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Preface

The RECOMB conference series — with its full name the Annual International
Conference on Research in Computational Molecular Biology — was started in
1997 by Sorin Istrail, Pavel Pevzner, and Michael Waterman. The 17th Annual
International Conference on Research in Computational Molecular Biology or
RECOMB 2013 was held at Tsinghua University, Beijing, China, hosted by the
Bioinformatics Division of Tsinghua National Laboratory for Information Sci-
ence and Technology (TNLIST), Tsinghua University. This volume contains the
32 extended abstracts selected for oral presentation at RECOMB 2013, which
were selected by the Program Committee (PC) out of 167 submissions. Each
submission was assigned to at least three reviewers and 14 papers received two
reviews and the rest received at least three reviews from the PC or external
reviewers invited by PC members. Accepted papers were also invited for sub-
mission of an edited journal version to a special issue of the Journal of Compu-
tational Biology.

Besides the selected talks, this year’s RECOMB conference also featured six
invited keynote talks by leading scientists in life sciences around the world. The
keynote speakers were Scott Fraser (University of Southern California, USA),
Takashi Gojobori (National Institute of Genetics, Japan), Deborah Nickerson
(University of Washington, USA), Nadia A. Rosenthal (Monash University in
Melbourne, Australia), Chung-I Wu (Beijing Institute of Genomics, Chinese
Academy of Sciences, China), and Xiaoliang Sunney Xie (Harvard University,
USA).

Following a tradition begun with RECOMB 2010, RECOMB 2013 also fea-
tured a special track for highlights presenting work that had been published in
journals during the last 15 months. Five such highlight talks were selected for
oral presentation this year.

The success of RECOMB depends on the efforts, dedication, and devotion
of many colleagues who spent countless of hours on the organization of the con-
ference. We thank the PC members and the external reviewers for the timely
review of the assigned papers despite their busy schedules. We also thank all the
authors for submitting their excellent work to RECOMB. The Steering Commit-
tee consisting of Vineet Bafna, Serafim Batzoglou, Bonnie Berger, Sorin Istrail,
Michal Linial, and Martin Vingron (Chair) gave many excellent suggestions on
the organization of the conference. I would like to personally thank the local Or-
ganizing Committee members especially the Co-chairs Xuegong Zhang, Minghua
Deng, and Rui Jiang, and the local secretary Zhuwei Joan Zhang for their ef-
forts that insured smooth cooperation on the administrative and logistic details.
Various organizations including Tsinghua University, TNLIST, the National Sci-
ence Foundation of China (NSFC), the US National Science Foundation (NSF),
the International Society of Computational Biology (ISCB), and all the industry
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sponsors for their financial support. Mona Singh (Princeton University) helped
with the application for the US NSF student support. Finally, we thank the
authors of the papers and posters and all the attendees for their enthusiastic
participation of the conference.

January 2013 Fengzhu Sun
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Reconciliation Revisited: Handling Multiple Optima
When Reconciling with Duplication, Transfer, and Loss

Mukul S. Bansal1, Eric J. Alm2,3, and Manolis Kellis1,3

1 Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, Cambridge, USA

2 Dept. of Biological Engineering, Massachusetts Institute of Technology, Cambridge, USA
3 Broad Institute of MIT and Harvard, Cambridge, USA

mukul@csail.mit.edu, {ejalm,manoli}@mit.edu

Abstract. Phylogenetic tree reconciliation is a powerful approach for inferring
evolutionary events like gene duplication, horizontal gene transfer, and gene loss,
which are fundamental to our understanding of molecular evolution. While
Duplication-Loss (DL) reconciliation leads to a unique maximum-parsimony so-
lution, Duplication-Transfer-Loss (DTL) reconciliation yields a multitude of op-
timal solutions, making it difficult the infer the true evolutionary history of the
gene family.

Here, we present an effective, efficient, and scalable method for dealing with
this fundamental problem in DTL reconciliation. Our approach works by sam-
pling the space of optimal reconciliations uniformly at random and aggregating
the results. We present an algorithm to efficiently sample the space of optimal
reconciliations uniformly at random in O(mn2) time, where m and n denote
the number of genes and species, respectively. We use these samples to under-
stand how different optimal reconciliations vary in their node mapping and event
assignments, and to investigate the impact of varying event costs.

Keywords: Gene family evolution, gene-tree/species-tree reconciliation, gene
duplication, horizontal gene transfer, host-parasite cophylogeny, phylogenetics.

1 Introduction

The systematic comparison of a gene tree with its species tree under a reconciliation
framework is a powerful technique for understanding gene family evolution. Specifi-
cally, gene tree/species tree reconciliation shows how the gene tree evolved inside the
species tree while accounting for events like gene duplication, gene loss, and horizontal
gene transfer, that drive gene family evolution. Thus, gene tree/species tree reconcilia-
tion is widely used and has many important applications; e.g., for inferring orthologs,
paralogs and xenologs [1–6], reconstructing ancestral gene content and dating gene
birth [7, 8], accurate gene tree reconstruction [5, 9], and whole genome species-tree
reconstruction [10].

Duplication-Loss (DL) reconciliation, which accounts for only gene duplication and
gene loss events, has been widely studied and extensively used [11–15]. However, since
it does not account for horizontal gene transfer events, it only applies to multi-cellular
eukaryotes, a very small part of the tree of life. An interesting and extremely useful
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property of DL-reconciliation is that, assuming that loss events have a non-zero positive
cost, the most parsimonious reconciliation is always unique [14]. In addition, the most
parsimonious reconciliation remains the same irrespective of the chosen event costs for
duplication and loss. Given these properties, there is no ambiguity in interpreting the
results of DL-reconciliation, making it very easy to use in practice.

The limited applicability of DL reconciliation has led to the formulation of the
Duplication-Transfer-Loss (DTL) reconciliation model, which can simultaneously ac-
count for duplication, transfer, and loss events and can be applied to species and gene
families from across the entire tree of life. Indeed, the DTL-reconciliation model and
its variants have been widely studied in the literature [8, 16–22]. In addition, DTL-
reconciliation has also been indirectly studied in the context of the host-parasite cophy-
logeny problem [23–27].

The DTL-reconciliation problem is typically solved in a parsimony framework,
where costs are assigned to duplication, transfer, and loss events, and the goal is to
find a reconciliation with minimum total cost. DTL-reconciliations can sometimes be
time-inconsistent; i.e, the inferred transfers may induce contradictory constraints on
the dates for the internal nodes of the species tree. The problem of finding an optimal
time-consistent reconciliation is known to be NP-hard [18, 27]. Thus, in practice, the
goal is to find an optimal (but not necessarily time-consistent) DTL-reconciliation. The
problem of finding an optimal time-consistent reconciliation does become efficiently
solvable [17] if the species tree is fully dated. However, accurately dating the internal
nodes of a species tree is a notoriously difficult problem [28], which severely restricts
its applicability. Thus, for wider applicability and efficient solvability, in this work, un-
less otherwise stated, we assume the input species tree is undated and seek an optimal
(not necessarily time-consistent) DTL-reconciliation [8, 18, 20, 21]. This problem can
be solved very efficiently, with our own algorithm achieving the fastest known time
complexity of O(mn) [21], where m and n denote the number of nodes in the gene tree
and species tree respectively.

Despite its extensive literature, the DTL-reconciliation problem remains difficult to
use in practice for understanding gene family evolution. The first reason for this dif-
ficulty is that there are often multiple equally optimal reconciliations for a given gene
tree and species tree and for a fixed assignment of event costs. The second reason is that
event costs, which can be very difficult to assign confidently, play a much more impor-
tant role than in DL reconciliation, as varying the costs can result in different optimal
reconciliations.

Thus, when applying DTL-reconciliation in practice, it is unclear whether the evo-
lutionary history implied by a particular given optimal solution is meaningful, as many
other optimal reconciliations exist with the same minimal reconciliation cost. More-
over, it is unclear whether the properties of an optimal reconciliation are representative
of the space of optimal reconciliations, and also how large and diverse this space is.
Furthermore, the number of optimal reconciliations is often prohibitively large, as it
can grow exponentially in the number of events required for the reconciliation, making
even the basic task of enumerating all optimal reconciliations unfeasible for all but the
smallest of gene trees [20]. Here, we directly address these problems and seek to make
DTL-reconciliation as easy to use as the DL-reconciliation model.
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Our Contribution. In this work, we develop the first efficient and scalable approach
to explore the space of optimal DTL-reconciliations and show how it can be used to
infer the similarities and differences in the different optimal reconciliations for any
given input instance. Our approach is based on uniformly random sampling of optimal
reconciliations and we demonstrate the utility of our approach by applying it to a bio-
logical dataset of approximately 4700 gene trees from 100 (predominantly prokaryotic)
taxa [8]. Specifically, our contributions are as follows:

1. We analyze the gene trees in the biological dataset and show that even gene trees
with only a few dozen genes often have many millions of optimal reconciliations.
This analysis provides the first detailed look into the prevalence of optimal recon-
ciliations in biological datasets.

2. We show how to efficiently sample the space of optimal reconciliations uniformly
at random. Our algorithm produces each random sample in O(mn2) time, where
m and n denote the number of nodes in the gene tree and species tree, respectively.
This algorithm is fast enough to be applied thousands of times to the same dataset
and scalable enough to be applied to datasets with hundreds or thousands of taxa.

3. We use our algorithm for random sampling to explore the space of optimal reconcil-
iations and investigate the similarities and differences between the different optimal
reconciliations. We show how to distinguish between the parts of the reconciliation
that have high support from those that are more variable across the different multi-
ple optima.

4. We show that even in the presence of multiple optimal solutions, a large amount
of shared information can be extracted from the different optimal reconciliations.
For instance, we observed that, for fixed event costs, any internal node taken from
a gene tree in the biological dataset had a 93.31% chance of having the same event
assignment (speciation, duplication, or transfer) and a 73.15% chance of being
mapped to the same species tree node, across all (sampled) optimal reconciliations.

5. Our method allows users to compare the space of optimal reconciliations for dif-
ferent event costs and extract the shared aspects of the reconciliation. This makes it
possible to study the impact of using different event costs and to meaningfully apply
DTL-reconciliation even if one is unsure of the exact event costs to use. We applied
our method to the biological dataset using different event costs and observed that
large parts of the reconciliation tend to be robust to event cost changes.

Thus, in this work, we introduce the first efficient and scalable method for exploring the
space of optimal reconciliations. Our new method allows for the very first large-scale
exploration of the space of optimal reconciliations in real biological datasets.

The remainder of the paper is organized as follows: The next section introduces basic
definitions and preliminaries. In Section 3 we study the prevalence of multiple optimal
reconciliations in biological data. We introduce our sampling based approach and al-
gorithms in Section 4. Section 5 shows the results of our analysis of multiple optimal
reconciliations for the biological dataset, and in Section 6 we show how our method
can be applied to study the impact of using different reconciliation costs. Concluding
remarks appear in Section 7.
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2 Definitions and Preliminaries

We follow the basic definitions and notation from [21]. Given a tree T , we denote its
node, edge, and leaf sets by V (T ), E(T ), and Le(T ) respectively. If T is rooted, the
root node of T is denoted by rt(T ), the parent of a node v ∈ V (T ) by paT (v), its set
of children by ChT (v), and the (maximal) subtree of T rooted at v by T (v). If two
nodes in T have the same parent, they are called siblings. The set of internal nodes of
T , denoted I(T ), is defined to be V (T ) \ Le(T ). We define ≤T to be the partial order
on V (T ) where x ≤T y if y is a node on the path between rt(T ) and x. The partial
order ≥T is defined analogously, i.e., x ≥T y if x is a node on the path between rt(T )
and y. We say that v is an ancestor of u, or that u is a descendant of v, if u ≤T v (note
that, under this definition, every node is a descendant as well as ancestor of itself). We
say that x and y are incomparable if neither u ≤T v nor v ≤T u. Given a non-empty
subset L ⊆ Le(T ), we denote by lcaT (L) the least common ancestor (LCA) of all the
leaves in L in tree T ; that is, lcaT (L) is the unique smallest upper bound of L under
≤T . Given x, y ∈ V (T ), x→T y denotes the unique path from x to y in T . We denote
by dT (x, y) the number of edges on the path x →T y. Throughout this work, unless
otherwise stated, the term tree refers to a rooted binary tree.

We assume that each leaf of the gene trees is labeled with the species from which
that gene was sampled. This labeling defines a leaf-mapping LG,S : Le(G) → Le(S)
that maps a leaf node g ∈ Le(G) to that unique leaf node s ∈ Le(S) which has the
same label as g. Note that gene trees may have more than one gene sampled from the
same species. Throughout this work, we denote the gene tree and species tree under
consideration by G and S respectively and will assume that LG,S(g) is well defined.

2.1 Reconciliation and DTL-scenarios

Reconciling a gene tree with a species tree involves mapping the gene tree into the
species tree. Next, we define what constitutes a valid reconciliation; specifically, we
define a Duplication-Transfer-Loss scenario (DTL-scenario) [18, 21] for G and S that
characterizes the mappings of G into S that constitute a biologically valid reconcil-
iation. Essentially, DTL-scenarios map each gene tree node to a unique species tree
node in a consistent way that respects the immediate temporal constraints implied by
the species tree, and designate each gene tree node as representing either a speciation,
duplication, or transfer event.

Definition 1 (DTL-scenario). A DTL-scenario for G and S is a seven-tuple
〈L,M, Σ,Δ,Θ,Ξ, τ〉, where L : Le(G) → Le(S) represents the leaf-mapping from
G to S,M : V (G) → V (S) maps each node of G to a node of S, the sets Σ, Δ, and
Θ partition I(G) into speciation, duplication, and transfer nodes respectively, Ξ is a
subset of gene tree edges that represent transfer edges, and τ : Θ→ V (S) specifies the
recipient species for each transfer event, subject to the following constraints:

1. If g ∈ Le(G), thenM(g) = L(g).
2. If g ∈ I(G) and g′ and g′′ denote the children of g, then,

(a) M(g) 	≤S M(g′) andM(g) 	≤S M(g′′),
(b) At least one ofM(g′) andM(g′′) is a descendant ofM(g).
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3. Given any edge (g, g′) ∈ E(G), (g, g′) ∈ Ξ if and only ifM(g) andM(g′) are
incomparable.

4. If g ∈ I(G) and g′ and g′′ denote the children of g, then,
(a) g ∈ Σ only ifM(g) = lca(M(g′),M(g′′)) andM(g′) andM(g′′) are in-

comparable,
(b) g ∈ Δ only ifM(g) ≥S lca(M(g′),M(g′′)),
(c) g ∈ Θ if and only if either (g, g′) ∈ Ξ or (g, g′′) ∈ Ξ .
(d) If g ∈ Θ and (g, g′) ∈ Ξ , then M(g) and τ(g) must be incomparable, and
M(g′) must be a descendant of τ(g), i.e.,M(g′) ≤S τ(g).

Constraint 1 above ensures that the mappingM is consistent with the leaf-mapping L.
Constraint 2(a) imposes onM the temporal constraints implied by S. Constraint 2(b)
implies that any internal node in G may represent at most one transfer event. Constraint
3 determines the edges of G that are transfer edges. Constraints 4(a), 4(b), and 4(c)
state the conditions under which an internal node of G may represent a speciation,
duplication, and transfer respectively. Constraint 4(d) specifies which species may be
designated as the recipient species for any given transfer event.

In some cases, one may wish to restrict transfer events to only occur between coexist-
ing species. This requires that divergence time information (either absolute or relative)
be available for all the internal nodes of the species tree. In such cases, the definition
of a DTL-scenario remains the same, except for the additional restriction on transfer
events.

DTL-scenarios correspond naturally to reconciliations and it is straightforward to
infer the reconciliation of G and S implied by any DTL-scenario. Figure 1 shows two
simple DTL-scenarios. Given a DTL-scenario, one can directly count the minimum
number of gene losses in the corresponding reconciliation. For brevity, we refer the
reader to [21] for further details on how to count losses in DTL-scenarios.

Let PΔ, PΘ, and Ploss denote the costs associated with duplication, transfer, and loss
events respectively. The reconciliation cost of a DTL-scenario is defined as follows.

Definition 2 (Reconciliation cost of a DTL-scenario). Given a DTL-scenario α =
〈L,M, Σ,Δ,Θ,Ξ, τ〉 for G and S, the reconciliation cost associated with α is given
byRα = PΔ · |Δ|+ PΘ · |Θ|+ Ploss · Lossα.

Given G and S, along with event costs PΔ, PΘ , and Ploss, the goal is to find a most
parsimonious reconciliation of G and S. More formally,

Problem 1 (Most Parsimonious Reconciliation (MPR)). Given G and S, the most
parsimonious reconciliation (MPR) problem is to find a DTL-scenario for G and S
with minimum reconciliation cost.

We distinguish two versions of the MPR problem: (i) The Undated MPR (U-MPR) prob-
lem where the species tree is undated, and (ii) the Fully-dated MPR (D-MPR) problem
where every node of the species tree has an associated divergence time estimate (or
there is a known total order on the internal nodes of the species tree) and transfer events
are required to occur only between coexisting species.
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Fig. 1. Multiple optimal reconciliations. Parts (a) and (b) show two different reconciliations
for the gene tree and species tree depicted in the figure. Both of the reconciliations are optimal
for event costs PΔ = 1, PΘ = 3, and Ploss = 1. The reconciliation in part (a) invokes one
duplication, one transfer, and two losses, while the reconciliation in part (b) invokes two transfers.

3 Multiple Optimal Solutions

In general, for any fixed values of PΔ, PΘ , and Ploss, there may be multiple equally
optimal solutions to the MPR problem (both U-MPR and D-MPR). This is illustrated in
Figure 1. The figure also illustrates the fundamental problem with having multiple op-
tima: Given the different evolutionary histories implied by the different multiple optima,
what is the true evolutionary history of the gene family? We address this problem in this
paper. But first, in this section, we investigate the prevalence of optimal reconciliations
in real datasets. For our study, we use a published biological dataset of 4735 gene trees
and 100 (predominantly prokaryotic) species [8]. The gene trees in the dataset have
median and average leaf-set sizes of 18 and 35.1, respectively. This dataset has been
previously analyzed using DTL-reconciliation but without consideration of multiple
optima. In our analysis of this dataset we used the same event costs as used in [8] (i.e.,
PΔ = 2, PΘ = 3, and Ploss = 1). Since the gene trees in the dataset are unrooted, we
first rooted them optimally by choosing a root that minimized the reconciliation cost. In
cases where there were multiple optimal rootings, we chose one of the optimal rootings
at random. We computed the number of multiple optimal reconciliations for each of the
rooted gene trees by augmenting the dynamic programming algorithm used to solve the
MPR problem (e.g., [21]) to keep track of the number of optima for each sub-problem.
Further algorithmic details appear in Section 4. Unless otherwise stated, all analyses in
the manuscript were performed using the undated version of DTL-reconciliation.

Figure 2 shows the results of our analysis. As part (a) of the figure shows, only 17%
of the approximately 4700 gene trees have a unique optimal reconciliation. Over half
of the gene trees have over 100 optimal reconciliations and 15% have more than 10,000
optimal reconciliations. This illustrates the extent of the problem with multiple optimal
reconciliations in biological datasets. As part (b) of the figure shows, the number of
optimal reconciliations tends to increase exponentially with gene tree size. These results
demonstrate the importance of considering multiple optima in DTL-reconciliation, and
the impracticality of enumerating all optimal reconciliations for all but the smallest
gene trees.

We also repeated the above analysis using the dated version of the DTL-reconciliation
problem (i.e., the D-MPR problem), and observed no significant reduction in the number
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Fig. 2. Number of optimal reconciliations for the gene trees in the biological dataset. The pie
chart in part (a) shows the distribution of the number of optimal reconciliations for the gene trees
in the biological dataset. The dot plot in part (b) plots the size (number of internal nodes) and
the number of optimal reconciliations for each gene tree. Due to arithmetic overflow concerns,
results are only shown for the 4699 (out of 4735) gene trees that had fewer than 1016 optima.

of multiple optima. For instance, even for the dated version, 14% of the gene trees had
more than 10,000 optimal reconciliations.

Recall that the gene trees in the dataset were originally unrooted. While the results
above are for a fixed optimal rooting of these gene trees, we point out that about half the
gene trees in the dataset have more than one optimal rooting. It may thus be necessary, in
practice, to either consider all possible optimal rootings when studying multiple optimal
reconciliations, or to use other information to assign a root uniquely.

4 Uniformly Random Sampling of Optimal Reconciliations

As Section 3 demonstrates, the exhaustive enumeration of all optimal reconciliations
is only feasible for very small gene trees. In this section we show how to sample the
space of reconciliations uniformly at random. Random sampling makes it possible to
explore the space of optimal reconciliations without exhaustive enumeration, and makes
it possible to understand the variability in the different reconciliations and to distinguish
between the highly supported and weakly supported parts of a given optimal reconcil-
iation. Our algorithm for random sampling is based on the dynamic programming al-
gorithm for the MPR problem from [21]. The idea is to keep track of the number of
optimal solutions for each subproblem considered in the dynamic programming algo-
rithm. In the following, we show how to compute the number of optimal solutions at
each step correctly and efficiently. First, we need a few definitions.

Given any g ∈ I(G) and s ∈ V (S), let cΣ(g, s) denote the cost of an optimal
reconciliation of G(g) with S such that g maps to s and g ∈ Σ. The terms cΔ(g, s) and
cΘ(g, s) are defined similarly for g ∈ Δ and g ∈ Θ respectively. Given any g ∈ V (G)
and s ∈ V (S), we define c(g, s) to be the cost of an optimal reconciliation of G(g) with
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S such that g maps to s. The algorithm for the MPR problem performs a nested post-
order traversal of the gene tree and species tree to compute the value of c(g, s) for each
g and s. The dynamic programming table is initialized as follows for each g ∈ Le(G):
c(g, s) = 0 if s = M(g), and c(g, s) = ∞ otherwise. For g ∈ I(G), observe that
c(g, s) = min{cΣ(g, s), cΔ(g, s), cΘ(g, s)}.

At each step, the values of cΣ(g, s), cΔ(g, s), and cΘ(g, s) for any g ∈ I(G) and
s ∈ V (S), can be computed based on the previously computed values of c(·, ·). To
show how cΣ(g, s), cΔ(g, s), and cΘ(g, s) are computed we need some additional
notation. Let in(g, s) = minx∈V (S(s)){Ploss · dS(s, x) + c(g, x)} and out(g, s) =
minx∈V (S) incomparable to s c(g, x). In other words: out(g, s) is the cost of an optimal rec-
onciliation of G(g) with S such that g may map to any node from V (S) that is incom-
parable to s; and in(g, s) is the cost of an optimal reconciliation of G(g) with S such
that g may map to any node, say x, in V (S(s)) but with an additional reconciliation cost
of one loss event for each edge on the path from s to x. The values cΣ(g, s), cΔ(g, s),
and cΘ(g, s) are computed as follows:

For any g ∈ I(G) and s ∈ I(S), let {g′, g′′} = ChG(g) and {s′, s′′} = ChS(s).

If s ∈ Le(S) then,
cΣ(g, s) =∞,
cΔ(g, s) = PΔ + c(g′, s) + c(g′′, s), and
If s 	= rt(S), then cΘ(g, s) = PΘ + min{in(g′, s) + out(g′′, s), in(g′′, s) +

out(g′, s)}. Else, cΘ(g, s) =∞.

If s ∈ I(S) then,
cΣ(g, s) = min{in(g′, s′) + in(g′′, s′′), in(g′′, s′) + in(g′, s′′)}.

cΔ(g, s) = PΔ+min

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c(g′, s) + in(g′′, s′′) + Ploss, c(g′, s) + in(g′′, s′) + Ploss,
c(g′′, s) + in(g′, s′′) + Ploss, c(g′′, s) + in(g′, s′) + Ploss,
c(g′, s) + c(g′′, s), in(g′, s′) + in(g′′, s′′) + 2Ploss,
in(g′, s′′) + in(g′′, s′) + 2Ploss, in(g′, s′) + in(g′′, s′) + 2Ploss,
in(g′, s′′) + in(g′′, s′′) + 2Ploss.

If s 	= rt(S), then cΘ(g, s) = PΘ +min{in(g′, s)+ out(g′′, s), in(g′′, s)+ out(g′, s)}.
Else, cΘ(g, s) =∞.

The optimal reconciliation cost of G and S is simply: mins∈V (S) c(rt(G), s), and
an optimal reconciliation with that cost can be reconstructed by backtracking in the
dynamic programming table. We refer the reader to [21] for further algorithmic details.

To output optimal reconciliations uniformly at random we must keep track of the
number of optimal reconciliations for each of the subproblems considered in the DP
algorithm. We define the following: For any g ∈ V (G) and s ∈ V (S), let N(g, s)
denote the number of optimal solutions for reconciling G(g) with S such that g maps
to s. The idea is to compute N(·, ·) using the same nested post-order traversal used to
compute the c(·, ·) values. The dynamic programming table for N(·, ·) is initialized as
follows for each g ∈ Le(G): N(g, s) = 1 if s =M(g), and N(g, s) = 0 otherwise. To
compute N(g, s), for g ∈ I(G), we must consider all possible mappings of g′ and g′′

that yield a cost of c(g, s). For the remainder of this discussion, in the interest of brevity
and clarity, we will assume that s ∈ I(S) and s 	= rt(S); the cases when s ∈ Le(S) or
s = rt(S) are easy to handle analogously.
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Let a1 througha13 denote the individual expressions in themin{ } blocks in the equa-
tions for cΣ(g, s), cΔ(g, s), and cΘ(g, s) above. Specifically, let a1 denote in(g′, s′) +
in(g′′, s′′), a2 denote in(g′′, s′)+ in(g′, s′′), a3 through a11 denote the nine expressions
in the min{ } block for cΔ(g, s), and a12 and a13 denote the two expressions in the
min{ } block for cΘ(g, s). Each of these ai’s represents a certain cost, which we denote
by c(ai), and a certain number of optimal reconciliations, which we denote by N(ai).
Furthermore, let bi, for 1 ≤ i ≤ 13, be binary boolean variables associated with the
ai’s such that bi = 1 if ai yields the minimum cost c(g, s), and bi = 0 otherwise.
Specifically, for i ∈ {1, 2}, bi = 1 if and only if c(ai) = c(g, s); for i ∈ {3, . . . , 11},
bi = 1 if and only if c(ai) + PΔ = c(g, s); and for i ∈ {12, 13}, bi = 1 if and only if
c(ai) + PΘ = c(g, s). Then, we must have:

N(g, s) =

13∑
i=1

bi ×N(ai).

Next, we show how to compute N(ai) for any i for which bi = 1. Observe that each ai
has one term involving g′ and one term involving g′′. These terms take one of the three
forms: c(·, ·), in(·, ·), or out(·, ·). These terms, involving g′ and g′′, can be viewed as
representing the choice of optimal mappings for g′ and g′′, respectively. For instance,
c(g′, s) implies that g′ must map to s, in(g′, s) implies that g′ may map to any node
x ∈ V (S(s)) for which (Ploss · dS(s, x) + c(g′, x)) is minimized (recall the definition
of in(·, ·)), and out(g′, s) implies that g′ may map to any node x ∈ V (S) that is incom-
parable to s, for which c(g′, x) is minimized. Based on this observation, for any given
ai, we can compute a set of optimal mappings for g′, which we will denote by X ′ and
a set of optimal mappings for g′′, which we will denote by X ′′. The value of N(ai) can
then be computed as follows:

N(ai) =

(∑
x∈X′

N(g′, x)

)
×
( ∑

x∈X′′
N(g′′, x)

)
.

The equations for N(g, s) and N(ai) above make it possible to compute the value
N(g, s) for each g ∈ I(G) and s ∈ V (S) by using the same nested post-order traversal
that is used for computing the values c(·, ·). Once all the c(·, ·) and N(·, ·) have been
computed, an optimal reconciliation itself can be built by backtracking through the
dynamic programming table. To ensure that reconciliations are generated uniformly at
random the idea is to make the choice of mapping assignments based on the number of
optimal solutions contained within each choice. For instance, if a node g has already
been assigned a mapping, its two children g′ and g′′ must be assigned mappings jointly
based on their joint probability mass. In the interest of brevity, further technical and
algorithmic details, as well as a formal proof of correctness, are deferred to the full
version of this paper.

It is not hard to implement this algorithm for uniformly random sampling in O(mn2)
time, where m and n denote the size of the gene tree and species tree respectively. This
is only a factor of n slower than the fastest known algorithm for the MPR problem [21].
Our implementation of this random sampling algorithm will be made available as part
of the next version of the RANGER-DTL software package [21].
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5 Exploring the Space of Optimal Reconciliations

We applied our method to the biological dataset to understand the space of optimal
reconciliations for the gene trees in this dataset. As before, we used event costs PΔ = 2,
PΘ = 3, and Ploss = 1 for this analysis. For this study, we focused on understanding
how similar the different optimal reconciliations are to each other. To that end, we used
our algorithm to sample 500 optimal reconciliations for each gene tree, and wrote a
program that reads in these samples and summarizes them as follows: For each internal
node in the gene tree we (i) consider the fraction of times that node is mapped to the
different nodes of the species tree, and (ii) consider the fraction of times that node is
labeled as a speciation, duplication, and transfer event. We used this to investigate the
stability of the embedding of the gene tree into the species tree (i.e., the stability of
gene node mappings), and the stability of event assignments for the internal nodes of
the gene tree.

We first checked to see how stable the gene node mappings were across the internal
nodes in all the 4699 gene trees. Figure 3(a) shows the results of this analysis. Over-
all, we observed that mappings tended to be fairly well conserved across the different
multiple optima. For instance, we observed that 73.15% of the internal gene tree nodes
had the same mapping across all 500 samples. Recall that only 17% of the gene trees
have a unique solution. We also repeated this analysis for event assignments and these
results are also shown in Figure 3(a). Amazingly, we observed that 93.31% of the nodes
had a consistent event assignment across all 500 samples. This suggests that event as-
signments tend to be highly conserved across the different multiple optima. Thus, even
in those instances where there are many different optimal reconciliations it should be
possible to confidently assign event types to most internal nodes of the gene tree (even
though the mappings of the nodes themselves may not be consistent across the differ-
ent multiple optima)). This has important implications for understanding gene family
evolution, since the inference of orthologs, paralogs, and xenologs depends only on the
event assignments for gene tree nodes.

In practice, users are often interested in analyzing the evolutionary history of a spe-
cific gene family. We thus asked the following question: Given a gene tree from the
biological dataset, what fraction of its nodes can be expected to have (i) a consistent
mapping, and (ii) a consistent event assignment, across all 500 samples. Figure 3(b)
shows the results of this analysis. The results show that for most gene trees, event as-
signments are completely consistent across all samples for most of their internal nodes.
For instance, we observed that 60.2% of the gene trees have a consistent event assign-
ment for all of their internal nodes, and almost all gene trees had a consistent event
assignment for at least half of their internal nodes. As we observed before, gene tree
node mappings tend to be more variable, but still, over 91% of the gene trees had a
consistent mapping for at least half of their internal nodes. We also tested to see if there
was a correlation between the number of optimal reconciliations for a gene tree and
fraction of its internal nodes with consistent mappings or consistent event assignments.
To our surprise, we found no correlation (results not shown).

Our analyses above show that, even in the presence of multiple optimal reconcilia-
tions, most aspects of the reconciliation are highly conserved across the different mul-
tiple optima.
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Fig. 3. Stability of mappings and event assignments. The plot in part (a) shows the fraction of
internal nodes from the 4699 gene trees that have the same mapping or the same event assignment
across at least a certain fraction of the 500 samples. The plot in part (b) plots the fraction of the
4699 gene trees that have at least a certain fraction of their nodes with a consistent mapping or a
consistent event assignment across all 500 samples.

6 Application to Understanding Sensitivity to Event Costs

The ability to explore the space of multiple optimal reconciliations makes it possible to
study the effect of using different event costs on the reconciliation. For instance, one
can compare if the mapping or event assignments that are consistent across the multiple
optima for a particular event cost assignment are also consistent across a different event
cost assignment. Similarly, if one is unsure of which event cost assignment to use, one
can try out all the different event costs, compute a set of random samples for each
event cost assignment, and aggregate the samples from all event cost assignments into
a single analysis to understand which aspects of the reconciliation are conserved across
the different event cost assignments.

We performed a preliminary study of the effect of using different event costs on
the analysis of the biological dataset. Recall that our default event costs are PΔ = 2,
PΘ = 3, and Ploss = 1. For this study, we kept Ploss = 1, but considered the fol-
lowing combinations of the duplication and transfer costs: (i) PΔ = 2, PΘ = 4, (ii)
PΔ = 2, PΘ = 2, (iii) PΔ = 3, PΘ = 3, and (iv) PΔ = 1, PΘ = 1. We computed 100
random samples for each setting of event costs. For our preliminary analysis, we asked
the following question: What fraction of the gene tree nodes with consistent mappings
(event assignments) under the default costs also have the same consistent mappings
(resp. event assignments) under the alternative event costs? The results of this analy-
sis for the four combinations of event costs listed aboveare as follows: For mappings,
the fractions are 94%, 83.38%, 92.04%, and 63.97%, respectively. And, for event as-
signments, the fractions are 92.06%, 91.52%, 96.07%, and 80.37%, respectively. As
the analysis indicates, consistent mappings and event assignments tend to be well con-
served even when using different event costs. Even with the rather extreme event costs
of PΔ = PΘ = Ploss = 1, almost 64% of the consistent mappings and over 80% of the
event assignments are conserved. We defer a more detailed analysis of the differences
in the space of optimal reconciliations for the different event cost assignments to the
full version of the paper.
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7 Conclusion

In this work, we have presented an efficient and scalable approach for the problem of
multiple optimal DTL-reconciliations. Our approach is based on random sampling and
we show how to sample the space of optimal reconciliations uniformly at random effi-
ciently in O(mn2) time per sample. The sampling based approach makes it possible for
users to explore the space of optimal reconciliations and to distinguish between stable
and unstable parts of the reconciliation. This approach also allows users to investigate
the effect of using different event costs on the reconciliation. Our analysis of the biolog-
ical dataset provides the first real insight into the space of multiple optima and reveals
that many, if not most, aspects of the reconciliation remain consistent across the differ-
ent multiple optima and that these can be efficiently inferred. We believe that this work
represents an important step towards making DTL-reconciliation a practical method for
understanding gene family evolution.

Many aspects of the space of optimal reconciliations remain to be explored. For in-
stance, it would be interesting to investigate why so many of the input instances have
millions (and more) of multiple optima. In this work we did not consider the effect of
alternative optimal gene tree rootings on the reconciliation space and we would like
to study this further. The ability to handle multiple optima also enables the system-
atic evaluation of the accuracy of DTL-reconciliation at inferring evolutionary history
correctly and we plan to pursue this further. Similarly, we only performed a very pre-
liminary study of the effect of different event costs and it would be instructive to study
this more thoroughly.

Funding: This work was supported by a National Science Foundation CAREER award
0644282 to MK. National Institutes of Health grant RC2 HG005639 to M.K., and Na-
tional Science Foundation AToL grant 0936234 to E.J.A. and M.K.

References

1. Storm, C.E.V., Sonnhammer, E.L.L.: Automated ortholog inference from phylogenetic trees
and calculation of orthology reliability. Bioinformatics 18(1), 92–99 (2002)

2. Koonin, E.V.: Orthologs, paralogs, and evolutionary genomics. Annual Review of Genet-
ics 39(1), 309–338 (2005)

3. Wapinski, I., Pferrer, A., Friedman, N., Regev, A.: Natural history and evolutionary principles
of gene duplication in fungi. Nature 449, 54–61 (2007)

4. van der Heijden, R., Snel, B., van Noort, V., Huynen, M.: Orthology prediction at scalable
resolution by phylogenetic tree analysis. BMC Bioinformatics 8(1), 83 (2007)

5. Vilella, A.J., Severin, J., Ureta-Vidal, A., Heng, L., Durbin, R., Birney, E.: Ensemblcom-
para genetrees: Complete, duplication-aware phylogenetic trees in vertebrates. Genome Re-
search 19(2), 327–335 (2009)

6. Sennblad, B., Lagergren, J.: Probabilistic orthology analysis. Syst. Biol. 58(4), 411–424
(2009)

7. Chen, K., Durand, D., Farach-Colton, M.: Notung: dating gene duplications using gene fam-
ily trees. In: RECOMB, pp. 96–106 (2000)

8. David, L.A., Alm, E.J.: Rapid evolutionary innovation during an archaean genetic expansion.
Nature 469, 93–96 (2011)



Reconciliation Revisited 13

9. Rasmussen, M.D., Kellis, M.: A bayesian approach for fast and accurate gene tree recon-
struction. Molecular Biology and Evolution 28(1), 273–290 (2011)

10. Burleigh, J.G., Bansal, M.S., Eulenstein, O., Hartmann, S., Wehe, A., Vision, T.J.: Genome-
scale phylogenetics: Inferring the plant tree of life from 18,896 gene trees. Syst. Biol. 60(2),
117–125 (2011)

11. Goodman, M., Czelusniak, J., Moore, G.W., Romero-Herrera, A.E., Matsuda, G.: Fitting the
gene lineage into its species lineage. a parsimony strategy illustrated by cladograms con-
structed from globin sequences. Systematic Zoology 28, 132–163 (1979)

12. Page, R.D.M.: Maps between trees and cladistic analysis of historical associations among
genes, organisms, and areas. Syst. Biol. 43(1), 58–77 (1994)

13. Bonizzoni, P., Vedova, G.D., Dondi, R.: Reconciling a gene tree to a species tree under the
duplication cost model. Theor. Comput. Sci. 347(1-2), 36–53 (2005)
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Abstract. Mapping reads to a reference genome is a routine yet computationally
intensive task in research based on high-throughput sequencing. In recent years,
the sequencing reads of the Illumina platform get longer and their quality scores
get higher. According to our calculation, this allows perfect k-mer seed match
for almost all reads when a close reference genome is available subject to rea-
sonable specificity. Our another observation is that the majority reads contain at
most one short INDEL polymorphism. Based on these observations, we propose
a fast mapping approach, referred to as “SEME”, which has two core steps: first
it scans a read sequentially in a specific order for a k-mer exact match seed; next
it extends the alignment on both sides allowing at most one short-INDEL each,
using a novel method “auto-match function”. We decompose the evaluation of the
sensitivity and specificity into two parts corresponding to the seed and extension
step, and the composite result provides an approximate overall reliability estimate
of each mapping. We compare SEME with some existing mapping methods on
several data sets, and SEME shows better performance in terms of both running
time and mapping rates.

Keywords: high-throughput sequencing, mapping, perfect match, INDEL, auto-
match function.

1 Introduction

The Next Generation Sequencing (NGS) technologies are generating unprecedented
large amounts of short reads in routine genome research. The high-throughput and read
length of NGS make it especially suitable for re-sequencing individuals with known
references and thus for detecting variations. In whole genome re-sequencing projects
for mammals, NGS usually generates billions of short reads, and mapping these reads
back to the reference genome is computationally intensive. Hence the design of efficient
mapping algorithms is a key and challenging problem in current computational biology.

Many short-read mapping methods have been developed along the evolution of the
sequencing technologies[1]. The specific read length, error rates and patterns of each
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technology at the time are the primary constraints in the design of mapping algorithms.
In the early days of NGS, the short reads were only 35bp long and error rates were fairly
high for the Illumina/Solexa platform. Besides, 5-6 years ago the 32-bit architecture
was the main model for PCs or cluster nodes, and their memory size is limited to 4Gb.
Bowtie[2] applied the Burrows-Wheeler transform and FM index to the representation
of the reference, and could reduce the memory footprint to as low as 1.3Gb for the
human genome. This advantage makes Bowtie very popular among high-throughput
sequencing users. Although the Burrows-Wheeler transform is effective in searching
perfect matches of a k-mer in a reference, we have to allow mismatches to maintain
sensitivity. For instance, MAQ[3] and SeqMap[4] use spaced seeds which allow up to k
mismatches. Bowtie conducts a backtracking search to allow mismatches, and mitigates
excessive backtracking by “double indexing”, which doubles the memory foot print.
No matter what method is used for handling mismatches, complexity is substantially
increased.

As chemistry and instruments of NGS are under constant improvement, the reads
are getting longer with higher quality. Now the Illumina platform can generate reads
longer than 100bp with fairly high quality. MiSeq[5] can even sequence reads up to
250bp. Some short read mapping programmes, like Bowtie2, have been developed for
these longer reads. Bowtie2 maps multiple evenly distributed seeds of a read and uses
dynamic programming to extend seed alignments into a full alignment that allows IN-
DELs. We observed that INDEL errors are extremely rare compared to substitution
errors for Illumina systems. Thus if an INDEL occurs in the alignment or mapping,
most likely it is a result from a polymorphism between the read and the reference.

Most high-throughput sequencing applications are for conserved genomes such as
human, which is the focus of this article. In [6], it is found that the size of INDEL obeys
a power law distribution in Human and Rodent pseudo genes: 78 human pseudo genes
have been analyzed and it shows that the average length of small INDEL is less than
three; furthermore, among those INDELs with length no larger than 20bp, 95% of them
are no larger than 11bp. In[7], it is found that INDELs locate throughout the genome
at a frequency of one per 7.2kb on average. If we approximate the occurrences of short
INDELs by a Poisson point process that matches the frequency [12], the probability of
finding at most one INDEL in a 100bp window is greater than 0.9999. Most existing
methods apply dynamic programming to allow general INDELs. This is unnecessary
most of the time for mapping short reads when a close reference genome is available.

Partially motivated by the above considerations, in this article we propose a new
short read mapping method, referred to as SEME (Sequential Exact seed-Match and
Extend) hereafter, which focuses on mapping Illumina short reads generated from con-
served genomes. Different from most existing Seed-and-Extend methods which map
multiple seeds simultaneously, SEME scans the read according to a specific strategy
and maps the seeds sequentially. Once a seed is perfectly matched to the reference we
extend it on both sides to get the full alignment result or reject it. This approach avoids
mapping a fixed number of seeds for each short read. The higher the sequencing quality
is, the less number of seeds are needed in SEME on average. This feature is particu-
larly favorable as sequencing technology improves. In the extension step, we introduce
the AMF (Auto-Match-Function) method to detect up to two INDELs. Compared with
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alignment algorithms based on dynamic programming, the average complexity of the
AMF method is linear. For the remaining complicated occasions, which are rare, we
can incorporate the Smith-Waterman[8] algorithm for full alignments.

As important as the computational complexity of an algorithm, its mapping rate and
accuracy, which is usually measured by sensitivity and specificity, needs to be statisti-
cally evaluated fairly. For example, BLAST[9] is now widely used in the search of se-
quence databases. Its success comes from both its efficient algorithmic implementation
and the associated statistical evaluation of the alignment significance[10,11,12]. In the
situation of mapping short reads, the read length, say 100bp, is so small compared to the
the genome size, that the classical asymptotics of alignment cannot be applied directly.
In this report we make some efforts to evaluate the accuracy of the SEME procedure.
In concert with the algorithm, we start off by comparing two sequences of the same
read length. If one sequence is different from the other by only substitution and small
INDEL polymorphisms plus sequencing errors, then the chance of detecting matching
is essentially sensitivity. On the other hand, if one sequence is sampled randomly, say
according to an i.i.d. – independent and identically distributed – model for the sake of
simplicity, then accepting a match leads to a false positive error and its chance needs
to be calculated. To evaluate the overall specificity, we decompose the entire genome
into many reads of the same read lengths, either overlapping or non-overlapping, and
apply the above result to provide bounds to the probability of accepting at least one
match by chance across the genome. We could complement the analysis based on the
simple model by simulation as well. With such a probabilistic framework that takes into
account of read length, read error pattern, and polymorphism rate, we can optimize the
seed length by trading off sensitivity and specificity.

To enhance sensitivity, we propose a soft counting criterion for accepting or rejecting
a mapping result if appropriate sequencing quality scores are available. That is, we
impute “possible polymorphism” fractions from mismatches based on polymorphism
rates and quality values, and use the sum of these fractions for decision.

2 Method

SEME follows a “seed-and-extend” paradigm. In the first stage, it extracts k-mers se-
quentially from a short read, and for each k-mer SEME searches through the reference
for perfect-match locations, where the read can anchor. We will discuss the selection of
k later. In the second stage, SEME extends the seed on both sides separately. If the read
is indeed from a reference location, then their true alignment falls into three categories:
no INDEL; one INDEL; other more complicated INDEL patterns. As we explained ear-
lier, most short reads from a conserved genome contain no more than one INDEL and
possibly some mismatches. Thus the principal task of extension can be simplified as
follows: on each side of the seed, detect the possible “one-INDEL” including its type,
position and length (no larger than a given upper bound). We introduce the auto-match
vector and auto-match function to efficiently solve this problem.

The search of k-mer exact-match across a reference genome is a common theme in
most mapping tools. Several options are available for implementation. If memory size
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is limited, then the Burrows-Wheeler Transform is a good choice for compressing the
genome and index information. If memory is sufficiently large, then hashing can help
speed up the search, [19].

2.1 Index Table of Sorted 32-Mers and Binary Search

In our scheme, we may use more than one kind of seed sizes depending on the data.
Therefore we propose to use the index table of 32-mers for the human genome. That
is, we encode each 32-mer subsequence of the reference genome by an integer si, i =
1, · · · , L, where L is the genome size, and sort them by the heap sorting algorithm.
Denoted the sorted 32-mer-integers by s(1) ≤ s(2) ≤ s(i) ≤ s(L), and their corresponding
addresses on the genome by a(s(i)), i = 1, · · · , L. We keep the addresses of these sorted
32-mers in an array u[i] = a(s(i)), i = 1, · · · , L, referred to as ”index table” hereafter. We
also put the reference genome in RAM so that we can quickly find the i-th sorted k-mer
by linking the i-th address in the index table with the genome, see Fig 1. Note we do
not save the sorted 32-mer-integers in a vector directly because an 32-mer takes 8 bytes
while the address of the 32-mer takes only 4 bytes. With such an index structure, we
apply binary search, whose time complexity is O(log2L). Take the human genome for
example, as the size of the index table is about three billion, approximately 30 steps are
needed to insert a k-mer into the index table.

Reference sequence

S1

S2

S3

S4

S5

S6

S7

7

Sorted: S(i) Index: u[i]

3

5

2

1

4

6

i

1

2

3

4

5

6

7

Stored in RAM

Fig. 1. Illustration of the index table. The blue bar is the reference sequence. The short bars on
top of the reference represent 32-mers s(i) extracted from the reference. The sorted 32-mers {s(i)}
and their corresponding indices u[i] are listed in the table below. Only the reference genome and
{u[i]} are kept in RAM.
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We make a note here. Regardless the value of k, we can carry out a search of the 32-
mer starting at the same position as the k-mer. Along the binary search, the lower bound
either stays or moves upwards while the upper bound either stays or moves downwards.
We could have two outcomes: at some point, the 32-mer hits a match with either the
lower or the upper bound; otherwise, the 32-mer matches neither of the two bounds
when they meet. In the former case, the 32-mer finds a perfect match. In the latter, we
check the maximum number of matching nucleotides between the target and the lower
bound starting from the beginning position. Similarly we check the number for the
upper bound. If this number is no smaller than k, then the k-mer has its perfect match
on the genome. In comparison, search based on hashing does not have this flexibility.

Each item in the index table is a 32-bit integer which needs 4 bytes and the reference
genome takes no more than 1Gb. They add up to no more than 13Gb. As the 64-bit
architecture is taking over in the computer business, this memory requirement is not a
serious problem. However, if we select every other 32-mer in the genome, say those
at the odd addresses, then the resulted index table would be around 6Gb, and the total
memory requirement is less than 7Gb. Of course, to be consistent with this configura-
tion, we need to search two consecutive k-mers on a short read before we jump to the
next seed. According to our simulation, this reduction of memory sacrifices very little
in terms of performance.

To reduce the steps of binary search, we could introduce “block address” or ”zip
code” for each 32-mer, which is encoded into an integer in the range [0, 432 − 1]. For a
number r < 30, we pick up the 2r integers di = i ∗ 264−r, i = 0, · · · , 2r − 1, that divide
the range uniformly, and insert each of them to the index table of the sorted 32-mers of
the human genome. Denote the two indices that are just next to di are (u[ ji], u[ ji + 1]),
namely, s( ji) ≤ di ≤ s( ji+1) — it is possible that s( ji) = s( ji+1). Now we keep the pointers
[ ji] in an array q[i], i = 0, · · · , 2r − 1, referred to as ”block address vector” hereafter.
In the practice of mapping reads, we load q[i] together with u[i] and the genome into
computer memory. For an 32-mer-integer s, we divide it by 264−r, and the resulting
integer after rounding off gives its block index denoted by i1. Suppose q[i1] and q[i1+1]
respectively point to u[ j1] and u[ j2], then the two indices u[ j1], u[ j2 + 1] can serve as
a more delicate starting point of the lower and upper bound respectively for the binary
search of s. Since the distribution of si, i = 1, · · · , L can roughly be approximately by
a uniform distribution, we could reduce r steps of binary search on averge using this
strategy. Of course, the larger the r is, the more memory is needed. If we take r = 15,
at the cost of 128K more memory, we could reduce the the average complexity of the
binary search by half.

2.2 Seed Stage

In this stage, we use the strategy GSM (Grouped Scan and Map) to scan the short read
sequentially to find a perfectly matched seed, in other words, to anchor the short read
to a candidate position in the reference genome. Since we only index a single strand of
the reference to save memory, we scan both short reads and their reverse complements.
For the sake of simplicity, we just describe the scan scheme on one strand.

The scan function GSM puts all seeds of a short read into several groups. It scans
the first seed of each group in the first round, and the second seed in the next round.
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Fig. 2. Illustration of the grouped scan method. The green bar shows the scope of a scan window
from which a seed is extracted. The blue bar represents a short read, on which a mismatch is
marked by a black square. If we scan the read nucleotide by nucleotide, we would go though five
failed mapping marked by red before the successful mapping marked by green occurs. If we scan
the read with jump 3, only two failed mapping occur before a success.

This process goes on till a seed is mapped or the number of trial seeds exceeds a certain
threshold. Fig. 2 is an illustration of the method. It can be seen that five seeds have to
be scanned before the perfect match seed is detected by the step-by-step scan method.
In contrast, we only need to map two seeds before the detection of a perfect match seed
using a proper grouping strategy.

The grouped scan strategy reduces the number of trial seeds in most occasions. In our
experience, if a short read is mappable(can be mapped back if all seeds are scanned)
then the number of trial seeds does not exceed a certain threshold in most cases. We
could experiment with a small portion of the read data to set this threshold. The principle
will be discussed in section 2.4.

In addition to the scan order, seed length is another important factor we should con-
sider. Later we will estimate the length interval which meets both sensitivity and speci-
ficity requirement on the basis of a probabilistic model. Seed lengths near the upper
bound of the interval give the best specificity while seed lengths near the lower bound
give the best sensitivity. If we put specificity prior to sensitivity, at each scan position
we can first map a seed at the upper bound and then map a seed at the lower bound.

2.3 Extension Stage

In this stage, we detect the pattern, length and position of a possible INDEL. The core
of the method are the notions of auto-match vector and auto-match function which we
will define as follows.

Given two DNA segments denoted by S 1 and S 2, not necessarily of the same length,
we define V(S 1, S 2) to be a vector whose i-th element is 0 if the i-th elements of S 1 and
S 2 are the same, and is 1 otherwise. The length of V(S 1, S 2) is the shorter one of S 1 and
S 2. For any string S , denote the substring of S with the first i elements removed as S {i}.

We define match vectors as: M(0) = V(S 1, S 2); M(i) = V(S 1{i}, S 2), for i > 0;
M(−i) = V(S 1, S 2{i}), for i > 0, see Fig. 3. The auto-match vector w(i) of S 1 and S 2

is defined as: the i-th element of w(i) is the minimum of the i-th element of M(0) and
M(i). Fig. 5 illustrates how w(1) is obtained from M(0) and M(1). Finally, we define
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Fig. 3. Illustration of the auto-match vectors during extension

the auto-match function AMF(i) to be the number of 1’s in the auto-match vector w(i).
AMF(0) is simply the number of 1’s in the match vector M(0).

With the help of AMF, we can detect the pattern and length of an INDEL. Fig. 4
shows a case of a two-nucleotide deletion, in which AMF(i) is zero only for i = 2
while all other values are larger than five. We use this property to detect the pattern and
length of an INDEL. Once the type and length of an INDEL is determined, we further
use auto match vectors to detect its position. The idea is illustrated in Fig. 5, where we

Reference

Short read

(0)M

(1)w

(2)w

A C T C G C T G C C A A G T A T G A C G A T C T A

AMF

Shift step

Shift

10

5

1 2 43 5

( 1)w −

-1-2-3-4-5 0

A C G C G C T G C A G T A T G A C G A T

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 1

0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 1 1

0 0 1 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 1 1

Fig. 4. The pattern of AMF corresponding to a deletion of size 2

Fig. 5. Detection of the position of a DELETION. A nucleotide ‘T’ in green color on the reference
genome is deleted. In M(0) almost all elements before this nucleotide are 0 while almost all
elements after it are 1. In M(1) the pattern is just the opposite.
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only consider M(1) because the AMF calculation indicates that an 1-nucleotide-deletion
exists somewhere, and the purple boundary indicates the position of the deletion.

Now we summarize the general AMF method as below.

Algorithm 1 AMF Algorithm

1. Examine AMF(0), AMF(1), AMF(−1), . . ., AMF(d), AMF(−d) sequentially (d is
the maximum length of INDEL allowed) till AMF(µ) < ξ for a certain µ, where ξ is
a predetermined value. A positive µ means a DELETION, and a negative µ means
an INSERTION. The absolute value of µ estimates the length of the INDEL.

2. If such µ does not exist, we skip this extension (either a false mapping or a more
complicated INDEL pattern exists); Else if µ = 0, it means no INDEL; otherwise
we use the pair [M(0),M(µ)] to detect the position of the INDEL in the next step.

3. Take the subsequence to the right of the mapped seed for example, and denote its
length by l.

– Initialization: let D0 =
∑

j w(µ) j, T MP = D0, POS IT ION = 0.
– Recursion: For j = 1 : l, Di = Di−1+[M(0)i−M(µ)i]; If Di < T MP, T MP = Di,

and POS IT ION = j.
– Output POSITION.

For 100bp re-sequencing reads of the human genome, only a tiny fraction could be an-
chored by a fairly large seed, say 32bp, but could not be extended by the AMF method,
and they are examined by the Smith-Waterman algorithm.

2.4 Computational Complexity

Some notations and definitions that are necessary for the complexity evaluation are
listed in Table 1. We first consider those reads that can be mapped to the reference.
Mapping such a short read is accomplished through: 1) finding a perfect match seed, 2)
detecting the INDEL length, 3) detecting the start position of the INDEL if its length
is nonzero. Next we decompose the time spent on each part in details according to the
algorithm.

The time spent on exact match is nsTmp seed, where Tmp seed varies depending on the
algorithmic implementation and hardware. If we take the searching scheme described in

Table 1. Symbols and notations used in the complexity evaluation

Symbol Definition
ns number of scanned seeds in a read, ns ≤ 2(n − k + 1)
nw number of seeds which are mapped to the reference but cannot be extended
Tcmp nt time of comparing a pair of nucleotides
Tcmp int time of comparing two integers
Tadd int time of adding two integers
Tmp seed time of mapping a single seed
l length of the read’s subsequence involved in extension, l ≤ n − k + 1
µ length of an INDEL
Q maximum length of an INDEL to be detected
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Subsection 2.1, mapping a single seed has three steps: 1) obtaining a starting lower and
upper bound in the index table for the seed using its block address; 2) binary searching
for the two adjacent 32-mers between which the seed can insert; 3) finding the max-
imum length of perfect match up to 32 nucleotide bases. In the first step, the integer
corresponding to a 32-mer seed needs to be divided by 264−r, where r is the number of
binary search we would like to reduce. This can be achieved by 64 − r shift operations
on the integer. In addition, two data access operations are required to get the two start-
ing index bounds. The second step contains about (30 − r) data access operations and
30 − r integer comparison. The third step can easily be implemented by shifting and
comparing integers.

After finding a perfect match seed, we need to compute the values of AMF function
to detect the possible “1-INDEL” length µ. First, the calculation of M(i) takes l, l and l−
|i| comparisons of nucleotides pairs between the read and reference respectively for i =
0, i > 0 and i < 0. Second, calculation of w(i) takes l and l − i comparisons of Boolean
elements in M(0) and M(i) respectively for i > 0 and i < 0. Third, the calculation
of AMF(i) takes roughly l integer additions. To detect an INDEL’s start position, we
can implement the third step of Algorithm 1 with the following time respectively for
deletion and insertion:

(l−1)Tadd int+ l(Tcmp int+Tadd int) , and (l−μ−1)Tadd int+(l−μ)(Tcmp int+Tadd int) .

Putting together and assuming we calculate AMF(i) in the order of i = 0, 1,−1, 2,−2, · · ·,
we have the following total time, ignoring the constant terms with respect to l.

T ≈ nsTmp seed + nw l[(2Q + 1)Tcmp nt + 2QTcmp int + (2Q + 1)Tadd int] (1)

+

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

l[Tcmp nt + Tadd int] µ = 0
l[2µTcmp nt + 2µTcmp int + (2µ + 2)Tadd int] µ > 0
l[(2|µ| + 1)Tcmp nt + (2|µ| + 1)Tcmp int + (2|µ| + 3)Tadd int] µ < 0

(2)

The first term is the complexity of mapping seeds; the second term is the complexity of
the unsuccessful extension of those anchored seeds. The third term is the complexity of
the successful extension of the final seed. Possibly ns includes the number of seeds that
cannot be mapped anywhere, thus ns ≥ nw. Later we will show that the specificity goes
up as the seed length goes up. When the specificity is sufficiently large, the chance of
nw > 0 is small. For those reads that cannot be mapped to the reference, the third term
is zero. So the time is

T ≈ nsTmp seed + nw l[(2Q + 1)Tcmp nt + 2QTcmp int + (2Q + 1)Tadd int] .

In our experience, for most of the mappable reads, the number of trial seeds is much
smaller than the total number of seeds. If we set a threshold for the number of trial
seeds then we avoid fruitlessly scanning. To set this threshold, we need to know the
distribution of ns for the mappable reads. Let A(i) = #{ns(among mappable reads) = i},
namely, the number of reads which need i trial seeds till a successful mapping, 1 ≤ i ≤
(n − k + 1), Fig. 6 shows the frequencies of A(i) for an 100K-short-read data set. It is
obvious that most of the mappable short reads are scanned only a few times. In fact, the
99% quantile of A(i) in this example is 11, and the average number of trial seeds, for all
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Fig. 6. Frequencies of ns for mappable reads. The y-axis shows log10(A(i)). The results are ob-
tained from 100K 76bp short reads downloaded from NCBI data base, archive SRR003196.
Among them 83K reads are mappable.

the short reads (including the unmapped reads) is only 2.9 for this data set. This gives
an estimate of E(ns) and it explains, at least from one angle, why the sequential seeding
strategy is efficient compared with that of fixed-number-seeding. The higher the quality
of a read data set is, the less the average number of trial seeds are needed.

We also calculate the average length of INDELs in the example explained in the
introduction section. It turns out that the average of µ is around 2.9. This means that on
average, we only need to shift a short read rightwards and leftwards with respect to the
reference 3 times.

3 Statistical Evaluation

In this section we evaluate the mapping accuracy of SEME based on probabilistic mod-
els. Several important statistical approaches have been developed for specific sequence
alignment problems. For example, the statistic D2[13] concentrates on the number of
k-mer perfect match between two sequences of lengths m and n, and evaluate its asymp-
totics when m and n go to infinity. The concept of excursion in random walks and some
other advanced techniques in probability were used in evaluating the significance of
BLAST[14] results. In the current mapping problem, the read, say 100 bp, is much
shorter than the reference genome. The asymptotics that requires both m and n go to
large do not apply. In order to evaluate the sensitivity and specificity of the SEME map-
ping result, we propose another approach, which essentially compares the n-length read
with every n-length subsequence of the reference.

Suppose that the read length is n, and we define sensitivity to be the probability that
a read is mapped to where it is from, and specificity as the probability that the read
does not map to any other positions – excluding repeats and possibly highly conserved
homologs – on the reference. We approximate this event by any positions on a random
reference of the same size. Let ν be the chance that the read is mapped to a random
n-mer subsequence. According to subadditivity of probability

1 − speci f icity ≤ min{Nν, 1},
Corresponding to the two stages of SEME, we make the following decomposition:

sensitivity = τ θ, ν = η θ∗, (3)
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where τ and r are respectively the probabilities of finding a k-mer perfect match be-
tween two n-length sequences under a correct location and a random location. θ and
θ∗ are respectively the conditional probabilities of accepting extension under a correct
location and a random situation. Assuming that the n positions are independent and
the match rate is constant, we calculate τ and η precisely, and the result is accurate no
matter what the read length is. θ is obtained by a soft counting method, which calcu-
lates the probability of the extension based on the distribution of the imputed “possible
polymorphism” numbers that aim to adjust the effect of base-calling errors.

Lemma. For two n-length sequences, assume that bases at different positions are inde-
pendent and the match rate for all positions is a constant p, then the probability that an
k-mer perfect match exists is given by

τ(k, p) =
n∑

m=0

[
K(m)∑

s=1

(−1)s+1Cs
m+1Cm

n−ks](1 − p)m pn−m,

where K(m) = max{s; n − ks ≥ m} ∧ (m + 1).

In fact, τ(k, p) increases with p and decreases with k.
We first apply this lemma to the calculation of τ = τ(k; p), where p is the matching

rate between a read and the region where it is from and it depends on the polymorphism
rate and sequencing error rate. Let X, Y, S represent the reference, individual genome
and short read respectively. It can be shown that the mismatch rate at the site (Xi, Yi, S i)
is (1 − βi)γ + (1 − γ)βi + γβiwi, where γ = Pr(Xi � Yi) is the polymorphism rate, or
simply the SNP rate if we skip the INDEL for the moment; and βi = Pr(Yi � S i), the
miscall rate; wi = Pr(S i � Xi|Yi � S i, Yi � Xi). We note that in this context we use
the jargon “polymorphism rate” γ as a measure of genomic discrepancies between the
target individual and the reference, but not as a measure of population genetics. Since
γβi is small, we have the approximation to the match probability: pi ≈ 1−γ−βi. For the
moment, we replace βi by their average. We show the curves of τ under different settings
in Fig 6(a). For example, the green solid line corresponds to the case of 100bp-reads
with a 0.99 match rate. In this case, the sensitivity is satisfactory even when k = 30.

Next we apply the lemma to the random situation. In η = τ(k; pη), we set the match
rate pη to be the sum of the squares of the base composition rates (usually around 0.25).
In Fig 6(a), the red line, representing the trend of η, drops to zero quickly even when
the seed is short, and to some extent it displays the specificity of SEME.

Soft Counting Criterion. The extension stage validates the anchor position by check-
ing the the number of inconsistencies between the reference and the read. For now,
we simply exclude INDEL positions. MAQ [3] evaluates a mapping result by calcu-
lating the posterior probability that the read comes from the region, and it regards the
hit with the highest posterior as the correct result. The posterior can be maximized
effectively by minimizing the sum of quality values of mismatched bases. We note
that mismatches could be caused by miscalls as well as polymorphisms, and base-
calling errors are not strong evidence of incorrect mapping. Instead of hard counting
of mismatches, we propose a soft counting method that imputes the “possible poly-
morphism” fractions from all mismatch sites using quality values and an appropriate
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Fig. 7. (a) The probability of finding a perfect k-mer match between two sequences of the same
length with respect to k. The solid lines, dashed lines and dotted lines represent the occasions for
100bp, 76bp, 35bp sequences; and the red, gray, orange, green, blue and purple lines respectively
correspond to the common match rate 0.25, 0.95, 0.975, 0.99, 0.995, 0.999. (b) − lg(Nη) vs. seed
length, where η is the probability that the read is anchored to a random subsequence of the same
length. The red, blue, green, and orange lines correspond to the cases for 35bp, 76bp, 100bp, and
110bp reads respectively. We use it as a measure of specificity to guide seed length selection.

polymorphism rate, aiming at reducing the effect of miscalls on mismatch sites. Con-
sequently, we evaluate the mapping result based on the sum of the imputed “possible
polymorphism” fractions. Specifically, according to the setup above, the mismatch rate
is 1− pi = (1−βi)γ+βi[(1−γ)+γwi]. We impute the “possible polymorphism” fractions
at mismatch sites as

(1 − βi)γ
(1 − βi)γ + βi[(1 − γ) + γwi]

,

which can well be approximated by γ
βi+γ

. If quality scores are available and can be

interpreted as probabilities, we have βi = 10−
qi
10 , see [15,16]. Our statistic is defined

to be ∑

i at mismatch sites

γ

βi + γ
.

Under the assumption of independence, its distribution is binomial(n − k,γ). Conse-
quently, we can convert the statistic score of an alignment into a p-value. In this case,
the larger the p-value, the stronger evidence of accepting the mapping.

Since the seed and extension part do not overlap, we can regard them as approx-
imately independent. θ is the type one error probability of the associated test of the
hypothesis: the anchor is correct. We can set the significance level α of this test to en-
sure a reasonable sensitivity. In fact, τ(1 − α) is an upper bound for the sensitivity of
SEME. The curves in Fig 6(a) show the sensitivity excluding the factor (1 − α) under
different settings and can serve as a guidance for seed length selection.

We can similarly calculate the sum of inconsistencies of an extension alignment un-
der the random sequence assumption, and its asymptotic distribution is normal.
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The chance that we accept an incorrect anchor should be small as validated by our
simulations. Essentially 1 − θ∗ is the power of the associated test. For the moment, we
use Nη as a conservative bound of specificity when choosing seed length. As a matter
of fact, Nη is also the average number of anchor places across the whole genome by
chance. The curves of − lg(Nη) with respect to seed length are shown in Fig 6(b).

3.1 Seed Length Determination

The seed length selection is a trade off between sensitivity and specificity. Shorter seeds
increase sensitivity, but may lead to many incorrect anchor places; longer seeds increase
specificity, but the seed may be mapped nowhere. To ensure both of them, the seed
length should be in a proper range.

According to Fig 6(b), the curves corresponding to different read lengths are close to
each other, especially as the size is larger than 76bp. Only when the seed length is cho-
sen to be at least 19 or 20, the average number of anchor positions by chance would be
smaller than 1. If we would ensure specificity larger than 0.999, the lower bound should
be up to 24 or 25. Of course, this estimate might be conservative because Nη is a con-
servative bound of specificity. On the other hand, slightly larger lower bound can help
avoid false positive anchors, which are expected to be rejected in the extension stage.
The upper bound is chosen according to the sensitivity curve and our tolerance. For
100-bp reads with an average 0.99 match rate, [20, 32] is a proper range of seed length.
In practice, the binary search algorithm simply find the maximum exact match length
up to 32 nucleotide for each seed. If it is above 20, we then evaluate the significance
based on this exact match length.

If the seed is 20-mer, the sensitivity for 35bp reads with a match rate 0.975 is 0.83,
while it grows to 1− 6.95× 10−4 for 100bp reads with a match rate 0.975. If we choose
32-mer seed and assume the match rate is 0.99, then the sensitivity is 0.75, 0.98, and
0.99587 respectively for 35bp, 76bp and 100bp reads. For shorter reads with lower
quality, the seed length may even drop to less than 20 to ensure a fair sensitivity. This
is the reason why in the early days of NGS, the strategy using single seed of perfect
match did not work while it is feasible nowadays as the read length and sequencing
quality improves.

4 Results

In our examples, the reference genome is the human genome hg18. We report compar-
isons of SEME with Bowtie2 (Version 2.0.0-beta7) and SOAP2[17,18] on three data
sets from NCBI database, each of which includes 2 million reads. To make fair com-
parisons, we implement SEME by mimicing the parameters in the ’–sensitivity’ mode
for Bowtie2 and ‘-v4 mode for SOAP2 respectively.

Mapping rates and time are two key measures for evaluating read mappers. We show
the comparison of Bowtie2 and SEME on the left in Table 2. For data set 1, the running
time of SEME reduces to about 1/4 whereas the mapping rate of SEME is 14.6(88.0-
73.4)% higher than that of Bowtie2. Comparing with data set 1, the running time of
Bowtie2 for data set 2 is a little more while that of SEME reduces further by a third.
This phenomenon is due to the fact that the number of Bowtie2’s trial seeds is fixed for
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Table 2. Comparison of SEME, Bowtie2 and SOAP2. n is the read length of each data set. The
three data sets are from NCBI database, namely, short read archives SRR003196, SRR033622
and SRR054721. They are all generated by the Illumina Platform. Each data set contain two
million short reads. Left: Comparison with Bowtie2; right: Comparison with SOAP2

n Programme Time(s) Map rate(%)

76 Bowtie2 508 73.4
SEME 124 88.0

75 Bowtie2 542 96.1
SEME 81 98.8

100 Bowtie2 787 95.5
SEME 95 99.2

n Programme Time(s) Map rate(%)

76 SOAP2 290 39.4
SEME 164 50.4

75 SOAP2 207 80.5
SEME 112 87.0

100 SOAP2 261 74.5
SEME 161 81.7

each short read while that of SEME mainly depends on the quality of each short read,
that is, better quality, less trial seeds. Notice that the read lengths of data set 1 and 2 are
about the same and the quality of the latter is better. From data set 2 to 3, the read length
extends to 100, whereas the quality are similar. We can see that the mapping time of
Bowtie2 increases, but SEME remains about the same, which verifies our analysis.

We show the comparisons of SOAP2 and SEME on the right in Table 2. Since the -v4
mode only allow 4 mismatches, mapping rates of both SOAP2 and SEME for all 3 data
sets are lower than those in the comparison with BOWTIE2. Not only does the running
time of SEME reduces to about one half, but also it has a 7-11% gain in mapping rates.

In sum, compared with Bowtie2, SEME runs 4.1-8.3 times faster depending on qual-
ity of data sets; Compared with SOAP2, SEME runs twice faster while the mapping
rate of SEME is substantially higher.

5 Discussion

SEME has two key features. The first one is its novel mapping algorithm, which obeys
the “seed-and-extend” paradigm. A common approach of the seed stage is to map mul-
tiple seeds at the same time and then make them to full alignments. The number of these
multiple seeds is usually fixed from read to read. Different from this approach, SEME
maps seeds sequentially. The number of seeds need to be mapped depends on the dis-
tribution of mismatch sites on the short read. The scan function of SEME efficiently
minimizes the average number of trial seeds. In the extension stage, SEME can detect
the pattern, position and length of small INDELs by means of auto match function and
auto match vectors without enumerating all possible combinations or carrying out local
alignment algorithm. Time complexity of the extension stage is linear with respect to
the read length.

The second feature is that SEME has its own statistical evaluation of mapping reli-
ability, which is critical for NGS, especially its applications to medicine. Compared to
the vast amount of algorithmic development, not much associated statistics was found
in the literature so far. A statistical evaluation of a mapping result is justifiable only
if the model on which the analysis is based captures the data characteristics and fol-
lows the mapping algorithm closely. Our statistical analysis of the “seed-and-extend”
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scheme essentially boils down the evaluation of specificity and sensitivity to the match-
ing chance of two n-length sequences, where n is the short read length. We decompose
the probabilities into two parts: one corresponds to the seed stage and the other cor-
responds to the extension stage. Since we stick to perfect match in the seed stage, the
calculation of the exact probability is relatively easy, see Lemma. In the extension stage,
the sum of “possible polymorphism” fractions can approximately be described by either
a binomial or a normal distribution.

The random sequence assumption is definitely far from a perfect description of
any common natural genome because it ignores more complicated issues such as du-
plications and homologs. Appropriate simulations may complement the model-based
analysis to some extent. We carried out limited simulations, and the results are quite
comparable with the analytical results in terms of the values of τ and r in Equation (3).

SEME is very flexible due to its data structure and sequential scan strategy. Depend-
ing on the mapping context, the condition of the short reads and the requirement of the
mapping result, we can adjust the seed length, the scan scheme and the upper bound of
trial seeds. The optimization of the scan scheme depends on several factors such as the
sequencing quality pattern, and we are conducting more investigations. We implement
the method in C++, but the process of improving the code is ongoing.

Other than the straightforward mapping problem, we did not elaborate on SEME’s
variants that we are working on. For example, by encoding and decoding ‘C’ and ‘T’
with a common letter, we can use SEME to map short reads and allow methylation
sites. However, with this setup, the values of sensitivity and specificity, the seed length
need to be re-evaluated. For now, SEME deals with pair-end data by treating them as
independent reads. How to integrate information from both ends to speed up mapping is
an interesting problem to be considered. The detection of alternative splicing site inside
a single seed is a more challenging task. As the Illumina read length goes beyond 160bp,
the ideas of SEME described in this report may help solve the problem. Particularly, we
emphasize that the statistical evaluation is important for justifying the significant of any
new genomic discovery.
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Developing an approach to model heterogeneity of cancer has emerged as is an urgent 
need in cancer studies. To address this challenge we propose an approach for a proba-
bilistic modeling of cancer. Starting with the assumption that each cancer case should 
be consider as a mixture of cancer subtypes, our model links phenotypic similarities 
with putative causes. Specifically, building on the idea of a topic model [1], our ap-
proach is based on two components (i) a measure of phenotypic similarity between 
the patients and (ii) a list of features –such as mutations, copy number variation, mi-
croRNA level etc. to be used as proposed explanations. The main idea is to define 
(probabilistic) disease subtypes and, for each patient, identify the mixture of the sub-
types that best explain the patient similarity network. Our approach does not assume 
predefined subtypes nor does it assume that such subtypes have to be uniquely de-
fined. That is, we do not assume that there exist “the” disease subtype model but ra-
ther we consider a distribution of such models providing a probabilistic context. 

Our probabilistic model allows identification of genetic aberrations which are re-
sponsible for similarities and differences in patients’ phenotypes, pinpointing depen-
dencies among such aberrations, and emerging probabilistic subtypes. It provides also 
a probabilistic way of inferring the genotype-phenotype relationship.   

We applied our approach to TCGA Glioblastoma Multiforme (GBM) data to  
obtain a probabilistic model of the disease, Prob_GBM. We used gene expression to 
describe disease phenotypes, consequently the patient network was built based  
on gene expression similarity. This helped us to compare results inferred from our 
model to the study of expression based TCGA GBM subtypes [2]. We show that 
while our model is largely consistent with the current knowledge about GBM, it also 
leads to new hypotheses, some of which we could support by the facts from the  
cancer literature. 

To the best of our knowledge, it is the first time that a probabilistic model to ex-
plain patient similarity relation has been proposed in the context of studying of bio-
logical heterogeneity. Specifically, by building Prob_GBM we obtained for the first 
time an unsupervised model which explains expression similarities using mutations, 
copy number variations, and microRNA levels. In this work we focused on model 
description and demonstrating how the information represented in the model can be 
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leveraged to understand disease heterogeneity in the context of relatively well studied 
GBM. However, many interesting variations of the model are possible. For example 
phenotype similarity might include survival time. Features can be extended to include 
transcription factor biding, methylation, age, sex, or environment. Alternatively the 
features can be narrowed down to microRNA only, to study the impact of these mole-
cules alone. This study opens the door to these and many other applications. 
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Abstract. The recent advances in high-throughput sequencing tech-
nologies bring the potential of a better characterization of the genetic
variation in humans and other organisms. In many occasions, either by
design or by necessity, the sequencing procedure is performed on a pool
of DNA samples with different abundances, where the abundance of each
sample is unknown. Such a scenario is naturally occurring in the case of
metagenomics analysis where a pool of bacteria is sequenced, or in the
case of population studies involving DNA pools by design. Particularly,
various pooling designs were recently suggested that can identify carri-
ers of rare alleles in large cohorts, dramatically reducing the cost of such
large-scale sequencing projects.

A fundamental problem with such approaches for population studies is
that the uncertainly of DNA proportions from different individuals in the
pools might lead to spurious associations. Fortunately, it is often the case
that the genotype data of at least some of the individuals in the pool is
known. Here, we propose a method (eALPS) that uses the genotype data
in conjunction with the pooled sequence data in order to accurately es-
timate the proportions of the samples in the pool, even in cases where
not all individuals in the pool were genotyped (eALPS-LD). Using real
data from a sequencing pooling study of Non-Hodgkin’s Lymphoma, we
demonstrate that the estimation of the proportions is crucial, since other-
wise there is a risk for false discoveries. Additionally, we demonstrate that
our approach is also applicable to the problem of quantification of species
in metagenomics samples (eALPS-BCR), and is particularly suitable for
metagenomic quantification of closely-related species.
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1 Introduction

Over the past several years, genome-wide association studies (GWAS) have iden-
tified hundreds of common variants involved in dozens of common diseases [1].
These discoveries leveraged technological advances in genotyping microarrays [2,
3] which allowed for the cost effective collection of common genetic variation
in large numbers of individuals. More recently, technological advances in high
throughput sequencing (HTS) technologies have rapidly decreased the cost of
sequencing cohorts of individuals [4]. The advantage of sequencing technologies
relative to genotyping technologies is that sequencing technologies collect both
rare and common variation providing the opportunity for implicating rare ge-
netic variation, in addition to common variation, in human disease.

Unfortunately, to identify disease associations with rare variants, the cohorts
that must be sequenced consist of thousands of samples. Even when considering
the decrease in costs over the past decade, the cost of sequencing these cohorts
is prohibitively expensive. The actual cost of sequencing a sample consists of
two parts. The first part is the cost of preparing a DNA sample for sequencing
which we refer to as the library preparation cost. Library preparation is also
the most labor intensive part of a sequencing study. The second part is the cost
of the actual sequencing which is proportional to the amount of sequence col-
lected which we refer to as the sequencing per-base cost. Technological advances
are rapidly reducing the per-base cost of sequencing while the library prepara-
tion costs are more stable. A recently proposed approach to reduce the overall
sequencing cost and to avoid potential biases introduced during library prepa-
ration is to utilize sequencing pools. The basic idea behind this approach is that
DNA from multiple individuals is pooled together into a single DNA mixture
which is then prepared as a single library and sequenced. In this approach, the
library preparation cost is reduced because one library is prepared per pool in-
stead of one library per sample. DNA pooling has been successfully applied to
GWAS data that reduce costs by one or two orders of magnitude [5–7]. However,
pooling DNA from a large number of individuals can introduce a great deal of
background noise in the data that may reduce the reliability of and increase the
difficulty in the downstream analysis. In contrast to pooling strategies in GWAS
data where a small number of pools are genotyped, each consisting of a large
number of samples, in sequencing pooling studies typically a small number of
individuals are sequenced in each pool, making the noise amenable to explicit
modeling. Moreover, DNA pooling has been successfully applied to next gener-
ation sequencing [8], where they ran a large pooling study for the identification
of rare mutations in bacterial communities.

Recent work in the area [9, 10] has focused mainly on effective designs of
pooled studies that can reduce the number of pools required for the detection of
causal variants. In addition, suggested association statistics for rare SNP anal-
ysis typically involve the comparison of the total number of rare mutations in
the cases and controls, therefore there is no need for individual sequencing in
such cases. Indeed, in this work we use as a benchmark a sequencing study of
Non Hodgkin’s Lymphoma, where the samples have been partitioned into sets
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of five samples, and each set was pooled and whole-genome sequenced. The lat-
ter study is currently ongoing, and without the tools presented in this paper,
the study might result in false discoveries. Generally, such designs allow for an
increased statistical power due to the increase in the sample size. However, the
analysis of these studies relies on the assumption that the pools are perfectly
constructed, meaning that the fraction of DNA from each sample is known; typi-
cally, each DNA mixture contains an exact amount of DNA information intended
from each individual in the pool. As we show using real experimental data from
non-Hodgkin’s lymphoma (NHL), this assumption is wildly inaccurate and the
amount of DNA in each mixture is often different from the intended amount.
This might potentially lead to both false positives and reduced statistical power.

In this paper, we present a computational methodology to infer the relative
abundance or the fraction of each individual in the DNA mixture of a pool di-
rectly from the sequencing data given that we have a small amount of genotyping
data for the individuals. This assumption is applicable in many cases, particu-
larly since most current sequencing studies are being performed on cohorts where
a genome-wide association study has been previously performed. Our method
can be applied directly to the data obtained from a pool sequencing study as the
first step in the analysis. We present a formal statistical framework for the es-
timation of relative abundances, taking into account the presence of sequencing
and genotyping errors. In practice, reliable genotypic data of all pooled samples
might not be available due to separate quality control procedures for sequencing
and genotyping. We therefore propose an extension that handles missing geno-
typic data by leveraging the linkage disequilibrium structure of the genome. We
demonstrate using real data that a naive analysis without applying our method
would lead to false positive associations.

The computational problem of estimating the relative abundances in DNA
pools is closely related to the computational problem of estimating the abun-
dance of species in metagenomic samples. Bacteria are vital for humans, affecting
a wide range of food and health industries. Known to reside in the human body
in numbers higher than the number of human cells [11], the set of bacteria and
their interactions are an indication to the physical condition of a person, and
were shown to be correlated with various diseases [12–14]. In 2008, the National
Institute of Health (NIH) launched the Human Microbiome Project (HMP) to
examine all existing microorganisms in the human body. Following the HMP,
another project named Metagenomics of the Human Intestinal Tract project
(MetaHIT) was launched with the goal of studying gut bacteria. Both projects
aim to increase our knowledge of bacterial community effects on our body. The
first step, however, is to understand which bacteria are available in each sample
and the fraction of each bacterium. The latter problem is mathematically very
similar to the estimation of DNA fractions in a pooled sample, and we therefore
apply our methods to metagenomic instances (eALPS-BCR).

Bacterial fraction estimation in the context of metagenomics has already
been addressed by Amir and Zuk [15], who used an approach based on Sanger-
sequencing of a highly-preserved genomic region (16S) found in all bacteria.
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They obtain a sequence-based profile of the bacterial community in that region,
and use a Compressed Sensing (CS) framework to compute the fraction of each
bacterium in the sample. Due to its decreasing cost and increasing throughput,
High-throughput sequencing (HTS) has also been widely applied to metage-
nomic samples to infer species abundance [16–19]. The kind of data generated
by a single Sanger sequencing reaction is very different from HTS data, and the
compressed sensing approach is not specifically designed for such data. There-
fore, methods such as GAAS [18] and GRAMMY [19] are based on similarity
scores of high-throughput sequencing reads which are mapped to a database of
known bacterial genomes. Examination of whole-genome reads as opposed to a
single highly-preserved region is more suitable to the analysis of homogeneous
bacterial communities, considering that very few mutations might be present in
the 16S region of closely related species. In general, the problem of estimating
relative abundances becomes increasingly difficult in lower taxonomic levels, and
is particularly hard when considering strains of the same species. We show that
with minor adjustment, our method (eALPS-BSR) can be directly applied to
HTS data, and argue that modeling of linkage-disequilibrium patterns of bacte-
ria greatly improves estimation accuracy in such scenarios. Experimental results
on various simulated arrangements of bacterial communities will be available in
the full version of this paper.

2 Methods

Description of the Data Generating Process. We first set the stage by
describing a mathematical model for the generation of sequencing data in a
pooling scheme. As always, the model might be an oversimplified abstraction
of reality, however in the results section we show that our estimates are highly
accurate on real data, and we therefore argue that the model approximates to
an adequate degree the realistic mechanism of sequencing data generation.

Consider a scenario in which the DNA of N individuals is pooled and then
sequenced. In addition, assume that these N individuals have genotype infor-
mation in M positions, described by a matrix HN×M , where hij ∈ {0, 0.5, 1} is
the minor allele count of the i-th individual in the j-th position. Such a scenario
may appear in pooled sequencing studies, such as the one we describe in the Re-
sults (for non-Hodgkin’s lymphoma), or in scenarios where a set of DNA pools
is used to detect rare variants (such as in [20–22]). In addition, as we discuss
below, this scenario also occurs in metagnomic analysis where a set of bacteria
are sequenced together.

Ideally, at least in the case of human studies, one would aim at specific rel-
ative abundances for each of the samples, which are typically equal amounts
of DNA for each sample, but in some cases there are other designs (e.g., [9]).
However, in practice the actual relative abundances may be quite different from
the desired levels. Particularly, we demonstrate in the Results section that for
some pools with presumably equal amounts of DNA from each individual, the
actual fractions of the samples often deviate considerably, and this has to be
taken into account in any subsequent analysis.
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We denote the unknown relative abundances α = (α1, . . . , αN ) where αi is the
relative abundance of the i-th individual. The pooled sample undergoes high-
throughput sequencing, resulting in the collection X = {xj}, where every xj is a
vector of length tj (the coverage at position j), and the elements xjr represent
the minor/major allele status of the r-th read in the j-th position:

xjr =

{
1 read r in position j shows a minor allele

0 o/w

We assume that for each position j, the number of reads tj in that position is gen-
erated from a Poisson distribution with some parameter C, the mean coverage
over the entire genome. The reads for every position are then distributed ac-
cording to a mixture of N Bernoulli distributions with parameters h1j , . . . , hNj ,
the mixture weights being the relative abundances (α1, . . . , αN ). Formally, our
model assumes that a read xjr is generated by randomly picking an individual
i according to the proportions (α1, . . . , αN ), and assigning the allele status 0/1
according to the minor allele probability hij . To specify the identity of the mix-
ture components, we introduce the (unknown) latent variables Z = {zijr}, where
zijr are indicator functions that determine the individual every read originated
from, i.e.:

zijr =

{
1 read r in position j originates from individual i

0 o/w

We model the sequencing technology as an error-prone process, with a proba-
bility ε for a sequencing error that switches the read from minor to major or
vice-versa. Thus, in our model the unknown parameters of the model are α, ε
and H, and the observed data is X. We are mostly interested in α in this paper,
although we also show how to estimate ε. Under this model, the likelihood of
the data is given by:

p(X|H;α, ε) =
M∏
j=1

p(xj|hj;α, ε) =
M∏
j=1

tj∏
r=1

N∑
i=1

αipi(xjr |ε) (1)

where pi(xjr |ε) is the probability to observe read xjr given that it originated
from individual i and with sequencing error ε, thus: pi(xjr |ε) = p(xjr |hj, zijr =

1; ε) = (1− ε)h
xjr

ij (1− hij)
1−xjr + ε(1− hij)

xjrh
1−xjr

ij .
It is important to notice that the likelihood formulation in (1) relies on the

assumption that reads do not span more than a single variant. In reality this is
of course not the case, but occurrences of closely positioned SNPs is infrequent
enough as to allow us to overlook this possibility, without substantially under-
mining the correctness of our model. Given the genotypes, the reads xjr are
therefore generated independently across the different positions in the genome,
as they only depend on the value of hj. In the case where some of the geno-
types are unknown (as discussed below) this is not true and should be addressed
properly.
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Relative Abundance Estimation. We now present the algorithm for estima-
tion of relative abundances in the full genotypic data scenario (eALPS), where
genotypes of all N sequenced individuals are given. Our objective is to find
a maximum-likelihood estimate of the model parameters, i.e. the relative abun-
dances α and the sequencing error ε. Since Z is unknown, we use an Expectation-
Maximization (EM) approach, which instead of trying to maximize the likelihood
given in equation (1), considers the marginal likelihood of the observed data:

p(X,Z|H;α, ε) =

M∏
j=1

tj∏
r=1

N∏
i=1

(
αipi(xjr |ε)

)zijr
(2)

The EM algorithm is an iterative algorithm, where in each iteration the algorithm
searches for parameters that maximize the expected value of the marginal log-
likelihood function given a current estimate of the parameters. This procedure
is repeated until a convergence of either the log-likelihood or the parameters
is achieved. Following the standard notation for EM, we call this quantity the
Q-function (i.e. the marginal log-likelihood function), and write it as:

Q(α, ε|α(t), ε(t)) = EZ|X,H,α(t),ε(t) [logL(α, ε;X,Z,H)]

=

M∑
j=1

tj∑
r=1

N∑
i=1

βijr logαi +

M∑
j=1

tj∑
r=1

N∑
i=1

βijr log
(
pi(xjr |ε)

)
(3)

Where βijr = E[zijr |xjr , α
(t), ε(t)]. The maximization over α involves only the

first term in (3), which is clearly a concave function of α and can be solved easily

using Gibbs’ inequality, while enforcing the constraint that
∑N

i=1 αi = 1. Finding
a closed form expression for ε(t+1) is not possible, however simple numerical
methods such as gradient descent can be applied to produce the next estimate
for the sequencing error. The update rules are then:

α
(t+1)
i =

∑M
j=1

∑tj
r=1 βijr∑N

i′=1

∑M
j=1

∑tj
r=1 βi′jr

; ε(t+1) = argmax
ε

M∑
j=1

tj∑
r=1

N∑
i=1

βijr log
(
pi(xjr |ε)

)
Missing Genotypes. In practice, it is often the case that genotype informa-
tion is only available to a subset of the data, specifically to the samples that
were previously genotyped for a genome-wide association study in the pre-high-
throughput sequencing era. Moreover, even in the case where all individuals are
genotyped, some of the SNPs are not called for some of the individuals, and
in such cases our approach is not applicable. We therefore developed an im-
proved method that can handle missing genotype data without compromising
the accuracy of estimated parameters. Formally, suppose that for a pool of N
individuals, we have only N ′ < N genotyped individuals, and we wish to esti-
mate the relative abundances α = (α1, . . . , αN) given the observed genotypes
GN ′×M , gij ∈ {0, 0.5, 1}, and the observed read counts X as in the previous
section. Regarding the true genotypes H as a set of latent variables in addition
to Z, we can follow a similar derivation of the EM algorithm to maximize the
new likelihood function:
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p(X,G,Z,H|α, ε) ∝ p(G|H) · p(X,Z|H;α, ε) ∝
M∏
j=1

N∏
i=1

tj∏
r=1

(
αi · pi(xjr |hij , ε)

)zijr
Maximization of this likelihood function can be achieved in a similar fashion
to the previous case where all genotypes are known, with the expectation step
involving an extra iteration on all possible realizations of the missing geno-
type. This approach, however, fails to take into account the presence of Linkage
Disequilibrium (LD) between adjacent loci, which renders invalid the assump-
tion of independence between the hj’s, producing suboptimal estimates of the
model parameters. Particularly, we show in the Results section that this method
(eALPS-MIS) systematically underestimates the relative abundances of the miss-
ing individuals.

