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Abstract. Recent advances in the automation of metabolic model re-
construction have led to the availability of draft-quality metabolic models
(predicted reaction complements) for multiple bacterial species. These
reaction complements can be considered as trait representations and
can be used for ancestral state reconstruction, to infer the most likely
metabolic complements of common ancestors of all bacteria with gener-
ated metabolic models. We present here an ancestral state reconstruction
for 141 extant bacteria and analyse the reaction gains and losses for these
bacteria with respect to their lifestyles and pathogenic nature. A simu-
lated annealing approach is used to look at coordinated metabolic gains
and losses in two bacteria. The main losses of Onion yellows phytoplasma
OY-M, an obligate intracellular pathogen, are shown (as expected) to be
in cell wall biosynthesis. The metabolic gains made by Clostridium diffi-
cile CD196 in adapting to its current habitat in the human colon is also
analysed. Our analysis shows that the capability to utilize N-Acetyl-
neuraminic acid as a carbon source has been gained, rather than having
been present in the Clostridium ancestor, as has the capability to synthe-
sise phthiocerol dimycocerosate which could potentially aid the evasion
of the host immune response. We have shown that the availability of
large numbers of metabolic models, along with conventional approaches,
has enabled a systematic method to analyse metabolic evolution in the
bacterial domain.

Keywords: Metabolic Evolution, Ancestral State Reconstruction,
Metabolic Models, Hierarchical Clustering, Simulated Annealing,
Pathogenicity.

1 Introduction

One of the aims of systems biology has been to integrate information regarding
metabolism in order to construct metabolic models and thus to analyse the effects
of genetic perturbations on metabolism at the system level. In recent years, a
number of attempts have been made to study the evolution of metabolic networks
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and these have provided insights into the mechanisms of evolution of various
extant bacteria [1–3]. Understanding the evolution of bacterial metabolism is
of great importance for a number of reasons. In particular, it has the potential
to provide insights into the evolution of pathogenicity and its relationship with
metabolism.

Bacteria not only evolve through vertical inheritance, but also through hori-
zontal gene transfer (HGT). Often HGT can provide metabolic genes [4,5], and
potentially antibiotic resistance and toxin encoding genes [6] to bacteria. On
the other hand evolution through gene loss can occur in some environments [7].
These processes directly involve gene losses and gains, but it is not the genes
themselves that are of most interest, but their function and how they interrelate
with the functions of all other genes in the system.

Evolution is often studied through Ancestral State Reconstruction (ASR) for
various biological traits [8, 9]. ASR relies on biological trait information from
extant organisms to infer trait occurrence in the common ancestors of those
organisms. This information can be provided in the form of a character matrix for
the characteristics under investigation. Depending on the context, a parsimony
or maximum likelihood approach can be used on a phylogenetic tree to obtain the
probabilities of different ancestral nodes possessing the considered traits. This
approach has been taken in looking at gene families in the metabolic context [10],
and metabolic reaction occurrences have been compared according to inferred
metabolic models for a small set of 16 E. coli strains to investigate the evolution
of these strains [11].

Previously genomic comparisons have been done using information from the
WIT database, examining differences between the metabolic pathway comple-
ments of various extant organisms [12]. Additionally phylogenetic profiles have
been inferred based on enzyme evolutionary predictions [13] to establish the
ancestral relationships between a large number of prokaryotes and eukaryotes.

With the advent of automatic methods for bacterial metabolic model recon-
struction – such as the Model SEED pipeline [14] – it is possible for the first time
to establish direct reaction complements for any bacterium for which there is a
complete genome sequence. Data from these draft-quality automatically gener-
ated metabolic models can be used as the input to ASR, since these models make
direct assertions about which reactions are present and absent in each bacterium.
Consequently, it is possible to infer ancestral metabolic complements directly and
to investigate the precise metabolic changes accumulated by bacteria in the evo-
lution towards their current lifestyles and ecological niches at the system level.
This improves on previous approaches by being reaction-specific, rather than at
a pathway level. Also, information about specific reactions can be made based
on enhanced inferences (achieved through the Model SEED pipeline) about re-
action presence and absence, not just based on direct observation of annotated
enzymes.

