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Abstract. Multiclass classification is a common requirement of many
land cover/land use applications, one of the pillars of land science stud-
ies. Even though genetic programming has been applied with success to
a large number of applications, it is not particularly suited for multiclass
classification, thus limiting its use on such studies. In this paper we take
a step forward towards filling this gap, investigating the performance of
recently defined geometric semantic operators on two land cover/land
use multiclass classification problems and also on a benchmark problem.
Our results clearly indicate that genetic programming using the new ge-
ometric semantic operators outperforms standard genetic programming
for all the studied problems, both on training and test data.

1 Introduction

A new integrated land science, joining environmental, human, and remote sens-
ing sciences, is emerging. It addresses questions about the impacts of land use
and land cover changes, both on the environment and on the livelihoods of
people [8]. This recently developed discipline led to the development of a large
amount of case studies and data sets, with a corresponding plethora of method-
ologies for analysis. However, the complexity of causes, processes and impacts
of land change has, so far, impeded the development of an integrated theory.
Land science studies require versatile data analysis tools that can solve multi-
type pattern identification problems, ranging for instance from classification of
satellite images into several land cover type classes in a map, to identifying land
cover transition patterns in multi-temporal map data sets, or to prediction of
pattern evolution through time.

Genetic Programming (GP) is the automated learning of computer programs,
using Darwinian selection and Mendelian genetics as sources of inspiration [5].
In the last decade, GP has been extensively used both in Industry and Academia
and it has produced a wide set of results that have been characterized as human-
competitive [6]. Although in principle GP has the potential to evolve any kind of
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solution, including decision trees, it has never been particularly suited for mul-
ticlass classification problems. This inadequacy, in many cases, derives not from
limitations of the algorithm, but from the particular representation used for the
solutions. The interested reader is referred to [13] for discussions on the difficul-
ties of GP in facing multiclass classification problems and to [3] for a complete
review of the state of the art methods in using GP for classification problems.
It is a common procedure to address two-class classification problems using GP
as regression ones, applying a cutoff to the predicted output. This approach can
also be used for multiclass classification, but the approach in general becomes
less effective as a larger number of classes is considered, and the performance of
GP degrades to the point where other machine learning techniques become the
only reasonable option. Therefore, even though GP has the potential to address
the complexity of land science studies, the “simple” task of land use/land cover
multiclass classification represents a potential obstacle.

Research in GP has recently focused on an aspect that was only marginally
considered up to some years ago: the definition of methods based on the seman-
tics of the solutions (see for instance [1,9]), where by semantics we generally mean
the behavior of a program once it is executed on a set of data or, more specifically,
the set of outputs a program produces on the training data. Using this defini-
tion of semantics (which is also the one that we adopt here), Moraglio et al. have
recently defined new genetic operators, called geometric semantic genetic oper-
ators [10]. They have a number of theoretical advantages compared to the ones
of standard GP; in particular, as proven in [10], they induce a unimodal fitness
landscape on any problem consisting in finding the match between a set of input
data and a set of known outputs (like for instance classification and regression).
This should facilitate evolvability [4], making these problems potentially easier
to solve for GP. However, they have a major drawback that makes them unus-
able in practice: they always create offspring that are larger than their parents,
causing an exponential growth of the code in the population. We have proposed a
new and very efficient implementation of the geometric semantic operators [12].
This new GP system evolves the semantics of the individuals without explicitly
building their syntax, freeing us from dealing with exponentially growing trees
and thus allowing us to test, for the first time, the potentiality of the semantic
operators on complex real-life problems.

In this paper we want to assess how much improvement the geometric semantic
operators introduce when compared to standard GP operators, in particular
when dealing with multiclass classification problems in a ‘regression and cutoff’
manner. We tackle three problems: two real-life land cover/land use applications
of four and ten classes, and a well-known benchmark of three classes.

The paper is organized as follows: Section 2 describes the geometric semantic
operators of Moraglio et al. used in this work. Section 3 presents the experimen-
tal study, describing the test problems and settings, and discussing the results
obtained. Section 4 concludes and describes our intended future work.
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2 Geometric Semantic Operators

Many semantically aware methods presented so far [1,9] are indirect: search
operators act on the syntax of the parents to produce offspring that are only ac-
cepted if some semantic criterion is satisfied. As reported by Moraglio et al. [10],
this has at least two drawbacks: (i) these implementations are very wasteful as
heavily based on trial-and-error; (ii) they do not provide insights on how syn-
tactic and semantic searches relate to each other. To overcome these drawbacks,
Moraglio et al. introduced new operators that directly search the semantic space.

