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Abstract. Bayesian networks are graphical statistical models that rep-
resent inference between data. For their effectiveness and versatility, they
are widely adopted to represent knowledge in different domains. Several
research lines address the NP-hard problem of Bayesian network struc-
ture learning starting from data: over the years, the machine learning
community delivered effective heuristics, while different Evolutionary Al-
gorithms have been devised to tackle this complex problem. This paper
presents a Memetic Algorithm for Bayesian network structure learning,
that combines the exploratory power of an Evolutionary Algorithm with
the speed of local search. Experimental results show that the proposed
approach is able to outperform state-of-the-art heuristics on two well-
studied benchmarks.

Keywords: Memetic Algorithms, Evolutionary Algorithms, Local Op-
timization, Bayesian Networks, Model Learning.

1 Introduction

Bayesian networks are probabilistic graphical models that represent a set of
random variables and their conditional dependencies via a directed acyclic graph
(DAG). They are widely used to encode knowledge and perform predictions in
many different fields, ranging from medicine to document classification, from
computational biology to law.

It is theoretically possible to learn the optimal structure for a Bayesian net-
work from a dataset. However, the number of possible structures is superexpo-
nential in the number of variables of the model [1] and the problem of Bayesian
network learning is proved to be NP-hard [2].

The machine learning community delivered fast heuristic algorithms that build
the structure of a Bayesian network on the basis of conditional independence
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evaluations between variables [3] [4]. On the other hand, several attempts have
been made in evolutionary computation to tackle this complex issue [5] [6] [7].
Interestingly, many evolutionary approaches also feature local search techniques
to improve the quality of the results.

This paper presents a memetic approach to Bayesian network structure learn-
ing. The proposed technique exploits an evolutionary framework evolving ini-
tial conditions for a state-of-the-art heuristic that efficiently explores the search
space. The fitness function is based on the Akaike information criterion, a metric
taking into account both the accuracy and the complexity of a candidate model.

An additional objective of this work is to link the community facing the com-
plex Bayesian network structure learning problem, to the community of memetic
computing. While combinations of heuristics and evolutionary optimization are
prominently featured in the literature related to structure learning, to the au-
thors’ knowledge the methods presented are almost never ascribed to the field
of memetic algorithms. In the authors’ opinion, an explicit interaction between
the two communities could lead to extremely beneficial results.

2 Background

In order to introduce the scope of the present work, some necessary concepts about
Bayesian networks and memetic algorithms are summarized in the following.

2.1 Bayesian Networks

A Bayesian Network (BN) is defined as a graph-based model of a joint multivari-
ate probability distribution that captures properties of conditional independence
between variables [8]. For example, a Bayesian network could represent the prob-
abilistic relationships between diseases and symptoms. The network could thus
be used to compute the probabilities of the presence of various diseases, given
the symptoms.

Formally, a Bayesian network is a directed acyclic graph (DAG) whose nodes
represent variables, and whose arcs encode conditional dependencies between
the variables. This graph is called the structure of the network and the nodes
containing probabilistic information are called the parameters of the network.
Figure 1 reports an example of a Bayesian network.

The set of parent nodes of a node Xi is denoted by pa(Xi). In a Bayesian
network, the joint probability distribution of the node values can be written as
the product of the local probability distribution of each node and its parents:

P (X1, X2, ..., Xn) =

n∏

i=1

P (Xi|pa(Xi))

2.2 The Structure Learning Problem

Learning the structure of a Bayesian network starting from a dataset is proved
to be a NP-hard problem [2]. The algorithmic approaches devised to solve this
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Node Parents Probabilities 

A P(A=a1) = 0.99 
P(A=a2) = 0.01 

B A,E P(B=b1|A=a1,E=e1) = 0.5 
P(B=b2|A=a1,E=e1) = 0.5 
P(B=b1|A=a1,E=e2) = 0.1 
P(B=b2|A=a1,E=e2) = 0.9 
P(B=b1|A=a2,E=e1) = 0.4 
P(B=b2|A=a2,E=e1) = 0.6 
P(B=b1|A=a2,E=e2) = 0.2 
P(B=b2|A=a2,E=e2) = 0.8 