Here we present an ancestral state reconstruction of the metabolic reactions
inferred to be present in 141 bacteria by the Model SEED server. A hierarchical
clustering was used to establish the metabolic similarity of these 141 bacteria,
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and this was compared to the 23S rRNA phylogenetic tree inferred for these
same bacteria. Further we related this clustering to the lifestyles of the bacteria
according to three categorisations: habitat, respiratory mode and pathogenic
mode and showed that each of these categorisations encapsulates information
about how the evolution of these bacteria has proceeded.

Results for the gain and loss of reactions for each of the extant bacteria have
been produced using the metabolic networks inferred for the common ancestors
of these bacteria and for two cases these gains and losses have been investigated
at the system level to look for coordinated sets of reactions (those reactions ad-
jacent in the metabolic networks inferred from their respective metabolic mod-
els) that have been lost (in the case of an obligate intracellular pathogen) and
gained (in the case of a free-living pathogen). This has been achieved by using
an approach based on active modules [15] called ambient which finds connected
subnetworks in the bipartite network of reactions and metabolites associated
with strong evidence for reaction gain or loss for both these bacteria [Bryant et
al. - in submission]. ambient has picked out several reaction pathways in C. dif-
ficile CD196 that would not be seen by gene-based analysis (since several of the
reactions have no gene association) but are clearly found by taking advantage of
the generated metabolic model used here.

2 Methods

2.1 23S rRNA Phylogeny Construction

23S rRNA sequences for all 141 organisms in the current analysis along with an
out-group organism (Thermoplasma acidophilum) were obtained from the NCBI
Nucleotide Database. Multiple sequence alignment of the 23S rRNA sequences of
these organisms was obtained using MAFFT [16]. A threshold score of E = 8.4e−11
was used (the default threshold value used by MAFFT).

Based on the results of multiple sequence alignment, a phylogeny was con-
structed using PhyML 2.4.4 [17]. Bootstrapping was performed 100 times on the
tree to obtain the most likely phylogeny. After rooting the tree, the out-group
was removed. For visualisation of the phylogeny obtained and for the creation
of phylogeny images Dendroscope was used [18]. The phylogeny can be seen in
Supplementary Fig. 1 available at our website1.

2.2 Comparison of Reaction Numbers and Lifestyle

Three lifestyle classifications were used to assess how they related to the evo-
lutionary histories of the bacteria in this study. The classifications are named
i) habitat, indicating the usual environment the bacteria experience, ii) respira-
tory mode, indicating their ability to tolerate oxygen and iii) pathogenic mode,
each bacterium falling into one of four categories: free-living, facultative host-
associated, obligate intracellular mutualists and obligate intracellular pathogens.

1 http://www.theosysbio.bio.ic.ac.uk/bacterial-metabolism/
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These classifications were taken from work by Zientz et al. [19] and Merhej
et al. [10]. It should be noted that although the last classification is termed
‘pathogenic mode’ this is just an alternative classification of habitat, based on
the types of environment experienced by bacteria in their eukaryotic hosts.

A Mann Whitney U test was conducted between each category for each clas-
sification to establish correlations between reaction numbers and lifestyles. The
Benjamini-Hochberg multiple testing correction was used to control for false
positives and the corrected p-values were used to establish significance.

2.3 Ancestral State Reconstruction

For Ancestral State Reconstruction (ASR), Mesquite was used [20]. The An-
cestral State Reconstruction algorithm, as implemented in Mesquite, looks for
ancestral states which maximize the probability of the observed characteristics
in extant organisms.

Maximum likelihood reconstruction methods look for ancestor states that
maximise the probability of producing the current state, having evolved under a
defined model of evolution [8,21]. It is equivalent to the marginal reconstruction
method as implemented in PAUP [22]. Every reaction was classified as present
or absent according to the Model SEED metabolic model creation server [14].
The Asymmetrical Markov k-state 2 parameter model (AsymmMK model) in
Mesquite was chosen as it allows different rates for reaction gains and losses.
In the ASR, the out-group organism was removed from the phylogeny and the
reaction traits for the out-group were not specified in the character matrix.

