lot of merits when tackling
small and medium size problems, their combination with the backtracking algo-
rithm suffers from the exponential time cost of this latter especially for large size
problems. An alternative is to use approximation methods such as Genetic Al-
gorithms (GAs). Despite some success of GAs when tackling CSPs [3,5,6], they
generally suffer from poor crossover operators in solving constraint problems.
The main reason for such a phenomenon is that in CSPs, changing the value of
a variable can have direct effects on other variables that are in constraint rela-
tion with the changing variable and indirect effect on other variables. As a result,
performing a random crossover can often reduce the quality of the solution.

In this paper we propose a novel crossover, that we call Parental Success
Crossover (PSC), specially designed for solving CSPs. In order to assess the per-
formance of our proposed crossover over the basic one-point crossover, Asexual
Crossover for CSP (ASXC), Multi-Parent Crossover (MPC) as well as known
heuristic based GAs for CSPs [3,6], we conducted several experiments on CSP
instances randomly generated using the model RB proposed in [17]. This model
is a revision of the standard Model B [16], has exact phase transition and the
ability to generate asymptotically hard instances. The test results clearly demon-
strate that our proposed crossover outperforms the other known GA methods
on all problem instances in terms of success rate and time needed to reach the
solution. In addition, we evaluated the performance of an integration of our
crossover, together with a variable ordering heuristic [13], within a proposed Hi-
erarchical Parallel GA (HPGA). The results are very appealing especially when
dealing with hard instances. Moreover, our HPGA method is able to compete
with the efficient MAC-based Abscon solver [7] as demonstrated by the com-
parative experiments conducted on random CSPs with different sizes. Finally,
our GA based solving method incorporates many greedy principles and has the
ability to solve a CSP by giving a solution with a quality (number of solved
constraints) depending on the time allocated for computation. This is clearly
demonstrated through several tests we conducted both on consistent and in-
consistent random CSPs. This “anytime behaviour” is very relevant in practice
especially for real time applications where a solution needs to be returned within
a given deadline. The user can, for instance, get a solution with a given quality
at a particular time point or let the program run for another amount of time, if
this can be afforded, to get a better quality.

The rest of the paper is structured as follows. A literature review on Parallel
GAs and crossovers is introduced in the next section. Our proposed crossover
and its integration into the Parallel GA is then covered in section 3. Section
4 reports the results of comparative experiments we conducted on randomly
generated CSPs. Finally, concluding remarks and future directions are listed in
section 5.

A New Crossover for Solving Constraint Satisfaction Problems 39

2 Background

2.1 Parallel Genetic Algorithms

Genetic Algorithms (GAs) [4] are evolutionary algorithms based on the idea of
natural selection and evolution. GAs have been successfully applied to a wide
variety of problems. In GAs, there is a population of potential solutions called
individuals. The GA performs different genetic operations on the population, un-
til the given stopping criteria are met. The Parallel Genetic Algorithm (PGA)
is an extension of the GA. The well-known advantage of PGAs is their ability to
facilitate different sub populations to evolve in diverse directions simultaneously
[8]. It is shown that PGAs speed up the search process and can produce high
quality solutions on complex problems [9,15]. There are mainly three different
types of PGAs [1]. First, the Master-Slave PGA (MSPGA) in which, there is
only one single population divided into fractions. Each fraction is assigned to
one slave process on which genetic operations are performed [8]. Second, the
Multi-Population PGA which contains a number of sub populations, which can
occasionally exchange individuals. The exchange of individuals is called migra-
tion. Migration is controlled using several parameters. Multi-population PGAs
are also known as Island PGAs (IPGAs), since they resemble the “island model”
in population genetics that considers relatively isolated demes. Finally, the Fine-
Grained PGA which consists of only one single population, that is designed to
run on closely linked massively parallel processing systems. In this paper we use
the Master-Slave architecture for designing the PGA.

2.2 Crossovers

Several crossovers have been proposed in the literature. The simplest one is the
One Point Crossover (OPC) that works as follows. First, we randomly choose
a crossing point. All the genomes (individuals) from the first parent that are
before the crossing point will be included in the offspring. In addition, all the
genomes in the second parent that are after the crossing point, will be included as
well in the offspring. The Asexual Crossover for CSPs (we refer to it as ASXC)
is suggested by Eiben et al [3,5]. The Idea here is as follows. To produce the
offspring we use an asexual crossover that picks a group of variables having
the largest number of violated constraints and changes their value such that
the number of violations (or conflicts) are minimized. The group size should be
determined at the beginning, but was suggested 1/4 of the individual size [3,5].
As stated in [3,5], the Multi-Parent Crossover for CSPs operates by scanning
the genes of the parents consecutively. It then chooses a value that has occurred
the most for that gene (CSP variable) amongst the parents and assigns it to the
corresponding gene of the offspring. The value selection can also be performed
randomly or based on the fitness of the parents.

40 R. Abbasian and M. Mouhoub

3 Proposed Crossover within a PGA

3.1 Individual Representation

In GAs each possible solution to the given problem is represented using an
encoding known as the chromosome (or individual). Each chromosome contains
a number of genes (or alleles). To represent a possible solution to a CSP in GAs,
we normally use an array structure. Each index of the array is considered as a
gene that corresponds to a variable in the CSP. The data that each gene carries
is from the domain value of the variable it represents. Moreover, each individual
has a fitness corresponding to the total number of constraint violations. An
individual with a fitness equal to zero is a solution to the problem.

3.2 Parental Success Crossover (PSC)

The random crossover performs poorly for constraint problems. In these prob-
lems, changing the value of a variable X has direct effect on other variables
that are in constraint relation with X . It can also have indirect effects on other
variables. As a result, a random crossover (having a random crossing point) does
not provide interesting results. To improve the crossover for CSPs, we propose
the following crossing method. Each individual in the population maintains two
records; the total number of times it has participated in reproduction (Np), and
the number of times the offspring it produced was fitter. We refer to the latter
as Parental Success Number and denote it by Ps. The parental success ratio, de-
noted by S, then can be calculated as follows: S = Ps

Np
. Furthermore, we define

the term Fitness Around Variable (FAV) as the number of conflicts between a
given variable and its neighbors in the constraint graph. Each individual keeps
a record of the fitness around all of its variables. Using these new parameters,
we create a Crossover Mask. The offspring is then produced according to this
mask. Let p1 and p2 be two parents chosen for the crossover. The crossover mask
specifies which allele in the new chromosome should inherit from which parent.
Since the crossover is performed here using two parents, the crossover mask con-
sists of binary digits. Let 1 specify choosing the allele from p1 and 0 specify
choosing it from p2. To create the mask, we compare each allele in p1 with its
correspondence in p2. If the FAV of the allele in p1 is less than the one in p2, we
put a 1 in the mask. If the FAV of the allele in p2 is less than the one in p1, we
put a 0 in the mask. In case of equality, we use the following probabilities for
choosing the allele: P (choosing from p1) = 1/2 + (Sp1 − Sp2)× 1/2

P (choosing from p2) = 1/2 + (Sp2 − Sp1) × 1/2 where, Sp1 and Sp2 are re-
spectively the parental success ratios of p1 and p2. Algorithm 1 describes the
procedure for generating the PSC Mask.

3.3 Reproduction

Reproduction is performed amongst a number of fittest individuals in the popu-
lation. To generate new offsprings, we randomly chose two individuals among the

A New Crossover for Solving Constraint Satisfaction Problems 41

Algorithm 1. Generating PSC Mask

function psc-mask(FAV p1 ,FAV p2 as Arrays and Sp1 ,Sp2 as Doubles)
Define: mask as Array
Define: Pp1 as Double � probability of choosing from p1
Pp1 = 0.5 + (Sp1 − Sp2)× 0.5
for i = 0 to individualLength do

if FAV p1 [i] <FAV p2 [i] then
mask [i] = 1

else if FAV p1 [i] >FAV p2 [i] then
mask [i] = 0

else
if U(0, 1) ≤ Pp1 then � U is uniform random function

mask [i] = 1 � choose from p1
else

mask [i] = 0 � choose from p2
end if

end if
end for
return mask

end function

fittest ones in the population as the parents. We then pass them to the Parental
Success Crossover. Also, every I iterations, we pick the parents totally random
as a means to preserve the diversity in the population.

3.4 Mutation

We propose two different methods for the mutation. The first method, that we
call mutation to minimize the number of conflicts, is used to locally improve
the solution while performing the mutation. The second method, that we call
stochastic value change, performs a complete random mutation. Since mutation
to minimize the number of conflicts has a greedy strategy to modify the individ-
uals, using stochastic value change is necessary to preserve the diversity of the
population and to avoid being trapped in a local minimum. The details of these
two methods are as follows.

Mutation to Minimize the Number of Conflicts. Given a constraint graph
representing a CSP, Nmutation random vertices of the individual are selected and
the numbers of conflicts between the chosen vertices and their adjacent vertices
are minimized. Say vertex A is randomly chosen for the mutation. Then, ac-
cording to the adjacency matrix of the constraint graph, for every vertex B that
is adjacent to A, if there is a conflict between A and B, B will take a new
random value that is consistent to A’s value. Nmutation is computed as follows
using another parameter that we introduce called Allele Mutation Percentage.
Suppose we have an individual of size 100 and an allele mutation percentage

42 R. Abbasian and M. Mouhoub

of 20%. Then we have 20%*100=20. This number 20 is now the maximum pos-
sible value for Nmutation. Each time we perform a mutation, Nmutation takes a
random value between 1 and 20. Algorithm 2 presents the pseudocode of this
method.

Algorithm 2. Mutation to Minimize the Number of Conflicts

function mutate1(indiv as Array of Integers)
Define: A as Integer � a vertex index of individual
for i = 0 to Nmutation do

A← a unique, randomly chosen vertex index.
for all B adjacent to A do

if indiv [A] ==indiv [B] then
indiv [B] ← random value consistent with A’s value

end if
end for

end for
end function

StochasticValueChange. Algorithm3 presents the pseudocode of this method.
Here, we randomly choose Nmutation vertices and assign a random value to each.

Algorithm 3. Stochastic Value Change

function mutate2(indiv as Array of Integers)
Define: A as Integer � a vertex index of individual
for i = 0 to Nmutation do

A← a unique, randomly chosen vertex index.
indiv [A] ← random value

end for
end function

3.5 The Genetic Modification (GM) Operator

We extend the PGA with an additional operator that we propose, namely the
Genetic Modification (GM). The GM operator runs concurrently with the PGA
and generates good individuals outside the scope of the GA. The PGA then in-
corporates these newly generated, near optimal individuals to its population to
give them a chance to participate in reproduction. The idea here is that the GM
concurrently and independently operates beside the PGA. Whenever the GM
produces a population of individuals, the PGA keeps them until the next repro-
duction. Then, just before the reproduction, the PGA distributes them between

A New Crossover for Solving Constraint Satisfaction Problems 43

the sub populations. The GM uses a variable ordering for individual generation.
Whenever the GM needs to create a new individual, it starts from the first vari-
able in the ordering and generates a random value for each variable in turn.
Following a look ahead principle, when a variable is assigned a value, the GM
propagates this change by removing the values that would result in conflicts from
the domain of its neighbors. This way, it is guaranteed that at each time, the
chosen value for a variable will not cause a conflict. However, at the end of initial-
izing variables, we might end up with some variables that have empty domains.
In this case, the GM randomly chooses a value for them. The GM generates
PGM individuals and signals the PGA’s master process. The master process will
then distribute the generated individuals amongst the sub-population for the
next reproduction. Algorithm 4 lists this process.

Algorithm 4. Genetic Modification Process

function GM(ordering as Array of Integers)
Define: P as Set of Individuals
Define: indiv as Array of Integers
P← ∅
for i = 0 to PGM do

indiv← new individual based on ordering
P←P ∪ indiv

end for
Notify master process of P

end function

We used the heuristic proposed in [13] for variable ordering. This heuristic
is based on Hill Climbing (HC) for weighing constraints and works as a Static
Variable Ordering (SVO) algorithm as it runs prior to the actual backtrack
search algorithm. More precisely, HC is run for a given number of cycles, during
which, the constraints gain weight. After this information gathering phase, each
variable gets a weighted degree, which is the sum of the weights of the constraints
that the variable is involved in. Variables are then sorted based on their weights
and those with larger weight get more priority in the ordering. We converted
this heuristic into a Dynamic Variable Ordering (DVO) one by adapting it into
each of the PGAs’ master process. The idea is that HC will operate as part of
each PGA and continues to run through the whole runtime of the PGAs. At
the end of each k generations, the master process picks the best solution found
by the slaves and calculates new weights for the constraints. It then creates an
ordering based on the weights and passes it to the GM. The GM would then use
this new ordering to create new individuals. The integration of our DVO into
PGA’s master process is described in Algorithm 6.

44 R. Abbasian and M. Mouhoub

3.6 Hierarchical PGA (HPGA)

A Hierarchical PGA (HPGA) can be obtained by any combination of the PGA
types. Figure 1 shows the architecture of our proposed HPGA. To design the
HPGA, we use the Island PGA (IPGA) for the top level and Master-Slave PGA
(MSPGA) for the lower level. Each MSPGA, is actually an island of the IPGA.
However, there is a Coordinator Process (CP) in the IPGA which is in charge
of assigning different CSP problems to each island of the IPGA. The CP can
communicate with each MSPGA using the chosen Inter-Process Communication
(IPC) technique. Consider M as the total number of MSPGAs, Msuspended as
the number of MSPGAs in the suspend state. Algorithm 5 and Algorithm 6
respectively illustrate the procedures for IPGA and MSPGAs.

Fig. 1. Architecture of the HPGA

Algorithm 5. IPGA Algorithm (CP) for MSPGAs

Require: All MSPGAs are suspended at the beginning.
1: Assign to each MSPGA, a CSP.
2: Start suspended MSPGAs.
3: Wait for a MSPGA to find a solution. If a solution is found halt the algorithm

and return the solution. Meanwhile, if the Stopping Criteria are satisfied, stop the
algorithm and return the best result so far.

A New Crossover for Solving Constraint Satisfaction Problems 45

Algorithm 6. MSPGA Integrated with HC

1: generationNumber= 0
2: In Parallel: generate a random population of size P . Calculate the fitness of each

individual.
3: If a solution is found (an individual with zero conflicts), signal the CP and wait

for a task from the CP. Else, go to the next step.
4: if (generationNumber mod k = 0) then
5: Pick the best solution found by slaves.
6: Calculate new weights for constraints (based on HC).
7: Create a new ordering based on new weights.
8: Pass the new ordering to GM.
9: end if
10: Before entering the reproduction, check if the GM process has created a modified

population. If so, distribute them amongst sub populations.
11: In Parallel: perform reproduction, mutation, and fitness calculation.
12: Increment generationNumber by 1. Go to step 3.

4 Experimentation

The algorithms are implemented in Java programming language. In the experi-
ments we used a machine with 2.5 GHz Core 2 Duo CPU, 4 GB of RAM running
JDK 1.6. The mutation is implemented as described in Section 3.4. The num-
ber of variables to change is also determined randomly from the following range
[2, individualLength/10] where individualLength is the length of each individ-
ual. The mutation chance is set to 0.2. For all the tests reported in this section,
each problem instance is solved 20 times by the given method and the average
running time needed to return the solution is computed.

Following the model RB [17], we generate each CSP instance in two steps as
shown below and using the parameters n, p, α and r where :

- n is the number of variables,
- p (0 < p < 1) is the constraint tightness which can be measured, as shown
in [14], as the fraction of all possible pairs of values from the domain of two
variables that are not allowed by the constraint,

- and r and α (0 < α < 1) are two positive constants (respectively set to 0.5
and 0.8).

1. Select with repetition rnlnn random constraints. Each random constraint is
formed by selecting without repetition 2 of n variables.

2. For each constraint we uniformly select without repetition pd2 incompatible
pairs of values from the domains of the pair of variables involved by the
constraint. d = nα is the domain size of each variable.

First, we compared our proposed PSC against the One Point Crossover (OPC),
the Asexual Crossover (ASXC) and the Multi-Parent Crossover (MPC) pro-
posed in [3]. The population size is fixed here to 2000 and the mutation chance to

46 R. Abbasian and M. Mouhoub

0.2. Table 1 (left sub table) shows the results of running these methods with
mutation. Consistent CSP instances are randomly generated with 100 variables
and tightness (T) values ranging from 0.05 to 0.6. For each test we report the
running time (in seconds) together with the Success Rate, SR (for reaching a
complete solution) and the best fitness, BF (number of violated constraints,
in the case where a complete solution is not obtained). When the timeout (60
seconds) is reached for a particular case, “−” is displayed. Note that for the
ASXC method, the time is not reported in table 1 as this method fails to
solve all the problem instances in the allocated runtime limit in the case where
mutation is used. From the two tables it is obvious to see that our PSC based
GA method is the only one that is successful for solving under constrained and
middle constrained problems (when the tightness is less than 0.4). Moreover, for
hard instances (tightness between 0.4 and 0.6) our method returns better quality
solutions (BF values) than all the other techniques.

The parallelism provides the ability to investigate different regions of the
search space simultaneously. In order to assess the performance of the integration
of our PSC within the HPGA, we conducted more tests on consistent CSPs
as follows. As we mentioned in section 2.1, our PGA is implemented using the
Master-Slave architecture. Within the HPGA, two islands (IPGAs) are used with
the number of slaves for each fixed to 10 and the population size per slave equal
to 200. Table 1 (right sub table) reports the results of the tests we conducted on
the same instances used for the sequential methods. We evaluate the performance
of two methods: our PSC within the HPGA (HPGA+PSC) and the PSC with
the proposed Genetic Modification within the HPGA (HPGA+GM+PSC). It is
clear from Table 1 that the parallelization of our method allows us to successfully
solve all the instances up to 0.5 tightness value without the GM and up to 0.55
when GM is used. In addition, with GM we can even solve the hardest instances
(tightness of 0.6) with a high success rate.

Table 1. Comparing Different Crossovers in a Sequential and Parallel GA

MPC OPC PSC
T SR,BF Time SR,BF Time SR,BF Time

0.05 100%,0 2.448 100%,0 2.57 100%,0 1.88
0.1 34%0 57.13 100%,0 11.46 100%,0 2.11
0.15 0,4 - 100%,0 16.43 100%,0 3.18
0.2 0,9 - 27%,0 51.03 100%,0 4.1
0.25 0,17 - 0,3 - 100%,0 6.92
0.3 0,25 - 0,5 - 100%,0 7.26
0.35 0,28 - 0,10 - 100%,0 13.86
0.4 0,37 - 0,12 - 62%,0 44.56
0.45 0,45 - 0,27 - 0,5 -
0.5 0,53 - 0,30 - 0,9 -
0.55 0,69 - 0,42 - 0,15 -
0.6 0,78 - 0,62 - 0,17 -

HPGA+PSC HPGA+GM+PSC
(SR,BF) Time (s) (SR,BF) Time (s)
100%,0 0.31 100%,0 0.24
100%,0 0.42 100%,0 0.26
100%,0 0.77 100%,0 0.40
100%,0 0.97 100%,0 0.43
100%,0 1.09 100%,0 0.47
100%,0 1.14 100%,0 0.49
100%,0 1.28 100%,0 0.50
100%,0 1.54 100%,0 0.51
100%,0 1.72 100%,0 0.52
100%,0 2.03 100%,0 0.56
73%,0 37.46 100%,0 1.72
0,3 - 79%,0 31.29

A New Crossover for Solving Constraint Satisfaction Problems 47

Figure 2 reports the results of comparative tests between ourHPGA+GM+PSC
method and Abscon 109 [7] for solving randomly generated consistent CSPs with
tightness equal to 0.35 and the number or variables varying from100 to 1000. In the
case of HPGA+GM+PSC, we have used the following parameters tuned to their
best values. For instances with less than 600 variables, the number of islands is 4
with 5 slaves per island and 100 individuals per slave. For instances with 600 and
more variables, the number of islands is 8 with 5 slaves per island and 100 indi-
viduals per slave. From figure 2 it is clearly shown that our method is better than
Abscon 109 for all problem instances in terms of running time needed to return a
complete solution.

Fig. 2. Running Time Comparison of HPGA+GM versus AbsCon 109 on Randomly
Generated Instances

5 Conclusion and Future Work

In order to overcome the difficulty when solving CSPs, we have proposed in
this paper a novel crossover operator namely the Parental Success Crossover
(PSC) and its integration within a Hierarchical PGA (HPGA). Through different
experiments on randomly generated CSPs, we showed that PSC is far more
efficient than the One Point Crossover and the well known heuristic based GAs.
In addition, our tests also demonstrate that our HPGA compete with the well
known Abscon solver. These promising results motivated us to follow this work
further into exploring more general problems including variants of CSPs such as
dynamic CSPs [10,11],as well as CSPs under preferences, change and uncertainty
[12]. These latter problems are optimization problems where the goal is to come
up with a solution maximizing some objective functions.

48 R. Abbasian and M. Mouhoub

References

1. Cantu-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms. Kluwer Aca-
demic Publishers (2000)

2. Dechter, R.: Constraint Processing. Morgan Kaufmann (2003)
3. Eiben, A.E., van der Hauw, J.K.: Adaptive Penalties for Evolutionary Graph Col-

oring. In: Hao, J.-K., Lutton, E., Ronald, E., Schoenauer, M., Snyers, D. (eds.) AE
1997. LNCS, vol. 1363, pp. 95–106. Springer, Heidelberg (1998)

4. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley Longman Publishing Co., Inc., Boston (1989)

5. van der Hauw, J.: Evaluating and Improving Steady State Evolutionary Algorithms
on Constraint Satisfaction Problems (1996)

6. Jashmi, B.J., Mouhoub, M.: Solving temporal constraint satisfaction problems with
heuristic based evolutionary algorithms. In: Proceedings of the 2008 20th IEEE
International Conference on Tools with Artificial Intelligence, vol. 02, pp. 525–529.
IEEE Computer Society, Washington, DC (2008)

7. Lecoutre, C., Tabary, S.: Abscon 109: a generic csp solver. In: 2nd International
Constraint Solver Competition, held with CP 2006 (CSC 2006), pp. 55–63 (2008)

8. Lim, D., Ong, Y.S., Jin, Y., Sendhoff, B., Lee, B.S.: Efficient hierarchical parallel
genetic algorithms using grid computing. Future Gener. Comput. Syst. 23(4), 658–
670 (2007)

9. Liu, Z., Liu, A., Wang, C., Niu, Z.: Evolving neural network using real coded ge-
netic algorithm (ga) for multispectral image classification. Future Gener. Comput.
Syst. 20(7), 1119–1129 (2004)

10. Mouhoub, M.: Dynamic Path Consistency for Interval-based Temporal Reasoning.
In: 21st International Conference on Artificial Intelligence and Applications (AIA
2003), pp. 393–398. ACTA Press (2003)

11. Mouhoub, M.: Systematic versus non systematic techniques for solving temporal
constraints in a dynamic environment. AI Communications 17(4), 201–211 (2004)

12. Mouhoub, M., Sukpan, A.: Managing dynamic csps with preferences. Applied In-
telligence 37(3), 446–462 (2012)

13. Mouhoub, M., Jashmi, B.J.: Heuristic techniques for variable and value ordering
in csps. In: Krasnogor, N., Lanzi, P.L. (eds.) GECCO, pp. 457–464. ACM (2011)

14. Sabin, D., Freuder, E.C.: Contradicting conventional wisdom in constraint satis-
faction. In: Proceedings of the Eleventh European Conference on Artificial Intelli-
gence, pp. 125–129. John Wiley and Sons, Amsterdam (1994)

15. Sena, G.A., Megherbi, D., Isern, G.: Implementation of a parallel genetic algorithm
on a cluster of workstations: traveling salesman problem, a case study. Future
Gener. Comput. Syst. 17(4), 477–488 (2001)

16. Smith, B., Dyer, M.: Locating the phase transition in binary constraint satisfaction
problems. Artificial Intelligence 81, 155–181 (1996)

17. Xu, K., Li, W.: Exact Phase Transitions in Random Constraint Satisfaction Prob-
lems. Journal of Artificial Intelligence Research 12, 93–103 (2000)

A Population-Based Strategic Oscillation

Algorithm for Linear Ordering Problem
with Cumulative Costs

Wei Xiao1, Wenqing Chu2, Zhipeng Lü2,�, Tao Ye2, Guang Liu1,
and Shanshan Cui1

1 Systems Engineering Research Institute, Beijing, 100094, China
2 SMART, School of Computer Science and Technology,

Huazhong University of Science and Technology, Wuhan, 430074, China
zhipeng.lv@hust.edu.cn

Abstract. This paper presents a Population-based Strategic Oscillation
(denoted by PBSO) algorithm for solving the linear ordering problem
with cumulative costs (denoted by LOPCC). The proposed algorithm
integrates several distinguished features, such as an adaptive strategic
oscillation local search procedure and an effective population updating
strategy. The proposed PBSO algorithm is compared with several state-
of-the-art algorithms on a set of public instances up to 100 vertices, show-
ing its efficacy in terms of both solution quality and efficiency. Moreover,
several important ingredients of the PBSO algorithm are analyzed.

Keywords: LOPCC, Strategic Oscillation Procedure, Local Search; Pop-
ulation Updating.

1 Introduction

The linear ordering problem with cumulative costs (LOPCC) was originally in-
troduced in [4]. Given a complete graph with nonnegative vertex weight di and
nonnegative arc weight cij , the objective of the LOPCC is to find a Hamiltonian
path π = (π1, π2, . . . , πn) which minimizes the following objective function:

C(π) =

n∑
i=1

απi (1)

where

απn = dπn

απi = dπi +

n∑
j=i+1

cπiπjαπj for i = n− 1, n− 2, . . . , 1.

� Corresponding author.

M. Middendorf and C. Blum (Eds.): EvoCOP 2013, LNCS 7832, pp. 49–60, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

50 W. Xiao et al.

The cumulative backward computation of the α-values, from n to 1, makes the
objective function nonlinear.

The LOPCC is arisen from the practical problem in wireless cellular commu-
nication systems, where successive interference cancellation (SIC) is an effective
technique for multiuser access interference reduction. In this context, the LOPCC
acts as the SIC optimization model to ensure a proper reception for the cellular
network users. The interested readers are referred to [4, 14, 15] for more details.

Given the relevance of the LOPCC, a large number of procedures have been
reported in the literature for solving this model. Among them are several ex-
act methods using branch-and-bound and Mixed-Integer linear Programming
model. Bertacco et al. (2005) proposed a Mixed-Integer linear Programming
model (MIP) as well as an ad hoc enumerative algorithm for the exact solution
of the LOPCC. Righini (2008) presented a branch-and-bound algorithm for the
exact optimization of the LOPCC [8].

However, the high computational complexity of the LOPCC has led to the
fact that, problems of sizes larger than n = 50 cannot be solved by these exact
methods in a reasonable time. For larger instances, the exact methods become
prohibitively expensive to apply. By contrast, various metaheuristic algorithms
have been introduced to solve the LOPCC and shown to be effective to find
high-quality solutions in an acceptable time.

Benvenuto et al. (2005) presented a greedy heuristic as well as a greedy ran-
domized (GR) procedure [3]. Duarte et al. (2011) proposed a Tabu Search al-
gorithm for the LOPCC [5], which is adapted from the Tabu Search procedure
for the LOP [13]. Duarte et al. (2012) proposed an iterated greedy-strategic os-
cillation algorithm with the path relinking post-processing to obtain improved
outcomes [6], identifying 87 new best objective function values.

In this paper, we present a population based strategic oscillation local search
for the LOPCC, which integrates a strategic oscillation local search with a pop-
ulation updating approach. Our proposed algorithm is characterized by several
features that enhance its effectiveness. First, in order to enhance intensification,
we propose an improved local search, which can be considered as a strategic os-
cillation algorithm. Second, our algorithm keeps a set of local optimum solutions
and relies on an effective replacement strategy to maintain the population diver-
sity. These features distinguish our algorithm from the previous metaheuristic
algorithms reported in [3–6, 8] . To assess the performance and the competitive-
ness of our algorithm in terms of both solution quality and efficiency, we provide
computational results on a set of 50 random instances up to 100 vertices, showing
the efficacy of the proposed PBSO algorithm.

2 Population-Based Strategic Oscillation

2.1 Main Scheme

Generally speaking, our PBSO algorithm can be considered as a population-
based algorithm, whereas it generates new solution without recombination op-
erators. In our procedure, each solution in the population has possibility to

A Population-Based Strategic Oscillation Algorithm 51

be chosen for generating new solution and the solution having better objective
function value is given higher possibility. In addition, to reach more intensive
search, we implement a strategic oscillation local search algorithm to optimize
each newly generated solution.

The general architecture of the PBSO algorithm is described in Algorithm 1.
It is composed of three main components: population initialization, a strategic
oscillation local search procedure and a population updating rule. Starting from
an initial random population, PBSO uses the strategic oscillation local search to
optimize each individual to reach a local optimum (lines 4-6). Then, a solution is
randomly selected from the population and is perturbed (lines 8-9), whereupon
a new round of strategic oscillation local search is again launched to optimize
the objective function (lines 9-10). Subsequently, the population updating rule
decides whether such an improved solution should be inserted into the popula-
tion and which existing solution should be replaced (line 11). In the following
subsections, the main components of our algorithm are described in details.

Algorithm 1. The pseudocode of PBSO for the LOPCC

1: Input: arc weight matrix C and vertex weight array D
2: Output: the best solution s∗ found so far
3: P={s1,s2,. . . ,sp}← Population Initialization() /* Section 2.2 */
4: for i = {1, 2, . . . , p} do
5: si ← Strategic Oscillation(si) /* Section 2.3 */
6: end for
7: repeat
8: randomly choose sk from P
9: sk ← Pertubation(sk) /* Section 2.4 */
10: s0 ← Strategic Oscillation(sk) /* Section 2.3 */
11: {s1,s2,. . . ,sp} ← Pool Updating(s0, s1, s2, . . . , sp) /* Section 2.5 */
12: until the stop criterion is met
13: return the best solution s∗ found so far

2.2 Initial Population

In the PBSO algorithm, the individuals of the initial population are generated
randomly. First, the place of each vertex is assigned a number from 1 to n in
order. Then, two vertices are selected randomly and their places are swapped.
This swapping procedure is repeated for n3 times. In the following procedure,
each individual is further optimized by a strategic oscillation local search proce-
dure. Let us mention that in general the initial solutions have limited influence
on the solution quality obtained by the PBSO algorithm.

2.3 Strategic Oscillation Procedure

As demonstrated in [10, 16, 17], Strategic Oscillation is one of the most success-
ful approaches for the 0-1 integer linear programming (ILP) problems. In the

52 W. Xiao et al.

literature, there is a kind of simple local search introduced in the Tabu Search
for the LOPCC [5]. To enhance the intensification of our algorithm, we employ
a Strategic Oscillation algorithm as our local search procedure.

First, we introduce the simple local search introduced in [5]. A neighborhood
of a given permutation is obtained by an insert operation: the element in po-
sition i is inserted in another position j. The simple local search explores the
neighborhood of a permutation and scans for the best improving move. If the
best improving move cannot improve the objective function value any more, the
simple local search is stopped. Note that in our local search procedure, we em-
ploy an effective technique to accelerate the computation of the neighborhood
moves originally proposed for LOP in [9]. Interested readers are referred to [9]
for more details.

Strategic Oscillation was initially proposed with the purpose of crossing back
and forth between the feasible and infeasible search space. Occupying a key
position among tabu search strategies, Strategic Oscillation has notably also
been used in settings for transitioning between multiple neighborhoods, decision
rules and search regions [10]. One of the explanations suggested for the success
of the approach lies in its ability to integrate diversification with intensification,
without resorting to “randomized” forms of diversification.

In order to adapt the strategic oscillation method to the local search procedure
for the LOPCC, we divide the neighborhood into two parts. One is defined
by backward neighborhood and the other is called forward neighborhood. In
backward neighborhood, an element is removed from its current position i and
inserted into another position j, where i is smaller than j. On the other hand,
in forward neighborhood i is greater than j. Then, we design some rules for
transitioning between the two neighborhoods.

The strategic oscillation local search consists of several periods. At first, the
backward neighborhood acts as the feasible neighborhood and the forward neigh-
borhood works as the infeasible neighborhood. In the next period, the feasible
neighborhood and infeasible neighborhood are just the opposite. There are two
very important parameters β and γ in our strategic oscillation procedure. Gen-
erally speaking, β controls when the local search switches to the next period. γ
decides how many periods there are in a single strategic oscillation local search.
In particular, we consider the moves in the feasible space constructive ones (A1)
and the moves in the infeasible space destructive ones (A2).

A1. In the feasible neighborhood, if there exists a neighboring solution better
than the previous best solution, select this best move.

A2. If there does not exist any neighboring solution better than the previ-
ous best solution in the feasible neighborhood, choose a random move in the
infeasible neighborhood.

Applied to the LOPCC problem, we start from a random solution, the pre-
ceding method first executes a series of improving moves employing step A1 that
takes it to a locally optimal solution. Upon reaching this juncture the method
applies to step A2 to make a little destruction to the current solution. Then
the procedure continues to select A1 or A2 according to whether there is an

A Population-Based Strategic Oscillation Algorithm 53

improving move in the feasible neighborhood. If the step A2 have been taken
for β times consecutively, the local search enters into next period in which the
feasible neighborhood and the infeasible neighborhood are exchanged. When this
transitioning happens for γ times consecutively and the objective function value
is not improved, the strategic oscillation local search procedure is stopped.

The Pseudo-code of this strategic oscillation local search is presented in Al-
gorithm 2. Strategic oscillation local search starts from a random permutation
S. Then it generates an improved permutation S∗ by constructing and destruc-
ting this solution (lines 6-19). In this procedure, we set β to be 5 and γ to be
3 (line 3). The function construction is constructive step A1 and the function
destruction is destructive step A2.

Algorithm 2. The pseudocode of our strategic oscillation local search

1: Input: a random permutation S
2: Output: the best permutation S∗ found so far
3: // Sc: the best neighboring solution of S in the feasible neighborhood
4: // Sd: a random neighboring solution of S in the infeasible neighborhood
5: S∗ ← S, β = 5, γ = 3, i = 0, j = 0
6: while i < γ do
7: repeat
8: Sc ← Construction(S)
9: if Sc is better than S∗ then
10: S∗ ← Sc; S

′ ← Sc

11: i ← 0; j ← 0
12: else
13: Sd ← Destruction(S)
14: S′ ← Sd; j ← j + 1
15: end if
16: S ← S′

17: until j reaches β
18: exchange the feasible and the infeasible neighborhoods, i ← i+ 1
19: S ← S∗

20: end while

2.4 Perturbation Operator

In our PBSO algorithm, when a solution is selected from the population P ,
we perturb it and improve the perturbed solution by launching the strategic
oscillation local search again. The perturbation phase works as follows. Each
time two vertices are randomly selected and swapped. This procedure is repeated
for a given number of times, which is called perturbation strength.

PerturbStrength = n/10 + rand(10),

where n is the size of the problem and rand(10) takes a random value from 1 to
10.

54 W. Xiao et al.

2.5 Population Updating

When a new local optimum solution is reached by the strategic oscillation local
search, our algorithm updates the population using this new local optimum
solution. Specifically, this new local optimum solution replaces the worst solution
in the population according to the objective function value.

3 Computational Results and Comparisons

In this section, we report experimental results of our PBSO algorithm on two
well-known sets of random instances originally proposed by Reinelt 1985 [12]
and reported in Duarte [6], respectively with 35 and 100 vertices. In addition,
we compare them with those of the best performing algorithms in the literature.

3.1 Problem Instances and Experimental Protocol

Two sets of problem instances are considered in the experiments, in total consti-
tuting 50 instances. The first set of benchmarks is composed of 25 small instances
with 35 vertices. The second set of benchmarks consists of 25 random instances
with 100 vertices. They are frequently used by many researchers, see for example
[3–6, 8].

These instances can be classified into two categories. For the 25 RANDOM
instances with size 35, the optimal solutions are known. For the remaining 25
instances with size 100, the optimal solutions are unknown, and a list of best-
known solutions are found by many researchers using various algorithms. In this
section, we report our computational results on these two sets of instances.

Our PBSO algorithm is programmed in C++ and compiled using GNU G++
on a PC running Windows XP with 2.8GHz CPU and 2Gb RAM. To obtain
our computational results, most instances are independently solved 5 times with
different random seeds. Each run is stopped when the generation number reaches
100. All the computational results were obtained without special tuning of the
parameters, i.e., all the parameters mentioned in our algorithm are constant for
all instances.

3.2 Computational Results

Tables 1 and 2 respectively summarize the computational statistics of the pro-
posed PBSOalgorithm for theRANDOM instanceswith size 35 and 100. Columns
2-3 give the features of the tested instances: the numbers of the vertices (n) and
the previous best known results (or the optimal solutions) (fprev). Columns 4-6
give our results: the best objective value (fbest), the best solution gap to the best
known objective values (gbest), the average CPU time in minutes for reaching the
best objective values (Time). Furthermore, the last row (Average) indicates the
summary of the average performance of our algorithm.

From Table 1, one observes that PBSO algorithm can stably reach the optimal
solutions for all the instances except one (t1d35.10). The average CPU time for

A Population-Based Strategic Oscillation Algorithm 55

Table 1. Computational results on the 25 RANDOM instances with n = 35

Instances n fprev fbest gbest Time(s)

t1d35.1 35 0.923 0.923 0% 6.94
t1d35.2 35 0.167 0.167 0% 7.04
t1d35.3 35 0.154 0.154 0% 6.96
t1d35.4 35 0.196 0.196 0% 7.77
t1d35.5 35 1.394 1.394 0% 7.05
t1d35.6 35 0.200 0.200 0% 7.91
t1d35.7 35 0.120 0.120 0% 6.65
t1d35.8 35 0.226 0.226 0% 7.73
t1d35.9 35 0.436 0.436 0% 7.13
t1d35.10 35 0.205 0.223 8.780% 7.29
t1d35.11 35 0.369 0.369 0% 7.19
t1d35.12 35 0.234 0.234 0% 7.26
t1d35.13 35 0.196 0.196 0% 7.62
t1d35.14 35 0.138 0.138 0% 7.43
t1d35.15 35 1.376 1.376 0% 6.39
t1d35.16 35 0.286 0.286 0% 7.49
t1d35.17 35 0.199 0.199 0% 7.27
t1d35.18 35 0.381 0.381 0% 7.87
t1d35.19 35 0.236 0.236 0% 7.91
t1d35.20 35 0.068 0.068 0% 7.35
t1d35.21 35 0.202 0.202 0% 6.28
t1d35.22 35 0.177 0.177 0% 6.83
t1d35.23 35 0.345 0.345 0% 8.07
t1d35.24 35 0.132 0.132 0% 7.51
t1d35.25 35 0.143 0.143 0% 7.24

Average 0.340 0.341 0.351% 7.29

Table 2. Computational results on the 25 RANDOM instances with n = 100

Instances n fprev fbest gbest Time(m)

t1d100.1 100 253.988 246.290 -3.031% 25.5
t1d100.2 100 288.372 282.933 -1.886% 25.6
t1d100.3 100 1307.432 1243.856 -4.863% 24.2
t1d100.4 100 7539.979 6995.723 -7.218% 23.42
t1d100.5 100 169.336 163.509 -3.441% 24.3
t1d100.6 100 395.035 391.431 -0.912% 22.4
t1d100.7 100 5936.281 5812.945 -2.078% 25.8
t1d100.8 100 2760.619 2750.802 -0.356% 25.1
t1d100.9 100 62.942 62.095 -1.346% 25.64
t1d100.10 100 162.942 154.812 -4.989% 24.0
t1d100.11 100 233.586 231.139 -1.048% 25.9
t1d100.12 100 236.696 234.014 -1.133% 25.1
t1d100.13 100 593.319 589.834 -0.587% 22.9
t1d100.14 100 249.162 243.739 -2.176% 26.74
t1d100.15 100 406.478 406.478 0% 23.1
t1d100.16 100 707.413 707.413 0% 25.15
t1d100.17 100 725.790 718.661 -0.982% 23.26
t1d100.18 100 622.942 621.686 -0.201% 30.1
t1d100.19 100 228.486 228.486 0% 22.6
t1d100.20 100 255.151 239.937 -5.962% 22.7
t1d100.21 100 228.590 222.969 -2.458% 23.2
t1d100.22 100 159.336 140.253 -11.977% 22.7
t1d100.23 100 1658.168 1588.758 -4.186% 23.4
t1d100.24 100 469.658 461.479 -1.741% 22.7
t1d100.25 100 644.782 627.066 -2.748% 21.9

Average 100 1051.859 1014.974 -3.507% 24.3

56 W. Xiao et al.

reaching the best known results is about 7.29 minutes. The average gap to the
previous best objective values is -0.001 for these small instances.

Table 2 discloses that PBSO algorithm can stably obtain better results for 22
instances and match the previous best objective values for the remaining three
instances. The average CPU time for reaching the best known results is about
24.33 minutes. The average gap to the previous best objective values is -37.198
for these instances.

In summary, our PBSO algorithm reached the optimal solutions for 24 out
of 25 instances with 35 vertices and improved 22 previous best results out of
25 instances with 100 vertices. Our algorithm obtains worse results only for one
small instance and matches the previous best results for 3 instances whose sizes
are 100. These results demonstrate the competitiveness of our PBSO algorithm
in terms of both solution quality and efficiency.

3.3 Comparison with other Reference Algorithms

In order to further evaluate our PBSO algorithm, we compare our results with
some best performing algorithms in the literature. For this purpose, we restrict
our attention to comparisons with four methods that have produced the best
results for many challenging instances. These methods are respectively named
GR in [3], TB&B in [8], EVPR in [6], and TS in [5].

Table 3 shows the best results of our PBSO algorithm compared with these
reference algorithms for the 25 large instances with n = 100. The results of the
four reference algorithms are directly extracted from [5]. Note that the number
of BKS in the table denotes the number of previous best known solutions that a
reference algorithm. From Table 3, it is clear that TB&B and GR are not able
to match any best known values, while TS obtains 12 best known values and
EVPR obtains 13 best known values. However, one should notice that our PBSO
algorithm can improve 22 out of these 25 previous best known solutions.

In particular, PBSO has -3.51% deviation with respect to the previous best
known solutions over these large random instances, while EVPR obtains a de-
viation 0.74% and the rest 3 algorithms obtain even worse deviations. However,
PBSO needs more computational time than other reference algorithms. It is dif-
ficult to exactly compare the computational time since difference algorithms use
different machines. On the other hand, our algorithm can obtain better solutions
in most cases, which deserves more computational time to some extent.

Table 3. Comparisons with other reference algorithms on the large instances with
n = 100

GR TB&B TS EVPR PBSO

Obj. funciton 288137.55 9614.23 1161.46 1058.78 1014.86
Avg. deviation 13001.93% 430.00% 5.79% 0.74% -3.51%
Number of BKS 0 0 12 13 25

A Population-Based Strategic Oscillation Algorithm 57

4 Analysis and Discussion

We now turn our attention to discussing and analyzing several important fea-
tures of the proposed PBSO algorithm, including the advantage of the strategic
oscillation over the simple local search and the parameters in the strategic os-
cillation.

4.1 Strategic Oscillation vs. Local Search

In order to ensure that the strategic oscillation local search makes a mean-
ingful contribution, we conduct experiments to compare the performance of the
strategic oscillation local search with simple local search on 10 random instances
t1d100.1, t1d100.2, . . . and t1d100.10 whose sizes are 100.

We replace the strategic oscillation local search with the simple local search
and compare two versions of our PBSO algorithm under exactly the same con-
ditions as before (the number of generations) and the results are reported in
Table 4. Once again, the following criteria are provided for each instance: the
best solution gap to the previous best known objective values (gbest) and the
average computational time (time).

Table 4. different local searchs on 25 random instances(n = 100)

simple local search strategic oscillation local search
Instance fprev fbest gbest tavr(m) fbest gbest tavr(m)
t1d100.1 253.988 263.224 3.6% 15.0 246.290 -3.03% 23.9
t1d100.2 288.372 318.757 10.5% 14.9 282.933 -1.88% 23.5
t1d100.3 1307.432 1383.311 5.8% 16.0 1243.856 -4.86% 22.8
t1d100.4 7539.979 7894.483 4.7% 17.5 6995.723 -7.21% 21.6
t1d100.5 169.336 176.63 4.3% 16.8 163.509 -3.44% 22.4
t1d100.6 395.035 455.503 15.3% 19.8 391.431 -0.91% 20.7
t1d100.7 5936.281 6441.776 8.5% 14.4 5812.945 -2.07% 24.48
t1d100.8 2760.619 3098.517 12.2% 16.2 2750.802 -0.36% 23.6
t1d100.9 62.942 62.781 0.3% 14.9 62.905 -1.34% 24.2
t1d100.10 162.942 180.91 11% 16.5 154.812 -4.9% 22.5
Average 1887.693 2027.589 7.62% 16.2 1810.521 -3.00% 22.9

For the 10 random instances, strategic oscillation local search performs better
than the simple local search in terms of the best solution gap (-3.00% for the
strategic oscillation local search against 7.62% for the simple local search) while
strategic oscillation local search performs worse in terms of the average compu-
tational time (22.963 for the strategic oscillation local search against 16.249 for
the general local search). This indicates that strategic oscillation local search
need more computational time with the same number of generations, implying
that strategic oscillation can avoid the disadvantage of falling into local optimum
trap to some extent. This experiment highlights the advantage of the strategic
oscillation local search and provides an empirical justification of its use for the
LOPCC.

58 W. Xiao et al.

200

250

300

350

400

450

500

550

600

650

700

ob
je
ct
iv
e
fu
n
ct
io
n
va
lu
es

0 30 60 90 120 150 180 210 240 270 300
Number of moves on t1d100.1

simple local search

β = 5, γ = 3

β = 1, γ = 7

β = 7, γ = 1

Fig. 1. Comparison among different parameters

4.2 β and γ in the Strategic Oscillation

Although the strategic oscillation local search combined with population-based
algorithm achieves better effect than the simple local search, we want to find
more details to where its advantages are from. So we are interested in observing
the change process of the objective function values in one descent. Otherwise,
we are curious about the two parameters β and γ. We want to know what their
function are in the strategic oscillation local search and the impacts of different
assignments on the local search. For this purpose, experiments are performed on
various instances. We present below in detail the results on the instance t1d100.1,
but these results are valid for other cases.

To implement this experiment, we consider four different local searches. One
is the simple local search, the rest three are strategic oscillation local search with
different values of the parameters of β and γ: (β, γ) = (7, 1), (β, γ) = (5, 3),
(β, (β, γ) = (1, 7). For each procedure, we record the objective function values
after every move until the procedures are over. Fig.1 shows the change process
of the objective function values during these different procedures.

From Fig.1, we first notice that these four local search take different numbers
of total moves to come to an end. The simple local search moves for about 100
steps and its descent is smooth. The strategic oscillation local search with (β,
γ) = (7, 1) has about 150 steps and there is a large undulation in its descent.
The strategic oscillation local search with (β, γ) = (1, 7) need about 120 steps
and descend with some serried small undulations. The strategic oscillation local
search with (β, γ) = (5, 3) moves about 210 steps and many adjacent medium
undulations appear in its drop line. Obviously, the last local search obtains best
objective function values.

A Population-Based Strategic Oscillation Algorithm 59

The simple local search is easy to fall into some trap and it ends at the
earliest. The rest three strategic oscillation local search are all able to overcome
some traps. The β decides when the local search enters into the next period and
it can adjust the size of the search space. The γ decides how many periods there
are and it controls the strength of the local search. When β is small and γ is big
(like (β, γ) = (1, 7)), the local search will search in a little space for many times
as well as serried small undulations. When β is big and γ is small (like (β, γ) =
(7, 1)), the local search will search in a large space for few times as well as a large
undulation. The increase of β bring about the larger search space, so it deserve
more search and γ should be bigger. That is whey the strategic oscillation local
search with (β, γ) = (5, 3) can have best performance. The two parameters β
and γ can also be considered as two aspects of the procedure, diversification and
intensification. If the value of β is bigger, the local search has high possibility
to find new variant solutions. When γ is very large, the procedure scans very
intensively in some search space. β and γ two important parameters and they are
related to each other very closely. This experiment also shows a clear advantage
to setting appropriate values for β and γ in order to achieve a desired effect.

5 Conclusions

In this paper, we have presented PBSO, a population based strategic oscillation
local search for solving the LOPCC problem. The proposed algorithm integrates
a number of original features. First, we have proposed a strategic oscillation local
search procedure for solving the problem. Second, we incorporate a population-
based strategy with the strategic oscillation local search. These strategies provide
the algorithm with a good tradeoff between intensification and diversification.

Experiments tested on a sets of 50 well-known random benchmark instances
have shown that this metaheuristic algorithm obtains competitive results in com-
parison with the previous best known objective values within a reasonable com-
putation time.

The success of the PBSO algorithm on the LOPCC problem reminds us that
the application of strategic oscillation local search and the population-based
algorithm for solving LOPCC is useful. Moreover, it is meaningful to apply the
strategic oscillation to other permutation problems.

Acknowledgments. This work was partially supported by the National Nat-
ural Science Foundation of China (Grant No. 61100144) and the Doctoral Fund
of Ministry of Education of China (Grant No. 20110142120081).

References

1. Lü, Z., Hao, J.K.: A memetic algorithm for graph coloring. European Journal of
Operational Research 203(1), 241–250 (2010)

2. Lü, Z., Glover, F., Hao, J.K.: A hybrid metaheuristic approach to solving the UBQP
Problem. European Journal of Operational Research 207(3), 1254–1262 (2010)

60 W. Xiao et al.

3. Benvenuto, N., Carnevale, N., Tomasin, S.: Optimum power control and ordering
in SIC receivers for uplink CDMA systems. In: IEEE International Conference on
Communications, ICC 4, pp. 2333–2337 (2005)

4. Bertacco, L., Brunetta, L., Fischetti, M.: The linear ordering problem with cumu-
lative costs. European Journal of Operational Research 189(3), 1345–1357 (2005)

5. Duarte, A., Laguna, M., Marti, R.: Tabu search for the linear ordering problem
with cumulative costs. Computational Optimization and Applications 48, 697–715
(2011)

6. Duarte, A., Marti, R., Alvarez, A., Angel-Bello, F.: Metaheuristics for the linear
ordering problem with cumulative costs. European Journal of Operational Re-
search 216(2), 270–277 (2012)

7. Villanueva, D.T., Fraire Huacuja, H.J., Duarte, A., Pazos R., R., Carpio Valadez,
J.M., Puga Soberanes, H.J.: Improving Iterated Local Search Solution for the Lin-
ear Ordering Problem with Cumulative Costs (LOPCC). In: Setchi, R., Jordanov,
I., Howlett, R.J., Jain, L.C. (eds.) KES 2010, Part II. LNCS (LNAI), vol. 6277,
pp. 183–192. Springer, Heidelberg (2010)

8. Righini, G.: A branch-and bound algorithm for the linear ordering problem with cu-
mulative costs. European Journal of Operational Research 186(3), 965–971 (2008)

9. Schiavinotto, T., Stützle, T.: The linear ordering problem: Instances, search space
analysis and algorithms. European Journal of Operational Research 177, 2033–2049
(2007)

10. Glover, F., Hao, J.K.: The case for strategic oscillation. Annals OR 183(1), 163–173
(2011)

11. Ruiz, R., Stützle, T.: A simple and effective iterated greedy algorithm for the
linear ordering problem with cumulative costs. European Journal of Operational
Research 177, 2033–2049 (2007)

12. Reinelt, G., Hofmann, H.H., Wille, R.: The linear ordering problem: Algorithms
and applications. Research and Exposition in Mathematics 8 (1985)

13. Laguna, M., Marti, R., Campos, V.: Intensification and diversification with elite
tabu search solutions for the linear ordering problem. Computers & OR 26(12),
1217–1230 (1999)

14. Proakis, J.G.: Digital Comunnications, 4th edn. McGraw-Hill (2004)
15. Holma, H., Toskala, A.: WCDMA for UMTS: Radio access for Third generation

mobile communications. Wiley, New York (2000)
16. Glover, F., Laguna, M.: General purpose heuristics for integer programming-part

II. J. Heuristics 3(2), 161–179 (1997)
17. Glover, F.: Multi-start and strategic oscillation methods - Principles to exploit

adaptive memory. In: Laguna, M., Gonzales Velarde, J.L. (eds.) Computing Tools
for Modeling, Optimization and Simulation: Interfaces in Computer Science and
Operations Research, pp. 1–24 (2000)

A Study of Adaptive Perturbation Strategy

for Iterated Local Search

Una Benlic and Jin-Kao Hao

LERIA, Université d’Angers, 2 Bd Lavoisier, 49045 Angers Cedex 01, France
{benlic,hao}@info.univ-angers.fr

Abstract. We investigate the contribution of a recently proposed adap-
tive diversification strategy (ADS) to the performance of an iterated lo-
cal search (ILS) algorithm. ADS is used as a diversification mechanism
by breakout local search (BLS), which is a new variant of the ILS meta-
heuristic. The proposed perturbation strategy adaptively selects between
two types of perturbations (directed or random moves) of different in-
tensities, depending on the current state of search. We experimentally
evaluate the performance of ADS on the quadratic assignment problem
(QAP) and the maximum clique problem (MAX-CLQ). Computational
results accentuate the benefit of combining adaptively multiple pertur-
bation types of different intensities. Moreover, we provide some guidance
on when to introduce a weaker and when to introduce a stronger diver-
sification into the search.

Keywords: adaptive perturbation strategy, iterated local search, break-
out local search, quadratic assignment, maximum clique.

1 Introduction

To be successful, a heuristic approach needs to find a suitable balance between an
intensified and a diversified search. Intensification is the ability of the method
to examine in depth specific search areas while diversification is the capacity
of the method to diversify the search in order to find promising new search
areas. If the diversification is too weak, the search has a great chance to end
up cycling between two or several previously encountered local optima. On the
other hand, a too strong diversification is no better than a random restart and
may reduce the chances of finding better solutions in the following iterations.
Determining the right degree of diversification is not a straightforward task, since
it greatly depends on structural characteristics of the given instance such as the
distribution of local optima, the correlation between solutions, the number of
global optima, etc. Additionally, the optimal diversification degree required at
one stage of the search is not necessarily optimal at another stage. These facts
constitute the motivation for our adaptive diversification mechanism.

In this paper, we investigate the contribution of a new adaptive diversifica-
tion strategy (ADS) employed by a recent breakout local search (BLS) meta-
heuristic [3,4,5,6]. BLS is a variation of iterated local search (ILS) [9] since it

M. Middendorf and C. Blum (Eds.): EvoCOP 2013, LNCS 7832, pp. 61–72, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

62 U. Benlic and J.-K. Hao

combines a descent-based local search with a perturbation mechanism. However,
BLS has a particular focus on the importance of the perturbation phase. Based
on some information on the search history, it dynamically determines the num-
ber of perturbation moves, and adaptively chooses between two or several types
of perturbation moves of different intensities. In this work, we fix the number
of perturbation moves, and evaluate the efficiency of this adaptive multi-type
diversification on the quadratic assignment problem (QAP) and the maximum
clique problem (MAX-CLQ). More precisely, we integrate ADS into a basic ILS
algorithm and compare the performance of this adaptive diversification based
ILS against two other ILS versions based respectively on random and directed
perturbation moves. The obtained computational results accentuate the benefit
of combining adaptively multiple perturbation types of different intensities. Fur-
thermore, we analyze the distribution of local optima to provide some guidance
on when to introduce a weaker or a stronger diversification into the search.

2 Iterated Local Search with a Adaptive Diversification
Strategy

2.1 General Framework

The basic idea of iterated local search (ILS) is to alternate iteratively between
a local search phase to attain local optima, and a perturbation phase (applied
to the current or best found local optimum) to direct the search towards new
unexplored regions of the search space.

Alg. 1 shows the general framework of our adaptive diversification based ILS
(denoted by AD-ILS), which we later apply to two NP -hard problems consid-
ered in sections 3 and 4. Starting from an initial feasible solution, AD-ILS first
initializes the best-found solution Sbest, the tabu list H (see Section 2.2), the
counter ω for consecutive non-improving local optima, and the global iteration
counter iter (lines 1-5 of Alg. 1). While a stopping condition is not satisfied,
AD-ILS applies a simple descent (ascent in case of maximization) local search
to reach a local optimum S (lines 8-12 of Alg. 1). Each iteration of this descent-
based procedure searches the given neighborhood for the best solution to replace
the current solution, and stops if no improving neighbor exists (i.e., once local
optimality is reached). After each solution transition, AD-ILS updates the tabu
list H (see Section 2.2) and increments the global iteration counter iter.

If the quality of the local optimum S, reached in the last descent phase, is
better than the quality of the best-found solution Sbest, AD-ILS updates Sbest

and re-initializes the number of consecutive non-improving local optima ω (lines
13-15 of Alg. 1). Otherwise, ω is incremented by one (lines 16-17 of Alg. 1). If ω
exceeds a certain threshold T , it is reset to zero (lines 19-21 of Alg. 1).

In order to escape from the current local optimum S, AD-ILS applies its
perturbation mechanism ADS to S, and returns a perturbed solution which
becomes a new starting point for the next phase of the descent/ascent procedure
(line 22 of Alg. 1).

A Study of Adaptive Perturbation Strategy for Iterated Local Search 63

Algorithm 1. Adaptive Diversification-based Iterated Local Search
Require: The jump magnitude L, the threshold T and the tabu tenure γ.
Ensure: Solution Sbest.
1: S ← Initial Solution
2: Sbest ← S; /* Initialize the best-found solution Sbest */
3: H ← 0; /* Initialize the tabu list H */
4: ω = 0; /* Initialize the number of consecutive non-improving local opt. ω */
5: iter = 0; /* Initialize the global iteration counter iter */
6: while stopping condition not reached do
7: Let m be the best move eligible for S
8: while f(S ⊕ m) is better than f(S) do
9: S ← S ⊕ m /* Perform the best-improving move */
10: Hm ← Iter + γ /* Update tabu list, γ is the tabu tenure */
11: Iter ← Iter + 1
12: end while
13: if f(S) is better than f(Sbest) then
14: Sbest ← S
15: ω = 0
16: else
17: ω = ω + 1
18: end if
19: if ω > T then
20: ω = 0
21: end if
22: S ← Adaptive Diversification Strategy(S, H, ω, L, iter, T, γ) /* Sect. 2.2*/
23: end while

Since the local search phase is a simple decent/ascent procedure, it alone can-
not escape from a local optimum. The performance of AD-ILS thus strongly
depends on its perturbation mechanism ADS which is detailed in the next
section.

2.2 Adaptive Diversification Strategy (ADS)

The AD-ILS algorithm, that we apply to QAP (Section 3) and MAX-CLQ (Sec-
tion 4), employs a directed and a random perturbation to guide the search to-
wards new regions of the search space. This adaptive perturbation mechanism
is illustrated in Alg. 2.

The directed perturbation (DIRP) is based on the idea of tabu list from
tabu search [7]. It uses a selection rule that favors the move that minimizes
the degradation of the objective, under the constraint that this move is not
prohibited by the tabu list. The information for move prohibition is maintained
in a tabu list H , such that each element in H is the iteration number when
the corresponding move was last performed, plus the tabu tenure γ (represented
as a natural number). The tabu status of a move is neglected only if the move
leads to a new solution better than the best solution found so far. The directed
perturbation relies thus both on 1) history information which keeps track, for
each move, of the last time (iteration) when it was performed and 2) on the
quality of the moves to be applied for perturbation in order not to deteriorate
too much the perturbed solution. History-based diversifications have previously
been used in [2,8].

64 U. Benlic and J.-K. Hao

Algorithm 2. Adaptive Diversification Strategy(S,H, ω, L, iter, T, γ)
Require: Local optimum S, tabu list H, number of consecutive non-improving local optima visited

ω, jump magnitude L, global iteration counter Iter, threshold T , tabu tenure γ.
1: P ← Determine Probability for Directed Perturbation(ω, T) /* see Eq. 1 */
2: if (P > random[0.0, 1.0]) then
3: PERT = DIRP /* L moves of DIRP will be applied to S */
4: else
5: PERT = RNDP /* L moves of RNDP will be applied to S */
6: end if
7: for i := 1 to L do
8: S ← Perturbation Move(S, PERT) /* Apply a move m of the predetermined perturb.*/
9: Hm ← Iter + γ
10: Iter ← Iter + 1
11: if f(S) is better than f(Sbest) then
12: Sbest ← S
13: ω = 0
14: end if
15: end for

The random perturbation (RNDP) is the most popular type of perturbation
for ILS algorithms. It consists in performing randomly selected moves.

It is obvious that DIRP and RNDP introduce different balances between in-
tensification and diversification. More precisely, DIRP is more oriented towards
search intensification than RNDP since it considers the quality of moves in or-
der not to degrade too much the resulting solution. The search thus has greater
chances to end cycling between two or more local optima if DIRP is used alone.
On the other hand, RNDP may prevent the search from cycling, but it may as
well decrease the chances of finding a global optimum by passing too quickly to
new regions while promising regions were not sufficiently exploited.

To insure the best balance as possible between an intensified and a diversified
search, the adaptive diversification strategy ADS applies probabilistically DIRP
and RNDP. The probability of applying a particular type of perturbation is de-
termined dynamically depending on the search state, i.e., the current number ω
of consecutive non-improving attractors visited (lines 13-21 of Alg. 1). The idea
is to apply more often directed perturbations (with a higher probability) as the
search progresses towards improved new local optima (the non-improving con-
secutive counter ω is small). With the increase of ω, the probability of using the
directed perturbations progressively decreases while the probability of applying
the random moves increases for the purpose of a stronger diversification.

Additionally, it has been observed from an experimental analysis that it is
useful to guarantee a minimum of applications of DIRP. Therefore, we constrain
the probability P of applying DIRP to take values no smaller than a threshold
P0:

P =

{
e−ω/T if e−ω/T > P0

P0 otherwise
(1)

Once the type of perturbation is determined (lines 1-6 of Alg 2), AD-ILS applies
L moves of the selected perturbation to the current local optimum S (lines 7-15
of Alg 2).

A Study of Adaptive Perturbation Strategy for Iterated Local Search 65

3 Case Study I: Quadratic Assignment Problem (QAP)

3.1 Problem Description

The quadratic assignment problem (QAP) is a well-known NP -hard problem
which consists in assigning at minimal cost a set of n locations to a given set
of n facilities, given a flow fij from facility i to facility j for all i, j ∈ {1, ..., n}
and a distance dab between locations a and b for all a, b ∈ {1, ..., n}. Let Π
denote the set of the permutation functions π : {1, ..., n} → {1, ..., n}, QAP can
mathematically be formulated as follows:

minπ∈ΠC(π) =
n∑

i=1

n∑
j=1

fijdπiπj (2)

where f and d are the flow and distance matrices respectively, and π ∈ Π is
a solution where πi represents the location assigned to facility i. The problem
objective is then to find a permutation π∗ in Π that minimizes the sum of the
products of the flow and distance matrices, i.e., C(π∗) ≤ C(π), ∀π ∈ Π .

3.2 Neighborhood Relation and Its Exploitation

A candidate solution for QAP can be encoded as a permutation π of {1, ..., n},
such that πi denotes the location assigned to facility i ∈ {1, ..., n}. Like many
existing local search methods for QAP, our ILS employs the swap move to π
which consists in exchanging the locations of two facilities.

The neighborhood N(π) of a solution π is then defined as the set of all the
permutations that can be obtained by exchanging any two values πu and πv, i.e.,
N(π) = {π′ : π′

u = πv, π
′
v = πu, u
= v and π′

i = πi, ∀i
= u, v}. The size of N(π)
is thus equal to n(n− 1)/2.

The local search phase of ILS explores the whole neighborhood N(π) to find
the best swap move which is then applied to π to obtain a new solution. This
process is repeated until a local optimum is reached. To evaluate the whole
swap neighborhood N(π) in O(n2) time, we use an effective strategy which
incrementally updates the objective variation of each move [10].

3.3 Perturbation Types Combined with ADS

The directed perturbation (see Section 2.2) applies a swap move that minimizes
the value of the objective function C, under the constraint that the move has not
been applied during the last γ iterations (γ is the tabu tenure that takes a random
value from a given range). The eligible moves for the directed perturbation are
identified by the set A such that:

A = {swap(u, v) : min{δ(π, u, v)}, Huv < Iter or (δ(π, u, v) + c) < cbest, u
= v}

where H is the tabu list that keeps track of the iteration number when a move
was last performed plus γ, Iter the current iteration number, c the cost of the

66 U. Benlic and J.-K. Hao

current solution, and cbest the cost of the best solution discovered so far. A larger
value of γ implies stronger diversification.

The random perturbation simply performs swap moves that are selected uni-
formly at random.

Our AD-ILS for QAP combines and applies these two types of perturbations
as explained in Section 2.2.

3.4 Experimental Results and Comparisons

To evaluate the efficiency of the proposed AD-ILS algorithm for QAP, we carry
out experiments on a set of 16 difficult QAPLIB instances1 of three different
types (unstructured instances, real-life like instances, grid-based instances).

We contrast the results of AD-ILS with those obtained with two other ILS
versions which respectively employ perturbation strategies based on directed
(DIR-ILS) and random moves (RND-ILS). For all the three ILS versions, the
number of perturbation moves is L = 0.15n. For both AD-ILS and DIR-ILS,
the tabu tenure γ takes a random value in the range [0.9n, 1.1n]. For AD-ILS,
the setting of the parameters used for adaptive perturbation is P0 = 0.9 and
T = 2500. This setting of parameters is determined by a preliminary experiment
and can be justified to some extent by the analysis provided in Section 5. We
make 20 independent executions per instance, with the time limit per run set to
2 hours.

Table 1. Computational comparison of AD-ILS with DIR-ILS and RND-ILS on 16
hard QAP instances

Instance AD-ILS DIR-ILS RND-ILS
Name BKR %ρbest %ρavg t(m) %ρbest %ρavg t(m) %ρbest %ρavg t(m)
tai40a 3139370 0.000(12) 0.030 30.2 0.000(14) 0.022 41.5 0.000(3) 0.116 49.4
tai50a 4938796 0.000(4) 0.121 62.3 0.000(3) 0.136 60.8 0.301(0) 0.576 58.0
tai60a 7205962 0.000(1) 0.359 65.9 0.191(0) 0.400 57.9 0.313(0) 0.837 47.9
tai80a 13499184 0.651(0) 0.764 67.8 0.600(0) 0.755 66.7 0.812(0) 1,179 43.9
tai100a 21052466 0.626(0) 0.804 59.7 0.648(0) 0.788 50.6 0.948(0) 1,218 68.2
tai80b 818415043 0.000(9) 0.423 34.2 0.000(1) 0.755 28,4 0.000(9) 0.001 65.4
tai100b 1185996137 0.000(12) 0.253 17,9 0.000(6) 0.382 37.9 0.000(10) 0.001 39.2
tai150b 498896643 0.000(1) 0.322 68.6 0.161(0) 0.429 80.2 0.023(0) 0.138 84.5
sko81 90998 0.000(20) 0.000 11.8 0.000(20) 0.000 2.7 0.011(0) 0.032 65.0
sko90 115534 0.000(7) 0.045 14,7 0.000(6) 0.063 24,6 0.011(0) 0.040 74.2
sko100a 152002 0.000(12) 0.006 11,7 0.000(8) 0.022 15,9 0.045(0) 0.069 64.1
sko100b 153890 0.000(20) 0.000 15,4 0.000(16) 0.019 16,9 0.016(0) 0.045 55.2
sko100c 147862 0.000(20) 0.000 9,8 0.000(19) 0.021 11,6 0.009(0) 0.046 69.4
sko100d 149576 0.000(10) 0.002 61,2 0.000(11) 0.066 29,6 0.044(0) 0.076 59.6
sko100e 149150 0.000(18) 0.000 40,3 0.000(16) 0.034 16,7 0.011(0) 0.030 69.8
sko100f 149036 0.000(20) 0.000 23,3 0.000(15) 0.013 23,1 0.023(0) 0.063 60.2
Average 0.080 0.196 38.9 0.100 0.244 37.5 0.160 0.279 60.9

Table 1 shows for each algorithm the best (column %ρbest) and average (col-
umn %ρavg) percentage deviation from the best-known result (column BKR)
obtained over 20 runs. The percentage deviation %ρ is computed as %ρ =
100(z − BKR)/z[%], where z is the result obtained by a given approach and

1 http://www.seas.upenn.edu/qaplib/

http://www.seas.upenn.edu/qaplib/

A Study of Adaptive Perturbation Strategy for Iterated Local Search 67

BKR the best-known objective value. Next to the percentage deviation ρbest, we
indicate in parentheses the number of times the best-known solution was found
over 20 executions. Moreover, we provide the average times in minutes required
to reach the returned solution after a trial. The best results are indicated in
bold. The averaged results are provided in the last row.

From the results in Table 1, we can make the following conclusions. In most
cases, the best performance is obtained with AD-ILS which reports an aver-
age %ρavg of 0.196 (vrs. 0.244 for DIR-ILS and 0.279 for RND-ILS) over the
16 QAP instances. Indeed, AD-ILS is unable to attain the best-known result
from the literature only for two instances (tai80a and tai100a), while DIR-ILS
and RND-ILS are unable to reach the best-known objective value for 4 and
13 instances respectively. The worst performance on the QAP instances is thus
obtained with the RND-ILS algorithm, except for three real-life like instances
(i.e., tai80b, tai100b and tai150b) for which RND-ILS algorithm insures the best
performance. The Posthoc test reveled that AD-ILS statistically outperforms
RND-ILS with a p-value of 0.016. In Section 5, we provide an explanation for
these performances based on a landscape analysis. In terms of computing times,
AD-ILS and DIR-ILS show comparable performances with an average time of
38.7 and 37.5 minutes respectively for the 16 instances, while RND-ILS requires
on average around 70 minutes. These results show the advantage of applying
directed or adaptive perturbations over the classic random perturbations.

4 Case Study II: Maximum Clique Problem (MAX-CLQ)

4.1 Problem Description

Given an undirected graph G = (V,E) where V is the set of vertices and E the
set of edges, a clique C of G is a subset of V such that all the vertices in C
are pairwise adjacent, i.e., ∀v, u ∈ C, {v, u} ∈ E. The maximum clique problem
(MAX-CLQ) is to find a clique C of the maximal cardinality. It is one of the
first problems shown to be NP -complete.

4.2 Neighborhood Relations and Their Exploitation

For solution transformations, ILS employs four distinct move operators (moves
for short) whose basic idea is to generate a new clique from the current clique C
by adding vertices v ∈ V \ C to C, swapping vertices u and v such that u ∈ C
and v ∈ V \ C, or removing vertices v ∈ C from C.

Three sets PA, OM and OC are involved in the definition of these moves. The
vertex set PA consists of nodes excluded from the clique C that are connected
to all the vertices in C, i.e., PA = {v : v /∈ C, ∀u ∈ C, {v, u} ∈ E}.

The OM set consists of vertex pairs (v, u) such that v is excluded from C and
is connected to all vertices in C except to vertex u ∈ C, i.e.,
OM = {(v, u) : v /∈ C and u ∈ C, |N(v) ∩ C| = |C| − 1, {v, u} /∈ E}, where
N(v) = {i : i ∈ V, {i, v} ∈ E}.

68 U. Benlic and J.-K. Hao

The OC set consists of all the vertices excluded from the clique C, i.e., OC =
{v : V \ C}.

The four moves M1 to M4 can then be defined as follows:

M1: Select a vertex v ∈ PA and insert it into C. After this move, the change in
the objective function is given by the following expression: Δ = wv.

M2: Select a vertex pair (v, u) ∈ OM . Insert v into C and remove u from C.
The change in the objective function can be computed as: Δ = wv − wu.

M3: Select a vertex v ∈ C and remove it from C. The change in the objective
function is given as: Δ = −wv.

M4: Select a vertex v ∈ OC such that (wv+
∑

{v,u}∈E,u∈C wu) ≥ α∗f(C), where

f(C) is the current solution cost and 0 < α < 1. Add v to C. Repair the
resulting clique C by removing from C all vertices x such that {v, x} /∈ E.

The descent-based local search phase of ILS consists in identifying the best move
m from the union M1 ∪M2 and applying it to C to obtain a new solution. This
procedure is repeated until a local optimum is reached. The directed perturbation
(see Section 4.3) applies a move m from M1∪M2∪M3. For random perturbation
(see Section 4.3), m is selected from M4.

4.3 Perturbation Types Combined with ADS

As previously explained in Section 2.2, the directed perturbation is based on
the tabu search principles and favors non-tabu moves that minimize the cost
degradation. Move prohibition is determined in the following way. Each time a
vertex v is added into the clique C, it can be removed from C without restrictions.
However, each time v is dropped from C, it is forbidden to place it back to C
for γ iterations. The value of γ is determined by the following relation:

γ = φ+ random(|OM |),

where φ is a coefficient and random is a function which returns at random a value
ranging from 1 to |OM | (the number of elements in the OM set, see Section 4.2).

The eligible moves for the directed perturbation are identified by the set A
such that:

A = {m : m ∈ {M1 ∪M2 ∪M3},max{Δm}, prohibited(m) = false or
(Δm + f(C)) > fbest}

where Δm is the change in the objective function after performing move m (see
Section 4.2). Note that the directed perturbation considers all the eligible moves
from the union of three types of moves M1, M2 and M3 (see Section 4.2).

The random perturbation, which is significantly stronger than the directed
perturbation, consists in performing moves randomly selected from the set of
moves M4 (see Section 4.2). The degree of random perturbation can be adjusted
by changing the value of parameter α (0 < α < 1). If α ≈ 0, the random
perturbation is very strong and can be compared to a random restart. If α ≈ 1,
the strength of the random perturbation is insignificant.

A Study of Adaptive Perturbation Strategy for Iterated Local Search 69

4.4 Experimental Results and Comparisons

We report computational results using 6 instances from the BHOSLIB bench-
mark2 and 11 instances from the more popular DIMACS benchmark3. To evalu-
ate the significance of ADS, we compare the performances of AD-ILS, DIR-ILS
and RND-ILS. For AD-ILS, the setting of the parameters used for adaptive per-
turbation is P0 = 0.9 and T = 2000. α = 0.8 for both AD-ILS and RND-ILS.
For both AD-ILS and DIR-ILS, the coefficient φ for tabu tenure is set to 7. The
number of perturbation moves L is set to L = 0.05|V | for AD-ILS and DIR-ILS,
while L = 0.01|V | for RND-ILS. This setting of parameters is determined by a
preliminary experiment. Each ILS version is independently executed 50 times,
with the time-limit per run set to 90 minutes.

Table 2 reports the computational results. Column BR indicates the best-
known or optimal (indicated with an asterisk) result. For each ILS, we report
the best (column |C|best) and the average result (column |C|avg) obtained over
50 independent runs, as well as the average computing time in minutes required
to reach the best reported result from column |C|best. Next to the best-found
clique value |C|best, we indicate in parentheses the number of times the best-
known solution was found over 50 executions.