To explain the idea, we first provide an example using Genetic Algorithms
(GAs). Let us consider a GA problem in which the target solution is known
and the fitness of each individual corresponds to its distance to the target (our
reasoning holds for any distance measure used). This problem is characterized
by a very good evolvability and it is in general easy to solve for GAs. In fact,
for instance, if we use point mutation, any possible individual different from the
global optimum has at least one neighbor (individual resulting from its mutation)
that is closer to the target than itself, and thus is fitter. So, there are no local
optima. In other words, the fitness landscape is unimodal. Similar considerations
hold for box mutation and for many types of crossover, including various kinds
of geometric crossover [7].

Now, let us consider the typical GP problem of finding a function that maps
sets of input data into known target outputs (regression and classification are
particular cases). The fitness of an individual for this problem is typically a dis-
tance between its predicted output values and the expected ones (error measure).
Now let us assume that we are able to find a transformation on the syntax of
an individual whose effect is just a random perturbation of one of its predicted
output values. In other words, let us assume that we are able to transform an
individual G into an individual H whose output values are like the outputs of G,
except for one value, that is randomly perturbed. Under this hypothesis, we are
able to map the considered GP problem into the GA problem discussed above, in
which point mutation is used. So, this transformation, if known, would induce a
unimodal fitness landscape on every problem like the considered one (e.g. regres-
sions and classifications), allowing GP to have a good evolvability, at least on
training data. The same also holds for transformations that correspond to box
mutation or semantic crossovers. Although not without limitations, the work of
Moraglio et al. [10] accomplishes this task, defining the following operators.

Definition 1. (Geometric Semantic Crossover). Given two parent func-
tions T1, T2 : Rn → R, the geometric semantic crossover returns the real func-
tion TXO = (T1 ·TR)+ ((1−TR) ·T2), where TR is a random real function whose
output values range in the interval [0, 1].

The interested reader is referred to [10] for a formal proof of the fact that this
operator corresponds to a geometric crossover on the semantic space, in the sense
that it produces an offspring that stands between its parents in this space. We do
not report the proof here, but we limit ourselves to remark that, even without a
formal proof, we can have an intuition of it considering that the (only) offspring
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Fig. 1. Visual intuition of the fact that geometric semantic crossover creates an off-
spring that is at least not worse than the worst of its parents. In this toy example,
offspring O (which stands between parents P1 and P2 in the semantic space by con-
struction) is clearly closer to target T (training points represented by “×” symbols)
than parent P2. In Section 3 we also discuss the geometric properties of this operator
on test data, represented by τ (test points represented by “∗” symbols).

generated by this crossover has a semantic vector that is a linear combination of
the semantics of the parents with random coefficients included in [0, 1] and whose
sum is equal to 1. Moraglio et al. [10] also prove an interesting consequence of
this fact: the fitness of the offspring cannot be worse than the fitness of the worst
of its parents. Also in this case, we do not replicate the proof here, but we limit
ourselves to providing a visual intuition of this property: in Figure 1 we represent
a simple two-dimensional semantic space in which we draw a target function T
(training points are represented by “×” symbols), two parents P1 and P2 and
one of their offspring O (which by construction stands between its parents), plus
a test set (composed by test points represented by “∗” symbols) that will be
discussed in the final part of Section 3. It is immediately apparent from Figure 1
that O is closer to T than P2 (which is the worst parent in this case). The
generality of this property is proven in [10]. To constrain TR in producing values
in [0, 1] we use the sigmoid function: TR = 1

1+e−Trand
where Trand is a random

tree with no constraints on the output values.

Definition 2. (Geometric Semantic Mutation). Given a parent function
T : Rn → R, the geometric semantic mutation with mutation step ms returns
the real function TM = T + ms · (TR1 − TR2), where TR1 and TR2 are random
real functions.

Moraglio et al. [10] prove that this operator corresponds to a box mutation on
the semantic space, and induces a unimodal fitness landscape. Even without
a formal proof it is not difficult to have an intuition of it, considering that
each element of the semantic vector of the offspring is a “weak” perturbation
of the corresponding element in the parent’s semantics. We informally define
this perturbation as “weak” because it is given by a random expression centered
in zero (the difference between two random trees). Nevertheless, by changing
parameter ms, we are able to tune the ”step” of this perturbation, and its
importance.
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3 Experimental Study

Test Problems. Two land cover/land use applications and a well-known bench-
mark have been used as test problems.