Fortunately, leveraging the information of LD available in population samples,
as well as the known genotypes themselves, allows for very accurate estimations
of the conditional probability of the latent variable H , given the observed data
and the current estimate of the parameters. In fact, when LD information is
utilized, most possible values of hij have negligible probabilities, and can be
omitted from the expectation step. We continue to show that even a hard as-
signment of hj to the most likely value in every iteration of the EM algorithm
conserves its desirable convergence properties.

The algorithm we propose (eALPS-LD) therefore uses the following scheme:
Given a current estimate of the parameters α and ε, find a maximum likelihood
estimate for the missing genotypes hij , N

′ < i ≤ N , using the LD model that
will be described shortly. Using this estimate of hij , continue the EM iteration
as in the previous EM derivation for known genotypes, i.e. calculate the expec-
tation over the latent variables (Z), and maximize the log-likelihood function.
This approach can be justified from a statistical point of view using the same
arguments presented in [23]. The hard assignment of hj is also computationally
advantageous, as it eliminates the need for an exhaustive enumeration of all
realizations of possible genotypes.

To find the most likely missing genotype, we need to model population haplo-
type frequencies, and we do so using a Markov model with a similar structure to
those recently used by [24–26]. The basic structure of this LD model is that of a
left-to-right directed graph, with M disjoint sets of nodes corresponding to the
M loci. Edges in the directed graph correspond to the transition probabilities,
and only connect nodes in consecutive sets. Every node in the graph corresponds
to one of the two possible alleles, with potentially multiple nodes representing
each allele in a specific locus, allowing for multiple haplotypes (more accurately,
haplotype clusters) with the same allele in that position to be represented. The
edges carry the population frequency of transition from a haplotype in one po-
sition to a haplotype in the next position, meaning that every haplotype in the
population corresponds to a path in the graph. Training of the model according
to population samples can be done either with the Baum-Welch algorithm for
HMMs, like in [25], or in the constructive approach described in [26]. In our im-
plementation, we used the BEAGLE genetic analysis software package (version
3.3.2) to build the LD model.
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We now turn to define the full model used to infer the missing genotypes,
with the above LD model as a basic building block. In the interest of sim-
plicity, we consider the case where only one genotype is unobserved, though a
straightforward extension to handle multiple missing genotypes is applicable.
The overall model is a hidden Markov model composed of two copies of the LD
model, i.e. every state is represented by a pair (q1, q2) with q1 expressing the
first haplotype and q2 the second haplotype of the missing genotype. Assum-
ing Hardy-Weinberg equilibrium, the two haplotypes of the missing genotype
are independent, therefore the transition probabilities are simply the product
of the frequencies carried by each of the corresponding edges in the LD model.
Each node in the HMM emits the minor allele read count of that position, cj ,

with probability h̄
cj
j (1− h̄j)

tj−cj where h̄j =
∑N

i=1 α
(t)
i

(
(1− ε)hij + ε(1− hij)

)
.

The posterior probability of every possible haplotype can be computed using
the standard forward-backward algorithms in O(MS2E2) time, where S is an
upper bound on the number of states for each position in the basic LD model,
and E is an upper bound on the indegree of nodes in the graph (i.e. number of
incoming edges). Recall that edges in the graph connect only those nodes lying
on a path that represents a haplotype in the reference population, therefore E
is expected to be a small number. We refer the reader to further discussion of
algorithm complexity in the full version of this paper.

Bacterial Community Reconstruction. The estimation of relative abun-
dance levels in DNA pools is naturally applicable to metagenomic analysis, par-
ticularly to the reconstruction of bacterial communities. Given a mixture of
known bacteria, the goal of Bacterial Community Reconstruction (BCR) is to
detect which bacterial species are present in the sample and to estimate their
fractions. A number of methods accomplish this task by exploiting the 16S re-
gion, which is a highly conserved 1.5kb segment found in all known bacteria.
Shown to be effective in reconstruction of various bacterial communities [15],
this approach is naturally limited to bacteria that exhibit sufficient dissimilarity
in the 16S region, as the ability to distinguish between different species dimin-
ishes with increasing inter-relatedness. If one is interested in reconstructing a
community of closely related organisms, e.g. same-species strands in a microbial
gut sample, considerably longer genomic segments need to be analyzed.

Recently, a novel method (GRAMMy) based on high throughput sequencing of
the entire genome was introduced in [19] and tested on various standard datasets.
Somewhat similar in character to the method in this paper, the authors consider
the metagenomic reads as arising from a finite mixture model, where the mixing
parameters are the relative abundances and the component distributions of reads
are approximated using k-mer frequencies in the reference genomes. Expectation-
maximization is then applied to estimate the mixing parameters. We hereby
propose an efficient method based on common SNPs in orthologous genes, that
eliminates the necessity to handle whole-genome read data, and focuses only
on the highly informative SNPs that reside in homologous genes. A major bene-
fit of this approach is that it allows, in the same manner as with human genomes,
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to take advantage of existing LD structure in closely-related bacteria to account
for possibly unknown species of bacteria in the sample.

Suppose we have N sequences of known bacteria that we wish to use as ref-
erences, and a metagenomic sample that is sequenced to produce short reads.
To be able to use the same formulation as before for this setting, a preprocess-
ing step is performed on the bacterial reference genomes. First, genes that are
homologous in all N genomes are extracted and aligned against an arbitrarily
selected reference genome. Subsequently, SNP calling is performed on the aligned
regions resulting in a set of M SNPs. The total number of SNPs we will acquire
in this procedure depends on the similarity of the reference genomes - high re-
latedness of the samples means more orthologs, albeit fewer variants in every
single gene. BCR thus reduces to the previously presented problem of relative
abundance estimation: we regard the available database of orthologous regions
as the collection of true genotypes present in the sample.

3 Results

Non-Hodgkin’s Lymphoma Dataset. Our method was applied to a real
population study of non-Hodgkin lymphoma (NHL) for which genome-wide as-
sociation data were available. In this dataset, a whole-genome sequencing on
a group of lymphoma cases was conducted, with the aim of identifying addi-
tional common and rare lymphoma associated variants undetected by previous
genome-wide association studies (GWAS). The studied samples consisted of a
subset of follicular lymphoma samples that were part of a recent GWAS con-
ducted in the San Francisco Bay Area. Full details of the GWAS, including the
process and criteria for subject selection, genotyping, quality control and sta-
tistical analysis have been described elsewhere [27]. A total of 312,768 markers
genotyped in 1,431 individuals passed the quality control criteria and were used
for genome-wide association analysis. Among the follicular lymphoma cases for
which GWAS data was available, 155 were used in this study. To construct each
pool, equal amounts of DNA (1,320ng) were combined from 5 individuals of the
same sex and age in a total volume of 110 uL. Importantly, we demonstrate be-
low that in reality the amounts of DNA were not equal even though the pooling
protocol aimed at exact amounts of 1,320ng of DNA from each pool. Sequencing
was outsourced to Illumina FastTrack Services (San Diego, CA). gDNA sam-
ples were used to generate short-insert (target 300 bp) paired-end libraries and
a HiSeq2000 instrument was used to generate paired 100 base reads according
to the manufacturer instructions. The software ELAND was used for sequence
alignment, and the coverage was 35 per base for the pool, thus 7 per base for
each sample.

Simulated Data. We used the Non-Hodgkin’s Lymphoma genotype data as a
starting point in order to simulate data according to the following model. We
assume that the genotype values gij are given by the Non-Hodgkin’s Lymphoma
genotype data. Then, for every position we draw a random sample tj (the total
number of reads covering the j-th SNP) from a Poisson distribution Pois(T ),
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Fig. 1. Relative abundances estimations in simulated pools with 5 individuals, using
230,000 SNPs. (a) Assuming all 5 genotypes are known (b) Assuming one of the ind-
viduals’ genotypes is missing. Additional results for 1,000 SNPs are found in the full
version of this paper. The methods compared are: eALPS - full genotypic data; eALPS-
LD - missing genotype & utilizing LD; eALPS-MIS - missing genotype & full (soft)
EM.

where the mean is equal to the desired coverage T . The minor allele counts, cj are
then drawn from a Binomial distribution B(tj ,

∑
i αi((1− ε)gij + ε(1− gij))),

and the major allele counts are just tj−cj . We calculate the Root Mean Squared
Error (RMSE) of the predicted α, and compare to a simple least square estima-
tion of the relative abundances. Results for this comparison are shown in Figure
1. The least squares method is based on the assumption of normally distributed
noise, which is clearly violated for low coverage sequencing. Indeed, we observe
that least squares tends to perform poorly as the coverage goes down, while our
method (eALPS) achieves significantly better performance in coverages lower
than 4X.

We note that the least squares estimation is only applicable when all indi-
viduals have genotype information. We also explored the scenario in which at
least one of the individual’s genotype is unknown. Particularly, we randomly
picked one of the pools that has full genotype data, generated major and minor
allele counts as mentioned in the previous experiment, and compared the perfor-
mance of the full genotypic data method (eALPS) to the methods discussed in
Section 2 (eALPS-MIS and eALPS-LD) when one of the individuals’ genotype
data is omitted. We examined the effect of different coverages and the number of
sampled SNPS on the RMSE measured, summarized in Figure 1. Evidently, uti-
lizing the linkage disequilibrium information considerably improves the accuracy
as observed by comparing the performance of eALPS-MIS and eALPS-LD.

Results on Real Data

Complete genotype information. In the NHL data, we have 31 pools where the
genotype information for all individuals is available. We use eALPS to estimate
the relative abundances of each individual in each pool. Figure 2 illustrates
how some pools contain individuals with relative abundances that are signifi-
cantly higher (or lower) compared to other individuals in that pool. Performing
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Fig. 2. Relative abundances in individuals from the NHL study, estimated using
eALPS, eALPS-LD and eALPS-MIS. All pools contain 5 individuals, and where in-
tended to have uniform relative abundances. (a) summarizes the distribution of al-
phas estimated using eALPS on the NHL data, demonstrating that in practice relative
abundances vary. The blue boxplots are (from left to right): all relative abundances,
the maximal and minimal abundances for every pool, estimated using eALPS. The red
boxplot is the minimal relative abundance estimated by eALPS-MIS, showing that the
method systematically underestimates the relative abundance of the missing genotype
(minimal values were always achieved for the missing individual). Examples of concrete
values in NHL pools can be found in the full version of this paper. (b) compares the
error on the NHL data with one masked genotype. eALPS-LD was given four of the
genotypes in every position, while eALPS was given the full genotype information.

any analysis (i.e. association study) on these pools requires careful considera-
tion. More rigorous validations of the proposed model, i.e. model selection and
Goodness-of-fit tests, were performed and are fully described in the complete
version of this paper. These tests suggest that applying simple statistics to the
NHL pools under the wrong assumption of equal DNA quantities will definitely
lead to a large number of false positives.

Missing Genotypes. To assess the accuracy of the missing genotype methods
on real data, we masked one genotype of each individual from each of a set of
14 pools, and we ran both eALPS-MIS and eALPS-LD. Figures 2(b) and 2(a)
presents the results for these experiments, where eALPS is used as a baseline
for the calculation of RMSE. As can be clearly observed from Figure 2(b),
eALPS-LD outperforms eALPS-MIS. Moreover, eALPS-MIS tends to system-
atically underestimate the relative abundances of the missing individual, which
can be explained by the unrealistic uniform prior on possible genotypes. In a
sense, incorporating LD is equivalent to applying a very informative position-
specific prior on the possible genotypes of the missing individual. The results
strongly demonstrate that this approach is highly beneficial.
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Abstract. Recent advances in the automation of metabolic model re-
construction have led to the availability of draft-quality metabolic models
(predicted reaction complements) for multiple bacterial species. These
reaction complements can be considered as trait representations and
can be used for ancestral state reconstruction, to infer the most likely
metabolic complements of common ancestors of all bacteria with gener-
ated metabolic models. We present here an ancestral state reconstruction
for 141 extant bacteria and analyse the reaction gains and losses for these
bacteria with respect to their lifestyles and pathogenic nature. A simu-
lated annealing approach is used to look at coordinated metabolic gains
and losses in two bacteria. The main losses of Onion yellows phytoplasma
OY-M, an obligate intracellular pathogen, are shown (as expected) to be
in cell wall biosynthesis. The metabolic gains made by Clostridium diffi-
cile CD196 in adapting to its current habitat in the human colon is also
analysed. Our analysis shows that the capability to utilize N-Acetyl-
neuraminic acid as a carbon source has been gained, rather than having
been present in the Clostridium ancestor, as has the capability to synthe-
sise phthiocerol dimycocerosate which could potentially aid the evasion
of the host immune response. We have shown that the availability of
large numbers of metabolic models, along with conventional approaches,
has enabled a systematic method to analyse metabolic evolution in the
bacterial domain.

Keywords: Metabolic Evolution, Ancestral State Reconstruction,
Metabolic Models, Hierarchical Clustering, Simulated Annealing,
Pathogenicity.

1 Introduction

One of the aims of systems biology has been to integrate information regarding
metabolism in order to construct metabolic models and thus to analyse the effects
of genetic perturbations on metabolism at the system level. In recent years, a
number of attempts have been made to study the evolution of metabolic networks
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and these have provided insights into the mechanisms of evolution of various
extant bacteria [1–3]. Understanding the evolution of bacterial metabolism is
of great importance for a number of reasons. In particular, it has the potential
to provide insights into the evolution of pathogenicity and its relationship with
metabolism.

Bacteria not only evolve through vertical inheritance, but also through hori-
zontal gene transfer (HGT). Often HGT can provide metabolic genes [4,5], and
potentially antibiotic resistance and toxin encoding genes [6] to bacteria. On
the other hand evolution through gene loss can occur in some environments [7].
These processes directly involve gene losses and gains, but it is not the genes
themselves that are of most interest, but their function and how they interrelate
with the functions of all other genes in the system.

Evolution is often studied through Ancestral State Reconstruction (ASR) for
various biological traits [8, 9]. ASR relies on biological trait information from
extant organisms to infer trait occurrence in the common ancestors of those
organisms. This information can be provided in the form of a character matrix for
the characteristics under investigation. Depending on the context, a parsimony
or maximum likelihood approach can be used on a phylogenetic tree to obtain the
probabilities of different ancestral nodes possessing the considered traits. This
approach has been taken in looking at gene families in the metabolic context [10],
and metabolic reaction occurrences have been compared according to inferred
metabolic models for a small set of 16 E. coli strains to investigate the evolution
of these strains [11].

Previously genomic comparisons have been done using information from the
WIT database, examining differences between the metabolic pathway comple-
ments of various extant organisms [12]. Additionally phylogenetic profiles have
been inferred based on enzyme evolutionary predictions [13] to establish the
ancestral relationships between a large number of prokaryotes and eukaryotes.

With the advent of automatic methods for bacterial metabolic model recon-
struction – such as the Model SEED pipeline [14] – it is possible for the first time
to establish direct reaction complements for any bacterium for which there is a
complete genome sequence. Data from these draft-quality automatically gener-
ated metabolic models can be used as the input to ASR, since these models make
direct assertions about which reactions are present and absent in each bacterium.
Consequently, it is possible to infer ancestral metabolic complements directly and
to investigate the precise metabolic changes accumulated by bacteria in the evo-
lution towards their current lifestyles and ecological niches at the system level.
This improves on previous approaches by being reaction-specific, rather than at
a pathway level. Also, information about specific reactions can be made based
on enhanced inferences (achieved through the Model SEED pipeline) about re-
action presence and absence, not just based on direct observation of annotated
enzymes.

Here we present an ancestral state reconstruction of the metabolic reactions
inferred to be present in 141 bacteria by the Model SEED server. A hierarchical
clustering was used to establish the metabolic similarity of these 141 bacteria,
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and this was compared to the 23S rRNA phylogenetic tree inferred for these
same bacteria. Further we related this clustering to the lifestyles of the bacteria
according to three categorisations: habitat, respiratory mode and pathogenic
mode and showed that each of these categorisations encapsulates information
about how the evolution of these bacteria has proceeded.

Results for the gain and loss of reactions for each of the extant bacteria have
been produced using the metabolic networks inferred for the common ancestors
of these bacteria and for two cases these gains and losses have been investigated
at the system level to look for coordinated sets of reactions (those reactions ad-
jacent in the metabolic networks inferred from their respective metabolic mod-
els) that have been lost (in the case of an obligate intracellular pathogen) and
gained (in the case of a free-living pathogen). This has been achieved by using
an approach based on active modules [15] called ambient which finds connected
subnetworks in the bipartite network of reactions and metabolites associated
with strong evidence for reaction gain or loss for both these bacteria [Bryant et
al. - in submission]. ambient has picked out several reaction pathways in C. dif-
ficile CD196 that would not be seen by gene-based analysis (since several of the
reactions have no gene association) but are clearly found by taking advantage of
the generated metabolic model used here.

2 Methods

2.1 23S rRNA Phylogeny Construction

23S rRNA sequences for all 141 organisms in the current analysis along with an
out-group organism (Thermoplasma acidophilum) were obtained from the NCBI
Nucleotide Database. Multiple sequence alignment of the 23S rRNA sequences of
these organisms was obtained using MAFFT [16]. A threshold score of E = 8.4e−11
was used (the default threshold value used by MAFFT).

Based on the results of multiple sequence alignment, a phylogeny was con-
structed using PhyML 2.4.4 [17]. Bootstrapping was performed 100 times on the
tree to obtain the most likely phylogeny. After rooting the tree, the out-group
was removed. For visualisation of the phylogeny obtained and for the creation
of phylogeny images Dendroscope was used [18]. The phylogeny can be seen in
Supplementary Fig. 1 available at our website1.

2.2 Comparison of Reaction Numbers and Lifestyle

Three lifestyle classifications were used to assess how they related to the evo-
lutionary histories of the bacteria in this study. The classifications are named
i) habitat, indicating the usual environment the bacteria experience, ii) respira-
tory mode, indicating their ability to tolerate oxygen and iii) pathogenic mode,
each bacterium falling into one of four categories: free-living, facultative host-
associated, obligate intracellular mutualists and obligate intracellular pathogens.

1 http://www.theosysbio.bio.ic.ac.uk/bacterial-metabolism/
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These classifications were taken from work by Zientz et al. [19] and Merhej
et al. [10]. It should be noted that although the last classification is termed
‘pathogenic mode’ this is just an alternative classification of habitat, based on
the types of environment experienced by bacteria in their eukaryotic hosts.

A Mann Whitney U test was conducted between each category for each clas-
sification to establish correlations between reaction numbers and lifestyles. The
Benjamini-Hochberg multiple testing correction was used to control for false
positives and the corrected p-values were used to establish significance.

2.3 Ancestral State Reconstruction

For Ancestral State Reconstruction (ASR), Mesquite was used [20]. The An-
cestral State Reconstruction algorithm, as implemented in Mesquite, looks for
ancestral states which maximize the probability of the observed characteristics
in extant organisms.

Maximum likelihood reconstruction methods look for ancestor states that
maximise the probability of producing the current state, having evolved under a
defined model of evolution [8,21]. It is equivalent to the marginal reconstruction
method as implemented in PAUP [22]. Every reaction was classified as present
or absent according to the Model SEED metabolic model creation server [14].
The Asymmetrical Markov k-state 2 parameter model (AsymmMK model) in
Mesquite was chosen as it allows different rates for reaction gains and losses.
In the ASR, the out-group organism was removed from the phylogeny and the
reaction traits for the out-group were not specified in the character matrix.

A boolean character matrix was created for all the 2526 metabolic reactions
that were present in at least one of the bacteria under investigation. Maximum
Likelihood ASR was performed for this categorical, discrete dataset of reactions.
Values for the probability (P j

q ) of the presence of a particular reaction (j) in
a particular ancestral organism (q) were calculated by Mesquite based on the
AsymmMK model.

2.4 Correlation between Dendrograms and Lifestyle Classifications

Two dendrograms were obtained from the 23S rRNA alignment and the metabolic
traits comparison. The cutree package in R was used to examine every possi-
ble clustering of each dendrogram and the maximum Adjusted Rand Index [23]
from all possible clusterings was obtained for each dendrogram against the three
classifications in this analysis: habitat, respiratory mode and pathogenic mode.
Adjusted Rand Index measures the similarity of different partitions of a set; in
this case the partitions are the three classifications and the set is all bacteria
under consideration.

2.5 Inference of Gains and Losses in Extant Bacteria

Each branch in the phylogeny connects two nodes. One node is the parent (an-
cestor) node and other node is the child (descendant) node. In order to assess
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the gain and loss of reactions from an ancestor to its descendant, δP j values
were calculated according to the following formula:

δP j = P j
child − P j

parent (1)

where P j
parent and P j

child are the probabilities of the presence of reaction j in
the parent (ancestral organism)and child (descendant organism) nodes of a par-
ticular branch respectively. Therefore, a δP j value close to 1 indicates a high
likelihood of gain of reaction j in a branch and a δP j value close to -1 indicates
a loss of reaction.

There are a total of 140 internal (parent) nodes in the phylogeny. Each node
gives rise to 2 branches giving a total of 280 branches. δP j values were calculated
for all the reactions on all of the branches. Thus, there are a total of 707,280
δP j values (280 x 2526) for the entire phylogeny.

A δP cutoff of ±0.9 was used to define those reactions gained or lost. Using
this threshold δP value, ancestral state reconstruction predicted a total of 10,396
gain and loss events. δP ≤ -0.9 (loss) had 5001 events and δP ≥ +0.9 (gain)
had 5395 events.

2.6 Metabolic Traits Hierarchical Clustering

The construction of a metabolic trait-based hierarchical clustering was done
using the Pars programme in the PHYLIP package [24]. Each reaction present in
at least one, but less than 141 of the bacteria under investigation, was used as
a metabolic trait, as for the ASR. The Pars programme produced a total of 12
trees, from which a consensus tree was obtained using the CONSENSE program in
the PHYLIP package.

2.7 Analysis of Coordinated Metabolic Changes

ambient [Bryant et al. - in submission] was used to run simulated annealing on
the bipartite network of reactions and metabolites to find the 100 most signif-
icant coordinated metabolic changes in two bacteria representing the obligate
intracellular (Onion yellows phytoplasma OY-M) and free-living (Clostridium
difficile CD196) pathogenic lifestyles adopted by many of the bacteria investi-
gated here.

The metabolic network used for both bacteria was the complete ‘meta-’
metabolic network consisting of the union of all 141 networks used in this paper.
This allowed both gains and losses to be seen for each bacterium. ambient uses
scores for each reaction and metabolite in its attempt to find connected network
components encompassing many highly changed reactions. In this case the scores
for reactions were taken from δP values for the relevant bacteria. Metabolites
were scored in the using the default ambient scoring method - with a penalty
equal to their connectivity in the metabolic network, to select against currency
metabolites.
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ambient was run to look for coordinated areas of loss of reactions in Onion
yellows phytoplasma and gain of reactions in C. difficile. ambient was run with
the following non-default parameters: maximum number of steps (-N) was set to
2,500,000, temperature gradient (-U) to 0.95, initial temperature factor (-T) to
3, reaction score offset (-Y) to -0.15 and number of steps between equilibrium
tests (-i) to 6000.

3 Results and Discussion

3.1 Distribution of Organism Lifestyles and Reactions

Information about the number and types of organisms and reactions [14] was
integrated with data about the lifestyles of those organisms [10,19]. Fig. 1 shows
the distribution of the number of reactions in each organism with respect to
their lifestyles: habitats, respiratory modes and pathogenic mode. The median
number of reactions in the organisms is 1014. The reactions common to all 141
organisms account for about 1% of the total number of reactions.

As can be seen from Fig. 1, most of the organisms that have fewer than 700
reactions are host-associated; indeed from the distribution of pathogenic modes
these bacteria represent the vast majority of obligate intracellular symbionts
and pathogens. A Mann Whitney U test was conducted to establish whether
there was any statistically significant relationship between lifestyle and number
of reactions present in each bacterium. Results for each individual test and their
p-values corrected for multiple testing can be seen in Supplementary Table 1.

The results show that differing habitats do not necessarily have a large impact
on numbers of reactions that the bacteria maintain, except when comparing the
free-living bacteria with those which are host-associated. There is also some
impact of respiratory mode on number of reactions, but this could be due to a
dependence of respiratory mode on bacterial habitat.

The most significant results come from the comparison of the different path-
ogenic lifestyles of these organisms, as classified by Merhej et al. [10]. Supple-
mentary Table 1C clearly shows, as expected from observations of symbiotic
and parasitic bacteria, that the number of reactions available for each bacterium
is strongly dependent on their relationship with their eukaryotic host. This is
not just true for obligate intracellular bacteria, but also to an extent for host-
associated pathogenic bacteria. Unsurprisingly, obligate intracellular mutualists
and parasites do not differ significantly in the size of their metabolic network,
since their lifestyles, restricted to within a eukaryotic host, mean they experience
the same nutrient availability and limitations.

3.2 Ancestral State Reconstruction

Ancestral state reconstruction for each reaction (trait) was performed on the
phylogenetic tree inferred from the 23S rRNA alignment. A total of 30 metabolic
reactions were present in all the 141 bacteria and these were excluded from the
analysis so 2526 reactions were considered.
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Fig. 1. Histograms showing the relationship between reaction numbers and bacterial
lifestyles. Each diagram shows the distribution of total number of reactions in organisms
based on habitat type (top), respiratory type (middle) and pathogenicity (bottom)
according to Model SEED reconstructions of 141 bacteria.
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ASR predicted the presence and absence of every reaction at every ances-
tral node on the phylogeny. Inferences about the gains and losses of reactions
through evolutionary history could be established by using the results of the
ASR. For each branch the change in likelihood of the presence of a particular
reaction between the parent node and the child node was calculated, called δP
(see Methods). A cutoff value for δP of ±0.9 was used to infer which reactions
were most likely gained and lost along each branch of the phylogeny, thus es-
tablishing where these metabolic changes occurred in the history of each extant
bacterium.

The results obtained from ASR appear to be consistent with our biologi-
cal knowledge about the different habitats and lifestyles of the bacteria under
investigation. Using the aforementioned threshold score, the top five branches
that showed the greatest number of gain and loss events were terminal branches
leading to various extant bacteria.

The greatest gain was observed in the terminal branch leading to the bac-
terium Clostridium difficile CD196. These metabolic changes could be related
to C. difficile pathogenicity, and are thus of interest. The gains made by this C.
difficile strain were analysed by ambient, see below, to establish whether these
gains occurred in a modular way (adjacent reactions in the metabolism of the
bacterium).

In terms of loss, the greatest loss is observed in Onion yellows phytoplasma
OY-M which is an obligate intracellular plant pathogen and contains an even
smaller complement of metabolic genes than Mycoplasma genitalium [25]. These
losses were analysed by ambient to discover whether they are linked together in
the metabolic network.

3.3 Metabolic Traits Hierarchical Clustering (MHC) Compared
with 23S rRNA Phylogeny

Based on 23S rRNA sequence similarity, many organisms appear closely related
to each other on the phylogenetic tree. However, the metabolic data presented
here indicate the divergence of these organisms at a metabolic level far greater
than that implied by their vertical evolution (genetic inheritance from ances-
tors) alone. This reflects the knowledge that bacteria evolve metabolically by
horizontal gene transfer in addition to vertical evolution.

A hierarchical clustering based on metabolic reaction traits was created to
show metabolic relatedness of various extant bacteria. Indeed using clusters of
orthologous groups of genes as traits to construct a hierarchical clustering has
been shown to cluster bacteria along metabolic lines [10]. This clustering is
based on metabolic similarity, so should reflect both vertical evolution (where the
bulk of metabolic capabilities are inherited from) and horizontal gene transfer,
depending on the importance of each of these mechanisms in the evolution of
each organism.

The clustering was constructed using the character matrix of metabolic traits,
to gain a better understanding of the evolutionary relationships as revealed
through the ASR results presented above. Supplementary Fig. 2 shows the
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consensus tree obtained based on the metabolic traits of the organisms. The
results obtained here clearly show that even though two organisms may be dis-
tantly related based on 23S rRNA sequence similarity, they can be very closely
related in terms of their metabolic capabilities, i.e. that they have been subject
to convergent evolution. A clear example here is between Mycoplasma pulmonis
UAB CTIP and Onion yellows phytoplasma OY-M. They appear evolutionar-
ily distant on the 23S rRNA phylogeny but are very closely related according to
their metabolic trait profiles. Supplementary Figures 1 and 2 show the phylogeny
and the metabolic hierarchical clustering respectively.

Dendrograms were produced from the trait-based tree and the RNA-based
phylogeny and these were analysed to find whether the clusterings in the dendro-
grams corresponded to the three lifestyle classifications considered here.
Maximum Adjusted Rand Indices (ARIs) were produced for each dendrogram
/ classification pair to quantify their relatedness. For the RNA-based tree none
of the maximum ARIs were greater than 0.1, indicating little or no correlation
between vertical evolution and current lifestyle. However, when the metabolic
traits (i.e. metabolic reaction complement) and the lifestyles were compared a
value of 0.15 was obtained for respiratory mode and a value of 0.37 for pathogenic
lifestyle (free-living, host-associated, obligate intracellular mutualists and obli-
gate intracellular pathogens). This indicates that the pathogenic mode adopted
by a bacterium has a clear influence on its metabolic network.

3.4 Active Module Analysis

While overall gains and losses of reactions in bacteria are informative in estab-
lishing some of the principles of metabolic evolution, the specific changes and
how coordinated these changes are might shed more light on the dependence
of metabolic evolution on bacterial lifestyles and pathogenicity. Most metabolic
processes rely on multiple distinct reactions, therefore on multiple genes encod-
ing those enzymatic functions, so gains and losses of adjacent metabolic functions
(pathways) might be expected to occur simultaneously. Here we used ambient

[Bryant et al. - in submission] to look for reaction gains and losses that form
connected components of the metabolic networks of the bacteria under consid-
eration. Two bacteria were analysed, representing two different lifestyles: the
obligate intracellular (Onion yellows phytoplasma OY-M) and the free-living
(Clostridium difficile CD196).

The analysis of C. difficile produced 14 metabolic modules significant at the
q = 0.001 level, which can be seen in Supplementary Fig. 3. Table 1 shows a
summary of the functions of the modules found. Several modules are involved in
monosaccharide utilisation and some in cell wall biosynthesis. Of particular inter-
est is the apparent gain of phthiocerol dimycocerosate biosynthesis capabilities;
this lipid has been shown to protect Mycobacterium tuberculosis when growing
in a mammalian host [26], so could potentially perform the same function for C.
difficile.

It has been established previously that C. difficile CD196 utilises as carbon
sources N-Acetyl-glucosamine and N-Acetyl-neuraminic acid, which are both
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Table 1. A summary of the metabolic functions gained by C. difficile since branching
from the rest of the bacteria of the genus Clostridium represented in this analysis. Each
line is an individual module (connected metabolic component) that has significantly
higher scores for gains than would be expected in the whole metabolic network (at the
corrected p = 0.001 level). The ‘Metabolic Function’ column represents a summary of
the enzymatic functions present in the module.

AMBIENT Number of Metabolic Corrected
Module ID Reactions Function p-value

1 12 Methylamine metabolism < 1e− 5
2 15 Polyamine metabolism < 1e− 5
3 12 Phthiocerol dimycocerosate biosynthesis < 1e− 5
4 15 Salicin metabolism < 1e− 5
5 8 Niacin, Cob(I)alamin metabolism < 1e− 5
6 6 Fatty acid biosynthesis < 1e− 5
7 6 4-Hydroxybuanoate metabolism < 1e− 5
8 5 Monosaccharide metabolism < 1e− 5
9 5 Lipid metabolism 3.6e − 4
10 5 Amino acid metabolism 3.6e − 4
11 5 Monosaccharide utilisation 2.2e − 4
12 5 D-Lactate metabolism 3.6e − 4
13 4 D-Proline metabolism 2.2e − 4
14 6 N-Acetyl-D-neuraminic acid utilisation 8.6e − 4

represented in the metabolic network used here. It appears that the reactions
around N-Acetyl-glucosamine are shared with the other Clostridium strains in
this study. One of the significant modules found by ambient shown in Fig. 2,
shows that C. difficile gained the ability to utilise N-Acetyl-neuraminic acid
since its divergence from the other Clostridia in the study. The assimilation of
N-Acetyl-neuraminic acid proceeds by conversion through several intermediates
to Fructose-6-Phosphate, which is part of central carbon metabolism.

The reactions responsible for this interconversion, allowing C. difficile to
utilise this carbon source, have been inferred by Model SEED to be present in this
C. difficile strain. Some of the reactions in the model were predicted to be present
without having a gene associated with them. In the case of this module two genes,
nanA and CD196 2092, were associated with two of the reactions, ATPN-acyl-D-
mannosamine 6-phosphotransferase and N-Acetylneuraminate pyruvate-lyase, in
the module. These genes are transcribed in the same direction and have just three
closely spaced same-sense genes between them, each of unknown function. This
establishes the tantalising possibility that these three intervening genes could
encode proteins with other functions within this coordinately gained metabolic
module.

As expected from an obligate intracellular pathogen, ambient finds extensive
coordinated losses in the Onion yellows phytoplasma OY-M metabolic network,
with over 350 reactions lost in connected metabolic modules (as shown in Supple-
mentary Fig. 4). The closest relatives of Onion yellows in this study share only
the same Phylum (Firmicutes), so this represents a long period of evolutionary
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Fig. 2. Metabolic module 14 gained in C. difficile CD196 and its metabolic neighbour-
hood, according to ambient analysis of the reaction gains and losses from its closest
ancestor on the 13S rRNA phylogenetic tree. Members of module 14 are outlined in
black and those not in the module are outlined in grey. The fill colours of the reactions
correspond to δP values.

history. Nonetheless Onion yellows has only gained (and retained) 91 reactions
in the same period, indicating a very strong bias towards metabolic function
loss, as expected from the bacterium’s lifestyle. By far the largest module shows
the complete loss of lipid biosynthesis, as expected since Phytoplasmas lack a
cell wall.

4 Conclusion

The ancestral state reconstruction results and metabolic traits phylogeny have
been able to unpick and clarify the significant gains and losses of metabolic
capabilities in various organisms during their evolutionary history. The findings
have correlated well with previous biological knowledge of the lifestyles of these
organisms. The hierarchical clustering of these bacteria using metabolic traits
has shown that as expected metabolic evolution is far more intimately linked
with current lifestyle than is bacterial ancestry.

The adaptation of bacteria to different conditions has led to a consider-
able gain and/or loss of reactions over time. Considerable gain has been ob-
served in Clostridium difficile, which is consistent with the expectations for a
non-intracellular opportunistic pathogen. Considerable losses, including those of
lipid biosynthesis, have been observed in Onion yellows phytoplasma, which is a
known obligate intracellular plant pathogen which does not produce a cell wall.
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The metabolic traits based hierarchical clustering has provided insight into ex-
amples of convergent evolution with respect to bacterial metabolism.

The ambient analysis presented here has clearly picked out some relevant
and biologically meaningful metabolic modules that have been gained or lost
in a coordinated fashion. This approach, combined with the multiple metabolic
models produced by Model SEED, which can infer reaction presence even in
the absence of known enzymes, is a powerful tool that goes beyond previous
approaches to investigating metabolic evolution.
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Abstract. Conformational changes frequently occur when proteins in-
teract with other proteins. How to detect such changes in silico is a ma-
jor problem. Existing methods for docking with conformational changes
remain time-consuming, and they solve the problem only for a small por-
tion of protein-protein complexes accurately. This work presents a more
accurate method (FlexDoBi) for docking with conformational changes.
FlexDoBi generates the possible conformational changes of the inter-
face residues that transform the proteins from their unbound states to
bound states. Based on the generated conformational changes, multi-
dimensional scaling is performed to construct candidates for the bound
structure. We develop the new energy items for determining the orien-
tation of proteins and selecting of plausible conformational changes. Ex-
perimental results illustrate that FlexDoBi achieves better results than
other methods for the same purpose. On 20 complexes, we obtained an
average iRMSD of 1.55Å, which compares favorably with the average
iRMSD of 1.94Å in the predictions from FiberDock. Compared with
ZDOCK, our results are of 0.35Å less in average iRMSD on the medium
difficulty group, and 0.81Å less on the difficulty group.

Keywords: Flexible Docking, Backbone Flexibility, Database Method,
Weighted Multi-Dimensional Scaling, Energy Function.

1 Introduction

Many proteins realize their biological functions through interacting with other
proteins to form complexes. In forming a complex, the protein structures involved
frequently undergo conformational changes. Modeling and detecting these con-
formational changes in docking problems is a challenging task, and is a topic
under active research, since a solution to the problem will help to remove bot-
tlenecks in various biological studies.

Protein docking is the task of calculating the three dimensional structure of
a complex starting from the individual structures of proteins. There are many
techniques for predicting protein-protein docking configurations. Broadly, they
can be grouped into two categories. The first we call rigid molecule docking
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methods. They work by sampling the effective positions and orientations of a
rigid-body protein around another one. Among these, methods based on fast
Fourier transformation [4,9], geometric surface matching [21], as well as inter-
molecular energy [7,5,1] have been proposed. In addition, other existing methods
to identify the interface residues are based on analyzing the differences between
interface residues and non-interface residues in known complexes, often through
the use of statistical techniques [20,2] and 3D structural algorithms [23,13].

The second category of docking techniques is the flexible molecule docking
methods. These methods work by changing the backbone and/or side-chain con-
formations to refine flexible structures of complexes. The flexible docking meth-
ods can be divided into three groups according to their treatment of structural
flexibility. The first group, including FiberDock and RosettaDock, searches for
energetically favored conformations in a wide conformational search space. Fiber-
Dock [19] combines a novel normal mode analysis (NMA)-based backbone re-
finement with side-chain optimization and rigid-body minimization. It minimizes
the backbone conformation along a few degrees of freedom, which are carefully
picked by NMA. The side-chain flexibility of interface residues is modeled by
a rotamer library. After refining all docking solutions, the predicted structures
are ranked according to an energy function. RosettaDock [18] is a Monte Carlo-
based docking method. It optimizes both rigid-body orientation and side-chain
conformation via rotamer packing. RosettaDock refines the flexible backbone by
minimizing the energy functions via varying the backbone torsional angles. The
second group deals with hinge bending motions in the docked molecules, such
as FlexDock [22]. It first detects hinge regions, rigid parts and motion directions
in the flexible structure. Then, each rigid part of the flexible molecule is docked
with the rigid molecule, and the directions generate more conformations of the
flexible molecule. Finally, all the partial docking solutions are assembled with
good shape complementarity, and the top scoring ones are selected. The last one,
HADDOCK [5], is an experimental data-driven method by using the biochem-
ical and biophysical interaction data, such as chemical shift perturbation data
resulting from NMR titration experiments, mutagenesis data or bioinformatics
predictions. This information is introduced as Ambiguous Interaction Restraints
(AIRs) to drive the docking process. An AIR is defined as an ambiguous distance
between all residues shown to be involved in the interaction. The method uses
simulated annealing in torsion angle space to refine the structure, allowing for
both backbone and side-chain flexibility on the interface. The final structures
are clustered and ranked according to their average interaction energies.

In this paper, we present a more accurate method, FlexDoBi, for docking with
conformational changes. We develop an approach to detect the conformational
changes from unbound states to bound states. Our approach examines a set of
scaled structures as candidates for the bound structure (possibly with confor-
mational changes), and uses a new energy function to select the best solutions.

To obtain the set of scaled structures, we maintain a database of structures,
from which raw candidates for the conformationally changed residues can be
rapidly selected. These candidates are then refined through an efficient method
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based on multi-dimensional scaling. This allows accurate near-native structures
to be constructed with very minimal number of sampling steps. One advantage in
this approach is that, whereas the large search space of existing methods requires
intensive computational power and produces a large portion of conformations
different from the native complex, in our method the geometrical constraints
—imposed by the distance between two residues respectively at both ends of
an interface fragment— eliminate a substantial number of unlikely candidate
structures. One caveat is that for our method to work, the regions far from the
interface should be almost unchanged in the protein complex.

The energy function used in FlexDoBi for structural evaluation is carefully
constructed, since the effectiveness of the function is a crucial factor in determin-
ing the resultant structure. In this work we developed a new statistical energy
item, which is combined linearly with four other energy items to rank the poses
from the first step, and to direct the search of the plausible conformations in the
second step.

Experimental results show that FlexDoBi achieves better results than other
methods for the same purpose. On 20 complexes, we obtained an average iRMSD
of 1.55Å, which compares favorably with the average iRMSD of 1.94Å in the pre-
dictions from FiberDock. Compared with ZDOCK, our results are of 0.35Å less
in average iRMSD on the medium difficulty group, and 0.81Å less on the diffi-
culty group.

2 Method Overview

Our method for the flexible docking problem contains two steps. In the first step,
we find the relative orientation and position between two subunits. That is, we
determine roughly where the two subunits bind. Each relative orientation and
position combination is referred to as a configuration or pose. Once a pose is
given, we can determine the interface region between two subunits, and fix the
orientation as well as position of the regions far from the interface. In the second
step, we use an efficient way to compute the (possibly changed) conformation of
the interface. Here our method examines only thousands of structure candidates
for the bound conformation of the interface, which is significantly less than
existing methods.

To perform the first step, we modify P-Binder [8], a tool we have developed
recently. P-Binder utilizes an enumeration method to identify the docking config-
urations of two subunits. It first performs a large number of rigid transformations
to enumerate the poses. For each configuration, the side-chain conformation on
the interface is built for energy evaluation. The problem of modeling side-chain
is a well-studied one [25,3,14], and we use SCWRL4 [14] for this purpose. Side-
chain conformations are packed on the structures at this stage and are modified
in the second step. The poses are evaluated through a linear combination of five
energy items, one of which is newly developed in this paper. The top ranking
poses are selected for the second step processing.
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A B

Fig. 1. The refinement of the case 2z0e(A:B). (A) The unbound structure of interface
is colored in green, and some fragment candidates selected by FlexDoBi are colored
in blue and red. (B) The unbound structure of interface is colored in green, and the
refined structure created by FlexDoBi is colored in yellow.

In the second step, we assume that only the interface region in a given configu-
ration of the unbound structures will experience conformational changes. Hence
to obtain a near-native structure of complex, one only needs to modify the
residues in the interface region. Our strategy is to replace each fragment formed
by the consecutive residues in the interface region with some similar fragments.
A residue is to be replaced if any of its atom is within 10Å to any atoms in
the partner subunits. In each subunit, four or more consecutive residues to be
replaced form a replaceable fragment. A database of known structure fragments
is maintained to search for suitable replacement candidate structures. Referring
to the pair of residues respectively at both ends of a fragment as stems, we use
the following two measures in our selection of candidate structures: (1) the Root
Mean Square Deviation (RMSD) of the heavy backbone atoms in the stems, and
(2) the sequence similarity between the replaceable fragment and the candidate.

Some processing is required in replacing the fragments, since selected frag-
ment candidates may result in unreasonable bond lengths, bond angles and even
collisions in the protein structure. Hence, in our structural modification, we scale
all fragment candidates to reduce these inconsistencies. This is formulated as a
Weighted Multi-Dimensional Scaling (WMDS) [15] problem, and solved by us-
ing a heuristic method, which aims to reduce the unreasonable bond length on
the interface as well as remove most of the clashes between pairs of subunits in
complex.

Each docking orientation and position is to be evaluated by a new energy
function. This energy function is a combination of the following energy items:
side-chain energy [14], dDFIRE energy function [26]), Atomic Contact Energy
[28,27], Secondary Structure Energy (our newly developed energy item), and
the Gromacs force field [16]. We use a trained SVM model to rank the docking
solutions and report best ones with the lowest energy values.
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Throughout this paper, a complex may contain several subunits and multi-
ple binding interfaces. Each binding interface in a complex occurs in a pair of
subunits. Two residues in a pair of subunits are called interface residues if any
two atoms, one from each residue, interact. By interact, we mean the distance
between two atoms is less than 6Å.

Figure 1 depicts an example of our result. In (A) we give a case where many
fragment candidates are obtained for the replaceable fragments on the interface
of each subunit. The best value of Cα RMSD between the interface structure
and its replacement is 2.78Å; FlexDoBi gives a very close value of 2.57Å. In (B)
multi-dimensional scaling improves the torsion angles and bond lengths, allowing
for better candidate ranking. We select the best prediction structure with the
iRMSD of 2.21Å(the RMSD between the Cα atoms of interface residues) between
the best refined structure and the bound complex.

3 Results

To evaluate our method, we have done three kinds of experiments. Recall that
our method replaces the fragment formed by the consecutive residues in each
interface region with similar fragments in a database. To test the feasibility of
our method, we show that for each native fragment on the interface of the bound
subunit, there are some similar fragments in the database. The second kind of
experiments is designed to test the accuracy of the second step of our method,
i.e., the ability of identifying the conformational changes from unbound state
to bound state. The idea is to use native bound complex to fix the pose of the
regions far from the interface and use our approach to compute the conformation
change of interface (See Section 3.2). In Section 3.3, we compare our method
(FlexDoBi) with FiberDock [19], which also assumes that the pose of subunits
is given. Finally, to test the ability of finding the pose and the conformational
change, we compare our method with ZDOCK [4].

3.1 Similarity between Native Interface and Selected Candidates

Observations of protein complexes show that for many complexes, the major
structural changes between the bound and unbound states occur on the inter-
face regions. Our sample data set is extracted from the medium difficulty group
in protein-protein docking Benchmark 4.0 [11], which contains 29 complexes.
We calculate the Cα RMSD values on the whole structures and on the interface
residues within distance 10Å. The average Cα RMSD value between the com-
plex structures and the unbound proteins in native binding orientation is 1.32Å.
However, the average RMSD between the interface residues of these two states
is 2.54Å. These details are shown in Figure 2. Clearly, the interfaces are more
flexible than the rest of the structures. This justifies our method for transforming
an unbound structure into its bound state by substituting only the fragments in
interface.
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Fig. 2. The Cα RMSD between the complex structures and the unbound proteins in
native binding orientation: interface RMSD (blue) and RMSD for the whole structure
(red)

Fig. 3. The Cα RMSD between the interface fragments on bound conformations and
unbound structures (blue) or best candidates selected by FlexDoBi (red)

Suitable replacement fragment candidates are selected from a database. We
use a database comprising roughly 13255 protein chains, selected by using
PISCES [24] with cutoff values being 90 percent identity, 2.0 Angstrom reso-
lution, and 0.25 R-value. Fragment candidates are selected from this database
without the homologous proteins. We find that the homologous candidates ap-
pear in the fragment candidates for 21 complexes among 29 complexes, and filter
out those fragments to make a fair assessment of our method. Among the medium
difficulty complexes, 184 replaceable fragments are extracted from the interfaces
of bound states. We search the candidates for the bound state of the replaceable
fragment. As shown in Figure 3, for all the fragments, the best candidates are
found within 1.87Å.

3.2 Conformational Changes of Native Poses

In this experiment, we verify that suitable fragment candidates can be identified
from the database, and reshaped properly for interface fragments. We assume
that the native pose is given, and two subunits are unbound. Now the task is to
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Fig. 4. The refinement of the case 1r6q(A:C). The unbound structure of interface is
colored in yellow and the bound structure is in blue. The refined structure, created by
FlexDoBi, is in red.

Table 1. Refinement of the unbound conformations in their native binding orienta-
tions

Complex ID
Unbound
Receptora

Unbound
Liganda

FlexDoBi Unboundb

iRMSDc Energy Valued iRMSD Energy Value

1bgx(HL:T) 1ay1HL 1cmwA 1.97 -287.02 2.10 -233.53
1acb(E:I) 2cgaB 1egl 2.63 -282.94 2.79 -229.68
1ijk(A:BC) 1auq 1fvuAB 0.68 -120.15 0.70 -116.70
1jiw(P:I) 1aklA 2rn4A 6.82 -369.11 7.23 -165.38
1kkl(ABC:H) 1jb1AB 2hpr 0.48 -112.72 0.51 -117.16
1m10(A:B) 1auq 1m0zB 4.56 -239.47 5.32 -107.04
1nw9(B:A) 1jxqA 2opyA 0.40 -359.64 0.47 -300.06
1gp2(A:BG) 1gia 1tbgDH 3.76 -236.95 3.86 -160.61
1grn(A:B) 1a4rA 1rgp 2.44 -366.41 2.35 -228.89
1he8(B:A) 821p 1e8zA 0.52 -242.02 0.70 -185.29
1i2m(A:B) 1qg4A 1a12A 2.59 -410.51 2.80 -367.41
1ib1(AB:E) 1qjbAB 1kuyA 1.80 -298.37 2.30 -271.32
1k5d(AB:C) 1rrpAB 1yrgB 1.49 -378.72 1.57 -214.85
1lfd(A:B) 5p21A 1lxdA 4.21 -203.56 4.38 -144.88
1mq8(A:B) 1iamA 1mq9A 0.55 -127.40 0.58 -85.25
1n2c(ABCD:EF) 3minABCD 2nipAB 1.68 -234.86 2.01 -169.06
1r6q(A:C) 1r6cX 2w9rA 1.70 -256.47 2.32 -186.50
1syx(A:B) 1qgvA 1l2zA 1.10 -203.26 1.24 -76.83
1wq1(R:G) 6q21D 1wer 1.61 -379.54 1.87 -328.65
1xqs(A:C) 1xqrA 1s3xA 2.13 -363.10 2.15 -278.70
1zm4(A:B) 1n0vC 1xk9A 5.03 -278.57 5.15 -180.03
2cfh(A:C) 1sz7A 2bjnA 1.49 -298.42 1.59 -248.20
2h7v(A:C) 1mh1 2h7oA 1.12 -263.02 1.36 -208.97
2hrk(A:B) 2hraA 2hqtA 0.76 -241.75 0.52 -237.32
2j7p(A:D) 1ng1A 2iylD 3.15 -491.82 3.09 -393.70
2nz8(A:B) 1mh1 1ntyA 2.67 -383.72 2.88 -312.00
2oza(B:A) 3hecA 3fykX 2.69 -549.15 2.89 -221.08
2z0e(A:B) 2d1iA 1v49A 2.21 -343.12 3.57 -229.21
3cph(A:G) 3cpiG 1g16A 2.07 -303.29 2.13 -309.73

a unbound structure of receptor or ligand in the complex.
b unbound structure is superimposed on the bound conformation by the orientation of lowest
Cα RMSD for the whole structure.

c Cα RMSD between the interface in the predicted structure and in the native complex.
d energy value for the prediction complex.
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transform the unbound subunits into bound states. To obtain the native pose,
the unbound structure is superimposed on the native bound complex by the
orientation of lowest Cα RMSD for the whole structure. The value of iRMSD
is to denote the RMSD between the Cα atoms of interface in the predicted
structure and in the native complex after superimposing the interfaces.

The medium difficulty group in Benchmark 4.0 is used for this study. Details
are in Table 1. Among the 29 instances, we identify better conformations for 22;
that is, FlexDoBi discovers better conformations of the interfaces than simply
putting two unbound subunits together. The iRMSD value becomes worse for
three instances, and are similar in four instances; by similar, we mean the differ-
ence between the iRMSD of the prediction structures and that of the unbound
ones is less than 0.05Å. The average Cα iRMSD value between the interface
predicted by FlexDoBi and the corresponding portion of the native complex is
2.29Å. Yet, the average iRMSD value between the interface of unbound struc-
tures and that of the native complex is 2.51Å.

The best instances, predicted by FlexDoBi, are 1m10(A:B), 1r6q(A:C) and
2z0e(A:B), where the values of Cα iRMSD are reduced by 0.7Å, 0.6Å and 1.3Å,
respectively. Figure 4 displays the conformation discovered by FlexDoBi for
1r6q(A:C). FlexDoBi predicts the interface conformation with 1.70Å iRMSD,
however, the value of iRMSD for the unbound structures on the native orienta-
tion is 2.32Å. The energy of the conformation predicted by FlexDoBi, -256.47,
is lower than the initial energy of the unbound structure, -186.50. We should
notice that lower energy does not always imply better conformation in terms of
iRMSD.

3.3 Comparison with FiberDock

In this subsection, we compare the results of FlexDoBi with FiberDock [19].
FiberDock is a novel NMA-based backbone flexibility treatment, which refines

Fig. 5. The refinement of the case 1got(A:B). The unbound structure of interface is
colored in yellow and the bound structure is in blue. The refined structure, created by
FlexDoBi, is in red.
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Table 2. Local docking results of FlexDoBi and FiberDock

Complex ID
Unbound
Receptora

Unbound
Liganda

FlexDoBi FiberDock
Unboundb

iRMSDc rec-iRMSDd iRMSD rec-iRMSD

1a0o(A:B) 1chn 1fwpA 3.19 3.68 2.44 2.12 3.27
1acb(E:I) 2cgaB 1egl 2.63 2.85 2.58 2.54 2.79
1ay7(A:B) 1rghB 1a19B 0.47 0.40 1.30 0.59 0.43
1bth(H:P) 2hnt 6ptiA 1.34 1.67 1.16 1.31 1.49
1cgi(E:I) 2cgaB 1hpt 2.09 2.28 2.08 2.26 2.53
1dfj(E:I) 9rsa 2bnh 0.56 0.53 1.12 1.11 0.56
1e6e(A:B) 1e1nA 1cjeD 0.64 0.84 1.21 0.62 0.73
1fin(A:B) 1hcl 1vin 5.47 7.47 6.06 6.16 5.17
1ggi(L:H) 1ggcL 1cgiH 0.66 1.08 1.95 1.26 0.71
1got(A:B) 1tag 1tbgA 0.92 1.35 4.68 3.78 3.62
1ibr(A:B) 1qg4A 1f59A 2.37 1.27 2.63 2.56 2.53
1oaz(H:L) 1oaqH 1oazL 0.75 0.50 1.00 1.07 0.70
1pxv(A:C) 1x9yA 1nycA 2.90 3.79 3.42 3.31 3.85
1t6g(C:A) 1ukr 1t6e 0.48 0.37 0.88 0.66 1.10
1tgs(Z:I) 2ptn 1hpt 0.64 0.56 1.57 1.54 1.38
1wq1(R:G) 6q21D 1wer 1.61 1.79 1.50 0.93 1.87
1zhi(A:B) 1m4zA 1z1aA 0.75 1.10 1.24 0.74 0.94
2buo(A:T) 1a43 2buoT 1.24 0.54 4.05 4.30 1.96
2kai(A:I) 2pka 6pti 0.38 0.34 0.74 0.72 0.31
3hhr(A:B) 1hgu 3hhrB 2.93 3.56 1.98 2.56 2.94

a unbound structure of receptor or ligand in the complex.
b unbound structure is superimposed on the bound conformation by the orientation of lowest
Cα RMSD for the whole structure.

c Cα RMSD between the interface in the predicted structure and in the native complex.
d Cα RMSD between the interface in the predicted structure of receptor and in its bound
conformation.

the structure of complex from a given docking configuration. We evaluate the
performance of two methods by using the unbound native pose. The data set is
extracted from FiberDock’s paper. We obtain much better result than that of
FiberDock. The comparison result is detailed in Table 2. Among 20 instances,
FlexDoBi produces better results for 14 cases. By better, we mean that the
iRMSD value is at least 0.05Å smaller than the iRMSD of FiberDock method.
Only for four instances, FiberDock produces better results. The average values
of Cα iRMSD between the predicted structures and the native complexes are
1.55Å (FlexDoBi) and 1.94Å (FiberDock), respectively.

Rec-iRMSD is to denote the iRMSD value of receptor, which is the subunit of
more residues. The average values of Rec-iRMSD between the predictions and the
bound conformations are 1.71Å (FlexDoBi) and 2.01Å (FiberDock), respectively.
In case of 1got(A:B), FlexDoBi predicts new interface conformation in complex
with 0.92Å Cα iRMSD, however, the value of iRMSD for the unbound structures
on the native orientation is 3.62Å. Figure 5 displays the docking configuration
discovered by FlexDoBi for 1got(A:B). The comparisons indicate that FlexDoBi
produces better interface conformations while changing the unbound states into
bound states.

3.4 Evaluation on Benchmark v4.0

In this study, we assume that the native pose is unknown. We perform a search
which finds both pose aswell as identifies the structural changes. For each complex,
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Table 3. Docking results of FlexDoBi, ZDOCK and FiberDock on medium difficulty
group

Complex FlexDoBiaZDOCKaFiberDocka Complex FlexDoBi ZDOCK FiberDock Complex FlexDoBi ZDOCK FiberDock

1bgx 9.83 11.90 9.82 1i2m 4.24 2.21 2.96 1zm4 5.96 2.44 3.67

1ace 5.46 2.61 3.16 1ib1 7.19 5.89 7.60 2cfh 4.18 1.53 1.69

1ijk 4.17 1.86 1.22 1k5d 2.16 2.51 4.94 2h7v 4.02 2.64 2.36

1jiw 7.49 8.22 5.93 1lfd 6.21 4.94 4.04 2hrk 2.35 2.06 1.56

1kkl 3.18 27.92 23.55 1mq8 2.99 6.72 8.19 2j7p 4.86 6.89 8.65

1m10 5.87 9.42 6.26 1n2c 6.75 3.21 3.51 2nz8 5.17 2.87 1.81

1nw9 3.49 3.19 5.06 1r6q 3.93 5.20 4.38 2oza 4.89 8.49 8.69

1gp2 4.18 3.39 1.70 1syx 6.97 4.81 2.04 2z0e 3.64 4.24 6.87

1grn 3.49 1.81 2.31 1wq1 2.06 1.82 2.64 3cph 3.27 3.91 4.16

1he8 4.76 2.38 2.34 1xqs 2.76 2.67 2.25

a Cα iRMSD between the predicted configuration by each method and the native complex.

Table 4. Docking results of FlexDoBi, ZDOCK and FiberDock on difficulty group

Complex FlexDoBiaZDOCKaFiberDocka Complex FlexDoBi ZDOCK FiberDock Complex FlexDoBi ZDOCK FiberDock

1e4k 9.42 15.20 8.71 1bkd 7.04 7.33 6.38 1jmo 11.01 15.99 10.52

2hmi 6.14 16.99 13.46 1de4 6.76 1.77 1.49 1jzd 7.92 16.70 11.59

1f6m 5.76 12.24 12.33 1eer 7.49 7.90 5.40 1r8s 6.23 6.48 6.86

1fq1 5.54 8.05 7.61 1fak 6.73 7.73 7.44 1y64 6.42 14.37 15.31

1pxv 5.17 3.81 3.82 1h1v 16.13 16.72 14.53 2c0l 5.14 4.36 5.05

1zli 6.97 12.25 9.86 1ibr 8.23 9.83 8.86 2i9b 4.18 5.58 4.75

2o3b 9.15 14.16 9.37 1ira 20.13 16.42 12.48 2ido 5.48 5.09 3.42

1atn 4.70 4.74 4.27 1jk9 5.69 2.16 2.77 2ot3 9.11 4.40 3.25

a Cα iRMSD between the predicted configuration by each method and the native complex.

we adopt a similar procedure as in P-Binder to predict the poses. The top 100 poses
according to our new energy function are chosen and are fed into our method for
modeling conformational changes. The top ten results from the method according
to energy value are reported. These are finally compared with the docking results
from ZDOCK [4] and the flexible docking solutions from FiberDock.

We calculate the medium difficulty group and the difficulty group in Bench-
mark v4.0. The values of Cα iRMSD between the unbound structures in the
native poses and the native complexes range from 1.48Å to 16.76Å. Several
proteins in difficulty group undergo significant conformational changes upon
binding. The results are presented in Table 3 and Table 4. For 29 complexes
in medium difficulty group, the average Cα iRMSD values between the pre-
dictions and the native complexes are 4.61Å (FlexDoBi), 4.96Å (ZDOCK) and
4.88Å (FiberDock), respectively. For 24 complexes in difficulty group, the av-
erage Cα iRMSD values between the predictions and the native complexes are
7.78Å (FlexDoBi), 8.59Å (ZDOCK) and 7.84Å (FiberDock), respectively.

In several unbound subunits, the coordinates of some backbone atoms are
missing. We add the coordinates of the missing residues by using MODELLER [6].
MODELLER is a tool for homology or comparative modeling of protein three-
dimensional structures. In two groups, the missing residues appear in the un-
bound structures of four complexes: residues 36-43 in 1fq1B, residues 206-215
in 1grnB, residues 72-94 in 1jmoA, and residues 46-58 in 3cphA. After the gaps
are filled in, the accuracy of the predictions is improved. The docking configura-
tion discovered by FlexDoBi for 3cph(A:G), after the gap is filled, is displayed
in Figure 6. The complex predicted by FlexDoBi has an iRMSD of 3.27Å Cα,
which is better than the iRMSD of 3.91Å from ZDOCK.
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A B

Fig. 6. The refinement of the case 3cph(A:G). (A) The missing residues in unbound
structure of 3cphA are filled by MODELLER (yellow). (B) The unbound structure of
interface is colored in yellow. The refined structure, created by FlexDoBi, is in red.

Table 5. Docking results of FlexDoBi and ZDOCK on the rigid-body group

Complex FlexDoBiaZDOCKa Complex FlexDoBi ZDOCK Complex FlexDoBi ZDOCK Complex FlexDoBi ZDOCK

1ahw 2.51 8.91 1ewy 1.18 2.54 7cei 1.64 0.95 1pvh 2.37 6.59

1bvk 1.58 3.73 1ezu 2.75 3.28 1a2k 18.60 3.81 1qa9 2.23 12.15

1dqj 3.62 5.60 1f34 5.41 10.59 1ak4 16.90 5.89 1rlb 14.50 1.68

1e6j 1.45 1.71 1fle 1.78 2.67 1akj 5.89 14.89 1rv6 10.55 1.60

1jps 16.36 7.88 1gl1 2.13 1.46 1azs 1.06 1.18 1s1q 16.10 7.10

1mlc 8.48 1.54 1gxd 6.97 10.01 1b6c 1.97 2.30 1sbb 3.54 8.77

1vfb 2.61 4.10 1hia 1.26 4.25 1buh 15.92 1.53 1t6b 3.90 10.27

1wej 1.32 1.16 1jtg 2.30 1.33 1e96 2.47 3.20 1us7 1.03 3.58

2fd6 0.82 2.04 1mah 0.69 1.02 1efn 3.95 5.94 1wdw 2.18 1.54

2i25 1.49 1.74 1n8o 1.12 1.27 1f51 2.98 1.13 1xd3 1.68 1.90

2vis 17.31 7.71 1oc0 1.48 3.20 1fc2 3.10 11.44 1xu1 18.83 2.92

1bj1 1.20 1.07 1oph 2.33 4.16 1fcc 2.56 10.97 1z0k 2.62 1.94

1fsk 0.67 1.11 1oyvc 2.23 1.30 1ffw 1.81 3.50 1z5y 1.99 1.78

1i9r 1.26 2.28 1oyvc 2.89 1.68 1fqj 4.03 9.75 1zhh 15.70 14.96

1iqd 0.78 0.79 1ppe 1.54 0.77 1gcq 12.12 8.03 1zhi 1.83 1.72

1k4c 2.50 4.90 1r0r 2.77 6.29 1ghq 6.46 12.40 2a5t 3.19 7.68

1kxq 0.90 1.16 1tmq 1.15 1.78 1gla 5.63 4.11 2a9k 1.02 8.72

1nca 1.38 1.04 1udi 1.09 1.46 1gpw 2.40 1.41 2ajf 4.29 3.26

1nsn 3.37 5.41 1yvb 2.60 1.07 1h9d 1.62 4.05 2ayo 4.89 1.89

1qfwb 2.76 14.24 2abz 3.18 5.94 1hcf 17.80 2.42 2b4j 4.13 5.86

1qfwb 10.30 10.12 2b42 1.05 1.07 1he1 1.21 2.30 2btf 1.25 6.62

2jel 1.19 1.53 2j0t 1.46 3.26 1i4d 1.98 1.96 2fju 2.47 5.81

1avx 0.65 1.48 2mta 2.26 2.48 1j2j 1.76 2.18 2g77 2.38 2.44

1ay7 1.75 4.17 2o8v 1.65 3.66 1jwh 17.52 1.90 2hle 2.02 2.58

1bvn 1.16 1.39 2oul 0.81 1.24 1k74 0.75 2.30 2hqs 1.18 8.59

1cgi 3.19 2.27 2pcc 14.13 3.45 1kac 2.10 6.82 2oob 4.98 7.94

1clv 1.11 1.38 2sic 1.53 0.64 1klu 2.97 6.77 2oor 3.68 6.90

1d6r 2.13 5.42 2sni 0.61 1.91 1ktz 3.51 7.06 2vdb 3.64 5.68

1dfj 1.11 1.37 2uuy 2.86 3.74 1kxp 1.60 1.92 3bp8 4.50 8.84

1e6e 3.12 1.42 3sgq 1.38 2.60 1ml0 0.88 1.23 3d5s 1.70 1.73

1eaw 1.60 1.49 4cpa 2.03 2.39 1ofu 7.29 1.89

a Cα iRMSD between the predicted configuration by each method and the native complex.
b The first complex is 1qfw(HL:AB), and the second complex is 1qfw(IM:AB).
c The first complex is 1oyv(B:I), and the second complex is 1oyv(A:I).

We also compare our method with ZDOCK on the rigid-body group in Bench-
mark v4.0. The values of Cα iRMSD between the unbound structures in the
native poses and the native complexes range from 0.24Å to 2.02Å. The results
are presented in Table 5. For 123 complexes in rigid-body group, the average Cα

iRMSD values between the predictions and the native complexes are 3.96Å (Flex-
DoBi) and 4.15Å (ZDOCK), respectively.
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4 Method Details

4.1 Selecting Candidates from Database

We examine the known protein structures, and identify suitable candidates to
replace each fragment on the interface. We use a database comprising roughly
13255 protein chains, selected by using PISCES [24] with cutoff values 90 percent
identity, 2.0 Angstrom resolution, and 0.25 R-value (Sept. of 2012). Fragment
candidates are selected from this database without the homologous proteins.
We look for the fragment candidates whose stems are similar to the stems of
replaceable fragment; by similar, we mean the value of RMSD between the stems
on the fragment candidate and the replaceable fragment is less than 3Å. Once
fragment candidates are obtained, we take the top 50 fragments according to
sequence similarity as the matching candidates. We apply the BLOSUM matrix
on each pair of the replaceable fragment and the candidate with the same number
of residues in database, and select the most similar fragment candidates close to
the replaceable fragments.

4.2 Fitting Candidates on Replaceable Fragment

We cannot replace the fragment by the candidates directly, as it will result in
unrealistic atomic distances and clashes. We scale the candidates to resolve those
issues.

We formulate this structure problem as an instance of weighted
multi-dimensional scaling (WMDS). For a given d dimension and n points of
data, we have a distance matrix D and a weighted matrix W, both symmet-
ric n × n matrixes, and wish to find X = x1, x2, ..., xn where xi is a coor-
dinate in d dimension, such that we minimize the stress, defined as δ(X) =∑

0<i<j≤n Wi,j(||xi−xj ||−Di,j)
2. WMDS can be used to turn high dimensional

data into 2 or 3 dimensional data suitable for graphing. It has also been used in
LoopWeaver [10] for modeling loop structures, and MUFOLD [29] for assembling
protein fragments.

For our problem instances, d = 3 and n is the total number of backbone atoms
in all replaceable fragments and the stems on the interface of two subunits A
and B. We define the distance matrix D as

di,j =

{
||ti − tj ||
||ci − cj ||

i, j ∈ stem
otherwise

where T = t1, t2, ..., tn is the set of atomic coordinates in the protein, and C =
c1, c2, ..., cn is the set of atomic coordinates in the candidate structure, using
the same numbering system. In the candidate structure, we choose one of the
matching candidates instead of each replaceable fragment.



70 F. Guo et al.

The weighted matrix is defined as

wi,j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1000
T (i mod 4, j − i)
(min{di,j , r − Φdi,j})−2

d−2
i,j

0

i, j ∈ stem
i, j ∈ fs, j − i ≤ 4
i, j ∈ fs, j − i > 4

i, j ∈ fd
otherwise

where 0 ≤ i < j ≤ n, T is a 4 × 4 lookup table as defined in LoopWeaver [10],
r is the largest pairwise distance between any two atoms in the corresponding
matching candidate, and Φ is the golden ratio conjugate.

The restriction of i, j ∈ fs means that two atoms i and j belong to the same
fragment. The restriction of i, j ∈ fd means that two atoms i and j belong to
two different fragments, and they must satisfy one of the following requirements:
(1) two fragments, one from each subunit, interact with each other; (2) two
fragments, both from one subunit, interact with the same fragment of another
subunit. The weight between atoms of the same fragment is the same as that
defined in LoopWeaver. For two different fragments, the interacting residues
and the surrounding regions must move relatively to each other, while having
a minor effect on the contribution to the stress function. We set the weight to
d−2
i,j when atoms i and j belong to different fragments, because pairs of closer

atoms are more meaningful than pairs of relatively farther atoms when refining
the conformation structures.

We use the SMACOF algorithm [15] for solving the WMDS problem. This
algorithm works by minimizing the stress function, yielding a fast, deterministic
heuristic. By performing the iterative generation, the quality of interface refine-
ment often gets better, and the unrealistic atomic distances are eliminated in
the candidate structure.

Searching Best Conformations. Given a pair of subunits, we extract several
pairs of replaceable fragments. For each fragment, at most 50 candidates are
chosen. Then we replace the fragments by the corresponding candidates ran-
domly. If a better conformation according to energy function is found, we keep
it. Otherwise we try to replace a fragment by other candidates. This process is
repeated until there are no improvements. We repeat this to generate multiple
structure candidates. We use SCWRL4 to build the side-chain conformation of
these structure candidates, and evaluate them by the dDFIRE energy function.

4.3 Energy Items

Our method will generate a large number of structure candidates. Here we de-
velop a new energy function to select the best structures. Our energy function
contains the following energy items:

(1) The side-chain atoms of interface residues are packed by SCWRL4 [14]
and the corresponding energy item is extracted.
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(2) The dDFIRE energy is an all-atom statistical function [26], based on the
atom distance and three orientation angles involved in dipole-dipole interactions.

(3) The item of Atomic Contact Energy is produced by an atomic energy
measure in [28,27]. The free energy for a pair of interacting atoms has been
calculated on atom-pairing frequencies in known complexes.

(4) We use DSSP [12] to determine the type of secondary structure for each
residue, and construct the item of Secondary Structure Energy by using the
statistical method in [8]. The improvement is that we consider three types of
secondary structure and 20 types of amino acid, and one solvent contacting the
residues in protein surfaces. The Secondary Structure Energy item takes 60× 60
possible residue pairs, obtained from the statistical analysis of residue-pairing
frequencies in a complex database. We select roughly 6323 complexes from PDB
database, and these complexes are made up of two or more protein subunits.
Their structures are determined by X-ray with cutoff values being resolution
2.2, 30% identity (Sept. of 2012). We calculate the free energy for all pairs of
interacting residues in candidate structures.

(5) The Gromacs force field is built up from two distinct subunits to describe
the interaction between their atoms [16]. Gromacs calculates electrostatic inter-
actions in the standard coulomb potential as

F (rij) = f
qiqj
εrr2ij

r̂ij

where r̂ij is the unit vector, parallel with the line from charge qi to charge qj ,
and rij = rj − ri; f = 1

4πε0
= 138.9, and εr is the relative dielectric constant in

Gromacs.
The energy items are used at three places. First, we use a linear combination

of these energy items to rank the poses from step one. Second, we use the same
linear function to direct the search for finding the plausible conformations. The
coefficient of each item is optimized by using the linear combination method
in [8]. Finally, we use a trained SVM model to rank the docking solutions and
report best ones with the lowest energy values. To obtain the parameters, we
use 36 unbound-unbound complexes from Dockground [17] as the training set,
which are not including in the testing set.

5 Conclusion and Discussion

In this article, we present a new method for flexible refinement of docking so-
lutions. We formulate the backbone flexibility problem on the interface as an
instance of the Weighted Multi-Dimensional Scaling problem, which is able to
model the local conformational changes. The results show that FlexDoBi models
the backbone motions on the protein-protein interface. The backbone refinement
procedure improves the accuracy of near-native docking solution candidates.

Our method can eliminate a larger number of inaccurate candidate structures,
due to the geometrical constraints imposed by the distance between two residues
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respectively at both ends of each interface fragment. However, we only deal with
the case where the regions far from the interface should be almost unchanged in
complex.

We notice that large conformation changes can occur and result in a whole
structure of the interacting proteins. On the difficulty group, the large changes
appear in the unbound structures of three complexes: 1y64(A:B), 1f6m(A:C) and
1ira(Y:X). In the case of 1y64B, the conformational change occurs in loop region
(residues 1396-1416). First, we replace this loop region with all loop candidates
in above protein database, regardless of the stem RMSD. Then, we also refine
the interface conformation of complex by using our flexible docking method
(FlexDoBi) in this paper. The best discovered configuration is displayed in Figure
7. We predict a new configuration of complex with 6.42ÅCα iRMSD, whereas the
value of iRMSD for the predicted complex without the replaced loop is 11.77Å.
Those issues will be our further investigations in recent future.

A B

Fig. 7. The refinement of the case 1y64(A:B). (A) The unbound structure is colored in
yellow and the bound structure is in blue. The replaced loop is in red. (B) The refined
interface structure is in red.

Availability. The test set of complexes and the predictions are available for
download from http://www.cs.cityu.edu.hk/~fguo22/FlexDoBi.html.
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Abstract. The problem of inference of family trees, or pedigree recon-
struction, for a group of individuals is a fundamental problem in genetics.
Various methods have been proposed to automate the process of pedigree
reconstruction given the genotypes or haplotypes of a set of individuals.
Current methods, unfortunately, are very time consuming and inaccurate
for complicated pedigrees such as pedigrees with inbreeding. In this work,
we propose an efficient algorithm which is able to reconstruct large pedi-
grees with reasonable accuracy. Our algorithm reconstructs the pedigrees
generation by generation backwards in time from the extant generation.
We predict the relationships between individuals in the same generation
using an inheritance path based approach implemented using an efficient
dynamic programming algorithm. Experiments show that our algorithm
runs in linear time with respect to the number of reconstructed gen-
erations and therefore it can reconstruct pedigrees which have a large
number of generations. Indeed it is the first practical method for recon-
struction of large pedigrees from genotype data.

1 Introduction

Inferring genetic relationships from genotype data is a fundamental problem in
genetics and has a long history [5,9,1,6,10,12]. Pedigree reconstruction is a hard
problem and even constructing sibling relationships is known to be NP-hard [7].
In this work, we focus on reconstruction methods using genotype data. Various
methods have been proposed for automatically reconstructing pedigrees using
genotype data, which can be categorized into two categories. The first cate-
gory is methods which reconstruct the haplotypes of the unknown ancestors in
the pedigree. Thompson [14] proposed a machine learning approach to find the
pedigree that maximizes the probability of observing the data. As the method
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reconstructs both the pedigree graph and the ancestor haplotypes at the same
time, it is very time-consuming and can be only applied to small families of
size 4-8 people. The second category is methods which reconstruct the pedi-
gree directly without reconstructing ancestor haplotypes. Thatte and Steel [13]
proposed a HMM based model to reconstruct arbitrary pedigree graphs. How-
ever, their model, in which every individual passes on a trace of their haplotypes
to all of their descendants is unrealistic. Kirkpatrick et al. [7] proposed an al-
gorithm to reconstruct pedigrees based on pairwise IBD (identity-by-descent)
information without reconstructing the ancestral haplotypes. A generation-by-
generation approach is employed and the pedigree is reconstructed backwards in
time, one generation at a time. The input of the algorithm is the set of extant
individuals with haplotype and IBD information available. At each generation,
a compatibility graph is constructed, where the nodes are individuals and the
edges indicate the pair of individuals which could be siblings. The edges are
defined via a statistical test such that an edge is constructed only when the test
score between the pair of individuals is less than a pre-defined threshold. Sibling
sets are identified in the compatibility graph using a Max-clique algorithm iter-
atively to partition the graph into disjoint sets of vertices. The vertices in the
same set have edges connecting to all the other vertices of the same set. Both
categories of methods encounter difficulties depending on the structure of pedi-
gree. When the individuals are not related through inbreeding, these methods
are fast and accurate. However, when inbreeding is present, the reconstruction
becomes much more complicated and these methods perform poorly.

In this work, we propose an efficient algorithm, IPED (Inheritance Path based
Pedigree Reconstruction), which enables the reconstruction of very large pedi-
grees, with and without the presence of inbreeding. Our algorithm follows the
approach of [7] and starts from extant individuals and reconstructs the pedigree
generation by generation backwards in time. For each generation, we predict
the pairwise relationships between the individuals at the current generation and
create parents for them according to their relationships. When we evaluate the
pairwise relationships for a pair of individuals, we consider the pairwise IBD
length for their extant descendants, namely the leaf individuals in the pedigree.
We then apply a statistical test on the two individuals to determine if they are
siblings or not siblings.

One of the challenges in our approach is to compute the expected IBD length
between a pair of extant individuals efficiently, in the presence of inbreeding.
The CIP and COP methods of [7] are efficient for outbreed pedigrees but very
inefficient for inbred pedigrees. This is because for the inbreeding case the alleles
from an extant individual can be inherited in an exponential number of ways
from his or her ancestors with respect to the number of nodes in the pedigree
graph. The CIP algorithm applies a random walk from the ancestor to sample
these exponential number of ways to estimate the expected IBD length between a
pair of extant individuals. In addition, the pedigree needs to be explored multiple
times when constructing each generation. Therefore the algorithm is inefficient
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even for relatively small number of generations. In our experiments, CIP can not
finish for a family of size around 50 individuals with 4 generations.

In order to address this problem, we consider the inheritance paths between
the ancestor and the extant individuals, where each inheritance path corresponds
to one path in the pedigree from the ancestor to the extant individual. If we know
all the inheritance paths from the ancestor to the extant individuals, we can es-
timate the probability that an allele of the extant individual is inherited from
the ancestor. The probability can be further utilized to compute the expected
average IBD length between a pair of extant individuals. However, the number
of inheritance paths can be exponential. We observed although the number of
inheritance paths can be exponential, their lengths are bounded by the height of
the pedigree. Therefore we use a hash data structure to hash all the inheritance
paths of the same length into a bucket and the number of buckets is bounded by
the height of the pedigree and thus is usually small. We save the hash tables for
each individual and we develop a dynamic programming algorithm to populate
the hash table of the individuals generation by generation. By doing this, we
avoid redundant computation of the inheritance paths where the entire pedigree
needs to be explored repeatedly and thus the dynamic programming algorithm is
very efficient. Also because we avoid the time-consuming sampling step by using
the inheritance path, our algorithm IPED is extremely efficient and it does not
need to specify whether or not inbreeding is present, which is a big advantage
over COP and CIP. Our experiments show that our algorithm is able to recon-
struct the pedigree with inbreeding for a family of size 340 individuals with 10
generations in just 14 seconds. To our knowledge, this is the first algorithm that
is able to reconstruct such large pedigrees with inbreeding using genotype data.

2 Methods

2.1 Pedigrees

A pedigree graph consists of nodes and edges where nodes are diploid individuals
and edges are between parents and children. Circle nodes are females and boxes
are males. An example of pedigree graph is shown in Figure 1. Parent nodes are
also called founders. In the example, individual 13,14,15 are extant individuals
and their founders are individuals 9, 10 and 11, 12, respectively. Outbreeding
means an individual mates with another individual from different family. In the
example, 3,4 and 6, 7 are both outbreeding cases. Inbreeding means an individual
mates with another individual from the same family. In the example, 9, 10 is
inbreeding case. We can see inbreeding case is usually more complicated as an
individual can inherit from his ancestors in multiple ways. For example, 13, 14
can inherit from 1, 2 in two ways but 15 can inherit from 1,2 in only one way.

As we only have extant individuals and we reconstruct their ancestors, the
pedigree is reconstructed backwards in time. We use the same notion of gener-
ations in [7], namely generations are numbered backwards in time, with larger
numbers being older generations. Every individual in the graph is associated with
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a generation g. All the extant individuals are associated with g=1 and their di-
rect parents are associated with generation g=2. The height of a pedigree is the
biggest g. We define an inheritance path between a child and his ancestor the
same as it is defined in [10], namely as a path between the two corresponding
nodes in the pedigree graph. For example, the inheritance path between 1 and 15
consists of nodes 1-6-11-15. There are two inheritance paths between 1 and 13:
1-4-9-13 and 1-6-10-13. Also we assume the inheritance paths are not directed.
In this work, we do not consider pedigrees with half-siblings, namely we assume
an individual only mates with another individual in the same generation.

Fig. 1. An example of pedigree graph

2.2 Metrics to Evaluate the Relationship of a Pair of Individuals

As our algorithm reconstructs the pedigree generation by generation, we need
to determine the relationship of any pair of individuals at a generation. We
consider two different metrics for extant individuals and ancestral individuals,
respectively.

To determine the relationship of a pair of extant individuals, we consider the
IBD (identity-by-descent) length of the two individuals. In order to be distin-
guished from IBS (identity-by-state), the IBD region needs to be long enough,
for example, of size 1Mb. If we are given the genotypes of the extant individuals,
we can compute the IBD regions between a pair of individuals using existing
tools such as Beagle [3]. In this work, in our simulation, we assume we are given
haplotypes of the extant individuals and we consider identical regions of length
greater than 1Mb between the two individuals as their IBD regions. We con-
sider the averaged IBD length instead of total length of IBD to handle the cases
where IBD regions are unevenly distributed. For simplicity, we use “IBD length”
to denote “averaged IBD length”.

Then for a pair of extant individuals i, j, we conduct a statistical test and
compute a score vi,j as the following:

vi,j =

(
estimate(IBDi,j)− E(IBDi,j)

)2
var(IBDi,j)

(1)
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where estimate(IBDi,j) is the estimated IBD length between individuals i and
j, E(IBDi,j) is the expected IBD length between i and j, var(IBDi,j) is the
variance of the IBD length between i and j. estimate(IBDi,j) can be computed
easily given genotypes or haplotypes of individual i and j. As recombination
occurs in meioses, it is shown [4] that the length of IBD between i and j follows an
exponential distribution exp(Mr), where M is the number of meioses between i
and j, r is the recombination rate which is set as 10−8, namely the probability for
recombination occurs at any loci is 10−8. Therefore, E(IBDi,j) and var(IBDi,j)
are computed as the following:

E(IBDi,j) =
1

M × r
(2)

var(IBDi,j) =
1

(M × r)2
(3)

For outbreeding case, M = 2(g − 1) where g is the generation. So for extant
individuals, as we are constructing the second generation, g = 2. For inbreeding
case, a random walk algorithm whose complexity is exponential is applied. More
details will be given in the next section.

As we need to consider both paternal and maternal alleles, our IBD estimation
is chromosome-wise instead of individual-wise. As i, j both have a pair of chromo-
somes noted as i1, i2, j1, j2, there are two possible ways to compare them for IBD,
namely [(i1, j1), (i2, j2)] or [(i1, j2), (i2, j1)]. We select the way that maximizes
the sum of the averaged IBD length for both chromosomes. Without losing gen-
erality, assuming we select [(i1, j1), (i2, j2)]. Then we compute vi,j =

vi1,j1+vi2,j2

2 ,
where vi1,j1 is computed according to Formula 1 by considering the estimated
IBD between i1, j1. Notice E(IBDi,j) and var(IBDi,j) don’t depend on the
chromosomes of i and j.

In the method of Kirkpatrick et al. [7], if the test score vi,j is less than a
pre-defined threshold value S, i, j are considered as siblings. However, it is not
clear how to determine the value S and the threshold usually varies for individ-
uals of different relatedness. In [7], the threshold is determined empirically by
simulating many pedigrees. As we show in our experiments, the performance of
the algorithms varies with the threshold.

In our work, we try to avoid using a threshold. As the pair of nodes are either
siblings or non-siblings, we can compute the number of meioses between them for
each case. For the case that they are siblings, the number of meioses is 2 and we
can compute the length of the expected IBD using Formula 3. For non- sibling
cases, we don’t know exactly how many meioses there are between the pair of
nodes. However, we can compute a lower bound for such number: namely the
two nodes are first-cousin and the number of meioses is 4, which is the minimum
number for a pair of non-sibling nodes. Then we can compute the length of the
expected IBD for non-sibling again using Formula 3. We compare the two test
scores and determine the pair of nodes are siblings if the test score for sibling
case is lower.
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To determine the relationship of a pair of ancestral individuals, we use a
similar strategy as the one in [7]. Assuming individuals k and l are at generation
g > 1. The sets of all extant descendants of k and l are K and L, respectively.
We compute a score vk,l between k and l as

vk,l =
1

|K||L|
∑
i∈K

∑
j∈L

vi,j

=
1

|K||L|
∑
i∈K

∑
j∈L

(
estimate(IBDi,j)− E(IBDi,j)

)2
var(IBDi,j)

(4)

where |K| is the size of K, the number of extant descendants of k, i ∈ K is an
extant individual in K, vi,j is computed via Formula 1. Again, we compute vk,l
for both sibling case and first-cousin case and determine k, l are siblings if the
score for sibling case is lower. More details will be given in the next section on
how to compute E(IBDi,j) and var(IBDi,j).

2.3 IPED: Inheritance Path Based Pedigree Reconstruction
Algorithm

The computation of E(IBDi,j) and var(IBDi,j) is complicated in that the num-
ber of possible meioses between i and j can be exponential with respect to the
nodes in the pedigree graph. To estimate the expected length of IBD between a
pair of extant individuals, we need to consider all possible options for a pair of
alleles to inherit from the shared ancestor, which is also exponential to the num-
ber of nodes in the pedigree. A random walk algorithm CIP from the founders
with sampling is applied in [7]. However, the sampling is still time consuming in
an exponential search space. What’s more, as the reconstruction is generation-
by-generation, from generation 2 to higher generation, the sampling strategy
needs to be conducted every time when we move from one generation to the
next generation backwards, which obviously involves redundant computation.
Therefore, CIP is not efficient for inbreeding case. In our experiments, CIP can
not finish for a family of size around 50 individuals with 4 generations.

To address the aforementioned two problems, we proposed a very efficient algo-
rithm IPED (Inheritance Path based Pedigree Reconstruction Algorithm), which
is based on the idea that the probability that a pair of alleles from two individuals
are inherited from shared ancestor depends on the number of possible inheritance
paths and their corresponding lengths from the shared ancestor. An example of
inheritance path is shown in Figure 1. We can see the length of inheritance path
determines the number of meioses between the two individuals and thus deter-
mines the probability of a pair of alleles from the two extant individuals inherited
from the same ancestor. For example, the number of meioses between 8, 9 is 2 as
they are siblings and the distance between them in the pedigree is 2. The number
of meioses between 13 and 15 can be either 6 or 4, as there are multiple paths in
the pedigree graph between them. In our algorithm, if there are multiple possible
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numbers of meioses, we used the averaged value to approximate the IBD length.
So for 13 and 15 the average number of meioses is 5.

Therefore, to determine the number of possible distances, or possible meioses
between the extant individuals, for any founder in the current generation, we
save the number of inheritance paths and the length of these inheritance paths
from the founder to all the extant descendant individuals. Notice for inbreeding,
there maybe an exponential number of inheritance paths with respect to the
number of nodes in the pedigree. However, the length of the inheritance paths
is finite, which is bounded by the height of the pedigree. Therefore, what we
need to save is just a hash table with (length, number) pairs where the length
of the inheritance path is the key and the number of inheritance paths with
such length is the value. For example, there are 2 length-2 paths, 5 length-
3 paths, 6 length-4 paths, then we just need to save three pairs (2,2), (3,5),
(4,6), instead of saving all 9 paths separately. Therefore, we don’t need to save
exponential number of paths. Instead, we save only a small number of pairs,
which is bounded by the height of the pedigree. Notice we need to save such pairs
[i, ((li1 , ni2), . . . , (lik , nik)] between the founder and every extant descendant of
it, where i is the i-th extant descendant, (lik , nik) is the k-th (length, number)
pair between the founder and the descendant. We call such pairs Inheritance
Path Pair (IPP). Given the number of extant individuals is fixed and is usually
not a big number, the complexity is bounded by a constant.

