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Abstract. Non-intrusive load monitoring (NILM) identifies used appli-
ances in a total power load according to their individual load character-
istics. In this paper we propose an evolutionary optimization algorithm
to identify appliances, which are modeled as on/off appliances. We eval-
uate our proposed evolutionary optimization by simulation with Matlab,
where we use a random total load and randomly generated power profiles
to make a statement of the applicability of the evolutionary algorithm
as optimization technique for NILM. Our results shows that the evolu-
tionary approach is feasible to be used in NILM systems and can reach
satisfying detection probabilities.

Keywords: Evolutionary Algorithm, Knapsack Problem, Evolution,
Non-Intrusive Load Monitoring, NILM.

1 Introduction

With the upcoming of decentralized regenerative energy sources, the amount
of available energy at a particular time and, due to network capacity con-
straints, location becomes dependent on the current weather situation (photo-
voltaic production depends on amount of sunshine, windmill-powered plants on
wind speed). One way to mitigate this issue is to provide energy storage (e. g., by
batteries, pumped-storage hydropower plants, conversion to methane, etc). The
other way is shaping the energy consumption at the consumer side. A typical
household contains hundreds of electric appliances, whereof a few dozen are rel-
evant in terms of energy consumption. In order to keep the convenience level for
the customer high, we need an intelligent control system that identifies devices
currently turned on and proposes minimal-invasive changes to their usage. To get
this information, each relevant appliance could be equipped with a smart meter
or an embedded communication and control interface able to deliver power infor-
mation and characteristics [5]. Upgrading all devices in a current household this
way would be painstaking and costly. An alternative approach is non-intrusive
load monitoring (NILM)[8], which determines and classifies individual appliances
based on characteristic load profiles. For identification only a single smart me-
ter measuring the total power consumption with appropriate timely resolution
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is sufficient. NILM extracts features like active power, frequency etc., classifies
appliances and identifies appliances by matching the measured data to a ref-
erence database. Thus, the identification can be described as an optimization
problem of superimposed power profiles. Possible solutions for this problem are
optimization techniques like integer linear programming [16] or pattern recog-
nition methods like artificial neural networks [4]. In recent years, the technique
of NILM has been extended and improved, but up to now no universal solution
has been developed [18].

We propose an evolutionary optimization approach that identifies a variable
number of appliances by their given power profile. The idea is that the potential
appliance profiles (out of a database) have to be matched with the given power
profile with minimum error [2]. The presented problem is related to the Knapsack
problem, which is NP-hard [6, 14]. Possible techniques to tackle the Knapsack
problem are either exact, heuristic or meta-heuristic solutions [11]. Genetic al-
gorithms have successfully been used for handling the Knapsack problem during
the last twenty years. Implementations are ranging from solving the simple 0-1
knapsack problem [15] to more lavish techniques like hybrid optimization [17]
and multidimensional Knapsack problems techniques [9].

In the context of NILM, the genetic algorithm is typically used for detecting
features and patterns of appliance power profiles [1, 3] and for optimizing existing
parameters which are used in fuzzy systems [13]. Furthermore, Leung, Ng and
Cheng presented in [12] a possible approach to use the genetic algorithm to
identify appliances. In their paper they grouped power signatures out of one load
signature data set into the groups sinusoid, quasi-sinusoid and non-sinusoid load
signatures by averaging 50 consecutive one-cycle steady state current waveforms.
They built a composition of load signatures of the same group between each
other and a composition of load signatures among the groups. Finally, they used
the genetic algorithm to identify the wanted load signatures. In contrast to this
approach, we use the entire power load signal of a household over two hours
and not the mean current waveform of 50 consecutive one-cycles. Further, we do
not split up the appliances into groups. We randomly generate common power
profiles in steady state and detect these power profiles in a random superimposed
composition of power profiles over a time window of two hours. Accordingly, we
make a statement about which appliance have been used and also at which point
in time. The remainder of this paper is organized as follows: in Section 2 we
describe the optimization problem of overlapping power profiles in more detail
and how it can be solved with the help of the evolutionary algorithm. In Section
3 we evaluate the presented genetic algorithm by different test scenarios like
algorithm dependence on the number of wanted power profiles or the detection
behavior under the influence of noise. Finally, in Section 4 we conclude this paper
and present future work.