Table 2. Computational comparison of AD-ILS with DIR-ILS and RND-ILS on 11
hard DIMACS instances and 6 large BHOSLIB instances

Instance AD-ILS DIR-ILS RND-ILS
Name BR |C|best |C|avg t(m) |C|best |C|avg t(m) |C|best |C|avg t(m)
brock800 1 23� 23(9) 21.36 43.8 23(4) 21.16 28.9 21(0) 20.98 4.0
brock800 2 24� 24(27) 22.62 34.6 24(4) 21.24 36.7 24(4) 21.24 25.6
brock800 3 25� 25(41) 24.46 41.6 25(15) 22.9 28.3 25(5) 22.3 47.5
brock800 4 26� 26(45) 25.5 22.5 26(37) 24.7 45.3 26(21) 23.1 43.7
C1000.9 68 68(50) 68.0 0.5 68(50) 68.0 0.1 59(0) 58.5 31.9
C2000.9 80 79(0) 77.66 55.0 79(0) 78.36 43.4 64(0) 62.88 44.3
keller6 59 59(50) 59.0 3.4 59(50) 59.0 0.5 50(0) 47.66 11.9
san1000 15� 15(12) 11.2 27.4 15(33) 13.34 30.9 15(1) 9.66 0.1
san400 0.7 1 40� 40(50) 40.0 18.5 40(50) 40.0 2.5 23(0) 21.84 43.5
san400 0.7 3 22� 22(50) 22.0 0.0 22(50) 22.0 0.0 22(50) 22.0 16.5
hamming10-4 40 40(50) 40.0 0.0 40(50) 40.0 0.0 38(0) 35.92 53.6
frb53-24-1 53� 53(2) 52.04 33.6 53(4) 52.08 36.0 46(0) 44.76 36.9
frb53-24-3 53� 53(22) 52.44 33.4 53(50) 53.0 20.7 46(0) 44.92 62.2
frb53-24-5 53� 53(37) 52.74 35.2 53(50) 53.0 17.8 46(0) 44.72 50.6
frb56-25-1 56� 56(1) 54.88 6.3 56(15) 55.3 33.2 49(0) 46.88 82.9
frb56-25-3 56� 56(2) 55.0 56.1 56(13) 55.26 56.7 48(0) 47.06 22.2
frb56-25-5 56� 56(33) 55.62 43.9 56(49) 55.98 10.9 48(0) 47.04 28.5

Like for QAP, AD-ILS significantly and statistically outperforms RND-ILS
with a p-value = 3.751173e-04 according to the Posthoc test, which once again
highlights the drawback of the classic random perturbation often used within
the general ILS framework. However, the contribution of ADS is less significant
in comparison with the directed perturbation strategy. Although both AD-ILS
and DIR-ILS can attain the best-known result for all the used instances except
for instance C2000.9, DIR-ILS outperforms AD-ILS in terms of average results

2 http://iridia.ulb.ac.be/~fmascia/maximum_clique/BHOSLIB-benchmark
3 http://cs.hbg.psu.edu/txn131/clique.html

http://iridia.ulb.ac.be/~fmascia/maximum_clique/BHOSLIB-benchmark
http://cs.hbg.psu.edu/txn131/clique.html

70 U. Benlic and J.-K. Hao

on all the BHOSLIB instances and 2 DIMACS instances (C2000.9 and san1000).
However, AD-ILS shows better performance than DIR-ILS on the four hard brock
instances. In Section 5, we justify these results with an analysis of distribution
of high quality local optima. In terms of average computing times, the difference
between AD-ILS and DIR-ILS is not very obvious.

5 Analysis

We observed from the computational comparisons (see sections 3.4 and 4.4) that
the best performance with ILS is often obtained when directed (weaker) and
random (stronger) perturbations are adaptively combined. On the other hand,
the results also showed that for some instances (e.g., BHOSLIB instances from
the MAX-CLQ benchmark) it is more useful to apply only the weak (directed)
perturbation, while for several other instances (i.e., QAP real-life like instances)
the best performance is achieved with random perturbation. In this section, we
try to justify such results by investigating the minimal distances between pairs of
medium or high quality local optima. To measure distance between solutions for
QAP and MAX-CLQ, we use the well-known hamming distance. Medium and
high quality local optima may be viewed as ‘strong’ attractors since it is more
likely that they are visited during the search than a low quality local optimum.
More precisely, given a set of medium or high quality local optima S, for all
loi ∈ S we determine the distance dmin between loi and some other solution
loj ∈ S which is the closest to loi, i.e., dmin = minloj∈S,loj 	=loid(loi, loj). For
each possible distance di ∈ [0,Max] (Max is the maximal distance), we then
count the number of time that di is the distance between lo ∈ S and another
solution in S which is the closest to lo.

The results of this study for 4 MAX-CLQ instances and 3 QAP instances are
given in Figure 1. The x-axis shows the normalized minimal distance between
two ‘strong’ attractors, while the y-axis shows the number of pairs of ‘strong’
attractors separated by the given distance. Figure 1 indicates that there exists
a significant difference in the distribution of medium and high quality local op-
tima for QAP and MAX-CLQ instances. For brock800-2, tai100b and sko100a
the minimal distances between two strong attractors are generally small, com-
pared to instances C2000.9, frb53-24-1 and tai100a. Intuitively, a weaker diver-
sification introduced into the search for such instances may cause the search to
cycle between ‘strong’ attractors that are not globally optimal solutions. For an
effective solving of these instances, strong diversifications are required. On the
other hand, for instances C2000.9, frb53-24-1 and tai100a, the distribution of
local optima prevents the search from cycling even with weak diversification.
For this reason it may be worthwhile to perform a more intensive search. These
observations justify to some extent why DIR-ILS provides the best performance
on C2000.9 and frb instances, while RND-ILS seems to be the best for real-life
like instances (i.e., tai80b, tai100b and tai150b).

A Study of Adaptive Perturbation Strategy for Iterated Local Search 71

0

200

400

600

800

1000

0.2 0.4 0.6 0.8 1

(a) brock800 2 (MAX-CLQ)

0
0

(b) C2000.9 (MAX-CLQ)

0

100

200

300

400

500

600

0 0.2 0.4 0.6 0.8 1

(c) san1000 (MAX-CLQ)

0

20

40

60

80

100

120

140

160

0 0.2 0.4 0.6 0.8 1

(d) frb53-24-1 (MAX-CLQ)

(e) tai100a (QAP) (f) tai100b (QAP)

(g) sko100a (QAP)

Fig. 1. Distribution of medium and high quality local optima (i.e., ‘strong’ attractors)
for 4 MAX-CLQ and 3 QAP instances of different types and structures

72 U. Benlic and J.-K. Hao

6 Conclusion

The purpose of this paper is to investigate the performance of the adaptive di-
versification strategy (ADS) which constitutes an essential component of the
recently proposed breakout local search (BLS). ADS adaptively applies a di-
rected (weaker) and a random (stronger) perturbation according to the current
search progress. We integrated ADS into the basic iterated local search (ILS)
framework and evaluated its performance on the quadratic assignment prob-
lem (QAP) and the maximum clique problem (MAX-CLQ). Numerical results
showed that the AD-ILS outperforms the standard ILS based on random moves
on almost all the tested instances, which highlights the drawback of this classic
perturbation strategy. Moreover, AD-ILS outperforms on most QAP instances
and on several hard MAX-CLQ instances the ILS version which applies solely
directed perturbation moves. We performed an analysis of the distribution of
local optima to provide some guidance on when to introduce a weaker and when
to introduce a stronger diversification into the search.

Acknowledgment. We are grateful to the referees for their comments. The
work is partially supported by the Pays de la Loire Region (France) within the
RaDaPop (2009-2013) and LigeRO (2010-2013) projects.

References

1. Aarts, E.H.L., Lenstra, J.K.: Simulated Annealing. In: Local Search in Combina-
torial Optimization, ch. 1, pp. 1–17. Wiley (1997)

2. Battiti, R., Protasi, M.: Reactive Search, a history-based heuristic for MAX-SAT.
ACM Journal of Experimental Algorithmics 2 (1996)

3. Benlic, U., Hao, J.-K.: A Study of Breakout Local Search for the Minimum Sum
Coloring Problem. In: Bui, L.T., Ong, Y.S., Hoai, N.X., Ishibuchi, H., Suganthan,
P.N. (eds.) SEAL 2012. LNCS, vol. 7673, pp. 128–137. Springer, Heidelberg (2012)

4. Benlic, U., Hao, J.K.: Breakout local search for maximum clique problems. Com-
puters & Operations Research 40(1), 192–206 (2013)

5. Benlic, U., Hao, J.K.: Breakout local search for the max-cut problem. Engineering
Applications of Artificial Intelligence (in press, 2013)

6. Benlic, U., Hao, J.K.: Breakout local search for the quadratic assignment problem.
Applied Mathematics and Computation 219(9), 4800–4815 (2013)

7. Glover, F., Laguna, M.: Tabu Search, 408 p. Kluwer Academic Publishers, Boston
(1998) ISBN: 0-7923-8187-4

8. Kelly, J.P., Laguna, M., Glover, F.: A study of diversification strategies for the
quadratic assignment problem. Computers & Operations Research 21(8), 885–893
(1994)

9. Lourenco, H.R., Martin, O., Stützle, T.: Iterated local search. In: Handbook of
Meta-heuristics. Springer, Heidelberg (2003)

10. Taillard, E.: Robust taboo search for the quadratic assignment problem. Parallel
Computing 17, 443–455 (1991)

Adaptive MOEA/D for QoS-Based Web Service

Composition

Mihai Suciu1, Denis Pallez2, Marcel Cremene3, and Dumitru Dumitrescu1

1 Babes-Bolyai University, Cluj Napoca, Romania
2 University of Nice Sophia-Antipolis

3 Technical University of Cluj-Napoca, Romania
mihai.suciu@ubbcluj.ro

Abstract. QoS aware service composition is one of the main research
problem related to Service Oriented Computing (SOC). A certain func-
tionality may be offered by several services having different Quality of
Service (QoS) attributes. Although the QoS optimization problem is mul-
tiobjective by its nature, most approaches are based on single-objective
optimization. Compared to single-objective algorithms, multiobjective
evolutionary algorithms have the main advantage that the user has the
possibility to select a posteriori one of the Pareto optimal solutions. A
major challenge that arises is the dynamic nature of the problem of com-
posing web services. The algorithms performance is highly influenced by
the parameter settings. Manual tuning of these parameters is not feasible.
An evolutionary multiobjective algorithm based on decomposition for
solving this problem is proposed. To address the dynamic nature of this
problem we consider the hybridization between an adaptive heuristics
and the multiobjective algorithm. The proposed approach outperforms
state of the art algorithms.

1 Introduction

The composition of web services with optimal Quality of Service (QoS) param-
eters is a well known problem in the service oriented computing field. Given a
business workflow that includes a set of abstract services and a set of concrete
service, that implements each abstract service, the goal is to find the optimal
combination of concrete services based on their QoS parameters. Given m ab-
stract services and n concrete services for each abstract service, there are nm

possibilities.
The search space is a discrete one since for each abstract service we need to

chose one concrete service (any combination is possible). This is a combinatorial
optimization problem. Finding the solution with the optimal QoS is an NP-hard
problem.

The problem stated previously is well known in domains like Service Oriented
Computing (SOC) and Search-based Software Engineering (SBSE) [3], [6], [17],
[25]. Various solutions are proposed based on different approaches such as: integer
programming, genetic and hill climbing algorithms [1], [3], [29], [19].

M. Middendorf and C. Blum (Eds.): EvoCOP 2013, LNCS 7832, pp. 73–84, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

74 M. Suciu et al.

Despite the fact that the QoS optimization problem is multiobjective by na-
ture few approaches based on multiobjective algorithms can be found in the
literature [15], [22], [24], [26], [28]. In most cases single-objective algorithms are
used to solve this problem. The user might prefer to see several good solutions
(Pareto optimal) and decide which is the best for himself. Criteria aggregation
offers only one solution. It is more natural to let the user decide the importance
of each objective than aggregating the objectives and ask the user to specify a
priori his/her preferences (this is not a trivial task). By using multiobjective
optimization, it is not necessary to define a priori an aggregation function. For
solving the QoS web composition problem few applications based on multiob-
jective optimization algorithms can be found in the literature

There are many variants of EAs which have different control parameters: pop-
ulation size, operators used, crossover and mutation probabilities, etc. Selecting
appropriate values is mainly done based on empirical studies, often a ”trial and
error” fashion is used for adjusting the values. Typically one parameter is ad-
justed at a time, which may lead to sub-optimal choices, since often it is not
known how the parameters interact. Such an approach is time consuming. In
the last couple of years there has been an increasing interest in designing meth-
ods that self-adapt these parameters [4], [9], [18].

The hybridization between a decomposition based multiobjective optimiza-
tion algorithm and an adaptive technique is proposed. An algorithm based on
a decomposition technique [2], [13] seems appropriate for solving this problem.
The new approach is validated on some well known multiobjective test problems,
and then we apply it to the web service composition problem. We compare our
results with some state of the art algorithms from the literature.

2 Multiobjective Optimization Prerequisites

Let us consider m objectives defined by the set {fi}i∈{1,...,m} of real valued
functions fi : X → R, X ⊆ R

n. F : X → R
m is the vector valued function

F (x) = (f1(x), ..., fm(x)). A Multiobjective Optimization Problem (MOP) can
be defined as: find x∗ = (x1, ..., xn) which optimizes the vector function F (x)
and satisfies the defined constraints.

In the case of minimization the standard MOP may be written as:

MOP :

⎧⎨
⎩

minimize F (x) = (f1(x), f2(x), ..., fm(x))
subject to: gi(x) ≥ 0, i=1,2,...,k,

hj(x) = 0, j=k+1,...,q.
(1)

where x = (x1, ..., xn) ∈ X .
x is a decision vector. X represents the parameter space and Y is the objective

space.
A decision vector x ∈ X is said to Pareto-dominate y ∈ X (x is better

than y), denoted as x ≺ y, if and only if ∀i ∈ 1, ...,m, fi(x) ≤ fi(y), and
∃j ∈ 1, ..., n such that fj(x) < fj(y).

A solution x ∈ X is Pareto-optimal if and only if �y ∈ X such that y ≺ x.

Adaptive MOEA/D for QoS-Based Web Service Composition 75

The Pareto-Optimal Set (POS) is defined as the set of all Pareto-optimal
solutions POS = {x ∈ X |�y ∈ X, y ≺ x}.

The Pareto-Optimal Front (POF) is defined as the set of all objective values
corresponding to the solution in POS. POF = {F (x)|x is nondominated}.

The QoS-based service optimization is a combinatorial multiobjective opti-
mization problem. Using a decomposition technique many-criteria problems may
be decomposed in a class of single-objective problems [2], [13]. Decomposition
techniques have good performance for combinatorial problems, another advan-
tage is the small computational load. One drawback to decomposition evolution-
ary approach is the dependency between the problem type and the algorithm
parameters. The same algorithm must solve different instances of this problem.
One instance is represented by the business workflow that describes the web ser-
vices composition (the interconnections of the composing web services, see [20]
for more details). Different web services are described by different workflows,
thus the search space changes for each workflow making it a very dynamical
problem. A set of parameters that work for one particular instance of the work-
flow may not yield good results for another workflow. It would be very difficult
to tune parameters for each particular workflow. A self-adaptive technique seems
the obvious choice for this kind of problem.

2.1 MOEA/D Technique

MOEA/D [30] is a multiobjective algorithm based on decomposition. It is a sim-
ple and powerful scalarizing based algorithm. MOEA/Ds advantages are scala-
bility with the number of objectives, computational efficiency, high performance
for combinatorial optimization problems.

It uses the weighted Tchebycheff approach in order to decompose the MOP
in a number of single-objective problems, each problem is represented by an
individual in the current population. The Tchebycheff norm is:

gλ(x, z) = max
i=1,...,m

{λi|fi(x)− zi|}, ∀x ∈ X

where z is an optimal point, the goal is to minimize gλ.
Each sub-problem is characterized by different weight vectors. The number

of uniformly distributed weight vectors used is equal to the number of sub-
problems that are to be optimized. The number of weights can be computed
as N =

(
H+m−1
m−1

)
where H is a predefined integer. These vectors satisfy the

conditions: ∑
λi = 1 and λi ∈ {0, 1

H
, ...,

H

H
}, i = 1, ...,m.

Another key feature of MOEA/D is the use of neighboring solutions for gener-
ating offsprings more efficiently. Based on Euclidean distance for each λ weight
vector T neighbors are computed. The set of T neighbors of λ is denoted by B(λ).
From this set the parents are selected. For each weight vector λ one offspring is
generated by crossover and mutation. If the offspring is better than its parents
it replaces them in the current population. A key step here is that the offspring

76 M. Suciu et al.

is also compared with each neighbor in B(λ) based on its decomposition, if it is
better it replaces that neighbor. This is an elitism step, it assures that only the
best solutions propagate through the search.

An archive is used to store non-dominated solutions. The archive has no effect
on the search. It is used only for storing the best individuals found during each
generation. If a newly generated offspring is better than an individual inside the
archive it simply replaces it.

Some adaptive techniques for MOEA/D parameters have been proposed in [5],
[11], [12],[16], [31]. These techniques try to self adapt the algorithms parameters:
weight vectors, neighbour size T , recombined individuals.

As a scalarizing function MOEA/D uses the Tchebycheff approach. In [11] the
possibility of using different decomposition techniques, according to the complex-
ity of the problem, is explored.

In [5] an adaptive mechanism for selective mating is proposed. The decom-
posed subproblems are classified in solved and unsolved, a subproblem is con-
sidered as solved if it is not improved in α generation. In the current generation
if a subproblem is solved it is skipped, the unsolved ones are recombined and
evaluated. Also the mating pool is adjusted. The mating candidates are selected
according to Euclidean distance in decision space.

An adaptive scheme for weight vectors generation is proposed in [12].Here the
weight vectors are adapted according to the geometrical characteristics of the
Pareto front. Uniform distributed vectors are generated using Mixture Uniform
Design. The hypervolume is used to evaluate these vectors and the Simplex
Method is used to adapt them in order to maximize the hypervolume.

In [31] an adaptation scheme for the neighborhood size is proposed, it is shown
that the adaptive version gives better results than the classic MOEA/D with the
neighborhood size fixed.

All approaches do not consider the adaptation of the evolutionary mechanism
used. So in this paper we address the adaptation of the parameters of the evolu-
tionary mechanism of MOEA/D and we apply this new approach to web services
composition.

2.2 Adaptation of Differential Evolution

Differential Evolution [23] is a continuous function evolutionary algorithm. There
are many adaptive versions of Differential Evolution [7]. From all the techniques
CoDE [27] and SaDE [21] seem the most simple and efficient.

Self adaptive Differential Evolution (SaDE) [21] is an adaptation technique
that uses the experience from previous generations. It adapts the trial vector
generation strategies and the parameters Cr and F . It assigns a probability
to each generation strategies, after a predefined number of generations these
probabilities are update by taking into account the best strategies (strategies
that generate individuals that pass to the next generation are assigned a higher
probability). Normally the algorithm uses four different trial vector genera-
tion strategies: DE/rand/1/bin, DE/rand-to-best/2/bin, DE/rand/2/bin, and

Adaptive MOEA/D for QoS-Based Web Service Composition 77

DE/current-to-rand/1. For the sake of simplicity for the multiobjective version
we use only: DE/rand/1/bin and DE/best/2/bin.

Each strategy is initialized with a probability pi = 0.5 and after a learning
period LP this probability is updated according to [21]. SaDE also adapts Cr
and F parameters. Cr is more sensible to problem type and complexity while F
parameter is tied to convergence speed. The algorithm performance depends on
Cr values and usually good values lie in a small interval.Cr values are random
generated according to a distribution with mean values Crm and deviation 0.1,
initially Crm = 0.5. After 5 generations new Cr values are randomly generated
using the distribution with μ = Crm and σ = 0.1. For 25 generations this
process is repeated keeping Cr values for which trial vectors are selected in favor
of parents to advance to the next generation. After these 25 generation the new
mean for the distribution is computed using the successful Cr values discovered.
F takes random values in the interval (0, 2] with μ = 0.5 and σ = 0.3.

Within most DE variants one strategy for generating the trial vector is used
per generation and only one control parameter setting for each trial vector. For
this reason the search ability of the algorithm could be limited. An improved
version of adaptive DE is proposed in [27]. By combining several effective trial
vector generation strategies with some suitable control parameter settings better
results can be obtained. This new method is called Composite DE (CoDE) and it
uses three trial vector generation strategies and three control parameter settings
that are randomly combined to generate the trial vector.

Three trial vector strategies are chosen: DE/rand/1/bin, DE/rand/2/bin, and
DE/current-to-rand/1. The three control parameter settings proposed: (a) [F =
1.0, Cr = 0.1], (b) [F = 1.0, Cr = 0.9], (c) [F = 0.8, Cr = 0.2].

In each generation for each target vector three trial vectors are generated
using the above strategies and a random control parameter setting chosen from
the candidate pool. The best one is selected for the next generation.

The values in the parameter settings pool are chosen because they exhibit
some specific advantages: a large value for Cr encourages diversity because little
information is inherited from the target vector. For small Cr values the trial
vector differs from the target vector only by one gene thus optimizing each
parameter independently. For this case better results are obtained for separable
problems. Large F values increase diversity thus promoting exploration and low
values focus the search on neighborhoods increasing exploitation.

3 Proposed Approach

As the Qos-based web service optimization problem is a combinatorial one we
use MOEA/D algorithm to solve it. To cope with the dynamic nature of the
QoS web service composition problem we endow MOEA/D with an adaptation
mechanism. MOEA/D is based on DE. Some very simple and yet powerful
adaptation techniques for DE have been propose [18]. We propose two adaptive
variants of MOEA/D obtained by considering the DE adaptive mechanisms
SaDE [21] and CoDE [27]. The new models are called MOEA/DC (Algorithm
1) and MOEA/DS (Algorithm 2).

78 M. Suciu et al.

Algorithm 1. Adaptive MOEA/DC

input : N, T - number of sub-problems, neighborhood size
output: EP - external population that holds the non-dominate solutions

1 Initialization: EP = ∅, generate weight vectors and compute B(λ);
2 for i ← 1 to N do
3 generate 3 offsprings using a random combination between a trial vector

generation strategy and the control parameters;
4 update the neighboring solutions;
5 update z∗ and EP ;

6 If stopping criteria is satisfied output the EP . Otherwise go to step 2;

Algorithm 2. Adaptive MOEA/DS

input : N, T, LP - number of sub-problems, neighborhood size, learning period
output: EP - external population that holds the non-dominate solutions

1 Initialization: EP = ∅, generate weight vectors and compute B(λ), Crm = 0.5;
2 for i ← 1 to N do
3 generate 2 offsprings based on the strategies rand/1/bin and best/2/bin;
4 update the neighboring solutions;
5 update z∗ and EP ;

6 after LP generations update Crm and the probabilities pi for the trial vector
generation strategies;

7 If stopping criteria is satisfied output the EP . Otherwise go to step 2;

In MOEA/DC the DE trial vector generation strategy DE/rand/1/bin used
inMOEA/D is replaced with the CoDE strategy - three trial vectors are created
and the best one is kept (lines 3-4). In MOEA/DS the DE trial vector genera-
tion strategy is replaced with the SaDE strategy and after LP generations the
parameter Crm and the probabilities for using each trial vector generation strat-
egy from the SaDE candidate pool are computed (line 6). By using an adaptive
scheme we avoid the drawback of manual tuning the algorithm parameters for
each specific workflow.

The genome we use for our problem is depicted in figure 1. It consists of
an array of integer values and has the length equal to the number of abstract
services. Each gene stores the index of the concrete service that realizes the
corresponding abstract service.

4 Numerical Experiments

For validating the new adaptive approaches we compare the classic version of
MOEA/D with MOEA/DC and MOEA/DS . As a basis for comparison the
WFG test suite [10] is considered. All WFG problems considered are bi-objective
with k = 4 and n = 24. For all algorithms we use a population size N = 100, a
neighborhood T = 8 and a maximum number of generations g = 250. For the

Adaptive MOEA/D for QoS-Based Web Service Composition 79

Fig. 1. Genome encoding

classic version of MOEA/D: Cr = 0.7, F = 0.2, and for MOEA/DS we use a
learning period LP = 25. The best results are obtained with these parameter
values.

We run each algorithm for 50 times and then we compute on the final popula-
tion the mean values for the quality indicators: Inverted Generational Distance
(IGD) and Hypervolume (HV). The IGD computes the average distance of the
reference Pareto set (P ∗) to the nearest solution in the solution set found (A).
IGD indicates the spread of A, small values are desirable.

IGD(A,P ∗) =
1

|P |
∑
u∈P

minv∈Ad(u, v)

The hypervolume represents the surface covered by the solution set and a refer-
ence point, high values mean that the front is near to the theoretical front and
it assures a good spread. The reference point for the HV indicator is (7, 7).

These values are presented in tables 1 and 2. The standard deviation for all
experiments is less that 10−4. From this tables we can see that MOEA/DC

performs better for all WFG problems, it gives higher HV values. The IGD is
the same forMOEA/D and MOEA/DC for six of the eight problems and better
that MOEA/DS . The classic version of the algorithm outperforms the adaptive
counterparts only for the WFG1 problem.

The advantages of the adaptive approach is illustrated in Figures 2, 3 for a
stopping criterion of gmax = 400 generations. Higher solution diversity is assured
because the DE parameters for crossover and mutation are chosen to balance the
search and exploitation. The Pareto front found by the adaptive version is closer
to the theoretical front. From our experiments we observe also an advantage
in convergence speed, at the same generation the front found by the adaptive
approach is closer to the real front.

After validating our approach we apply it to the QoS-based web service com-
position. We compute the hyprvolume indicator for various test scenarios.

Because MOEA/DC gives better results that the classic version of MOEA/D
and MOEA/DS we apply it to the QoS-based web service composition problem.

80 M. Suciu et al.

Table 1. IGD adn HV for MOEA/D, MOEA/DC , and MOEA/DS alforithms (av-
erage values over 50 independent runs). WFG 1-5 test problems are considered.

WFG 1 2 3 4 5

Alg. IGD HV IGD HV IGD HV IGD HV IGD HV

MOEA/D 0.002 31.126 0.002 42.358 1.645 43.766 0.006 40.12 0.009 40.213

MOEA/DC 0.003 34.057 0.002 43.266 1.597 43.968 0.006 41.827 0.009 41.486

MOEA/DS 0.005 29.144 0.003 34.84 6.236 36.457 0.006 36.55 0.009 39.62

Table 2. IGD and HV values for MOEA/D, MOEA/DC , and MOEA/DS alforithms
(average values over 50 independent runs). WFG 6-8 test problems are considered.

WFG 6 7 8

Alg. IGD HV IGD HV IGD HV

MOEA/D 0.009 41.358 0.01 42.091 0.004 40.652

MOEA/DC 0.009 41.486 0.01 42.242 0.004 40.782

MOEA/DS 0.009 39.355 0.009 34.71 0.004 33.162

We conducted experiments for 12 scenarios that include all combinations of
m ∈ {10, 20, 30, 40} abstract services and n ∈ {20, 30, 50} concrete services.
Three QoS parameters are considered: access time to a web service and cost
(these two objectives need to be minimized), and the third objective is user
rating (that needs to be maximized). We compare MOEA/DC with NSGA2 [8],
and GDE3 [14] algorithms. For all algorithms the population was limited to 100
individuals which were evolved for 400 generations.

Figure 4 presents a case with a business workflow of m = 20 abstract services
each of them having n = 20 concrete alternative services. For a low complexity
workflow the GDE3 algorithm finds a more diverse final non-dominated set.

If we increase the complexity of the workflow to m = 40 abstract services
and n = 40 concrete alternative services for each abstract service, the adaptive
version is able to assure good solution diversity and and find non-dominated
solutions compared to the other algorithms. Figure 5 depicts these results.

Table 3 presents the Hypervolume indicator values for some scenarios. It can
be observed that for low complexity business workflows the classic non-adaptive
algorithms produce better results. For m ∈ {10, 20} GDE3 is better. When
we increase the complexity of the problem, m ∈ {30, 40}, the search space is
considerably bigger, the adaptive version assures better performance with respect
to the hypervolume indicator. The hypervolumes sometimes increase although
the problems complexity is higher because the larger search space yields solutions
that are unavailable to smaller search spaces.

Adaptive MOEA/D for QoS-Based Web Service Composition 81

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

4

teoretic front
final population

Fig. 2. MOEA/D final population and
theoretical front for WFG1 test problem

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

teoretic front
final population

Fig. 3. MOEA/DC final population and
theoretical front for WFG1 test problem

0.1

0.2

0.3

60

80

100

120

140
60

80

100

120

140

ratingcost

tim
e

GDE3
adaptive MOEA/D
NSGA2

Fig. 4. Final populations for GDE3,
NSGA2, and MOEA/DC algorithms for
a business workflow with m = 20 abstract
services and n = 20 concrete services

0.18
0.2

0.22
0.24

0.26
0.28

0.3

1000

2000

3000

4000

5000

2000

2500

3000

3500

4000

4500

cost

rating

tim
e

GDE3
adaptive MOEA/D
NSGA2

Fig. 5. Final populations for GDE3,
NSGA2, and MOEA/DC algorithms for
a business workflow with m = 40 abstract
services and n = 40 concrete services

Table 3. Hypervolume indicator values for different workflow complexities m ∈
{10, 20, 30, 40} and n ∈ {20, 50} (mean values for 30 independent runs)

Algorithm
n/m

10/20 10/50 20/20 20/50 30/20 30/50 40/20 40/50

GDE3 652.84 480.12 450.92 465.2 465.4 440.3 410.3 411.5

NSGA2 649.49 475.28 444.12 461.7 461.8 424.2 402.6 390.9

MOEA/DC 620.38 468.14 439.1 455.2 470.3 480.6 468.1 465.7

82 M. Suciu et al.

5 Conclusions

An adaptive approach for the NP-hard problem of composing web services based
on their Quality of Service properties is proposed. An evolutionarymultiobjective
optimization approach for QoS problem is considered. A new adaptive version
of MOEA/D is proposed addressing the considered combinatorial problem.

We compare the proposed algorithm with the classic version of MOEA/D
then apply it to the QoS-based service composition problem and some state of
the art multiobjective algorithms are considered for comparison.

The results show the potential of this approach. Better performance is ob-
tained (with respect to multiobjective quality indicators) when the adaptive
approach is applied to standard test problems and some business workflows of
high complexity.

Acknowledgements. This research was supported by the national project code
TE 252 financed by the Romanian Ministry of Education and Research CNCSIS-
UEFISCSU. The first would like to thank for the financial support provided from
program co-financed by the Sectoral Operational Programme Human Resources
Development, Contract POSDRU/107/1.5/S/76841 with the title Modern
Doctoral Studies: Internationalization and Interdisciplinarity.

References

1. Bahadori, S., Kafi, S., Far, K.Z., Khayyambashi, M.R.: Optimal web service compo-
sition using hybrid ga-tabu search. Journal of Theoretical and Applied Information
Technology 9(1) (2009)

2. Benders, J.F.: Partitioning procedures for solving mixed-variables programming
problems. Numerische Mathematik 4(1), 238–252 (1962)

3. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: An approach for QoS-
aware service composition based on genetic algorithms. In: Proceedings of the 2005
Conference on Genetic and Evolutionary Computation, pp. 1069–1075 (2005)

4. Chakhlevitch, K., Cowling, P.: Hyperheuristics: Recent Developments. In: Cotta,
C., Sevaux, M., Sörensen, K. (eds.) Adaptive and Multilevel Metaheuristics. SCI,
vol. 136, pp. 3–29. Springer, Heidelberg (2008)

5. Chiang, T.-C., Lai, Y.-P.: Moea/d-ams: Improving moea/d by an adaptive mating
selection mechanism. In: IEEE Congress on Evolutionary Computation, CEC 2011,
pp. 1473–1480. IEEE (2011)

6. Comes, D., Baraki, H., Reichle, R., Zapf, M., Geihs, K.: Heuristic Approaches for
QoS-Based Service Selection. In: Maglio, P.P., Weske, M., Yang, J., Fantinato, M.
(eds.) ICSOC 2010. LNCS, vol. 6470, pp. 441–455. Springer, Heidelberg (2010)

7. Das, S., Suganthan, P.N.: Differential evolution: A survey of the state-of-the-art.
IEEE Trans. Evolutionary Computation 15(1), 4–31 (2011)

8. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evolutionary Computation 6(2), 182–197
(2002)

Adaptive MOEA/D for QoS-Based Web Service Composition 83

9. Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary
algorithms. IEEE Transactions on Evolutionary Computation 3(2), 124–141 (1999)

10. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test
problems and a scalable test problem toolkit. IEEE Transactions on Evolutionary
Computation 10(5), 477–506 (2006)

11. Ishibuchi, H., Sakane, Y., Tsukamoto, N., Nojima, Y.: Adaptation of Scalarizing
Functions in MOEA/D: An Adaptive Scalarizing Function-Based Multiobjective
Evolutionary Algorithm. In: Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao,
J.-K., Sevaux, M. (eds.) EMO 2009. LNCS, vol. 5467, pp. 438–452. Springer,
Heidelberg (2009)

12. Jiang, S., Cai, Z., Zhang, J., Ong, Y.-S.: Multiobjective optimization by decompo-
sition with pareto-adaptive weight vectors. In: ICNC, pp. 1260–1264 (2011)

13. Kathrin, K., Tind, J.: Constrained optimization using multiple objective program-
ming. Journal of Global Optimization 37, 325–355 (2007)

14. Kukkonen, S., Lampinen, J.: GDE3: the third evolution step of generalized differ-
ential evolution. In: Congress on Evolutionary Computation, pp. 443–450 (2005)

15. Li, L., Cheng, P., Ou, L., Zhang, Z.: Applying Multi-objective Evolutionary Algo-
rithms to QoS-Aware Web Service Composition. In: Cao, L., Zhong, J., Feng, Y.
(eds.) ADMA 2010, Part II. LNCS, vol. 6441, pp. 270–281. Springer, Heidelberg
(2010)

16. Liu, B., Fernández, F.V., Zhang, Q., Pak, M., Sipahi, S., Gielen, G.G.E.: An en-
hanced MOEA/D-DE and its application to multiobjective analog cell sizing. In:
IEEE Congress on Evolutionary Computation, pp. 1–7 (2010)

17. Liu, X., Xu, Z., Yang, L.: Independent global constraints-aware web service com-
position optimization based on genetic algorithm. In: IASTED International Con-
ference on Intelligent Information Systems, pp. 52–55 (2009)

18. Neri, F., Tirronen, V.: Recent advances in differential evolution: a survey and
experimental analysis. Artif. Intell. Rev. 33(1-2), 61–106 (2010)

19. Parejo, J.A., Fernandez, P., Cortes, A.R.: Qos-aware services composition using
tabu search and hybrid genetic algorithms. Actas de los Talleres de las Jornadas
de Ingenieŕıa del Software y Bases de Datos 2(1), 55–66 (2008)

20. Pop, F.-C., Pallez, D., Cremene,M., Tettamanzi, A., Suciu,M.A., Vaida,M.-F.: Qos-
based service optimization using differential evolution. In: GECCO, pp. 1891–1898
(2011)

21. Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with
strategy adaptation for global numerical optimization. IEEE Transactions on Evo-
lutionary Computation 13(2), 398–417 (2009)

22. Ross, S.M.: Introduction to Probability Models, 9th edn. Academic Press, Inc.,
Orlando (2006)

23. Storn, R., Price, K.: Differential evolution - a simple and efficient adaptive scheme
for global optimization over continuous spaces. Journal of Global Optimization 11,
341–359 (1997)

24. Taboada, H.A., Espiritu, J.F., Coit, D.W.: MOMS-GA: A Multi-Objective Multi-
State Genetic Algorithm for System Reliability Optimization Design Problems.
IEEE Transactions on Reliability 57(1), 182–191 (2008)

25. Vanrompay, Y., Rigole, P., Berbers, Y.: Genetic algorithm-based optimization of
service composition and deployment. In: Proceedings of the 3rd International Work-
shop on Services Integration in Pervasive Environments, SIPE 2008, pp. 13–18
(2008)

84 M. Suciu et al.

26. Wada, H., Champrasert, P., Suzuki, J., Oba, K.: Multiobjective Optimization of
SLA-Aware Service Composition. In: Proceedings of the 2008 IEEE Congress on
Services - Part I, SERVICES 2008, pp. 368–375. IEEE Computer Society (2008)

27. Wang, Y., Cai, Z., Zhang, Q.: Differential evolution with composite trial vector
generation strategies and control parameters. IEEE Trans. Evolutionary Compu-
tation 15(1), 55–66 (2011)

28. Yao, Y., Chen, H.: QoS-aware service composition using NSGA-II. In: Proceedings
of the 2nd International Conference on Interaction Sciences: Information Technol-
ogy, Culture and Human, ICIS 2009, pp. 358–363 (2009)

29. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.:
Qos-aware middleware for web services composition. IEEE Trans. Softw. Eng. 30,
311–327 (2004)

30. Zhang, Q., Li, H.: MOEA/D: A Multiobjective Evolutionary Algorithm Based
on Decomposition. IEEE Transactions on Evolutionary Computation 11, 712–731
(2007)

31. Zhao, S.-Z., Suganthan, P.N., Zhang, Q.: Decomposition-based multiobjective evo-
lutionary algorithm with an ensemble of neighborhood sizes. IEEE Trans. Evolu-
tionary Computation 16(3), 442–446 (2012)

An Analysis of Local Search for the Bi-objective

Bidimensional Knapsack Problem

Leonardo C.T. Bezerra, Manuel López-Ibáñez, and Thomas Stützle

IRIDIA, Université Libre de Bruxelles, Brussels, Belgium
{lteonaci,manuel.lopez-ibanez,stuetzle}@ulb.ac.be

Abstract. Local search techniques are increasingly often used in multi-
objective combinatorial optimization due to their ability to improve the
performance of metaheuristics. The efficiency of multi-objective local
search techniques heavily depends on factors such as (i) neighborhood
operators, (ii) pivoting rules and (iii) bias towards good regions of the
objective space. In this work, we conduct an extensive experimental cam-
paign to analyze such factors in a Pareto local search (PLS) algorithm for
the bi-objective bidimensional knapsack problem (bBKP). In the first set
of experiments, we investigate PLS as a stand-alone algorithm, starting
from random and greedy solutions. In the second set, we analyze PLS as
a post-optimization procedure.

1 Introduction

The efficiency of many successful heuristic algorithms for combinatorial opti-
mization problems (COPs) is based on the proper use of local search proce-
dures. In fact, many metaheuristics have incorporated the possibility of using
local search for example as daemon actions in ant colony optimization (ACO)
and as improvement procedures in genetic algorithms.

Pareto local search (PLS) [13] is a straightforward but effective extension of
single-objective local search to multi-objective problems. Given a set of solutions,
a PLS algorithm consists of selecting one solution at a time and exploring its
neighborhood, thus, generating new solutions. These new solutions are added to
the initial set, dominated solutions are eliminated, and the algorithm continues
until each of the solutions in the solution set has been explored.

The performance of PLS algorithms usually tends to depend on (i) the quality
of the input solutions, (ii) the definition of the neighborhood structure, (iii) the
pivoting rule used for exploring of the neighborhood and the possible use of
candidate lists, and (iv) restrictions on the set of solutions to keep the runtimes
manageable. For such reasons, PLS algorithms are well suited for analyzing the
impact of design features on the performance of local search procedures for
multi-objective combinatorial optimization problems (MCOPs).

In this paper, we implement a PLS algorithm for the bi-objective bidimen-
sional knapsack problem (bBKP), using the local search components commonly
found in the literature. Full factorial designs are used to investigate factors and
their eventual interactions. In the first set of experiments, we investigate PLS

M. Middendorf and C. Blum (Eds.): EvoCOP 2013, LNCS 7832, pp. 85–96, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

86 L.C.T. Bezerra, M. López-Ibáñez, and T. Stützle

as a stand-alone optimization method. The experimental setup used aims at
isolating the effect of the initial solution set, and the effect of the neighbor-
hood size. Results confirm PLS’s dependence on high-quality input solutions,
and that large neighborhoods have to be combined with candidate lists to limit
exploration and keep runtimes reasonable. In the second set of experiments, we
analyze PLS as a post-optimization method. Two algorithms are used for gener-
ating input solutions: (i) a simply greedy procedure, and (ii) AutoMOACO, the
best-performing multi-objective ant colony optimization (MOACO) algorithm
for the bBKP. Results show that PLS is able to significantly improve the quality
and size of the approximation fronts generated by both algorithms.

The remainder of this paper is organized as follows. Section 2 introduces some
basic definitions and presents PLS. Section 3 defines the bBKP and presents the
PLS algorithm implemented. Section 4 explains the experimental setup, while
the experimental results are discussed in Sections 5 and 6. Finally, conclusions
and possibilities for future work are discussed in Section 7.

2 Pareto Local Search

Pareto local search (PLS) is a stochastic local search method for tackling multi-
objective problems based on a natural extension of single-objective local search
approaches [13]. To fully understand PLS, some background notions on multi-
objective optimization are required.

In an MCOP, solutions are compared not based on a single objective value,
but on a vector of objective values. Given a maximization problem with objec-
tives f i, i = 1, . . . , k, a solution s is said to be better (or to dominate) another
solution s′ if ∀i, f i(s) ≥ f i(s′) and ∃ i, f i(s) > f i(s′). If neither solution domi-
nates the other, they are said to be nondominated. The goal of multi-objective
optimizers is to find the set of nondominated solutions w.r.t. all feasible solu-
tions, the Pareto set. Since this may prove to be computationally unfeasible,
multi-objective metaheuristics have been used to find approximation sets, i.e.,
sets whose image in the objective space best approximates the Pareto set image.

PLS algorithms use the concept of dominance to extend single-objective local
search to multi-objective problems. Starting from an initial set of solutions A0

(which can also be a singleton), PLS selects at each iteration an unexplored
solution s ∈ A, the current set of non-dominated solutions, and explores the
neighborhood of s, generating new solutions. If these new solutions satisfy the
algorithm’s acceptance criterion, they are added to A. Once the neighborhood
of s is explored, s is marked as explored. The algorithm stops when all solutions
in A have been explored. The three main steps of PLS as shown in Algorithm 1
can be summarized as follows:

Selecting a solution to be explored. The method NextSolution chooses
the next solution to be explored. The original PLS chooses the next solution
uniformly at random. More recently, other possibilities have been considered,
such as selection based on the optimistic hypervolume improvement [6].

An Analysis of Local Search for the bBKP 87

Algorithm 1. Pareto Local Search

Input: An initial set of nondominated solutions A0

1: explored(s) ← false ∀ s ∈ A0

2: A ← A0

3: repeat
4: s ← NextSolution(A0)
5: for all s′ ∈ Neighborhood(s) do
6: if Acceptance(s, s′,A) then
7: explored(s′) ← false

8: A ← Update(A0, s
′)

9: end if
10: end for
11: explored(s) ← true

12: A0 ← {s ∈ A | explored(s) = false }
13: until A0 = ∅
Output: A

Exploring the neighborhood. Given a solution s, the method Neighbor-
hood(s) generates the set of neighbor solutions. Two pivoting rules are useful
here: (i) first, where the neighborhood exploration stops at the first accepted
neighbor, or; (ii) full, where the neighborhood of s is explored fully and all
possible neighbors of s are examined.

Accepting new solutions. Given a solution s and a neighbor solution s′, the
method Acceptance(s, s′,A) determines whether s′ is considered an accept-
able solution or not. Two common possibilities are: (i) dominance, where s′

is only accepted if s′ dominates s, or; (ii) nondominance, where s′ is accepted
in case s′ is nondominated w.r.t. A. The first criterion generates a higher
pressure towards good solutions but it may lead to early stagnation. When
using nondominance, the output is likely a well distributed set, but it may
lead to high computation times.

Dubois-Lacoste et al. [7] present a review of PLS, highlighting its use both as
a stand-alone procedure and in hybrid algorithms. Regarding stand-alone PLS,
the authors identify studies focusing on time-limited experiments [10], on any-
time behavior [6] and on how to restart or continue the search after PLS con-
verges [1,9,4]. Regarding PLS as a post optimization procedure, Dubois-Lacoste
et al. [5] have proposed algorithms that are currently state-of-the-art for several
bi-objective flowshop problems.

3 Applying PLS to the bBKP

The bi-objective bidimensional knapsack problem is a widely-used bi-objective
benchmark problem [14,12], and is a special case of the general multi-objective
multidimensional knapsack problem (moMKP), which is formalized as follows:

max f c(x) =

n∑
i=1

pcixi c = 1, . . . , k s.t.

n∑
i=1

wj
i xi ≤ Wj j = 1, . . . ,m (1)

where each item i has k profits and m costs, f c is the c-th component of the
objective vector f , n is the number of items, pci is the c-th profit of item i, wj

i is

88 L.C.T. Bezerra, M. López-Ibáñez, and T. Stützle

Table 1. Methods used for computing the weights used by SolutionOrdering

Method Formula Description

equal λ = 0.5 equal weights

random-discrete λ ∈ {0, 1} uniformly randomly chosen

random-continuous λ ∈ [0, 1] uniformly randomly chosen

largest-gap λ = i, min(wi
s) privileges dimension with more free space

smallest-gap λ = i, max(wi
s) privileges dimension with less free space

highest-profit λ = i, max(f i(s)) privileges objective with the highest value

lowest-profit λ = i, min(f i(s)) privileges objective with the lowest value

proportional-same λ = w1
s/(w

1
s + w2

s) proportional to the loads

proportional-opposite λ = w2
s/(w

1
s + w2

s) inversely proportional to the loads

the j-th cost of item i, Wj is the j-th capacity of the knapsack, and xi ∈ {0, 1}
defines if item i is included in the knapsack (xi = 1) or not (xi = 0). The set
of feasible solutions is X ⊆ {0, 1}n. The bBKP is a special case of the moMKP
where k = m = 2.

In this paper, a solution x for the bBKP is also represented as a list s of
size n, where the first ns ≤ n items are considered to be in the knapsack.
Furthermore, each solution has as an associated profit vector ps = (p1s, p

2
s),

where pcs =
∑n

i=1 p
c
ix

s
i , c = 1, 2, and a load vector ws = (w1

s , w
2
s), where wj

s =∑n
i=1 w

j
i x

s
i , j = 1, 2.

Two methods have been implemented for generating the initial solution(s)
for PLS: (i) random, where one or more random solutions are generated, and
(ii) greedy, where a set of greedy solutions is generated. Random solutions are
generated by choosing an item uniformly at random at each construction step,
until no more items can be added due to the capacity constraints. When using
greedy solutions, a set of linearly uniformly distributed weights Λ = {λ1, . . . , λz}
is generated, where z is the number of input solutions. For each λ ∈ Λ, a greedy
solution is generated using one of the following heuristic functions [12]:

η1(i) =
λ p1i + (1− λ) p2i

m∑
j=1

wj
i

η2(i) =
λ p1i + (1− λ) p2i
m∑
j=1

wj
i

Wj − wj
s + 1

(2)

All actions related to neighborhood exploration are encapsulated in the proce-
dure Neighborhood. This procedure systematically explores the neighborhood of
a solution s, returning a set of neighbors. The neighborhood operator used is
the r-remove operator, which removes up to r items from the knapsack. In our
solution representation, removing one item at the i-th position of the list means
exchanging it with the last selected item, i.e., the item at position ns of the list,
and decreasing the value of ns by one.

Solutions are reconstructed by filling the knapsack with items found at posi-
tions i = ns+r, . . . , n of the list, in the order they appear. Since biasing the search

An Analysis of Local Search for the bBKP 89

is important, in the beginning of the algorithm items not selected in the input
solution are ordered. Formally, given an input solution s, let IN (s) = {i | si = 1}
be the set of ns items inside the knapsack and OUT (s) = {i | si = 0} be the
set of items outside the knapsack. The procedure SolutionOrdering is used to
order items xi ∈ OUT (s) in a nondecreasing order according to their heuristic
value. The heuristics used for this ordering are the same presented in Eq. 2. The
weights used by the heuristic functions are generated on a per solution basis.
Given a solution s, we tested nine methods for computing λ (Table 1).

For efficiency, candidate lists are used to constrain the set of items that are
considered for removal; in other words, items that are not member of the candi-
date list are never considered for removal in a current solution. Given a solution
s, the candidate list of items for removal contains the L last items of the list,
i.e., items at positions i, ns − L < i ≤ ns. Two methods have been used for
determining parameter L: (i) all, where L = ns, and (ii) input, where L is input
by the user.

The pseudocode for Neighborhood can be seen on Algorithm 2. Cr stands for
a combination of r items, whereas C∗ stands for a combinations of any number
of items. Accepted checks if s and s′ are nondominated. Finally, the search is
controlled by one of the following pivoting-rules:

1. remove-first : given that the first accepted neighbor is generated by the re-
moval of the item found at the i-th position of s, ns −L < i ≤ ns, Neighbor-
hood does not explore the insertion possibilities generated by the removal of
items found at the j-th position of s, ∀j, ns − L < j < i;

2. remove-full : Neighborhood explores the insertion possibilities generated by
the removal of each of the items in the candidate list.

3. insert-first : given the insertion possibilities generated by the removal of an
item xi, Neighborhood stops at the first combination of items that produces
an accepted neighbor.

4. insert-full : given the insertion possibilities resulting from the removal of an
item xi, Neighborhood generates all acceptable neighbors.

The pseudocode for the bBKP-PLS algorithm can be seen on Algorithm 3. The
algorithm initially generates (reads) the input set of solutions (line 1). Then,
a weight λ is generated for each solution s ∈ A0 (line 3), and used in the
SolutionOrdering procedure (line 4). Finally, PLS is called (line 6). In this pa-
per, we consider random selection of solutions in PLS and acceptance based
on nondominance. In addition, when Neighborhood checks the nondominance
between the current solution and each of its neighbors, it also checks nondomi-
nance w.r.t. to the set A. This is done to ensure that A is extended by at least one
non-dominated solution if such a solution exists in the neighborhood of s.

4 Experimental Setup

For the analysis of PLS, we use 50 bBKP instances for each size n ∈ {100, 250,
500, 750} [2] as a test set. We use a full factorial design, and each configuration

90 L.C.T. Bezerra, M. López-Ibáñez, and T. Stützle

Algorithm 2. Procedure Neighborhood

Input: An input solution s
1: N ← ∅
2: for all Cr ∈ candlist(s) do
3: s′ ← Remove(s, Cr)
4: for all C∗ ∈ OUT (s) do
5: s′′ ← Insert(s′, C∗)
6: if Accepted(s′′ , s′) then
7: N ← N ∪ s′′

8: if insertion-first then
9: found ← true; break;
10: end if
11: end if
12: end for
13: if found and removal-first then
14: break
15: end if
16: end for
Output: A set of neighbor solutions N

Algorithm 3. bBKP-PLS

Input: An input method input ∈ {random, greedy}
1: A0 ← InitialSolutions(input)
2: for all s ∈ A0 do
3: λ ← GenerateLambda(s)
4: SolutionOrdering(s, λ)
5: end for
6: A ←PLS(A0)
Output: A

is run 10 times per instance. All parameters are analyzed both individually and
for possible interactions through plots of the median hypervolume [14] of the
approximation sets they produce.

For the computation of the hypervolume measure of an approximation set,
a reference point is required. Here, we first normalize the objective vectors of
all sets generated by all runs of all configurations separately for each instance.
This normalization also transforms the original maximization problem into a
minimization one, with objective values in the range [1, 2], due to requirements
of the software we use [8]. We use the point (2.1, 2.1) as the reference point.

When comparing two algorithms using boxplots of their hypervolumes or plots
of the differences of their empirical attainment functions (EAFs) [11], we use the
four instances by Zitzler and Thiele [14] of sizes n ∈ {100, 250, 500, 750}, called
ZTZ instances, and we run the algorithms 25 independent times per instance.
When more algorithms are simultaneously compared, we use the boxplots of the
hypervolumes for a sample of 4 instances of each size: the ZTZ instances plus
three instances from the test set used for the analysis of PLS.

All algorithms are implemented in C and all experiments are run on a single
core of Intel Xeon E5410 CPUs, running at 2.33GHz with 6MB of cache size
under Cluster Rocks Linux version 6.0/CentOS 6.3. In the paper, only few rep-
resentative results are given. The complete set of results are made available as
a supplementary page [3].

An Analysis of Local Search for the bBKP 91

Table 2. Parameter values used for the analysis of stand-alone PLS

Parameter Values

η η1, η2

λ equal, random-discrete, random-continuous, largest-gap, smallest-gap,
highest-profit, lowest-profit, proportional-same, proportion-opposite

candidate list all, L = 15, L = 30, L = 50

removal rule removal-first, removal-full

insertion rule insertion-first, insertion-full

5 Experiments with Stand-Alone PLS

In this section, we present the results of the analysis of stand-alone PLS. To
properly isolate the effect of the neighborhood operator, this analysis is divided
in two stages: (i) experiments removing one item (r = 1), and (ii) experiments
removing more than one item (r > 1). The parameter space used for this analysis
comprises all possible values previously described, summarized in Table 2.

5.1 Removing a Single Item

The different possibilities of choosing the weights (λ) and the heuristic informa-
tion (η) do not have a strong influence on the results, hence, we do not present
here a detailed analysis of these parameters. Instead, we analyze the initialization
method, the length of the candidate list, and the removal and insertion pivoting
rules. The results presented here are aggregated across all possible settings of λ
and η. Detailed results can be found on the supplementary material.

We first analyze stand-alone PLS initialized with a single random solution.
Fig. 1 (left) shows the median hypervolume on the y-axis, and the instances
grouped by sizes on the x-axis. The lines represent the median hypervolume
obtained by different configurations, and are ordered according to performance
on the larger instance. It is clear that using candidate lists when r = 1 is a bad
decision, since the hypervolume quickly degenerates as the instance size grows.
However, as shown on Fig. 1 (right), the runtimes of configurations that do not
use candidate list tend to grow very quickly (y-axis).

The analysis of PLS starting from greedy solutions requires an additional
parameter, namely the number of weights used for generating input solutions.
Experiments were conducted for 2, 10 and 50 input weights, and this parame-
ter proved critical for the performance of the algorithm. When only two input
weights are used, the performance of the algorithm is really poor and similar
to when a random initial solution is used. On the other hand, using 50 weights
not only improves the final result quality, but also helps the algorithm converge
faster compared to other settings.

Therefore, we focus on the experiments using 50 initial weights for generating
the greedy solutions. Also in this case, not using candidate lists leads to long
runtimes. However, the solution quality does not degenerate when larger values

92 L.C.T. Bezerra, M. López-Ibáñez, and T. Stützle

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

number of items

m
ed

ia
n

hy
pe

rv
ol

um
e

100 250 500 750

 removal.rule:insertion.rule

first:full
full:first
first:first
full:full

1e
−0

1
1e

+0
1

1e
+0

3

number of items

m
ed

ia
n

ru
nt

im
e

100 250 500 750

 removal.rule:insertion.rule
full:full
full:first
first:full
first:first

Fig. 1. Median hypervolume (left) and runtime (right) of different combinations of
pivoting rules for PLS starting from a random initial solution and r = 1

1.
07

5
1.

08
0

1.
08

5
1.

09
0

number of items

m
ed

ia
n

hy
pe

rv
ol

um
e

100 250 500 750

 L:removal.rule:insertion.rule

L=50:full:full
all:full:full
all:full:first
L=50:full:first
L=15:full:first
all:first:full
L=50:first:full
L=15:full:full
L=15:first:full
L=50:first:first
all:first:first
L=15:first:first 1e

−0
2

1e
+0

0
1e

+0
2

number of items

m
ed

ia
n

ru
nt

im
e

100 250 500 750

 L:removal.rule:insertion.rule
all:full:full
all:full:first
L=50:full:full
L=50:full:first
L=15:full:full
all:first:full
L=50:first:full
L=15:full:first
L=15:first:full
all:first:first
L=50:first:first
L=15:first:first

Fig. 2. Median hypervolume (left) and runtime (right) of different combinations of
pivoting rule and candidate list sizes for PLS starting from greedy solutions and r = 1

of L are adopted. Fig. 2 (left) shows the median hypervolume (y-axis) grouped
by instance sizes (x-axis). The best performing versions are the ones that use
L = {30, 50}, removal-full and insertion ∈ {first, full} (L = 30 not shown
here due to space reasons). When analyzing runtimes (see also Fig. 2, right), a
candidate list of size 50 combined with removal-full and insertion-first is a setting
that takes computation times similar to those that are used as time limits in the
analysis of state-of-the-art algorithms [2,12].

5.2 Removing More Than One Item

For the analysis of PLS with r > 1, the same parameter space used in the pre-
vious experiments is adopted. However, given that in the previous experiments
with r = 1 we observed that the parameters used for SolutionOrdering (that is,
the heuristic and the values of λ) behave very similarly, we narrowed down the
number of configurations to be tested by selecting η1 as the heuristic function
and highest-profit as the method for defining λ. The experiments were limited
to a maximum runtime of 5 hours per run.

Figure 3 shows the results for r = 2. In terms of solution quality, there is a
big difference between configurations that use removal-first and insertion-first

An Analysis of Local Search for the bBKP 93

1.
07

0
1.

08
0

1.
09

0

number of items

m
ed

ia
n

hy
pe

rv
ol

um
e

100 250 500 750

 L:removal.rule:insertion.rule

L=50:first:first
L=50:first:full
L=15:full:first
L=15:first:full
all:first:first
all:first:full
L=15:first:first
L=50:full:first
all:full:first
all:full:full
L=15:full:full
L=50:full:full

1e
−0

1
1e

+0
1

1e
+0

3

number of items

m
ed

ia
n

ru
nt

im
e

100 250 500 750

 L:removal.rule:insertion.rule
all:first:first
all:first:full
all:full:first
L=15:full:first
L=50:first:full
L=50:full:first
L=15:first:full
L=50:first:first
L=15:first:first
all:full:full
L=15:full:full
L=50:full:full

Fig. 3. Median hypervolume (left) and runtime (right) of different combinations of
pivoting rule and candidate list sizes for PLS starting from greedy solutions and r = 2

and the ones that do not. Moreover, the best configurations for small instance
sizes become much worse with larger instance sizes. The reason is that those
configurations reach the CPU-time limit of 5 hours and were stopped before
completion. In fact, the only configurations with runtime lower than 1 000 sec-
onds are the ones that either (i) use a candidate list (L ≤ 50) combined with
removal-first and insertion-first, or; (ii) use a candidate list with L = 15 com-
bined with removal-first and insertion-full.

6 Experiments with PLS as Post-optimization Method

To analyze PLS as a post-optimization method, we start by comparing PLS
against the greedy procedure used for generating its input solutions. The moti-
vation for this comparison is to understand whether PLS is actually significantly
improving the input set or simply adding more nondominated solutions. The
greedy procedure is run with η1 and 2n weights, which is roughly the same num-
ber of solutions expected to be found by stand-alone PLS. The parameters used
by PLS are: η1, highest-profit, L = 50, removal-full, insertion-first, and r = 1.

Fig. 4 shows that the difference between the greedy procedure and PLS (using
2n weights for greedy solutions) is quite strong. The approximation set identified
by PLS dominates the output of the greedy procedure across the entire range of
the front, which means PLS is able to substantially improve all initial solutions.
In addition, PLS finds a much larger approximation set.

We also add PLS as a post-optimization procedure to AutoMOACO [2], a
high-performing population-based algorithm for bBKP and run AutoMOACO
using the same parameters and time limit as in the original paper. The resulting
approximation set is given as input to PLS, which is then run until completion
using the same parameters as above. Fig. 5 shows the EAF difference for ZTZ
750. Again, PLS is able to improve the approximation fronts over the entire
objective space, while the runtimes of PLS remain low (see Table 3). Thus, PLS
significantly improves the approximation obtained by AutoMOACO, incurring
only a reasonable computational overhead.

94 L.C.T. Bezerra, M. López-Ibáñez, and T. Stützle

Fig. 4. EAF difference plot. Greedy solutions using 2n weights (Greedy) vs. PLS ini-
tialized with greedy solutions using 2n weights (PLSgreedy). Instance ZTZ 750.

Fig. 5. EAF difference plot. AutoMOACO vs. AutoMOACO+PLS. Instance ZTZ 750.

To conclude this analysis, we compare all four algorithms considered in this
section. Figure 6 shows the boxplot of the hypervolume for all four ZTZ
instances. As expected, the greedy procedure presents the worst hypervolume
values. Among the remaining algorithms, AutoMOACO and stand-alone PLS
perform similarly on most instances. Interestingly, although the number of so-
lutions is greatly increased when PLS is used as post-optimization for Auto-
MOACO, the differences in the hypervolume are relatively small. For the largest
instance, the performance of AutoMOACO decreases considerably, but PLS is
able to compensate such loss.

An Analysis of Local Search for the bBKP 95

Table 3. Average number of solutions and runtime: ZTZ instances, 25 runs

ZTZ 100 ZTZ 250 ZTZ 500 ZTZ 750

Greedy 13 (0.00s) 43 (0.01s) 69 (0.06s) 114 (0.12s)

PLSgreedy 98.81 (0.04s) 356.46 (1.08s) 742.38 (7.64s) 1502.2 (40.35s)

AutoMOACO 81.84 (1s) 287.84 (6.25s) 376 (26s) 273.08 (56.25s)

AutoMOACO+PLS 110.48 (1.03s) 382.76 (7.27s) 807.28 (33.48s) 1542.48 (114.6s)

hv

Greedy

PLS.greedy

AutoMOACO

AutoMOACO+PLS

0.94 0.96 0.98 1.00 1.02 1.04

●

●

●

●

●

ZTZ 100

0.94 0.96 0.98 1.00 1.02 1.04

●

●

●

●

●

●

ZTZ 250

0.94 0.96 0.98 1.00 1.02 1.04

●

●

●

●

●

ZTZ 500

0.94 0.96 0.98 1.00 1.02 1.04

●

●

●

●

●

ZTZ 750

Fig. 6. Boxplot of the hypervolume indicator for ZTZ instances

7 Conclusions and Future Work

In this paper, we have applied Pareto local search (PLS) to the biobjective
bidimensional knapsack problem to analyze the impact of common local search
components found in the literature, and to empirically investigate by how much
it can improve over existing algorithms. Our results show that the performance of
stand-alone PLS strongly depends on high-quality input solutions. However, such
solutions can be generated without significant computational overhead using
greedy (meta)heuristics. Large neighborhood sizes proved prohibitive w.r.t. com-
putation time even when combined with a candidate list. Nevertheless, archiving
mechanisms that constrain the size of the approximation set remain to be tested.

The insights from this research can be used to design better neighborhood op-
erators for the bBKP. Additionally, a combination of more elaborate algorithms,
such as iterated greedy with PLS could lead to state-of-the-art results.

Acknowledgments. The research leading to the results presented in this pa-
per has received funding from the Meta-X project from the Scientific Research
Directorate of the French Community of Belgium and from the FRFC project
“Méthodes de recherche hybrids pour la résolution de problèmes complexes”.
Leonardo C. T. Bezerra, Manuel López-Ibáñez and Thomas Stützle acknowl-
edge support from the Belgian F.R.S.-FNRS, of which they are a FRIA doctoral
fellow, a postdoctoral researcher and a research associate, respectively.

96 L.C.T. Bezerra, M. López-Ibáñez, and T. Stützle

References

1. Alsheddy, A., Tsang, E.: Guided Pareto local search and its application to the
0/1 multi-objective knapsack problems. In: Caserta, M., Voß, S. (eds.) MIC 2009.
University of Hamburg, Hamburg (2010)

2. Bezerra, L.C.T., López-Ibáñez, M., Stützle, T.: Automatic Generation of Multi-
objective ACO Algorithms for the Bi-objective Knapsack. In: Dorigo, M., Birattari,
M., Blum, C., Christensen, A.L., Engelbrecht, A.P., Groß, R., Stützle, T. (eds.)
ANTS 2012. LNCS, vol. 7461, pp. 37–48. Springer, Heidelberg (2012)

3. Bezerra, L.C.T., López-Ibáñez, M., Stützle, T.: An analysis of local search
for the bi-objective bidimensional knapsack: Supplementary material (2012),
http://iridia.ulb.ac.be/supp/IridiaSupp2012-016/

4. Drugan, M.M., Thierens, D.: Path-Guided Mutation for Stochastic Pareto Local
Search Algorithms. In: Schaefer, R., Cotta, C., Ko�lodziej, J., Rudolph, G. (eds.)
PPSN XI. LNCS, vol. 6238, pp. 485–495. Springer, Heidelberg (2010)

5. Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: A hybrid TP+PLS algorithm
for bi-objective flow-shop scheduling problems. Computers & Operations Re-
search 38(8), 1219–1236 (2011)

6. Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: Pareto Local Search Algorithms
for Anytime Bi-objective Optimization. In: Hao, J.-K., Middendorf, M. (eds.) Evo-
COP 2012. LNCS, vol. 7245, pp. 206–217. Springer, Heidelberg (2012)

7. Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: Combining Two Search
Paradigms for Multi-objective Optimization: Two-Phase and Pareto Local Search.
In: Talbi, E.-G. (ed.) Hybrid Metaheuristics. SCI, vol. 434, pp. 97–117. Springer,
Heidelberg (2013)

8. Fonseca, C.M., Paquete, L., López-Ibáñez, M.: An improved dimension-sweep al-
gorithm for the hypervolume indicator. In: CEC 2006, pp. 1157–1163. IEEE Press,
Piscataway (2006)

9. Geiger, M.J.: Decision support for multi-objective flow shop scheduling by the
Pareto iterated local search methodology. Computers and Industrial Engineer-
ing 61(3), 805–812 (2011)

10. Liefooghe, A., Humeau, J., Mesmoudi, S., Jourdan, L., Talbi, E.G.: On dominance-
based multiobjective local search: design, implementation and experimental anal-
ysis on scheduling and traveling salesman problems. Journal of Heuristics 18(2),
317–352 (2011)

11. López-Ibáñez, M., Paquete, L., Stützle, T.: Exploratory analysis of stochastic local
search algorithms in biobjective optimization. In: Bartz-Beielstein, T., et al. (eds.)
Experimental Methods for the Analysis of Optimization Algorithms, pp. 209–222.
Springer, Berlin (2010)

12. Lust, T., Teghem, J.: The multiobjective multidimensional knapsack problem: a
survey and a new approach. Intern. Trans. in Oper. Res. 19(4), 495–520 (2012)

13. Paquete, L., Chiarandini, M., Stützle, T.: Pareto local optimum sets in the biob-
jective traveling salesman problem: An experimental study. In: Gandibleux, et
al. (eds.) Metaheuristics for Multiobjective Optimisation. LNEMS, pp. 177–200.
Springer, Berlin (2004)

14. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case
study and the strength Pareto evolutionary algorithm. IEEE Transactions on Evo-
lutionary Computation 3(4), 257–271 (1999)

http://iridia.ulb.ac.be/supp/IridiaSupp2012-016/

An Artificial Immune System Based Approach

for Solving the Nurse Re-rostering Problem

Broos Maenhout1,� and Mario Vanhoucke1,2,3

1 Faculty of Economics and Business Administration, Ghent University,
Tweekerkenstraat 2, 9000 Gent, Belgium

{broos.maenhout,mario.vanhoucke}@ugent.be
2 Operations and Technology Management Centre, Vlerick Leuven Gent

Management School, Reep 1, 9000 Gent, Belgium
3 University College London, Gower Street, London WC1E 6BT, United Kingdom

Abstract. Personnel resources can introduce uncertainty in the oper-
ational processes. Constructed personnel rosters can be disrupted and
render infeasible rosters. Feasibility has to be restored by adapting the
original announced personnel rosters. In this paper, an Artificial Immune
System for the nurse re-rostering problem is presented. The proposed al-
gorithm uses problem-specific and even roster-specific mechanisms which
are inspired on the vertebrate immune system. We observe the perfor-
mance of the different algorithmic components and compare the proposed
procedure with the existing literature.

Keywords: Nurse re-rostering, Meta-heuristics.

1 Introduction

The personnel scheduler constructs a deterministic personnel roster that deter-
mines the line-of-work for each personnel member. When unexpected events lead
to schedule disruptions and infeasibilities, rescheduling is necessary to update the
activity schedule and restore its feasibility. A disruption in a personnel schedule
is defined as an occurrence when an employee that is planned to work a specific
task is unavailable. In that case, the original roster has to be modified as tasks
cannot be operated below a minimum number of required staff.

In this paper we present a new reactive optimisation approach to cope with
schedule disruptions for the nurse shift scheduling problem, which is NP-hard
([9]). A new roster should be constructed that resembles the original roster as
much as possible and that is in line with the staffing requirements per shift and
the imposed time-related constraints. We propose an artificial immune system
(AIS) to revise and re-optimise a schedule for a set of heterogeneous nurses. The
constructed meta-heuristic is population-based and the population elements go
through a cycle of proliferation, hypermutation and an immune defense mecha-
nism. Based on antigenic pattern recognition different response systems are set

� Corresponding author.

M. Middendorf and C. Blum (Eds.): EvoCOP 2013, LNCS 7832, pp. 97–108, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

98 B. Maenhout and M. Vanhoucke

up to neutralise the pathogens and the infected cells. The key for success is the
match between the antigen and the antibodies, i.e. the characteristics of nurse
rosters are analysed and evaluated which invokes a specific immune response to
improve the nurse roster. This metaphor inspired us to explore the abilities of
AIS for the nurse re-rostering problem, which has not been done before.

The nurse re-rostering problem has received limited attention in the staff
scheduling literature. [7,8] formulated the nurse re-rostering problem and pro-
posed in both papers LP-based rounding heuristics. [9] and [10] developed an in-
direct genetic algorithm. The decoder is built upon a constructive heuristic that
entails a sequential re-assignment of a list of all tasks to the nurses. [9] score
the individuals only based on the similarity with the original roster, whereas
[10] additionally incorporate fairness between nurses. [4] proposes a heuristic
algorithm based on mathematical programming that tries to maximize the job
satisfaction and the schedule similarity. [6] developed a direct genetic algorithm
that operates on the set of pareto-optimal solution elements and introduced a
variable neighbourhood search tailored to the nurse re-rostering problem.

The remainder of the paper is organised as follows. The problem under study
is described in section 2. In section 3, we discuss the fundamentals of AIS and
discuss the problem-specific implementation of these principles. In section 4,
we discuss the algorithmic performance and compare the proposed optimisation
procedure with the existing literature. In section 5, conclusions are drawn.

2 Problem Description

The nurse re-rostering problem assumes that the nurse rostering problem is
solved. The constructed nurse rosters are the starting point. The re-rostering
problem arises when a set of disruptions occur for which a nurse is unable to per-
form the originally assigned tasks on one or more future work days. In that case,
these tasks must be performed by other nurses. Hence, the nurse re-rostering
problem embodies a reactive approach in order to restore the feasibility of these
duty timetables. The required re-construction of nurse rosters is undertaken
along with the following scheduling constraints and requirements, i.e.

- The set of disrupted tasks must be performed by other nurses in a way that
the minimum staffing requirements are met for each shift on each day.

- The new roster should be conform to all established time-related require-
ments as for the original nurse rostering problem, i.e. national legislation,
institutional conditions and personal contract stipulations. These rules define
(socially) acceptable schedules for the individual nurses.

- In the nurse re-rostering problem additional constraints are imposed restrict-
ing the availability of nurses, i.e. nurses may not be assigned to work tasks
on the days they are absent due to e.g. vacation or schedule disruptions.

Apart from complying with all these constraints, the nurses should be assigned
to shifts such that the quality of the reconstructed timetable is optimised. The
schedule quality is measured by multiple objectives, i.e.

An AIS for the Nurse Re-rostering Problem 99

- The staffing requirements are imposed as soft constraints and we try to
minimise the deficient number of nurses (Objective 1).

- Minimise additional labour costs as a result of overtime, inefficient over-
staffing, the use of external or temporary nurses, etc (Objective 2).

- Minimise roster changes and satisfy the individual nurse preferences as best
as possible (Objective 3). When re-rostering staff, the nurse preferences con-
sist primarily of retaining the original nurses’ individual shift assignments
as much as possible. In some hospitals, the nurse scheduler additionally con-
siders the original nurse preferences for re-rostering nursing staff.

- Minimise the number of assignment infeasibilities due to schedule disruptions
(Objective 4).

- Distribute the workload as evenly as possible over the nurses such that the
constructed individual nurse schedules are fair. In this way, fairness is main-
tained (or even improved) after reconstructing the nurse roster as nurses
have to catch up with unperformed duties due to disruptions (Objective 5).

For a mathematical problem formulation we refer to [6].

3 The Artificial Immune System: Algorithmic
Interpretation and Implementation

An Artificial Immune System (AIS) is an evolutionary algorithm proposed by
[3] and inspired by the theory of immunology. The AIS for the nurse re-rostering
problem is conceived as a population-based evolutionary algorithm (with pop-
ulation size n). After the initialisation of the population elements or immune
cells (see section 3.1), the optimisation system first evaluates the immune cells
by calculating the objective function value of the different objective function
components (Objectives 1-5, see section 3.2). Then the system undergoes a cy-
cle of selection, proliferation and hypermutation, immune response and recep-
tor editing. The immune cells with an acceptable total objective function value
are selected and proliferated, i.e. these immune cells divide themselves and are
copied. There is no combination or crossover between these selected population
elements. During this reproduction, the immune cells undergo a hypermutation
process (see section 3.4), where parts of the cells (i.e. the nurse roster) are ran-
domly changed. These newly introduced individuals are the antigens, which are
labelled as self or nonself by evaluating their objective function value and identi-
fying the nurse roster characteristics via the antibodies. For the nonself antigens
the immune response is invoked (see section 3.5). Afterwards the population is
updated according to the receptor editing process (see section 3.6). The proposed
algorithm is schematically represented in figure 1. This conceptual metaphor is
in line with the algorithmic interpretation of AIS by [1].

The algorithmic structure of an AIS resembles an evolutionary algorithm with-
out crossover. Both, evolutionary algorithms and AIS use the concept of survival
of the fittest as evolution strategy. In the AIS algorithm are the individuals that
are not selected for cloning in a given generation replaced by new random indi-
viduals. This substantial injection of randomness in each evolution cycle helps

100 B. Maenhout and M. Vanhoucke

Low

Threshold

High

Initial
Population

(section 3.2)

Self/nonself
Discrimination

(section 3.3)

Clonal
Selection

(section 3.4)

Proliferation and
Hypermutation

(section 3.5)

Immune Response
(section 3.6)

IR1

IR2

IR3

Child
Population

HM1

HM2

HM3

HM4

Receptor Editing
(section 3.7)

Antigenic
Pattern

Recognition

Improvement
Method

x%

Objective
and Roster
Evaluation

D
iv

er
se

Maturation
Process

Fig. 1. A schematic representation of the AIS for the nurse re-rostering problem

the algorithm to explore the whole search space. Therefore, the concept of re-
ceptor editing avoids premature convergence.

3.1 Initialisation Procedure

In order to construct a diverse collection of elite solutions, the solution elements
in the initial population are constructed in two different ways, i.e. completely
random and with a constructive heuristic. The constructive heuristic is able to
find high-quality solutions early in the search process. The heuristic schedules
the set of nurses one by one in a random sequence taking the different objective
function components into account. The individual roster line of each nurse is
determined based on the partially constructed nurse roster (i.e. the roster lines
for the nurses that are already scheduled). This scheduling of a particular nurse
over the complete planning horizon is a resource constrained path problem.

3.2 Self/nonself Discrimination

The first step of the AIS procedure is pattern recognition where the objective
function value of each component (objective 1-5) is calculated based on the
number of violations (nonself cells) and the corresponding penalty. Whenever
the total objective function value is lower than a fitness threshold value, we
label the population element as a candidate for clonal selection.

An AIS for the Nurse Re-rostering Problem 101

3.3 Clonal Selection

Several population elements are selected to proliferate. The selection rate of each
population element is proportional to its objective function value: the better the
objective function value, the higher the selection probability. In this selection
process diversification is stimulated as solutions that resemble the selected solu-
tion are ruled out for further selection based on a diversity threshold.

3.4 Proliferation and Hypermutation

Proliferation in the case of immune cells is asexual, a mitotic process where the
cells divide themselves. In the context of an evolutionary algorithm, this im-
plies that there is no combination or crossover with other population elements
as the selected nurse rosters are integrally replicated. The degree of proliferation
is directly proportional to the objective function value: the better the objective
function value, the higher the number of duplicates generated. During this repro-
duction, the population elements undergo a hypermutation process according to
which parts of the nurse roster are randomised. This random assignment is con-
form to all hard time-related constraints. In order to stimulate diversity among
the different cloned cells, we apply four different mutation methods, i.e.

– Mutation of individual nurse schedules (HM1): This mutation method runs
through the list of nurses. A nurse is possibly reassigned to a random nurse
schedule.