The inheritance path pairs can be used to compute the possible distances, or
the average number of meioses of a pair of extant individuals. Assuming a pair
of founders G and K with inheritance path pairs [i, ((lg1 , ng1), . . . , (lgh , ngh)] and
[j, ((lk1 , nk1), . . . , (lkf

, nkf
))]. The average number of meioses between individual

i, j can be computed with Algorithm 1, where t is a test option. For sibling case,
t = 1 and for first-cousin case, t = 2. Once the number of meioses is computed,
it can be applied to Formula 3 directly to compute the statistic test score.

Algorithm 1. Calculate the average number of meioses between i, j

Input: t (test option), [i, ((lg1 , ng1 ), . . . , (lgh , ngh)] and [j, ((lk1 , nk1), . . . , (lkf
, nkf

))]
Output: The average number of meioses between i, j

Length ← 0
Num ← 0
for a = 1 to h do

for b = 1 to f do
Num ← Num + nga × nkb

Length ← Length+ (lga + t+ lkb
+ t)× (nga × nkb

)
end for

end for
number of meioses ← Length

Num

Notice some of the inheritance paths may be shared by two extant individuals
for inbreeding case. For example, in Figure 1, the inheritance paths between 1
and 15 1-6-11-15 and between 1 and 13 1-6-10-13 share one edge 1-11. Thus the
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number of meioses is 4 instead of 6. Using the above algorithm, we will have 6
as the number of meioses. However, as we want to avoid saving the exponential
paths explicitly, we just assume the paths do not overlap. Therefore, IPED is not
optimal. Instead, it is an approximation algorithm. Another approximation our
method is employing is that we approximate the mean and variance of the IBD
length by using the average number of meioses (Algorithm 1). We also assume
that if there are multiple paths between two individuals, it is not possible for
the individuals to be IBD through one path at a locus and IBD through another
path at the next locus. Such case should be rare in practice because multiple
recombination events should simultaneously occur in the pedigree at one locus.
Despite of these approximations, our experiments show that IPED achieves good
reconstruction accuracy.

Once we save such pairs for each founder at one generation, when we recon-
struct the next generation (the parents of the current generation) backwards,
we need to compute such pairs between all the possible founders in the next
generation and all the extant individuals. A naive algorithm is to compute the
IPPs between every founder and every extant individual on each generation.
However, this requires significant redundant computations since all the nodes of
lower generation will be explored multiple times when computing the inheritance
paths. We developed a dynamic programming algorithm where the IPPs of the
current generation can be used to compute the IPPs of the next generation.

The dynamic programming algorithm starts the reconstruction from gener-
ation 2 as generation 1 consists of all the known extant individuals. Then at
generation 2, assuming we have a founder Gi

2 (without losing generality, assum-
ing he is father) and his k children in generation 1 as Gi1

1 , Gi2
1 , . . . , Gik

1 . Then
for every paternal allele of each child, obviously we have 1 possible length 1
inheritance path from the founder. Therefore, we save [G

ij
1 , (1, 1)] for Gi

2 for
1 ≤ j ≤ k. Now let’s assume we are at generation T, and we are reconstructing
generation T + 1. Again, assuming we have a founder Gi

T+1 as father and his k

children in generation T as Gi1
T , Gi2

T , . . . , Gik
T . We then obtain the IPPs for Gi

T+1

by merging the IPPs for Gi1
T , Gi2

T , . . . , Gik
T . The recursion is shown as below:

IPP (Gi
T+1) =

k∑
j=1

IPP (G
ij
T ) + 1

where IPP (Gi
T+1) is the set of IPPs for node Gi

T+1. Assuming for G
ij
T , we have

IPPs
[Gt

1, ((Lj1 , Nj1), . . . , (Ljm , Njm))], IPP (G
ij
T ) + 1 is to update these pairs as

[Gt
1, (Lj1+1, Nj1), . . . , (Ljm+1, Njm)]. IPP (Ga

T )+IPP (Gb
T ) is to merge two sets

of IPPs. When we merge two pairs (La, Na) and (Lb, Nb), if La = Lb, we obtain a
merged pair (La, Na+Nb). Otherwise we keep the two pairs. Therefore, after the
merge, we obtain [Gt

1, ((L1, N1), . . . , (Lm, Nm))] for each extant individual Gt
1

who is the descendant of Gi
T+1, where L1, . . . , Lm are all unique and m ≤ T +1.

The summation (
∑

) is similarly defined as the repeated merging operation over
multiple sets of IPPs.
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An example of the dynamic programming algorithm is shown in Figure 2. As
we can see in the example, when we merge the IPPs, we increase the length
of the paths by 1 and add the number for the paths of the same length. The
complexity of this dynamic programming algorithm is O(E × k ×H) where E
is the number of extant individuals, k is the number of direct children for each
founder, H is the height of the pedigree. Therefore it is linear time with respect
to the height of the pedigree.

Fig. 2. An example of the dynamic programming algorithm

Once we compute the inheritance path pairs for each founder, we can calculate
the number of meioses of any pair of extant individuals using Algorithm 1 and
further compute the test score according to Formula 4.

2.4 Creating Parents

Once we determined the relationships of all the individuals of the current gener-
ation, we need to create parents for them. In order to guarantee that we create
the same parents for all the individuals that are siblings, we create a graph for all
the individuals at the current generation. Every individual is a node and there
is an edge between a pair of nodes if they are determined as siblings according
to the test. We call the graph Sibling Graph. Then we apply a Max-Clique algo-
rithm [2] on the sibling graph for the current generation. We select the maximum
clique where all the individuals in the clique are siblings to each other. We then
create parents for them, and remove them from the sibling graph. We then select
the next maximum clique from the remaining sibling graph and we repeat the
procedure until all nodes are selected and all parents are created.

2.5 Performance Evaluation

Once we reconstructed the pedigree, we need to evaluate the accuracy of the
reconstruction. We can not simply compare the reconstructed pedigree with the
true pedigree directly due to graph polymorphism [8]. Therefore we consider the
following metric:
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accuracy(R,O) =

∑
i∈E,j∈E F (Ri,j , Oi,j)

|E|2

F (Ri,j , Oi,j) =

{
1 if Ri,j = Oi,j

0 otherwise

where R is the reconstructed pedigree, O is the original pedigree, E is the set of
extant individuals, |E| is the number of extant individuals, Ri,j is the distance
of individual i and j in pedigree R and Ri,j = ∞ if i, j are not connected in
the pedigree graph. Notice if there are multiple paths between i and j in R, we
select the shortest path. Therefore in this metric, we only compare the distance
of extant individuals. If the distance between a pair of extant individuals in two
pedigrees are the same (or two individuals are not connected in both pedigrees
as the pedigrees are not high enough), we consider the reconstruction correct for
this pair.

3 Experimental Results

We use the simulator from [7] to simulate the pedigrees. Instead of genotype data,
we simulate haplotypes directly. The haplotypes of the individuals are generated
according to the Wright-Fisher Model [11] with monogamy. The model takes
parameters for a fixed populations size, a Poisson number of offspring and a
number of generations (or the height of pedigree). We consider identical regions
of length greater than 1Mb as IBD regions. We only compare our algorithm
IPED with COP and CIP as the pedigree size in our simulation is relatively big
and can not be handled by other algorithms. All the experiments are done on a
2.4GHz Intel Dual Core machine with 4G memory.

3.1 Outbreeding Simulation

We first test the outbreeding case. In the Wright-Fisher simulation, we fix the
average number of children of each founder as 3, the individual of each generation
is 20 and we vary the height of the pedigree. Notice according to the Wright-
Fisher model, the number of individuals simulated each generation may not be
20. We compare the accuracy of COP and IPED. We randomly simulate 10
pedigrees for each parameter setting and show the averaged accuracy in Table 1.
We can see that generally the accuracy drops as the generation and family size
increase. IPED achieves slightly better results for outbreeding cases compared to
COP. Also IPED is very fast, comparable to COP. For all different generations,
IPED finishes in less than one second.

Next we show that COP algorithm is affected by the score threshold. As the
empirically determined threshold is 0.7 in the work of [7], we vary the score
threshold as 0.7 and 0.9. We show the results in Table 2. As we can see, the
performance of COP varies with different thresholds. Our algorithm IPED, on
the contrary has the advantage of not relying on any threshold.
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Table 1. Outbreeding Accuracy for IPED and COP. Average number of children of
each founder is 3. The number of individuals for each generation is 20. We vary the
height of the pedigree.

Height Family Size IPED COP

g = 3 52 0.966 0.955

g = 4 84 0.782 0.751

g = 5 144 0.831 0.836

g = 6 266 0.78 0.79

g = 7 384 0.706 0.655

g = 8 860 0.617 0.64

Table 2. Outbreeding Accuracy for COP with different test score thresholds. Average
number of children of each family is 3. The number of individuals for each generation
is 20. We vary the height of the pedigree.

Height COP (0.7) COP (0.9)

g = 4 0.905 0.89

g = 5 0.77 0.816

g = 6 0.874 0.895

g = 7 0.684 0.605

3.2 Inbreeding Simulation

Next we test the inbreeding case. As the CIP algorithm is very inefficient for
inbreeding case, even for small pedigree it takes a long time and most often just
simply crashes, we only compare our algorithm with CIP for pedigrees of height
3, with family size 40. IPED achieves an average accuracy of 0.91 while CIP
achieves an average accuracy of 0.902 on 10 randomly simulated pedigrees.

Then we compare our algorithm with COP, which is aimed for outbreeding
case, as it is able to finish fast on the simulated data sets. When COP is applied
to a pedigree with inbreeding, it simply assumes there is only outbreeding in the
pedigree.

We first fix the average number of children as 3, the individual of each gen-
eration is 20 and we vary the height of the pedigree. We show the averaged
accuracy of IPED and COP in Table 3. We can see that for all generations,
IPED achieves better results consistently. The accuracy generally drops for both
methods. When the generation number is small, such as 3 and 4, the perfor-
mances of IPED and COP are similar. However, as the pedigree gets bigger
and more complicated, our algorithm significantly outperforms COP, which is
reasonable as COP doesn’t consider inbreeding. The algorithm CIP does con-
sider inbreeding but it is not able to handle pedigrees of this size. IPED, on the
contrary, is able to finish in just a few seconds for all parameter settings.

Next we show the performance of both algorithms for different family sizes.
We vary the number of individuals of each generation as 20, 40 and 60. We
set the generation number as 6. We show the averaged results from 10 random
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Table 3. Inbreeding Accuracy of IPED and COP for different pedigree heights. Average
number of children of each family is 3. The number of each generation is 20. We vary
the height of the pedigree.

Height Family Size IPED COP improvement

g = 3 50 0.93 0.924 0.6%

g = 4 62 0.722 0.715 0.9%

g = 5 74 0.689 0.605 13.9%

g = 6 88 0.65 0.446 45.7%

g = 7 94 0.599 0.335 78.8%

g = 8 110 0.533 0.297 79.5%

Table 4. Inbreeding Accuracy of IPED and COP for different population size. Average
number of children of each family is 3. We vary the number of individual for each
generation used in the Wright-Fisher model as 20, 40, 60.

Number of Individual Family Size IPED COP

S = 20 88 0.65 0.446

S = 40 156 0.66 0.55

S = 60 300 0.631 0.572

simulations in Table 4. We can see for all family sizes, our method achieves
better accuracies, and the accuracies remain similar to each other, indicating
the performance of our method is very stable w.r.t the size of the pedigree.
Again, IPED is very fast and finishes in a few seconds for all datasets.

Finally we simulate a set of deep pedigrees and show the accuracy and running
time of our algorithm in Table 5. As we can see, although the accuracy of IPED
is relatively low, it is still a few times better than that of COP, the only existing
algorithm that is able to handle such large pedigrees. In addition, IPED is faster
than COP.

Table 5. Inbreeding Accuracy of IPED and COP for different family size. Average
number of children of each family is 3.

Family Size Generation IPED COP IPED running time (.s) COP running time (.s)

260 10 0.365 0.125 7 13

340 10 0.227 0.08 14 193

4 Conclusions

We proposed a very efficient algorithm IPED for pedigree reconstruction using
genotype data. Our method is based on the idea of inheritance path where the
time-consuming sampling can be avoided. A dynamic programming algorithm is
developed to avoid redundant computation during the generation-by-generation
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reconstruction process. We show our method is much more efficient than the
state-of-the-art methods especially when inbreeding is involved in the pedigree.
To our knowledge it is the first algorithm that is able to reconstruct pedigrees
with inbreeding containing hundreds of individuals with tens of generations. Our
algorithm still does not consider all possible complicated cases in pedigrees, such
as half-siblings. Also it reconstructs pedigree only from the extant individuals.
When the genotype of the internal individuals are known, it is helpful to use all
such information. We would like to address these problems in our future work.

Acknowledgement. The authors would like to thank Bonnie Kirkpatrick for
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Abstract. A deterministic algorithm for building the majority rule con-
sensus tree of an input collection of conflicting phylogenetic trees with
identical leaf labels is presented. Its worst-case running time is O(nk),
where n is the size of the leaf label set and k is the number of input phylo-
genetic trees. This is optimal since the input size is Ω(nk). Experimental
results show that the algorithm is fast in practice.

1 Introduction

In the last 150 years, a vast number of phylogenetic trees [8,10,14,17,19] have
been constructed and published in the literature. Existing phylogenetic trees
may be based on different data sets or obtained by different methods, and do
not always agree with each other; two trees can contain contradicting branching
patterns even though their leaf label sets are identical. Also, when trying to
infer a new, reliable phylogenetic tree from real data, heuristics for maximizing
parsimony or resampling techniques such as bootstrapping may produce large
collections of identically leaf-labeled phylogenetic trees having slightly different
branching structures [2,3,7,8,19]. To deal with conflicts that arise between two
or more such trees in a systematic manner, the concept of a consensus tree was
invented [1,5]. Informally, a consensus tree is a phylogenetic tree which summa-
rizes a given collection of phylogenetic trees. In addition to resolving conflicts,
consensus trees may be employed to locate strongly supported groupings within
a collection of trees [8] or as a basis for similarity measures between two given
phylogenetic trees (measuring the similarity between phylogenetic trees is use-
ful, e.g., when querying phylogenetic databases [3] or evaluating methods for
phylogenetic reconstruction [12]).
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There are many ways to reconcile structural differences and remove incon-
sistencies in a collection of trees. Consequently, several alternative definitions
of a “consensus tree” have been proposed since the 1970’s.1 In this paper, we
concentrate on one particular type of consensus tree called the majority rule
consensus tree [13], which is one of the most widely used consensus tree among
practitioners, and present a new algorithm for constructing it. Our algorithm
is fast in theory (it achieves optimal worst-case time complexity) and in prac-
tice. Furthermore, it is conceptually simple, relatively easy to implement, and
deterministic, i.e., it does not use randomization or hash tables to keep track of
clusters.

1.1 Definitions and Notation

We first give some basic definitions that will be used throughout the paper. A
phylogenetic tree is a rooted, unordered, leaf-labeled tree in which every internal
node has at least two children and all leaves have different labels. For short,
phylogenetic trees will be referred to as “trees” from here on.

For any tree T , the set of all nodes in T is denoted by V (T ) and the set of all
leaf labels in T by Λ(T ). Any subset of Λ(T ) is called a cluster of Λ(T ). For any
u ∈ V (T ), T [u] denotes the subtree of T rooted at the node u, so that Λ(T [u]) is
the set of all leaf labels of leaves that are descendants of u.2 The cluster collection
of T is defined as C(T ) =

⋃
u∈V (T ){Λ(T [u])}. See Fig. 1 for an example. If a

cluster C ⊆ Λ(T ) belongs to C(T ), we say that C occurs in T .
The majority rule consensus tree is defined next. Let S = {T1, T2, . . . , Tk}

be a set of trees satisfying Λ(T1) = Λ(T2) = · · · = Λ(Tk) = L for some leaf label
set L. A cluster that occurs in more than k/2 of the trees in S is a majority
cluster of S, and the majority rule consensus tree of S [13] is the unique tree T
such that Λ(T ) = L and C(T ) consists of all majority clusters of S. The problem
studied in this paper is:

Given an input set S of trees with identical leaf label sets, compute the
majority rule consensus tree of S.

In the rest of the paper, we will use the following notation to refer to any input
set of trees: S = {T1, T2, . . . , Tk}, L = Λ(T1) = Λ(T2) = · · · = Λ(Tk), and
k = |S| and n = |L|. An example with k = 3 and n = 6 is provided in Fig. 1.

Finally, two clusters C1, C2 ⊆ Λ(T ) are said to be pairwise compatible if
C1 ⊆ C2, C2 ⊆ C1, or C1∩C2 = ∅. Any cluster C ⊆ Λ(T ) is said to be compatible
with T if C and Λ(T [u]) are pairwise compatible for every node u ∈ V (T ). For
example, in Fig. 1, the cluster {a, c} is compatible with T1, but not compatible
with any of the other trees. If T1 and T2 are two trees with Λ(T1) = Λ(T2)
such that every cluster in C(T1) is compatible with T2 then it follows that every
cluster in C(T2) is compatible with T1, and we say that T1 and T2 are compatible.

1 See reference [5], Chapter 30 in [8], or Chapter 8.4 in [19] for some surveys on
consensus trees.

2 For convenience, any node is considered to be a descendant of itself. This implies
that if u is a leaf then Λ(T [u]) is a singleton set.
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Fig. 1. In this example, S = {T1, T2, T3} and L = Λ(T1) = Λ(T2) = Λ(T3) =
{a, b, c, d, e, f}. The cluster collections of T1, T2, and T3 are:

C(T1) =
{
{a}, {b}, {c}, {d}, {e}, {f}, {a, b, c}, {d, e}, {d, e, f}, L

}
,

C(T2) =
{
{a}, {b}, {c}, {d}, {e}, {f}, {a, b}, {a, b, c}, {d, e, f}, {d, f}, L

}
,

C(T3) =
{
{a}, {b}, {c}, {d}, {e}, {f}, {a, b}, {c, d, e, f}, {d, e, f}, L

}
,

The majority clusters of S are: {a}, {b}, {c}, {d}, {e}, {f}, {a, b}, {a, b, c}, {d, e, f}, L.

1.2 Previous Work

The majority rule consensus tree was introduced by Margush and McMorris [13]
in 1981. In 1985, Wareham [21] published a deterministic algorithm for building
the majority rule consensus tree with a worst-case running time of O(n2 +nk2).
This was the record until very recently; in [11], we developed a faster determin-
istic algorithm with O(nk log k) worst-case running time, based on recursion.

As for randomized methods, Amenta et al. [2] gave an algorithm with ex-
pected running time O(nk) but unbounded worst-case running time. Here, ran-
domization is used to count and store the number of occurrences of clusters
from S in suitably constructed hash tables. We note that the implementations
for computing majority rule consensus trees in existing software packages such
as PHYLIP [9], MrBayes [16], SumTrees in DendroPy [18], COMPONENT [15],
and PAUP* [20] also rely on randomization, and typically have unbounded worst-
case running times as well.
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1.3 New Results and Organization of the Paper

This paper presents a deterministic algorithm for computing the majority rule
consensus tree. Its worst-case running time is O(nk), which is optimal because
the size of the input is Ω(nk). We thus resolve a long-standing open problem in
Phylogenetics.

To ensure that our algorithm is practical, we implemented it and performed
a series of experiments to compare its actual running time to that of the major-
ity rule consensus tree method in PHYLIP [9]. (We chose PHYLIP’s majority
rule consensus tree method as a benchmark because it is freely available, fre-
quently used in practice, and faster than many other methods such as SumTrees
in DendroPy [18] and COMPONENT [15].) The experiments showed that our
deterministic method is much faster than PHYLIP for certain types of large
inputs, e.g., when n� k, implying that randomization may not be necessary in
many cases.

The rest of the paper is organized as follows. Section 2 summarizes a few re-
sults from the literature that are needed later. To help us find an efficient solution
to the majority rule consensus tree problem, Section 3 outlines a technique for
identifying all majority elements in a listW of subsets of a fixed set, where a ma-
jority element is defined to be any element that occurs in more than half of the
subsets inW . This technique is subsequently employed in our new majority rule
consensus tree algorithm, named Fast Maj Rule Cons Tree, which is described
and analyzed in Section 4. Next, Section 5 reports the running times of our
prototype implementation of Fast Maj Rule Cons Tree when applied to some
simulated data sets. Finally, the availability of the prototype implementation is
discussed in Section 6.

2 Preliminaries

We shall make use of the following results from the literature. (For further details,
see the respective original references.)

2.1 Day’s Algorithm [6]

Day’s algorithm [6] takes two trees Tref and T with identical leaf label sets as
input. After linear-time preprocessing, the algorithm can check whether or not
any specified cluster that occurs in T also occurs in Tref , and each such check
can be performed in constant time.

Theorem 1. (Day [6]) Let Tref and T be two given trees with Λ(Tref ) = Λ(T ) =
L and let n = |L|. After O(n) time preprocessing, it is possible to determine, for
any u ∈ V (T ), if Λ(T [u]) ∈ C(Tref ) in O(1) time.

2.2 Procedure One-Way Compatible [11]

One-Way Compatible is a linear-time procedure defined in Section 4.1 of [11].
Its input is two trees T1 and T2 with identical leaf label sets, and its output
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is a copy of T1 in which every cluster that is not compatible with T2 has been
removed. The procedure is asymmetric; for example, if T1 consists of n leaves
attached to a root node and T2 	= T1 then One-Way Compatible(T1, T2) = T1,
while One-Way Compatible(T2, T1) = T2.

Theorem 2. ([11]) Let T1 and T2 be two given trees with Λ(T1) = Λ(T2) = L
and let n = |L|. Procedure One-Way Compatible(T1, T2) returns a tree T with
Λ(T ) = L such that C(T ) = {C ∈ C(T1) : C is compatible with T2} in O(n)
time.

2.3 Procedure Merge Trees [11]

The procedure Merge Trees from Section 2.4 in [11] combines all the clusters
from two compatible trees into one tree in linear time.

Theorem 3. ([11]) Let T1 and T2 be two given trees with Λ(T1) = Λ(T2) = L
that are compatible and let n = |L|. Procedure Merge Trees(T1, T2) returns a
tree T with Λ(T ) = L and C(T ) = C(T1) ∪ C(T2) in O(n) time.

2.4 The delete and insert Operations on a Tree

Let T be a tree and let u be any non-root, internal node in T . Applying the delete
operation on u modifies T as follows: First, all children of u become children of
the parent of u, and then u and the edge between u and its parent are removed.
See Fig. 2 for an illustration. Note that by applying the delete operation on
node u, the cluster Λ(T [u]) is removed from the cluster collection C(T ) while all
other clusters are preserved. Also note that the time needed for this operation
is proportional to the number of children of u.

The insert operation is the inverse of the delete operation. It inserts a new
internal node into T , thereby creating an additional cluster in C(T ).

f

d e

c

u

a b d ea b c

f

Fig. 2. Figure from [11]. Let T be the tree on the left and let u be the marked node.
Then Λ(T [u]) = {d, e, f} and applying the delete operation on u removes the clus-
ter {d, e, f} from C(T ).
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3 Finding All Majority Elements

In this section, we describe a technique for solving a problem closely related to
the majority rule consensus tree problem: Given a list W of subsets of a set X ,
output all majority elements in W , where a majority element in W is defined to
be any element of X that occurs in more than half of the subsets inW . It can be
solved easily by using one counter for each element in X , but when |X | is very
large and many elements from X never occur in W at all, we need a method
whose time complexity does not depend on |X |.

Denote k = |W|, and for any j ∈ {1, 2, . . . , k}, let W [j] be the jth subset in
the list W . For our purposes, it is sufficient to focus on the restriction of the
problem in which X is an ordered set and each W [j] is specified as a sorted list.
The following two-phase algorithm solves the restricted problem by maintaining
a set of current candidates, which are certain elements belonging to X , along
with a counter for each current candidate:

• Phase 1: Initialize the set of current candidates as the empty set. Sweep
throughW , i.e., for each j ∈ {1, 2, . . . , k}, considerW [j] and do the following.
Firstly, for every current candidate x, increase x’s counter by 1 if x ∈ W [j],
or decrease it by 1 if x 	∈ W [j]; if x’s counter reaches 0 then remove x from
the set of current candidates. Secondly, insert every x ∈ W [j] which is not a
current candidate into the set of current candidates and initialize its counter
to 1.

• Phase 2: Let X ′ be the set of current candidates. Sweep throughW one more
time to count the total number of occurrences in W of every element in X ′.
Output the ones that occur more than k

2 times.

As an example, letX = {a, b, c, d, e} andW = (W [1], W [2], W [3]) = ({a, b, d},
{a, c}, {d, e}). Then the set of current candidates at the end of Phase 1 will be
{a, d, e}. In Phase 2, the algorithm outputs a and d.

To prove the correctness of this method, observe that for any x ∈ X , if x occurs
in more than k

2 subsets in W , then x must be one of the current candidates at
the end of Phase 1 because its counter is > 0. Hence, all majority elements inW
(if any) belong to the set X ′. However, as in the example above, some non-
majority elements might also be included in X ′. For this reason, Phase 2 is used
to identify those elements that indeed occur more than k

2 times. To analyze the
time complexity, since each W [j] is given as a sorted list, it is easy to maintain
the set of current candidates in a sorted list and implement all operations for that
value of j in time proportional to the number of current candidates. This yields:

Lemma 1. Let X be an ordered set and let W be a list of sorted subsets of X.
The above algorithm outputs all majority elements in W in O(k · y) time, where
k = |W| and at most y elements from X belong to the set of current candidates
at any point in time.

Remark: Boyer and Moore’s classical algorithm in [4] solves the special case of
the problem where every subset in the list W has cardinality 1. The algorithm
presented above can be viewed as an extension of [4].
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4 An Optimal Algorithm for the Majority Rule
Consensus Tree

This section presents the new algorithm Fast Maj Rule Cons Tree for building
the majority rule consensus tree of an input collection S = {T1, T2, . . . , Tk} of
identically leaf-labeled trees, where Λ(T1) = Λ(T2) = · · · = Λ(Tk) = L. It uses
the technique from Section 3 to locate all majority clusters in S by interpreting
X as the set of all possible clusters of L (so that every element x ∈ X is a subset
of L) and the list W as the length-k sequence of cluster collections of the trees
in S. In other words, W = (W [1],W [2], . . . ,W [k]) = (C(T1), C(T2), . . . , C(Tk)),
and for every j ∈ {1, 2, . . . , k}, it holds that W [j] ⊆ X .

Algorithm Fast Maj Rule Cons Tree also consists of two phases. In Phase 1,
it finds all clusters that might be majority clusters, and then, in Phase 2,

Algorithm Fast Maj Rule Cons Tree

Input: A collection S = {T1, T2, . . . , Tk} of trees with Λ(T1) = Λ(T2) = · · · =
Λ(Tk).

Output: The majority rule consensus tree of S .

/* Phase 1 */

1 T := T1

2 for each v ∈ V (T ) do count(v) := 1

3 for j := 2 to k do

3.1 for each v ∈ V (T ) in top-down order do

if Λ(T [v]) occurs in Tj then count(v) := count(v) + 1

else count(v) := count(v)−1; if count(v) reaches 0 then delete node v.

endfor

3.2 for every cluster C in Tj that is compatible with T but does not occur

in T do

Insert C into T .

Initialize count(v) := 1 for the new node v satisfying Λ(T [v]) = C.

endfor

endfor

/* Phase 2 */

4 for each v ∈ V (T ) do count(v) := 0

5 for j := 1 to k do

5.1 for each v ∈ V (T ) do

if Λ(T [v]) occurs in Tj then count(v) := count(v) + 1

6 for each v ∈ V (T ) in top-down order do

if count(v) ≤ k/2 then perform a delete operation on v.

7 return T

End Fast Maj Rule Cons Tree

Fig. 3. The pseudocode for Algorithm Fast Maj Rule Cons Tree
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eliminates those candidates that do not occur in more than k
2 of the trees in S.

Whatever clusters that remain must be the majority clusters of S. During the
algorithm’s execution, the current candidates are stored as nodes in a tree T , as
explained below.

The pseudocode is summarized in Fig. 3. Phase 1 and Phase 2 are described
in Sections 4.1 and 4.2, respectively. To achieve a good time complexity, some
steps of the algorithm are implemented by applying Day’s algorithm [6] and the
procedures One-Way Compatible and Merge Trees mentioned in Section 2; the
details are given in Section 4.3.

4.1 Description of Phase 1

Phase 1 of the algorithm examines the trees T1, T2, . . . , Tk in sequential order. As
in Section 3, the algorithm maintains a set of current candidates, each equipped
with its own counter. Every current candidate is some cluster of L and thus an
element from X , like before. However, there are two crucial differences between
Fast Maj Rule Cons Tree and the method in Section 3.

The first difference is that Fast Maj Rule Cons Tree does not store the set
of current candidates in a sorted list as in Section 3, but encodes them as nodes
in a tree T whose leaf label set equals L. (This is the key to getting an efficient
algorithm.) To be precise, every node v in T represents a current candidate
cluster Λ(T [v]) and has a counter count(v). For any j ∈ {1, 2, . . . , k}, when
treating tree Tj, all clusters in C(T ) that also belong to C(Tj) get their counters
incremented by 1, while all clusters in C(T ) that do not belong to C(Tj) get
their counters decremented by 1. If this leads to some counter reaching 0 then
the internal node in T corresponding to that cluster is deleted. Next, all other
clusters in C(Tj) that are not current candidates but are compatible with T are
upgraded to current candidate-status by inserting them into T and initializing
their corresponding nodes’ counters to 1.

The other important difference between this approach and the one in Section 3
is that for any j ∈ {2, . . . , k}, a cluster C that occurs in Tj but is not a current
candidate does not automatically become a current candidate; C will only be
inserted into T if it is pairwise compatible with all the current candidates. We
therefore need an additional lemma to guarantee the correctness of Phase 1:

Lemma 2. For any C ⊆ L, if C is a majority cluster of S then C ∈ C(T ) at
the end of Phase 1.

Proof. Suppose that C is a majority cluster of S. During the execution of
Phase 1, for any j ∈ {1, 2, . . . , k}, say that C is blocked in iteration j if the
following happens: C is not a current candidate, C occurs in tree Tj, and C is
not allowed to become a current candidate because C is not compatible with the
current T .

Let a denote the number of trees in S in which C occurs. By the definition
of a majority cluster, a > k

2 . Hence, there are k − a < k
2 trees in S in which C

does not occur. We claim that each such tree Tx can cancel out the effect on C’s
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counter of at most one of the a occurrences of C in S. To prove the claim, let Tx

be any tree in S in which C does not occur and consider the two possible cases:

• If C is a current candidate when Tx is considered, then C’s counter will be
decremented by 1.

• If C is not a current candidate when Tx is considered, then some clusters
which are not pairwise compatible with C may get their counters incremented
by 1. As a result, C may be blocked in another iteration.

Next, since a − (k − a) > k
2 −

k
2 = 0, the counter for C will have a non-zero

value at the end of Phase 1. By the definition of the tree T in the algorithm,
C ∈ C(T ) holds. ��

4.2 Description of Phase 2

Phase 2 of the algorithm is straightforward. It checks how many times every
cluster in the tree T occurs among T1, T2, . . . , Tk. Any clusters that do not occur
more than k

2 times are removed from T . It follows immediately from Lemma 2
that the cluster collection of the remaining tree T equals the set of all majority
clusters of S. Hence, the output of the algorithm is the majority rule consensus
tree.

Lemma 3. The tree output by Algorithm Fast Maj Rule Cons Tree at the end
of Phase 2 is the majority rule consensus tree of S.

4.3 Time Complexity Analysis

We now analyze the worst-case time complexity of Fast Maj Rule Cons Tree.

Theorem 4. Algorithm Fast Maj Rule Cons Tree constructs the majority rule
consensus tree of S in O(nk) worst-case time, where n = |L| and k = |S|.

Proof. We first show that in Phase 1, every iteration of the main loop in Step 3
takes O(n) time. To perform Step 3.1 in O(n) time, run Day’s algorithm [6] with
Tref = Tj and then check each Λ(T [v]) to see if it occurs in Tj . By Theorem 1,
this requires O(n) time for preprocessing, and each of the O(n) nodes in V (T )
can be checked in O(1) time. The delete operations take O(n) time in total
since the nodes are handled in top-down order (every node is moved at most
once because if some node is deleted and its children moved then these children
will not need to be moved again in the same iteration). Next, Step 3.2 can
be implemented in O(n) time by letting P := One-Way Compatible(Tj , T ) and
Q := Merge Trees(P, T ), and then updating the structure of T to make T
isomorphic to the obtained Q (and setting the counters of all new nodes to 1).
This works because according to Theorem 2, P is a tree consisting of the clusters
occurring in Tj that are compatible with the set of current candidates, and by
Theorem 3, Q is the result of inserting each such cluster into T , if it did not
already occur in T . There are O(k) iterations in the main loop, so Phase 1 takes
O(nk) time.
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In Phase 2, Step 5.1 is executed in O(n) time, again by applying Day’s al-
gorithm [6] with Tref = Tj so that each Λ(T [v]) can be checked in O(1) time.3

Thus, the loop in Step 5 takes O(nk) time. Step 6 can be carried out in O(n)
time by treating the nodes in top-down order as above. In total, Phase 2 also
takes O(nk) time. ��

5 Experimental Results

We implemented Fast Maj Rule Cons Tree in C++ and compared its worst-
case and average running times to those of PHYLIP [9] and the previously fastest
(O(nk log k) time) deterministic algorithm from [11] for some simulated data
sets. The experiments were run on Ubuntu Nutty Narwhal, a 64-bit operating
system with 8.00 GB RAM, and a 2.20 GHz CPU. Below, we refer to the majority
rule consensus tree method in PHYLIP as “M-PHYLIP”, the implementation
of the algorithm in [11] as “M-Fast-v1”, and the implementation of the new
algorithm Fast Maj Rule Cons Tree presented in this paper as “M-Fast-v2”.

We generated 10 data sets for various specified values of the parameters n
and k with the method described in Section 6.2 of [11], applied the three majority
consensus tree methods to each data set, and measured the running times. First,
the following values of n and k were evaluated:

• (a) n = 500, k = 1000

• (b) n = 1000, k = 500

• (c) n = 2000, k = 1000

• (d) n = 5000, k = 100

The worst-case and average running times (in seconds) are reported below.

(a) n = 500, k = 1000:

Worst-case Average

M-PHYLIP 1.94 1.88
M-Fast-v1 8.10 8.00
M-Fast-v2 3.72 3.69

(b) n = 1000, k = 500:

Worst-case Average

M-PHYLIP 3.50 3.19
M-Fast-v1 7.54 7.38
M-Fast-v2 3.80 3.67

(c) n = 2000, k = 1000:

Worst-case Average

M-PHYLIP 34.07 30.03
M-Fast-v1 32.24 31.96
M-Fast-v2 16.09 14.86

(d) n = 5000, k = 100:

Worst-case Average

M-PHYLIP 93.25 90.04
M-Fast-v1 6.41 6.27
M-Fast-v2 4.40 4.28

3 This way of counting occurrences of clusters has been used elsewhere in the literature,
e.g., in [21] and on p. 217 of [19].
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The experimental results indicate that Fast Maj Rule Cons Tree is exception-
ally useful when n is large. For example, when n = 5000 and k = 100, it is about
20 times faster than M-PHYLIP. On the other hand, M-PHYLIP is faster in
practice for inputs with n� k.

Next, we tried the methods on some even bigger inputs. M-PHYLIP returned
“Error allocating memory” for n = 2000, k ≥ 2000, whereas M-Fast-v2 worked
fine and obtained the following worst-case and average running times.

(e) n = 2000, k = {2000, 3000, 4000, 5000}:

k Worst-case Average

2000 31.22 30.86
3000 47.42 46.23
4000 62.54 61.88
5000 78.96 77.78

This shows that Fast Maj Rule Cons Tree may come in handy when analyzing
large phylogenetic data sets.

6 Concluding Remarks

We have proved that the majority rule consensus tree can be built in (opti-
mal) O(nk) time in the worst case, without using randomization. Although this
might at first appear to be a purely theoretical result, it has practical implica-
tions as well. The experiments demonstrated that our deterministic algorithm
Fast Maj Rule Cons Tree is much faster than randomized methods such as the
one found in PHYLIP [9] when the input trees are very large, i.e., when n� k.
In contrast to current practice, this suggests that it might not always be a good
idea to use randomization and hashing when computing majority rule consensus
trees.

We hope that the new algorithm will be a helpful tool for bioinformaticians
working with huge phylogenetic trees in the future. We have included it in the
FACT (Fast Algorithms for Consensus Trees) package [11] at:

http://compbio.ddns.comp.nus.edu.sg/~consensus.tree/

The C++ source code of our prototype implementation used in Section 5 can
also be downloaded from the same webpage.
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Abstract. Mass spectrometry (MS) instruments and experimental pro-
tocols are rapidly advancing, but de novo peptide sequencing algorithms
to analyze tandem mass (MS/MS) spectra are lagging behind. While ex-
isting de novo sequencing tools perform well on certain types of spectra
(e.g., Collision Induced Dissociation (CID) spectra of tryptic peptides),
their performance often deteriorates on other types of spectra, such as
Electron Transfer Dissociation (ETD), Higher-energy Collisional Dissoci-
ation (HCD) spectra, or spectra of non-tryptic digests. Thus, rather than
developing a new algorithm for each type of spectra, we develop a univer-
sal de novo sequencing algorithm called UniNovo that works well for all
types of spectra or even for spectral pairs (e.g., CID/ETD spectral pairs).
The performance of UniNovo is compared with PepNovo+, PEAKS, and
pNovo using various types of spectra. The results show that the perfor-
mance of UniNovo is superior to other tools for ETD spectra and superior
or comparable to others for CID and HCD spectra. UniNovo also esti-
mates the probability that each reported reconstruction is correct, using
simple statistics that are readily obtained from a small training dataset.
We demonstrate that the estimation is accurate for all tested types of
spectra (including CID, HCD, ETD, CID/ETD, and HCD/ETD spectra
of trypsin, LysC, or AspN digested peptides). The appendix is available
online at http://proteomics.ucsd.edu/Software/UniNovo.html.

1 Introduction

De novo peptide sequencing by tandem mass (MS/MS) spectrometry is a valu-
able alternative to MS/MS database search. In contrast to the database search
approach that utilizes the information from proteome, the de novo sequencing
approach attempts to identify peptides only using the information from the in-
put spectrum. Hence, most de novo sequencing algorithms are based on the
prior knowledge of the fragmentation characteristics (e.g., ion types and their
propensities) of MS/MS spectra [27,12,11].

The fragmentation characteristics are highly dependent on the fragmentation
method used to generate the spectrum. Among several fragmentation meth-
ods available, the collision induced dissociation (CID) is the most commonly
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used method. Accordingly, the fragmentation characteristics of CID have been
well studied compared to recently introduced fragmentation methods, such as
electron transfer dissociation (ETD) and higher-energy collisional dissociation
(HCD) [18,36,4,35,15,2]. As a result, many de novo sequencing algorithms have
been introduced for CID spectra; for example, PEAKS [27] and PepNovo+ [12,11],
are the state of the art de novo sequencing tools for CID spectra.

Other fragmentation methods like ETD and HCD have a great potential for de
novo sequencing. For example, for highly charged spectra, ETD provides better
fragmentation and thus is better suited for de novo sequencing than CID [37,33].
Also, more complete fragmentation of peptide ions (especially in low mass re-
gions) in HCD provides a better chance to obtain more accurate de novo re-
constructions than CID [30,6]. Furthermore, modern mass spectrometers (e.g.,
LTQ-Orbitrap Velos) allow the generation of paired spectra (e.g., CID/ETD or
HCD/ETD spectral pairs). Since CID (or HCD) and ETD spectra provide com-
plementary information for peptide sequencing [32,8,14], such spectral pairs (or
even triplets) enable more accurate de novo sequencing.

Several de novo sequencing algorithms were recently presented to take ad-
vantage of those new fragmentation methods. For instance, [25] proposed a de
novo sequencing algorithm for ETD spectra, which is used by PEAKS. For HCD
spectra, [6] introduced a de novo sequencing tool, pNovo, that not only takes
advantage of the high precision peaks in HCD spectra but also uses the infor-
mation of abundant immonium and internal ions. In case of spectral pairs, [32]
proposed a greedy algorithm (for CID/ECD spectral pairs) that significantly
boosts the performance of de novo sequencing. [8] presented Spectrum Fusion,
a de novo sequencing algorithm for CID/ETD spectral pairs. Spectrum Fusion
constructs a combined spectrum from the input CID/ETD spectral pair using a
Bayesian Network. It generates multiple de novo sequences using the combined
spectrum and score them by the scoring function in ByOnic [3]. [14] also pre-
sented a de novo sequencing algorithm, ADEPTS, for CID/ETD spectral pairs.
Given a CID/ETD spectral pair, ADEPTS first finds 1,000 candidate de novo se-
quences from each spectrum, using PEAKS. The total 2,000 candidate sequences
are then rescored against the input spectral pair, and the best-scoring peptide
is reported.

While the above tools perform well for the spectra generated from the frag-
mentation method(s) that each tool targeted, they often generate inferior re-
sults for the spectra from other fragmentation methods. Moreover, if alternative
proteases (e.g., LysC or AspN) are used for protein digestion, these tools may
produce suboptimal results because different proteases often generate peptides
with different fragmentation characteristics [24].

In case of the database search approach, [24] recently introduced a universal
algorithm MS-GFDB that shows a significantly better peptide identification per-
formance than other existing database search tools such as Mascot+Percolator
[31,19]. However, a universal de novo sequencing tool is still missing.

We present UniNovo, a universal de novo sequencing tool that can be gener-
alized for various types (i.e., the combinations of the fragmentation method and
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the protease used to digest sample proteins) of spectra. The scoring function of
UniNovo is easily trainable using a training dataset consisting of thousands of
annotated spectra. All information needed for de novo sequencing are learned
from the training dataset, and the running time for training is less than 5 hours
in a typical desktop environment. Currently UniNovo is trained for CID, HCD,
and ETD spectra of trypsin, LysC, or AspN digested peptides. We show that the
performance of UniNovo is better than or comparable to PepNovo+, PEAKS,
and pNovo for various types of spectra.

One of the biggest challenges in de novo sequencing is to estimate the error rate
of the resulting de novo reconstructions. Unlike MS/MS database search tools
that commonly uses the target-decoy approach [9,28] to estimate the statistical
significance of the peptide identifications, de novo reconstructions have rarely
been subjected to a statistical significance analysis in the past.

Several de novo sequencing tools report the error rate of amino acid predic-
tions (e.g. confidence scores in PEAKS), but this is often not sufficient because
the overall quality of the sequence cannot be easily determined by the error
rates of individual amino acid predictions. To our knowledge, only PepNovo+
reports the empirical probability that the output peptide is correct. PepNovo+
predicts the probabilities using logistic regression with multiple features of the
reconstructions such as length and score, which are extracted from a training
dataset consisting of hundreds of thousands of annotated spectra [11]. However,
PepNovo+ does not include an automated training procedure (that would allow
to easily extend PepNovo+ for newly emerging mass spectrometry approaches)
and is currently trained only for CID.1 Thus, in case of non-CID fragmentation
methods, it remains unclear how to obtain accurate error rate estimation for de
novo reconstructions.

UniNovo estimates the probability that each reported reconstruction is cor-
rect, using simple statistics that are readily obtained from a small training
dataset. We demonstrate that the estimation is accurate for all tested types
of spectra (including CID, HCD, ETD, CID/ETD, and HCD/ETD spectra of
trypsin, LysC, or AspN digested peptides). This allows UniNovo to automatically
filter out low quality spectra.

2 Methods

Similar to [23], we first describe the algorithm on a simplified model that assumes
the following:

– the masses of amino acids are integers (e.g., the mass of Gly is 57).
– the m/z (mass to charge ratio) of peaks (in spectra) are integers.
– the intensity of all peaks is 1.

1 Extending PepNovo+ beyond CID spectra requires training complex boosting-based
re-ranking models for predicting peak ranks and rescoring peptide candidates. Pep-
Novo+ training includes several manual steps and the availability of a very large
corpus of training spectra (Ari Frank, personal communication, October 5, 2012).



UniNovo : A Universal Tool for de Novo Peptide Sequencing 103

– only N-terminal charge 1 ions are considered (e.g., b, c, or b−H2O ions, but
not y-ion series).

– the parent mass (the mass of the precursor ion) of a spectrum equals to the
mass of the peptide that generated the spectrum.

The algorithm on a more realistic model is described in the Appendix section A2.

Terminology and Definitions. Let A be the set of amino acids with (integer)
massesm(a) for a ∈ A. A peptide a1a2 · · ·ak is a sequence of amino acids, and the
mass of a peptide is the total mass of amino acids in the peptide. We represent
a peptide a1a2 · · · ak with mass n by a Boolean vector P = (P1, · · · , Pn), where

Pi = 1 if i =
∑j

t=1 at for 0 < j < k, and Pi = 0 otherwise. If Pi = 1, we
call a mass i a fragmentation site. For example, suppose there are two amino
acids A and B with masses 2 and 3, respectively. Then, the peptide ABBA
has the mass of 2 + 3 + 3 + 2 = 10 and is represented by a Boolean vector
(0, 1, 0, 0, 1, 0, 0, 1, 0, 0). The fragmentation sites of this peptide are, thus, 2, 5,
and 8.

A spectrum is a list of peaks, where each peak is specified by an m/z. We
represent a spectrum of parent mass n by a Boolean vector S = (S1, · · · , Sn),
where Si = 1 if the peak of m/z i (or simply the peak i) is present and Si = 0
otherwise.

A peptide-spectrum match (PSM) is a pair (P, S) formed by a peptide P and
a spectrum S. Given an integer δ called an ion type and a PSM (P, S), we say a
peak i is a δ-ion peak (with respect to P ) if i− δ is a fragmentation site, that is,
Pi−δ = 1. In this model, the ion type can be any integer. In the connection to the
experimental MS/MS spectra, ion types can represent common singly charged
N-terminal ions; for example, the ion types 1 and −27 represent b and a ions,
respectively.

Given an integer f called a feature and a spectrum S, we say that a peak i
satisfies f if another peak i+f is present in the spectrum, that is, Si+f = 1. For
instance, a peak 30 satisfies a feature f = −18, if S30−18 = 1. In experimental
spectra, various ions are often observed along with neutral losses (e.g., b-ion and
b − H2O-ion) or with related ions (e.g., b-ion and a-ion). A feature describes
the relation (the shift of m/z values in this simplified model) between two peaks
that may correspond to a neutral loss or a mass gain/loss between related ions.
For example, since we are dealing with only charge 1 ions, a water loss (from
any ions) is represented by the feature f = −18, and the mass gain from a-ion
to b-ion is represented by the feature f = +27.

Peptide-Spectrum Generative Model. We model how a peptide P (of mass
n) generates a spectrum S. Departing from a 1-step generative model in [1]
or [23], we introduce a more adequate 2-step probabilistic model in which the
dependency between different ions can be described.

Assume that we are given the set of ion types (the ion type set Δ) and the
set of features (the feature set F ). For simplicity, we consider the case where
only one ion type δ = 0 is in Δ and one feature f is in F . Given a peptide



104 K. Jeong, S. Kim, and P.A. Pevzner

P , a partial-spectrum s is generated per each element Pi of P as follows: The
probability that si = 1 is given by α if Pi = 1 or by β otherwise (the first
generation step). This first step can be characterized by a 2 × 2 matrix called
the ion type matrix (Figure 1). When si = 1, the probability that si+f = 1
(i.e., the peak i satisfies f) is given by μ if Pi = 1 or ν otherwise (the second
generation step). The second step is characterized by the feature-ion type matrix
(Figure 1).2 The second step can describe the dependency between different ions
(or an ion and its neutral loss) from the same fragmentation site. If multiple ion
types and multiple features are considered, the ion type matrix should be defined
per ion type, and the feature-ion type matrix per ion type and per feature. The
spectrum S is generated by taking elementwise OR operation for the generated
partial-spectra s.

(a) (b)

Intensity

mz

1

0

· · · 1,P = ( )· · ·

f

ii+ f
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�����x
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1 0
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0 β 1− β
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�����x
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1 0
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1, 1,s = ( )· · ·· · · · · ·
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Fig. 1. (a) The generation of a partial-spectrum s for Pi. One ion type δ = 0 and
one feature f are considered. The probability that si = 1 is given by α if Pi = 1 or
by β otherwise. When si = 1, the probability that si+f = 1 (i.e., the peak i satisfies
f) is given by μ if Pi = 1 or by ν otherwise. The spectrum is generated by taking
elementwise OR operation for generated partial-spectra for all elements of P .
(b) The calculation of the fragmentation probability vector FPV from a spectrum S
(without knowing the peptide P that generated S). We consider one ion type δ = 0
and two features f1 and f2. The events “a peak satisfies f1” and “a peak satisfies
f2” are assumed to be independent. To derive FPVi, first we examine which features
the peak i satisfies in the spectrum S. Denote the features the peak i satisfies by H .
Second, given H , we calculate the probability that Pi = 1 (using the probabilities
given in ion type matrix and feature-ion type matrix - see the equation (1)).

Training UniNovo. Since the ion type matrices and feature-ion type matricies
fully describe the generation of a spectrum, in the training step, UniNovo learns
these matrices from the training dataset (a set of PSMs). To define these matri-
ces, the ion type set Δ and the feature set F should be formed. Using the offset
frequency function introduced in [7], we collect frequently observed ion types and
form the ion type set Δ. Likewise, we collect frequently observed features and
form the feature set F (see the Appendix section A1.2). From here on, we only
consider ion types in the ion type set Δ and features in the feature set F .

2 Given si = 0, the probability that si+f = 1 is assumed to be 0.



UniNovo : A Universal Tool for de Novo Peptide Sequencing 105

Next UniNovo learns the ion type and feature-ion type matrices that charac-
terize the generative model of the PSMs in the training dataset. For example,
α = Pr(si = 1|Pi = 1) can be empirically determined if partial-spectra s are
given. However, it is not clear how to decompose a spectrum S into partial-
spectra s (since partial spectra may share peaks in the spectrum). As a compro-
mise, we learn Pr(Si = 1|Pi = 1) for estimation of α. Other probabilities are
also empirically determined similarly by substituting the partial-spectra by the
spectrum.

We emphasize that all the above probabilities can be learned from a small
set of PSMs (e.g., 5000 PSMs per charge state are often sufficient to avoid
overfitting; see the Appendix section A14) even if there are many ion types in Δ
and features in F because each probability is associated to an individual ion type
or a combination of an ion type and a feature, not a combination of multiple ion
types and multiple features.

Lastly, we compute the probability that a random element of a peptide vector
is a fragmentation site, i.e., Pr(Pi = 1).3 This probability is called the prior
fragmentation probability and denoted by p. The detailed description of UniNovo
training is given in the Appendix section A1.

How to Infer Fragmentation Sites from a Spectrum. Given a spectrum S
of parent mass n, our goal is to predict the fragmentation sites of the (unknown)
peptide P that generated S. For simplicity, assume that there exists a single ion
type δ = 0 is in the ion type set Δ (but multiple features in the feature set F ).
Given a peak i, define H as the set of features that the peak i satisfies. Then
the fragmentation sites are predicted by solving the following Bayesian inference
problem.

Fragmentation Inference Problem: Given the set of features H and Pi such
that Pr(Pi = 1) = p (the prior fragmentation probability), derive the posterior
probability Pr(Pi = 1|Si = Si+f = 1 for f ∈ H).

Since there is only one ion type, we have only one ion type matrix. On the
other hand, per each feature we have a feature-ion type matrix. Let μf and νf
denote μ and ν associated to the feature f , respectively. If we can assume that all
features are independent (i.e., the events “Si = Si+f = 1 for f” are independent
for f ∈ H), we obtain

Pr(Pi = 1|Si = Si+f = 1 for f ∈ H) =

γ ·
∏

f∈H

μf

γ ·
∏

f∈H

μf + (1 − γ) ·
∏

f∈H

νf
. (1)

where γ = Pr(Pi = 1|Si = 1) = p·α
p·α+(1−p)·β (see the Appendix section A3 for

derivation). Denote the obtained probability in (1) as πi. We define a fragmen-
tation probability vector (FPV ) as a vector with n elements such that

3 When masses of amino acids are rounded to integers, Pr(Pi = 1) ≈ 1
121.6

. However,
if we consider more accurate amino acid masses (for the spectra of high resolution),
this probability should be learned from the training dataset.



106 K. Jeong, S. Kim, and P.A. Pevzner

FPVi =

{
πi if Si = 1

0 otherwise
(2)

for i = 1, · · · , n − 1, and FPVn := 1 (see Figure 1 (b)). FPVi is an estimated
probability that Pi = 1 (see Figures A2 and A3, blue bars). We use FPV for
the generation of de novo reconstructions.

The equation (1) is based on a simplified model in which a single one ion type
and multiple independent features are used. However, some features are known
to be strongly dependent each other (e.g., a feature describing a single water
loss and a double water losses), and usually multiple ion types are present in the
ion type set. Thus, in practice, per each peak, UniNovo automatically selects
a small number of features (less than 10 out of thousands of features in the
feature set) that are weakly correlated yet effective to determine the ion type of
the peak. Assuming that the selected features are mutually independent, FPV
is calculated per ion type using the equation (1), and then the final FPV is given
by a weighted summation of the FPV ’s of different ion types. Note that there
are many possible combinations of features due to the large number of all the
features in the feature set (even if the number of the features to calculate FPV
per peak is less than 10). Since different combinations of features are selected for
different peaks, UniNovo is able to use more diverse relations between different
ions as compared to other tools that typically use fixed dependencies between
ions (e.g., PepNovo). The detailed description of the feature selection method
and the calculation of FPV is given in the Appendix section A3.

Generating de novo Reconstructions. To generate de novo reconstructions,
we first construct a spectrum graph [7]. Given a spectrum S of parent mass n
from an unknown peptide P , the spectrum graph G(V,E) is defined as a directed
acyclic graph whose vertex set V consists of 0 (the source), n (the sink), and
integers i such that FPVi > 0. Two vertices i and j are connected by an edge
(i, j) if j − i equals to the mass of an amino acid or the total mass of multiple
amino acids (a mass gap). Any path from 0 (the source) to n (the sink) in a
spectrum graph corresponds to a peptide (possibly containing mass gaps). We
say that a vertex i is correct if Pi = 1 and an edge (i, j) is correct if both vertices
i and j are correct. We also say that a path r is correct if all vertices in r are
correct. The length of a reconstruction is defined by the total number of amino
acids and mass gaps in the reconstruction.

To score a de novo reconstruction, we use an additive (i.e., the score of a path
is the sum of scores of vertices of the path) log likelihood ratio scoring (similar
to [7]). Given a vertex i, let FPVi = x. The likelihoods of the following two
hypothesis for the outcome FPVi = x are tested: a) the vertex i is correct and
b) the vertex i is incorrect. Let Pr(Pi = 1|FPVi = x) = x. Then, we have

L(Pi = 1|FPVi = x)

L(Pi = 0|FPVi = x)
=

Pr(FPVi = x|Pi = 1)

Pr(FPVi = x|Pi = 0)
=

x

1− x
· 1− p

p
. (3)
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The score of the vertex i with FPVi = x is defined by Score(i) :=
[
log x

1−x ·
1−p
p

]
where [ · ] denotes the rounding to the nearest integer. Given a path r, the score
of the path r is defined by

∑
i∈r

Score(i).

Since an additive scoring is used, top scoring reconstructions can be efficiently
generated using a dynamic programming as in [7]. We did not exclude symmet-
ric paths in the spectrum graph that usually correspond to incorrect recon-
structions. Considering only the antisymmetric paths would further enhance the
performance of UniNovo [5].

After generating the reconstructions, a probability that each reconstruction is
correct (termed the accuracy of the reconstruction) is predicted, using Hunter’s
bound [16] (see the Appendix section A4 for the definition of the accuracy of re-
constructions). Hunter’s bound can be calculated from relatively simple statistics
that are readily learned from a small set of PSMs (about 5,000 PSMs). Figures
A2 and A3 (green bars) in the Appendix section A9 show that the accuracy of
a reconstruction is a conservative estimate of the empirical probability of the
reconstruction being correct.

3 Results

Datasets. To benchmark UniNovo, we used 13 different datasets with diverse
fragmentation methods (CID/ETD/HCD), digested with diverse proteases
(trypsin, LysC, and AspN), and having diverse charge states (see Table 1). We
re-analyzed the spectral datasets (original datasets) from Albert Heck’s and
Joshua Coon’s laboratories that were previously analyzed in [24], [34], and [13].
The CID and ETD spectra in these original datasets were acquired in a hy-
brid linear ion trap/Orbitrap mass spectrometers (high MS1 resolution and low
MS2 resolution). The HCD spectra have high MS1 and MS2 resolution. All
spectra in the original datasets were identified by MS-GFDB (ver. 01/06/2012)
[24] at 1% peptide-level FDR without allowing any modification except the car-
bamidomethylation of Cys (C+57) as a fixed modification.4 Out of all identified
spectra, we selected 1,000 spectra (or pairs of spectra) from distinct peptides
randomly and formed the 13 datasets listed in Table 1. The unselected identified
spectra (about 5,000-20,000 spectra depending on the type of spectra) were used
for the training of UniNovo. The peptide contained in the training dataset were
not contained in the above 13 datasets. See the Appendix section A10 for the
detailed description of these datasets.

Benchmarking UniNovo. We benchmarked UniNovo, PepNovo+ (ver. 3.1
beta) [11], PEAKS (ver. 5.3, online) [27], and pNovo (ver. 1.1) [6] using the
datasets in Table 1. For each tool, we generated N de novo reconstructions per
each spectrum forN = 1, 5, and 20. We say that a spectrum is correctly sequenced

4 In the Appendix section A12, we also re-analyzed the dataset reported in [22] that
contains doubly charged CID spectra identified using Sequest [10] and Peptide-
Prophet [20].
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Table 1. Summary of the datasets used for benchmarking. Number of spectra (or
spectral pairs) is 1,000 for each dataset. While UniNovo is applicable to all datasets,
other tools are only applicable to (or optimized for) datasets marked by ‘*’. PEAKS
was not tested for HCD datasets.

Dataset CID2 CIDL2 CIDA2 ETD2 ETD3 ETDL3 ETDL4 ETDA3 ETDA4 HCD2 HCD3 CID/ETD2 CID/ETD3

Fragmentation CID CID CID ETD ETD ETD ETD ETD ETD HCD HCD CID/ETD CID/ETD
Charge 2 2 2 2 3 3 4 3 4 2 3 2 3
Enzyme Tryp LysC AspN Tryp Tryp LysC LysC AspN AspN Tryp Tryp Tryp Tryp

Avg. pep. length 12.6 11.4 12.3 12.5 16.4 12.5 18.7 12.8 18.9 10.5 14.5 12.3 17.1
UniNovo * * * * * * * * * * * *
PepNovo+ * * * N/A N/A N/A N/A N/A N/A * * N/A N/A
PEAKS * * * * * * * * * * * N/A N/A
pNovo N/A N/A N/A N/A N/A N/A N/A N/A N/A * * N/A N/A

if at least one of N reconstructions generated from the spectrum is correct. To
evaluate the performance of each tool, the number of correctly sequenced spectra
and the average length of correct reconstructions were measured for each tool.5

For UniNovo, the maximum number of mass gaps in a reconstruction was set
to 2. UniNovo was tested for all datasets. For PepNovo+, also N top scoring
reconstructions were generated per spectrum. PepNovo+ was used for CID2,
CIDL2, CIDA2, HCD2, and HCD3 datasets. In case of PEAKS, we first gener-
ated 500 top scoring reconstructions per each spectrum. Then, for each recon-
struction we converted amino acids with the local confidence lower than 30% into
mass gaps. Such conversion is adopted because PEAKS generates reconstruction
without mass gaps while UniNovo and PepNovo+ generate reconstructions with
up to two mass gaps. In this procedure, multiple reconstructions without mass
gaps were often converted into the same reconstruction with mass gaps. The
score of a converted reconstruction is defined as the highest score of the recon-
structions before conversion. Out of the converted reconstructions, N top high
scoring (distinct) ones were chosen and used for further analysis. PEAKS was
tested for all datasets except for HCD2 and HCD3 datasets. For pNovo, N top
scoring reconstructions were generated per a spectrum.6 Only HCD2 and HCD3
datasets were analyzed by pNovo. The parameters of each tool for each dataset
is provided in the Appendix section A8.

We also indirectly compared UniNovo with MS-GFDB [24] as both tools were
developed to analyze diverse types of spectra. We replaced the scoring func-
tion of UniNovo with that of MS-GFDB and generated reconstructions using
the replaced scoring method. More precisely, the spectrum graph was generated
by MS-GFDB per each spectrum, and the reconstructions were generated by
UniNovo on that spectrum graph (instead of the spectrum graph generated by
UniNovo). This generation method is specified by MS-GFDBScore. All experi-
mental parameters for MS-GFDBScore were the same as for UniNovo.

5 Since mass gaps are allowed for reconstructions, often multiple correct reconstruc-
tions were reported for a spectrum. To calculate the average length of correct recon-
structions, only the top scoring correct reconstruction was counted per a spectrum.

6 pNovo also generates reconstructions without mass gaps. However, the conversion
of reconstructions as in PEAKS could not be applied to pNovo because pNovo does
not report any local score.
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Fig. 2. Comparison of de novo sequencing tools (as well as a database search tool MS-
GFDB [24] tweaked for de novo sequencing). Per each spectrum, N top scoring recon-
structions were generated by UniNovo, PepNovo+ [12,11], PEAKS [27], pNovo [6], and
MS-GFDBScore. MS-GFDBScore provides UniNovo with MS-GFDB’s scoring func-
tion. The number of reported reconstructions per a spectrum (N) is set to 1, 5, and
20. A reconstruction is correct if all the fragmentation sites of the reconstruction are
correct, and a spectrum is classified as correctly sequenced if at least one of the recon-
structions generated from the spectrum is correct. Figures on the left side ((a), (c), and
(e)) show the number of correctly sequenced spectra in each dataset, and figures on
the right side ((b), (d), and (f)) show the average length of the correct reconstructions.

Figure 2 shows the comparison results for different datasets. UniNovo found
the largest number of correctly sequenced spectra among all the tested tools in
most datasets. In particular, for ETD spectra, UniNovo reported significantly
more correctly sequenced spectra than PEAKS. For example, in case of ETD2
or ETDL4 dataset, the number of correctly sequenced spectra was more than
twice for UniNovo than for PEAKS.

For CID spectra, UniNovo and PepNovo+ showed similar results. When N =
1, UniNovo and PepNovo+ found about the same number of correctly sequenced
spectra in CID2 and CIDL2 datasets, but UniNovo found about 35% more cor-
rectly sequenced spectra than PepNovo+ in CIDA2 dataset.
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While trypsin and LysC digested peptides generate the spectra of similar frag-
mentation characteristics, AspN digested peptides generate spectra with distinct
fragmentation propensities. UniNovo worked well with AspN digested peptides,
but PepNovo+ showed suboptimal results for the spectra of AspN digested pep-
tides.7 The length of correct reconstructions for PepNovo+ was slightly longer
than for UniNovo.

The results on HCD spectra also demonstrate that UniNovo finds the largest
number of correctly sequenced spectra in general. The reconstructions reported
by pNovo were, however, longer than those by UniNovo (and PepNovo+) by 2-3
amino acids. This suggests that UniNovo still has room for improvement for HCD
spectra (e.g., introducing features better reflecting the high mass resolution and
information from immonium or internal ions).

The results from UniNovo were superior to MS-GFDBScore in both terms of
the number of correctly sequenced spectra and the average length of the correct
reconstructions in all datasets.

For each dataset, we drew the Venn diagrams of the correctly sequenced spec-
tra (Figure 3 and Figure A4-A11) to see the overlaps of the spectra between
different tools. For all datasets, the overlaps between different tools increase as
N grows, as expected. Relatively small overlaps are observed for ETD spectra
(as compared to CID or HCD spectra). It indicates that UniNovo may have been
using some valuable features of ETD spectra missed by PEAKS (and vice versa)
and suggests that combining UniNovo and PEAKS results may potentially lead
to a promising de novo sequencing approach.

While the above results measure the sequence level accuracy, they do not
directly show the amino acid level precision or recall. To measure the amino
acid level precision and recall, the top scoring reconstruction was generated per
spectrum for each tool (i.e., N = 1). For this experiment, MS-GFDB was not
tested, and the reconstructions of PEAKS were not converted using the local
confidence. From the generated reconstructions, the number of (predicted) frag-
mentation sites and the number of correct fragmentation sites are counted. Also,
since the spectra are annotated, we can count the number of all fragmentation
sites in test sets. The precision and recall are defined by

precision =
# correct fragmentation sites

# predicted fragmentation sites
(4)

recall =
# correct fragmentation sites

# all fragmentation sites in test sets.
(5)

Figure 4 shows the precision and recall values of the tested tools for different
datasets. For all datasets, UniNovo showed the highest precision value. But the
recall values of UniNovo tended to be lower than others in particular for CID

7 Training of the parameters for the Bayesian network of PepNovo [12] for the CID
spectra of AspN or LysC digested peptides would lead to better results; however, as
mentioned above, the re-ranking models of PepNovo+ [11], which are crucial for the
suprior performance of PepNovo+ for CID tryptic spectra (see the Appendix section
A13), cannot be readily trained.
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(d) (e) (f)

(g) (h) (i)

Fig. 3. The Venn diagrams of the correctly sequenced spectra for CID2 (a)-(c), ETD3
(d)-(f), and HCD2 (g)-(i) datasets. For all datasets, the overlaps between different
tools increase as N grows, as expected. Relatively small overlaps are observed for ETD
spectra when compared to CID or HCD spectra. The Venn diagrams for other datasets
are found in Figure A4-A11 in the Appendix section A11.
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Fig. 4. Comparison of de novo sequencing tools in terms of amino acid level precision
(a) and recall (b). The definitions of precision and recall are given in (4) and (5),
respectively.



112 K. Jeong, S. Kim, and P.A. Pevzner

spectra. For ETD2 and ETDL4 datasets, UniNovo had higher precision and recall
than PEAKS. These observations are consistent with the sequence level results
above; higher precision of UniNovo resulted in more accurate reconstructions,
and lower recall resulted in shorter reconstructions.

Both the sequence level and amino acid level results suggest that specific types
of spectra are more suitable for de novo sequencing than others. For instance,
in general, HCD spectra generated more accurate and longer reconstructions
(or higher precision and recall in amino acid level) than ETD spectra. Further
evaluation of the scoring function (i.e., spectrum graph) of UniNovo for different
spectrum types is found in the Appendix section A13, where we also compared
the spectrum graphs from UniNovo, PepNovo, and MS-GFDB for CID2 dataset.

De novo Sequencing of Paired Spectra. UniNovo also can be used to se-
quence paired spectra (e.g., CID/ETD spectral pairs). Given multiple spectra
from the same precursor ion, UniNovo first generates a spectrum graph from
each of the spectra and next merges the spectrum graphs into a combined spec-
trum graph, on which the reconstructions are generated (refer to the Appendix
section A5 for the spectrum graph merging algorithm).

To benchmark UniNovo in de novo sequencing of paired spectra, CID/ETD2
and CID/ETD3 datasets were analyzed by UniNovo. From CID/ETD2 dataset,
two additional datasets were generated: CID/etd2 and cid/ETD2 datasets.
CID/etd2 dataset was formed by taking only CID spectra, and cid/ETD2 dataset
by taking only ETD spectra in CID/ETD2 dataset. CID/etd3 and cid/ETD3
datasets were generated similarly. For each dataset, we generated N =1, 5, and
20 top scoring reconstructions.

The results are shown in Figure 5. When precursor ions were doubly charged,
the performance boost from the paired spectra was very modest. For N =
1, 5, and 20, UniNovo reported 5% more correctly sequenced spectral pairs in
CID/ETD2 datasets than in CID/etd2 dataset. The average length of correct
reconstructions for CID/ETD2 dataset was slightly longer than for CID/etd2
dataset.

In contrast, for triply charged spectra, the use of paired spectra was highly
beneficial for generating more accurate reconstructions. For example, when N =
1, UniNovo reported 100% and 50% more correctly sequenced spectral pairs in
CID/ETD3 dataset than in CID/etd3 and cid/ETD3 datasets, respectively. The
length of correct reconstructions typically increases by 1-2 amino acids by using
the CID/ETD paired spectra.

De novo Sequencing with Quality Filtering. Given a set of reconstructions
generated from a spectrum, UniNovo estimates the probability that at least
one reconstruction in the set is correct (i.e., a probability that the spectrum is
correctly sequenced) based on the accuracies of reconstructions. The estimated
probability is called the set accuracy.8 Denote the set of reconstructions by
R = {r1, · · · , rN}. If the events “ri is correct” for i = 1, · · · , N are independent,

8 When multiple de novo reconstructions are reported, it is important to guarantee
that one of them is correct.
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Fig. 5. De novo sequencing of paired spectra. CID/ETD spectral pairs were analyzed
by UniNovo (in CID/ETD2 and CID/ETD3 datasets). To see if the spectral pairs
are beneficial for de novo sequencing, CID/etd2 (cid/ETD2) dataset was generated
from CID/ETD2 dataset by collecting only CID (ETD) spectra in CID/ETD2 dataset.
Likewise, CID/etd3 and cid/ETD3 datasets were generated from CID/ETD3 dataset.
(a) the number of correctly sequenced spectra (or spectral pairs), (b) the average length
of correct reconstructions for each dataset. The spectral pairs resulted in more accurate
and longer reconstructions, in particular for triply charged spectral pairs.
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Fig. 6. De novo sequencing with qualify filtering of spectra. Given a spectrum, if
the parameter SetAccuracyThreshold is set, UniNovo attempts to achieve set accu-
racy (an estimated probability of the spectrum being correctly sequenced) exceeding
SetAccuracyThreshold. If it fails to generate such a set, the spectrum is filtered out. An
unfiltered spectrum is called a qualified spectrum. We set SetAccuracyThreshold = 0.8.
(a) the number of qualified spectrum, (b) the percentage of qualified spectra that were
correctly sequenced, (c) the average length of correct reconstructions.
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the set accuracy is simply given by 1 −
N∏
i=1

(1 − Accuracy(ri)). However, since

the reconstructions are often similar to each other, the dependency between
reconstructions should be taken into account. To model this dependency, we
assume Markov property between the events “ri is correct” for i = 1, · · · , N
and compute the set accuracy. The derivation of the set accuracy is given in the
Appendix section A6.

When the parameter N is set, one may want to choose N reconstructions
with the highest accuracies to maximize the set accuracy. However, such a se-
lection often results in a set of short reconstructions (because short reconstruc-
tions have relatively high accuracies). Since short reconstructions are not very
useful in many cases (e.g., in follow-up homology searches), UniNovo uses a
greedy algorithm to select long and accurate reconstructions. The inputs to the
algorithm are the parameters SetAccuracyThreshold and N . The algorithm
tries to form an output set of N reconstructions of set accuracy higher than
SetAccuracyThreshold while maximizing the minimum length of the recon-
structions (see the Appendix section A7 for the description of the algorithm).
If UniNovo fails to generate a set of N reconstructions with the set accuracy
higher than SetAccuracyThreshold, it filters out the query spectrum.

We set SetThreshold = 0.8 and reanalyzed the datasets in Table 1. The
maximum number of mass gaps per each reconstruction was set to 10. For each
dataset, we measured the number of unfiltered spectra (termed qualified spectra)
and the percentage of qualified spectra that were correctly sequenced (which is
expected to be 80% since SetAccuracyThreshold = 0.8). The average length of
correct reconstructions was also measured.

The results are given in Figure 6. For all datasets, the number of qualified
spectra increases sharply as the number of reconstructions N grows (Figure 6
(a)). For example, UniNovo reported only few qualified spectra (less than 5)
from CIDA2 dataset when N = 1. When N = 20, it reported more than 900
qualified spectra from the same dataset. In contrast to the dramatic changes in
the number of qualified spectra, the percentage of qualified spectra that were
correctly sequenced hardly changed across the datasets and the values of N (Fig-
ure 6 (b)). As expected, the percentage was around 80% for all cases (including
the datasets containing CID/ETD spectral pairs), which shows that the set ac-
curacy reported by UniNovo is reliable. Figure 6 (c) shows the average length
of correct reconstructions. As N decreases, the average length also decreases.
This is because shorter reconstructions (with higher accuracies) are chosen by
UniNovo when N is small to achieve high set accuracy.

4 Conclusion

We presented a universal de novo sequencing tool UniNovo that works well for
various types of spectra. UniNovo can be easily trained for different types of
spectra using only thousands of PSMs that typically can be obtained from a
single MS/MS run. The experimental results show that UniNovo generates ac-
curate and long de novo reconstructions from spectra of CID, ETD, HCD, and
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CID/ETD fragmentation methods and spectra of trypsin, LysC, or AspN di-
gested peptides. We also showed that UniNovo is better than or comparable to
other state of the art tools.

As pointed out by [26], de novo sequences not only are valuable for the anal-
ysis of the novel peptides that are not present in proteome databases but also
can facilitate the homology-based database searches. Since the reconstructions
reported by UniNovo contain mass gaps representing the total mass of multi-
ple amino acids (termed gapped peptides [22,17]), MS-BPM algorithm [29] can be
used for fast exact or homology searches (UniNovo⊕MS-BPM). MS-BPM enables
searches against a sequence database using gapped peptides as queries. Currently
MS-BPM takes gapped peptides generated by MS-GappedDictionary [17] (MS-
GappedDictionary⊕MS-BPM). However, the reconstructions from UniNovo are
usually longer than those from MS-GappedDictionary (8-9 vs. 5-6). Since the
search time of MS-BPM strongly depends on the length of gapped peptides
- the longer gapped peptides, the shorter search time - the running time of
UniNovo⊕MS-BPM is smaller than MS-GappedDictionary⊕MS-BPM by an or-
der of magnitude in a blind search against the IPI Human proteome database
ver.3.87 [21] (data not shown).
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Abstract. Over the past several years, genome wide association studies
(GWAS) have implicated hundreds of genes in common disease. More
recently, the GWAS approach has been utilized to identify regions of the
genome which harbor variation affecting gene expression or expression
quantitative trait loci (eQTLs). Unlike GWAS applied to clinical traits
where only a handful of phenotypes are analyzed per study, in (eQTL)
studies, tens of thousands of gene expression levels are measured and
the GWAS approach is applied to each gene expression level. This leads
to computing billions of statistical tests and requires substantial compu-
tational resources, particularly when applying novel statistical methods
such as mixed-models. We introduce a novel two-stage testing procedure
that identifies all of the significant associations more efficiently than test-
ing all the SNPs. In the first-stage a small number of informative SNPs,
or proxies, across the genome are tested. Based on their observed as-
sociations, our approach locates the regions which may contain signifi-
cant SNPs and only tests additional SNPs from those regions. We show
through simulations and analysis of real GWAS datasets that the pro-
posed two-stage procedure increases the computational speed by a factor
of 10. Additionally, efficient implementation of our software increases the
computational speed relative to state of the art testing approaches by a
factor of 75.

1 Introduction

Research in complex diseases has progressed rapidly in the last decade with the
advent of genomic technologies [13,17,19,31]. In genome-wide association stud-
ies (GWAS), information on millions of single nucleotide polymorphisms (SNPs)
across the genome is collected from thousands of case and control individuals.
Typically, each SNP is statistically tested for disease association by comparing
the minor allele frequency (MAF) between the cases and controls. The signifi-
cant associations are used to gain insight into the genetic basis of disease, and
hundreds of GWASs have been performed on dozens of complex diseases and
successfully discovered many novel loci involved in disease susceptibility [18].

More recently, there has been great interest in applying the GWAS approach
to genomic data such as gene expression. In these studies, the goal is to identify
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regions of the genome harboring genetic variation which affect gene expression
levels or expression quantitative trait loci (eQTL) [3, 10, 32].

A challenge in applying GWAS to genomic data is that these technologies typ-
ically obtain tens of thousands of measurements for each sample resulting in a
tremendous computational burden when performing the analysis, including com-
puting billions of tests and requires substantial computational resources. This
challenge is compounded for novel statistical approaches such as linear mixed
models, which account for population structure [20, 25, 46], yet themselves are
computationally intensive.

eQTL studies are already very popular [4, 5, 21] and with rapidly decreasing
costs of RNA-seq technologies [26, 45] will likely become more popular in the
future. These include, several major efforts collecting expression from multiple-
tissues in human [1,9,14,35,39] and mouse [6,8]. More broadly, application of the
GWAS approach to phenotypes measured by other genomic technologies such as
those reported by the ENCODE consortium [41–44] will face similar computa-
tional challenges.

In this paper, we introduce a novel two-stage method which can be applied to
reduce the computational burden of a wide range of association studies including
those employ case-control, quantitative trait and mixed-model statistical testing
methodologies. In each trait, typically only a small percentage of the SNPs are
significantly associated and the SNPs neighboring a significant association have
elevated statistics. Intuitively, one can first test an informative subset of the
SNPs, termed proxy SNPs, across the genome to quickly locate these regions
and test the SNPs therein. This way, many of the regions with no associations
can be discarded from the analysis to reduce the computational burden.

Our novel method for genome-wide rapid association testing (GRAT), guar-
antees to identify all of the significant associations with high-probability while
reducing the total number of tests. The proposed method chooses the proxy SNPs
and determines which additional SNPs to test based on the observed proxy SNP
statistics and the patterns of linkage disequilibrium (LD) in the region. The
key insight underlying GRAT is that by taking advantage of how the statistics
at SNPs in LD with each other behave, we can estimate the probability that
an untested SNP has a significant association and use this probability to only
eliminate SNPs from consideration if they are highly unlikely to have significant
associations. We have selected a set of proxy SNPs for the 1000 Genomes Project
and any study which imputes to the 1000 Genomes Project SNPs can readily
use our approach. We also provide our method for choosing proxy SNPs, which
can be applied to any reference dataset.

We show through simulations and analysis of real eQTL datasets that the
proposed two-stage procedure identifies the significant associations while only
testing approximately 10% of the SNPs. GRAT’s efficient software implementa-
tion reduces the computational time for computing large-scale association studies
by a factor of 30 compared to currently used state of the art methods. When
our method is applied to association studies that utilize linear mixed models, the
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speed-up is cumulative with recent efforts that decrease the computational bur-
den of computing the actual association statistic such as EMMAX, FaST-LMM
and GEMMA [20,25, 46].

2 Material and Methods

2.1 Genome-Wide Association Studies

For the simplicity of description, we consider a balanced case-control genome-
wide association study (GWAS) with N/2 individuals (N copies of each chromo-
some) per panel. For our actual experiments, we will use association statistics for
quantitative phenotypes, but the approach assuming case-control phenotypes is
equivalent. For SNP mi, pi denotes its population minor allele frequency (MAF);
p+i and p−i denote its population case and control MAFs; p̂+i and p̂−i denote its
observed case and control MAFs in the GWAS. Given the relative risk of the
SNP, γi, in the disease and the prevalence of the disease, F , in the population,
it can be shown that the case and control MAFs of the SNP follows,

p+i =
γipi

(1− γi)pi + 1
, p−i =

pi − Fp+i
1− F

. (1)

A SNP is defined as not associated if p+i = p−i .
In case-control GWASs the following statistic is widely used, which is normally

distributed for large N with mean λi

√
N (the non-centrality parameter), and

unit variance,

Si = ŝi =
p̂+
i
−p̂−

i√
2p̂i(1−p̂i)

√
N ∼ N

(
λi

√
N, 1

)
,where λi =

p+
i
−p−

i√
2pi(1−pi)

and p̂i =
p̂+
i
+p̂−

i
2

.

(2)

Given the significance level α and the observed value of the test statistic ŝi, the
SNP is deemed as significant, or statistically associated, if |ŝi| > Φ−1

(
1− α

2

)
,

where Φ−1(.) is the quantile function of the standard normal distribution. For
simplicity, we use the notation: tα ≡ Φ−1

(
1− α

2

)
. Typically, in a GWAS the

significance level is chosen as α = 10−8.

2.2 A Two-Stage Approach for Identifying the Significant
Associations

We propose the following two-stage testing procedure for identifying the signifi-
cant associations within a set of SNPsM. Given a subset of the SNPs T ⊂ M,
referred to as the proxy SNPs, for each proxy SNP, mt ∈ T , its association
statistic, ŝt, is computed. In the second stage, a decision rule is exercised for
each of the remainder SNP, mi ∈ M\T , in order to determine whether or not
to compute the association statistic of the remainder SNP. The decision rule for
a remainder SNP mi is defined using a proxy SNP, mt ∈ T , and a threshold, s∗t ,
for its observed statistic ŝt. If the observed statistic of the proxy SNP is more
extreme than the threshold value, ŝt > s∗t the remainder SNP is tested.
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2.3 Performance of the Two-Stage Approach

In a GWAS, the performance of the two-stage approach can be summarized by
the total number of SNPs tested (NT), and the percentage of the significant
SNPs identified, or the recall rate (RR). The total number of tests is the sum of
the tests performed on the proxy SNPs, plus the remainder SNPs that are tested
as a result of the decision rules. We use a standard GWAS simulation model [22]
to evaluate a given set of proxy SNPs and decision rules based on their expected
performance within the simulated data.

The simulation model considers the probability of each SNP being causal, ci,
and the non-centrality parameter (NCP) of the causal SNP, λc

√
N . For simplic-

ity, we give a brief explanation of the simulation procedure for a single causal
SNP using a genomic reference dataset such as the HapMap. Using the given
probabilities of each SNP being causal, at most a single causal SNP is randomly
selected. Given the disease prevalence F and the NCP of the causal SNP λc

√
N ,

the case and control MAFs, p+c and p−c are determined. Next, the HapMap hap-
lotypes are divided into two pools according to the minor and major allele of the
causal SNP, and case-control panels are sampled using p+c and p−c .

For each simulation dataset, each association statistic is computed to identify
which SNPs are significant in the dataset. We then apply the two-stage method
to observe the NT and RR. The expected recall rate (ERR) and the expected
number of SNPs to be tested (ENT) then can be computed by repeatedly sim-
ulating datasets, applying the two-stage approach and averaging the observed
NT and RR value.

2.4 Finding the Optimal Decision Rules for Given Proxy SNPs

For a given set of proxy SNPs, one can determine the decision rules empirically
by evaluating the performance of using different threshold values on the remain-
der SNPs in the simulated data. The empirical approach can be cumbersome
and instead we derive an analytical framework for estimating the expected per-
formance, which eliminates the need for generating simulated data and saves
time. Furthermore, using this analytical framework we show how to determine
the optimal decision rules for the remainder SNPs given a set of proxy SNPs.

A SNP that is disease-associated can be either causal in the disease or in LD
with the causal SNP. Given that SNP mi is the causal SNP, the non-centrality
parameter (NCP) of a correlated SNP mt, λt

√
N , is proportional to the NCP of

the causal SNP, λc

√
N , by their correlation coefficient, r, where λt = rλc. It can

be shown that the joint distribution of the association statistics of the causal
SNP mi and the non-causal SNP mt follows a bivariate normal distribution [16].

We follow a conservative approach in which each remainder SNP mi is paired
with the proxy SNP that is most strongly correlated, referred to as the best -proxy,
and denoted by mb(i). For each remainder SNP mi, we denote the association
statistic of its best-proxy mb(i) with sb(i) and test SNP mi if its best-proxy SNP
association statistic is more extreme than a given threshold, sb(i) > s∗b(i). For
simplicity, we assume only the remainder SNP can be causal and express the
density function of the joint distribution, f(si, sb(i)),
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f
(
si, sb(i)

)
= ciφ

([
si

sb(i)

]
;
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√
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√
N

]
,

[
1 r
r 1

])
+ (1− ci)φ

([
si
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]
;

[
0
0

]
,

[
1 r
r 1

])
,

(3)

where φ(x ;μ,Σ) denotes the density of a multivariate normal distribution with
mean vector μ and covariance matrix Σ. The first term corresponds to having
the remainder SNP as causal, with probability ci, and the second term to not
casual with probability 1− ci.

Assume we are given K proxy SNPs, where T = {m1, . . . ,mK}. The expected
number of SNPs to be tested (ENT) can be expressed as the fixed cost of testing
K proxy SNPs, plus the expected number of decision rules that are triggered,

ENT(s∗b(K+1), . . . , s
∗
b(M)) = K +

M∑
i=K+1

Pr
(
|Sb(i)| > s∗b(i)

)
. (4)

We approximate the expected recall rate (ERR) as the ratio of the expected num-
ber of significant SNPs that the two-stage approach discovers, to the expected
number of significant SNPs in a GWAS,

ERR(s∗b(K+1), . . . , s
∗
b(M)) =

K∑
t=1

Pr (|St| > tα) +

M∑
i=K+1

Pr
(
|Si| > tα, |Sb(i)| > s∗b(i)

)
M∑
i=1

Pr (|Si| > tα)

, (5)

where the first and the second terms in the numerator correspond to the ex-
pected number of significant SNPs obtained from testing the proxy SNPs and
the remainder SNPs, respectively. Further, we refer to the second term as the
expected recall function, which can be computed using the joint distribution,

ER(s∗b(K+1), . . . , s
∗
b(M)) =

M∑
i=K+1

Pr
(
|Si| > tα, |Sb(i)| > s∗b(i)

)
,

Pr
(
|Si| > tα, |Sb(i)| > s∗b(i)

)
=

∫∫
Ωi

f
(
si, sb(i)

)
dsi dsb(i),

(6)

where Ωi =
{
(si, sb(i)) | |si| > tα , |sb(i)| > s∗b(i)

}
.

We are interested in determining the decision rules that lead to the least
expected number of SNPs to be tested (ENT), while the expected recall rate
(ERR) satisfies a given target value, ρ, which can be expressed as an optimization
problem,

minimize ENT(s∗b(K+1), . . . , s
∗
b(M)),

such that ERR(s∗b(K+1), . . . , s
∗
b(M)) = ρ.

(7)

2.5 Choosing the Optimal Proxy SNPs

The expected number of SNPs to be tested (ENT) in the two-stage approach
depends on the number of proxy SNPs and which SNPs are chosen as proxies.
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It can be shown that the problem of finding the optimal set of proxy SNPs,
among all possible sets of proxy SNPs the set that gives the minimum ENT, is
an NP-Hard problem. Therefore, we propose a heuristic algorithm for choosing
the proxy SNPs using a greedy approach, which incrementally builds the set of
proxy SNPs.

Starting with an empty set, let Tk denote the current set of proxy SNPs
with size k, where ENTk and ERRk denote the values of its ENT and ERR.
( ENT0 = +∞ and ERR0 = −∞ ). Each remainder SNP mi is a candidate
to extend the current set of proxy SNPs to become {Tk ∪mi}, which performs

ENT
(i)
k+1. The remainder SNP with the least ENT

(i)
k+1 is chosen for extending the

current set of proxy SNPs:

Tk+1 = Tk ∪ argmin
mi∈M\Tk

(
ENT

(i)
k+1

)
. (8)

While the extended set Tk+1 improves the ENT, i.e., ENTk+1 < ENTk, the al-
gorithm continues.

For each candidate set of proxy SNPs, the algorithm solves the optimization

problem (7) to compute ENT
(i)
k+1. This leads to a quadratic computational com-

plexity in the order of the number of the collected SNPs and in practice makes
it hard to scale to large numbers. We further introduce a heuristic extension
to the above greedy-approach to reduce this complexity. While extending the
current set of proxy SNPs Tk to Tk+1, the optimization problem (7) is solved
M − k times. In particular, solving the optimization problem (7) corresponds
to finding the gradient, g∗, at which the ENT function is minimized while sat-
isfying the constraints. We assume that for Tk and Tk+1 the gradient values of
their ENT functions are close enough, g∗k ≈ g∗k+1. Therefore, while extending the

current proxy set, we compute the ENT of each candidate set, ENT
(i)
k+1, using

the gradient value from the previous step, g∗k. This way, rather than solving the
optimization problem M − k times for each possible proxy SNP at each step k,
the gradient is updated once after the new set Tk+1 is determined. Using this
approach the optimization problem (7) is solved a total of K times, where K is
the size of the final set of proxy SNPs.