A boolean character matrix was created for all the 2526 metabolic reactions
that were present in at least one of the bacteria under investigation. Maximum
Likelihood ASR was performed for this categorical, discrete dataset of reactions.
Values for the probability (P j

q ) of the presence of a particular reaction (j) in
a particular ancestral organism (q) were calculated by Mesquite based on the
AsymmMK model.

2.4 Correlation between Dendrograms and Lifestyle Classifications

Two dendrograms were obtained from the 23S rRNA alignment and the metabolic
traits comparison. The cutree package in R was used to examine every possi-
ble clustering of each dendrogram and the maximum Adjusted Rand Index [23]
from all possible clusterings was obtained for each dendrogram against the three
classifications in this analysis: habitat, respiratory mode and pathogenic mode.
Adjusted Rand Index measures the similarity of different partitions of a set; in
this case the partitions are the three classifications and the set is all bacteria
under consideration.

2.5 Inference of Gains and Losses in Extant Bacteria

Each branch in the phylogeny connects two nodes. One node is the parent (an-
cestor) node and other node is the child (descendant) node. In order to assess
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the gain and loss of reactions from an ancestor to its descendant, δP j values
were calculated according to the following formula:

δP j = P j
child − P j

parent (1)

where P j
parent and P j

child are the probabilities of the presence of reaction j in
the parent (ancestral organism)and child (descendant organism) nodes of a par-
ticular branch respectively. Therefore, a δP j value close to 1 indicates a high
likelihood of gain of reaction j in a branch and a δP j value close to -1 indicates
a loss of reaction.

There are a total of 140 internal (parent) nodes in the phylogeny. Each node
gives rise to 2 branches giving a total of 280 branches. δP j values were calculated
for all the reactions on all of the branches. Thus, there are a total of 707,280
δP j values (280 x 2526) for the entire phylogeny.

A δP cutoff of ±0.9 was used to define those reactions gained or lost. Using
this threshold δP value, ancestral state reconstruction predicted a total of 10,396
gain and loss events. δP ≤ -0.9 (loss) had 5001 events and δP ≥ +0.9 (gain)
had 5395 events.

2.6 Metabolic Traits Hierarchical Clustering

The construction of a metabolic trait-based hierarchical clustering was done
using the Pars programme in the PHYLIP package [24]. Each reaction present in
at least one, but less than 141 of the bacteria under investigation, was used as
a metabolic trait, as for the ASR. The Pars programme produced a total of 12
trees, from which a consensus tree was obtained using the CONSENSE program in
the PHYLIP package.

2.7 Analysis of Coordinated Metabolic Changes

ambient [Bryant et al. - in submission] was used to run simulated annealing on
the bipartite network of reactions and metabolites to find the 100 most signif-
icant coordinated metabolic changes in two bacteria representing the obligate
intracellular (Onion yellows phytoplasma OY-M) and free-living (Clostridium
difficile CD196) pathogenic lifestyles adopted by many of the bacteria investi-
gated here.

The metabolic network used for both bacteria was the complete ‘meta-’
metabolic network consisting of the union of all 141 networks used in this paper.
This allowed both gains and losses to be seen for each bacterium. ambient uses
scores for each reaction and metabolite in its attempt to find connected network
components encompassing many highly changed reactions. In this case the scores
for reactions were taken from δP values for the relevant bacteria. Metabolites
were scored in the using the default ambient scoring method - with a penalty
equal to their connectivity in the metabolic network, to select against currency
metabolites.
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ambient was run to look for coordinated areas of loss of reactions in Onion
yellows phytoplasma and gain of reactions in C. difficile. ambient was run with
the following non-default parameters: maximum number of steps (-N) was set to
2,500,000, temperature gradient (-U) to 0.95, initial temperature factor (-T) to
3, reaction score offset (-Y) to -0.15 and number of steps between equilibrium
tests (-i) to 6000.

3 Results and Discussion

3.1 Distribution of Organism Lifestyles and Reactions

Information about the number and types of organisms and reactions [14] was
integrated with data about the lifestyles of those organisms [10,19]. Fig. 1 shows
the distribution of the number of reactions in each organism with respect to
their lifestyles: habitats, respiratory modes and pathogenic mode. The median
number of reactions in the organisms is 1014. The reactions common to all 141
organisms account for about 1% of the total number of reactions.