– Mutation of day rosters (HM2): This mutation method runs through the
days of the planning horizon. If selected, a random day roster is constructed
for a particular day.

– Mutation of pairs of day rosters (HM3): This mutation method runs through
the list of combinations of two days (e.g. day 1 and day 6). The assignments
on a selected pair of days are swapped randomly between the nurses.

– Mutation of single assignments (HM4): This mutation method runs through
the different assignments of the nurses over the days. A selected assignment
is deleted and changed to another shift assignment.

We apply a single mutation method on each duplicated population element and
each of these four methods has a 25% probability to be selected. In this way,
a very diverse set of cells is constructed. An important parameter that is to be
decided is the mutation rate, which indicates the percentage of a nurse roster that
is subject to random changes. The mutation rate suffered by each immune cell
during reproduction is inversely proportional to the affinity of the cell receptor
with the antigen: the better the affinity, the smaller the mutation.

3.5 Immune Response

When required, we invoke an immune response or improvement method where
different local search mechanisms are applied sequentially to improve the quality
of a newly created population element. The quality of an AIS typically depends

102 B. Maenhout and M. Vanhoucke

on how well response mechanisms (i.e. the local search mechanisms) can be
matched with the newly introduced nurse rosters (i.e. antigen). In this process
is antigenic pattern recognition the first pre-requisite for the immune system to
be activated and to mount an immune response. The recognition has to satisfy
some criteria. First, the epitopes (i.e. nurse roster structure) and affinity (i.e. the
objective function value) of the antigen are evaluated by the cell receptors of an
immune cell (i.e. antibodies). An immune response is activated by an antibody
depending on the characteristics and the affinity of the new individual.

Antigenic Pattern Recognition

The nature of an antigen is measured by the antigenic pattern recognition, which
evaluates the roster structure and calculates the objective function value for each
of the five objectives. For each objective function component, we apply one of
the three improvement methods below if the specific threshold value τobj for the
immune response is exceeded (i.e. nonself recognition). The order in which the
different immune responses are invoked is based on the roster characteristics, i.e.

1. The evaluation of the nurse roster based on the different objective function
components: The higher the objective function score on a particular compo-
nent, the higher the priority to apply the corresponding immune response.

2. A factor varobj which measures how the objective function value for a par-
ticular component is distributed over the different nurses and/or days. If
varobj = 0, the objective function value is evenly distributed over the nurses
or days. If varobj = 1, the objective function value is maximal for one or
several days, and zero for all remaining days. In order to define the spread of
the objective function violations, we use a general measure of variance that
has been proposed by [11].

Improvement Method

We apply three local search algorithms that are proposed by [5] for the nurse
scheduling problem, i.e.

– Immune response 1 (IR1): The pattern-based local search optimises the ros-
ter line of a particular nurse given the (fixed) roster lines of all other nurses.

– Immune response 2 (IR2): The day-based local search optimises a single day
of the nurse roster given the (fixed) assignments of the nurses on all other
days. This decomposition heuristic optimises the nurse roster day-by-day
by optimally assigning a feasible shift assignment to each nurse. To that
purpose, a linear assignment problem is defined and solved to optimality.
In composing a linear assignment problem, we duplicate each shift column
such that each shift has a number of columns that is equal to its coverage
requirements. We add dummy nurses and dummy shift columns to allow over-
and understaffing. The assignment costs are provided by the appropriate
objective function coefficients. Infeasible assignments are given a very high
cost such that these assignments will never be selected.

An AIS for the Nurse Re-rostering Problem 103

– Immune response 3 (IR3): The schedule-based local search focuses on the
whole schedule for all nurses by swapping (sub-parts of) schedules between
nurses. To that purpose, we define a linear assignment problem that opti-
mally redistributes (sub-parts of) the shift patterns of the current population
element among the nurses. Each (subpart of a) pattern can be assigned to
each other personnel member at the account of an assignment cost that
is composed out of the different objective function components. Infeasible
assignments are given a very high assignment cost.

Obj 1 & 2

 i j 1 2 3 4 5 6 7
 1 E E N F E N F
 2 N N N F F F F
 3 F E L F F L L
 4 N F F F F E L
 5 F F E E L L F
 6 L F F L L N F

 i j 1 2 3 4 5 6 7
 1 E E N F E N F
 2 N N N F F F F
 3 F E L F F L L
 4 N F F F F E L
 5 F F E E L L F
 6 L F F L L N F

 i j 1 2 3 4 5 6 7
 1 E E N F E N F
 2 N N N F F F F
 3 F E L F F L L
 4 N F F F F E L
 5 F F E E L L F
 6 L F F L L N F

 i j 1 2 3 4 5 6 7
 1 E E N F E N F
 2 N N N F F F F
 3 F E L F F L L
 4 N F F F F E L
 5 F F E E L L F
 6 L F F L L N F

Violations

Violations Violations

Violations

Violations Violations

Violations Violations i j 1 2 3 4 5 6 7
 1 E E N F E N F
 2 N N N F F F F
 3 F E L F F L L
 4 N F F F F E L
 5 F F E E L L F
 6 L F F L L N F

Violations

 i j 1 2 3 4 5 6 7
 1 E E N F E N F
 2 N N N F F F F
 3 F E L F F L L
 4 N F F F F E L
 5 F F E E L L F
 6 L F F L L N F

Violations Violations i j 1 2 3 4 5 6 7
 1 E E N F E N F
 2 N N N F F F F
 3 F E L F F L L
 4 N F F F F E L
 5 F F E E L L F
 6 L F F L L N F

Violations

 i j 1 2 3 4 5 6 7
 1 E E N F E N F
 2 N N N F F F F
 3 F E L F F L L
 4 N F F F F E L
 5 F F E E L L F
 6 L F F L L N F

 i j 1 2 3 4 5 6 7
 1 E E N F E N F
 2 N N N F F F F
 3 F E L F F L L
 4 N F F F F E L
 5 F F E E L L F
 6 L F F L L N F

IR1 and IR2

IR1 and IR3IR3

IR2

IR1 IR2

IR2 and IR3 IR1

IR1

Obj 4

Obj 5

Obj 3

The crossed cells are infeasible assign-
ments due to the availability constraints

Fig. 2. Illustration of the match of the antigen and the immune response for the nurse
re-rostering problem

104 B. Maenhout and M. Vanhoucke

The three local search algorithms decompose the original problem into smaller
problems that are optimally solved and they can be perceived as complementary
as each local search concentrates on a different part of the scheduling matrix, i.e.
on the schedule of a single nurse, on a single day and on the complete matrix.
The order in which the different parts of the nurse roster are optimised, depends
on the characteristics of each roster area and the objective function component
we want to improve. The roster area that shows the highest potential to improve,
receives the highest priority and will be reoptimised first.

Match between immune response and antigen

As these local search methods in their purest form would require too much effort,
the match between the antibody and antigen is very important in order to find
the right balance between diversification and intensification. In figure 2 we give
an overview of the objective function component and the corresponding immune
response. We display an example nurse roster of 6 nurses and a period of 7
days. Each day the nurses are assigned to the early (E), late (L), night (N) or
free (F) shift. The number of violations for each day (nurse) is displayed below
(to the right of) each nurse roster. For illustrative purposes we display only
the two extreme cases where all violations are evenly distributed over the days
(nurses) and all violations coincide on one single day. If necessary, we calculate
the factor varobj based on the distribution of these violations and determine the
appropriate immune response IR1, IR2 and/or IR3 using a breakpoint value.
The shaded areas of the nurse roster are optimised by invoking the respective
immune response, i.e. the shift-pattern of a single nurse (IR1), on a single day
(IR2) and/or on the complete matrix (IR3). For objective 1, for example, we
verify the number of times too few nurses are schedules and calculate the variance
varobj1 of these violations over the days. If this variance is below the breakpoint
value, IR1 is applied as the violations are evenly distributed over the planning
horizon. If this variance is higher than the breakpoint value, IR2 is applied as
the violations are concentrated on a couple of days.

3.6 Receptor Editing

After the application of the maturation process, the population is maintained
and dynamically updated. x% of the original population elements is eliminated
and replaced by new solutions with a better objective function value. In order
to avoid the entrance of highly resembling solutions, the number of different
assignments in the new solution should be higher than some threshold value.

4 Computational Experiments

In this section, we provide computational insights into the proposed AIS for the
nurse re-rostering problem. In section 4.1, we describe the problem parameters
and the test design. In section 4.2, we validate the beneficial performance of the
proposed problem-specific operators. In section 4.3, we compare the performance

An AIS for the Nurse Re-rostering Problem 105

of the proposed procedure with the existing literature. All tests were carried out
on a Dell Dual Core processor 2.8 Ghz and 2 Gb RAM.

4.1 Test Design

In order to test the performance of the proposed procedure rigorously, we utilise
the test design and dataset constructed by [6]. The dataset comprises artificial
nurse rosters with 30 full-time nurses, a planning horizon of 28 days and 3
working shifts. The schedule disruptions are generated by means of two input
parameters, i.e. the number of disruptions and the spread of the disruptions over
the days of the planning horizon. The dataset contains 864 problem instances.
The nurse roster is re-constructed from the day of the first disruptions to the end
of the planning horizon such that the different staffing constraints, time-related
constraints and nurse availability constraints are respected. The following time-
related constraints are imposed (see [2] and [10]), i.e.

– The nurses are assigned to only one working shift or to a day off for each
day of the planning horizon.

– A minimum free timespan of 11 hours is imposed between working shifts
(forward rotation).

– The number of working assignments is restricted (min 10, max 20).
– The number of consecutive working assignments is restricted (min 2, max

5).
– The number of assignments per shift type is restricted (min 0, max 20).
– The number of consecutive duties per shift type is restricted (min 1, max 5).

Table 1 provides the weights of the objective function components.

Table 1. Relative priorities and weights for the different objective function components

Objective Description Weight

1 Minimise the deficient number of nurses 10,000
2 Minimise additional labour costs 5,000
3 Minimise the roster changes 100
4 Minimise the number of assignment infeasibilities 100,000
5 Distribute the workload as evenly as possible 50

4.2 Algorithmic Performance

In this section, we analyse the effect of the implemented problem-specific prin-
ciples. The results are displayed in table 2 under a stop criterion of 1,000 eval-
uated schedule solutions. For each alternative we display the average solution
quality (Z), the percentage deviation from the best performing heuristic proce-
dure (%Dev) and the required CPU time (in seconds) (CPU). In order to test

106 B. Maenhout and M. Vanhoucke

Table 2. Computational results for different optimisation strategies (1,000 schedules)

Strategy Overall %Dev CPU

Hypermutation

This procedure 27,631 0.00% 16.4
HM1 36,354 31.57% 17.0
HM2 30,593 10.72% 15.2
HM3 31,518 14.07% 15.8
HM4 37,260 34.85% 13.6

Immune response
This procedure 27,631 0.00% 16.4
AIS LS Fixed 28,281 2.35% 19.8

the effect of the different strategies we start from the best performing heuristic
procedure and implement a certain strategy or characteristic of the procedure.

Hypermutation - The results reveal that the proposed hypermutation method
leads to significant better results compared to the four other approaches where
the hypermutation process applies each time the same mutation method, i.e.
HM1, HM2, HM3 or HM4. A detailed analysis revealed that this hypermutation
method introduced a higher diversity in the search process as this method leads
to a more diverse and higher number of unique new individuals.

Immune response - The results reveal that the local search method of [6]
(’AIS LS Fixed’), which executes the three improvement heuristics in a fixed
and sequential manner, performs 2.35% worse than the proposed improvement
method, which selects the order and the type of the local search heuristics based
on the solution quality and the characteristic of the roster at hand. The proposed
approach needs a smaller number of steps to improve a nurse roster to an ac-
ceptable level as the right local search is invoked to improve a specific objective
function component.

4.3 Benchmarking and Comparison with the Existing Literature

In this section, we compare our procedure with the indirect genetic algorithm of
[10], the direct genetic algorithm of [6] and a multi-start heuristic. The multi-
start heuristic constructs a random solution multiple times and applies the
proposed immune response mechanism until the stop criterion is reached.

Table 3. Benchmark comparison with the existing literature (1,000 schedules)

Procedure Overall CPU

Pato and Moz (2008) (GA) 91,478 22.2
Maenhout and Vanhoucke (2011) (GA) 27,640 16.0
Multi-start heuristic 35,882 20.9
This procedure (AIS) 27,631 16.4

An AIS for the Nurse Re-rostering Problem 107

The results reveal that the proposed procedure outperforms the multi-start
heuristic and the current literature. The comparison with the multi-start heuris-
tic points out that introducing an evolutionary design and some intelligence in
the diversification mechanism returns beneficial results. AIS is able to compete
with the established technique of genetic algorithms as the procedure improves
slightly the results of [6]. However, a detailed computational comparison reveals
that the differences in the conceptual metaphor and algorithmic implementation
lead to a distinct computational behaviour (see figure 3). We compare how both
heuristics perform for the following problem characteristics, i.e.

– All: This category considers all instances.
– Spread: The categories (low, medium, high) are investigated (measured by

the indicator SD with resp. values of 1, 0.5 and 0 (cfr. [6])).
– Disruptions: The categories (low, medium, high) are investigated (measured

by the indicator TND with values of 0.01, 0.03 and 0.05 (cfr. [6])).
– Coverage: The categories (low, medium, high) are investigated (measured by

the indicator TCC with values of 0.2, 0.35 and 0.5 (cfr. [12])).

Fig. 3. A detailed computational comparison of AIS and GA of [6]

For these categories we measured the percentage difference in performance from
the best performing heuristic and verified the significance using the Wilcoxon
signed rank test. Overall, we observe that the proposed heuristic significantly
outperforms the genetic algorithm of [6] with 0.04%. AIS is able to outperform
the genetic algorithm significantly by 4.13% and 3.55% for resp. a high spread
and a high number of disruptions. The same observations can be made for low
and high staffing requirements. Hence, AIS shows a very different computational
behaviour than the genetic algorithm of [6].

108 B. Maenhout and M. Vanhoucke

5 Conclusion

In this paper, we adapted the optimisation framework of AIS to solve the nurse
re-rostering problem that revises and re-optimises a schedule of a set of hetero-
geneous nurses. The evolutionary algorithm is characterised by a hypermutation
process that uses four different problem-specific mutation operators to insert
diversification in the search process. The subsequent intensification process of
the mutated rosters is and dependent on the characteristics of a specific roster.
In this way, the meta-heuristic is able to make a trade-off between diversifica-
tion and intensification. The computational results show the effectivity of the
proposed approach and that the technique of artificial immune systems is com-
petitive with more traditional optimisation frameworks like genetic algorithms.

References

1. Aickelin, U., Dasgupta, D.: Artificial immune systems Tutorial. In: Introductory
Tutorials in Optimisation, pp. 1–29. Kluwer, New York (2005)

2. Burke, E., De Causmaecker, P., Vanden Berghe, G., Van Landeghem, H.: The state
of the art of nurse rostering. Journal of Scheduling 7, 441–499 (2004)

3. De Castro, L., Timmis, J.: Artificial immune systems: a novel paradigm for pat-
tern recognition. In: Artificial Neural Networks in Pattern Recognition, pp. 67–84.
University of Paisley, United Kingdom (2002)

4. Knighton, S.: An Optimal Network-Based Approach to Scheduling and Re-
Rostering Continuous Heterogeneous Workforces. PhD thesis, Arizona State Uni-
versity, Tempe, AZ (2005)

5. Maenhout, B., Vanhoucke, M.: An electromagnetic meta-heuristic for the nurse
scheduling problem. Journal of Heuristics 13, 359–385 (2007)

6. Maenhout, B., Vanhoucke, M.: An evolutionary approach for the nurse re-rostering
problem. Computer & Operations Research 38, 1400–1411 (2011)

7. Moz, M., Pato, M.: An integer multicommodity flow model applied to the re-
rostering of nurse schedules. Annals of Operations Research 119, 285–301 (2003)

8. Moz, M., Pato, M.: Solving the problem of re-rostering nurse schedules with hard
constraints: New multicommodity flow models. Annals of Operations Research 128,
179–197 (2004)

9. Moz, M., Pato, M.: A genetic algorithm approach to a nurse re-rostering problem.
Computers & Operations Research 34, 667–691 (2007)

10. Pato, M., Moz, M.: Solving a bi-objective nurse re-rostering problem by using a
utopic Pareto genetic heuristic. Journal of Heuristics 14, 359–374 (2008)

11. Vanhoucke, M., Coelho, J., Debels, D., Maenhout, B., Tavares, L.: An evaluation of
the adequacy of project network generators with systematically sampled networks.
European Journal of Operational Research 187, 511–524 (2008)

12. Vanhoucke, M., Maenhout, B.: On the characterization and generation of nurse
scheduling problem instances. European Journal of Operational Research 196,
457–467 (2009)

Automatic Algorithm Selection
for the Quadratic Assignment Problem

Using Fitness Landscape Analysis

Erik Pitzer, Andreas Beham, and Michael Affenzeller

University of Applied Sciences Upper Austria
School of Informatics, Communications and Media

Softwarepark 11, 4232 Hagenberg, Austria
{erik.pitzer,andreas.beham,michael.affenzeller}@fh-hagenberg.at

Abstract. In the last few years, fitness landscape analysis has seen an
increase in interest due to the availability of large problem collections
and research groups focusing on the development of a wide array of dif-
ferent optimization algorithms for diverse tasks. Instead of being able to
rely on a single trusted method that is tuned and tweaked to the ap-
plication more and more, new problems are investigated, where little or
no experience has been collected. In an attempt to provide a more gen-
eral criterion for algorithm and parameter selection other than “it works
better than something else we tried”, sophisticated problem analysis and
classification schemes are employed. In this work, we combine several of
these analysis methods and evaluate the suitability of fitness landscape
analysis for the task of algorithm selection.

Keywords: Fitness Landscape Analysis, Problem Understanding,
Quadratic Assignment Problem, Robust Taboo Search, Variable Neigh-
borhood Search.

1 Introduction

While metaheuristic algorithms have been employed successfully in the past to
solve many different problems belonging to different problem classes and different
encodings, every new problem and every new problem class requires meticulous
examination, algorithm selection and parameter tuning to ensure high quality
results. Even with proper experience this can be a tedious task.

In the past, fitness landscape analysis methods have been developed to ana-
lyze the characteristic structure of problems that are typically solved with meta-
heuristic algorithms to mitigate these problems. Initially, many measures have
been developed to directly correlate with problem hardness [1, 2]. However, sim-
ple and generally applicable fitness landscape measures do not have enough
power to work efficiently in isolation to solve this case. Therefore, more mea-
sures were created to complement them [3].

In this work we try to simplify the process of algorithm selection by provid-
ing a method to quickly compare characteristic properties of problem instances

M. Middendorf and C. Blum (Eds.): EvoCOP 2013, LNCS 7832, pp. 109–120, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

110 E. Pitzer, A. Beham, and M. Affenzeller

with each other. In a second step we use the underlying numeric data to cre-
ate a feature vector composed of many fitness landscape characteristics that is
then used to compare the problem at hand with other problems that have been
subjected to optimization before. Together with previous optimization results
several methods for algorithm selection have been tested.

2 Theoretical Foundations

2.1 Quadratic Assignment Problem

The Quadratic Assignment Problem (QAP) was introduced in [4] and is a well-
known problem in the field of operations research. As it is NP-hard, it is often
solved with the help of metaheuristics such as tabu search [5, 6]. Informally, it
can be described as finding the best assignment for a set of facilities to a set of
locations so that each facility is assigned to exactly one location which in turn
houses only this facility. An assignment is considered better than another when
the flows between the assigned facilities have to be hauled over smaller distances.

More formally, the problem is given as an N × N matrix W with elements
wik denoting the weights between facilities i and k and an N×N matrix D with
elements dxy denoting the distances between locations x and y. The goal is to
find a permutation π with π(i) denoting the element at position i to minimize
the following equation:

min

N∑
i=1

N∑
k=1

wik · dπ(i)π(k) (1)

2.2 QAPLIB

The quadratic assignment problem library (QAPLIB)[7] is a collection of bench-
mark instances from different contributors and is freely accessible on the web1.
It includes the instance descriptions in a common format, as well as optimal and
best-known solutions and consists of a total of 137 instances from 15 contributing
sources which cover real-world as well as random instances. About 117 instances
have been selected for this study with the exception of the esc* instances that
sometimes do not have any flows and most of them are solved in only a few
iterations.

2.3 Robust Taboo Search

Tabu search (TS) is a general metaheuristic that was proposed by Glover in [8].
It behaves like a local search, except that it will always make a move in each
iteration, even if the current fitness deteriorates. The name results from the use
of a memory that forbids to make certain moves and forces the exploration of
new parts of the fitness landscape.
1 http://www.seas.upenn.edu/qaplib/

http://www.seas.upenn.edu/qaplib/

Algorithm Selection for the QAP Using FLA 111

The Robust Taboo Search (RTS) was proposed by Taillard in [5] and the code
has since been further developed2. The main difference lies in the stochastic
choice of tabu tenures. For every move, the time to keep it tabu is a random
number drawn from a strongly left-skewed distribution and lowers the possibility
of repeatedly returning to the same solution. Another important aspect of the
RTS is its aspiration tenure to perform moves which have not been seen for a
number of iterations and increase diversification of the search.

2.4 Variable Neighborhood Search

Another metaheuristic that has gained popularity over the years is the variable
neighborhood search (VNS) which is described in [9]. The core of the algorithm
is similar to tabu search in that it uses a simple local search algorithm to find
good solutions. However, the diversification is different. VNS introduces not only
one, but several neighborhoods which it uses to diversify the current solution.

When solving the QAP, we configured the VNS to use the swap neighbor-
hood for local search and for making the first small diversification. In total
we used seven different neighborhoods that perturbed the permutation and al-
lowed the algorithm to escape local optima. The neighborhood functions are
implemented in the open source optimization environment HeuristicLab3 and
are called: Swap2, Swap3, Scramble, Inversion, Insertion, Translocation, and
TranslocationInversion. While these are not detailed in this work, they can be
found in the source at the Encodings.Permutation name space. The impact of
the changes made in these operators increases with the neighborhood index.

The difference between RTS’s and VNS’s diversification mechanisms leads to
situations where one algorithm is able to outperform the other one on certain
problem instances.

2.5 Fitness Landscape Analysis Fundamentals

The purpose of fitness landscape analysis is to gain more insight into the in-
ternal structure of a problem instance. Its methodology and power is similar
to that of metaheuristic optimization processes, however, with a different aim.
While metaheuristic optimization tries—by definition—to find a good solution
in reasonable time, fitness landscape analysis (FLA) methods try to “find” good
insights into the given problem’s structure in reasonable time.

Typically, problem dependent measures have been developed to estimate prob-
lem hardness (e.g. flow dominance for the quadratic assignment problem [10]).
Even earlier, generally applicable methods have been developed that tried to
relate simple measures to problem hardness [2]. We are following a slightly dif-
ferent approach in this work: Instead of trying to establish a relationship between
fitness landscape analysis measures (FLA measures) and problem hardness we

2 http://mistic.heig-vd.ch/taillard/
3 http://dev.heuristiclab.com/

http://mistic.heig-vd.ch/taillard/
http://dev.heuristiclab.com/

112 E. Pitzer, A. Beham, and M. Affenzeller

are taking the analysis results simply as a concise description of important land-
scape properties and use it to compare problems with each other. We postulate
that similar problems (in terms of fitness landscape analysis) will have similar
properties when subjected to optimization.

The formal definition of a fitness landscape includes not only the set of all
possible solution candidates C and the fitness function f : C → R but also
a notion of connectedness X . This connectedness can usually by defined by a
distances between solution candidates d : C × C → R. Then, we can define the
landscape as the triple shown in Equation 2.

F := (C, f, d) (2)

One of the first generally applicable measures for fitness landscapes, auto cor-
relation, is described in [11]. The base for deriving the described ruggedness
measures is to look at adjacent fitness values obtained by different trajectories
as explained in Section 2.5. From this series of fitness values the auto correlation
function R(τ) is calculated (see Equation 3) where f and σ2

f are the mean and
variance of the series of fitness values and E[x] is the expected value of x. This
function shows the correlation between the series of fitness values and itself,
shifted by a certain number of steps. The first measure is the autocorrelation at
a shift of one step. This shows how much a single step in the landscape modifies
the fitness value on average. This value is often just called the autocorrelation
but for completeness will be referred to as ‘autocorrelation 1’ throughout this
paper. Another related measure is the correlation length which is the number of
shift steps until the correlation is no longer statistically significant (i.e. is less in
magnitude than 2/

√
n, where n is the length of the analyzed trajectory).

R(τ) :=
E[(fi − f)(fi+τ − f)]

σ2
f

(3)

Another interesting derivative from the series of fitness values obtained by var-
ious trajectories are several entropic information measures [12]. The underlying
idea is to analyze fitness slope shapes between consecutive steps which are ob-
tained by applying a relaxed sign function that gives either 1, -1 or 0 if the initial
value is above, below or inside an ε-band around zero. Derived from these sym-
bols, the frequency of consecutive slopes is now summarized in several entropy
values. The first of which is the information content shown in Equation 4 where
P[pq] is the frequency of consecutive slopes.

H(ε) := −
∑
p	=q

P[pq]P[pq] (4)

While the information content calculates the entropy of consecutive different
slopes, the density basin information does the same for consecutive equal slopes.
These two measures can be perceived as the “interestingness of rugged and
smooth areas”. Additionally, the partial information content which is simply
the number of slope direction changes in the sequence and the information sta-
bility which is the maximum difference between consecutive fitness values are

Algorithm Selection for the QAP Using FLA 113

analyzed. By varying the parameter ε one can focus on larger or smaller fitness
differences and hence “zoom in and out” of the fitness landscape.

A very important characteristic of fitness landscapes is neutrality. It describes
the parts of the landscape with adjacent solution candidates with (almost) equal
fitness. This is especially relevant for trajectory-based optimization strategies
that have no mechanism for intelligently escaping from a plateau or population-
based algorithms that can take advantage of the greater potential boundary
surface of the neutral area. One way to measure neutrality is to estimate the
number and sizes of neutral areas by performing neutral walks as explained in
Section 2.5.

A straightforward approach is to count the average number of steps that can
be made without a fitness change in comparison to the total number of steps.

Usually the size of the problem determines the solution space size and, there-
fore, is the major driving factor in increasing problem complexity and hence
problem hardness. Many fitness landscape measures are, unsurprisingly, strongly
correlated or even dominated by problem size. This means, that the extent of a
measurement is predominantly determined by the problem size. As the problem
size itself is one of the factors considered in the further investigations anyway,
we have tried to filter out the effects of the problem size on the fitness land-
scape measures. Especially auto correlation and correlation length have been
normalized by dividing through the problem size. Moreover, the auto correlation
coefficient ξ = 1/(1 − r(1)) (where r(1) is the auto correlation at step 1) has
been included and normalized as otherwise it correlates perfectly with problem
size itself.

Trajectories. As stated earlier, fitness landscape analysis can be compared
to metaheuristics on a technical level. One of the basic tools for exploring a
problem’s landscape are sampling techniques. The most popular trajectory used
for fitness landscape analysis is the random walk. In this case, a random neighbor
is generated by applying a manipulation operator to a random starting point
and following along. This trajectory exhibits very high diversity of the examined
solution candidates while still elucidating the neighborhood’s properties.

Another trajectory is the adaptive walk that resembles an optimization pro-
cess. Here from a sample’s neighbors the best is chosen to reach higher fitness
levels and hence emphasize the exploration of higher quality solution candidates
which are more interesting for typical optimization algorithms. An important
variation, that was used in this work, is the up-down walk, where fitness is
not improved indefinitely but stops at a local optimum and reverses its direc-
tion. This resembles a climber that climbs up a hill, then down again then up
again, and so on. This strategy emphasizes the exploratory nature of fitness land-
scape analysis that is not directly interested in finding good solutions. We have
also collected some additional numbers during up-down walks as described in
Section 3.1.

Finally, areas with similar or equal fitness in the solution space can also be
explored with a so-called neutral walk. Here the strategy is to continue onwards
at the same fitness level to explore plateaus and saddle areas. Usually a larger

114 E. Pitzer, A. Beham, and M. Affenzeller

sample of neighbors has to be used to ensure that neighboring solution candidates
with equal fitness are found. While producing neutral walks we ensure that
the distance to the starting point is continuously increased to prevent “getting
lost” inside the flat neutral area as strongly bent or wound neutral areas could
exhibit large differences between distances and number of steps. The actual
measurements taken are listed in Section 3.1.

3 Methodology

3.1 Fitness Landscape Investigations

After the initial optimization experiments we have hand picked several instances
of the QAPLIB and performed a thorough analysis which can be found online4.
We have then created several experiments for every instance of the QAPLIB
with a best know solution based on the analysis results of these few instances.

We have only measured values induced by the ‘swap-2’ neighborhood, which
is one of the smoothest landscape variants for the QAP. Moreover, for all three
walk types we measured auto correlation, correlation length, information con-
tent, partial information content, density basin information, information stability
and regularity. In addition, for up-down walks we measured average lengths and
variances of the up and down portions as well as average level and variance of
the top and bottom turning points. Similarity we measured average lengths and
variances of the flat portions of neutral walks. Moreover, we also measured the
distances between entry and exit points of the neutral areas. In summary, we
derived 34 different fitness landscape characteristics including the problem size
itself. In Table 1a we have summarized the runtime of the analysis algorithms
as well as the run times of optimization trials in Table 1b using two different al-
gorithms with hand-tuned parameter settings. All of these analysis experiments
were performed using HeuristicLab5 [13] with custom plug-ins for fitness land-
scape analysis. The runtimes are still rather high in comparison to algorithm
execution, but we did not yet optimize the performance of the feature extraction
phase. Faster methods are available in parts, e.g. [14] shows how to calculate the
autocorrelation coefficient much quicker and without sampling.

3.2 Structural Problem Comparison

The underlying idea is to select a set of n fitness landscape analysis values
and compare the resulting vectors for different problem instances. The resulting
Euclidian distance in features space can then be used as a measure of problem
similarity and helps select appropriate methods and algorithm parameters for
optimization.

In our case we have used as many complementary fitness landscape measures
as possible initially. Moreover, we have tested different subsets with different
4 http://dev.heuristiclab.com/AdditionalMaterial
5 http://dev.heuristiclab.com

http://dev.heuristiclab.com/AdditionalMaterial
http://dev.heuristiclab.com

Algorithm Selection for the QAP Using FLA 115

Table 1. Run Times and Run Repetitions: While the optimization algorithms had to
be repeated several times for each problem, the fitness landscape analysis needs to be
performed just a single time for each instance

(a) Fitness Landscape Analysis

Trajectory
Runtime

Runs
Evaluated

Avg Total Solutions

Random 0:59 1:55:03 117 100,000

Up/Down 3:10 6:60:30 117 1,000,000

Neutral 2:20 4:33:00 117 100,000

(b) Optimization Algorithms

Alg
Runtime

Runs
Evaluated

Avg Total Solutions

RTS 1:22 79:45:50 3510 1,000,000

VNS 1:15 72:53:58 3510 1,000,000

variable selection techniques. A first filtering step was variable selection by cor-
relation. All variables with significant correlation to other variables were then
excluded at three different levels: 0.9, 0.99 and 1. Next these values are all stan-
dardized to equalize the influences each variable has on the overall distance.

The first successful use case for the obtained distance values was a clustering
of problem instances. Figure 1 shows the results of multi dimensional downscal-
ing of the obtained distances. The map shows that some instances come from
sources that form their own clusters while other clusters consist of instances from
multiple sources.

Fig. 1. Multi-Dimensional Downscaling and Projection of Fitness Landscape Dis-
tances: The instances were clustered using k-means (k = 9) and projected using Neigh-
borhood Components Analysis [15]

116 E. Pitzer, A. Beham, and M. Affenzeller

3.3 Algorithm Selection: Dominance

As a first attempt towards algorithm selection we have reformulated a simple
binary decision problem. For the quadratic assignment problem two algorithms
have proved particularly successful, namely the robust taboo search and the
variable neighborhood search as introduced in Sections 2.3 and 2.4.

Following several previous studies [16–18] of this dataset we have concluded
that average parameter settings can provide a decent baseline and we have used
only a single parameter setting for each algorithm.

On the other hand, we have taken a step back from parameter selection or
hardness prediction and gone to a more general problem of algorithm selection.
To come up with a good overview of algorithm performance two aspects have to
be considered: On the one hand, algorithm convergence speed and, on the other
hand, the final achieved quality. While one algorithm might arrive at a high
quality solution very quickly, another one could, after some more time, come
up with a significantly superior solution. Therefore, it is not straightforward to
decide on one algorithm in general.

For this purpose, we have created repeated snapshots of the algorithm progress
after approximately the following numbers of evaluations: {1, 2.5, 5, 7.5} ·10i, i ∈
{1, . . . , 6}. For VNS these numbers are only approximate since we did not mea-
sure performance inside the inner local search. For this reason, VNS seems to
start out much better then RTS. Table 1b summarizes the run times of 30 repe-
titions over 117 different problem instances for the two algorithm configurations.
As can be seen, not only the number of evaluations but also the overall run time
of the two algorithms are quite comparable. Therefore, for this particular prob-
lem class it is a difficult problem to predict which algorithm will be better, as
both are equally good on average.

For all algorithms and snapshots we calculated the mean and standard de-
viation over 30 runs as shown in Figure 2. While for some problem instance, a
significant domination of one algorithm over another can be seen (Figures 2a
and 2b), in other cases the domination depends on the allowed computational
effort: Figures 2c and 2d, where at first one algorithm dominates, but the other
one converges earlier.

To come up with a reasonable distinction between algorithms we have ana-
lyzed the relative performance over time and performed a significance analysis
using a t-test to determine whether an algorithm is significantly better at a
certain snapshot, which we call snapshot dominance. It became clear that a bet-
ter alternative would be to include the convergence history as well, especially
in cases were no algorithm was significantly better at a certain time. In these
cases, the previously dominating algorithm would be selected as still superior as
it arrived and stayed at a competitive level first. Only after the other algorithm
becomes significantly better again, the dominances are exchanged. An impor-
tant exception was finding the global optimum or best known solution which
was always counted as significantly better if the other algorithm had not found
it yet.

Algorithm Selection for the QAP Using FLA 117

0.00

0.25

0.50

0.75

1.00

5 10
log(iterations)

sc
al

ed
 d

iff
er

en
ce

algorithm RTS VNS

(a) tai60b: domination of VNS

0.00

0.25

0.50

0.75

1.00

1.25

5 10
log(iterations)

sc
al

ed
 d

iff
er

en
ce

algorithm RTS VNS

(b) lipa40b: domination of RTS

0.0

0.5

1.0

1.5

2.0

5 10
log(iterations)

sc
al

ed
 d

iff
er

en
ce

algorithm RTS VNS

(c) had12: significant alteration
with VNS converging first

0.0

0.2

0.4

0.6

0.8

5 10
log(iterations)

sc
al

ed
 d

iff
er

en
ce

algorithm RTS VNS

(d) chr22b: insignificant alteration
with only RTS converging

Fig. 2. Convergence Function Families - the y axis shows the quality linearly scaled
between the best-known quality value and an instance-specific average

We took these series of dominances and performed a run-length encoding
yielding series of alternating algorithms which are either currently significantly
better of are now competitive and have been dominating before. We have per-
formed this analysis at different significance levels. Our final choice was to only
look at very significant performance differences

Table 2 shows some (extreme) examples of different significance levels. VNS
comes out first every time, since the first few snapshots (at logarithmic) scale
reflect the first measured value that was taken much later. However, when the
significance is increased enough, we end up with three possibilities, either RTS
or VNS dominates in the end or there was a significant alteration.

4 Algorithm Dominance Prediction

As the fitness landscape analysis measures show a meaningful separation between
problem generators we tested whether they could also be used for predicting

118 E. Pitzer, A. Beham, and M. Affenzeller

Table 2. Dominance Series Compression: Increasing the required significance level
only a few scenarios remain

significance level
instance 0.9 0.99 0.9999
bur26a VR VR VR
kra30b VRVR VR VR
lipa90b VRV VRV VR
lipa80a VRV VRV VRV

significance level
instance 0.9 0.99 0.9999
bur26b V V V
chr22b VRVR VR V
lipa70a VRVRV VRV V
had12 VRV VRV V

algorithm choice. For this purpose, we have prepared several datasets consisting
of different variable selections of FLA values together with different variants of
class assignments of the previous section: We used three different thresholds for
variable cross-correlation elimination: 1, 0.99 and 0.9, where all variables that
a simple Pearson’s and a Spearman’s rank correlation higher than these values
were dropped. With the first threshold, redundant values such as information
stability, partial information content which are repeated for all walks and one
direction of up-down walk statistics were removed. In the 90% correlation case,
many ruggedness related characteristics of the up-down walks were removed as
they always characterize smooth adaptive walks. The data sets had 34, 30 and
18 variables and can be examined at material6.

Three different types of classification were performed: A direct, three class
classification, yielding either one of the algorithms or undecided, a two-class
classification, where we removed the four undecided instances, as for these cases
the choice would not matter anyway, and a re-sampled binary classification prob-
lem to ensure equal numbers of class members.

These nine datasets were tried using 4-fold cross validation for all forty appli-
cable classification algorithms within Weka 3.6 [19] using only default settings.
The aim of this work is not to suggest a certain classification scheme but to eval-
uate the overall viability of fitness landscape analysis as predictor of algorithm
selection.

5 Results

Table 3 shows the results of algorithm selection using different classifiers. While
all results were quite promising we have selected those that showed another
significant improvement over a simple rule learner with one variable (OneR).
The best results were achieved using a variant of support vector machines using
sequential minimal optimization [20].

The results show quite satisfactory predictive power, being able to correctly
select the dominating algorithm. While, the binary problem is, naturally, slightly
easier to predict as the most difficult, but also most unimportant instance have
been removed. With an average percentage of 80% correctly classified instances
6 http://dev.heuristiclab.com/AdditionalMaterial

http://dev.heuristiclab.com/AdditionalMaterial

Algorithm Selection for the QAP Using FLA 119

Table 3. Top Classifier Results: Percent of correctly classified problem instances for
one variable rule learner (OneR), sequential minimal optimization (SMO) of a support
vector machine and Gaussian processes (GProc), and linear regression (LR)

r selection SMO LR GProc OneR
1.00 all 80.57 77.55 76.61 71.11
0.99 all 80.40 77.55 77.15 71.08
0.90 all 78.60 78.72 78.77 68.97
1.00 binary 84.33 81.30 79.18 73.87
0.99 binary 84.21 80.27 79.95 73.81
0.90 binary 82.74 82.56 81.13 71.90
1.00 re-sampled 81.96 79.00 78.37 73.07
0.99 re-sampled 82.44 78.41 79.11 72.85
0.90 re-sampled 81.36 79.42 78.78 70.81

average 81.85 79.42 78.78 71.94

and a maximum of 2̃ % difference between the folds, this scheme should prove
as a real help in the selection of an appropriate algorithm.

6 Conclusion

In the exploration of fitness landscape analysis, its general applicability and the
suitability for algorithm and parameter selection, we have picked the topic of
a binary selection problem between two exceptionally performing algorithms.
In this case, it would be difficult, even for experienced researchers, to make an
up-front decision between any of the two. Using a combination of several fitness
landscape analysis methods, a grid of tests with different problem instances and
simple convergence speed analysis of robust taboo search and variable neigh-
borhood search, we have shown that the insights obtained by fitness landscape
analysis can provide valuable help for this decision.

In the future we plan to evaluate other schemes of inference to come up
with more methods to help decide which algorithms to choose and even which
parameters to select for different problem instance. As an ultimate goal, we want
to be able to make these predictions even for problem classes for which hardly
any experience is available by using the possibility of comparing fitness landscape
analysis results of different problem classes. In a certain way, we are trying get
around the free lunch theorem [21] and snatch a free appetizer by providing a
reasonable first choice of algorithm and parameters.

It is however necessary to admit that we did not yet extend these results
to further problems and algorithms. Also, it should be clear that presently we
compared two algorithms in two specific parameterizations that were chosen to
be suitable in preceding studies. The inclusion of algorithm parameters in the
comparison is also an open issue for future work.

120 E. Pitzer, A. Beham, and M. Affenzeller

References

1. Weinberger, E.D.: Local properties of kauffman’s n-k model, a tuneably rugged
energy landscape. Physical Review A 44(10), 6399–6413 (1991)

2. Jones, T.: Evolutionary Algorithms, Fitness Landscapes and Search. PhD thesis,
University of New Mexico, Albuquerque, New Mexico (1995)

3. Pitzer, E., Affenzeller, M.: A Comprehensive Survey on Fitness Landscape Analysis.
In:Fodor, J.,Klempous,R., SuárezAraujo,C.P. (eds.)RecentAdvances in Intelligent
Engineering Systems. SCI, vol. 378, pp. 161–191. Springer, Heidelberg (2012)

4. Koopmans, T.C., Beckmann, M.: Assignment problems and the location of eco-
nomic activities. Econometrica 25(1), 53–76 (1957)

5. Taillard, E.D.: Robust taboo search for the quadratic assignment problem. Parallel
Computing 17, 443–455 (1991)

6. James, T., Rego, C., Glover, F.: Multistart tabu search and diversification strate-
gies for the quadratic assignment problem. IEEE Transactions on Systems, Man
and Cybernetics, Part A: Systems and Humans 39(3), 579–596 (2009)

7. Burkard, R.E., Karisch, S.E., Rendl, F.: QAPLIB - A quadratic assignment prob-
lem library. Journal of Global Optimization 10(4), 391–403 (1997)

8. Glover, F.: Tabu search – part I. ORSA Journal on Computing 1(3), 190–206 (1989)
9. Hansen, P., Mladenovic, N., Perez, J.: Variable neighbourhood search: methods

and applications. Annals of Operations Research 175, 367–407 (2010)
10. Merz, P., Freisleben, B.: Fitness landscape analysis and memetic algorithms for

the quadratic assignment problem. IEEE Transactions on Evolutionary Computa-
tion 4(4), 337–352 (2000)

11. Weinberger, E.: Correlated and uncorrelated fitness landscapes and how to tell the
difference. Biological Cybernetics 63(5), 325–336 (1990)

12. Vassilev, V.K., Fogarty, T.C., Miller, J.F.: Information characteristics and the
structure of landscapes. Evol. Comput. 8(1), 31–60 (2000)

13. Wagner, S.: Heuristic Optimization Software Systems - Modeling of Heuristic Op-
timization Algorithms in the HeuristicLab Software Environment. PhD thesis, Jo-
hannes Kepler University, Linz, Austria (2009)

14. Chicano, J.F., Luque, G., Alba, E.: Autocorrelation measures for the quadratic
assignment problem. Applied Mathematics Letters 25(4), 698–705 (2012)

15. Goldberger, J., Roweis, S., Hinton, G., Salakhutdinov, R.: Neighbourhood com-
ponents analysis. In: Saul, L.K., Weiss, Y., Bottou, L. (eds.) Advances in Neural
Information Processing Systems 17, pp. 513–520. MIT Press, Cambridge (2005)

16. Pitzer, E., Vonolfen, S., Beham, A., Affenzeller, M., Bolshakov, V., Merkuryeva,
G.: Structural analysis of vehicle routing problems using general fitness landscape
analysis and problem specific measures. In: 14th International Asia Pacific Confer-
ence on Computer Aided System Theory, pp. 36–38 (2012)

17. Pitzer, E., Beham, A., Affenzeller, M.: Generic hardness estimation using fitness
and parameter landscapes applied to robust taboo search and the quadratic as-
signment problem. In: GECCO 2012 Companion, pp. 393–400 (2012)

18. Pitzer, E., Beham, A., Affenzeller, M.: Correlation of Problem Hardness and Fit-
ness Landscapes in the Quadratic Assignment Problem. In: Advanced Method and
Applications in Computational Intelligence, pp. 163–192. Springer (in press, 2013)

19. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
weka data mining software: An update. SIGKDD Explorations 11(1), 10–18 (2009)

20. Platt, J.C.: Fast Training of Support Vector Machines using Sequential Mini-
mal Optimization. In: Advances in Kernel Methods: Support Vector Learning,
pp. 185–208. MIT Press (1998)

21. Macready, W.G., Wolpert, D.H.: What makes an optimization problem hard? Com-
plexity 5, 40–46 (1996)

Balancing Bicycle Sharing Systems:
A Variable Neighborhood Search Approach�

Marian Rainer-Harbach, Petrina Papazek, Bin Hu, and Günther R. Raidl��

Institute of Computer Graphics and Algorithms
Vienna University of Technology

Favoritenstraße 9–11/1861, 1040 Vienna, Austria
{rainer-harbach,papazek,hu,raidl}@ads.tuwien.ac.at

Abstract. We consider the necessary redistribution of bicycles in public bicycle
sharing systems in order to avoid rental stations to run empty or entirely full. For
this purpose we propose a general Variable Neighborhood Search (VNS) with
an embedded Variable Neighborhood Descent (VND) that exploits a series of
neighborhood structures. While this metaheuristic generates candidate routes for
vehicles to visit unbalanced rental stations, the numbers of bikes to be loaded or
unloaded at each stop are efficiently derived by one of three alternative methods
based on a greedy heuristic, a maximum flow calculation, and linear program-
ming, respectively. Tests are performed on instances derived from real-world data
and indicate that the VNS based on a greedy heuristic represents the best compro-
mise for practice. In general the VNS yields good solutions and scales much
better to larger instances than two mixed integer programming approaches.

1 Introduction

A large number of public Bicycle Sharing Systems (BSSs) has been introduced in many
cities around the world in the last decade. Such systems augment public transport well
and frequently present attractive “green” alternatives to individual motorized traffic. A
BSS consists of a number of stations where users can rent and return bikes in an auto-
mated way. Operators face an important challenge with regard to customer satisfaction:
Due to different factors such as the topographical height, the numbers of bikes rented
and returned, respectively, differ significantly among the stations. Running such a sys-
tem without any maintenance would therefore soon result in many completely empty or,
equally worse, completely full stations. Thus the operator needs to actively rebalance
the system by moving bicycles between stations with a fleet of vehicles, e.g. cars with
trailers. In the Balancing Bicycle Sharing System (BBSS) problem we aim at finding
efficient vehicle routes with corresponding bicycle-loading instructions at the visited
stations in order to bring the system in balance as far as possible.

In this work we address this problem by a Variable Neighborhood Search (VNS) with
an embedded Variable Neighborhood Descent (VND), which exploit various specifi-
cally designed neighborhood structures. While tours are searched within the VNS/VND,

� This work is supported by the Austrian Research Promotion Agency (FFG), contract 831740.
�� The authors thank Matthias Prandtstetter, Andrea Rendl and Markus Straub from the Austrian

Institute of Technology (AIT) for the collaboration in this project.

M. Middendorf and C. Blum (Eds.): EvoCOP 2013, LNCS 7832, pp. 121–132, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

122 M. Rainer-Harbach et al.

corresponding loading instructions are efficiently derived by either a greedy approach,
a maximum flow calculation, or linear programming. Experiments are performed on
benchmark instances derived from Citybike, the BSS in Vienna, Austria. They indicate
that high quality solutions can be found with this approach and that the maximum flow
based calculating of loading instruction performs best in practice.

2 The Balancing Bicycle Sharing System Problem

In this section we formalize the BBSS problem. Currently, we only consider a static
problem variant in which user activities during the rebalancing process are neglected.
The BSS is represented by a complete directed graph G0 =(V0,A0). Node set V0 =V ∪O
consists of nodes for the rental stations V as well as start and end points O for vehicles
(garages or overnight parking places). Each arc (u,v) ∈ A0 has associated a travel time
tu,v > 0 that includes an expected time for parking near v and loading/unloading bikes.
Let the subgraph induced by the bike stations V only be G = (V,A), A ⊂ A0.

Each station v ∈ V has associated a capacity Cv ≥ 0, i.e., the number of available
parking positions, the number of available bikes at the beginning of the rebalancing
process pv ≥ 0, and a target number of available bikes after rebalancing qv ≥ 0. A
fleet of vehicles L = {1, . . . , |L|} is available for transporting bikes. Each vehicle l ∈ L
has a capacity of Zl > 0 bikes, a total time budget t̂l within which it has to finish a
route (i.e., the worker’s shift length), as well as specific start and destination nodes
sl ,dl ∈ O, respectively. We assume that all vehicles start and finish rebalancing empty. A
solution consists of two parts. The first part is the route for each vehicle l ∈ L specified
by an ordered sequence of visited stations rl = (r1

l , . . . ,r
ρl
l) with ri

l ∈ V , i = 1, . . . ,ρl

and ρl representing the number of stops. Note that stations may be visited multiple
times by the same or different vehicles. Start and end points sl and dl are fixed for
each vehicle and are prepended and appended, respectively, to each route in order to
obtain complete tours. The second part consists of loading and unloading instructions
y+,i

l,v , y−,i
l,v ∈ {0, . . . ,Zl} with l ∈ L, v ∈ V , and i = 1, . . . ,ρl , specifying how many bikes

are picked up or delivered, respectively, at station v at the i-th stop of vehicle l. Note
that ∀v
= ri

l : y+,i
l,v = y−,i

l,v = 0.
The following conditions must hold in a feasible solution: The number of bikes avail-

able at each station v∈V needs to be within {0, . . . ,Cv}. For any vehicle l ∈ L capacities
Zl may never be exceeded, and the tour time tl

tl =

⎧⎨
⎩tsl ,r

1
l
+

ρl

∑
i=2

tri−1
l ,ri

l
+ t

r
ρl
l ,dl

for ρl > 0

tsl ,dl for ρl = 0,
(1)

is restricted by the time budget t̂l , ∀l ∈ L. Let av be the final number of bikes after
rebalancing at each station v ∈V ,

av = pv +∑
l∈L

ρl

∑
i=1

(
y−,i

l,v − y+,i
l,v

)
. (2)

The objective is to find a feasible solution that primarily minimizes the deviation from
the target number of bikes δv = |av − qv| at each station v ∈ V and secondarily the
number of loading/unloading activities plus the overall time required for all routes, i.e.,

Balancing Bicycle Sharing Systems: A VNS Approach 123

min αbal ∑
v∈V

δv +α load ∑
l∈L

ρl

∑
i=1

(
y+,i

l,ri
l
+ y−,i

l,ri
l

)
+αwork ∑

l∈L

tl , (3)

where αbal,α load,αwork ≥ 0 are scaling factors controlling the relative importance of
the respective terms.

A simplification that may be exploited in different approaches is to consider mono-
tonicity regarding fill levels of stations. Let Vpic = {v ∈ V | pv ≥ qv} denote pickup
stations and Vdel = {v ∈V | pv < qv} denote delivery stations. A vehicle is only allowed
to load bicycles at pickup stations and unload them at delivery stations. In this way
the number of bikes decreases or increases monotonically, therefore the order in which
different vehicles visit a single station does not matter. On the downside, forcing mono-
tonicity might exclude some better solutions that would have been feasible without this
restriction.

3 Related Work

It was not until recently that the BBSS problem has been recognized as a combinatorial
optimization problem and the operations research community described a few system-
atic solution approaches. However, they address significantly different problem variants
and a direct comparison between existing approaches is difficult. The majority of exist-
ing works uses mixed integer programming (MIP), which in principle is able to find
proven optimal solutions but in practice is restricted to very small instances.

Chemla et al. [1] address the static case with only one vehicle and achieving per-
fect balance as a hard constraint. They describe a branch-and-cut approach utilizing an
embedded tabu search for locally improving incumbent solutions. To the best of our
knowledge, their tabu search is the only metaheuristic approach applied to the rebalanc-
ing problem until now. One of the key concepts is to only consider the visiting order
of the rebalancing vehicle in the solution representation and to obtain the loading in-
structions by an auxiliary algorithm based on a maximum flow computation. With this
technique the search space can be reduced significantly. In our work we extend this idea
towards our more general problem definition. Raviv et al. [2] propose four MIP models.
In their objective function they model user dissatisfaction and tour lengths but ignore
the number of loading operations. The models were tested on real-world data obtained
from Vélib (Paris) with up to 60 stations. Results show that the most basic arc indexed
model produces the best lower bounds in a given time limit, but more complex models
offer more flexibility with respect to the requirements. Benchimol et al. [3] again as-
sume balancing as hard constraint, only consider the total tour length as objective, and
focus on approximation algorithms for selected special situations. Finally, Contardo et
al. [4] investigate the more complex dynamic scenario where rebalancing is done while
the bike sharing system is in use. They propose an arc-flow formulation and a pattern-
based formulation for a space-time network model. The latter is solved heuristically by
a hybrid approach using column generation and Benders decomposition. On randomly
created instances, this approach was able to handle instances with up to 100 stations and
60 time periods, however significant gaps between lower and upper bounds still remain.

124 M. Rainer-Harbach et al.

There are other works in the literature which focus on the strategic planning aspects
of bike sharing systems (i.e., location and network design depending on demands). How-
ever, these aspects are not within the scope of this work. More generally, BBSS is
closely related to diverse variants of the classical vehicle routing problem (VRP). How-
ever, it differs in substantial ways: Most importantly, stations may be visited multiple
times, even by different vehicles. Consequently, BBSS can be described as a capacitated
single commodity split pickup and delivery VRP.

4 Greedy Construction Heuristic

To efficiently generate a meaningful initial solution, we employ a construction heuristic
based on greedy principles. This procedure assumes monotonicity as described in Sec-
tion 2. A solution is built by iteratively creating a tour for each vehicle following a local
best successor strategy. From the last station of a partial tour, we first determine the set
F ⊆V of feasible successor stations. These are all stations that are not yet balanced and
can be reached without exceeding the shift length, i.e., there is enough time left to visit
the station and to go to the destination node afterwards.

For each such candidate station v ∈F , we calculate the maximum amount of bicycles
that can be picked up or delivered by

γv =

{
min(av − qv,Zl − bl) for v ∈ F ∩Vpic,

min(qv − av,bl) for v ∈ F ∩Vdel,
(4)

where bl represents the final load of vehicle l and av the final number of bikes at station
v in the currently considered partial tour. For ρl = 0 they are initialized with bl = 0 and
av = pv.

We assume that no bikes are allowed to remain on a vehicle when returning to the de-
pot. Therefore, an additional correction is necessary for pickup stations: We determine
for each v ∈ F ∩Vpic if after visiting v the remaining time budget allows the vehicle to
deliver at least bl + 1 bicycles to other stations, i.e., all bikes the vehicle currently has
loaded plus at least one that would be picked up from v. If this is not the case, visiting
v is useless as no bike may finally be picked up there.

For this purpose, we estimate the number of deliverable bikes bdel
v after visiting v

by iteratively applying the exact same greedy heuristic restricted to delivery stations
only. We stop extending this delivery-only route when either bdel

v ≥ bl + γv (i.e., we
have shown that all bicycles picked up at v can be delivered later) or the time budget t̂l
is exceeded. Then, pickup stations v with bdel

v < bl + 1 are removed from set F , while
the number of bikes to be picked up is possibly reduced for the others:

γv ← min(γv,b
del
v − bl), ∀v ∈ F ∩Vpic. (5)

Now, all candidate stations v ∈ F are evaluated using the ratio γv/tu,v, where tu,v is the
traveling time from the vehicle’s last location u to station v; thus we consider the balance
gain per time unit. The node v ∈ F with the highest ratio is then appended to the tour of
vehicle l; ties are broken randomly. Loading instructions are set as follows:

Balancing Bicycle Sharing Systems: A VNS Approach 125

y+,ρl
l,v = γv and y−,ρl

l,v = 0 if v ∈Vpic, (6)

y+,ρl
l,v = 0 and y−,ρl

l,v = γv if v ∈Vdel. (7)

Next, bl and av are updated accordingly and the procedure continues with the next
extension, evaluating stations in F from scratch, until no feasible extension remains.

5 Variable Neighborhood Search

In this section we describe our VNS approach. It uses the general VNS scheme with an
embedded VND for local improvement as described in [5].

5.1 Solution Representation and Derivation of Loading Instructions

Concerning the VNS we use an incomplete solution representation by storing for
each vehicle l ∈ L its route rl = (r1

l , . . . ,r
ρl
l) only. Corresponding loading instructions

y+,i
l,v , y−,i

l,v , l ∈ L, v ∈ V, i = 1, . . . ,ρl are derived for each created set of tours by one of
the following, alternative procedures, which have different assets and drawbacks.

Greedy Heuristic (GH): This simplest and fastest approach follows the pure greedy
strategy from the construction heuristic and assumes monotonicity. For each tour, the
stations are considered in the order as they are visited and loading instructions are com-
puted as described in Section 4. Even under the restriction of monotonicity, GH is not
guaranteed to find optimal loading instructions. For example, it can be beneficial to re-
tain bikes in the vehicle at a first stop at some station v in order to satisfy a following
delivery station as v will be visited a second time and can also be satisfied then.

Maximum Flow Approach (MF): When assuming monotonicity, we are able to derive
optimal loading instructions via an efficient maximum flow computation on a specifi-
cally defined flow network. This approach is inspired by [1] but extends their method
towards multiple vehicles and the consideration of balance in the objective function.
We define graph Gfm = (Vfm,Afm) with node set Vfm = {σ ,τ}∪Vpic ∪Vdel ∪VL where
σ and τ are the source and target nodes of the flow, respectively, and VL =

⋃
l∈L Vl with

Vl = {vi
l | l ∈ L, i = 1 . . . ,ρl} represents the stops of all routes.

Arc set Afm = Aσ ∪AL ∪Apic ∪Adel ∪Aτ consists of:

– Aσ = {(σ ,v) | v ∈Vpic} with capacities pv − qv.
– Aτ = {(v,τ) | v ∈Vdel} with capacities qv − pv.
– Apic = {(v,vi

l) | vi
l ∈VL, v = ri

l , v ∈Vpic}, i.e., each pickup node in Vpic is connected
with every node representing a stop at this station in any route l ∈ L. These arcs’
capacities are not limited.

– Adel = {(vi
l ,v) | vi

l ∈ VL, v = ri
l , v ∈ Vdel}, i.e., each node representing a stop at a

delivery station is connected to the corresponding delivery node in Vdel. These arcs’
capacities are also not limited.

– AL = {(vi−1
l ,vi

l) | vi
l ∈VL, i > 1}, i.e., the nodes representing the stops in each tour

are connected according to the tour. Arc capacities are Zl .

126 M. Rainer-Harbach et al.

σ τ

a

d

b

c

a11

b21

a31

c41

d12

a22

b32

pa − qa

pd − qd

qb − pb

qc − pc

Z1

Z1

Z1

Z2

Z2

Vpic Vdel

tour r1

tour r2

Fig. 1. Exemplary flow network when considering monotonicity for the tours r1 = (a,b,a,c) and
r2 = (d,a,b) with Vpic = {a,d} and Vdel = {b,c}

An exemplary network is shown in Figure 1. Calculating a maximum (σ ,τ)-flow on it
directly yields optimal loading instructions y+,i

l,v , y−,i
l,v via the flows on the correspond-

ing arcs Apic and Adel, respectively. In our implementation, we used the efficient push-
relabel method from Cherkassky and Goldberg [6] for the flow computation.

Linear Programming Approach (LP): Finally, we are able to determine optimal load-
ing instructions even for the general, not necessarily monotonic case by solving a min-
imum cost flow problem on a differently defined network by linear programming. The
main difference is that the order in which vehicles make their stops (at possibly the same
stations) is considered. Bikes can be buffered at stations or even be directly transferred
from one vehicle to another when they meet.

Let t(ri
l) denote the absolute time when vehicle l makes its i-th stop at station ri

l . We
define the multi-graph Gf = (Vf ,Af) with node set Vf = {σ ,τ} ∪Vt where Vt = {v j |
∃vi

l ∈Vl : t(ri
l) = j}, i.e., besides source and target nodes σ and τ we have a node v j for

each station v and time j when a vehicle arrives at v. Furthermore V first = {v jmin ∈ Vt |
jmin = min{ j | v j ∈Vt}}, i.e., these nodes represent the first visits of all stations among
all routes, and V last = {v jmax ∈Vt | jmax = max{ j | v j ∈Vt}}, i.e., these nodes represent
the last visits of all stations.

Arc set Af = Aσ ∪Aτ ∪AR ∪AV consists of:

– Aσ = {(σ ,v j) | v j ∈V first} with capacities pv.
– Aτ = {(v j,τ) | v j ∈V last} with capacities qv.
– AR =

⋃
l∈L AR,l with AR,l = {(u j′ ,v j) | u = ri−1

l , v = ri
l , j′ = t(ri−1

l), j = t(ri
l), i =

2, . . . ,ρl}, ∀l ∈ L, i.e., the arcs representing the flow induced by the vehicles. Ca-
pacities are Zl . Note that multiple arcs exist between two nodes if two (or more)
vehicles leave and arrive at the same stations exactly at the same times.

– AV =
⋃

v∈V Av with Av = {(v j1 ,v j2), . . . ,(v jmax−1 ,v jmax)}, (v j1 , . . . ,v jmax) is the se-
quence of nodes {v j ∈Vt} sorted according to increasing j. Capacities are Cv.

An example of this network is given in Figure 2. Now, a simple maximum flow calcu-
lation would in general not yield optimal or even feasible loading instructions. Instead,

Balancing Bicycle Sharing Systems: A VNS Approach 127

σ

τ

a1

d4

c7

a5
pa

qb

a9

b3 b11pb

pc

pd

qa

qc

qd

Ca Ca

Cb

Z1
Z1

Z1 Z2 Z2

tour r1

tour r2

Fig. 2. Exemplary flow network for the general case with tours r1 = (a,b,a,c) and r2 = (d,a,b)

we have to solve a minimum cost flow problem via the following LP, which uses flow
variables fu,v, ∀(u,v) ∈ Af. By predl(v j) ∈ Vt we denote the predecessor of the node
v j on the route of vehicle l, i.e., predl(v j) = u j′ with u = vi−1

l , j′ = t(ri−1
l), and by

succl(v j) ∈Vt the successor, i.e., succl(v j) = wj′′ with w = vi+1
l , j′′ = t(ri+1

l).

min αbal ∑
∀v∈V last

δv +α load ∑
l∈L

ρl

∑
i=1

(
y+,i

l,ri
l
+ y−,i

l,ri
l

)
(8)

subject to

∑
(u,v j)∈Aσ ∪AV

fu,v j +∑
l∈L

∑
(u,v j)∈AR,l

fu,v j = ∑
(v j ,w)∈Aτ∪AV

fv j ,w +∑
l∈L

∑
(v j ,w)∈AR,l

fv j ,w ∀v j ∈Vt (9)

y+,i
l,v − y−,i

l,v =

⎧⎪⎪⎨
⎪⎪⎩

fv j ,succl (v
j) ∀l ∈ L, i = 1, v = ri

l , j = t(ri
l)

fv j ,succl (v
j) − fpredl (v

j),v j ∀l ∈ L, i = 2, . . . ,ρl −1,v = ri
l , j = t(ri

l)

− fpredl (v
j),v j ∀l ∈ L, i = ρl , v = ri

l , j = t(ri
l)

(10)

fσ ,v j = pv ∀(σ ,v j) ∈ Aσ (11)

fv j ,τ −qv ≤ δv ∀(v j ,τ) ∈ Aτ (12)

qv − fv j ,τ ≤ δv ∀(v j ,τ) ∈ Aτ (13)

0 ≤ fv j ,τ ≤Cv ∀(v j ,τ) ∈ Aτ (14)

0 ≤ f
u j′ ,v j ≤ Zl ∀l ∈ L, (uj′ ,v j) ∈ AR,l (15)

0 ≤ f
v j′ ,v j ≤Cv ∀(v j′ ,v j) ∈ AV (16)

δv ≥ 0 ∀(v j ,τ) ∈ Aτ (17)

y+,i
l,v ∈ {0, . . . ,Zl} ∀l ∈ L, v ∈V, i = 1, . . . ,ρl (18)

y−,i
l,v ∈ {0, . . . ,Zl} ∀l ∈ L, v ∈V, i = 1, . . . ,ρl (19)

The objective function (8) is directly derived from our main objective (3). Equations (9)
are the flow conservation equalities, while equations (10) link the loading instruction
variables with the flows. The flows at arcs (σ ,v j) ∈ Aσ are fixed to the station’s initial
number of bikes pv in (11).

As we have a capacitated but unrestricted flow network with all capacities being in-
teger, the LP is totally unimodular and the corresponding polytope’s extreme points are
all integer. Therefore by solving this LP with a common LP solver (or more specifi-
cally a network simplex algorithm), we obtain optimal integral values for the loading
instructions.

128 M. Rainer-Harbach et al.

5.2 VND and VNS Neighborhood Structures

We use several classical neighborhood structures that were successfully applied in var-
ious VRPs together with new structures exploiting specifics of BBSS. Concerning the
classical neighborhood structures, we based our design on the experience from [7].

VND Neighborhoods: The following neighborhoods are all searched in a best im-
provement fashion and applied in the given, static order. Preliminary experiments with
a dynamic reordering strategy brought no significant advantages. All created candidate
tours are incrementally checked for feasibility with respect to time budgets and infea-
sible solutions are discarded. For a feasible solution we derive loading instructions by
one of the methods from Section 5.1 and remove obsolete nodes without any loading
actions.

Remove station (REM-VND): This neighborhood considers all single station re-
movals to avoid unnecessary visits.

Insert unbalanced station (INS-U): This neighborhood includes all feasible solutions
where a yet unbalanced station is inserted at any possible position.

Intra-route 2-opt (2-OPT): This is the classical 2-opt neighborhood for the traveling
salesman problem, applied individually to each route.

Replace station (REPL): Here, any solution in which one station is replaced by a dif-
ferent, yet unbalanced station is included.

Intra or-opt (OR-OPT): This neighborhood considers all solutions in which se-
quences of one, two, or three consecutive stations are moved to another place within
the same route.

2-opt* inter-route exchange (2-OPT*): This classical neighborhood considers all
feasible exchanges of arbitrarily long end segments of two routes.

Intra-route 3-opt (3-OPT): This neighborhood resembles a restricted form of the
well-known 3-opt neighborhood, individually applied to each route. For any par-
titioning of a route into three nonempty subsequences rl =(a,b,c), the routes (b,a,c)
and (a,c,b) are considered. An effective enumeration scheme excludes all solutions
of the previous neighborhoods.

VNS Neighborhoods: For diversification, the shaking procedure selects solutions ran-
domly from the following types of VNS neighborhoods, which are all parameterized by
δ , yielding a total of 24 individual neighborhoods. During this process, created routes
that violate the time budget are repaired by removing stations from the end.

Move sequence (MV-SEQ): Select a sequence of one to min(δ ,ρl) stations at random,
delete it, and reinsert it at a random position of a different route. If the original route
contains less than δ stations, the whole route is inserted at the target route. Both
source and target routes are selected randomly. δ ∈ {1, . . . ,5,ρl}.

Exchange sequence (EX-SEQ): Exchange two randomly selected segments of length
one to min(δ ,ρl) between two randomly chosen routes. δ ∈ {1, . . . ,5,ρl}.

Remove stations (REM-VNS): Consider all stations of all routes and remove each
station with probability δ ∈ {10%,14%,18%,22%,26%,30%}.

Balancing Bicycle Sharing Systems: A VNS Approach 129

Destroy and recreate (D&R): Select a random position in a randomly chosen route,
remove all nodes from this position to the end, and recreate a new end segment by
applying a randomized version of the greedy construction heuristic. The random-
ization is done in the typical GRASP-like way [8] with the threshold parameter set
to δ ∈ {0%,4%,8%,12%,16%,20%}.

6 Computational Results

We tested our VNS algorithm on a set of instances based on real-world data provided by
Citybike Vienna1 which runs a bike-sharing system with 92 stations. They are generated
as follows:

– Travel times tu,v, (u,v) ∈ A0 are real average driving times plus an estimation for
parking the vehicle and loading/unloading bikes based on the experience of the
drivers.

– The number of currently available bikes pv at station v ∈V is taken from a snapshot
of the system.

– The target value qv is assumed to be 50% of the station’s capacity.
– In order to make perfect balance at least theoretically possible when having enough

time, ∑v∈V pv = ∑v∈V qv must hold. This is established by applying small changes
to pv for some randomly chosen stations.

– We derived instances with |V | ∈ {10,20,30,60,90} stations by choosing them ran-
domly from the pool of 92 stations. In addition we consider one common depot
(one of the remaining stations) to be the start and end point for all vehicles.

– We assume a homogeneous fleet of |L| ∈ {1,2,3,5} vehicles with capacity Zl =
20, ∀l ∈ L.

– The total time budget for each vehicle is set to t̂l ∈ {2h,4h,8h}.
– Each instance set uses a unique combination of |V |, |L|, t̂l and contains 30 instances,

resulting in a total of 1800 instances2.

The scaling factors in the objective function were set to αbal = 1, α load = αwork = 1
10000 .

Using these factors, improving the system balance always has a greater impact on the
objective value than reducing the tour lengths or the number of loading operations. The
algorithm has been implemented in C++ using GCC 4.6 and each test run was per-
formed on a single core of an Intel Xeon E5540 machine with 2.53 GHz and 3 GB RAM
per core. Each run was terminated when no improvement could be achieved within the
last 5000 VNS iterations or after a CPU time of one hour. For solving the LP-based
approach to determine loading instructions CPLEX 12.4 was used with default settings.

In addition to the VNS algorithm, we implemented a mixed integer programming
(MIP) model similar to the sequence-indexed formulation from [2] but adapted to our
problem formulation. This model is not able to consider dependencies among vehicles
and is therefore restricted to the monotonic case. CPLEX 12.4 with default settings and
a CPU-time limit of one hour was used for trying to solve the instances with this model.

1 http://www.citybikewien.at/
2 Benchmark instances: https://www.ads.tuwien.ac.at/w/Research/
Problem Instances

http://www.citybikewien.at/
https://www.ads.tuwien.ac.at/w/Research/Problem_Instances
https://www.ads.tuwien.ac.at/w/Research/Problem_Instances

130 M. Rainer-Harbach et al.

Table 1. Results of the MIP approach and the VNS considering the three variants of deriving
loading instructions. Each instance set contains 30 instances. All runtimes are in seconds.

Instance s MIP VNS with GH VNS with MF VNS with LP
|V | |L| t̂ ub lb ttot obj sd ttot obj sd ttot obj sd ttot

10 1 120 28.3477 28.3477 4 28.3477 9.9111 1 28.3477 9.9111 2 28.3477 9.9111 212
10 1 240 4.2942 0.0424 3600 4.2941 3.5524 5 4.2941 3.5524 10 4.2941 3.5524 1332
10 1 480 0.0320 0.0276 3600 0.0317 0.0033 8 0.0317 0.0033 17 0.0317 0.0033 2042
10 2 120 9.8269 9.4768 911 10.0266 6.3028 2 9.9601 6.2475 3 9.9600 6.2475 459
10 2 240 0.0340 0.0322 856 0.0339 0.0043 5 0.0339 0.0043 10 0.0339 0.0043 1441
10 2 480 0.0317 0.0313 1245 0.0317 0.0033 7 0.0317 0.0033 15 0.0317 0.0033 1797
20 2 120 55.8294 26.9012 3600 55.0962 13.2321 4 55.3628 13.3731 8 55.3628 13.3731 1097
20 2 240 19.7884 0.0383 3600 4.3908 3.7546 29 4.2575 3.7276 58 4.2576 3.7275 3600
20 2 480 1.8906 0.0403 3600 0.0614 0.0061 51 0.0615 0.0061 142 0.0614 0.0061 3600
20 3 120 37.3759 1.4777 3600 31.9096 11.9065 7 31.7763 11.8112 13 31.8430 11.8650 1727
20 3 240 6.2083 0.0401 3600 0.0651 0.0060 31 0.0650 0.0060 65 0.0652 0.0060 3600
20 3 480 13.4191 0.0316 3600 0.0616 0.0060 55 0.0614 0.0061 114 0.0614 0.0061 3600
30 2 120 106.9631 56.3908 3600 104.7633 17.7686 6 104.7633 17.7686 12 104.7633 17.7142 1539
30 2 240 74.9886 0.0487 3600 34.7941 10.8729 48 34.6608 10.4812 109 35.1940 10.9637 3600
30 2 480 69.8069 0.0432 3600 0.0926 0.0062 186 0.0925 0.0061 491 0.0928 0.0061 3600
30 3 120 90.4419 16.6454 3600 78.0441 17.2764 10 78.1773 17.0832 21 78.5771 17.2677 2521
30 3 240 61.6715 0.0461 3600 7.1526 4.7495 86 7.1523 4.2272 191 7.6186 4.3543 3600
30 3 480 175.4000 0.0015 3600 0.0925 0.0061 156 0.0925 0.0061 399 0.0928 0.0062 3600
60 3 120 274.3101 157.7350 3600 253.9795 27.8187 20 253.8462 27.6739 45 254.3794 27.3265 3600
60 3 240 370.2000 0.0000 3600 126.7616 20.5332 260 126.8282 20.9660 521 129.2945 20.1347 3600
60 3 480 — — — 6.1766 4.1036 1835 6.7758 4.1422 3600 10.1071 5.0800 3601
60 5 120 289.3111 34.9784 3600 197.7411 28.0192 54 196.6749 29.4401 99 197.0747 28.7557 3600
60 5 240 370.2000 0.0000 3600 41.1497 12.6579 725 41.6161 13.3489 1556 47.2145 13.0440 3600
60 5 480 — — — 0.1901 0.0090 2006 0.1902 0.0087 3600 0.1938 0.0087 3601
90 3 120 492.2319 290.8990 3600 441.5141 21.0737 35 441.6473 20.8266 82 441.4474 20.8250 3600
90 3 240 566.2667 0.0000 3600 295.1644 15.6493 425 294.5646 16.1776 985 297.3642 15.4610 3601
90 3 480 — — — 100.5887 9.6476 3600 101.1221 9.9480 3600 110.5868 9.4745 3601
90 5 120 566.2667 0.0000 3600 375.7435 19.5815 83 376.1432 20.6335 169 376.2767 20.5456 3600
90 5 240 — — — 174.9566 13.5297 1411 174.3566 12.7181 3304 184.8218 12.6962 3601
90 5 480 — — — 1.2863 1.5549 3600 1.6855 1.6746 3600 9.0772 3.5834 3601

In addition, we also investigated a second MIP model based on a time-indexed formu-
lation [2] for the general case. Experiments indicated that this approach unfortunately
led to even worse results due to the higher complexity of the model and a required
discretization of station visit times. We therefore omit these results here. Besides doc-
umenting the general suitability of the VNS and comparing it to the MIP approach,
we aim at analyzing the impacts of the three alternative procedures to derive loading
instructions. Table 1 lists average results for 30 instance sets (out of the 60) that ap-
pear most relevant for practice. Complete results are available for download with the
benchmark instances.

For the MIP approach the table shows mean upper bounds ub, mean lower bounds
lb, and median total run times ttot for the cases where upper or lower bounds could be
obtained within the time limit. The other column groups in the table show the results
of the three VNS variants with GH, MF and LP applied to obtain loading instructions,
respectively. For each variant mean objective values of the final solutions obj, their

Balancing Bicycle Sharing Systems: A VNS Approach 131

standard deviations sd, and median total run times ttot are listed. In each row best mean
results are printed bold.

In general we can clearly observe that the pure MIP approach is only able to solve
very small instances to optimality within the time limit. Very large gaps between lower
and upper bounds show that it scales badly with increasing numbers of vehicles and
especially with longer time budgets. For large instances CPLEX often only found trivial
solutions where all vehicles stay at the depot, or even no solutions at all.

Among the three VNS variants, the one applying GH clearly was fastest. MF in-
creased the running time on average by about 120%. The VNS with LP even took about
110 times longer than the VNS with MF on average for those runs that were not ter-
minated by the time limit. Concerning solution quality, we observed that GH is able
to obtain results very similar to those of MF. Both variants found better final solutions
with lower objective values than the respective other variant in about 21% of runs. In
the remaining 58% both approaches obtained equally good results. Objective values are
on average slightly better for the MF-variant. In general, however, absolute quality dif-
ferences are rather small. Also, a Wilcoxon signed-rank test does not show a significant
difference regarding solution quality of GH and MF. MF runs were terminated by the
time limit for the largest 8% of instances. When only comparing runs not terminated
by the time limit, average objective values are more favorable for MF. However, also in
this comparison the improvement over GH cannot be said to be statistically significant.

