
Lecture Notes in Computer Science 7835
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Anna I. Esparcia-Alcázar et al. (Eds.)

Applications of
Evolutionary Computation

16th European Conference, EvoApplications 2013
Vienna, Austria, April 3-5, 2013
Proceedings

13

Volume Editors

see next page

Front cover EvoStar 2013 logo by Kevin Sim, Edinburgh Napier University

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-37191-2 e-ISBN 978-3-642-37192-9
DOI 10.1007/978-3-642-37192-9
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013933106

CR Subject Classification (1998): F.2, I.2.6, I.2.8-9, G.1.6, I.5, C.2, F.1, K.4.4,
J.1, J.2, J.7, K.8.0

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in ist current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Volume Editors

Anna I Esparcia-Alcázar
S2 Grupo, Spain
aesparcia@s2grupo.es

Sara Silva
INESC-ID Lisboa, Portugal
sara@kdbio.inesc-id.pt

Alexandros Agapitos
University College Dublin, Ireland
alexandros.agapitos@ucd.ie

Carlos Cotta
Universidad de Málaga, Spain
ccottap@lcc.uma.es

Ivanoe De Falco
ICAR–CNR, Italy
ivanoe.defalco@na.icar.cnr.it

Antonio Della Cioppa
University of Salerno, Italy
adellacioppa@unisa.it

Konrad Diwold
Fraunhofer IWES, Germany
konrad.diwold@iwes.fraunhofer.de

Anikó Ekárt
Aston University, Birmingham, UK
ekarta@aston.ac.uk

Ernesto Tarantino
ICAR–CNR, Italy
ernesto.tarantino@na.icar.cnr.it

Francisco Fernández de Vega
Universidad de Extremadura, Spain
fcofdez@unex.es

Paolo Burelli
Aalborg University Copenhagen
Denmark
pabu@create.aau.dk

Kevin Sim
Edinburgh Napier University, UK
K.Sim@napier.ac.uk

Stefano Cagnoni
University of Parma, Italy
cagnoni@ce.unipr.it

Anabela Simões
Coimbra Polytechnic, Portugal
abs@isec.pt

JJ Merelo
Universidad de Granada, Spain
jmerelo@geneura.ugr.es

Neil Urquhart
Edinburgh Napier University, UK
n.urquhart@napier.ac.uk

Evert Haasdijk
VU University Amsterdam
The Netherlands
e.haasdijk@vu.nl

Mengjie Zhang
Victoria University of Wellington
New Zealand
mengjie.zhang@ecs.vuw.ac.nz

Giovanni Squillero
Politecnico di Torino, Italy
giovanni.squillero@polito.it

A.E. Eiben
VU University Amsterdam
The Netherlands
a.e.eiben@vu.nl

Andrea Tettamanzi
Université de Nice Sophia Antipolis,
France
andrea.tettamanzi@unice.fr

VI

Kyrre Glette
University of Oslo, Norway
kyrrehg@ifi.uio.no

Philipp Rohlfshagen
SolveIT Software, Australia
philipp.r@gmail.com

Robert Schaefer
AGH University of Science
and Technology, Poland
schaefer@agh.edu.pl

Preface

Evolutionary computation (EC) techniques are efficient, nature-inspired plan-
ning and optimization methods based on the principles of natural evolution and
genetics. Owing to their efficiency and simple underlying principles, these meth-
ods can be used in the context of problem solving, optimization, and machine
learning. A large and continuously increasing number of researchers and profes-
sionals make use of EC techniques in various application domains. This volume
presents a careful selection of relevant EC examples combined with a thorough
examination of the techniques used in EC. The papers in the volume illustrate
the current state of the art in the application of EC and should help and in-
spire researchers and professionals to develop efficient EC methods for design
and problem solving.

All papers in this book were presented during EvoApplications 2013, which
incorporates a range of tracks on application-oriented aspects of EC. Originally
established as EvoWorkshops in 1998, it provides a unique opportunity for EC
researchers to meet and discuss application aspects of EC and has been an im-
portant link between EC research and its application in a variety of domains.
During these 15 years, new workshops and tracks have arisen, some have disap-
peared, while others have matured to become conferences of their own, such as
EuroGP in 2000, EvoCOP in 2004, EvoBIO in 2007, and EvoMUSART only last
year.