2.6 Updating the Remainder SNP Thresholds in Linear Mixed
Models

We consider the following linear mixed model (LMM) formulation,

y = Xβ + g + e, (9)

where y is the (n×1) vector of phenotypic values,X is the (n×p) matrix of fixed-
effects, which includes the mean, covariates and the SNP to be tested, β is the
(p× 1) vector of fixed-effect weights, g is the variance component accounting for
the population structure and e is the iid noise. We assume the random effects, g
and e, follow multivariate normal distribution, g ∼ N

(
0, σ2

gK
)
, e ∼ N

(
0, σ2

eI
)
,

where K is the known, (n×n), genetic similarity matrix, I is the (n×n) identity
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matrix with unknown magnitudes σ2
g and σ2

e . We follow the approach taken in
EMMAX [20] and estimate σ2

g and σ2
e in the null model, with no SNP effect, and

use these parameters while testing the SNPs. That is, when each SNP is tested,
the covariance of y is kept fixed, Cov(y) = Σ = σ̂2

gK + σ̂2
eI, where σ̂2

g and σ̂2
e

are the restricted log likelihood (REML) estimates [20, 25].
In GRAT, the threshold value for each remainder SNP is computed after the

covariance matrix Σ is estimated and the alternate model is transformed by the
inverse square root of this matrix,

Σ−1/2y ∼ N
(
Σ−1/2Xβ, σ2I

)
, (10)

where the residuals are iid. For two SNPsmi andmj , let xi and xj be their (n×1)
allelic indicator vectors. When the SNPs are tested individually in the above
model, the same transformation is applied to the genotype vectors, which may
moderately change the pairwise correlation between the SNPs. The transformed
genotype vectors are x̃i = Σ−1/2xi and x̃j = Σ−1/2xj and their correlation
coefficient is,

r̃ij =
Cov(x̃i, x̃j)√

Var(x̃i)
√

Var(x̃j)
. (11)

3 Results

3.1 Genome-Wide Rapid Association Testing (GRAT)

In Figure 1, we consider two possible scenarios for a genomic region in a GWAS.
In (a) the region contains no significant associations and in (b) the region con-
tains a causal SNP. In (a) and (b), the statistics for each SNP are shown, denoting
what could have been observed in each scenario had all the SNPs in the region
been tested. Let m2 be the proxy SNP for this region to decide whether or not to
test the rest of the SNPs. We refer to the SNPs other than the proxy SNP ( m1,
m3, m4, m5, m6 and m7 ) as the “remainder SNPs”. If the observed statistic of
the proxy SNP is stronger than a threshold value, which in this example is 3.0,
the remainder SNPs are tested.

In the first-stage, only the proxy SNP is tested and its association statistic is
observed. In (a), where the region contains no associations, the statistic of the
proxy SNP is 0.7. The observed statistic of the proxy is less than the threshold
value ( 0.7 < 3.0 ) and hence none of the remainder SNPs within the region are
tested. In (b), the region contains associations and the proxy SNP captures this
information. The observed statistic of the proxy SNP is stronger than the thresh-
old value ( 5.0 > 3.0 ), which leads to testing each of the remainder SNPs in the
region. This results in identifying all the significant SNPs ( m3, m4 and m5 ).

In Methods, we introduce a novel approach for choosing the proxy SNPs and
the threshold values, which provide guarantees that all statistically significant
associations will be discovered while computing the least amount of association
tests. Due to the complexity of linkage disequilibrium (LD) across the genome,
we use a separate threshold value for each remainder SNP rather than using
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(a) A region with no associations.
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(b) A region with significant associations.

Fig. 1. An example of applying GRAT in two hypothetical regions. First, the proxy
SNP (rectangle) is tested and its statistics is compared to the threshold (dashed line).
If the statistic is above the threshold, the remaining SNPs in the region are tested.

a common threshold value for all the remainders SNPs in an LD region. This
is performed by pairing each remainder SNP with its most strongly correlated
proxy SNP and a threshold value is used for the pair to decide whether or not
to test the remainder SNP. We have precomputed the proxy SNPs for the 1000
Genomes Project and studies imputing to SNPs in this reference can benefit
from our method. Even though the LD structure among the SNPs in the study
and the reference dataset may be different, our method guarantees to discover
all significant associations with high-probability. This is achieved by updating
the threshold values using the LD structure observed in the study. We term our
novel two-stage testing procedure as Genome-wide Rapid Association Testing
(GRAT).

GRAT can be applied to a wide range of statistical models, such as case-
control studies, quantitative traits and linear mixed models (LMM). In particu-
lar, the LMM approach has recently become popular due to its effective control
of population structure. Computing the LMM association statistic is compu-
tationally expensive and recently its efficient computation has attracted great
interest [20,25,46]. The speed-up due to GRAT is cumulative with these efforts.

3.2 Application to a Large-Scale eQTL Study

We compared the performance of GRAT to the standard approach of testing
all the SNPs using a large-scale eQTL study [38] that contains 47, 292 gene ex-
pression traits on 80 HapMap ASN (East Asian ancestry) individuals that are
fully sequenced in the 1000 Genomes Project. We obtained the genotype data
from the MACH website [23] and retained approximately 5.9 million SNPs that
are filtered for Hardy-Weinberg equilibrium (HWE) and minor allele frequency
(MAF) greater than 5%. We eliminated SNPs with lower MAF frequency since
they could not be genome-wide significant due to the sample size.

We performed the standard analysis using PLINK [29] which took approxi-
mately 2600 hours. We used a conservative genome-wide significance threshold
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level, α = 10−8, to label the significant SNPs and observed 85, 219 significant
associations. We repeated the association analysis by applying GRAT using the
proxy SNPs precomputed for the 1000 Genomes Project ASN population SNPs.
The number of proxies is 276, 702, which means GRAT tests approximately 5%
of the SNPs in the first stage.

Applying GRAT to the whole eQTL dataset took 35 hours using the same
computational resources (single core of an Opteron CPU). In addition to the
proxies, GRAT tested 8.5% of the SNPs in the second stage, reducing the com-
putational cost down to analyzing 13.5% of all the SNPs with the rest of the
speedup coming from a faster implementation compared to PLINK. GRAT iden-
tified all of the significant associations and speeded up the computation by a
factor of 75.

3.3 GRAT Applied to Linear Mixed Model Association

We applied GRAT to a linear mixed model (LMM) association of the eQTL
dataset. A challenge in applying GRAT to LMMs is that GRAT utilizes the
fact that the joint distribution of traditional association statistics for correlated
markers is directly dependent on the correlation between the markers as shown in
Pritchard & Przeworski [28]. Unfortunately, when applying LMMs, this relation
no longer holds. We derive an analogous relationship between LMM statistics
that takes into account both the correlation between the markers and the kinship
matrix. Utilizing this relationship, we apply GRAT to LMMs using an efficient
implementation [25].

We performed the standard analysis, testing each SNP in each expression
trait, which identified 66, 818 significant associations (α = 10−8). We applied
GRAT using the proxy SNPs precomputed for the 1000 Genomes Project ASN
population. In two-stages, GRAT statistically tested a total of 9.1% of the SNPs,
identifying all of the significant associations, demonstrating that GRAT can
speed up LMM association by a factor of 10.

3.4 Simulations Using the 1000 Genomes Project

To obtain a more robust estimate of the performance, we applied GRAT to
thousands of simulated GWAS studies. We simulated the studies using common
SNPs (minor allele frequency > 5%) available from the 1000 Genomes Project
[40] using the phased SNP genotypes obtained from the MACH website [23]
on four populations: African (AFR), East Asian (ASN), Ad Mixed American
(AMR) and European (EUR) ancestries.

We divided each chromosome into panels of 1000 SNPs and simulated case-
control GWASs by randomly selecting 5% of the panels as the alternate panels, in
which we simulated a causal SNP, and the remaining panels as the null panels,
without any causal SNPs. In each alternate panel, we randomly selected the
causal SNP and set its statistical power to be Pc = 50% at the significance level
α = 10−8. Using this procedure, we simulated 500 GWASs in each population.



GRAT: Genome-Wide Rapid Association Testing 127

We applied GRAT to each simulated GWAS and recorded the recall rate of
the significant SNPs and total number of tests performed. In Table 1, we show
the performance of GRAT in each population averaged over the simulations.
GRAT practically identified all significant associations and reduced the number
of tests by 10 folds. Across the simulations, from the total 3, 718, 126 significant
associations GRAT only missed 1052 significant associations.

Table 1. The average performance of GRAT in 500 simulated GWASs using 1000
Genomes Project data in four populations. GRAT identified practically all significant
associations by only testing 10% of the SNPs.

Population Number of SNPs Recall Rate Reduction

AFR 8.5× 106 > 99.9% 88.2%
AMR 6.7× 106 > 99.9% 92.4%
ASN 6.1× 106 > 99.9% 92.8%
EUR 6.6× 106 > 99.9% 92.6%

3.5 Comparison to Tradition Tag-SNP Based Association Testing

Choosing an informative subset of the SNPs, termed tag-SNPs, under various
criteria has been extensively investigated [2, 7, 11, 12, 15, 24, 27, 30, 33, 34, 36, 37].
The main goal of these methods is to reduce the cost of GWASs by genotyping a
subset of the SNPs, yet collect as much information as possible on the remaining
SNPs.

We mimic a two-stage association testing approach using a traditional tag-
SNP selection method and compare its performance to GRAT. In the first stage,
we test all the tag-SNPs and use a p-value threshold, αtag, to choose which of
the tag-SNPs to follow. If the p-value of a tag-SNP is more stronger than the
threshold, the remainder SNPs tagged by this tag-SNP are tested.

We simulated association studies using the 10 HapMap ENCODE regions,
which are densely genotyped for four HapMap populations [41]. In each simula-
tion study, we used the ENCODE regions to generate null regions that harbor
no causal SNPs and alternate regions each harboring a causal SNP with 50%
statistical power at the genome-wide significance level of α = 10−8. Following
this approach, we generated 500 association studies in each population.

In each region and in each population, we identified the tag-SNPs using the
widely utilized tag-SNP selection method Tagger [2]. Given a set of SNPs and in-
formation on their minor allele frequencies and pairwise correlation coefficients,
Tagger selects the minimum number of tag-SNPs such that each of the remaining
SNPs correlates to a tag-SNP with a minimum r2 pairwise correlation value. In
our evaluations, we have used the default value of r2 = 0.8. In order to perform a
comparison, we also applied GRAT to identify the proxy SNPs and the statistic
threshold rules for testing the remainder SNPs to achieve 99% target recall rate
on the significant associations.

InTable 2 the performance ofGRAT is compared toTagger in fourHapMappop-
ulations using various p-value threshold values, αtag = {10−8, 10−7, 10−6, 10−5}.
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In each population, GRAT achieved more than 99% recall rate, while testing ap-
proximately 10% of all SNPs. Among all the p-value threshold values used, the tra-
ditional tag-SNPs led to testing more than twice the number of SNPs tested by
GRAT and only achieved the target recall rate in all populations when the p-value
threshold value was αtag = 10−5. Unfortunately, Tagger, unlike GRAT does not
guarantee a recall rate so it is not clear how to set the threshold and be certain that
no associations are missed.

Table 2. In each HapMap population, the average performance of GRAT and Tagger
in 500 simulated GWASs are shown. GRAT guarantees to achieve the 99% target recall
rate, while reducing the number of tests by 90%. Using Tagger, we test the remainder
SNPs that are tagged by the tag-SNPs that exceed a p-value cut-off threshold, αtag.
GRAT outperforms the traditional tag-SNPs in all populations.

Method
CEU CHB

Recall Reduction Speedup Recall Reduction Speedup

GRAT 99.89% 89.7% 9.7× 99.73% 89.6% 9.6×
Tagger αtag=1e-8 86.25% 78.9% 4.7× 87.78% 79.7% 4.9×
Tagger αtag=1e-7 95.74% 78.6% 4.7× 97.70% 79.4% 4.8×
Tagger αtag=1e-6 98.40% 78.3% 4.5× 99.62% 79.0% 4.8×
Tagger αtag=1e-5 99.30% 77.8% 4.5× 99.97% 78.4% 4.6×

Method
JPT YRI

Recall Reduction Speedup Recall Reduction Speedup

GRAT 99.63% 90.2% 10.2× 99.72% 88.4% 8.6×
Tagger αtag=1e-8 88.53% 80.5% 5.1× 87.62% 65.3% 2.9×
Tagger αtag=1e-7 98.10% 80.1% 5.0× 97.55% 65.3% 2.9×
Tagger αtag=1e-6 99.52% 79.6% 4.9× 99.39% 65.1% 2.9×
Tagger αtag=1e-5 99.92% 79.1% 4.8v 99.94% 65.0% 2.9×

4 Discussion

In the genome-wide association study (GWAS), information on single-nucleotide
polymorphisms (SNPs) across the genome is collected from thousands of case and
control individuals. Typically, each SNP is tested individually for disease asso-
ciation and the significant SNPs provide insight into the genetics of the disease.
Association studies attempt to collect information on as many SNPs as possible
to cover the whole genome. However, as the number of collected SNPs increases
so does the computational burden to identify the significant associations.

We introduced a novel method, GRAT, for genome-wide rapid association
testing to identify all significant associations by testing a small subset of the
SNPs. Due to the correlation, or linkage disequilibrium (LD), testing a SNP
provides information about the associations of its neighboring SNPs. Using this
intuition, the procedure first tests a subset of the SNPs, referred to as the proxy
SNPs, across the genome to locate the regions that may contain the signifi-
cant associations. Once located, additional SNPs are tested from those regions
to identify the significant SNPs. Each unobserved, or remainder, SNP is paired
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with its most strongly correlated proxy SNP, termed best-proxy, and a threshold
value is used for the best-proxy’s statistic to decide whether or not to test the
unobserved SNP. We introduced a novel approach to choose the proxy SNPs and
determine the threshold values for each best-proxy SNP. Through simulations
and real GWAS data we showed that the proposed approach can identify more
than 99% of the significant SNPs by reducing the number of tests by a factor of
10. Furthermore, GRAT can also be applied to association studies that utilize
linear mixed models, where the speed-up is cumulative with recent efforts that
decrease the computational burden of computing the actual association statis-
tic. GRAT is implemented in C++ for high performance and is available at
http://genetics.cs.ucla.edu/GRAT.
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Abstract. Post-translational modifications (PTMs) play an important
role in various biological processes through changing protein structure
and function. Some ultramodified proteins (like histones) have multiple
PTMs forming PTM patterns that define the functionality of a protein.
While bottom-up mass spectrometry (MS) has been successful in iden-
tifying individual PTMs within short peptides, it is unable to identify
PTM patterns spread along entire proteins in a coordinated fashion. In
contrast, top-down MS analyzes intact proteins and reveals PTM pat-
terns along the entire proteins. However, while recent advances in in-
strumentation have made top-down MS accessible to many laboratories,
most computational tools for top-down MS focus on proteins with few
PTMs and are unable to identify complex PTM patterns. We propose
a new algorithm, MS-Align-E, that identifies both expected and unex-
pected PTMs in ultramodified proteins. We demonstrate that MS-Align-
E identifies many protein forms of histone H4 and benchmark it against
the currently accepted software tools.

1 Introduction

Post-translational modifications (PTMs) affect protein structure and function.
In some proteins, the function of the protein is determined by a combination of
multiple PTM sites (PTM pattern) rather than individual PTMs at specific sites.
We refer to proteins with many modifications sites as ultramodified proteins. For
example, histones often have multiple PTM sites with various PTM types such
as acetylation, methylation, and phosphorylation. Specifically for histones, the
PTM patterns define their gene regulatory functions [1, 2] through the “combi-
natorial histone code” [3,4]. PTM patterns in histones are part of the epigenetic
mechanisms that are now being linked to several human diseases. However, re-
vealing PTM patterns in histones has proven to be a challenge. As Garcia and
colleagues wrote in a recent review: “The ability to detect combinatorial histone
PTMs is now much easier than it has been before, but the most difficult issue
with these analyses still remains: deconvolution of the data” [5]. Highly complex
top-down spectra of histones feature multiple ion series that are either shared
and unique to the multiple protein forms. These spectra have to be decoded for
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revealing the histone PTM space and deriving rules governing the combinatorial
histone code.

Bottom-up database search tools offer a variety of algorithms to search for
both expected [6] and unexpected [7,8] PTMs. However, while bottom-up mass
spectrometry (MS) has been successful in identifying some PTM sites, it is not
well suited for identification of complex PTM patterns. Because bottom-up MS
is based on digesting proteins into short peptides, PTMs identified are restricted
to individual peptides, lacking information on how many protein isoforms are
present (i.e. how the combination of modified/unmodified peptide sequences are
put back together). Even if all peptides within a protein, and all PTMs within
each peptide were identified, the ability to identify PTM patterns would still
be lacking because the correlations between PTMs located on different peptides
are lost (Fig. 1 in the Appendix). Moreover, bottom-up MS rarely provides full
coverage of proteins by identified peptides: a typical shotgun proteomics study
(with a single protease like trypsin) provides on average about 25% coverage
for proteins [9]. It implies that many PTMs may remain below the radar of
bottom-up proteomics. Middle-down proteomics [10,11] identifies PTM sites on
longer peptides and thus takes an intermediate position between bottom-up and
top-down approaches with respect to identifying PTM patterns, however there
is still a gap between intact protein forms and digestion products.

Over the last several years, applications of top-down MS have significantly
expanded due to the recent progress in MS instrumentation and protein sep-
aration. The widely available commercial mass spectrometers are now capable
of analyzing short proteins with molecular weight up to 30 kDa [12]. However,
software tools for analyzing ultramodified proteins by top-down MS have not
kept pace with rapid developments in top-down technology.

PTMs are often classified into expected and unexpected referring to the types
of PTMs that are commonly and rarely observed (on specific proteins). For
example, with respect to histones, acetylation, methylation, and phosphorylation
represent expected PTMs, while carbamylation may represent an unexpected
PTM. We emphasize that by expected PTMs we mean expected PTM types
rather than PTM sites. Expected PTM types are often referred to as “variable
PTMs” in peptide identification tools.

Existing top-down protein identification tools score Protein-Spectrum-Matches
(PrSMs) using various scoring functions Score(P, S), where (P, S) refers to a
PrSM formed by a protein P and a spectrum S. The simplest scoring function
(called the “shared peak count”) counts the number of peaks in the spectrum
S “explained” by the protein P , i.e., the number of shared monoisotopic peaks
between S and the theoretical spectrum of P . Given a PrSM (P ∗, S) between a
modified form P ∗ of a protein P and a spectrum S, the shared peak count is the
number of shared monoisotopic peaks between S and the theoretical spectrum
of P ∗.

Given an unmodified protein P , a set of expected PTM typesΩ, and an integer
F , we define ProteinDB(P,Ω, F ) as the set of all modified forms of P with
exactly F expected PTM sites. Since the size of ProteinDB(P,Ω, F ) increases
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exponentially with an increase in F , exploring all protein forms in this database
becomes computationally intractable, particularly when the set of expected PTM
types is large. This motivates the following Expected PTM Identification (EPI)
problem: given a top-down spectrum S, an unmodified protein P , an integer F ,
and a set of expected PTM typesΩ, find a modified form P ∗ of the protein P with
F expected PTM sites such that Score(P ∗, S) is maximized among all protein
forms in ProteinDB(P,Ω, F ). Below we describe two existing approaches to
solving the EPI problem.

The “virtual database” approach (proposed by Neil Kelleher’s group and im-
plemented in ProSightPC [13]) compares each spectrum against the “virtual
database” ProteinDB(P,Ω, F ) with the goal to find the best scoring PrSM [11,
13]. This approach faces a combinatorial explosion when the number of PTM
sites F is large and thus is not well suited for ultramodified proteins. For in-
stance, based on the UniProt [14] flat file, histone H4 has more than 26 billion
potential modified forms making it impractical to generate a “virtual database”
containing all its modified forms. The number of modified forms explodes even
further in searches for both expected and unexpected PTMs. Another limitation
of the “virtual database” approach is its inability to find unexpected modifica-
tions that are not included in the set Ω.

To avoid combinatorial explosion, the spectral alignment algorithms for top-
down protein identification find the best-scoring PrSM without explicitly explor-
ing all protein forms in the virtual database in the case-by-case fashion [15, 16].
However, the existing spectral alignment approaches, while working well for iden-
tification of proteins with a relatively small number of PTM sites (e.g., up to
3-4), were not designed for identification of ultramodified proteins like histones.
First, they are primarily aimed at unexpected PTMs and the capabilities remain
limited in the case of searches for both expected and unexpected PTMs. For ex-
ample, due to limitations of the scoring functions, they tend to interpret two
closely located expected PTM sites with masses a and b as a single unexpected
PTM with mass a+b. Another limitation of the existing spectral alignment tools
is that they require evidence for each PTM in the form of a “diagonal” in the
spectral alignment matrix (See [16]). In the case when there are no fragmenta-
tion sites between two consecutive PTM sites along the protein, such diagonals
may not exist, preventing the spectral alignment algorithms from solving the
EPI problem. This situation is quite common for histones since PTM sites in
histones are often closely located to each other.

Acknowledging that the “virtual database” approach is useful for identifica-
tion of known protein forms, we emphasize that it also promotes erroneous iden-
tifications when known protein forms are used to explain spectra originating from
unknown protein forms. Since such erroneous assignments turn out to be quite
common (See the Appendix), they may severely limit our ability to construct the
comprehensive list of PTM patterns for ultramodified proteins. Fig. 1 illustrates
the case when ProSightPC reports an erroneous erroneous PrSM between a spec-
trum and a known protein form (from ProSightPC database). However, while
this PrSM is high-scoring, the correct PrSM (found by MS-Align-E) explains
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Fig. 1. MS-Align-E and ProSightPC reported two different protein forms
for a spectrum from histone H4 spectral dataset. (a) The protein form re-
ported by MS-Align-E has 62 matched fragment ions. (b) The protein form reported
by ProSightPC has 49 matched fragment ions. The ‘]’ symbol right to the first me-
thionine residue represents N-terminal methionine excision. Residues with PTMs are
shown in red. AC and DM stand for acetylation and di-methylation, respectively.

many more fragmentation sites and has a much higher score. The general prob-
lem with identification of ultramodified proteins using the “virtual database”
approach is that high-scoring PrSMs often turn out to be incorrect because
there are even higher scoring PrSMs that the “virtual database” approach has
no ability to detect.

MS-Align-E (Mass Spectral ALIGNment for Expected PTMs) addresses this
limitation of ProSightPC since it does not rely on a virtual database. It solves the
EPI problem and is further extended for identifying proteins with both expected
and unexpected PTMs. Even in the case of closely located sites of expected
PTMs, MS-Align-E is capable of identifying correct PTM patterns. We tested
MS-Align-E on a top-down MS/MS data set from histone H4 and identified
199 protein forms. The large number of reported protein forms illustrates the
complexity of the combinatorial histone code. We further compared the resulting
PrSMs with those reported by ProSightPC and found that in many cases, MS-
Align-E finds protein forms explaining many more fragmentation sites than those
reported by ProSightPC. Similarly to the case illustrated in Fig. 1, such PrSM
may represent erroneous protein forms reported by ProSightPC.

2 Methods

MS-Align-E uses the spectral alignment to find PrSMs and the generating function
approach to compute the E-values of these PrSMs. The key part of the generat-
ing function approach is the assumption that amino acids have integermasses [17].
However, rounding amino acid masses into integers introduces errors. These
rounding errors reduce after rescaling by 0.9995 as described in [18–20]. While
the scaling constant 0.9995 proved to be useful for bottom-up peptide identifica-
tion, the rounding errors remain too large, even after rescaling, for highly accurate
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top-down spectra.MS-Align-E uses a scaling constant 274.335215 (e.g. mass(G) =
57.021464× 274.335215 = 15642.995586 ≈ 15643) that reduces the rounding er-
ror to 2.5 parts per million (ppm). We thus assume that masses of all amino acids
are integers (the mass of an amino acid r is referred to as mass(r)).

A protein B = r1r2 . . . rm is a sequence of amino acids. The mass of a protein
prefix r1r2 . . . rk is bk =

∑k
i=1 mass(ri). We will find it convenient to represent

a protein B as a sequence of its prefix masses b0 < b1 < . . . < bm (we assume
b0 = 0). The molecular mass of protein B is

∑m
i=1 mass(ri)+mass(H2O), where

mass(H2O) is the (rounded) mass of a water molecule.
A tandem mass spectrum (MS/MS) generated from a protein is represented

by a precursor mass and a list of peaks. The precursor mass corresponds to the
molecular mass of the protein and each peak, represented as (m/z, intensity),
corresponds to a fragment ion of the protein. The values m/z and intensity are
the mass-to-charge ratio and the abundance of the fragment ion, respectively. In
preprocessing of top-down spectra, m/z values are usually converted into neutral
masses of fragment ions by deconvolution algorithms [21,22]. Most of the neutral
masses correspond to either protein prefixes or protein suffixes. The list of neu-
tral masses can be further converted to a list of prefix residue masses (PRMs)
corresponding to the masses of protein prefixes [23]. For a collision-induced dis-
sociation (CID) spectrum with a precursor mass M , the PRM spectrum is gen-
erated as follows: (1) two masses 0 and M −mass(H2O) are added to the PRM
spectrum (the mass M − mass(H2O) equals to the sum of the masses of all
residues in the protein); (2) for each neutral mass x extracted from the exper-
imental spectrum, two masses x and M − x are added to the PRM spectrum.
If mass x corresponds to a protein suffix (prefix), then mass M − x corresponds
to a protein prefix (suffix). Similar to discretization of amino acid masses, the
precursor masses and the PRMs are discretized resulting in PRM spectra with
integer mass values.

In contrast to bottom-up peptide identification tools that benefit from in-
formation about peak intensities, the existing top-down protein identification
algorithms hardly use information about peak intensities (except for filtering
out low intensity peaks). While in this paper we also ignore peak intensities, all
proposed algorithms can be easily generalized to incorporate peak intensities.
We represent a PRM spectrum A with a precursor mass M simply as a list of
ordered integers a0 < a1 < . . . < an, where a0 = 0 and an = M −mass(H2O).

The mass difference between the modified and unmodified residues is the mass
shift of the PTM. A PTMwith a mass shift s on the ith residue in B transforms it
into b0, b1, . . . , bi+s, . . . , bm+s. The mass shifts of all PTMs are discretized in the
same way as PRMs are discretized. Let S1 = {s1, s2, . . . , sk} be the set of mass
shifts corresponding to the expected PTM types. The (composite) mass shift of
several expected PTM sites is the sum of their mass shifts. The set of mass shifts
of all combinations of f expected PTM sites is defined recursively as Sf = {s|s =
u + v, u ∈ S1 and v ∈ Sf−1}, for f = 2, 3, . . .. For example, if S1 = {14, 42},
then S2 = {28, 56, 84} and S3 = {42, 70, 98, 126}. The modification number of
an integer s is the minimum number f satisfying s ∈ Sf . For example, when
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S1 = {14, 42}, the composite mass shift 84 is present in three sets S2, S4, and
S6 since 84 = 42 + 42 = 42 + 14 + 14 + 14 = 14 + 14 + 14 + 14 + 14 + 14. The
modification number of 84 is 2. We also define mod(0) = 0 and mod(s) = ∞ if
s cannot be partitioned into a sum of integers from S1.

Typically, a PTM type modifies only several types of amino acids rather than
all 20 standard amino acids. For example, phosphorylation is observed on amino
acids S, T, and Y, but not on A. To simplify the presentation, we first consider
a rather unrealistic case when each expected PTM type can modify all 20 amino
acids. We will later describe how MS-Align-E restricts each expected PTM type
to some specific amino acids that can be modified by this PTM.

2.1 Spectral Alignment

Given sequences of integers A = a0, a1, . . . , an and B = b0, b1, . . . , bm, the grid
of A and B is defined as a two dimensional grid within a rectangle formed by
four points (0, 0), (bm, 0), (0,−an), (bm,−an) [15]. The grid has (n+ 1)(m+ 1)
matching points pi,j = (bj ,−ai). We refer to the upper leftmost matching point
(0, 0) and the lower rightmost matching point (bm,−an) as the source and the
sink, respectively. Given matching points pi,j and pi′,j′ , we say pi′,j′ < pi,j if i

′ <
i and j′ < j. We construct a grid graph with vertices corresponding to matching
points and directed edges from matching points pi′,j′ to pi,j if pi′,j′ < pi,j . The
grid graph has O(n ·m) vertices and O(n2 ·m2) edges.

The mass shift of an edge from vertex (matching point) pi′,j′ to vertex pi,j is
defined as (ai − bj) − (ai′ − bj′). An edge is called a diagonal edge if its mass
shift is zero, and a shift edge otherwise. The diagonal edges are represents by
(−45◦) diagonal segments. An alignment between sequences A and B is a path
from the source to the sink in the grid graph. We assign scores to the vertices
in the grid graph and define the score of an alignment (path) as the total score
of its vertices. Below we assume that every vertex in the grid graph has score 1.
An optimal alignment is an alignment with the maximum score.

As an example, consider a protein B =GSTGRTK and its modified ver-
sion B∗ =GS[+160]T[-30]GRT[-30]K with 3 PTMs. The grid for these pro-
teins (represented as sequences B = {0, 57, 144, 245, 302, 458, 559, 687} and B∗ =
{0, 57, 304, 375, 432, 588, 659, 787}) is shown in Fig. 2(a). The alignment shown
in Fig. 2(a) represents every unmodified (modified) amino acid as a diagonal
(shift) edge. The score of the alignment is simply the number of vertices in the
alignment path (length of the protein plus 1).

Fig. 2(b) shows the grid in the case when the protein B∗ is substituted by its
spectrum A. As compared to B∗, the spectrum A has two missing masses 304 and
432, and a noise mass 482. As a result, the optimal alignment in Fig. 2(b) differs
from the alignment in Fig. 2(a): the missing mass 384 results in two consecutive
shift edges substituted by a single one, while the missing mass 432 results in two
consecutive diagonal edges substituted by a single one.

When A and B correspond to a spectrum and a peptide, we refer to the
grid and alignment between them as their spectral grid and spectral alignment,
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correspondingly. Diagonal edges in a spectral alignment correspond to segments
of B matched to spectrum A without PTMs; shift edges correspond to seg-
ments of B with PTMs. The modification number of an edge is defined as the
modification number of its mass shift (e.g., diagonal edges have modification
number 0). The modification number of an edge from pi′,j′ to pi,j is denoted
by mod(pi′,j′ → pi,j). A shift edge from pi′,j′ to pi,j is valid if its modification
number x ≤ F and x ≤ j − j′. The condition x ≤ j − j′ guarantees that for a
shift edge with modification number x, there exist at least x modified residues
in the protein supporting the mass shift. A spectral alignment is valid if all its
shift edges are valid. The modification number of a spectral alignment is the sum
of the modification numbers of its shift edges. A spectral alignment between
A and B with modification number F is optimal if it has the maximum score
among all alignments with modification number F . It is easy to check that a
path shown in Fig. 2(b) is an optimal valid alignment with modification number
3. Since a valid spectral alignment with a modification number F corresponds
to a modified protein form with F PTM sites [24], the EPI problem is reduced
to the following graph-theoretical problem:

Expected PTM spectral alignment (EPSA) problem. Given a spectrum A =
{a0, a1, . . . , an}, a protein B = {b0, b1, . . . , bm}, an integer F , a set of mass shifts
S1 corresponding to expected PTMs, find an optimal valid spectral alignment
of A and B with the modification number F .

To solve the EPSA problem one can use the parametric dynamic program-
ming algorithm (similar to the generating function approach in [17]) for finding
a longest path in a spectral grid graph with a given number of modifications.
However, the running time of the longest path algorithm is proportional to the
number of edges in the spectral grid graph (equal to O(n2 ·m2)) making this algo-
rithm prohibitively time consuming. Pevzner et al., 2000, 2001 [24,25] described
an equivalent transformation of the spectral grid graph that greatly reduces the
number of edges in the graph while preserving an optimal spectral alignment
path. Below we develop similar approaches for top-down spectra.

EPSA Algorithm. We modify the spectral alignment approach [15,16,24] for
solving the EPSA problem. To trace the number of modifications along a path
in a spectral grid graph, we recursively fill an (n+ 1)× (m+ 1)× (F + 1) array
D in which the value Di,j(f) is the highest score among all valid paths with a
modification number f from the source p0,0 to a vertex pi,j . Below we show how
to greatly reduce the number of edges in the spectral grid graph to make the
spectral alignment algorithm efficient.

Let S = {0}∪S1∪ . . .∪SF . We remove all invalid shift edges from the spectral
grid graph and further reduce the number of edges as follows. An edge between
vertices x and y is called dispensable if there is a vertex z such that x < z < y
and at least one of the edges (x, z) and (z, y) is diagonal. Since every dispensable
edge (x, y) can be substituted by a path formed by edges (x, z) and (z, y) with a
higher score, optimal spectral alignments do not include dispensable edges. We
thus can safely remove all dispensable edges from the spectral grid graph.
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Consider all edges entering into pi,j and denote the set of all vertices where
these edges originate asMi,j . It is easy to see that no two vertices inMi,j are
located on the same −45◦ line since otherwise an edge from one of these vertices
to pi,j would be dispensable. Therefore, no two vertices in Mi,j have the same
mass shift implying that the size of Mi,j is small (does not exceed |S|). The
recurrence function for Di,j(f) can be rewritten as follows:

Di,j(f) =

{
max

pi′,j′∈Mi,j

Di′,j′(f −mod(pi′,j′ → pi,j)) + 1 if Mi,j 
= φ;

−∞ otherwise,
(1)

where Di′,j′(f −mod(pi′,j′ → pi,j)) = −∞ when f −mod(pi′,j′ → pi,j) < 0.
The algorithm using the recurrence (1) is referred to as EPSA algorithm. The

total number of matching points is (n+1)(m+1), thus |Mi,j | ≤ (n+1)(m+1).
Also, as we showed before, |Mi,j | ≤ |S|. Since the setMi,j is easy to compute
and |Mi,j| ≤ T = min{|S|, (n + 1)(m + 1)}, the time complexity of the EPSA
algorithm is O(n ·m · T · F ).

2.2 From Spectral Grid to Diagonal Grid

A mass spectrum A of protein B contains some but not necessarily all frag-
mentation points of a protein B. As a result, the spectral alignment in Fig. 2(b)
deteriorates as compared to Fig. 2(a). However, given the set of (composite) mass
shifts S, one can construct a set containing all putative fragmentation points of
protein B (and to “restore” the quality of spectral alignment) as follows.

A −45◦ line l passing the spectral grid at point (x, y) is called a diagonal line
with offset equal to offset(l) = −x − y. For example, a diagonal line starting
at the left vertical border of the grid at (0,−10) has offset 10. Similarly to the
standard grid formed by crossing (n + 1) horizontal lines with (m + 1) vertical
lines (originated from spectrum A = {a0, . . . , an} and protein B = {b0, . . . , bm}),
we form a diagonal grid by crossing |S| diagonal lines with (m+1) vertical lines.
For each s ∈ S, there exists a diagonal line with offset s contributing to the
diagonal grid (Fig. 2(c)). The intersection of a diagonal line and a vertical line
is called a diagonal point (there are |S| · (m+ 1) diagonal points in the diagonal
grid). Let l0, l1, . . . , l|S|−1 be the diagonal lines ordered in the increasing order
of offset(l0) < offset(l1) < . . . < offset(l|S|−1). The diagonal point of a crossing
line li and a vertical line corresponding to mass bj is denoted by qi,j .

The diagonal grid graph (or simply diagonal graph) is defined similarly to the
grid graph. The vertex set of the diagonal graph consists of all diagonal points.
Score 1 is assigned to vertices in the diagonal grid if they are present in the
spectral grid (all other vertices are assigned score 0). The set of edges in the
diagonal graph is redefined (as compared to the spectral grid graph) by only
connecting vertices located on consecutive vertical lines in the diagonal grid.
Specifically, a vertex (diagonal point) qi,j is connected with a vertex qi+1,j′ by
an edge if the difference between the offsets of diagonal lines lj and lj′ is either
0 (i.e., connecting consecutive vertices on the same diagonal line) or in set S1.

A diagonal alignment is defined as an alignment (path) in the diagonal graph
(Fig. 2(c)). Each valid path in the spectral grid graph has a corresponding path
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Fig. 2. Spectral alignment. (a) A spectral alignment between the theoretical
spectrum B = {0, 57, 144, 245, 302, 458, 559, 687} of a protein GSTGRTK and the
theoretical spectrum B∗ = {0, 57, 304, 375, 432, 588, 659, 787} of a modified protein
GS[+160]T[-30]GRT[-30]K. The path from the top left corner (source) to the bottom
right corner (sink) represents the alignment of B and B∗ with three PTMs: +160 Da on
the first S and −30 Da on the two T’s. Diagonal and shift edges are shown in blue and
red, respectively. The circles along the path denote the matching points in the alignment
path. (b) A spectral alignment between a spectrum A = {0, 57, 375, 482, 588, 659, 787}
generated from GS[+160]T[-30]GRT[-30]K and the theoretical spectrum B. Because
mass 304 is missing in A, the PTM on the first S and the PTM on the first T are
represented by a single shift edge (+130 Da) with a modification number 2. Another
missing mass 432 in A results in replacing two consecutive diagonal edges by one diag-
onal edge. In addition, mass 482 is a noise mass. (c) A diagonal alignment between the
spectrum A and the theoretical spectrum B (for a set of mass shifts S1 = {−30, 160}
and F = 3). The diagonal grid of A and B has 10 diagonal lines with offsets -90, -60,
-30, 0, 100, 130, 160, 290, 320, and 480. The path from the source to the sink represents
a diagonal alignment of spectrum A and protein B. The circles along the path denote
diagonal points: blue ones have weight 1 and red ones have weight 0.

in the diagonal grid graph (all shift edges have a modification number 1). Edges
with modification number larger than 1 in the spectral grid graph correspond
to paths (formed by edges with modification number 1) in the diagonal graph.
As Fig. 2(c) illustrates, the diagonal alignment improves as compared to the
spectral alignment in Fig. 2(b) and now looks like the protein-protein alignment
in Fig. 2(a). The EPSA problem in the spectral grid graph is reduced to the
following problem in the diagonal graph:

Expected PTM diagonal alignment (EPDA) problem. Given a spectrum A =
{a0, a1, . . . , an}, a protein B = {b0, b1, . . . , bm}, an integer F , a set of mass
shifts S1 corresponding to expected PTMs, find an optimal diagonal alignment
of A and B with F shift edges in the diagonal graph.

EPDA Algorithm. To solve the EPDA problem, we recursively fill an |S| ×
(m+1)×(F+1) arrayD in which the valueDi,j(f) is the highest score among all
paths with a modification number f from the source q0,0 to a diagonal point qi,j .
Consider all edges entering into vertex qi,j in the diagonal graph and denote the
set of all vertices where these edges originate as Ni,j . The recurrence for Di,j(f)
can be rewritten as follows:
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Di,j(f) =

{
max

qi′,j′∈Ni,j

Di′,j′(f −mod(qi′,j′ → qi,j)) +wi,j if Ni,j 
= φ;

−∞ otherwise,
(2)

where wi,j is the score of qi,j and Di′,j′(f − mod(qi′,j′ → qi,j)) = −∞ when
f −mod(qi′,j′ → qi,j) < 0.

The algorithm using the recurrence (2) is referred to as EPDA algorithm.
Similar to the analysis ofMi,j in Section 2.2, one can prove that |Ni,j | ≤ (|S1|+
1). Therefore, the complexity of EPDA algorithm is O(m · F · |S|), a significant
speed-up compared to the EPSA Algorithm.

In many cases, the size of the diagonal graph can be further reduced. Every
alignment path starts at the source (with offset 0) and ends at the sink (with
offset(sink) = an − bm). Let v be a vertex in the spectral grid graph with
offset s. If a diagonal alignment path passes through v then this path has the
modification number that is greater than or equal tomod(s)+mod(offset (sink)−
mod(s)). Therefore, diagonal alignments with modification number F do not
include vertices with offset s if mod(s)+mod(offset(sink)−mod(s)) > F . Thus,
every s ∈ S that satisfies the conditionmod(s)+mod(offset (sink)−mod(s)) > F ,
should not contribute a diagonal line to the construction of the diagonal graph.

Typically, a PTM type modifies only several types of amino acids rather than
all 20 amino acids. Restricting PTMs to a subset of amino acids can be naturally
modeled in the framework of the diagonal graph. Since every shift edge in the
diagonal graph corresponds to a specific amino acid in the protein, we simply
remove shift edges whose shift values are not present in the list of allowed PTMs
for the amino acid.

2.3 Identifying Spectra with Both Expected and Unexpected PTMs

The spectral alignment algorithms can be modified to identify proteins with both
expected and unexpected PTMs [15]. However, the complexity of the resulting
algorithm is O(n ·m ·T ·Fe ·Fu), where T = min{(n+1)(m+1), |S|}, and Fe/Fu

are the numbers of expected and unexpected PTM sites, respectively. Since this
algorithm is too slow in practice, we propose a fast heuristic algorithm for iden-
tifying proteins with both expected and unexpected PTMs (See the Appendix
for details). To identify protein isoforms truncated at N- or C-terminus, the local
alignment algorithm described in [16] is used. E-values of identified PrSMs are
computed using a method described in [16].

3 Results

We implemented MS-Align-E (CPDA algorithm in the Appendix) in Java and
tested it on a top-down MS/MS data set of histone H4. The data set contains
1, 626 CID and 1, 626 ETD spectra (See the Appendix for details). The exper-
iments were run on a desktop PC with 3.4 GHz CPU (Intel Core i7-3770) and
16 GB memory.
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3.1 Identification of Protein Forms from Ultramodified Histone H4

All MS/MS spectra were deconvoluted using MS-Deconv [22]. MS-Align-E was
used to align the deconvoluted spectra with the histone H4 protein sequence. The
error tolerances for precursor ions and fragment ions were set as 15 ppm. Five
PTM types were treated as expected ones (Table 1 in the Appendix); maximum
10 expected PTM sites and 1 unexpected PTM sites were allowed. The running
time of MS-Align-E was ≈ 505 minutes (with computing E-values). With E-
value cut off 0.011, MS-Align-E identified 624 spectra from 199 protein forms.
These results can provide hints to help identify and functionally characterize
differentially modified protein forms of histone H4. Many identified protein forms
have more than 3 expected PTM sites (Fig. 2 in the Appendix). When one
unexpected PTM site is allowed, several expected or unexpected PTM sites
might be combined to an unexpected PTM site with a large mass shift. Thus,
the protein forms with one unexpected PTM sites tend to have less expected
PTM sites compared with those without unexpected PTM sites.

3.2 Comparison with ProSightPC

ProSightPC computes E-values of identified PrSMs based on the size of the tar-
get protein database and a Poisson distribution of three parameters: the number
of fragment ions, the number of matched fragment ions, and the probability of
an observed fragment ion matching a random theoretical fragment ion. Because
the distribution fails to consider the peak positions in spectra, the estimation of
E-values of identified PrSMs is not accurate [16]. MS-Align-E uses a more accu-
rate generation function approach [17] to estimate E-values of identified PrSMs.
ProSightPC and MS-Align-E often report different E-values for the same PrSM.
Thus, it is not fair to compare the number of PrSMs identified by the two tools
using the same cutoff for E-values. The number of matched fragment ions was
used to rank PrSMs identified by the two tools, and all PrSMs with at least
10 matched fragment ions were reported and compared. ProSightPC identified
1, 034 PrSMs from 114 protein forms with at least 10 matched fragment ions.

Using used the parameter setting in Section 3.1, MS-Align-E identified 1, 081
PrSMs from 434 protein forms with at least 10 matched fragment ions (Fig. 3(b)
in the Appendix). ProSightPC and MS-Align-E may report two different protein
forms for the same spectrum. While the numbers of PrSMs identified by MS-
Align-E and ProSightPC are similar (Fig. 3(b) in the Appendix), the PrSMs
reported by MS-Align-E have more matched fragment ions than those reported
by ProSightPC for many spectra (See the Appendix for details).

4 Conclusion

We proposed MS-Align-E algorithm for identifying ultramodified proteins from
top-down MS data. Since MS-Align-E identifies more protein forms that other

1 The target/decoy approach was used to estimate false discovery rate of the identified
PrSMs, but no PrSMs with an E-value ≤ 0.01 were reported from the shuffled decoy
protein database.
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top-down database search tools, it has a potential to become a method of choice
for analyzing ultramodified proteins and to contribute to studies of the combi-
natorial histone code.
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Abstract. Transcription factors (TFs) regulate gene expression by bind-
ing to specific DNA sites in cis regulatory regions of genes. Most eukary-
otic TFs are members of protein families that share a common DNA
binding domain and often recognize highly similar DNA sequences. Cur-
rently, it is not well understood why closely related TFs are able to bind
different genomic regions in vivo, despite having the potential to interact
with the same DNA sites. Here, we use the Myc/Max/Mad family as a
model system to investigate whether interactions with additional pro-
teins (co-factors) can explain why paralogous TFs with highly similar
DNA binding preferences interact with different genomic sites in vivo.
We use a classification approach to distinguish between targets of c-Myc
versus Mad2, using features that reflect the DNA binding specificities of
putative co-factors. When applied to c-Myc/Mad2 DNA binding data,
our algorithm can distinguish between genomic regions bound uniquely
by c-Myc versus Mad2 with 87% accuracy.

Keywords: Transcription factors, protein binding microarray, ChIP-
seq, co-factors, support vector machine, random forrest.

1 Introduction

Transcription factors (TFs) regulate gene expression by binding to specific, short
DNA sites in in the promoters or enhancers of the regulated genes. Determining
the DNA sequences recognized by TFs is essential for understanding how these
proteins achieve their DNA binding specificities and exert their specific regula-
tory roles in the cell. The DNA binding site motifs of hundred of eukaryotic TFs
have been determined thus far using high-throughput in vivo techniques such as
ChIP-chip [1] or ChIP-seq [2], as well as in vitro assays such as protein binding
microarrays (PBMs [3]). A close examination of the available TF-DNA binding
motifs from databases such as UniPROBE [4], Transfac [5], and Jaspar [6] reveals
that many eukaryotic TFs have highly similar DNA binding properties. This is
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not surprising given that most TFs are members of protein families that share
a common DNA binding domain and thus have very similar sequence prefer-
ences [7]. However, it is surprising that, despite having the potential to bind the
same genomic sites, individual members of TF families (i.e., paralogous TFs)
often function in a non-redundant manner by binding different sets of target
genes and controlling different regulatory programs. For example, among TFs
in the E2F family, E2F1 has specific target genes [8] and it is the only factor
equipped with an ability to induce apoptosis [9], despite the fact that all E2F
family members have the same DNA binding specificity [10]. Similarly, ETS1
and ELK1, members of the ETS family of TFs, each have unique target genes
not bound by other ETS factors [11], despite the fact that their DNA bind-
ing motifs are virtually identical [12]. Currently, it is not well understood how
closely related TFs achieve their differential DNA binding specificity in vivo. In
some cases, intrinsic differences in DNA binding preferences contribute to the
observed functional differences between paralogous TFs [13]. However, in other
cases, the core DNA motifs are virtually identical [10], and still the proteins
interact differently with putative genomic binding sites in vivo, as revealed by
genome-wide ChIP-chip and ChIP-seq data [14, 15]. In such cases, it has been
hypothesized that interactions with specific protein partners (henceforth referred
to as co-factors) may contribute to the differential DNA binding in vivo [16].

Here, we use the Myc/Max/Mad family of TFs a model system to investi-
gate whether interactions with putative co-factors can explain why paralogous
TFs with seamingly identical DNA binding preferences interact with different
genomic sites in vivo. Myc, Max, and Mad proteins are members of the basic
helix-loop-helix leucine zipper (bHLH/Zip) family and they play essential roles in
cell proliferation, differentiation, and death. Myc proteins are transcriptional ac-
tivators that promote cell growth and proliferation, and are often overexpressed
in cancer cells [17]. Proteins of the Mad family act as transcriptional repressors,
they inhibit cell proliferation and are typically expressed at lower levels in hu-
man cancers [17]. In order to bind DNA, both Myc and Mad must heterodimerize
with Max, a bHLH/Zip TF with little transcriptional activity [17]. Mad factors
compete with Myc for dimerization with Max and for binding to genomic regions
containing the E-box motif (CAnnTG), with both Myc and Mad having a strong
preference for the E-box site CACGTG. Thus, it is not surprising that there is a
high degree of overlap between the sets of targets bound by Myc and Mad factors
in vivo, as illustrated by ChIP-seq data available from ENCODE [15]. However,
despite a significant overlap in their sets of ChIP-bound regions, Myc and Mad
also have unique targets, as illustrated in Fig. 1A for c-Myc and Mad2 (Mxi1),
representatives members of the Myc and Mad subfamilies, respectively. Here, we
focus on c-Myc and Mad2 because high-quality in vivo TF-DNA binding data is
available for both these factors as part of the ENCODE project [15].

We show that the intrinsic DNA binding preferences of c-Myc and Mad2
cannot explain why the two factors bind distinct sets of targets in vivo. High-
quality DNA binding site motifs have been previously reported for c-Myc [5],
but not Mad2 (nor other Mad factors). Therefore, we use PBM assays [3] to
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thoroughly characterize the sequence preferences of c-Myc and Mad2. Then, we
use Support Vector Machines (SVM) [18] and Random Forrests (RF) [19] to
identify sets of putative co-factors that can successfully distinguish between the
genomic regions bound uniquely by c-Myc or Mad2, with an accuracy of ∼87%.

Our classification-based approach is not restricted to c-Myc and Mad2. In-
stead, we implemented this approach in a general framework named COUGER
(co-factors associated with uniquely-bound genomic regions). Our framework
can be applied to any two sets of genomic regions bound by paralogous TFs to
identify the uniquely-bound targets and to determine the sets of co-TFs that best
distinguish between the two sets of unique targets. Compared to related tools for
analyzing ChIP-seq data, COUGER has several advantages, as detailed in the
Discussion section: it uses state-of-the-art classification algorithms (SVM and
RF) that are robust even when the feature set is large and some of the features
are highly correlated; it makes use of high-quality TF-DNA binding data (from
PBM experiments) to generate the features used in the classification; it takes
into account the fact that TF binding sites may occur in clusters (while other
tools only consider the highest affinity TF binding sites). Furthermore, given the
large amount of ChIP-seq data available from ENCODE, we have implemented
COUGER to accept as input ChIP-seq files in the narrowPeak format; such
files can be downloaded directly from the ENCODE website. We anticipate that
our framework will be extremely useful in analyzing ChIP-seq data to under-
stand how interactions with specific co-factors contribute to differences in the in
vivo DNA binding specificities of paralogous TFs.

COUGER is available at: www.genome.duke.edu/labs/gordan/COUGER.
The PBM data for c-Myc and Mad2 is available at www.genome.duke.edu/labs/
gordan/DATA.

2 Intrinsic DNA Binding Preferences of c-Myc and Mad2
Cannot Explain Their Differential in vivo DNA Binding

We combined in vitro and in vivo TF-DNA binding data for c-Myc and Mad2 to
determine whether subtle differences in their intrinsic sequence preferences can
explain, at least in part, the unique genomic targets bound by only one of the two
factors in vivo. As evidence of in vivo binding we used ChIP-seq data from the
ENCODE project [15]. We focused on the Hela S3 and K562 cell lines because
ChIP-seq data is available for both c-Myc and Mad2, from the same laboratory.
For both c-Myc and Mad2 we downloaded the ChIP-seq data in narrowPeak
format from the UCSC Genome Browser [20]. For the HeLa S3 cell line, 7,440
binding regions (i.e., ChIP-seq peaks) were reported for c-Myc, and 32,138 for
Mad2. Because the number of bound genomic sequences varied greatly between
the two TFs, it would be difficult to perform a comparative analysis directly.
The fact that different types of controls were used in the c-Myc and Mad2 ChIP
experiments (standard versus no primary antibody) probably contributes to the
larger number of peaks reported for Mad2. However, a close examination of the
ChIP-seq data also revealed that the p-value cutoffs used for reporting the peaks
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Fig. 1. (A) Overlap between the sets of genomic regions bound by c-Myc and Mad2 in
a ChIP-seq experiment [15]. (B) c-Myc and Mad2 DNA binding motifs derived from in
vitro PBM data. The logos were generated using enoLOGOS [21]. (C) AUC enrichment
for the c-Myc and Mad2 DNA binding motifs in the ChIP-seq data for the two TFs in
HeLa S3 cells. The dotted line shows the expected AUC for a random motif.

were different: 10−8.8 for c-Myc and 10−2.4 for Mad2. To make the two data sets
more comparable, we applied a cutoff of 10 for the − log10 of the ChIP-seq p-
value. This resulted in more balanced sets of in vivo targets for c-Myc and Mad2,
with 6205 and 9758 bound regions, respectively. We used these sets of targets
for all the analyses described henceforth. As shown in Fig. 1A, although there is
a significant overlap between the two sets of targets, c-Myc and Mad2 also bind
unique genomic targets in HeLa S3 cells.

Currently, the molecular mechanisms that allow paralogous TFs, such as c-
Myc and Mad2, to interact with different sets of DNA sites in vivo are not well
understood. One hypothesis is that the two TFs exhibit slightly different DNA
binding preferences, and this may contribute to their differential in vivo binding.
To test this hypothesis, it is essential to have high-quality DNA binding site
motifs or other types of data that reflect the intrinsic DNA binding preferences
of these TFs. Although such data is available for c-Myc [5, 6], none of the Mad
factors have been thoroughly characterized, and the only DNA motif available for
Mad2 is a general E-box motif of low quality [5]. For this reason, we performed
PBM experiments [3] to thoroughly characterize the DNA binding preferences
of c-Myc and Mad2. We tested the two TFs either alone or in combination with
TF Max. As expected, the c-Myc:c-Myc and Mad2:Mad2 homodimers bound
DNA very weakly even when tested at high concentrations, while c-Myc:Max
and Mad2:Max bound DNA with high affinity. His-tagged versions of c-Myc,
Mad2, and Max were used in the PBM experiments, and they were a kind gift
from Richard Young and Peter Rahl (Whitehead Institute). To ensure that the
DNA binding signal detected on PBMs corresponds to heterodimers and not the
Max:Max homodimer, we used concentrations of c-Myc/Mad2 10 times higher
than the concentration of Max. We will henceforth refer to the c-Myc:Max PBM
data as c-Myc PBM data, and to the Mad2:Max PBM data as Mad PBM data.

From the universal PBM data for c-Myc and Mad2, we computed several
measures of the DNA binding specificity of the two factors: 1) we used the
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Seed-and-Wobble algorithm [3] to derive DNA binding site motifs, or position
weight matrices (PWMs) [22]; 2) we computed the median fluorescence intensity
for each possible 8-mer, as described previously [3], with high median intensities
corresponding to 8-mers strongly preferred by the TF; and 3) we computed en-
richment scores (E-scores) for each possible 8-mer, as described previously [3].
E-scores range from -0.5 to +0.5, with higher values corresponding to higher se-
quence preference. Compared to 8-mer median intensities, the E-scores are more
robust to changes in experimental conditions (e.g., binding buffers) and protein
concentrations. However, 8-mer median intensities can be used to approximate
the median intensities for longer k-mers, intensities that are not directly mea-
sured on the PBMs (see Supplementary Material online).

2.1 DNA Motifs Cannot Explain Differential in vivo DNA Binding
by c-Myc versus Mad2

The DNA motifs of c-Myc and Mad2 are very similar, but not identical (Fig. 1B).
For example, c-Myc appears to have a slightly higher preference for a C nu-
cleotide immediately upstream of the CACGTG core. To assess whether such
differences are significant in vivo and potentially explain the differences in in
vivo DNA binding between the two proteins, we first compared the enrichment
of the c-Myc and Mad2 motifs in the ChIP-seq data, using a method based on
the area under the receiver operating characteristic curve (AUC) (see [23] and
Supplementary Materials online).

Fig. 1C shows AUC enrichments for the c-Myc and Mad2 motifs in the ChIP-
seq data. If these motifs could explain, even to a small extent, why c-Myc and
Mad2 bind different sets of targets in vivo, then we would expect the c-Myc motif
to be significantly more enriched than the Mad2 motif in the c-Myc ChIP-seq
data, and the Mad2 motif to be significantly more enriched than the c-Myc motif
in the Mad2 ChIP-seq data. However, the AUC enrichments of these motifs are
almost identical: 0.665 and 0.663 in c-Myc ChIP-seq data, and 0.585 and 0.582
in Mad2 ChIP-seq for the HeLa S3 cell line. In conclusion, we cannot use DNA
motifs to differentiate between the c-Myc and Mad2 ChIP-seq data sets.

2.2 In vitro Universal PBM Data Cannot Explain Differential in vivo
Binding by c-Myc versus Mad2

Another way of assessing the enrichment of a DNA motif (PWM) in a ChIP-seq
data set is by looking at how many of the ChIP-bound sequences contain a PWM
match above a certain cutoff (and possibly use this to compute a hypergeometric
p-value). The shortcoming of this method is that it depends greatly on the chosen
cutoff, and there is no systematic way of choosing the “best” cutoff for a given
PWM [23]. To overcome this problem, we considered a range of cutoffs and, for
each cutoff, we computed the fraction of ChIP-bound sequences that contain at
least one DNA site with a score above the cutoff. Furthermore, since cutoffs based
on PWM scores would not be readily comparable between the c-Myc and Mad2
PWMs, we chose cutoffs based on the number of possible k-mers with scores
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Fig. 2. Fractions of ChIP-seq/DNase-seq peaks that contain DNA sites with (A) PWM
scores or (B) 8-mer E-scores above certain cutoffs. The cutoffs represent the number
of top-scoring k-mers, ranked by either PWM scores or PBM 8-mer E-scores. The full
lines correspond to ChIP-seq data. The dotted lines correspond to DNase-seq data.

above that cutoff, where k is the width of the PWM. The results presented here
are for PWMs of size k = 10. We obtained similar results for other values of k.

The results of this analysis are illustrated in Fig. 2A. For each ChIP-seq data
set and each TF, we counted the number of ChIP-seq peaks that contained at
least one 10-mer in the set of 10, 100, 250, 500, 1000, 5000, and 10000 top-
scoring 10-mers. We compared the fractions of peaks corresponding to c-Myc
versus Mad2 ChIP-seq data. Also, in order to compare those results with the
background distribution, we computed similar fractions for DNase-seq [24] peaks.
As shown in Fig. 2A, for both ChIP-seq data sets the values corresponding to
the c-Myc and Mad2 PWMs are very similar, and we observe the same pattern
of slightly higher fractions for Mad2. Thus, we cannot use the PWM scores in
this manner to differentiate between c-Myc and Mad2 ChIP-seq targets. We also
notice that, as expected, a larger fraction of ChIP-seq peaks contain high-scoring
PWM matches compared to DNase-seq peaks (compare the full and dotted lines
in Fig. 2, which correspond to ChIP- and DNase-seq data, respectively).

We note that PWMs are in fact summaries of the comprehensive data that
we obtain from PBM experiments. Thus, it is possible that differences between
the DNA binding specificities of c-Myc and Mad2 do exist, but are not captured
by PWMs. To test this hypothesis, we performed an analysis similar to the
one described above, but instead of using PWM scores we used 8-mer E-scores
derived directly from PBM data. Fig. 2B shows the fractions of peaks containing
top-scoring 8-mers. As in the case of PWM scores, the difference between ChIP-
seq data and DNase-seq data is significant for both TFs, but the curves for c-Myc
and Mad2 are almost identical. Thus, the 8-mer PBM data is still not sufficient
to differentiate between the in vivo targets of c-Myc compared to Mad2.
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3 Binding of Putative Co-factors Can Explain Differences
in in vivo DNA Binding between c-Myc and Mad2

Given that the intrinsic DNA binding preferences of c-Myc and Mad2 cannot be
used to differentiate between the in vivo targets of the two TFs, we next focused
on the hypothesis that DNA binding of co-factors in the neighborhood of c-Myc
or Mad2 binding sites might contribute to the differences we observe between
their sets of in vivo targets. To test this hypothesis, we built classifiers that can
accurately distinguish between sequences bound uniquely by c-Myc versus Mad2
according to the ChIP-seq data, using features derived from either PBM data or
PWMs of putative co-factors. We implemented our approach in the COUGER
(co-factors associated with uniquely-bound genomic regions) framework. The
steps of the framework are summarized in Algorithm 1.

3.1 Classes and Features

Classes. We used the ChIP-seq data to define two classes of sequences: c-
Myc-specific sequences (i.e., c-Myc ChIP-seq peaks that do not overlap any of
the Mad2 peaks), and Mad2-specific sequences (i.e., Mad2 ChIP-seq peaks that
do not overlap any of the c-Myc peaks). In HeLa S3 cells we identified 2786
c-Myc-specific sequences and 6308 Mad2-specific sequences, which account for
approximately 45% and 65% of the total ChIP-seq peaks of c-Myc and Mad2,
respectively. These percentages are surprisingly high given the similarity between
the DNA binding preferences of the two TFs.

After identifying c-Myc- and Mad2-specific sequences, we filtered out some of
the Mad2-specific peaks and kept only the top 2786 , sorted according to the
Mad2 ChIP-seq p-value. Thus, we obtained two sets containing the same number
of DNA sequences, which eliminates a potential classification bias toward one
of the two classes. Finally, before computing the features for the selected DNA
sequences, we trimmed each sequence to ±100 bp on each side of the ChIP-seq
peak summit. This was necessary because many peaks are a few hundred to a few
thousand bases long. Given that we are interested in finding co-factors that bind
close to c-Myc and Mad2, we should look for DNA sites of these putative co-
factors only in close proximity of the c-Myc and Mad2 ChIP-seq peak summits.

Features. We computed features using two types of information on the DNA
binding specificities of putative co-factors: PBM 8-mer E-scores and PWM scores.
We used 3 different types of features: 1) “PBM features” derived from 8-mer
E-scores for the mammalian TFs in UniPROBE [4] (420 PBM data sets), plus 9
PBM data sets from our laboratory; 2) “PWM features” derived from PWMs
computed from the PBM data sets; and 3) “T (Transfac) features” derived
from the PWMs in Transfac [5] (1226 PWMs). For a given PBM data set and
a DNA sequence, we generated: an “M” feature that represents the maximum
E-score over all the 8-mers in that sequence, and an “A” feature that represents
the average E-score over the top 3 highest-scoring 8-mers in that sequence (lines
4 and 5 of Algorithm 1). Similarly, we generated M and A features from PWMs.
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Algorithm 1. Classification

Input: D – data set with classification sequences for Myc and Mad; PBM (E-scores
from PBM data); PWM (PWMs from PBM data); T (PWMs from TRANSFAC).

Output: Lists of selected features SF , and accuracies A.
1: Dtrain ← random.sample(D, 2/3 · |D|) such that |{X ∈ Dtrain, class(X) = Myc}| =

|{X ∈ Dtrain, class(X) = Mad}|; Dtest ← D −Dtrain

2: for F ∈ {PBM,PWM,T} do
3: for X ∈ D do
4: FM (X) = {maxx∈X f(x)|∀f ∈ F}
5: FA(X)={avg(maxx∈X f(x),maxy∈X−{x} f(y),maxz∈X−{x,y} f(z))|∀f ∈F}
6: FMA(train) ← {FM (X), FA(X)|∀X ∈ Dtrain}
7: SFt ← feature.selection(Dtrain, Ft(train))
8: for C ∈ {SVMlin, SV Mrbf , RFgi, RFpi} do
9: bestp(C,SFt) ← argmaxp∈params(C) accuracy(train(C,Dtrain, SFt, p))
10: Model(C,SFt) ← train(C,Dtrain, SFt, bestp(C,SFt))
11: Atest(C,SFt) ← accuracy(predict(C,Dtest,Model(C,SFt)))

12: SF ← {SPBMMA, SPWMMA, STMA}
13: A ← {Atest(C,F )|∀C ∈ {SV Mlin, SV Mrbf , RFgi, RFpi}, ∀F ∈ SF}
14: return SF,A

3.2 Classification Algorithms

We used two state-of-the-art supervised classification algorithms: support vector
machine (SVM) and random forest (RF), both available as free software pack-
ages (LIBSVM [25], Random Jungle [26]). The SVM is widely used due to its
high accuracy on linear and nonlinear classification problems. In addition, the
SVM can successfully handle high-dimensional data, which makes it ideal for
our classification task. We trained SVMs using linear and radial basis function
kernels (SVMlin and SVMrbf , respectively). The RF classifier is essentially an
ensemble of classification trees. RF is comparable in performance with SVM, but
one of its distinguishing characteristics is that it explicitly computes a measure of
the importance of each variable for the classification task. Random Jungle (RJ)
implements 2 variable importance scores: Gini importance (the sum of impurity
decreases over all nodes in the forest in which the corresponding variable was
selected for splitting), and permutation importance (the average decrease in ac-
curacy when the values of a variable are randomly permuted). We ran RJ with
both the Gini importance (RFgi) and the permutation importance (RFpi).

We split the c-Myc- and Mad2-specific sequences into two sets: 1) a training
set containing 2/3 of the sequences (i.e., 3714), randomly chosen from the original
set; and 2) a test set containing the remaining 1/3 of the sequences. For each
algorithm, we first searched for optimal parameter values using only the training
data, and then, using the best model obtained on the training set, we predicted
the class for each sequence in the test set. We measured the performance of each
algorithm using its accuracy on the test set.

To optimize the parameters we performed grid searches over the parame-
ter space. For SVMlin we optimized C, the cost of misclassifying examples.
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For SVMrbf we optimized C and the RBF kernel parameter γ. For RFgi and
RFpi we optimized ntree, the number of trees in the forest, and mtry, the num-
ber of input variables tried in each split (see Supplementary Material online).

Feature Selection. We performed feature selection on each of the three feature
types (PBM, PWM, and T (Transfac)) using both the maximum score of any
DNA site and the average over the top three highest scores. We used RF with a
backward elimination technique [26], an iterative process in which a RF is grown
at each step and a subset of variables is discarded. The eliminated features are
those with the smallest importance. In this instance we used only the unscaled
permutation importance, which is recommended for feature selection [27]. We
stopped the algorithm when the number of features fell below 100. We performed
two variants of selection: FS1, with 50% of features dropped at each iteration,
and FS2, with 33% of features dropped at each iteration.

3.3 Classification Accuracy on the Test Sets

We ran SVM and RF on the HeLa S3 ChIP-seq data using the features types
described above (PBM, PWM, and Transfac). The results for SVMlin and
RFpi are presented in Table 1 as classification accuracies, and vary between
85.52% and 88.05% depending on the algorithm and the set of features. Results
for the other two classifiers (SVMrbf and RFgi), as well as results on the K562
ChIP-seq data, are available in the Supplementary Material online.

Table 1 shows that our SVM and RF classifiers can accurately distinguish
between c-Myc-specific and Mad2-specific genomic targets. This suggests that
a potential mechanism by which these TFs achieve differential DNA binding
in vivo is by interacting with co-factors that bind DNA in the neighborhood
of c-Myc or Mad2 DNA binding sites. We will perform follow-up analyses to
study the spacing between c-Myc/Mad2 sites and DNA sites of their putative
co-factors, to assess the likelihood of direct TF-TF interactions.

We note that SVMlin with Transfac features achieved the best classification
accuracy on the HeLa S3 ChIP-seq data: 88.05% when using all 2452 features.
However, the accuracy decreased after feature selection and became comparable
to the accuracy for PBM and PWM features.

Table 1. Classification accuracy on the test sets. Table shows the results of SVM and
RF on HeLa S3 ChIP-seq data using 3 feature types: PWM, Transfac, and PBM. Bold:
best classification accuracy obtained by SVM lin and RFpi for a particular feature type.

Features PBM PWM Transfac

Feature set ALL FS1 FS2 ALL FS1 FS2 ALL FS1 FS2
Number of features 858 53 74 840 52 73 2452 76 94

SVMlin 86.87 87.03 87.08 86.60 85.74 86.33 88.05 86.60 86.65
RFpi 86.65 86.92 86.71 85.52 86.01 85.95 86.60 86.44 86.71
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3.4 Selected Features. Putative Co-factors

SVMlin with PBM features obtained the best classification accuracy with a
limited number of features: 87.08% with a total of 74 features (FS2) and 87.03%
with a total of 53 features (FS1). Importantly, 52 of the 53 features in FS1 are
among the 74 features in FS2. We note that COUGER can be used to reduce
the number of features even further, although this might lead to a decrease in
classification accuracy. For this particular data set, for example, reducing the
number of selected features to 10 resulted in an accuracy of 85.47%.

We analyzed the top 53 selected features to identify putative co-factors that
might contribute to differential in vivo DNA binding by c-Myc versus Mad2.
The top 4 putative co-factors (according to RF variable importance score) are:
E2F, Sp100, Zfp161, and Sp4, all associated with Mad2-specific sequences. A
literature search revealed that at least 3 of these TFs are indeed good candidate
co-factors for Mad2: E2F binding site elements are important for autorepression
of the c-myc gene [28], Sp100 is a transcriptional repressor (similarly to Mad2)
and plays an important role as a tumor suppressor [29], and Zfp161 is a putative
c-myc repressor [30]. The fourth TF, Sp4, is not known to act as a repressor but it
has been shown to be aberrantly expressed in many cancers [5], which supports a
connection with Myc/Mad. For the highest confidence candidate co-factor, E2F,
we performed an enrichment analysis similar to the one in Fig. 2. We note that
E2F is a family of TFs with highly similar DNA binding specificities. All E2Fs
for which PBM data is currently available have been selected by our classifiers,
and they are similarly enriched in Mad2-specific targets. In Fig. 3 we show the
enrichment of two representative E2F family members: E2F3 and E2F4.
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Fig. 3. Enrichment analysis for c-Myc, Mad, and E2F factors in the DNA regions bound
uniquely by either c-Myc or Mad2. Right plot shows that E2Fs are more enriched than
Mad2 in the Mad2-specific targets, although their enrichment in the DNase-seq peaks
is much lower. By contrast, in the c-Myc-specific targets (left plot), E2F sites are
depleted, as their enrichment is generally lower than in the DNase-seq peaks. These
results are in agreement with our classification analyses, which found that E2F sites
are strongly associated with Mad2-specific and not c-Myc-specific targets.
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4 Discussion

Identifying the molecular mechanisms that allow paralogous TFs to bind differ-
ent sets of in vivo targets is essential for understanding eukaryotic transcription.
Due to recent advances in high-throughput technologies for measuring TF-DNA
binding both in vivo and in vitro (such as ChIP-seq and PBM), it is now possible
to quantify the contributions of both intrinsic TF-DNA binding specificity and
interacting co-factors to differential in vivo DNA binding by related TFs. Here,
we focus on paralogous TFs c-Myc and Mad2, and show that differences in their
intrinsic sequence preferences cannot account for the large number of targets
bound uniquely by each TF. Instead, interactions with putative co-TFs are a
likely mechanism used by c-Myc and Mad2 to select their specific genomic sites.

To identify c-Myc and Mad2 co-factors, we designed COUGER, a novel
framework that uses in vitro DNA binding specificity data for putative co-factors
to distinguish between the genomic targets of paralogous TFs (here, c-Myc and
Mad2). We are not aware of other tools that aim to identify co-factors that inter-
act specifically with paralogous TFs. However, similar classification approaches
have been previously used to distinguish between sets of genomic regions. Chen
and Zhou [31], for example, use Näıve Bayes to identify co-factors that can distin-
guish between the regulatory regions of genes upregulated versus downregulated
in mouse ES cells. We note that our choice of classification algorithms is very
important. When using features derived from TF-DNA binding specificity data
(either PWMs or PBM data), it is likely to obtain features that are highly cor-
related. While Näıve Bayes is not appropriate in this case, both SVM and RF
classifiers can be used. Furthermore, as the number of features increases (in our
case, as more and more PBM data is being generated), a Näıve Bayes approach
may start to overfit the training data, while SVMs and RFs are more robust.
Finally, the advantage of using RF for feature selection (as opposed to Wilcoxon
rank-sum test) is that RF can easily handle interactions among features, which
would not be captured by a statistical test on individual features.

De novo motif discovery tools or methods that search for DNA motifs en-
riched in particular sets of sequences could also be used, in theory, to identify
co-factors [32, 33, 34] . However, these approaches would only search for one
co-factor at a time, and would be able to find only DNA motifs that appear in a
significant fraction of the DNA sequences of interest (here, the c-Myc- or Mad2-
specific sequences). Recent evidence from the ENCODE project shows that the
co-association of TFs is highly context specific, i.e., distinct combinations of TFs
bind at specific genomic locations [35]. Thus, classification approaches such as
COUGER, that search for sets of putative co-factors in TF-specific genomic
targets are more likely to reveal important molecular mechanisms through which
paralogous TFs achieve their regulatory specificity in the cell. Future work will
include additional computational analyses to select the best candidate co-factors
for c-Myc and Mad2, as well as using COUGER to identify co-factors for par-
alogous TFs from other protein families.
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1 Introduction

The standard techniques for Next Generation Sequencing (NGS) require at least
a million bacterial cells to sequence a genome. Since most bacteria cannot be
cultured in the laboratory [1,2] and thus cannot be sequenced, most bacterial
diversity remains below the radar of NGS projects. The “dark matter of life”
describes microbes and even entire bacterial phyla that have yet to be cultured
and sequenced. For example, only a fraction of the 10,000+ bacterial species in
the human microbiome have been sequenced [3,4]. Single-cell sequencing [5,6]
has recently emerged as a powerful approach to complement largely gene-centric
metagenomic data with whole-genome assemblies of uncultivated organisms.

Currently, Multiple Displacement Amplification (MDA), pioneered by Roger
Lasken and colleagues [7], is the dominant approach to whole genome amplifi-
cation prior to single-cell sequencing. However, assembly of reads from MDA-
amplified genomes is challenging because of highly non-uniform read coverage,
as well as elevated levels of chimeric reads and read pairs. While recent compu-
tational advances (Chitsaz et al., 2011 [8]; Peng et al., 2012 [9], Bankevich et
al., 2012 [10]) have opened the possibility of sequencing the genome of any bac-
terial cell, sequencing the vast majority of bacteria in the human microbiome
still remains a distant goal. The bottleneck is that it remains unclear how to
isolate and capture low-abundance cells from a complex sample. In particular,
while there is great interest in investigating the rare bacterial species in the hu-
man microbiome, currently there is no technology for comprehensively surveying
the diversity of such a complex sample. Indeed, capturing and sequencing even
100,000 randomly chosen single cells from the human microbiome is unlikely
to comprehensively sample the bacterial diversity, since many of the 10,000+
species in the human microbiome are underrepresented [11,12]. Since sequenc-
ing 100,000 single cells is prohibitively expensive, the question is how to sample
bacterial diversity in a more economical way.

McLean et al., 2012 (submitted) recently developed a new approach for analyz-
ing the “dark matter of life” based on forming random pools of single flow sorted
cells and sequencing all cells in the resulting mini-metagenome at once. These
pools only contain a small number of cells as opposed to metagenomics samples,
which often contain billions of cells from different species. Since the artificially
formed mini-metagenome has lower complexity than the original metagenome,
high quality sequencing of mini-metagenomes (as opposed to metagenomes) be-
comes feasible.

Assembly of mini-metagenome MDA reads is even more challenging than for
single-cell MDA reads, and thus requires additional algorithmic developments.
Mini-metagenome sequencing can be thought of as sequencing a giant bacterial
genome (formed by all genomes within a mini-metagenome) with extremely non-
uniform coverage. Moreover, the elevated number of chimeric reads and read
pairs (typical for single-cell sequencing) is likely to present an even more difficult
challenge in the case of mini-metagenomes, where intergenomic chimeric reads
(resulting from concatenated fragments from different genomes) can be formed.
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This paper addresses computational challenges arising in single-cell and mini-
metagenome sequencing. This includes detection of chimeric edges in de Bruijn
graphs and analyzing complex bulges. We incorporate these algorithmic devel-
opments into the SPAdes assembler [10] and demonstrate that it improves on
existing single-cell sequencing tools E+V-SC [8] and IDBA-UD [9]. SPAdes
also performs well on standard (multicell) projects. (We refer to a conventional
sequencing project using cultivated strains as multicell sequencing.) In particu-
lar, we show that it improves on A5 [13], ABySS [14], CLC1, EULER-SR [15],
Ray [16], SOAPdenovo [17]), and Velvet [18] in multicell bacterial assemblies. We
also benchmark SPAdes on simulated mini-metagenomes obtained by mixing
various single-cell read datasets. We demonstrate that SPAdes enables mini-
metagenome sequencing, and we investigate the computational limits of mini-
metagenome sequencing for assessing low-abundance bacterial species.

2 Identifying Chimeric Edges in de Bruijn Graphs

MDA often results in chimeric reads (formed by concatenating fragments from
different regions of the genome) and chimeric read-pairs (formed by two reads
sampled from distant regions of the genome). See [8,19,20] for the extent of
chimeric reads and read-pairs in single-cell projects. Chimeric reads result in
chimeric edges in de Bruijn graphs.

Double-Stranded de Bruijn Graphs. Let DB(Genome, k) be the de Bruijn graph
of a circular genome Genome and its reverse complement Genome′, where
vertices and edges correspond to (k−1)-mers and k-mers, respectively. Genome
and Genome′ each traverse a cycle in this graph; these two cycles form the
genome traversal of the graph. If a genome has multiple chromosomes or linear
chromosomes, the genome traversal of DB(Genome, k) may consist of multiple
paths or cycles. The genomic multiplicity of an edge is the number of times the
traversal passes through this edge. We often work with condensed graphs [10],
where each edge is assigned a length (in k-mers) and the length of a path is the
sum of its edge lengths (rather than the number of edges).

Chimeric Edges in de Bruijn Graphs. Let DB(Reads, k) be the de Bruijn graph
constructed from a set Reads of reads from Genome and their reverse comple-
ments. In the idealized case with full coverage ofGenome and no read errors, the
graphs DB(Reads, k) and DB(Genome, k) coincide; however, in reality these
graphs differ because of coverage gaps and read errors. Edges in DB(Reads, k)
may correspond to genome fragments (correct edges) as well as arise either from
errors in reads or from chimeric reads (false edges). While in DB(Genome, k)
the genome traversal consists of a pair of cycles, in DB(Reads, k) these cycles
may be broken into multiple paths. The genome traversal defines the genomic
multiplicities of edges in DB(Reads, k) (or the condensed graph). In particular,

1 CLC Assembly Cell 3.22.55708 (CLC Bio, http://www.clcbio.com).

http://www.clcbio.com)
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since false edges are not traversed by the genome traversal in DB(Reads, k),
they have genomic multiplicity zero.

Assemblers use various algorithms to iteratively remove false edges and trans-
form the de Bruijn graph DB(Reads, k) into a smaller assembly graph. We use
the notation DB+(Reads, k) to denote the current assembly graph at any in-
termediate stage of assembly, and DB∗(Reads, k) to denote the final assembly
graph.

While most false edges correspond to easily detectable subgraphs, called tips
and bulges, some form chimeric edges, which are hard to identify. Chimeric edges
arise from chimeric reads, which are abundant in single-cell datasets. While
chimeric edges in the de Bruijn graph represent a major obstacle to constructing
long contigs, in standard (multicell) assembly datasets, chimeric edges usually
have low coverage and thus are easily identified as false and removed by the
conventional assemblers. However, this approach does not work for single-cell
datasets, where coverage is non-uniform and the level of chimerism is high [8,19].
For such datasets, low coverage does not characterize false edges since many
correct edges also have low coverage.

Our chimeric edge identification procedure is based on the following assump-
tions for bacterial genomes: (i) since chimeric edges in the condensed de Bruijn
graphs are typically short,2 we assume that edges longer than n = 250 have
genomic multiplicity at least 1, and (ii) since edges longer than N = 1500 (re-
ferred to as long edges) in the condensed de Bruijn graph tend to have genomic
multiplicity 1, we assume that all long edges have genomic multiplicity 1.3

Since genomic multiplicities of edges in DB+(Reads, k) are unknown, we at-
tempt to bound them. An edge e with genomic multiplicity bounded by clower(e)
from below and by cupper(e) from above has capacity (clower(e), cupper(e)). We
assign capacities to all edges in the condensed graph of DB+(Reads, k) as fol-
lows, where the second and third categories are dictated by assumptions (i) and
(ii) above:

(clower(e), cupper(e)) =

⎧⎪⎨⎪⎩
(0,∞) if Length(e) ≤ n;

(1,∞) if n < Length(e) ≤ N ;

(1, 1) if N < Length(e).

To simplify this presentation, we assume that an assembly algorithm successfully
removes all (or the vast majority of) bulges and tips, resulting in an intermediate
assembly graph DB+(Reads, k), but fails to remove chimeric edges. Thus, the
search for chimeric edges amounts to finding edges of genomic multiplicity zero.

2 Out of 117 chimeric edges in the graph DB+(Reads, 55) constructed for the single-
cell E. coli dataset ECOLI-SC (described in Results), 115 have length ≤ n = 250.
Here and in the further statistics DB+(Reads, 55) is a graph that we have after doing
initial simplifications including removing condensed edges with average coverage
below 10 that satisfy some additional length and topology conditions.

3 This holds for 97% of long edges inDB(Genome, 55) for the E. coli reference genome.
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Fig. 1. Example of breaking long edges in an assembly graph. (a) Subgraph of assembly
graph where the four diagonal edges are long edges, while the horizontal edge in the
center is not long. (b) Result of breaking the four long edges contains a connected
component (in the center) with 2 sources (solid square vertices) and 2 sinks (hollow
square vertices). The capacities of the edges starting (ending) at the newly formed
sources (sinks) are inherited from the capacities of the broken edges. (c) Result of
breaking long edges in a subgraph similar to the subgraph in (a) but with different
directions on some edges.

Chimeric Edges and Circulations in Networks. A graph with capacity constraints
on the edges is referred to as a network. Given a vertex v and a function f on
edges of a network G, we define influxf (v) =

∑
e f(e), where the sum is taken

over all incoming edges e of the vertex v. We define outfluxf (v) similarly. A
function f is called a circulation in the networkG if influxf (v) = outfluxf (v)
for each vertex v in G, and clower(e) ≤ f(e) ≤ cupper(e) for each edge e in G.

The Circulation Problem is to find a circulation in a network [21]. Genomic
multiplicities define a circulation in the network DB+(Reads, k) with capacity
constraints. There are usually multiple circulations in this network and we do not
know which of them corresponds to the actual genomic multiplicities. However,
if an edge e has f(e) = 0 in all circulations, then it must be a false edge and in
most cases represents a chimeric edge. A polynomial-time algorithm for finding
all such edges in the network will be described elsewhere.

We remark that this strategy is based on the assumption that the genome
corresponds to a cycle in the graph, which often fails for real data. Since in
DB+(Reads, k) the genome traversal may be broken into multiple subpaths, a
circulation in it may not even exist. To address this complication, we break the
network into smaller subnetworks and analyze their subcirculations.

The operation of breaking an edge (v, w) in a graph G removes (v, w) from
G; adds two new vertices v∗ and w∗ (called the sink and the source, respec-
tively); and adds two new edges (v, v∗) and (w∗, w) with the same capacity
as the edge (v, w). Given a weighted graph G and a positive integer t, we de-
fine Gt as the graph obtained from G by breaking all edges longer than t. To
break the de Bruijn graph into subnetworks, we break all long edges (Fig. 1).
After this transformation, the graph DB+(Reads, k) is typically decomposed
into many connected components. For the ECOLI-SC dataset described in the
Results section, the graph is decomposed into 114 non-trivial connected compo-
nents (containing more than one vertex).
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A circulation (genome traversal) in DB+(Genome, k) defines a flow [21] be-
tween sources and sinks of every connected component of DB+

N(Genome, k)
satisfying the capacity constraints. Similarly to DB(Genome, k), for many com-
ponents in DB+(Reads, k), the genome traversal also defines a flow satisfying
the capacity constrains. Thus, the search for chimeric edges in DB+(Reads, k),
can be performed independently in each component.

Many components have a particularly simple structure with two sources and
two sinks (Fig. 1b and Fig. 1c). The only flow that satisfies the capacity con-
straints in Fig. 1b (resp., Fig. 1c assigns flow 0 (resp., flow 2) to the edge (u, v).
Thus (u, v) is classified as chimeric in Fig. 1b and as correct in Fig. 1c.

Unfortunately, the above procedure fails for some connected components (e.g.,
when the outgoing edge from vertex v in Fig. 1a is missing). Furthermore, such
components tend to be large. For example, after assembling reads from a single
E. coli cell, the procedure fails only for 10% of all components, but these compo-
nents contain most (52%) vertices of the graph. Below we describe an approach
to identify chimeric edges in such components.

Chimeric Edges and Critical Cut-sets. Given a subset U of vertices in the graph,
the cut-set, denoted cut(U), is the set of all edges (u, v) in the graph such that
u ∈ U and v ∈ U (where U denotes the set of vertices of the graph that do
not belong to U). We define clower(U) (resp., cupper(U)) as the sum of lower
(resp., upper) capacities of all edges from cut(U). A cut-set cut(U) is balanced
if clower(U) ≤ cupper(U) and unbalanced otherwise. A cut-set cut(U) is critical
if clower(U) = cupper(U). According to Hoffman’s Circulation Theorem [21], a
circulation exists if and only if every cut-set in the network is balanced.

It is easy to see that for a critical cut-set cut(U), all edges (u, v) ∈ cut(U)
must have genomic multiplicity equal to clower(u, v), while all edges (v, u) ∈
cut(U) must have genomic multiplicity equal to cupper(v, u). Indeed, if the lower
capacity of any edge (u, v) ∈ cut(U) is increased by 1, the cut-set would become
unbalanced (as clower(U) + 1 > cupper(U)), implying that no circulation exists.
Similarly, the upper capacity of any edge (v, u) ∈ cut(U) cannot be decreased,
implying that the genomic multiplicity of (v, u) must be equal to cupper(v, u). In
particular, for a critical cut-set cut(U), all crossing edges (u, v) ∈ cut(U) with
clower(u, v) = 0 must be chimeric.

SPAdes analyzes only certain types of critical cut-sets that are common in
de Bruijn graphs of reads (details are to be described elsewhere).

3 Removing Complex Bulges

Bulges and Bulge Corremoval. Errors in reads often result in two short paths
between the same two vertices in the de Bruijn graph, where the two paths
have roughly the same length and represent similar sequences. Such pairs of
paths may aggregate into larger subgraphs called bulges. Assemblers use vari-
ous bulge removal algorithms (and additional steps) to transform the de Bruijn
graph DB(Reads, k) into a smaller assembly graph DB∗(Reads, k). While they
remove the vast majority of bulges, they fail to remove some complex bulges.
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(a) (b) (c) (d)

Fig. 2. Illustration of bulge removal algorithm. The vertices of the condensed graph are
shown in white. Dotted arrows indicate projection operations (not graph edges). (a–b):
Merging paths instead of projecting paths. Merging two paths in (a) results in a graph
(b) with an artificial (dashed) path violating condition (ii). (c–d): Blob corremoval.
Complex bulge (c) is not removed by the bulge corremoval procedure from [10]. Apply-
ing the new “blob corremoval procedure” to blob (c) simplifies it via the projections
shown in (d). Thick edges denote the tree to which we project the blob.

In this section, we describe an algorithm for removal of complex bulges that
evade the “bulge corremoval” algorithm from [10]. One approach to removing
bulges is to map the de Bruijn graph onto a smaller graph. SPAdes tries to find
a mapping that satisfies the following conditions:

(i) Every path in the de Bruijn graph maps to a path in the assembly graph.
(ii) For every path ρ in the assembly graph, there exists a path in the de Bruijn

graph that maps onto ρ.4

Some bulge removal algorithms either do not explicitly map the de Bruijn graph
onto the assembly graph or use mappings that may violate conditions (i) and/or
(ii). For example, they may find a bulge formed by two paths in the de Bruijn
graph and either remove one of the paths or merge these paths into a single one,
without considering the impact on other edges incident to these paths. Remov-
ing one of the paths may lead to deterioration of assemblies, since important
information (along with some correct paths) may be lost. Merging the paths
may introduce artificial paths into the assembly graph, violating condition (ii)
(see Fig. 2a,b).

SPAdes [10] introduced the bulge corremoval procedure, which satisfies con-
ditions (i) and (ii). For each edge (u, v) (with length below a threshold) in the
condensed de Bruijn graph, SPAdes searches for a path from u to v of length
approximately equal to the length of (u, v). If such an alternative path exists, the
two paths P and (u, v) form a simple bulge. To remove a simple bulge, the edge

4 In fact, SPAdes creates the assembly graph as a subgraph of the de Bruijn graph
so that paths in the assembly graph also represent paths in the de Bruijn graph.
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(u, v) is projected onto this path and is removed afterwards. Applied iteratively,
the bulge corremoval strategy eliminates the vast majority of bulges. However,
for some bulges, no edge in the bulge has an alternative path, implying that the
algorithm from [10] will not be able to remove such bulges (Fig. 2c). Below we
describe an algorithm satisfying conditions (i) and (ii) for removing the majority
of the remaining complex bulges.

Blob Corremoval. Let G be a directed acyclic graph (DAG) with vertex set V
and edge set E. For vertices v and w in G, we define v ≺ w if there exists a
directed path from v to w in G. A mapping f : V → V,E → E is called a
projection if (1) for every vertex v ∈ V , we have f(f(v)) = f(v), (2) for every
pair of vertices v and w, if v ≺ w then f(v) ≺ f(w), and (3) for every edge
e = (u, v), we have f(e) = (f(u), f(v)).

A projection f defines the induced DAG Gf on the vertex set Vf = f(V ). We
limit our attention to projections of DAGs onto directed trees (i.e., projections f
such that Gf is a directed tree) and additionally require that every path and its
projection have similar lengths. Fig. 2d shows the directed tree and projection
of DAG shown in Fig. 2c.