In principle the VNS with LP is sometimes able to obtain better results than the
other variants since it may take advantage of not being restricted to monotonicity. Due
to the substantially higher computational overhead, however, about 60% of all runs
were terminated before a reasonable convergence had been achieved due to exceeding
the time limit of one hour. Therefore, the LP-approach typically led to significantly
worse results, particularly for larger instances. The LP-variant obtained better solutions
in only 10%, while the MF-variant outperformed the LP-variant in 36% of all runs. A
Wilcoxon signed-rank test confirms the assumption that the VNS with MF performs
better w.r.t. solution quality with a very low error probability of less than 0.01%.

Figure 3 shows typical relative success rates for the VND neighborhoods on a large
instance. In the VNS, all shaking neighborhoods have similar relative success rates,
therefore we omit the corresponding chart. These results show that all neighborhood
structures contribute well to the overall performance.

Fig. 3. Relative success rates of VND neighborhoods for an instance with |V | = 90, |L| = 5,
t̂ = 480 using the MF-variant

132 M. Rainer-Harbach et al.

7 Conclusions and Future Work

We presented a VNS metaheuristic with an embedded VND for solving the balancing
bicycle sharing system problem. Main ingredients are a meaningful greedy construction
heuristic for generating initial solutions, neighborhood structures derived from VRPs,
new problem-specific neighborhood structures, as well as three alternatives for deriving
optimized loading instructions for created candidate tours. Experimental results on in-
stances derived from real-world data show that the VNS in general performs well and
scales much better than two MIP approaches. Concerning the derivation of loading in-
structions, the greedy method is fastest and delivers solutions similar in quality to those
of the more complex maximum flow based approach. The LP-based method has the
advantage of being able to find optimal loading instructions even for the general, not
necessarily monotonic case, but unfortunately the added flexibility cannot compensate
the typically much larger computational effort when considering reasonable runtime
limits. Thus, the fast greedy method is the best compromise for practice.

In future work, we intend to model the times needed for loading bikes at a station
more accurately by taking the number of loading actions into account instead of assum-
ing average dwell times. Another practically relevant extension is to allow vehicles to
start and return nonempty. Finally, we also want to turn towards the dynamic scenario,
where the fill levels at stations change during the balancing process. Stochastic aspects
then also need to be considered. Last but not least, hybridizing the VNS with the MIP
approaches, e.g., by including some MIP-based large neighborhood search, appears to
be promising.

References

1. Chemla, D., Meunier, F., Calvo, R.W.: Bike sharing systems: Solving the static rebalancing
problem. To appear in Discrete Optimization (2012)

2. Raviv, T., Tzur, M., Forma, I.A.: Static Repositioning in a Bike-Sharing System: Models and
Solution Approaches. To appear in EURO Journal on Transportation and Logistics (2012)

3. Benchimol, M., Benchimol, P., Chappert, B., De la Taille, A., Laroche, F., Meunier, F.,
Robinet, L.: Balancing the stations of a self service bike hire system. RAIRO – Operations
Research 45(1), 37–61 (2011)

4. Contardo, C., Morency, C., Rousseau, L.M.: Balancing a Dynamic Public Bike-Sharing Sys-
tem. Technical Report CIRRELT-2012-09, CIRRELT, Montreal, Canada (2012), submitted to
Transportation Science

5. Mladenović, N., Hansen, P.: Variable neighborhood search. Computers and Operations Re-
search 24(11), 1097–1100 (1997)

6. Cherkassky, B.V., Goldberg, A.V.: On implementing the push-relabel method for the maxi-
mum flow problem. Algorithmica 19(4), 390–410 (1997)

7. Pirkwieser, S., Raidl, G.R.: A variable neighborhood search for the periodic vehicle routing
problem with time windows. In: Prodhon, C., et al. (eds.) Proceedings of the 9th EU/MEeting
on Metaheuristics for Logistics and Vehicle Routing, Troyes, France (2008)

8. Resende, M., Ribeiro, C.: Greedy randomized adaptive search procedures. In: Glover, F.,
Kochenberger, G. (eds.) Handbook of Metaheuristics, pp. 219–249. Kluwer Academic Pub-
lishers (2003)

Combinatorial Neighborhood Topology Particle

Swarm Optimization Algorithm
for the Vehicle Routing Problem

Yannis Marinakis1 and Magdalene Marinaki2

1 Decision Support Systems Laboratory, Department of Production Engineering
and Management, Technical University of Crete, Chania, Greece

marinakis@ergasya.tuc.gr
2 Industrial Systems Control Laboratory, Department of Production Engineering

and Management, Technical University of Crete, Chania, Greece
magda@dssl.tuc.gr

Abstract. One of the main problems in the application of a Particle
Swarm Optimization in combinatorial optimization problems, especially
in routing type problems like the Traveling Salesman Problem, the Ve-
hicle Routing Problem, etc., is the fact that the basic equation of the
Particle Swarm Optimization algorithm is suitable for continuous opti-
mization problems and the transformation of this equation in the dis-
crete space may cause loose of information and may simultaneously need
a large number of iterations and the addition of a powerful local search
algorithm in order to find an optimum solution. In this paper, we propose
a different way to calculate the position of each particle which will not
lead to any loose of information and will speed up the whole procedure.
This was achieved by replacing the equation of positions with a novel
procedure that includes a Path Relinking Strategy and a different corre-
spondence of the velocities with the path that will follow each particle.
The algorithm is used for the solution of the Capacitated Vehicle Rout-
ing Problem and is tested in the two classic set of benchmark instances
from the literature with very good results.

Keywords: Particle Swarm Optimization, Variable Neighborhood Search,
Path Relinking, Vehicle Routing Problem.

1 Introduction

Particle Swarm Optimization (PSO) is a population-based swarm intel-
ligence algorithm that was originally proposed by Kennedy and Eberhart [9].
PSO simulates the social behavior of social organisms by using the physical
movements of the individuals in the swarm. Its mechanism enhances and adapts
to the global and local exploration. Most applications of PSO have concentrated
on the optimization in continuous space but in the last years the PSO algorithm
is used also in discrete optimization problems. The Particle Swarm Optimization

M. Middendorf and C. Blum (Eds.): EvoCOP 2013, LNCS 7832, pp. 133–144, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

134 Y. Marinakis and M. Marinaki

is a very popular optimization method and its wide use, mainly during the last
years, is due to the number of advantages that this method has, compared to
other optimization methods. Some of the key advantages are that this method
does not need the calculation of derivatives, that the knowledge of good solutions
is retained by all particles and that particles in the swarm share information be-
tween them. PSO is less sensitive to the nature of the objective function, can be
used for stochastic objective functions and can easily escape from local minima.
Concerning its implementation, PSO has few parameters to regulate and the
assessment of the optimum is independent of the initial solution.

There is a number of different representations of the solution of a particle
in order to take advantage of the equations of Particle Swarm Optimization.
For example, the most commonly used transformation is the relative position
indexing. Initially, the tour is represented via path representation, which is not
suitable for the PSO. Then, a transformation into a floating point in the interval
(0, 1] is performed. Afterwards, the velocities of all particles are calculated and,
then, the solution of each particle is transformed back to the integer domain
and the cost is calculated. This implementation, although includes the risk of
loosing information, has given very good results in various application of routing
problems [14,15]. An almost similar approach has been proposed in [1]. A very
efficient encoding of the position of each particle by using an adjacency matrix
has been proposed in [12] in order to be able to apply the binary version of the
Particle Swarm Optimization. A similar approach using matrix based particle
representation has been presented in [10]. In [5] a new position update rule is used
where the authors propose to update the position of each particle using mutation
and crossover operators developed for permutation encoding in the literature and
more precisely using swap and partially mapping crossover (PMX) operators.

In this paper, we propose a different way to calculate the position of each
particle which will not lead to any loosing of information and will speed up the
whole procedure. An initial version of this idea was presented by Marinakis and
Marinaki in [11,13,15] and, then, was improved by Rosendo and Pozo in [22]. The
equation of positions is replaced by the use of a Path Relinking procedure. The
path relinking generates new solutions by exploring trajectories that connect
high-quality solutions by starting from one of these solutions, called the starting
solution and generating a path in the neighborhood space that leads towards the
other solution, called the target solution [4]. The reason that the Path Relinking
algorithm is used to replace the position equation of the PSO is that there is
a correspondence between the idea behind the Path Relinking and the idea of
movement of a particle in the Particle Swarm Optimization algorithm. More
precisely, a particle in Particle Swarm Optimization can either follow its own
path, or go towards to its previous optimal solution, or go towards to the global
optimal solution (to the best particle in the swarm). When the particle decides
to follow either the path to its previous optimal solution or the path to the
global optimal solution, a path relinking strategy is applied where the current
solution plays the role of the starting solution and the best particle of the swarm
or the current best solution of the particle plays the role of the target solution.

CNTPSO Algorithm for VRP 135

The trajectories between the two solutions are explored by simple swapping of
two nodes of the starting solution until the starting solution becomes equal to the
target solution. The paths are generated by choosing moves in order to introduce
attributes in the starting solution that are present in the guiding target solution.
If in some step of the path relinking strategy a new best solution, either of the
particle or of the whole swarm, is found, then, the current best (particle or
swarm) solution is replaced with the new one and the algorithm continues.

In this paper, we propose an improvement of this idea where two different
Path Relinking strategies are used. In the first one, the path relinking strategy
is depended from the average values of the equations of velocities, meaning that
for each particle the average value of the equation of velocities is calculated and,
then, depended on this value, the particle chooses which one of the three move-
ments will perform. In the second one, a new path relinking strategy is proposed.
In this strategy, the three possible movements of a particle are performed simul-
taneously in the solution, thus, depending on the velocities’ equation either no
path relinking is performed, or a path relinking is performed using the previous
best solution of the particle or a path relinking is performed using the global
best solution. Afterwards, a Variable Neighborhood Search (VNS) [8] is used to
improve the solution of each particle.

The algorithm is used for solving the Capacitated Vehicle Routing Problem.
The Vehicle Routing Problem (VRP) or the capacitated vehicle routing
problem (CVRP) is often described as the problem in which vehicles based
on a central depot are required to visit geographically dispersed customers in
order to fulfill known customer demands. The problem is to construct a low cost,
feasible set of routes - one for each vehicle. A route is a sequence of locations
that a vehicle must visit along with the indication of the service it provides.
The vehicle must start and finish its tour at the depot. As the Vehicle Routing
Problem is an NP-hard problem, a large number of approximation techniques
were proposed. These techniques are classified into two main categories: Classical
heuristics that were developed mostly between 1960 and 1990 and metaheuristics
that were developed in the last twenty five years. In the last ten years a num-
ber of evolutionary and nature inspired algorithms have been applied for the
solution of the Vehicle Routing Problem. The reader can find more detailed
descriptions of these algorithms in the books [7,24].

With the new version of the combined PSO and Path Relinking Algorithm,
the Combinatorial Neighborhood Topology Particle Swarm Optimization, the
continuous values of the velocities’ equation are not used at all in the solution
of a particle and no transformation between integer and continuous values is
needed in order to apply the Particle Swarm Optimization in a combinatorial
optimization problem, and, thus, no information about good solutions is loosed
between two consecutive iterations. We apply the proposed algorithm in a num-
ber of benchmark instances from the literature. Then, we compare the results
of the proposed algorithm with the results of other PSO implementations from
the literature and, finally, we compare the results with the results of the other
algorithms from the literature. The rest of the paper is organized as follows:

136 Y. Marinakis and M. Marinaki

In the next section the proposed algorithm, the Combinatorial Neighborhood
Topology Particle Swarm Optimization (CNTPSO), is presented and analyzed
in detail. Computational results are presented and analyzed in the third section
while in the last section conclusions and future research are given.

2 Combinatorial Neighborhood Topology Particle Swarm
Optimization Algorithm

In this paper, a new topology for Particle Swarm Optimization (PSO) for suit-
ably solving combinatorial optimization problems is presented. In a PSO al-
gorithm, initially, a set of particles is created randomly where each particle
corresponds to a possible solution. Each particle has a position in the space of
solutions and moves with a given velocity. One of the key issues in designing a
successful PSO for the Vehicle Routing Problem is to find a suitable mapping
between Vehicle Routing Problem solutions and particles in PSO. Each parti-
cle is recorded via the path representation of the tour, that is, via the specific
sequence of the nodes.

Usually in a PSO implementation the calculation of the new position is given
by Equation 2 (see below) and, thus, the movement of a particle between two
positions is depending directly of the calculation of the velocities performed by
Equation (1) (see below). Thus, the above mentioned representation should be
transformed appropriately. However, in this paper the calculation of the veloci-
ties using a novel Path Relinking procedure lead the algorithm to keep in each
iteration the path representation of each solution without needing to transform
the solutions in the continuous space.

In a classic Particle Swarm Optimization algorithm, the position of each in-
dividual (called particle) is represented by a d-dimensional vector in problem
space xi = (xi1, xi2, ..., xid), i = 1, 2, ..., N (N is the population size and d is
the number of the vector’s dimension), and its performance is evaluated on the
predefined fitness function. The velocity vij represents the changes that will be
made to move the particle from one position to another. Where the particle will
move depends on the dynamic interaction of its own experience and the experi-
ence of the whole swarm. There are three possible directions that a particle can
follow: to follow its own path, to move towards the best position it had during
the iterations (pbestij) or to move to the best particle’s position (gbestj). The
velocity and position equations are updated as follows (constriction PSO) [3]:

vij(t+ 1) = χ(vij(t) + c1rand1(pbestij − xij(t)) + c2rand2(gbestj − xij(t))) (1)

and

xij(t+ 1) = xij(t) + vij(t+ 1) (2)

where

χ =
2

|2− c−
√
c2 − 4c|

and c = c1 + c2, c > 4 (3)

CNTPSO Algorithm for VRP 137

t is the iterations counter, c1 and c2 are the acceleration coefficients, rand1 and
rand2 are two random variables in the interval (0, 1). In this paper, Equation 2
is not used at all. From the other hand the role of the velocities’ equation is very
important. As it was mentioned previously the equation of positions of each
particle has been replaced by a Path Relinking Strategy. The Path Relinking
[4] is an intensification strategy that is used as a way of exploring trajectories
between elite solutions. Thus, the idea behind the Path Relinking is almost the
same as the idea behind the movement of a particle in the swarm. A particle in
Particle Swarm Optimization can either follow its own path, or go towards to its
previous optimal solution, or go towards to the global optimal solution (to the
best particle in the swarm). Thus, in the CNTPSO when the particle decides to
follow either the path to its previous optimal solution or the path to the global
optimal solution, a path relinking strategy is applied where the current solution
plays the role of the starting solution and the best particle of the swarm or the
current best solution of the particle plays the role of the target solution. The
trajectories between the two solutions are explored by simple swapping of two
nodes of the starting solution until the starting solution becomes equal to the
target solution.

The most important part of this algorithm is how the particle decides to
follows the previous best or the global best of the whole swarm. Inspired by
the equation of the inertia PSO we would like to give to the particles more
exploration abilities in the initial iterations of the algorithm and as the iterations
proceed to reduce the ability of the particle to search in a different solution space
and to increase the possibility to search around its previous best solution and
around the global optimum. Thus, in the first version of the path relinking,
initially, we calculate the average value of the velocity equation of each particle.

averagev =

d∑
j=1

vij(t+ 1)

d
(4)

If this value is less than a number L1, then, no path relinking is performed
(NOPR), meaning that the particle follows its own path (using a local search
procedure as it will be described later), if it is between the number L1 and L2

the particle performs a path relinking with its previous best solution (PRPB),
and if the value is greater than L2 the particle performs a path relinking with
the global optimum solution (PRGB). In the beginning of the algorithm, L1 and
L2 have large values and the values are decreased during the iterations in order
to succeed the increase of the possibility of a Path Relinking with the global
or the personal best and the decrease of the possibility of searching by its own,
using a local search, the solution space. Thus, the values of L1 and L2 are

L1 = (ubound − lbound)× (w1 −
w1

itermax
× t) + lbound (5)

and

L2 = (ubound − lbound)× (w2 −
w2

2 ∗ itermax
× t) + lbound (6)

138 Y. Marinakis and M. Marinaki

where, t is the current iteration and itermax is the maximum number of itera-
tions, ubound and lbound are the upper and lower bounds for the velocities of each
particle. Usually in the literature the values for the upper and lower bounds are
+4,−4, respectively. If in some iterations in an element of the particle the value
of the velocity violates these bounds, then, this element is initialized with a new
value inside the bounds. The parameters w1 and w2 should have large values as
it is desired the value of L1 to be as large as possible in the beginning of the
algorithm and to be reduced during the iterations. Also, the value of L2 should
be larger than the value of L1 and, thus, the value of w2 should be larger than
the value of w1. Thus, it is selected w1 = 0.8 and as it is decided to give to the
two other strategies (PRPG and PRGB) almost equal selection possibility the
value of w2 is selected equal to 0.9.

In the second version of Path Relinking the same procedure are followed but
instead of using the average value of the velocities it is examined for each element
of the velocities’ equation of the particle which part of the condition with the L1

and L2 values holds. Thus, in the end of this procedure each particle is divided
in three parts. For the elements of the solution that belong to the first part
no path relinking is applied and in these elements a local search is applied, for
the elements of the solution that belong to the second part a path relinking
procedure is applied with the previous personal best and for the last part a path
relinking is applied using the global best solution. As it is possible with the use
of the path relinking procedure the solutions to converge near to a single solution
in a short number of iterations, a solution is not selected if it differs from the
optimum solution less than 30% except if this solution improves the optimum
solution. A local search strategy based on the Variable Neighborhood Search
(VNS) algorithm [8] is applied in each particle in the swarm in order to improve
the solutions produced from the particle swarm optimization algorithm. In this
paper, the VNS algorithm is used with the following way. Initially, the number
of local search algorithms is selected. The local search strategies for the Vehicle
Routing Problem are distinguished between local search strategies for a single
route and local search strategies for multiple routes. The local search strategies
that are chosen and belong to the category of the single route interchange are
the well known methods for the TSP, the 2-opt and the 3-opt. In the single route
interchange all the routes have been created in the initial phase of the algorithm.
The Local Search Strategies for Single Route Interchange try to improve the
routing decisions. The Local Search Strategies for Multiple Route Interchange
try to improve the assignment decisions. This, of course, increases the complexity
of the algorithms but gives the possibility to improve even more the solution.
The multiple route interchange local search strategies that are used are the 1-0
relocate, 2-0 relocate, 1-1 exchange and 2-2 exchange.

As we do not want to increase the complexity of the algorithm, it is decided to
apply in each particle one local search combination of algorithms per iteration.
For this reason, a VNS operator CV NS is selected that controls which local search
algorithm is applied. The CV NS value is compared with the output of a random
number generator, randi(0, 1). If the random number is less or equal to the

CNTPSO Algorithm for VRP 139

CV NS , then, the first local search algorithm is used. Then, if the random number
is less or equal to the 2 ∗CV NS , then, the second local search algorithm is used,
and so on. As we would like to have not only simple local search algorithms but
also their combinations we select ten local search algorithms, the six previously
mentioned methods (2-opt, 3-opt, 1-0 relocate, 2-0 relocate, 1-1 exchange and
2-2 exchange) and four combinations (2-opt with 1-0 relocate, 2-opt with 1-1
exchange, 2-opt with 3-opt and 1-1 exchange and 2-opt with 3-opt, 1-0 relocate
and 1-1 exchange). Thus, the CV NS operator is set equal to 0.1 and only for 10%
of the cases a time consuming local search procedure is applied in the problem. In
each iteration of the algorithm the optimal solution of the whole swarm and the
optimal solution of each particle are kept. The algorithm stops when a maximum
number of iterations has been reached.

3 Results and Discussion

The algorithm was implemented in Fortran 90 and was compiled using the Lahey
f95 compiler on a Intel Core 2 DUO CPU T9550 at 2.66 GHz, running Suse
Linux 9.1. The algorithm was tested on two sets of benchmark problems. The 14
benchmark problems proposed by Christofides [2] and the 20 large scale vehicle
routing problems proposed by Golden [6]. Each instance of the first set contains
between 51 and 200 nodes including the depot. Each problem includes capacity
constraints while the problems 6-10, 13 and 14 have, also, maximum route length
restrictions (m.t.l.) and non zero service times (s.t.). For the first ten problems,
nodes are randomly located over a square, while for the remaining ones, nodes are
distributed in clusters and the depot is not centered. The second set of instances
contains between 200 and 483 nodes including the depot. Each problem instance
includes capacity constraints while the first eight have, also, maximum route
length restrictions but with zero service times. The efficiency of the two versions
of CNTPSO algorithm (CNTPSO1 and CNTPSO2, where in the CNTPSO1
the first version of Path Relinking is used while in the CNTPSO2 the second
version is used) is measured by the quality of the produced solutions. The quality
is given in terms of the relative deviation from the best known solution, ω =
(cCNTPSO−cBKS)

cBKS
and is denoted in Tables 1 and 2 with ω1 and ω2 for CNTPSO1

and CNTPSO2, respectively. In these Tables in columns 1-4 the most important
characteristics (number of nodes (n), Capacity of Vehicles (Q), maximum route
length restrictions (mtl) and service times (st)) of each of the data sets are
presented. The parameters of the proposed algorithm are selected after thorough
testing. A number of different alternative values were tested and the ones selected
are those that gave the best computational results concerning both the quality
of the solution and the computational time needed to achieve this solution. The
selected parameters are: number of particles equal to 50, number of iterations
equal to 1000, c1 = c2 = 2.05 and w1 = 0.8, w2 = 0.9. After the selection of the
final parameters, 10 different runs with the selected parameters were performed
for each of the benchmark instances.

As it was mentioned previously a maximum number of iterations was selected.
There are two issues that someone should take into account when he/she designs

140 Y. Marinakis and M. Marinaki

an algorithm: the first one is the number of iterations with no recorded improve-
ment and the other one is the maximum running time. In order to cope with
the first issue a number of iterations without improvement was selected (50 in
all instances) and, then, the algorithm was terminated. For the second issue a
maximum computational time was selected for each instance. As the increase of
the number of customers needs more computational time to find good solutions
we could not use the same maximum computational time for all instances. Thus,
the maximum allowed time when we solved the first set of benchmark instances
was set equal to 200 seconds while when we solved the second set of benchmark
instances the maximum allowed time was set equal to 500 seconds. However, in
most instances the maximum allowed time was not reached and the algorithm
was terminated with the use of the maximum iterations or the iteration without
improvement. In the last five columns of Tables 1 and 2, the best known solution
(BKS - column 5), the results of the proposed algorithm (column 5), the quality
of the solution of the proposed algorithm (ω1 - column 6) for the CNTPSO1
and the results of the proposed algorithm (column 7), the quality of the solution
of the proposed algorithm (ω2 - column 8) for the CNTPSO2 are presented,
respectively. It can be seen from Table 1 that the CNTPSO1 algorithm in nine
out of the fourteen instances of the first set has reached the best known solution.
For the other five instances the quality of the solutions is between 0.01% and
0.15% and the average quality for the fourteen instances is 0.033%. On the other
hand, the CNTPSO2 in eleven out of the fourteen instances of the first set has
reached the best known solution. For the other three instances the quality of the
solutions is between 0.05% and 0.14% and the average quality for the fourteen in-
stances is 0.019%. For the 20 large scale vehicle routing problems (Table 2) both
algorithms have found the best known solution in one of them, for the rest the
quality is between 0.10% and 1.08% and the average quality of the solutions is
0.44% for the CNTPSO1, while for the CNTPSO2 the quality is between 0.02%
and 0.81% and the average quality of the solutions is 0.37%. In general both
algorithms gave very good results in all instances in short computational time
but the second version with the combined Path Relinking procedure performs
slightly better than the other method.

In Tables 3 and 4 comparisons of the proposed algorithm with other algo-
rithms from the literature are presented. The first algorithm is a hybrid Par-
ticle Swarm Optimization (HybPSO) algorithm for the solution of the Vehicle
Routing Problem [15]. The second algorithm used for the comparisons is a Hy-
bridization version of Particle Swarm Optimization with a Genetic Algorithm
(HybGENPSO) for the solution of the Vehicle Routing Problem [13]. The next
two algorithms, the PSOSR1 and the PSOSR2, are presented and analyzed in
[1] and the last one (PSOMAT) is presented in [10]. For the last three algorithms
the authors did not present results for the large scale VRPs and, thus, compar-
isons could be performed only for the small instances. In the first set of instances
the CNTPSO2 found the best solution in eleven instances, the HybGENPSO in
ten instances, the CNTPSO1 in 9 instances, the HybPSO in seven instances, the
PSOMAT in six instances, the PSOSR2 in four instances and the PSOSR1 in

CNTPSO Algorithm for VRP 141

Table 1. Results of CNTPSO algorithm in Christofides benchmark instances

n Q m.t.l. s.t. BKS CNTPSO1 ω1(%) CNTPSO2 ω2(%)
51 160 ∞ 0 524.61 [21] 524.61 0.00 524.61 0.00
76 140 ∞ 0 835.26 [21] 835.26 0.00 835.26 0.00
101 200 ∞ 0 826.14 [21] 826.14 0.00 826.14 0.00
151 200 ∞ 0 1028.42 [21] 1028.42 0.00 1028.42 0.00
200 200 ∞ 0 1291.45 [21] 1293.18 0.15 1292.35 0.08
51 160 200 10 555.43 [21] 555.43 0.00 555.43 0.00
76 140 160 10 909.68 [21] 909.68 0.00 909.68 0.00
101 200 230 10 865.94 [21] 865.94 0.00 865.94 0.00
151 200 200 10 1162.55 [21] 1163.28 0.06 1163.15 0.05
200 200 200 10 1395.85 [21] 1396.05 0.01 1395.85 0.00
121 200 ∞ 0 1042.11 [21] 1043.15 0.10 1042.11 0.00
101 200 ∞ 0 819.56 [21] 819.56 0.00 819.56 0.00
121 200 720 50 1541.14 [21] 1543.35 0.14 1543.25 0.14
101 200 1040 90 866.37 [21] 866.37 0.00 866.37 0.00

Table 2. Results of CNTPSO in the 20 benchmark Golden instances

n Q m.t.l. s.t. BKS CNTPSO1 ω1(%) CNTPSO2 ω2(%)
240 550 650 0 5627.54 [16] 5688.25 1.08 5665.35 0.67
320 700 900 0 8444.50 [19] 8458.45 0.17 8455.15 0.13
400 900 1200 0 11036.22 [20] 11098.15 0.56 11094.15 0.52
480 1000 1600 0 13624.52 [18] 13695.22 0.52 13688.75 0.47
200 900 1800 0 6460.98 [23] 6460.98 0.00 6460.98 0.00
280 900 1500 0 8412.8 [18] 8445.55 0.39 8435.28 0.27
360 900 1300 0 10181.75 [17] 10201.24 0.19 10198.15 0.16
440 900 1200 0 11643.90 [19] 11715.35 0.61 11712.41 0.59
255 1000 ∞ 0 583.39 [16] 586.15 0.47 586.15 0.47
323 1000 ∞ 0 741.56 [16] 743.18 0.22 743.25 0.23
399 1000 ∞ 0 918.45 [16] 924.59 0.67 924.15 0.62
483 1000 ∞ 0 1107.19 [16] 1117.45 0.93 1116.12 0.81
252 1000 ∞ 0 859.11 [16] 862.35 0.38 862.35 0.38
320 1000 ∞ 0 1081.31 [16] 1086.24 0.46 1086.07 0.44
396 1000 ∞ 0 1345.23 [16] 1352.39 0.53 1352.21 0.52
480 1000 ∞ 0 1622.69 [16] 1632.35 0.60 1632.21 0.59
240 200 ∞ 0 707.79 [16] 709.45 0.23 708.76 0.14
300 200 ∞ 0 997.52 [16] 1001.15 0.36 998.83 0.13
360 200 ∞ 0 1366.86 [16] 1368.24 0.10 1367.20 0.02
420 200 ∞ 0 1820.09 [16] 1825.35 0.29 1822.94 0.16

one instance. The average quality in all instances for the CNTPSO2 is 0.019%,
for the CNTPSO1 is 0.033%, for the HybGENPSO is 0.046%, for the HybPSO
is 0.084%, for the PSOMAT is 0.71%, for the PSOSR2 is 0.88% and for the
PSOSR1 is 1.93%. It can be observed that the results of the CNTPSO2 are bet-
ter than the results of the other six algorithms, while the results of CNTPSO1
are almost equally good with the results of the HybGENPSO and HybPSO. The
other three algorithms used in the comparisons did not give as good results as
the proposed algorithms. For the second set of instances the average quality of
the CNTPSO2 is 0.37%, for the CNTPSO1 is 0.44%, for the HybGENPSO is
0.60%, for the HybPSO is 0.52%. Thus, the CNTPSO2, also, performs better
in the second set of instances. In this set of instances the CNTPSO1 is the second

142 Y. Marinakis and M. Marinaki

best algorithm, while the HybPSO is the third algorithm. The HybGENPSO
which was the second best algorithm in the previous set of instances now gives
slightly inferior results from the other algorithms. As we can see from these
comparisons the proposed algorithm is the most efficient implementation of Par-
ticle Swarm Optimization for the solution of the Capacitated Vehicle Routing
Problem. This is due to the very efficient representation of the solutions and to
the fact that there is no loose of any information by using transformations to
continuous space.

Table 3. Comparison of the proposed algorithm with implementations of PSO from
the literature in the 14 Christofides benchmark instances

CNTPSO1 CNTPSO2 HybPSO HybGENPSO PSOSR1 PSOSR2 PSOMAT
cost ω (%) cost ω (%) cost ω (%) cost ω (%) cost ω (%) cost ω (%) cost ω (%)

524.61 0.00 524.61 0.00 524.61 0.00 524.61 0.00 524.61 0.00 524.61 0.00 524.61 0.00
835.26 0.00 835.26 0.00 835.26 0.00 835.26 0.00 849.58 1.71 844.42 1.10 835.26 0.00
826.14 0.00 826.14 0.00 826.14 0.00 826.14 0.00 835.80 1.17 829.40 0.39 830.26 0.50
1028.42 0.00 1028.42 0.00 1029.54 0.11 1028.42 0.00 1067.57 3.81 1048.89 1.99 1047.72 1.88
1293.18 0.15 1292.35 0.08 1294.13 0.22 1294.21 0.23 1345.84 4.22 1323.89 2.52 1329.59 2.97
555.43 0.00 555.43 0.00 555.43 0.00 555.43 0.00 556.68 0.23 555.43 0.00 555.43 0.00
909.68 0.00 909.68 0.00 909.68 0.00 909.68 0.00 952.77 4.74 917.68 0.88 913.24 0.39
865.94 0.00 865.94 0.00 868.45 0.29 865.94 0.00 877.84 1.37 867.01 0.12 865.94 0.00
1163.28 0.06 1163.15 0.05 1164.35 0.15 1163.41 0.07 Infeasible 1181.14 1.60 1178.49 1.37
1396.05 0.01 1395.85 0.00 1396.18 0.02 1397.51 0.12 1465.66 5.00 1428.46 2.34 1431.04 2.52
1043.15 0.10 1042.11 0.00 1044.03 0.18 1042.11 0.00 1051.87 0.94 1052.34 0.98 1042.97 0.08
819.56 0.00 819.56 0.00 819.56 0.00 819.56 0.00 820.62 0.13 819.56 0.00 819.56 0.00
1543.35 0.14 1543.25 0.14 1544.18 0.20 1544.57 0.22 1566.32 1.63 1546.20 0.33 1545.56 0.29
866.37 0.00 866.37 0.00 866.37 0.00 866.37 0.00 867.13 0.09 866.37 0.00 866.37 0.00

Table 4. Comparison of the proposed algorithm with implementations of PSO from
the literature in the 20 Golden instances

CNTPSO1 CNTPSO2 HybPSO HybGENPSO
cost ω (%) cost ω (%) cost ω (%) cost ω (%)

5688.25 1.08 5665.35 0.67 5695.14 1.20 5670.38 0.76
8458.45 0.17 8455.15 0.13 8461.32 0.20 8459.73 0.18
11098.15 0.56 11094.15 0.52 11098.35 0.56 11101.12 0.59
13695.22 0.52 13688.75 0.47 13695.51 0.52 13698.17 0.54
6460.98 0.00 6460.98 0.00 6462.35 0.02 6460.98 0.00
8445.55 0.39 8435.28 0.27 8461.18 0.58 8470.64 0.69
10201.24 0.19 10198.15 0.16 10202.41 0.20 10215.14 0.33
11715.35 0.61 11712.41 0.59 11715.35 0.61 11750.38 0.91
586.15 0.47 586.15 0.47 586.29 0.50 586.87 0.60
743.18 0.22 743.25 0.23 743.57 0.27 746.56 0.67
924.59 0.67 924.15 0.62 928.49 1.09 925.52 0.77
1117.45 0.93 1116.12 0.81 1118.57 1.03 1114.31 0.64
862.35 0.38 862.35 0.38 862.35 0.38 865.19 0.71
1086.24 0.46 1086.07 0.44 1088.37 0.65 1089.21 0.73
1352.39 0.53 1352.21 0.52 1352.21 0.52 1355.28 0.75
1632.35 0.60 1632.21 0.59 1632.28 0.59 1632.21 0.59
709.45 0.23 708.76 0.14 710.87 0.44 712.18 0.62
1001.15 0.36 998.83 0.13 1002.59 0.51 1006.31 0.88
1368.24 0.10 1367.20 0.02 1368.57 0.13 1373.24 0.47
1825.35 0.29 1822.94 0.16 1826.74 0.37 1831.17 0.61

CNTPSO Algorithm for VRP 143

4 Conclusions

In this paper, a new algorithm based on the Particle Swarm Optimization for
the solution of the Vehicle Routing Problem is presented. This algorithm is a
hybridization of the Particle Swarm Optimization algorithm with the Variable
Neighborhood Search algorithm. As a number of different variants of the Parti-
cle Swarm Optimization algorithm have been published, mainly using a different
equation for the calculation of the velocities, we used the constriction Particle
Swarm Optimization. The most important issue that we have to deal with was
the fact that the PSO algorithm is suitable for continuous optimization prob-
lems. Thus, it was a challenge to find an effective transformation of the solutions
of PSO in discrete values without loosing information from this procedure. This
was achieved by replacing the equation of positions with a novel procedure that
includes a Path Relinking Strategy and a different correspondence of the veloc-
ities with the path that will follow each particle. The algorithm was tested in
the two set of benchmark instances that are usually used in the literature with
very good results. Our future research will be focused in the application of this
idea in other more difficult routing problems.

References

1. Ai, T.J., Kachitvichyanukul, V.: Particle swarm optimization and two solution
representations for solving the capacitated vehicle routing problem. Computers
and Industrial Engineering 56, 380–387 (2009)

2. Christofides, N., Mingozzi, A., Toth, P.: The vehicle routing problem. In:
Christofides, N., Mingozzi, A., Toth, P., Sandi, C. (eds.) Combinatorial Optimiza-
tion. Wiley, Chichester (1979)

3. Clerc, M., Kennedy, J.: The particle swarm: explosion, stability and convergence
in a multi-dimensional complex space. IEEE Transactions on Evolutionary Com-
putation 6, 58–73 (2002)

4. Glover, F., Laguna, M., Marti, R.: Scatter search and path relinking: Advances and
applications. In: Glover, F., Kochenberger, G.A. (eds.) Handbook of Metaheuris-
tics, pp. 1–36. Kluwer Academic Publishers, Boston (2003)

5. Goksal, F.P., Karaoglan, I., Altiparmak, F.: A hybrid discrete particle swarm opti-
mization for vehicle routing problem with simultaneous pickup and delivery. Com-
puters and Industrial Engineering (2012), doi:10.1016/j.cie.2012.01.005

6. Golden, B.L., Wasil, E.A., Kelly, J.P., Chao, I.M.: The impact of metaheuristics on
solving the vehicle routing problem: algorithms, problem sets, and computational
results. In: Crainic, T.G., Laporte, G. (eds.) Fleet Management and Logistics, pp.
33–56. Kluwer Academic Publishers, Boston (1998)

7. Golden, B., Raghavan, S., Wasil, E.: The Vehicle Routing Problem: Latest Ad-
vances and New Challenges. Springer LLC (2008)

8. Hansen, P., Mladenovic, N.: Variable neighborhood search: Principles and applica-
tions. European Journal of Operational Research 130, 449–467 (2001)

9. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of 1995
IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

10. Kim, B.I., Song, S.J.: A probability matrix based particle swarm optimization for
the capacitated vehicle routing problem. Journal Intelligence Manufacturing 23,
1119–1126 (2012)

144 Y. Marinakis and M. Marinaki

11. Marinakis, Y., Marinaki, M.: A Particle Swarm Optimization Algorithm with Path
Relinking for the Location Routing Problem. Journal of Mathematical Modelling
and Algorithms 7(1), 59–78 (2008)

12. Marinakis, Y., Marinaki, M.: A Hybrid Multi-Swarm Particle Swarm Optimiza-
tion Algorithm for the Probabilistic Traveling Salesman Problem. Computers and
Operations Research 37, 432–442 (2010)

13. Marinakis, Y., Marinaki, M.: A Hybrid Genetic - Particle Swarm Optimization
Algorithm for the Vehicle Routing Problem. Expert Systems with Applications 37,
1446–1455 (2010)

14. Marinakis, Y., Marinaki, M.: A Hybrid Particle Swarm Optimization Algorithm
for the Open Vehicle Routing Problem. In: Dorigo, M., Birattari, M., Blum, C.,
Christensen, A.L., Engelbrecht, A.P., Groß, R., Stützle, T. (eds.) ANTS 2012.
LNCS, vol. 7461, pp. 180–187. Springer, Heidelberg (2012)

15. Marinakis, Y., Marinaki, M., Dounias, G.: A Hybrid Particle Swarm Optimization
Algorithm for the Vehicle Routing Problem. Engineering Applications of Artificial
Intelligence 23, 463–472 (2010)

16. Mester, D., Braysy, O.: Active guided evolution strategies for large scale capaci-
tated vehicle routing problems. Computers and Operations Research 34, 2964–2975
(2007)

17. Pisinger, D., Ropke, S.: A general heuristic for vehicle routing problems. Computers
and Operations Research 34, 2403–2435 (2007)

18. Prins, C.: A simple and effective evolutionary algorithm for the vehicle routing
problem. Computers and Operations Research 31, 1985–2002 (2004)

19. Prins, C.: A GRASP × Evolutionary Local Search Hybrid for the Vehicle Rout-
ing Problem. In: Pereira, F.B., Tavares, J. (eds.) Bio-inspired Algorithms for the
Vehicle Routing Problem. SCI, vol. 161, pp. 35–53. Springer, Heideberg (2009)

20. Reimann, M., Doerner, K., Hartl, R.F.: D-Ants: savings based ants divide and
conquer the vehicle routing problem. Computers and Operations Research 31(4),
563–591 (2004)

21. Rochat, Y., Taillard, E.D.: Probabilistic diversification and intensification in local
search for vehicle routing. Journal of Heuristics 1, 147–167 (1995)

22. Rosendo, M., Pozo, A.: A hybrid Particle Swarm Optimization algorithm for com-
binatorial optimization problems. In: 2010 IEEE Congress on Evolutionary Com-
putation, CEC (2010), doi:10.1109/CEC.2010.5586178

23. Tarantilis, C.D., Kiranoudis, C.T.: BoneRoute: an adaptive memory-based method
for effective fleet management. Annals of Operations Research 115(1), 227–241
(2002)

24. Toth, P., Vigo, D.: The vehicle routing problem. Monographs on Discrete Mathe-
matics and Applications. SIAM (2002)

Dynamic Evolutionary Membrane Algorithm

in Dynamic Environments

Chuang Liu and Min Han�

Faculty of Electronic Information and Electrical Engineering, Dalian University of
Technology, Dalian Liaoning, 116023, China

chuang.liu.cn@gmail.com, minhan@dlut.edu.cn

Abstract. Several problems that we face in real word are dynamic in
nature. For solving these problems, a novel dynamic evolutionary algo-
rithm based on membrane computing is proposed. In this paper, the
partitioning strategy is employed to divide the search space to improve
the search efficiency of the algorithm. Furthermore, the four kinds of
evolutionary rules are introduced to maintain the diversity of solutions
found by the proposed algorithm. The performance of the proposed al-
gorithm has been evaluated over the standard moving peaks benchmark.
The simulation results indicate that the proposed algorithm is feasible
and effective for solving dynamic optimization problems.

Keywords: dynamic evolutionary membrane algorithm, membrane
computing, diversity, dynamic optimization problem.

1 Introduction

Many real-worlds optimization problems, especially in scientific research and en-
gineering practice, are dynamic. The characteristic of these problems is that the
optimal solution is changed over time [1, 2] . More specifically, the objective func-
tion and the constraints condition will be changed when a new environment is
reached. These optimization problems over time are called dynamic optimization
problems (DOPs)[3, 4]. For solving DOPs, the goal of the solving optimization
methods is no longer a fixed global optimal solution, but tracking the changing
process of the solutions as the environment changes, which brings greater chal-
lenges in terms of the methods finding the effective solutions[5]. Recently, the
study of solving DOPs has attracted extensive attention in evolutionary com-
putation community. A variety of effective strategies to solve DOPs is proposed
in order to improve the ability to track the optimal solutions, and the detailed
overview can be found in [6–8].

The evolutionary membrane algorithm (EMA) is a novel optimization method
based on the membrane computing for solving the optimization problems [12].
Due to the membrane computing has a multiple layer and nested structure which

� This work was supported by the project (61074096) of the National Nature Science
Foundation of China.

M. Middendorf and C. Blum (Eds.): EvoCOP 2013, LNCS 7832, pp. 145–156, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

146 C. Liu and M. Han

a skin membrane contains several membranes [9–11], EMA also inherits the char-
acter of the structure of the membrane computing. The structure is conducive to
the algorithm in the parallel exploration of the search space, where can accelerate
the ability for finding the global optimal solution and enhance the diversity of the
candidate solutions. Hence, EMA is suitable for solving the complex optimization
problems. EMA has been successfully used to solve static optimization problems,
such as the global numerical optimization problems [12], and the multi-objective
optimization problems [13], but it has not ability to solve the DOPs.

For solving DOPs, a dynamic evolutionary membrane algorithm based on
EMA is proposed, named as dynamic EMA (DEMA). In order to find the global
optimal solution of the DOPs, two problems need to be solved: first, how to
effectively maintain the diversity of solutions; second, how to exactly predict the
new environmental reaching. For solving the first problem, a partitioning strat-
egy and four reaction rules are employed. The partitioning strategy is designed
to divide the search space for each membrane having a corresponding search
space in DEMA. Four evolutionary rules are used to update the information of
the symbol-objects. These rules not only increase the search efficiency of the
proposed algorithm, but also improve the diversity of candidate solutions. They
enhance the adaptability of the proposed algorithm to solve DOPs. For solv-
ing the second problem, a change detection mechanism is designed to update
the evolutionary information in the memory so that the new optimal solution
is recorded for the current environment. In the experiment, the moving peaks
benchmark test function is constructed to verify the ability of the proposed al-
gorithm for solving DOPs. Based on the results of the above experiment, the
performance of the proposed DEMA is analyzed.

2 Membrane Computing

Membrane computing is a distributed and parallel computing theory, which is
proposed by Păun who takes inspiration of the structure and the function of
biological cells [11]. The membrane computing of the degree n is listed in the
following Eq. (1).

Π = (V, T, μ, w1, ..., wn, R) (1)

Where,

1. V is the alphabet. Its elements are called the symbol-objects. The symbol-
object is the abstract representation of atomic, molecular or the other chem-
ical substances.

2. T ⊆ V , where T is the output alphabet.
3. μ is a membrane structure of the degree n.
4. wi ∈ V ∗, wi represent the multiset in the i-th region in the membrane struc-

ture μ. V ∗ is a set consisted by the multiple symbol-objects.
5. R represents the reaction rules which can handle the membrane and the

symbol-objects.

Dynamic Evolutionary Membrane Algorithm in Dynamic Environments 147

Region

Skin Membrane Elementary Membrane

Membrane

Environment

Multiset
Symbol-object

Fig. 1. The generic structure of membrane computing

Fig. 1 shows the generic structure of the membrane computing. The description
of some concepts in Fig. 1 is elaborated in the following sections.

The external membrane is usually called a skin membrane. Each membrane
determines a compartment, also called a region. And there are several inter-
nal membranes in the region of skin membrane, which are corresponded to the
membranes and the elementary membrane. If a membrane dose not include any
other membrane in its region, it is said to be an elementary membrane. In the
basic membrane computing, each region may contain a multiset consisted by the
multiple symbol-objects. The symbol-objects are evolved by the evolution rules
which are associated with the regions of the membrane.

3 Evolutionary Membrane Algorithm

In EMA, a symbol-object represents a candidate solution of the optimization
problems, and a multiset represents candidate solutions of the optimization prob-
lems. The symbol-object can be evolved by the reaction rules in the region of
the elementary membrane. Each symbol-object has a fitness value related to the
optimization problems. Next, a brief description is given to the execution process
of EMA: Several multisets are firstly constructed by the symbol-objects in the
region of the skin membrane. Then, these multisets are sent into the different
elementary membranes, and they are evolved in the region of the elementary
membrane. Next, the evolved multisets from the elementary membrane are re-
leased into the skin membrane where implement the exchange of the information
of the multiset. Finally, after a number of iterations, the symbol-object in the
multiset is the global approximate optimal solution in the region of the skin
membrane.

3.1 The Structure of EMA

EMA is based on the membrane computing, so it has a multilayer nested struc-
ture which a skin membrane contains several membrane. However, in our algo-
rithm DEMA, the structure is simplified to a special two layer structure which
a skin membrane contains several elementary membrane. This structure of the

148 C. Liu and M. Han

proposed algorithm can be expressed as [0, [1]1, [2]2, · · · , [m]m]0, where, the sub-
script 0 represents the label of skin membrane; the subscript 1 · · ·m is the label
of the elementary membrane;m is the maximum number of the elementary mem-
brane. For the further understanding of this special structure of the proposed
algorithm, Fig. 2 gives a representation of the structure.

Skin Membrane
elementary elementary elementary

Fig. 2. The simplified membrane structure

In the proposed DEMA, the information of the symbol-objects from the dif-
ferent elementary membrane is shared in the region of the skin membrane, which
can maintain the diversity of solutions during the search process. The region of
the elementary membrane contains the multiset and the evolutionary rules. The
symbol-objects in the mutiset are evolved by the evolutionary rules, which are
updated their location and generated their new locations.

3.2 Partition Strategy

The proposed DEMA is composed by the multiple elementary membranes which
can be used as the evolving unit to find some optimal solutions of the optimization
problems. To speed up the search efficiency and improve the diversity of candi-
date solutions, the region of each elementary membrane has a corresponding mul-
tiset. Hence, a strategy for the partition the search space is proposed to divide the
search space of the optimization problem. In the search space, the symbol-object
represents a solution, and a multiset denotes a divided search space. All multisets
represent the solutions covering the whole search space as much as possible. The
strategy is implemented as follows: first, the symbol-objects of the multiset are
evaluated using the objective function, and their fitness are calculated. Next, the
symbol-objects of the multiset are sorted according to their fitness. Finally, the
sorted multiset is divided into the sub-multiset with the same size. The specific
process of the partition strategy is described in Eq. (2).

W ′ = sort(W);
W ′ = {w1, w2, · · · , wm}
wi = W ′((i− 1) ∗ n+ 1 : n : i ∗ n)
n = sizeof(W)/m, 1 ≤ i ≤ m

(2)

Where, m is the number of the elementary membrane; W is the multiset in the
region of the skin membrane; sizeof(W) represent the number of the symbol-
objects in the multiset. W ′ is the sorted multiset according to the fitness of its

Dynamic Evolutionary Membrane Algorithm in Dynamic Environments 149

symbol-objects. wi is the multiset in the i-th elementary membrane. W ′((i−1)∗
n+1 : n : i∗n) is a sub-multiset which is constructed by taken n symbol-objects
from the sorted multiset with the starting position (i− 1) ∗ n+ 1.

3.3 Symbol-Objects and Multiset

In the membrane computing, a symbol-object is the abstract representations of
the chemical substances, such as atoms or molecules of the liquid; a multiset is
consisted by the multiple symbol-objects. In the proposed DEMA, the symbol-
object represents a solution of the optimization problem. And it is encoded
in the decimal coding format under the constraint conditions. In other words,
the symbol-object can be understood as a decision variable of the optimization
problems. The multiset is the solution set of the optimization problems. Its
detailed formula is given in Eq.(3).

xi,j = minj + (maxj −minj)× rand() (3)

Where, 1 ≤ i ≤ N , N is the number of the symbol-objects. 1 ≤ j ≤ D, D is the
number of dimension of the symbol-objects. xi,j represents the j-th dimension
of the i-th symbol-object. minj and maxj denote the minimum value and the
maximum value of the j-th dimension, respectively. rand is a uniform function
in (0,1).

3.4 Communication Rule

Communication rule implement the exchange information of the multiset from
the region of the skin membrane to the elementary membrane. In the region of
the skin membrane, the multiple multisets are sent into the different elemen-
tary membrane using communication rule after executing the partition strategy.
This rule makes the algorithm to find the approximate optimal solutions in the
appointed search space. It is described in Eq.(4).

[w1, w2, ..., wm]0 → [[w1]1, [w2]2, ..., [wm]m]0 (4)

Where, m is the number of the elementary membrane; []0 represents the skin
membrane; []i denotes the i-th elementary membrane; wiis the multiset in the
region of the i-th elementary membrane.

4 Dynamic Evolutionary Membrane Algorithm

DEMA is a novel evolutionary algorithm based on EMA for solving the DOPs.
Unlike EMA, DEMA has two improvements: redesigning the evolutionary rule
and adding the detection of the environment change.

150 C. Liu and M. Han

4.1 Evolutionary Rules

In the evolutionary algorithm based on the membrane computing, the position
of the symbol-objects is updated in order to allow the algorithm to find the
candidate solutions of the optimization problem. The symbol-object (molecular
particle) in the region of the membrane does irregular Brownian motion, and
Gaussian function can be expressed the Brownian motion process. So the Gaus-
sian distribution function is introduced in the evolutionary rules. Then, four
evolutionary rules are designed to describe the process which the symbol-object
in the region of membrane is randomly affected from the different direction force.
Fig. 3 describes the pseudo-code of invoking reaction rules.

Switch(rand)//[1,6]
 Case 1: invoking rule 1; break;
 Case 2: invoking rule 2; break;
 Case 3: invoking rule 3; break;
 Case 4: invoking rule 4; break;
End

Invoking evolutionary rule

Fig. 3. The pseudo-code of invoking reaction rules

Evolutionary rule 1 may implement the exchange information of the current
symbol-objects with the local best one in the elementary membrane. The rule
may accelerate the local convergence speed of the proposed algorithm.

xi,j = xi,j + (xi,j − xl
j) ·N(0, 0.2) (5)

Where, xi,j is the j-th dimension of the i-th symbol-object in the region of the
elementary membrane. xl

j is the j-th dimension of the local best symbol-object in
the region of the elementary membrane.N(0, 0.2) represents a Gaussian function
with mean of 0 and variance of 0.2.

Taken inspiration by arithmetic crossover in GA [15], evolutionary rules 2 and
3 are designed to implement the exchange information of the current symbol-
objects with the global best one in the elementary membrane. The rule 2 en-
hances the diversity of solutions during the search process.

xi,j = r · xi,j + (1− r) · xg
j (6)

Where, xi,j is thej-th dimension of the i-th symbol-object in the region of the
elementary membrane. xg

j is the j-th dimension of the global best symbol-object
in the region of the skin membrane. r denotes a uniform function in (0,1).

Evolutionary rule 3 may implement the exchange information of the current
symbol-objects with the global best one in the elementary membrane. The rule
increases the diversity of solutions during the search process.

xi,j = (1− r) · xi,j + r · xg
j (7)

Dynamic Evolutionary Membrane Algorithm in Dynamic Environments 151

Where, xi,j is the j-th dimension of the i-th symbol-object in the region of the
elementary membrane. xg

j is the j-th dimension of the global best symbol-object
in the region of the skin membrane. r denotes a uniform function in (0,1).

Evolutionary rule 4 may the exchange information of the current symbol-
objects with the global best one in the elementary membrane. The rule may
accelerate the global convergence performance.

xi,j = xi,j + (xi,j − xg
j) ·N(0, 0.2) (8)

Where, xi,j is the j-th dimension of the i-th symbol-object in the region of the
elementary membrane. xg

j is the j-th dimension of the global best symbol-object
in the region of the skin membrane. N(0, 0.2) represents a Gaussian function
with mean of 0 and variance of 0.2.

4.2 Detection of the Environmental Change

The environment changes over time, which causes the objective function, the
decision variables and the constraint functions to change. The information in
the memory may be no longer the optimal solutions of the current environ-
mental problems. In other words, the information can not correctly guide the
algorithm to find the optimal solutions. To solve this problem, the change detec-
tion mechanism is needed. Once the environment changes, the information need
to be immediately updated; otherwise, this outdated information will affect the
implementation efficiency of the algorithm. Fig. 4 describes the pseudo-code
of detecting environment change. The environmental change is detected by re-
evaluate the fitness value of the symbol-objects. If the environment changes over
time, the symbol-objects in the multiset need to be re-evaluated and updated
the historical information in the memory. At last, the global symbol-object needs
to be found according to their fitness.

If Detect the environmental change== TRUE
 fit=evaluate(SymbolObject);
End
If SymbolObject.fit != fit
 evaluate(multiset);
 find(SymbolObjectgbest);
End

Detecting the environmental change

Fig. 4. The detection of the environmental change

5 Experiments

To verify the performance and effectiveness of the proposed DEMA, the dy-
namic moving peak benchmark (MPB) test functions are employed [14]. This
test function in a multidimensional space is defined by periodically changing the

152 C. Liu and M. Han

Table 1. The parameter setting of MPB

Parameter values

Number of Peaks 10

Change frequency 5000

High Severity 7

Width Severity 1

Height 50

Moving length 1.0

dimension 30, 50

Search Range [0,100]

Height Range [30,70]

Width Range [1,12]

peak height, width and position. The default parameters of the MPB are shown
in Table 1.

Due to the optimal solution changes over time in the DOPs, so the offline
indicator is designed to evaluate the performance of the dynamic evolutionary
algorithms. Its formula is described in Eq.(9).

offlineError =
1

FEs/CF

FEs∑
t=1

(f(bestSolution(t))− f(globalOptimum(t)))

(9)
Where, FEs is the total number of the fitness evaluation. CF is the change
frequency. bestSolution(t) is the best position found by the solving method in
the t-th iteration. globalOptimum(t) represents the global optimal value in the
t-th iteration.

The values of mean, std and performancek are calculated according to for-
mula (10), (11) and (12). The sum of all marks performancek gives a score,
denoted by performance, which corresponds to the overall performance of the
tested algorithm.

mean =
∑runs

i=1

∑num change

j=1
Elast

i,j (t)/(runs · num change) (10)

std =

√
1

runs · num change
∑runs

i=1

∑num change

j=1
(Elast

i,j (t)−mean) (11)

performancek =
∑runs

i=1

∑num change

j=1
ri,j/(num change · runs) (12)

performance =
∑N

k=1
performancek (13)

Elast(t) =
∣∣f(xb(t))− f(x∗(t))

∣∣ (14)

Dynamic Evolutionary Membrane Algorithm in Dynamic Environments 153

5.1 Experimental Environment

The experiment will be run on the hardware environment of the Intel Pentium
dual-core 2.93 GHz and 2G memory, and on the operating system of Windows
XP. Based on the EAlib package1, the proposed DEMA is implemented in c++
language. It is initialized according to Eq.(15).

Π =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{xi,j , 1 ≤ i ≤ 5, 1 ≤ j ≤ 10},
[0[1]1, [2]2, · · · , [5]5]0,
w1, · · · , w5,
rule1, rule2, rule3, rule4,
[wi]0 → [[wi]i]0,
[[wi]i]0 → [wi]0, 1 ≤ i ≤ 5

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(15)

Where, Π denotes a membrane system; xi,j denotes the j-th symbol-object in
the i-th elementary membrane; [0[1]1, [2]2, · · · , [5]5]0 denotes the skin membrane
which is marked as zero and contains five elementary membranes; w1, · · · , w5 de-
notes the multiset labeled from 1 to 5, which are combined of ten symbol-objects.
The rule1, rule2, rule3, rule4 denote four evolutionary rules. The [wi]0 → [[wi]i]0
denotes a communication rule from the skin membrane to the elementary mem-
brane. The [[wi]i]0 → [wi]0 is also a communication rule from the elementary
membrane to the skin membrane.

5.2 Experimental Results

For solving MPB with the peak of 10, CPSO [16], CDER [17], ESCA [18] and the
proposed algorithm are employed, respectively. The simulation experiments in-
dependently run 100 times, and the mean and the std are recorded, respectively.
Fig. 5 and Fig. 6 depict the relationship between the number of iterations and
the offline error in MPB with the dimensions of 30 and 50. Table 2 and Table
3 give the statistical results of the different optimization algorithms after 100
independent run.

Fig. 5 and Table2 show the experimental results of the proposed algorithm
in comparison with other algorithms in the peak of 10 and the dimension of 30.
As is seen in Fig. 5, the proposed algorithm is superior to ESCA, CDER and
CPSO. Compared with ESCA and CDER, CPSO has a good result.

The Mean, Std are calculated according to Eq.(10 and 11). And, the Best and
the Worst represent respectively the best absolute error and the worst absolute
error in 100 independent run in Table 2 and Table 3. The Performance is
calculated according to Eq.(12). The statical results obtained by DEMA, CPSO,
CDER, and ESCA for under the same conditions are given in Table 2. DEMA
produced the best results in comparison with CPSO, CDER and ESCA. Even
though CDER find the best value of the MPB, the Mean and Std indicate the
proposed DEMA is robust and stable. The performance value also proved further
the effective of EMA.

1 http://cs.cug.edu.cn/teacherweb/lichanghe/pages/EAlib.html

http://cs.cug.edu.cn/teacherweb/lichanghe/pages/EAlib.html

154 C. Liu and M. Han

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

40

45

50

55

60

65

70

evaluation number

er
ro

r

DEMA
ESCA
CPSO
CDER

Fig. 5. The experimental results of MPB on 30 dimensions

Table 2. The experimental results of MPB on 30 dimensions

Mean Std Best Worst Performance

DEMA 2.476e+01 8.224e+00 8.348e-01 5.755e+01 4.610e-01

CPSO [16] 4.761e+01 4.942e+00 1.716e+01 6.594e+01 1.981e-01

CDER [17] 3.809e+01 1.960e+01 2.137e-01 6.891e+01 2.963e-01

ESCA [18] 6.618e+01 2.449e-03 4.998e+01 6.991e+01 7.618e-03

Fig. 6 and Table 3 show the experimental results of the proposed algorithm
in comparison with other algorithms in the peak of 10 and the dimension of 50.
As is seen in Fig. 6, the proposed DEMA has obvious advantages in comparison
with ESCA, CDER and CPSO. The results of ESCA, CDER and CPSO are
similar.

The results of Table 3 on 50 dimension show the DEMA has the best perfor-
mance in comparison with CPSO, CDER and ESCA. The mean and the STD
indicate the proposed DEMA is robust and stable. The performance value shows
the proposed EMA is better than other competitors. Compared with CPSO and
ESCA, CDER has a good result.

From the above simulation experiments, the overall performance of DEMA
is better than the other compared algorithms. This indicates that DEMA has
some advantage in terms of solving moving peak problems. These advantages are
mainly reflected in the proposed DEMA using the membrane structure and the
effectiveness of evolutionary rules, which can avoid the algorithm converge to a
certain local extreme points and maintain good diversity of the candidate solu-
tions during the search process. The experimental results indicate the proposed
algorithm is effective in moving peak problems.

Dynamic Evolutionary Membrane Algorithm in Dynamic Environments 155

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

35

40

45

50

55

60

65

70

evaluation number

er
ro

r

DEMA
ESCA
CPSO
CDER

Fig. 6. The experimental results of MPB on 50 dimensions

Table 3. The experimental results of MPB on 50 dimensions

Mean STD Best Worst Performance

DEMA 4.483e+01 3.388e+00 1.002e+01 6.687e+01 2.481e-01

CPSO [16] 6.263e+01 9.717e-01 4.281e+01 6.869e+01 4.920e-02

CDER [17] 5.894e+01 1.086e+01 2.561e+00 6.991e+01 8.301e-02

ESCA [18] 6.618e+01 6.146e-04 4.999e+01 6.983e+01 7.563e-03

6 Conclusions

Based on the membrane computing, a novel dynamic evolutionary membrane
algorithm is proposed for solving the dynamic optimization problem. In DEMA,
the partitioning strategy is employed to divide the search space to improve the
search efficiency of the algorithm. In addition, four evolutionary rules are de-
signed to maintain the diversity of the candidate solutions. Simulation experi-
ments give the performance of the proposed DEMA in comparison with the exist-
ing algorithms. From the experimental results, the proposed algorithm achieved
the desired results.

In the future, there are several interesting areas to pursue. The parameters of
DEMA are the key to affect the performance of the algorithm, while the precisely
determining, such as the number of elementary membrane, and the number of
the symbol-objects, is very difficult. In addition, the evolutionary rules need be
improved to balance between explorative and exploitative.

References

1. Liu, L., Yang, S., Wang, D.: Particle swarm optimization with composite particles
in dynamic environments. IEEE Transactions on Systems, Man, and Cybernetics,
Part B: Cybernetics 40, 1634–1648 (2010)

156 C. Liu and M. Han

2. Wang, H., Yang, S., Ip, W.H., Wang, D.: A memetic particle swarm optimisation
algorithm for dynamic multi-modal optimisation problems. International Journal
of Systems Science 43, 1268–1283 (2012)

3. Brest, J., Korošec, P., Šilc, J., Zamuda, A., Boškovic, B., Maučec, M.S.: Differ-
ential evolution and differential ant-stigmergy on dynamic optimisation problems.
International Journal of Systems Science, 1–17 (2011)

4. Yang, S., Yao, X.: Population-based incremental learning with associative memory
for dynamic environments. IEEE Transactions on Evolutionary Computation 12,
542–561 (2008)

5. Korosec, P., Silc, J.: The Continuous Differential Ant-Stigmergy Algorithm Ap-
plied to Dynamic Optimization Problems. In: Proceedings of the 2012 Congress on
Evolutionary Computation, pp. 1317–1324. IEEE Press, New York (2012)

6. Nguyen, T.T., Yang, S., Branke, J.: Evolutionary dynamic optimization: A survey
of the state of the art. Swarm and Evolutionary Computation 6, 1–24 (2012)

7. Cruz, C., Gonzalez, J.R., Pelta, D.A.: Optimization in dynamic environments: a
survey on problems, methods and measures. Soft Computing-A Fusion of Founda-
tions, Methodologies and Applications 15, 1427–1448 (2011)

8. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments-a survey.
IEEE Transactions on Evolutionary Computation 9, 303–317 (2005)

9. Pǎun, G., Rozenberg, G.: A guide to membrane computing. Theoretical Computer
Science 287, 73–100 (2002)

10. Pǎun, G.: Computing with Membranes. Journal of Computer and System Sci-
ences 61, 108–143 (2000)

11. Pǎun, G., Rozenberg, G., Salomaa, A.: The Oxford handbook of membrane com-
puting. Oxford University Press (2010)

12. Liu, C., Han, M., Wang, X.: A novel evolutionary membrane algorithm for global
numerical optimization. In: 2012 Third International Conference on Intelligent
Control and Information Processing (ICICIP), pp. 727–732 (2012)

13. Liu, C., Han, M., Wang, X.: A Multi-Objective Evolutionary Algorithm based on
Membrane Systems. In: 2011 Fourth International Workshop on Advanced Com-
putational Intelligence (IWACI), pp. 103–109 (2011)

14. Blackwell, T., Branke, J.: Multiswarms, exclusion, and anti-convergence in
dynamic environments. IEEE Transactions on Evolutionary Computation 10,
459–472 (2006)

15. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs,
2nd edn. Springer, Berlin (1994)

16. Yang, S., Li, C.: A clustering particle swarm optimizer for locating and tracking
multiple optima in dynamic environments. IEEE Transactions on Evolutionary
Computation 14, 959–974 (2010)

17. Li, C., Yang, S.: A general framework of multi-population methods with cluster-
ing in undetectable dynamic environments. IEEE Transactions on Evolutionary
Computation 16, 556–577 (2012)

18. Lung, R.I., Dumitrescu, D.: Evolutionary swarm cooperative optimization in dy-
namic environments. Natural Computing 9, 83–94 (2010)

19. Aragón, V.S., Esquivel, S.C., Coello Coello, C.A.: A T-cell algorithm for solving
dynamic optimization problems. Information Sciences 181, 3614–3637 (2011)

From Sequential to Parallel Local Search for SAT

Alejandro Arbelaez1,� and Philippe Codognet2

1 JFLI / University of Tokyo
2 JFLI - CNRS / UPMC / University of Tokyo
University of Tokyo, Dept. of Computer Science,
7-3-1, Hongo, Bunkyo-ku, 113-0033 Tokyo, Japan
{arbelaez,codognet}@is.s.u-tokyo.ac.jp

Abstract. In the domain of propositional Satisfiability Problem (SAT),
parallel portfolio-based algorithms have become a standard methodology
for both complete and incomplete solvers. In this methodology several
algorithms explore the search space in parallel, either independently or
cooperatively with some communication between the solvers. We con-
ducted a study of the scalability of several SAT solvers in different appli-
cation domains (crafted, verification, quasigroups and random instances)
when drastically increasing the number of cores in the portfolio, up to
512 cores. Our experiments show that on different problem families the
behaviors of different solvers vary greatly. We present an empirical study
that suggests that the best sequential solver is not necessary the one with
the overall best parallel speedup.

1 Introduction

The propositional Satisfiability Problem (SAT) is the first known NP-complete
problem [1] and consists in determining whether a Boolean formula F is satis-
fiable or not. F is represented by a pair 〈X , C〉, where X is a set of Boolean
variables and C is a set of clauses in Conjunctive Normal Form (CNF). Each
clause is a disjunction of literals (a variable x or its negation -x). Additionally,
an assignment is a mapping from the variables in the problem to truth values,
i.e. 0 (false) or 1 (true).

SAT solvers are able to tackle instances from a wide variety of domains rang-
ing from software verification to computational biology and automated planning.
As these are very hard and computationally intensive problems, the use of paral-
lelism to speed up SAT solvers has attracted the attention of a growing number
of researchers in the last decade. Currently, there are two well-established tech-
niques to develop parallel SAT solvers: divide-and-conquer (e.g. [2]) and parallel
portfolios (e.g. [3] and [4]). The former, divides the search space into several
sub-spaces being explored in parallel. The second one consists in parallel exe-
cutions of different algorithms, either independently or cooperatively with some
communication between the parallel solvers.

� Corresponding author.

M. Middendorf and C. Blum (Eds.): EvoCOP 2013, LNCS 7832, pp. 157–168, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

158 A. Arbelaez and P. Codognet

The performance of parallel SAT solvers is classically measured by means of
the overall number of solved instances, as it is for sequential solvers. That is,
increasing the number of cores might also increase the total number of solved
instances within the same wall-clock time. This is what is usually called capacity
solving. For instance, in the annual SAT competition solvers are ranked based
on the total number of solved instances within a given time limit (breaking ties
using the wall-clock time). However, another interesting feature is the scalability
of the parallel solvers, that is, the speedup obtained when using several cores with
respect to sequential execution. But the notion of speedup obtained for parallel
solvers has received up to now limited attention in the classical SAT literature,
which was mostly focused on capacity solving.

The question we would like to investigate in this paper is: Is the best sequential
solver also the best one in a massively parallel context? Indeed the best sequential
solver might not scale up so well and its performance on n cores (for some large
n) might not be better than that of another solver whose sequential performance
is maybe less good but with a better parallel scalability.

In order to study this issue, we conducted a study of the scalability (w.r.t.
the speedup of the algorithms) of SAT solvers in different application domains
when drastically increasing the number of cores in the portfolio. We focused
our attention in this paper on local search algorithms for SAT. In SAT local
search there exist a large number of heuristics [5] with different performances
for different problem families. For this reason, unlike sequential settings, where
it is necessary to select only one algorithm to solve a given problem instance, the
parallel portfolio needs to identify n solvers. Moreover, in addition of selecting
solvers, the parallel portfolio might also consider their scalability when increasing
the number of cores.

The rest of the paper is organized as follows. Section 2 presents background
material including a description of local search algorithms for SAT and related
work in the area. Section 3 describes all the benchmark families used in this
paper, Section 4 presents extensive experimental results on parallel portfolios,
and Section 5 presents general conclusions and future work.

2 Background

2.1 Local Search

A local search algorithm to tackle SAT instances starts with an initial random
assignment for the variables (i.e. random values for the variables), then itera-
tively flips the truth value of one of the variables. The flipped variable usually
minimizes the number of unsatisfied clauses, however, from time to time random
selections are performed in order to avoid search stagnation.

In the following, we describe five well-known variable selection algorithms in
local search for SAT. These algorithms have shown great performances in the
annual SAT competitions. It is important to notice, that most of SAT local search
algorithms have been inspired by the WalkSAT architecture [6], which selects an
unsatisfied clause and from that clause identifies the most appropriated variable

From Sequential to Parallel Local Search for SAT 159

to flip using some heuristic function. In the following, we describe a set of state-
of-the-art local search algorithms to solve SAT instances.

Novelty [7] employs a function score(x) = make + break to select a variable
at each iteration of the local search procedure. Intuitively, make indicates the
number of clauses that are satisfied under the current assignment but become
unsatisfiable when flipping x, and break represents the number of clauses that
are unsatisfiable under the current assignment and will be satisfied when flipping
x. Then, Novelty selects, uniformly at random, an unsatisfied clause c, and from
c identifies vbest and v2best, the best and the second best variables in c according
to the score function. vbest is flipped if this variable is not the most recently
flipped one in c, otherwise v2best is flipped with a given probability p and vbest
with a probability 1-p.

Pure Additive Weighting Scheme (PAWS) [8] adds a weight clause penalty
to each clause and selects the variable that provides the highest reduction in
the sum of all unsatisfied clause penalties. All weights are initialized to 1 and
updated during the search process, i.e. increased 1 unit when search stagnation
is observed and decreased after a given number of weight increases.

Variable Weighting (VW) [9] maintains a counter for each variable, indicating
the number of flips of the variable. Then, VW (known as VW1 in [9]) selects an
unsatisfied clause c and if no variable in c reports break=0, VW selects with a
probability p a random variable in c. Otherwise, the variable with the smallest
break value is selected, breaking ties by minimizing the number of flips of the
variables.

Adaptive G2WSAT (AG2) [10]: introduces the concept of decreasing vari-
ables. Broadly speaking, a variable is decreasing if flipping it reduces the over all
number of failed clauses. Taking this into account, the algorithm maintains a lists
of promising decreasing variables L and selects the variable with minimal score
in L. If L is empty, AG2 selects, with a probability dp the most recently flipped
variable from a violated clause. Otherwise, with a probability 1-dp Novelty is
used as a backup heuristic.

Sparrow [11] exploits features of the previously mentioned local search algo-
rithms. First, similar to PAWS a weight penalty is added to all clauses. Second,
similar to AG2 a list of promising variables L is maintained during the search.
Whenever L is empty the penalty for unsatisfied clauses is increased 1 unit with
a probability ps and decreased with probability 1-ps. Sparrow selects the best
variable from L, and if L is empty the algorithm selects, uniformly at random,
an unsatisfied clause c and from c selects a variable using a probabilistic function
which considers two criteria: the sum of all unsatisfied clauses and the last time
the variable was last flipped.

2.2 Parallel SAT

A straightforward approach to parallelize local search algorithms consists in the
parallel portfolio-based approach (so-called multi-start or multiple-walk). In this

160 A. Arbelaez and P. Codognet

approach, several algorithms (or different copies of the same one with different
random seeds) are executed in parallel until a solution is found or a given timeout
is reached.

The parallel portfolio has two important properties. First, no load balancing is
required to parallelize the sequential algorithm. Second, in theory, it is possible to
reach linear and super-linear speedups [12]. Indeed, in Section 4 we will observe
that in practice some scenarios report super-linear speedups.

The portfolio approach without cooperation has been previously used in the
gNovelty+ solver [13]. This portfolio executes independent copies of the gNov-
elty+ heuristic. Other parallel local search solvers for SAT comprehend PGSAT
[14] and MiniWalk [15]. PGSAT divides the entire set of variables into indepen-
dent subsets which are then allocated to different processors, then iteratively
performs multiples flips in parallel (one for each subset). MiniWalk combines a
complete solver (MiniSAT) and an incomplete one (WalkSAT). Broadly speak-
ing, both solvers are launched in parallel and MiniSAT is used to guide WalkSAT
by suggesting values for the selected variables.

Other work in the area includes [4], where the authors use cooperation to
improve the performance of the parallel portfolio. In this work, each algorithm
exchanges the best assignment for the variables found so far in order to prop-
erly craft a new assignment for the variables to restart from. These strategies
range from a voting mechanism where each algorithm in the portfolio suggests
a value for each variable to probabilistic constructions. However, as pointed out
in [16] the performance of the cooperative portfolio considerably degrades as the
number of cores increases.

Regarding complete parallel SAT solvers, several multicore algorithms (see
[17] for a recent survey) have been proposed. Most of these algorithms are also
based on the parallel portfolio architecture. However, in this case, the portfolio
executes different and complementary backtracking search algorithms based on
the DPLL method. Moreover, algorithms exchange learned clauses in order to
improve performance.

3 Experimental Settings

This section describes the set of benchmark families used to test the perfor-
mance of the algorithms. That is, crafted, quasigroups, verification, and random
instances.

All the experiments were performed on the Grid’5000 platform, the French
national grid for research, in particular we used a 44-node cluster with 24 cores
(2 AMD Opteron 6164 HE processors at 1.7 Ghz) and 44 GB of RAM per node.

In addition, we used openMPI to build our parallel solver on top of UBCSAT
[18]. When running on n cores, each parallel portfolio executes n independent
copies of a given algorithm. Moreover, all algorithms were executed with their
default parameters, except for Sparrow where we use the parameter configuration
reported for the international SAT’11 competition.

From Sequential to Parallel Local Search for SAT 161

3.1 Crafted Instances

This problem family corresponds to a selection of instances designed to be
difficult for SAT solvers. In this paper, we used a set of 149 known SAT in-
stances from the 2011 SAT competition (crafted category) and filtered out too
easy and hard instances by running a portfolio of 16 copies of Sparrow with
a timeout of 5 minutes. We use all instances whose median runtime across
10 runs was greater than 100 seconds and lower than 300 seconds. The fi-
nal set consists in the following 9 instances (denoted crafted-[1 to 9] in this
paper): srhd-sgi-m37-q505.75-n35-p15-s48276711 (crafted-1); srhd-sgi-m42-q585-
n40-p15-s54275047 (crafted-2); srhd-sgi-m42-q663-n40-p15-s72490337 (crafted-
3); srhd-sgi-m47-q742.5-n45-p15-s28972035 (crafted-4); em 8 4 5 fbc (crafted-5);
rbsat-v1150c84314g7 (crafted-6); rbsat-v1375c111739g4 (crafted-7); sgen3-n240-
s78945233-sat (crafted-8); sgen3-n260-s62321009-sat (crafted-9).