2 Evolutionary Appliance Detection

The knapsack problem is a well-known optimization problem with the aim of
packing a set of n items with a certain weight wi and profit di into a knapsack
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of capacity C in the most profitable way. If it is possible to place a item into
the knapsack without exceeding the capacity C by using xi ∈ {0, 1}, which is
responsible for whether or not a certain item is used, a profit di is earned. This
context can be summarized as follows:

maximize

n∑

i=1

di · xi (1)

subject to
n∑

i=1

wi · xi ≤ C. (2)

The problem of packing items into a desired shape can easily be compared to
the appliance detection and classification in NILM systems. NILM has the major
aim of detecting and identifying appliances according to their own power profile
Pi in the measured total load P (t). The power profiles Pi are characterized by
their power magnitude mi and time duration τi and the total load is given by:

P (t) =

n∑

i=1

Pi · ai(t) + e(t), (3)

where n is the number of known and used appliances, ai(t) ∈ [0, 1] represents
the state timing vector of the appliance being on (ai(ts) = 1) at switching time
ts or off (ai(t) = 0) and e(t) describes an error term. Therefore the general
optimization problem of NILM can be formulated as the minimum error e(t) of
the total power load and the composite appliance power profiles Pi:

e(t) = argmin

∣∣∣∣P (t)−
n∑

i=1

Pi · ai(t)
∣∣∣∣. (4)

In contrast to the traditional knapsack problem, which allows only bounded values
smaller than capacity C, we allow positive and negative error values and take the
absolute error value for our fitness evaluation. Turning back, a NILM system tries
to find the right switching points ai(t) and their corresponding appliances to min-
imize the error between the sum of superimposed appliance power profiles and the
total load P (t). This relates to the knapsack problem, where in the case of NILM
the capacity C of the knapsack corresponds to the total load P (t) and the items
of the knapsack correspond to the appliance power profiles Pi. Further, we assume
that the profit di equals 1, because we suppose that all appliances in the household
are of equal importance concerning their usage. The aim of the evolutionary ap-
proach is to find a composition of power profiles Pi, which can be packed into the
measured total load P (t) with minimum error. Therefore, we modify the general
knapsack problem by dismissing the profit maximization with an error minimiza-
tion.An illustration of the basic principle canbe seen inFigure 1, where a collection
of possible power profiles Pi and the trend of the total power load are presented.
Out of the collection a selection of power profilesPi is met and this selection is then
packed into the trend of the total power load to best approximate the trend of the
total power load.
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Fig. 1. Basic principle of the ON/OFF time genome appliance detection. Find a com-
position of saved power profiles Pi, place it at the switching times ts and try to minimize
the error between the evolved power load and the given total power load.

To solve this error minimization, we use an evolutionary algorithm as de-
scribed in [7] with uniform mutation, single point crossover and elite selection.
In detail, the used evolutionary algorithm has to evolve the set of used power
profiles Pi. To be able to reduce the complexity of the optimization problem we
assume that we know the starting points of the appliances’ power profiles. A
possible technique to detect the switching times ts is mentioned by Hart in [8]
and is called edge detection of P (t). The edge detection calculates the difference
of the current power signal P (t) and the delayed power signal P (t− 1) and tries
to detect the switching event by thresholding the calculated difference value.
A switching time ts is given if the difference value is larger than a predefined
threshold d and accordingly, ai(ts) is set to 1.

Thus, the evolutionary algorithm examines a composition of appliance power
profiles Pi, place them at the switching time ts by multiplying Pi with its corre-
sponding state timing vector ai(t) and approximate the total load P (t). There-
fore, a genome maps a set of power profiles Pxi, where xi represents the index
of the power profile1 Pi stored in the database. The fitness function Fs for the
optimization is given by:

Fs = −
∣∣∣∣P (t)−

Nb∑

i=1

Pxi · ai(t)
∣∣∣∣, (5)

1 We assume that each power load profile Pi is only stored once in the database. The
database has a size of db.
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where Nb represents the number of switching times ts and correspondingly, also
the number of used appliances, because we assume that every appliance occurs
only ones at different switching times ts. According to presented fitness function
Fs, the best achievable fitness value is Fs = 0, which corresponds to an error of
0 between the evolved power load and the total power load P (t).
In the following section we evaluate the detection ability of the presented mod-
ified knapsack problem by the evolutionary algorithm.