Breaking edges longer than t in the assembly graph DB+(Reads, k) results in
a graph DB+

t (Reads, k) that typically consists of many connected components.
A blob is a component of DB+

t (Reads, k) that is a DAG with a single source
and one or more sinks. SPAdes analyzes blobs in DB+(Reads, k) and for each
blob, attempts to find a directed tree (with root at the source and leaves at the
sinks of the blob) such that there exists a projection of the blob onto this tree.

This leads to a blob corremoval procedure, which generalizes the bulge corre-
moval procedure from [10] and satisfies conditions (i), (ii). A generalized notion
of blob and efficient algorithm to search for trees and projections will be de-
scribed elsewhere.

4 Results

Metrics. The N50 (resp., NG50) metric is the maximum contig size such that
using blocks of that size or larger gives at least 50% of the assembly length
(resp., reference genome length). We use metrics NA50 and NGA50, introduced
and justified in [22], instead of the standard N50 or NG50 metrics. To count
NA50, contigs are alligned to reference genome. If a contig has a misassembly or
has nonaligning sequence such as large gaps or indels, the contig is broken into
blocks that do align. Then we compute N50 using these aligned blocks instead
of using the original contigs. Similarly, NGA50 is computed as NG50 applied to
these adjusted blocks.

In some of our experiments, the fraction of the genome assembled is below
50%, so NGA50 would be 0 for all assemblers, and thus, we use NA50.

Benchmarking. We compared a number of single-cell and conventional assem-
blers on two E. coli paired-end Illumina libraries described in [8]: a single-cell
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Table 1. Comparison of assemblers on ECOLI-SC, a single-cell E. coli dataset, using
QUAST [22]. In each column, the best assembler by that criteria is indicated in bold.
Only contigs of length ≥ 500 bp were used. For single cell projects, the total assembly
size often exceeds the genome length due to contaminants and other reasons (see [23]).
The “GF (%)” (Genome fraction) column filters out these issues. MA: number of mis-
assemblies. Misassemblies are locations on an assembled contig where the left flanking
sequence aligns over 1 kb away from the right flanking sequence on the reference. MM:
Mismatch (substitution) error rate per 100 kb. IND: number of indels per 100 kb. MM
and IND are measured in aligned regions of the contigs.

Assembler NGA50 # contigs
Longest
contig

Total
length MA MM IND GF (%) # genes

Conventional (multicell) assemblers
A5 14399 745 101584 4441145 8 11.97 0.19 90.141 3453

ABySS 68534 179 178720 4345617 5 2.71 2.66 88.268 3704
CLC 32506 503 113285 4656964 3 4.76 2.87 92.378 3768

EULER-SR 26662 429 140518 4248713 18 9.37 218.72 85.005 3419
Ray 55395 296 210612 4649552 13 2.34 0.87 91.864 3838

SOAPdenovo 18468 569 87533 4098032 7 114.38 11.08 79.861 3038
Velvet 22648 261 132865 3501984 2 2.07 1.23 74.254 3098

Single-cell assemblers
E+V-SC 32051 344 132865 4540286 2 1.85 0.70 92.162 3793

IDBA-UD 96947 250 224018 4791744 10 1.61 0.16 95.661 4046
SPAdes 2.3 110539 276 268756 4875378 2 4.24 0.70 95.737 4057

library (ECOLI-SC) and a multicell library (ECOLI-MC). They consist of 100
bp paired-end reads with average insert sizes 266 bp for ECOLI-SC and 215 bp
for ECOLI-MC. Both E. coli datasets have 600× coverage. The E. coli K-12
MG1655 reference length is 4639675 bp with 4324 annotated genes.

Tables 1 and 2 present the benchmarking results for various assemblers.5 Ta-
ble 1 illustrates that single-cell assemblers significantly improve on the conven-
tional assemblers in single-cell projects. Table 2 shows that recently developed
single-cell assemblers IDBA-UD and SPAdes also improve on the conventional
assemblers in standard (multicell) projects by most metrics.

From Genomes to Mini-metagenomes. Below we investigate the performance of
SPAdes on artificially simulated mini-metagenomes and demonstrate that it is
capable of assembling a significant portion of each genome in a mini-metagenome.
In addition to simulations, we also applied this assembly algorithm to a real
mini-metagenome dataset; details are in McLean et al., 2012 (submitted).

5 ABySS 1.3.4, EULER-SR 2.0.1, Ray 2.0.0, Velvet, Velvet-SC, and E+V-SC
were run with vertex size 55. A5 and CLC 3.22.55708 were run with default param-
eters. SOAPdenovo 1.0.4 was run with vertex sizes 27–31. IDBA-UD 1.0.9 was run
in its default iterative mode.
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Table 2. Comparison of assemblers on ECOLI-MC, a multicell E. coli dataset. See
the caption of Table 1 for further details.

Assembler NGA50 # contigs
Longest
contig

Total
length MA MM IND GF (%) # genes

Conventional (multicell) assemblers
A5 43651 176 181690 4551797 0 0.40 0.13 98.476 4178

ABySS 106155 96 221861 4619631 2 2.45 0.52 99.202 4242
CLC 69146 122 221533 4547925 2 0.73 0.15 98.547 4233

EULER-SR 110153 100 221409 4574240 8 2.98 47.15 98.438 4206
Ray 83128 113 221942 4563341 2 2.10 0.20 98.162 4194

SOAPdenovo 62512 141 172567 4519621 1 26.56 5.58 97.405 4134
Velvet 82776 120 242032 4554702 3 0.70 0.20 98.824 4211

Single-cell assemblers
E+V-SC 54856 171 166115 4539639 0 1.21 0.15 98.329 4149

IDBA-UD 111789 107 236470 4562955 1 0.53 0.15 98.834 4215
SPAdes 2.3 119880 104 265405 4634928 2 1.86 0.63 99.420 4250

We applied SPAdes to a simulated mini-metagenome that consists of four
bacterial species with known genomes. We mixed together reads (in various
proportions), from four different MDA-amplified single-cell bacterial projects at
Joint Genome Institute and Bigelow Laboratory. The genomes of these bac-
teria vary in GC content and genome length: Prochlorococcus marinus (31%
GC, 1.7 Mb genome length) [24], Pedobacter heparinus [25] (42% GC, 5.0 Mb
genome length), Escherichia coli [26] (51% GC, 4.6 Mb genome length), and
Meiothermus ruber [27] (63% GC, 3.0 Mb genome length). Note that as simu-
lated datasets, these are highly idealized and do not exactly match what would
be found in the environment, but they are useful for modeling the ability of the
assembler to deal with different mixtures.

In the first simulation, we randomly selected a fixed fraction of reads from
each genome, mixed them together, and assembled the resulting dataset with
SPAdes. This simulation was repeated 10 times, varying the fraction as 1/2m

with m = 0, 1, . . . , 9 (the same fraction 1/2m applies to all genomes). The assem-
bled contigs were aligned against individual genomes to compute the assembly
statistics (in Table 3 we present statistics for M. ruber and P. heparinus). In
particular, even with a relatively small fraction 1/64 of selected reads, SPAdes
assembled 1779 out of 4339 genes for P. heparinus, 1366 out of 4324 genes for
E. coli , and 710 out of 3105 genes for M. ruber. This is significantly larger than
the number of complete genes captured in a typical metagenomics project. How-
ever, for P. marinus, only 55 out of 1732 genes were assembled.

In the second simulation, we formed a mini-metagenome using all reads from
three species and varied the coverage for the fourth. For the fourth species, we
selected either a genome with high GC content (M. ruber) or low GC content
(P. heparinus). Table 4 illustrates that SPAdes recovers a substantial frac-
tion of an underrepresented genome within a mini-metagenome. Even with a



168 S. Nurk et al.

Table 3. SPAdes assembly of a simulated mini-metagenome with equal fractions of
each genome

1/1 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512

M. ruber :
Misassemblies 14 12 5 15 13 10 14 8 8 12

NA50 (kb) 44 33 39 24 20 14 9 10 8 3
Longest contig (kb) 113 133 119 114 108 109 93 61 50 39

Genome fraction (%) 76.3 69.5 62.4 56.7 49.1 39.7 29.9 22.2 15.7 10.9
# genes 2160 1950 1777 1533 1219 939 710 521 357 214

P. heparinus:
Misassemblies 1 2 6 11 11 13 26 27 17 12

NA50 (kb) 185 207 165 96 70 27 12 4 2 1
Longest contig (kb) 946 410 426 307 337 379 225 102 34 32

Genome fraction (%) 97.8 96.6 94.3 88.4 82.5 71.3 57.6 40.4 24.9 12.1
# genes 4148 4038 3855 3524 3133 2401 1779 1125 548 189

Table 4. SPAdes assembly of a mini-metagenome with variable fraction of M. ruber
and P. heparinus

1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512

M. ruber :
Misassemblies 14 6 8 11 13 14 14 17 11

NA50 (kb) 47 45 27 15 11 10 7 4 2
Longest contig (kb) 137 120 118 106 114 114 62 45 49

Genome fraction (%) 70.0 63.7 58.3 52.4 43.0 34.2 27.1 21.5 16.7
# genes 1973 1797 1585 1327 1022 822 618 464 330

P. heparinus:
Misassemblies 2 5 8 12 19 23 14 19 15

NA50 (kb) 163 165 131 87 33 11 3 2 1
Longest contig (kb) 426 439 396 339 333 227 89 40 33

Genome fraction (%) 96.6 94.0 88.7 81.6 71.2 56.7 40.6 24.5 12.9
# genes 4043 3815 3527 3116 2488 1752 1113 534 228

small fraction of reads in the underrepresented genome (e.g., 1/256), we recov-
ered a significantly larger number of genes (more than 450 genes for M. ruber
and P. heparinus) as compared to a typical metagenomics project. Tables 3
and 4 demonstrate that the assembly quality of an individual genome depends
mainly on the coverage of this genome, rather than on what fraction of the
mini-metagenome this genome represents.

5 Discussion

Since 2008, when the first NGS assemblers were released, many excellent assem-
blers have become available. Since most of them use a de Bruijn graph approach,
they often generate rather similar assemblies, at least for bacterial projects.
Recent developments in single-cell genomics tested the limits of conventional
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assemblers and demonstrated that they all have room for improvement. Our
benchmarking illustrates that single-cell assemblers not only enable single-cell
sequencing but also improve on conventional assemblers on their own turf.
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Background

Cancer is a disease driven in part by somatic mutations that accumulate during
the lifetime of an individual. The clonal theory [1] posits that the cancerous
cells in a tumor are descended from a single founder cell and that descendants of
this cell acquired multiple mutations beneficial for tumor growth through rounds
of selection and clonal expansion. A tumor is thus a heterogeneous population
of cells, with different subpopulations of cells containing both clonal mutations
from the founder cell or early rounds of clonal expansion, and subclonal muta-
tions that occurred after the most recent clonal expansion. Most cancer sequenc-
ing projects sequence a mixture of cells from a tumor sample including admixture
by normal (non-cancerous) cells and different subpopulations of cancerous cells.
In addition most solid tumors exhibit extensive aneuploidy and copy number
aberrations. Intra-tumor heterogeneity and aneuploidy conspire to complicate
analysis of somatic mutations in sequenced tumor samples.

Methods

We describe an algorithm – Tumor Heterogeneity Analysis (THetA) – to infer
tumor purity (and more generally, the fraction of each subpopulation in the sam-
ple) and clonal/subclonal tumor subpopulations directly from high-throughput
DNA sequencing data. We focus on copy number aberrations to estimate tu-
mor purity and distinct subpopulations. Suppose that a mixture T of cells is
sequenced, with each cell differing from the normal (reference) genome by some
number of copy number aberrations. We assume that these cells are from a small
number of subpopulations. The genome of each subpopulation is represented by
the number of copies of each genomic interval, or its copy number profile. There-
fore, the mixture T is determined by: (1) a copy number profile ci for each
subpopulation i; (2) the mixture fraction μi for each subpopulation i. By align-
ing DNA sequence reads from T to the reference (human) genome, we observe a
read depth vector r = (r1, ..., rm) where rj is the number reads that align within
the jth genomic interval. We formulate the Maximum Likelihood Mixture
Decomposition Problem of finding the copy number profiles ci and mixture
fractions μi whose mixture best explains the observed sequencing data. We solve
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an instance of the problem using techniques from convex optimization, where the
likelihood of our observed data r is generated from a multinomial distribution.
We determine the number of subpopulations using the Bayesian Information
Criterion (BIC). In contrast to existing methods, THetA optimizes an explicit
probabilistic model for the generation of the observed tumor sequencing data
from a mixture of a normal genome and one or more cancer genomes.

Results

Our THetA algorithm compares favorably to earlier methods for inferring tu-
mor purity from SNP array data [2], or DNA sequencing data [3]. We applied
THetA to 3 of the breast cancer samples analyzed in [4]. Our analysis of sample
PD4120a (sequenced at ∼188X coverage) is similar to that reported in [4] but
with several notable differences including a clonal deletion of 16q and a clonal vs.
subclonal distinction for aberrations on chromosomes 1 and 22 (Fig. 1). Further
investigation of these differences – employing sequencing data not used by our
algorithm – support our findings. We also find evidence for multiple subclonal
populations in another sample sequenced at ∼40X coverage.

Del: 1p, 4q, 16q, 
22q12.2-13.3 

61.9% 10.1% 

Tumor Sample Mixture 

Del: 13q,  
22q11.2-12.1 
+1: 1q 

Del: 8, 11, 
12, 14,15 

72.0% 

28.0% 

100% 

Normal 

Fig. 1. Analysis of the 188X coverage breast tumor PD4120a. (Left) Read depth ratios
(gray) and the copy number aberrations inferred by our THetA algorithm, including
the normal population (black), dominant (i.e. clonal) tumor population (blue), and
subclonal tumor population (red). (Right) A reconstruction of the tumor mixture
with the inferred aberrations and estimated fraction of cells in each subpopulation.
Differences between our reconstruction and [4] are in bold.
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Abstract. Inference of gene interaction networks from expression data
usually focuses on either supervised or unsupervised edge prediction from
a single data source. However, in many real world applications, multi-
ple data sources, such as microarray and ISH measurements of mRNA
abundances, are available to offer multi-view information about the same
set of genes. We propose NP-MuScL (nonparanormal multi-source learn-
ing) to estimate a gene interaction network that is consistent with such
multiple data sources, which are expected to reflect the same underlying
relationships between the genes. NP-MuScL casts the network estima-
tion problem as estimating the structure of a sparse undirected graphical
model. We use the semiparametric Gaussian copula to model the distri-
bution of the different data sources, with the different copulas sharing
the same precision (i.e., inverse covariance) matrix, and we present an
efficient algorithm to estimate such a model in the high dimensional
scenario. Results are reported on synthetic data, where NP-MuScL out-
performs baseline algorithms significantly, even in the presence of noisy
data sources. Experiments are also run on two real-world scenarios: two
yeast microarray data sets, and three Drosophila embryonic gene expres-
sion data sets, where NP-MuScL predicts a higher number of known gene
interactions than existing techniques.

Keywords: interaction networks, gene expression, multi-source learn-
ing, sparsity, Gaussian graphical models, nonparanormal, copula.

1 Introduction

With the prevalence of high throughput technologies such as microarray and
RNA-seq for measuring gene expressions, computational inference of gene reg-
ulatory or interaction networks from large-scale gene expression datasets has
emerged as a popular technique to improve our understanding of cellular systems
[1,2,3]. In numerous studies, gene interactions reverse engineered from analysis
of such high-throughput data have been experimentally validated [4,5], demon-
strating the credibility of such data-driven algorithmic approaches.

There have been two popular approaches to reverse engineering gene networks.
The first approach is to build a generative model of the data, and learn a graph-
ical model that captures the conditional independencies in the data. Learning

M. Deng et al. (Eds.): RECOMB 2013, LNBI 7821, pp. 173–185, 2013.
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the structure of a graphical model under a multivariate Gaussian assumption of
the data has received wide attention in recent years [6,7,8]; various algorithms
have been proposed [6,7,8], many with theoretical analysis offering asymptotic
guarantee of consistent estimation of the interactions between genes in the net-
work. Empirically, these algorithms are computationally efficient and the results
obtained have been encouraging.

However, a limitation of this class of network inference approach is that, it
assumes data are identically and independently distributed (i.e., iid), which im-
plicitly means that they are from a single experimental source. In reality, many
real world biological problems sit on multiple sources of information that can be
used to predict interactions between genes. For example, there can be multiple
microarray data sets from different laboratories available for the same organism,
sometimes measured at the same conditions where the main differences lie in
the data sampling strategy or measurement technologies. Biologically, it is often
plausible to assume that multiple experimental means resulting in the different
datasets may have captured the same information from different viewpoints, e.g.,
both microarray and in-situ hybridization can capture gene expression informa-
tion, even though the technology used to measure mRNA abundances is different.
It remains unclear how to integrate such multiple sources of data in a statisti-
cally valid and computational efficient way to infer the underlying network. One
may imagine inferring independently a network from each data source, and then
averaging across multiple resultant networks, but such an ad hoc method is not
only un-robust (e.g., each view may have only a small amount of samples), but
also lacks statistically justification and consistence guarantee (e.g., on the “av-
erage” operator). In this paper, we address the question of inferring a network
by analyzing multiple sources of information simultaneously.

An alternative approach to tackle this problem is via supervised learning
methods, where a classifier (e.g., SVM) is trained by using examples of known
gene interactions (edges in the network) as training data to learn the importance
of each data source in predicting unknown interactions between other gene-
pairs [9]. This approach suffers from some intrinsic limitations which prevent
it from being widely applicable. First, while such an approach works well for
problems where there are sufficient examples of known edges in the network,
e.g., in the form of a reference network or reference interactions obtained from
reliable sources, it fails for problems where few or no examples of known edges
are available. Gene networks for humans or yeast may be learned by supervised
methods where reference interactions are available from extensive prior studies;
but for organisms where prior research is limited, this approach cannot be used.
Furthermore, one can argue that predicting gene networks is of high importance
for such organisms with few known edges, to help biologists who are starting
research for regulatory mechanisms of these organisms.

Secondly, using a classifier to predict edges implicitly utilizes the notion of
marginal independence between nodes. To classify an edge as “positive”, i.e.,
to predict an edge between a given pair of nodes, the correlation between the
data for these nodes must be high. Gene networks usually have pathways in
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which genes interact with each other in a sequential order, which results in high
marginal correlation between all pairs of genes in the same pathway. Predicting
each edge locally and independently of all other edges will often result in an
non-stringent prediction of a clique for all genes in the same pathway, leading to
high false positive rates. To reduce such false positives and increase accuracy, we
wish to analyze conditional independence between the genes instead, which must
be done by building a global graphical model that captures simultaneously all
the conditional independencies among genes. Each edge resultant from such an
estimator enjoys global statistical interpretability and consistency guarantee, and
such an estimator does not require supervised training, although prior knowledge
of interactions on the “reference gene pairs” can still be utilized via introducing a
prior over the model, if desired. Thus, it is desirable to develop an unsupervised
and global inference method which can incorporate multiple data sources to
predict a consensus graphical model that explains all the data sources, without
using any examples of known edges for training the model.

This paper proposes NP-MuScL (NonParanormal Multi-Source Learning), a
machine learning technique for estimating the structure of a sparse undirected
graphical model that is consistent with multiple sources of data. The multiple
data sources are all defined over the same feature space, and it is assumed that
they share the same underlying relationships between the genes (nodes). We
use the semiparametric Gaussian copula to model the distribution of the differ-
ent data sources, where the copula for each data source has its own mean and
transformation functions, but all data sources share the same precision matrix
(i.e., the inverse covariance matrix, which captures the topological structure of
the network). We propose an efficient algorithm to estimate such a model in
the high dimensional scenario. The likelihood-related objective function used in
NP-MuScL is convex, and results in a globally optimal estimator. Furthermore,
the implementation of our algorithm is simple and efficient, computing a net-
work over 2000 nodes using 3 data sources in a matter of minutes. Results are
reported on synthetic data, where NP-MuScL outperforms baseline algorithms
significantly, even in the presence of noisy data sources. We also use NP-MuScL
to estimate a gene network for yeast using two microarray data sets: one over
time series expression, and the other over knockout mutants. Finally, we run NP-
MuScL on three data sets of Drosophila embryonic gene expression using ISH
images and microarray. In both yeast and Drosophila, we find that NP-MuScL
predicts a higher number of gene interactions that are known to interact in the
literature, than existing techniques.

1.1 Related Work

Previous work on analyzing multiple data sources for network prediction has
either specifically taken time into account[10,11], or has different source and
target organisms via transfer learning [12]. Katenka et. al.[13] propose a strategy
to learn a network from multi-attribute data, where aligned vector observations
are made for each node. The NP-MuScL algorithm on the other hand works for
data sources which are not aligned, hence each data source may have a different
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number of observations. Honorio et. al. [14] proposed techniques for multi-task
structure learning of Gaussian Graphical Models, to share knowledge across
multiple problems, using multi-task learning. However, their method estimates a
separate graphical model for each data source, unlike our problem which requires
a consensus network common to all data sources. To the best of our knowedge,
the NP-MuScL algorithm is the first work that builds a consensus graphical
model to explain the relationship between genes by combining information from
multiple data sources without explicitly constraining the data to be time-series,
or about different organisms.

2 Nonparanormal Multi-Source Learning (NP-MuScL)

Let the k input data sources be defined asX(1)∈Rn1×d, X(2)∈Rn2×d, . . . , X(k)∈
R

nk×d with total number of data samples n =
∑k

i=1 ni. Each data source i may
have a different number ofmeasurements or samples ni, but they all measure infor-
mation about the same feature space of d genes. The goal of NP-MuScL is to learn
the structure of a graphical model over the feature space, such that the graphical
model will encapsulate global conditional independencies between the genes.

2.1 Glasso

Given a single source of data X ∈ R
n×d drawn from a Gaussian distribution

N (0,Σ), a Gaussian graphical model (GGM) may be estimated by computing
the inverse covariance matrix Σ−1 of the Gaussian. Zeros in the inverse covari-
ance matrix imply conditional independence between the features, and thus the
absence of an edge between them in the corresponding GGM. Given the em-
pirical covariance matrix S of the data, the inverse covariance matrix may be
computed by maximizing the log likelihood of the data, with an L1 regularizer
to encourage sparsity.

Σ̂−1 = argmax
Θ�0

{log detΘ− tr(SΘ)− λ||Θ||1} (1)

where λ is a tuning parameter that controls the sparsity of the solution; as λ
increases, fewer edges are predicted in the GGM. Rothman et. al. [15] showed
the consistence of such estimators in Frobenius and Operator norms in high
dimensions when d >> n; Friedman et. al.[8] proposed a block coordinate descent
algorithm for this objective - they named their technique glasso. The glasso
algorithm uses a series of L1 penalized regressions, called Lasso regressions [16],
that can be solved in time O(d3).

2.2 Joint Estimation of the GGM

Given k data sources X(1),X(2), · · ·X(k) with corresponding sample covariances
S(1),S(2), · · · ,S(k), a joint estimator of the underlying GGMmay be computed as
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Σ̂−1 = argmax
Θ�0

k∑
i=1

wi

{
log detΘ− tr(S(i)Θ)

}
− λ||Θ||1 (2)

where wi defines the relative importance of each data source, and must be
defined by the user such that

∑k
i=1 wi = 1. Assuming the data in each data

source is drawn i.i.d., an appropriate choice for the weights may be wi =
ni

n . It
can be seen that if each data source is assumed to have mean 0, then for this
choice of wi

Σ̂−1 = argmax
Θ�0

log detΘ−
k∑

i=1

ni

n
tr
(
S(i)Θ

)
− λ||Θ||1

= argmax
Θ�0

log detΘ− tr

(
1

n

k∑
i=1

ni∑
l=1

X(i)(l, ·)TX(i)(l, ·) Θ
)
− λ||Θ||1 (3)

Thus, our objective function is equivalent to calling glasso with covariance matrix
1
n

∑k
i=1

∑ni

l=1 X
(i)(l, ·)TX(i)(l, ·). We call this method “glasso-bag of data”. With

an appropriate choice of weights, this model concatenates the data from all data
sources into a single matrix, and uses the second moment of the data to estimate
the inverse covariance matrix.

Such a procedure highlights the underlying assumption of Gaussianity of the
data. If we assume that all data is being drawn from the same Gaussian distri-
bution, then it is reasonable to construct a single sample covariance matrix from
the data to estimate the network. However, real data is not always Gaussian;
and such an assumption can be limiting, especially when analyzing multiple data
sources simultaneously, since non-Gaussianity in a single data source will result
in the non-Gaussianity of the combined data. A lot of previous work has been
done to drop the Gaussianity assumption in the solution to classic problems like
sparse regression [17], estimating GGMs [18], sparse CCA [19] etc., and propose
non-parametric solutions to the same. We will also drop the assumption that the
data is drawn from the same Gaussian distribution in the next section.

However, if the data is not drawn from the same Gaussian distribution, then
how can we characterize the underlying network that generated the data? We
propose a generative model where we assume that each data source is drawn
from a semi-parametric Gaussian copula, where the copulas for the different
data sources share the same covariance matrix, but have different functional
transformations. To justify this model, we assume that for each data source, the
data is sampled from a multi-variate Gaussian, but this sample is not directly
observed. Instead, due to non-linearities introduced during data measurement,
a transformed version of the data is measured. Each data source will have its
own transformation, hence, the observed distribution of each data source will be
different. The key idea of NP-MuScL is then to estimate the non-linear trans-
formation, so that all data can be assumed Gaussian, and the network can be
estimated using Equation 2.
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Algorithm 1. Data generation model
for NP-MuScL

Input: True covariance matrix Σ with
σjj = 1 ∀ j ∈ {1, · · · , d}
Input: Transformation function gij ,
mean μij and variance ρij for each fea-
ture j for each data source i.
for i = 1 to k do

for l = 1 to ni do
y ∼ N(0,Σ)
for j = 1 to d do

X(i)(l, j) = μij + ρijgij(y(j))
end for

end for
end for
return Observed data X(i) from k data
sources.

Estimate f2 

Estimate -1 

Estimate fk Estimate f1 
… 

Data set 1 Data set 2 Data set k 

Fig. 1. The overall algorithm for NP-
MuScL. Each data source is transformed
into a Gaussian, using a nonparanormal,
and the Gaussian data is then used to
jointly estimate a inverse covariance ma-
trix, giving the structure of the Gaussian
Graphical Model, underlying the data.

2.3 Dropping the Gaussianity Assumption

We model that each data source is drawn from an underlying Gaussian distribu-
tion with mean 0, and covariance matrix Σ, where the variance of each feature
σjj = 1, ∀ j ∈ {1, · · · , d}. However, the observed data may be some unknown
transformation of the Gaussian data; thus, if y ∼ N (0,Σ), then the observed
data is X(i)(j) = μij + ρijgij(y(j)) where μij and ρij is the mean and standard
deviation respectively of feature j in data source i.

The function gij is some (unknown) transformation that depends on the data

source, our task is to estimate fij = g−1
ij from the data, so that fij(X

(i)
j ) is

Gaussian. The data generation process is then described in Algorithm 1.

2.4 NP-MuScL Algorithm

A random vector X has a nonparanormal distribution NPN(μ,Σ, f) if there
exists a function f(X) = (f1(X1), f2(X2), · · · , fd(Xd)) such that f(X) has a
multi-variate Gaussian distribution N (μ,Σ) [18]. To preserve identifiability, we
constrain each fj to have mean 0 and standard deviation 1. The nonparanormal
distribution is a Gaussian copula when the fs are monotone and differentiable.
For our model, we assume that each data source X(i) ∼ NPN(0,Σ, fi), that is,
while each data source has its own functional transformation, they all share the
same underlying relationship between the nodes, represented by Σ. The mean
of each copula is zero, since we constrain the estimated functions fj to have
zero means. Then, for nonparanormal data, it can be shown that conditional
independence in the corresponding graph is equivalent to zeros in the inverse
covariance matrix Σ−1 [18].
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This suggests the following two step algorithm. For each data source i and
each feature j, we first estimate the sample mean μij and sample variance ρij .

μ̂ij =
1

ni

ni∑
l=1

X(i)(l, j); ρ̂2ij =
1

ni

ni∑
l=1

(
X(i)(l, j)− μ̂ij

)2

(4)

The data in each data source is normalized by the appropriate μ and ρ to have
mean 0 and standard deviation 1. Non-parametric functions fij are estimated for
each data source i and feature j, so that fij ∼ N (0, 1). The details of estimating
f are discussed in Sec. 2.6.

In the second step, the inverse covariance matrix is estimated jointly from the
transformed fis. We can define Y(i) ∈ R

ni×d as

Y(i)(·, j) = f̂ij

(
X(i)(·, j)

)
∀j ∈ {1, 2, · · ·d} (5)

The distribution of Y(i) is then Gaussian with covariance matrix Σ. The graph-
ical model corresponding to all data sources can be jointly estimated as

Σ̂−1 = argmax
Θ	0

k∑
i=1

wi

{
log detΘ− tr(Θ Ŝf

(i)
)
}
− λ||Θ||1 (6)

where

Ŝf
(i)

=
1

ni

ni∑
l=1

Y(i)(l, ·)TY(i)(l, ·) (7)

Setting the weights wi = ni

n is equivalent to the data in each data source be-
ing drawn i.i.d. from the corresponding Gaussian copula; while setting different
weights suggests that the effective sample size of a data source is not the observed
sample size.

2.5 Optimization

The objective function in Equation 6 can be rewritten as

Σ̂−1 = argmax
Θ	0

log detΘ− tr(Θ
k∑

i=1

wiŜf
(i)
)− λ||Θ||1 (8)

Thus, by using
∑k

i=1 wiŜf
(i)

as the covariance matrix, we can optimize the above
objective by using efficient, known algorithms like glasso. The overall NP-MuScL
algorithm is summarized in Figure 1.

2.6 Estimating f̂

For each feature j in data source i, we can compute the empirical distribution
function as (where I is the indicator function)

F̂ij(t) =
1

ni

ni∑
l=1

I(X(i)(l, j) ≤ t) (9)
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The variance of such an estimate may be very large, when computed in the
high dimensional scenario d >> n. Liu et. al.[18] propose using a Windsorized
estimator, for the same, where very small and large values of F̂ij(t) are bounded
away from 0 and 1 respectively. Thus,

F̃ij(t) =

⎧⎨⎩
δn F̂ij(t) < δn
F̂ij(t) δn ≤ F̂ij(t) ≤ 1− δn
1− δn F̂ij(t) ≥ 1− δn

(10)

where δn is a truncation parameter. A value of δn chosen to be δn = 1
4n1/4

√
π logni

is found to give good convergence properties for estimating the network for a
single data source [18]; and we use the same estimate for NP-MuScL.

Now, for any continuous pdf f , the distribution of the cdf F (x) = P (X ≤ x)
is uniform. Then, the distribution of Φ−1(F (x)) is Gaussian with mean zero,
and standard deviation one, as required (where Φ is the cdf of the standard
Gaussian). Thus, we can estimate the required function by using the marginal

empirical distribution function defined above: f̂ij(x) = Φ−1(F̃ij(x)).

3 Results

We first demonstrate that when multiple data sources have different distribu-
tions, NP-MuScL can extract the underlying network more accurately than other
methods. Next, we show that NP-MuScL can identify the correct network, even
when one of the data sources is noise. To analyze NP-MuScL on real data, we
run NP-MuScL on two microarray yeast data sets, and find that the network ob-
tained by NP-MuScL predicts more known edges of the yeast interaction network
than other methods. Finally, we analyze NP-MuScL on Drosophila embryonic
gene expression data from 3 data sets of ISH images and microarray.

3.1 Multiple Data Sources with Different Distributions

Data generation. The details of generating the data for different experiments
is described in detail in the supplementary material. In brief, we construct an
inverse covariance matrix with an equivalent random sparse Gaussian graphical
model. Data is sampled from the Gaussian, and then transformed into non-
Gaussian distribution using different transformations. For d = 50 with k = 2
data sources, we use the Gaussian cdf (μ0 = 0.05, σ0 = 0.4) and power transform
(α = 3) for the two data sources respectively (see supp. material for details). The
task then is to jointly use the data from the two sources to extract the network.
For k = 3 data sources, we use the identity transform for the third data source,
so that the data sampled from the third source is truly Gaussian. For k = 4 data
sources, the fourth data source is Gaussian noise, to test the performance of the
algorithms in the presence of noise. We generate the same amount of data in
each source (n), and run the experiment as n varies. Each result is reported as
the average of 10 randomized runs of the experiment.
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Fig. 2. F1 score for predicting edges in simulated data, as n is varied, for (a) k = 2,
(b) k = 3, and (c) k = 4 data sources. The standard deviation in the results is small
and almost constant across the different experiments; it ranges from (0.01-0.03), and
is hence not displayed on the plot.

Metrics. We report the F1 measure, which is the harmonic mean of precision
and recall, as a measure of the accuracy of predicting the edges in the network.

Baselines. We report three baselines. The first baseline is to report the best
accuracy found by a single data source (Best Single Network). We assume that
an oracle tells us which data source is most predictive. In our data experiments,
we found that it was not possible to predict the most informative data source
without using an oracle. Even when k = 3, the identity transformed source was
not always the most informative. The second baseline is the glasso-bag of data,
described in Section 2.2. The third baseline is to compute a separate network
for each data source using glasso, and combine the networks to predict a single
network (glasso-combine networks). An edge in the final network is present if it
is present in m out of the k networks from the k data sources. We assume an
oracle defines the best value of m for a given data set, the best value of m varied
with different data sets.

As can be seen in Figure 2, NP-MuScL outperforms all three baselines sig-
nificantly in all three scenarios. Interestingly, using the best single source out-
performs estimating separate networks, and combining them in a second step.
Note that an oracle is used for identifying the best source, as well as the optimal
m used to combine networks. Hence, in a real world scenario, we may expect
combining different data sources to perform as well as using only the best single
data source for network prediction. When k = 4 (Figure 2(c)), one of the data
sources is Gaussian noise, however, the use of the oracle in the “Glasso-combine
networks” and the “single best source” baselines allows these baselines to ignore
the noise source completely. However, NP-MuScL is still able to identify more
correct edges in the network. Using a paired t-test, we found that the difference
in F1 scores between NP-MuScL and “glasso-bag of data” is significant in all
conditions, with P-value p = 10−4.

3.2 Yeast Data

In this experiment, we look at two different yeast microarray data sets, and make
joint predictions via NP-MuScL. Data source 1 is a set of 18 expression profiles
from Cho et. al. [20], where each expression corresponds to a different stage in the
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Fig. 3. Performance of different methods
on predicting edges in the yeast network

1 

2 

Fig. 4. Effect of varying tuning parame-
ter on different methods. For a fixed num-
ber of predicted edges, the NP-MuScL
method predicts more known edges than
the other methods.

cell cycle of the the yeast. Data source 2 is a set of 300 expression profiles from
Hughes et. al.[21], where each expression corresponds to a different knockout
mutant of the yeast. Both data sets are processed using standard microarray
processing algorithms [22].

We use a list of known interactions from BioGrid [23] to test how well do the
different algorithms predict the known edges. Note that since the known gene
interactions is an incomplete set, predicted gene interactions may be interactions
that have not been observed yet, and thus, have not been added to the BioGrid
data base. Hence, measuring recall is no longer appropriate, and we report the
improvement in accuracy over random prediction of edges, as suggested by Liben-
Nowell & Kleinberg [24].

The total data is over 6120 genes, we sample 1000 genes at a time, and run
the algorithms for them. Results are reported for 10 random sub-samples of
the genes. Figure 3 shows the improvement over random prediction for edges
predicted by each method. Due to the amount of data available, the knockout
mutant expression profiles capture more information (and hence more known
edges) than the time series expression. Surprisingly, both methods of combining
information without taking non-Gaussianity into account, perform worse than
using only data source 2. NP-MuScL is the only method where using both data
sets into account increases the number of correctly predicted edges. The same
results were found to hold true when the network is predicted over the entire set
of 6120 genes - NP-MuScL did significantly better than all other methods, and
both glasso bag-of-data and glasso-OR did worse than using only data set 2.

To test the effect of varying tuning parameter λ, Figure 4 plots the number
of known edges predicted by each method, versus the total number of edges
predicted, as λ is varied. For very large values of λ when few edges are pre-
dicted, NP-MuScL and “glasso-Bag of data” perform equally well, however, as
the amount of predictions increase, NP-MuScL outperforms other methods sig-
nificantly.

Figure 5 shows the transformations learned for the two data sets by NP-
MuScL for 4 random genes. A straight line corresponds to Gaussian data,
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Fig. 5. Examples of the transformations
made for data in source 1 (red) and source
2 (blue) for different features

(a) (b) 

Fig. 6. Difference between the NP-
MuScL network and (a) the 13-16 ISH
network alone and (b) microarray network
alone. Green edges are only predicted in
the NP-MuScL network. Blue edges are
only present in the (a) 13-16 ISH network
and (b) microarray network.

Table 1. Improvement in prediction over random guessing for predicting gene inter-
actions using Drosophila embryonic data

NP-MuScL Glasso Bag-of-data Glasso OR ISH 13-16 ISH 9-10 Microarray

7.29 4.88 4.06 5.98 2.35 3.66

non-linearities are clearly detected by the NP-MuScL algorithm. The transfor-
mations also seem to be damping extremely large values observed in the features.

3.3 Drosophila Embryonic Data

We study three data sets of Drosophila embryonic gene expression for 146 genes
[25]. The first data set measures spatial gene expression in embryonic stage 9-
10 of Drosophila development via in-situ hybridization (ISH) images (4.3 to 5.3
hours after fertilization), when germ band elongation of the embryo is observed.
The second data set also studies ISH images measuring spatial gene expression
in the 13-16 stage of embryonic development (9.3 to 15 hours after fertilization),
when segmentation has already been established. The last data set is of microar-
ray expression at 12 time points spaced evenly in embryonic development.

The ISH images were processed to extract 311 data points for each data set,
as described in Puniyani & Xing [26]. The microarray data was processed using
standard microarray processing algorithms. Since the number of data points ex-
tracted from the ISH data is dependent on the image processing algorithm used,
using weights proportional to the number of data points is no longer suitable.
We expect the microarray data to be as informative as the ISH data, hence we
use wi = 0.25 for each of the two ISH data sources, and wi = 0.5 for the mi-
croarray data. The results in Table 1 show that NP-MuScL outperforms using
the data separately, and glasso bag-of-data and glasso-combine networks (m=1,
called glasso-OR).

We visualized the differences in edge prediction between the NP-MuScL net-
work and the networks predicted by analyzing only one single data source at a
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time. The orange ellipse in Figure 6(a) highlights gene interactions predicted by
NP-MuScL by analyzing all 3 data sources, which were not predicted by any sin-
gle data source. Figure 6(b) highlights interactions predicted by the microarray
data that were not predicted either by the ISH data or the NP-MuScL network.
The 9-10 ISH network is similar to the 13-16 ISH network, and hence, is not
shown. A detailed analysis of the specific differences in the gene interactions
predicted by the different methods is ongoing.

4 Conclusions

We proposed NP-MuScL, an algorithm that predicts gene interaction networks
in a global, unsupervised fashion by jointly analyzing multiple data sources to
capture the conditional independencies observed in the data. NP-MuScL models
each data source as a non-parametric Gaussian copula, with all data sources
having different mean and transformation functions, but sharing the covariance
matrix across the underlying copulas. The network can then be efficiently esti-
mated in a two step process, of transforming each data source into Gaussian,
and then estimating the inverse covariance matrix of the Gaussian using all
data sources jointly. We found that NP-MuScL significantly outperforms base-
line methods in both synthetic data, and two experiments predicting a gene
interaction network from two yeast microarray data sets, and three Drosophila
ISH images and microarray data sets.

One limitation of NP-MuScL is that the weights giving the importance of
each data source must be assigned by the user. While a good estimate of the
weights may be obtained if all data sources are truly drawn i.i.d. from their
nonparanormal distributions, and have similar noise levels; in practice, some
data sources may be known to be noisier than others, or known to not be i.i.d.
(eg. microarray experiments over time are not truly independent draws from
the distribution). The question of automatically learning the weights from data
remains an open challenge.
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Abstract. Sprout is a novel generative model for ChIA-PET data that
characterizes physical chromatin interactions and points of contact at
high spatial resolution. Sprout improves upon other methods by learn-
ing empirical distributions for pairs of reads that reflect ligation events
between genomic locations that are bound by a protein of interest. Using
these learned empirical distributions Sprout is able to accurately position
interaction anchors, infer whether read pairs were created by self-ligation
or inter-ligation, and accurately assign read pairs to anchors which al-
lows for the identification of high confidence interactions. When Sprout
is run on CTCF ChIA-PET data it identifies more interaction anchors
that are supported by CTCF motif matches than other approaches with
competitive positional accuracy. Sprout rejects interaction events that
are not supported by pairs of reads that fit the empirical model for
inter-ligation read pairs, producing a set of interactions that are more
consistent across CTCF biological replicates than established methods.

Keywords: Chromatin Interactions, ChIA-PET, CTCF.

1 Introduction

Chromatin interactions are a key component of gene regulation as looping in-
duced interactions bring distal genomic regulatory sequences spatially proximal
to their regulatory targets [8]. Identifying the connections between regulatory el-
ements and the genes they regulate is required for understanding transcriptional
regulation. Thus, the precise characterization of looping based interactions would
help refine our understanding of how genes are controlled. Other forms of loop-
ing can implement other kinds of transcriptional regulation, such as isolating
regions of the genome from transcriptional activity [4, 13–15, 17, 20].

Recently developed molecular approaches [19] identify chromatin interactions
by producing single DNA molecules that combine pieces of DNA from both ends
of an interaction event under appropriate ligation conditions. The base sequences
at the ends of these DNA molecules are evidence in support of chromatin in-
teractions at the genomic coordinates where the observed sequences originated.
ChIA-PET is one such approach that measures chromatin interactions between
genomic sites bound by a particular protein [5]. In ChIA-PET the dilute ligation
step is preceded by fixation by formaldehyde, fragmentation by sonication, and

M. Deng et al. (Eds.): RECOMB 2013, LNBI 7821, pp. 186–198, 2013.
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chromatin immunoprecipitation using an antibody designed to target the protein
of interest. By using an antibody against a protein that is known to play a role
in maintaining genome structure [16], subsequent analysis can focus specifically
on chromatin contacts that involve that protein. However, ChIA-PET experi-
mental data are polluted by pairs of reads whose ends do not correspond to
binding events for the protein of interest. Such pairs of reads are much like the
background reads observed in ChIP-Seq data [18]. This combined with the noisy
positioning of reads around binding events presents two challenges for accurately
analyzing ChIA-PET data. The first is to accurately identify the positions of the
binding events that serve as potential anchors for interactions. The second is to
accurately assign read pairs to chromatin interaction anchors or to a background
noise model. Focusing on the set of chromatin interactions that are mediated by a
specific regulatory protein or complex permits sequencing resources to be focused
on the corresponding events. However, sophisticated computational methods are
still required to accurately discover interactions from ChIA-PET data.

Sprout is a novel computational approach for analyzing ChIA-PET data
that integrates chromatin interaction discovery with the identification of in-
teraction anchor points. Sprout accomplishes this by modeling the empirical
distribution of read positions around interaction anchors, allowing it to deter-
mine the positions of anchors and assign pairs of reads to anchors accurately.
Previous approaches to analyzing ChIA-PET data [10] have separated anchor
and interaction discovery eliminating the statistical strength that is gained from
combining the two procedures. We note that Sprout is theoretically applicable
to datasets generated using related technologies such as Hi-C [11] when sufficient
read coverage is available.

In the remainder of the paper we introduce the Sprout model, discuss our re-
sults on CTCF ChIA-PET data, and conclude with observations about Sprout’s
applicability.

2 Methods

Sprout is a hierarchical generative model for ChIA-PET data that discovers
interaction anchors, and a set of binary interactions between anchors. There are
two types of pairs of reads that are present in ChIA-PET data. Self-ligation pairs
arise from the ligation of a DNA molecule to itself. These pairs do not provide
direct information about interactions between anchors and can be thought of as
providing the same information as paired-end ChIP-Seq data. Inter-ligation pairs
arise from the ligation of two distinct DNA molecules from the same chromo-
some or different chromosomes and thus provide information about a potential
interaction.

Sprout models read-pair data with a mixture over distributions describing
the generation of self-ligation pairs and inter-ligation pairs. The components of
the model describing these two types of read pairs are themselves mixtures of dis-
tributions corresponding to the way pairs of reads are expected to be distributed
around anchors. We assume that the paired-end sequencing data generated by
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a ChIA-PET experiment have been processed appropriately resulting in a set

R = {r1, . . . , rN} such that each ri = 〈r(1)i , r
(2)
i 〉 is a pair of genomic coordinates

corresponding to the aligned positions of a pair of reads. Such processing includes
removing linker tags from the reads, filtering out pairs that are identified as
chimeric because of their heterogeneous linker tags, and aligning the reads to
the genome. The following is the likelihood of R

Pr(R, π, ψ, ρ, l) =
N∏
i=1

[
ρ

[
M∑
j=1

πj Pr(ri|lj)
]
+ (1− ρ)

[
M∑
j=1

M∑
k=1

ψj,k Pr(ri|lj , lk)
]]

(1)

Where 0 ≤ ρ ≤ 1,
∑N

i=1 πi = 1,
∑N

i=1

∑N
j=1 ψi,j = 1

Sprout identifies a set l = {l1, . . . , lM} that specifies the locations of sites
that are bound by the protein of interest and are potential anchors for inter-
actions. ρ is the probability that a pair of reads was generated by self-ligation.
Self-ligation pairs reflect the ligation of a DNA fragment to itself to form a cir-
cular fragment. Such pairs are associated with one anchor and the self-ligation
component of the model is a mixture of distributions each taking a single param-
eter to specify the location of the anchor position. These distributions take the
form Pr(ri|lj) (Fig. 1a). A relative weight πj is associated with each anchor j.
These distributions describe the length and arrangement of fragments around an
anchor which are induced by the fragmentation step of the ChIA-PET protocol.

Inter-ligation pairs can be associated with either the same anchor or two
different anchors that were in close proximity in the nucleus. The inter-ligation
component of the model is a mixture of distributions each taking two parameters
that specify the locations of the anchor(s) that the fragments were associated
with. A relative weight ψj,k is associated with each pair of anchors j and k. The
distributions Pr(ri|lj , lk) take different forms because if j = k (Fig. 1b) then
there are constraints on the ends of the fragments involved in the ligation. For
example, the fragments cannot have been overlapping since they were part of
the same chromosome prior to fragmentation. If j 	= k (Fig. 1c) it is assumed
that the ends were generated independently by two one-dimensional distributions

centered around the two anchors Pr(ri|lj , lk) = Pr(r
(1)
i |lj) Pr(r

(2)
i |lk). We also

assume that ri implicitly carries information about the strandedness of the reads
because in both the case where j = k and j 	= k the distributions depend on the
strandedness of the reads.

ChIA-PET data are noisy, and we observe reads that do not correspond to an-
chors. To account for these reads, we introduce a noise component with dummy
variable lB (B /∈ {1, . . . ,M}). In this work we consider uniform Pr(ri|lB), how-
ever knowledge about the propensity for genomic regions to generate background
noise could be incorporated into a more refined noise distribution. We assume
that Pr(ri|lj , lk) where j = B or k = B is defined in the same way as the case in

which j and k specify two different anchors: Pr(ri|lj , lk) = Pr(r
(1)
i |lj) Pr(r

(2)
i |lk)

and Pr(r
(·)
i |lj) is uniform when j = B.
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Fig. 1. These are examples of read distributions learned from CTCF ChIA-PET data.
Sprout is initially run with “generic” distributions and then the distributions are
re-estimated using the strongest events and Sprout is re-run with the empirically
learned distributions to discover more accurate predictions. (a) The positions of the
ends of self-ligation pairs are modeled using a two dimensional distribution. (b) The
positions of the ends of inter-ligation pairs where both ends are assigned to the same
anchor are also modeled using two dimensional distributions. Each of the four possible
strand combinations has its own constraints in terms of where the ends are likely to
be positioned relative to each other and to the anchor. This figure demonstrates the
distribution associated with inter-ligation pairs where both ends map to the positive
strand. (c) The positions of the ends of inter-ligation pairs are modeled separately using
one dimensional distributions.

To avoid overfitting, we wish to find a minimal number of anchors that explain
the data well while allowing the noise distribution to account for reads that are
not accounted for by anchors. Additionally, we assume that among all possible
pairs of anchors most pairs are not interacting. Thus, we wish to find a minimal
number of interacting pairs of anchors that explain the observed data. To achieve
both of these types of sparsity we introduce negative Dirichlet priors [3] on π
and ψ as specified by Eq. 2 and Eq. 3.

Pr(π|α) ∝
M∏
j=1

π−α
j (2)

Pr(ψ|β) ∝
M∏
j=1

M∏
k=1

ψ−β
j,k (3)

As will become apparent when the inference procedure is described, the α and β
parameters have the effect of specifying the minimum number of pairs of reads
that must be associated with an anchor or an interaction, respectively, in order
to avoid being eliminated from the model.

We also introduce priors on l and ρ. For l we introduce a Bernoulli prior which
reflects our prior belief that an anchor exists at a particular genomic coordinate
and that at most one anchor exists at any genomic coordinate. Given L possible
genomic coordinates,
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Pr(l|k) =
L∏

i=1

k
1(i∈l)
i (1− ki)

1(i/∈l) (4)

=
L∏

i=1

(1− ki)
M∏
j=1

klj
1− klj

(5)

∝
M∏
j=1

klj
1− klj

(6)

In this work we consider uniform k, but k could be made non-uniform to reflect
any prior belief about where anchors should be located. For ρ we introduce a
Beta prior

Pr(ρ|a, b) ∝ ρa−1(1− ρ)b−1 (7)

In this work we let a = 1 and b = 1 which is a uniform prior on ρ.
Each pair of reads is either a result of a self-ligation event or an inter-ligation

event and is associated with one or two anchors. We introduce latent variables
Z = {z1, . . . , zN} such that each zi = 〈z(1)i , z

(2)
i 〉 is a pair of anchor indices 1 . . .M

or special index B reflecting the noise distribution. Another special index is used
to indicate that a pair of reads was generated by self-ligation i.e. zi = 〈j,−〉.

The complete data likelihood is

Pr(R,Z|π,ψ, ρ, l) = Pr(R|Z, l) Pr(Z|π, ψ, ρ) (8)

=
N∏

i=1

⎡
⎣ M∏

j=1

[ρπj Pr(ri|lj)]1(zi=〈j,−〉)
M∏

k=1

[(1 − ρ)ψj,k Pr(ri|lj, lk)]1(zi=〈j,k〉)
⎤
⎦
(9)

We are interested in inferring likely values for π, ψ, ρ, and l. To accomplish this
we employ a variant of the EM algorithm [2] to maximize the complete data log
posterior

log Pr(l, π, ψ, ρ|R,Z, k, α, β, a, b)=

N∑
i=1

[
M∑
j=1

[
1(zi = 〈j,−〉) (log ρ + log πj + log Pr(ri|lj))

+
M∑

k=1

1(zi = 〈j, k〉) (log(1 − ρ) + logψj,k + log Pr(ri|lj, lk))
]]

−α
M∑
j=1

log πj − β
M∑
j=1

M∑
k=1

logψj,k +
M∑
j=1

log
klj

1 − klj

+ (a − 1) log ρ + (b − 1)(1 − ρ) + C

(10)

E Step:

γ(zi) =

∏M
j=1

[
[ρπj Pr(ri|lj)]1(zi=〈j,−〉) ∏M

k=1 [(1− ρ)ψj,k Pr(ri|lj , lk)]1(zi=〈j,k〉)
]

∑M
j=1

[
[ρπj Pr(ri|lj)] +

∑M
k=1 [(1− ρ)ψj,k Pr(ri|lj , lk)]

] (11)
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M Step:

l̂j = argmax
x

{
N∑
i=1

[γ(zi = 〈j,−〉) log Pr(ri|x) (12)

+
M∑
k=1

[γ(zi = 〈j, k〉) log Pr(ri|x, lk)]
]
+ log

kx
1− kx

}

π̂j =
max(Nj − α, 0)

Nπ
(13)

Nπ =

M∑
j=1

max(Nj − α, 0) (14)

Nj =

N∑
i=1

γ(zi = 〈j,−〉) (15)

ψ̂j,k =
max(Nj,k − β, 0)

Nψ
(16)

Nψ =

M∑
j=1

M∑
k=1

max(Nj,k − β, 0) (17)

Nj,k =
N∑
i=1

γ(zi = 〈j, k〉) (18)

ρ̂ =
Nπ + a

N + a+ b
(19)

The E and M steps are repeated until the posterior approximately converges. The
components of l that correspond to non-zero components of π are the estimated
anchor locations. Non-zero components of ψ indicate pairs of anchors that are
candidates for significance testing as interactions.

The algorithm is initialized with uniform π and l set at regular intervals
throughout the genome. Components of π that do not assign probability to any
pairs of reads are set to 0 and effectively eliminated from the model. Components
with Nj < α are eliminated shortly thereafter. In the estimation of l̂j during
each M step the components of l other than the jth component are held fixed
making this algorithm an instance of the expectation-conditional maximization
algorithm [12]. Thus, the posterior is not necessarily maximized at each iteration

but convergence to a local maximum is still guaranteed. The estimation of l̂j is
tractable, despite the lack of a closed form solution, because for the set of pairs
of reads such that γ(zi = 〈j, ·〉) > 0, Pr(ri|x) > 0 for any pair of reads in the
set for x in only a small neighborhood around the previous value of li. Only x
in that neighborhood need be considered which reduces the search space for the
optimal x considerably.

To test the significance of a component ψj,k, the posterior is recomputed
with that component removed. The greater the ratio of the posterior with the
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component to the posterior without the component, the greater the significance
of the corresponding interaction. Making the conservative assumption that all
components with Nj,k ≤ 2 are false positives, we set a threshold for the posterior
ratio to be the value such that 5% of the components deemed significant have
Nj,k ≤ 2.

3 Results

We compared the performance of Sprout to other methods by analyzing CTCF
ChIA-PET data published by Handoko et al. [7]. Reads were processed using the
LinkerRemover component of the ChIA-PET tool [10]. The pairs of reads that
were positively identified as chimeric were discarded and the rest of the reads
were aligned to the mouse genome as unpaired reads using Bowtie [9]. Only
pairs with both ends that map uniquely were considered for further analysis.
In cases where more than one pair of reads aligns to the same location at both
ends, only one pair is retained because such positional duplicates are likely to
be PCR artifacts.

For comparison, we downloaded the significant intra-chromosomal interactions
and CTCF binding events published by Handoko et al. Sprout discovers both
inter- and intra-chromosomal interactions, but for this analysis we limited our
comparison to intra-chromosomal interactions only. Sprout does not impose a
lower bound on the distance between pairs of anchors that it will consider for
identifying interactions. However, linearly proximal anchors are expected to be
spatially proximal due to random polymeric movement of the chromosome in
the space of the nucleus. Therefore, linearly proximal anchors are expected to
be called interacting by Sprout. To investigate the distance at which this effect
diminishes, we looked at the frequency at which pairs of anchors detected by
Sprout interact as a function of distance between the anchors (Fig. 2). By 4000
bp, detected interactions become very infrequent suggesting that interactions of
this distance or greater are unlikely to be due to the linear proximity effect.
The shortest range interaction published by Handoko et al. is 5928 bp, so for
comparison we only consider interactions discovered by Sprout that span at
least this distance. But, we note that Fig. 2 suggests that functional interactions
may be discoverable by Sprout at distances as low as 4000 bp.

By comparing the positions of the anchors discovered by Sprout to matches
to the CTCF motif, we discovered that Sprout positions anchors with high
accuracy, and is very sensitive compared to other methods of discovering CTCF
binding events while maintaining a high degree of specificity. For comparison,
we examined the CTCF binding event calls published by Handoko et al. as well
as binding events identified by the GEM peak calling algorithm [6] which was
run on an independent ChIP-Seq dataset [1]. It is worth noting that Handoko
et al. based their binding event predictions on the ChIA-PET data but that
their method for identifying interactions is independent of their binding event
predictions. Overall there were more motif supported events in the set of events
identified by Sprout than the other two sets. The maximum height of each
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Fig. 2. Smoothed plots of the frequency at which interacting anchors identified by
Sprout exist at distances up to 20000 bp. Beyond 4000 bp anchors are very infrequently
interacting relative to the number of possible interactions at a given distance and
individual. This suggests that interactions that are detected by Sprout that span
more than 4000 bp are not explained by the linear proximity of the anchors.

curve in Fig. 3b indicates the total number of motif supported events discovered
by each method. Furthermore, the weight assigned to events by Sprout is a
better classifier of motif supported events than the weights assigned by Handoko
et al. to the ChIA-PET events or the weights assigned to ChIP-Seq events by
GEM. The fact that the Sprout curve in Fig. 3b is always greater than the
other curves indicates that Sprout achieves greater specificity.

The anchor regions identified by Handoko et al. tend to be relatively broad
with an average width of 1997.7 bp (Fig. 4). By identifying binding events within
the anchor regions, it may be possible to recover the true anchors for the inter-
actions as a post-processing step. However, as an example of the difficulty in
interpreting such broad interaction anchor regions, 63 of the 4077 interacting
anchors identified by Handoko et al. contain more than one motif supported
binding event. One of the strengths of Sprout is that interactions called by
Sprout are directly associated with binding events, thereby reducing ambigu-
ity in interpreting the results.

Upon comparing the significant interactions identified by Sprout and Han-
doko et al., we noticed that certain significant interactions were missed by Han-
doko et al. Of the 420 significant interactions that span more than 5928 bp
identified by Sprout, 87 interactions lack a corresponding interaction identified
by Handoko et al. with both anchors within 4 kb of the Sprout identified an-
chors. Of these interactions, 64 have binding events identified by Handoko et al.
within 250 bp of the Sprout identified anchors. The fact that Handoko et al.
failed to identify several interactions between binding events that they identify
with their own method for detecting binding events indicates one of the benefits
of Sprout’s approach of integrating interaction detection with anchor detection.

Handoko et al. identified 2241 significant interactions, however many of these
interactions do not fit the model of an interaction between two distinct anchors
as defined by Sprout (Fig. 5). 200 of the Handoko et al. interactions do subsume
Sprout identified interactions and an additional 11 Handoko et al. interactions
have Sprout identified interactions with anchors within 4 kb of their anchors.
1181 of the Handoko et al. interactions that do not subsume Sprout identified
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Fig. 3. Evaluation of the accuracy of CTCF binding events predicted by Sprout and
Handoko et al. from the ChIA-PET data as well as by GEM from an independent ChIP-
Seq dataset. (a) The percentage of CTCF motif matches in the genome that have a
binding event identified within distances up to 500 bp. (b) We used the presence of
a CTCF motif match within 250 bp of an event as an approximate indicator of true
positive anchor calls. As thresholds for significance are varied for each method, the
number of true positive and false positive calls are plotted. This results in a receiver
operating characteristic curve for each method.
.
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Fig. 4. A histogram of the widths of anchors identified by Handoko et al. illustrating
the breadth of many of the anchor regions.

interactions do not contain a CTCF binding event (by their own definition) at
one or both anchors. This clearly indicates that these are unlikely to reflect true
interactions between CTCF-bound anchors. Of the remaining 860 Handoko et al.
interactions, 52 involve 0 pairs of reads and 123 involve 1 pair of reads according
to our alignment of the data. Handoko et al. used a rescue procedure in which
reads that align to multiple locations are in some cases assigned to one location.
We did not use this procedure when we aligned the reads which may explain
why Handoko et al. assign significance to interactions that do not seem to be
supported by enough read pairs without the rescue procedure. This leaves 685
Handoko et al. interactions that are supported by at least 2 pairs of reads that
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Fig. 5. Most of the interactions identified by Handoko et al. are not supported by pairs
of reads with ends that fit Sprout’s read distribution.

(a)

(b)

Fig. 6. Two interactions that are identified by Handoko et al. The boxes indicate
the anchor regions that they identify. (a) This interaction is not called significant by
Sprout because the pairs of reads that connect the anchor regions do not fit Sprout’s
model. (b) Sprout does call a significant interaction between the anchors that fall
within the Handoko et al. anchor regions because the pairs of reads that connect the
regions were likely to have been generated by the anchors within the regions according
to Sprout’s model. Note that there is a second potential anchor on the left side that
falls outside of the Handoko et al. identified region. This anchor is identified by both
Sprout and Handoko et al. and is identified by Sprout but not by Handoko et al. as
an independent interaction with the anchor on the right.
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Fig. 7. Evaluation of biological replicate consistency in interactions discovered by both
methods and in interactions identified by Handoko et al. that do not fit Sprout’s
read distributions. (a) A histogram of the difference in the number of pairs of reads
from each biological replicate that connect anchors identified by Handoko et al. that
subsume interactions called by Sprout. To account for the overall difference in signal
strength, the values were subtracted by the mean per interaction difference. There
are interactions that differ in support between the biological replicates. However, the
normalized difference in pairs between the biological replicates is most frequently close
to 0. (b) A histogram of the difference in the number of pairs of reads from each
biological replicate that connect anchors identified by Handoko et al. that are supported
by a plausible number of pairs of reads but do not fit Sprout’s read distributions. As
in (a), the differences are subtracted by the mean difference. The biological replicates
differ by one pair of reads much more frequently than they agree. This difference is
significant given that 491 out of 685 interactions in this set are only supported by 2
pairs of reads total.

do not subsume Sprout identified interactions. However, upon examination of
many of these interactions (Fig. 6), the broadness of the interaction anchors
allow pairs of reads to be considered together even though the positions of the
reads do not fit Sprout’s model of how reads should be distributed around
anchors.

Interactions supported by pairs of reads that fit Sprout’s read distributions
are more consistent across biological replicates and therefore are more likely to
represent true interactions. To demonstrate this we consider two sets of inter-
actions. One set, which we call the good fit set, includes the 200 interactions
identified by Handoko et al. that subsume Sprout identified interactions. The
other set, which we call the bad fit set, includes the 685 Handoko et al. inter-
actions that contain binding events at both anchors and are connected by at
least 2 pairs of reads but do not subsume interactions discovered by Sprout.
The first thing we noticed is that the interactions in the good fit set tend to be
supported by more pairs of reads. The average number of pairs per interaction
in the good fit set is 4.15 while for the bad fit set the average number of pairs
is 2.73. We then identified which of the biological replicates each pair of reads
came from. As can be seen in Fig 7, the biological replicates assign pairs of reads
to the interactions in the good fit set more consistently than interactions in the
bad fit set.
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4 Conclusion

Sprout uses all pairs of reads to estimate anchor positions and learns empirical
interaction read distributions to more accurately assign pairs of reads to anchors.
Sprout interaction calls are more consistent across biological replicates than
the method proposed by Handoko et al. Identifying high confidence interactions
between accurately positioned anchors is a task that is increasing in importance
as more genome structure data are produced. Utilizing data from various types of
high throughput sequencing based approaches, several successful approaches to
identifying regulatory elements have been developed. However, it is impossible to
fully understand how these regulatory elements function without putting them in
their spatial context in the nucleus. The interaction results produced by Sprout
from ChIA-PET data allow for a more accurate understanding of this spatial
context.
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Abstract. Analysis of the sequence-structure relationship in RNA
molecules are essential to evolutionary studies but also to concrete
applications such as error-correction methodologies in sequencing tech-
nologies. The prohibitive sizes of the mutational and conformational
landscapes combined with the volume of data to proceed require efficient
algorithms to compute sequence-structure properties. More specifically,
here we aim to calculate which mutations increase the most the likelihood
of a sequence to a given structure and RNA family.

In this paper, we introduce RNApyro, an efficient linear-time and space
inside-outside algorithm that computes exact mutational probabilities
under secondary structure and evolutionary constraints given as a multi-
ple sequence alignment with a consensus structure. We develop a scoring
scheme combining classical stacking base pair energies to novel isosteric-
ity scales, and apply our techniques to correct point-wise errors in 5s
rRNA sequences. Our results suggest that RNApyro is a promising algo-
rithm to complement existing tools in the NGS error-correction pipeline.

Keywords: RNA, mutations, secondary structure.

1 Introduction

Ribonucleic acids (RNAs) are found in every living organism, and exhibit a broad
range of functions, ranging from catalyzing chemical reactions, as the RNase P
or the group II introns, hybridizing messenger RNA to regulate gene expressions,
to ribosomal RNA (rRNA) synthesizing proteins. Those functions require spe-
cific structures, encoded in their nucleotide sequence. Although the functions,
and thus the structures, need to be preserved through various organisms, the se-
quences can greatly differ from one organism to another. This sequence diversity
coupled with the structural conservation is a fundamental asset for evolution-
ary studies. To this end, algorithms to analyze the relationship between RNA
mutants and structures are required.

For half a century, biological molecules have been studied as a proxy to un-
derstand evolution [1], and due to their fundamental functions and remarkably
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conserved structures, rRNAs have always been a prime candidate for phyloge-
netic studies [2, 3]. In recent years, studies as the Human Microbiome Project [4]
benefited of new technologies such as the NGS techniques to sequence as many
new organisms as possible and extract an unprecedented flow of new informa-
tion. Nonetheless, these high-throughput techniques typically have high error
rates that make their applications to metagenomics (a.k.a. environmental ge-
nomics) studies challenging. For instance, pyrosequencing as implemented by
Roche’s 454 produces may have an error rate raising up to 10%. Because there
is no cloning step, resequencing to increase accuracy is not possible and it is
therefore vital to disentangle noise from true sequence diversity in this type of
data [5]. Errors can be significantly reduced when large multiple sequence align-
ments with close homologs are available, but in studies of new or not well known
organisms, such information is rather sparse. In particular, it is common that
there is not enough similarity to differentiate between the sequencing errors and
the natural polymorphisms that we want to observe, often leading to artificially
inflated diversity estimates [6]. A few techniques have been developed to remedy
to this problem [7, 8] but they do not take into account all the available infor-
mation. It is therefore essential to develop methods that can exploit any type of
signal available to correct errors.

In this paper, we introduce RNApyro, a novel algorithm that enables us to
calculate precisely mutational probabilities in RNA sequences with a conserved
consensus secondary structure. We show how our techniques can exploit the
structural information embedded in physics-based energy models, covariance
models and isostericity scales to identify and correct point-wise errors in RNA
molecules with conserved secondary structure. In particular, we hypothesize that
conserved consensus secondary structures combined with sequence profiles pro-
vide an information that allow us to identify and fix sequencing errors.

Here, we expand the range of algorithmic techniques previously introduced
with RNAmutants [9]. Instead of exploring the full conformational landscape and
sample mutants, we develop an inside-outside algorithm that enables us to ex-
plore the complete mutational landscape with a fixed secondary structure and to
calculate exactly mutational probability values. In addition to a gain into the nu-
merical precision, this strategy allows us to drastically reduce the computational
complexity (O(n3 ·m2) for the original version of RNAmutants to O(n ·m2) for
RNApyro, where n is the size of the sequence and m the number of mutations).

We design a new scoring scheme combining nearest-neighbor models [10] to
isostericity metrics [11]. Classical approaches use a Boltzmann distribution whose
weights are estimated using a nearest-neighbour energy model [10]. However, the
latter only accounts for canonical and wobble, base pairs. As was shown by Leon-
tis and Westhof [12], the diversity of base pairs observed in tertiary structures is
much larger, albeit their energetic contribution remains unknown. To quantify
geometrical discrepancies, an isostericity distance has been designed [11], increas-
ing as two base pairs geometrically differ from each other in space. Therefore,
we incorporate these scores in the Boltzmann weights used by RNApyro.
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We illustrate and benchmark our techniques for point-wise error corrections
on the 5S ribosomal RNA. We choose the latter since it has been extensively
used for phylogenetic reconstructions [13] and its sequence has been recovered
for over 712 species (in the Rfam seed alignment with id RF00001). Using a leave
one out strategy, we perform random distributed mutations on a sequence. While
our methodology is restricted to the correction of point-wise error in structured
regions (i.e. with base pairs), we show that RNApyro can successfully extract a
signal that can be used to reconstruct the original sequence with an excellent
accuracy. This suggests that RNApyro is a promising algorithm to complement
existing tools in the NGS error-correction pipeline.

The algorithm and the scoring scheme are presented in Sec. 2. Details of
the implementation and benchmarks are in Sec. 3. Finally, we discuss future
developments and applications in Sec. 4.

2 Methods

We introduce a probabilistic model, which aims at capturing both the stability
of the folded RNA and its ability to adopt a predefined 3D conformation. To
that purpose, a Boltzmann weighted distribution is used, based on a pseudo-
energy function E(·) which includes contributions for both the free-energy and
its putative isostericity towards a multiple sequence alignment. In this model,
the probability that the nucleotide at a given position needs to be mutated
(i.e. corresponds to a sequencing error) can be computed using a variant of the
Inside-Outside algorithm [14].

2.1 Probabilistic Model

Let Ω be an gap-free RNA alignment sequence, S its associated secondary struc-
ture, then any sequence s has probability proportional to its Boltzmann factor

B(s) = e
−E(s)
RT , with E(s) := α · ES(s, S) + (1− α) · EI(s, S,Ω),

where R is the Boltzmann constant, T the temperature in Kelvin, ES(s) and
EI(s, S,Ω) are the free-energy and isostericity contributions respectively (further
described below), and α ∈ [0, 1] is an arbitrary parameter that sets the relative
weight for both contributions.

Energy Contribution. The free-energy contribution in our pseudo-energy
model corresponds to an additive stacking-pairs model, taking values from the
Turner 2004 model retrieved from the NNDB [10]. Given a candidate sequence
s for a secondary structure S, the free-energy of S on s is given by

ES(s, S) =
∑

(i,j)→(i′,j′)∈S
stacking pairs

ESβsisj→si′sj′
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where ESβab→a′b′ is set to 0 if ab = ∅ (no base-pair to stack onto), the tabulated
free-energy of stacking pairs (ab)/(a′b′) in the Turner model if available, or β ∈
[0,∞] for non-Watson-Crick/Wobble entries (i.e. neither GU, UG, CG, GC, AU
nor UA). This latter parameter allows to choose whether to simply penalize
invalid base pairs, or forbid them altogether (β =∞). The loss of precision due
to this simplification of the Turner model remains reasonable since the targeted
secondary structure is fixed (e.g. multiloops do not account for base-specific
contributions). Furthermore, it greatly eases the design and implementation of
dynamic-programming equations.

Isostericity Contribution. The concept of isostericity score [11] is based on
the geometric discrepancy (superimposability) of two base-pairs, using individual
additive contributions computed by Stombaugh et al [11]. Let s be a candidate
sequence for a secondary structure S, given in the context of a gap-free RNA
alignment Ω, we define the isostericity contribution to the pseudo-energy as

ES(s, S,Ω) =
∑

(i,j)∈S
pairs

EIΩ(i,j),sisj , where EIΩ(i,j),ab :=

∑
s′∈Ω ISO((s′i, s

′
j), (a, b))

|Ω|

is the average isostericity of a base-pair in the candidate sequence, compared with
the reference alignment. The ISO function uses the Watson-Crick/Watson-Crick
cis isostericity matrix computed by Stombaugh et al [11]. Isostericity scores range
between 0 and 9.7, 0 corresponding to a perfect isostericity, and a penalty of 10
is used for missing entries. The isostericity contribution will favor exponentially
sequences that are likely to adopt a similar local conformation as the sequences
contained in the alignment.

2.2 Mutational Profile of Sequences

Let s be an RNA sequence, S a reference structure, and m ≥ 0 a desired number
of mutations. We are interested in the probability that a given position contains
a specific nucleotide, over all sequences having at most m mutations from s
(formally P(si = x | s,Ω, S,m)). We define a variant of the Inside-Outside
algorithm [14], allowing us to compute these probability.

The former, defined in Equations (2) and (3), is analogous to the inside al-
gorithm. It is the partition function, i.e. the sum of Boltzmann factors, over all
sequences within [i, j], knowing that position i − 1 is composed of nucleotide a
(resp. j + 1 is b), within m mutations of s. The latter, defined by Equations (4)
and (5), computes the outside algorithm, i.e. the partition function over se-
quences within m mutations of s, restricted to two intervals [0, i] ∪ [j, n − 1],
and knowing that position i + 1 is composed of a (resp. j − 1 is b). A suitable
combination of these terms, given in Equation (7), gives the total weight, and
in turn the probability, of seeing a specific base at a given position.
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[Position i unpaired]

[Position i paired anywhere else]

[Paired ends + Stacking pairs]

si sja b

m

i j

a′a b

m− δa′,si

i+ 1 j

a′ b′a b

m − m′

−δa′b′,sisk m′

i+ 1 jkk − 1 k + 1

a′ b′a b

m-m′-δa′b′,sisj

i+ 1 j − 1

Fig. 1. Principle of the inside
computation (partition function).
Any sequence with mutations can
be decomposed as a sequence pre-
ceded by a, possibly mutated,
base (Unpaired case), a sequence
surrounded by some base-pair
(Stacking-pair case), or as two
sequences segregated by some
base-pair (General base-pairing
case), and mutations must be dis-
tributed between sub-sequences
and instantiated bases.

Definitions. Let B := {A,C,G,U} be the set of nucleotides. Given s ∈ Bn an
RNA sequence, let si be the nucleotide at position i. Let Ω be a set of un-gapped
RNA sequences of length n, and S a secondary structure without pseudoknots.
Formally, if (i, j) and (k, l) are base pairs in S, there is no overlapping extremities
{i, j} ∩ {k, l} = ∅ and either the intersection is empty ([i, j] ∩ [k, l] = ∅) or one
is included in the other ([k, l] ⊂ [i, j] or [i, j] ⊂ [k, l]).

Let us then remind the Hamming distance function δ : B∗×B∗ → N
+, which

takes two sequences s′ and s′′ as input, |s′| = |s′′|, and returns the number of

differing positions. Finally, let us denote by EΩ,β
(i,j),ab→ab′ the local contribution

of a base-pair (i, j) to the pseudo-energy, such that

EΩ,β
(i,j),ab→a′b′ = α · ESβab→a′b′ + (1− α) · EIΩ(i,j),a′b′ . (1)

Inside computation. The Inside function Zm
(i,j)
[a,b]

is the partition function, i.e.

the sum of Boltzmann factors over all sequences in the interval [i, j], at distance
m of s[i,j], and having flanking nucleotides a and b (at positions i− 1 and j + 1
respectively). Such terms can be defined by recurrence, for which the following
initial conditions holds:

∀i ∈ [0, n− 1] : Zm
(i+1,i)
[a,b]

=

{
1 If m = 0
0 Otherwise.

(2)

In other words, the set of sequences at distance m of the empty sequence is either
empty if m > 0, or restricted to the empty sequence, having energy 0, if m = 0.
Since the energetic terms only depend on base pairs, they are not involved in
the initial conditions. The main recursion itself is composed of four terms:



204 V. Reinharz, Y. Ponty, and J. Waldispühl

Zm
(i,j)
[a,b]

:=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
a′∈B,

δa′,si≤m

Zm−δa′,si
(i+1,j)
[a′,b]

If Si = −1

∑
a′,b′∈B2,

δa′b′,sisj≤m

e
−E

Ω,β

(i,j),ab→a′b′
RT · Z

m−δa′b′,sisj
(i+1,j−1)

[a′,b′]

Elif Si = j ∧ Si−1 = j + 1

∑
a′,b′∈B2,

δa′b′,sisk≤m

m−δa′b′,sisk∑
m′=0

e
−E

Ω,β
(i,k),∅→a′b′

RT · Zm−δa′b′,sisk−m′

(i+1,k−1)
[a′,b′]

· Zm′
(k+1,j)
[b′,b]

Elif Si = k ∧ i < k ≤ j

0 Otherwise

(3)

The cases can be broken down as follows:

Si = −1: If nucleotide at position i is unpaired, then any sequence is a con-
catenation of a, possibly mutated, nucleotide a′ at position i, followed by a
sequence over [i+1, j] having m−δa′,si mutations (accounting for a possible
mutation at position i), and having flanking nucleotides a′ and b.

Si = j and Si−1 = j + 1: Any sequence generated in [i, j] consists of two, pos-
sibly mutated, nucleotides a′ and b′, flanking a sequence over [i + 1, j − 1]
having distance m − δa′b′,sisj . Since positions i and i − 1 are paired with j
and j + 1 respectively, then a stacking energy contribution is added.

Si = k and i < k ≤ j: If position i is paired and not involved in a stacking,
then the only term contributing directly to the energy is the isostericity
of the base pair (i, k). Any sequence on [i, j] consists of two nucleotide a′

and b′ at positions i and k respectively, flanking a sequence over interval
[i + 1, k − 1] and preceding a (possibly empty) sequence interval [k + 1, j].
Since the number of mutations sum to m over the whole sequence must ,
then a parameter m′ is introduced to distribute the remaining mutations
between the two sequences.

Else: In any other case, we are in a derivation of the SCFG that does not
correspond to the secondary structure S, and we return 0.

Outside Computation. The Outside function, Y, is the partition function
considering only the contributions of subsequences [0, i] ∪ [j, n − 1] over the
mutants of s having exactly m mutations between [0, i] ∪ [j, n − 1] and whose
nucleotide at position i + 1 is a (resp. in position j − 1 it is b). The resulting
terms Ym

(i,j)
[a,b]

can be computed by recurrence, using as initial conditions:

Ym
(−1,j)
[X,X]

:= Zm
(j,n−1)
[X,X]

. (4)

The recurrence below extends the interval [i, j], by including i − 1 when po-
sition i not base paired, or extended in both directions if i is paired with a
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si sja b

m

0 i j n− 1

a′ a b

m− δa′,si

0 i− 1 j n− 1

[Position i unpaired]

a′ b′a b

m− δa′b′,sisj

0 i− 1 j + 1 n− 1

[Paired ends + Stacking pairs]

a′ b′b

m′

m− δa′b′,sisk −m′

[Position i paired to the right]

0 i− 1 j k − 1 k k + 1 n− 1

b′ a′ b

[Position i paired to the left]

m′

m− δa′b′,sisk −m′

0 k − 1 k k + 1 i− 1 i j n− 1

Fig. 2. Principle
of the outside
computation.
Note that the
outside algo-
rithm uses inter-
mediate results
from the inside
algorithm, there-
fore its efficient
implementation
requires a pre-
computation
of the inside
contributions.

position k > j. The recursion itself unfolds as follows:

Ym
(i,j)
[a,b]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
a′∈B,

δa′,si≤m

Ym−δa′,si
(i−1,j)
[a′,b]

Elif Si = −1

∑
a′b′∈B2,

δa′b′,sisj≤m

e
−E

Ω,β
(i,j),ab→a′b′

RT · Y
m−δa′b′,sisj
(i−1,j+1)

[a′,b′]

Elif Si = j ∧ Si+1 = j − 1

∑
a′b′∈B2,

δa′b′,sisk≤m

m−δa′b′,sisk∑
m′=0

e
−E

Ω,β
(i,k),∅→a′b′

RT · Ym−δa′b′,sisk−m′

(i−1,k+1)
[a′,b′]

· Zm′
(j,k−1)
[b,b′]

Elif Si = k ≥ j

∑
a′b′∈B2,

δa′b′,sksi
≤m

m−δa′b′,sksi∑
m′=0

e
−E

Ω,β

(k,i),∅→a′b′
RT · Ym−δa′b′,sksi

−m′

(k−1,j)
[a′,b]

· Zm′
(k+1,i−1)

[a′,b′]

Elif − 1 < Si = k < i

0 Otherwise

(5)
The five cases can be broked down as follows.

Si = −1: If the nucleotide at position i is not paired, then the value is the same
as if we decrease the lower interval bound by 1 (i.e. i − 1), and consider all
possible nucleotides a′ at position i, correcting the number of mutants in
function of δa′,si .

Si = j and Si+1 = j − 1: If nucleotide i is paired with j and nucleotide i + 1
is paired with j − 11, we are in the only case were stacked base pairs can
occur. We thus add the energy of the stacking and of the isostericity of the
base pair (i, j). What is left to compute is the outside value for the interval
[i − 1, j + 1] over all possible nucleotides a′, b′ ∈ B2 at positions i and j
respectively.

Si = k ≥ j: If nucleotide i is paired with position k ≥ j, and is not stacked inside,
the only term contributing directly to the energy is the isostericity of base
pair (i, k). Therefore, we consider the outside interval [i−1, k+1], multiplying
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it by the inside value of the newly included interval (i.e. [j, k − 1]), for all
possible values a′, b′ ∈ B2 for nucleotides at positions i and k respectively.

−1 < Si < i: As above but if position i is paired with a lower value.
Else: Any other derivation of the SCFG does not correspond to the secondary

structure S, and we return 0.

Combining Inside andOutsideValues into Point-WiseMutations Prob-
abilities. By construction, the partition function over all sequences at exactlym
mutations of a reference sequence s can be either described from the inside con-
tribution Zm

(0,n−1)
[X,X]

of the whole sequence, ∀X ∈ B, or from outside terms as:

Zm
(0,n−1)
[X,X]

≡
∑
a∈B,

δa,s[k]≤m

Ym−δa,s[k]

(k−1,k+1)
[a,a]

, ∀k unpaired.

We are now left to compute the probability that a given position is a given
nucleotide. We leverage the Inside-Outside construction to immediately obtain
the following 3 cases. Given i ∈ [0, n − 1], x ∈ B, and M ≥ 0 a bound on the
number of allowed mutations, one defines

P(si = x |M) :=
WM

i,[x]∑M
m=0Zm

(0,n−1)
[X,X]

(6)

where W∗∗ is defined by:

WM
i,[x] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑M
m=0 Y

m−δx,si

(i−1,i+1)
[x,x]

If Si = −1

M∑
m=0

∑
b∈B

δxb,sisk≤m

m−δxb,sisk∑
m′=0

e
−E

Ω,β
(i,k),∅→xb

RT · Ym−δxb,sisk−m′
(i−1,k+1)

[x,b]

· Zm′
(i+1,k−1)

[x,b]

If Si = k > i

M∑
m=0

∑
b∈B

δbx,sksi≤m

m−δbx,sksi∑
m′=0

e
−E

Ω,β
(k,i),∅→bx

RT · Ym−δbx,sksi−m′
(k−1,i+1)

[b,x]

· Zm′
(k+1,i−1)

[b,x]

If Si = k < i

(7)
In every case, the denominator is the sum of the partitions function of exactly m
mutations, for m smaller or equal to our target M . The numerators are divided
in the following three cases.

Si = −1: If the nucleotide at position i is not paired, we are concerned by the
weights over all sequences which have at position i nucleotide x, which is

exactly the sum of the values of Ym−δx,si

(i−1,i+1)
[x,x]

, for all m between 0 and M .

Si = k > i: Since we need to respect the derivation of the secondary structure
S, if position i is paired, we must consider the two partition functions.
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The outside of the base pair, and the inside, for all possible values for the
nucleotide at position k, and all possible distribution of the mutant positions
between the inside and outside of the base pair. We also add the term of
isostericity for this specific base pair.

Si = k < i: Same as above, but with position i pairing with a lower position.

2.3 Complexity Considerations

Equations (3) and (5) can be computed using dynamic programming. Namely,
the Z∗∗ and Y∗∗ terms are computed starting from smaller values ofm and interval
lengths, memorizing the results as they become available to ensure constant-
time access during later stages of the computation. Furthermore, energy terms
E(·) can be accessed in constant time thanks to a simple precomputation (not
described) of the isostericity contributions in Θ(n · |Ω|). Computing any given
term therefore requires Θ(m) operations.

In principle, Θ(m · n2) terms, identified by (m, i, j) triplets, should be com-
puted. However, a close inspection of the recurrences reveals that the compu-
tation can be safely restricted to a subset of intervals (i, j). For instance, the
inside algorithm only requires computing intervals [i, j] that do not break any
base-pair, and whose next position j + 1 is either past the end of the sequence,
or is base-paired prior to i. Similar constraints hold for the outside computation,
resulting in a drastic limitation of the combinatorics of required computations,
dropping from Θ(n2) to Θ(n) the number of terms that need to be computed and
stored. Consequently the overall complexity of the algorithm is Θ(n · (|Ω|+m2))
arithmetic operations and Θ(n · (|Ω|+m)) memory.

3 Results

3.1 Implementation

The software was implemented in Python2.7 using the mpmath [15] library for
arbitrary floating point precision. The source code is freely available at:

https://github.com/McGill-CSB/RNApyro

The time benchmarks were performed on a MacMini 2010, 2.3GHz dual-core
Intel Core i5, 8GB of RAM. Since typical use-cases of RNApyro require efficiency
and scalability, we present in Table 1 typical runtimes required to compute the
probabilities for every nucleotide at every positions for a vast set of parameters.
For those tests, both the sequences and the target secondary structure were
generated at random.

3.2 Error Correction in 5s rRNA

To illustrate the potential of our algorithm, we applied our techniques to identify
and correct point-wise errors in RNA sequences with conserved secondary struc-
tures. More precisely, we used RNApyro to reconstruct 5s rRNA sequences with

https://github.com/McGill-CSB/RNApyro
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Length #mutations
6 12 24

100 35s 238s 1023s
300 135s 594s 2460s

25 50
500 5400s 21003s

Table 1. Time required by the computation of
probabilities. First column indicates the length and
the column indexes indicate the number of muta-
tions. α is set at 0.5, β to 15 and |Ω| = 44.

randomly distributed mutations. This experiment has been designed to suggest
further applications to error-corrections in pyrosequencing data.

We built our data set from the 5S rRNA multiple sequence alignment (MSA)
available in the Rfam Database 11.0 (Rfam id: RF00001). Since our software does
not currently implement gaps (mainly because scoring indels is a challenging
issue that cannot be fully addressed in this work), we clustered together the
sequences with identical gap locations. From the 54 MSAs without gap produced,
we selected the biggest MSA which contains 130 sequences (out of 712 in the
original Rfam MSA). Then, in order to avoid overfitting, we used cd-hit [16]
to remove sequences with more than 80% of sequence similarity. This operation
resulted in a data set of 45 sequences.

We designed our benchmark using a leave-one-out strategy. We randomly
picked a single sequence from our data set and performed 12 random mutations,
corresponding to an error-rate of 10%. We repeated this operation 10 times. The
value of β was set to 15 (larger values gave similar results). To estimate the
impact on the distribution of the relative weights of energy and isostericity, we
used 4 different values of α = 0, 0.5, 0.8, 1.0. Similarly, we also investigated the
impact of an under- and over- estimate of the number of errors, by setting the
presumed number of errors to 50% (6 mutations) and 200% (24 mutations) of
their exact number (i.e. 12).

To evaluate our method, we computed a ROC curve representing the per-
formance of a classifier based on the mutational probabilities computed by
RNApyro. More specifically, we fixed a threshold λ ∈ [0, 1], and predicted an
error at position i in sequence ω if and only if the probability P (i, x) of a nu-
cleotide x ∈ {A,C,G,U} exceeds this threshold. To correct the errors we used
the set of nucleotides having probability greated than λ, that is C(i) = {x | x ∈
{A,C,G,U} and P (i, x) > λ and n 	= ω[i]}, where ω[i] is the nucleotide at po-
sition i in the input sequence. We note that, for lower thresholds, multiple nu-
cleotides may be available in C(i) to correct the sequence. Here, we remind that
our aim is to estimate the potential of error-correction of RNApyro, and not to
develop a full-fledged error-correction pipe-line, which shall be the subject of
further studies. Finally, we progressively varied λ between 0 and 1 to calculate
the ROC curve and the area under the curve (AUC). Our results are reported
in Figure 3.

Our data demonstrates that our algorithm exhibits interesting potential for
error-correction applications. First, the AUC values (up to 0.86) indicate that
a signal has been successfully extracted. This result has been achieved with er-
rors in loop regions (i.e. without base pairing information) and thus suggests that
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Fig. 3. Performance of error-correction. Subfigures show accuracy with under-
estimated error rates (6 mutations), exact estimates (12 mutations) and over esti-
mates (24 mutations). We also analyze the impact of the parameter α distributing
the weights of stacking pair energies vs isostericity scores and use values ranging of
α = {0, 0.5, 0.8, 1.0}. The AUC is indicated in the legend of the figures. Each individ-
ual ROC curve represent the average performance over the 10 experiments.

correction rates in structured regions (i.e. base paired regions) could be even
higher. Next, the optimal values of α tend to be close to 0.0. This finding sug-
gests that, at this point, the information issued from the consideration of stack-
ing energies is currently modest. However, specific examples showed improved
performance using this energy term. Further studies must be conducted to un-
derstand how to make the best use of it. Finally, our algorithm seems robust to
the number of presumed mutations. Indeed, good AUC values are achieved even
with conservative estimates for the number of errors (c.f. 50% of the errors, lead-
ing to Fig. 3(a)), as well as with large values (cf 200% of the errors in Fig. 3(c)).
It is worth noting that scoring schemes giving a larger weight on the isostericity
scores (i.e. for low α values) seem more robust to under- and over-estimating the
number of errors.

4 Conclusion

In this article we presented a new and efficient way of exploring the mutational
landscape of an RNA under structural constraints, and apply our techniques
to identify and fix sequencing errors. In addition, we introduce a new scoring
scheme combining the nearest-neighbour energy model to new isostericity matri-
ces in order to account for geometrical discrepancies occurring during base pair
replacements. The algorithm runs in Θ(n · (|Ω|+m2)) time and Θ(n · (|Ω|+m))
memory, where n is the length of the RNA, m the number of mutations and Ω
the size of the multiple sequence alignment.