Node Parents Probabilities 

C B P(C=c1|B=b1) = 0.3 
P(C=c2|B=b1) = 0.7 
P(C=c1|B=b2) = 0.5 
P(C=c2|B=b2) = 0.5 

D A P(D=d1|A=a1) = 0.8 
P(D=d2|A=a1) = 0.2 
P(D=d1|A=a2) = 0.7 
P(D=d2|A=a2) = 0.3 

E P(A=e1) = 0.75 
P(A=e2) = 0.25 

Fig. 1. On the left, a directed acyclic graph. On the right, the parameters it is as-
sociated with. Together they form a Bayesian network BN whose joint probability
distribution is P (BN) = P (A)P (B|A,E)P (C|B)P (D|A)P (E).

problem can be divided into two main branches: score-and-search meta-heuristics
and algorithms that rely upon statistical considerations on the learning set.

Evolutionary Approaches. Among score-and-search meta-heuristics, evolu-
tionary algorithms are prominently featured. Several attempts to tackle the prob-
lem have been tested, ranging from evolutionary programming [6], to cooperative
coevolution [5], to island models [7].

Interestingly, some of the evolutionary approaches to Bayesian network struc-
ture learning in literature already show features of memetic algorithms, hinting
that injecting expert knowledge might be necessary to obtain good results on
such a complex problem. For example, [6] employs a knowledge-guided mutation
that performs a local search to find the most interesting arc to add or remove.
In [9], a local search is used to select the best way to break a loop in a non-valid
individual. The K2GA algorithm [10] exploits a genetic algorithm to navigate
the space of possible node orderings, and then runs the greedy local optimization
K2, that quickly converges on good structures starting from a given sorting of
the variables in the problem.

Dependency Analysis Algorithms. Dependency analysis algorithms are a
class of heuristics that build Bayesian network structures from data through an
evaluation of the conditional independence between variables. They are able to
deliver results of high quality in negligible time, even if they suffer from the
classical issues of greedy algorithms, such as being trapped into local optima.

One of the best algorithms in this category is known as Greedy Thick Thin-
ning (GTT) [3]. Starting from a completely connected graph, first GTT applies
the well-known PC algorithm [11], that cuts arcs on the basis of conditional
independence tests; then, it starts first adding and then removing arcs, scoring
the network after each modification and using a set of heuristic metrics to avoid
a premature convergence.

Bayesian Search (BS) [4] is another state-of-the-art heuristic in the same
group. Unlike GTT, BS is not deterministic: it makes use of a given number of
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restarts from random sparse network layouts, finally returning the best network
to the user.

Both GTT and BS implementations can be found in products such as Ge-
Nie/SMILE [12].

2.3 Memetic Algorithms

Memetic algorithms are population-based metaheuristics composed of an evolu-
tionary framework and a set of local search algorithms which are activated within
the generation cycle of the external framework. [13]. First presented in [14], they
gained increasing popularity in the last years [15].

The main attractiveness of these stochastic optimization techniques lies in
their ability of finding quickly high-quality results, but still maintaining the
exploration potential of a classic evolutionary algorithm. Their effectiveness is
proven in several real-world problems [16] [17].

3 Proposed Approach

Trying to reap the benefits of both evolutionary algorithms (efficient exploration,
resistance to local optima attraction) and human-devised heuristics (speed, ef-
ficient exploitation of small parts of the search space), a memetic algorithm is
applied to the complex problem of Bayesian network structure learning. The
algorithm evolves an initial Bayesian network that will be then optimized by a
state-of-the-art dependency analysis algorithm. In this first approach, the local
search heuristic is applied to every individual.

The main novelties introduced by the proposed approach are the local op-
timization used, the state-of-the-art GTT heuristic, and the evolutionary algo-
rithm’s individual representation, expressing a set of forced and forbidden links
of arbitrary size.