EvoApplications is part of EVO*, Europe’s premier co-located events in the
field of evolutionary computing. EVO* was held in Vienna, Austria, during April
3–5, 2013, and included, in addition to EvoApplications, EuroGP, the main Eu-
ropean event dedicated to genetic programming; EvoCOP, the main European
conference on evolutionary computation in combinatorial optimization; EvoBIO,
the main European conference on EC and related techniques in bioinformatics
and computational biology; and EvoMUSART, the main International Confer-
ence on Evolutionary and Biologically Inspired Music, Sound, Art and Design.
The proceedings for all of these events in their 2013 edition are also available in
the LNCS series (volumes 7831, 7832, 7833, and 7834, respectively).

The central aim of the EVO* events is to provide researchers, as well as
people from industry, students, and interested newcomers, with an opportunity
to present new results, discuss current developments and applications, or just
become acquainted with the world of EC. Moreover, it encourages and reinforces
possible synergies and interactions between members of all scientific communities
that may benefit from EC techniques.

VIII Preface

EvoApplications 2013 consisted of the following individual tracks:

– EvoCOMNET, track on nature-inspired techniques for telecommunication
networks and other parallel and distributed systems

– EvoCOMPLEX, track on evolutionary algorithms and complex systems

– EvoENERGY, track on EC in energy applications

– EvoFIN, track on evolutionary and natural computation in finance and eco-
nomics

– EvoGAMES, track on bio-inspired algorithms in games

– EvoIASP, track on EC in image analysis signal processing and pattern recog-
nition

– EvoINDUSTRY, track on nature-inspired techniques in industrial settings

– EvoNUM, track on bio-inspired algorithms for continuous parameter opti-
mization

– EvoPAR, track on parallel implementation of evolutionary algorithms

– EvoRISK, track on computational intelligence for risk management, security
and defence applications

– EvoROBOT, track on EC in robotics

– EvoSTOC, track on evolutionary algorithms in stochastic and dynamic en-
vironments

EvoCOMNET addresses the application of EC techniques to problems in dis-
tributed and connected systems such as telecommunication and computer net-
works, distribution and logistic networks, interpersonal and interorganizational
networks, etc. To address the challenges of these systems, this track promotes the
study and the application of strategies inspired by the observation of biological
and evolutionary processes, that usually show the highly desirable characteristics
of being distributed, adaptive, scalable, and robust.

EvoCOMPLEX covers all aspects of the interaction of evolutionary algo-
rithms (and metaheuristics in general) with complex systems. Complex sys-
tems are ubiquitous in physics, economics, sociology, biology, computer science,
and many other scientific areas. Typically, a complex system is composed of
smaller aggregated components, whose interaction and interconnectedness are
non-trivial. This leads to emergent properties of the system, not anticipated by
its isolated components. Furthermore, when the system behavior is studied from
a temporal perspective, self-organization patterns typically arise.

EvoFIN is the only European event specifically dedicated to the applications
of EC, and related natural computing methodologies, to finance and economics.
Financial environments are typically hard, being dynamic, high-dimensional,
noisy, and co-evolutionary. These environments serve as an interesting test bed
for novel evolutionary methodologies.

Preface IX

EvoGAMES aims to focus the scientific developments in computational intel-
ligence techniques that may be of practical value for utilization in existing or
future games. Recently, games, and especially video games, have become an im-
portant commercial factor within the software industry, providing an excellent
test bed for application of a wide range of computational intelligence methods.

EvoIASP, the longest-running of all EvoApplications tracks that celebrated
its 15th edition this year, was the first international event solely dedicated to the
applications of EC to image analysis and signal processing in complex domains
of high industrial and social relevance.

EvoNUM aims at applications of bio-inspired algorithms, and cross-fertilization
between these and more classic numerical optimization algorithms, to continuous
optimization problems. It deals with applications where continuous parameters
or functions have to be optimized, in fields such as control, chemistry, agricul-
ture, electricity, building and construction, energy, aerospace engineering, and
design optimization.

EvoPAR covers all aspects of the application of parallel and distributed sys-
tems to EC as well as the application of evolutionary algorithms for improving
parallel architectures and distributed computing infrastructures. EvoPAR fo-
cuses on the application and improvement of distributed infrastructures, such as
grid and cloud computing, peer-to-peer (P2P) system, as well as parallel archi-
tectures, GPUs, manycores, etc. in cooperation with evolutionary algorithms.

EvoRISK focuses on challenging problems in risk management, security, and
defence, and covers both theoretical developments and applications of compu-
tational intelligence to subjects such as cyber crime, IT security, resilient and
self-healing systems, risk management, critical infrastructure protection (CIP),
military, counter-terrorism and other defence-related aspects, disaster relief, and
humanitarian logistics.