By combining into RNApyro these two approaches, the mutational landscape
exploration and the pseudo energy model, we created a tool predicting the po-
sitions yielding point-wise sequencing error and correcting them. We validated
our model with the 5s rRNA, as presented in Sec. 3. We observed that the mod-
els with larger weights on the isostericity seems to hold a higher accuracy on
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the estimation of errors. This indicates that an exploitable signal is captured
by the isostericity. Importantly, the implementation is fast enough for practical
applications.

We must recall that our approach is restricted to the correction of point-
wise error in structured regions (i.e. base paired nucleotides). Nonetheless it
should supplement well existing tools, by using previously discarded information
holding, as shown, a strong signal.

Further research, given the potential of error-correction of RNApyro, will eval-
uate its impact over large datasets with different existing NGS error-correction
pipe-line.
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Abstract. Studies that map disease genes rely on accurate annotations
that indicate whether individuals in the studied cohorts are related to
each other or not. For example, in genome-wide association studies, the
cohort members are assumed to be unrelated to one another. Investi-
gators can correct for individuals in a cohort with previously-unknown
shared familial descent by detecting genomic segments that are shared
between them, which are considered to be identical by descent (IBD).
Alternatively, elevated frequencies of IBD segments near a particular lo-
cus among affected individuals can be indicative of a disease-associated
gene. As genotyping studies grow to use increasingly large sample sizes
and meta-analyses begin to include many data sets, accurate and efficient
detection of hidden relatedness becomes a challenge. To enable disease-
mapping studies of increasingly large cohorts, a fast and accurate method
to detect IBD segments is required.

We present PARENTE, a novel method for detecting related pairs
of individuals and shared haplotypic segments within these pairs. PAR-
ENTE is a computationally-efficient method based on an embedded like-
lihood ratio test. As demonstrated by the results of our simulations, our
method exhibits better accuracy than the current state of the art, and
can be used for the analysis of large genotyped cohorts. PARENTE’s
higher accuracy becomes even more significant in more challenging sce-
narios, such as detecting shorter IBD segments or when an extremely low
false-positive rate is required. PARENTE is publicly and freely available
at http://parente.stanford.edu/.

Keywords: Population genetics, IBD, relatedness.

1 Introduction

Genomic sequence variants such as single-nucleotide variants, insertions, and
deletions, are being constantly introduced to populations with each generation.
As mutation rates are considered to be relatively low, [10] and as genetic drift
drives allele frequencies to become fixed, it is reasonable to assume that two
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individuals carrying the same allele have actually inherited it from a common
ancestor; in such a case, the alleles can be said to be identical-by-descent (IBD).
This strict definition of IBD holds for the majority of evident human germline
mutations, and with high probability. Many biological applications, however, are
driven by the study of longer shared stretches that cover multiple mutations. Us-
ing knowledge of such longer shared segments, inferences can be made regarding
ancestry [27], population demographics [15, 19, 23], and perhaps more impor-
tant, the location of disease susceptibility genes [2, 22, 4]. For such applications,
the alleles of two individuals that were inherited from a recent common ancestor
are called IBD, whereas the alleles that simply have the same allelic state but did
not originate from a recent common ancestor are called identical-in-state (IIS).
Note that alleles that are IBD are also IIS, but multiple independent mutation
events can cause two alleles to be IIS but not IBD. It follows that in the case of
a recent common ancestor, IBD alleles are harbored within longer segments con-
taining additional IBD alleles; the more recent the common ancestor, the fewer
meiosis occurred, and the longer the shared segment. In this work, we describe
two individuals as being related to one another if they share an IBD segment
from a recent common ancestor.

Identity-by-descent (IBD) inference is defined as the process of detecting ge-
nomic segments that were inherited from recent common ancestors in a given
set of genotyped individuals. In the problem’s simplest form, a pedigree de-
scribing the connection between sampled individuals is provided with the geno-
types in order to identify the segments. Given the pedigree, a model can be
derived to explicitly capture these relationships when the genotypes are exam-
ined. The most common model used is based on a factorial hidden Markov model
(factorial-HMM) [26, 12] with a hidden state space defined by selector variables
that determine the inheritance pattern in the pedigree [18, 1, 13, 16, 20]. More
recently, such methods were extended to model linkage disequilibrium (LD) be-
tween neighboring markers, enabling the detection of shorter IBD segments [4].
The main use of these models is in the application of genetic linkage analysis.
When a hereditary disease is studied in a family of healthy and affected indi-
viduals, linkage analysis is applied to identify loci that are associated with the
hereditary disease; these loci may contain genes or regulatory elements that in-
crease the probability of having the disease. The premise of linkage analysis is
that affected individuals will share an IBD segment around the disease locus,
and that this segment is not shared (or less likely to be shared) by healthy
individuals [11, 18, 9, 24].

In the large majority of hereditary disease studies, however, the relationship
between sampled individuals is unknown. In genome-wide association studies
(GWAS), sampled individuals are assumed to be unrelated. However, it is com-
mon to have hidden relationships (also known as cryptic relationships) within
large sampled cohorts [5, 15, 17].

The accurate detection of IBD segments within these samples enables the
correction for the cryptic relationships, for example, by removing related indi-
viduals from analysis. Conversely, instead of discarding related individuals, IBD
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mapping [7, 22, 4] can be applied, directly associating the levels of IBD with
phenotype in the process of mapping disease susceptibility genes.

Extensive previous work has focused on developing methods for the accurate
detection of IBD segments without using pedigree information. Most commonly,
an HMM or a factorial-HMM is applied to infer the IBD segments. Purcell et
al. presented PLINK [25], which uses a simple three-state model, counting the
occurrences of IBD per position given the observed genotypes of two individuals.
In BEAGLE, by Browning and Browning [8], a factorial HMM was developed
to phase and simultaneously detect the specific haplotypes that are shared be-
tween examined individuals. To improve accuracy, the BEAGLE model captured
complex linkage-disequilibrium patterns by extending the state space to accom-
modate the haplotypic structure found in the data and measuring the patterns’
frequencies. In the work by Bercovici et al. the inheritance vector capturing the
relationship between two individuals was explicitly modeled, and LD was in-
corporated via a first-order Markov model at the level of the founders [4]. The
explicit modeling of both relationship and LD was shown to significantly im-
prove performance. Similar to others, the work further demonstrated that these
accurate inference methods could be used to detect the IBD enrichment evi-
dent around disease-gene loci, highlighting the value of IBD detection in the
mapping of disease susceptibility genes. Moltke et al. presented a Markov Chain
Monte Carlo (MCMC) approach for the detection of IBD regions where seg-
ments of chromosomes are it iteratively partitioned into sets of identical descent
[22]. In the above methods, there exists a tradeoff between accuracy and run-
ning time. Nonetheless, in most of the above methods, the complexity of the
analysis in all these methods is quadratic in the number of individuals. Sim-
ply, every pair of individuals must be examined for relatedness. GERMLINE,
by Gusev et al. aimed to reduce the time complexity of IBD inference at the
cost of lower accuracy [14]. The GERMLINE method performs the IBD anal-
ysis on phased data. By populating hash tables with segments taken from the
phased data, the method efficiently determines potential seeds of segments that
are shared between individuals. These segments are then extended to determine
if sufficient evidence exists to support IBD between specific pairs of individuals.
As GERMLINE requires phased data in order to operate, the individuals are
first phased using BEAGLE [6]. In a later work by Browning and Browning,
fastIBD [5] was developed to efficiently determine IBD segments between pairs
of individuals in large cohorts of thousands of samples in a feasible timeframe.
Similar to GERMLINE, fastIBD employed a sliding window approach to allow
efficient computation. Pairs of individuals sharing the same state in fastIBD’s
factorial HMM are considered in the evaluation of subsequent windows; shared
segments are extended for pairs of individuals with a high probability of IBD.
While GERMLINE provides a more time-efficient solution, previous work has
shown the method to have a reduced ability to detect more ancient IBD seg-
ments in comparison to more accurate methods such as fastIBD. As phasing can
be prohibitive when analyzing extremely large datasets, Henn et al. developed a
method aimed at detecting larger IBD segments based on reverse-homozygous
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positions that does not require phasing [15]. While providing an efficient ap-
proach for IBD detection, the method is tuned to detect larger IBD segments,
in order to achieve required specificity.

While advances in IBD detection have been made in recent years, accurately
detecting IBD in large cohorts remains a challenge. As the cost of genotyping
decreases, the number of genotyped individuals is increasing rapidly, and the
genotyping density is growing to include millions of markers per sample. Since
many of the accurate methods investigate all pairs of individuals for relatedness,
the analysis complexity grows quadratically with the number of individuals in a
studied sample. Such challenges require that IBD detection methods have high
computational efficiency. More importantly, since the vast majority of examined
pairs of individuals are unlikely to be related, an IBD detection method must
exhibit extremely high specificity in order to avoid reporting an overwhelming
number of false positives.

In this paper we present PARENTE, a novel method for the detection of
IBD that exhibits high accuracy, and can be efficiently used for the analysis of
large genotyped cohorts. PARENTE employs a variant of a likelihood-ratio test
along with local thresholding to achieve significantly higher accuracy than the
current state of the art. Our method can be applied directly on genotype data,
without needing to first phase the genotypes, a step that can be computationally-
intensive. The primary goal of our method is to efficiently detect which pairs of
individuals in large corhorts are related to one another, in feasible time. This is
done by finding pairs of individuals that share at least one IBD segment greater
than x cM in size. Once these related pairs are identified, one can determine
specific IBD segment boundaries as a post-processing step using a more com-
plex IBD detection method of higher computational cost. We further show that
PARENTE can also be directly used for the localization of the IBD segments
within the related pairs, providing highly accurate results. PARENTE was able
to successfully detect pairs of related individuals sharing a 6 cM IBD segment
(the expected average IBD segment size for 7th cousins) with 90% sensitivity
at a 5× 10−5 false positive rate. In the more challenging case of a 4 cM shared
segment, it detects related pairs with 86% sensitivity at a 8× 10−3 false positive
rate, which represents a 28% relative increase in sensitivity compared to fastIBD,
a state-of-the-art method. Finally, we observed that PARENTE is an order of
magnitude faster than fastIBD, as well. These results highlight the relevance of
our method for the accurate and efficient analysis of large cohorts.

2 Methods

The PARENTE model employs a window-based approach, whereby multiple con-
secutive markers are grouped together and their joint probability is estimated
given a hypothesized IBD state. Subsequently, the probabilities of multiple non-
overlapping windows are merged via a naive Bayes model, producing the prob-
ability for the assumed IBD state in a given block of pre-defined length. The
block lengths are derived from a target timespan covering common ancestors of
interest, and the required accuracy as driven by the application.
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Given N individuals sampled over M biallelic markers, let G be defined as the
genotype matrix. We use gi,j ∈ {0, 1, 2} to denote the major allele count observed
in the jth marker of the ith individual, and gi as the vector corresponding to
all M genotyped markers sampled for individual i. The measured genotypes G
are assumed to have originated from a set of 2N underlying hidden haplotypes,
denoted by the matrix H . The maternal and paternal alleles of the jth marker
in the ith individual are marked as hm

i,j ∈ {0, 1} and hp
i,j ∈ {0, 1}, respectively,

corresponding to the major allele count in each. More broadly, however, we use
h∗
j as a symbol to signify one of the alleles at the jth marker, corresponding

to one of the population haplotypes comprising an individual’s genotype. We
use fj to denote the major allele frequency of the jth marker in the sampled
population. The M markers covering the genome are partitioned into a set of
consecutive windows W = {w1, ..., wM

k
}, each of size k. We use m(w) to denote

the indices of the k consecutive markers within the wth window, and gi,m(w) as
the partial genotyping vector for individual i corresponding to these k markers.
Finally, we define a block B = {wt, ..., wt+k−1} as a set of consecutive windows.

For a target IBD block length l (in cM), the PARENTE method is defined as
follows. All

(
N
2

)
pairs of individuals are enumerated. For each pair of individuals,

the genome is scanned by sliding a block B across each chromosome, where each
block B starts from one of the M

k possible window positions. The examined block
B includes all successive windows that contain markers that are at most l cM
away from the first marker of the first window in that block. For each such block
B and pair of individuals i, i′, an aggregated block score ΛB(gi, gi′) is defined as
follows:

ΛB(gi, gi′) =
∑
w∈B

log sw(gi,m(w), gi′,m(w)) (1)

where sw(gi,m(w), gi′,m(w)) is a window-specific score, computed using the geno-
types of the two examined individuals i, i′ within an examined window w. We
call a pair of individuals i and i′ to be IBD in block B whenever ΛB(gi, gi′) > TB,
where TB is a pre-defined threshold associated with block B. We compute this
score for each block in the genome and call a pair of individuals to be related
if any block in the genome is called to be IBD. The threshold TB is defined
such that the false-positive rate is controlled to a desired level. The block score
ΛB(gi, gi′) can be efficiently computed along the genome of two individuals. As
blocks are scanned, window-scores corresponding to windows that are no longer
part of the newly examined block B′ are subtracted from the current block score
ΛB′(gi, gi′), and the window-scores corresponding to newly joining windows are
simply added.

In the remainder of this section we derive two instantiations for the score func-
tion sw(gi,m(w), gi′,m(w)). We first derive a score function sw using a likelihood-
ratio approach. We continue by deriving an embedded likelihood-ratio score
which corrects for the reduced performance stemming from windows exhibit-
ing high variance in the likelihood-ratio score. Finally, we will describe how the
block-specific score threshold TB is defined. In the Results section, we show
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that higher variance is associated with windows that have reduced ability to
distinguish between genotypes originating from related individuals from those
originating from unrelated individuals.

2.1 Likelihood Ratio Test

To efficiently detect IBD, we first develop a likelihood ratio-test (LRT) variant
of our method. Within a sliding block comparing two individuals’ genotypes, we
contrast the probability that the they are IBD in the block against the prob-
ability that they are are not IBD. The LRT score is computed by estimating
the likelihood of the individuals’ genotypes within each block under two models,
namely a model MIBD corresponding to the hypothesis the two examined indi-
viduals are related, and a model MIBD corresponding to the hypothesis the two
individuals are unrelated.

As suggested by Equation 1, for both MIBD and MIBD, we model the geno-
types within a block B using a naive Bayes approach whereby all windows are
independent given the IBD status of the two examined individuals within B.
The probabilities of the genotypes within each window w ∈ B comprising an ex-
amined block B are considered separately, and the product of these probabilities
defines the probability of the observed genotypes within the examined block (or
as a sum, under our log formulation). Namely, given a block of interest B, and
the genotype of two examined individuals gi and gi′ , the window-specific score
in Equation 1 is defined as:

sLR
w (gi,m(w), gi′,m(w)) =

pMIBD(gi,m(w), gi′,m(w))

pMIBD
(gi,m(w), gi′,m(w))

(2)

Under the assumption that the sampled markers are in linkage equilibrium,
meaning that the alleles within a window are not associated, the genotype prob-
abilities under the two models are given by:

pMIBD(gi,m(w), gi′,m(w)) =
∏

j∈m(w)

pMIBD(gi,j , gi′,j) (3)

pMIBD
(gi,m(w), gi′,m(w)) =

∏
j∈m(w)

pMIBD
(gi,j , gi′,j).

The probability of the genotype pair gi,j , gi′,j under our two models is then
defined as:

pMIBD(gi,j , gi′,j) =
∑

h1
j ,h

2
j ,h

3
j

p(gi,j|h1
j , h

2
j ) · p(gi′,j |h1

j , h
3
j ) · p(h1

j) · p(h2
j) · p(h3

j) (4)

pMIBD
(gi,j , gi′,j) =

∑
h1
j ,h

2
j ,h

3
j ,h

4
j

p(gi,j |h1
j , h

2
j ) · p(gi′,j |h3

j , h
4
j ) · p(h1

j) · p(h2
j) · p(h3

j) · p(h4
j)
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where p(h∗
j ) = f

h∗
j

j ·(1−fj)(1−h∗
j ) as determined by the allele frequency at marker

fj. The probability p(gi,j |h1
j , h

2
j) that the genotype gi,j was sampled given the

underlying haplotypes h1
j and h2

j , must accommodate for genotyping errors. We
define p(gi,j|h1

j , h
2
j) as follows:

p(gi,j |h1
j , h

2
j) =

{
1− ε gi,j = h1

j + h2
j

ε
2 otherwise

(5)

where the parameter ε is tuned to capture the amount of expected genotyping
error. Finally, to accommodate for missing data, we set the likelihood ratio at a
marker to 0.5 if either genotype is missing.

We note that in the above model, the individuals can share at most a single
haplotype. We further note that under the assumption of linkage equilibrium,
the equivalent of a block LRT score ΛB(gi, gi′) can be directly computed with-
out windows by using the sums of log of the genotype probabilities, as defined
by Equation 4. We utilize the window-based sw formulation described in Equa-
tion 2 to facilitate our description of an extension that accounts for local score
variability, which we now derive.

2.2 Embedded Likelihood Ratio Test

The model described thus far provides an efficient approach to identifying pairs
of individuals that share a common ancestor, and in particular to detecting spe-
cific regions that are IBD. While alleviating some of the performance-related
challenges that are evident when examining large cohorts by providing a compu-
tationally feasible approach, the model is sensitive to windows exhibiting highly
variable scores. Namely, for each block, the window-score of a small sub-set of
windows plays a critical role in the determination of the final block score. It is the
high variability of such windows that limits the performance of the likelihood-
ratio based test.

One approach that corrects for the detrimental impact of high-variance win-
dows is based on the direct examination of window-level performance. The dis-
tribution of window-score can be examined given the genotypes from unrelated
individuals, and contrasted against the distribution of the window-score given
genotypes from related individuals. By contrasting these distributions, it is pos-
sible to detect and control for the impact of highly-variable windows. Specifically,
to apply such a correction, we treat the LR described by Equation 2 as a random
variable SLR

w = sLR
w (gi,m(w), gi′,m(w)). We then define two Gaussian models for

the distribution of SLR
w , one corresponding to the distribution of the score under

related individuals, and a second corresponding to the distribution of the score
given unrelated individuals:

SLR
w |IBD ∼ N(μw,IBD, σw,IBD), SLR

w |IBD ∼ N(μw,IBD, σw,IBD). (6)
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Our modified score, which we term embedded likelihood-ratio (ELR), is finally
defined as:

sELR
w (gi,m(w), gi′,m(w)) =

P (SLR
w = sLR

w (gi,m(w), gi′,m(w))|IBD)

P (SLR
w = sLR

w (gi,m(w), gi′,m(w))|IBD)
. (7)

In total, 4 additional parameters define our new model. Namely, the mean μ
and standard deviation σ of the normal distributions used to approximate the
behavior of our initial score sLR

B under observations originating from related
and unrelated individuals. In order to estimate these parameters, phased data
is used to simulate related and unrelated individuals, yielding the means to
compute empirical estimates for the score distributions. The phased haplotypes
can be either generated from datasets containing trios, or via computationally-
phased individuals. It is important to note that current phasing methods offer
a sufficiently low switch-error rate such that their performance should have a
negligible effect when considering haplotypes within a window of moderate size.

2.3 Genotyping-Error Function

In Equation 5 we describe the probability of genotypes given the hidden under-
lying haplotype. The conditional probability p(gi,j |h1

j , h
2
j) derived accounts for

genotyping error. While providing a more realistic model, it can in fact reduce the
statistical power when failing to reject unrelated individuals. The lower power
stems from the fact the impact of reverse-homozygous genotypes is reduced; such
observations can be attributed to sampling errors rather than indication of un-
relatedness under the realistic model. One can increase the penalty under such
scenarios by controlling the genotyping error parameter ε. Our method strives to
reduce the amount of false-positive pairs detected. Thus, we extend our method
by introducing a genotyping-error function that increases the contrast between
IBD and non-IBD segments. Specifically, when estimating the model parame-
ters, we use ε as the genotyping error rate, whereas during inference, we replace
ε in Equation 5 with a function φ(ε) = v · ε, where v is a scaling factor. In the
Result section, we used v = 1

100 .

2.4 Likelihood-Ratio Test Threshold

When applying likelihood-ratio tests, thresholds are selected so as to control the
false-positive rate. Specifically, the distribution of the test is examined under
examples originating from the null distribution, and a threshold is selected to
guarantee an expected performance in terms of false-positives. It is common to
select a single, global threshold to control for the global proportion of type I
errors. However, as each block in our method contains windows of different score
distribution, a local, block-specific threshold TB can be applied to improve the
performance. In our method, we explore the distribution of ΛB(gi, gi′) given the
genotypes of unrelated individuals for each block, thus accommodating to the
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local behavior of our score. Given a training set of unrelated pairs and their
corresponding block scores Db,IBD, we define the block threshold as:

TB = max(Db,IBD) + cσDb,IBD
(8)

where σDb,IBD
is the standard deviation observed in the block-scores, and c scales

the margin defined by the standard deviation. In our experiments, we use values
between -1.5 and 2.5 for the scaling-factor c.

In the Results section, we demonstrate that the combination of ELR and
a block-specific threshold TB provides superior performance in comparison to
current state-of-the-art methods.

3 Results

The performance of PARENTE was evaluated using simulated data. We show
that PARENTE has a superior accuracy performance when compared against
fastIBD, which is considered state-of-the-art method for the accurate and
efficient detection of IBD. We further explore the relative contribution to perfor-
mance stemming from the use of the likelihood-ratio approach (LRT), the embed-
ded LRT (ELRT) approach, and finally the use of a local threshold versus a global
threshold. As a note on notation, for the remainder of this paper, we present the
window score as log sw(gi,m(w), gi′,m(w)) instead of sw(gi,m(w), gi′,m(w)).

Constructing Training and Testing Datasets. To train and evaluate the
performance of PARENTE, we used the phased data from three Asian popu-
lations of the the HapMap Phase III panel [3]: Han Chinese in Beijing, China
(CHB); Japanese in Tokyo, Japan (JPT); and Chinese in Metropolitan Denver,
Colorado (CHB). Our experiments used polymorphic SNPs from the long arm of
human chromosome 1. We randomly partitioned the unrelated individuals from
these populations into a set of 154 training haplotypes and a set of 366 testing
haplotypes. To create a larger dataset of unrelated individuals, we used the orig-
inal haplotypes to generate composite haplotypes by simulating mosaics of the
original haplotypes using an approach similar to [8]. Briefly, to generate a com-
posite haplotype, we considered every 0.2 cM segment across the chromosome;
for each segment, we copied the corresponding segment from one of the origi-
nal haplotypes chosen uniformly at random. Due to the random process, some
longer segments of two composite haplotypes were copied from the same origi-
nal haplotype. Therefore, we removed 36 composite haplotypes that had more
than 0.8 cM of contiguous sequence that was generated from the same original
haplotype as another composite haplotype. A total of 500 composite training
haplotypes and 1, 000 composite testing haplotypes were generated. In all of our
experiments we use these composite haplotypes for training and testing. Thus,
henceforth, we will refer to these composite haplotypes as simply training and
testing haplotypes.
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Fig. 1. (a) Performance of PARENTE for detecting related pairs of individuals shar-
ing 4 cM IBD segments in comparison to fastIBD. PARENTE was applied using three
different strategies: LRT, LRT with local thresholding, and ELRT. The magnified in-
set highlights PARENTE’s superior performance when considering the high-specificity
range. (b) Performance of PARENTE for detecting IBD segments compared to fastIBD.
The same experiments from (a) were used, but the sensitivity and false positive rate
were calculated based on the number of SNPs in IBD and non-IBD segments. Similarly,
the magnified inset highlights PARENTE’s superior performance in the high-specificity
range.

Simulations to Evaluate Performance. To evaluate and characterize the
performance of PARENTE, we created simulated pairs of related individuals
that shared a single IBD segment of a specific size, ranging between 3 and 8 cM.
We used a bootstrap approach to measure accuracy, using 100 trials per exper-
iment, averaging the results of all trials within an experiment. For each trial,
we simulated 80 pairs of related individuals by generating 80 pairs of composite
individuals and inserting one shared IBD segment of a given size at a random
position along the chromosome. After genotypes were copied and IBD was in-
jected, a genotypic error rate of ε = 0.005 was applied, changing the genotype
call to one of the other two genotypes with equal probability. We designated
the first simulated individual of each pair to be a query individual and the sec-
ond individual as the database individual. Then we used PARENTE to predict
whether IBD existed between each query individual and all database individuals
by labeling a pair as IBD if at least one block had a score passing the block-
specific threshold. We calculated sensitivity as the number of IBD pairs correctly
predicted out of 8,000 true IBD pairs per experiment, and false positive rates
as the number of non-IBD pairs incorrectly predicted as IBD out of the 632,000
non-IBD pairs per experiment.

When aiming to detect IBD segments of a particular length L (in cM), we
defined the blocks to have the largest size possible l such that L − 0.5 ≤ l ≤
L − 0.1. We used block sizes slightly smaller than the target IBD segment size
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to account issues related to block-boundary, stemming from the varying density
of the SNP array and the fact that blocks start at window boundaries (and not
at arbitrary SNPs). This was done to increase the likelihood that at least one
block fit completely within the any arbitrary IBD segment of length L.

In all our experiments, we used a window size of k = 20 SNPs per window,
and simulated a single 4 cM segment for each related pair of individuals, except
where stated otherwise.

PARENTE’s Accuracy and Comparison to Fastibd. Our goal was to
produce a fast, accurate method to predict IBD. We thus compared the perfor-
mance of PARENTE to fastIBD [5], an efficient IBD detection method. fastIBD
was previously shown to have higher accuracy than GERMLINE [14], a scalable
IBD detection platform, and comparable accuracy to BEAGLE’s slower, high-
accuracy IBD inference method [8]. We evaluated the performance of fastIBD on
our simulated dataset using the default parameters and IBD detection thresholds
ranging from 1 × 10−6 to 1 × 10−30. Following fastIBD’s authors recommenda-
tions, we ran fastIBD ten times with ten different seeds and aggregated the
results by taking the minimum score observed at each position in any of the
runs. We applied a size filter to the fastIBD predictions, only considering called
segments longer than 1 cM, a value selected for yielding the best performance
for fastIBD. fastIBD further recommends providing additional genotypes to aid
in training fastIBD’s internal haplotype model. Our experiments indicate that
the use of additional haplotypes did not increase the performance (results not
shown). As fastIBD infers IBD segments from all pairs in a given cohort, all the
query and database individuals was provided simultaneously, while only consid-
ering calls that were made between query and database individuals, following
PARENTE’s mode of operation.

To compare the accuracy of PARENTE and fastIBD, we performed the sim-
ulations described above, measuring accuracy on detecting which pairs of indi-
viduals shared a simulated 4 cM IBD segment. The results shown in Figure 1a
demonstrate that PARENTE has a significantly higher accuracy in comparison
to fastIBD when detecting pairs of related individuals. This difference in sensi-
tivity further grows at high-specificity levels, which is a crucial parameter when
analyzing large cohorts. Note that the use of a local threshold for the ELRT
provides superior high-specificity performance over a global threshold strategy.
In the case of the LRT, the local threshold provides a large increase in sensitivity
at all specificity levels. We further compared the performance of PARENTE and
fastIBD in the task of accurately determining the location and boundaries of
IBD segments (see Figure 1b). Our experiments demonstrate that PARENTE
achieves higher per-SNP, per-pair accuracy when compared to fastIBD. We note
that when running fastIBD for this analysis we did not enforce the called seg-
ment size filter, as fastIBD performed better when the filter was not applied.
The sensitivity for each related pair of individuals was measured as the fraction
SNPs in the simulated IBD segment successfully detected to be IBD. For all
pairs in the experiment, we measured the false positive rate as the fraction of
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SNPs not in IBD segments that were incorrectly called as IBD. Since blocks can
overlap in PARENTE, we labeled a SNP as IBD if it belonged to any block that
had a score above the threshold.

We characterized PARENTE performance on a range of simulated IBD seg-
ment sizes from 3 cM to 8 cM, as depicted in Figure 2. These results show that
PARENTE excels at high-specificity detection of IBD segments. For instance,
PARENTE was able to successfully detect 8 cM IBD segments with 94% sen-
sitivity and nearly zero false positive rate, and 6 cM IBD segments with 90%
sensitivity and a 5× 10−5 false positive rate.

As efficiency is key in the analysis of large cohorts, we measure execution
time. In our experiments, the running time for PARENTE was approximately
10 times less than that of fastIBD. Specifically, PARENTE was able to process
∼15 individual pairs per second on our trials of 6,400 pairs. Note that we mea-
sured running time in pairs per second as fastIBD analyzes all pairs within a
cohort, whereas PARENTE was run on all pairings between query and database
individuals.

Fig. 2. Performance of PARENTE for detecting related pairs of individuals sharing
IBD segments of various sizes. The magnified inset shows PARENTE’s high sensitivity
achieved at near-zero false positive rates for larger IBD segments.

Training PARENTE’s Model and Thresholds. In order to compute our
embedded LRT score, PIBD and PIBD first need to be evaluated for every window
w. Simulated pairs of related and unrelated individuals was used for this pro-
cess (see Equations 6,7). Simulated pairs of related individuals’ genotypes were
simulated so that each pair shared one entire haplotype along the chromosome.
Specificially, each pair of related genotypes was generated by randomly selecting
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one haplotype from the training data to be shared by both genotypes as well
as a unique haplotype for each genotype so that three distinct haplotypes were
sampled. Pair of unrelated genotypes were simulated by randomly choosing four
distinct training haplotypes, using two of the haplotypes for one genotype and
the remaining two haplotypes for the second genotype. A total of 2, 000 pairs
of related genotypes and 2, 000 pairs of unrelated genotypes were generated.
For each window w and each pair of related and unrelated genotypes, we com-
puted the LRT score assuming a genotyping error rate of ε = 0.005; we then fit
window-specific normal distributions to the scores of related and unrelated pairs
resulting in (μw,IBD, σw,IBD) and (μw,IBD, σw,IBD), respectively.

Fig. 3. (a) For each window, the mean window score of the IBD and non-IBD training
data was computed; the histogram of these means is shown for the LRT and ELRT
scores. When compared to the LRT score, the ELRT score has more separation between
the IBD and non-IBD distributions, the boundary between them becomes centered
at zero, and the IBD score variance is reduced. (b) Mean and standard deviation of
window LRT scores and ELRT scores for IBD training data was computed. Each point
represents a specific window, with the same color used to denote the same window
in both plots. This illustrates the extent to which the ELRT reduces the variance of
windows with high-variance, low-negative-mean LRT scores. (c) For a particular block,
a histogram of the scores observed in the training data are shown. As with windows, the
ELRT block scores feature better separation between IBD and non-IBD individuals,
with a boundary close to zero. (d) Scores and thresholds across a chromosomal segment
based on training data. The red line represents the mean score for non-IBD training
data and the dark blue line represents the mean score for IBD training data. The
yellow dashed line is the score for a single unrelated pair at each block. The dotted
black line shows a local, block-specific threshold. This figure illustrates the consistent
and improved separation between IBD and non-IBD score distributions at blocks across
the chromosome for the ELRT over the LRT.

Embedded LRT and Local Thresholds. We computed the LRT and ELRT
scores for windows and blocks for the unrelated and related training data and
examined their properties in order to explore the differences between the ELRT
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and LRT strategies. Figure 3a shows the distribution of the average window-
score for IBD and non-IBD segments. The figure demonstrates three notable
properties of the ELRT, when compared to the LRT. First and foremost, there
is greater separation between the scores of IBD and non-IBD segments; second,
the boundary between the scores of IBD and non-IBD segments is very close to
zero, suggesting well calibrated scores; third, the variance of the scores of IBD
segments is controlled. To understand the role of the ELRT’s reduction variance
of the IBD window scores, we plotted the mean and standard deviation of the
window scores for ELRT versus LRT (see Figure 3b). Note that the ideal score
distribution for IBD segments would have a high mean and low variance in order
to serve as a reliable predictor for the IBD state. Therefore, these plots clearly
demonstrate that ELRT controls for windows that are unreliable predictors of
IBD. Specifically, the windows with high variance and low negative mean LRT
scores (the blue and violet points in the figure) are mapped to lower variance
ELRT scores. We note that even though there is a negative trend between the
average LRT scores and average ELRT scores, the ELRT scores stay above zero,
the apparent boundary between IBD and non-IBD scores. The ELRT advantages
at the window level translate to the block level, as seen in Figure 3c. This
greater block score separation consequently allows PARENTE to achieve higher
accuracy when using the embedded LRT score. In Figure 3d, the mean of these
distributions can be seen for many blocks along chromosome, demonstrating
the stability of the increased separation of the ELRT across the chromosome.
This figure also shows the high variation in the block thresholds in for the LRT,
which explains why the LRT’s performance increases significantly when using
block-specific thresholds compared to a global threshold.

Accuracy Performance Characteristics. Finally, we conducted additional
experiments aimed at characterizing the performance of PARENTE. Specifically,
we examined the effect of genotyping errors, the use of the genotyping-error
function φ(ε), and the effect of varying the window size k. First, we explored
PARENTE’s performance with and without φ(ε), assessing differences in accu-
racy. When using φ(ε) with the scaling factor v = 1

100 , PARENTE’s sensitivity
increased from 75% to 86% at the 1% FPR level. The improvement in sensitivity
further increased at the 0.1% FPR level, from 45% when using ε to 73%, when
φ(ε) was applied. Next, we demonstrated that PARENTE is robust to changes in
the window size parameter. IBD pairs were inferred on simulations with 4 cM in-
jected IBD segments for a window size of 10, 20, and 30 SNPs per window. When
using the LRT score, PARENTE’s sensitivity changed less than 0.5% at the 0.1%
FPR level. The differences were due to the fact that block boundaries were gen-
erated to begin and end at window boundaries, resulting in block definitions
that were slightly different given the window size. As noted earlier, the varying
windows size does not effect the LRT score, as the window-based model is equiv-
alent to the direct computation of the score at the block level. Simply, the LRT
score of a block can be equivalently computed by summing the individual SNP
LRT scores or the window LRT scores. When using the embedded LRT score,
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PARENTE’s sensitivity varied by less than 2% at the 0.01% FPR level across
the different window sizes. These differences can be attributed to differences in
the window models as well as block boundary differences. Finally, we explored
the extent to which genotyping errors affected PARENTE’s performance. To this
end, we repeated the simulations but introduced genotyping errors at different
rates: 1%, 0.5%, and 0%. The model parameters ε and φ(ε) were unchanged from
previously described experiments, being set to ε = 0.005 and ε

100 , respectively.
We found that at the 0.1% FPR level, the sensitivity increased from 66% to
74% to 76% for the 1%, 0.5%, and 0% error rates, respectively. These results
illustrate that PARENTE is robust to a realistic range of error rates of less
than 0.5%.

4 Discussion

To improve computational efficiency when applying the described scoring func-
tions, the log window score log sw(gi,m(w), gi′,m(w)) can be pre-computed for all
possible pairs of genotypes for every window. For instance, with a window size
of 5 SNPs, each window requires only (35)(35+1)

2 = 29, 646 values per window.
The block score Λb(gi, gi′) can then be computed efficiently by retrieving and
summing these values.

The model presented here assumes markers within each window are in linkage
equilibrium. One approach to satisfy this assumption is via marker pruning using
tools such as PLINK [25]. Alternatively, our model can be extended so as to
incorporate the LD evident between neighboring markers. Previous work has
shown that modeling LD can improve the performance of IBD methods [4].

In our work, the applied block-specific threshold strategy was based on the
observed scores of unrelated pairs in the training data. The rationale behind this
approach was to extremely control for false positions, since we aim to identify
IBD in extremely large cohorts. Therefore, we calculated the threshold based on
the maximum and variance of the observed training scores and a provided con-
stant, c (see Equation 8). The default value c = 0 yielded a threshold with good
performance (82% sensitivity at a 3×10−3 FPR for the embedded LRT); c can be
adjusted to achieve the preferred tradeoff between specificity and sensitivity. We
have observed that the margin between the related and unrelated distributions
varies between blocks (see Figure 3). One may be able to increase sensitivity
without loss of specificity by increasing the thresholds at blocks where the mar-
gin is large. In future work, we aim to explore additional stronger thresholding
schemes in order to increase PARENTE’s accuracy.

PARENTE makes the assumption that IBD segments along the genome are in-
dependent of one another, which holds true for distant relatives with relatively
small IBD segments (eg 5 cM) that are expected to have at most one shared
IBD segment. The assumption may not hold true for closely-related individuals,
which are expected to share several IBD segments. However, due to the close
relationships in these scenarios, these IBD segments also tend to be very large.
Because PARENTE can accurately detect individual small IBD segments, it can
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Table 1. As window size increases, a Gaussian distribution fits window LRT scores
better. Given a window size (SNPs per window), the Kolmogorov−Smirnov test was
performed on the scores of the training data for each window along the chromosomal
segment. The mean p-value of all the windows is reported here.

SNPs per window
3 5 10 15 20

Mean non-IBD KS p-value 7e-12 4e-11 8e-7 5e-6 2e-5
Mean IBD KS p-value 1e-9 4e-5 0.003 0.008 0.017

also detect each individual larger IBD segment, without needing to take into
account that several large IBD segments may appear across the genome.

Our model uses a normal approximation of the LRT score distribution in or-
der to compute the ELRT scores. With a window size of 20 SNPs per window,
as used in our experiments, the LRT score distributions of most windows rea-
sonably follow a Gaussian distribution. Naturally, however, for smaller window
sizes (such as 3 SNPs window), most windows had score distributions that does
not fit a Gaussian distribution. The poor approximation of the LRT score via
a Gaussian distribution resulted in reduced performance (results not shown).
We quantified window LRT score normality across various window sizes by us-
ing a Kolmogorov−Smirnov (KS) test on the related and unrelated training
LRT scores for each window. The mean p-value of all the windows along the
chromosome was computed. Table 1 shows these results, illustrating that the
approximation using a Gaussian distribution provides a better fit as the window
size increases. These observations indicate that it may be worthwhile to explore
alternative parametric and empirical distributions for LRT, evaluating their im-
pact on PARENTE’s accuracy, especially when using small window sizes.

In this paper we presented PARENTE, a novel method for the accurate and ef-
ficient detection of IBD. Our results demonstrate that PARENTE has a superior
accuracy in comparison to previous state-of-the-art methods, especially when set
to control for extremely low false-positive rates. Furthermore, the methods ef-
ficiency enables the analysis of large-cohorts sampled over dense marker sets.
As larger dataset are collected and sampled at an increasingly higher resolution
via next-generation sequencing [21, 28], efficient methods such as PARENTE
that can operate on non-phased genotype data become vital for their analysis.
PARENTE is publicly and freely available at http://parente.stanford.edu/.
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Abstract. Genetic adaptation to external stimuli occurs through the
combined action of mutation and selection. A central problem in genet-
ics is to identify loci responsive to specific selective pressures. Over the
last two decades, many tests have been proposed to identify genomic sig-
natures of natural selection. However, the power of these tests changes
unpredictably from one dataset to another, with no single dominant
method. We build upon recent work that connects many of these tests in
a common framework, by describing how positive selection strongly im-
pacts the observed site frequency spectrum (SFS). Many of the proposed
tests quantify the skew in SFS to predict selection. Here, we show that
the skew depends on many parameters, including the selection coefficient,
and time since selection. Moreover, for each of the different regimes of
positive selection, informative features of the scaled SFS can be learned
from simulated data and applied to population-scale variation data. Us-
ing support vector machines, we develop a test that is effective over all
selection regimes. On simulated datasets, our test outperforms existing
ones over the entire parameter space. We apply our test to variation data
from Drosophila melanogaster populations adapted to hypoxia, and iden-
tify new loci that were missed by previous approaches, but strengthen
the role of the Notch pathway in hypoxia tolerance.

Natural selection works by preferentially expanding the pool of beneficial (fit)
alleles. At the genetic level, the increased fitness may stem either from a de
novo mutation that is beneficial in the current environment, or from a new
environmental stress leading to increased relative fitness of standing variation.
Over time, haplotypes carrying these variants start to dominate the population,
causing reduced genetic diversity. This process, known as a ‘selective sweep’, is
mitigated by recombination and is therefore mostly observed in the vicinity of
the beneficial allele. Improving our ability to detect the genomic signatures of
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natural selection is crucial for shedding light on genes responsible for adaptation
to selective constraints, including disease.

Following Fu [1], let ξi denote the number of polymorphic sites at frequency
i/n in a sample of size n. The site frequency spectrum (SFS) vector ξ, and the
scaled SFS vector ξ′, are defined as:

ξ = [ξ1, ξ2, . . . , ξn−1] ξ′ = [1ξ1, 2ξ2, . . . , (n− 1)ξn−1] (1)

In a constant sized population evolving neutrally, it has been shown [1] that
E(ξi) = θ/i for all i = (1, . . . , n − 1). This implies that each ξ′i (= iξi) is an
unbiased estimator of θ, and that the scaled SFS ξ′ is uniform in expectation.
However, for populations evolving under directional selection this is not the case.
Individuals carrying a favorable allele are preferentially chosen to procreate with
probability ∝ 1+s, where s is the selection coefficient. As a result, the frequency
of the favored allele and of those linked to it rises exponentially with parameter s,
eventually reaching fixation at a rate dependent on s. Not surprisingly, direc-
tional selection has a dramatic effect on the scaled SFS. Near the point of fix-
ation, the scaled SFS is characterized by an abundance of very high frequency
alleles, and a near-absence of intermediate frequency alleles. Notably, the scaled
SFS of regions evolving under directional selection differs from that of regions
evolving neutrally even in the pre-fixation and post-fixation regimes. Many tests
of neutrality have been proposed based on the site frequency spectrum [2–4]. To
a first approximation, these tests operate by quantifying the ‘skew’ in the SFS
of a given population sample, relative to the expected under neutral conditions.
A subset of these tests do this by comparing different estimators of the popula-
tion scaled mutation rate θ = 4Neμ, where μ is the mutation rate and Ne the
effective population size.

Under neutrality, any weighted linear combination of ξ′ yields an unbiased
estimator of θ. Thus, known estimators such as Tajima’s θπ and Fay & Wu’s θH
[2, 3] can be re-derived simply by choosing appropriate weights [5]. Since differ-
ent estimators of θ are affected to varying extents by directional selection, many
tests of neutrality, such as Tajima’s D and Fay & Wu’s H, are based on taking
the difference between two estimators. These, also, can be defined as weighted
linear combinations of ξ′. In both cases, the expected value of (D,H) is 0 under
neutral evolution, but < 0 for populations evolving under directional selection.
A potential caveat of these tests is that although the scaled SFS changes consid-
erably with time under selection (τ), and with the selection coefficient (s), the
test statistic applies a fixed weight function. It is therefore not surprising that
the performance of these tests varies widely depending on the values of s and τ .

Here, rather than inferring selection using fixed summary statistics (such as
θ-based tests) on the scaled SFS, we propose inferring it directly using super-
vised learning. Specifically, we use Support Vector Machines (SVMs) trained on
data from extensive forward simulations of the Wright-Fisher model under var-
ious parameters. Being uniform in expectation under neutrality, the scaled SFS
provided a natural choice of features to learn from. We considered the relative
importance of features for classifying neutrality from different regimes of positive
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selection, and characterized commonalities in these features across the parameter
space. Rather than a fixed weight function (model) that only performs well under
certain regimes of selection, we were able to learn multiple weight functions of
the scaled SFS, each corresponding to a different regime of natural selection, and
each providing optimal performance in its respective regime. Combined, these
resulted in a test that improves over existing methods when applied to simulated
data. Using this as foundation, we develop an algorithmic framework, SFselect,
with which we can apply these principles to real population polymorphism data.
Additionally, we develop a similar approach, XP-SFselect, for cross population
testing based on the two-dimensional SFS [6–8].

We applied XP-SFselect to data obtained from in-laboratory selection exper-
iments on Drosophila melanogaster in hypoxic (4% O2) conditions [9]. In that
study, we used existing methods to identify elements of the Notch pathway as
evolving under positive selection. Here, in addition to the previously identified
regions, we show the Notch gene itself to be affected by a selective sweep, further
implicating the Notch pathway as playing a crucial role in hypoxia tolerance.

Although there have been recent applications of machine learning to SFS-
based and LD-based summary statistics for inferring selection [10–12], to the
best of our knowledge, our study represents the first attempt to apply supervised
learning directly to the scaled SFS to this end.

References

[1] Fu, Y.X.: Statistical properties of segregating sites. Theor. Popul. Biol. 48, 172–
197 (1995)

[2] Tajima, F.: Statistical method for testing the neutral mutation hypothesis by DNA
polymorphism. Genetics 123, 585–595 (1989)

[3] Fay, J.C., Wu, C.I.: Hitchhiking under positive Darwinian selection. Genetics 155,
1405–1413 (2000)

[4] Chen, H., Patterson, N., Reich, D.: Population differentiation as a test for selective
sweeps. Genome Res. 20, 393–402 (2010)

[5] Achaz, G.: Frequency spectrum neutrality tests: one for all and all for one. Ge-
netics 183, 249–258 (2009)

[6] Chen, H., Green, R.E., Paabo, S., Slatkin, M.: The joint allele-frequency spectrum
in closely related species. Genetics 177, 387–398 (2007)

[7] Gutenkunst, R.N., Hernandez, R.D., Williamson, S.H., Bustamante, C.D.: Infer-
ring the joint demographic history of multiple populations from multidimensional
SNP frequency data. PLoS Genet. 5, e1000695 (2009)

[8] Nielsen, R., Hubisz, M.J., Hellmann, I., Torgerson, D., Andres, A.M., Albrechtsen,
A., Gutenkunst, R., Adams, M.D., Cargill, M., Boyko, A., Indap, A., Bustamante,
C.D., Clark, A.G.: Darwinian and demographic forces affecting human protein
coding genes. Genome Res. 19, 838–849 (2009)

[9] Zhou, D., Udpa, N., Gersten, M., Visk, D.W., Bashir, A., Xue, J., Frazer,
K.A., Posakony, J.W., Subramaniam, S., Bafna, V., Haddad, G.G.: Experimen-
tal selection of hypoxia-tolerant Drosophila melanogaster. Proc. Natl. Acad. Sci.
U.S.A. 108, 2349–2354 (2011)



Learning Natural Selection from the Site Frequency Spectrum 233

[10] Lin, K., Li, H., Schlötterer, C., Futschik, A.: Distinguishing positive selection
from neutral evolution: Boosting the performance of summary statistics. Genet-
ics 187(1), 229–244 (2011)

[11] Pavlidis, P., Jensen, J.D., Stephan, W.: Searching for footprints of positive selec-
tion in whole-genome snp data from nonequilibrium populations. Genetics 185(3),
907–922 (2010)

[12] Kern, A.D., Haussler, D.: A population genetic hidden markov model for detecting
genomic regions under selection. Molecular Biology and Evolution (2010)



Considering Unknown Unknowns -

Reconstruction of Non-confoundable Causal
Relations in Biological Networks

Mohammad Javad Sadeh, Giusi Moffa, and Rainer Spang

Institute of Functional Genomics,
Computational Diagnostics Group, University of Regensburg,

Josef Engertstr. 9, D-93053 Regensburg. Germany
{mohammed.sadeh,giusi.moffa,rainer.spang}@klinik.uni-r.de

https://genomics.uni-regensburg.de/site/spang-group

Abstract. Our current understanding of cellular networks is rather in-
complete. We miss important but sofar unknown genes and mechanisms
in the pathways. Moreover, we often only have a partial account of the
molecular interactions and modifications of the known players. When
analyzing the cell, we look through narrow windows leaving potentially
important events in blind spots. Network reconstruction is naturally con-
fined to what we have observed. Little is known on how the incomplete-
ness of our observations confounds our interpretation of the available
data.

Here we ask the question, which features of a network can be con-
founded by incomplete observations and which cannot. In the context of
nested effects models, we show that in the presence of missing observa-
tions or hidden factors a reliable reconstruction of the full network is not
feasible. Nevertheless, we can show that certain characteristics of signal-
ing networks like the existence of cross talk between certain branches
of the network can be inferred in a non-confoundable way. We derive a
test for inferring such non-confoundable characteristics of signaling net-
works. Next, we introduce a new data structure to represent partially
reconstructed signaling networks. Finally, we evaluate our method both
on simulated data and in the context of a study on early stem cell dif-
ferentiation in mice.

Keywords: Biological networks, Network reconstruction, Nested Ef-
fects Models, Hidden variables.

1 Introduction

In February 2002, Donald Rumsfeld, the then US Secretary of Defense, stated at
a Defense Department briefing: “There are known knowns. There are things we
know that we know. There are known unknowns. That is to say, there are things
that we now know we dont know. But there are also unknown unknowns. There
are things we do not know we dont know” [1]. The concept of unknown unknowns
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is eminent to many fields of research. In the context of biological networks, known
knowns make up our literature knowledge on physical and functional interactions
of signaling molecules. Known unknowns might be what our current research
projects are about, but unknown unknowns are those cellular mechanisms that
we do not even anticipate today. They can be best appreciated in a historic
perspective: Today, the role of many micro RNAs and epigenetic modifications
of chromatin structure are known known mechanisms in many pathways. For
other instances they are still in the realm of known unknowns. But going back 15
years in history they were unknown unknowns. Models of signaling pathways did
not include them and the vast majority of molecular biologists did not anticipate
the important role they play.

Once unknown unknowns become known, two different scenarios can occur:
(i) The new observations can add to our understanding of a network or (ii)
they can fundamentally change our perspective of the networks. In scenario (i)
the network becomes more nodes and edges but the already existing parts of the
network do not change. In scenario (ii), we learn that our old working hypothesis
of the network was confounded by the mechanisms we were not aware of. The
hidden effects of unknown unknown players made the interplay of the known
players appear different than they really are.

This raises the question what of our current understanding of biological net-
works can be confounded by hidden mechanisms and what can not. We believe
the question can only be addressed meaningfully in the context of a formal sta-
tistical network reconstruction framework, like Bayesian networks [2], gaussian
graphical networks [3], boolean networks [4], or nested effects models [5].

In these frameworks, unknown unknowns are a set of hidden nodes. Together
with the observed nodes they form a directed large biological network. The edges
of the network encode causal relations. This means that if there is a directed
edge from A to B, then perturbing A leads to changes in B. We call this large
network the ground truth network (GTN). In practice it is almost always un-
known. Observed and modeled is only a subset of the GTN nodes resulting in a
”current state of the art network” (CSAN). This network only connects observed
nodes. Importantly, in the GTN the hidden nodes can affect the observed nodes.
A CSAN is reconstructed correctly, if it is identical to the subnetwork that the
observed nodes form in the GTN. However, such a subnetwork does not need to
exist [6]. Clearly, in such a case every network built exclusively from observed
nodes is incorrect.

The problem of hidden nodes in network analysis has been recognized for a
long time, e.g. in causal inference theory [7]. In the context of Bayesian network
reconstruction, the structural EM algorithm can be used [8] to account for some
missing observations. Moreover, the concept of structural signatures facilitates
the detection and approximate location of a hidden variable in a network [6].
However, latent variable approaches are only practical if the number of hidden
nodes is small, an assumption that is questionable, and it is often violated in the
domain of molecular biology.
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The reconstruction of a correct subnetwork from very incomplete observations
might be too ambitious. Alternatively, one can strive for deriving features of a
network that are correct, no matter what is going on outside of the observation
window. Colombo et al. [9] introduced the concept of partial ancestral graphs
(PAG) extending work in [10]. A PAG describes the common causal features
of all directed acyclic graphs (DAGs) that can not be reliably distinguished
if one accounts for possible effects of hidden nodes. The PAG is not a fully
resolved network. Its information content lies in the features of the networks
it excludes, since this exclusion is guaranteed not to be an artifact caused by
hidden nodes. The inference is not confoundable. Colombo et al. [9] describe a
computationally efficient algorithm that allows for the asymptotically consistent
estimation of sparse high dimensional PAGs. A charming feature of the method
is that it works exclusively using observational data. Practical drawbacks are
the limited biological interpretability of general Bayesian networks learned on
gene expression data and missing to exploiting functional information revealed
in cell perturbation experiments. In fact, applications to molecular biology have
not been reported to date.

Here we consider the concept of a partial but not confoundable network recon-
struction in the context of nested effects models (NEMs) [5]. NEMs differ from
the more general networks designed by Colombo et al. in two ways: (i) They are
learned from interventional data, (ii) All edges except for those involving leaf
nodes encode deterministic information flow, e.g. local transition probabilities
are zero or one. NEMs assume that the cellular information flow is deterministic,
stochasticity only comes in via noisy observations [11]. These features make not
confoundable network inference simpler and allow for straightforward applica-
tions in systems biology.

The paper is organized as follows. In the context of nested effects models, we
show that in the presence of unknown unknowns, network reconstruction can
be flawed. We introduce a simple edge by edge partial network reconstruction
algorithm called Non Confoundable Network Analysis (No-CONAN) to derive
non confoundable network properties. In analogy to PAGs, we define a data
structure that encodes the partially resolved networks (pNEM for partial nested
effects model). On simulated data, we demonstrate the performance of our algo-
rithm and in a first application to embryonic stem cell differentiation in mice, we
demonstrate that taking unknown unknowns into account changes our account
of real biological networks.

2 Method

Nested Effects Models. For self-containedness, we briefly review nested ef-
fects models as introduced in [5]. NEMs learn upstream/downstream relations
in non-transcriptional signaling pathways from the nesting of transcriptiopnal
downstream effects when perturbing the signaling genes. In a nutshell: NEMs
infer that a gene A operates upstream of a gene B in a pathway, if the down-
stream effects resulting from silencing gene B are a noisy subset of those resulting
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from silencing gene A. Following [5] we call the perturbed genes in the signal-
ing pathway S-genes and the genes that show expression changes in response to
perturbation of E-genes.

A NEM is a directed and possibly cyclic network that connects the S-genes
representing the flow of information in the underlying signaling pathway. E-
genes can be linked to single S-genes forming leaf nodes of the network. The
directed edges linking E-genes to S-genes can be estimated together with the
S-gene network [12] or they can be taken by bayesian maximum a posterioiri
approach [13] or they can be treated as nuisance parameters that are integrated
out [5,14,15].

The underlying data consists of gene expression profiles of gene silencing as-
says and corresponding controls. Typically, a pathway is stimulated both in cells
where it is intact (controls) and in cells where it is partially disrupted by silenc-
ing one of its S-genes. If the silencing of an S-gene blocks the flow of information
from the pathway initiating receptor to the E-gene, the E-gene no longer changes
expression in response to stimulation. In the language of nested effect models
the E-gene shows a silencing effect with respect to the S-gene and the crucial
assumption is that E-genes must attach to at most one S-gene. In each exper-
iment, one S-gene is silenced by RNAi and silencing effects on thousands of
E-genes are measured. The expression data Dij is assumed to be discretized to
0 and 1, with a 1 indicating that a silencing effect of Sj was observed on Ei. Sig-
nal propagation within the pathways is assumed to be deterministic, hence the
silencing of Sj is expected to produce silencing effects in all E-genes downstream
of Sj . Consequently, every network topology is associated with an expected data
pattern across all silencing assays: the silencing scheme [5]. If the network is
acyclic, the silencing scheme defines a partial order relation on the S-genes re-
flecting the expected nesting of downstream effects. Noise comes into play at
the level of observations. NEMs allow for both false positive and false negative
observations accounting for them by fixed rates α and β in the likelihood. Hence,
NEMs aim to detect a noisy subset relation in the observations Dij and repre-
sent it as a directed network, where the directed edges can be interpreted as
upstream/downstream relations of genes in the pathway. Clearly if a gene A is
upstream of a gene B and B is upstream of a gene C, then A must be upstream
of C as well. This is reflected in the likelihood equivalence of all networks that
have the same transitive closure. In other words NEMs are a degenerate type
of Bayesian networks where all non-leaf nodes are not observable and all edges
between S-genes are associated with 0/1 local probabilities [11]. While the first
property makes network reconstruction hard, the second is a simplification that
renders network reconstruction practical again.

Several extensions of NEMs exist including networks that distinguish activa-
tion and repression [16], likelihoods allowing continuous silencing data [12,17],
dynamic models [15,18], and models including direct observations of S-gene ac-
tivation [19]. The methodology is implemented in a bioconductor package nem
and cran package nessy [20]. A comprehensive review and evaluation can be
found in [21].
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Fig. 1. In simulations hidden nodes compromise network reconstruction:
Shown is the accuracy of standard NEM based network reconstructions if hidden nodes
are present. The x-axis shows the degree of noise used in the stimulations. The y-axis
shows the positive predictive value of reconstructed edges of the subnetwork of observed
nodes. The different lines correspond to different numbers of hidden confounders (red
0, green 4, blue 8, purple 12).

Hidden Nodes Compromise NEM Based Network Reconstruction. For
general Bayesian networks it is well known that hidden nodes can confound the
reconstruction of networks [9,22]. Here we show that this problem still exists for
the more specialized NEM. We generated data for networks that include both
observed and unobserved nodes and reconstruct the subnetwork of observed
nodes: We generated 100 random networks of 4 nodes and extended them by
n = 0, 4, 8, 16 additional hidden nodes. Artificial silencing data was generated
for the extended networks as described previously [5]. Only the data for the 4
observable nodes was used to reconstruct 4 node networks. These were compared
to the corresponding subnetworks of the larger networks. The extended networks
represent the ground truth signaling pathway while the 4 node subnetworks
represent the small window through which we observe it. Figure 1 shows positive
predicted values of network reconstruction (y-axis) for different noise levels (x-
axis). The red line corresponds to network reconstruction without hidden nodes,
while the green, blue and purple lines refer to 4, 8 and 12 additional hidden
nodes respectively. We observe a marked decrease in network reconstruction
performance when hidden nodes can confound the flow of information of the
observed nodes.

Alien Silencing Patterns Are the Clue to a Non-confoundable Network
Analysis. We analyze all pairs of S-genes S1 and S2 separately using only the
data from silencing S1 and S2. Since our analysis will be non-confoundble by
genes outside of the observation window, it will also not be affected by the the
remaining S-genes that we voluntarily did not take into account.

For a pair of genes S1 and S2 we distinguish five possible upstream/downstream
relations summarized in Figure 2A. (R1) S1 is upstream of S2, (R2) S1 is
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downstream of S2, (R3) S1 and S2 lie in a feedback loop in which case they
are both up and downstream of each other indicated by the double arrow, (R4)
S1 and S2 lie in independent modules of the network and do not interact with
each other at all, and (R5) S1 and S2 are in different branches of a signaling
network but jointly regulate at least one possibly hidden S-gene H . The five
relations are encoded by the different edge types:

R := {R1, · · · , R5} = {S1 → S2, S1 ← S2, S1 ↔ S2, S1· ·S2, S1 → H ← S2} (1)

With only two S-genes, an E-gene can show 4 different silencing patterns: It
responds to both perturbations (1,1), only to one of them (1,0) and (0,1) or to
none (0,0). Each upstream/downstream relation induces an expected subset of
these 4 patterns. For example, in relation (R1) an E-gene can be unconnected
to both S1 and S2 in which case it does not show a silencing effect neither when
silencing S1 nor when silencing S2, yielding the expected pattern (0,0). It can be
attached to S1 in which case it is expected to show an effect when silencing S1 but
not when silencing the downstream gene S2, yielding the expected pattern (1,0).
And last, it can be linked to S2 and show silencing effects both when silencing S1

and S2 yielding the pattern (1,1). Figure 2A gives the set of expected silencing
patterns for all five upstream/downstream relations. Note that only relation R5
can produce all 4 possible silencing patterns. For the remaining relations at least
one pattern is not expected. We call these unexpected patterns alien patterns.

We next investigated the possible influence of hidden nodes on the sets of
expected and alien patterns (Figure2B). There are nine possible positions of a
hidden confounder. The silencing patterns associated with these positions are
shown in Figure2B. The most important observation is that any position of
hidden confounders in the network does not change the sets of expected and
alien silencing patterns (Figure2B). Note that in R4 the hidden node marked
in red produces the alien pattern of R4. However, we have accounted for this
problem by distinguishing the two relations R4 and R5 from the beginning.
The conclusion that no alien patterns can occur through confounding facilitates
our non-confoundabe analysis: If the observation of an alien pattern can not be
through confounding effects it must be due to noise in the observation. Note that
the assumption of deterministic signal propagation is crucial here. In relation R1
we assume that a perturbation of S1 is deterministically propagated to S2, which
rules out the silencing pattern (0,1).

The Accumulation of Alien Patterns Is Evidence against Respective
Upstream/Downstream Relations. For a pair of S-genes we can system-
atically consider all five upstream/downstream relations and see whether they
conform with the observed data. Each of the relations R1-R4 has at least one
alien pattern. Every observation of an E-gene that displays this alien pattern
is evidence against the respective relation. Few alien patterns can occur due to
observation noise but a large number of alien patterns is unlikely. We will set up
a test to detect significantly high occurrences of alien patterns.

Binary NEMs [5] model observation noise by a false positive rate α, the prob-
ability that an observed effect is a noise artifact and a false negative rate β,
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Fig. 2. Pairwise upstream/downstream relations and their alien patterns: A
Shown are the five possible possible relations R1,..., R5 together with their expected
silencing patterns and their alien patterns. B Hidden nodes are introduced in all possi-
ble configurations and the expected patterns of E-genes attached to the hidden nodes
are shown. In R4 the Hidden note marked in red produces the alien pattern of R4.
Node that this constellation leads to the constellation in R5.

the probability that we miss a true silencing effect. Further, the occurrence of
observation errors is assumed to be independent across E-genes. We can derive
limits for the probability that a certain number k of alien patterns occur given
a relation R ∈ R For example if R = R1 we have

P (K ≥ k|S1 −→ S2) ≤
n∑

i=k

(
n

i

)
γi
R1(1 − γR1)

n−i, (2)

where k is the observed number of alien patterns, n the total number of E-genes
and γR1 an upper bound for the probability of observing the alien pattern.
If R1 holds true, the alien pattern (0,1) needs to be produced by noise from
one of the three expected patterns (1,0), (1,1) and (0,0). Starting from (1,0)
requires both a false positive and a false negative observation which happens
with probability γ1 = α · β, starting from (1,1) we need one true positive and
one false negative observation which occurs with probability γ2 = β · (1 − β).
Finally, generating the alien pattern (0,1) from (0,0) requires one true negative
and one false positive observation and occurs with probability γ3 = (1 − α) · α.
Setting γR1 = max(γ1, γ2, γ3) yields the bound (2). Similarly we obtain:

P (K ≥ k|R) ≤
n∑

i=k

(
n

i

)
γi
R(1− γR)

n−i (3)

for all R ∈ R − {R5}. Here γR is a bound for the probability of observing the
alien pattern of R. If some of the above probabilities become sufficiently small,
we gather evidence against the respective relations. We exclude a relation R if
and only if

P (K ≥ k|R) < κ, (4)
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where κ is a calibration parameter that is set to 0.05 in all applications below.
Note that R5 can not be rejected since it does not have an alien pattern.

Partial Network Reconstruction. If R5 is correct and we can reject rela-
tions R1-R4 leaving only relation R5 as compatible with the data, we have fully
resolved the relation of S1 and S2. In cases where R5 is incorrect, the best we
can achieve is that all but one relation from R1-R4 is rejected leaving us with
one edge type and the always existing possibility that R5 is true. However, also
this does not need to be the case. It is possible that we can not reject several
relations leaving us with higher uncertainties on the true structure of the sig-
naling network. We do not further resolve the network but confine ourselves to
describing what we know and what we don’t know. To do this we introduce
the new data structure of a partial Nested Effects Model (pNEM). A pNEM is
a graph connecting all S-genes however using a variety of different edge types.
Each edge type is describing a set of relations that could not be rejected. This
language of edge types is summarized in Figure 3. For example, if we exclude
all relations except R5, there is no edge between S1 and S2. If we reject all rela-
tions except R3, R4 and R5 we draw a red double sided edge, and so on. Sixteen
different edge types are needed to encode our partial network knowledge. In the
next section we show an example of a pNEM.

Equation (4) has the form of a statistical test. When choosing κ sufficiently
small we bound the probability of excluding a correct relation. The null hypoth-
esis is that the tested relation is correct and that all observed alien patterns are
due to noise alone. However, a small κ also leads to poorly resolved networks
with only few excluded relations. This raises the issue of the power of the test.
An edge between two S-genes is well resolved if the true relation generates many
E-genes with silencing patterns that are alien to many alternative relations. For
example if the relation S1 → S2 holds true, every E-gene that is attached to S1

and produces the expected pattern (1,0) produces evidence against the compet-
ing relations S1 ← S2 and S1 ↔ S2 since (1,0) is alien to both these relations,
but not against the relation S1· ·S2, since (1,0) is not alien to it. However, E-
genes attached to S2 with the expected pattern (1,1) produce evidence against
S1· ·S2. If we have enough E-genes of both types we will be able to reject all
relations except the correct one and the not-rejectable relation R5. Inspecting
Figure 2 points to a problem with edges that are of the type S1 ↔ S2, since in
this constellation only the patterns (1,1) and (0,0) are produced but none of the
alien patterns of the two directed relations R1 and R2. Since NEMs operate on
transitively closed networks the relation S1 ↔ S2 is indicative of genes involved
in a feedback loop. In other words our method is not capable of reliably detecting
feedback loops; a non-circular constellation can often not be ruled out. Never-
theless, our method is valid also for biological networks with feedback loops. It
does not produce spurious results in this case, but reports that it can not resolve
the loop reliably. If in contrast the true network is not cyclic, our method has
the potential to exclude a loop reliably.



242 M.J. Sadeh, G. Moffa, and R. Spang

Fig. 3. The pNEM code: The top row of boxes shows combinations of relations and
the bottom boxes show the corresponding edge types we use to encode that none of the
edges in the set could be excluded by No-CONAN (The color are used to distinguish
the same edge types in different constellations).

3 Simulation Experiments

We test the performance of No-CONAN in the context of simulation experiments
using artificial data. In such simulations the true state of the network is known
unlike in biological scenarios. Moreover, the artificial data fully conforms to all
assumptions of NEMs, which is certainly not the case for real biological data.

Example. We start with an example to illustrate how No-CONAN works. Con-
sider the GTN in Figure 4. Note that it has only one hidden node, but this
node is in a central position of the network. We attach a total of 350 E-genes
uniformly to the S-genes and generate artificial data using a moderate noise lev-
els of 0.15 for both false negative and false positive observations as described
previously [5]. Then, using only data for the observable nodes, we reconstruct
the network using triplet search in a standard NEM approach [14] and using
No-CONAN. Figure 5 compares the NEM to the pNEM. The NEM incorrectly
predicts a feedback loop like structure. The pNEM in contrast did not do this.
It actually resolved the relation between S5 and S6 as R5 thus predicting the
existence of the hidden node at that position. Also all other predicted relations
are correct, with the exception of S6 and S3, where the pNEM is undecided
whether a directed relation exists (incorrect) or not (correct).

Evaluations. We generate 100 random networks of size 8 and generate data for
these networks using noise levels varying between 0.005 (very low) and 0.32 (very
high). We attach a total of 100 E-genes uniformly to the S-genes of the network
and add another 900 E-genes which are unrelated to the networks. These have
an expected silencing pattern of (0,0) but display occasional silencing effects due
to noise. The number of unrelated E-genes might effect the power of the testing.
We then run No-CONAN on every pair of nodes in each of 100 networks and
reject all relations possible using κ = 0.05. The results are organized according
to the true underlying relations in Figure 5A. Each of the five plots corresponds
to one true relation. The x-axis shows the different noise levels while the y-axis
shows the relative frequency of rejecting the different relations, which are marked
by different colors. For example the left most plot corresponds to all situations
where the true relation between nodes is S1 −→ S2. Rejection rates for this
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Fig. 4. Performance comparison: The left part of the figure shows a GTN that
has one hidden node. We attach a total of 350 E-genes uniformly to the S-genes and
generate artificial data using a moderate noise levels of 0.15 for both false negative and
false positive observations. The plots in the middle and on the right side of the figure
show the reconstructed network using triplet search in a standard NEM approach and
pNEM, respectively only for the observable nodes. The NEM incorrectly predicts a
feedback loop like structure. In contrast the pNEM resolved the relation between S5

and S6 as R5 thus predicting the existence of the hidden node at that position. Also
all other predicted relations are correct, with the exception of S6 and S3, where the
pNEM is undecided whether a directed relation exists (incorrect) or not (correct).

Fig. 5. Simulation results: A Small network simulations. Each of the five plots
corresponds to one true relation. The x-axis shows the different noise levels. The y-axis
shows the relative frequency of rejecting the relations (R1: blue, R2: purple R3: green,
R4: red and R5: orange) B Simulations on a large network. Left: The ground truth
network. Right: Performance plots that organized like in A.
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relation are marked in blue and we can see that the relation does not get falsely
rejected even for very high noise levels. In contrast the 3 competing relations
marked in red, purple and green are virtually always rejected except for very
high noise levels and even for maximal noise we reject them in about half of
the cases. We do similarly well for the next two relations. If the true relation is
the feedback loop S1 ↔ S2, we still get hardly any false positive rejections but
loose almost all power in rejecting the two directed relations. As described in
the previous section, this is expected since a feedback loop does not produce the
alien patterns of these relations.

Finally we examine the performance of No-CONAN in the context of the
larger 25 node network shown in Figure 5B. Note that the network contains
two feedback loops, one towards the root and another one close to a leaf. The
crucial difference from the smaller networks is the ratio of S-genes inside the
observation window (2 in both cases) and those outside of it (6 vs. 23). In fact,
this unfavorable ratio of observed versus unobserved nodes compromises the
resolution of the pNEMs generated by No-CONAN. Importantly, we still hardly
ever falsely reject a correct relation. However, except for very low noise levels
rejection rates of incorrect relations go down. Nevertheless, except for very high
noise levels we reject substantial fractions of relations thus partially learning the
structure of the network.

4 An Application to Murine Stem Cell Development

We test No-CONAN in a study on molecular mechanisms of self-renewal in
murine embryonic stem cells (ESCs). Ivanova et al. [23] down-regulated six fac-
tors (Nanog, Oct4, Sox2, Esrrb, Tbx3, and Tcl1) that need to be jointly ex-
pressed in murine ESCs to keep the cells in a self-renewal state. In response to
the interventions the cells go into differentiation and the resulting shifts in the
transcriptome were monitored in time series of expression profiles. Differentia-
tion includes the successive destruction of the self-renewal network. This process
of differentiation has been previously modeled twice using nested effect models
[15] and [18]. Both models have in common that they are dynamic nested effects
models exploiting the temporal information of the time series but differ in the
likelihood functions used. None of them considered the possibility of unobserved
factors.

In the NEM framework Nanog, Oct4, Sox2, Esrrb, Tbx3, and Tcl1 are S-genes,
whereas genes showing expression changes in response to silencing are E-genes.
A silencing effect is observed if the expression of an E-gene is pushed from its
level in self-renewing cells to its level in differentiated cells. We preprocess and
discretize the data as described in [15]. Then we run No-CONAN on the data of
the last time point of all time series. Figure 6 A shows the pNEM produced from
No-CONAN while C and D are the transitive closures of the networks derived
in [15] and [18].

Notably, many edges of the pNEM are optimally resolved and often agree
with those in the two previous models. E.g. the linear backbone of the network
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Fig. 6. Murine stem cell self-renewal network: A shows the pNEM produced from No-
CONAN. B shows prediction results from the observation that all relations except
for R5 could be excluded for the respective pairs of genes. The pNEM predicts the
existence of certain hidden nodes in positions marked in B. C and D are the transitive
closures of the networks derived in [15] and [18]. Many edges of the pNEM are optimally
resolved and often agree with those in the two previous models in C and D.

Nanog → Sox2 → Oct4 observed in the Anchang model [15] could be resolved
unambiguously even when taking hidden confounders into account.

In contrast, the role of the remaining genes Tcl1, Tbx3 and Esrrb could not
be determined unambiguously with the available observations. For example, our
pNEM proclaims that there is an interaction between Esrrb and Tbx3 but can
not determine its nature. It could be a feedback loop as well as any directed
edge depending on how a potential unknown gene is influencing the process.
Moreover, the pNEM differs from the two NEMs in that it predicts the existence
of certain hidden nodes in positions marked in Figure 6 B. These predictions
result from the observation that all relations except for R5 could be excluded for
the respective pairs of genes. In summary, non-confoundable analysis sustains a
previous hypothesis on the role of Nanog, Sox2, and Oct4 interactions in stem
cell differentiation but also points to possible ambiguities with respect to the
role of Tcl1, Tbx3 and Esrrb.

5 Discussion

We introduced No-CONAN, a novel method that partially reconstructs the
upstream/downstream relations of non-transcriptional signaling networks from
interventional data. The method is set in the framework of nested effects mod-
els but has the additional feature that its inference can not be confounded by
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hidden nodes. The key idea is the definition of alien silencing patterns that can
not be confounded by unobserved nodes. The output of No-CONAN is not a fully
resolved network but a pNEM: A network of upstream/downstream relations
where for some pairs of nodes several relations remain conformable with the data.
The information in a pNEM lies in the upstream/downstream relations that it
excludes. A pNEM encodes what we know but also what we can not know unless
we can be sure that we have observed all nodes of a network. The uncertainties
left with certain edges are the price we have to pay to ensure that our results
are non-confoundable by mechanisms outside the window of observations.

No-CONAN is reliable in that it does not produce false information by reject-
ing correct relations. By construction, No-CONAN has two limitations affecting
its power in resolving the network. It can never reject the relation S1 → H ← S2,
since this relation has no alien silencing patterns. Moreover, No-CONAN has
very little power in resolving a true feedback loop since feedback does not pro-
duce the alien patterns of the two directed relations. Nevertheless, No-CONAN
is generating new non confoundable insights into network structures by rejecting
many though not all incorrect relations.

Partial network reconstruction is a relatively new concept in network anal-
ysis. It can be seen as a safeguard against possibly severe confounding effects
caused by unobserved mechanisms. Clearly, such a non-confoundable analysis is
only valid within the formal context of a network model. In this paper we used
the framework of nested effect models. The assumptions of nested effect models
might be incorrect in certain applications as is true for every modeling frame-
work. We believe that no formal analysis can safeguard against this. However, the
concept of unknown mechanisms can be represented in many formal frameworks,
and simulations can mimic our partial observation of a true underlying network.
Here we represented all the unknown unknowns of biology as unobserved nodes
of a nested effects models and strived for extracting as much information on the
full nested effects models from the incomplete data we obtained from looking
through a narrow window.

Donald Rumsfeld continued his speech by saying ”If I know the answer I’ll
tell you the answer, and if I don’t, I’ll just respond, cleverly”. We do not know
whether a pNEM is a ”clever” response but it aims to be a realistic and an
honest one. The partial networks aims to encode what we know that we know,
but it also encodes what we can not know for certain, unless we are absolutely
sure that we have a complete account of all biological mechanisms affecting cell
signaling.
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3. Schäfer, J., Strimmer, K.: An empirical bayes approach to inferring large-scale gene
association networks. Bioinformatics 21, 754–764 (2005)

4. Saez-Rodriguez, J., Alexopoulos, L.G., Epperlein, J., Samaga, R., Lauffenburger,
D.A., Klamt, S., Sorger, P.K.: Discrete logic modelling as a means to link protein
signalling networks with functional analysis of mammalian signal transduction.
Mol. Syst. Biol. 5, 331 (2009)

5. Markowetz, F., Bloch, J., Spang, R.: Non-transcriptional pathway features recon-
structed from secondary effects of rna interference. Bioinformatics 21, 4026–4032
(2005)

6. Elidan, G., Ninio, M., Friedman, N., Shuurmans, D.: Data perturbation for es-
caping local maxima in learning. In: Proceedings of the National Conference on
Artificial Intelligence, pp. 132–139. AAAI Press, MIT Press, Menlo Park, Cam-
bridge (1999, 2002)

7. Pearl, J.: Causality: models, reasoning, and inference, vol. 47. Cambridge Univ.
Press (2000)

8. McLachlan, G., Krishnan, T.: The EM algorithm and extensions, vol. 274. Wiley,
New York (1997)

9. Colombo, D., Maathuis, M., Kalisch, M., Richardson, T.: Learning high-
dimensional directed acyclic graphs with latent and selection variables. Arxiv
preprint arXiv:1104.5617 (2011)

10. Richardson, T., Spirtes, P.: Ancestral graph markov models. The Annals of Statis-
tics 30(4), 962–1030 (2002)
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H., Cramer, P., Tresch, A.: Mc eminem maps the interaction landscape of the
mediator. PLoS Comput. Biol. 8, e1002568 (2012)

14. Markowetz, F., Kostka, D., Troyanskaya, O.G., Spang, R.: Nested effects models
for high-dimensional phenotyping screens. Bioinformatics 23, i305–i312 (2007)

15. Anchang, B., Sadeh, M.J., Jacob, J., Tresch, A., Vlad, M.O., Oefner, P.J., Spang,
R.: Modeling the temporal interplay of molecular signaling and gene expression by
using dynamic nested effects models. Proc. Natl. Acad. Sci. U S A 106, 6447–6452
(2009)

16. Vaske, C.J., House, C., Luu, T., Frank, B., Yeang, C.-H., Lee, N.H., Stuart, J.M.: A
factor graph nested effects model to identify networks from genetic perturbations.
PLoS Comput. Biol. 5, e1000274 (2009)
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Abstract. Next-generation sequencing technologies provide a powerful tool for 
studying genome evolution during progression of advanced diseases such as 
cancer. Although many recent studies have employed new sequencing 
technologies to detect mutations across multiple, genetically related tumors, 
current methods do not exploit available phylogenetic information to improve 
the accuracy of their variant calls. Here, we present a novel algorithm that uses 
somatic single nucleotide variations (SNVs) in multiple, related tissue samples 
as lineage markers for phylogenetic tree reconstruction. Our method then 
leverages the inferred phylogeny to improve the accuracy of SNV discovery. 
Experimental analyses demonstrate that our method achieves up to 32% 
improvement for somatic SNV calling of multiple related samples over the 
accuracy of GATK’s Unified Genotyper, the state of the art multisample SNV 
caller. 

Keywords: tumor phylogeny, cancer evolution, genetic variations. 

1 Introduction 

Next-generation genome sequencing technologies have provided a means to identify 
and characterize the large number of mutations present in a human tumor. It is now 
widely known that cancer genomes are highly mutated by several mechanisms, which 
can lead to short mutations such as single nucleotide variants (SNVs), structural 
changes such as copy-number variations, or complex patterns of mutation such as 
chromothripsis. Pairwise comparison between the genetic landscape of late-stage 
tumors and matched normal tissue has provided a first understanding of the 
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mutational state of cancer genomes [3,5,14,20-21,27-28]. However, the development 
of effective treatment hinges upon deeper investigation of tumor progression 
pathways, which can be efficiently conducted by analyzing multiple tumors 
originating from the same neoplastic progenitor. This kind of study, especially of 
related tumors at different stages of development, reveals mutations that drive cancer 
progression and helps to identify early-stage tumors that can turn into cancerous 
tissues. Recently, several groups have pursued this goal by building cancer-specific 
phylogenetic trees that illustrate the order, timing, and rates of genomic mutation 
based on sequencing multiple tumor samples within a patient [4,21]. Using exome 
sequencing data of nephrectomy specimens and their metastases, Gerlinger et al [8] 
constructed tumor phylogenetic trees for two patients. Newburger et al [19] 
performed whole genome deep sequencing of multiple breast cancer tumors from six 
patients and built trees that relate the tissue samples within each patient. The 
construction of phylogenetic trees in such studies has particular clinical relevance; in 
addition to pinpointing drug targets that arise in the aggressive late-stage tumors, it 
allows researchers to choose drug targets from among the earliest mutagenic events, 
common to all cancerous lesions.  Targeting these events treats early neosplasms as 
well as late-stage tumors, thereby removing the reservoir for recurrence of the cancer. 

SNV calling in tumor samples is essential for cancer characterization (diagnosis, 
identifying driver mutations, etc.), but current SNV callers for cancer remain highly 
inaccurate. Specialized tumor-normal SNV calling methods very effectively leverage 
the fact that the tumor and normal samples are genetically very similar [7,13,18,23].  
However, they don’t currently take complex relationships into account.  Multisample 
callers are able to use more general, population-level information to improve variant 
calling across many samples [1,6,16], but this approach wastes a tremendous amount 
of information when samples are known to be related. For example, GATK’s Unified 
Genotyper [6,16], the state of the art multisample SNV caller, sums the likelihoods of 
SNVs across the samples to take into account the recurrence of true SNVs, but it 
ignores the general pattern of true SNVs between samples that reveals their 
phylogenetic relation. In a parallel track, several papers used techniques to infer 
phylogeny [19,31] across multiple samples, but they never used this information to 
improve their variant calls.  An ideal method should both infer phylogeny and apply 
that information. Here we devised a method that extends the advantages of tumor-
normal callers to multiple samples with complex but unknown relationships to 
accurately reveal both the phylogenetic relationship and identify genetic variants. 

Our method uses somatic point mutations as markers to construct tumor phylogeny 
trees. We then use these trees to perform error correction.  The basic assumption of 
our method is that the single nucleotide variations (SNVs) follow the perfect 
phylogeny model, which assumes that mutations cannot recur in separate samples 
independently by chance and that recombination events do not happen between 
generations.  These assumptions are reasonable in the context of cancer genomics. 
Following the perfect phylogeny assumption, true variant calls are tree compatible. 
Thus, phylogeny trees in which tumor samples are leaves can be constructed by using 
a character-based phylogenetic inference method. However, noisy sequence data, 
sequence alignment errors, and biases in mutation caller methods introduce both false 
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positive and false negative SNV calls. As a result, identified SNVs usually contain 
several conflicts. In data from our breast cancer genomic evolution study [19] we 
observed that up to 20% of phylogenetically informative SNV calls are incompatible. 
In order to proceed with tree construction the incompatibility of data must be resolved 
or at least minimized. To rescue these mutations we propose an elegant algorithmic 
approach that benefits from the samples’ phylogenetic relation; a valuable piece of 
information not used by any existing SNV calling method.  

Our conflict resolution strategy is based on two approaches: editing mutations and 
identifying subclones. In several cases the alternative allele frequency of conflicting 
SNVs in different samples provides information for editing the mutations to reconcile 
it with the expected phylogenetic relation. In addition to variant calling errors, 
heterogeneity of samples can also result in conflicting SNVs, since a heterogeneous 
tumor can contain several subpopulations, each possessing its own genetic variations 
and progression stages. In this situation, the conflicting mutation profiles represent a 
true biological state, and we wish to identify subclones in order to update 
phylogenetic tree.  Although there are some unmixing approaches for separating cell 
populations in tumor data [25,31], none can be simply adapted to next generation 
genome sequencing data of solid tumors. As a part of conflict resolution process we 
identify conflicts caused by subclones. Coupling it with our mutation editing process 
enabled us to identify several subclonal mutations, which was previously possible 
only through ultra deep sequencing [4,9].  

In summary, our algorithm infers the tumor phylogeny tree from multisample 
genotype information retrieved by GATK (or another SNV caller). Using the 
phylogenetic information inferred from the majority of SNVs, the algorithm resolves 
conflicts among the remaining SNVs. The main contribution of this paper, in addition 
to tumor phylogeny tree construction, is to improve the accuracy of SNV calls by 
resolving these conflicts. Conflict resolution is a highly sensitive process, especially 
with larger numbers of samples. We measured the performance of our method at each 
step in a comprehensive simulation study. The simulation analysis demonstrates that 
our algorithm constructs highly accurate phylogenenetic trees while also achieving an 
average accuracy of 89% in reassigning conflicting mutations. The fast and efficient 
conflict resolution step improves the accuracy of GATK by up to 32% when assessing 
whether a multisample SNV call produced the correct mutation status for every 
sample. These results strongly suggest that the method can benefit several cancer 
sequencing applications that involve multiple, related tumors. 

2 Methods 

Given genotype information inferred from sequencing data of multiple samples, we 
aim to construct a perfect phylogeny tree that supports the maximum number of 
genotypes. Here we utilize somatic SNVs as genotypes. Let S = {s1, s2,, …, sn} be the 
set of n samples, and G = {g1, g2,, …, gm} be the universal set mutations in one or 
more samples. Each mutation gj is characterized by a binary profile {g1jg2j…gi,j… gnj} 
where gi,j is 1 if and only if gj is called in the ith sample. We group all mutations with 
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the same profile into a mutation group. Therefore, over m’ distinct mutation groups, 
mutation matrix Mn×m’ is defined such that each row represents a sample and each 
column represents a mutation group. Note that there are no duplicate columns, and 
each column has at least one entry that is 1. Two columns (or mutation groups) in M 
are said to be in conflict if and only if the two columns contain three rows with the 
pairs 1,1; 0,1; and 1,0. We first describe the outline of the algorithm in subsection 2.1 
and discuss the details of each step in the following subsections. 

2.1 Overview of Our Algorithm 

Our algorithm first constructs a consensus perfect phylogeny tree based on the 
maximum number of compatible mutations. Then, in the conflict resolution process, it 
reconciles conflicting mutations with the tree by: i) editing the profile of these 
mutations, or ii) extending the tree by identifying significnt subclones. Once resolved, 
previously conflicting mutations are added to the tree.. The general steps of the 
algorithm are shown in Algorithm 1. 

 

 
In order to find the largest number of compatible mutations we build the weighted 

conflict graph G for mutation groups. The concept of a conflict graph was first 
introduced by Gusfield et al. [11] to explore the incompatibility of data. A maximal 
independent set of G is the maximum number of compatible mutations. However, a 
mutation group should be significantly large to be considered in the phylogeny tree. 
In the following subsection, we explain how to decide whether a mutation group is 
significant. Using Gusfield’s algorithm [12], an efficient character-based method for 

Algorithm 1. Tumor Phylogeny Inference 

input : Genotype information of somatic mutations for multiple samples 

1. M ← Mutation Matrix 
// find the largest number of compatible mutations ( section 2.2 and 2.3)  

2. G ← Weighted Conflict Graph 
3. Find the Maximal Independent Set MIS in G 

// use Gusfield’s Algorithm [12] 
4. Construct the perfect phylogeny tree for MIS 

// conflict resolution 
5. while ∃ resolvable conflict do 

      // edit mutations (section 2.4) 
6.       for all conflicting mutations g do 
7.            if ∃ evidence for g to be called in a non-conflicting mutation group then 
8.                  Move g to the most prominent group 
9.            end  
10.        end 
11.        // identify subclones (section 2.5) 
12.        if ∃ significant conflicting mutation group then  
13.             Identify the subclones and add them to the tree 
14.         end  
15. end 
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perfect phylogeny tree construction, the consensus phylogeny tree for significant 
mutation groups in maximal independent is constructed.  

The next step is iterative conflict resolution to enhance the tree and improve the 
accuracy of mutation profiles. If there is significant evidence for a conflicting 
mutation to be called in a non-conflicting mutation group already in the tree, we move 
the mutation to that group. To do so, we need to edit the binary profile of the mutation 
by changing the mutation call status for specific samples (see subsection 2.4). 
Significant conflicting mutation groups can be the result of mixture samples; where a 
mixture sample consists of multiple genetically distinct populations. Multiple 
subclones with distinct progression stages and phylogeny paths impose a DAG 
instead of tree for phylogenetic relationship between samples. Therefore, it is 
essential to identify the mixture sample and break it into several leaves representing 
its subclones. This procedure is explained in subsection 2.5. 

2.2 Significant Mutation Group 

In a phylogeny tree, where samples are leaves, each node corresponds to a mutation 
group, which contains mutations called in all samples belonging to the subtree rooted 
at that node. A tree with  non-root nodes supports  different somatic mutation 
groups. Given the total number of somatic mutations , there are 1 ! ! 1 !⁄  ways to distribute mutations into  groups. The 
probability of all groups having at least  mutations or more is:  

size of all mutation groups  x 1 ! !! 1 ! 
                                                                   1  

The approximation of the probability is obtained by the fact that number of mutation 
groups is much smaller than the total number of mutations in practice. Equation 1 is 
in fact the p-value of the event where the number of mutations in each group is larger 
than x.  Using equation 1, one can choose x based on a significance threshold. 

2.3 Maximum Number of Compatible Mutations 

In order to find the maximum number of compatible mutations we build a weighted 
conflict graph. We first run Gusfield’s algorithm on mutation matrix M to find all 
pairwise conflicts between mutation groups. We then build the weighted conflict 
graph G = (V, E, W) as follows. 

• V is a set of nodes, where each node represents a mutation group. 
• E is a set of edges, where (v, u) exists if mutation groups v and u are in conflict. 
• W is a set of node weights, where for each node it is equal to size of the 

mutation group. 
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The problem of finding maximum number of conflict-free mutations can be modeled 
as a maximal independent set problem on conflict graph G. The problem is known to 
be NP-complete and searching the exact solution is time consuming. The greedy 
algorithm works as follows: at each step, choose the uncovered node with the highest 
weight and remove all of its neighbors. As we discussed earlier, mutation groups 
should be large enough to be considered valid. Therefore, at each step we set k to the 
number of selected nodes and test if the new mutation group is large enough. The 
algorithm adds the mutation group to the solution set if it is sufficiently large. 
Otherwise it stops. In the rest of the paper, mutation groups that are in the solution set 
are denoted as valid groups and others as conflict groups. 