The framework structure is summarized in Figure 2.

3.1 Evolutionary Framework

The evolutionary core chosen for the experiments is an open-source EA [18].
Each individual represents a set of initial conditions, forbidden and forced arcs
that have to appear inside the final network created by the local search. Every
condition in the set follows the syntax:

<forbidden/forced> <starting node> <end node>
The genome has a minimum length of 1 condition, and no maximum length.

It is interesting to notice that there is no apriori control on repetitions, or
contradictory conditions (e.g., forbid and force the arc between A and B). Each
group of repeated conditions is considered only once, while individuals with
contradictions are discarded with a low fitness value. Finally, individuals whose
condition enforce the local search to produce an invalid Bayesian network (e.g.,
forcing an arc from A to B and an arc from B to A would create a graph with
a cycle) are discarded during fitness evaluation.
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Fig. 2. Structure of the proposed approach. The evolutionary algorithm creates starting
conditions where some arcs are forced (e.g. arc from E to B and from A to D) and
some arcs are forbidden (e.g. arc from B to D and arc from E to D). The local
search performed by GTT returns a complete structure, compliant with the conditions,
manipulating freely the unconstrained arcs. The final structure is evaluated, and its
AIC score is used as fitness by the evolutionary algorithm.

3.2 Fitness Function

The Akaike information criterion (AIC) is a measure of the relative goodness
of fit of a statistical model [19]. It is grounded in the concept of information
entropy, in effect offering a relative measure of the information lost when a given
model is used to describe reality. It can be said to describe the trade-off between
bias and variance in model construction, or loosely speaking, between accuracy
and dimension of the model. Given a data set, several candidate models may be
ranked according to their AIC values: thus, AIC can be exploited as a metric for
model selection.

When dealing with Bayesian networks, AIC is expressed as a composition of the
loglikelihood, a measure of how well the candidate model fits the given dataset,
and a penalty tied to the dimension of the model itself. The dimensional penalty is
included because, on the one hand, the loglikelihood of a Bayesian network usually
growsmonotonicallywith the number of arcs, but on the other hand, an excessively
complex network cannot be validated or even interpreted by a human expert. The
loglikelihood of a model M given a dataset T is computed as

LL(M |T ) =
n∑

i=1

qi∑

j=1

ri∑

k=1

Nijklog2
Nijk

Nij

where n is the number of variables, qi is the total number of possible configu-
rations the parent set pa(Xi) of the stochastic variable Xi, ri is the number of
different values that variable Xi can assume, Nijk is the number of instances in
the dataset T where the variable Xi takes its k-th value xik and the variables
in pa(Xi) take their j-th configuration wij , and Nij is the number of instances
in the dataset T where the variables in pa(Xi) take their j-th configuration wij .

Taking for example the Bayesian network BN described in Figure 1, the
loglikelihood of a dataset composed of one sample such as T = (a1, b2, c1, d2, e2)
would be equal to
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LL(BN |T ) = log2(P (A = a1) · P (B = b2|A = a1, E = e2) ·
·P (C = c1|B = b2) · P (D = d2|A = a1) · P (E = e2)) =

= log2(0.99 · 0.9 · 0.5 · 0.2 · 0.25) = −5.49

It is important to notice that datasets are usually composed by multiple sam-
ples, and that the final loglikelihood is the sum of the loglikelihoods of each
sample. Using the same formulation, the dimensional penalty of model M can
be expressed as

|M | =
n∑

i=1

(ri − 1)qi

In the canonical representation, the final AIC score is expressed as:

AIC = −2 · (LL− |M |)
AIC is to be minimized.

4 Experimental Setup

The effectiveness of the proposed approach is compared against GTT and BS.
First, the memetic algorithm is run with a stagnation condition: if the best
individual in the population remains the same for 10 generations, the algorithm
stops. Then, the total number of evaluations performed is used as a reference
to compare its performance against the two other approaches. BS is assigned an
equal number of restarts; for the deterministic GTT, an equal number of starting
random configurations are generated, following the same initialization procedure
of the memetic algorithm.