As can be seen from Fig. 1, most of the organisms that have fewer than 700
reactions are host-associated; indeed from the distribution of pathogenic modes
these bacteria represent the vast majority of obligate intracellular symbionts
and pathogens. A Mann Whitney U test was conducted to establish whether
there was any statistically significant relationship between lifestyle and number
of reactions present in each bacterium. Results for each individual test and their
p-values corrected for multiple testing can be seen in Supplementary Table 1.

The results show that differing habitats do not necessarily have a large impact
on numbers of reactions that the bacteria maintain, except when comparing the
free-living bacteria with those which are host-associated. There is also some
impact of respiratory mode on number of reactions, but this could be due to a
dependence of respiratory mode on bacterial habitat.

The most significant results come from the comparison of the different path-
ogenic lifestyles of these organisms, as classified by Merhej et al. [10]. Supple-
mentary Table 1C clearly shows, as expected from observations of symbiotic
and parasitic bacteria, that the number of reactions available for each bacterium
is strongly dependent on their relationship with their eukaryotic host. This is
not just true for obligate intracellular bacteria, but also to an extent for host-
associated pathogenic bacteria. Unsurprisingly, obligate intracellular mutualists
and parasites do not differ significantly in the size of their metabolic network,
since their lifestyles, restricted to within a eukaryotic host, mean they experience
the same nutrient availability and limitations.

3.2 Ancestral State Reconstruction

Ancestral state reconstruction for each reaction (trait) was performed on the
phylogenetic tree inferred from the 23S rRNA alignment. A total of 30 metabolic
reactions were present in all the 141 bacteria and these were excluded from the
analysis so 2526 reactions were considered.
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Fig. 1. Histograms showing the relationship between reaction numbers and bacterial
lifestyles. Each diagram shows the distribution of total number of reactions in organisms
based on habitat type (top), respiratory type (middle) and pathogenicity (bottom)
according to Model SEED reconstructions of 141 bacteria.
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ASR predicted the presence and absence of every reaction at every ances-
tral node on the phylogeny. Inferences about the gains and losses of reactions
through evolutionary history could be established by using the results of the
ASR. For each branch the change in likelihood of the presence of a particular
reaction between the parent node and the child node was calculated, called δP
(see Methods). A cutoff value for δP of ±0.9 was used to infer which reactions
were most likely gained and lost along each branch of the phylogeny, thus es-
tablishing where these metabolic changes occurred in the history of each extant
bacterium.

The results obtained from ASR appear to be consistent with our biologi-
cal knowledge about the different habitats and lifestyles of the bacteria under
investigation. Using the aforementioned threshold score, the top five branches
that showed the greatest number of gain and loss events were terminal branches
leading to various extant bacteria.

The greatest gain was observed in the terminal branch leading to the bac-
terium Clostridium difficile CD196. These metabolic changes could be related
to C. difficile pathogenicity, and are thus of interest. The gains made by this C.
difficile strain were analysed by ambient, see below, to establish whether these
gains occurred in a modular way (adjacent reactions in the metabolism of the
bacterium).

In terms of loss, the greatest loss is observed in Onion yellows phytoplasma
OY-M which is an obligate intracellular plant pathogen and contains an even
smaller complement of metabolic genes than Mycoplasma genitalium [25]. These
losses were analysed by ambient to discover whether they are linked together in
the metabolic network.

3.3 Metabolic Traits Hierarchical Clustering (MHC) Compared
with 23S rRNA Phylogeny

Based on 23S rRNA sequence similarity, many organisms appear closely related
to each other on the phylogenetic tree. However, the metabolic data presented
here indicate the divergence of these organisms at a metabolic level far greater
than that implied by their vertical evolution (genetic inheritance from ances-
tors) alone. This reflects the knowledge that bacteria evolve metabolically by
horizontal gene transfer in addition to vertical evolution.