LANDMAP: Land cover mapping. The objective of this application is mapping
land use/land cover types of Guinea-Bissau as function of six different metrics
extracted from Landsat TM and ETM+ data for 2010. Mapping land use/land
cover is one of the foremost requirements for planning, management and con-
servation of land and forest. This study considers 10 land cover types, among
which three forest types (closed forest, open forest, savanna woodland) on a total
of 6798 instances. Distinguishing between different forest types is a challenging
task given the spectral similarity between them.

CASHEW: Cashew in West Africa. West Africa has one of the most modi-
fied tropical forest landscapes in the world, where tree cover is often part of
a forest-savanna agriculture mosaic [11]. The objective of this application is to
discriminate different land cover classes occurring in a forest and agriculture mo-
saic from 12 different metrics obtained from the RapidEye or Landsat Thematic
Mapper data over Guinea-Bissau. The original data set contains 10 classes, on
a total of 370 instances. However, as a preliminary study we used only four of
these classes, on a total of 221 instances.

IRIS: Flower classification. This is a well-known benchmark problem available
at the UCI Machine Learning Repository. The data set contains three classes of
50 instances each, where each class refers to a type of iris plant and each instance
is described by four attributes.

Experimental Setting. We tackle each of the test problems with the two
different GP systems: standard GP (ST-GP) and GP that uses the geometric
semantic operators described in Section 2 (GS-GP). In all cases GP is used
as if we were dealing with regression problems, i.e. the numeric class label is
interpreted as the expected output value of the function to be learned.

For each of the GP systems, 50 independent runs have been performed with
a population of 200 individuals. For each run, different randomly generated par-
titions of the data sets into training (70%) and test (30%) sets where used.
The evolution stopped after 10000 fitness evaluations for both GP variants. Tree
initialization was performed with the Ramped Half-and-Half method [5] with
a maximum initial depth of 6. The function set contained the four arithmetic
operators +, −, ∗, and / protected as in [5]. For each studied problem, the ter-
minal set contained a number of variables equal to the number of features in
the data set. Fitness was measured as the Root Mean Square Error (RMSE) be-
tween predicted and expected outputs, and tournament selection was used with
tournament size of 4. The reproduction (replication) rate was 0.1, meaning that
each selected parent has a 10% chance of being copied to the next generation
instead of being engaged in breeding. ST-GP used standard subtree mutation
and crossover (with uniform selection of crossover and mutation points among
different tree levels), with probabilities 0.1 and 0.9 respectively. The new random
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branch created for mutation has maximum depth 6. Selection for survival was
elitist, guaranteeing the survival of the best individual from one generation to
the next. No maximum tree depth was imposed. GS-GP used a higher mutation
rate of 0.5, which was found to be necessary in order for GS-GP to properly
explore the search space. The mutation step ms was 0.001.

Experimental Results. We compare the results of GS-GP and ST-GP ob-
tained on training data and, in order to compare the generalization ability of
the two methods, on out-of-sample test data. We report the RMSE on the train-
ing data, and the accuracy, expressed as the proportion of correctly classified
samples, on the test data. In order to calculate accuracy, each predicted output
is rounded to its nearest integer value, which represents the class label.

On Figure 2, the plots on the left report, for each studied problem, the evo-
lution of the mean RMSE of the best individual on the training set over the 50
runs. They clearly show that GS-GP reaches the lowest RMSE on all the con-
sidered test problems. The boxplots on the right report the RMSE of the best
individual on the training set at the end of each run. It can be observed that GS-
GP produces solutions with a lower dispersion of RMSE than ST-GP on both
LANDMAP and CASHEW problems. To analyze the statistical significance of
these results, a set of tests has been performed on the RMSE values. As a first
step, the Kolmogorov-Smirnov test has shown that the data are not normally
distributed and hence a rank-based statistic has been used. More precisely, we
have used the Mann-Whitney test [2], considering a confidence of 95% with a
Bonferroni correction. According to this test, the results produced by GS-GP are
statistically different from the ones produced by ST-GP on all the considered
test problems; the respective p-values are reported in Table 1.

On Figure 3, the plots on the left report, for each studied problem, the evolu-
tion of the mean accuracy on the test set of the best individual on the training
set over the 50 runs. Also in this case it is clear that GS-GP reaches higher
accuracy, i.e. generalizes better, than ST-GP. The boxplots on the right report
the accuracy on the test data of the best individual at the end of each run. Also
here GS-GP produces solutions with a lower dispersion of RMSE than ST-GP.
According to the Mann-Whitney test, the results produced by GS-GP are sta-
tistically different from the ones produced by ST-GP on all the considered test
problems, as reported in Table 1.