In all the experimental evaluations, the algorithm has a population size μ=30,
an offspring size1 λ=30, a stagnation stop condition of 10 generations, and a
set of operators that can collectively alter, remove or add a condition from an
individual, and cross over two individuals, with one or two cut points. Individuals
are chosen for reproduction with a tournament selection scheme. The strength
and the activation probability of the genetic operators, as well as the size of the
tournament selection, are self-adapted during the evolutionary run.

GTT and BS use default settings2 with the exception of the maximum number
of parents for each node, set to 10. GTT makes use of K2 as the type of priors,
while BS has a probability 0.1 of an arc appearing in a random restart, a prior
link probability 0.001 and a prior sample size 50.

When GTT is run as local search in the proposed memetic algorithm, it makes
use of the same settings.
1 In the chosen evolutionary framework, λ represents the number of genetic operators

applied at each generation. Since some of the operators, most notably crossovers, can
produce more than one child individual, the number of individuals actually generated
at each step fluctuates between 30 and 60, with values often falling around 45.

2 Default settings for the heuristics provided by the SMILE [12] framework, see
http://genie.sis.pitt.edu/wiki/SMILearn
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5 Experimental Results

Two widely studied Bayesian network benchmarks are chosen for the experi-
ments: ALARM [20], that features 37 variables and 42 arcs; and INSURANCE
[21], that features 27 variables and 52 arcs. For each of the considered Bayesian
network benchmarks, three datasets with 500, 1,000 and 10,000 samples respec-
tively are created. The structure learning algorithms are executed 10 times for
each dataset, each run with a given number of restarts/evaluations.

The Bayesian networks reconstructed by each algorithm are compared on
three different metrics: loglikelihood, dimension and overfitting. Loglikelihood
expresses the adherence of the given model to the training data. The dimension
of the model is a measure of its complexity, where simpler models are preferred
to more complex ones from a human perspective. Finally, the overfitting on
the training data is evaluated by computing the loglikelihood of the candidate
solution on a validation set of unseen data, composed of 5,000 samples.

Results are summarized in Table 1 and Table 2, with a highlight in Figures 3
and 4.

Table 1. Results for the three algorithms on the considered datasets of the Bayesian
network ALARM. Results in bold are the best, on the basis of a two-sample
Kolmogorov-Smirnov test with p < 0.05 ; when two distributions are indistinguish-
able but better than the third, they are highlighted in bold italics.

alarm-500
Methodology Dimension StDev Loglikelihood StDev Overfitting StDev

Original 509.00 - -7,510.47 - -75,195.1 -
(trained on dataset) 509.00 - -7,588.84 - -77,989.3 -
GTT (1,900 restarts) 464.90 11.30 -7,673.69 16.35 -79,618.9 84.41
BS (1,900 restarts) 1,298.90 87.34 -7,896.71 143.34 -85,260.0 1,781.41
Memetic Algorithm 463.20 28.44 -7,629.34 33.02 -79,118.8 451.57

alarm-1,000
Original 509.00 - -15,023.0 - -75,195.1 -

(trained on dataset) 509.00 - -15,045.8 - -76,919.9 -
GTT (1,400 restarts) 564.70 19.78 -15,097.2 21.74 -77,659.3 187.28
BS (1,400 restarts) 1,546.20 149.36 -15,808.8 130.65 -83,381.4 680.57
Memetic Algorithm 537.40 35.80 -15,057.7 24.58 -77,438.3 236.46

alarm-10,000
Original 509.00 - -150,099 - -75,195.1 -

(trained on dataset) 509.00 - -149,993 - -75,357.6 -
GTT (1,300 restarts) 779.00 40.57 -150,088 73.55 -75,506.8 31.79
BS (1,300 restarts) 3,369.90 553.5 -156,690 940.70 -79,550.9 447.24
Memetic Algorithm 674.00 53.80 -150,026 27.92 -75,433.7 26.96