A hierarchical clustering based on metabolic reaction traits was created to
show metabolic relatedness of various extant bacteria. Indeed using clusters of
orthologous groups of genes as traits to construct a hierarchical clustering has
been shown to cluster bacteria along metabolic lines [10]. This clustering is
based on metabolic similarity, so should reflect both vertical evolution (where the
bulk of metabolic capabilities are inherited from) and horizontal gene transfer,
depending on the importance of each of these mechanisms in the evolution of
each organism.

The clustering was constructed using the character matrix of metabolic traits,
to gain a better understanding of the evolutionary relationships as revealed
through the ASR results presented above. Supplementary Fig. 2 shows the



Metabolic Evolution in Bacteria 53

consensus tree obtained based on the metabolic traits of the organisms. The
results obtained here clearly show that even though two organisms may be dis-
tantly related based on 23S rRNA sequence similarity, they can be very closely
related in terms of their metabolic capabilities, i.e. that they have been subject
to convergent evolution. A clear example here is between Mycoplasma pulmonis
UAB CTIP and Onion yellows phytoplasma OY-M. They appear evolutionar-
ily distant on the 23S rRNA phylogeny but are very closely related according to
their metabolic trait profiles. Supplementary Figures 1 and 2 show the phylogeny
and the metabolic hierarchical clustering respectively.

Dendrograms were produced from the trait-based tree and the RNA-based
phylogeny and these were analysed to find whether the clusterings in the dendro-
grams corresponded to the three lifestyle classifications considered here.
Maximum Adjusted Rand Indices (ARIs) were produced for each dendrogram
/ classification pair to quantify their relatedness. For the RNA-based tree none
of the maximum ARIs were greater than 0.1, indicating little or no correlation
between vertical evolution and current lifestyle. However, when the metabolic
traits (i.e. metabolic reaction complement) and the lifestyles were compared a
value of 0.15 was obtained for respiratory mode and a value of 0.37 for pathogenic
lifestyle (free-living, host-associated, obligate intracellular mutualists and obli-
gate intracellular pathogens). This indicates that the pathogenic mode adopted
by a bacterium has a clear influence on its metabolic network.

3.4 Active Module Analysis

While overall gains and losses of reactions in bacteria are informative in estab-
lishing some of the principles of metabolic evolution, the specific changes and
how coordinated these changes are might shed more light on the dependence
of metabolic evolution on bacterial lifestyles and pathogenicity. Most metabolic
processes rely on multiple distinct reactions, therefore on multiple genes encod-
ing those enzymatic functions, so gains and losses of adjacent metabolic functions
(pathways) might be expected to occur simultaneously. Here we used ambient

[Bryant et al. - in submission] to look for reaction gains and losses that form
connected components of the metabolic networks of the bacteria under consid-
eration. Two bacteria were analysed, representing two different lifestyles: the
obligate intracellular (Onion yellows phytoplasma OY-M) and the free-living
(Clostridium difficile CD196).

The analysis of C. difficile produced 14 metabolic modules significant at the
q = 0.001 level, which can be seen in Supplementary Fig. 3. Table 1 shows a
summary of the functions of the modules found. Several modules are involved in
monosaccharide utilisation and some in cell wall biosynthesis. Of particular inter-
est is the apparent gain of phthiocerol dimycocerosate biosynthesis capabilities;
this lipid has been shown to protect Mycobacterium tuberculosis when growing
in a mammalian host [26], so could potentially perform the same function for C.
difficile.

It has been established previously that C. difficile CD196 utilises as carbon
sources N-Acetyl-glucosamine and N-Acetyl-neuraminic acid, which are both
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Table 1. A summary of the metabolic functions gained by C. difficile since branching
from the rest of the bacteria of the genus Clostridium represented in this analysis. Each
line is an individual module (connected metabolic component) that has significantly
higher scores for gains than would be expected in the whole metabolic network (at the
corrected p = 0.001 level). The ‘Metabolic Function’ column represents a summary of
the enzymatic functions present in the module.