EvoSTOC addresses the application of EC in stochastic and dynamic en-
vironments. This includes optimization problems with changing, noisy, and/or
approximated fitness functions and optimization problems that require robust
solutions, providing the first platform to present and discuss the latest research
in this field.

In line with its tradition of adapting the list of the tracks to the needs and
demands of the researchers working in the field of evolutionary computing, new
tracks have arisen this year while others have been discontinued. This edition saw
the birth of four new tracks: EvoENERGY, EvoINDUSTRY, EvoROBOT, and
a General track, for papers dealing with applications not covered by any of the
established tracks. EvoROBOT, however, is not completely new as it goes back
to 15 years ago, already being present in the first edition of the EvoWorkshops.

The number of submissions to EvoApplications 2013 increased compared to
the previous edition, reaching a total of 119 entries (compared to 90 in 2012 and
162 in 2011). Table 1 shows relevant submission/acceptance statistics, with the
figures for the 2012 edition also reported.

X Preface

Table 1. Submission/acceptance statistics for EvoApplications 2013 and 2012

2013 2012
Submissions Accept Ratio Submissions Accept Ratio

EvoCOMNET 12 8 67% 6 4 67%
EvoCOMPLEX 9 7 78% 13 9 69%
EvoENERGY 8 5 63% - - -
EvoFIN 11 6 55% 9 6 67%
EvoGAMES 9 7 78% 13 9 69%
EvoIASP 28 12 43% 13 7 54%
EvoINDUSTRY 5 2 40% - - -
EvoNUM 12 3 25% 12 4 33%
EvoPAR 5 4 80% 10 8 80%
EvoRISK 2 1 50% 2 1 50%
EvoROBOT 11 7 64% - - -
EvoSTOC 6 3 50% 7 3 43%
General track 1 0 0% - - -%

Total 119 65 55% 90 54 60%

As for previous years, accepted papers were split into oral presentations and
posters, with the paper length for these two categories being the same for all
the tracks. The low acceptance rate of 55% for EvoApplications 2013, along
with the significant number of submissions, is an indicator of the high quality of
the articles presented at the conference, showing the liveliness of the scientific
movement in the corresponding fields.

Many people helped make EvoApplications a success. We would like to ex-
press our gratitude firstly to the authors for submitting their work, to the mem-
bers of the Program Committees for devoting their energy to reviewing these
papers, and to the audience for their lively participation.

We would also like to thank the Institute for Informatics and Digital Innova-
tion at Edinburgh Napier University, UK, for their coordination efforts.

Finally, we are grateful to all those involved in the preparation of the event,
especially Jennifer Willies for her unfaltering dedication to the coordination of
the event over the years. Without her support, running a conference of this
kind, with a large number of different organizers and different opinions, would
be unmanageable.

Further thanks to the local organizing team: Bin Hu, Doris Dicklberger, and
Günther Raidl from the Algorithms and Data Structures Group, Institute of
Computer Graphics and Algorithms, Vienna University of Technology, for mak-
ing the organization of such an event possible in a place as unique as Vienna.

Preface XI

Last but surely not least, we want to especially acknowledge Şima Etaner-
Uyar for her hard work as Publicity Chair of the event, Kevin Sim as webmaster,
and Marc Schoenauer for his continuous help in setting up and maintaining the
MyReview management software.

April 2013 Anna I. Esparcia-Alcázar
Sara Silva
Kevin Sim

Stefano Cagnoni
Alexandros Agapitos

Anabela Simões
Neil Urquhart
Carlos Cotta

Ivanoe De Falco
Evert Haasdijk

J.J. Merelo
Antonio Della Cioppa

Giovanni Squillero
Francisco Fernández de Vega

Ernesto Tarantino
Konrad Diwold
Mengjie Zhang

Anikó Ekárt
Andrea Tettamanzi

A.E. Eiben
Paolo Burelli

Philipp Rohlfshagen
Robert Schaefer

Kyrre Glette

Organization

EvoApplications 2013 was part of EVO* 2013, Europe’s premier co-located
events in the field of evolutionary computing, which also included the confer-
ences EuroGP 2013, EvoCOP 2013, EvoBIO 2013, and EvoMUSART 2013

Organizing Committee

EvoApplications Chair: Anna Isabel Esparcia-Alcázar, S2 Grupo, Spain

Local Chair: Bin Hu, TU Wien, Austria

Publicity Chair: A. Şima Etaner-Uyar, Istanbul Technical University,
Turkey

Webmaster: Kevin Sim, Edinburgh Napier University, Scotland,
UK

EvoCOMNET Co-chairs: Ivanoe De Falco, ICAR–CNR, Italy
Antonio Della Cioppa, University of Salerno, Italy
Ernesto Tarantino, ICAR–CNR, Italy