6 Results Discussion

The proposed approach is proved to outperform state-of-the-art heuristic tech-
niques for the considered metrics on all the datasets, providing networks with
smaller dimension, higher loglikelihood. There are, however, open research ques-
tions raised by the analyses, that is worth addressing separately.
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Table 2. Results for the three algorithms on the considered datasets of the Bayesian
network INSURANCE. Results in bold are the best, on the basis of a two-sample
Kolmogorov-Smirnov test with p < 0.05 ; when two distributions are indistinguishable
but better than the third, they are highlighted in bold italics.

insurance-500
Methodology Dimension StDev Loglikelihood StDev Overfitting StDev

Original 1,008.00 - -9,337.06 - -94,354.2 -
(trained on dataset) 1,008.00 - -9,678.63 - -101,884 -
GTT (1,700 restarts) 497.90 29.86 -9,598.68 14.67 -100,792 133.40
BS (1,700 restarts) 706.30 95.64 -9,668.27 74.27 -102,599 915.88
Memetic Algorithm 458.60 9.60 -9,562.40 9.86 -100,278 132.36

insurance-1,000
Original 1,008.00 - -19,024.7 - -94,354.2 -

(trained on dataset) 1,008.00 - -19,335.0 - -98,346.4 -
GTT (1,600 restarts) 673.60 62.08 -19,357.9 51.16 -98,166.9 177.04
BS (1,600 restarts) 1,020.10 142.30 -19,606.9 196.80 -100,324 1,022.27
Memetic Algorithm 574.80 50.64 -19,323.3 52.60 -97,884.2 234.84

insurance-10,000
Original 1,008.00 - -187,858 - -94,354.2 -

(trained on dataset) 1,008.00 - -188,070 - -95,194.7 -
GTT (2,000 restarts) 1,090.50 113.40 -188,274 96.98 -94,929.5 37.94
BS (2,000 restarts) 2,063.70 480.24 -192,121 883.16 -97,215.5 407.24
Memetic Algorithm 882.00 59.80 -188,155 57.76 -94,834.0 33.75
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Fig. 3. Boxplots for the 10,000-sample dataset of ALARM network, for dimension,
loglikelihood and overfitting

The memetic framework presented is still relatively rough. Since the local
search is applied to all individuals, the very same problem can be also expressed
as finding the best set of initial conditions for the heuristic optimization algo-
rithm. The authors see the current work as a first step, and are currently working
on an extension of the framework to include other state-of-the-art optimization
heuristics, such as BS, in order to give more freedom to the memetic algorithm.

The exact meaning of the initial conditions used in the framework is an inter-
esting point of reflection. At a first glance, they might be simply considered as the
point from which the heuristic will start its local search. The reality, however, is
more complex: arcs forbidden and arcs forced in the initial conditions cannot be
altered by the local search. This significantly changes the search space, providing
the heuristic not only with a starting point, but also with a set of hard constraints
that cannot be altered, and that will limit the exploration to a restricted part of
the original search space. Further experiments are needed to fully understand the
repercussions of forbidden and forced arcs on the adopted heuristics.
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Fig. 4. Boxplots for the 10,000-sample dataset of INSURANCE network, for dimension,
loglikelihood and overfitting

For a final remark on time, the heuristics with restarts and the proposed
approach operate in the same order of magnitude, ranging from a few minutes
for small training sets to a little more than an hour for larger ones, on the same
machine.

7 Conclusions and Future Works

This paper proposes a memetic algorithm for Bayesian network structure learn-
ing, coupling the speed of local search with the exploration ability of an evo-
lutionary algorithm. The algorithm evolves the initial conditions of a network,
forcing and forbidding some of the arcs, and letting a local search manipulate
the remaining connections from that starting point. Experimental results show
that the approach is significantly more effective than a set of random restarts of
state-of-the-art heuristic algorithms.

Future works will assimilate different structure learning heuristics in the
memetic framework, embedding inside the genome of each individual additional
information about the type and settings of the local search to apply.
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