AMBIENT Number of Metabolic Corrected
Module ID Reactions Function p-value

1 12 Methylamine metabolism < 1e− 5
2 15 Polyamine metabolism < 1e− 5
3 12 Phthiocerol dimycocerosate biosynthesis < 1e− 5
4 15 Salicin metabolism < 1e− 5
5 8 Niacin, Cob(I)alamin metabolism < 1e− 5
6 6 Fatty acid biosynthesis < 1e− 5
7 6 4-Hydroxybuanoate metabolism < 1e− 5
8 5 Monosaccharide metabolism < 1e− 5
9 5 Lipid metabolism 3.6e − 4
10 5 Amino acid metabolism 3.6e − 4
11 5 Monosaccharide utilisation 2.2e − 4
12 5 D-Lactate metabolism 3.6e − 4
13 4 D-Proline metabolism 2.2e − 4
14 6 N-Acetyl-D-neuraminic acid utilisation 8.6e − 4

represented in the metabolic network used here. It appears that the reactions
around N-Acetyl-glucosamine are shared with the other Clostridium strains in
this study. One of the significant modules found by ambient shown in Fig. 2,
shows that C. difficile gained the ability to utilise N-Acetyl-neuraminic acid
since its divergence from the other Clostridia in the study. The assimilation of
N-Acetyl-neuraminic acid proceeds by conversion through several intermediates
to Fructose-6-Phosphate, which is part of central carbon metabolism.

The reactions responsible for this interconversion, allowing C. difficile to
utilise this carbon source, have been inferred by Model SEED to be present in this
C. difficile strain. Some of the reactions in the model were predicted to be present
without having a gene associated with them. In the case of this module two genes,
nanA and CD196 2092, were associated with two of the reactions, ATPN-acyl-D-
mannosamine 6-phosphotransferase and N-Acetylneuraminate pyruvate-lyase, in
the module. These genes are transcribed in the same direction and have just three
closely spaced same-sense genes between them, each of unknown function. This
establishes the tantalising possibility that these three intervening genes could
encode proteins with other functions within this coordinately gained metabolic
module.

As expected from an obligate intracellular pathogen, ambient finds extensive
coordinated losses in the Onion yellows phytoplasma OY-M metabolic network,
with over 350 reactions lost in connected metabolic modules (as shown in Supple-
mentary Fig. 4). The closest relatives of Onion yellows in this study share only
the same Phylum (Firmicutes), so this represents a long period of evolutionary
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Fig. 2. Metabolic module 14 gained in C. difficile CD196 and its metabolic neighbour-
hood, according to ambient analysis of the reaction gains and losses from its closest
ancestor on the 13S rRNA phylogenetic tree. Members of module 14 are outlined in
black and those not in the module are outlined in grey. The fill colours of the reactions
correspond to δP values.

history. Nonetheless Onion yellows has only gained (and retained) 91 reactions
in the same period, indicating a very strong bias towards metabolic function
loss, as expected from the bacterium’s lifestyle. By far the largest module shows
the complete loss of lipid biosynthesis, as expected since Phytoplasmas lack a
cell wall.

4 Conclusion

The ancestral state reconstruction results and metabolic traits phylogeny have
been able to unpick and clarify the significant gains and losses of metabolic
capabilities in various organisms during their evolutionary history. The findings
have correlated well with previous biological knowledge of the lifestyles of these
organisms. The hierarchical clustering of these bacteria using metabolic traits
has shown that as expected metabolic evolution is far more intimately linked
with current lifestyle than is bacterial ancestry.

The adaptation of bacteria to different conditions has led to a consider-
able gain and/or loss of reactions over time. Considerable gain has been ob-
served in Clostridium difficile, which is consistent with the expectations for a
non-intracellular opportunistic pathogen. Considerable losses, including those of
lipid biosynthesis, have been observed in Onion yellows phytoplasma, which is a
known obligate intracellular plant pathogen which does not produce a cell wall.
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The metabolic traits based hierarchical clustering has provided insight into ex-
amples of convergent evolution with respect to bacterial metabolism.

The ambient analysis presented here has clearly picked out some relevant
and biologically meaningful metabolic modules that have been gained or lost
in a coordinated fashion. This approach, combined with the multiple metabolic
models produced by Model SEED, which can infer reaction presence even in
the absence of known enzymes, is a powerful tool that goes beyond previous
approaches to investigating metabolic evolution.
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