3.2 Quasigroup Instances

The Quasigroup with holes problem (qwh) consists in completing a pre-filled
N×N matrix with the numbers [1, 2, ..., N] such that for each column (resp.
row) of the matrix, each element occurs exactly once. Instances were gener-
ated using the lsencode instance generator [19]. It is also worth to notice that
these instances have been widely used to test the performance of SAT and CSP
solvers. The final set consists in the following 8 instances (denoted qwh-[1 to 8]
in this paper): qwh.order.35.holes.405 (qwh-1); qwh.order.40.holes.528 (qwh-2);
qwh.order.40.holes.544 (qwh-3); qwh.order.40.holes 560 (qwh-4); qwh.order.60.
holes.1440 (qwh-5); qwh.order.60.holes.1620 (qwh-6); qwh.order.70.holes.2450
(qwh-7); qwh.order.70.holes.2940 (qwh-8).

3.3 Verification Instances

This problem family corresponds to a collection of SAT encoded CBMC (Bounded
Model Checking) instances generated using [20]. In this paper, we used a set of
40 instances also used to test SAT solvers, such as [21]. We filtered out too easy
and hard instances by running a portfolio of 16 copies of Sparrow with a timeout
of 5 min. and selected all the instances whose median runtime across 10 runs
was greater than 100 sec. and lower than 5 min. The final set of instances is
the following (as named in [21] and denoted cbmc-[1 to 9] in this paper): 23
(cbmc-1); 25 (cbmc-2); 26 (cbmc-3); 28 (cbmc-4); 31 (cbmc-5); 32 (cbmc-6); 33
(cbmc-7); 35 (cbmc-8); 36 (cbmc-9).

3.4 Random Instances

Random instances (also known as Uniform Random k-SAT) are frequently used
to test the performance of SAT solvers. These instances are automatically gen-
erated using three parameters: number of clauses (m), number of variables (n),

162 A. Arbelaez and P. Codognet

and the number of literals per clause (k). Clauses for a given instance are gen-
erated by iteratively selecting, uniformly at random, a variable id i and then
with a probability 0.5 xi is included into the clause, otherwise -xi is added to
the clause (literals of different polarity are not accepted in the same clause). It
is worth pointing out that random k-SAT instances around the phase transition
(i.e. m/n=4.2) are known to be difficult [22].

In this paper, we consider a collection of 369 known satisfiable instances from
the international SAT’11 competition. From this set we filtered out too easy and
too hard instances by running a portfolio of 16 copies of Sparrow and removed
instances whose median runtime were greater than 100 sec. and lower than 300
sec.. The final set consists in the following 8 instances (denoted rand-[1 to 8]
in this paper), where Seed indicates the unique seed number used to generate
the instance, v represents the number of variables, and r represents the ratio
variables/clauses: Seed: 1854039067 - v: 30000 - c: 126000 - r: 4.2 (rand-1); Seed:
970100151 - v: 35000 - c: 147000 - r: 4.2 (rand-2); Seed: 1184456903 - v: 40000 - c:
168000 - r: 4.2 (rand-3); Seed: 1170024351- v: 50000 - c: 210000 - r: 4.2 (rand-4);
Seed: 537193780 - v: 50000 - c: 210000 - r: 4.2 (rand-5); Seed: 957916968 - v:
50000 - c: 210000 - r: 4.2 (rand-6); Seed: 969405384 - v: 1500 - c: 30000 - r: 20
(rand-7); Seed: 922811046 - v: 2000 - c: 30000 - r: 20 (rand-8).

4 Experiments

In this section, we present experiments of parallel portfolios when drastically
increasing the number of cores. For the sake of clarity, we use the following
notation: [Solver Name]-N , whereN represents the number of cores, for example:
Sparrow-128, AG2-512, and VW-32 represent respectively a portfolio of Sparrow
on 128 cores, AG2 on 512 cores, and VW on 32 cores. Each core executing one
copy of the indicated algorithm.

In addition, the speedup is reported against a portfolio of 16 cores and com-

puted as follows: Speedup=median-time([Solver]−N)

median-time([Solver]−16)
, where median-time reports

the median time across 50 independent executions of a given portfolio strategy.
Moreover, we also study the runtime distribution (RTD) for each benchmark

family (see chapter 4 in [5]). The RTD is a probability function P (timeout < t)
which assigns probabilities to a given random variable, i.e. the runtime needed
until completion, and can be seen as the probability of solving a given instance
within a given time limit t.

4.1 Crafted Instances

Let us start our analysis with Figure 1(a), where we observe the overall perfor-
mance improvement when increasing the number of cores from 16 to 512. This
figure shows the RTD for Sparrow-16, AG2-16, Sparrow-512, and AG2-512. As
one might have expected, increasing the number cores also increases the chances
of solving a given instance for this problem family. For instance, the probability
of solving an instance with a time limit of 10 seconds for Sparrow increases from

From Sequential to Parallel Local Search for SAT 163

Table 1. Performance summary for crafted instances. Each cell indicates the median
runtime (top) and the percentage of solved instances (bottom) for each instance.

Instance Alg
Number of Cores

Instance Alg
Number of Cores

16 32 64 128 256 512 16 32 64 128 256 512

crafted-1
SP

145.3 90.7 68.2 23.8 10.7 5.9

crafted-6
SP

278.2 141.3 41.7 30.0 14.8 11.5
100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

AG2
27.0 13.8 4.5 2.2 0.9 0.8

AG2
123.6 71.3 30.9 18.2 11.1 6.5

100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

crafted-2
SP

122.6 73.6 47.5 16.2 9.6 5.4

crafted-7
SP

167.3 89.4 63.7 32.1 16.4 7.3
100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

AG2
48.7 15.0 7.3 4.2 1.6 1.1

AG2
70.8 41.2 18.6 11.2 4.8 3.0

100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

crafted-3
SP

146.6 95.6 60.9 29.9 11.3 6.7

crafted-8
SP

111.3 52.4 28.8 23.9 12.2 8.8
100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

AG2
51.9 23.3 6.0 2.9 1.9 1.2

AG2
46.5 32.2 13.2 7.6 6.3 3.6

100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

crafted-4
SP

150.3 63.8 47.7 22.7 10.9 4.6

craft-9
SP

125.7 75.7 44.6 23.2 13.5 10.6
100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

AG2
30.7 17.9 5.9 3.5 2.3 1.9

AG2
79.89 42.64 22.79 13.45 9.69 7.32

100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

crafted-5
SP

129.0 54.7 27.2 14.0 8.8 5.8
100% 100% 100% 100% 100% 100%

AG2
742.8 428.6 224.5 105.4 50.3 38.5
96% 100% 100% 100% 100% 100%

about P (timeout<10) ≈ 0.03 using 16 cores to P (timeout<10) ≈ 0.69 using 512
cores.

Additionally, Figure 2(a) shows the speedup (relative to a portfolio using 16
cores) using 512 cores for each algorithm. Algorithms above the dashed line
indicate that a super-linear speedup is reached and below the line indicate a
sub-linear speedup. In this figure, we observe linear speedups for the following
instances: crafted-1 (AG2-512), crafted-2 (AG2-512), crafted-3 (AG2-512), and
crafted-4 (Sparrow-512). Moreover, except for crafted-8, crafted-9, and crafted-
4 (AG-512), we observe an interesting speedup for all algorithms, this shows
the scalability of the parallel portfolio approach when considering an important
number of cores. It is also worth noticing that the speedup observed for both
algorithms (up to 512 cores) is similar for nearly all instances.

Table 1 summarizes the results for each portfolio using 16, 32, 64, 128, 256,
and 512 cores1. Hereafter, bold figures indicate statistically significant differences
(Mann-Whitney U test with 95% confidence level). It can be observed that AG2-
16 is considerably better than Sparrow-16, however, the difference in the perfor-
mances becomes smaller as the number of cores increases. In addition, to solve
crafted-5, the effectiveness (i.e. percentage of solved instances) of AG2 increases
as the number of cores increases, i.e. from 96% (AG2-16) to 100% (AG2-32).

4.2 Quasigroup Instances

Figure 1(c) shows the RTD for Sparrow and AG2 for QWH problems. Here, we
observe that overall Sparrow is better than AG2 for QWH instances using 16
cores. Notice that the probability of solving a given instance within 10 seconds
for Sparrow-512 and AG2-512 is P (timeout < 10) > 0.9.

Unlike crafted instances where both algorithms exhibit a good speedup for
nearly all instances up 512 cores, here only AG2 exhibits an interesting speedup

1 In the following tables ’SP’ stands for Sparrow.

164 A. Arbelaez and P. Codognet

Table 2. Performance summary for QWH instances. Each cell indicates the median
runtime (top) and the percentage of solved instances (bottom) for each instance.

Instance Alg
Number of Cores

Instance Alg
Number of Cores

16 32 64 128 256 512 16 32 64 128 256 512

qwh-1
SP

1.90 1.57 1.26 0.95 0.70 0.81

qwh-5
SP

20.98 10.61 4.77 2.89 2.01 1.99
100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

AG2
104.07 63.06 39.54 18.82 9.40 4.94

AG2
0.72 0.71 0.71 0.72 0.75 0.81

100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

qwh-2
SP

1.33 0.80 0.67 0.57 0.55 0.51

qwh-6
SP

6.15 3.91 2.81 1.78 1.61 1.60
100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

AG2
101.81 33.02 22.40 9.68 6.16 4.11

AG2
1.11 1.12 1.13 1.14 1.16 1.22

100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

qwh-3
SP

1.02 0.69 0.57 0.53 0.44 0.47

qwh-7
SP

20.15 18.06 11.18 7.47 5.70 4.99
100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

AG2
29.16 17.87 10.11 8.86 4.46 2.70

AG2
4.05 4.04 4.09 4.09 4.16 4.29

100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

qwh-4
SP

0.78 0.57 0.37 0.34 0.34 0.36

qwh-8
SP

17.88 12.87 12.32 12.10 12.13 12.37
100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

AG2
5.02 3.59 1.83 0.93 0.54 0.57

AG2
11.25 11.15 11.29 11.23 11.49 11.57

100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

for four instances, i.e. qwh-[1-4]. Additionally, we would like to point out that in
Table 2, it can be observed that AG2 (qwh-1) exhibits a super-linear speedup up
to 256 cores. More importantly, due to the great scalability of the portfolio-base
approach the difference in the performance between the algorithms decreases
as the number of cores increases. For instance, to solve qwh-1, Sparrow-16 is 54
times faster than AG2-16, while Sparrow-512 is only 6 times faster than AG2-512
to solve the same instance.

4.3 Verification Instances

For this set of instances we limit our attention to our reference solver Sparrow
and VW. VW has been reported in the literature as a very efficient algorithm for
this set of problems (see [21]) Figure 1(b) shows an important difference between
VW-16 and Sparrow-16. The difference lies primarily in the probability of solving
a given instance within the time limit, i.e. VW-16 reports P (timeout < 3600)
≈ 0.96 while Sparrow-16 reports P (timeout< 3600) ≈ 0.82. Both algorithms
exhibit an improvement when the number of cores increases (from 16 to 512),
P (timeout< 3600) ≈ 1 in both cases.

Figure 2(b) shows that Sparrow achieves a near optimal speedup for 5 out
of 9 instances (cbmc-[2,3,5,7,8]), and VW achieves a near optimal speedup for
cbmc-7. Moreover, Table 3 shows the benefit of increasing the number of cores.
For instance, the effectiveness of Sparrow (crafted-8) gradually increases as the
number cores increases from 44% to 100%, i.e. 44% (Sparrow-16); 77% (Sparrow-
32); 92% (Sparrow-64); and 100% (Sparrow-128). Whereas, the effectiveness of
VW (crafted-7) increases from 90% to 100%, i.e. 90% (VW-16); 98% (VW-32);
and 100% (VW-64).

4.4 Random Instances

Because these instances are known to be hard for SAT solvers, we limit our
attention to two solvers; Sparrow and PAWS using 16, 128, 256, and 512 cores.
Figure 1(d) shows the RTD for Sparrow-16, Sparrow-512, and PAWS-512. Notice

From Sequential to Parallel Local Search for SAT 165

10
0

10
2

10
40

0.2

0.4

0.6

0.8

1

Time

P
(s

ol
ve

)

Sparrow−16
AG2−16
Sparrow−512
AG2−512

(a) crafted instances

10
0

10
2

10
40

0.2

0.4

0.6

0.8

1

Time

P
(s

ol
ve

)

Sparrow−16
VW−16
Sparrow−512
VW−512

(b) verification instances

10
0

10
2

10
40

0.2

0.4

0.6

0.8

1

Time

P
(s

ol
ve

)

Sparrow−16
AG2−16
Sparrow−512
AG2−512

(c) qwh instances

10
1

10
2

10
3

10
40

0.2

0.4

0.6

0.8

1

Time

P
(s

ol
ve

)

Sparrow−16
Sparrow−512
PAWS−512

(d) random instances

Fig. 1. RTD for portfolios using 16 and 512 cores

2

4

8

16

32

64

Instance

S
pe

ed
up

crafted−1

crafted−2

crafted−3

crafted−4

crafted−5

crafted−6

crafted−7

crafted−8

crafted−9

Sparrow
AG2

(a) crafted instances

2

4

8

16

32

64

Instance

S
pe

ed
up

cmbc−1

cmbc−2

cbmc−3

cbmc−4

cmbc−5

cbmc−6

cbmc−7

cbmc−8

cbmc−9

Sparrow
VW

(b) verification instances

2

4

8

16

32

64

Instance

S
pe

ed
up

qwh−1
qwh−2

qwh−3
qwh−4

qwh−5
qwh−6

qwh−7
qwh−8

Sparrow
AG2

(c) qwh instances

2

4

8

16

32

64

Instance

S
pe

ed
up

rand−1
rand−2

rand−3
rand−4

rand−5
rand−6

rand−7
rand−8

Sparrow
PAWS

(d) random instances

Fig. 2. Speedup (w.r.t. 16 cores) using 512 cores

166 A. Arbelaez and P. Codognet

Table 3. Performance summary for cbmc instances. Each cell indicates the median
runtime (top) and the percentage of solved instances (bottom) for each instance.

Instance Alg
Number of Cores

Instance Alg
Number of Cores

16 32 64 128 256 512 16 32 64 128 256 512

cbmc-1
SP

141.2 104.7 69.3 53.3 22.0 10.4

cbmc-6
SP

1772.0 842.9 505.1 168.1 116.2 91.8
100% 100% 100% 100% 100% 100% 78% 98% 100% 100% 100% 100%

VW
5.9 3.4 2.4 0.9 0.8 0.8

VW
200.7 160.8 58.7 33.5 20.8 11.7

100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

cbmc-2
SP

827.8 409.1 223.0 103.5 43.2 31.0

cbmc-7
SP

2510.1 1703.1 417.3 288.3 182.0 92.3
98% 100% 100% 100% 100% 100% 64% 80% 98% 100% 100% 100%

VW
153.5 67.8 35.5 16.2 12.6 9.9

VW
1526.3 462.2 289.5 151.5 89.6 54.8

100% 100% 100% 100% 100% 100% 90% 98% 100% 100% 100% 100%

cbmc-3
SP

1052.6 500.3 216.2 135.8 83.8 39.9

cbmc-8
SP

3600.0 1808.0 807.4 458.0 230.1 140.2
94% 98% 100% 100% 100% 100% 48% 72% 92% 100% 100% 100%

VW
112.8 95.1 34.5 20.9 16.1 11.9

VW
1229.3 631.6 398.2 143.7 84.9 72.2

100% 100% 100% 100% 100% 100% 86% 100% 100% 100% 100% 100%

cbmc-4
SP

910.4 395.0 192.3 117.3 78.8 41.2

cbmc-9
SP

2140.4 900.5 533.1 325.1 190.3 127.0
88% 98% 100% 100% 100% 100% 74% 90% 100% 100% 100% 100%

VW
198.1 106.75 53.78 27.5 14.3 14.7

VW
1209.2 547.9 313.4 249.3 129.4 66.4

100% 100% 100% 100% 100% 100% 88% 98% 100% 100% 100% 100%

cbmc-5
SP

1782.0 820.8 406.7 238.7 136.5 73.3
90% 92% 100% 100% 100% 100%

VW
161.2 84.8 50.1 35.0 18.5 15.9
100% 100% 100% 100% 100% 100%

that PAWS-16 is not included because it solves a limited number of instances
(see Table 4). In this figure, we observe a small improvement when increasing
the number of cores. In particular, the runtime that Sparrow requires to solve a
given instance within the time limit decreases from P (timeout < 1250) ≈ 1 for
Sparrow-16 to P (timeout < 290) ≈ 1 for Sparrow-512.

On the other hand, the speedup observed for these instances is considerably
different than the previous benchmarks. In fact, the speedup reported for PAWS
in the figure is an approximation, because PAWS-16 timed-out for an important
number of instances. For this reason, this figure (for PAWS) should be taken as
a lower bound of the actual speedup.

Another interesting behavior observed in these experiments is that the speedup
varies from instance to instance (see Table 4). For example, the speedup for in-
stances near the phase transition (i.e. rand-[1-6]) is substantially lower than the
speedup for the remaining instances (i.e. rand-[7-8]). We plan to conduct a more
detailed investigation to fully characterize the performance of random instances
near the phase transition region when using massively parallel systems.

Finally, it is worth noticing that although the speedup is limited for these
instances, Table 4 shows an important improvement in the effectiveness of PAWS
for nearly all instances. For instance, the effectiveness to solve rand-1 increases as
follows: 16% (PAWS-16), 72% (PAWS-128), 88% (PAWS-256), and 94% (PAWS-
512). However, the the effectiveness of PAWS-512 degrades 2% with regard to
PAWS-256, this corresponds to 1 timeout out of 50 executions of PAWS-512 to
solve rand-4.

5 Conclusions and Future Work

This paper has presented extensive experimental results using parallel portfolios
of local search algorithms for SAT. Overall the experiments suggest that the
portfolio approach scales reasonably well up to an important number of cores
(i.e. 512 cores) without the need of any particular tuning of the algorithm.

From Sequential to Parallel Local Search for SAT 167

Table 4. Performance summary for random instances. Each cell indicates the median
runtime (top) and the percentage of solved instances (bottom) for each instance.

Instance Alg
Number of Cores

Instance Alg
Number of Cores

16 128 256 512 16 128 256 512

rand-1
SP

260.00 188.00 180.08 192.26

rand-5
SP

305.66 252.28 242.26 242.82
100% 100% 100% 100% 100% 100% 100% 100%

PAWS
3600.00 2320.55 1951.96 1616.24

PAWS
3600.00 1564.17 1287.87 1246.72

16% 72% 88% 94% 30% 92% 98% 100%

rand-2
SP

299.28 240.75 227.34 232.95

rand-6
SP

248.93 200.02 198.36 213.42
100% 100% 100% 100% 100% 100% 100% 100%

PAWS
3600.00 3216.08 2933.89 1855.01

PAWS
3600.00 1210.02 1024.20 826.30

12% 68% 78% 94% 36% 100% 100% 100%

rand-3
SP

277.68 190.56 192.59 200.32

rand-7
SP

179.21 54.95 39.74 32.32
100% 100% 100% 100% 100% 100% 100% 100%

PAWS
3600.00 1501.92 1108.49 956.37

PAWS
3600.00 3600.00 3600.00 3600.00

32% 98% 100% 100% 0% 0% 0% 0%

rand-4
SP

274.04 221.14 204.24 214.89

rand-8
SP

325.62 90.00 73.11 64.39
100% 100% 100% 100% 100% 100% 100% 100%

PAWS
3394.61 1602.76 1289.28 1279.33

PAWS
3600.00 3600.00 3600.00 3600.00

50% 96% 100% 98% 0% 0% 0% 0%

In two out of four benchmark families (crafted and verification) the algo-
rithms exhibit near optimal speedups, and super-linear in some particular cases.
However for the quasigroup instances, we have observed that the best sequential
algorithm reports surprisingly for half of the instances a very limited speedup
factor (roughly a factor 2 w.r.t. 16 cores, even with 512 cores), while the other
(slower) algorithm scales well up to an important number of cores, without how-
ever reaching the same raw performance. For the random instances, which are
very hard problems close to the phase transition, it is worth noticing that paral-
lel speedups are quite limited for all the algorithms studied. However, we would
also like to point out that, as expected, the parallel portfolio approach helps to
increase the effectiveness of the algorithms when increasing the number of cores.
For instance, for the rand-5 problem, the effectiveness of the PAWS algorithm
increases from 30% (PAWS-16) to 100% (PAWS-512).

Therefore our experiments show that on different problem families the behav-
iors of different solvers vary greatly. Although our initial question is still open,
i.e. Is the best sequential solver also the best one in a massively parallel context?,
we have presented an empirical study which suggests that the best sequential
solver is not necessarily the one with the over all best speedup.

Our future work involves the study of cooperative algorithms that scale up
significantly for a large number of cores (e.g. 512 cores). Indeed, current coop-
erative methods for parallel local search for SAT scale only up to 16 or 32 cores
(see [16]). In addition, we plan to investigation the use of machine learning to
identify potentially bad and good runs in the parallel portfolio.

Acknowledgements. The first author was supported by the Japan Society
for the Promotion of Science (JSPS) under the JSPS Postdoctoral Program
and the kakenhi Grant-in-aid for Scientific Research. Experiments presented in
this paper were carried out using the Grid’5000 experimental testbed, being
developed under the INRIA ALADDIN development action with support from
CNRS, RENATER and several Universities as well as other funding bodies (see
https://www.grid5000.fr).

168 A. Arbelaez and P. Codognet

References

1. Cook, S.A.: The Complexity of Theorem-Proving Procedures. In: Third Annual
ACM Symposium on Theory of Computing, STOC 1971, pp. 151–158. ACM (1971)

2. Chrabakh, W., Wolski, R.: GridSAT: A System for Solving Satisfiability Problems
Using a Computational Grid. Parallel Computing 32(9), 660–687 (2006)

3. Hamadi, Y., Jabbour, S., Sais, L.: ManySAT: A Parallel SAT Solver. Journal on
Satisfiability, Boolean Modeling and Computation, JSAT 6(4), 245–262 (2009)

4. Arbelaez,A.,Hamadi,Y.: ImprovingParallel Local Search for SAT. In:CoelloCoello,
C.A. (ed.) LION 2011. LNCS, vol. 6683, pp. 46–60. Springer, Heidelberg (2011)

5. Hoos, H., Stützle, T.: Stochastic Local Search: Foundations & Applications. Mor-
gan Kaufmann Publishers Inc., San Francisco (2004)

6. Selman, B., Kautz, H.A., Cohen, B.: Noise Strategies for Improving Local Search.
In: AAAI 1994, vol. 1, pp. 337–343 (July 1994)

7. McAllester, D.A., Selman, B., Kautz, H.A.: Evidence for Invariants in Local Search.
In: AAAI 1997, pp. 321–326 (1997)

8. Thornton, J., Pham, D.N., Bain, S., Ferreira Jr., V.: Additive versus Multiplicative
Clause Weighting for SAT. In: AAAI 2004, pp. 191–196 (July 2004)

9. Prestwich, S.D.: Random Walk with Continuously Smoothed Variable Weights. In:
Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 203–215. Springer,
Heidelberg (2005)

10. Li, C.-M., Huang, W.Q.: Diversification and Determinism in Local Search for Satis-
fiability. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 158–172.
Springer, Heidelberg (2005)

11. Balint, A., Fröhlich, A.: Improving Stochastic Local Search for SAT with a New
Probability Distribution. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS,
vol. 6175, pp. 10–15. Springer, Heidelberg (2010)

12. Shylo, O.V., Middelkoop, T., Pardalos, P.M.: Restart Strategies in Optimization:
Parallel and Serial Cases. Parallel Computing 37(1), 60–68 (2011)

13. Pham, D.N., Gretton, C.: gNovelty+. In: Solver Description, SAT Competition
2007 (2007)

14. Roli, A.: Criticality and Parallelism in Structured SAT Instances. In: Van Henten-
ryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 714–719. Springer, Heidelberg (2002)

15. Kroc, L., Sabharwal, A., Gomes, C.P., Selman, B.: Integrating Systematic and Local
Search Paradigms: A New Strategy for MaxSAT. In: IJCAI 2009, pp. 544–551 (July
2009)

16. Arbeleaz, A., Codognet, P.: Massivelly Parallel Local Search for SAT. In: ICTAI
2012, Athens, Greece, pp. 57–64. IEEE Computer Society (November 2012)

17. Martins, R., Manquinho, V., Lynce, I.: An Overview of Parallel SAT Solving.
Constraints 17, 304–347 (2012)

18. Tompkins, D.A.D., Hoos, H.H.: UBCSAT: An Implementation and Experimentation
Environment for SLS Algorithms for SAT and MAX-SAT. In: Hoos, H.H., Mitchell,
D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 306–320. Springer, Heidelberg (2005)

19. Achlioptas, D., Gomes, C.P., Kautz, H.A., Selman, B.: Generating satisfiable prob-
lem instances. In: AAAI 2000, pp. 256–261 (July 2000)

20. Clarke, E., Kroening, D., Lerda, F.: A Tool for Checking ANSI-C Programs.
In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

21. Tompkins, D.A.D., Balint, A., Hoos, H.H.: Captain Jack: New Variable Selection
Heuristics in Local Search for SAT. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011.
LNCS, vol. 6695, pp. 302–316. Springer, Heidelberg (2011)

22. Gent, I.P., Walsh, T.: The SAT Phase Transition. In: ECAI 1994, pp. 105–109
(August 1994)

Generalizing Hyper-heuristics

via Apprenticeship Learning

Shahriar Asta1, Ender Özcan1, Andrew J. Parkes1, and A. Şima Etaner-Uyar2

1 School of Computer Science
University of Nottingham

Nottingham, NG8 1BB, U.K.
{sba,exo,ajp}@cs.nott.ac.uk

http://cs.nott.ac.uk/~{sba,exo,ajp}/
2 Department of Computer Engineering

Istanbul Technical University
Istanbul, 34469, Turkey
etaner@itu.edu.tr

http://web.itu.edu.tr/~etaner/

Abstract. An apprenticeship-learning-based technique is used as a
hyper-heuristic to generate heuristics for an online combinatorial prob-
lem. It observes and learns from the actions of a known-expert heuristic
on small instances, but has the advantage of producing a general heuristic
that works well on other larger instances. Specifically, we generate heuris-
tic policies for online bin packing problem by using expert near-optimal
policies produced by a hyper-heuristic on small instances, where learning
is fast. The ”expert” is a policy matrix that defines an index policy, and the
apprenticeship learning is based on observation of the action of the expert
policy together with a range of features of the bin being considered, and
then applying a k-means classification. We show that the generated pol-
icy often performs better than the standard best-fit heuristic even when
applied to instances much larger than the training set.

Keywords: Hyper-heuristics, learning by demonstration, apprentice-
ship learning, generalization.

1 Introduction and Related Work

Meta-heuristics have long been used to solve optimization problems using many
versions of neighborhood search. However, the efficiency of meta-heuristics de-
pend on the problem domain and the neighborhood operator. Thus, meta- heuris-
tics may have different performances on different problem domains or even on
different instances of the same problem. In order to overcome these dependencies,
automated search techniques have emerged [8–10], and now are often generically
called hyper-heuristics. Hyper-heuristics take the search process one level higher
to the space of heuristics. That is, there is a higher level (meta-)heuristic which
at each instance of time, chooses some low level and often simpler heuristic

M. Middendorf and C. Blum (Eds.): EvoCOP 2013, LNCS 7832, pp. 169–178, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://cs.nott.ac.uk/~{sba, exo, ajp}/
http://web.itu.edu.tr/~etaner/

170 S. Asta et al.

to solve the problem. According to one classification [4], hyper-heuristics, like
many machine learning problems, can be divided into three categories depend-
ing on the feedback mechanism they employ: on-line learning, off-line learning
and no learning. If the hyper-heuristic framework learns while searching, it is
an on-line learning hyper-heuristic. On the contrary, an off-line learning hyper-
heuristic learns prior to the search phase. When no feedback is acquired from the
search space, then the corresponding hyper-heuristic framework is a no learning
framework. Hyper-heuristics can also be classified into two groups: selection and
generation hyper-heuristic. The former, selects a heuristic among a set of existing
heuristics at each phase of the search. The latter, generates new heuristics from
components of the existing low level heuristics. Both selection and generation
hyper-heuristics can be further categorized into construction or perturbation
heuristics. More on hyper-heuristics can be found in [3, 13, 16]. Selection hyper-
heuristics have been well studied, and gave rise to the CHeSC 2011 competition1;
further details of this can be found in [7, 12] and at the CHeSC website, and of
the winning hyper-heuristic by Misir et al. in [11].

However, this paper is about generation rather than selection hyper-heuristics,
and so rather than the neighbourhood search of CHeSC, we study the generation
of heuristics for an online problem. Specifically, we study the online bin-packing
problem and follow the policy matrix methods of Özcan and Parkes [14]. In
those methods the goal is to produce an ‘index policy’, that assigns a score to
all potential actions and then selects the highest scoring action. This is done
by using direct search by a genetic algorithm. Earlier related work on online
bin-packing [17] had proposed a hyper-heuristic approach which learns how to
choose a heuristic based on the dynamically changing problem state after place-
ment of each item for bin packing. Subsequent work (e.g. [5, 6]) used genetic
programming methods to evolve an arithmetic expression for the scoring func-
tion within the policy. Parkes, Özcan and Hyde [15] combined previous studies
and presented a method based on policy matrices for analysing the effects of
the genetic programming mutation operator in a regular run using online bin
packing. The policy matrix methods, and the methods of this paper, differ from
that of [17], as it attempts to learn a single heuristic rather than learning how
to mix them to construct a solution.

Although the policy matrix approach in [14] was effective at generating heuris-
tics with better performance than the standard ones, it had the drawback of
directly only applying to a specific set of values for the bin capacity and range of
item sizes. In this paper, we describe a method to take policy matrices learned
on small instances and generalise them to apply to different instances, and with
the particular aim to apply them to larger instances. We used a form of appren-
ticeship learning (a.k.a learning by demonstration or imitation learning) [1] for
generalizing the demonstrations provided by an expert. Apprenticeship learning
has a wide range of applications in control and robotics and is heavily based on
Inverse Reinforcement Learning (IRL). Although we do not use IRL methods

1 Cross-domain Heuristic Search Challenge:
http://www.asap.cs.nott.ac.uk/external/chesc2011/

 http://www.asap.cs.nott.ac.uk/external/chesc2011/

Generalizing Hyper-heuristics via Apprenticeship Learning 171

directly in our approach, our study is mainly inspired by them. Our method
generates a generalized policy by classifying the actions of some expert policies
(heuristics) according to each search state, thus it also can be viewed as a hyper-
heuristic. We also note that one intention originally motivating the work of [14]
was to produce good policy matrices and then data-mine them to learn good
patterns. This work is somewhat different in that it does not learn directly from
the policy matrix, but rather by observing the decisions that it lead to.

Our method in use is an off-line classification method, needing to be trained
on an available dataset, and so in categorization of hyper-heuristics in [4] it best
fits into the category of off-line learning generation hyper-heuristics. The study
here includes only experimental results on a single problem domain, however, we
expect the general methods it will also be applicable to other domains.

2 Policy Matrices for Online Bin Packing

2.1 Online Bin Packing Problem

The bin packing problem is known to be a combinatorial NP-hard problem which
deals with packing items of different sizes to bins of fixed capacity. The objective
is to minimize the number of bins used. Different variants of the bin packing
problem exist, one of which is the online bin packing problem. In this variant,
we are dealing with partitioning a set of integer values into subsets with the
constraint that the sum of integers within a subset does not exceed the capacity
[14]. Moreover, as a distinguishing feature, items arrive sequentially and each
item has to be assigned to a bin before the next one is disclosed. A decision
has to be made dynamically at each step based on partial information regarding
which bin should be used for placement. This is in contrast to the off-line bin
packing problem where there is a complete information on the number of items
and their sizes prior to solving a problem instance.

The bin capacity is a constant integer C > 1 and the items can have any size in
the range [1, C]. An open bin has a remaining capacity which can accommodate
at least one item assuming that the sizes of items are known. An empty new
bin is always available and it is opened if the size of the current item is bigger
than the remaining capacity of all open bins. In such a case, the new bin is
opened and the item is placed into this new bin. A bin is closed if its remaining
space is smaller than the minimum item size. The uniform bin packing instances
are represented by the formalism: UBP (C, smin, smax, N) (adopted from [14])
where C is the bin capacity, smin and smax are minimum and maximum item
sizes and N is the number of total items. The item sizes at each step are chosen
uniformly and independently random from the range [smin, smax]. Also, we have
the assumption smin > 0 and smax < C. The fitness measure for each experiment
on N items is computed according to the following equation.

f =
1

B

∑
t

ft (1)

where B is the number of bins used and ft is the fullness of bin t.

172 S. Asta et al.

2.2 Matrix Representation of Policies

As discussed earlier, in our framework we need a set of initial policies which work
fine in their own domains (a specific UBP here). Our methodology then utilizes
these expert policies to form a generalized model over the problem domain. This
generalized model is independent of the underlying policy and a framework which
generates expert policies on a given instance is sufficient for the task. Due to
its simple implementation, ease of use and high performance, we chose to utilize
the work in [14] to generate our expert policies. A description of this method is
given below.

Özcan and Parkes [14] proposed a hyper-heuristic method to generate matrix
policies to solve instances of online bin packing problem. In their method, policy
matrix evolution for generation of heuristics, a policy is represented by a matrix
of scores (policy matrix). Each row in this matrix represents the remaining bin
capacity (r) prior to the item assignment and each column represents the current
item size (s) to be assigned to a bin. The values of each matrix element are either
−1 for inactive elements (irrelevant (r, s) pairs which never occur) or Wrs which
is the score associated with assigning item of size s to a bin of remaining capacity
r. The value for Wrs is chosen from the range [wmin, wmax]. In our experiments
we chose wmin = 1 and wmax = 2 for simplicity. The policy matrix is then
optimized using an off-line learning GA for a given problem instance (a specific
UBP as described in Section.2). Each individual is consisted of the values of the
active members of the policy matrix. A generation of these individuals is then
generated which goes through selection, recombination, mutation and evaluation.
Please note that, since a single policy matrix is a heuristic, then the GA is a
hyper-heuristic which searches in the space of heuristics. Further detail on this
method can be found on [14]. The experimental results show that this method
produces reliable policies which solve a given UBP with a high performance.

3 The Proposed Approach

One of the major contributions of this study is to show that each search state
can be seen and described as a feature set with which a generalized model can
be constructed. Thus, the feature set is a crucial part of our framework since
it affects the performance of our method which benefits from classification al-
gorithms (namely k-means). In order to achieve a desirable performance, the
extracted features should be instance independent. That is, they should not be
dependent on the absolute values of the item size (s), bin capacity (C) and min-
imum or maximum item size (smin or smax), but rather to depend on relative
sizes. Table 1 shows the list of considered features along with their formal and
verbal descriptions. The features in Table 1 are extracted for each open bin on
the arrival of each new item. The last two features of the feature vector described
in Table 1, are designed to increase the prediction power of the generalized pol-
icy. In other words, regardless of the decision of the expert policy on selecting
or rejecting the current bin, we have assumed that the item has been assigned
to the bin (if it’s size does not exceed the bin’s remaining capacity) to see what

Generalizing Hyper-heuristics via Apprenticeship Learning 173

Table 1. Features of the search state. Note that the UBP instance defines the constants
C, smin, and smax whereas the variables are s the current item size, and r the remaining
capacity in the bin considered, and r′ is simply r − s.

feature description

(s− smin)/(smax − smin) normalized current item size

r/C normalized remaining capacity of the current bin

s/C ratio of item size to bin capacity

s/r ratio of item size to the current bin’s remaining capacity

r′/C normalized remaining capacity of the current bin after a feasible as-
signment

(r′/smax)− smin ratio of remaining capacity of the current bin after a feasible assign-
ment to the range of item size

changes such an assignment makes in the search state. The new remaining ca-
pacity of such a hypothetical assignment is noted by the symbol r′ = r − s in
Table 1.

In classical machine learning techniques, each row of features in the dataset
determines a certain class label. In this work we chose to use the action which the
expert policy prefers for each bin, as the label for each row of features (records).
Typically, what is being done by the policy matrices, or any other policy in fact,
is to either open a new bin or to choose an open bin and assign the item to that
bin. Thus, in our work the label determines if the bin is selected (label 1) or
rejected (label 0).

Having determined the necessary features for our method, we can now use
our expert policies to extract features and their corresponding labels for each
search state. That is, we assume that we are in possession of a set of n expert
policies {π1

e , ..., π
n
e } in one dimensional on-line bin packing problem domain.

These expert policies are obtained by the policy generation method discussed
in Section.2.2. Each expert policy corresponds to a certain UBP . We run each
expert policy once, on it’s corresponding UBP for a certain and fixed number
of items N = 105. While running, expert features, φt

e, are extracted for each
state of the search (t). Here, φt

e is a r dimensional vector of features where r is
the number of features representing a search state. At the end of each run for a
policy πi

e we will have a set of demonstrations like:

Dπi
e
= {(φt

e, at)|πi
e} (2)

where at is the action at step t. The demonstration sets for all training policies
are then merged together to form a dataset.

D =

n⋃
i=1

Dπi
e

(3)

Having the feature vectors and their associated labels, we employ a k-means
clustering algorithm to cluster the feature vectors of each class. The k-means

174 S. Asta et al.

algorithm is a semi-parametric method which uses a mixture of densities to
estimate the input sample [2]. The distance metric in use (d) is one minus cosine
similarity (Eq.6). The clustering process is designed to generate 8 cluster centroid
coordinates, 4 of which labeled as selected bins (feature vectors labeled 1) and
the rest as rejected bins (feature vectors labeled 0). The number of clusters for
each class has been determined experimentally.

φxj =
1

nj

∑
φt
e∈xj

φt
e ≈ E(φt

e|xj ∈ D) , φt
e ∈ xj , ∃i s.t φt

e ∈ πi
e (4)

Here, xj is the jth centroid and nj is the number of samples which belong
to the centroid j. For an unseen problem instance (a UBP), at each state of
the search, say, on the arrival of each new item, for each open bin, the state
features are extracted (φt′) and the closest matching centroid to the current
feature vector in terms of cosine similarity is found. In case the centroid has a
label 1 the bin is selected for the item assignment according to a probability.
The probability is chosen to be 0.99 and is considered to introduce randomness
to the decision making process. Eq.5 illustrates the decision making mechanism
of the generalized policy, given a feature vector for a bin and a set of centroids.

πg = {axj ∈ {0, 1} | argmin
j

d(φxj , φ
t′) , φxj ∈ D} (5)

Here, πg is the generalized policy, the subscript xj indicates the jth centroid
obtained by the k-means clustering algorithm, axj is the action (label) which is
associated to the centroid j and d is the distance metric which is given in Eq.6.

d(φxj , φ
t′) = 1−

∑
r φxj · φt′√∑

r φxj

2 ·
√∑

r φ
t′2

(6)

The summations in Eq.6 are over r, the dimension of the feature vector which is
not shown as index in the equation in order to reduce the complexity of notations.

4 Experiments

Since we have used the policy matrices generated by the method in [14], a first
round of training has been performed to obtain a set of expert policies using
the hyper-heuristic in [14]. Then each policy matrix is run on it’s corresponding
instance to obtain a set of features for search states and form a data set (D in
Eq. 3). However, since the underlying machine which performs the clustering is
an Ubuntu 10.10 with 3GB of RAM, it only can handle small datasets. In order
to keep the dataset small enough to be processed by the computer, the actions of
the expert on each instance is sampled randomly. That is, not all the states are
considered for feature extraction. Instead, a feature vector is extracted for each
state according to a uniformly random distribution with a probability of 0.15.
The dataset is then clustered which represents the expected feature vector of the

Generalizing Hyper-heuristics via Apprenticeship Learning 175

expert. For unseen instances of the one dimensional bin packing problem, the
feature vector for each open bin is extracted and it is determined if the feature
vector of the bin belongs to selected or rejected bins (a choice performed by the
expert).

4.1 Experimental Design

In order to obtain expert policies a GA framework as in [14] has been used for
which the parameter setting is given in Table 2. Except the values of wmin and
wmin, basically, the entries of Table 2 are the settings which were used in [14]
and are given here for convenience. It should be noted that these values were
suitable for small instances, but tend not to converge for larger instances. The
‘expert policies’ obtained can sometimes be significantly sub-optimal, due to the
large computational resources needed to learn policies in some cases.

Table 2. GA parameter setting

No. of iterations 200 pop. size �C
2 �

Selection Tournament Tour size 2
Crossover Uniform Crossover Probability 1.0
Mutation Traditional Mutation Rate 0.1

No. of trials 1000 No. of Items 105

wmin 1 wmax 2

The problem instances under consideration are a total of 10 instances. We
assume that we have the expert policy corresponding to each instance. That
is, we used the GA to obtain an expert policy matrix corresponding to each
instance. As a consequence, we know the performance of each expert policy on
it’s corresponding instance, which is used for comparison in later stages of our
experiments. However, in order to train and construct the generalized policy (πg),
we utilize only 3 instances to form the dataset and construct our model. We use
the k-means algorithm to construct a generalized model of the choices of expert
policies on their corresponding instances. The generalized policy then uses the
resulting data set and the model to solve the remaining 7 instances. For feature
extraction in the training phase the expert policy is run on it’s corresponding
instance for a single run which contains 105 items. For testing purposes, the
generalized policy is tested on each problem instance in the test fold for 100
runs, each including 105 items. The instances used to train the πg and form the
dataset are UBP (15, 5, 10, 105), UBP (30, 4, 20, 105) and UBP (40, 10, 20, 105).

4.2 Experimental Results

As mentioned earlier, in our experiments, the expert policy performs a single run
on its corresponding instance, resulting in the training feature set. Subsequently,
the test instances, are used to test the generalized policy. The results of this
experiment is shown in Table 3. In order to have a better understanding of the

176 S. Asta et al.

Table 3. A comparison between the performances of the expert policy (πe), generalized
policy (πg) and the best fit heuristic(BF) on various unseen instances. Numbers are
average bin fullness percentages.

Average Performance Max. Performance Min. Performance

Instance πe πg BF πe πg BF πe πg BF

UBP (20, 5, 10, 105) 98.42 94.32 91.55 98.47 94.41 91.66 94.33 94.21 91.46

UBP (30, 4, 25, 105) 99.68 97.69 98.38 99.76 97.92 98.49 99.52 97.36 98.30

UBP (50, 10, 25, 105) 99.20 93.32 93.31 99.31 93.41 93.41 99.08 93.25 93.26

UBP (60, 15, 25, 105) 99.75 93.83 92.54 99.91 94.80 92.65 99.45 92.91 92.42

UBP (75, 10, 50, 105) 98.45 98.50 96.08 98.51 98.54 96.13 98.37 98.44 96.04

UBP (80, 10, 50, 105) 98.86 98.17 96.39 98.91 98.21 96.44 98.74 98.13 96.34

UBP (150, 20, 100, 105) 97.56 98.32 95.81 97.66 98.37 95.87 97.49 98.26 95.76

r\s 1 2 3 4 5 6 1 2 3 4 5 6

1:

2: . 2 2

3: . 1 2 2 2 . . .

4: . 2 1 2 1 . . .

5:

6: . 2 2 2 2 . . .

Fig. 1. The optimal and generalised matrix policies for UBP (6, 2, 3, 105)

results, also the results of the best fit (BF) heuristic is given as a lower bound.
Please note that the reported results in Table 3 for πe,πg and best fit are obtained
by running each policy for 100 runs on each problem instance.

The generalized policy (πg) does not generate optimal policies for the test
instances, however πg follows the expert policy (πe) in terms of performance as
summarized in Table 3. Figure 1 illustrates the optimal policy along with a near
optimal generalized policy yielding 96.45% mean bin fullness for the instance
UBP (6, 2, 3, 105) while BF generates a performance significantly worse than
πg with a mean bin fullness of 92.25%. The generalized policy is 1 Hamming-
distance away from the known optimal, differing at W3,2. In the case of the
instance UBP (30, 4, 25, 105) BF performs slightly better than the generalized
policy, but in all other instances the generalized policy outperforms the BF.
The performance differences are statistically significant for UBP (20, 5, 10, 105),
UBP (60, 15, 25, 105) and the rest of the instances. It is observed that πg is capa-
ble of generalizing the expert policies to larger problem instances. All problem
instances in the training phase of πg, are smaller in terms of bin capacity, min-
imum and maximum item size as compared to the instances in the test set.
Applying the generalized policy to larger unseen problem instances still results
with a performance similar to that of the expert policy. This achievement is
important since by demonstrating expert actions on simple problem instances,
our generalized method was able to perform well on larger instances without
undergoing the time consuming cycle of genetic evolution.

Generalizing Hyper-heuristics via Apprenticeship Learning 177

5 Conclusion and Future Work

In this study, we have used the idea of apprenticeship learning to construct a
generalized model of the problem domain using a set of expert policies derived by
a hyper-heuristic. We have described each state of the search by a feature vector
and used the feature vector to construct the generalized model. Our experiments
show that without a need to re-construct new policies for new instances of the
problem domain, our model is able to generalize some existing policies to the
problem domain. Our conclusion is that this method can be generalized to a
cross-domain level. However, in order to achieve such a level of generality, one
has to first determine a common feature set which can be exploited in a domain-
independent fashion. Our future work is to have an investigation on automatic
feature extraction and selection methods for this purpose. Finally, one could
’complete the loop’ and use the generalized policy to generate a policy matrix;
which could be used to initialize the GA used in [14]. Such an initialization
approach, instead of a randomized initialization scheme, may well be expected
to reduce the total number of generations to generate a true expert policy on an
unseen problem instance.

References

1. Abbeel, P., Ng, A.Y.: Apprenticeship learning via inverse reinforcement learning.
In: Proceedings of the Twenty-First International Conference on Machine Learning,
ICML 2004, pp. 1–8. ACM, New York (2004)

2. Alpaydin, E.: Introduction to Machine Learning (Adaptive Computation and Ma-
chine Learning). The MIT Press (2004)

3. Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Qu, R.: Hyper-
heuristics: A survey of the state of the art. Tech. Rep. No. NOTTCS-TR-SUB-
0906241418-2747, School of Computer Science and Information Technology, Uni-
versity of Nottingham (2010)

4. Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Woodward, J.: A Clas-
sification of Hyper-heuristic Approaches. In: Handbook of Metaheuristics. Interna-
tional Series in Operations Research & Management Science. Springer (2009)

5. Burke, E.K., Hyde, M.R., Kendall, G., Woodward, J.R.: The scalability of evolved
on line bin packing heuristics. In: Srinivasan, D., Wang, L. (eds.) 2007 IEEE
Congress on Evolutionary Computation, pp. 2530–2537. IEEE Computational In-
telligence Society, IEEE Press, Singapore (2007)

6. Burke, E.K., Hyde, M.R., Kendall, G., Woodward, J.: Automatic heuristic gener-
ation with genetic programming: evolving a jack-of-all-trades or a master of one.
In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Com-
putation, GECCO 2007, pp. 1559–1565. ACM, New York (2007)

7. Burke, E., Curtois, T., Hyde, M., Kendall, G., Ochoa, G., Petrovic, S., Vazquez-
Rodriguez, J.: Hyflex: A flexible framework for the design and analysis of hyper-
heuristics. In: Proceedings of the Multidisciplinary International Scheduling Con-
ference (MISTA 2009), pp. 790–797 (2009)

8. Cowling, P., Kendall, G., Soubeiga, E.: A Hyperheuristic Approach to Scheduling
a Sales Summit. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079,
pp. 176–190. Springer, Heidelberg (2001)

178 S. Asta et al.

9. Crowston, W.B., Glover, F., Thompson, G.L., Trawick, J.D.: Probabilistic and
parametric learning combinations of local job shop scheduling rules. ONR Research
memorandum No. 117, GSIA, Carnegie Mellon University, Pittsburgh (1963)

10. Fisher, H., Thompson, G.L.: Probabilistic learning combinations of local job-shop
scheduling rules. In: Industrial Scheduling, pp. 225–251. Prentice-Hall (1963)

11. Misir, M., Verbeeck, K., De Causmaecker, P., Vanden Berghe, G.: A new hyper-
heuristic as a general problem solver: An implementation in HyFlex. Journal of
Scheduling (2012)

12. Ochoa, G., Hyde, M., Curtois, T., Vazquez-Rodriguez, J.A., Walker, J., Gendreau,
M., Kendall, G., McCollum, B., Parkes, A.J., Petrovic, S., Burke, E.K.: HyFlex: A
Benchmark Framework for Cross-Domain Heuristic Search. In: Hao, J.-K., Midden-
dorf, M. (eds.) EvoCOP 2012. LNCS, vol. 7245, pp. 136–147. Springer, Heidelberg
(2012)

13. Özcan, E., Bilgin, B., Korkmaz, E.: A comprehensive analysis of hyper-heuristics.
Intell. Data Anal. 12, 3–23 (2008)

14. Özcan, E., Parkes, A.J.: Policy matrix evolution for generation of heuristics. In:
Proceedings of the 13th Annual Conference on Genetic and Evolutionary Compu-
tation, GECCO 2011, pp. 2011–2018. ACM, New York (2011)

15. Parkes, A.J., Özcan, E., Hyde, M.R.: Matrix Analysis of Genetic Programming
Mutation. In: Moraglio, A., Silva, S., Krawiec, K., Machado, P., Cotta, C. (eds.)
EuroGP 2012. LNCS, vol. 7244, pp. 158–169. Springer, Heidelberg (2012)

16. Ross, P.: Hyper-heuristics. In: Search Methodologies: Introductory Tutorials in Op-
timization and Decision Support Techniques, ch. 17, pp. 529–556. Springer (2005)

17. Ross, P., Maŕın-Blázquez, J.G., Schulenburg, S., Hart, E.: Learning a Procedure
That Can Solve Hard Bin-Packing Problems: A New GA-Based Approach to
Hyper-heuristics. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R.,
O’Reilly, U.-M., Beyer, H.-G., Standish, R., Kendall, G., Wilson, S., Harman, M.,
Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A.C., Dowsland, K.A., Jonoska,
N., Miller, J. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1295–1306. Springer, Hei-
delberg (2003)

High-Order Sequence Entropies

for Measuring Population Diversity
in the Traveling Salesman Problem

Yuichi Nagata1 and Isao Ono2

1 Education Academy of Computational Life Sciences,
Tokyo Institute of Technology, Japan

2 Interdisciplinary Graduate School of Science and Engineering,
Tokyo Institute of Technology, Japan

nagata@acls.titech.ac.jp, isao@dis.titech.ac.jp

Abstract. We propose two entropy-based diversity measures for evalu-
ating population diversity in a genetic algorithm (GA) applied to the
traveling salesman problem (TSP). In contrast to a commonly used
entropy-based diversity measure, the proposed ones take into account
high-order dependencies between the elements of individuals in the pop-
ulation. More precisely, the proposed ones capture dependencies in the
sequences of up to m + 1 vertices included in the population (tours),
whereas the commonly used one is the special case of the proposed ones
with m = 1. We demonstrate that the proposed entropy-based diver-
sity measures with appropriate values of m evaluate population diversity
more appropriately than does the commonly used one.

1 Introduction

The maintenance of population diversity is one of the most important factors
for fully exercising the capability of genetic algorithms (GAs). To develop an
effective population diversity management strategy, it is important to design an
appropriate measure of population diversity, which could be used in adaptively
changing search strategies (e.g., change a search strategy when the degree of
population diversity becomes less than a specified value) [6,7], in analyzing the
behavior of GAs [9,5,8], and in evaluating individuals to maintain population
diversity in a positive manner [1,10,3,4].

In the information theory, entropy, defined as −
∑

s∈S ps log ps, is a measure
of the uncertainty of a probability distribution ps (s ∈ S), where S is a set of
all possible events. This definition, however, cannot be directly used to mea-
sure population diversity (i.e., S is a set of all possible solution candidates)
because the population size is usually extremely smaller than the number of
all possible solution candidates. Therefore, to the best of our knowledge, the
entropy-based diversity measures proposed in previous works are all defined as
the sum of the entropies of the univariate marginal distributions of all vari-
ables. For example, let the solution space be {x1, . . . , xn}, where xi is a variable

M. Middendorf and C. Blum (Eds.): EvoCOP 2013, LNCS 7832, pp. 179–190, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

180 Y. Nagata and I. Ono

taking values in a discrete set Ai. The entropy of the i-th variable is defined
as Hi = −

∑
j∈Ai

pij log pij , where pij is the probability that xi has a value
j in the population. Then, the entropy-based diversity measure is defined as
H =

∑n
i=1 Hi. In this paper, we call an entropy-based diversity measure defined

in this manner an independent entropy measure. In previous works, independent
entropy measures were designed for the knapsack problem [2], binary quadratic
programming problem [8], traveling salesman problem [9,1,6,5,3,4], and others
[10].

The independent entropy measure (and other commonly used population di-
versity measures), however, is not able to take into account dependencies between
variables of individuals in the population. For example, consider an extreme ex-
ample on the n-dimensional binary solution space where half of the population
members are ‘00 . . .00’ and the other half are ‘11 . . . 11’. The value of the inde-
pendent entropy measure of this population will be almost the same as that of
a randomly generated population because pi0 = pi1 = 0.5 (i = 1, . . . , n) for both
cases, even though “true” population diversity is extremely low in the former
case. Therefore, our motivation here is to design a more appropriate entropy-
based diversity measure by considering the dependencies between variables of
individuals in the population. We call such a diversity measure a high-order
entropy measure.

In this paper, we propose high-order entropy measures for the traveling sales-
man problem (TSP) in order to design a more appropriate population diversity
measure. In our previous work [4], we proposed a powerful GA for the TSP,
which is one of the most effective heuristic (approximate) algorithms for the
TSP. One important factor for achieving top performance is to maintain popu-
lation diversity by evaluating each of the offspring solutions on the basis of the
original evaluation function (tour length) as well as the contribution of diversity
to the population when it is selected for inclusion in the population. Here, an
independent entropy measure was used for evaluating population diversity. In
this paper, we perform this GA by replacing the original independent entropy
measure with each of the proposed high-order entropy measures in the evaluation
function in order to show their ability to measure population diversity. Exper-
imental results show that the use of high-order entropy measures improved the
performance of the GA with respect to the solution quality.

The remainder of this paper is organized as follows. In Section 2, we first
describe the original independent entropy measure for the TSP and present two
types of high-order entropy measures. The GA framework, under which the pop-
ulation diversity measures were tested, is described in Section 3. Computational
results are presented in Section 4. In Section 5, conclusions are given.

2 Entropy-Based Measures for the TSP

Let a TSP be defined on a complete directed graph (V,E) with a set of vertices
V = {1, . . . , n} and a set of edges E = {(i, j) | i, j ∈ V }. Note that entropy-based
diversity measures are more easily defined in the asymmetric TSP (ATSP) than

High-Order Sequence Entropies for Measuring Population Diversity 181

in the symmetric TSP (STSP). In what follows, we explain them in the sym-
metric case (those in the asymmetric case can be naturally understood) and call
both STSP and ATSP simply TSP unless otherwise stated. Let the population
consists of Npop individuals (tours). We first describe the independent entropy
measure for the TSP, which was used in [1,5,3,4], and we call it independent edge
entropy. Then, we present two high-order entropy measures for the TSP, which
we call high-order sequence entropies.

2.1 Independent Edge Entropy Hind

Let Xi (i = 1, . . . , n) be a random variable representing a vertex that follows
vertex i in a tour of the population. Let the marginal probability distribution
of the vertices that follow vertex i in the population be denoted as P (Xi = xi)
or P (xi) for simplicity. For each tour in the population, we consider the two
tours traveled in both directions because population diversity for the STSP
should not depend on the travel direction. Therefore, P (xi) is the probabil-
ity distribution of the vertices linked to vertex i in the population. The in-
dependent edge entropy, which we denote as Hind, is then defined as follows:
Hind = −

∑n
i=1

∑n
xi=1 P (xi) logP (xi).

Consider the probability distribution given by

P (x1, x2, . . . , xn) =
n∏

i=1

P (xi), (1)

which is a rough estimation of the joint probability distribution of individuals
in the population where all variables are independent of each other. We can see
that Hind is in fact the entropy of this probability distribution. That is,

Hind = −
∑
x1

. . .
∑
xn

P (x1, . . . , xn) logP (x1, . . . , xn) = −
n∑

i=1

n∑
xi=1

P (xi) logP (xi).

(2)
We also define another commonly used population diversity measure for the TSP.
Most commonly used one besides Hind would be the average distance between
all pairs of individuals in the population. The distance between two individuals
is defined as the number of (undirected) edges of one solution that do not exist
in the other. Using the above definition of P (xi), the average distance, which we
denote as D, is calculated as follows (the derivation is omitted):

D = n− 2
n∑

i=1

n∑
xi=1

P (xi)
2. (3)

As suggested in [4], one advantage of Hind is the sensitivity to the change of
rare edges in the population, and this feature makes Hind a more appropriate
population diversity measure than other commonly used ones such as D. We will
compare Hind with D in the experiments to show the advantage of Hind.

182 Y. Nagata and I. Ono

2.2 High-Order Sequence Entropy Hm

A good way to define a more appropriate entropy-based diversity measure would
be to approximate the joint probability distribution by taking into account de-
pendencies between variables and then to calculate its entropy. The joint proba-
bility distribution encoded by a Bayesian Network may be useful for this purpose;
it is represented as follows: P (x1, x2, . . . , xn) =

∏n
i=1 P (xi | pai) where pai is

a set of the variables on which a variable Xi depends. However, it is usually
difficult to detect an appropriate high-order dependency structure in advance,
and we therefore model the joint probability distribution in a different way.

We model the joint probability distribution of individuals in the popula-
tion on the assumption that the probability of a vertex appearing in the pop-
ulation (tours) depends on the sequence of m (≥ 1) precedent vertices. Let
Si (i = 1, . . . , n) be a random variable representing the i-th vertex in a tour of
the population. Given that a tour has a cyclic structure, the joint probability
distribution, denoted as P (s1, s2, . . . , sn), is modeled as1

P (s1, s2, . . . , sn) =

n∏
i=1

P (si+m | si, . . . , si+m−1), (4)

where i+ n (1 ≤ i ≤ m) corresponds to i.
We define an m-th order sequence entropy as the entropy of this probabil-

ity distribution. The entropy H of this probability distribution is calculated as
follows:

H = −
∑
s1

. . .
∑
sn

P (s1, . . . , sn) logP (s1, . . . , sn) (5)

= −
∑
s1

. . .
∑
sn

P (s1, . . . , sn)

n∑
i=1

logP (si+m | si, . . . , si+m−1) (6)

= −
n∑

i=1

{∑
si

. . .
∑
si+m

P (si, . . . , si+m) logP (si+m | si, . . . , si+m−1)
}
. (7)

Given that a tour can start from an arbitrary vertex,P (si, . . . , si+m) andP (si+m |
si, . . . , si+m−1) should be equivalent toP (s1, . . . , sm+1) andP (sm+1 | s1, . . . , sm),
respectively, regardless of the value of i. Then, Eq. (7) can be simplified as follows:

H = −n
∑
s1

. . .
∑
sm+1

P (s1, . . . , sm+1) logP (sm+1 | s1, . . . , sm) (8)

= −n
∑
s1

. . .
∑
sm+1

P (s1, . . . , sm+1) log
P (s1, . . . , sm+1)

P (s1, . . . , sm)
(9)

= −n
{∑

s1

. . .
∑
sm+1

P (s1, . . . , sm+1) logP (s1, . . . , sm+1)

1 If a cyclic structure is not assumed, the joint probability distribution is modeled as
P (s1, s2, . . . , sn) = P (s1, . . . , sm)

∏n−m
i=1 P (si+m | si, . . . , si+m−1).

High-Order Sequence Entropies for Measuring Population Diversity 183

−
∑
s1

. . .
∑
sm

P (s1, . . . , sm) logP (s1, . . . , sm)
}

(10)

= n(Hm+1 −Hm), (11)

where
Hk = −

∑
s1

. . .
∑
sk

P (s1, . . . , sk) logP (s1, . . . , sk). (12)

By ignoring the constant factor, we define anm-th order sequence entropy, which
we denote Hm, as

Hm = Hm+1 −Hm. (13)

To compute Hm, we must estimate P (s1, . . . , sk) for k = m,m+ 1 by sampling
sequences of vertices from individuals in the population. LetN(s1, . . . , sk) denote
the number of a sequence of vertices {s1, . . . , sk} in the population, i.e., the
number of tours containing this sequence in the population. Note that sequences
of length k are sampled in both travel directions, resulting in 2n samples for each

tour in the population (see Fig. 1). Then, we define P (s1, . . . , sk) =
N(s1,...,sk)

2nNpop
.

We store N(s1, . . . , sk) (k ≤ m+1) in the form of a tree as illustrated in Figure
2 because it is impractical to store all possible entries in a table for a large value
of m.

We should note that Hm is known as the entropy rate of an m-th order
Markov information source. A central theorem of information theory states that
the entropy rate of a data source means the average number of bits per symbol
needed to encode it. Therefore, the existence of the same sequence consisting
of up to m + 1 vertices in the population will decrease the value of Hm. We
should also note that H1(= H2 −H1) is essentially equivalent to Hind because
P (S1 = i, S2 = j) = 1

nP (Xi = j) and H1 is a constant value. In fact, the
following relation holds:

H1 =
1

n
Hind + const. (14)

As the value of m is increased, the high-order sequence entropy Hm would cap-
ture higher-order dependencies in the sequences of vertices included in the pop-
ulation. At the same time, however, it would not be likely to obtain a sufficient
number of samples (sequences of vertices) from the population necessary to com-
pute Hm. In particular, the estimation of P (sm+1 | s1, . . . , sm) in Eq. (8), which

is calculated as N(s1,...,sm+1)
N(s1,...,sm) , is unreliable when N(s1, . . . , sm) is small. There-

fore, Hm will become useless if the value of m is too large. This problem will be
more pronounced when the population size is set to a smaller value.

2.3 High-Order Sequence Entropy Hm
′

We propose another variant of high-order sequence entropy. As previously
mentioned, the high-order sequence entropy Hm would not be a meaningful
population diversity measure for a greater value of m due to the lack of avail-
able samples necessary for computing it. To handle this problem, we consider

184 Y. Nagata and I. Ono

Fig. 1. An illustration on how to
sample sequences of length k in a
tour (k = 3)

a b c

b c e a c e a b

e bdd b

20

10

7

7 3

52 33

20 20

10 74 6 4

Fig. 2. A tree representation of
N(s1, . . . , sk) (k ≤ 3, Npop = 10). For
example, N(a, b) = 10, N(a, b, d) = 7 and
N(a, b, c) = 0.

a weighted sum of the high-order sequence entropies Hk (k = 1, . . . ,m) defined
as γ1(H2 − H1) + γ2(H3 − H2) + . . . + γm(Hm+1 − Hm). In particular, when
γ1 = γ2 = . . . = γm = 1, the weighted sum, which we denote Hm

′, is given by

Hm
′ = Hm+1 −H1. (15)

Compared to Hm, the high-order sequence entropy Hm
′ is easy to compute (H1

is a constant value) and will alleviate the problem of the lack of available samples
for a greater value of m.

3 GA Framework

To show the advantage of the two high-order sequence entropies over the inde-
pendent edge entropy, we perform the GA proposed in [4] with each of the three
population diversity measures (Hind, Hm, and Hm

′). This GA is one of the most
effective heuristic (approximate) algorithms for the TSP. One important factor
for achieving top performance is to maintain population diversity by evaluat-
ing each of offspring solutions on the basis of the original evaluation function
(tour length) as well as the contribution of diversity to the population when
it is selected for inclusion in the population. The independent entropy measure
was originally used for evaluating population diversity, and we will use the two
high-order sequence entropies instead of the original one.

Algorithm 1 gives the GA framework proposed in [4]. The population consists
of Npop individuals. The initial population is generated by a greedy local search
algorithm with the 2-opt neighborhood (line 1). At each generation (lines 3–8) of
the GA, each of the population members is selected, once as parent pA and once
as parent pB, in random order (lines 3 and 5). For each pair of parents, edge as-
sembly crossover (EAX) operator generates Nch (parameter) offspring solutions
(line 6). Then, a best solution is selected in terms of a given evaluation function
from the generated offspring solutions and pA, and the selected one replaces the
population member selected as pA (line 7). Therefore, no replacement occurs if

High-Order Sequence Entropies for Measuring Population Diversity 185

all offspring solutions are worse than pA. Note that only parent pA is replaced in
order to better maintain population diversity because EAX typically generates
offspring solutions similar to pA. Iterations of generation are repeated until a
termination condition is met (line 9). For more details, we refer the reader the
original paper.

Algorithm 1. Procedure GA

1: {x1, . . . , xNpop} := Generate Initial Pop();
2: repeat
3: r(·) := a random permutation of 1, . . . , Npop;
4: for i := 1 to Npop do
5: pA := xr(i), pB := xr(i+1); (r(Npop + 1) = r(1))
6: {c1, . . . , cNch} := Crossover(pA, pB);
7: xr(i) := Select Best(c1, . . . , cNch , pA);
8: end for
9: until a termination condition is satisfied
10: return the best individual in the population;

The individual that replaces xr(i)(= pA) is selected from the offspring solu-
tions and pA according to a given evaluation function (line 7). Let L be the
average tour length of the population and H the population diversity (Hind,
Hm, or Hm

′). The individual to replace xr(i) is selected such that L − TH is
minimized after the replacement where T is a parameter that takes a balance
of L and H . However, we select the individual to replace xr(i) only from those
that do not increase the value of L in order to prevent the population from not
converging (without this restriction, it is difficult to make appropriate adjust-
ment of T). Therefore, offspring solutions and pA are evaluated by the following
evaluation function2, and the one with the smallest value is selected to replace
xr(i).

Eval(y) =

{
ΔL(y)− TΔH(y) (ΔL ≤ 0)

∞ (ΔL > 0)
(16)

Here ΔL(y) and ΔH(y) denote the differences in L and H , respectively, when
xr(i) is replaced with an offspring solution y. Note that if all evaluation values of
the offspring solutions are greater than zero, pA is selected (i.e., no replacement
occurs) because Eval(pA) = 0. We update the parameter T as follows. At the
beginning of the GA, T is set to ∞ (a sufficiently large value). The value of T is
updated each time the replacement of xr(i) is performed. Let L′ and H ′ be the
values of L and H , respectively, when the replacement of xr(i) Npop times ago
was performed (replacement by pA is not counted). The value of T is updated

as follows: T = L−L′
H−H′ if H − H ′ < 0, or ∞ (a sufficiently large value) other-

wise. The later situation occurs at the early stage of the GA where the average
tour length L can be decreased while increasing the population diversity H .

2 Although a slightly different evaluation function was used in [4], but we employ this
evaluation function in this research because this evaluation function is more natural.

186 Y. Nagata and I. Ono

good

bad

Fig. 3. The meaning of the evaluation function ΔL(y) − TΔH(y). The curve is the
trajectory of (L,H).

Figure 3 illustrates the meaning of the evaluation function. Note that during the
first Npop replacements of xr(i), T is not updated.

For every offspring solution y, we must compute ΔL(y) and ΔH(y) to obtain
the value of Eval(y). We need a little ingenuity for an efficient computation of
ΔH(y), which makes it possible to compute ΔH(y) in O(km) time, where k is
the number of edges of an offspring solution y that do not exist in the parent pA
(k is usually much smaller than n). Each time xr(i) is replaced, the tree storing
N(s1, . . . , sk) must be updated, which takes O(km) time.

4 Computational Experiments

4.1 Experimental Settings

To investigate the ability of the proposed high-order sequence entropies for mea-
suring population diversity, we performed the GA described in the previous
section by using different diversity measures in the evaluation function Eq. (16).
The important parameters for the GA were set to the same values as in the
previous work (see [4] for details): Npop = 300 and Nch = 30. We tested the four
diversity measures summarized below. Note that H1 and H1

′ are equivalent to
Hind.

• The independent edge entropy: Hind.
• The high-order sequence entropy: Hm (m = 2, 3, 4, 6).
• The high-order sequence entropy: Hm

′ (m = 2, 3, 4, 6).
• The average distance between all pairs of individuals in the population: D.

We also performed the GA with no use of a diversity measure by setting T = 0
in order to show the impact of the use of the four diversity measures in the
evaluation function. In this case, Npop was set to 600 because the population
converges more rapidly when no diversity measure is used.

For each setting, we performed the GA 30 times on 21 instances with sizes
ranging from 10,000 to 25,000 in the well-known benchmark sets for the STSP:
TSPLIB (http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95) and
National and VLSI TSP benchmarks (http://www.tsp.gatech.edu/world
/countries.html).

High-Order Sequence Entropies for Measuring Population Diversity 187

4.2 Main Results

Table 1 shows the results in the following format: the instance name (instance)
together with the optimal or best known solution (Opt. or UB), the number of
runs that succeeded in finding the optimal or best-known solution (#S), and the
average percentage excess over the optimal or best-known solutions (A-Err). We
performed the one-sided Wilcoxon rank sum test for the null hypothesis that
the median of the distribution of tour length derived from the GA using each of
D, Hm and Hm

′ is greater than that of GA using Hind. If the null hypothesis
is rejected as a significant level of 0.05, results in the table are indicated by the
asterisk. In addition, results are also indicated by the dagger if the opposite null
hypothesis is rejected. Note that we employed a non-parametric statistical test
because the data (tour length) is not normally distributed if an optimal solution
is frequently found for each instance.

Table 1 shows that the GA using the independent edge entropy Hind outper-
formed the GA using the average distance D in terms of the solution quality. As
suggested in [4], one important advantage of Hind over D is the sensitivity to
the change of rare edges in the population, and this feature makes Hind a more
appropriate population diversity measure than D. When no diversity measure
was used (i.e., T = 0), the average #S and A-Err over all instances were respec-
tively 1.2 and 0.00544 (results are omitted in Table 1), even though population
size was set to 600. Therefore, the diversity preserving selection using each Hind

and D clearly has a positive impact on the solution quality.
Table 1 shows that the use of each of the high-order sequence entropies Hm

and Hm
′ with various values of m more or less further improved the solution

quality achieved by the GA using Hind. Let us make more detailed comparisons.
First, we focus on the result of the high-order sequence entropy Hm. Table 1
shows that the GA using Hm with m = 2, 3, and 4 achieved better solution
quality than did the GA using Hind, indicating that Hm with m = 2, 3, and 4
are better population diversity measures than Hind. The use of Hm with m = 6,
however, did not show a significant improvement. As described in Section 2.2, a
major reason would be the lack of available samples necessary to compute Hm

for a greater value of m.
Next, we focus on the results of the high-order sequence entropy Hm

′. Table 1
shows that the GA using Hm

′ achieved better solution quality than did the GA
using Hind for all values of m. Contrary to the results of Hm, the improvement
was most pronounced at m = 4 and 6, meaning that the use of Hm

′ success-
fully reduces the problem of the lack of available samples for a greater value
of m. Overall, the GA using Hm

′ with m = 4 or 6 achieved the best solution
quality among all GAs tested, indicating that Hm

′ with m = 4 or 6 is the most
appropriate population diversity measure.

Our research focus in this paper is to show the potential of the high-order
entropy measure rather than to improve the performance of the GA. However,
we should mention the effect on the computation time of the GA when the two
high-order sequence entropies were used. The GA was implemented in C++
and executed on a cluster with Intel Xeon 2.93 GHz nodes. Table 2 shows the

188 Y. Nagata and I. Ono

Table 1. Solution quality of the GA with different diversity measures

D Hm

m = 2 m = 3 m = 4 m = 6

Instance Opt.(UB) #S A-Err #S A-Err #S A-Err #S A-Err #S A-Err

xmc10150 (28387) 18 0.00223 23 0.00106 22 0.00094 24 0.00070 28 0.00023∗

fi10639 520527 7 0.00028† 23 0.00008 23 0.00022 24 0.00011 14 0.00037†

rl11849 923288 9 0.00103† 26 0.00017∗ 26 0.00019∗ 25 0.00014∗ 10 0.00049

usa13509 19982859 5 0.00071† 14 0.00017 15 0.00017 22 0.00010 11 0.00028†

xvb13584 (37083) 23 0.00081 25 0.00072 23 0.00063 29 0.00009∗ 27 0.00036

brd14051 469385 19 0.00026† 25 0.00006† 23 0.00012† 23 0.00017† 21 0.00022†

mo14185 (427377) 0 0.00091† 20 0.00017 24 0.00009∗ 19 0.00014 20 0.00012

xrb14233 (45462) 0 0.00645† 8 0.00345 2 0.00440 10 0.00279∗ 15 0.00198∗

d15112 1573084 11 0.00022† 21 0.00004 19 0.00007 16 0.00014 16 0.00013

it16862 557315 0 0.00112† 2 0.00038∗ 0 0.00054 6 0.00023∗ 2 0.00041∗

xia16928 (52850) 1 0.00391† 14 0.00177 15 0.00139 24 0.00076∗ 25 0.00050∗

pjh17845 (48092) 6 0.00208 13 0.00118∗ 19 0.00076∗ 13 0.00132∗ 12 0.00146

d18512 645238 17 0.00014 23 0.00005 21 0.00005 21 0.00009 13 0.00019†

frh19289 (55798) 23 0.00048† 30 0.00000 30 0.00000 30 0.00000 23 0.00066†

fnc19402 (59287) 8 0.00281 21 0.00062∗ 22 0.00045∗ 19 0.00067∗ 18 0.00067

ido21215 (63517) 6 0.00352† 21 0.00068 18 0.00089 23 0.00058 17 0.00079

fma21553 (66527) 11 0.00150 16 0.00080 16 0.00070 15 0.00090 10 0.00150

vm22775 569288 0 0.00254† 0 0.00162† 0 0.00121 0 0.00140 1 0.00150

lsb22777 (60977) 13 0.00137† 22 0.00044 21 0.00049 21 0.00055 23 0.00038

xrh24104 (69294) 10 0.00125† 29 0.00005 29 0.00005 29 0.00005 25 0.00038

sw24978 855597 1 0.00077† 5 0.00042 14 0.00029 9 0.00039 7 0.00062

Average 9.0 0.00164 18.1 0.00066 18.2 0.00065 19.1 0.00054 16.1 0.00063

Hind Hm
′

m = 2 m = 3 m = 4 m = 6

Instance Opt.(UB) #S A-Err #S A-Err #S A-Err #S A-Err #S A-Err

xmc10150 (28387) 21 0.00129 21 0.00129 22 0.00106 22 0.00106 28 0.00023∗

fi10639 520527 21 0.00006 22 0.00010 25 0.00007 24 0.00006 26 0.00012

rl11849 923288 20 0.00039 28 0.00006∗ 29 0.00004∗ 23 0.00027 28 0.00009∗

usa13509 19982859 15 0.00014 11 0.00020 22 0.00007∗ 22 0.00009∗ 21 0.00012

xvb13584 (37083) 22 0.00081 22 0.00072 28 0.00018∗ 28 0.00018∗ 26 0.00036

brd14051 469385 29 0.00002 29 0.00002 28 0.00004 30 0.00000 26 0.00009

mo14185 (427377) 18 0.00020 23 0.00010 21 0.00014 26 0.00006∗ 24 0.00009∗

xrb14233 (45462) 5 0.00396 6 0.00381 6 0.00359 5 0.00359 8 0.00308∗

d15112 1573084 16 0.00010 21 0.00003∗ 21 0.00002∗ 24 0.00001∗ 21 0.00004

it16862 557315 5 0.00060 9 0.00047 8 0.00041∗ 6 0.00023∗ 10 0.00023∗

xia16928 (52850) 10 0.00221 9 0.00233 11 0.00252 15 0.00132∗ 20 0.00114∗

pjh17845 (48092) 8 0.00194 19 0.00083∗ 11 0.00132∗ 21 0.00062∗ 14 0.00125∗

d18512 645238 21 0.00009 26 0.00003 20 0.00007 24 0.00004 25 0.00003

frh19289 (55798) 29 0.00012 30 0.00000 30 0.00000 30 0.00000 29 0.00006

fnc19402 (59287) 15 0.00180 18 0.00118 25 0.00039∗ 18 0.00073 24 0.00034∗

ido21215 (63517) 23 0.00068 24 0.00058 27 0.00016 23 0.00063 23 0.00047

fma21553 (66527) 14 0.00105 21 0.00055∗ 17 0.00070 19 0.00065 20 0.00050∗

vm22775 569288 1 0.00132 0 0.00117 0 0.00136 0 0.00097∗ 0 0.00125

lsb22777 (60977) 24 0.00044 21 0.00049 25 0.00027 26 0.00033 29 0.00005∗

xrh24104 (69294) 26 0.00024 25 0.00024 27 0.00014 30 0.00000∗ 29 0.00005

sw24978 855597 7 0.00045 14 0.00026∗ 12 0.00028 14 0.00028∗ 21 0.00016∗

Average 16.7 0.00085 19.0 0.00069 19.8 0.00061 20.5 0.00053 21.5 0.00046

computation time in seconds for a single run of the GA. Due to space limitation,
results are presented for a limited number of instances. As shown in the table,
the computation time increased with increasing the value ofm in both cases. The
main cause was the increase of the computational cost for computing ΔH(y).