3 Evaluation

To be able to evaluate the presented evolutionary algorithm with its genome
representation and fitness function, we compute simulations of the evolutionary
algorithm in Matlab. The parameter properties for the evolutionary algorithm
can be found in Table 1 and were determined empirically. We performed S sim-
ulation runs for each test case and generated the mean fitness F =

∑
s∈S

Fs

S
and the mean detection probability P̄det. The mean detection probability P̄det

is given by P̄det =
∑

s∈S Pdet/S, where Pdet is given by Pdet = #det
Nb and is

the detection probability by simulation run. The variable #det is the counted

Table 1. Parameters used for the evolutionary algorithm and the simulations

Variable Description Value range

Pelite Elite selection 10%
Pmutate Uniform mutation 40%
Pcrossover Single point crossover 40%

Pnew New individuals 10%
PmutateRate Mutation rate 10%

G Number of generations for the GA 500
N Number of populations for the GA 500
Pi Power profile Pi of appliances
mi Randomly generated power magnitude2 mi mi ∈ [100, 4000]
τi Randomly generated time duration3 τi τi ∈ [60, 3600]
Pg Random generated total power load over two hours in sec-

onds resolution (T = [1, 7200]). Total power load equals
a random set of power profiles Pi out of the database.

db Number of random generated and stored power profiles
Pi

50

Nb Number of used appliances 5
S Simulation runs 10

2 The power magnitude mi was chosen in a common power range of household appli-
ances.

3 The time duration τi represents a common usage of household appliances between
one minute and one hour. The time window of 2 hours will produce a variety of
superimposed power loads.
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number of correctly detected power profiles Pi and Nb is, as mentioned before,
the number of switching events and also the number of used power profiles4 Pi.
Beyond that, Table 2 show how many errors es = Nb −#det occurred for every
simulation run s ∈ S and further, we calculate the mean error ē =

∑
s∈S es/S

per the simulation runs s ∈ S. For the evaluation we used the following different
test scenarios:

– influence of the number of wanted and stored power profiles and
– influence of disturbances like noise and unknown power loads

to make a statement on their influence on the detection ability of the presented
NILM technique, which we will describe in the following sections in more detail.

3.1 Variation of Wanted and Stored Appliances

In Figure 2 the results for different numbers of active devices and different sizes
of the power profile database is shown. First, we consider the case of varying
number of power profiles. For this test scenario we chose a database size db = 50
and the number of wanted power profiles Pi was Nb = [4, 6, 10, 25]. We have
taken these values of Nb to cover the cases of household common and high
Nb appropriate to the size of db and the considered period of time (2 hours).
Considering Figure 2, the fitness F and detection percentage Θ reach satisfying
and sufficient results of a detection percentage up to 100%. We can see that
the fitness value F of Figure 2(c)5 depends on the number of devices (curves
are from low Nb at top of the figure to high Nb at the bottom). The lower the
number, the better the fitness, because it is harder to find a set of correctly
ordered power loads of size 10 than of size 5. The evolutionary algorithm is able
to find sufficient results after 100 to 200 generations, which is acceptable for the
intended application scenario. The detection behavior is similar in the case of
the detection percentage Θ in Figure 2(a). The lower the number of used power
loads, the better is the result of detected power loads. We claim that the worst
case in this example is finding 25 power loads, reasoning that our optimization
problem can be seen as a problem of combining several things k out of a larger
group n, where the order is not taken into consideration and accordingly, can
be considered as the well known combination problem. A combination can be
formulated as n!

k!·(n−k)! and the worst case for this problem is, if k = n/2, which

is in our case with k = Nb = 25 and n = db = 50.
Beyond that, we varied the number of stored power profiles db in the sec-

ond test scenario in Figure 2(b). For this we used a database size of db =
[25, 50, 75, 100] and Nb = 5 to make a statement regarding scalability of the

4 Every appliance power load Pi can only be used once and accordingly, the number
of wanted power profiles is the same like the number of switching times ts.

5 The boxplot of the fitness trend for Nb variation should give a general impression
how the fitness is evolving over generations and is comparable for fitness evaluation
and detection probability, because the fitness has a direct relation to the detection
probability.
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(a) Detection percentage Θ for Nb
Variation
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(b) Detection percentage Θ for db
Variation
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(c) Boxplot of fitness F for Nb Variation

Fig. 2. This figure shows the trend for the varying Nb = [4, 6, 10, 25], for varying
db = [25, 50, 75, 100] with Nb = 5 and also the boxplot of the mean fitness F for
varying Nb

evolutionary algorithm. We can see that the evolutionary algorithm is able to
reach a high detection percentage Θ dependent on used db. If the number of db
is increased, the evolutionary algorithm evolves a lower Θ, because the search
space is becoming bigger.