2.4 Editing Mutation Profiles 

Evidence of presence. The probability of seeing a base ∈ {A, G, T, C} at each locus 
is (1 − ) for the true underlying allele and e/3 otherwise, where e is the error rate at 
the base. For sample i and mutation j, let dij be the total coverage, and kij be the 
alternative allele coverage. The probability of not having genotype gij, i.e. all 
observed alternative allele bases result from sequencing error, is: 

, |         1  (2) 

We compute the p-value of observing kij alternate allele bases at total coverage dij , 
assuming mutation gj is not in sample si. Let the null hypothesis be that there is no 
mutation at the locus and all read bases are results of sequencing error. 

, ∑  1    (3) 

If the p-value is less than a chosen significance level we reject the null hypothesis and 
therefore there is evidence of presence for mutation gj in sample si. 

Target group. For each conflict group, all valid groups within a specific edit distance 
are potential target groups.  By computing the p-value of evidence of presence for a 
conflicting mutation, we decide if the mutation is editable to a potential target group. 
A mutation can be editable to more than one potential target group. Each editing 
suggests a possible error pattern - XOR of source and target profiles determines which 
specific samples contain error. Our objective here is to edit the profile of as many 
mutations as possible while the number of distinct error patterns is minimized. Our 
problem of choosing target groups for conflicting mutations can be formulated as a 
classical set cover problem. Let X ={gz} be the set of all mutations that can be moved 
to at least one target group. Denote Y as the set of subsets of X, where each subset 
represents the mutations that can be edited to the same potential target group.  We 
look for minimum number of target groups, minimum elements of Y, which cover all  
 

mutations in X. The problem is known to be NP-complete and searching for the exact 
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solution is not feasible. We applied the standard greedy algorithm: at each stage, 
choose the target group that contains the largest number of uncovered mutations. 
Figure 1 represents a simple example with four samples and set of conflicting 
mutations that can be moved to valid groups. 

 

Fig. 1. Illustration of the profile editing strategy. Phylogeny tree of tumor samples s1-s4 is 
shown on the right. Group 1010 is a conflict group with four editable mutations. The arrow 
between each mutation and node of the tree represents evidence of presence for the mutation in 
the corresponding group. Groups {1110, 1000} are selected as target groups by the set cover 
algorithm. 

2.5 Identification of Subpopulations 

We used large conflict groups identified in section 2.3 to generate subclonal 
populations. There are several issues that our algorithm resolves: i) identification of 
mixture samples, ii) building a phylogeny of subclones, and iii) estimating proportion 
of each subclone. Algorithm 2 presents the pseudocode of our method that identifies 
subclones and adds them to the tree. It is not guaranteed to find the optimal tree.  To 
identify the mixture samples, we first look for a sample involved in the maximum 
number of significant conflict groups. This sample is marked as α, and its 
corresponding conflict groups are marked as active conflicts. We extend α to a 
subtree if all leaves in the subtree are involved in all active conflicts. The next step 
searches for a set of samples with the same phylogeny history as a subclone of α. We 
find the ancestry of α such that all involving samples in active conflicts are its 
descendants. The highest subtree of the ancestry where all of its leaves are involved in 
active conflics is chosen as the subtree of interest, β. Then, the algorithm adds 
subclones to the tree where the phylogeny path of subclones is supported by both the 
previous mutation groups in the tree and the current active conflicts (Figure 2). We 
run our editing mutation profiles strategy to improve quality of mutations in subclone 
(Line 23). Since a lower number of reads covering subclones resulted in high false 
negative rates in mixture samples, our editing procedure is able to rescue several 
mutations missed in subclones. 
 
 

Samples! S1! S2! S3! S4!

Profile ! 1! 0! 1! 0!

Alt freq! 0.4! 0.10! 0.35! 0.04!

Alt freq! 0.13! 0.09! 0.25! 0!

Alt freq! 0.3! 0.10! 0.20! 0!

Alt freq! 0.32! 0.01! 0.12! 0! S4!S3!S2!S1!

1111!

1110!

0010!1000!
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When subpopulations are identified, we can estimate of their size. Consider two 
subclones of a sample and the two nodes in tree where the phylogeny paths of 
subclones are first separated. These nodes refer to two mutation groups representing 
private subclonal mutations. The ratio between the average alternative allele 
frequencies of these mutation groups in that sample can give us an estimate of the 
proportion of subclones. Subsequently, depth coverage for private mutations should 
be scaled according to this proportion. Finally mutation matrix M (as well as SNV 
profiles) is updated by replacing the row for sample s with rows for all new 
subclones.    

 Algorithm 2. Identification of Subclone 

1. for sample s ∈ S do 

2.       cost1(s) ←  Σ size of significant conflict groups that s shares  
3. end 
4. α ← s with maximum cost1 
5. set of active conflicts {θ} ← all conflict groups contributed to cost1(α)  
6. for r ∈ ancestries of α do 

7.        if all descendant samples of r are involved in all active conflicts {θ} then  
8.             α ← r 
9.        else  
10.            cost2(r) ← Σ size of active conflict θ, 

           w. r is root of the deepest subtree that includes all involving samples of θ 
11.        end 
12. end 
13. ρ ← r with maximum cost2 
14. Assign each conflict group θ contributed to cost2(ρ) to root of a subtree such that union of 

samples in α and subtree is equal to the set of all involving samples of θ 
15. If no θ assigned then  
16.       Choose next best α, and goto 5 
17. end 
18. β ← the highest subtree of ρ with assigned active conflict  
19. if α is child of ρ then 
20.       Add subclone of β to α    // Figure 2a            
21. elseif β is child of ρ  then 
22.       while β has a child v with an assigned θ  do 
23.              Run editing mutations approach for mutation group of v to target group θ 
24.              if θ  > mutation group of v then 
25.                     β ← v 
26.             else goto 28 
27.        end 
28.       Add subclone of α to β    // Figure 2b             
29. else  
30.       Build a subtree for subclones of α and β using active conflict groups 
31.       Add the subtree to ρ        // Figure 2c 
32. end 
33. Estimate the proportion of subclones in each sample  
34. Scale the depth coverage for each subclone regarding to its proportion 
35. Update M 
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Fig. 2. Illustration of adding subpopulations to tree. Algorithm 2 identified leaf colored by 
green as α, node colored by gray as ρ, and leaves colored by orange as in subtree β. In case a, 
α is child of ρ, therefore β is inserted to α. In case b, α shares conflicts with all nodes from ρ to 
β, therefore α is inserted to β. In case c, a subtree (colored pink) including leaves in β and α is 
built and inserted to ρ. On the right side possible subtrees of subclones of β and α are shown. 

3 Data  

3.1 Simulation 

To assess the performance of our method we developed a simulator to generate short 
read data for complex phylogeny trees. Using dwgsim [30], our program introduces 
somatic point mutations for all nodes of a given phylogeny tree and simulates paired 
end read sequencing data for each sample that include mutations of sample’s 
phylogeny path. To accurately simulate the tumor development, tapered alternative 
allele frequency is modeled in the trees. We also simulate trees with mixture samples 
by combining reads produced for subclones. 

We simulated 120 random trees for 3 to 10 samples; 40 of them with one or two 
mixed samples. For each node of tree we set a random number of somatic mutations 
within the range of 200 to 2000. The average alternative allele frequency is (f1-node 
depth*f2), where f1 is the initial frequency rate (set to be 50%) and f2 is the decreasing 
rate (set to be 5%). We ran all of our simulation cases on chromosome 22 of a diploid 
version of the NA12878 genome, built from the 1000 Genomes Project [24,29]. Short 
reads are produced in Illumina standard format with length 100, base error rate 2% 
and coverage 15x.    

3.2 GATK Pipeline 

We aligned the simulated short reads for each sample to the human genome (hg19) 
using BWA (0.5.9) [15]. The BAM files were then processed via base quality 
recalibration, duplicate marking, and local realignment following GATK’s best 
practice workflow for variant detection (v3). Read pairs with identical coordinates 
and orientations were marked as duplicates using Picard MarkDuplicates tool and 
were ignored in the subsequent analysis. GATK’s local realignment step was done to 
realign sample-level reads around known indels in order to minimize the number of 
mismatches. We used recommended indel sets from Mills et al. [17] and the 1000 
Genomes Project from GATK resource bundle. We ran tools CountCovariates and 
TableRecalibration from GATK for the base quality recalibration using the standard 
set of covariates. GATK’s Unified Genotyper multisample SNV caller was used on 
the realigned and recalibrated bam files to detect the non-reference sites among the 
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samples and assign genotypes to each sample. In this step, the minimum phred-scale 
confidence thresholds at which variants should be emitted and called were both set to 
30. Minimum base quality was set to 20. To reduce false positive rate, SNVs with the 
average coverage per sample less than half of the total coverage were discarded from 
the final set of identified variants. 

4 Results 

In our experiments we used p-value < 0.01 for deciding on the minimum size for a 
valid mutation group, and p-value < 0.1 for evidence of presence. We limited 
ourselves to edit mutation profiles with edit distance less than 3, and to one round of 
conflict resolution. Since mixture samples have a huge effect on the complexity of the 
problem, for better performance analyses we report the accuracy of the method for 
samples with and without subpopulations separately. Table 1 shows the summary of 
our simulation study on random trees without mixture samples. Somatic SNVs are 
achieved after filtering germline SNV calls from GATK output. Phylogenetically 
informative SNVs are all somatic SNVs except those called only in a single sample. 
Conflicting SNVs are in the minimum set chosen by the algorithm explained in 
subsection 2.3. The accuracy of GATK is defined as the ratio of somatic SNVs called 
with a correct profile to all somatic SNVs called by GATK. A given SNV profile is 
correct if only if the SNV is called correctly in all samples. The accuracy of the tree is 
measured as the accuracy of nodes in tree; a node is correct if it represents a true 
somatic mutation group.  

Table 1. Summary of simulation study in samples without subpopulation. All values are the 
average over test cases with same number of samples.  

Tumor 
Samples 

Somatic 
SNVs 

Phylogenetically 
informative SNVs 

Ratio of 
Conflicting SNVs 

GATK 
Accuracy 

Tree 
Accuracy 

Runtime  
(sec) 

3 1534 349 0.10 0.72 1.00 0.50 

4 3216 1203 0.11 0.79 0.98 0.82 

5 2087 1504 0.22 0.70 0.97 1.38 

6 2342 1505 0.19 0.72 0.99 3.16 

7 3982 3258 0.30 0.55 0.98 7.90 

8 3479 2716 0.21 0.66 0.98 10.02 

9 3415 2642 0.19 0.64 0.95 10.50 

10 3673 2972 0.26 0.59 0.96 16.48 

 

As suggested by these results our method is highly accurate and efficient in tree 
reconstruction. More precisely, in our simulated trees when a sufficient number of 
SNVs was called in a true mutations group the algorithm did not miss that. However, 
there were examples of false positive mutation groups that followed a general 
scenario. Consider three samples {s1, s2, s3} where the only true SNVs are private  
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mutations and germline mutations. Sequencing errors cause GATK miscalls some of 
the germline SNVs in a group shared by two samples. In most cases the false 
discovery rate was low, and the algorithm marked these kinds of groups as conflict 
and moved false SNVs to the correct group in the conflict resolution step. However, 
there were a few cases where GATK false discovery rate was quite high. 
Consequently, since there was no incompatibility in data our algorithm could not 
recognize the false SNVs as a conflict group. As a result, the node representing the 
false mutation group was added to tree.  Obviously, reducing sequencing error rate or 
increasing sequencing coverage easily prevents this scenario. We assessed the 
accuracy of our editing mutations approach for those SNVs mapped to either germline 
or simulated mutations. Note that our method edits false somatic SNVs to germline 
mutation groups as well. The accuracy and precision for editing mutations are 
measured as follows:  #      #                  (6) 

 #      #                 (7) 

Figure 3 presents the accuracy as well as the ratio of improvement in GATK accuracy 
by moving SNVs to the correct groups. Improvement over GATK accuracy is 
measured as the fraction of correct SNVs produced by our algorithm and the fraction 
of correct SNVs produced by the original GATK output. The results confirm that our 
editing mutations strategy is indeed effective with average accuracy 86% and average 
precision 92% on all simulated trees. Similar to GATK’s multisample SNV  

 

Fig. 3. Accuracy and precision of editing mutations. Each marker represents a simulated tree; 
circles for trees without mixture samples and triangles for trees with mixture samples. Markers 
are colored according to the number of samples in tree. 
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caller, our performance is dependent on the number of samples. The improvement 
over GATK accuracy was up to 32% in average, while the average GATK accuracy 
for somatic SNVs was only 67% on test cases without subpopulation, and 44% on 
cases with subpopulations.  

Table 2. Simulation results for subpopulation detection. All values are the average 
over test cases with same number of samples.  

Tumor 
Samples 

GATK 
Accuracy 

GATK Accuracy Subclonal 
SNVs 

Improvement over 
GATK 

Error Rate of 
Est. Size 

Tree Accuracy 

3 0.42 0.38 0.65 0.12 1.00 

4 0.39 0.36 0.41 0.14 0.85 

5 0.45 0.34 0.31 0.14 0.93 

6 0.43 0.28 0.26 0.14 0.88 

7 0.48 0.33 0.30 0.13 0.86 

8 0.46 0.27 0.51 0.11 0.80 

9 0.46 0.21 0.36 0.12 0.83 

10 0.42 0.24 0.50 0.18 0.89 

 
To evaluate the performance of our algorithm for subclone detection, we 

investigated the accuracy of predicted subclones in 40 simulated trees. Table 2 
presents several measures including improvement over GATK, error rate of 
estimation of size of subclones, and accuracy of tree reconstruction. Despite the very 
low accuracy of GATK specifically for SNVs in mixture samples, only 30% on 
average, our method is able to identify subclones in 86% of cases. Since our 
conditions for adding subclones are quite restrictive, the false positive rate in our 120 
simulated trees was zero. Our editing mutations strategy on average achieved a 42% 
improvement over GATK accuracy by recovering mutations in subclones. These 
results demonstrate the effectiveness of using phylogenetic relation between samples 
for subclone identification. 

5 Discussion 

In this paper we presented the first approach for tumor phylogeny tree reconstruction 
with conflict resolution for somatic mutations. Our algorithm first constructs a 
consensus perfect phylogeny tree based on the maximum number of non-conflicting 
mutations. Then, in iterative conflict resolution steps, it integrates more mutations 
into the tree by either editing the mutation profile or identifying significant sub-
clones. Our conflict resolution approach results in a significant improvement in the 
accuracy of called somatic mutations. More specifically, our simulation analyses 
confirm that our conflict resolution step improves the accuracy of GATK’s state of 
the art multisample SNV caller by up to 32%.  

SNVs are not the only genetic changes whose study helps elucidate cancer 
evolution. There are additional mechanisms such as copy-number variations and  
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complex structural variations involved in tumor development. CNVs are of particular 
interest because they represent some of the earliest mutagenic events, and thus are 
important drug targets. Although experimental and computational approaches for 
somatic structural variation detection are not yet mature, recent progress in copy 
number variation discovery motivates us to include CNVs in our phylogeny tree 
method in future work. Once phylogeny trees have been built based upon somatic 
mutations, we propose to map aneuploidy events onto them. To determine the order of 
aneuploidy events in phylogeny trees constructed based on somatic mutations, a 
statistical test can be employed1. This approach works if CNVs are conflict free. In 
the future, we would like to extend our conflict resolution strategy for aneuploidy 
events. 

Reliable detection of mutations in subclones suffers from low sequence coverage. 
Although with our method we find evidence for subclones and we can find their path 
in phylogeny at a certain level of accuracy, the power of our method for detecting rare 
subclonal variants is still limited by genotype information. A deep resequencing 
analysis can be used to validate the phylogeny path of heterogeneous samples 
discovered by our method. 
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Appendix: Significant Subset of Mutations 

 
Fig. S1. Minimum size for a large enough mutation group. Solid lines presents values 
computed with p-value < 0.1 and dotted lines presents values computed with p-value < 0.01. 
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Abstract. We describe the broad outline of a new thermodynamics-
based algorithm, FFTbor, that uses the fast Fourier transform to perform
polynomial interpolation to compute the Boltzmann probability that sec-
ondary structures differ by k base pairs from an arbitrary reference struc-
ture of a given RNA sequence. The algorithm, which runs in quartic time
O(n4) and quadratic space O(n2), is used to determine the correlation
between kinetic folding speed and the ruggedness of the energy landscape,
and to predict the location of riboswitch expression platform candidates.
The full paper appears in PLoS ONE (2012) 19 Dec 2012. A web server
is available at http://bioinformatics.bc.edu/clotelab/FFTbor/.

Keywords: RNA secondary structure; partition function; fast Fourier
transform; Lagrange interpolation.

In [2], we developed a dynamic programming algorithm, RNAbor, which simul-
taneously computes for each integer k, the Boltzmann probability pk = Zk

Z of
the subensemble of structures whose base pair distance to a given initial, or
reference, structure S∗ is k.1 RNAbor stores the value of the (partial) partition
functions Zk(i, j) for all 1 ≤ i ≤ j ≤ n and 0 ≤ k ≤ n, each of which requires
quadratic time to compute. Thus it follows that RNAbor runs in time O(n5) and
space O(n3), which severely limits its applicability to genomic annotation. This
restriction is somewhat mitigated by the fact that in [1], we showed how to use
sampling to efficiently approximate RNAbor in cubic time O(n3) and quadratic
space O(n2), provided that the starting structure S∗ is the minimum free energy
(MFE) structure. We expect that a more efficient version of RNAbor could be used
in applications in genomics and synthetic biology, to detect potential conforma-
tional switches – RNA sequences containing two or more (distinct) metastable
structures.

1 Here Z denotes the partition function, defined as the sum of all Boltzmann factors
exp(−E(S)/RT ), over all secondary structures S of a given RNA sequence, R denotes
the universal gas constant and T absolute temperature. Similarly Zk denotes the sum
of all Boltzmann factors of all structures S, whose base pair distance to the initial
structure S∗ is exactly k.

M. Deng et al. (Eds.): RECOMB 2013, LNBI 7821, pp. 264–265, 2013.
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Fig. 1. (Top) Output of FFTbor on
the 46 nt spliced leader conforma-
tional switch of Leptomonas collo-
soma, where reference structure S∗

is taken to be the minimum free
energy structure. (Bottom) Expected
base pair distance

∑
k k · Zk/Z from

the reference structure of the gua-
nine riboswitch of Bacillus subtilis, de-
picted in Figure 1A of [3]. FFTbor

was run on all 144 nt windows of
CP003901.1/847300-848050, compris-
ing the 5′ untranslated region of
the XPT gene (guanosine monophos-
phate reductase, with coding region
at CP003901.1/848026-848607) of the
unrelated organism Streptococcus pyo-
genes A20. FFTbor detects the guanine
riboswitch at position 847848, where
expected base pair distance to S∗ is
minimized (53.79) corresponding to a
Z-score of −6.95. This prediction cor-
responds well with the Rfam predic-
tion at nearby position 847844.

In this abstract, we announce a radically different algorithm, FFTbor, that
uses polynomial interpolation to compute the coefficients p0, . . . , pn−1 of the
polynomial p(x) = p0+p1x+· · ·+pn−1x

n−1, where pk is defined by pk = Zk

Z . Due
to severe numerical instability issues in both the Lagrange interpolation formula
and in Gaussian elimination, we employ the Fast Fourier Transform (FFT) to
compute the inverse Discrete Fourier Transform (DFT) on values y0, . . . , yn−1,
where yk = p(ωk) and ω = e2πi/n is the principal nth complex root of unity.
This gives rise to an improved version of RNAbor, denoted FFTbor, which runs
in time O(n4) and space O(n2) on a single processor, and in time O(n3) on
a theoretical n-cores processor or cluster (e.g. using OpenMP). Figure 1 (top)
depicts the rugged energy landscape typical of a conformational switch, while
Figure 1 (bottom) depicts expected base pair distance, of each size 144 window
in the 5′-UTR of S. pyogenes, to the XPT riboswitch structure of B. subtilis.
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1 Introduction 

We introduce MethylCRF, a novel Conditional Random Fields-based algorithm to 
integrate methylated DNA immunoprecipitation (MeDIP-seq) and methylation-
sensitive restriction enzyme (MRE-seq) sequencing data to predict DNA methylation 
levels at single CpG resolution. MethylCRF was benchmarked for accuracy against 
Infinium arrays, RRBS, whole-genome shotgun-bisulfite (WGBS) sequencing and 
locus specific-bisufite sequencing on the same DNA. MethylCRF transformation of 
MeDIP/MRE was equivalent to a biological replicate of WGBS in quantification, 
coverage and resolution, providing a lower cost and widely accessible strategy to 
create full methylomes. 

2 Methods 

Sequencing-based DNA methylation profiling methods provide an unprecedented 
opportunity to map complete DNA methylomes. These include whole genome bisul-
fite sequencing (WGBS, MethylC-seq1 or BS-seq2), Reduced-Representation Bisul-
fite-Sequencing (RRBS) 3, and enrichment-based methods such as MeDIP-seq4,5, 
MBD-seq6 and MRE-seq5. There are few complete single nucleotide DNA methylome 
                                                           
* Corresponding authors. 
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maps of humans due to the high cost of producing such methylomes using whole 
genome bisulfite sequencing based methods. In contrast, many more lower-cost DNA 
methylomes of either lower resolution or lower coverage have been generated across 
diverse biological and disease states. 

We developed a combined computational and experimental strategy to produce 
single CpG resolution DNA methylomes of all 28 million CpGs for human at a frac-
tion of the cost of whole genome bisulfite sequencing method. Our computational 
model “methylCRF” is based on Conditional Random Fields and models the condi-
tional probability of the variables of interest, (in our case CpG methylation levels) 
given the predictor values (e.g., MRE-seq, MeDIP-seq, and genomic context). The 
complete model contains features including MeDIP-seq and MRE-seq measurements 
covering individual CpGs, distance between neighboring CpGs, and genomic annota-
tions including CpG islands, genes, repeats, and evolutionary conservation of DNA 
sequences. Using this model, we integrate MeDIP-seq and MRE-seq data to predict 
DNA methylation at single CpG level, similar to what whole genome bisulfite se-
quencing can do. However, the cost of our two assays combined is less than 10% of 
that of whole genome bisulfite.  

3 Results 

MethylCRF was benchmarked for accuracy against Infinium arrays, RRBS, WGBS 
sequencing and locus specific-bisufite sequencing on the same DNA. MethylCRF 
transformation of MeDIP/MRE was equivalent to a biological replicate of WGBS in 
quantification, coverage and resolution. We used conventional bisulfite-cloning-
sequencing strategy to validate several loci where our predictions do not agree with 
whole genome bisulfite data, and in majority of the cases (11 out of 12) methylCRF 
predictions of methylation level based on MeDIP-seq and MRE-seq agree better with 
validated results than does the whole genome bisulfite sequencing. Therefore, me-
thylCRF provides a lower cost and widely accessible strategy to create full DNA me-
thylomes. 

4 Conclusions 

Our results suggest that methylCRF is an effective statistical framework capable of 
integrating two fundamentally different sequencing-based DNA methylation assays, 
MeDIP-seq and MRE-seq, to predict genome-wide, single CpG resolution methylome 
maps. The concordance of our methylCRF predictions with WGBS falls within the 
range of concordance between two WGBS experiments on similar cells. MethylCRF 
will thus significantly increase the value of high-coverage DNA methylomes pro-
duced using much less expensive methods, and provide a general statistical frame-
work for integrating contributions from various types of DNA methylation data re-
gardless of their coverage, resolution, and nature of their readout. 
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Small over-represented motifs in biological networks are believed to represent
essential functional units of biological processes. A natural question is to gauge
whether a motif occurs abundantly or rarely in a biological network. Given that
high-throughput biotechnology is only able to interrogate a portion of the entire
biological network with non-negligible errors, we develop a powerful method to
correct link errors in estimating undirected or directed motif counts in the entire
network from noisy subnetwork data.

Consider a network G(V,E) with n nodes, where V is the set of nodes and E
the set of links. Let Gobs

(
V obs, Eobs

)
be an observed subnetwork of G, and let

nobs be the number of nodes in Gobs. For an arbitrary motifM with m nodes,
let NM and Nobs

M respectively denote the number of occurrences ofM in G and
Gobs. Assuming that Gobs and n are known, our interest is to estimate NM from
the observed subnetwork Gobs. Following [3,5], we modeled an observed subnet-
work as the outcome of a uniform node sampling process in the following sense:
each node from V is independently sampled with probability p, 0 < p < 1, and
the subgraph induced from E by the sampled nodes is the observed subnetwork
Gobs. When Gobs is free from link errors, N̂M given in Eqn. (1) is an asymptot-
ically unbiased and consistent estimator for NM. For realistic estimation, this
estimator, however, is inaccurate due to link errors in real datasets. Modelling
spurious and missing links as a random process with false positive rate r+ and

false negative rate r−, we corrected the bias and adjusted N̂M to ÑM in Eqn. (2):

N̂M =

(
n
m

)(
nobs

m

)Nobs
M , (1)

ÑM =
1

(1− r+ − r−)s
(
N̂M − W̃M

)
, (2)

where s is the number of links inM and W̃M a function of n, r−, r+, and ÑM′

for all proper sub-motifsM′ ofM. We derived the bias-corrected estimator ÑM
for triad and quadriad motifs in directed and undirected networks.

� Corresponding authors.
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Next, we re-estimated the interactome size (i.e., the number of interactions) in
the entire protein-protein interaction (PPI) networks of S. cerevisiae, C. elegans,
H. sapiens, and A. thaliana. We used PPI datasets produced from yeast two-
hybrid (Y2H) experiments [1,4,6,7]. We also obtained the quality parameters of
those datasets from the original papers. Our estimators using the false positive
and false negative rates yielded similar results to those previously obtained in
[1,4,6,7] by considering the precision and sensitivity. We further estimated the
number of triangles in each of the interactomes. We found that although the
A. thaliana interactome is about 1.38 times that of the human interactome,
it contains far fewer triangles than the human interactome does. The triangle
density of the human and C. elegans interactomes are similar and 2.5 times
that of the A. thaliana and S. cerevisiae. The human interactome is only 12.4
times that of the S. cerevisiae interactome, and yet the number of triangles of
the former is about 125 times that of the latter, that is 2.5 times of what is
expected.

Recently, the transcription factor (TF) regulatory network of forty-one human
cell and tissue types were obtained from genome-wide in vivo DNasel footprints
map [2]. Surprisingly, we found that there is a very strong positive linear corre-
lation between the counts in the TF networks of different cell types even for the
triad and quadriad motifs that are topologically very different.

In conclusion, by taking into account of spurious and missing link rates, we
have developed for the first time a powerful method for estimating the number
of motif occurrences in the entire network from noisy subnetwork data. Such
a method is important because exact motif enumeration is possible only if the
network is completely known, which is often not the case for biological networks.
The dynamics of human PPI and TF networks uncovered in the present paper
are consistent with biological intuition about the complexity of life.
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Abstract. Residual dipolar coupling (RDC) and residual chemical shift
anisotropy (RCSA)provide orientational restraints on internuclear vectors
and the principal axes of chemical shift anisotropy (CSA) tensors, respec-
tively. Mathematically, while an RDC represents a single sphero-conic, an
RCSA can be interpreted as a linear combination of two sphero-conics.
Since RDCs and RCSAs are described by a molecular alignment tensor,
they contain inherent structural ambiguity due to the symmetry of the
alignment tensor and the symmetry of themolecular fragment, which often
leads to more than one orientation and conformation for the fragment con-
sistent with themeasured RDCs and RCSAs.While the orientational mul-
tiplicities have been long studied for RDCs, structural ambiguities arising
from RCSAs have not been investigated. In this paper, we give exact and
tight bounds on the number of peptide plane orientations consistent with
multiple RDCs and/or RCSAs measured in one alignment medium. We
prove that at most 16 orientations are possible for a peptide plane, which
can be computed in closed form by solving a merely quadratic equation,
and applying symmetry operations. Furthermore,we show thatRCSAs can
be used in the initial stages of structure determination to obtain highly
accurate protein backbone global folds. We exploit the mathematical in-
terplay between sphero-conics derived from RCSA and RDC, and protein
kinematics, to derive quartic equations, which can be solved in closed-form
to compute the protein backbone dihedral angles (φ, ψ). Building upon
this,wedesigned anovel, sparse-data, polynomial-timedivide-and-conquer
algorithm to compute protein backbone conformations. Results on exper-
imental NMR data for the protein human ubiquitin demonstrate that our
algorithm computes backbone conformations with high accuracy from
13C′-RCSA or 15N-RCSA, and N-HN RDC data. We show that the struc-
tural information present in 13C′-RCSA and 15N-RCSA can be extracted
analytically, and used in a rigorous algorithmic framework to compute a
high-quality protein backbone global fold, from a limited amount of NMR
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data. This will benefit automated NOE assignment and high-resolution
protein backbone structure determination from sparse NMR data.

1 Introduction

Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful ex-
perimental techniques for the study of macromolecular structure and dynamics,
particularly for proteins in solution. NMR complements X-ray crystallography
in that it can obtain structural information for proteins that are hard to crystal-
lize, intrinsically disordered proteins [18,38], and denatured proteins [36]. NMR
has also emerged as a major tool to probe protein-ligand interactions [20] under
near physiological conditions, as well as to investigate invisible excited states in
proteins and extract information on these minor conformers [3, 4].

The NMR technique is based on the sensitivity of magnetic properties of
the nuclei to its local chemical and electronic environment in the presence of a
strong and static external magnetic field of the spectrometer. The observable for
a nucleus, called its chemical shift, arises from the nuclear shielding effect caused
by the local magnetic field, induced by the circulation of electrons surrounding
the nucleus. This induced field can be described by a second-rank chemical shift
(or shielding) anisotropy (CSA) tensor, which can be rewritten to correspond to
the isotropic, anisotropic antisymmetric, and anisotropic symmetric parts.

In solution, due to isotropic molecular tumbling, the anisotropic parts of the
CSA tensor average out to zero due to rotational diffusion, and only the remain-
ing isotropic chemical shift, δiso, is observed. While isotropic chemical shifts play
an increasingly important role in NMR structure elucidation and refinement [9,
45,59], and dynamics [1], our understanding of the relationship between structure
and chemical shifts is still far from complete, especially in the context of pro-
teins [68] and other macromolecules. The antisymmetric part of the CSA tensor
often has a negligible effect on the relaxation rates, and hence can be ignored. The
symmetric part of the CSA tensor is a traceless, second-rank tensor, usually rep-
resented by its three eigenvalues in the principal order frame and the orientations
of its three principal axes (eigenvectors) with respect to the molecular frame.

Accurate knowledge of CSA tensors is essential to the quantitative determi-
nation and interpretation of dynamics, relaxation interference [33, 46], residual
chemical shift anisotropy (RCSA) [12,39,63], and NMR structure determination
and refinement [15, 26, 27, 61]. In solid-state NMR, CSA tensors can be deter-
mined from powder patterns [32], or magic-angle spinning (MAS) spectra [60].
In solution NMR, the CSA tensors can be determined from relaxation and CSA-
dipolar cross-correlation experiments [30, 62, 63], or from offsets in resonance
peaks upon partial alignment [7]. The presence of an alignment medium intro-
duces partial alignment in the molecules. Residual dipolar coupling (RDC) [34]
can easily be extracted, often with high-precision, as the difference between the
line-splittings in weakly aligned and isotropic buffer solutions. The small differ-
ence in chemical shifts observed under partially aligned conditions and isotropic
conditions gives rise to the RCSA effect [39]. Techniques to measure RCSA
include temperature-dependent phase transition of certain liquid crystals [12],
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varying concentration of the aligning medium [6], utilizing MAS to eliminate the
effects of protein alignment relative to the magnetic field [21], and the recently
introduced two-stage NMR tube method by Prestegard and coworkers [28].

Similar to RDC, RCSA contains rich and orientationally sensitive structural
information [46] that complements other types of structural restraints such as
the nuclear Overhauser effect (NOE) distance restraints and scalar couplings.
Since amide nitrogen RCSA (15N-RCSA) and carbonyl RCSA (13C′-RCSA) can
be measured to high precision [12, 63], they have been used as structural re-
straints for protein structure validation [14] and refinement [10,26,27,53] during
the final stages of traditional protein structure determination [5, 42]. However,
to our knowledge, RCSAs have never been used in the initial stages of struc-
ture computation to compute the backbone global fold of a protein. Methods
that primarily use RDCs in the initial stages of structure computation [16,
19, 47, 65] have been shown to have many advantages over traditional NOE-
based structure determination protocols. Recently, in [35,45], Baker and Bax and
coworkers have developed protocols within the Rosetta [25] protein structure
modeling framework, that use only backbone chemical shifts, RDCs, and amide
proton NOE distances to compute high-quality protein backbone conformations.
However, these approaches do not use structural restraints from RCSA data.
Further, most of these approaches use stochastic search, and therefore, lack
any algorithmic guarantee on the quality of the solution or running time.

In recent work from our laboratory [17, 51, 52, 56, 58, 64], polynomial-time
algorithms have been proposed for high-resolution backbone global fold deter-
mination from a minimal amount of RDC data. This framework is called rdc-
analytic. The core of the rdc-analytic suite is based on representing RDC
and protein kinematics in algebraic form, and solving them analytically to obtain
closed-form solutions for the backbone dihedrals and peptide plane orientations,
in a divide-and-conquer framework to compute the global fold. These algorithms
have been used in [57, 65, 66] to develop new algorithms for NOE assignment,
which led to the development of a new framework [65] for high-resolution pro-
tein structure determination, which was used prospectively to solve the solu-
tion structure of the FF Domain 2 of human transcription elongation factor
CA150 (FF2) (PDB id: 2KIQ). Recently, we have developed a novel algorithm,
pool [51, 52], within the rdc-analytic framework, to determine protein loop
conformations from a minimal amount of RDC data. However, rdc-analytic
did not exploit orientational restraints from RCSA data.

In this work, we show that orientational restraints from 13C′-RCSAs or 15N-
RCSAs can be used in combination with N-HN RDCs in an analytic, system-
atic search-based, divide-and-conquer framework to determine individual peptide
plane orientations and protein backbone conformations. Our new algorithm is a
part of the rdc-analytic framework, and is called rdc-csa-analytic. Two
demonstrations of applying rdc-csa-analytic, (1) using 13C′-RCSA and N-HN

RDC, and (2) using 15N-RCSA and N-HN RDC, to compute the global fold of
ubiquitin, and promising results from the application of our algorithm on real
biological NMR data, are presented below.
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Furthermore, we pursued the fundamental question of determining the pep-
tide plane orientations when 3 measurements are used, each of which is either
an RCSA on a nucleus or an RDC on an internuclear vector on the peptide
plane. This is important, because for perdeuterated proteins, RDCs are usually
measured on N-HN, Cα-C′, and C′-N coplanar vectors. Further, 15N-RCSA and
13C′-RCSA can be interpreted with respect to the CSA tensor components on
the peptide plane. Previously, Brüschweiler and coworkers [23] showed that it is
possible to derive analytic expressions, containing transcendental functions, for
the 16 possible peptide plane orientations using only RDCs. However, they only
showed a lower bound on the number of solutions. In addition, their work did not
consider orientational restraints from RCSAs. In this work, we derive closed-form
analytic expressions for the peptide plane orientations from RCSAs and RDCs
on coplanar vectors measured in one alignment medium. We prove that at most
16 orientations are possible for the peptide plane, which can be computed in
closed form by solving a quadratic equation, and then applying symmetry opera-
tions. This is remarkable because for decades, all previous approaches required,
at worst, solving equations involving transcendental functions, or at best, solving
polynomial equations of degree 4 or higher. We give a Θ(1)-time deterministic
algorithm, 3planar, to compute all possible peptide plane orientations.

2 Theory and Methods

2.1 Residual Dipolar Coupling

The residual dipolar coupling r between two spin- 12 nuclei a and b, described by
a unit internuclear vector v, due to anisotropic distribution of orientations in
the presence of an alignment medium, relative to a strong static magnetic field
direction B is given by [16, 48, 49]

r = Dmaxv
TSv. (1)

Here the dipolar interaction constant Dmax depends on the gyromagnetic ratios
of the nuclei a and b, and the vibrational ensemble-averaged inverse cube of the
distance between them. S is the Saupe order matrix [40], or alignment tensor
that specifies the ensemble-averaged anisotropic orientation of the protein in
the laboratory frame. S is a 3 × 3 symmetric, traceless, rank 2 tensor with
five independent elements [34, 48, 49]. Letting Dmax = 1 (i.e., scaling the RDCs
appropriately), and considering a global coordinate frame that diagonalizes S,
often called the principal order frame (POF), Eq. (1) can be written as

r = Sxxx
2 + Syyy

2 + Szzz
2, (2)

where Sxx, Syy and Szz are the three diagonal elements of a diagonalized align-
ment tensor S, and x, y and z are, respectively, the x, y and z components of
the unit vector v in a POF that diagonalizes S. Note that Sxx + Syy + Szz = 0
because S is traceless. Since v is a unit vector, an RDC constrains the cor-
responding internuclear vector v to lie on the intersection of a concentric unit
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                                      v1 = δxx,
  v2 = δyy   of 13C-CSA tensor. 

v3 = δxx,  v4 = δzz   of 15N-CSA tensor.    v5 = δzz,  v6 = δyy   of 1H-CSA tensor.  
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Fig. 1. Left Panel. (a) The internuclear vector v (green arrow) is constrained to lie
on one of the two pringle-shaped RDC sphero-conic curves (brown) lying on a unit
sphere. (b) The kinematic circle (blue), of the internuclear vector v (here v

CαHα ),
around the axis v

NCα , intersects the sphero-conic curves in at most four points (green
dots) leading to a maximum of four possible orientations for v. The case is similar when
φ is solved and a ψ-defining RDC is measured for an internuclear vector v, e.g., v

NHN .

Right Panel. (c) Orientations of the principal components of 13C-, 15N- and 1H-CSA
tensors with respect to the peptide plane are shown in cyan, blue and gray, respectively.
δzz is the most- and δxx is the least-shielded component. For each tensor, one of the
components is approximately perpendicular to the peptide plane; therefore, the other
two components lie on the peptide plane, and are completely defined by the angle Ω.
The values of the angles Ω

C′ , ΩN and ΩH can be set to fixed values [10,12], e.g., 38◦,
19◦ and 8◦ as reported in [12]. (d) The wagon wheel shows the CSA tensor components
on the peptide plane along with the bond vectors drawn using C′ atom as the origin.

sphere and a quadric (Eq. (2)). This gives a pair of closed curves inscribed on the
unit sphere that are diametrically opposite to each other (see Figure 1 (a, b)).
These curves are known as sphero-conics or sphero-quartics [8,37]. Since |v| = 1,
Eq. (2) can be rewritten in the following form:

ax2 + by2 = c, (3)

where a = Sxx − Szz, b = Syy − Szz, and c = r − Szz. Henceforth, we refer
to Eq. (3) as the reduced RDC equation. For further background on RDCs and
RDC-based structure determination, the reader is referred to [16, 17, 34, 48, 49].

2.2 Residual Chemical Shift Anisotropy

For a given nucleus, the difference in chemical shifts between the liquid crystalline
phase (δaniso) and the isotropic phase (δiso) is the RCSA, and is given by [12,
14, 39, 63]

Δδ = δaniso − δiso =
2

3

∑
i∈{x,y,z}

〈P2(cos θii)〉 δii, (4)

where P2(α) = (3α2 − 1)/2 is the second Legendre polynomial, δxx, δyy and δzz
are the principal components of the CSA tensor, and θxx, θyy and θzz are the re-
spective angles between the principal axes of the traceless, second-rank CSA ten-
sor and the magnetic field direction B. The angle brackets, 〈· · · 〉, denote ensem-
ble averaging. After suitable algebraic manipulations, we can write Eq. (4) as
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Δδ = λ1δ
T
xx
Sδ

xx
+ λ2δ

T
yy
Sδ

yy
, (5)

where

λ1 =
1

3
(2δxx + δyy) (6)

and

λ2 =
1

3
(2δyy + δxx) (7)

are two constants since δxx and δyy are known experimentally. Eq. (5) therefore
expresses the Δδ as a linear combination of two virtual RDC sphero-conics on
two unit vectors δ

xx
and δ

yy
that can be realized on the peptide plane. This

derivation applies, mutatis mutandis, to any two choices of unit vectors from{
δ

xx
, δ

yy
, δ

zz

}
. Working in the POF of the molecular alignment tensor, we can

write the above equation as

Δδ = Sxx(λ1x
2
1 + λ2x

2
2) + Syy(λ1y

2
1 + λ2y

2
2) + Szz(λ1z

2
1 + λ2z

2
2), (8)

where the unit vectors δ
xx

= (x1, y1, z1)
T and δ

yy
= (x2, y2, z2)

T in the POF of
the molecular alignment tensor. Eq. (8) can be simplified to the following form

a(λ1x
2
1 + λ2x

2
2) + b(λ1y

2
1 + λ2y

2
2) = c, (9)

where a = Sxx − Szz , b = Syy − Szz, and c = Δδ− (λ1 + λ2)Szz. Henceforth, we
refer to Eq. (9) as the reduced RCSA equation.

Figure 1 (c, d) shows the local structure of a peptide plane on which the
principal components of 13C-, 15N- and 1H-CSA tensors are realized. δzz and δxx
are respectively the most- and least- shielded CSA tensor components. We denote
13C′-RCSA, 15N-RCSA and 1H-RCSA by ΔδC′ , ΔδN and ΔδH, respectively.

2.3 The rdc-csa-analytic Algorithm

rdc-csa-analytic computes the backbone global fold of proteins using RDC
and RCSA data in one alignment medium. Table 1 describes the RDC and RCSA
types that rdc-csa-analytic uses to compute the backbone dihedrals exactly
and in closed form. A φ-defining RDC is used to compute the backbone dihedral
φ, and a ψ-defining RDC or RCSA is used to compute the backbone dihedral ψ,
in the increasing order of residue number. The input data to rdc-csa-analytic
include: (1) the primary sequence of the protein; (2) any combination of at least
two RDCs or RCSAs per residue measured in one alignment medium; (3) a
sparse set of NOEs; (4) secondary structure element (SSE) boundaries based on
talos [13, 44] dihedral restraints; and (5) the rotamer library [31].

Previously, we have shown that when a φ-defining and a ψ-defining RDC are
available for a residue, the corresponding values for φ and ψ can be computed
by solving quartic equations [51,52,64]. rdc-csa-analytic extends this to the
cases when a ψ-defining RCSA is available in addition to a φ-defining RDC
(see Proposition 1 below), e.g., when Cα-C′ or Cα-Hα RDC, and 13C′-RCSA or



Extracting Structural Information from Residual Chemical Shift Anisotropy 277

Table 1. rdc-csa-analytic uses a φ-defining RDC to compute the backbone dihedral
φ, and a ψ-defining RDC or RCSA to compute the backbone dihedral ψ exactly and
in closed form

φ-defining RDC Cα-Hα, Cα-C′, Cα-Cβ

ψ-defining RDC/RCSA N-HN, C′-N, C′-HN, 13C′-RCSA, 15N-RCSA, 1H-RCSA

15N-RCSA data is available. However, in solution NMR, 13C′-RCSA and/or 15N-
RCSA can be measured, often with high precision, along with N-HN RDC, for
large and perdeuterated protein systems, for which Cα-Hα RDCs at the chiral
Cα center cannot be measured, and Cα-C′ RDCs measurements are often less
precise. Therefore, it is important to be able to determine the global fold from
these types of measurements. rdc-csa-analytic algorithm specifically provides
a solution to this problem. Here we solve the most general case when two ψ-
defining RCSAs and/or RDCs are available for residues. Further, this includes
the case when (only) two RCSAs per residue are available. It can be shown that
(see the supporting information (SI) Appendix A available online [50]) one
must solve a 32 degree univariate polynomial equation to solve for all possible
(at most 32) (φ, ψ) pairs, which is a difficult computational problem.

However, for a given value of φi, the values of ψi can be computed by solving
a quartic equation (see Proposition 1 below). Here we present a hybrid approach
that employs a systematic search over φ combined with solutions to two quartic
equations for ψ derived from two ψ-defining RDC/RCSA values r1 and r2, to
compute the backbone dihedrals (φ, ψ) pairs. For each φ, sampled systematically
from the Ramachandran map, let A and B (each of size ≤4) be the sets of all ψ
values computed using r1 and r2, respectively. If A∩B 	= ∅, then for a ψ ∈ A∩B,
the corresponding (φ, ψ) pair is a solution. However, in practice, there are two
issues that need to be addressed. First, due to finite-resolution sampling of φ, and
experimental errors in the RDC and RCSA data, the intersection of sets A and
B can be an empty set, even though there exist ψA ∈ A and ψB ∈ B such that
|ψA − ψB| < δ, for some small delta δ > 0 which depends on the resolution of
sampling of φ. This issue can be addressed by choosing a suitable resolution α for
systematic sampling of φ, and choosing a corresponding small value for δ. Both
α and δ are input parameters to our algorithm. We use α = 0.2◦ and δ = 0.5◦.
We choose a ψ ∈ [ψA, ψB] when |ψA − ψB| < δ. Further, our choice of ψ does
not increase the RDC and RCSA RMSDs (i.e., the RMS deviation between the
back-computed and experimental values) so much that they exceed user-defined
thresholds; otherwise, the solution is discarded. Second, due to fine sampling of
φ, often multiple pairs of (φ, ψ) cluster in a small region of the Ramachandran
map. We cluster these solutions, and choose a set of representative candidates
so that the complexity of the conformation tree search is not adversely affected.

A description of the core modules of rdc-csa-analytic, and the inner work-
ing details are provided in the SI Appendix B available online [50].
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The Analytic Step: Peptide Plane Orientations from N-HN RDC, and
13C-RCSA or 15N-RCSA Measured in One Alignment Medium. To
compute ψi for residue i, any of the 13C′-RCSA, 15N-RCSA or 1H-RCSA can
be used (see Table 1). Here we will use 13C′-RCSA and derive the necessary
mathematical tools for computing the dihedral ψi. Our derivation holds for 15N-
RCSA and 1H-RCSA with minor modifications.

Proposition 1. Given the diagonalized alignment tensor components Sxx and
Syy, the peptide plane Pi, the dihedral φi, and the 13C′-RCSA ΔδC′ for residue i,
there exist at most 4 possible values of the dihedral angle ψi that satisfy ΔδC′ , and
they can be computed exactly and in closed form by solving a quartic equation.

Proof. The derivation below assumes standard protein geometry, which is ex-
ploited in the kinematics [52, 56]. Let the unit vector v

0
= (0, 0, 1)T be the N-

HN bond vector of residue i in the local coordinate frame defined on the peptide
plane Pi. Let v1

= (x1, y1, z1)
T and v

2
= (x2, y2, z2)

T be the unit vectors defined
with respect to the POF on the peptide plane Pi+1. We can write the forward
kinematics relations between v0 and v1 , and between v0 and v2 as follows:

v
1
= Ri,POF Rl Rz(φi) Rm Rz(ψi) Rr v

0
, (10)

v
2
= Ri,POF Rl Rz(φi) Rm Rz(ψi) R

′
r v

0
. (11)

HereRl,Rm,Rr andR′
r are constant rotation matrices.Ri,POF is rotation matrix

of Pi with respect to the POF. Rz(φi) is the rotation about the z-axis by φi, and
is a constant rotation matrix since φi is known. Rz(ψi) is the rotation about the
z-axis by ψi. Let c = cosψi and s = sinψi. Using this in Eq. (10) and Eq. (11)
and simplifying we obtain

x1 = A10 +A11c+A12s, x2 = A20 +A21c+A22s, (12)

y1 = B10 +B11c+B12s, y2 = B20 +B21c+ B22s, (13)

z1 = C10 + C11c+ C12s, z2 = C20 + C21c+ C22s, (14)

where Aij , Bij , Cij for 1 ≤ i ≤ 2 and 0 ≤ j ≤ 2 are constants. Using Eq. (12) to
Eq. (14) in the reduced RCSA equation (Eq. (9)), and simplifying we obtain

K0 +K1c+K2s+K3cs+K4c
2 +K5s

2 = 0, (15)

where Ki, 0 ≤ i ≤ 5 are constants. Using half-angle substitutions

u = tan(
ψi

2
), c =

1− u2

1 + u2
, and s =

2u

1 + u2
(16)

in Eq. (15) we obtain

L0 + L1u+ L2u
2 + L3u

3 + L4u
4 = 0, (17)

where Li, 0 ≤ i ≤ 4 are constants. Eq. (17) is a quartic equation that can
be solved exactly and in closed form. For each real solution (at most four are
possible), the corresponding ψi value can be computed using Eq. (16). ��
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Corollary 1. Given the diagonalized alignment tensor components Sxx and Syy,
the peptide plane Pi, the dihedral φi, and a ψ-defining RDC r for Pi+1, there
exist at most 4 possible values of the dihedral ψi that satisfy r. The possible values
of ψi can be computed exactly and in closed form by solving a quartic equation.

Proof. The proof follows from Proposition 1 by setting λ1 = 1, λ2 = 0 in Eq. (9),
and treating v

1
as the vector for which the ψ-defining RDC r is measured. ��

2.4 The 3planar Algorithm

We show that given any combination of three RCSAs and/or RDCs for internu-
clear vectors on a peptide plane (and in general, for any planar structural motif),
there exist at most 16 possible orientations of the peptide plane that satisfy the
three given orientational restraints. We further show that the 16 possible ori-
entations can be computed in closed form by solving a quadratic equation. It
is the only case where we have discovered a quadratic equation-based solution
to constraints involving second-rank tensors, e.g., RDCs and RCSAs; all previ-
ous exact solutions to RCSA and/or RDC equations required solving quartic or
higher degree equations. This we obtained by exploiting the symmetry of the
equations in a novel way. Our main result is stated as the following proposition.

Proposition 2. Given a rhombic alignment tensor, and 3 measurements, each
of which is either an RCSA on a nucleus on the peptide plane P or an RDC
on an internuclear vector on P , there exist at most 16 possible orientations for
P that satisfy the 3 measurements, and these orientations can be written and
solved in closed form by solving a quadratic equation.

Proof. The proof is presented in the SI Appendix C available online [50]. ��

Proposition 2, is incorporated into the 3planar algorithm, which requires the
following as input: (1) the diagonalized alignment tensor components (Syy, Szz);
and (2) three orientational restraints, such as the CSA tensor parameters along
with the RCSA values (δxx, δyy, Ω,Δδ) and/or RDCs. It outputs all the possible
oriented peptide planes consistent with the RDC and/or RCSA data.

3 Results and Discussion

3.1 Backbone Global Fold of Ubiquitin from Experimental RDC
and RCSA

We applied our algorithm to compute the global fold of human ubiquitin. The
protein ubiquitin has been a model system in many solution-state [6,7,12,14,24,
30, 56] and solid-state [41, 43] NMR studies. The solution structure of ubiquitin
(PDB id: 1D3Z), and a 1.8 Å X-ray crystallographic structure of ubiquitin [55]
(PDB id: 1UBQ), available in the PDB [2], were used as references. The exper-
imental N-HN RDC, 13C′-RCSA and 15N-RCSA data were obtained from the
previously published work by Cornilescu and Bax [12]. We used the uniform
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Table 2. Results on the alignment tensor computation, and RDC and RCSA data
fit. (a) Experimental NMR data is from [12]. RMSD is the root-mean-square deviation
between the back-computed and experimental values. (b) N-HN RDC and 13C′-RCSA,
and (c) N-HN RDC and 15N-RCSA, were used to compute the global fold. (d) The
alignment tensors for the global folds computed by rdc-csa-analytic agree well with
that of the reference NMR structure.

Model RDC and RCSAa Diagonalized Alignment Rhombicityd

used & RMSDs Tensor Syy, Szz (ρ)

1D3Z N-HN: 1.11 Hz -2.31, 51.17 0.61

1D3Z N-HN: 1.17 Hz, 13C′-RCSA: 6.85 ppb -1.40, 50.57 0.63

1D3Z N-HN: 1.40 Hz, 15N-RCSA: 10.08 ppb -3.56, 49.40 0.57

rdc-csa-analytic b N-HN: 1.21 Hz, 13C′-RCSA: 7.38 ppb -0.71, 51.11 0.65

rdc-csa-analytic c N-HN: 1.13 Hz, 15N-RCSA: 9.22 ppb -3.98, 46.10 0.55

Table 3. Backbone RMSDs (Å) of SSE fragments computed by rdc-csa-analytic.
(a) NMR data is from [12].(b) 12 H-bond information, and (c) 5 Cα-Cα approximate
distance restraints derived from NOEs [56] were used.

Data Used; α-helix β1 β2 β3 β4 β5 β-sheetb Global
Referencea I23–K33 Q2–T7 T12–V17 Q41–F45 K48–L50 S65–V70 β1,··· ,5 Foldc

N-HN,13C′-RCSA; NMR 0.27 0.24 0.35 0.16 0.19 0.20 0.71 1.04

N-HN,13C′-RCSA; X-ray 0.23 0.32 0.37 0.28 0.20 0.25 0.79 1.09

N-HN,15N-RCSA; NMR 0.26 0.51 0.42 0.28 0.31 0.30 0.93 1.31

N-HN,15N-RCSA; X-ray 0.25 0.61 0.43 0.36 0.32 0.35 0.99 1.38

average values of the principal components of the CSA tensors reported in [12].
Such an assumption has been used widely in the literature for protein structure
refinement against RCSA data [10, 26, 27, 53]. Whenever residue-specific CSA
tensors can be determined, as in [6, 7, 30, 62, 63], rdc-csa-analytic can use
those tensors. The NOE restraints and hydrogen bond information for ubiquitin
were extracted from the NMR restraint file for the PDB id 1D3Z [14].

Since RCSA measurement is usually accompanied by that of N-HN RDC,
recorded for the same sample under the same alignment conditions [10, 12, 28],
computing an accurate backbone global fold from this limited amount of data,
as a first step in protein structure computation, is of considerable interest. Here
we present results of backbone global fold computation by rdc-csa-analytic
using (1) N-HN RDC and 13C′-RCSA, and (2) N-HN RDC and 15N-RCSA.

The alignment tensor was computed from N-HN RDC and 13C′-RCSA/15N-
RCSA data by bootstrapping the computation with an ideal helix for the helical
region I23–K33 of ubiquitin (see the SI Appendix B [50]), and was used subse-
quently in the global fold computation. As summarized in Table 2, the alignment
tensors agree well with those computed for the reference NMR structure. It is
worth noting that if the alignment tensor is estimated by other methods [11],
rdc-csa-analytic can use that as input to compute the backbone global fold.

rdc-csa-analytic computed accurate backbone conformations from N-HN

RDC plus either 13C′-RCSA or 15N-RCSA data. As shown in Table 3, the back-
bone RMSDs between the computed SSEs and the reference structures are within
0.61 Å, and for about half of the cases they are less than 0.3 Å. The SSE back-
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Fig. 2. Correlations between back-computed and experimental N-HN RDCs and 13C′-
RCSA (a, b), and those for N-HN RDC and 15N-RCSA (c, d) shown for the global folds
computed by rdc-csa-analytic

RDC-CSA-ANALYTIC NMR: 1D3Z X-ray: 1UBQ 

RMSD: 0.71 Å RMSD: 0.79 Å RMSD: 0.93 Å RMSD: 0.99 Å 
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  β-sheet: 

Q2-T7, 
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K48-L50,  
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I23-K33 

Global-fold: 

Fig. 3. Overlay of the ubiquitin global fold computed by rdc-csa-analytic using N-
HN RDC and 13C′-RCSA or 15N-RCSA versus the NMR and X-ray reference structures

bones computed using N-HN RDC and 13C′-RCSA data agree better with the
reference structures than those computed using N-HN RDC and 15N-RCSA data
and compared with the reference structures. Table 2 and Figure 2 show that
the back-computed RDCs and RCSAs for the rdc-csa-analytic-computed
structures are in good agreement with their experimental counterparts. For the
structure computed using N-HN RDC and 15N-RCSA, the 15N-RCSA Pearson’s
correlation coefficient is 0.957, and for other three cases the correlation coeffi-
cients are 0.99 or more (see Figure 2). This is explained by the slightly better
quality structure obtained using N-HN RDC and 13C′-RCSA data than that
obtained using N-HN RDC and 15N-RCSA data. The β-sheet is computed us-
ing 12 hydrogen bond restraints in addition to the RDC and RCSA data. The
α-helix (I23–K33) and the β-sheet for ubiquitin were packed using 5 approxi-
mate Cα-Cα distances derived from NOEs using the method described in [56].
The top 1000 packed structures obtained from the packing of ubiquitin α-helix
and β-sheet, computed using N-HN RDC and 13C′-RCSA data, have backbone
RMSDs within the range 1.04–1.39 Å versus the reference NMR structure, and
1.09–1.42 Å versus the X-ray reference structure. The top 1000 packed structures
obtained from the packing of ubiquitin α-helix and β-sheet, computed using
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(a) (b) (c) (d) 

Fig. 4. The peptide plane orientations correspond to the
two roots of the quadratic equations (Proposition 2) de-
rived from Cα-C′, C′-N and N-HN RDCs measured in
single alignment medium

π/2 

(a) (b) 

Fig. 5. Visualization of all
sixteen peptide plane orien-
tations together

N-HN RDC and 15N-RCSA data have backbone RMSDs within the range 1.31–
1.86 Å versus the reference NMR structure, and 1.38–1.97 Å versus the X-ray
reference structure. Figure 3 shows the overlay of the backbone fold computed
by rdc-csa-analytic versus the NMR and X-ray reference structures.

These results indicate that rdc-csa-analytic can be used to compute accu-
rate global folds from a minimal amount of RDC and RCSA data. Protein back-
bone global folds of similar resolution have been used successfully in empirical
high-resolution structure determinations [65], NOE assignment [22,66], and side-
chain resonance assignment [67]. Therefore, our method will be useful in high-
resolution protein structure determination. Furthermore, the use of RCSAs in the
first stage of structure computation to compute accurate global folds is a novel
concept, and our paper, being the first one to demonstrate this, can be a stepping
stone to further research that exploits this new type of experimental data.

3.2 16-Fold Degeneracy of Peptide Plane Orientations

Our algorithm 3planar was tested on the experimental RDC data for the pro-
tein ubiquitin (PDB id: 1D3Z) obtained from the BioMagResBank (BMRB) [54].
Using the singular value decomposition [29,56] module of rdc-csa-analytic [52,
64,65], we computed the principal components of the alignment tensor for ubiq-
uitin using its NMR structure. We used Cα-C′, C′-N and N-HN RDCs, measured
in one alignment medium, for the peptide plane defined by the residues Ala28
and Lys29 of ubiquitin. 3planar then computed the 16 oriented peptide planes
(individual planes are shown in the online SI Appendix D [50]). In Figure 4
(a, b) and (c, d), the two sets of 8 oriented peptide planes corresponding to the
two roots of the quadratic equation are shown. Figure 5 shows the 16 oriented
peptide planes visualized together. A counterclockwise rotation of 90◦ about the
x-axis elucidates the symmetry in the peptide plane orientations. Similar results
were obtained when N-HN RDC, 15N-RCSA and 13C′-RCSA data [12] was used,
and the corresponding alignment tensor was computed by rdc-csa-analytic.

3planar is a Θ(1)-time deterministic algorithm. During protein backbone
structure determination, such as when using the rdc-analytic framework, the
multiple possible peptide plane orientations consistent with RDC/RCSA are
usually ruled out by the kinematic coupling between peptide planes along the
polypeptide chain, standard biophysical and protein geometry assumptions, or
using additional experimental restraints.
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4 Conclusions

We described a novel algorithm, rdc-csa-analytic, that uses a sparse set of
RCSAs and RDCs to compute the protein backbone global fold accurately. Our
algorithm is the first algorithm to demonstrate that the orientational restraints
from RCSA can be used in the initial stage of structure computation. We hope
that this breakthrough will shed new light on the information content of RCSA,
and help NMR structural biologists use our new ways of using RCSA to solve
protein structures. Our algorithm barely scratches the surface of this new area,
and much work remains to be done. Computing loop conformations using RCSA
is an immediate future extension. Ubiquitin is the only protein for which we
were able to obtain experimental 15N-RCSA and 13C′-RCSA data, available in
the public domain. In future, we would like to test our algorithms on other
protein systems, when experimental data becomes available for those systems.

When using orientational restraints in structure determination, it is important
to know all the possible degeneracies associated with them, and their implica-
tions for structure determination. We gave exact and tight bounds on the ori-
entational degeneracy of peptide planes computed using RDCs and/or RCSAs,
and described a Θ(1)-time algorithm, 3planar, to compute them.

Although RDCs have been regularly used in protein structure determination,
RCSAs have been used only in a few cases for structure validation [14] and refine-
ment [10, 26, 27, 53]. We envision that algorithms, such as rdc-csa-analytic,
that use RCSA data plus RDCs during the initial stages of protein structure
determination will play a large role in future.
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Motivation. Next-generation DNA sequencing technologies now enable the
measurement of exomes, genomes, and mRNA expression in many samples.
The next challenge is to interpret these large quantities of DNA and RNA se-
quence data. In many human and cancer genomics studies, a major goal is to
discover associations between an observed phenotype and a particular variable
from genome-wide measurements of many such variables. In this work we con-
sider the problem of testing the association between a DNA sequence variant
and the survival time, or length of time that patients live following diagnosis or
treatment. This problem is relevant to many cancer sequencing studies, in which
one aims to discover somatic variants that distinguish patients with fast-growing
tumors that require aggressive treatment from patients with better prognosis [1].

The most widely used statistical test of a difference in the survival time be-
tween two (or more) classes of samples is the nonparametric log-rank test. Nearly
all implementations of the log-rank test rely on the asymptotic normality of the
test statistic. However, this approximation gives poor results in many genomics
applications where: (1) the populations are unbalanced; i.e. the population con-
taining a given variant is significantly smaller than the population without that
variant; (2) we test many possible variants and are interested in those variants
with very small p-values that remain significant after multi-hypothesis correc-
tion. These issues do not arise in the traditional applications of the log-rank test,
namely clinical trials and product reliability tests, where pre-selected groups that
differ in one tested feature – e.g., receiving a particular drug or treatment – are
compared.

Contributions. We show empirically that the asymptotic approximations used
in most implementations of the log-rank test produce poor estimates of the true
p-values when applied to unbalanced populations. An exact test, based on the
exact distribution of the test statistic, is thus advantageous in such applications.
Exact tests for comparing survival distributions have received scant attention in
the literature.
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We consider the two exact null distributions for the log-rank test, the con-
ditional and permutational distributions [2,3]. We show empirically that in the
range of parameters expected in genomic applications: (1) the p-value of the
log-rank statistic is very sensitive to the choice of the null distribution; and (2)
the permutational distribution produces p-values significantly closer to the true
p-values than the p-values from the conditional distribution. We therefore prefer
the permutational distribution that matches exactly the problem’s parameters,
and moreover has maximum local power among all order invariant tests [3]. No
efficient algorithm for computing p-values for the permutational distribution has
been proposed in the literature.

We introduce a novel fully polynomial time approximation scheme (FPTAS)
for the p-value of the log-rank test under the permutational distribution. That
is, we present an algorithm that computes for any ε > 0 a conservative estimate
p̃ of the correct p-value such that: (1) p̃ ∈ [p, (1 + ε)p]; and (2) the run-time of
the algorithm is polynomial in ε−1 and the number of patients. The FTPAS uses
a novel method to approximate the entire distribution of the log-rank statistic.
The method is not only mathematically sound but also practical and efficient.
In contrast to Monte-Carlo approaches for computing p-values, the run-time of
the FPTAS is not a function of the p-value, which can be exponentially small.

Application to Cancer Data. We implement and test our algorithm on so-
matic mutation and survival data from The Cancer Genome Atlas (TCGA). In
particular, we analyze data from four different cancer types, reporting in all cases
substantial differences between the p-values obtained by our algorithm and the
p-values obtained using either the exact conditional distribution, or the asymp-
totic approximation of the log-rank statistic – the latter as implemented in the
survdiff package in R. We identify mutations with statistically significant as-
sociation to survival time. Many of these are supported by the literature (e.g.,
BRCA2 in ovarian serous adenocarcinoma [4]), and are only identified using our
FPTAS. Moreover, survdiff suspiciously reports a number of mutations of very
small frequency as having statistically significant association with survival time,
while our FPTAS does not. These results show that our algorithm is practical,
efficient, and finds known associations in small and unbalanced populations with
fewer false positives.
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Tandem mass spectrometry (MS/MS) continues to be the technology of choice
for high-throughput analysis of complex proteomics samples. While MS/MS
spectra are commonly identified by matching against a database of known pro-
tein sequences, the complementary approach of spectral library searching [1,2,3]
against collections of reference spectra consistently outperforms sequence-based
searches by resulting in significantly more identified spectra. But despite this
demonstrated superior sensitivity, the development of methods to determine the
statistical significance of Spectrum-Spectrum Matches (SSMs) in peptide spec-
tral library searches is still in its early stages.

The most common approach to controlling the False Discovery Rate (FDR)
in both database search [4] and spectral library search [5] is the Target-Decoy
approach where one extends the database/library of true peptides with a com-
plement of sequences/spectra from ‘random’ peptides and uses matches to the
latter to estimate the number of false matches to true sequences/spectra. But
while these FDR approaches continue to be very valuable in correcting for multi-
ple hypothesis testing in large-scale experiments, they provide little to no insight
on the statistical significance of individual SSMs or Peptide Spectrum Matches
(PSMs).

The estimation of the significance of SSMs is currently hindered by difficulties
in finding an appropriate definition of ‘random’ SSMs to use as a null model when
estimating the significance of true SSMs. We propose to avoid this problem
by changing the null hypothesis – instead of determining the probability of a
random match with a score ≥ T , our approach determines the probability that
a true match has a score ≤ T . To this end, we explicitly model the variation in
instrument measurements of MS/MS peak intensities (using a reference spectral
library and a set of matching experimental MS/MS spectra) and show how
these models can be used to determine a theoretical distribution of SSM scores
between reference and query spectra of the same molecule. While the proposed
Spectral Library Generating Function (SLGF) approach can be used to calculate
theoretical distributions for any additive SSM score (e.g., any dot product), we
further show how it can be used to calculate the distribution of expected cosines
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between reference library and replicate query spectra. To assess the statistical
significance of a score of a SSM between a reference library and unknown query
spectrum, we used these SLGF calculated theoretical cosine score distributions
to derive a p-value. In evaluating SLGF we explored both the accuracy of the
theoretical distributions as well as SLGF’s usefulness in the context of spectral
library search. First we show that these expected cosine distributions did indeed
approximate empirical score distributions and note that further work is necessary
to enable more accurate theoretical distribution calculations. Second, using these
p-values as scores, we demonstrate that these SLGF-based SSM p-value scores
significantly outperform current state-of-the-art spectral library search tools such
as SpectraST [1] in our test dataset. We additionally provide a detailed discussion
of the multiple reasons behind the observed differences in the sets of identified
MS/MS spectra.

Acknowledgements. This work was supported by the National Institutes of
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Sciences.
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Motivation: There is increasing evidence of pervasive transcription, resulting
in hundreds of thousands of ncRNAs of unknown function. Standard computa-
tional analysis tasks for inferring functional annotations like clustering require
fast and accurate RNA comparisons based on sequence and structure similarity.
The gold standard for the latter is Sankoff’s algorithm [3], which simultaneously
aligns and folds RNAs. Because of its extreme time complexity of O(n6), nu-
merous faster “Sankoff-style” approaches have been suggested. Several such ap-
proaches introduce heuristics based on sequence alignment, which compromises
the alignment quality for RNAs with sequence identities below 60% [1]. Avoid-
ing such heuristics, as e.g. in LocARNA [4], has been assumed to prohibit time
complexities better than O(n4), which strongly limits large-scale applications.

Results: Breaking this barrier, we introduce SPARSE (Sparse Prediction and
Alignment of RNAs using Structure Ensembles), a novel quadratic time Sankoff-
style approach that does not rely on sequence-based heuristics but employs struc-
tural properties of RNA ensembles; its O(n2) complexity matches the one of
sequence alignment. The approach is based on a novel lightweight Sankoff-style
alignment model, for which we introduce the algorithm PARSE. For the first time
it transfers the Sankoff-model completely to a lightweight energy model; thus, it
is more expressive than all previous lightweight methods, which inherit the PM-
comp model [2]. In comparison to LocARNA and similar approaches, the novel
model enables much stronger sparsification based on the RNA structure ensem-
ble; consequently, SPARSE aligns and folds RNAs with similar alignment and
better folding quality in significantly less time. Finally, SPARSE aligns ncRNAs
from the challenging low sequence identity region more accurately than tools
relying on sequence-based heuristics.

� Joint first authors.
�� Corresponding author.
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Conclusion: Our results indicate that a complete lightweight Sankoff-style
model with stronger sparsification can increase the performance and accuracy of
RNA alignment, where the potential of the model points far beyond the studied
prototype. Not falling back on sequence comparison, SPARSE suggests itself for
large scale similarity assessment of RNAs with moderate to very low sequence
identity.
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Abstract. Phylogenetic network is a model for reticulate evolution. Hy-
bridization network is one type of phylogenetic network for a set of discor-
dant gene trees, and “displays” each gene tree. A central computational
problem on hybridization networks is: given a set of gene trees, recon-
struct the minimum (i.e. most parsimonious) hybridization network that
displays each given gene tree. This problem is known to be NP-hard, and
existing approaches for this problem are either heuristics or make simpli-
fying assumptions (e.g. work with only two input trees or assume some
topological properties). In this paper, we develop an exact algorithm
(called PIRNC) for inferring the minimum hybridization networks from
multiple gene trees. The PIRNC algorithm does not rely on structural
assumptions. To the best of our knowledge, PIRNC is the first exact al-
gorithm for this formulation. When the number of reticulation events is
relatively small (say four or fewer), PIRNC runs reasonably efficient even
for moderately large datasets. For building more complex networks, we
also develop a heuristic version of PIRNC called PIRNCH . Simulation
shows that PIRNCH usually produces networks with fewer reticulation
events than those by an existing method.

1 Introduction

It is well known that reticulate evolution plays a significant role in shaping the
evolutionary history of many species. There are several reticulate evolutionary
processes, such as horizontal gene transfer and hybrid specification. To better
model the effects of these reticulate evolutionary processes, a network-based
model called phylogenetic network (rather than the traditional phylogenetic tree)
is needed. Briefly, phylogenetic network is a directed acyclic graph, which has
nodes (called reticulation nodes) with more than one incoming edges. See Figure
1 for an illustration of phylogenetic networks. The study of phylogenetic networks
has received significant attention in recent years. Refer to the recent books [10,11]
and also surveys (e.g. [12]) for background on phylogenetic networks.

Different models and formulations of phylogenetic networks with various mod-
eling assumptions and different types of input have been proposed and studied.
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In this paper, we focus on one specific formulation of phylogenetic network,
called “hybridization network” [14,10], which takes a set of gene trees as input.
Here, a gene tree models the evolutionary history of some gene. Due to reticulate
evolution, the gene trees may have different topologies. The goal is to construct
a phylogenetic network that “displays” each of the gene trees. We provide more
precise definitions in Section 2. Most current approaches for hybridization net-
work inference are based on the parsimony principle [10,11]. That is, the goal
is to find the hybridization networks with the smallest amount of reticulation
events. In this paper, we also follow the parsimony principle.

It is often believed that hybridization networks may be useful in studying
reticulate evolution. However, hybridization networks have not been widely used
by biologists [11]. One obstacle is the computational challenge. Many existing
computational formulations for inferring hybridization networks are known to
be NP complete. Due to the computational difficulty, most existing approaches
are heuristic. Moreover, existing approaches often impose simplifications on the
hybridization network formulation. Simplification can be on the modeling of
hybridization networks or the types of inputs allowed. For example, phylogenetic
networks with structural assumptions such as galled networks [8] or the so-
called level-k networks as in e.g. [15] have been previously studied. Another
simplification often made in the study of hybridization networks is that only two
input gene trees are allowed (e.g. [14,20,1]). Clearly, methods allowing multiple
gene trees are likely to be more useful with the more available gene sequence
data. Currently, there are only a few heuristic methods [18,13,5] on hybridization
network construction or reticulation level estimation that allow multiple gene
trees and do not rely on structural assumptions.

In this paper, we develop an algorithm (called PIRNC) for inferring the par-
simonious hybridization networks from multiple gene trees. To the best of our
knowledge, PIRNC is the first exact algorithm for this formulation. PIRNC has
the following features.

– PIRNC takes a set of rooted binary gene trees as input and constructs a
hybridization network that displays each of the gene trees.

– PIRNC is an exact algorithm (i.e. it infers the most parsimonious networks).
– PIRNC allows any number of gene trees in principle, although longer run-

ning time and larger amount of memory may be needed for larger input.
PIRNC also does not impose any structural constraints (for example, “gall”-
like structures as in e.g. [9,6]) on phylogenetic networks.

– The running time of PIRNC is largely decided by the number of reticulation
events in the inferred hybridization networks. When the number of reticu-
lation events is relatively small (say five or fewer), PIRNC runs reasonably
fast even for moderately large problem instance (say five gene trees with
30 taxa). On the other hand, for some larger dataset with say six or more
reticulation events for five gene trees with 30 taxa, PIRNC becomes slow.

PIRNC may be best applied for inferring hybridization networks with rela-
tively simple structure (i.e. the number of reticulation events is relatively small).
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We note that real hybridization networks may indeed have relatively small num-
ber of reticulation events as suggested in [11]. Nevertheless, constructing parsi-
monious hybridization networks with larger number of reticulations is still an
interesting problem from the computational perspective. In this paper, we also
develop a heuristic version of PIRNC called PIRNCH . PIRNCH does not al-
ways find the most parsimonious networks, but simulation shows that PIRNCH

usually produces networks with fewer reticulations than an existing method.

2 Definitions and Background

Throughout this paper, we assume a phylogenetic tree is rooted, binary and
leaf-labeled by a set of species (called taxa). In-degrees of all vertices (also called
nodes) in a tree (except the root) are one. For convenience, for a tree node v, we
often call the subtree rooted at v as the subtree v. Our definition of hybridization
networks is similar to that in [14] with only some small changes. A hybridization
network (sometimes simply network) is a directed acyclic graph with vertex
set V and edge set E, where some nodes in V are labeled by taxa. V can be
partitioned into VT (called tree nodes) and VR (called reticulation nodes). E can
be partitioned into ET (called tree edges) and ER (called reticulation edges).
Moreover,

1. Except the root, each node must have at least one incoming edge.
2. Reticulation nodes have in-degree two. Tree nodes have in-degree one.
3. ER contains edges that go into some reticulation nodes. ET contains edges

that go into some tree nodes.
4. A node is labeled by some taxa iff its out-degree is zero (i.e. is a leaf).

In addition, we have one more restriction:

R1 For a network N , when only one of the incoming edges of each reticulation
node is kept and the other is deleted, we always derive a tree T ′.

In this paper, we assume the in-degree of reticulation nodes is two by noting
that we can always convert a reticulation node with in-degree of three or more
to several reticulation nodes with in-degree of two [18]. We call a branch of a
hybridization network or a tree a “lineage”. Intuitively, a lineage corresponds
to some extant or ancestral species modeled in the phylogenetic network. There
are two types of lineages: leaf lineages (those originated from the leaves of the
network) and internal lineages (which correspond to ancestral species of the
network). An internal lineage li in a network is created by either a reticulation
or a coalescence.

We first consider the derived tree T ′ (that is embedded in N ) as stated in R1.
When we recursively remove non-labeled leaves and contract edges to remove
degree-two nodes of T ′ (called cleanup), we obtain a phylogenetic tree T (for
the same set of species as in N ). Now suppose we are given a phylogenetic
tree T . We call T is displayed in N when we can obtain an induced tree T ′

from N by properly choosing a single edge to keep at each reticulation node so
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that T ′ is topologically equivalent to T after cleanup. We denote the induced T ′

(if exists) as TN . We call the choices of which reticulation edges to keep (and
prune) the “display choices”. In Figure 1, each of the three trees is displayed in
the network. For example, one possible display choice for T1 (the left most gene
tree) is keeping lineages b and d (and pruning lineages a and e).

Fig. 1. An illustration of a hybridization network with two reticulation events for three
gene trees T1, T2 and T3. Reticulation: square. Speciation (coalescence): oval. Dotted
lines: time. Configurations are shown to the right, one for each time line. Leaf labels:
numbers. Internal nodes (subtrees) of gene trees are labeled by Greek letters.

For a hybridization network N , we define the hybridization number (denoted
as HN ) as the number of the reticulation nodes. Note that this is equivalent to
using the summation of in-degree minus one of all reticulation nodes as in [14]
since the in-degree of a reticulation node is assumed to be two. Sometimes HN
is also called the number of reticulation events in N . Recall that the optimal
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hybridization network is the one with the smallest hybridization number. Now
we formulate the central problem in this paper.

The Most Parsimonious Hybridization Network Problem. Given K
rooted and binary gene trees T1, T2, . . . TK (with the same n taxa), construct
the most parsimonious hybridization network Nmin such that (i) each gene tree
Ti is displayed in Nmin and (ii) HNmin is minimized among all possible such
networks. We call HNmin the hybridization number of T1, . . . , TK .

Constructing parsimonious hybridization networks for a set of K gene trees
is a computationally challenging problem. Even the two-gene-tree (i.e. K = 2)
case is known to be NP-complete [4]. This two-gene-tree case is closely related
to computing the subtree prune and regraft (SPR) distance of two trees, a well-
studied NP complete problem [7,3] in phylogenetics. Nonetheless, there are sev-
eral practical algorithms for the SPR distance problem (e.g. [17,16]). For the
two-gene-tree case of the hybridization network problem, there are also several
exact methods [2,20,1]. Although the worst case running time of these practical
methods are exponential, these methods may work reasonably well in practice.
It becomes more computationally challenging when there are three or more gene
trees. There are currently only a few heuristic methods for either estimating the
hybridization numberH(T1, . . . , TK) or reconstructing near optimal networks for
trees T1, . . . , TK when K ≥ 3 [18,13,5]. There are no existing methods for the
exact computation of the hybridization number or reconstructing parsimonious
networks with three or more trees.

3 Constructing Parsimonious Hybridization Networks

3.1 The Backward in Time View

The backward in time view is the foundation of our method. With a forward in
time view, a tree node in a hybridization network refers to a speciation event
where one lineage splits into two lineages; at a reticulation node a new lineage is
created after two incoming lineages are merged. In this paper, we take a backward
in time view instead. In this view of time, a tree node is called a coalescence: two
lineages coalesce into a single lineage at a tree node when looking backward in
time. Similarly, in this view, two new lineages are created by the reticulation of
a lineage at a reticulation node. As an example, we consider the network shown
in Figure 1. Lineages 1 and b coalesce at time t2 to form the lineage c, and
a reticulation occurs for the lineage 4 at t3 and creates lineages d and e. It is
important to note that a lineage created by a reticulation may “vanish” (i.e. be
pruned) when we make the display choices for a tree. For example, to display T2

(the middle tree in Figure 1), the lineage b vanishes. Displaying a tree T within
a network can also be explained with this view of time. Imagine that we “cut”
the network with the time line at time t and we only consider the portion of
the network more recent than time t. We say a subtree Ts of T is displayed by
time t if Ts can be obtained at the lineage li where li is cut by the time line
t. That is, we can obtain Ts by following lineages backward in time to li at t.
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In this case, we also say Ts is displayed in li or li displays Ts. When we start at the
present time, only leaves (i.e. subtrees with singleton taxa) of T are displayed.
As the time line moves backward, larger and larger subtrees are displayed. For
example, in Figure 1, at time t0, only singleton subtrees of T1 are displayed by
t0. When we move the time back, the subtree α is also displayed by t2 (and is
displayed in the lineage c). In the end, we reach the root of the network where
the entire T is displayed. This simple observation is important for the PIRNC

algorithm described here.

3.2 The High Level Idea

Here is the high level idea of the PIRNC algorithm. We take a coalescent-style
approach by going backward in time. At a particular time of phylogenetic history,
there is a set of lineages that are present at that time. Let us call the snapshot
of the phylogenetic history at a particular time the “ancestral configuration”
(or simply configuration), which specifies the set of ancestral lineages alive at
that time. At present time, there is a single fixed configuration, which contains
all the n extant lineages in the given gene trees. When moving backward in
time, configuration changes when some genealogical events (namely coalescence
and reticulation) occur. Here, we assume there are no two genealogical events
occurring at exactly the same time. For example, consider the example network
in Figure 1. The initial configuration (denoted as C0) contains lineages 1, 2, 3, 4
and 5. The first event backward in time from the present time is the reticulation
r1 of lineage 2 at time t1, which creates two new lineages a and b. So right before
(i.e. more ancient than) t1, the configuration contains 1, 3, 4, 5, a and b. When we
continue tracing backward, the coalescence between lineage 1 and b happens at
time t2, which creates a new lineage c. Then the new configuration right before t2
contains five lineages: 3, 4, 5, a and c. Eventually we reach the final configuration
(denoted as Cf , which contains a single lineage j).

However, when only gene trees are given, we do not know what coalescent
and reticulation events will occur nor the series of configurations at the time
of genealogical events when tracing backward in time. In fact, if we knew, we
would have already found the true hybridization network: configurations at all
the genealogical events specify precisely the phylogenetic history. The key for
our approach is finding configurations at genealogical events that correspond
to the most parsimonious network. Suppose we start with one configuration C
and consider what configurations can be reached from C by a single genealogical
event backward in time. Here, each pair of lineages in C can coalesce and each
lineage of C can have a reticulation. New configurations are generated with these
genealogical events. If we trace backwards long enough, we will reach the final
configuration Cf , where the hybridization network corresponding to Cf displays
each given gene tree. If we also ensure Cf is the one that uses the fewest number
of reticulations, we then know the minimum number of reticulations needed for
the given input gene trees. Once such a Cf is found, we can then identify the
series of genealogical events leading to Cf and this allows us to build the most
parsimonious network.
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The approach sketched above is a simple strategy. However, a moment of
thoughts indicates that its näıve implementation will be too slow: the space
of possible configurations is immense. Consider a configuration with n lineages
from which we are to search for new configurations. If no restriction is imposed,
there are

(
n
2

)
possible coalescences and n reticulations among the n lineages.

Suppose n is 30. Then there are up to 465 new configurations reachable from one
configuration with one reticulation or one coalescence. The number of possible
configurations to explore quickly becomes prohibitively large shortly after the
start of the configuration search. In this paper, we show that the basic approach
can be made much faster with additional techniques, which allows us to “cut
corners” while still ensuring the finding of optimal hybridization networks. The
key to our approach is that the search is guided by the given gene trees. That is,
our algorithm is based on guided configuration search and configurations that do
not lead to parsimonious networks for the given gene trees may be pruned early.
We have also developed additional speedup techniques that further improve the
efficiency. Together they turn the basic strategy into a practical approach.

3.3 The Guided Search for the Parsimonious Configurations

Ancestral configuration is the basic data structure used in our algorithm. An
ancestral configuration C contains a set of lineages l1 . . . lm. Recall that each
subtree Ts of T is also displayed in some lineage li of the network. Initially, C0 only
displays the singleton subtrees. As we explore the configuration space backward
in time, we may find configurations where increasingly larger input subtrees are
displayed within their lineages. The search stops when each whole gene tree is
displayed in the single lineage of the final configuration Cf . Therefore, the set
of subtrees displayed in a configuration measures the progress made from C0 to
the current configuration: the more large subtrees displayed in a configuration,
the closer we are in finishing the construction of hybridization networks. For
example, in Figure 1, the lineage 2 only displays singleton subtrees with taxon
2. And so do the lineages a and b. The lineage c is created by the coalescence of
lineages 1 and b. Thus, the lineage c displays the subtree α. Note that b is created
by a reticulation and thus b can vanish (i.e. b may be pruned in displaying a
subtree). Thus, c also displays the singleton subtree with taxon 1 (in case b
vanishes)

The above discussion suggests the set of displayed subtrees of a lineage is key
to configuration search. We let a lineage li maintain the set of input subtrees,
denoted as T (li), that are displayed in li. For convenience, we sometimes use
T (li) to represent the lineage li (as in Figure 2). For a leaf lineage li that is
labeled with taxon x, T (li) contains the singleton subtrees labeled by x (which
appears in each gene tree). When the lineage li is an internal lineage, T (li) is
determined when li is created by genealogical events as follows.

1. If li is created by a reticulation of the lineage l′i, then T (li) = T (l′i).
2. If li is created by a coalescence of the lineages l1i and l2i , then T (li) contains

new subtrees formed by coalescing one subtree displayed in l1i and another
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subtree displayed in l2i . More specifically, T (li) contains p(s
1, s2) (if exists),

where s1 ∈ T (l1i ), s
2 ∈ T (l2i ). Here, p(s

1, s2) refers to the subtree in some
input gene tree that has subtrees s1 and s2 as children; if s1 and s2 do not
form a subtree in a gene tree, then p(s1, s2) does not exist. For example, in
Figure 1, p(α, 3) = β, p(ϕ, ι) = κ but p(α, 4) does not exist.

As alluded before, when determining T (li) formed by coalescing l1i and l2i , we also
need to consider whether l1i or l2i is vanishable. We say a lineage li is vanishable
if either li is created by a reticulation or li is created by a coalescence between
two lineages, where both of them are vanishable. Intuitively, a vanishable lineage
means that the lineage may vanish and thus does not involve in forming new
displayed subtrees with the other lineage if certain display choices are made. For
example, in Figure 1, the lineages a, b, d and e (and also h since both of its chil-
dren a and d are vanishable) are vanishable while the lineages 1, 2, 3, 4, 5, c, f, g, i
and j are not. Suppose one coalescing lineage (say l1i ) is vanishable. Then T (li)
also contains each s ∈ T (l2i ). For example, in Figure 1, the lineage f is created
by the coalescence of c and e, where T (c) = {1, α} and T (e) = {4}. Then, sub-
trees 1 and 4 form the subtree ε of T2, and thus ε ∈ T (f). Moreover, since e is
vanishable, 1, α ∈ T (f). Also, c is not vanishable. Thus, T (f) = {1, α, ε}.

Fig. 2. The list of configurations of stages 0 and 1 for the example in Figure 1. A
configuration (ellipse) contains a set of lineages, where each lineage is represented by
its set of displayed subtrees (in numerical taxa form and Greek letters as in Figure 1).

There are some subtle issues about maintaining the displayed subtrees in
configurations, which will be discussed in the full version of this paper.

The Configuration Search Algorithm. The basic algorithm for constructing
parsimonious hybridization networks explores configurations in a breadth-first
search style. The algorithm runs in stages, where at each stage the algorithm
constructs a set of configurations in the following way. First, new configurations
are added to this stage with one reticulation performed upon configurations
found during the previous stage. Then, we perform as many coalescences on
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these newly formed configurations and obtain additional configurations for this
stage. That is, configurations on one stage are obtained from the same number
of reticulations from the initial configuration C0. More specifically, in this algo-
rithm, R refers to the breath-first search level, and is equal to the number of
reticulations performed so far from C0. LC(R) is the list of configurations found
at level R. Rmax is the user-defined maximum of reticulations allowed.

1. R← 0. LC(0)← {C0}.
2. While R < Rmax

3. For each C ∈ LC(R)
4. Perform one reticulation on each lineage of C and obtain new configu-

rations C′.
5. For each C′, recursively try all ways of coalescences of two lineages in C′

to create new configurations C′′; then discard C′′ if it is infeasible (see later
this section); otherwise, LC(R+ 1)← LC(R + 1) ∪ {C′′}.

6. If a final configuration is found, construct the optimal network by trace-
back and stop.

7. R← R+ 1
8. Report there is no solution with less than Rmax reticulations.

See Figure 2 for an example of executing the configuration search algorithm on
the trees shown in Figure 1 for the first two levels. At level 0, we start with a
single configuration C0. With proper preprocessing, we do not need to perform
coalescences on C0. This will be explained in the full version of this paper, At
level 1, a single reticulation is performed on C0 to obtain new configurations
C′; then all possible coalescences are performed on each C′. We find thirteen
configurations in total at level 1.

Optimality.ThePIRNC algorithmexamines configurationswith non-decreasing
reticulationdistance from C0. Since no configurations that lead to the final config-
uration are discarded, the found network is the most parsimonious hybridization
network.

Infeasible Configurations. In principle, every pair of lineages in a configura-
tion can coalesce to create a new configuration. However, some coalescence will
lead to a configuration C that is infeasible: the final configuration Cf can not be
obtained from C. Early removal of infeasible configurations can significantly speed
up the search for optimal networks. Here is a simple test for finding infeasible con-
figurations. Given a set of displayed subtrees S within a gene tree T , we say T
is displayable from S if each leaf of T is “covered” by some subtree in S. Oth-
erwise, we say T is not displayable from S. A leaf is covered by a subtree if the
subtree contains the leaf. Intuitively, if subtrees in S can not cover each leaf of
T , then T can not be displayed by S. Checking whether a tree T is displayable
from S can be easily done by a traversal of T . A configuration C is infeasible if
some input gene tree is not displayable from the set of displayed subtrees of all
the lineages in C. For example, we consider the coalescence of lineages (1) and (2)
in the configuration {(1),(2),(3),(3),(4),(5)}, which creates a new configuration C
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= {(α),(3),(3),(4),(5)}. For C, the leaf lineages 1 and 2 in T1 are covered by the
subtree α; but the leaf lineages 1 and 2 in T2 and T3 are not covered by displayed
subtrees. Thus, C is infeasible and should not be considered.