High-Order Sequence Entropies for Measuring Population Diversity 189

Table 2. Computation time (in seconds) of the GA with different diversity measures

D Hind Hm Hm
′

m = 2 m = 3 m = 4 m = 6 m = 2 m = 3 m = 4 m = 6

usa13509 3055 3533 4793 4298 5442 7459 4493 4735 5286 6547

d15112 5085 5918 6141 8382 6657 7603 5979 6350 7526 9746

it16862 3886 4248 4781 6034 7777 10234 5440 5930 8164 10958

pjh17845 1847 2417 3125 3143 3920 5024 2824 3073 3746 5528

fma21553 2849 3336 3480 3845 4262 7433 4131 3680 4495 6684

sw24978 6692 9387 11226 10914 10413 13219 9354 9848 11465 14860

4.3 Effect of the Population Size

We investigate the relation between the appropriate value of m for Hm and
Hm

′ and the population size. As described in Section 2.2 and demonstrated in
Section 4.2, the high-order sequence entropy Hm will become useless if the value
of m is too large because it would not be likely to obtain a sufficient number
of samples (sequences of vertices) from the population necessary to compute
Hm. This problem will be more pronounced when the population size is set to a
smaller value. The high-order sequence entropy Hm

′ would also have the same
problem even if this problem is alleviated.

To confirm the above hypothesis, we conducted the same experiment with
different population sizes; Npop = 50, 100, and 300 (original value). Table 3 shows
the results but only the average #S and A-Err over all instances are presented.
For each row, the best value is highlighted in boldface. We can see that the best
value of m for Hm increases with increasing the population size. We can also see
that Hm

′ has the same tendency, but compared to the results of Hm, the best
result was obtained with a greater value of m for each population size.

Table 3. Solution quality of the GA with different diversity measures and with different
population sizes (only average results over all instances)

m = 1 m = 2 m = 3 m = 4 m = 6

Diversity (Npop) #S A-Err #S A-Err #S A-Err #S A-Err #S A-Err

Hm (50) 0.00 0.02229 0.00 0.02077 0.00 0.02219 0.00 0.02408 0.00 0.03322

Hm (100) 0.29 0.00622 0.76 0.00529 0.90 0.00490 0.43 0.00536 0.19 0.00724

Hm (300) 16.7 0.00085 18.1 0.00066 18.2 0.00065 19.1 0.00054 16.1 0.00063

Hm
′ (50) 0.00 0.02229 0.00 0.01998 0.00 0.01928 0.00 0.01893 0.00 0.01976

Hm
′ (100) 0.29 0.00622 0.76 0.00500 1.14 0.00461 1.19 0.00445 1.24 0.00429

Hm
′ (300) 16.7 0.00085 19.0 0.00069 19.8 0.00061 20.5 0.00053 21.5 0.00046

5 Conclusions

We have proposed two entropy-based diversity measures for evaluating popu-
lation diversity in the GA applied to the TSP. The first one, denoted as Hm,
is equivalent to the entropy rate of an m-th order Markov information source
where the probability of a vertex appearing in the population (tours) is assumed
to depend on the sequence of m precedent vertices. However, Hm is not a mean-
ingful population diversity measure for a greater value of m due to the lack of

190 Y. Nagata and I. Ono

available samples (sequences of vertices) necessary for computing it. To alleviate
this problem, we have proposed another variant of entropy-based diversity mea-
sure Hm

′. The experimental results show that Hm and in particular Hm
′ with

the appropriate values of m evaluate population diversity more appropriately
than does the commonly used entropy-based diversity measure Hind that does
not take into account dependencies in the sequence of vertices in the population.

Future work will be devoted to (1) an more efficient implementation for the
computation of ΔH , (2) an adaptation of the value of m for two entropy-based
diversity measures during the search, and (3) possible extensions of the presented
diversity measures to other permutation based problems.

Acknowledgement. This work was partially supported by Grant-in-Aid for
Scientific Research of Japan: No. 22700231.

References

1. Maekawa, K., Mori, N., Tamaki, H., Kita, H., Nishikawa, Y.: A genetic solution for
the traveling salesman problem by means of a thermodynamical selection rule. In:
Proceedings of 3rd IEEE Conference on Evolutionary Computation, pp. 529–534
(1996)

2. Mori, N., Kita, H., Nishikawa, Y.: Adaptation to a Changing Environment by
Means of the Feedback Thermodynamical Genetic Algorithm. In: Eiben, A.E.,
Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp.
149–158. Springer, Heidelberg (1998)

3. Nagata, Y.: Fast EAX Algorithm Considering Population Diversity for Traveling
Salesman Problems. In: Gottlieb, J., Raidl, G.R. (eds.) EvoCOP 2006. LNCS,
vol. 3906, pp. 171–182. Springer, Heidelberg (2006)

4. Nagata, Y., Kobayashi, S.: Powerful genetic algorithm using edge assembly
crossover for the traveling salesman problem. INFORMS Journal on Computing
(in press) (published as an article in advance)

5. Tsai, H., Yang, J., Tsai, Y., Kao, C.: An evolutionary algorithm for large traveling
salesman problems. IEEE Transactions on Systems, Man, and Cybernetics, Part
B: Cybernetics 34(4), 1718–1729 (2004)

6. Tsujimura, Y., Gen, M.: Entropy-based genetic algorithm for solving tsp. In: Pro-
ceedings of 2nd International Conference on Knowledge-Based Intelligent Elec-
tronic Systems, pp. 285–290. IEEE (1998)

7. Vallada, E., Ruiz, R.: Genetic algorithms with path relinking for the minimum
tardiness permutation flowshop problem. Omega 38(1), 57–67 (2010)

8. Wang, Y., Lü, Z., Hao, J.-K.: A Study of Multi-parent Crossover Operators in a
Memetic Algorithm. In: Schaefer, R., Cotta, C., Ko�lodziej, J., Rudolph, G. (eds.)
PPSN XI, Part I. LNCS, vol. 6238, pp. 556–565. Springer, Heidelberg (2010)

9. Yao, X.: An empirical study of genetic operators in genetic algorithms. Micropro-
cessing and Microprogramming 38(1-5), 707–714 (1993)

10. Zhang, C., Su, S., Chen, J.: Efficient Population Diversity Handling Genetic Algo-
rithm for QoS-Aware Web Services Selection. In: Alexandrov, V.N., van Albada,
G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3994, pp. 104–111.
Springer, Heidelberg (2006)

Investigating Monte-Carlo Methods

on the Weak Schur Problem

Shalom Eliahou1, Cyril Fonlupt2, Jean Fromentin1, Virginie Marion-Poty2,
Denis Robilliard2, and Fabien Teytaud2

1 Univ Lille Nord de France
ULCO, LISIC, BP 719
F-62228 Calais, France

{fonlupt,poty,robilliard,teytaud}@lisic.univ-littoral.fr
2 Univ Lille Nord de France

ULCO, LMPA, BP 699
F-62228 Calais, France

{eliahou,fromentin}@lmpa.univ-littoral.fr

Abstract. Nested Monte-Carlo Search (NMC) and Nested Rollout Pol-
icy Adaptation (NRPA) are Monte-Carlo tree search algorithms that
have proved their efficiency at solving one-player game problems, such
as morpion solitaire or sudoku 16x16, showing that these heuristics could
potentially be applied to constraint problems. In the field of Ramsey the-
ory, the weak Schur number WS(k) is the largest integer n for which their
exists a partition into k subsets of the integers [1, n] such that there is
no x < y < z all in the same subset with x+ y = z. Several studies have
tackled the search for better lower bounds for the Weak Schur numbers
WS(k), k ≥ 4. In this paper we investigate this problem using NMC and
NRPA, and obtain a new lower bound for WS(6), namely WS(6) ≥ 582.

1 Introduction

Nested Monte-Carlo Search (NMC) [5] and the recent Nested Rollout Policy
Adaptation (NRPA) [17] are Monte-Carlo tree search algorithms that have proved
their efficiency at solving constrained problems, although mainly in the AI field
(e.g. sudoku 16x16, morpion solitaire game, Same Game). Within the field of
Ramsey theory, challenging problems are the search for the Van der Waerden
numbers [4] and for the Schur numbers [10], or the search for better lower or
higher bounds for these numbers. Finding new lower bounds can be tackled
with computational tools, by constructing a mathematical object that exhibits
the required properties. In general this construction implies exploring a heavily
constrained combinatorial space of huge dimension. In this paper we investigate
the search for better lower bounds for the so-called Weak Schur numbers, us-
ing NMC and NRPA. First, we present the definition of Weak Schur numbers,
next we recall the principles of the two Monte-Carlo search algorithms that we
used, then we compare the results obtained, notably the discovery of a new lower
bound WS(6) ≥ 582, before concluding.

M. Middendorf and C. Blum (Eds.): EvoCOP 2013, LNCS 7832, pp. 191–201, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

192 S. Eliahou et al.

2 Weak Schur Numbers

The Weak Schur numbers originate from two Ramsey theory theorems, dating
back to the first half of the 20th century. We recall their definition and the
current state of knowledge on this topic, before presenting experimental data
that motivate the choice of Monte-Carlo search methods.

2.1 Mathematical Description

First, we explain the concept of Schur numbers. A set P of integers containing
no elements x, y, z with x + y = z is called sum-free. A theorem of Schur [18]
states that, given k ≥ 1, there is a largest integer n for which the integer interval
set [1, n] (i.e. {1, 2, . . . , n}) admits a partition into k sum-free sets. The largest
such integer n is called the k-th Schur number, and is denoted by S(k).

As a somewhat weaker notion than sum-free, a set P of integers containing
no pairwise distinct elements x, y, z with x + y = z is called weakly sum-free. A
result similar to that of Schur was shown by Rado [13] : given k ≥ 1, there is a
largest integer n for which the interval set [1, n] admits a partition into k weakly
sum-free sets. This largest such integer n is called the k-th Weak Schur number,
and is denoted by WS(k).

For example, in the case k = 2, a weakly sum-free partition of the first 8
integers is provided by:

{1, 2, 3, 4, 5, 6, 7, 8}= {1, 2, 4, 8} ∪ {3, 5, 6, 7}.

It is straightforward to verify, with exhaustive search, that increasing the interval
to [1, 9] yields a set that does not admit any weakly sum-free partition into 2
sets, thus we have WS(2) = 8.

2.2 State of the Art

The exact values of WS(k) (and of S(k)) are only known up to k = 4:

– WS(1) = 2 and WS(2) = 8 are easily verified
– WS(3) = 23, WS(4) = 66 were shown by exhaustive computer search in [2].

For the general case k ≥ 5, known results are a lower bound from Abbott and
Hanson [1] and an upper bound by Bornsztein [3]:

c89k/4 ≤ S(k) ≤ WS(k) ≤ �k!ke�

with c a small positive constant.
Some special cases are better known through experimental studies. In [2] it

was shown that: WS(5) ≥ 189, while a much older note by Walker [19] claimed,
without proof, that WS(5) = 196. More recently, [8] provided a weakly sum-free
partition of the set [1, 196] in 5 sets, confirming Walker’s claim that WS(5) is
at least as large as 196, and also gave a weakly sum-free partition of [1, 572] in

Investigating Monte-Carlo Methods on the Weak Schur Problem 193

6 sets, implying WS(6) ≥ 572. In [9] the lower bound for WS(6) was pushed
to WS(6) ≥ 574 using meta-heuristic search. This result was superseded by [12]
establishing a current best bound at WS(6) ≥ 581.

This result in [12] was obtained with a constraint solver. Extra constraints,
nicknamed streamliners, were added to the problem in order to reduce the search
space size, with the (unproven) assumption that optimal solutions were pre-
served. Some of these streamliners were taken either from the previous studies
on this subject [8,9] or from the literature on the related (non weak) Schur
problem [10].

2.3 Methodology and Experimental Data

In this paper, we consider using AI methods, namely variants of Monte Carlo
Tree Search (MCTS) in order to tackle the search of better lower bounds for
WS(5) and WS(6). The motivation behind this method choice is supported by a
study of weakly sum-free 3-partitions of [1,WS(3)] and 4-partitions [1,WS(4)].
We now explain this last case.

A weakly sum-free 4-partition (i.e. partition into 4 subsets) of [1, n] can
be coded by a word, w = a1a2 . . . an, where the letters {ai} are in the sym-
bol set {1, 2, 3, 4} and ai = j means that integer i is in the subset j. For
example, the word 1, 1, 2, 1, 3, 4 encodes the partition {{1, 2, 4}, {3}, {5}, {6}}.
Up to symmetry, we can systematically enumerate in lexicographic order all
words associated to partitions that are terminal, i.e. such that it is not possi-
ble to extend the partition by placing the next successive integer while keeping
the weakly sum-free property. An example of such a word is given by w =
112233444444442333332221, associated to the terminal partition below:

{
{1, 2, 24},
{3, 4, 15, 21, 22, 23},
{5, 6, 16, 17, 18, 19, 20},
{7, 8, 9, 10, 11, 12, 13, 14}

}

Clearly it is not possible to add 25 in any subset of this partition, thus it is ter-
minal, and we also call w a terminal word. An exhaustive computer enumeration
shows that there are exactly 536 995 391 721 terminal words that correspond to
terminal 4-partitions. To reduce the size of the data, we cluster them in groups
of 1 billion consecutive words in lexicographic order, and then plot the mean and
maximal word length (including solutions of maximal length WS(4) = 66) from
each group in Figure 1. Mean and maximal length exhibit a covariance corre-
lation of 0.7, thus they are somewhat correlated, and the same behavior is also
observed for 3-partitions. This means that good samples on average, can lead to
better solutions1. Assuming that this good property also holds for 5-partitions

1 Note that, quite interestingly, this is not the case for standard Schur Numbers, at
least S(3) and S(4).

194 S. Eliahou et al.

0 100 200 300 400 500

35
40

45
50

55
60

65
Maximum and mean word length

cluster number

w
or

d
le

ng
th

Maximum length

Mean length

Fig. 1. Mean and maximal length of terminal word groups associated to 4-partitions,
listed in lexicographic order

and 6-partitions, Monte Carlo sampling appears as a promising method for
searching lower bounds for WS(5) and WS(6). It is also noticeable that opti-
mal solutions are clustered in the beginning with respect to the lexicographic
ordering.

3 Methods

In this section we present the two Monte-Carlo heuristics that were used for our
experiments.

3.1 Nested Monte-Carlo Search

The Nested Monte-Carlo Search (NMC) algorithm [5] is a tree search algorithm.
The basic idea is to incrementally build a solution with the particularity that
each decision is based on the result of lower level calls of the algorithm. The
lowest level, the level 0, is a single Monte-Carlo playout. A Monte-Carlo playout
is a sequence for which each remaining decision is made randomly, until no more
possible decision can be made. For higher levels > 0, all possible decisions are
tried (i.e. recursively explored) and the branch of the search tree associated to
the best result is chosen as the new decision.

Investigating Monte-Carlo Methods on the Weak Schur Problem 195

The pseudo-code of NMC is presented in Algorithm 1, where:

– a position describes the state of the solution which is being constructed
(the root position is empty, no decision having been chosen already). Here
a solution is a weakly sum-free k-partition. Notice that position is always
passed as argument by copy, and never by reference.

– play(position, d) is a function that returns the new position obtained after
having performed decision d relatively to position. In our Weak Schur num-
bers problem implementation, a decision consists in choosing in which subset
of the partition to place the next integer. Notice that the selection of the
next integer is deterministic (see Sect. 4.1) and is not part of the decision.

– MonteCarlo(position) is a function that completes the position by playing
random decisions, until the k-partition is terminal (see Sect. 2.3). It returns
a 2-tuple: the evaluation of the terminal partition, and the sequence of deci-
sions that were made to obtain it, called playout in Algorithm 1. As integers
are not always played in successive order, possibly leaving ”holes” in the
partition, its evaluation is the greatest integer L such that the set of con-
secutive integers [1, L] is in the partition, i.e. we stop counting at the first
hole.

A level 1 maximization example is presented in Figure 2. The leftmost tree illus-
trates the start. A Monte-Carlo playout is performed for all 3 possible decisions.
At the end of each playout a reward is given, and the decision with the best
reward is chosen. This new decision is performed leading to a new state, and will
never be backtracked. The process is repeated.

NMC provides a good compromise between exploration and exploitation. It
is particularly efficient for one-player games and gives good results even without
domain knowledge. However, the results can be improved by the addition of
heuristics [15].

40 504040 50 5060 6040

Fig. 2. This figure illustrates three successive decision steps of a level 1 search for a
maximization problem, rewards being given at the bottom of branches. Level 1 explo-
ration is represented in thin lines, level 0 Monte-Carlo playouts are shown with wavy
lines, decisions are represented with bold lines.

196 S. Eliahou et al.

Algorithm 1. Nested Monte-Carlo [5]

function NMC(position, level) :
best score ← −∞
best playout ← {}
while not solution completed do

if level = 1 then
// collapse level 1 and 0
// score max, p max: score and playout associated to best branch
(score max, p max) ← argmaxd(MonteCarlo(play(position, d)))

else
(score max, p max) ← argmaxd(NMC(play(position, d), level − 1))

end if
if score max > best score then

best score ← score max
best playout ← p max

end if
d best ← first decision in best playout
position ← play(position, d best)

end while
return (score(position), best playout)

3.2 Nested Rollout Policy Adaptation

The Nested Rollout Policy Adaptation (NRPA) algorithm [17] is inspired by
NMC. As in NMC, each level of the algorithm calls a lower level, and each level
returns the best score and best playout sequence found at this level. Two main
differences are:

– The playout, or rollout, policy is no more a standard Monte-Carlo, but based
on a learned policy.

– There is no systematic evaluation of every possible decision associated to
any given position, a given number of recursive calls being made instead. So
all decisions may not be explored, depending on the policy-based sampling.

The NRPA algorithm is presented in Algorithm 2, where:

– policy is a vector of weights associated to decisions, policy[x] is used to
compute the probability of choosing decision x. The initial policy corresponds
to a classic Monte-Carlo playout (i.e. equiprobability).

– code(p, di) returns a domain-specific integer associated to the decision di
leading from position p to its ith child in the search tree. This integer serves
as index in the policy vector. As stated in [17], the function code(p, di) should
preferably be bijective.

– MonteCarloPolicy(position, policy) does a playout that differs from
classic Monte-Carlo, by choosing the decision not equiprobably but using
policy. During the playout, a decision is chosen proportionally to
exp(policy[code(position, i)]). This function returns a 2-tuple: the evalua-
tion of the terminal position, and the sequence of decisions that were made
to obtain it.

Investigating Monte-Carlo Methods on the Weak Schur Problem 197

Algorithm 2. Nested Rollout Policy Adaptation [17]

function NRPA (level,policy)
if level = 0 then

// complete position by choosing decisions with probability proportional
// to exp(policy[code(position, i)])
return MonteCarloPolicy(position, policy)

else
best score ← -∞
for N iterations do

(score, playout) ← NRPA (level − 1, policy)
if score ≥ best score then

best score ← score
best playout ← playout

end if
policy ← Adapt(policy,best playout)

end for
end if
return (best score, best playout)

function Adapt (policy,playout)
position ← root
policy′ ← policy
for each decision d in playout do

// increase probability of best decision
policy′[code(position, d)] ← policy′[code(position, d)] + α
// compute normalization factor
z ← ∑

i exp(policy[code(position, i)]) over all possible decisions i at position
for each decision i at position do

policy′[code(position, i)] ← policy′[code(position, i)]−
α× exp(policy[code(position, i)])/z

end for
// prepare to iterate on next decision in best playout
position ← play(position, d)

end for
return policy′

In the pseudo-code, the variables decision and position, and the function
play(position, decision) have the same meaning as for the NMC algorithm, see
Sect. 3.1.

The NRPA learning is comparable in its motivations with that done in the Up-
per Confidence Tree search algorithms [7,14,16] and consists in increasing prob-
abilities of good decisions while decreasing those for bad decisions. As pointed
out in [6], a drawback of the learning is the convergence to local optima.

198 S. Eliahou et al.

4 Experimental Results

First, we detail the adaptation of the two Monte-Carlo heuristics to the problem
at hand, then we report the results obtained on the WS(5) and WS(6) problems.

4.1 Experimental Settings

It has been shown in [11,15] that it is often possible to improve the performance of
NMC by adding specific knowledge. A usual way is to bias the probability of de-
cision choice, based of expert knowledge. Having such a probability, rather than
a deterministic expert-based choice, may be important to keep diversity [14].

As seen in Section 3.2, the NRPA algorithm learns a policy. We encountered
difficulties with the code(p, di) function. As stated in Sect. 2.3, the number of
possible positions (i.e. weakly sum-free partitions under construction) is already
too huge forWS(4) to allow the storage of a policy with a bijective code function.
It is even more huge when exploring partitions for WS(5) and WS(6). Thus we
have chosen to use a 2-dimensional vector of size WS(k) × k, that stores for
each integer and each subset the weight associated to the probability of putting
this integer in this subset. So the function code(position, decision) considers, as
position argument, only the current integer to be placed, rather than the whole
partition information. So code is not bijective. One could perhaps consider using
a larger storage with a hashing function to take into account more information
from the partition.

We had disappointing results with the standard NRPA algorithm, thus we
tried to add expert knowledge. Intuitively, adding expert knowledge in the rollout
is harder, as it needs to coexist with the learning and not to interfere with it.
To implement this, instead of always making decisions according to the learned
policy, we choose with probability 1

2 a decision according only to the expert
knowledge. This allows to take into account both learning and expert knowledge.

For both NMC and NRPA algorithms, a natural implementation is to put
integers in the ascending order (i.e. we look for placing integer 1 in a subset,
then we want to place integer 2 and so on). Another possibility, which comes
from the constraint programming field, is to choose the most constrained integer
as the next integer to place. This has the benefit of cutting dead branches of
the search tree earlier, thus focusing the search on more promising ones. This
significantly improves the search.

Expert knowledge used in our experiments is based on the known optimal
partitions of WS(4) and WS(5): as pointed out in [8,9], all WS(4) solutions
are extensions of 2 of the 3 optimal partitions for WS(3). Assuming that this
property may hold, more or less strictly, for k-partitions with a larger k, we fix
the 23 first integers, with an exception for 16 which can be placed either in subset
1 or 3. From the same knowledge we forbid integers lower than WS(4) + 1 = 67
from the last two subsets (subsets 5 and 6). In [12], the best known solution so
far showing WS(6) ≥ 581 has integer 196 as the smallest member of the sixth
subset, thus we also ban all integers lower than 196 from subset 6. The lowest
allowed integer in the last subset is then greater than or equal to 196. It is

Investigating Monte-Carlo Methods on the Weak Schur Problem 199

very noticeable, as pointed out by [12], that subsets of partitions often contain
intervals of consecutive numbers. Thus we add a 90% probability that an integer
is put in the first subset (in increasing order) where its immediate predecessor
or successor already stays.

Another knowledge from [8] is, for subsets 5 and 6, to try to build sequences
of shape {a} ∪ [a+ 2, . . . , 2a+ 1], with a the first (lowest) integer of the subset.
It then seems interesting to place integer a+1 in the first subset. We add a 90%
probability to play out each of these decisions (i.e. each integer placement).

4.2 Results

We ran 30 independent executions of a level 3 Nested Monte-Carlo search, with
embedded expert knowledge as explained above.

Table 1. A weakly sum-free 6-partition of [1, 582]

{
{ 1-2, 4, 8, 11, 22, 25, 31, 40, 50, 63, 68, 73, 82, 87, 92, 97, 116, 121, 133, 139, 149,

154, 159, 177, 182, 187, 192, 197, 252, 304, 342, 370, 394, 407, 412, 417, 435,
440, 445, 450, 455, 464, 469, 474, 479, 488, 493, 502, 507, 521, 526, 531, 536,
541, 554, 564, 569, 582},

{ 3, 5-7, 19, 21, 23, 37, 51-53, 64-66, 79-81, 93-95, 109-111, 122-124, 136-138,
150-152, 167-168, 179-181, 193-195, 368, 395-397, 408-410, 424-425, 437-439,
451-453, 465-467, 480-482, 495-497, 512, 523-525, 537-539, 551-553, 566-568,
579-581},

{ 9-10, 12-18, 20, 54-62, 103-108, 140-148, 183-186, 188-191, 398-406, 441-444,
446-449, 486-487, 490, 492, 494, 527-530, 532-535, 570-578},

{ 24, 26-30, 32-36, 38-39, 41-49, 98-102, 153, 155-158, 160-166, 169-176, 178, 292,
411, 413-416, 418-423, 426-434, 436, 540, 542-550, 555-563, 565},

{ 67, 69-72, 74-78, 83-86, 88-91, 96, 112-115, 117-120, 125-132, 134-135, 454,
456-463, 468, 470-473, 475-478, 483-485, 489, 491, 498-501, 503-506, 508-511,
513-520, 522},

{ 196, 198-251, 253-291, 293-303, 305-341, 343-367, 369, 371-392}
}

A weakly sum-free 6-partition of the integer set [1, 582] was found each time,
after an averaged number of 624 600 Monte-Carlo sampling, taking on average
less than a minute per run on a standard PC. The 6-partitions obtained were
usually different on each run. This result yields a new best lower bound for
WS(6), namely WS(6) ≥ 582, and we were not able to obtain a weakly sum-free
6-partition of a larger interval. An example partition showing WS(6) ≥ 582 is
given in Table 1. As for WS(5) we could not increase the current bound of 196,
which is its conjectured exact value.

The best result obtained with our knowledge-aware NRPA was 571, while the
basic algorithm, without expert knowledge, never attained 300. It remains to
experiment if increasing the policy storage could improve on the results.

200 S. Eliahou et al.

5 Conclusion

Being now very popular in the AI for games field, Monte-Carlo Tree Search
techniques have the ability to address a wider domain. As often, obtaining a
successful application relies on the introduction of expert knowledge to foster
the potential of the method. It is to be noticed that it is rather easy to embed
such knowledge in NMC by simply biasing the sampling probability of solutions.
In this study we obtained a new bound for the 6th Weak Schur number, using
Cazenave’s NMC algorithm and several streamliners to further constrain the
problem and reduce its state space. We recall that using these streamliners may
constrain too much the search space, thus maybe preventing the discovery of
even better bounds.

This work also serves as a validation benchmark for NMC and NRPA. Both
heuristics are unable to solve the problem without the addition of expert knowl-
edge. However, it feels more awkward to bias the sampling probabilities in NRPA,
since this should normally be done by the policy learning. In our experiments
the largest partitions obtained with NRPA have been slightly smaller than those
given by NMC. This may be due to the tendency of NRPA to converge to local
optima. As possible future works, it may be interesting for the NRPA algo-
rithm to find either a better code function, or another way to incorporate expert
knowledge. Hybridization of NMC/NRPA with a constraint solver could also be
a promising approach.

References

1. Abbott, H., Hanson, D.: A problem of Schur and its generalizations. Acta Arith. 20,
175–187 (1972)

2. Blanchard, P.F., Harary, F., Reis, R.: Partitions into sum-free sets. Integers 6 A7
(2006)

3. Bornsztein, P.: On an extension of a theorem of Schur. Acta Arith. 101, 395–399
(2002)

4. Brown, T., Landman, B.M., Robertson, A.: Note: Bounds on some van der waerden
numbers. J. Comb. Theory Ser. A 115(7), 1304–1309 (2008)

5. Cazenave, T.: Nested Monte-Carlo search. In: Boutilier, C. (ed.) IJCAI, pp. 456–
461 (2009)

6. Cazenave, T., Teytaud, F.: Application of the Nested Rollout Policy Adaptation
Algorithm to the Traveling Salesman Problem with TimeWindows. In: Hamadi, Y.,
Schoenauer, M. (eds.) LION 2012. LNCS, vol. 7219, pp. 42–54. Springer, Heidelberg
(2012)

7. Drake, P.: The last-good-reply policy for Monte-Carlo go. ICGA Journal 32(4),
221–227 (2009)

8. Eliahou, S., Maŕın, J.M., Revuelta, M.P., Sanz, M.I.: Weak Schur numbers and
the search for G. W. Walker’s lost partitions. Computer and Mathematics with
Applications 63, 175–182 (2012)

9. Robilliard, D., Fonlupt, C., Marion-Poty, V., Boumaza, A.: A Multilevel Tabu
Search with Backtracking for Exploring Weak Schur Numbers. In: Hao, J.-K.,
Legrand, P., Collet, P., Monmarché, N., Lutton, E., Schoenauer, M. (eds.) EA
2011. LNCS, vol. 7401, pp. 109–119. Springer, Heidelberg (2012)

Investigating Monte-Carlo Methods on the Weak Schur Problem 201

10. Fredricksen, H., Sweet, M.M.: Symmetric sum-free partitions and lower bounds for
Schur numbers. Electr. J. Comb. 7 (2000)

11. Gelly, S., Silver, D.: Combining online and offline knowledge in uct. In: Ghahra-
mani, Z. (ed.) ICML. ACM International Conference Proceeding Series, vol. 227,
pp. 273–280. ACM (2007)

12. Le Bras, R., Gomes, C.P., Selman, B.: From streamlined combinatorial search to
efficient constructive procedures. In: Proceedings of the 15th International Confer-
ence on Artificial Intelligence, AAAI 2012 (2012)

13. Rado, R.: Some solved and unsolved problems in the theory of numbers. Math.
Gaz. 25, 72–77 (1941)

14. Rimmel, A., Teytaud, F.: Multiple Overlapping Tiles for Contextual Monte Carlo
Tree Search. In: Di Chio, C., Cagnoni, S., Cotta, C., Ebner, M., Ekárt, A., Esparcia-
Alcazar, A.I., Goh, C.-K., Merelo, J.J., Neri, F., Preuss, M., Togelius, J., Yan-
nakakis, G.N. (eds.) EvoApplicatons 2010, Part I. LNCS, vol. 6024, pp. 201–210.
Springer, Heidelberg (2010)

15. Rimmel, A., Teytaud, F., Cazenave, T.: Optimization of the Nested Monte-Carlo
Algorithm on the Traveling Salesman Problem with TimeWindows. In: Di Chio, C.,
Brabazon, A., Di Caro, G.A., Drechsler, R., Farooq, M., Grahl, J., Greenfield, G.,
Prins, C., Romero, J., Squillero, G., Tarantino, E., Tettamanzi, A.G.B., Urquhart,
N., Uyar, A.Ş. (eds.) EvoApplications 2011, Part II. LNCS, vol. 6625, pp. 501–510.
Springer, Heidelberg (2011)

16. Rimmel, A., Teytaud, F., Teytaud, O.: Biasing Monte-Carlo Simulations through
RAVE Values. In: van den Herik, H.J., Iida, H., Plaat, A. (eds.) CG 2010. LNCS,
vol. 6515, pp. 59–68. Springer, Heidelberg (2011)

17. Rosin, C.D.: Nested rollout policy adaptation for Monte Carlo tree search. In:
Walsh, T. (ed.) IJCAI, pp. 649–654. IJCAI/AAAI (2011)

18. Schur, I.: Über die kongruenz xm+ym ≡ zm (mod p). Jahresbericht der Deutschen
Mathematiker Vereinigung 25, 114–117 (1916)

19. Walker, G.: A problem in partitioning. Amer. Math. Monthly 59, 253 (1952)

Multi-objective AI Planning: Comparing

Aggregation and Pareto Approaches

Mostepha R. Khouadjia1, Marc Schoenauer1,
Vincent Vidal2, Johann Dréo3, and Pierre Savéant3

1 TAO Project, INRIA Saclay & LRI Paris-Sud University, Orsay, France
{mostepha-redouane.khouadjia,marc.schoenauer}@inria.fr

2 ONERA-DCSD, Toulouse, France
Vincent.Vidal@onera.fr

3 THALES Research & Technology, Palaiseau, France
{johann.dreo,pierre.saveant}@thalesgroup.com

Abstract. Most real-world Planning problems are multi-objective, try-
ing to minimize both the makespan of the solution plan, and some cost
of the actions involved in the plan. But most, if not all existing ap-
proaches are based on single-objective planners, and use an aggregation
of the objectives to remain in the single-objective context. Divide-and-
Evolve is an evolutionary planner that won the temporal deterministic
satisficing track at the last International Planning Competitions (IPC).
Like all Evolutionary Algorithms (EA), it can easily be turned into a
Pareto-based Multi-Objective EA. It is however important to validate
the resulting algorithm by comparing it with the aggregation approach:
this is the goal of this paper. The comparative experiments on a re-
cently proposed benchmark set that are reported here demonstrate the
usefulness of going Pareto-based in AI Planning.

1 Introduction

Most, if not all, classical AI planning solvers are single-objective. Given a plan-
ning domain (a set of predicates that describe the state of the system, and a set
of actions with their pre-requisites and effects), and an instance of this domain
(a set of objects on which the predicates are instantiated into boolean atoms,
an initial state and a goal state), classical planners try to find, among the set
of all feasible plans (sequences of actions such that, when applied to the initial
state, the goal state becomes true), the one with the minimal number of actions
(STRIP planning), or with the smallest cost (actions with costs) or with the
smallest makespan (temporal planning, where actions have durations and can
be applied in parallel). A detailed introduction to (single-objective) AI planning
can be found in [1]. It is clear, however, that most planning problems are in
fact multi-objective, as the optimal solution in real-world problems often involve
some trade-off between makespan and cost [2]. A few trials have been made to
turn some classical planners into multi-objective optimizers, either using some

M. Middendorf and C. Blum (Eds.): EvoCOP 2013, LNCS 7832, pp. 202–213, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Multi-objective AI Planning 203

twist in PDDL 2.01 to account for both makespan and cost [3–5], or using the
new hooks for several objectives offered by PDDL 3.0 [6]. However, all these ap-
proaches are based on a linear aggregation of the different objectives, and were
not pursued, as witnessed by the new “net-benefit” IPC track, dedicated to ag-
gregated multiple objectives, that took place in 2006 [7] and 2008 [8], . . . but was
canceled in 2011 due to a lack of entries.

In the framework of Evolutionary Algorithms (EAs), Pareto multi-objective
optimization has received a lot of attention [9], and any single-objective EA can
“easily” be turned into a multi-objective EA, by modifying the selection step
(and possible adding some archiving mechanism). Unfortunately, there exist very
few evolutionary AI planners. Directly evolving plans, as in [10], obviously does
not scale up, and was never extended to multi-objective setting. Hence, as far as
we are aware of, the state-of-the-art in evolutionary AI planning is the previous
work of some of the authors, Divide-and-Evolve (DaE). DaE evolves variables
length sequences of states, that start with the problem initial state and end at the
problem goal state. DaE relies on a classical embedded planner to sequentially
reach each state of the sequence from the previous one. The concatenation of all
plans given by the embedded planner is a solution plan of the original problem.
DaE can thus solve all types of planning problems that the embedded planner
can solve. Proof-of-concept for DaE was obtained with DaECPT [11], where the
embedded planner was CPT, an exact planner [12] – and already included some
small multi-objective experiments. Since then, the DaE paradigm has evolved,
and YAHSP a sub-optimal lookahead strategy planning system [13] is now used
as the embedded planner [14], andDaEYAHSP has reached state-of-the-art results
in all planning domains [15], winning the temporal deterministic satisficing track
at the last IPC in 20112.

The very preliminary work in [11] regarding multi-objective optimization has
also been recently revisited with DaEYAHSP. The lack of existing benchmark
suite for multi-objective planning led us to extend the small toy problem from
[11] into a tunable benchmark domain, on which different multi-objectivization
of DaEYAHSP (MO-DaEYAHSP) were compared [16]. But because the only other
approach in AI Planning is the aggregation of the objectives, there is a need to
compare the multi-objective approach for DaEYAHSP with the single-objective
approach based on the linear aggregation of the objectives: this is the pur-
pose of the present work. Section 2 will briefly present planning problems and
DaEYAHSP in the single-objective setting. In Section 3, the multi-objective con-
text will be introduced. The multi-objective benchmark suite will be presented,
and the multi-objectivization of DaEYAHSP will be detailed: because YAHSP is
a single-objective planner3, but can be asked to optimize either the makespan or
the cost, specific strategies had to be designed regarding how it is called within

1 Planning Domain Definition Language, a dedicated language for the description of
planning problems, set up for the International Planning Competitions (IPC).

2 See http://www.plg.inf.uc3m.es/ipc2011-deterministic
3 Note that it seems difficult, if at all opssible, to adapt it directly to multi-objective
optimization, as it uses very different strategies for the makespan and the cost.

204 M.R. Khouadjia et al.

City 1

City 0 City 4City 2

City 3

3

2

1

93

2 8

1

5
6

4

7

Flight durations are attached to the possible
routes (white circles), costs/risks are attached to
landing in the central cities (grey circles). Four
sets of values given on the right. Default values in
the first (“Lin.”) column in the Table.

Dur./edge Lin. Cvx Ccve

1 2 2 2
2 4 4 3
3 6 6 4
4 3 3 1
5 5 5 2
6 3 3 1
7 2 2 2
8 4 4 3
9 6 6 4

Cost/city

1 30 30 30
2 20 11 29
3 10 10 10

Fig. 1. Schematic view, and 3 instances, of simple MultiZeno benchmark

MO-DaEYAHSP. Section 4 describes the experimental settings, detailing in par-
ticular the implementation of the aggregation approach for DaEYAHSP and the
intensive parameter tuning that was performed for all competing algorithms us-
ing the off-line problem-independent tuner ParamILS [17]. The results will be
presented and discussed in Section 5, and as usual, conclusion and hints about
on-going and further work will be given in Section 6.

2 Single-objective Background

AI Planning Problems: A planning domain D is defined by a set of object types,
a set of predicates, and a set of possible actions. An instance is defined by a set
of objects of the domain types, an initial state, and a goal state. A predicate that
is instantiated with objects is called an atom, and takes a boolean value. For a
given instance, a state is defined by assigning values to all possible atoms. An
action is defined by a set of pre-conditions (atoms) and a set of effects (changing
some atom values): the action can be executed only if all pre-conditions are true
in the current state, and after an action has been executed, the state is modified:
the system enters a new state. The goal is to find a plan (sequence of actions)
such that it leads from the initial state to the goal state, and minimizes either
the number or costs of actions, or the makespan in the case of temporal planning
where actions have durations and can be run in parallel.

A simple temporal planning problem in the domain of logistics (inspired by the
well-known Zeno problem of IPC series) is given in Figure 1, and will be the basis
of the benchmark used in this work: the problem involves cities, passengers, and
planes (object types). Passengers can be transported from one city to another
(action fly), following the links on the figure. One plane can only carry one
passenger at a time from one city to another, and the flight duration (number
on the link) is the same whether or not the plane carries a passenger (this defines

Multi-objective AI Planning 205

the domain of the problem). In the simplest non-trivial instance of such domain,
there are 3 passengers and 2 planes. In the initial state, all passengers and planes
are in city 0, and in the goal state, all passengers must be in city 4. In the
default case labeled “Lin.” in the table right (forget about the costs for now),
the not-so-obvious makespan-optimal solution has a total makespan of 8 and is
left as a teaser for the reader.

Divide-and-Evolve: Let PD(I,G) denote the planning problem defined on do-
main D with initial state I and goal state G. In order to solve PD(I,G), the
basic idea of DaEX is to find a sequence of states S1, . . . , Sn, and to use some
embedded planner X to solve the series of planning problems PD(Sk, Sk+1), for
k ∈ [0, n] (with the convention that S0 = I and Sn+1 = G). The generation and
optimization of the sequence of states (Si)i∈[1,n] is driven by an evolutionary
algorithm. The fitness of a sequence is computed using the embedded planner
X , that is called in turn on each of the sub-problems PD(Sk, Sk+1). The con-
catenation of the corresponding plans (possibly compressed to take into account
possible parallelism in the case of temporal planning) is a solution of the initial
problem. In case one sub-problem cannot be solved by the embedded solver, the
individual is said unfeasible and its fitness is highly penalized in order to ensure
that unfeasible individuals are always selected after feasible ones. A thorough
description of DaEX can be found in [15]. The rest of this section will briefly
recall the evolutionary parts of DaEX.

An individual in DaEX is a variable-length list of partial states of the given
domain (similar to the goal state), and a partial state is a variable-length list
of atoms (instantiated predicates). The initialization procedure is based on a
heuristic estimation, for each atom, of the earliest time from which it can become
true [18]. Furthermore, most existing planners (and this is true for CPT and
YAHSP, that have been used within DaE) start by computing some partial
mutual exclusion between possible atoms: this information is also used to reduce
the search space in DaEX, whenever possible. An individual in DaEX is hence a
variable-length time-consistent sequence of partial states, and each partial state
is a variable-length list of atoms that are not pairwise mutually exclusive.

Crossover and mutation operators are applied with respective user-defined
probabilities pCross and pMut. They are defined on the DaEX representation in
a straightforward manner - though constrained by the heuristic chronology and
the partial mutex relation between atoms. One-point crossover is adapted to
variable-length representation: both crossover points are independently chosen,
uniformly in both parents. Only one offspring is kept, the one that respects the
approximate chronological constraint on the successive states. Four different
mutation operators are included, and operate either at the individual level,
by adding (addState) or removing (delState) a state, or at the state level by
adding or modifying (addChangeAtom) or removing (delAtom) some atoms in a
uniformly chose state. The choice among these operators is made according to
user-defined relative weights (named w-mutationname - see Table 1).

206 M.R. Khouadjia et al.

3 Multi-objective Background

3.1 Pareto-Based Multi-objective Divide-and-Evolve

Two modifications of DaEYAHSP are needed to turn it into an EMOA: use some
multi-objective selection engine in lieu of the single-objective tournament se-
lection that is used in the single-objective context; and compute the value of
both objectives (makespan and cost) for both individuals. The former modifica-
tion is straightforward, and several alternatives have been experimented within
[16]. The conclusion is that the indicator-based selection using the hypervolume
difference indicator [19] performs best – and only this one will be used in the fol-
lowing, denoted here MO-DaEYAHSP. As explained above, the computation of
the fitness is done by YAHSP– and YAHSP, like all known planners to-date, is
a single-objective planner. It is nevertheless possible, since PDDL 3.0 [6], to spec-
ify other quantities of interest that are to be computed throughout the execution
of the final plan, without interfering with the search. Within MO-DaEYAHSP,
two strategies are then possible for YAHSP: it can be asked to optimize either
the makespan or the cost, and to simply compute the cost or the makespan when
executing the solution plan (for feasible individuals).

The choice between both strategies is governed by user-defined weights, named
respectively W-makespan and W-cost (see table 1). For each individual, the ac-
tual strategy is randomly chosen according to those weights, and applied to all
subproblems of the individual. Note that those weights are tuned using ParamILS
(see Section 4), and it turned out that the optimal values for MO-DaEYAHSP

have always been equal weights: something that was to be expected, as no ob-
jective should be preferred to the other.

3.2 Aggregation-Based Multi-objective Divide-and-Evolve

Aggregation is certainly the easiest and most common way to handle multi-
objective problems with a single-objective optimization algorithm: a series of
single-objective optimization problems are tackled in turn, the fitness of each
of these problems is defined by a linear combination of the objectives. In the
case of makespan and cost, both to be minimized, each linear combination can
be defined by a single parameter α in [0, 1]. In the following, Fα will denote
α ∗makespan + (1 − α) ∗ cost, and DaEYAHSP run optimizing Fα will be called
the α-run. One “run” of the aggregation method thus amounts to running several
α-runs, and returns the set of non-dominated individuals among the union of all
final populations4. Note that different alpha-runs might have different optimal
values for their parameters: a complete parameter tuning run of ParamILSmust
be performed for each α-run to ensure a fair comparison with other well-tuned
approaches.

The choice of the number of values to choose for the different α depends on
the available resources. But the choice of the actual values aims at exploring

4 Some adaptive method has been proposed [20], where parameter α is adapted on-line,
spanning all values within a single run: this is left for further work.

Multi-objective AI Planning 207

 100

 150

 200

 250

 300

 20 25 30 35 40 45 50 55 60

C
os

t

Makespan

Pareto solution

 150

 200

 250

 300

 350

 400

 20 25 30 35 40 45 50 55 60

C
os

t

Makespan

Pareto solution

 150

 200

 250

 300

 350

 400

 20 25 30 35 40

C
os

t

Makespan

Pareto solution

Linear Convex Concave

Fig. 2. Pareto Fronts for the MultiZeno6Cost problems described in Figure 1

the objective space as uniformly as possible, and some issues might arise if both
objectives are not scaled similarly. We hence propose here to use some evenly
spaced values for α (see Section 4), but only after both objectives have been
scaled into [0,1]. However, for such scaling to be possible, some bounds must
be known for each objective. When they are not known, these bounds can be
approximated from single-objective runs on each of the objectives in turn.

3.3 Multi-objective Benchmarks:

The reader will have by now solved the little puzzle set in Section 2, and found the
solution with makespan 8, that manages to leave no plane idle (detailed solution
in [16]). In order to turn this problem into a multi-objective one, costs (or risks)
are added to the fly actions that land in one of the central cities, leading to two
types of problem: InMultiZenoCost, the second objective is the total costs, that
is accumulated every time a plane lands in a central city; In MultiZenoRisk, the
second objective is the maximal risk encountered during the complete execution
of a plan; both are to be minimized. The complexity of the instances can be
increased by adding more passengers: instances with 3, 6 and 9 passengers will be
used here. Finally, by tuning the values of the flight durations and the costs/risks,
different shapes of the Pareto front can be obtained: Figure 1 summarizes three
possible instances for the MultiZeno domain, and the corresponding Pareto
fronts for the 6-passengers case are displayed in Figure 2.

4 Experimental Settings

Parameter Tuning: It is now widely acknowledged that the large number of pa-
rameters of most EAs, even though it is a source of flexibility, is also a weakness,
in that a poor parameter setting can ruin the performances of the most promis-
ing algorithm. Whereas no generic approach exists for on-line control, there are
today many available methods for off-line parameter tuning that should be used
within any evolutionary experiment, in spite of their huge computational cost.

In this work, unless otherwise stated, the user-defined parameters of both
MO-DaEYAHSP andDaEYAHSP shown in Table 1 have been tuned anew for each
instance, using the ParamILS framework [17]. ParamILS performs an Iterated

208 M.R. Khouadjia et al.

Table 1. Set of parameters off-line tuned using ParamILS

Parameters Range Description
W-makespan [0,5] Weight for makespan strategy for YAHSP

W-cost [0,5] Weight for cost/risk strategy for YAHSP

Pop-size [10,300] Population size
Proba-cross [0,1] Probability to apply cross-over
Proba-mut [0,1] Probability to apply one of the mutation
w-addatom [1,10] Weight for addChangeAtom mutation
w-addgoal [1,10] Weight for addGoal mutation
w-delatom [1,10] Weight for delAtom mutation
w-delgoal [1,10] Weight for delGoal mutation
Proba-change [0,1] Probability to change each atom in the addChangeAtom mutation
Proba-delatom [0,1] Probability to delete each atom in the delAtom mutation
Radius [1,10] Number of neighbour goals to consider for the addGoal mutation

Local Search in the space of possible parameter configurations, evaluating each
configuration by running the algorithm to be optimized with this configuration
on the given instance.

Stopping Criteria: Due to the variable number of calls to YAHSP the number of
function evaluation is not representative of the CPU effort of runs of DaEYAHSP.
Hence the stopping criterion of all DaEYAHSP run was set to a given wall-clock
time (300, 600 and 1800 seconds for MultiZeno3, 6 and 9 respectively (on an
Intel(R) Xeon(R) @ 2.67GHz or equivalent). That of MO-DaEYAHSPwas set
accordingly: for the sake of a fair comparison, because one run of the aggre-
gated approach requires n runs of the single-objective version of DaEYAHSP,
MO-DaEYAHSPwas run for n times the time of each of the DaEYAHSP runs. In
the following, n will vary from 3 to 8 (see Section 5). The stopping criterion
for ParamILS was likewise set to a fixed wall-clock time: 48h (resp. 72h) for
MultiZeno3 and 6 (resp. MultiZeno9), corresponding to 576, 288, and 144
parameter configuration evaluations for MultiZeno3, 6 and 9 respectively.

Performance Metrics and Results Visualization: The quality measure used by
ParamILS to optimize the parameters of both MO-DaEYAHSP and each of
the α-runs of DaEYAHSP is the unary hypervolume IH− [19] of the set of non-
dominated points output by the algorithm with respect to the complete true
Pareto front (only instances where the true Pareto front is fully known have
been experimented with). The lower the better (a value of 0 indicates that the
exact Pareto front has been reached). All reported differences in hypervolume
have been tested using Wilcoxon signed rank test at 95% confidence level, unless
otherwise stated.

However, and because the true front is made of a few scattered points (at most
17 for MultiZeno9 in this paper), it is also possible to visually monitor the
empirical Cumulative Distribution Function of the probability to discover each
point, as well as the whole front. This allows some deeper comparison between
algorithms even when none has found the whole front. Such hitting plots will be
used in the following, together with more classical plots of hypervolume vs time.
Finally, because hitting plots only tell if a given point was reached and do not

Multi-objective AI Planning 209

provide any information regarding how far from the other points the different
runs ended, more details on the approximated Pareto fronts will be given by
visualizing the merged final populations of all runs of given settings.

Implementation: For all experiments, 11 independent runs have been performed,
implemented within the ParadisEO-MOEO framework5. All performance as-
sessment procedures (hypervolume calculations, statistical tests), have been
achieved using the PISA performance assessment tool6.

5 Experimental Results

This section will compare the Pareto-basedMO-DaEYAHSP and the aggregation
approach Agg-DaEYAHSP on MultiZeno3, 6 and 9. Unless otherwise stated,
the default domain definition leading to a linear Pareto front (see Figure 1 and
2-left) will be used, and one Agg-DaEYAHSP run will be made of 7 different
α-runs, with α taking the values 0, 0.1, 0.3, 0.5, 0.7, 0.9, and 1.

The MultiZeno3 Problem proved to be too easy: both MO-DaEYAHSP and Agg-

DaEYAHSP find the complete Pareto fronts, and the hitting plots reach 100%
in less than 80s (resp. 90s) for the Cost (resp. Risk) version of the instance
(not shown here). MO-DaEYAHSP is slightly slower (resp. faster) than Agg-

DaEYAHSP in the Cost (resp. Risk) instance, but no significant difference is to
be reported. Only instances -6 and -9 will be looked at in the following.

The Risk Objective: On these instances, however, the Risk objective proved
to be almost too difficult to be of interest here, even though there are only
3 points on the Pareto Front, whatever the number of passengers: as can be
seen on Figure 6, no algorithm could identify the complete Pareto front for the
MultiZeno9 instance (line 4); for MultiZeno6 (line 2), MO-DaEYAHSP could
reliably identify the whole front (in 9 runs out of 11), while only a single run
of Agg-DaEYAHSP could identify the middle point (40,20). MO-DaEYAHSP is
hence a clear winner here - however, too little information is brought by the
risk value, as one single stop in a risky station will completely hide the possibly
low-risk remaining of the plan. Further work will aim at designing a smoother
fitness for such situations.

The rest of the paper will hence concentrate on the Cost versions of Multi-

Zeno6 and 9 (simply denoted MultiZeno{6,9}), where significant differences
between both approaches can be highlighted.

Results on the Default Instance: From the plots of the evolution of the average
hypervolumes (Figure 3), MO-DaEYAHSP is the winner for MultiZeno6, and
Agg-DaEYAHSP is the winner for MultiZeno9. Taking a closer look at the
hitting plots (Figure 6), we can see for MultiZeno6 (line 1) that all runs of

5 http://paradiseo.gforge.inria.fr/
6 http://www.tik.ee.ethz.ch/pisa/

http://paradiseo.gforge.inria.fr/
http://www.tik.ee.ethz.ch/pisa/

210 M.R. Khouadjia et al.

 0.0001

 0.001

 0.01

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Hy
pe

rv
olu

m
e

In
dic

at
or

 (I
H-)

Time (seconds)

aggregation
ibeahyper

 0.0147

 0.05

 0.1

 0 2000 4000 6000 8000 10000 12000 14000

Hy
pe

rv
olu

m
e

In
dic

at
or

 (I
H-)

Time (seconds)

aggregation
ibeahyper

Fig. 3. Evolution of hypervolume for DaEYAHSP (green squares) and Agg-DaEYAHSP

(blue triangles) for MultiZeno6 (left) and MultiZeno9 (right)

 10

 15

 20

 25

 30

 35

 40

 20 30 40 50 60 70 80 90

C
os

t

Makespan

Aggregation
Exact Pareto front

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 30 40 50 60 70 80 90 100 110 120

C
os

t

Makespan

ibeahyper
Exact Pareto front

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 20 40 60 80 100 120 140 160

C
os

t

Makespan

Aggregation
Exact Pareto front

Agg-DaEYAHSP on
MultiZeno6

MO-DaEYAHSP on
MultiZeno9

Agg-DaEYAHSP on
MultiZeno9

Fig. 4. Pareto fronts approximations (union of all final populations)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1000 2000 3000 4000 5000

At
ta

in
m

en
t

Time (seconds)

60-190
56-192
52-194
48-196
44-198
40-200
36-238
32-276
28-314
24-352
20-390

all-points

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1000 2000 3000 4000 5000

At
ta

in
m

en
t

Time (seconds)

60-190
56-192
52-194
48-196
44-198
40-200
36-238
32-276
28-314
24-352
20-390

all-points

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1000 2000 3000 4000 5000

At
ta

in
m

en
t

Time (seconds)

40-190
38-228
36-230
34-268
32-270
30-308
28-310
26-348
24-350
22-388
20-390

all-points

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1000 2000 3000 4000 5000

At
ta

in
m

en
t

Time (seconds)

40-190
38-228
36-230
34-268
32-270
30-308
28-310
26-348
24-350
22-388
20-390

all-points

Fig. 5. Hitting plots forMO-DaEYAHSP (left) andAgg-DaEYAHSP (right), for instances
2, 3, and 4 of MultiZeno6 from Figure 1 (from top to bottom)

MO-DaEYAHSP reach the complete Pareto front in around 2500s, while only 9
runs out of 11 do reach it. On the other hand, for MultiZeno9, and though
the figures of line 3 are more difficult to read because they contain the CDF
for 17 points, slightly more points seem to be reached by Agg-DaEYAHSP than

Multi-objective AI Planning 211

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 500 1000 1500 2000 2500 3000 3500 4000

A
tta

in
m

en
t

Time (seconds)

60-10
56-12
52-14
48-16
44-18
40-20
36-22
32-24
28-26
24-28
20-30

all-points

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 500 1000 1500 2000 2500 3000 3500 4000

A
tta

in
m

en
t

Time (seconds)

60-10
56-12
52-14
48-16
44-18
40-20
36-22
32-24
28-26
24-28
20-30

all-points

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 500 1000 1500 2000 2500 3000 3500 4000

A
tta

in
m

en
t

Time (seconds)

60-10
40-20
20-30

all-points

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 500 1000 1500 2000 2500 3000 3500 4000

A
tta

in
m

en
t

Time (seconds)

60-10
40-20
20-30

all-points

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2000 4000 6000 8000 10000 12000 14000 16000

A
tta

in
m

en
t

Time (seconds)

96-16
92-18
88-20
84-22
80-24
76-26
72-28
68-30
64-32
60-34
56-36
52-38
48-40
44-42
40-44
36-46
32-48

all-points

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2000 4000 6000 8000 10000 12000 14000 16000

A
tta

in
m

en
t

Time (seconds)

96-16
92-18
88-20
84-22
80-24
76-26
72-28
68-30
64-32
60-34
56-36
52-38
48-40
44-42
40-44
36-46
32-48

all-points

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2000 4000 6000 8000 10000 12000

A
tta

in
m

en
t

Time (seconds)

96-10
64-20
32-30

all-points

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2000 4000 6000 8000 10000 12000

A
tta

in
m

en
t

Time (seconds)

96-10
64-20
32-30

all-points

Fig. 6. Hitting plots for MO-DaEYAHSP (left) and Agg-DaEYAHSP (right), for in-
stances (from top to bottom) MultiZeno6Cost, MultiZeno6Risk, MultiZeno9Cost,
and MultiZeno9Risk. The lower line on each plots is the experimental CDF for the
probability to reach the whole Pareto front.

212 M.R. Khouadjia et al.

by MO-DaEYAHSP. Looking now at the approximations of the Pareto fronts
(Figure 4), the fronts returned byAgg-DaEYAHSP forMultiZeno6 show a large
dispersion away from the true front, whereas the same figure for MO-DaEYAHSP

(not shown) only contains the true front. Regarding MultiZeno9, even though
it reaches less points from the true front, MO-DaEYAHSP demonstrates a much
more robust behavior than Agg-DaEYAHSP, for which the approximate fronts
are, again, quite dispersed, sometimes far from the true front.

Results on other MultiZeno6 Instances: Further experiments have been con-
ducted on different variants of MultiZeno6 instance, described in Figure 1.
The corresponding hitting plots can be seen on Figure 5. As in the Linear de-
fault case, MO-DaEYAHSP is a clear winner – and this is confirmed by the plots
of the approximate Pareto fronts (not shown), for which Agg-DaEYAHSP again
shows a much larger dispersion away from the true front than MO-DaEYAHSP.

All results presented until now have been obtained by first optimizing the pa-
rameters of all algorithms with ParamILS. Interestingly, when using the param-
eters optimized by ParamILS for the Linear instance on these other instances,
the results are only slightly worse: this observation will motivate further work
dedicated to the generalization of the parameter tuning across instances.

6 Discussion and Conclusion

The experiments presented in this paper have somehow demonstrated the greater
efficiency of the Pareto-based approach to multi-objective AI Planning MO-

DaEYAHSP compared to the more traditional approach by aggregation of the
objectives Agg-DaEYAHSP. The case is clear on MultiZeno6, and on the dif-
ferent instances that have been experimented with, where MO-DaEYAHSP ro-
bustly finds the whole Pareto front (except for the Convex instance), whereas
Agg-DaEYAHSP performs much worse in all aspects. This is also true on the
MultiZeno9 instance, in spite of the better hypervolume indicator: indeed, a
few more points on the Pareto front are found a little more often, but the global
picture remains a poor approximation of the Pareto front. Other experiments
on more instances are needed to confirm these first results, and on-going work
is concerned with solving instances generated from IPC benchmarks by merging
the cost and the temporal domains when the same instances exist in both.

Regarding the computational cost, one Agg-DaEYAHSP run requires several
single-objective runs – and as many parameter tuning procedures. We have cho-
sen here to use 7 different values for α, and it was clear from results not shown
here that taking away a few of these resulted in a decrease of quality of the
results. The computational cost of the parameter tuning could be reduced, too:
first, a complete tuning anew for each instance is unrealistic, and was only done
here for the sake of a fair comparison between both approaches; second, even on
a single instance, it should be possible to tune all parameters (except those of
YAHSP strategy) for all α-runs together. Finally, one of the most promising di-
rections for future research is the on-line tuning of YAHSP strategy, e.g., using
a self-adaptive approach, where the strategies are attached to the individual.

Multi-objective AI Planning 213

References

1. Ghallab, M., Nau, D., Traverso, P.: Automated Planning, Theory and Practice.
Morgan Kaufmann (2004)

2. Kambhampati, S.: 1001 ways to skin a planning graph for heuristic fun and profit.
Invited talk at ICAPS 2003 (2003)

3. Do, M., Kambhampati, S.: SAPA: A Multi-Objective Metric Temporal Planner. J.
Artif. Intell. Res. (JAIR) 20, 155–194 (2003)

4. Refanidis, I., Vlahavas, I.: Multiobjective Heuristic State-Space Planning. Artificial
Intelligence 145(1), 1–32 (2003)

5. Gerevini, A., Saetti, A., Serina, I.: An Approach to Efficient Planning with Nu-
merical Fluents and Multi-Criteria Plan Quality. Artificial Intelligence 172(8-9),
899–944 (2008)

6. Gerevini, A., Long, D.: Preferences and Soft Constraints in PDDL3. In: ICAPS
Workshop on Planning with Preferences and Soft Constraints, pp. 46–53 (2006)

7. Chen, Y., Wah, B., Hsu, C.: Temporal Planning using Subgoal Partitioning and
Resolution in SGPlan. J. of Artificial Intelligence Research 26(1), 323–369 (2006)

8. Edelkamp, S., Kissmann, P.: Optimal Symbolic Planning with Action Costs and
Preferences. In: Proc. 21st IJCAI, pp. 1690–1695 (2009)

9. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wi-
ley (2001)

10. Brie, A.H., Morignot, P.: Genetic Planning Using Variable Length Chromosomes.
In: Biundo, S., Myers, K.L., Rajan, K. (eds.) 15th Intl Conf. on Automated Plan-
ning and Scheduling, pp. 320–329. AAAI Press (2005)

11. Schoenauer, M., Savéant, P., Vidal, V.: Divide-and-Evolve: A NewMemetic Scheme
for Domain-Independent Temporal Planning. In: Gottlieb, J., Raidl, G.R. (eds.)
EvoCOP 2006. LNCS, vol. 3906, pp. 247–260. Springer, Heidelberg (2006)

12. Vidal, V., Geffner, H.: Branching and Pruning: An Optimal Temporal POCL Plan-
ner based on Constraint Programming. In: Proc. AAAI 2004, pp. 570–577 (2004)

13. Vidal, V.: A Lookahead Strategy for Heuristic Search Planning. In: Proceedings of
the 14th ICAPS, pp. 150–159. AAAI Press (2004)

14. Bibai, J., Savéant, P., Schoenauer, M., Vidal, V.: On the Benefit of Sub-optimality
within the Divide-and-Evolve Scheme. In: Cowling, P., Merz, P. (eds.) EvoCOP
2010. LNCS, vol. 6022, pp. 23–34. Springer, Heidelberg (2010)

15. Bibäı, J., Savéant, P., Schoenauer, M., Vidal, V.: An Evolutionary Metaheuristic
Based on State Decomposition for Domain-Independent Satisficing Planning. In:
Brafman, R., et al. (eds.) Proc. 20th ICAPS, pp. 18–25. AAAI Press (2010)

16. Khouadjia, M.R., Schoenauer, M., Vidal, V., Dréo, J., Savéant, P.: Multi-objective
AI Planning: Evaluating DaEYAHSP on a Tunable Benchmark. In: Purshouse,
R.C., Fleming, P.J., Fonseca, C.M., Greco, S., Shaw, J. (eds.) EMO 2013. LNCS,
vol. 7811, pp. 36–50. Springer, Heidelberg (2013)

17. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic
algorithm configuration framework. J. Artif. Intell. Res. (JAIR) 36, 267–306 (2009)

18. Haslum, P., Geffner, H.: Admissible Heuristics for Optimal Planning. In: Proc.
AIPS 2000, pp. 70–82 (2000)

19. Zitzler, E., Künzli, S.: Indicator-Based Selection in Multiobjective Search. In:
Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria,
J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN VIII. LNCS,
vol. 3242, pp. 832–842. Springer, Heidelberg (2004)

20. Jin, Y., Okabe, T., Sendhoff, B.: AdaptingWeighted Aggregation for Multiobjective
Evolution Strategies. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne,
D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 96–110. Springer, Heidelberg (2001)

Predicting Genetic Algorithm Performance

on the Vehicle Routing Problem Using
Information Theoretic Landscape Measures

Mario Ventresca1, Beatrice Ombuki-Berman2, and Andrew Runka3

1 Department of Mechanical and Industrial Engineering, University of Toronto,
Toronto, Canada

mario.ventresca@utoronto.ca
2 Department of Computer Science, Brock University, St. Catharines, Canada

bombuki@brocku.ca
3 Department of Computer Science, Carleton University, Ottawa, Canada

arunka@connect.carleton.ca

Abstract. In this paper we examine the predictability of genetic algo-
rithm (GA) performance using information-theoretic fitness landscape
measures. The outcome of a GA is largely based on the choice of search
operator, problem representation and tunable parameters (crossover and
mutation rates, etc). In particular, given a problem representation the
choice of search operator will determine, along with the fitness function,
the structure of the landscape that the GA will search upon. Statisti-
cal and information theoretic measures have been proposed that aim to
quantify properties (ruggedness, smoothness, etc) of this landscape. In
this paper we concentrate on the utility of information theoretic mea-
sures to predict algorithm output for various instances of the capacitated
and time-windowed vehicle routing problem. Using a clustering-based
approach we identify similar landscape structures within these problems
and propose to compare GA results to these clusters using performance
profiles. These results highlight the potential for predicting GA perfor-
mance, and providing insight self-configurable search operator design.

1 Introduction

We study the well known NP-hard [7] vehicle routing problem (VRP). Due to
its wide applicability the VRP has been widely studied (for detailed reviews, see
[3,17,10]). In this paper, we focus on the capacitated vehicle routing problem
(CVRP) [22] and vehicle routing problems with time windows (VRPTW) [3].
A typical VRP aims to design least-cost routes from a central depot to a set
of geographically dispersed points/customers with various demands. Each cus-
tomer is to be serviced exactly once by only one vehicle, and each vehicle has a
limited capacity. The Vehicle Routing Problem with Time Windows (VRPTW)
is an extension of the VRP whereby a time window during which service must
be completed is associated with each customer. A vehicle may arrive early, but

M. Middendorf and C. Blum (Eds.): EvoCOP 2013, LNCS 7832, pp. 214–225, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Predicting Genetic Algorithm Performance on the Vehicle Routing Problem 215

it must wait until the designated time window to open before service can com-
mence. The objective of the VRPTW is to minimize the number of vehicles used
and the total distance travelled to service the customers without violating the
capacity and time window constraints.

The main question we shed light on in this paper is whether common infor-
mation theoretic summary measures of the fitness landscape structure actually
provide reliable feedback as to the relative difficulty of solving specific VRP
problem instances. That is, whether problem instances can be grouped based on
these measures, and whether these groups are indicative of the eventual solution
quality one could observe after an evolutionary algorithm terminates. So, we are
not aiming to predict the final objective value or behaviour of the algorithm over
time, rather, whether there is a correspondence between the measures and per-
formance. We address this question by considering a large subset of benchmark
VRP and VRPTW instances and measure the influence that common mutation
and crossover search operators have.

A fitness-distance based analysis of problem difficulty for the CVRP was con-
ducted in [9], using a variety of distance measures. Their results indicate the
existence of a possible “big valley” structure in the landscape that contains
more than half of the sampled problem instances. They argue that this provides
a plausible explanation for the success of some well known heuristics on the
given problem instances. The analysis considered a much smaller set of problem
instances than is provided in this study, as well as considering only the CVRP,
whereas we consider VRPTW as well. Similar conclusions were found in [5,6].
The waste-collection vehicle routing problem with time windows was studied in
[19]. Many other studies of fitness landscapes exist in the literature for a variety
of problems [13,12,1,11,21,25,16,20,18]. To our best knowledge, cluster analysis
of information theoretic measures and their relationship to observed GA perfor-
mance is unique.

2 Fitness Landscapes

A fitness landscape can be defined as a tuple L = (S, f,N) where S is the
search space of feasible solutions, f : S �→ R is a fitness function. The function
N (s) assigns to every s a set of neighbour solutions. Traditionally, neighbours
are solutions reachable through a single application of the search operator, but
this need not be the case.

Without loss of generality, the following assumes a maximization problem
with search space S where a solution s ∈ S is defined to be a local maximum if
its fitness is greater than or equal to all of its neighbours, i.e., f(s) ≥ f(w) ∀ w ∈
N (s), where the neighbourhood N (s) is defined as the set of solutions reachable
from s by a single application of the search operator being considered. If a
relatively high number of local optima are present in the landscape, it is termed
rugged. When few optima exist, the landscape could be either smooth or flat
depending on the existence of large attractive basins.

A basin of attraction of a solution sn is defined [8] as the set of verticesB(sn) =
{s0 ∈ V |∃s1, ..., sn ∈ V where si+1 ∈ N (sn) and f(si+1) > f(si) ∀i, 0 ≤ i ≤ n}.

216 M. Ventresca, B. Ombuki-Berman, and A. Runka

The size of a basin is generally considered to be defined as the number of solutions
within it. Local optima with relatively small attractive basins can be considered
isolated [8]. Larger basins of attraction typically imply a smoother landscape.
Landscapes characterized by few local optima generally contain large amounts
of neutrality [2]; the fitness of neighbouring solutions remains essentially equal.
When existing in neutral epochs, the current set of solutions will randomly drift
about these neutral networks.

Problem difficulty may be deduced from analyzing the characteristics defined
above. For instance, a landscape having few isolated optima with a high degree of
neutrality is likely going to be more difficult to search than a smooth landscape
with a single global optima (i.e., a large hill) because on average searching the
landscape provides little information indicating the location of peaks. Various
measures have been proposed to ascertain properties of the search space, for
example [26,14,24,8]. We focus on the information theoretic measures proposed
in [24] and [23].

The Information Content (IC) measures the ruggedness with respect to the
flat or neutral areas of the landscape. The degree of flatness sensitivity is based
on an empirically decided parameter ε which is restricted to the range [0, ..., L],
where L is the maximum fitness difference along the random walk. Consequently,
the analysis will be most sensitive when ε = 0. This measure is calculated a

H(ε) = −
∑
p	=q

Pr[pq] log6 Pr[pq] (1)

where probabilities Pr[pq] represent the probabilities of possible fitness transitions
from solution p to q while performing a random walk. Each [pq] are elements of
the string S(ε) = s1s2s3sn, of symbols si ∈ {1̄, 0, 1}, where each si is recursively
obtained for a particular value of ε based on Equation (2), so si = Ψf (i, ε). Thus,ε
can be said to represent an accuracy or sensitivity parameter of the analysis.

Ψ(i, ε) =

⎧⎪⎨
⎪⎩
1̄, if fi − fi−1 < −ε

0, if |fi − fi−1| ≤ ε

1, if fi − fi−1 > ε

(2)

The Partial Information Content (PIC) indicates the modality or number of local
optima present on the landscape. The underlying idea is to filter out repeated
symbols of S(ε) in order to acquire an indication of the modality of the random
walk. The formula for computing PIC is given in Equation (3), where n is the
length of the original walk and μ is the length of the summarized string S′(ε).

M(ε) =
μ

n
(3)

The value for μ = Φs(1, 0, 0) is determined via the recursive function

Φs(i, j, k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
k, if i > n

Φ(i + 1, i, k + 1), if j = 0andsi
= 0

Φ(i + 1, i, k + 1), if j > 0, si
= 0, si
= sj

Φ(i + 1, j, k), otherwise.

(4)

Predicting Genetic Algorithm Performance on the Vehicle Routing Problem 217

When the value of M(ε) = 0 it indicates that no slopes were present on the
path of the random walk, meaning that the landscape is rather flat or smooth.
Similarly, if M(ε) = 1 then the path is maximally multi-modal and likely very
rugged. Furthermore, it is possible to calculate the expected number of optima
of a random walk of length n via

E[M(ε)] =

⌊
nM(ε)

2

⌋
, (5)

although we do not consider the expected modality in this analysis.
The Density-Basin Information (DBI) measure (Equation 6) indicates the flat

and smooth areas of the landscape as well as the density and isolation of peaks.
It therefore provides an idea of the landscape structure around the optima.

h(ε) = −
∑

p∈{1̄,0,1}

Pr[pp] log3 Pr[pp] (6)

Pr[pp] represents the probability of sub-blocks 1̄1̄, 00 and 11 of occurring. A high
number of peaks within a small area results in a high DBI value. Conversely, if
the peak is isolated the measure will yield a low value. Thus, this information
gives an idea as to the size and nature of the basins of the landscape. Landscapes
with a high DBI content should be easier for an evolutionary algorithm to attract
to the area of fitter solutions.

3 Representation and Genetic Operators

We use 66 standard VRPTW and CVRP benchmark instances1 and consider
seven search operators, four mutation and three crossover [4,15]:

– Swap: swap two random elements.
– Inversion: reverse the order of a contiguous segment of elements (i.e., 2-opt).
– Insertion: move an element to a random index.
– Displacement: select and move a contiguous segment of elements.
– PMX: exchange contiguous segments of elements between parents.
– UOX: randomly select subset of elements from each parent, maintaining
ordering.

– CX: include a random element from parent 1 (P1), then include the ele-
ment in P1 found at the index of P2 corresponding to the previous included
element. Repeat until an element is encountered that already exists in the
child, then repeat using an unselected element of P2.

We represent solutions as an array of integers, where each integer appears only
once, and corresponds to a stop of the vehicle (i.e., a city). Crossover and mu-
tation operators are applied directly to the representation. Transcribing a solu-
tion representation into a valid solution is accomplished by linearly traversing

1 Available at web.cba.neu.edu/~msolomon/problems.htm and http://osiris.

tuwien.ac.at/ wgarn/VehicleRouting/neo/Problem%20Instances/instances

.html.

web.cba.neu.edu/~msolomon/problems.htm
http://osiris.tuwien.ac.at/~wgarn/VehicleRouting/neo/Problem%20Instances/instances.html
http://osiris.tuwien.ac.at/~wgarn/VehicleRouting/neo/Problem%20Instances/instances.html
http://osiris.tuwien.ac.at/~wgarn/VehicleRouting/neo/Problem%20Instances/instances.html

218 M. Ventresca, B. Ombuki-Berman, and A. Runka

the representation and adding each stop to a vehicle until its capacity limit is
reached. The process repeats using a new vehicle until the representation is fully
traversed.

4 Landscape Analysis Results

In this section we present the results of the landscape analysis. The required
statistics and probabilities are gathered by taking 2,000 random walks each of
length 10,000 steps. We consider the PIC, IC and DBI values as features for a
given (instance, operator) pairing and perform a clustering on the scaled values.
The optimal clustering model is determined according to the Bayesian Infor-
mation Criteria (BIC) for expectation maximization initialized by hierarchical
clustering for parametrized Gaussian mixture models. The implied landscape of
each group can then be analyzed separately. Due to space limitations we provide
summary results, but full statistics are available by contacting the authors.

Figure 1 presents the clustering results for the CVRP, presented with respect
to the two main principal components. The left figure displays the 8 clusters
found for the crossover operators, and the right figure shows the 11 mutation
operator-based clusters. Each point represents a (problem instance, operator)
pairing and is labelled according to the operator, as indicated in the figure cap-
tion. Immediately noticeable is that most clusters are composed of solely a single
type of search operator, indicating similarly induced landscape structure for the
corresponding problem instances. Additionally, the DBI value is found to explain
very little of the total variance.

Table 1 shows the cluster means for each cluster in Figure 1. Class names
have been determined by using the operator name (I)nsertion, (D)isplacement,
(S)wap, in(V)ersion and sequence of the particular 1, 2 or 3-combination. For
instance IV-1, is the first cluster that is represented entirely by insertion and
inversion operators, where there are more insertion operators in the class. Cluster
ALL contains a mix of all operators.

All 66 UOX results cluster together (UOX-1), indicating that the operator is
invariant with respect to the chosen metrics to the problem being considered.
The PMX operator is grouped into three clusters. PMX-1 and PMX-2 have
very similar values; indeed they are adjacent in the clustering of Figure 1. The
practical difference between these two classes is that PMX-1 will have a slightly
more rugged landscape. Class PMX-3 has 4 elements, and their corresponding
information theoretic measures indicate the landscapes contain a larger variety
of shapes, but the overall landscape is slightly flatter with a relatively high degree
of peak density. The CX operator has four very distinct landscape structures.
CX-1 has a relatively large IC value, implying a landscape that may contain
more ruggedness. The DBI measure shows that the density of these peaks is
moderately high, compared to UOX-1. The majority (52/66) of PMX results
have a landscape that seems less rugged. This leads to the hypothesis of UOX
having the most desirable search space, followed by PMX and CX, respectively.