In addition, we present the mean error ē and the mean detection probability
P̄det of the detection process in Table 2. According to this table, we can claim
that the lower Nb, the better the result of no errors and that the evolutionary
algorithm is dependent on db. Finally, the simulations shows, that the detection
depends on the characteristic of overlapping power loads. The more power loads
are superimposed, the more difficult it is to make a correct decision and to
minimize the error between the total power load and the evolved power load.
In our test scenarios the probability of overlapping power loads is rather high,
because of the chosen time duration of τi = [60, 3600] in a time window of 2
hours (T = [1, 7200]) and correspondingly, the detection algorithm still works
sufficiently and satisfying.
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Table 2. Table for error es by simulation run S and the mean error ē for varying
Nb = [6, 10, 25, 45] with db = 50, varying db = 100 with Nb = 5, under the influence
of noise and under the influence of unknown power loads Unkn = [1, 2]

Detection errror es and mean detection probability P̄det by

Nb-Variation db-Variation6 with Noise7 with unknown6

4 5 6 10 25 100 1 2

ē 0 0.7 1.6 5.7 14.6 1.8 0.9 1.9 3

P̄det in % 100 86 73 43 41 64 82 62 40
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(b) Trend of the detection percentage Θ
with unknown power loads

Fig. 3. This figure shows the trend under the influence of noise and unknown power
loads Unkn = [1, 2, 3]. The size of db = 50 and Nb = [4, 5].

3.2 Influence of Disturbances

To make a better statement of the ability and the quality of the presented
algorithm, we examined the detection behavior of the evolutionary algorithm
under the influence of noise and unknown, not stored appliances. In Figure 3(a)
noise with zero mean μ = 0 and the standard deviation σ =

√
max(P (t)) was

added to our simulated total power load P (t) and we added unknown power loads
Unkn = [1, 2, 3] to the total load P (t) in Figure 3(b). At first, we consider the
detection scenario under the influence of noise. In this scenario, the simulation
results show that the detection percentage Θ in Figure 3(a) is slightly influenced
by noise and therefore, we claim that the presented algorithm is robust to noise.
We observe this behavior in the cases of Nb = 4 and Nb = 5. Both test scenarios
show satisfying detection results of 0 errors. Further, we consider the case of
adding unknown appliances to the total load P (t) in Figure 3(b). This figure
indicates that the detection percentage Θ depends on the number of unknown
power loads8, because the more unknown information is in the system the more

6 Nb = 5.
7 Nb = 5, μ = 0,σ =

√
max(P (t)).

8 Nb=5 for this test scenario.
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complicated it is for the evolutionary algorithm to establish a correct evolved
composition of power loads Pi to approximate P (t). Finally, we also present
the mean error ē and the mean detection probability P̄det in Table 2, which
confirms our statements that our algorithm is noise robust and is dependent on
the number of known and accordingly, on the number of unknown appliances.

4 Conclusion and Future Work

In this paper we present an evolutionary algorithm to solve the task of detecting
an appliance based on their power loads in the total load of a household over
a time window of 2 hours. Our algorithm provides promising results to detect
superimposed respective power loads with up to 100% certainity. In more detail,
the presented algorithm has the following detection characteristics:

– Detection percentage Θ up to 100% depending on Nb and db
– The higher Nb and the higher db, the lower the detection percentage Θ
– Sufficient results at generation G > 100
– Robustness against noise
– Dependent on additive unknown and the quantity of overlapping power loads

Our results show that the presented algorithm is feasible for use in NILM sys-
tems and can achieve a detection probability of 100% in case of low number
of devices Nb and records used power loads even if not all power loads are de-
tected correctly. With our algorithm applied to a real household the results can
be used for tracking the used power consumption and the usage of appliances
and can improve the energy-awarness concerning the energy consumption of ap-
pliances. The current version of the algorithm was tested for on/off appliances
with constant time duration. In future work, we plan to extend our algorithm
for arbitrary shapes of power profiles and to evaluate the approach using real
appliances [10].
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