We have developed stronger infeasibility check techniques, which are more
effective in pruning the search space of configurations. Due to the space limit,
we will describe these techniques in the full version of this paper.

3.4 PIRNCH : A Heuristic

PIRNC becomes slow when the number of reticulation events increases. To
construct more complex networks, we develop a heuristic called PIRNCH , which
is based on the same principle of PIRNC but has more aggressive approaches
to prune the search space of configurations. PIRNCH uses a scoring scheme to
rank configurations. Intuitively, the score of a configuration C is based upon the
progress made by C toward the final configuration. Then we keep the top Nc

(chosen by the user) ranked configurations and prune the rest at each stage.
There is a trade-off between accuracy and efficiency in choosing the value of Nc.
Due to the space limit, details will be provided in the full version of this paper.

4 Results

We have implemented both PIRNC and PIRNCH for building the parsimonious
network as part of the software package PIRN . It is available for download from:
http://www.engr.uconn.edu/˜ywu/. We test our new algorithms with simulated
data on a 3192 MHz Intel Xeon workstation. We use the same simulation data
generated by a two-stage approach as in [18]. Since PIRNC is designed to build
networks with relatively small number of reticulation, we use the datasets gen-
erated in [18] with lower reticulation level. We test for several settings of n (the
number of taxa) and K (the number of gene trees).

To test PIRNC , we compare with the bounds computed by the program
PIRN [18]. PIRN provides a lower bound (called the RH bound) and an upper
bound (called the SIT bound). Note that when the RH bound matches the SIT
bound, PIRN finds the optimal network. When the two bounds do not match,
we only know the range of hybridization number but not the true hybridization
number, and this is a major weakness of the PIRN approach [18]. It is known in
[18] that the lower and upper bounds match often for lower reticulation level and
smaller number of gene trees, but diverge more for higher reticulation level and
larger number of gene trees. The reason for comparing with PIRN is that PIRN
appears to infer networks that in practice are close to the optimum [18,13]. In our
simulation, we restrict our attention to datasets whose hybridization number is
at most 4 since PIRNC is designed for data with smaller hybridization number.
For datasets with higher hybridization number, PIRNC simply reports that their
hybridization number is larger than 4 and no network is constructed. Table 1
shows the results of our simulation. The “#Data ≤ 4” refers to the percentage
of datasets that have hybridization number of 4 or less, and we only give results
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Table 1. Average performance of PIRNC over 100 datasets for each setting on sim-
ulated data. Results are only for those datasets with hybridization number of 4 or
less (i.e. datasets with hybridization number of 5 or more are excluded). #Data ≤
4: percentage of datasets with the hybridization number of 4 or less (where PIRNC

constructs the optimal networks). PIRNC = RH (resp. PIRNC > RH): among the
datasets where PIRNC gives optimal results, percentage of datasets PIRNC gives the
same (resp. larger) hybridization number as given by the RH lower bound. PIRNC

< SIT (the other two are straightforward): percentage of datasets PIRNC gives the
smaller hybridization number as given by the SIT upper bound. #Data not optimal
by SIT: percentage of data where the RH bound and SIT bounds do not match (and
thus the optimality is not determined by the two bounds) while PIRNC gives optimal
solution. Time: average run time of PIRNC in seconds.

n=10 n=20 n=30

K=3 K=4 K=5 K=3 K=4 K=5 K=3 K=4 K=5

#Data ≤ 4 98 98 93 88 77 65 84 76 65

PIRNC = RH 96 93 90 88 74 63 84 75 61
PIRNC > RH 2 5 3 0 3 2 0 1 4

PIRNC < SIT 0 1 0 0 1 0 0 1 0
PIRNC = SIT 98 97 93 88 76 65 84 75 65
PIRNC > SIT 0 0 0 0 0 0 0 0 0

#Data not optimal by SIT 2 6 3 0 4 2 0 1 4

Time 13.4 49.9 92.6 276.8 705.8 1686.6 606.7 2227.1 2811.5

for these datasets (i.e. PIRNC does not give results for some datasets). Table
1 shows that PIRNC can find optimal networks where PIRN does not: for
example, for n = 10 and K = 4 case, PIRNC finds the true optimum for 6
out of 98 datasets, where the bounds of PIRN do not match (and thus PIRN
does not know whether its solutions are optimal or not) for these datasets. For
some other settings, PIRNC gives the same results as PIRN does. Still, it may
be useful to have a method that always finds optimal solutions. The ability
for finding optimal networks is the key advantage of PIRNC when compared
with existing methods like PIRN (and MURPAR [13]). The running time of
PIRNC is more influenced by the hybridization number than by n or K. The
case of hybridization number being 4 (or even 5) or smaller is usually practically
solvable by PIRNC .

For handling more complex networks, we also test our heuristic PIRNCH on
datasets with higher hybridization number. Note that the choices of PIRNCH

parameters (e.g. Nc, the maximum number of configurations kept at each search
level) have a large impact on the accuracy and efficiency. For this simulation, we
set Nc to be 100,000. Results are shown in Table 2. The coarse mode of the SIT
bound is used for larger data (when n = 40 and 50) as in [18]. As shown in Table
2, PIRNCH performs well against PIRN : there is only one out of 900 datasets
where PIRNCH constructs a network using more reticulation than PIRN ; and
PIRNCH finds optimal networks (when its reticulation number matches the RH
bound) for 82% for data with 50 taxa and 5 gene trees, while the SIT bound can
only do the same for 58%. Also the gap between the results by PIRNCH and
the SIT bound increases for larger and more complex data.
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Table 2. Performance of PIRNCH on 100 simulated datasets per settings. =RH (resp.
SIT=RH): the number of datasets PIRNCH (resp. SIT bound) gives the same results
as the RH lower bound (and thus optimal networks are found). *: coarse mode of
the SIT bound is used for n = 40 and 50. Gap(RH): average gap between PIRNCH

results and the RH bound. <SIT (the other two are straightforward): the number of
datasets PIRNCH gives the smaller hybridization number as given by the SIT upper
bound. Gap(SIT): average gap between PIRNCH results and the SIT bound. Gap of
two values a and b is defined as a− b. Time: the time of PIRNCH in in seconds.

n=30 n=40∗ n=50∗

K=3 K=4 K=5 K=3 K=4 K=5 K=3 K=4 K=5

=RH 98 93 77 97 90 83 98 89 82
SIT=RH 97 92 78 92 73 55 96 75 58

Gap(RH) 0.02 0.08 0.25 0.03 0.11 0.18 0.02 0.10 0.18
<SIT 1 3 3 5 22 37 2 16 34
=SIT 99 97 96 95 78 63 98 84 66
>SIT 0 0 1 0 0 0 0 0 0
Gap(SIT) 0.01 0.03 0.02 0.06 0.25 0.54 0.02 0.17 0.39
Time 850.6 3,321.3 6,453.6 2,942.7 5,299.8 16,384.3 2073.7 8,204.7 13,846.64

5 Discussion

Simulation shows that PIRNC and PIRNCH perform reasonably well compar-
ing with PIRN (previously the best approach for building hybridization net-
works of multiple trees), although constructing optimal hybridization networks
is still challenging computationally. Our approach is based on the concept of
ancestral configuration. A similar data structure has been used in studying the
discordance of gene trees caused with the so-called incomplete lineage sorting
(another important evolutionary process for the so-called gene tree and species
tree problem) [19]. Ancestral configurations may be useful in developing new
algorithms for studying multiple evolutionary processes together (e.g. reticulate
evolution and incomplete lineage sorting) on a proper model.
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Abstract. The depth of each atom/residue in a protein structure is a key attribu-
tion that has been widely used in protein structure modeling and function anno-
tation. However, the accurate calculation of depth is time consuming. Here, we 
propose to use the Euclidean distance transform (EDT) to calculate the depth, 
which conveniently converts the protein structure to a 3D gray-scale image with 
each pixel labeling the minimum distance of the pixel to the surface of the mo-
lecule (i.e. the depth). We tested the proposed EDT method on a set of 261 non-
redundant protein structures. The data show that the EDT method is 2.6 times 
faster than the widely used method by Chakravarty and Varadarajan. The depth 
value by EDT method is also highly accurate, which is almost identical to the 
depth calculated by exhaustive search (Pearson’s correlation coefficient≈1). We 
believe the EDT-based depth calculation program can be used as an efficient 
tool to assist the studies of protein fold recognition and structure-based function 
annotation. 

Keywords: Euclidean distance transform, fold recognition, molecular visualiza-
tion, protein depth, protein tertiary structure, solvent accessibility. 

1 Introduction 

For a given protein tertiary structure, many residue level attributions can be extracted, 
such as the secondary structure type, dihedral angle and solvent accessibility. Those 
structural features help establish the properties of different amino acid types and cate-
gorize protein structure folds. For example, Ramachandran plot [1] revealed that the 
distribution of backbone dihedral angles (or the secondary structure) was highly regu-
lated. Solvent accessibility (SA) evaluates the hydrophobicity of amino acids in  
different protein structures, which can be calculated accurately by EDTSurf [2] or 
approximately by DSSP [3]. 

However, SA usually specifies the residues in a binary form. For the residues that 
are completely buried in protein, it does not describe where the residues locate inside 
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the molecule. Depth, which measures the distance of each atom/residue to the solvent 
accessible surface in a continuous form, greatly complements the missing information 
by SA. In fact, the depths of residues in a protein are highly related to their effects of 
mutations on protein stability and on protein-protein interactions [4]. The residue 
depth has also been widely used to specify protein folds in protein structure prediction 
[5-7] and assist structure-based protein function annotation [8]. 

Despite the importance, by far there are very few methods which can calculate the 
depth for protein structures efficiently at either an atom level or a residue level. In 
Ref. [4], Chakravarty and Varadarajan proposed to calculate the residue depth by 
rotating the protein in a box where the closest water molecule is identified for each 
atom in the protein. The accuracy of the method is compromised since the calculated 
depth value depends on the positions of the water molecules. One can also calculate 
the depth by first generating the explicit solvent accessibility surface (e.g. by EDT-
Surf or MSMS [9]) and then identifying the vertex on the triangulated surface which 
is the closest one to the atom [10-11]. However, the computation of this kind of me-
thod is quite time-consuming since all the atoms in the protein need to be searched 
against the huge number of vertices on the surface. 

In a recent study, we have established the relationships between the three kinds of 
macromolecular surfaces and Euclidean distance transform (EDT) theoretically and 
developed a fast algorithm for generating their triangulated surfaces precisely [2]. In 
this work, we apply the EDT technique to the calculation of protein atom depth and 
residue depth. The algorithm is fast since the explicit triangulated surface is not re-
quired. To investigate the efficiency and accuracy of this method, we compare the 
computational time and depth value with that by Chakravarty and Varadarajan (CV). 
We also analyze the relations of the depth with the commonly-used radius of gyration 
and solvent accessibility. The source code and executable program are freely availa-
ble at http://zhanglab.ccmb.med.umich.edu/EDTSurf/. 

2 Material and Method 

2.1 Depth Definition 

Atom depth is the shortest distance between the center of the atom and the outer sol-
vent accessible surface (SAS) of the molecule, as illustrated in Fig. 1. SAS is the area 
traced out by the center of a probe sphere when it is rolled over the whole molecule 
[12]. When one atom is exposed (e.g. atom i in the figure), its depth will equal to the 
sum of the van de Waals radius and the radius of the probe sphere rp which is often 
set to 1.4 Å. For atoms which are completely buried inside (e.g. atoms j and k in the 
figure), their solvent accessibilities are all equal to zero, but their depths may be dif-
ferent. Residue depth is the average value of the atom depths of all the atoms in a 
residue. 

The definition of depth by Chakravarty and Varadarajan is a little different, which 
is the shortest distance to the explicit bulk water rather than the solvent accessible 
surface. Since water molecules don’t have spherical shapes and may have different 
poses around the molecule, this difference will result in the slightly different depth 
values. 
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Fig. 1. Illustration of three atoms with different depth values in a 2D plane. The outside boun-
dary stands for the solvent accessible surface 

2.2 Euclidean Distance Transform 

Euclidean distance transform (EDT) is the transformation that converts a digital bi-
nary image to another gray-scale image where the value of each pixel is the minimum 
Euclidean distance between that pixel and the boundary. We have developed a fast 
algorithm which can conduct EDT in arbitrary dimensional space [13]. EDT has been 
widely used in the fields of image processing and computer graphics, such as skeleton 
extraction [14], shortest path planning [15] and geometric shape description [16]. 

Given a protein structure, we suppose it has N atoms, each of which locates at pi 
and has a van der Waals radius ri. To calculate the atom depth in this protein, we first 
build the solvent accessible solid using equation (1), which is the union of all the 
spheres with radius equal to the sum of the van der Waals radius and the radius of the 
probe sphere. The union operation is conducted in the discrete 3D space using space-
filling technique, with each sphere represented by a set of grid points. 


N

i

piiSA rrpsphereO
1

),(
=

+=    (1) 

Then we can easily determine the outer shell of the solvent accessible solid, which is 
the discrete representation of solvent accessible surface. We do the EDT transform to 
the shell and can get the shortest Euclidean distance of each point to the shell, which 
happens to be the depth value of this point. Although there are other distance func-
tions, such as City-block distance and Chessboard distance, only Euclidean distance 
has the direct relationship to the three macromolecular surfaces as well as the depth. 
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In the original CV method and its recent extension [17], non-bulk water molecules 
are removed in the regions of narrow cavities and internal voids. Otherwise, atoms 
around those regions will have small values of depths. Using equation (1), the solvent 
accessible solid has already filled most of the empty space in the same regions since 
the radius of each atom is enlarged by the radius of the probe sphere. Therefore, the 
two methods have consistent depth values in those special regions. 

Fig. 2 shows an example of the EDT result to the same shape of the SAS in Figure 
1, where the red curve stands for the SAS. After the EDT transform, every position 
has a shortest distance to the SAS, as represented by the gray-scale pixel value in the 
image. The lighter the point is, the longer distance to the surface it will have. Based 
on the definition of the depth, we can see that the gray-scale pixel value calculated by 
the EDT at each point exactly is the depth value of that point. In the figure, the centers 
of the three atoms, as represented by the blue dots, have different depth values. 

 

Fig. 2. Illustration of the EDT to the solvent accessible surface (in red) in a 2D plane. Centers 
of the three atoms are marked in blue. 

Solvent accessibility of each residue is defined as the ratio of the total SAS area of 
all the atoms in the residue to the maximum SAS area of that residue type. Hence, we 
have to build the explicit triangulated surface from the discrete shell by surface trian-
gulation algorithms such as the Marching Cube method [18]. Different to the solvent 
accessibility derivation, depth calculation doesn’t require the generation of the expli-
cit triangulated SAS. 

Given the shell of the discrete SAS, we can also calculate the depth of each atom 
by exhaustive search (ES). That is to say, we search for the point on the shell which is 
the closest to the center of the atom. 
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3 Result and Discussion 

3.1 Visualization of Depth 

In order to visually check the depth information generated by the method described 
above, we have embedded the EDT-based depth calculation algorithm into our Ma-
cromolecular Visualization and Processing (MVP) program, which can be down-
loaded at http://zhanglab.ccmb.med.umich.edu/MVP/. 

Fig. 3 shows two snapshots of the MVP visualization result of a hypothetical pro-
tein from thermus thermophilus HB8 (PDB ID: 1whz, chain A), which contains 122 
residues and 937 atoms. Atoms in the left figure are in the ball-stick style. Red color 
means high value of atom depth while blue means low. In the right image, we show 
the protein backbone structure where the color of each residue is also correlated with 
its residue depth. From both images, we can clearly see the layers of the protein struc-
ture, especially the hydrophobic core which is in red. 

 

Fig. 3. (A) atom depth (B) residue depth of the protein 1whz chain A 

3.2 Depth Distributions of Different Residue Types 

Since different residue types have different hydrophobicities, their depth distribution 
should also be different. Therefore, we choose 36,556 protein domains used by our 
threading programs [6,19] for validation, which can be downloaded at 
http://zhanglab.ccmb.med.umich.edu/library/. Those structures are non-homologous 
to each other with sequence identity cutoff 70%. Protein chains which contain mul-
tiple domains are discarded from the list in this test, because multiple-domain proteins 
are often not well-packed. 

The distributions of residue depths of the 20 residue types are summarized in  
Fig. 4, which are arranged in the order of their hydrophobicity scales [20]. Residue 
depths normally are in the range of 2.9 Å and 8.9 Å. Almost all the residue depths are 
less than 5 Å for the 8 hydrophillic residues on the top 2 rows. TRP and SER have 
similar hydrophobicities, but TRP has more depths which are deeper than 5 Å. This is 
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probably because TRP has a longer side-chain and its depth can be large even part of 
the residue is exposed. For the 6 most hydrophobic residues on the bottom two rows, 
more depth values are around 6 Å than the hydrophillic residues. However, majority 
of the depths are still close to 3.1 Å, which means many hydrophobic residues still 
locate around the surface of the domain structures. It is understandable if the protein 
is stable only in the complex form instead of the monomeric form. Hydrophobic resi-
dues in the interface will have deep residue depths if we treat the complex as a whole. 

 

Fig. 4. distributions of residue depths for the 20 residue types 

3.3 Comparison of Depth Generation Methods 

We compare the depth results by the algorithm described by Chakravarty and Varada-
rajan (CV) and exhaustive search (ES) and EDT-based method (EDT) mentioned 
above. The test set here we choose contains 261 non-homologous protein chains ran-
domly selected from the PISCES list [21]. We rotate each protein at 25 different 
orientations and find the shortest distance to the outer water molecule for each atom 
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in the CV algorithm. For both ES and EDT, we first enlarge each protein 4 times and 
put it into a bounding box. Then we create the voxel shell which represents the sol-
vent accessible surface. ES method directly searches the closest voxel for each atom 
without using EDT. EDT method only requires the EDT to the voxel shell to get the 
depth value for each atom. 

We first compare the similarities of the depth values generated by the three me-
thods. The Pearson’s correlation coefficients (PCC) of the depth values by the three 
kinds of methods are shown in Table 1. Results by ES and EDT methods are highly 
close to each other. Although CV method is quite different to the other two, it still has 
a high correlation (>0.90) with them. 

The difference of the depth values by CV and EDT mainly comes from two 
sources. First, the depth definitions by the two methods are slightly different, which 
have been described before. Second, since CV is an approximation method, depth 
value is highly dependent on the water molecules placed outside of the protein. Some-
times the depth value is close to the real depth if the water molecule happens to be the 
closest one while sometimes it doesn’t. In contrast, depth values calculated by ES and 
EDT are close to the real one. The only error is caused by the discretization of the 
protein which makes the discrete shell not exactly the same as the actually continuous 
SAS. 

We then compare the average computational time by the three methods, which is 
listed in the last row of the Table 1. The calculation is performed on a single node 
with a 2.27 GHZ Intel E5520 Xeon processor and 24 GB memory. EDT method is 2.6 
times faster than CV and 1.9 times faster than ES. We can imagine the CPU time 
taken by the ES method will increase rapidly if we increase the scale factor to get 
more accurate SAS shell. We have also tried the new version of the DEPTH program 
using the CV method in [17], which takes even longer time (data not shown) due to 
the extensive search for the non-bulk water molecules. 

Table 1. Comparison of the residue depths by methods of Chakravarty and Varadarajan (CV), 
exhaustive search (ES) and EDT-based method (EDT) 

 CV ES EDT 
 
PCC 

CV 1.00 0.91 0.90 
ES 0.91 1.00 1.00 
EDT 0.90 1.00 1.00 

Time(sec) 2.23 1.69 0.88 

 
Compared with the accuracy, speed may be not an issue if we only calculate the 

depth once for a given protein structure. However, a lot of computational resources 
could be saved if depth information of thousands of structures has to be calculated. 
For example, in the application of protein fold recognition, the non-redundant tem-
plate library often contains more than 30,000 protein chains/domains extracted from 
the Protein Data Bank (PDB) [22]. 
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3.4 Depth vs. Radius of Gyration 

The radius of gyration (RG) refers to the root mean square distance of the protein 
atoms from the center of gravity. Due to the simplicity of calculation, RG has been 
widely used to characterize the global shape and compactness of protein tertiary struc-
tures in protein structure prediction [23] and function annotation [24]. However, due 
to the high specificity of protein tertiary structure packing, the simple RG calculation 
cannot precisely reflect the shape and residue distribution related to the exposed sur-
faces on specific proteins. In this section, we examine the quantitative relation of RG 
and depth calculated from EDT technique which highlights the advantage of depth in 
characterizing the overall shape of protein tertiary structures. 

We compare the radius of gyration with the maximum residue depth (MD) and the 
average residue depth (AD) in Fig. 5(A) and 5(B) separately. The data are acquired 
still based on the 36,556 domain structures in our threading template library. In the 
left figure, we can see that the two features have some correlation in most of the re-
gions. Most times, when the radius of gyration is large, the maximum depth will also 
be high. Especially when the protein structure is compact and has a globular shape, its 
maximum depth will be highly correlated with its radius of gyration, such as the pro-
tein in Fig. 6(A). It is the chain A of the Desulfovibrio vulgaris apoflavodoxin-
riboflavin complex (PDB ID: 1bu5), which has the radius of gyration around 14 Å. 
Since the five beta-strands and four helices are densely organized, the maximum 
depth is also very high and very close to the radius of gyration. 

 
Fig. 5. Comparison of the radius of gyration with the maximum residue depth in (A) and the 
average residue depth in (B). Reduced number of points are shown in the figure by Origin 

There are also exceptions where the radius of gyration is high but the maximum 
depth is extremely low. This is because some single-domain proteins (e.g. a super-
long helix) have a loose shape which makes the depth values of most residues very 
low. Fig. 6(B) shows the chain L of the Bacteriophage phi29 head-tail connector 
protein (PDB ID: 1ijg). If we solely consider this chain, only one end is well-shaped. 
There are three other helices in the middle, which connect the other end with two 
short beta-strands and one short helix. This structure has an extremely large radius of 
gyration of 30 Å. However, since this chain is not compact and most of the residues 
are exposed, the maximum depth is only 7.603 Å. 
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Fig. 6. Cartoon style of two protein chains with color representing the residue depth. (A) 1bu5 
chain A, radius of gyration=13.840Å, maximum depth=10.459Å (B) 1ijg chain L, radius of 
gyration=30.428Å, maximum depth=7.603Å. 

The scatter plot between the average depth and the radius of gyration in the Fig. 
5(B) has the similar distribution to that between the maximum depth and the radius of 
gyration in Fig. 5(A). This is because the Pearson’s correlation coefficient between 
the maximum depth and the average depth is very high (0.92 in Table 2). 

Another measurement of the overall shape is the radius of the bounding sphere 
(RS), which is the minimum radius of the sphere which could cover all the atoms in 
the protein structure. It has a very high correlation (0.96) to the radius of gyration, 
which is probably because the center of the bounding sphere is close to the center of 
gravity for most proteins. 

Table 2. Pearson’s correlation coefficients between the four global features 

 RG RS MD AD 
RG 1.00 0.96 0.07 0.02 
RS 0.96 1.00 0.05 -0.02 
MD 0.07 0.05 1.00 0.92 
AD 0.02 -0.02 0.92 1.00 

  
All the PCC values between the four global structural features are listed in Table 2. 

Due to the irregular shapes of some proteins, RG and RS have no obvious correlations 
with the maximum and average depths. For RG and RS, distance calculations are 
between the positions of all the residues and one fixed point (e.g. the center of gravity 
or the center of the bounding sphere). Those distances have no strong physical mean-
ing when the protein has non-globular shape and residues are far away from this 
point. For depth, different atoms have different closest points on the SAS. 

From the above analysis, we can draw the conclusion that RG and RS are very 
rough measurements of protein shapes. The maximum/average residue depth provides 
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non-redundant information to RG/RS. They can help characterize the unique features 
of protein tertiary structures including the overall 3D shape and in particular the resi-
due distribution relative to the surface exposition. 

3.5 Depth vs. Solvent Accessibility 

The range of solvent accessibility value is in [0, 1] after we normalize the SAS area 
by the maximum SAS area of each residue type. For the residues which are partially 
exposed to solvation, they may have the same solvent accessibility but different depth 
values due to the various sizes of the different residue types. By comparing the non-
zero solvent accessibility and residue depth for each residue type based on the 36,556 
protein domains, we find that SA and RD follow an exponential function: 

tSAeAyRD /−×+=            (2) 

In Table 3, we list values of the three parameters in equation (2) for all the 20 amino 
acids. As expected, those parameters are different for different residue types. The 
amplitude parameter A seems proportional to the size of each amino acid. For exam-
ple, small amino acids GLY and AlA have small amplitudes while large amino acids 
ARG and TRP have big amplitudes. Hydrophillic residues tend to have a larger t pa-
rameter, such as ARG and LYS while more hydrophobic residues have a higher y 
parameter, e.g. PHE and ILE. 

Table 3. Parameters of the exponential functions for the 20 amino acid types 

 y A t  y A t 
ARG 2.96 1.20 0.14 SER 2.89 0.84 0.11 
LYS 2.96 1.18 0.16 THR 2.97 0.90 0.12 
ASN 2.93 0.98 0.11 GLY 2.87 0.64 0.06 
ASP 2.91 0.97 0.11 ALA 2.96 0.77 0.07 
GLU 2.92 1.09 0.12 MET 3.08 1.17 0.08 
GLN 2.95 1.09 0.12 CYS 2.93 0.98 0.11 
HIS 3.00 1.20 0.11 PHE 3.17 1.29 0.07 
PRO 3.04 0.83 0.11 LEU 3.16 1.05 0.06 
TYR 3.08 1.35 0.10 VAL 3.13 0.95 0.07 
TRP 3.12 1.44 0.10 ILE 3.18 1.05 0.06 

 
In Fig. 7, we compare the solvent accessibility and residue depth for aspartic acid 

as an example. Generally, points in the scatter plot follow the exponential function, as 
illustrated by the black fitting curve. Depth difference is not significant when the 
solvent accessibility is high, which means that the majority of the residue is exposed. 
However, when SA is low (majority is buried), depth values can be quite different. 
Two reasons may cause the diversity of the depth values. The first one is the different 
relative positions and orientations of the residue to the solvent accessible surface 
while the other is the different side-chain conformations. The shape of each residue 
type is not unique due to the degrees of freedom of the side-chain torsion angles. 
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Fig. 7. Scatter plot of the solvent accessibility and residue depth for aspartic acid. Black curve 
is the fitting curve by an exponential function. Reduced number of points are shown in the 
figure by Origin. 

4 Conclusions 

We have developed a computational algorithm for the fast and accurate calculation of 
the atom/residue depth through Euclidean distance transform. The method was tested 
on a set of 261 non-redundant protein structures. It was shown that EDT-based me-
thod is 2.6 times faster than the widely-used method developed by Chakravarty and 
Varadarajan but the accuracy of the EDT-based method is higher than that of the lat-
ter compared to the actual depth from exhaustive search. 

The depth data are systematically analyzed in the large-scale proteins that cover the 
entire PDB library at the sequence identity cutoff of 70%. It is found that the maxi-
mum/average residue depth has no obvious correlation with the commonly-used ra-
dius of gyration and radius of the bounding sphere. Hence, the maximum/average 
depth could be considered as a new geometric feature for describing the global shape 
of a protein tertiary structure. It is of potential use for protein fold classification and 
structure comparison. 

When the residue is not completely buried inside of the protein molecule, solvent 
accessibility and residue depth follow an exponential relation. Different residue types 
have different parameters of the fitting functions and different distributions of residue 
depths even their hydrophobic scales are close to each other. The various sizes of the 
amino acids seem to be the major factor which causes the difference. 

When the residue is completely buried inside of the protein, residue depth becomes 
a useful measurement as the solvent accessibility remains zero in this situation. It 
could be used as a complementary feature to the solvent accessibility for improving 
the fold recognition and the structure-based protein function annotation. 
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The source code and executable program for computing the atom depth and residue 
depth are freely available at http://zhanglab.ccmb.med.umich.edu/EDTSurf/. The 
associated software MVP (Macromolecular Visualization and Processing) for visua-
lizing the depth information is at http://zhanglab.ccmb.med.umich.edu/MVP/. 
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Abstract. For a long period of time, scientists studied genomes assum-
ing they are linear. Recently, chromosome conformation capture (3C)
based technologies, such as Hi-C, have been developed that provide the
loci contact frequencies among loci pairs in a genome-wide scale. The
technology unveiled that two far-apart loci can interact in the tested
genome. It indicated that the tested genome forms a 3D chromsomal
structure within the nucleus. With the available Hi-C data, our next
challenge is to model the 3D chromosomal structure from the 3C-dervied
data computationally. This paper presents a deterministic method called
ChromSDE, which applies semi-definite programming techniques to find
the best structure fitting the observed data and uses golden section search
to find the correct parameter for converting the contact frequency to
spatial distance. To the best of our knowledge, ChromSDE is the only
method which can guarantee recovering the correct structure in the noise-
free case. In addition, we prove that the parameter of conversion from
contact frequency to spatial distance will change under different resolu-
tions theoretically and empirically. Using simulation data and real Hi-C
data, we showed that ChromSDE is much more accurate and robust than
existing methods. Finally, we demonstrated that interesting biological
findings can be uncovered from our predicted 3D structure.

Keywords: Chromatin Interaction, 3D genome, Hi-C, Semi-definite
Programming.
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1 Introduction

Genome is usually assumed to be a set of linear chromosomes. This model,
however, is over-simplified and it cannot explain the interactions among dif-
ferent genomic elements (e.g., enhancer, promoter, gene). Chromosome actually
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forms a 3D structure within the nucleus and its spatial organization affects many
chromosomal mechanisms such as gene regulation, DNA replication, epigenetic
modification and maintenance of genome stability[3,8,15,18,19,20].

Generally, if two elements in the genome are close in the sequence level, they
are also close in the structure level. But the converse statement is not necessarily
true. For example, Li et al[15] showed that multiple related genes are located far
away in linear model but are organized topologically close through long-range
chromatin interactions and transcribed in a single “transcription factory”. In the
past, the 3D organization of chromosomes was usually studied by florescent in
situ hybridization (FISH) which are low throughput and low resolution methods.
Recently, several high throughput, high resolution methods [6,9,12,16,29] derived
from the 3C method [4] have been proposed. These methods measure the contact
frequencies for loci pairs. Two loci are expected to be spatially nearer if and only
if the contact frequency of the loci pair is higher. 4C[29] and 5C[6] can measure
the contact frequencies among a subset of loci while Hi-C[16] and its variant
(TCC [12]) can capture the contact frequencies in a genome-wide manner.

Given the 3C-derived data, one interesting bioinformatics problem is to infer
the 3D structure of the genome. A number of works have been proposed recently.
All the current methods have two steps: (1) Converting the contact frequencies
between loci to spatial distances and (2) Predicting the 3D chromosomal struc-
ture from the spatial distances. Duan et al. [7] converted the contact frequencies
extracted from the 4C experiment on yeast to spatial distances and treated
the 3D structure modeling problem as a constrained non-convex quadratic op-
timization problem using an optimization solver called IPOPT[26]. Bau et al.
[1] translated the contact frequencies extracted from 5C experiments to spatial
distances by inverting the Z-score of contact frequencies and treated the 3D
structure modeling problem as finding an equilibrium state of a set of particles
using Integrated Modeling Platform (IMP)[23] . With the same platform (IMP),
Kalhor et al.[12] claimed that the Hi-C (or TCC) data can be better fitted by
learning a set of 3D structures (since the sample has multiple cells where the
chromatin structures in different cells are different) instead of one single struc-
ture. More recently, two Markov-chainMonte Carlo (MCMC)[21] sampling-based
methods, MCMC5C[22] and BACH[10], were proposed to infer the 3D structures
by maximizing the likelihood of the observed Hi-C data. Both methods assume
that the expected contact frequencies and spatial distances among loci follow
the power law distribution. MCMC5C[22] models the observed frequency with
Gaussian distribution with respect to the expected frequency. BACH[10] models
the observed frequency with Poisson distribution with respect to the expected
frequency and takes the enzyme cutting site bias (e.g., CG content, mappability,
fragment length) into account.

Although some works have been done, there are unsolved issues in both steps
1 and 2. For step 1, the conversion between the contact frequency and spatial
distance has one parameter. Existing methods, except BACH, assume that the
parameter is fixed or is known beforehand. We found that the parameter is ac-
tually different for different datasets. Thus it is important to have a method to
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estimate the parameter. For step 2, existing methods infer the 3D chromoso-
mal structure by heuristics. They are not guaranteed to reconstruct the correct
structure even in the noise-free case.

To fill in these gaps, we propose a novel chromosome structure modeling algo-
rithm called ChromSDE (Chromosome Semi-Definite Embedding). ChromSDE
models the problem as two parts:

1. Assuming that the parameter for the conversion from the contact frequency
to the spatial distance is known, ChromSDE formulates the 3D structure
modeling problem as a non-convex non-linear optimization problem similar
to the previous works. Instead of directly solving the non-convex
optimization which is NP-hard, ChromSDE relaxes it to a semi-definite pro-
gramming(SDP) problem, whose global optimal solution can be computed
in polynomial time. With this formulation, our approach is guaranteed to
recover the correct 3D structure in the noise-free case when the structure is
uniquely localizable[24].

2. For the parameter in our conversion function from the contact frequency to
the spatial distance, ChromSDE formulates it as a univariate optimization
problem and estimate the correct parameter by a modified version of the
golden section search method.

This paper may have significant impact in three aspects. First, the SDP relax-
ation method in ChromSDE is a powerful relaxation technique, which is theo-
retically guaranteed to recover the correct structure in the uniquely localizable
noise-free case[24]. The SDP approach has been successfully applied in other
graph realization problems[2,14,27], but to our best knowledge, no one has in-
troduced it in chromosome structure modeling. Second, we prove theoretically
and empirically that the conversion parameter changes if we examine the data
under different resolutions. Thus, it is inappropriate to assume that the conver-
sion parameter is known. We developed an efficient algorithm to estimate the
correct conversion parameter from the input data. Third, we proposed a measure
called Consensus Index which can quantify if the input frequency data comes
from a consensus structure or a mixture of different structures. It is arguable if
Hi-C data is appropriate for modeling 3D structures, because the contact fre-
quencies come from a population of cells instead of a single cell. Our simulation
shows that if the data is from a consensus structure, the Consensus Index is
high.

We evaluated our method with simulated data and real Hi-C data. Through
simulation study, we showed that ChromSDE can perfectly recover different
types of simulated structures in the noise-free setting while other tested pro-
grams fail in many cases. Even with noise, ChromSDE still significantly out-
performs other tested programs. In addition, we also showed that ChromSDE
can accurately estimate the conversion parameter and output the Consensus
Index that can reflect the degree of mixture. Next, real Hi-C data replicates
with different cutting enzymes are used to further validate the robustness and
accuracy of ChromSDE comparing to other tested programs. The result indicates
that ChromSDE can infer a more accurate and robust 3D model than existing
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methods. Finally, we show that ChromSDE can robustly handle different reso-
lution data and the predicted high resolution 3D structure unveils interesting
biological findings.

2 Method

The Hi-C and TCC technologies enable us to obtain paired-end reads from inter-
acting loci in the genome. The interaction data can be summarized by a contact
frequency matrix F , in which Fij represents the number of contacts between loci
i and j (loci i and j are genomic regions in a fixed bin size such as 1Mbp or
40kb). We expect two loci are spatially close if and only if the contact frequency
between them is high. A further note is that the raw Hi-C or TCC interaction
frequencies are affected by various biases (GC content, mappability and fragment
length), and should be normalized [28].

The chromatin 3D modeling problem is defined as follows: Given a normalized
interaction frequency matrix F , infer a 3D structure whose pairwise distances
highly correlate with the interaction frequencies in F . This problem can be solved
by 1) converting the frequency matrix F into a distance matrix D that describes
the expected pairwise distance among the loci; 2) learning a 3D structure from
the distance matrix D. Step 1 is based on the observation of Lieberman et al.
[16] that the conversion between the frequency matrix F and the distance matrix
D follows the power law distribution (Equation 1) where α is a parameter called
the conversion factor and Dij and Fij are the distance and frequency between
loci i and j.

Dij =

{
(1/Fij)

α if Fij > 0
∞ otherwise

(1)

There are two main challenges in this approach: 1) estimate α; and 2) convert
the distance matrix D to the 3D model. In the following two sub-sections, we
present ChromSDE that resolves these two challenges. First, assuming that the
conversion factor α is known, we describe a method that estimates the 3D struc-
ture from the expected distance matrix D. Then, the next section explains how
ChromSDE estimates the correct value of the conversion factor α.To note that,
the scale between the converted distance and the real physical distance is not
considered here, since the relative distance (without the scale) does not affect
the predicted structure for visualization and further study.

2.1 From Distance Matrix to 3D Structure

Assuming the conversion factor α(> 0) is known, the interaction frequency ma-
trix F can be converted to the expected distance matrix D by Equation 1.

The 3D chromatin structure modeling problem aims to compute a set of 3-
dimensional coordinates {−→x1, ...,

−→xn} for the n loci, such that their distances can
fit the distance matrix D well. In other words, we hope to ensure that ‖xi− xj‖
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(distance between loci i and j) is approximately the same as Dij for all loci i
and j.

Mathematically, this problem can be formulated as three alternative optimiza-
tion models in Equations (2)-(4), where ‖ · ‖ denotes the Euclidean norm. Each
equation has two terms. The first term aims to minimize the errors between the
embedding distances and the expected distances. The three alternatives apply
three different commonly used error functions in the literature: (a) sum of square
errors of the distance differences [1,7], (b) sum of absolute errors of the distance
square differences [2,14] and (c) sum of square errors of the distance square dif-
ferences [2,17]. The second term is the same for the three alternatives. It is a
regularization term that maximizes the pairwise distances for the loci without
any interaction frequency data. It is based on the assumption that the spatial
distances of loci pairs not captured by the experiment cannot be too short.

min−→x 1,...,
−→x n∈R3

∑
{i,j|Dij<∞}

ωij ·
(
‖−→x i −−→x j)‖ −Dij

)2

− λ
∑

{i,j|Dij=∞}
‖−→x i −−→x j‖2

(2)

min−→x 1,...,
−→x n∈R3

∑
{i,j|Dij<∞}

ωij ·
∣∣∣‖−→x i −−→x j)‖2 −D2

ij

∣∣∣ − λ
∑

{i,j|Dij=∞}
‖−→x i −−→x j‖2

(3)

min−→x 1,...,
−→x n∈R3

∑
{i,j|Dij<∞}

ωij ·
(
‖−→x i −−→x j)‖2 −D2

ij

)2

− λ
∑

{i,j|Dij=∞}
‖−→x i −−→x j‖2

(4)

In the formulas, ωij represents the weight or confidence of the observed data
Dij . Since we expect the confidence of Dij is higher when Fij is large, this
paper simply set ωij = 1/Dij . The parameter λ > 0 in the second term is the
regularization coefficient to balance the error term and the regularization term.
In practice, we found that the results are stable for 0.001 < λ < 0.1 (Supp Figure
1) and we fix it to 0.01 in this paper.

All three formulations (2)–(4) are non-convex non-linear optimization prob-
lems, which are NP-hard to solve for their global minimizers. Existing methods
solved them by heuristics like MCMC sampling [10,22] and local search [7,12,23].
Here, we show that, by relaxing the solution space of every −→x i from R3 to Rn

(n is the number of loci), formulations (3) and (4) become convex semidefinite
programming (SDP) problems for which we can compute their global minimizers
to any given degree of accuracy in polynomial time. Furthermore, if the expected
distance matrix is generated from a 3D object and is noise-free, the above relax-
ations can reconstruct the optimal R3 solution by projecting the Rn points to
certain R3 subspace in theory [24]. In practice, even if the distance matrix is not
noise-free, we still can find a good approximated solution in the R3 subspace.
The projecting technique to obtain a solution in R3 will be introduced later.
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Formulation of SDP Relaxation Problems. This section describes how to
reformulate Equations (3) and (4) as linear and quadratic semidefinite program-
ming (SDP) problems by relaxing the solution space of every −→x i from R3 to Rn.
Let K be the kernel matrix for X = [−→x 1,

−→x 2, . . . ,
−→x n] (i.e., Kij = −→x i · −→x j =

Kji), then every square distance can be expressed in term of K. Precisely, we
have: ‖−→x i − −→x j‖2 = Kii + Kjj − 2Kij. In addition, we set the center of the
points to be the origin, that is:

n∑
i=1

−→x i = 0 ⇒ ‖
n∑

i=1

−→x i‖2 = 0 ⇒
∑
i,j

Kij = 0. (5)

By our definition of the kernel matrix,K must be symmetric positive semidefinite
(i.e., K ! 0 ). We first describe the quadratic relaxation (Equation (4)), which
is stated as below:

min
∑

{i,j|Dij<∞}
ωij(Kii +Kjj − 2Kij −D2

ij)
2 − λ

∑
{i,j|Dij=∞}

(Kii +Kjj − 2Kij)

s.t.
∑

ij Kij = 0, K ! 0.

(6)

For Equation (3), the error term contains the absolute value operator | · |, which
cannot be handled directly by standard SDP solvers. Fortunately, without in-
creasing the problem complexity, we can replace the absolute value operator | · |
by adding two sets of slack variables. The linear SDP relaxation of Equation (3)
is stated as below:

min
∑

{i,j|Dij<∞}
ωij(ε

+
ij + ε−ij)− λ

∑
{i,j|Dij=∞}

(Kii +Kjj − 2Kij)

s.t. Kii +Kjj − 2Kij + ε+ij − ε−ij = D2
ij∑

ij Kij = 0, K ! 0, ε+ij , ε
−
ij ≥ 0.

(7)

Note that ε+ij (and ε−ij respectively) represents the penalty when the embed-
ding distance is shorter (and longer respectively) than the expected distance.
Moreover, at least one of them must be zero in the final solution since they are
non-negative and their summation is minimized.

A general purpose SDP solver, such as SDPT3 [25], can be used to solve the
two SDP problems above. However, all the current general purpose SDP solvers
(which are all based on interior-point methods) cannot handle large scale SDP
problems. They can only comfortably handle distance matrix with around 40,000
expected distances (≈ 200 loci). Fortunately, for convex quadratic SDP such as
the problem (6), recently developed advanced algorithm [11] based on partial
proximal-point method (with semi-smooth Newton-CG method for solving the
subproblems) can handle such a problem very efficiently even when the problem
scale is large. In particular, it can handle 10,000,000 expected distances (≈ 3000
loci). In the result section, we present the results for both SDP relaxations in
the small scale problems and the results for the quadratic SDP relaxation in
the large scale problems (if not specially mentioned, the result is generated by
quadratic SDP).
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Obtaining 3D Coordinates from the Kernel Matrix. By solving the SDP
problems (6) or (7), we obtain the solution as a positive semidefinite kernel
matrix K. By computing the eigenvalue decomposition of K, the R3 coordinates
X = [−→x 1, . . . ,

−→x n] can be recovered from K (i.e., K ≈ XTX). A 3-dimensional
representation that approximately satisfies Kij ≈ −→x i · −→x j can be obtained from
the top 3 eigenvalues (γ1, γ2, γ3) and eigenvectors (−→ν1 ,−→ν2 ,−→ν3) of K. That is,

−→x i = [
√
γ1 · ν1,i

√
γ2 · ν2,i

√
γ3 · ν3,i]T . (8)

In the ideal case where the input expected distance matrix is noise-free and dense
enough (i.e., it has sufficient constraints to uniquely present a 3D structure), it
can be shown that the approximation (8) is the exact solution and all other
eigenvalues are equal to zero. This property is called unique localizability [24].

When the input expected distance matrix is noisy, ChromSDE performs fur-
ther local refinement to the 3D coordinates obtained from the SDP relaxation
problems [2]. Specifically, our ChromSDEx algorithm applies a local optimiza-
tion method such as a quasi-Newton method or a gradient descent method to
the original non-convex problem by using the 3D positions obtained from the
SDP problems as the starting iteration point. Because the 3D positions produced
by the SDP problems are generally close to a local minimizer, a local optimiza-
tion method can generally converge to a good local minimizer for the original
non-convex problems.

To measure if the input distance matrix can be represented as a single 3D
structure, we propose a measure called Consensus Index, which includes two
parts: the first part measures the degree of the input distance matrixD satisfying
the triangle inequality, and is presented as the ratio between the embedded dis-
tance in Rn and the input distance; the second part measures how good the R3

approximation is, and is presented as the ratio between the sum of top 3 eigenval-
ues and the sum of all eigenvalues ofK. Precisely, Let D′

ij =
√
Kii − 2Kij +Kjj

be the embedded distance in Rn, then we have:

Consensus Index =

∑
{i,j|Dij<∞} min(D′

ij/Dij , Dij/D
′
ij)

|{i, j | Dij <∞}|
·
∑3

i=1 γi∑n
i=1 γi

(9)

Note that the Consensus Index is between 0 and 1. When the Consensus Index
trends to 1, this means that the input distance matrix fits a single 3D structure
well. The result section showed that the Consensus Index is a good indicator
on whether the input data corresponds to a single 3D structure or a mixture of
3D structures.

2.2 Searching for the Correct Conversion Factor

In Section 2.1, the conversion factor α(> 0) is assumed to be known. However,
the assumption is not valid . Even worse, Lemma 1 shows that the conversion
factor changes with different resolutions.

Lemma 1. Consider the frequency matrix F for loci x1, . . . , x2n. Let the conver-
sion factor of F be α > 0, i.e., distance between loci xi and xj is dij = (1/Fij)

α.
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Algorithm ChromSDE

Require: normalized frequency matrix F
Ensure: a set of 3D coordinates X, conversion factor α
1: αmin = 0.1, αmax = 3 # set search boundary for α

2: ϕ =
√

5−1
2

# golden section ratio
3: repeat
4: η = (αmax

αmin
)ϕ # step size for updating α

5: x1 ← αmin · η , f1 ← goodness(x1, F )
6: x2 ← αmax/η , f2 ← goodness(x2, F )
7: if f1 > f2 then
8: αmin ← x2 # increase lower bound
9: else
10: αmax ← x1 # decrease upper bound
11: end if
12: until (αmax − αmin) < tolerance
13: α ← αmin # final value of α
14: D ← (1/F )α # expected distance matrix
15: X ← compute 3D structure using SDP method based on D

Function goodness(α, F )

1: D ← (1/F )α

2: X ← compute 3D structure using SDP method based on D
3: D′ ← compute pair-wise distances from X
4: F ′ ← (1/D′)1/α

5: Return
∑

{(i,j)|Fi,j>0} −|F ′
i,j − Fi,j |

Fig. 1. Algorithm description for ChromSDE

Now, we reduce the resolution by merging adjacent loci, i.e., we generate the
frequency matrix F ′ for the low resolution loci y1 . . . , yn where yi is formed by
merging adjacent loci x2i−1 and x2i. Suppose F ′

ij = (F2i−1,2j−1 + F2i−1,2j +
F2i,2j−1 + F2i,2j) and d′ij can be approximated as either arithmetic mean or ge-
ometry mean of {d2i−1,2j−1, d2i−1,2j , d2i,2j−1, d2i,2j}.

Then the conversion factor α′ of F ′ is less than or equal to α .

Proof. Note that logFp,q > 0 and log dp,q < 0 since Fp,q ≥ 1. Let dmin =
minp∈{2i,2i−1},q∈{2j,2j−1} dp,q. Since d′ij ≥ dmin, we have log d′ij ≥ log dmin. We
also have

F ′
ij =

∑
p∈{2i,2i−1},q∈{2j,2j−1}

1

d
1/α
p,q

≥ 1

d
1/α
min

.

Hence logF ′
ij ≥ − 1

α log dmin. As d′ij = (1/F ′
ij)

α′
, we have α′ =

− log d′
ij

log F ′
ij
≤

− log dmin

− 1
α log dmin

= α. ��

The Lemma 1 implies that the conversion factor of high-resolutionHi-C datasets is
usually larger than that of low-resolutionHi-C datasets. Hence, we cannot assume
that the conversion factor is a prior or is a fix value for different datasets. In fact,
the predicted 3D structure is quite sensitive to the conversion factor. Given the
same frequency matrix, different conversion factor leads to different expected dis-
tances and finally implies very different 3D structures (Supp Figure 2). Therefore,
estimating the correct conversion factor for a frequency matrix F is important.
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Fig. 2. Predicted 3D structures by different programs using simulated data.
Red curve is the true structure and green curve is the predicted structure. ChromSDE
uses quadratic SDP here and the linear SDP has the same performance.

A correct conversion factor enables us to convert a frequency matrix to a
correct 3D model, and vice versa. Based on this principle, for a frequency matrix
F , the goodness of a conversion factor α (goodness(α, F )) can be determined by

comparing the predicted frequency matrix F̂ and the input frequency matrix F .
Figure 1 details the function to compute goodness(α, F ).

Our aim is to compute α that maximizes the goodness function. As there is no
obvious well defined gradient for the goodness function, we cannot use methods
such as gradient descent or Newton’s method to optimize α. Instead, we perform
the golden section search method to optimal α, assuming that the goodness
function is unimodal in the search interval. Since dij = (1/Fij)

α, we deduce
that α cannot be too small; otherwise the spatial distance will be independent
of the frequency (when α→ 0). Also, α cannot be too large; otherwise, a small
difference in frequencies will lead a very big difference in spatial distances, and
small noise will seriously violation of the triangle inequality. In this paper, we
assume that 0.1 ≤ α ≤ 3. Moreover, we observed that applying the standard
golden section search on the logarithm domain of the interval is more efficient(see
Supp Figure 3). The algorithm detail is in Figure 1.

3 Result

3.1 Simulation Study

To analyze the performance of ChromSDE, we generated three different types
of 3D structures(Supp Figure 4): (1)Helix curve, (2)Brownian motion simulation
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of a single particle and (3)Uniform random points in a cube. Each structure is
represented by 100 points. We assume that the Hi-C technique is sensitive enough
to capture interactions with at most 50 nearest neighbours and the conversion
factor α is 1, i.e., the contact frequency f of two given points can be computed
as f = (1/d)1/α = 1/d, where d is the spatial distance between given points. We
compared our algorithmwith the existing methods MCMC5C[22] and BACH[10],
which are the only publicly available standalone programs that are suitable for
general Hi-C data. For MCMC5C, it cannot estimate the conversion factor by
itself, so we supplied it with the correct value. For BACH, it can estimate the
conversion factor with the default starting point equal to 1 (i.e., the correct value
in our simulation study). Since there is no enzyme bias in our simulation, we
also modify BACH to suppress this feature (called BACH*). For ChromSDE,
we assume that the conversion factor is within the range (0.1,3), so we give
advantages to the existing programs, but not our ChromSDE.

ChromSDE Guarantees Optimality in Noise-Free Case. Figure 2 shows
the true simulated structures and the predicted structures by different programs.
For the helix curve, all three programs can recover the structure correctly. For the
Brownian motion curve, both ChromSDE and MCMC5C can almost perfectly
recover the true structure and BACH* can only reproduce a not-so-accurate
but similar structure. For the third case, MCMC5C produced a not-so-accurate
structure and BACH* completely failed in this case, while our ChromSDE still
can perfectly recover the true structure. The result is not surprising since SDP
method is the only one that can guarantee perfect recovery of the true structure
when the input data is noise-free and the structure is uniquely localizable. Based
on the RMSD(root mean square deviation), ChromSDE also outperforms the
other two methods in all the three simulated cases.

ChromSDE Outperforms the Existing Methods in Noisy-Data. The
previous section showed that ChromSDE can recover the optimal chromatin
structure in the noise-free case. Now, we test whether ChromSDE is robust in a
noisy data setting. To study this, we simulated noisy contact frequency data in
different noise level based on the Brownian curve structure. For any two loci i
and j, the noisy frequency F̃ij is deviated from the true frequency Fij = 1/Dij

(Dij is the spatial distance between loci i and j) by adding a uniform random

noise δ within a given noise level. Precisely, F̃ij = Fij(1 + δ) where |δ| is smaller
than the noise level.

Figure 3 shows the performance of the programs with different noise levels
under different measurements. Figure 3(a) shows that, when the noise level in-
creases, the Spearman correlation between the pairwise distances from the pre-
dicted structure and those from the true structure generally decreases. ChromSDE
andMCMC5C perform similarly when the noise level< 0.6 and ChromSDE (both
linear SDP and quadratic SDP) outperforms others when the noise level is higher
than 0.6. Similar result is observed when we measure the RMSD between the pre-
dicted structure and the true structure(Supp Figure 5(a)). In Figure 3(c), we
observed that ChromSDE can estimate the conversion factor quite accurately
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(a) (b)

(c) (d)

Fig. 3. Performance of different methods on simulated data. (a) Spearman
correlation between the pair-wise distance matrices of the predicted structure and the
true structure under different noise level. (b) Running times of tested programs given
different number of pairs of observed frequency (test stop at 80000 pair-wise frequencies,
1600 points). (c) The absolute error of the estimated value of conversion factor under
different noise levels. (d) The Consensus Index predicted by ChromSDE(quadratic
model) under different degree of mixture of helix curve(right) and Brownian motion
curve(left).

(deviation <0.1) when noise level <0.7. In contrast, the estimated conversion
factor from BACH* tends to be incorrect (deviation around 0.35). This may be
the reason why BACH* has worse performance comparing to others across differ-
ent noise levels. Moreover, ChromSDE is faster than BACH and comparable to
MCMC5C even though ChromSDE needs to search for the correct conversion fac-
tor but MCMC5C does not (Figure 3(b)). In summary, the result shows that the
linear SDP and quadratic SDP models perform quite consistently and ChromSDE
is more robust and accurate than existing methods.

Consensus Index Indicates the Degree of Mixture of 3D Structures.
In Hi-C and TCC experiments, the data is from a population of cells, and each
potentially has different 3D chromosomal structure. The method section pro-
posed to use the Consensus Index to determine if the data is from a consensus
3D structure. To show that the Consensus Index is a good indicator of the
degree of mixture, we generated a frequency matrix Fmerge by merging the fre-
quency matrix from the helix curve F1 and the Brownian motion curve F2 under
different mix factor γ (i.e., Fmerge = γ · F1 + (1 − γ) · F2). Figure 3(d) shows
that the Consensus Index is affected by both the noise level and mix factor.
For the same noise level, the Consensus Index approaches the minimum when
the mix factor is close to 0.5. This indicates that the Consensus Index is the
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lowest when the two structures are highly mixed. For different noise levels, the
Consensus Index decreases as the noise level increases. Also we note that the
estimated conversion factors by ChromSDE are quite consistent with its true
value even under different mix factors and noise levels(Supp Figure 5(c)).

3.2 Real Hi-C Data Study

Validate ChromSDE Using Two Enzyme Replicates. From the literature,
two different enzymes(Hind3, NcoI) were used to generate Hi-C replicate data
from the mouse ES cell(mESC)[5] and the human GM06990 cell(GM)[16]. Each
enzyme replicate is an independent observation of the chromosome structure in
the same cell type. Hence, we expect the result produced by a robust algorithm
using one enzyme data can be validated using the other enzyme data.

We applied four different programsChromSDE, BACH*,BACHandMCMC5C
to predict the 3D structures of different chromosomes in the two cell lines using
the Hi-C data from two replicates. For ChromSDE, BACH* and MCMC5C, the
input is a normalized frequency matrix using the normalization pipeline by Yaffe
and Tanay[28]. For BACH, we provide the rawHi-C frequency and enzyme cutting
point feature data. More detail can be found in the supplementary material.

We compute Spearman correlation between the normalized frequency of one
enzyme data and the estimated frequency (frequency ∼ 1/distance) of the pre-
dicted structure from the other enzyme data. (We use Spearman correlation
instead of Pearson correlation since the Spearman correlation is independent to
the conversion between frequency and distance, hence it is fair to every tested
program.) Figure 4(a) shows that ChromSDE (both Linear SDP and Quadratic
SDP) outperforms the other programs by at least 5% across all four tested Hi-
C datasets. Especially, in the mESC dataset, ChromSDE obtains the average
correlation of 0.9 across all chromosomes but other tested programs only ob-
tain correlation at most 0.82. What’s more, Figure 4(b),(c) and Supp Figure
6 showed the 3D structures of different chromosomes predicted by ChromSDE
are highly reproducible and the conversion factors estimated by ChromSDE are
more consistent than the ones estimated by BACH and BACH* across different
chromosomes and different enzymes (Supp Table 1).

Besides, we observed that all the tested programs perform worse in GM than
in mESC and the Consensus Index is around 0.9 in mESC and is only 0.7 in
GM(Supp Figure 7). It indicates that mESC has a consensus 3D structure for
its genome and GM is relatively diverse or has higher noise level due to the low
sequencing depth.

ChromSDE Can Generate Consistent 3D Structures from Different
Genomic Resolutions. We further tested ChromSDE on different genomic
resolution data. Figure 5(a) showed that ChromSDE can predict similar struc-
tures of chromosome 13 under different resolutions using mESC Hind3 data (av-
erage Spearman correlation is 0.97, average RMSD is 0.08). In contrast, other
existing programs cannot reproduce similar structures with different resolution
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Fig. 4. Validate ChromSDE using mESC, GM Hi-C data with two different
enzymes (Hind3, NcoI). (a) Average Spearman correlation across all chromosomes
between inverse 3D distance and contact frequency from testing dataset. For each
dataset, the best performer is highlighted. (b) Alignment between predicted structures
of chromosome 1 of mESC Hind3(red) and mESC NcoI(green) by ChromSDE. (c)
Alignment between predicted structures of chromosome 1 of GM Hind3(red) and GM
NcoI(green) by ChromSDE.

data, especially for MCMC5C which cannot estimate the correct conversion fac-
tor(Supp Figure 8). We also showed that the conversion factor for each predicted
structure in Figure 5(a). It demonstrated that the conversion factor increases as
the resolution increases (also supported by BACH in Supp Figure 8). This fur-
ther confirms the correctness of Lemma 1 even though the frequency has been
normalized under different genomic resolutions.

To demonstrate the application of our predicted 3D structure, we generated
a high resolution chromosome 3D structure for the region chr13:21Mb-25Mb
(Figure 5(b)) using ChromSDE and mouse ES cell Hind3 data (40kbp resolution,
estimated α is 0.83). Hist1h genes are highlighted with yellow color in the 3D
structure, and we find that two groups of Hist1h genes are separated quite far
away(∼1.5Mbp) in the linear genomic locations. In contrast, the promoters of
two groups of Hist1h genes are spatially close to each other. To test if these two
groups of genes interact each other for transcription, we checked the Pol2 ChIA-
PET data available in our lab. We found that there are strong interactions(red
dash line) between these two promoter regions mediated by Pol2, which indicates
that the histone genes are co-regulated in the mouse ES cell.

Moreover, we found that the dense region and the loose region in the predicted
3D structure can be used to indicate the level of activity of those regions (from
the snapshot of UCSC genome browser[13]). Dense regions (purple and blue
color) correspond to repressive chromatin state in the cell, and there are few
active histone modification and transcriptionx factor-binding events occurring
in those regions. In contrast, loose regions(green and yellow color) correspond
to active chromatin state in the cell, and there are a lot of histone modifica-
tion and transcription factor-binding events occurring in those regions. Also, we
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found that loose regions usually containing more genes and are associated with
early replication timing than the dense regions. It is also noted that the purple
region is associated with LaminB1 binding and late replication timing, which
suggests that Lamin may plays a part in the histone genes regulation and DNA
replication.

Hist1h Genes Hist1h Genes LaminB1 Region 

Pol2 ChIA-PET 

Condense Region Open Region 

LaminB1 

H3K27ac 

DNaseI 

H3K4me3 

Replicate     
Time 

α=0.55  

α=0.60 

α=0.66 

1Mbp 

500kbp 

200kbp 

(a) (b) Chr13:21,000,000-25,000,000 

RefGene 

Fig. 5. Predicted structure of chromosome 13 from mESC Hind3 data. (a)
The predicted structure of chromosome 13 under 1Mbp,500kbp,200kbp resolutions. (b)
The predicted structure of the region chr13:21Mb-25Mb under 40kbp resolution and
the different signal tracks of mESC from UCSC genome browser[13].

4 Discussion

In this study, we presented a method ChromSDE to reconstruct the consen-
sus/dominate chromatin 3D structure of the given HiC data. To our best knowl-
edge, ChromSDE is the only method which can guarantee recovering the correct
structure in the noise-free case. In the noisy case, ChromSDE is much more ac-
curate and robust than existing methods in both simulation and real data study.
In addition, ChromSDE can automatically estimate the conversion factor, which
is proved to change under different resolutions theoretically and empirically. Fur-
thermore, we demonstrate that interesting biological findings can be uncovered
from our predicted 3D structure.

We also developed the Consensus Index to determine how good the data can
be explained by a single 3D structure. However, Consensus Index may not be
informative when the noise level of the data is high or the mixing structures are
similar. When the mixing structures are similar to each other then ChromSDE
will learn the average structure. One future research is to recover all the mixing
structures using Hi-C data.
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Abstract. Binding of one protein to another in a highly specific manner
to form stable complexes is critical in most biological processes, yet the
mechanisms involved in the interaction of proteins are not fully clear.
The identification of hot spots, a small subset of binding interfaces that
account for the majority of binding free energy, is becoming increas-
ingly important in understanding the principles of protein interactions.
Despite experiments like alanine scanning mutagenesis and a variety of
computational methods have been applied to this problem, comparative
studies suggest that the development of accurate and reliable solutions
is still in its infant stage.

We developed PredHS (Prediction of Hot Spots), a computational
method that can effectively identify hot spots on protein binding inter-
faces by using 38 optimally chosen properties. The optimal combination
of features was selected from a set of 324 novel structural neighborhood
properties by a two-step feature selection method consisting of a ran-
dom forest algorithm and a sequential backward elimination method. We
evaluated the performance of PredHS using a benchmark of 265 alanine-
mutated interface residues (Dataset I) and a trimmed subset (Dataset
II) with 10-fold cross validation. Compared with the state of the art ap-
proaches, PredHS achieves a significant improvement on the prediction
quality, which stems from the new structural neighborhood properties,
the novel way of feature generation as well as the selection power of the
proposed two-step method. We further validated the capability of our
method by an independent test and obtained promising results.

The PredHS web server and supplementary data are available at
http://admis.tongji.edu.cn/predhs.
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1 Introduction

Protein-protein interactions play an important role in nearly all aspects of cellu-
lar function ranging from cell differentiation to apoptosis [1]. Studies of protein
binding interfaces have revealed that only a small subset of critical residues called
hot spots makes dominant contributions to the binding free energy [2], and pro-
vides useful targets within these interfaces. Identifying and understanding hot
spots and their mechanisms on a large scale would have significant implications
for practical applications, such as protein engineering and drug design. Since
alanine-scanning mutagenesis to identify binding hot spots is currently expensive
and time-consuming, the number of hot spots recognized by wet-experiments is
quite limited. Therefore, there is a need for developing computational prediction
methods to complement the mutagenesis experiments.

Efforts have been made to explain the rules between binding hot spots and
protein structure and sequence information. Analysis of hot spots has shown
that some residues are more favorable rather than a random composition. The
fundamental ones, Tyr (21%), Arg (13.3%) and Trp (12.3%), are critical due to
their sizes and conformations in hot spots [3, 4]. Also, it reveals that hot spots
are usually located at the center of the interface and surrounded by energetically
less important residues that are shaped like an O-ring to occlude bulk water
molecules from the hot spots [2]. To refine the influential O-ring theory, a “double
water exclusion” hypothesis [5] was proposed to characterize the topological
organization of residues in a hot spot and their neighboring residues. Although
these rules make sense to analyze specific interfaces, there are no simple patterns
of features, such as hydrophobicity, shape or charge, can be used for predicting
hot spots from a larger set of protein-protein complexes [6].

Current methods of hot spots prediction can be divided essentially into three
main types: molecular simulation techniques, knowledge-based methods and
machine learning methods. Molecular dynamics (MD) simulations were first in-
troduced to simulate alanine substitutions and estimate the induced changes in
binding free energy (ΔΔG). Although some molecular simulation methods [7–10]
are successful to identify hot spots from protein complexes, they are not appli-
cable for large-scale hot spot predictions due to their enormous computational
cost. On the other hand, empirical functions or simple physical methods, such as
FOLDEF [11] and Robetta [12], which use experimentally calibrated knowledge-
based simplified models to evaluate the binding free energy, provide an alternative
way to probe hot spots with much less computation. Recently, considerable inter-
est has focused on applying machine learning methods to predict hot spots, such
as neural networks [13], decision tree [14], support vector machine [15, 17, 18],
Bayesian networks [19], minimum cut trees [20] and random forest [30].

In this paper, we report a novel structure-based computational method,
PredHS (Prediction of Hot Spots), that combines three main sources of infor-
mation, namely site, Euclidean and Voronoi features describing the properties of
either the target residue or the target residue’s structural neighborhood. PredHS
integrates a set of 38 optimal features selected from 324 site, Euclidean andVoronoi
properties by a two-step feature selection method. We have benchmarked PredHS



Boosting Prediction Performance of Protein-Protein Interaction Hot Spots 335

using a set of experimentally verified hot spot residues and an independent dataset.
Results show that PredHS significantly outperforms the state of the art methods,
and indicate that structural neighborhood properties are important determinants
of hot spots. The framework of PredHS is shown in Figure 1.

2 Methods

2.1 Datasets

The complete benchmark dataset (called Dataset I), the same as that in the
work of Cho et al [15], was obtained from ASEdb [22] and the published data of
[12]. The interface residues in Dataset I are divided into 65 hot spots and 200
energetically unimportant residues. To evaluate the proposed method and com-
pare it with the existing methods more comprehensively and fairly, a trimmed
dataset (called Dataset II) was generated. Positive samples (hot spots) in Dataset
II are the same as that in Dataset I, the only difference is the way to select nega-
tive samples (non-hot spots). In Dataset II, the interface residues with ΔΔG<0.4
kcal/mol are labeled as non-hot spots and the other residues with ΔΔG be-
tween 0.4 and 2.0 are eliminated for the purpose of increasing discrimination
as described in [21] and [17]. Details of the two datasets are presented in the
Supplementary Material1.

An independent test dataset was extracted from the BID database [23] to
further assess the performance of our proposed method. This test dataset con-
sists of 18 complexes containing 127 alanine-mutated data, of which 39 interface
residues are hot spots.

2.2 Site Features

A wide variety of 108 sequence, structural and energy attributes are used to
characterize potential hot spot residues, including conventional ones and new
ones exploited in this kind of study. Detailed descriptions of other features are
available in the Supplementary Material.

2.3 Structural Neighborhood Properties

Most of the conventional features such as physicochemical features, evolutionary
conservation and solvent accessible area, describe only the properties of the
current binding site itself, cannot represent the real situation well, and thus are
insufficient to predict hot spots with high accuracy. Here, we develop a new way
to calculate two types of structural neighborhood properties using Euclidean
distance and Voronoi diagram.

The Euclidean neighborhood is a group of residues located within a sphere of
5Å defined by the minimum Euclidean distances between any heavy atoms of the
surrounding residues and any heavy atoms from the central residue. The value

1 Available at http://admis.tongji.edu.cn/predhs/supplementary-material.pdf

http://admis.tongji.edu.cn/predhs/supplementary-material.pdf
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of a specific residue-based feature f for neighbor j with regard to the target
residue i is defined as

Pf (i, j) =

{
the value of feature f for residue j if |i− j| ≥ 1 and di,j ≤ 5Å,

0 otherwise.

(1)
Above, di,j is the minimum Euclidean distance between any heavy atoms of
residue i and any heavy atoms of residue j. The Euclidean neighborhood prop-
erty of target residue i is defined as follows:

ENPf (i) =
n∑

j=1

Pf (i, j) (2)

where n is the total number of Euclidean neighbors.
We also use Voronoi diagram/Delaunay triangulation to define neighbor

residues in 3D protein structures. For a protein structure, Voronoi tessellation
partitions the 3D space into Voronoi polyhedra around individual atoms. Delau-
nay triangulation is the dual graph of Voronoi diagram, a group of four atoms
whose Voronoi polyhedra meet at a common vertex form a unique Delaunay
tetrahedra. In the context of Voronoi diagram (Delaunay triangulation), a pair
of residues are said to be neighbors when at least one pair of heavy atoms of
each residue have a Voronoi facet in common (in the same Delaunay tetrahe-
dra). The definition of neighbors is based on geometric partitioning other than
the use of an absolute distance cutoff, and hence is considered to be more ro-
bust. Voronoi/Delaunay polyhedra are calculated using the Qhull package that
implements the Quickhull algorithm developed by Barber et al [16].

Give the target residue i and its neighbors {j = 1, ..., n}, for each site feature
f , a Voronoi/Delaunay neighborhood property is defined as follows:

V DPf =

n∑
j=1

Pf (j) (3)

where Pf (j) is the value of the site feature f for residue j.

2.4 Two-Step Feature Selection

Feature selection is performed in order to eliminate uninformative properties,
which in turn improves model performance and provides faster and more cost-
effective models. In this paper we propose a two-step feature selection method
to select a subset of features that contribute the most in the classification.

In the first step, we assess the feature vector elements using the mean decrease
Gini index (MDGI) calculated by the RF package in R [29]. MDGI represents
the importance of individual feature vector element for correctly classifying an
interface residue into hot spots and non-hot spots. The mean MDGI Z-Score of
each vector element is defined as

MDGI Z-Score =
xi − x

σ
(4)
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where xi is the mean MDGI of the i-th feature, x is the mean value of all elements
of the feature x, and σ is the standard deviation (SD). Here, we select the top
77 features with MDGI Z-Score larger than 2.5.

The second step is performed using a wrapper-based feature selection where
features are evaluated by 10-fold cross-validation performance with the SVM
algorithm, and redundant features are removed by sequential backward elimi-
nation (SBE). The SBE scheme sequentially removes features from the whole
feature set till an optimal feature subset is obtained. Each removed feature is
the one whose removal maximizes the performance of the predictor. The ranking
criterion Rc(i) represents the prediction performance of the predictor, which is
built on a subset features exclusive of feature i, and is defined as follows:

Rc(i) =
1

k

k∑
j=1

{AUCj +Accuj + Senj + Spej} (5)

where k is the repeat times of 10-fold cross validation; AUCj , Accuj, Senj and
Spej represent the values of AUC score, accuracy, sensitivity and specificity of
the j-th 10-fold cross validation, respectively.
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neighborhood 
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C 

SVM results 
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Fig. 1. The framework of PredHS. (A) Feature representation; (B) Two-step feature
selection;(C) Prediction models: PredHS-SVM and PredHS-Ensemble.
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2.5 The Classifiers

In this paper, two predictors were implemented under the PredHS framework
shown in Figure 1. One is PredHS-SVM, another is PredHS-Ensemble, all are
based on the 38 optimal features. The former is a support vector machine, the lat-
ter is an ensemble classifier built to handle the imbalanced classification problem.
In what follows, we describe the implementation details of PredHS-Ensemble.

PredHS-Ensemble uses an ensemble of n classifiers and decision fusion tech-
nique on the training datasets. An asymmetric bootstrap resampling approach
is adopted to generate subsets. It performs random sampling with replacement
only on the majority class so that its size is equal to the number of minority
samples, and keeps the entire minority samples in all subsets.

First, the majority class of non-hot spots is under-sampled and split into n
groups by random sampling with replacement, where each group has the same
or similar size as the minority class of interaction sites. After the sampling pro-
cedure, we obtain n new datasets from the set of non-hot spots. Each of the
new dataset and the set of hot spots are combined into n new training datasets.
Then, we train n sub-models by using the n new training datasets as input.
Each of these classifiers is a Support Vector Machine (SVM). Here the LIBSVM
package 2.82 is used with radial basis function (RBF) as the kernel. Finally, a
simple majority voting method is adopted in the fusion procedure, and the final
result is determined by majority votes among the outputs of the n classifiers.

3 Results

3.1 Predictive Power of Structural Neighborhood Properties

We investigated four types of features - site, sequence, Euclidean and Voronoi
features. The residue features consist of a total of 108 sequence, structural and
energy attributes, a significant portion of which are novel for hot spot identi-
fication. The other three types of features (sequence, Euclidean and Voronoi)
are neighborhood properties that describe a residue by summing its neighbors’
residue properties. For the sequence features, we include 10 residues upstream
and 10 residues downstream of the target residue in the protein sequence as the
sequence neighborhood. The Euclidean and Voronoi features are described in
detail in Section 2.3.

Four SVM classifiers were trained and tested using the four types of features
in Dataset I and 10-fold cross-validation. Their predictive performances are pre-
sented in Figure 2. We found that structural neighborhood properties (Euclidean
and Voronoi) achieve the best performance, suggesting that structural neigh-
borhood properties are more predictive than site properties in determining hot
spots. We also observed that the classifier with linear sequence neighborhood
properties is the worst performer, whose area under ROC curve is significantly
smaller than that of the classifier with site features.

2 Available at http://www.csie.ntu.edu.tw/~cjlin/libsvm/

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Fig. 2. ROC curves of classifiers with four types of features (site, sequence, Euclidean
and Voronoi)

3.2 Selection of Optimal Features

The main goal of this study is to build effective and accurate models to predict
hot spots. To this end, identification of a set of informative features is critical for
performance boosting, and subsequently will enhance our understanding in the
molecular basis of hot spots. We combine 324 site, Euclidean and Voronoi fea-
tures for further feature selection. The 108 sequence features are not included in
the combination since they perform significantly worse in the comparison study
of Section 3.1. To assess the feature importance of the 324 features in predicting
hot spots, we applied a two-step feature selection method on the Dataset I. As a
result, a set of 38 optimal features are obtained and listed in Supplementary Ma-
terial Table 4. We found that structural neighborhood properties (Euclidean and
Voronoi properties) dominate the top-38 list, suggesting that structural neigh-
borhood properties are more predictive than site properties in determining hot
spot residues.

To quantitatively assess the performance of the two-step feature selection algo-
rithm in PredHS, we compare it with four widely-used feature selection methods:
Random Forests, Information Gain, Chi-squared and F-score. Figure 3 shows the
ROC plots of the five feature selection methods based on Dataset I and 10-fold
cross-validation. As can be seen from Figure 3, our two-step feature selection al-
gorithm achieves the best performance. The proposed two-step feature selection
algorithm, which is a hybrid approach integrating the merits of both filter meth-
ods and wrapper methods, can effectively improve the prediction performance
with less computational cost and reduce the risk of overfitting.
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Fig. 3. ROC curves of our two-step algorithm and 4 existing feature selection methods

3.3 Performance Comparison with the State of the Art Approaches

To evaluate the performance of the proposed PredHS, eight existing hot spot
prediction methods, Robetta [12], FOLDEF [11], KFC [14], MINERVA2 [15],
HotPoint [21], APIS [17], KFC2a and KFC2b [18] are implemented and eval-
uated on both Dataset I and the Dataset II with 10-fold cross-validation. The
performance of each model is measured by six metrics: accuracy (Accu), sensi-
tivity (Sen), specificity (Spe), precision (Pre), CC and F1 score. F1-score is the
harmonic mean of the precision and recall (equivalent to sensitivity), which is
widely used to handle unbalanced data such as hot spot data.

Table 1 shows the detailed results of comparing our method with the exist-
ing methods. On Dataset I, our approach (PredHS-SVM and PredHS-Ensemble)
show dominant advantage over the existing methods in five metrics: accuracy,
sensitivity, precision, CC and F1-score. Only in specificity, FOLDEF and MIN-
ERVA2 perform as good as PreHS-SVM, all have the highest specificity value
0.93. Concretely, PredHS-Ensemble predicts the most actual hot spots as hot
spots among these methods (with sensitivity = 0.85), while PredHS-SVM iden-
tifies the second most hot spots (with sensitivity = 0.75). Especially, PreHS-
Ensemble’s sensitivity is 47% higher than that of MINERVA2, which has the
highest sensitivity among the existing methods. This suggests that our PredHS
model is superior for predicting hot spot residues. Furthermore, PredHS-SVM’s
CC and F1 score are 25.5% and 19% respectively higher than that of MIN-
ERVA2 (still is the best in these two measures among the existing methods).
Compared with PredHS-SVM, PredHS-Ensemble is much higher in sensitivity
but relatively lower in specificity, however PredHS-Ensemble has much better
balance of prediction accuracy between positive examples and negative
examples.
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Table 1. Performance comparison on Dataset I and Dataset II. Six performance mea-
sures are used: accuracy (Accu), sensitivity (Sen), specificity (Spe), precision (Pre),
CC and F1 score. The highest values are highlighted.

Methods Dataset I Dataset II

Accu Sen Spe Pre CC F1 Accu Sen Spe Pre CC F1

PredHS-SVM 0.88 0.75 0.93 0.79 0.69 0.76 0.87 0.86 0.87 0.84 0.74 0.84
PredHS-Ensemble 0.82 0.85 0.81 0.60 0.60 0.69 0.87 0.91 0.84 0.80 0.74 0.85
Robetta 0.80 0.51 0.9 0.62 0.44 0.56 0.77 0.51 0.96 0.89 0.54 0.65
FOLDEF 0.78 0.31 0.93 0.59 0.31 0.40 0.70 0.31 0.98 0.91 0.41 0.46
KFC 0.79 0.55 0.87 0.58 0.43 0.57 0.74 0.55 0.87 0.75 0.45 0.64
MINERVA2 0.84 0.58 0.93 0.72 0.55 0.64 0.81 0.58 0.97 0.93 0.62 0.72
HotPoint 0.72 0.54 0.78 0.44 0.29 0.48 0.73 0.54 0.86 0.73 0.43 0.62
APIS 0.76 0.43 0.87 0.54 0.33 0.46 0.75 0.74 0.75 0.70 0.50 0.71
KFC2a 0.82 0.55 0.91 0.66 0.49 0.59 0.83 0.84 0.82 0.78 0.67 0.80
KFC2b 0.78 0.47 0.88 0.60 0.38 0.51 0.81 0.74 0.86 0.82 0.62 0.75

Table 2. Performance comparison on the independent test dataset

Methods Accu Sen Spe Pre CC F1

PredHS-SVM 0.83 0.59 0.93 0.79 0.57 0.68
PredHS-Ensemble 0.79 0.74 0.80 0.63 0.53 0.68
Robetta 0.70 0.33 0.86 0.52 0.23 0.41
FOLDEF 0.68 0.26 0.87 0.48 0.16 0.33
KFC 0.68 0.31 0.85 0.48 0.18 0.38
MINERVA2 0.77 0.46 0.91 0.69 0.42 0.55
HotPoint 0.69 0.59 0.74 0.5 0.31 0.54
APIS 0.71 0.56 0.77 0.52 0.33 0.54
KFC2a 0.74 0.74 0.74 0.56 0.41 0.64
KFC2b 0.79 0.59 0.87 0.68 0.47 0.63

As for Dataset II, PredHS still performs best in four performance metrics (ac-
curacy, sensitivity, CC and F1-score). Again, this shows that PreHS can predict
correctly more hot spots and has better balance in precision and recall than the
existing methods. For almost all compared predictors, results on Dataset II are
better than that on Dataset I, this is because Dataset II is a trimmed dataset
where residues with ΔΔG between 0.4 and 2.0 are eliminated, which makes the
prediction task not so tough.

3.4 Performance Evaluation by Independent Test

We further validate the performance of the proposed model (PredHS-SVM and
PredHS-Ensemble) on the independent test dataset. Results of the independent
test are presented in Table 2. We can see that our PreHS approach substantially
outperforms the existing methods in five performance metrics (accuracy, speci-
ficity, precision, CC and F1 score), only KFC2a has a similar sensitivity value
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to that of PreHS-Ensemble, that is 0.74, the highest among the 10 compared
predictors. Furthermore, the F1-scores of PredHS-SVM and PredHS-Ensemble
are 0.68 and 0.68 respectively, while those of the existing methods fall in the
range of 0.33-0.64. The findings from the independent test also indicate that the
proposed PredHS model performs significantly better than the state of the art
approaches.

4 Conclusion

Protein-protein interaction hot spots at the interfaces comprise a small fraction
of the interface residues that make a dominant contribution to the free energy of
binding. Alanine scanning mutagenesis experiments to identify hot spot residues
are expensive and time-consuming, and computational methods can thus be
helpful in suggesting residues for possible experimentation. In this study, we pro-
posed a novel method, PredHS, including PredHS-SVM and PredHS-Ensemble,
to predict hot spot residues in protein interfaces. Two key factors are responsi-
ble for our success. First, the wide exploitation of heterogeneous information, i.e.
sequence-based, structure-based and energetic features, together with two types
of structural neighborhood (Euclidian and Voronoi), provides more important
clues for hot spot identification. A total of 324 features, including 108 site prop-
erties, 108 Euclidian neighborhood properties and 108 Voronoi neighborhood
properties, have been investigated. Second, our two-step feature selection ap-
proach, which combines random forest and a sequential backward elimination,
provides a ideal way for selecting an optimal subset of features within a reason-
able computational cost. Also, the two-step method can significantly improve
the prediction performance and reduce the risk of overfitting.

Our results highlight the advantages of basing hot spot prediction method
on structural neighborhood properties. Compared with other computational hot
spot prediction models, PredHS offers significant performance improvement both
in terms of precision and recall as well as F1 score that measures the balance
between precision and recall. PredHS-Ensemble has the highest sensitivity com-
pared to other methods, but it has a lower specificity than PredHS-SVM. This
is because that PredHS-Ensemble incorporates bootstrap resampling technique
and SVM-based fusion classifiers to balance sensitivity and specificity.

As for the future work, major existing hot spots prediction methods, including
MINERVA2 and KFC2a/b, are considered to be integrated into the PredHS web
server to further improve the prediction performance by using BayesianNetworks.

Acknowledgement. This work was supported by China 863 Program under
grant No. 2012AA020403, and National Natural Science Foundation of China
under grants No. 61173118 and No. 61272380.

References

1. Alberts, B.D., et al.: Molecular Biology of the Cell. Garland, New York (1989)
2. Clackson, T., Wells, J.A.: A hot spot of binding energy in a hormone-receptor

interface. Science 267, 383–386 (1995)



Boosting Prediction Performance of Protein-Protein Interaction Hot Spots 343

3. Bogan, A.A., Thorn, K.S.: Anatomy of hot spots in protein interfaces. J. Mol.
Biol. 280, 1–9 (1998)

4. Moreira, I.S., et al.: Hot spots-A review of the protein-protein interface determinant
amino-acid residues. Proteins 68, 803–812 (2007)

5. Li, J., Liu, Q.: ‘Double water exclusion’: a hypothesis refining the O-ring theory
for the hot spots at protein interfaces. Bioinformatics 25, 743–750 (2009)

6. DeLano, W.L.: Unraveling hot spots in binding interfaces: progress and challenges.
Current Opinion in Structural Biology 12, 14–20 (2002)

7. Massova, I., Kollman, P.A.: Computational Alanine Scanning To Probe Protein-
Protein Interactions: A Novel Approach To Evaluate Binding Free Energies. J. Am.
Chem. Soc. 120, 9401–9409 (1998)

8. Huo, S., et al.: Computational Alanine Scanning of the 1:1 Human Growth
Hormone-Receptor Complex. J. Comput. Chem. 23, 15–27 (2002)

9. Grosdidier, S., Fernández-Recio, J.: Identification of hot-spot residues in protein-
protein interactions by computational docking. BMC Bioinformatics 9, 447 (2008)

10. Brenke, R., et al.: Fragment-based identification of druggable ‘hot spots’ of proteins
using Fourier domain correlation techniques. Bioinformatics 25(5), 621–627 (2009)

11. Guerois, R., et al.: Predicting Changes in the Stability of Proteins and Protein
Complexes: A Study of More Than 1000 Mutations. J. Mol. Biol. 320, 369–387
(2002)

12. Kortemme, T., Baker, D.: A simple physical model for binding energy hot spots in
protein-protein complexes. Proc. Natl. Acad. Sci. 99(22), 14116–14121 (2002)

13. Ofran, Y., Rost, B.: Protein-Protein Interaction Hotspots Carved into Sequences.
PLoS Comput. Biol. 3(7), e119 (2007)

14. Darnell, S.J., et al.: An automated decision-tree approach to predicting protein
interaction hot spots. Proteins 68, 813–823 (2007)

15. Cho, K., et al.: A feature-based approach to modeling protein-protein interaction
hot spots. Nucleic Acids Research 37(8), 2672–2687 (2009)

16. Barber, C.B., et al.: The Quickhull algorithm for convex hulls. ACM Ttransactions
on Mathematical Software 22(4), 469–483 (1996)

17. Xia, J., et al.: APIS: accurate prediction of hot spots in protein interfaces by
combining protrusion index with solvent accessibility. BMC Bioinformatics 11, 174
(2010)

18. Zhu, X., Mitchell, J.C.: KFC2: A knowledge-based hot spot prediction method
based on interface solvation, atomic density, and plasticity features. Proteins 79,
2671–2683 (2011)

19. Assi, S.A., et al.: PCRPi: Presaging Critical Residues in Protein interfaces, a new
computational tool to chart hot spots in protein interfaces. Nucleic Acids Research
38(6), e86 (2009)

20. Tuncbag, N., et al.: Analysis and network representation of hotspots in protein
interfaces using minimum cut trees. Proteins 78, 2283–2294 (2010)

21. Tuncbag, N., et al.: Identification of computational hot spots in protein interfaces:
combining solvent accessibility and inter-residue potentials improves the accuracy.
Bioinformatics 25(12), 1513–1520 (2009)

22. Thorn, K.S., Bogan, A.A.: ASEdb: a database of alanine mutations and their effects
on the free energy of binding in protein interactions. Bioinformatics 17, 284–285
(2001)

23. Fischer, T., et al.: The binding interface database (BID): a compilation of amino
acid hot spots in protein interfaces. Bioinformatics 19, 1453–1454 (2003)

24. Chan, C.H., et al.: Relationship between local structural entropy and protein ther-
mostability. Proteins 57, 684–691 (2004)



344 L. Deng et al.

25. Kabsch, W., Sander, C.: Dictionary of protein secondary structure: pattern recog-
nition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637
(1983)

26. Liang, S., Grishin, N.V.: Effective scoring function for protein sequence design.
Proteins 54, 271–281 (2004)

27. Liang, S., et al.: Consensus scoring for enriching near-native structures from
protein-rotein docking decoys. Proteins 75, 397–403 (2009)

28. Hartshorn, M.J.: AstexViewer: a visualisation aid for structure-based drug design.
J. Comput. Aided Mol. Des. 16, 871–881 (2002)

29. Liaw, A., Wiener, M.: Classification and Regression by randomForest. R News 2,
18–22 (2002)

30. Wang, L., et al.: Prediction of hot spots in protein interfaces using a random forest
model with hybrid features. Protein Engineering, Design & Selection 25(3), 119–
126 (2012)

31. Kvansakul, M., et al.: Structural basis for the high-affinity interaction of nidogen-
1 with immunoglobulin-like domain 3 of perlecan. EMBO J. 20(19), 5342–5346
(2001)



Author Index

Alekseyev, Max A. 158
Alm, Eric J. 1
Antipov, Dmitry 158

Backofen, Rolf 289
Bafna, Vineet 230
Bandeira, Nuno 287
Bankevich, Anton 158
Bansal, Mukul S. 1
Batzoglou, Serafim 212, 249
Bercovici, Sivan 212
Bryant, William A. 45

Chen, Shijian 14
Cheng, Jeffrey B. 266
Cho, Dong-Yeon 30
Choi, Kwok Pui 269
Clingenpeel, Scott R. 158
Clote, Peter 264
Conde, Lucia 32
Costello, Joseph F. 266

Deng, Lei 333
Donald, Bruce Randall 271
Dotu, Ivan 264

Eskin, Eleazar 32, 75, 118
Eskin, Itamar 32

Faruqi, Ali A. 45

Gifford, David 186
Gordân, Raluca 145
Guan, Jihong 333
Guo, Fei 58
Gurevich, Alexey 158

Halperin, Eran 32, 230
Han, Buhm 75
He, Dan 75
Hengel, Shawna 132
Hormozdiari, Farhad 32

Jansson, Jesper 88
Jeong, Kyowon 100

Kashef-Haghighi, Dorna 249
Kellis, Manolis 1
Khavari, David 249
Kim, Sangtae 100
Korobeynikov, Anton 158
Kostem, Emrah 118

Lapidus, Alla 158
Lasken, Roger 158
Li, Guoliang 317
Li, Hua 304
Li, Lei M. 14
Li, Shuai Cheng 58
Liu, Xiaowen 132

Ma, Wenji 58
Mahmoody, Ahmad 171
McLean, Jeffrey 158
Miladi, Milad 289
Moffa, Giusi 234
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