An important aspect is the separation of clusters by problem size, except for
UOX-1, which seems problem-invariant. Clusters 1 and 4, represent the PMX

Predicting Genetic Algorithm Performance on the Vehicle Routing Problem 219

P

U

C
P

U

C

P

U

C

P
U

C
P
U

C

P

U

C

P

U

C
P

U

C

P

U

C

P

U

C
P
U

C
P
U

CP
U

C

P

U

C

P
U

CP
U

CP
U

CP
U

C
P

U

C

P
U

CP
U

CP
U

CP
U

CP
U

CP
U

CP
U

CP
U

CP
U

CP
U

C
P

U

C

P
U

CP
U

C

P

U

C

P
U

CP
U

CP
U

CP
U

CP
U

C
P

U

C
P
U

CP
U

CP
U

C
P

U

C

P
U

CP
U

CP
U

CP
U

CP
U

CP
U

CP
U

CP
U

CP
U

CP
U

CP
U

CP
U

CP
U

CP
U

CP
U

CP
U

CP
U

CP
U

CP
U

CP
U

CP
U

CP
U

CP
U

C
1

2

3
4 5

6

7

8

−6

−4

−2

0

0 1 2 3 4 5
Component 2 (19.3%)

C
o

m
p

o
n

en
t

1
(7

9.
6%

)

S
VI

D
S VI

D
S

VI
DS

V
I

D
S

V

I

D

S V
I

D

S
VI DS
V

I D
S

V
I

D

S
V

I
D

S

V
I

D

S

V

I
D

S
VI D

S
V

I

D

S

V
I

D

S

V
I

D

S

V
I

D

S

V
I

D

S
VI

D
S

V
I

D

S

V
I

D

S

V
I

D
S

V
I

D

S

V
I

D

S

V

I

D

S

V
I

D

S

V
I

D

S

V

I

D

S

V

I

D

S VI

D

S

V
I

D

S

VI
D

S
V

I

D

S

V

I

D

S

V
I

D

S

V

I

D

S

V

I

D

S

V
I

D

S
VI

D
S

V

I

D

S

V

I

D

S

VI D

S V
I

D
S

V
I

D

SVI D
S

V
I

D

SVI
D

S

VI
D

SVI
D

S

V
I

D

S
VI

D
S

V

I

D

SVI DS

V
I

D

S
VI

DS

V

I

D
S

V

I

D
S

V

I
D

S

V

I

D
S

V

I

D

S

V

I

D

S

V

I

D
S

V

I

D

S

V

I

D

S

V

I

D

S

V

I

D
12 34

5 6

7

8

9
10 11

−5.0

−2.5

0.0

2.5

0 2 4
Component 2 (39.1%)

C
o

m
p

o
n

en
t

1
(6

0.
8%

)

Fig. 1.Optimal clustering of the crossover (left) and mutation (right) problem-operator
pairings for CVRP. The plot is shown with respect to the top 2 principal components.
Using this approach, 8 distinct crossover and 11 mutation landscapes have been la-
belled, respectively. Points are placed using a multidimensional scaling with Euclidean
distance metric and labelled as (C)X, (U)OX and (P)MX crossover. Mutations are
labelled as (S)wap, in(V)ersion, (I)nsertion and (D)isplacement.

operator, where the separation of clusters corresponds nearly perfectly to a differ-
ence in problem size; cluster 1 contains C/R10X problem and cluster 4 contains
mostly C/R20X problems, respectively. Similarly for clusters 3 and 5, but con-
sidering the CX operator. Given this information it can be deduced that the CX
and PMX operators have similar landscape structures.

Figure 2 displays the clustering results for the VRPTW. The crossover land-
scapes form 5 clusters, each having nearly negligible covariance between the
principal components. In the right diagram 10 mutation landscape clusters are
identified. Both clusterings show very little overlap between elements and suf-
ficient separation that subsequent comparisons could be more straightforward
than for the CVRP.

Table 2 shows the cluster means for the VRPTW clustering results shown in
Figure 2. For mutation-based clustering, clusters 4 and 9 are composed mostly
of displacement operator results. Both of these search spaces contain a larger
variety of shapes than the other 8 clusters, while maintaining a high degree of
ruggedness as is evident from the PIC and DBI measures. Moreover, the attrac-
tive basins seem to be relatively small as well. In contrast, clusters containing
the swap and inversion operators have indications of smoother landscapes (low
IC and PCI accompanied by high DBI measures). The inversion operator has
characteristics that typically result in landscapes that contain a slightly higher
degree of ruggedness.

220 M. Ventresca, B. Ombuki-Berman, and A. Runka

Table 1. The cluster means for CVRP. The first 8 clusters are crossover and the next
11 are mutation-based.

Cluster # Class IC PIC DBI # elements

1 PMX-1 0.4196 0.5821 0.5936 10
2 UOX-1 0.4059 0.6273 0.5699 66
3 CX-1 0.6601 0.5465 0.5804 9
4 PMX-2 0.4074 0.6008 0.5851 52
5 CX-2 0.5148 0.5983 0.5716 27
6 PMX-3 0.4754 0.5234 0.6142 4
7 CX-3 0.8054 0.3009 0.6361 4
8 CX-4 0.4571 0.6051 0.5764 26

1 ISV-1 0.3940 0.5327 0.6183 53
2 ALL-1 0.4275 0.5241 0.6186 21
3 D-1 0.6699 0.5163 0.5979 9
4 SIV-1 0.3915 0.5166 0.6247 68
5 IV-1 0.4156 0.5535 0.6076 28
6 D-2 0.5712 0.5556 0.5876 19
7 VD-1 0.5406 0.4985 0.6183 7
8 D-3 0.8091 0.4066 0.6430 4
9 VD-2 0.4765 0.5480 0.6033 27
10 V-1 0.4095 0.5777 0.5969 13
11 D-4 0.4912 0.5753 0.5879 15

Table 2. The cluster means for VRPTW. The first 5 clusters are crossover and the
next 10 are mutation-based.

Cluster # Class IC PIC DBI size

1 PMX-1 0.4089 0.6338 0.5656 12
2 UOX-1 0.4073 0.6443 0.5590 21
3 CX-1 0.4647 0.6333 0.5581 12
4 PMX-2 0.4068 0.6152 0.5770 9
5 CX-2 0.4631 0.6180 0.5679 9

1 SI-1 0.4295 0.5795 0.5938 15
2 V-1 0.4230 0.6205 0.5721 8
3 I-1 0.4672 0.6038 0.5757 7
4 D-1 0.5058 0.6151 0.5628 12
5 S-1 0.4013 0.5473 0.6117 7
6 VS-1 0.4273 0.5969 0.5849 7
7 S-2 0.4004 0.5309 0.6186 3
8 VS-2 0.4153 0.5668 0.6016 7
9 DI-1 0.4989 0.5888 0.5795 12
10 V-2 0.4079 0.6136 0.5779 6

Predicting Genetic Algorithm Performance on the Vehicle Routing Problem 221

P

U

CP

U

C

P

U

C

P

U

C

P

U

CP

U

CP

U

CP

U

C
P

U

C

P

U

C

P

U

C

P

U

C

P

U

C

P

U

C
P

U

C
P

U

C
P

U

C

P

U

C
P

U

C
P

U

C

P

U

C

1

2

3

4 5

−2

−1

0

1

2

−0.5 0.0 0.5 1.0 1.5
Component 2 (36.9%)

C
o

m
p

o
n

en
t

1
(6

3.
1%

)

S

V

I

D

S

V

I

D

S

V

I

D

S

V
I

D
S

V

I

D

S

V

I

D

S

V

I

D

S

V

I

D

S

V
I

D

S

V

I
D

S

V

I
D

S

V

I
D

S

V
I

D

S

V

I
D

S

V

I
D

S

V

I

D

S

V

I
D

S

V

I

D

S

V

I

D

S

V

I

D

S

V

I

D

1

2

3
4

5

6

7

8

9

10

−3

−2

−1

0

1

−1 0 1
Component 2 (19.5%)

C
o

m
p

o
n

en
t

1
(8

0.
4%

)

Fig. 2. Optimal clustering of the crossover (left) and mutation (right) problem-
operator pairings for VRPTW. Using this approach, 5 distinct crossover and 10
mutation landscapes have been discovered, respectively. Points are placed using a mul-
tidimensional scaling with Euclidean distance metric and labelled as (C)X, (U)OX
and (P)MX crossover. Mutations are labelled as (S)wap, in(V)ersion, (I)nsertion and
(D)isplacement.

5 Genetic Algorithm Results

We employed a genetic algorithm that exclusively uses each of the seven search
operators. The GA is run for 5000 generations with a population size of 200.
Selection is according to a 3-tournament whereby the best of three randomly
selected individuals is carried on to the next population (repeated until 200
individuals are selected). An elitism strategy is also incorporated; we maintain
the top two best found solutions at each generation. The GA is run 30 times.

Given space limitations we forgo presenting full statistics about the obtained
objective value, etc. Such results are obtainable from the authors. Our goal is
to ascertain whether the information theoretic measures are useful indicators
of problem difficulty. Since optimal objective values are not scaled to the same
range, and in general each problem instance will have different possible evalua-
tions. Instead, we examine how the different search operators compare relative
to each other and create performance clusters based on these results. Subsequent
comparison of the elements of these performance clusters and landscape clusters
is then performed.

CVRP. In all cases the UOX crossover operator showed significantly better
fitness across all problem instances when compared to the other crossover oper-
ators. Moreover, UOX typically yielded a more desirable outcome than all the

222 M. Ventresca, B. Ombuki-Berman, and A. Runka

Table 3. Performance profile clusters for mutation operators on CVRP and VRPTW.
A < indicates a statistically significant difference between the respective groups and a
∼ represents a non-significant result. The Welsh t-test was used at a 0.95 confidence
level to ascertain significance. Left to right ordering of operators is according to mean
value. The first 20 groups are CVRP and the next 11 are VRPTW.

Group Relationship Problems

1 inversion < insertion < swap ∼ displace A-n53-k7, A-n54-k7, A-n55-k9, B-
n66-k9, B-n67-k10, c50

2 inversion ∼ insertion ∼ swap < displace A-n60-k9, B-n50-k8, B-n57-k9

3 insertion ∼ inversion < swap < displace A-n62-k8, f134

4 inversion < displace < swap ∼ insertion A-n63-k9, E-n76-k10

5 inversion < insertion ∼ swap < displace A-n63-k10, A-n80-k10, B-n63-k10,
c75, E-n101-k14, M-n151-k12, P-
n55-k10

6 inversion < insertion < swap < displace A-n64-k9, A-n69-k9, B-n68-k9, B-
n78-k10, c100, c100b, E-n76-k7, E-
n76-k8, E-n101-k8, M-n101-k10, M-
n121-k7, C101, R101, RC101

7 inversion ∼ displace < insertion ∼ swap A-n65-k9, B-n51-k7

8 inversion ∼ insertion < displace ∼ swap B-n50-k7

9 inversion < insertion < displace ∼ swap B-n52-k7, E-n51-k5, C201, R201

10 inversion ∼ insertion< swap ∼ displace B-n56-k7, C101 50, R101 50

11 inversion ∼ insertion < swap < displace c120, c150

12 swap < inversion ∼ insertion < displace c199

13 inversion < insertion < displace < swap f71, C201 50, R201 50, RC101 50,
RC201 50, RC201

14 swap ∼ inversion ∼ insertion < displace M-n200-k17

15 inversion < swap ∼ insertion <displace P-n60-k10

16 insertion < inversion < swap ∼ displace tai75a, tai75b, tai150c

17 insertion ∼ inversion < swap ∼ displace tai75c

18 insertion ∼ inversion < displace ∼ swap tai75d

19 insertion < inversion < swap <displace tai100a, tai100b, tai100d, tai150b,
tai150d

20 insertion < inversion ∼ swap < displace tai150a

1 swap < insertion < inversion < displace C101, C207

2 swap ∼ insertion ∼ inversion < displace C102

3 inversion ∼ insertion ∼ swap < displace C103, C203

4 inversion < insertion ∼ swap < displace C104

5 swap ∼ insertion < inversion < displace C105, C107

6 swap < insertion ∼ inversion < displace C106, C206, C208

7 insertion ∼ swap ∼ inversion < displace C108, C109, R103

8 swap < insertion < inversion ∼ displace C201, C202, C205, R101

9 inversion < insertion < swap < displace C204

10 swap ∼ insertion < inversion ∼ displace R102

11 insertion < inversion < swap < displace R104

Predicting Genetic Algorithm Performance on the Vehicle Routing Problem 223

mutation operators. The PMX operator consistently yielded more desirable re-
sults when compared to the CX operator. However, there is no significant trend
of more desirable results of PMX when compared to the mutation operators.

Table 3 presents the results of comparing the final mean values for each of the
66 problem instances. The four mutation operators are compared using a Welch
t-test at 0.95 confidence level, and the pairwise results of this test are reported,
where a < indicates statistical significance and ∼ notes the lack thereof, respec-
tively. The relationship ordering was determined according to the mean values
attained (not shown). Overlap with problem instances shown in the landscape
analysis is large, yielding approximately 70% similarity. Merging clusters with
single elements into an existing cluster increases the similarity to 85% similarity.
Similar results were also observed for crossover landscapes, but were omitted
due to space limitations.

The displacement operator typically occupies the lowest rank (in all but 6
groups), as would be expected considering the landscape analysis. Moreover,
Class D-2 in Table 2 indicates a relatively easy search space. Investigating the
particular instances for the associated problems A-n63-k9, A-n65-k9, B-n51-k7
and E-n76-k10 further supports the landscape analysis. The results for the dis-
placement operator on these instances is significantly improved from other dis-
placement results (using the relationship ranking as a measure), as the operator
is the second rank for Group 4 and 7, respectively.

VRPTW. The results found when running a GA using the four mutation op-
erators are given in Table 3, and grouped according to the statistical dominance
relation described above. The swap, inversion and insertion operators tend to
occupy the lowest rank (i.e., most desirable outcome), with the swap operator
being most frequent. The results from the clustering of landscape measures had
indicated that this result should occur.

Another prediction implied by the search space analyses is the deficiency of the
displacement operator. For all the 11 rankings in Table 3 displacement is found
to be least desirable. Table 3 shows the relatively large degree of displacement
operator deficiency as the mean results can be observed to have large effect sizes
(in the negative result sense).

We conducted a similar analysis for the three crossover operators (not shown),
revealing the relative power of the UOX operator for these problems. Indeed,
dominance was observed over all crossover and mutation operators; additionally,
a very large effect size was evident. As was also discovered above for the CVRP,
the PMX operator consistently, and statistically, dominates the results obtained
by CX. In comparison to the fitness landscape clusters we see approximately
87% overlap of problem instances in the clusters.

6 Conclusion

The main question we aimed to address in this study was aimed at whether
information theoretic landscape measures can actually be used to discriminate

224 M. Ventresca, B. Ombuki-Berman, and A. Runka

between problem instance difficulty for VRPTW and CVRP. To this end, nu-
merous benchmark problem instances were considered and seven common search
operators were examined. We found that the landscape measures can be clus-
tered into groups that tend to contain mostly one type of search operator. This
was true of both CVRP and VRPTW. In order to ascertain whether these clus-
ters can be used to predict outcomes of a genetic algorithm we proposed the
use of performance profiles that represent relative ordering of GA results. These
profiles are also clustered according to the ordering they represent. We find sig-
nificant overlap between the landscape and performance clusters. Further study
may shed light on automatic search operator design and configuration.

More study of the performance profile approach, and other methods of cluster-
ing and comparing landscape and algorithm output may provide deeper insight
into predictability of GAs. Future work also includes the examination of different
problem representations, which have greatly impact the ability of an algorithm
to obtain quality results and whether these results are limited to GAs. In the
same vein, consideration of combinations of these, and more advanced, search
operators may give some insight into practical implementations.

Acknowledgement. We thank the anonymous reviewers for their valuable in-
sight and comments, and the Natural Sciences and Engineering Research Council
of Canada for funding.

References

1. Alander, J.T., Zinchenko, L.A., Sorokin, S.N.: Analysis of fitness landscape prop-
erties for evolutionary antenna design. In: IEEE International Conference on Ar-
tificial Intelligence Systems, pp. 363–368 (2002)

2. Barnett, L.: Netcrawling-Optimal Evolutionary Search with Neutral Networks. In:
Congress on Evolutionary Computation, pp. 30–37 (2001)

3. Braysy, O., Gendreau, M.: Vehicle routing problem with time windows, part ii:
Metaheuristics. Transportation Science 39, 119–139 (2005)

4. Caramia, M., Onori, R.: Experimenting crossover operators to solve the vehicle
routing problem with time windows by genetic algorithms. International Journal
of Operational Research 3(5), 497–514 (2008)

5. Czech, Z.J.: Statistical measures of a fitness landscape for the vehicle routing prob-
lem. In: IEEE International Symposium on Parallel and Distributed Processing,
pp. 1–8 (2008)

6. Czech, Z.J.: A parallel simulated annealing algorithm as a tool for fitness landscape
exploration. In: Ros, A. (ed.) Parallel and Distributed Processing, pp. 247–271. In-
Tech (2010)

7. Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company (1979)

8. Jones, T.: Evolutionary Algorithms, Fitness Landscapes and Search. PhD thesis,
University of New Mexico (1995)

9. Kubiak, M.: Distance measures and fitness-distance analysis for the capacitated
vehicle routing problem. In: Doerner, K.F., Gendreau, M., Greistorfer, P., Gut-
jahr, W., Hartl, R.F., Reimann, M. (eds.) Metaheuristics. Operations Research
Computer Science Interfaces, vol. 39, pp. 345–364. Springer (2007)

Predicting Genetic Algorithm Performance on the Vehicle Routing Problem 225

10. Laporte, G.: Fifty years of vehicle routing. Transportation Science 43, 408–416
(2009)

11. Mattfeld, D.C., Bierwirth, C., Kopfer, H.: A search space analysis of the job shop
scheduling problem. Annals of Operations Research 86, 441–453 (1999)

12. Merz, P., Freisleben, B.: Memetic Algorithms and the Fitness Landscape of the
Graph Bi-Partitioning Problem. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwe-
fel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 765–774. Springer, Heidelberg
(1998)

13. Merz, P., Freisleben, B.: Fitness landscape analysis and memetic algorithms for
the quadratic assignment problem. IEEE Transactions on Evolutionary Computa-
tion 4(4), 337–352 (2000)

14. Naudts, B., Kallel, L.: A Comparison of Predictive Measures of Problem Diffi-
culty in Evolutionary Algorithms. IEEE Transactions on Evolutionary Computa-
tion 4(1), 1–16 (2000)

15. Nazif, H., Lee, L.S.: Optimized crossover genetic algorithm for vehicle routing
problem with time windows. American Journal of Applied Sciences 7(1), 95–101
(2010)

16. Ombuki-Berman, B., Ventresca, M.: Search difficulty of two-connected ring-based
topological network designs. In: IEEE Symposium on Foundations of Computa-
tional Intelligence, pp. 267–274 (2007)

17. Potvin, J.: State-of-the art review evolutionary algorithms for vehicle routing. IN-
FORMS Journal on Computing 21, 518–548 (2009)

18. Reeves, C.: Direct statistical estimation of GA landscape properties. In: Founda-
tions of Genetic Algorithms 6, pp. 91–107 (2000)

19. Runka, A., Ombuki-Berman, B., Ventresca, M.: A search space analysis for the
waste collection vehicle routing problem with time windows. In: Genetic and Evo-
lutionary Computation Conference, pp. 1813–1814 (2009)

20. Schiavinotto, T., Stutzle, T.: A review of metrics on permutations for search land-
scape analysis. Computers and Operations Research 34(10), 3143–3153 (2007)

21. Tavares, J., Pereira, B., Costa, E.: Multidimensional knapsack problem: A fitness
landscape analysis. IEEE Transactions on Systems, Man, and Cybernetics, Part
B: Cynernetics 38(3), 604–616 (2008)

22. Toth, P., Vigo, D.: The Vehicle Routing Problem. SIAM Monographs on Discrete
Mathematics and Applications (2002)

23. Vassilev, V.K., Fogarty, T.C., Miller, J.F.: Information Characteristics and the
Structure of Landscapes. Evolutionary Computation 8(1), 31–60 (2000)

24. Vassilev, V.K., Fogarty, T.C., Miller, J.F.: Fitness Landscapes: from Theory to
Application. In: Advances in Evolutionary Computation: Theory and Applications,
pp. 3–44. Springer (2003)

25. Ventresca, M., Ombuki-Berman, B.: Search space analysis of recurrent spiking
and continuous-time neural networks. In: IEEE International Joint Conference on
Neural Networks, pp. 8947–8954 (2006)

26. Weinberger, E.: Correlated and Uncorrelated Landscapes and How to Tell the
Difference. Biological Cybernetics 63, 325–336 (1990)

Single Line Train Scheduling with ACO

Marc Reimann1 and Jose Eugenio Leal2

1 Institute of Production and Operations Management, University of Graz,
Universitätsstrasse 15, 8010 Graz, Austria

marc.reimann@uni-graz.at
2 Department of Industrial Engineering, Pontificia Universidade Catolica do Rio de
Janeiro, Rua Marques de Sao Vicente 225, Gavea, Rio de Janeiro, CEP 22453-900,

Brazil
jel@puc-rio.br

Abstract. In this paper we study a train scheduling problem on a single
line that may be traversed in both directions by trains with different
priorities travelling with different speeds. We propose an ACO approach
to provide decision support for tackling this problem. Our results show
the strong performance of ACO when compared to optimal solutions
provided by CPLEX for small instances as well as to other heuristics on
larger instances.

1 Introduction and Related Work

In this paper we present a new meta-heuristic approach based on Ant Colony
Optimization (ACO) to tackle the train scheduling problem motivated and faced
by a Brazilian cargo train company seeking an automated tool to assign track
segments to trains over time (see also [13]). We apply our approach to a model
commonly studied in literature, the so-called Single Line Train Scheduling Prob-
lem (SLTSP). The SLTSP seeks an optimal conflict-free schedule of a set of
trains traversing the line in either direction between given origin and destina-
tion stations. For each individual train a time schedule of planned arrivals and
departures at the visited stations is known and conflicts occur when trains try
to occupy the same line segment between two consecutive stations at the same
time. Resolving these conflicts - by allowing trains to cross or overtake other
trains at the stations - leads to delays of trains with respect to their planned
schedules. The objective of the problem is then to find a feasible solution that
minimizes the weighted total delay of all trains, where the weights model the
different priorities of trains.

Research on mathematical models and solution techniques for the single line
train scheduling problem dates back to the early 1970s. In [20] an integer lin-
ear programming (ILP) model and a branch & bound (B&B) algorithm were
designed to find the best positions for overtaking and crossing of trains. An-
other B&B algorithm was presented in [11], where the main emphasis was on
a strong lower bound to speed up the algorithm. However, since this problem
belongs to the class of NP-hard problems (see [17]) it is typically tackled with

M. Middendorf and C. Blum (Eds.): EvoCOP 2013, LNCS 7832, pp. 226–237, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Single Line Train Scheduling with ACO 227

heuristics and meta-heuristics. In [3] simple priority rules were applied to a sim-
plified version of the SLTSP and their performance was shown on instances with
up to 20 trains. Focusing on a setting where all trains traverse the line in the
same direction, a lagrangian heuristic was presented in [4]. In [5] a more general
model is considered where trains may again traverse the line in both directions.
The model is then tackled by a heuristic where the trains are ordered (accord-
ing to some appropriate measure) and then a mixed-integer linear programming
(MILP) model is solved for each train keeping the relative order of the previ-
ously scheduled trains fixed. In [12] several local search, tabu search and genetic
algorithms as well as their hybrids are studied for a version of the basic model
where double line segments may exist, but are allocated to the two directions of
trains a-priori. A heuristic based on a limited depth B&B was proposed in [13]
and tested on a real-world instance from a Brazilian cargo train operator. Sev-
eral papers model train scheduling problems as variants of job-shop scheduling
problems (see e.g. [2], [6] and [22]). A rich model and a simple algorithm based
on constraint programming were proposed in [14]. The main advantage of the
presented approach is the fact that additional constraints can be easily han-
dled within the constraint programming framework. However, the quality of the
presented solutions falls far short of the results obtained with the approaches
from [12]. In [21] a genetic algorithm is used to schedule new trains into an
existing timetable of trains. Most of these approaches focus on special cases of
the general SLTSP and are evaluated on very limited sets of typically real-world
problem instances.

In this paper we focus on a general model formulation and present an ACO
algorithm for its resolution over a large set of structurally different benchmark
instances. For small instances we show that the ACO is capable of finding op-
timal solutions quickly. Moreover, we compare the ACO with its randomized
and deterministic counterparts to show the beneficial impact of randomization
per se and the use of the pheromone for learning. The remainder of the paper
is organized as follows. In the next section the mathematical model underlying
our solution approach is shown, while the ACO itself is presented in Section 3.
Results from our thorough numerical study are analyzed in Section 4. The pa-
per concludes with a summary of our findings and an outlook on open research
questions in Section 5.

2 Mathematical Formulation

The mathematical formulation shown in this section is a variant of the LP pre-
sented in [12]. While in that paper the total weighted travel time is minimized,
we are interested in minimizing the total weighted tardiness. Let n denote the
number of trains and m denote the number of stations. The first n1 ≤ n trains
travel outbound, while the remaining trains travel inbound. Note that stations
are numbered consecutively and a train is said to travel outbound if the number
of its origin station is smaller than the number of its terminal station. Conse-
quently, an inbound train traverses the line in the opposite direction.

228 M. Reimann and J.E. Leal

For each train i = 1, .., n the origin and destination stations oi and ti, respec-
tively and the earliest departure time at the origin station ei are given. Further,
the travel time of an outbound train i between stations k = 1, ..,m−1 and k+1
is denoted by δi,k, while the travel time of an inbound train j between stations
k = 2, ...,m and k− 1 is denoted by δj,k. Trains may have scheduled service in a
given station k and the associated service time is given by si,k. With these data,
we can compute planned arrival times of trains in their destination stations.
Clearly, these planned arrival times serve as lower bounds for the actual arrival
times, i.e. a train can never be early with respect to these planned arrival times.
Below we will see that this means that we can ignore these planned arrival times
in our model. Finally, trains may have different priorities wi.

There are two types of decision variables in the model. The flow of the trains is
modeled by real valued variables di,k which denote the actual departure time of
train i in station k. To model the sequence of trains in congested line segments
the binary decision variables xi,j,k are introduced, where xi,j,k = 1 if train i
traverses the line segment after station k before train j and xi,j,k = 0 otherwise.

Finally, let M denote a sufficiently large number. Based on these data and
variables the model can be written as follows:

min

n∑
i=1

widi,ti (1)

di,oi ≥ ei ∀i = 1, ..., n (2)

di,k ≥ di,k−1 + δi,k−1 + si,k ∀i = 1, ..., n1 (3)

and k = 2, ...,m

di,k ≥ di,k+1 + δi,k+1 + si,k ∀i = n1 + 1, ..., n (4)

and k = 1, ...,m− 1

di,k ≥ dj,k + δj,k −Mxi,j,k ∀i, j = 1, ..., n1 (5)

and k = 1, ...,m

dj,k ≥ di,k + δi,k −M(1− xi,j,k) ∀i, j = 1, ..., n1 (6)

and k = 1, ...,m

di,k ≥ dj,k + δj,k −Mxi,j,k ∀i, j = n1 + 1, ..., n (7)

and k = 1, ...,m

di,k ≥ dj,k + δj,k −Mxi,j,k ∀i, j = n1 + 1, ..., n (8)

and k = 1, ...,m

dj,k ≥ di,k + δi,k −M(1− xi,j,k) ∀i, j = n1 + 1, ..., n (9)

and k = 1, ...,m

di,k ≥ dj,k+1 + δj,k+1 −Mxi,j,k ∀i = 1, ..., n1 (10)

and j = n1 + 1, ..., n

and k = 1, ...,m

Single Line Train Scheduling with ACO 229

dj,k+1 ≥ di,k + δi,k −M(1− xi,j,k) ∀i = 1, ..., n1 (11)

and j = n1 + 1, ..., n

and k = 1, ...,m

Formally, the objective function minimizes the weighted sum of the trains’ de-
parture times at their respective destination stations. Since there is no service
time at destinations (i.e. si,ti = 0) these correspond to the trains’ actual arrival
times at their respective destination stations. Note that this is equivalent to
minimizing the total weighted tardiness, as tardiness is just the (positive) differ-
ence between actual and planned arrival times and the latter are problem data
and thus constant. Constraints (2) ensure that trains can not leave their ori-
gin station before their earliest possible departure time. Constraints (3) and (4)
constitute the temporal reality of a trains’ journey, i.e. a train has to arrive at a
station before it can leave this station. Constraints (5)-(11) require that a train
has to leave a segment between two stations before another train can enter this
segment. Specifically, constraints (5) and (6) consider the case where both trains
are outbound. The case of two inbound trains is dealt with by constraints (7)
and (9), while the precedence between trains travelling in opposite directions is
modelled by constraints (10) and (11).

3 Ant Colony Optimization

Ant Colony Optimization (ACO) was first proposed in [7] as a population-based
metaheuristic. Its motivation stems from the underlying metaphor concerning
the collective behaviour of real ant colonies leading to the exploitation of rich
food sources. More precisely, through a trail laying/trail following mechanism
promising (shortest) paths from the nest to a nearby food source are reinforced.
An overview of different variants of ACO can be found in [8]. For some basic
versions asymptotic convergence results are provided in [9], [10] and [18].

To customize ACO for a particular problem one needs to define a solution con-
struction mechanism describing how to generate feasible solutions, a pheromone
model emphasizing how (or what components of) a solution should be memorized
and a learning scheme defining how to update the pheromone values. Below we
will discuss in detail the implementation of these components in our algorithm.

3.1 Solution Construction

The input of the SLTSP is a planned and typically infeasible timetable spec-
ifying the desired departure and arrival times of all trains for their respective
journeys. The objective of the SLTSP is to find a feasible and optimal timetable
for all trains, such that each train leaves its origin station at or after its planned
departure time and each line segment is occupied by only one train at a time. For
n trains and m stations any infeasible or feasible solution can be represented as
a n×m matrix of the arrival times of trains in stations. As trains may originate

230 M. Reimann and J.E. Leal

or terminate at any station along the line not all of the entries in this matrix
are necessarily defined.

In our ACO each ant aims at transforming the infeasible planned timetable
into a feasible timetable with a minimum total weighted delay of all trains.
To this end the solution construction mechanism sequentially removes conflicts
between trains. For identifying and removing conflicts we follow most of the
existing works (see e.g. [11]) and consider a time scan, where in each step the
earliest remaining conflict is considered.

Once the earliest conflict has been identified, its resolution is to hold one of
the two involved trains at its entrance station to the congested line segment until
the other train has left the segment. Let i and j denote the two trains in conflict
and let ki and kj be the entrance stations of the two trains to the congested line
segment. If both trains travel in the same direction ki = kj . If trains i and j
travel in opposite directions and i is outbound kj = ki + 1, whereas ki = kj + 1
if train j is outbound. In a slight abuse of notation we will denote the congested
line segment as k below and refer to a conflict by the triple (i, j, k). Then the
decision in ACO is formally based on the following probabilistic rule:

Pi =

⎧⎪⎨
⎪⎩

ηiτijki
ηiτijki+ηjτjikj

if conflict (i, j, k) is to be resolved

0 otherwise.

(12)

Pj = 1− Pi (13)

Here Pi is the probability that the delay between trains i and j in line segment
k is resolved by delaying the entry of train i into segment k until train j has left
this segment. The pseudo-code of this solution construction mechanism is shown
in Figure 1.

procedure Construct a feasible solution {
repeat {

Find the earliest conflict, let this conflict be (i, j, k);
Compute the probabilities of delaying train i or train j in segment k

by equations (12) and (13), respectively ;
Draw a random number r ∈ [0, 1];
if r ≤ Pi delay train i, else delay train j;
Propagate solution and compute the number of remaining conflicts;

} until no more conflicts exist;
Return the feasible solution;

}

Fig. 1. Pseudo-code of the solution construction mechanism

The decision to delay the train i in station ki depends on the (local) heuristic
measures ηi and ηj as well as on the pheromone trails τijki and τjikj which repre-
sent the global evaluation of a decision based on the quality of the solutions found

Single Line Train Scheduling with ACO 231

in previous iterations. Thus, the management of the pheromone trails incorpo-
rates the learning mechanism into the ACO algorithm. Clearly, higher heuristic
values and/or higher pheromone values imply a larger selection probability for
trains i and j, respectively.

In our pheromone representation scheme pheromone trails are related to ex-
plicit conflicts. More precisely, τijki shows the learned desirability of delaying
train i in station ki to resolve conflict (i, j, k) leading to a three-dimensional
n × n × m pheromone matrix. Besides defining the pheromone model we also
need to specify the heuristic measure ηi for a train i. This heuristic measure takes
into account the train priorities wi as well as the computation of the estimated
delay and is given by

ηi =
1

wiξli
, (14)

where ξli is the estimated delay taking into account only the two trains involved
in the current conflict. This estimated delay incurred by a train i facing conflict
(i, j, k) is given by

ξli = (tjkj + δjkj)− tiki (15)

where tjkj is the departure time of train j in station kj and δjkj is the travel
time of train j in the congested segment k it enters after station kj . Clearly, a
smaller delay ξli will lead to a larger value of the heuristic measure ηi and thus
a larger selection probability as mentioned earlier.

Before we turn to the pheromone management let us briefly comment on the
inclusion of local search in our algorithm. In some of the related work local search
based metaheuristics are used (see e.g. [12]). All the operators are based on re-
versing the sequence of two or more trains in one or more segments. Essentially
this will create new conflicts and the evaluation of such a local search move is
possible only after a more or less extensive repair of the solution. Moreover, the
logic of the repair is the same as the logic underlying the solution construction,
namely to reduce conflicts one by one. In a sense, adding a local search in our
algorithm would correspond to a nested implementation of our solution con-
struction mechanism. Since this is computationally expensive we have decided
to refrain from using this kind of local search and rather perform more ACO
iterations.

3.2 Pheromone Initialisation and Update

In the constructive phase of the ACO algorithm decisions are based on both
heuristic information and the pheromone values as described above. At the end
of each iteration, that is, once all ants have gone through solution construc-
tion, the pheromone update procedure is applied to these pheromone values.
The pheromone management used in our algorithm is related to the Hypercube
Framework presented in [1] and the MaxMin Ant System (see e.g. [19]) and a

232 M. Reimann and J.E. Leal

variant of it was first presented in [15]. Formally, the pheromone update rule can
be written as

τijk : = ρτijk + (1− ρ)Δτ∗ijk ∀i, j = 1, ..., n and k = 1, ...,m (16)

where 0 ≤ ρ ≤ 1 is called the trail persistence and Δτ∗ijk is the amount of
reinforcement, which is defined as

Δτ∗ijk =

{
1 if train i is delayed in conflict (i, j, k) in Sb

0 otherwise.
(17)

where Sb is the best solution found up to the current iteration (regardless if it
was found in the current iteration or earlier).

The update strategy presented above is a pure elitist strategy, where for edges
not belonging to Sb no reinforcement takes place and the pheromone on these
edges just evaporates at the rate (1-ρ) towards zero. On the other hand, setting
Δτ∗ijk = 1 for links that are part of the best found solution implies that the
pheromone on these links converges to 1. Together with the fact that at the
beginning of the run, the pheromone values are initialised to 1, that is

τijk = τ0 = 1 ∀i, j = 1, ..., n and k = 1, ...,m (18)

the pheromone values now have a well-defined domain, namely τijk ∈ [0, 1] and
are independent of monotonous transformations of the objective function value.

4 Numerical Analysis

Clearly the focus of our work is on studying the performance of ACO for the
SLTSP. For our implementation of ACO we have chosen the following numerical
parameter settings: ρ = 0.975, τ0 = 1, the number of ants is 20 and the algorithm
was run for a maximum number of 1000 iterations.

Moreover, to get a better understanding of the solution quality obtained with
ACO we have implemented two alternative heuristic approaches for comparison,
namely a deterministic greedy approach, and a randomized heuristic. Let us
briefly describe these heuristics.

Like our ACO, both of these heuristics are based on a sequential resolution
of conflicts according to their time of occurence, i.e. earlier conflicts are resolved
first. They also utilize the same measure for resolving a conflict. However, the
main difference is in the decison making. The deterministic, greedy approach
(referred to as GREEDY hereafter) resolves a conflict according to the following
rule:

Pi =

⎧⎪⎨
⎪⎩
1 if conflict (i, j, k) is to be resolved and ηi ≥ ηj

0 otherwise.

(19)

Single Line Train Scheduling with ACO 233

Pj = 1− Pi (20)

Thus, this algorithm ignores the pheromone and deterministically delays the
train with the smaller weighted delay. Due to its deterministic nature, this algo-
rithm produces one unique solution in negligible time.

The second heuristic (referred to as RANDOM hereafter) is based on a ran-
domized decision rule similar to ACO. Specifically this decision rule is given
by

Pi =

⎧⎪⎨
⎪⎩

ηi

ηi+ηj
if conflict (i, j, k) is to be resolved

0 otherwise.

(21)

Pj = 1− Pi (22)

Compared to ACO we observe that this rule does not utilize the pheromone.
Here the term randomized refers to the fact that decisions are not based on
a deterministic rule, but rather on a probability distribution underlying the
alternatives. While there is some bias in the evaluation of the options this bias
is exogeneous to the search and constant over time such that the randomized
algorithm will not exhibit any learning or convergence. This is in constrast to
the ACO idea, where the learning in form of the pheromones will influence the
bias and lead to some kind of convergence. To enable a fair comparison with
ACO we will compute the same number of solutions, namely 20000. Further we
run the ACO and the RANDOM algorithm 10 times on each instance. All the
heuristics were implemented in C and run on an Intel Core2 Duo SP9400 with
2.4 GHz.

Finally, we implemented the model presented in Section 2 in CPLEX 9.1. and
ran it on the small instances for 3600 seconds with the standard setting on an
Intel Core2 Duo Processor with 2.8 GHz.

There is no set of benchmark instances available to test a new algorithm.
Thus, to test and compare our approaches we generated a set of 128 instances
which differ with respect to several important characteristics of the SLTSP,
including number of trains and stations, train priorities, direction of trains,
origin-destination characteristics of trains and speed of trains. For a thorough
description and analysis of the instances we refer to our working paper [16]. For
the purpose of this paper we will focus on the number and direction of trains.
Concerning the number of trains we will distinguish between 64 small instances
with 10 trains and 64 large instances with 20 trains. Concerning the direction
of trains we distinguish between 64 instances with uni-directional traffic and 64
instances where traffic is allowed in both directions. Thus, we obtain 4 subsets
with 32 instances each.

Let us first look at the small instances. Table 1 shows for all our tested algo-
rithms the number of proven optima found and the average Relative Percentage
Deviations - RPDs - of the best solutions from the best lower bounds returned by

234 M. Reimann and J.E. Leal

CPLEX after 3600 seconds. Further, for the RANDOM and ACO approaches we
also show the RPDs of the average results over the ten runs (termed RPDavg).
We do not list the computation times for the heuristics as they are all below
1 second for each run on each instance. However, the average time taken by
CPLEX to find its best upper bound, i.e. its best feasible solution is around 265
seconds.

Table 1. Number of proven optima found as well as averages of the best and average
RPDs obtained by the different approaches for the different problem classes

Problem CPLEX GREEDY RANDOM ACO
class # of optima RPD # of optima RPD # of optima RPD RPDavg # of optima RPD RPDavg

one-way 28 5.51 13 30.01 28 5.2 5.48 28 5.2 5.75
two-way 23 17.85 1 52.11 22 17.97 19.44 23 17.71 18.42
total 51 11.68 14 41.06 50 11.59 12.46 51 11.45 12.08

From Table 1 we observe that CPLEX is able to find solutions with proven
optimality for 51 out of the 64 small instances. Further, we see that ACO also
finds all these optimal solutions, while the other two algorithms fail to do so.
Concerning the distinction between one-way and two-way instances we observe
that all algorithms perform at least slightly worse for the latter instances in
terms of the number of optima found and clearly worse in terms of the RPD.
However, in terms of the RPD we do not know whether the lower bound or the
upper bound (or both) induce this effect.

Overall we find that ACO and also RANDOM have a smaller RPD than
CPLEX, i.e. these algorithms provide better upper bounds than CPLEX on at
least some of the instances for which optimality is not proven. By looking at
the detailed results we indeed found that ACO outperforms CPLEX on one-way
as well as two-way instances, while RANDOM outperforms CPLEX only on the
former instances. These results provide a first indication of the strength of ACO.

While the best results provide some insights on the quality of an algorithm,
for the randomized algorithms RANDOM and ACO the consideration of aver-
age results is more fair when showing comparisons with deterministic results
as provided by CPLEX (and the GREEDY heuristics). By looking at the corre-
sponding RPDavg columns we observe that the results obtained by the ACO are
quite robust while the variance of the RANDOM approach seems to be larger.
To verify this, we performed statistical testing. Specifically we ran one-sided
Wilcoxon Signed-Rank Tests to compare ACO and RANDOM with respect to
the RPDs of the best (RPD) and average (RPDavg) results on the 95% signif-
icance level. While there was no statistically significant difference in the best
results, for the average results the test returned Z = 1.7 and a p-value of 0.0446,
indicating that ACO outperforms RANDOM on average.

To get a better understanding of the relative performance of the ACO and
RANDOM variants let us now look at the large instances. Given the increased
problem size in combination with the much larger number of conflicts found,

Single Line Train Scheduling with ACO 235

Table 2. Overall performance of the different algorithms on large instances

RANDOM ACO
Problem # of best RPD time # of best RPD time
class solutions best avg. worst sec. solutions best avg. worst sec.
one-way 12 5.28 8.46 11.24 22.28 28 0.19 1.08 2.75 12.11
two-way 2 12.52 16.45 19.61 32.38 20 0.33 3.67 8.19 35.98
total 14 8.9 12.45 15.42 27.33 48 0.26 2.38 5.47 24.04

these instances can be expected to be more difficult and the observed effects
should be more pronounced.

Table 2 shows the overall results of the ACO and RANDOM variants. As we
do not have complete CPLEX results for these instances1 we report for each
algorithm the number of best solutions found, the RPDs (measured w.r.t. the
best known solution of an instance) of the best, average and worst results over
ten runs as well as the average computation times. Due to its already poor
performance on the small instances we did not run the GREEDY algorithm on
the large instances.

Table 2 clearly shows the superiority of ACO over the RANDOM heuristic.
First, the number of best solutions found is much larger in case of ACO. Second,
even the worst RPDs of the ACO is better than the best RPDs of the RANDOM
algorithm. Moreover, this is true both overall as well as for the one-way and two-
way instances separately. Concerning the comparison between these two groups
we again observe the effect that two-way instances seem to be more difficult than
one-way instances for both algorithms. However, again the ACO is more robust
with respect to these traffic conditions. Finally, the overall computation times
of ACO and RANDOM show no systematic difference.

Summarizing, these results show the superiority of the ACO compared with
the RANDOM approach and indicate that the pheromone-based learning helps
in finding near-optimal solutions quickly.

5 Conclusions and Future Research

In this paper we have presented a new ACO metaheuristic for the Single Line
Train Scheduling Problem and found that it not only matches the optimal so-
lutions found by CPLEX for small instances, but it also outperforms CPLEX
for those instances where optimal solutions are not known. Further it reaches
its solutions in much smaller computation times. For the larger instances we
find that the worst solutions returned by ACO are on average better than the
best solutions found by a randomized heuristic, showing the importance of the
pheromone-based learning.

1 We ran CPLEX on a selected number of the instances and even after 7200 seconds
the gaps were partly above 100% and the best upper bounds were far worse than
the results obtained with our heuristics. On a couple of instances CPLEX failed to
find a feasible solution at all.

236 M. Reimann and J.E. Leal

Within the solution construction of ACO an interesting issue for future re-
search is the investigation of different strategies to resolve conflicts, particularly
joint conflicts of more than two trains. In the current version, in each step one
conflict between two trains is resolved ignoring the possibility of additional con-
flicts between a third (fourth,...) train and one or both of the considered trains
in the same track segment. Using a more sophisticated approach for identifying
and resolving such group conflicts can be expected to be more expensive in terms
of computation time, but may improve the solution quality such that an analysis
of this tradeoff should be done.

Acknowledgments. We thank three anonymous referees for their valuable
comments on an earlier version of this paper. The second author thanks the
National Council of Research-CNPq (Brazil) for the Grant which supports this
research.

References

1. Blum, C., Dorigo, M.: The hyper-cube framework for ant colony optimization.
IEEE Transactions on Systems, Man, and Cybernetics-Part B 34, 1161–1172 (2004)

2. Burdett, R.L., Kozan, E.: A disjunctive graph model and framework for construct-
ing new train schedules. European Journal of Operational Research (to appear)

3. Cai, X., Goh, C.J.: A fast heuristic for the train scheduling problem. Computers
and Operations Research 21, 499–510 (1994)

4. Caprara, A., Monaci, M., Toth, P., Guida, P.L.: A lagrangian heuristic algorithm
for a real-world train timetabling problem. Discrete Applied Mathematics 154,
738–753 (2006)

5. Carey, M., Lockwood, D.: A model, algorithms and strategy for train pathing.
Journal of the Operational Research Society 46, 988–1005 (1995)

6. D’Ariano, A., Pacciarelli, D., Pranzo, M.: A branch and bound algorithm for
scheduling trains in a railway network. European Journal of Operational Re-
search 183, 643–657 (2007)

7. Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: optimization by a colony
of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics-Part
B 26, 29–41 (1996)

8. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press/Bradford Books,
Cambridge, MA (2004)

9. Gutjahr, W.J.: A graph-based ant system and its convergence. Future Generation
Computing Systems 16, 873–888 (2000)

10. Gutjahr, W.J.: ACO algorithms with guaranteed convergence to the optimal solu-
tion. Information Processing Letters 82, 145–153 (2002)

11. Higgins, A., Kozan, E., Ferreira, L.: Optimal scheduling of trains on a single line
track. Transportation Research B 30, 147–161 (1996)

12. Higgins, A., Kozan, E., Ferreira, L.: Heuristic techniques for single line train
scheduling. Journal of Heuristics 3, 43–62 (1997)

13. Leal, J.E.: A heuristic approach to the problem of scheduling trains on single lines.
Working paper, Department of Industrial Engineering, PUC-Rio (2008)

Single Line Train Scheduling with ACO 237

14. Oliveira, E., Smith, B.M.: A Combined Constraint-Based Search Method for Single-
Track Railway Scheduling Problem. In: Brazdil, P., Jorge, A. (eds.) EPIA 2001.
LNCS (LNAI), vol. 2258, pp. 371–378. Springer, Heidelberg (2001)

15. Reimann, M.: Combining an Exact Algorithm with an Ant System for Travelling
Salesman Problems. Working paper, University of Vienna (2003)

16. Reimann, M., Leal, J.E.: Single line train scheduling with Ant Colony Optimiza-
tion. Working paper, University of Graz (2011)

17. Sahin, I.: Railway traffic control and train scheduling based on inter-train conflict
management. Transportation Research B 33, 511–534 (1998)

18. Stützle, T., Dorigo, M.: A short convergence proof for a class of ACO algorithms.
IEEE Transactions on Evolutionary Computation 6, 358–365 (2002)

19. Stützle, T., Hoos, H.: The Max-Min Ant System and Local Search for Combina-
torial Optimization Problems. In: Voß, S., Martello, S., Osman, I.H., Roucairol,
C. (eds.) Meta-Heuristics: Advances and Trends in Local Search Paradigms for
Optimization, pp. 313–329. Kluwer, Boston (1999)

20. Szpigel, B.: Optimal train scheduling on a single track railway. In: Ross, M. (ed.)
Proceedings of OR 1972, pp. 343–352. North-Holland, Amsterdam (1973)

21. Tormos, P., Lova, A., Barber, F., Ingolotti, L., Abril, M., Salido, M.A.: A Genetic
Algorithm for Railway Scheduling Problems. In: Xhafa, F., Abraham, A. (eds.)
Metaheuristics for Scheduling in Industrial and Manufacturing Applications. SCI,
vol. 128, pp. 255–276. Springer, Heidelberg (2008)

22. Zhou, X., Zhong, M.: Bicriteria train scheduling for high-speed passenger railroad
planning applications. European Journal of Operational Research 167, 752–771
(2005)

Solving Clique Covering in Very Large Sparse

Random Graphs by a Technique
Based on k-Fixed Coloring Tabu Search

David Chalupa

Slovak University of Technology, Ilkovičova 3, 842 16 Bratislava, Slovakia
chalupa@fiit.stuba.sk

Abstract. We propose a technique for solving the k-fixed variant of the
clique covering problem (k-CCP), where the aim is to determine, whether
a graph can be divided into at most k non-overlapping cliques. The
approach is based on labeling of the vertices with k available labels and
minimizing the number of non-adjacent pairs of vertices with the same
label. This is an inverse strategy to k-fixed graph coloring, similar to a
tabu search algorithm TabuCol. Thus, we call our method TabuCol-CCP.
The technique allowed us to improve the best known results of specialized
heuristics for CCP on very large sparse random graphs. Experiments also
show a promise in scalability, since a large dense graph does not have
to be stored. In addition, we show that Γ function, which is used to
evaluate a solution from the neighborhood in graph coloring in O(1) time,
can be used without modification to do the same in k-CCP. For sparse
graphs, direct use of Γ allows a significant decrease in space complexity
of TabuCol-CCP to O(|E|), with recalculation of fitness possible with
small overhead in O(log deg(v)) time, where deg(v) is the degree of the
vertex, which is relabeled.

Keywords: clique covering, tabu search, k-fixed strategy.

1 Introduction

Let G = [V,E] be an undirected graph and let d(G) = 2|E|
|V |(|V |−1) be its density.

The aim of the (vertex) clique covering problem (CCP) is to find minimum k ≤
|V |, such that there are pairwise disjunct classes V1, V2, ..., Vk ⊂ V , which cover
the whole vertex set, i.e. V1 ∪ V2 ∪ ... ∪ Vk = V , and induce cliques, i.e. ∀i =
1..k d(G(Vi)) = 1. This minimum k is referred to as the clique covering number
and is denoted by ϑ. CCP is known to be NP-hard, with its k-fixed variant
being NP-complete [12]. This k-fixed variant of CCP (k-CCP) is formulated as
the following decision problem: given a fixed k, is there a clique covering with
at most k cliques?

In this paper, we tackle k-CCP by performing tabu search in the space of
vertex labelings with k available labels. In the representation we use, vertices
with the same labels induce subgraphs, which represent cliques in the optimal
solution. Therefore, we use local search to minimize a penalty function, which

M. Middendorf and C. Blum (Eds.): EvoCOP 2013, LNCS 7832, pp. 238–249, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Solving Clique Covering in Very Large Sparse Random Graphs 239

counts the number of non-adjacent vertices with the same labels. This is a very
similar approach to the TabuCol algorithm for graph coloring [9]. Therefore, we
call our method TabuCol-CCP.

Experimental verification is presented for a set of uniform random graphs,
which are very large but sparse, with up to 3 × 104 vertices. The approach is
shown to be promising for its ability to improve the results of the currently
best specialized heuristics for CCP on this type of graphs. Additionally, since
CCP and graph coloring are in a complementary relationship, we present a brief
comparison of scalability for TabuCol-CCP and TabuCol to argue that this is a
better idea than solving graph coloring for the complement. We show that there
is a data structure that allows a decrease in space complexity to O(|E|), instead
of O(|V |2), with recalculation possible in O(log deg(v)) time, where deg(v) is the
degree of the vertex, which is relabeled. This data structure seems to be crucial
for the possibility to further scale this technique for even larger graphs.

The paper is structured as follows. In Section 2, we review the related work
and provide the primary motivation for this paper. In Section 3, we describe our
technique and its components. In Section 4, we discuss the scalability issue. In
Section 5, we present the experimental evaluation of the approach. Finally, in
Section 6, we give conclusions of this work.

2 Related Work

Although CCP is a classical problem [12], there is only a limited number of
results on it. Theoretical foundations seem to be more developed for the edge
clique covering problem, including results in data reductions [8], algorithms for
complex networks [1] or special classes of graphs, such as subtree filament graphs
[13]. Regarding the vertex CCP, which we study in this paper, there is a relatively
recently proposed order-based representation of this problem, where a permuta-
tion of graph’s vertices is mapped to a clique covering with non-fixed number of
cliques. This leads to a minimization problem for the number of cliques [4].

In addition to these theoretical issues, each clique covering with k cliques rep-
resents a graph coloring with k colors for the complementary graph. Therefore,
graph coloring heuristics are useable for both CCP and k-CCP. However, these
algorithms are generally tailored for relatively small instances. For example, the
well-known DIMACS benchmark for graph coloring mostly consists of graphs
with up to 103 vertices [11]. It seems that the largest graph, which is currently
studied, C4000.5, has 4 × 103 vertices1. To the best of our knowledge, current
research overlooks the scalability issue of these heuristics, which seems to be
even more pronounced in k-CCP than in CCP.

In CCP and k-CCP, we may encounter very large graphs (such as samples of
real-world complex networks, by which this research has been originally moti-
vated). Furthermore, these graphs often tend to be sparse. Thus, they might lead
to very dense complements. This leads to situations, where high computational

1 According to a relatively current graph coloring library:
http://www.info.univ-angers.fr/pub/porumbel/graphs/

240 D. Chalupa

demands, which are seemingly the hardest issue already for smaller graphs, are
overshadowed by extreme memory demands in larger graphs. In this paper, we
aim to adapt the ideas used in graph coloring to solve CCP. A similar issue was
addressed in the research on the adaptation of tabu search heuristic STABULUS
for maximum independent set to the maximum clique problem [7].

From the k-fixed algorithms, the most popular algorithmic strategies in graph
coloring include simulated annealing [10] and quantum annealing [16], tabu
search [9] and memetic algorithms, which combine local search with problem-
specific crossovers [14,15]. From the non-k-fixed algorithms, greedy coloring [17]
and Brélaz’s saturation-based heuristic [3] can be used to efficiently estimate a
suboptimal solution for CCP. Order-based representation for CCP provides solid
estimation results without tackling the problem “inversely” through graph col-
oring [4]. However, to find clique coverings with lower k, one might have to fix k
to a constant, since the search space of CCP tends to be often very flat, causing
the algorithms such as iterated greedy [4,5] to search on very large plateaus if k
is non-fixed [6]. Therefore, in this paper, we come up with a k-fixed technique
for solving k-CCP, based on coloring tabu search.

3 The k-Fixed Heuristic Technique for CCP

In this section, we propose the k-fixed technique. Firstly, we formulate the prob-
lem in a suitable way. Secondly, we discuss the neighborhood structure and the
mutation operator. Finally, we provide a detailed specification of the technique
and its components.

3.1 Formulation of the Problem and the Search Space

Let C = {1, 2, ..., k} be the set of k available labels. Then, we have a search space
Ω = CV = {V → C} of all possible labelings of vertices in V with labels from
C. The solution represents a partitioning of the graph, where each subgraph is
induced by the vertices of the same label, similarly as in graph coloring [6].

Regarding the quality function, we will consider a penalty function, which
counts the number of conflicts. In the coloring problem, a conflict occurs when
two vertices, which are adjacent, are labeled with the same color. The objective
is then to minimize the number of conflicts to zero. In k-CCP, we minimize the
number of vertex pairs, which have the same label but are not adjacent. Suppose
that the evaluated solution is S = {V1, V2, ..., Vk}. Then, the objective is to solve
the following minimization problem:

min J(S) =
∑
Vi∈S

∑
v,w∈Vi,v 	=w

(1− A(v, w)), (1)

where v and w are different vertices in class Vi and A(v, w) is an adjacency
function, which is 1, when vertices v and w are adjacent. Otherwise, it is 0.

Solving Clique Covering in Very Large Sparse Random Graphs 241

3.2 The Neighborhood and the Mutation Operator

The neighborhood in our approach will be defined as a set of all solutions, which
are obtained by relabeling a conflicting vertex with each of the k − 1 remaining
labels. Thus, there are (k − 1) × f(S) solutions in the neighborhood, where
f(S) is the number of vertices, which are suitable for relabeling. Suppose that
the current solution is S = {V1, V2, ..., Vk} and vertex v is in class Vc. We will
say that v is conflicting with w, if both v and w are in the same class Vc but
{v, w} /∈ E. If the number of vertices within the class, which are conflicting with
v, is positive, then it makes sense to relabel v, thus, possibly resolving a conflict:∑

w∈Vc,v 	=w

1−A(v, w) > 0. (2)

To provide an efficient implementation for the previous ideas, we will work with
precomputed values. Let us have a function Γ : V × C → N (we assume that
0 ∈ N), for which Γ (v, c) denotes, how many neighbors of v are labeled with c
[2]. The number of non-neighbors of v, which are labeled with c, is:

Γ ∗(v, c) =

{
|Vc| − Γ (v, c)− 1 if v ∈ Vc

|Vc| − Γ (v, c) if v /∈ Vc
(3)

Suppose that we have an initial solution S. To compute the values of the Γ
function for S, we have to iterate only over the edges of the graph, which can
be done in O(|E|) time. For each vertex, we also have to determine, whether it
is conflicting, which, however, takes only O(|V |) time. To evaluate the neigh-
borhood of S, we consider all conflicting vertices. Let J(S) be the value of the
objective function for S. Then, by relabeling a vertex, say v, from label c to
label d, we would obtain a new solution S′, for which the conflicts within Vc

will be resolved and conflicts within Vd will be introduced for v. Therefore,
J(S′) = J(S) − Γ ∗(v, c) + Γ ∗(v, d), which is a strategy used in graph coloring
[2]. By using formula (3), we obtain that:

J(S′) = J(S)− |Vc|+ Γ (v, c) + 1 + |Vd| − Γ (v, d). (4)

When we use this strategy, the complexity of recomputing of the objective func-
tion is O(1). When a move is performed, values in Γ also have to be updated.
This takes O(|V |) steps, but is done less frequently than the fitness recalcula-
tion. In addition, we emphasize the fact that directly the Γ function is used
to perform the recalculation. We will later show that this allows a sparse data
structure to be designed to implement Γ , instead of a large matrix, which would
be intractable to store for extremely large graphs.

3.3 The Local Search Algorithm

In this section, we explain, how we use the previous ideas in the k-fixed tabu
search technique. This method is called The TabuCol-CCP and its basic pseu-
docode is given in Algorithm 1.

242 D. Chalupa

Algorithm 1. The TabuCol-CCP technique

The TabuCol-CCP technique

Input: graph G = [V, E], the number of cliques k
Output: output state S

1 use Brélaz’s heuristic to generate initial S = {V1, V2, ..., Vk}
2 compute matrix Γ , objective value J(S) and the list of conflicting vertices

VCONFL for S by Algorithm 2
3 set SBEST = S, J(SBEST) = J(S) and T = ∅, ttabu = 0
4 while stopping criterion is not met
5 find a move [v, d] to be performed on S by Algorithm 3
6 let c be the label such that v ∈ Vc, set Vc = Vc\{v}, Vd = Vd ∪ {v}

and let the new S = {V1, V2, ..., Vk}, Γ and VCONFL reflect the change
7 T = T ∪ [v, c], set the tabu tenure ttabu for [v, c]
8 set Told which contains moves with expired tabu tenure and let T = T − Told

9 every φ iterations, take the best objective value and worst
objective value and modify ttabu

10 if J(S) < J(SBEST) then SBEST = S, J(SBEST) = J(S)
11 return SBEST

Let us first explain the steps of Algorithm 1 on a conceptual level. In the
step 1, we generate an initial solution S with an adaptation of Brélaz’s graph
coloring heuristic, which will be discussed more precisely later. In the step 2, we
calculate the Γ function for S, along with the list of conflicting vertices VCONFL

and objective value J(S). This is done using a strategy expressed in Algorithm
2. In the step 3, the currently best solution SBEST is set to S, the tabu list T
is reset to an empty set and the tabu tenure ttabu, i.e. the number of iterations,
for which a move is set to tabu, is initialized to 0. Next, an iterative procedure
is performed. In the step 5, we use Algorithm 3 to examine the neighborhood
of current solution S and choose a move [v, d], which should be performed. In
the step 6, we relabel v with d, thus moving v from class Vc to Vd. In the step
7, we set the move [v, c] tabu for several iterations. In the step 8, we decrease
the tabu tenures of current tabu moves and exclude the expired ones. The step
9 is performed only every φ iterations, where we modify the tabu tenure ttabu,
according to the fluctuation of the objective function during the observation
period φ. The details of this step will be discussed later. Finally, in the step
10, we check whether the new solution is better than anything else found so
far. We note that we stop, when the current objective value J(S) is 0 or the
algorithm exceeds some time threshold. At this point, we move to a more detailed
explanation of the more complex steps of Algorithm 1.

Generating the Initial State by Brélaz’s Heuristic. Brélaz’s heuristic is
a classical graph coloring algorithm, which we use in a slightly modified fashion.
The reason why we use it is that for very large graphs, this strategy tends to
generate less conflicts than random assignment of labels. For more details on
the original method, the reader may refer to [3]. In Brélaz’s heuristic, vertices

Solving Clique Covering in Very Large Sparse Random Graphs 243

are ordered in a single greedy procedure and colored in a way that the first
color, which does not induce a conflict, is taken. In graph coloring, this would
mean that we choose the first color, with which no neighbor of the vertex is
colored. In CCP, we use the first label, with which no non-neighbor of the vertex
is labeled. The ordering is determined in the way that vertices with highest
current saturation are chosen, where saturation of a vertex (in the context of
CCP) is the number of labels, which are used in non-neighbors of the vertex at
the particular moment of construction. If there are more vertices with highest
saturation, the one with the lowest degree, i.e. the number of adjacent vertices,
is taken. The vertices, which remained unlabeled, are labeled randomly with one
of the k labels. Both the time and space complexity of Brélaz’s heuristic in this
form is O(|V |2). However, by using the data structure we describe in Section 4,
the space complexity can be decreased to O(|E|) with runtime O(|V |2δ), where
δ is the average degree of graphs’ vertices.

Initialization of Data Structures and the Objective Function. In this
paragraph, we explain the details of the step 2 of Algorithm 1. The procedure
is given in Algorithm 2. In the step 1, we set all values in Γ to zero. In the
step 2, we reset the number of conflicts J(S) and the list of conflicting vertices
VCONFL. Then, in the steps 3-8, we incrementally compute the initial values in
Γ , J(S) and VCONFL. This is done in the following way. For each vertex v ∈ V ,
F denotes the number of vertices, which are in a conflict with v. In the step
4, this value is initialized. Then, we iterate over the neighbors of v and in the
step 6, we change the corresponding value in Γ . If both v and the neighbor w
have the same label, then in the step 7, we exclude w from vertices, which are
conflicting with v, thus, decrementing F . In the step 8, if there is at least one
vertex in conflict with v, we add v to the list of conflicting vertices VCONFL.

Algorithm 2. Computation of matrix Γ , objective value J(S) and list VCONFL

Computation of matrix Γ and objective value J(S) and list VCONFL

Input: input state S
Output: matrix Γ : |V | × k, objective value J(S),
list of conflicting vertices VCONFL

1 for all v ∈ V, c ∈ C let Γ (v, c) = 0
2 set J(S) = 0, VCONFL = ∅
3 for each v ∈ V
4 set F = |Vc|, J(S) = J(S) + |Vc|, where v ∈ Vc

5 for each w such that {v, w} ∈ E
6 set Γ (v, d) = Γ (v, d) + 1, where w ∈ Vd

7 if ∃c [v ∈ Vc ∧ w ∈ Vc] set F = F − 1, J(S) = J(S) − 1
8 if F > 0 set VCONFL = VCONFL ∪ {v}
9 return Γ, J(S), VCONFL

244 D. Chalupa

Algorithm 3. The neighborhood exploration strategy

The neighborhood exploration strategy

Input: current state S = {V1, V2, ..., Vk} with objective value J(S)
and matrix Γ describing its properties, tabu list T ,
aspiration objective value J(SBEST)
Output: the move [v, d] to perform

1 set J(S∗) = ∞
2 for i = 1..|V | × (k − 1)
3 pick uniformly randomly v ∈ VCONFL, v ∈ Vc and d ∈ C such that v /∈ Vd

4 J(S′) = J(S)− |Vc|+ Γ (v, c) + 1 + |Vd| − Γ (v, d)
5 if J(S′) < J(SBEST) ∧ [v, d] ∈ T return [v, d]
6 if J(S′) ≤ J(S) ∧ [v, d] /∈ T return [v, d]
7 if J(S′) ≤ J(S∗) ∧ [v, d] /∈ T set M∗ = [v, d], J(S∗) = J(S′)
8 return M∗

The Neighborhood Exploration Strategy. This procedure is performed in
the step 5 of Algorithm 1 and is specified by Algorithm 3. Here, J(S∗) denotes
the currently best objective value for a solution in the neighborhood of current
solution S. In the step 1, this value is reset. In the steps 2-7, the best move [v, d]
is chosen from a sample of the neighborhood. In each iteration, the algorithm
tries to relabel a conflicting vertex with a new label d. In the step 4, the new
objective value is calculated. In the step 5, the algorithm checks, whether the
new solution is better than anything else found so far. If yes, the algorithm
directly accepts it, even though it might be currently in the tabu list. In the step
6, we handle the case when the move leads to a solution, which is at least as
good as the current solution S. If yes, it directly accepts it, too. In the step 7,
we handle the case when the solution is currently best from the neighborhood
but still not as good as the current solution S. In this case, we only store it as
the currently best neighbor M∗ but continue with the exploration.

The Tabu Tenure Adjustment. The tabu tenure adjustment is performed in
the step 9 of Algorithm 1. It is a very simple procedure but it is controlled by
several parameters.The input to this procedure consists of the best objective value
Jφ,BEST and worst objective value Jφ,WORST , which were recorded during the
observation period of φ iterations. If the difference Jφ,WORST − Jφ,BEST is lower
or equal to a threshold c, then the fluctuation of the objective function indicates
cycling and we increment the tabu tenure by a uniformly chosen random number
between a and b. Otherwise, we assume that the tabu component is not needed for
the moment, thus, we set ttabu = 0, until the fluctuation of the objective function
does not indicate further cycling. We note that this is almost the same strategy
as the FOO tabu scheme known from graph coloring heuristics [2].

4 The Scalability Issue

In this section, we very briefly discuss, how the direct use of Γ function in
formula (4) can be used to further improve scalability of TabuCol-CCP.

Solving Clique Covering in Very Large Sparse Random Graphs 245

The standard implementation technique for the Γ function is a matrix of size
|V |×k, which obviously requires O(k|V |) space. Since for sparse graphs, k tends
to be close to |V |, the space complexity of TabuCol-CCP for this type of graphs
behaves practically asO(|V |2), which is a problem to store for really large graphs.
However, Γ matrix has an interesting property that there are at most deg(v)
non-zero values for vertex v, since there are at most deg(v) labels that can be
possibly used in its neighbors.

Therefore, let us consider the following data structure. For each vertex v ∈ V ,
we have a list of non-zero values, indexed by the labels. Obviously, this structure
requires

∑
v∈V deg(v) = O(|E|) space, which is much better than O(k|V |). Fur-

thermore, suppose that these values are sorted according to labels. This opens
the possibility to use binary search in this array to verify in O(log deg(v)) time,
whether there is a non-zero value of Γ (v, c) for a particular vertex v and label c
or not. For sparse graphs, this might still be an interestingly low computational
complexity, although it introduces some overhead. Insertions and deletions require
O(deg(v)) time, however they are not crucial, since they are performed less fre-
quently. We will shortly discuss the impact of this data structure in Section 5.3.

5 Experimental Evaluation

In this section, we present the experimental results of our approach. In the first
part, we introduce the experimental settings and the test instances. Then, we
give detailed results of our experiments and compare TabuCol-CCP to Brélaz’s
heuristic and iterated greedy (IG) heuristic, which are currently the most inter-
esting strategies for clique covering in such large graphs. Finally, we give a brief
discussion on the scalability of TabuCol-CCP and TabuCol and the impact of
the introduced data structure.

5.1 Experimental Settings

In the following experiments, we used TabuCol-CCP with 1 hour time limit to
solve instances of clique covering for 5 Erdős-Rényi uniform random graphs2 with
different values of k. These graphs are considered to be a standard benchmark
in many problems, including graph coloring [11]. They are generated by starting
with |V | isolated vertices and putting an edge between each pair of vertices with
probability p = δ, where δ is the desired density of the graph.

In the version of TabuCol-CCP we evaluated, the period of the objective func-
tion observation was set to φ = 104, the threshold for tabu incrementation was
c = 2 and the increment for the tabu tenure was a uniformly chosen integer from
[1, 50]. These values were determined during a series of preliminary experiments,
we believe that better performance can be obtained by further adjusting these
parameters. However, we wanted to keep the experimental settings as simple and

2 All instances are publicly available at:
http://www.fiit.stuba.sk/~chalupa/benchmarks/ccp

246 D. Chalupa

general as possible. The maximum tabu tenure was set to |V |, to avoid uncon-
trollable growth of the tabu list. Γ function was used in the basic matrix variant,
the impact of the specialized data structure will be discussed later.

5.2 Detailed Results and Comparison of TabuCol-CCP to Brélaz’s
Heuristic and Order-Based IG Heuristic

In Table 1, we present detailed experimental results of TabuCol-CCP on five
uniform random graphs with up to 3×104 vertices and densities 0.1 in the three
graphs with up to 104 vertices and 0.01 in the case of the two largest graphs.
The first two columns of Table 1 contain the names of the graphs, their numbers
of vertices and edges and the values of k∗, which are the previously published
best results for the graphs in [4], regarding the number of cliques. In the next
columns, we have the values of k - the numbers of cliques, which were fixed for
the test instance, the success rate for 30 independent runs, the average number of
local search iterations in thousands and the average CPU time per run, including
unsuccessful runs. The experiments were run on a standard PC machine with an
Intel Core i5 3.10 GHz CPU and 4 GB RAM, with a sequential implementation
in C++ (g++ compiler was used) being done for a single core.

In the experiments, we began with k equal to the currently best known results,
obtained for the instances using the order-based iterated greedy (IG) heuristic.
This setting led to a 30/30 success rate in all of the test graphs. Thus, it is
highly reliable in reproduction of the current results. Then, by systematically
decreasing k and repeatedly performing search in the k-fixed space, we obtained
improved solutions. We note that the changes in k were chosen simply according
to the experience with previous instances. The values of k, for which TabuCol-
CCP was successful, are considerably far away from the initial results obtained
by order-based algorithms, which shows much promise of this strategy for this
type of graphs. It would probably be interesting to see, how a memetic algorithm
or some distributed local search method would perform on instances with such
low k. However, this is outside of the aim of this paper.

Last but not least, let us present a brief comparison of TabuCol-CCP to
Brélaz’s heuristic (BRE) and the order-based IG heuristic with greedy clique
covering (IG-GCC). Table 2 shows the numbers of cliques needed to cover graphs
by the three approaches. The results of BRE and IG-GCC are taken from [4]
(except the largest graph, which is used in this paper for the first time). We
can see that the Brélaz’s heuristic, although being very fast, is no match for the
two stochastic approaches. Although the order-based representation provides a
foundation for fast optimization, there seems to be a boundary on k in uni-
form random graphs, under which it is hard to get using non-k-fixed strategy.
In IG-GCC, it seems that although the algorithm reaches very reasonable values
of k really quickly, it is hard for it to further decrease k, despite the fact that
it is possible. This practically causes that the k-fixed strategy strongly outper-
forms the non-k-fixed strategy in the quality of results on this type of graphs.
In addition, we do not even know, whether the non-k-fixed strategy problems
are caused by cycling on very large plateaus or by the fact that the algorithm

Solving Clique Covering in Very Large Sparse Random Graphs 247

Table 1. Detailed results of our heuristic technique TabuCol-CCP on the studied
graphs with chosen k, success rate, number of iterations in thousands and average
CPU time

G |V |, |E|, k∗ k succ. iter. (×103) CPU
unif1000 0.1 1000, 49833, 243 243 30/30 231 9 s

228 30/30 21840 18 m
227 12/30 56842 48 m

unif5000 0.1 5000, 1250124, 1066 1066 30/30 72 10 s
1005 30/30 7117 34 m
1000 21/30 10091 53 m
995 1/30 9065 60 m

unif10000 0.1 10000, 4999336, 2025 2025 30/30 106 31 s
1950 30/30 3938 42 m
1940 4/30 4512 59 m

unif20000 0.01 20000, 2001558, 6387 6387 30/30 2430 29 m
6300 30/30 3857 51 m
6280 28/30 4123 56 m
6260 11/30 4389 59 m
6255 3/30 4365 60 m

unif30000 0.01 30000, 4505840,− 9300 30/30 2304 31 m
9000 3/30 3975 60 m
8990 1/30 3735 60 m

Table 2. The comparison of the approximations of ϑ(G) = χ(G) for each graph ob-
tained by the Brélaz’s heuristic (BRE), the order-based IG with greedy clique covering
(IG-GCC) and our TabuCol-CCP heuristic

G TabuCol-CCP Brélaz IG-GCC

unif1000 0.1 227 299 243

unif5000 0.1 995 1241 1066

unif10000 0.1 1940 2326 2025

unif20000 0.01 6255 7640 6387

unif30000 0.01 8990 10870 9300

might be stuck. We note that this observation corresponds well with the evi-
dence from the graph coloring domain [5]. However, to be fair, the results of
TabuCol-CCP also indicate two flaws. The first one is the running time, which
is rather high, although, this is a standard also in graph coloring. The second
issue is that TabuCol-CCP did not seem to provide such good results on some
other graph classes, including samples from social networks. This might be due
to the representation - there might be different k-fixed representations suitable
for different graph classes. However, to conclude on the quality and scalability
issue, TabuCol-CCP seems to be a promising approach for tackling large sparse
random graph, thus, possibly also for other noisy instances.

5.3 Scalability of TabuCol-CCP and TabuCol and the Impact of
the Specific Data Structure

At this point, we move on to the discussion on the scalability of TabuCol-CCP
and TabuCol. Based on the experiments with TabuCol-CCP and estimates on

248 D. Chalupa

memory demands of TabuCol, we can state that both algorithms are useable
for unif20000 0.01, although this seems to be a marginal case for TabuCol. For
unif30000 0.01, we encounter a situation, when only demands of TabuCol-CCP
would be tractable, Γ matrix would be simply too large with our hardware and
software limitations. For larger graphs, also TabuCol-CCP needs to be imple-
mented with the data structure described in Section 4, since Γ matrix grows
too fast for practical use. For a graph with 40000 vertices and density 0.01, we
obtained with IG that ϑ ≤ 12139 and in preliminary experiments, TabuCol-CCP
was able to decrease this to at most 11580, which seems encouraging.

To measure the slowdown caused by the fact that recalculation of fitness
with the specific data structure needs O(log deg(v)) time, we had to consider
the smaller graphs from Table 1, for which both Γ as a matrix and the spe-
cific data structure were useable. We obtained a slowdown from 9 s to 54 s on
(unif1000 0.1, k = 243), from 10 s to 108 s on (unif5000 0.1, k = 1066) and
from 29 m to 76 m on (unif20000 0.1, k = 6387). This indicates computational
demands, which are still tractable, although a possibility to recalculate fitness
in O(1) time and O(|E|) space remains to be an interesting open question.

6 Conclusion

We studied a technique for the (vertex) clique covering problem (CCP) using a
k-fixed strategy and tabu search known from graph coloring. With our approach,
called TabuCol-CCP, we were able to improve the currently best known results,
obtained by using the order-based representation of the problem [4], on very
large but sparse uniform random graphs with up to 3× 104 vertices.