Table 2 summarizes the results obtained on the different studied problems
with both GP variants, in terms of minimum, maximum, median, mean and
standard deviation of both RMSE on the training set and accuracy on the test
set.

Discussion. From the above results we realize that neither ST-GP nor GS-
GP overfit, since the accuracy values on the test set do not degrade during the
evolution. However, GS-GP has obtained much better results than ST-GP in
both training and test data. The good results on the training data were expected:
the geometric semantic operators induce an unimodal fitness landscape, which
facilitates evolvability. However, this could have caused a loss of generalization
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Table 1. The p-values obtained comparing the median fitness (RMSE on the training
set and accuracy on the test set) of GS-GP and ST-GP, using the Mann-Whitney
statistical test.

LANDMAP CASHEW IRIS

TRAINING 7.066e-018 1.914e-009 6.0178e-018
TEST 2.194e-017 4.778e-011 5.248e-018

Table 2. Summary of the results obtained on 50 independent runs. Training fitness
is the RMSE (optimal fitness 0), while testing fitness is the classification accuracy
(optimal fitness 1).

LANDMAP

RMSE on TRAINING
Min Max Median Mean Std Dev

GS-GP 1.012 1.141 1.074 1.073 0.032
ST-GP 1.147 1.568 1.379 1.350 0.101

ACCURACY on TEST
Min Max Median Mean Std Dev

GS-GP 0.612 0.743 0.696 0.690 0.033
ST-GP 0.337 0.645 0.518 0.511 0.082

CASHEW

RMSE on TRAINING
Min Max Median Mean Std Dev

GS-GP 0.839 0.946 0.913 0.906 0.024
ST-GP 0.879 1.260 1.211 1.136 0.142

ACCURACY on TEST
Min Max Median Mean Std Dev

GS-GP 0.239 0.388 0.313 0.317 0.034
ST-GP 0.194 0.328 0.224 0.243 0.045

IRIS

RMSE on TRAINING
Min Max Median Mean Std Dev

GS-GP 0.096 0.176 0.143 0.145 0.016
ST-GP 0.380 0.494 0.445 0.444 0.030

ACCURACY on TEST
Min Max Median Mean Std Dev

GS-GP 0.860 0.980 0.940 0.937 0.025
ST-GP 0.680 0.880 0.720 0.760 0.067
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Fig. 2. Results obtained on the training set. Plots on the left: evolution of best fitness
(RMSE), mean of 50 runs. Boxplots on the right: best fitness (RMSE) at the end of
each run.

ability on the test data - it did not. Not so obvious at first sight, the geometric
properties of the semantic operators hold independently from the data on which
individuals are evaluated. In other words, geometric semantic crossover produces
an offspring that stands between the parents also in the semantic space induced
by test data. As a direct implication, following exactly the same argument as
Moraglio et al. [10], each offspring is, in the worst case, not worse than the worst
of its parents on the test set. This can be seen by looking back at Figure 1,
where a simple test set τ is drawn (test points are represented by “∗” symbols).
Analogously, geometric semantic mutation produces an offspring that is a “weak”
perturbation of its parent also in the semantic space induced by test data. This
has an important consequence on the behavior of GS-GP on test data: even
though the geometric semantic operators do not guarantee an improvement of
test fitness each time they are applied (e.g. there is a very slight overfitting
observed on the IRIS dataset with GS-GP, Figure 3), they at least guarantee
that the possible worsening of the test fitness is “limited” (by the test fitness of
the worst parent for crossover, and by the mutation step ms for mutation) [12].
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Fig. 3. Results obtained on the test set. Plots on the left: evolution of the accuracy on
the test set of the best individual on the training set, mean of 50 runs. Boxplots on
the right: accuracy on the test set at the end of each run.

4 Conclusions and Future Work

Multiclass classification is a common requirement of many land cover/land use
applications, one of the pillars of land science studies. However, as reported
in the literature, Genetic Programming (GP) is not particularly suited for this
task. We have investigated the use of recently defined geometric semantic oper-
ators on multiclass classification problems, using two land cover/land use real-
life applications, and one well-known benchmark, as test problems. Our results
clearly indicate that GP that uses the geometric semantic operators (GS-GP)
outperforms standard GP on all the studied problems. GS-GP returned much
better results on training data without loss of generalization on test data. As
future work we intend to qualitatively interpret the results achieved by GS-GP
from the point of view of the applications, and compare its performance with
other machine learning techniques using these and other multiclass classification
problems, in order to determine if GS-GP is a competitive method for solving
multiclass classification problems.
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