We also showed that by adapting a strategy based on Γ neighbor-label func-
tion, which is used in graph coloring to recalculate fitness in O(1) time, we
can do the same in k-CCP without modifying the Γ function. This allowed us
to design a data structure, which is able to further reduce memory demands
of TabuCol-CCP to O(|E|), with recalculation of fitness done in O(log deg(v))
time, where deg(v) is the degree of the vertex, which is relabeled. This gives a
hint, how to further scale the algorithm.

Therefore, these experimental results show a promise not only in quality but
also in scalability of this strategy in very noisy instances, such as the uniform
random graphs. An open problem is that whether there is a data structure
with O(|E|) space complexity, which would preserve the possibility to do the
recalculation of fitness O(1) in time.

Acknowledgement. The author would like to thank Jǐŕı Posṕıchal and the
anonymous referees for their very valuable comments, which improved the qual-
ity of this work very much. This contribution was supported by Grant Agency
VEGA SR under the grant 1/0553/12.

Solving Clique Covering in Very Large Sparse Random Graphs 249

References

1. Behrisch, M., Taraz, A.: Efficiently covering complex networks with cliques of sim-
ilar vertices. Theor. Comput. Sci. 355(1), 37–47 (2006)

2. Blöchliger, I., Zufferey, N.: A graph coloring heuristic using partial solutions and
a reactive tabu scheme. Comput. Oper. Res. 35(3), 960–975 (2008)

3. Brélaz, D.: New methods to color vertices of a graph. Commun. ACM 22(4), 251–
256 (1979)

4. Chalupa, D.: On the efficiency of an order-based representation in the clique cov-
ering problem. In: Moore, J., Soule, T. (eds.) Proceedings of the 14th Annual Con-
ference on Genetic and Evolutionary Computation, GECCO 2012, pp. 353–360.
ACM, New York (2012)

5. Culberson, J.C., Luo, F.: Exploring the k-colorable landscape with iterated greedy.
In: Johnson, D.S., Trick, M. (eds.) Cliques, Coloring, and Satisfiability: Second
DIMACS Implementation Challenge, pp. 245–284. American Mathematical Society
(1995)

6. Galinier, P., Hertz, A.: A survey of local search methods for graph coloring. Com-
put. Oper. Res. 33(9), 2547–2562 (2006)

7. Gendreau, M., Soriano, P., Salvail, L.: Solving the maximum clique prob-
lem using a tabu search approach. Ann. Oper. Res. 41, 385–403 (1993),
http://dx.doi.org/10.1007/BF02023002

8. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Data reduction and exact algo-
rithms for clique cover. J. Exp. Algorithmics 13, 2:2.2–2:2.15 (2009)

9. Hertz, A., de Werra, D.: Using tabu search techniques for graph coloring. Comput-
ing 39(4), 345–351 (1987)

10. Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C.: Optimization by sim-
ulated annealing: an experimental evaluation; part II, graph coloring and number
partitioning. Oper. Res. 39(3), 378–406 (1991)

11. Johnson, D.S., Trick, M.: Cliques, Coloring, and Satisfiability: Second DIMACS
Implementation Challenge. American Mathematical Society, Boston (1996)

12. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R., Thatcher,
J. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, New
York (1972)

13. Keil, J.M., Stewart, L.: Approximating the minimum clique cover and other hard
problems in subtree filament graphs. Discrete Appl. Math. 154(14), 1983–1995
(2006)

14. Lü, Z., Hao, J.K.: A Memetic Algorithm for Graph Coloring. Eur. J. Oper.
Res. 203(1), 241–250 (2010)

15. Porumbel, D.C., Hao, J.K., Kuntz, P.: An evolutionary approach with diversity
guarantee and well-informed grouping recombination for graph coloring. Comput.
Oper. Res. 37(10), 1822–1832 (2010)

16. Titiloye, O., Crispin, A.: Quantum annealing of the graph coloring problem. Dis-
crete Optim. 8(2), 376–384 (2011)

17. Welsh, D.J.A., Powell, M.B.: An upper bound for the chromatic number of a graph
and its application to timetabling problems. The Comput. J. 10(1), 85–86 (1967)

http://dx.doi.org/10.1007/BF02023002

Solving the Virtual Network Mapping Problem

with Construction Heuristics, Local Search
and Variable Neighborhood Descent�

Johannes Inführ and Günther R. Raidl

Institute of Computer Graphics and Algorithms
Vienna University of Technology, Vienna, Austria

{infuehr,raidl}@ads.tuwien.ac.at
http://www.ads.tuwien.ac.at

Abstract. The Virtual Network Mapping Problem arises in the con-
text of Future Internet research. Multiple virtual networks with different
characteristics are defined to suit specific applications. These virtual net-
works, with all of the resources they require, need to be realized in one
physical network in a most cost effective way. Two properties make this
problem challenging: Already finding any valid mapping of all virtual
networks into the physical network without exceeding the resource ca-
pacities is NP-hard, and the problem consists of two strongly dependent
stages as the implementation of a virtual network’s connections can only
be decided once the locations of the virtual nodes in the physical network
are fixed. In this work we introduce various construction heuristics, Local
Search and Variable Neighborhood Descent approaches and perform an
extensive computational study to evaluate the strengths and weaknesses
of each proposed solution method.

Keywords: Virtual Network Mapping Problem, Construction Heuris-
tics, Local Search, Variable Neighborhood Descent, Future Internet.

1 Introduction

The Internet has ossified [18]. Core parts of the network protocols have not
been updated for more than a decade and the introduction of new services and
technology is difficult, time consuming and costly. Improvements to the network
protocols, however desirable or necessary, do not see widespread adoption if they
could break existing features. Examples include Explicit Congestion Notification
[19] or Differentiated Services (a quality of service framework) [3].

The Future Internet research community is currently searching for ways to
overcome the ossification of the Internet and network virtualization has been
identified as a promising technology to do this [1,2]. With the help of virtu-
alization, changes to the core protocols of the Internet can be deployed in an

� This work has been funded by the Vienna Science and Technology Fund (WWTF)
through project ICT10-027.

M. Middendorf and C. Blum (Eds.): EvoCOP 2013, LNCS 7832, pp. 250–261, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.ads.tuwien.ac.at

Solving the VNMP with Construction Heuristics, LS and VND 251

incremental and non-disruptive fashion. This idea can be developed even fur-
ther, if one does not view virtual networks as a necessary crutch to move from
one technology to the next, but instead as an integral feature of the network.
If multiple virtual networks are present, then each of them can have different
properties, different protocols, tailored specifically to a user group. In scientific
network testbeds such as GENI [7], PlanetLab [6] or G-Lab [22] network virtu-
alization techniques are already in use to share the underlying network infras-
tructure (substrate) among different research groups. For a survey on network
virtualization, its application and available technologies, see [4].

The Virtual Network Mapping Problem (VNMP) arises in this context. Given
are multiple virtual networks (VNs) which need to be realized by using resources
present in the substrate. We model the substrate by a directed graph G = (V,A)
with node set V and arc set A. The VNs are modeled by the disconnected
components of the directed graph G′ = (V ′, A′). The set M ⊆ V ′ × V defines
the allowed mappings between virtual and substrate nodes. By s(a) and t(a),
∀a ∈ A ∪ A′ we denote the arc’s source and target node, respectively. Each VN
node k ∈ V ′ requires CPU power ck ∈ N

+ (to implement custom protocols,
etc.), each arc f ∈ A′ requires bandwidth (BW) bf ∈ N

+ and has a maximum
allowed delay df . Substrate nodes i ∈ V have an associated CPU power ci ∈ N

+,
which is used to power the VN nodes mapped to i, but also to route BW.
One unit of CPU power is required to route one unit of BW. Substrate arcs
e ∈ A have a BW capacity be ∈ N

+ and a delay de ∈ N
+. The objective is

to find a mapping m : V ′ → V of virtual nodes to substrate nodes such that
(k,m(k)) ∈ M, ∀k ∈ V ′ and the total CPU load on each i ∈ V caused by
mapped virtual nodes and traversing implementations of virtual arcs does not
exceed ci. Furthermore, we have to find for each f ∈ A′ a substrate path Pf ⊆ A
leading from m(s(f)) to m(t(f)) with a delay of at most df . The BW capacity of
substrate arcs has to be respected by those paths. These are required properties
of a valid solution.

We want to implement the virtual networks with as low costs as possible.
Every substrate node i ∈ V has an associated usage cost pVi ∈ N

+ which is
paid when at least one VN node is mapped to it. Additionally, every substrate
arc e ∈ A has a usage cost pAe ∈ N

+ which is paid when at least one virtual
connection uses it. The sum of substrate node and arc usage costs, the total
usage cost Cu, is the objective to be minimized.

As already mentioned, just finding a valid solution to this problem is NP-hard,
so we cannot expect efficient heuristic methods to always be able to find valid
solutions. For optimization purposes, we want to be able to determine how far
solutions are away from validity so we can prefer solutions closer to validity. To
do this, every node i ∈ V can increase its available CPU power by aCPU

i units
for the cost of CCPU per unit and every arc e ∈ A can increase its available BW
by aBW

e units for the cost of CBW per unit. The sum of the costs for additional
resources in the substrate will be denoted as Ca; for valid solutions Ca = 0. In
our experiments we set CCPU = 1 and CBW = 5 to reflect the fact that it is
easier to add CPU power to a router than to increase the BW of a data link.

252 J. Inführ and G.R. Raidl

3 4

8

4 10

7 9

(5;10)

(7;6)

(5;3)
(3;10)

(5;7)
(8;4)

(7;3)

a' b'

a

b c

d e

Virtual Graph G'

Substrate Graph G

Mapping M

Fig. 1. Example of a VNMP instance

For comparing two solutions, we used lexicographic ordering, i.e., smaller Ca is
preferred and if it is equal smaller Cu is preferred.

Figure 1 shows a small VNMP instance. It contains the virtual network graph
G′ consisting of one VN with two nodes (a′ and b′), the substrate graph G (nodes
a to e) and the allowed mapping from the virtual network to the substrate nodes
(dashed lines). Node labels define the CPU requirements for VN nodes and the
available CPU power for substrate nodes. Costs have been omitted for clarity.
Arc labels denote bandwidths and delays. Note that in this example, b′ actually
cannot be mapped to c, even though c offers enough CPU capacity. This is
because there is no path from a to c that satisfies the constraints of the virtual
connection between a′ and b′. Node b cannot be used, because its CPU power of
4 is not enough to route the required BW of 5. The direct connection from a to
c does not offer enough BW and the path using d exceeds the delay limit. The
only feasible solution to this instance is to map a′ to a and b′ to e and implement
the connection between a′ and b′ by the path (a, d, e).

In the following Sections, we will introduce construction heuristics, Local
Search and Variable Neighborhood Descent algorithms for solving olso larger
instances of the VNMP and show that depending on the available run-time, ev-
ery heuristic can be the best choice. Local Search is the most versatile approach,
which depending on configuration can either perform similar to the Construction
Heuristics, to Variable Neighborhood Descent or somewhere in-between. We also
compare the presented heuristics with the exact method proposed in [15].

2 Related Work

Virtual Network Mapping Problems have received considerable scientific in-
terest in recent years due to their relevance to Future Internet research (e.g.
[5,9,11,17,20,21,23,24,25]). The core problem solved in these works is the same:
virtual networks have to be realized by means of a physical network. The de-
tails however, are always different. This can already be seen when comparing
the names of the problems. Typical names include Virtual Network Embedding,
Virtual Network Assignment or Network Testbed Mapping. A further area for
differences are the resources the virtual networks require. The one demand that
is nearly universally considered is bandwidth, but there is no consensus on how

Solving the VNMP with Construction Heuristics, LS and VND 253

this demand is taken into account. One method is to use traffic bounds to de-
scribe a whole range of BW requirements that there has to be a feasible routing
for all of them (e.g. [9,17]). Another is to specify the node-to-node communi-
cation demand in the form of a traffic matrix (e.g. [23]). If another resource is
taken into account, it is the required CPU processing power of each virtual node
(e.g. [20,24]). The considered substrate sizes vary between 20 [17] and 100 [25]
nodes and are either real or synthetic topologies.

VNMPs have been solved by simulated annealing [21], (quadratic) mixed in-
teger programming [5,9,15,17], approximation algorithms [9], distributed algo-
rithms [11], multicommodity flow algorithms [23,24] or algorithms especially
tailored to the considered problem variant [20,25]. To the best of our knowledge,
this is the first application and comparison of the trade-off of construction heuris-
tics, Local Search and Variable Neighborhood Descent in the context of virtual
network mapping. The VNMP variant solved in this work is very general, since
it considers CPU and BW resources, path delays, mapping constraints and the
influence of routing overhead on CPU resources. Therefore most algorithms pre-
sented in previous work do not apply, with the exception of the exact approach
of [15], which we will use for comparisons. Furthermore, we use test instances
that are freely available for comparison and designed with a focus on realism, in
both size (up to 1000 nodes) and structure.

3 Construction Heuristics

A Construction Heuristic (CH) is used to create solutions to problems by follow-
ing heuristic rules that guide the construction process towards feasible solutions
of high quality. For the VNMP, we can already see that these are conflicting
objectives; guiding towards feasibility means spreading resource use across the
whole substrate, which causes Cu to be unnecessarily high. Trying to pack VNs
densely will most likely lead to high Ca, so some kind of balancing is required.
Fortunately, constructing a solution to the VNMP can be split into four different
phases that are iterated and in each phase we can focus on different aspects of
the solution. The four phases are: selecting a virtual node to map (SVN), select-
ing a target for the node (TVN), selecting a virtual arc to implement (SVA) and
implementing the arc (IVA). Additionally, there can be an emphasis on map-
ping the nodes (NE) or an emphasis on implementing virtual arcs (AE). With
NE, all nodes will be mapped before virtual arcs are implemented. With AE,
all implementable virtual arcs will be implemented before a next virtual node is
mapped. Since a virtual arc f can only be implemented if m(s(f)) and m(t(f))
have already been fixed, AE variants will also start by mapping at least two
nodes, but then mapping of virtual nodes and implementing virtual arcs will be
interleaved instead of strictly sequentially as it is done with NE.

Table 1 lists the considered strategies. Note that for the TVN strategies, only
substrate nodes allowed by M are regarded. If a strategy does not find a feasible
node, the one with the most free resources is chosen. The SVA strategies only
consider implementable virtual arcs. All IVA strategies implement a virtual arc

254 J. Inführ and G.R. Raidl

Table 1. Implemented SVN, TVN, SVA and IVA strategies

Name Description

SVN1 Selects the next unmapped node of V ′.
SVN2 Selects the node with the highest sum of CPU requirement and connected BW.
SVN3 Selects with SVN2 from the VN with highest total CPU and BW requirement that has

still unmapped nodes left. Concentrating on one VN when selecting nodes supports AE
variants, because virtual arcs become implementable much faster.

SVN4 Selects with SVN2 from the VN with the lowest total sum of allowed delays and un-
mapped nodes.

TVN1 Maps a virtual node to the first substrate node with enough free CPU capacity.
TVN2 Maps to the first substrate node with enough free CPU capacity to support the CPU

requirements and the total connected BW of the virtual node (total CPU load).
TVN3 Maps to the substrate node with the most free CPU capacity. If there are multiple

choices, the one with the most free incoming and outgoing BW is used as map target.
TVN4 Maps to the substrate node with enough free resources (w.r.t. total CPU load) and least

increase of Cu.

SVA1 Selects the next arc.
SVA2 Selects the arc with the highest BW requirement.
SVA3 Selects arc with the smallest delay.
SVA4 Selects the arc f with the smallest fraction of allowed delay to shortest possible delay

between m(s(f)) and m(t(f)).

IVA1 Arcs have a cost of 0 if they are already used, or their usage cost otherwise. Arcs without
enough free BW cost 106.

IVA2-n The cost of an arc is the sum the fraction of the arcs free BW the virtual arc would use
and the fraction of free CPU power the virtual arc would use on the node the substrate
arc connects to. This cost is then taken to the power of n ∈ {0.5, 1, 2}.

f by finding a Delay Constrained Shortest Path in the substrate from m(s(f))
to m(t(f)) via the Dynamic Program from [8]. The only difference between the
strategies is the calculation of the substrate arc costs, which define the length of
a path. If the following strategies define no specific order of nodes or arcs, it is
arbitrary.

These strategies result in a total of 512 different construction heuristics, the
results of their evaluation can be found in Sect. 7. The strategies were kept
simple to keep running times short as the following heuristics build on the best
CH variants.

4 Local Search

The basic idea of Local Search (LS) is that a found solution to a problem may
be improved by iteratively making small changes. The solutions immediately
reachable from a starting solution S are defined by a neighborhood N(S). LS
starts with a solution S and replaces it with a better solution from N(S) until
no more improvements can be found. For selecting the neighbor, we use the two
standard strategies first-improvement (select the first improving solution) and
best-improvement (select the best solution from a neighborhood).

Solving the VNMP with Construction Heuristics, LS and VND 255

Table 2. Implemented neighborhoods for LS

Name Description

N1 Removes the implementation of an arc.
N2 Removes a virtual node and the implementations of its adjacent arcs.
N3 Removes all virtual nodes and implementations of all virtual arcs of a VN.
N4 Removes the implementation of all virtual arcs using a specific substrate arc.
N5 Removes all virtual nodes and the implementation of all arcs using a specific substrate

node.
N6 Like N2, but tries mapping the virtual node to all allowed substrate nodes instead of

delegating this task to the CH during rebuilding.

The six implemented neighborhoods are listed in Table 2. They all share the
common idea that they remove a part of a complete solution (like the implemen-
tation of a virtual arc) and then complete the solution again by applying a CH.
The neighborhood descriptions will skip this rebuilding step.

For each neighborhood, there is a natural order in which to evaluate the
neighbors (e.g., clearing the first substrate node, clearing the second one and so
on). However, we might be able to speed up the search process by trying other,
more promising, neighbors first. For finding valid solutions, the most promising
neighbors are those that might change Ca, e.g., changing the mapping of a virtual
node that is mapped to an overloaded substrate node. We will call this strategy
OverloadingFirst. A more extreme variant of this is OnlyOverloading, which only
considers the neighbors that OverloadingFirst prefers.

5 Variable Neighborhood Descent

The neighborhoods discussed in the previous section can be applied in com-
bination with a variable neighborhood descent (VND) algorithm [10]. A VND
utilizes a series of neighborhoods N1 . . . Nk. An initial solution is improved by
N1 until no more improvements can be found, then N2 is applied to the solution
and so on. If Nk fails, VND terminates. If an improved solution is found in some
neighborhood, VND restarts with N1. We use the neighborhoods of the previ-
ous section in two variants: as described and in the OnlyOverloading variant,
which we will denote with a prime. For example, N ′

5 is the neighborhood of all
solutions reachable by clearing an overloaded substrate node. Table 3 lists the
tested neighborhood configurations.

6 Test Instances

This Section describes the used VNMP instances. The substrates are subgraphs
of the NREN (National Research and Education Networks) network [16] which
contains European research networks and their interconnects. It’s one of the
largest freely available networks based on physical network structure (1100 nodes)
and has geo-location information embedded which is used for defining meaningful

256 J. Inführ and G.R. Raidl

Table 3. Implemented neighborhood configurations for VND

Name Description

C1 N ′
1 N ′

2 N ′
3 N ′

4 N ′
5 N ′

6 N1 N2 N3 N4 N5 N6. All neighborhoods, in order of their size.
C2 N ′

1 N ′
2 N ′

3 N ′
4 N ′

5 N ′
6. All OnlyOverloading neighborhoods.

C3 N1 N2 N3 N4 N5 N6. All complete neighborhoods.
C4 N6 N5 N4 N3 N2 N1. Neighborhoods that produce the largest changes first.
C5 N ′

1 N ′
2 N ′

3. Only neighborhoods of C2 yielding improvements based on preliminary re-
sults.

C6 N ′
3 N ′

2 N ′
1. C5 in reverse order.

Table 4. Properties of the VNMP instances: average number of substrate nodes (V)
and arcs (A), virtual nodes (V ′) and arcs (A′), total usage costs (C) and the average
number of allowed map targets for each virtual node (MV ′)

Size |V | |A| |V ′| |A′| C |MV ′ |
20 20 40.8 220.7 431.5 1536.0 3.8
30 30 65.8 276.9 629.0 2426.6 4.9
50 50 116.4 398.9 946.9 4298.1 6.8

100 100 233.4 704.6 1753.1 8539.1 11.1
200 200 490.2 691.5 1694.7 17584.2 17.3
500 500 1247.3 707.7 1732.5 44531.8 30.2

1000 1000 2528.6 700.2 1722.8 89958.4 47.2

mapping constraints. The instance set contains substrates of 20 to 1000 nodes,
30 instances of each size. The VN sizes are chosen uniformly at random from
[5,min(30, 0.3 ∗ |V |)]. In order to reflect realistic use cases, the VNMP instances
contain 10 VNs of each of four different types: Stream, Web, Peer-to-Peer (P2P)
and Voice-over-IP (VoIP).

Stream VNs have a tree structure and model video streaming services. They
have high BW and CPU requirements but are not delay constrained. Web VNs
have a star structure and very low BW and CPU requirements but hard delay
constraints. P2P and VoIP VNs have small world structure. P2P VNs have high
BW and medium CPU requirements, but no delay constraints. VoIP VNs have
medium CPU and BW requirements and moderate delay constraints.

Bandwidth and CPU capacities of the substrates are based on the require-
ments of a random implementation of all VNs. Table 4 shows the main properties
of the instance set, which is available at [14].

7 Results

Each CH, LS and VND variant was tested on the full instance set as described
in Section 6. Additionally, each instance was tested with different loads, i.e.,
reduced numbers of VNs. A load of 0.5 means that only 50% of the VNs of each
type were used. Load levels of 0.1, 0.5, 0.8 and 1 were tested, which results in
a total of 840 test instances (120 per size). The proposed algorithms have been

Solving the VNMP with Construction Heuristics, LS and VND 257

run on one core of an Intel Xeon E5540 multi-core system with 2.53 GHz and
3 GB RAM per core. A CPU-time limit of 1000 seconds was applied.

We evaluated each algorithm from two points of view: Capability of finding
valid solutions and capability of finding a best solution among all considered
algorithms. To evaluate the second aspect, we cannot search for the lowest av-
erage Cu values, because higher values might be better if Ca is lower. Therefore
we used the following ranking procedure to compare different algorithms: Con-
sidering a specific instance, the algorithm that achieves the best solution gets
assigned rank 0, the second best rank 1 and so on. Algorithms with the same
results share the same rank and no rank is skipped afterwards. The relative rank
Rrel of an algorithm when solving a particular instance is its rank divided by
the highest rank for this instance. Average Rrel values can be compared in a
meaningful way. For example, an average Rrel of 0.1 means that the algorithm
in question belongs to the top 10% of all compared algorithms over the compared
instances.

7.1 Construction Heuristics

Before we could compare all implemented heuristics, we needed to identify
promising CH variants which can be used to generate the initial solution for
LS and VND and perform the rebuilding step of the proposed neighborhoods.

Considering the average Rrel of each construction heuristic variant over all
tested instances, the best construction heuristic (CH1) reached a Rrel of 0.093.
It used the strategies SVN3, TVN3, SVA4 and IVA1 with AE and was able to
find valid solutions to 60.8% of all instances. This strategy is geared towards
reducing Cu. For initialization purposes it might be interesting to use a strategy
that focuses on finding valid solutions and leave cost reductions to the used
neighborhoods, so we changed the IVA to IVA2-1. This variant is denoted with
CH2 and is able to find valid solutions to 70.8% of all instances. The results
showed that the best CH variants according to Rrel exclusively used TVN3,
which introduces a strong bias towards validity that might hamper LS and VND
during the search for minimal Cu with neighborhoods that remove the mapping
of a node. So for the third CH variant (CH3), we changed the TVN of CH1 to
TVN4. Both CH1 and CH2 were tested for initialization, all three were tested for
rebuilding. This led to 216 LS and 72 VND variants. Now follows their evaluation
and comparison.

7.2 Comparing CH, LS and VND

Figure 2 shows the trade-off between low Rrel and low run-time for all tested
heuristics over all instances. Label (A) marks the best non-dominated construc-
tion heuristics. They all use SVN4 and TVN3. They emphasise implementing
arcs, so the selected SVA strategy has not a lot of influence. This can be seen
here since the two visible configurations are actually multiple configurations us-
ing different SVA strategies. The faster but slightly worse clusters use IVA2-1,
while the better CH methods use IVA2-2.

258 J. Inführ and G.R. Raidl

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.1 1 10 100

R
re

l

Run-time [s]

(A)

(B)
(C)

(D)
(E) (F) (G)

(H)
(I) (J)

CH
LS

VND
Pareto-Optimal

Fig. 2. Pareto-front of the tested heuristics regarding average Rrel and run-time over
all instances

Label (B) marks the first LS strategies. They use N2 in the OnlyOverloading
variant with first-improvement. Because they use the reduced neighborhoods,
they are very fast, even faster than some of the tested CH variants. A marginally
better ranking can be achieved by initializing with CH1 instead of CH2. The
small visible differences are caused by different rebuilding strategies. The LS
variants at (C) use neighborhood N4 (faster) and N5 (slower). Otherwise they
are equivalent to the better ranked variants at (B).

The run-time jump from (C) to (D) is caused by not using the neighborhoods
in the OnlyOverloading variant. Also, starting with the LS configurations at (D),
only CH3 is used to rebuild solutions. The effect of using CH3 can be seen compar-
ing the unlabeled LS configuration between (C) and (D) and the faster variant at
(D). They are equivalent except for the rebuilding strategy. The variants at (D)
use N3 with first-improvement and OverloadingFirst. Again using CH1 instead
of CH2 for initialization causes better ranking but longer run-times. The variants
close to the marked ones do not use OverloadingFirst. Variant (E) offers a slight
improvement in rank at a high run-time cost by switching to best-improvement.
The pattern visible at (D) and (E) is repeated twice with (F) and (G), and (H)
and (I). The difference is the used neighborhood, at (F) N2 is used, at (H) N5.

The heuristics at (J) mark the emergence of VND as best solution heuristic.
Using VND instead of the best LS variant halves Rrel at the cost of doubling
the average run-time. The two visible different clusters are caused by the dif-
ference between first-improvement (faster) and best-improvement (lower Rrel).
Both clusters contain VND variants using C1 and C3.

Figure 3 shows the trade-off between solving instances, i.e., just finding a
feasible solution and low run-time. Label (A) marks the best non-dominated
CHs. They use SVN4, TVN3 and IVA2-1 and AE. Seven percent more instances
can be solved when switching to SVN3, marked with (B). The small differences
in performance visible at (A) and (B) are caused by different SVA strategies,
SVA2 performs better than SVA3.

Solving the VNMP with Construction Heuristics, LS and VND 259

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0.1 1 10 100

F
ra

ct
io

n
of

 s
ol

ve
d

in
st

an
ce

s

Run-time [s]

(A)

(B)

(C)

(D)
(E) (F)

(G)

CH
LS

VND
Pareto-Optimal

Fig. 3. Pareto-front of the tested heuristics regarding the fraction of solved instances
and run-time over all instances

The heuristics at (C) are the first Pareto-optimal LS heuristics. They use N3

with first-improvement in the OnlyOverloading configuration. Both use CH2 to
construct the initial solution. Using CH3 instead of CH1 for rebuilding causes the
increase in solved instances. All of the following algorithms use this configuration
for initialization and rebuilding.

The first VND variants (using C6) can be seen at (D). Since they start with
the same neighborhood as the LS at (C) but also search other neighborhoods,
they perform slightly better than LS. The better but slower variant at (D) uses
best-improvement instead of first-improvement.

Once again we can observe the run-time increase caused by considering the
complete neighborhoods, this time between (D) and (E). The LS variants at (E)
use N2 with first-improvement and prioritisation (faster) or without (marginally
better). The variant at (F) is the same as the faster one at (E), but with best-
improvement. The VND configurations C1 and C3 can be found at (G). The
faster configurations use first-improvement, the others best-improvement.

We further compare the heuristics with the Integer Linear Programming (ILP)
approach presented in [15] (with slight modifications to account for differences
in the problem definition). For solving the ILP with CPLEX 12.4 [12], we used a
time-limit of 10000 seconds and a memory limit of 4 GB. In general, the heuristic
methods are able to solve far more instances while requiring only a fraction of the
ILP’s run-time. On the other hand, the exact approach can solve instances that
none of the tested heuristics could and even solved four instances of the largest
size to optimality. All instances of size 20 could be solved to optimality with an
average run-time of 131 seconds. The best algorithm variants of all classes are
compared in Table 5. Among other things, it shows the average relative decrease
in Cu required (Cu-Gap) for each algorithm to match the performance of the
ILP. This value is only based on instances that could be solved by the considered
algorithm. Due to space limitations we cannot show a more detailed analysis here
and refer instead to [13].

260 J. Inführ and G.R. Raidl

Table 5. The best algorithms of each class (according to the number of solved in-
stances S or their average Rrel), their average runtime t and Cu-Gap over all instances.
Bracketed values are the number of instances considered for calculating Cu-Gap.

Algorithm S Rrel t[s] Cu-Gap[%]

CH: SVN4, TVN3, SVA4, IVA1, AE 511 0.236 0.3 24.0 (434)
CH: SVN3, TVN3, SVA1, IVA2-1, AE 650 0.248 0.2 30.8 (512)
LS: N2, best-improvement, OverloadingFirst, CH2, CH3 703 0.049 115.0 8.7 (511)
LS: N6, best-improvement, OverloadingFirst, CH2, CH1 764 0.096 258.5 18.3 (518)
VND: C1, best-improvement, CH2, CH3 773 0.019 226.9 7.1 (519)
VND: C1, best-improvement, CH1, CH2 774 0.093 264.7 18.1 (520)
ILP 527 - 2466.0 0.0 (527)

8 Conclusion

In this work, we compared 512 CH, 216 LS and 72 VND algorithms. We could
show that for the VNMP, each algorithm class has its application area: CHs
for finding solutions fast, VND for finding the best solutions and LS covering
the range in-between, depending on the used neighborhoods. For CHs, the most
important strategy is the target choice for virtual nodes, so this is a clear area
of interest for future improvements. For LS we could see that best-improvement
works slightly better than first-improvement, but at a significant run-time cost.
Reducing the neighborhood size also reduced the performance, but brought the
execution speed into CH territory. VND benefited from the reduced neighbor-
hoods too when searching for valid solutions. For LS, the initialization strategy
has a pronounced influence on the result. For the best ranking, CH1 was used
while CH2 was the better strategy when comparing the number of found valid
solutions. The discussed VND variants produced the best results, but at a high
run-time cost. Some fine-tuning with respect to the neighborhood configurations
is still necessary.

References

1. Anderson, T., Peterson, L., Shenker, S., Turner, J.: Overcoming the Internet im-
passe through virtualization. Computer 38(4), 34–41 (2005)

2. Berl, A., Fischer, A., de Meer, H.: Virtualisierung im Future Internet. Informatik-
Spektrum 33, 186–194 (2010)

3. Carlson, M., Weiss, W., Blake, S., Wang, Z., Black, D., Davies, E.: An architecture
for differentiated services. IETF, RFC 2475 (1998)

4. Chowdhury, N.M.K., Boutaba, R.: A survey of network virtualization. Computer
Networks 54(5), 862–876 (2010)

5. Chowdhury, N., Rahman, M., Boutaba, R.: Virtual network embedding with coor-
dinated node and link mapping. In: INFOCOM 2009, pp. 783–791 (2009)

6. Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson, L., Wawrzoniak, M., Bow-
man, M.: Planetlab: an overlay testbed for broad-coverage services. SIGCOMM
Comput. Commun. Rev. 33, 3–12 (2003)

Solving the VNMP with Construction Heuristics, LS and VND 261

7. GENI.net: Global Environment for Network Innovations (2012),
http://www.geni.net

8. Gouveia, L., Paias, A., Sharma, D.: Modeling and solving the rooted distance-
constrained minimum spanning tree problem. Computers & Operations Re-
search 35(2), 600–613 (2008)

9. Gupta, A., Kleinberg, J., Kumar, A., Rastogi, R., Yener, B.: Provisioning a virtual
private network: a network design problem for multicommodity flow. In: STOC
2001, pp. 389–398 (2001)

10. Hansen, P., Mladenović, N.: Variable neighborhood search: Principles and applica-
tions. European Journal of Operational Research 130(3), 449–467 (2001)

11. Houidi, I., Louati, W., Zeghlache, D.: A distributed virtual network mapping al-
gorithm. In: IEEE International Conference on Communications, ICC 2008, pp.
5634–5640 (2008)

12. IBM ILOG: CPLEX 12.4, http://www-01.ibm.com/software/integration/

optimization/cplex-optimizer

13. Inführ, J., Raidl, G.R.: Data supplement, https://www.ads.tuwien.ac.at/

projects/optFI-wiki/images/a/a7/DataSupplement.pdf

14. Inführ, J., Raidl, G.R.: The Virtual Network Mapping Problem benchmark set,
https://www.ads.tuwien.ac.at/projects/optFI/

15. Inführ, J., Raidl, G.R.: Introducing the Virtual Network Mapping Problem with
Delay, Routing and Location Constraints. In: Pahl, J., Reiners, T., Voß, S. (eds.)
INOC 2011. LNCS, vol. 6701, pp. 105–117. Springer, Heidelberg (2011)

16. Knight, S., Nguyen, H., Falkner, N., Roughan, M.: Realistic network topology
construction and emulation from multiple data sources. Tech. rep., The University
of Adelaide (2012)

17. Lu, J., Turner, J.: Efficient mapping of virtual networks onto a shared substrate.
Tech. rep., Washington University in St. Louis (2006)

18. National Research Council: Looking Over the Fence at Networks. National
Academy Press (2001)

19. Ramakrishnan, K.K., Floyd, S., Black, D.: The addition of explicit congestion
notification (ECN) to IP. IETF, RFC 3168 (2001)

20. Razzaq, A., Rathore, M.S.: An approach towards resource efficient virtual network
embedding. In: Proceedings of the 2010 2nd International Conference on Evolving
Internet, INTERNET 2010, pp. 68–73. IEEE Computer Society (2010)

21. Ricci, R., Alfeld, C., Lepreau, J.: A solver for the network testbed mapping
problem. Special Interest Group on Data Communication Comput. Commun.
Rev. 33(2), 65–81 (2003)

22. Schwerdel, D., Günther, D., Henjes, R., Reuther, B., Müller, P.: German-Lab Ex-
perimental Facility. In: Berre, A.J., Gómez-Pérez, A., Tutschku, K., Fensel, D.
(eds.) FIS 2010. LNCS, vol. 6369, pp. 1–10. Springer, Heidelberg (2010)

23. Szeto, W., Iraqi, Y., Boutaba, R.: A multi-commodity flow based approach to
virtual network resource allocation. In: Global Telecommunications Conference,
GLOBECOM 2003, vol. 6, pp. 3004–3008. IEEE (2003)

24. Yeow, W.L., Westphal, C., Kozat, U.: Designing and embedding reliable virtual
infrastructures. In: Proceedings of the Second ACM Special Interest Group on
Data Communication Workshop on Virtualized Infrastructure Systems and Archi-
tectures, VISA 2010, pp. 33–40. ACM, New York (2010)

25. Zhu, Y., Ammar, M.: Algorithms for assigning substrate network resources to vir-
tual network components. In: Proceedings of the 25th IEEE International Confer-
ence on Computer Communications, INFOCOM 2006, pp. 1–12 (2006)

http://www.geni.net
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer
https://www.ads.tuwien.ac.at/projects/optFI-wiki/images/a/a7/DataSupplement.pdf
https://www.ads.tuwien.ac.at/projects/optFI-wiki/images/a/a7/DataSupplement.pdf
https://www.ads.tuwien.ac.at/projects/optFI/

The Generate-and-Solve Framework Revisited:

Generating by Simulated Annealing

Rommel D. Saraiva1, Napoleão V. Nepomuceno2, and Plácido R. Pinheiro2

1 State University of Ceará (UECE), Fortaleza, Brazil
2 Graduate Program in Applied Informatics, University of Fortaleza (UNIFOR),

Fortaleza, Brazil

Abstract. The Generate-and-Solve is a hybrid framework to cope with
hard combinatorial optimization problems by artificially reducing the
search space of solutions. In this framework, a metaheuristic engine works
as a generator of reduced instances of the problem. These instances, in
turn, can be more easily handled by an exact solver to provide a feasible
(optimal) solution to the original problem. This approach has commonly
employed genetic algorithms and it has been particularly effective in deal-
ing with cutting and packing problems. In this paper, we present an in-
stantiation of the framework for tackling the constrained two-dimensional
non-guillotine cutting problem and the container loading problem using
a simulated annealing generator. We conducted computational experi-
ments on a set of difficult benchmark instances. Results show that the
simulated annealing implementation overachieves previous versions of
the Generate-and-Solve framework. In addition, the framework is shown
to be competitive with current state-of-the-art approaches to solve the
problems studied here.

Keywords: Combinatorial Optimization, Hybrid Metaheuristics, Cut-
ting and Packing, Simulated Annealing, Integer Programming.

1 Introduction

Combinatorial optimization is concerned with problems for which we need to
find an optimal solution over a well-defined discrete space of potential solutions.
Combinatorial Optimization Problems (COPs) arise in many real-world appli-
cations, such as vehicle routing, network design, machine scheduling, etc. These
problems are usually NP-hard, meaning that there do not exist deterministic
polynomial-time algorithms to solve these problems, unless P = NP. In practice,
it means that often instances of practical interest of COPs cannot be solved to
proven optimality in reasonable time. Due to their practical and theoretical rel-
evance, many different solution methods have been proposed for tackling COPs.

In recent years, the hybridization of metaheuristics (e.g., genetic algorithms,
simulated annealing, and tabu search) with mathematical programming tech-
niques (e.g., branch-and-bound, constraint programming, and cutting plane algo-
rithms) has originated very powerful methods one should recur to confront hard

M. Middendorf and C. Blum (Eds.): EvoCOP 2013, LNCS 7832, pp. 262–273, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

The Generate-and-Solve Framework Revisited 263

COPs, especially because they usually incorporate complementary strengths
from different optimization techniques. These methods are commonly referred
to as “hybrid metaheuristics” [1].

In this paper, we investigate a novel instantiation of the Generate-and-Solve
(GS) optimization framework recently proposed in [2][3]. This framework im-
plements an iterative methodology, which complies directly with the aforemen-
tioned hybridization precept, to achieve approximate solutions to hard COPs.
The methodology can be summarized as follows: A metaheuristic engine works
as a generator of reduced instances of the COP at hand, which are formulated
as Integer Linear Programming (ILP) models. These instances, in turn, can be
more easily handled by an ILP solver. Besides providing a feasible (optimal)
solution to the original problem, the performance measures accomplished by the
ILP models are interpreted as score values by the metaheuristic, thus guiding
its search for promising reduced instances.

Thanks to the good levels of flexibility and adaptability exhibited by genetic
algorithms, this class of heuristics has been the usual choice for the metaheuristic
engine of the GS framework [2][3][4][5]. Differently, we investigate an instantia-
tion of the framework for tackling the constrained two-dimensional non-guillotine
cutting problem and the container loading problem using a simulated anneal-
ing algorithm [6]. We conducted computational experiments on a set of difficult
benchmark instances. Results show that the simulated annealing implementation
overachieves previous versions of the GS framework.

Moreover, the GS framework is shown to be fairly competitive – in terms of
effectiveness – with current state-of-the-art approaches to solve the problems
studied here. On the one hand, although these alternative approaches are more
time-efficient, they commonly rely on problem-specific knowlegde to obtain good
solutions. On the other hand, since many COPs can be straightforwardly formu-
lated as integer programs, the conceptual components of the GS framework can
be easily customized to cope well with different classes of COPs.

The paper is organized as follows. In Section 2, we present some recent ad-
vances in solving the constrained two-dimensional non-guillotine cutting problem
and the container loading problem. We then propose an instantiation of the GS
framework for tackling these problems in Section 3. Section 4 is devoted to dis-
cussing our computational results on benchmark problem instances. Some final
remarks and comments on future work conclude the paper with Section 5.

2 Cutting and Packing Problems

According to Wascher [7], Cutting and Packing (C&P) problems can be sum-
marized as follows: Consider two sets of elements, namely a set of large objects
and a set of small items, which are defined in a particular number of geometric
dimensions. Select some or all small items, group them into one or more subsets
and assign each of the resulting subsets to one of the large objects such that (1)
all small items of the subset lie entirely within the corresponding large object, (2)
the small items do not overlap, and (3) a given objective function is optimized.
Special types of C&P problems are characterized by additional properties.

264 R.D. Saraiva, N.V. Nepomuceno, and P.R. Pinheiro

In what follows, we focus on two particular C&P problems belonging to the
class of NP-hard combinatorial optimization problems: the constrained two-
dimensional non-guillotine cutting problem and the container loading problem.

2.1 The Constrained Two-Dimensional Non-guillotine Cutting
Problem

The constrained two-dimensional non-guillotine cutting problem consists of cut-
ting small rectangular pieces of predetermined types from one large rectangular
object so as to maximize the value of the pieces cut. The number of pieces of
each type that are cut must lie within prescribed limits. Each piece has a fixed
orientation and must be cut with its edges parallel to the edges of the large
object. The pattern must be a non-guillotine cutting pattern (see Fig.1).

(a) A guillotine cutting pattern. (b) A non-guillotine cutting pattern.

Fig. 1. The cutting pattern (a) can be obtained by means of sucessive guillotine cuts,
i.e. cuts that run from one edge of a rectangle to its opposite edge. Conversely, the
cutting pattern (b) cannot be produced with the use of guillotine cuts.

Several heuristic algorithms to solve this problem have been proposed in the
last few years. Beasley [8], for example, introduced a population heuristic al-
gorithm, based on insight from a mathematical formulation of the problem, in
which intermediate solutions explicitly state coordinates of the pieces. A penalty
in the objective function avoids overlap. The algorithm is capable of efficiently
generating good solutions for typical test problems taken from the literature
and a number of large randomly generated problems. However, the heuristic is
unable to reproduce known optimal solutions for smaller instances.

In [9], Alvarez et al proposed a GRASP algorithm that combines a constructive
phase and an improvement phase. In the constructive phase, a solution is built
step by step by adding a new piece to a partial cutting pattern. The selection
of the piece is based on a greedy function and subjected to a randomization
process. In the improvement phase, the solution generated at the constructive
phase is used as starting point for a local search procedure that considers different
improvement alternatives. The authors presented a tabu search algorithm in [10].
Both GRASP and tabu-search algorithms were able to achieve very impressive
results on the data used in [8].

The Generate-and-Solve Framework Revisited 265

In [11], Egeblad and Pisinger proposed a simulated annealing based approach
that makes use of a pair of sequences to represent a cutting pattern. In each
iteration, the sequence pair is slightly modified and transformed to a cutting
pattern in order to evaluate its objective value. Improving solutions are promptly
accepted while non-improving solutions are accepted with probability that de-
creases over time. This approach is generally able to reproduce the results of
exact algorithms with similar running times.

More recently, the application of the GS hybrid framework to solve the con-
strained two-dimensional non-guillotine cutting problem has provided competi-
tive solutions [3][4][5]. These studies are discussed in more details in Section 3.

2.2 The Container Loading Problem

The container loading problem consists of packing boxes into a container. Given
the dimensions of the container and boxes which need to be loaded, the problem
aims at finding an arrangement of boxes that optimizes a given objective func-
tion - in general, the maximum volume of the loaded boxes. In addition to the
geometric constraints, other restrictions can also be considered, such as boxes
orientation and cargo stability.

This problem has already been confronted by means of different heuristic
approaches. In one of the best known studies on this problem [12], George and
Robinson described a wall-building procedure to create layers across the depth
of the container. The loading is dictated by a list of priorities that establishes the
order of allocation of the boxes and the size of each layer. Similar problem-specific
heuristics were then proposed by Loh and Nee [13], Bischoff and Ratcliff [14],
and Bischoff et al [15]. The instances presented in [13] are commonly used for
benchmarking purposes.

In [16], Gehring and Bortfeldt proposed a genetic algorithm with a stack
building heuristic. First a set of stable towers of boxes are generated by the
greedy method and, then, the two-dimensional problem of arranging the box
towers on the floor of the container is solved by means of the genetic algorithm.
The authors also presented a tabu search algorithm with cuboid arrangement
heuristic [17] and a wall building heuristic in a genetic algorithm [18]. In [19],
Eley designed a similar approach in which initially a greedy heuristic is used to
build homogeneous blocks of identically orientated items and, then, a tree search
is responsible for improving the solutions provided by the greedy heuristic.

More recently, Liang et al [20] presented a successful hybrid methodology
in which first an ant colony optimization algorithm constructs box towers and,
after that, a genetic algorithm defines the sequence of arrangement of the towers
built in the first phase. Conversely, Yap et al [21] conceived a two-phased ant
colony optimization in which a tower building approach is used as the inner
heuristic. An instantiation of the GS hybrid framework to solve the container
loading problem as well appeared in [2].

266 R.D. Saraiva, N.V. Nepomuceno, and P.R. Pinheiro

3 The Generate-and-Solve Framework

It is well known that exact and heuristic techniques present pros and cons when
dealing with hard COPs. In fact, the application of an exact method whenever
possible is commonly the procedure of choice. However, as the size and com-
plexity of the optimization problems at hand increase, exact algorithms become
prohibitive. In these cases, the use of heuristic components within a solution
framework may be very helpful.

Following this general idea, the Generate-and-Solve framework prescribes the
integration of two distinct conceptual components: the Generator of Reduced
Instances (GRI) and the Solver of Reduced Instances (SRI), as illustrated in
Fig. 2. An exact method (e.g., ILP solver) encapsulated in the SRI component
is in charge of solving reduced instances of the original problem (i.e., subprob-
lems) that still preserve the original problem’s conceptual structure. Thus, a
feasible solution to a given subproblem will also be a feasible solution to the
original problem. At a higher level, a metaheuristic component (e.g., a genetic
algorithm) works on the complementary optimization problem of generating the
reduced instance which, when submitted to the SRI, brings about the best fea-
sible solution. The objective function values of the solutions realized by the SRI
are in turn used as figure of merit (fitness) of their associated subproblems, thus
guiding the metaheuristic search process.

The GS hybrid framework was originally applied to solve the container load-
ing problem [2]. Satisfactory results obtained on the data instances by Bischoff
and Ratcliff [14] soon led to an instantiation of the framework to the con-
strained two-dimensional non-guillotine cutting problem [3]. In these studies, the
method of choice for the Generator of Reduced Instances was a genetic algorithm
and a LINGO 8.0 DLL for the Solver of Reduced Instances. Although yielding

Fig. 2. The Generate-and-Solve framework

The Generate-and-Solve Framework Revisited 267

high-quality results, the authors reported that some reduced instances could not
be solved, or even generated, due to the complexity of the subproblems and/or
to computational limitations of the solver.

This fact raised the suspicion that the original version of the GS is ham-
pered by a serious drawback, namely, its tendency to produce subproblems of
increasing complexity too prematurely. This drawback is circumvented with the
adoption of the density control operator mechanism proposed in [4], whose role
is to adaptively control the increase in the size of the generated subproblems
so as to allow a much steadier progress towards a better solution. Besides,
the authors made use of the IBM ILOG CPLEX solver in a way as to enhance
the performance of the SRI. Finally, in order to improve the performance of the
GRI component, the utilization of a uniform order-based crossover operator was
investigated in [5].

In what follows, we present a new instantiation of the framework which makes
use of a simulated annealing engine to generate the reduced instances.

3.1 Problem Formulation

To formulate the constrained two-dimensional non-guillotine cutting problem,
we resort to the ILP model proposed in [22]. Consider a set of pieces grouped
into m types. For each item type i, characterized by its length li, width wi, and
value vi, there is an associated number of pieces bi. Consider also a large object
that has (L,W) as its length and width dimensions respectively. The pieces
should be cut orthogonally from the object. Each 0-1 variable uide represents
the decision of whether to cut or not a piece of type i at the coordinate (d, e).

uide =

{
1, if a piece of type i is put at position (d, e),

0, otherwise.

The elements d and e belong, respectively, to the following discretization sets:

X = {x|x =
m∑
i=1

αili, x ≤ L− min
i=1,...,m

{li}, αi ≥ 0, αi ∈ Z
+}

Y = {y|y =

m∑
i=1

βiwi, y ≤ W − min
i=1,...,m

{wi}, βi ≥ 0, βi ∈ Z
+}

To avoid the overlapping of pieces, the incidence matrix gidepq is defined as:

gidepq =

{
1, if d ≤ p ≤ d+ li − 1 and e ≤ q ≤ e+ wi − 1,

0, otherwise.

which has to be computed a priori for each type i, for each coordinate (d, e), and
for each coordinate (p, q).

Finally, the constrained two-dimensional non-guillotine cutting problem can
be formulated as the following standard ILP model.

268 R.D. Saraiva, N.V. Nepomuceno, and P.R. Pinheiro

max

m∑
i=1

∑
d∈X

∑
e∈Y

viuide (1a)

s.t.
m∑
i=1

∑
d∈X

∑
e∈Y

gidepquide ≤ 1 ∀p ∈ X, ∀q ∈ Y (1b)

∑
d∈X

∑
e∈Y

uide ≤ bi i = 1, . . . ,m (1c)

uide ∈ {0, 1} i = 1, . . . ,m, ∀d ∈ X, ∀e ∈ Y (1d)

This model contains O(m|X ||Y |) variables and O(|X ||Y |) constraints. Since the
product of the cardinalities of the discretization sets X and Y may be too large
for some problem instances, the number of contraints and variables can easily
reach the order of millions, which discourages the use of classical Integer Linear
Programming techniques.

Reduced instances of the original problem can be generated by excluding some
of the piece types and/or some of the positions demarcated by the discretization
sets. In this work, in particular, the reducible structure chosen amounts solely
to the coordinates (d, e) from the discretization sets X and Y .

A straightforward model extension to the container loading problem can be
found in [2]. It includes the components needed to take into account the height
dimension of the container, particularly a new discretization set Z.

3.2 Generator of Reduced Instances

A simulated annealing algorithm has been implemented to account for the GRI
task. Each configuration of the algorithm encodes a reduced instance of the
original problem. The configuration is represented by a binary structure whose
size is determined by the sum of the cardinalities of the discretization sets. Each
bit represents one element of a discretization set, as shown in Figure 3. Only
elements whose corresponding bits have value of 1 will effectively take part in
the reduced instance to be solved by the exact method.

Therefore, the subproblem generated is an ILP model containing all the con-
straints present in the complete formulation, but only a subset of its decision

Fig. 3. Binary structure of a configuration

The Generate-and-Solve Framework Revisited 269

variables. Thus, it can be seen that the subproblem retains the constraint struc-
ture of the original problem, along with the property that each solution to the
subproblem will also constitute a feasible solution to the original problem. The
solution value attained for each subproblem provides the fitness value of the
corresponding configuration in the simulated annealing generator.

The initial configuration S0 is obtained in the following manner: (1) we ran-
domly choose one piece and (2) we set to 1 only the bits whose corresponding
elements are multiples of the respective dimension (i.e., length, width, or height)
of the selected piece. At each iteration of the simulated annealing algorithm, a
random perturbation that flips one correlative bit of each discretization set is
performed in the configuration Si−1 to obtain the configuration Si. We then
follow the original description of the simulated annealing process [6], where the
algorithm replaces the current configuration by the new configuration with a
probability that depends on the difference between the corresponding fitness
values and a global parameter T , called the temperature. A maximum number
of iterations n, dependent on the initial temperature T0 and the cooling stepsize,
and a runtime limit t are used together as stopping criterion.

4 Computational Experiments

Computations were carried out on a desktop machine with a 3.60 GHz Intel i7
CPU and 8GB RAM. We adopt IBM ILOG CPLEX 12.4 as underlying solver of
the SRI. The GRI runs a simulated annealing algorithm implemented in Java.
After preliminary experiments, we set the initial temperature T0 = 500 which is
decreased by 5 in each iteration of the simulated annealing algorithm, leading
to a maximum number of iterations n = 100.

We conducted a series of experiments on benchmark problems from the liter-
ature. We ran the framework 10 times for each problem instance. The computa-
tional results are discussed in what follows.

4.1 Results for the Constrained Two-Dimensional Non-guillotine
Cutting Problem

For the constrained two-dimensional non-guillotine cutting problem, we set a
maximum limit on the execution time of the GS framework to 1800 seconds.
In addition, we assume a time limit of 120 seconds of computation for each
subproblem submitted to the SRI.

Since classical instances found in [23] can be solved through the application
of IBM ILOG CPLEX 12.4 alone, we concentrate our analysis on two classes of
instances from the literature commonly referred to as okp and ngcutfs.

In Table 1, we present a comparison of the results achieved with different
implementations of the GS framework. GS-SA denotes our work. Best and Av-
erage denote, respectively, the best solution among those produced by all runs
of the respective technique and the average solution value. The last instance is
the only one for which the best solution found by GS-SA is worst than previous

270 R.D. Saraiva, N.V. Nepomuceno, and P.R. Pinheiro

Table 1. Comparative results of different GS framework implementations

Nepomuceno Saraiva and Pinheiro
et al [3] Pinheiro [5] et al [4] GS-SA

Instance Best Average Best Average Best Average Best Average

okp1 27,360 – 27,539 – 27,539 27,506 27,589 27,513
okp2 21,888 – 22,502 – 22,502 22,235 22,502 22,286
okp3 23,743 – 24,019 – 24,019 23,932 24,019 23,904
okp4 32,018 – 32,893 – 32,893 32,441 32,893 32,304
okp5 27,923 – 27,923 – 27,923 26,601 27,923 26,789

ngcutfs1-1 – – 27,888 – 28,032 27,918 28,032 27,987
ngcutfs1-2 – – 28,946 – 28,946 28,268 28,946 28,405
ngcutfs1-3 – – 27,966 – 27,966 27,932 27,966 27,926
ngcutfs1-4 – – 28,494 – 28,494 28,117 28,494 28,458
ngcutfs1-5 – – 28,677 – 28,677 28,677 28,677 28,677

ngcutfs3-1 – – – – 28,315 28,271 28,315 28,041
ngcutfs3-2 – – – – 28,046 27,905 28,046 27,942
ngcutfs3-3 – – – – 28,877 28,777 28,889 28,848
ngcutfs3-4 – – – – 26,604 26,506 26,868 26,447
ngcutfs3-5 – – – – 27,787 27,558 27,531 27,396

versions of the framework. In addition, taking into account the maximum limit
on the execution time of four hours used in [4], GS-SA presents a remarkable
improvement of performance in terms of time efficiency.

GS-SA has noteworthy effectiveness, as evidenced in Table 2 where we present
a comparison with some state-of-the-art heuristics, having the okp class of prob-
lems as target. Except for the instance okp1, GS-SA was able to find optimal
solutions for all instances of this class. Only Valdes et al [10] attain the optimum
for all okp instances. It is important to say that these alternative approaches
rely on problem-specific knowlegde and are usually more time-efficient.

Table 2. Comparative analysis of state-of-the-art algorithms

Valdes Valdes Egeblad and
Instance Beasley [8] et al [9] et al [10] Pisinger [11] GS-SA Optimum

okp1 27,486 27,589 27,718 27,718 27,589 27,718
okp2 21,976 21,976 22,502 22,214 22,502 22,502
okp3 23,743 23,743 24,019 24,019 24,019 24,019
okp4 31,269 32,893 32,893 32,893 32,893 32,893
okp5 26,332 27,923 27,923 27,923 27,923 27,923

Average 26,161 26,825 27,011 26,953 26,985 27,011

The Generate-and-Solve Framework Revisited 271

Table 3. Comparative analysis of state-of-the-art algorithms

Bischoff and Bischoff Gehring and Bortfeldt and Bortfeldt and Liang Yap
Instance Ratcliff [14] et al [15] Bortfeldt [16] Gehring [17] Gehring [18] Eley [19] et al [20] et al [21] GS-SA

LN01 62.5 62.5 62.5 62.5 62.5 62.5 62.5 62.5 62.5
LN02 90.0 89.7 89.5 96.6 89.8 90.8 89.7 87.9 89.9
LN03 53.4 53.4 53.4 53.4 53.4 53.4 53.4 53.4 53.4
LN04 55.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0
LN05 77.2 77.2 77.2 77.2 77.2 77.2 77.2 77.2 77.2
LN06 83.1 89.5 91.1 91.2 92.4 87.9 91.4 91.0 87.1
LN07 78.7 83.9 83.3 84.7 84.7 84.7 84.6 83.8 82.8
LN08 59.4 59.4 59.4 59.4 59.4 59.4 59.4 59.4 59.4
LN09 61.9 61.9 61.9 61.9 61.9 61.9 61.9 61.9 61.9
LN10 67.3 67.3 67.3 67.3 67.3 67.3 67.3 67.3 67.3
LN11 62.2 62.2 62.2 62.2 62.2 62.2 62.2 62.2 62.2
LN12 78.5 76.5 78.5 78.5 78.5 78.5 78.5 78.5 78.5
LN13 78.1 82.3 85.6 84.3 85.6 85.6 85.6 85.6 85.6
LN14 62.8 62.8 62.8 62.8 62.8 62.8 62.8 62.2 62.8
LN15 59.5 59.5 59.5 59.5 59.5 59.5 59.5 59.5 59.5

Average 68.6 69.5 69.9 70.4 70.1 69.9 70.0 69.9 69.7

4.2 Results for the Container Loading Problem

To cope with the container loading problem, we employ a layer construction
component proposed in [2] in which the problem is solved stepwise. At each it-
eration, a new layer is created across the depth of the container and solved by
the hybrid framework. The depth of each layer is set according to the largest
dimension among the boxes that are still available. In the last iteration, if the
length of the free space becomes smaller than the depth of the layer, we incorpo-
rate the residual space to this layer. For each layer, we set a time limit of 1200
seconds on the execution time of the GS framework. Besides, we set a time limit
of 180 seconds of computation for each subproblem submitted to the SRI.

Experiments are conducted on a benchmark data set usually referred to as
LN [13], which consists of 15 problem instances, each with a different number
of box type and container’s dimensions. We do not find in the literature results
to these particular instances obtained by the application of the GS framework.

In Table 3, we present a comparison of the results achieved by some state-of-
the-art methodologies to solve the container loading problem. The values in this
table represent the percentage of volume utilization. Values in boldface indicates
that GS-SA solutions are proven optimal. To sum up, with regard to the average
volume utilization, it can be stated that the GS-SA did not achieve the solution
quality of some state-of-the-art methodologies when applied to these particular
instances. Regardless, GS-SA attained proven optimal solutions for 12 of 15 of
these instances and the average percentage of volume utilization is only 0.7%
worse compared to the best value found in the literature [17].

272 R.D. Saraiva, N.V. Nepomuceno, and P.R. Pinheiro

5 Conclusion and Future Work

In this work, we presented a novel instantiation of the Generate-and-Solve frame-
work. Briefly, we substitute the metaheuristic engine (viz. genetic algorithm)
used in previous versions of the framework for a simulated annealing algorithm.
We tackled two C&P problems: the constrained two-dimensional non-guillotine
cutting problem and the container loading problem.

Computational results on difficult benchmark instances show that the simu-
lated annealing implementation overachieves previous versions of the Generate-
and-Solve framework in terms of efficiency and effectiveness. We understand
that, without applying recombination such as the typical crossover operator of
genetic algorithms, the simulated annealing algorithm prevents the disruption
of the building blocks of good solutions.

In addition, the framework is shown to be competitive with current state-
of-the-art approaches to solve these problems. This is particularly remarkable
because these alternative approaches commonly rely on problem-specific knowl-
egde to obtain good solutions. On the contrary, the GS framework can potentially
cope well with different classes of combinatorial optimization problems.

As future work, we shall apply the hybrid framework to other classes of
combinatorial optimization problems and investigate other metaheuristics. We
also envisage to tackle the container loading problem through a two-phase opti-
mization methodology, such as the prominent approaches by Gehring and Bort-
feldt [16] [17], in which first a set of towers of boxes are generated and, then,
the two-dimensional problem of arranging the box towers on the floor of the
container could be solved by means of the GS framework.

Acknowledgment. This work has been financially supported by CNPq/Brazil
via research grant #305844/2011-3. The authors also acknowledge IBM for mak-
ing the IBM ILOG CPLEX Optimization Studio available to the academic
community.

References

1. Blum, C., Aguilera, M.J.B., Roli, A., Sampels, M. (eds.): Hybrid Metaheuristics:
An Emerging Approach to Optimization. SCI, vol. 114. Springer, Heidelberg (2008)

2. Nepomuceno, N., Pinheiro, P., Coelho, A.L.V.: Tackling the Container Loading
Problem: A Hybrid Approach Based on Integer Linear Programming and Genetic
Algorithms. In: Cotta, C., van Hemert, J. (eds.) EvoCOP 2007. LNCS, vol. 4446,
pp. 154–165. Springer, Heidelberg (2007)

3. Nepomuceno, N., Pinheiro, P., Coelho, A.L.V.: A Hybrid Optimization Framework
for Cutting and Packing Problems: Case Study on Constrained 2D Non-guillotine
Cutting. In: Cotta, C., van Hemert, J. (eds.) Recent Advances in Evolutionary
Computation for Combinatorial Optimization. SCI, vol. 153, pp. 87–99. Springer,
Heidelberg (2008)

The Generate-and-Solve Framework Revisited 273

4. Pinheiro, P.R., Coelho, A.L.V., de Aguiar, A.B., Bonates, T.O.: On the concept
of density control and its application to a hybrid optimization framework: Investi-
gation into cutting problems. Computers & Industrial Engineering 61(3), 463–472
(2011)

5. Saraiva, R.D., Pinheiro, P.R.: A novel application of crossover operator to a hybrid
optimization framework: Investigation into cutting problems. In: CEC, pp. 1–7.
IEEE (2012)

6. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220(4598), 671–680 (1983)

7. Wäscher, G., Haußner, H., Schumann, H.: An improved typology of cutting and
packing problems. European Journal of Operational Research 183(3), 1109–1130
(2007)

8. Beasley, J.E.: A population heuristic for constrained two-dimensional non-guillotine
cutting. European Journal of Operational Research 156(3), 601–627 (2004)

9. Valdes, R.A., Parreño, F., Tamarit, J.M.: A GRASP algorithm for constrained
two-dimensional non-guillotine cutting problems. The Journal of the Operational
Research Society 56(4), 414–425 (2005)

10. Valdes, R.A., Parreño, F., Tamarit, J.M.: A tabu search algorithm for a two-
dimensional non-guillotine cutting problem. European Journal of Operational Re-
search 183(3), 1167–1182 (2007)

11. Egeblad, J., Pisinger, D.: Heuristic approaches for the two- and three-dimensional
knapsack packing problem. Computers & Operations Research 36(4), 1026–1049
(2009)

12. George, J.A., Robinson, D.F.: A heuristic for packing boxes into a container. Com-
puters & Operations Research 7(3), 147–156 (1980)

13. Loh, T.H., Nee, A.Y.C.: A packing algorithm for hexahedral boxes. In: Proceedings
of the Conference of Industrial Automation, pp. 115–126 (1992)

14. Bischoff, E., Ratcliff, M.: Issues in the development of approaches to container
loading. Omega 23(4), 377–390 (1995)

15. Bischoff, E.E., Janetz, F., Ratcliff, M.S.W.: Loading pallets with non-identical
items. European Journal of Operational Research 84(3), 681–692 (1995)

16. Gehring, H., Bortfeldt, A.: A genetic algorithm for solving the container load-
ing problem. International Transactions in Operational Research 4(5-6), 401–418
(1997)

17. Bortfeldt, A., Gehring, H.: Ein tabu search-verfahren für containerbeladeprobleme
mit schwach heterogenem kistenvorrat. OR Spektrum 20(1), 237–250 (1998)

18. Bortfeldt, A., Gehring, H.: A hybrid genetic algorithm for the container loading
problem. European Journal of Operational Research 131(1), 143–161 (2001)

19. Eley, M.: Solving container loading problems by block arrangement. European
Journal of Operational Research 141(2), 393–409 (2002)

20. Liang, S., Lee, C., Huang, S.: A hybrid meta-heuristic for the container loading
problem. Communications of the IIMA 7(4), 73–84 (2007)

21. Yap, C., Lee, L., Majid, Z., Seow, H.: Ant colony optimization for container loading
problem. Journal of Mathematics and Statistics 8(2), 169–175 (2012)

22. Beasley, J.E.: An exact two-dimensional non-guillotine cutting tree search proce-
dure. Operations Research 33(1), 49–64 (1985)

23. Beasley, J.E.: OR-Library: distributing test problems by electronic mail. Journal
of the Operational Research Society 41(11), 1069–1072 (1990)

Author Index

Abbasian, Reza 37
Affenzeller, Michael 109
Arbelaez, Alejandro 157
Asta, Shahriar 169

Beham, Andreas 109
Benlic, Una 61
Bezerra, Leonardo C.T. 85

Cervante, Liam 25
Chalupa, David 238
Chu, Wenqing 49
Codognet, Philippe 157
Cremene, Marcel 73
Cui, Shanshan 49

Dréo, Johann 202
Dumitrescu, Dumitru 73

Eliahou, Shalom 191
Etaner-Uyar, A. Şima 169

Fonlupt, Cyril 191
Fromentin, Jean 191

Han, Min 145
Hao, Jin-Kao 61
Hu, Bin 121

Inführ, Johannes 250

Kheiri, Ahmed 1
Khouadjia, Mostepha R. 202

Leal, Jose Eugenio 226
Liu, Chuang 145
Liu, Guang 49
López-Ibáñez, Manuel 85
Lü, Zhipeng 49

Maenhout, Broos 97
Marinaki, Magdalene 133
Marinakis, Yannis 133

Marion-Poty, Virginie 191
Mouhoub, Malek 37

Nagata, Yuichi 179
Nepomuceno, Napoleão V. 262

Ombuki-Berman, Beatrice 214
Ono, Isao 179
Özcan, Ender 1, 169

Pallez, Denis 73
Papazek, Petrina 121
Parkes, Andrew J. 169
Pinheiro, Plácido R. 262
Pitzer, Erik 109

Raidl, Günther R. 121, 250
Rainer-Harbach, Marian 121
Reimann, Marc 226
Robilliard, Denis 191
Rubio-Largo, Álvaro 13
Runka, Andrew 214

Saraiva, Rommel D. 262
Savéant, Pierre 202
Schoenauer, Marc 202
Shang, Lin 25
Stützle, Thomas 85
Suciu, Mihai 73

Teytaud, Fabien 191

Vanhoucke, Mario 97
Vega-Rodŕıguez, Miguel A. 13
Ventresca, Mario 214
Vidal, Vincent 202

Xiao, Wei 49
Xue, Bing 25

Ye, Tao 49

Zhang, Mengjie 25

	Title
	Preface
	Organization
	Table of Contents
	A Hyper-heuristic with a Round Robin Neighbourhood Selection
	Introduction
	Hyflex

	Related Work
	Methodology
	Empirical Results
	Performance Comparison to the Mock Competition Hyper-heuristics
	Analysis of RHH and Its Performance Comparison to the CHESC Competitors

	Conclusion and Future Work
	References

	A Multiobjective Approach Based on the Law of Gravity and Mass Interactions for Optimizing Networks
	Introduction
	Traffic Grooming Problem
	Multiobjective Gravitational Search Algorithm
	Experimental Results
	Conclusions and Future Works
	References

	A Multi-objective Feature Selection Approach Based on Binary PSO and Rough Set Theory
	Introduction
	Goals

	Background
	Binary Particle Swarm Optimisation
	Rough Set Theory
	Related Work on Feature Selection

	Proposed Multi-objective Method
	PSORS, PSOPRS and PSOPRSN
	MOPSOPRS

	Experimental Design
	Experimental Results and Discussions
	Experimental Results of PSORS and PSOPRS
	Experimental Results of PSOPRSN and MOPSOPRS
	Comparisons with Two Traditional Algorithms

	Conclusions
	References

	A New Crossover for Solving Constraint Satisfaction Problems
	Introduction
	Background
	Parallel Genetic Algorithms
	Crossovers

	Proposed Crossover within a PGA
	Individual Representation
	Parental Success Crossover (PSC)
	Reproduction
	Mutation
	The Genetic Modification (GM) Operator
	Hierarchical PGA (HPGA)

	Experimentation
	Conclusion and Future Work
	References

	A Population-Based Strategic Oscillation Algorithm for Linear Ordering Problem with Cumulative Costs
	Introduction
	Population-Based Strategic Oscillation
	Main Scheme
	Initial Population
	Strategic Oscillation Procedure
	Perturbation Operator
	Population Updating

	Computational Results and Comparisons
	Problem Instances and Experimental Protocol
	Computational Results
	Comparison with other Reference Algorithms

	Analysis and Discussion
	Strategic Oscillation vs. Local Search
	 and in the Strategic Oscillation

	Conclusions
	References

	A Study of Adaptive Perturbation Strategy for Iterated Local Search
	Introduction
	Iterated Local Search with a Adaptive Diversification Strategy
	General Framework
	Adaptive Diversification Strategy (ADS)

	Case Study I: Quadratic Assignment Problem (QAP)
	Problem Description
	Neighborhood Relation and Its Exploitation
	Perturbation Types Combined with ADS
	Experimental Results and Comparisons

	Case Study II: Maximum Clique Problem (MAX-CLQ)
	Problem Description
	Neighborhood Relations and Their Exploitation
	Perturbation Types Combined with ADS
	Experimental Results and Comparisons

	Analysis
	Conclusion
	References

	Adaptive MOEA/D for QoS-Based Web Service Composition
	Introduction
	Multiobjective Optimization Prerequisites
	MOEA/D Technique
	Adaptation of Differential Evolution

	Proposed Approach
	Numerical Experiments
	Conclusions
	References

	An Analysis of Local Search for the Bi-objective Bidimensional Knapsack Problem
	Introduction
	Pareto Local Search
	Applying PLS to the bBKP
	Experimental Setup
	Experiments with Stand-Alone PLS
	Removing a Single Item
	Removing More Than One Item

	Experiments with PLS as Post-optimization Method
	Conclusions and Future Work
	References

	An Artificial Immune System Based Approach for Solving the Nurse Re-rostering Problem
	Introduction
	Problem Description
	The Artificial Immune System: Algorithmic Interpretation and Implementation
	Initialisation Procedure
	Self/nonself Discrimination
	Clonal Selection
	Proliferation and Hypermutation
	Immune Response
	Receptor Editing

	Computational Experiments
	Test Design
	Algorithmic Performance
	 Benchmarking and Comparison with the Existing Literature

	Conclusion
	References

	Automatic Algorithm Selection for the Quadratic Assignment Problem Using Fitness Landscape Analysis
	Introduction
	Theoretical Foundations
	Quadratic Assignment Problem
	QAPLIB
	Robust Taboo Search
	Variable Neighborhood Search
	Fitness Landscape Analysis Fundamentals

	Methodology
	Fitness Landscape Investigations
	Structural Problem Comparison
	Algorithm Selection: Dominance

	Algorithm Dominance Prediction
	Results
	Conclusion
	References

	Balancing Bicycle Sharing Systems: A Variable Neighborhood Search Approach
	Introduction
	The Balancing Bicycle Sharing System Problem
	Related Work
	Greedy Construction Heuristic
	Variable Neighborhood Search
	Solution Representation and Derivation of Loading Instructions
	VND and VNS Neighborhood Structures

	Computational Results
	Conclusions and Future Work
	References

	Combinatorial Neighborhood Topology Particle Swarm Optimization Algorithm for the Vehicle Routing Problem
	Introduction
	Combinatorial Neighborhood Topology Particle Swarm Optimization Algorithm
	Results and Discussion
	Conclusions
	References

	Dynamic Evolutionary Membrane Algorithm in Dynamic Environments
	Introduction
	Membrane Computing
	Evolutionary Membrane Algorithm
	The Structure of EMA
	Partition Strategy
	Symbol-Objects and Multiset
	Communication Rule

	Dynamic Evolutionary Membrane Algorithm
	Evolutionary Rules
	Detection of the Environmental Change

	Experiments
	Experimental Environment
	Experimental Results

	Conclusions
	References

	From Sequential to Parallel Local Search for SAT
	Introduction
	Background
	Local Search
	Parallel SAT

	Experimental Settings
	Crafted Instances
	Quasigroup Instances
	Verification Instances
	Random Instances

	Experiments
	Crafted Instances
	Quasigroup Instances
	Verification Instances
	Random Instances

	Conclusions and Future Work
	References

	Generalizing Hyper-heuristics via Apprenticeship Learning
	Introduction and Related Work
	Policy Matrices for Online Bin Packing
	Online Bin Packing Problem
	Matrix Representation of Policies

	The Proposed Approach
	Experiments
	Experimental Design
	Experimental Results

	Conclusion and Future Work
	References

	High-Order Sequence Entropiesfor Measuring Population Diversityin the Traveling Salesman Problem
	Introduction
	Entropy-Based Measures for the TSP
	Independent Edge Entropy Hind
	High-Order Sequence Entropy Hm
	High-Order Sequence Entropy Hm'

	GA Framework
	Computational Experiments
	Experimental Settings
	Main Results
	Effect of the Population Size

	Conclusions
	References

	Investigating Monte-Carlo Methods on the Weak Schur Problem
	Introduction
	Weak Schur Numbers
	Mathematical Description
	State of the Art
	Methodology and Experimental Data

	Methods
	Nested Monte-Carlo Search
	Nested Rollout Policy Adaptation

	Experimental Results
	Experimental Settings
	Results

	Conclusion
	References

	Multi-objective AI Planning: Comparing Aggregation and Pareto Approaches
	Introduction
	Single-objective Background
	Multi-objective Background
	Pareto-Based Multi-objective Divide-and-Evolve
	Aggregation-Based Multi-objective Divide-and-Evolve
	Multi-objective Benchmarks:

	Experimental Settings
	Experimental Results
	Discussion and Conclusion
	References

	Predicting Genetic Algorithm Performance on the Vehicle Routing Problem Using Information Theoretic Landscape Measures
	Introduction
	Fitness Landscapes
	Representation and Genetic Operators
	Landscape Analysis Results
	Genetic Algorithm Results
	Conclusion
	References

	Single Line Train Scheduling with ACO
	Introduction and Related Work
	Mathematical Formulation
	Ant Colony Optimization
	Solution Construction
	Pheromone Initialisation and Update

	Numerical Analysis
	Conclusions and Future Research
	References

	Solving Clique Covering in Very Large Sparse Random Graphs by a Technique Based on k-Fixed Coloring Tabu Search
	Introduction
	Related Work
	The k-Fixed Heuristic Technique for CCP
	Formulation of the Problem and the Search Space
	The Neighborhood and the Mutation Operator
	The Local Search Algorithm

	The Scalability Issue
	Experimental Evaluation
	Experimental Settings
	Detailed Results and Comparison of TabuCol-CCP to Brélaz's Heuristic and Order-Based IG Heuristic
	Scalability of TabuCol-CCP and TabuCol and the Impact of the Specific Data Structure

	Conclusion
	References

	Solving the Virtual Network Mapping Problem with Construction Heuristics, Local Search and Variable Neighborhood Descent
	Introduction
	Related Work
	Construction Heuristics
	Local Search
	Variable Neighborhood Descent
	Test Instances
	Results
	Construction Heuristics
	Comparing CH, LS and VND

	Conclusion
	References

	The Generate-and-Solve Framework Revisited: Generating by Simulated Annealing
	Introduction
	Cutting and Packing Problems
	The Constrained Two-Dimensional Non-guillotine Cutting Problem
	The Container Loading Problem

	The Generate-and-Solve Framework
	Problem Formulation
	Generator of Reduced Instances

	Computational Experiments
	Results for the Constrained Two-Dimensional Non-guillotine Cutting Problem
	Results for the Container Loading Problem

	Conclusion and Future Work
	References

	Author Index