EvoCOMPLEX Co-chairs: Carlos Cotta, Universidad de Málaga, Spain
Robert Schaefer, AGH University of Science and

Technology, Poland

EvoENERGY Co-chairs: Konrad Diwold, Fraunhofer IWES, Germany
Kyrre Glette, University of Oslo, Norway

EvoFIN Co-chairs: Andrea Tettamanzi, Université de Nice Sophia
Antipolis, France

Alexandros Agapitos, University College Dublin,
Ireland

EvoGAMES Co-chairs: J.J. Merelo, Universidad de Granada, Spain
Paolo Burelli, Aalborg University Copenhagen,

Denmark

EvoIASP Co-chairs: Stefano Cagnoni, University of Parma, Italy
Mengjie Zhang, Victoria University of Wellington,

New Zealand

EvoINDUSTRY Co-chairs: Neil Urquhart, Edinburgh Napier University,
Scotland, UK

Kevin Sim, Edinburgh Napier University, Scotland,
UK

XIV Organization

EvoNUM Co-chairs: Anna Isabel Esparcia-Alcázar, S2 Grupo,
Spain

Anikó Ekárt, Aston University, UK

EvoPAR Co-chairs: J.J. Merelo, Universidad de Granada, Spain
Francisco Fernández de Vega, Universidad de

Extremadura, Spain

EvoRISK Co-chairs: Anna Isabel Esparcia-Alcázar, S2 Grupo,
Spain

Sara Silva, INESC-ID, Portugal

EvoROBOT Co-chairs: A.E. Eiben, VU University Amsterdam,
The Netherlands

Evert Haasdijk, VU University Amsterdam,
The Netherlands

EvoSTOC Co-chairs: Anabela Simões, Coimbra Polytechnic,
Portugal

Philipp Rohlfshagen, SolveIT Software,
Australia

General Track Chair: Giovanni Squillero, Politecnico di Torino, Italy

Program Committees

EvoCOMNET Program Committee:

Baris Atakan Koc University, Turkey
Mehmet E. Aydin University of Bedfordshire, UK
Alexandre Caminada University of Technology Belfort-Montbéliard,

France
Iacopo Carreras CREATE-NET, Italy
Gianni Di Caro IDSIA, Switzerland
Muddassar Farroq FAST National University of Computer and

Emerging Technologies, Pakistan
Bryant Julstrom St. Cloud State University, USA
Farrukh A. Khan National University of Computer and Emerging

Sciences, Pakistan
Kenji Leibnitz Osaka University, Japan
Domenico Maisto ICAR-CNR, Italy
Roberto Montemanni IDSIA, Switzerland
Enrico Natalizio INRIA Lille, France
Conor Ryan University of Limerick, Ireland
Chien-Chung Shen University of Delaware, USA
Lidia Yamamoto University of Strasbourg, France
Nur Zincir-Heywood Dalhousie University, Canada

Organization XV

EvoCOMPLEX Program Committee:

Tiago Baptista Universidade de Coimbra, Portugal
Marc Ebner Ernst Moritz Arndt Universität Greifswald,

Germany
Carlos Fernandes Universidad de Granada, Spain
Antonio J. Fernández Leiva Universidad de Málaga, Spain
José E. Gallardo Universidad de Málaga, Spain
Carlos Gershenson UNAM, Mexico
Juan L. Jiménez Université du Luxembourg
Iwona Karcz-Dul ↪eba Wroc�law University of Technology, Poland
Juan J. Merelo Universidad de Granada, Spain
Joshua L. Payne University of Zurich, Switzerland
Katya Rodŕıguez-Vázquez UNAM, Mexico
Giovanni Squillero Politecnico di Torino, Italy
Maciej Smo�lka AGH University of Science and Technology,

Poland
Marco Tomassini Université de Lausanne, Switzerland
Alberto Tonda Institut des Systèmes Complexes, France

EvoENERGY Program Committee:

Istvan Erlich University of Duisburg-Essen, Germany
Nicola Hochstrate Lübeck University of Applied Sciences,

Germany
Paul Kaufmann Fraunhofer IWES, Germany
Martin Middendorf University of Leipzig, Germany
Julian F. Miller University of York, England, UK
Maizura Mokhtar University of Central Lancashire, England, UK
Frank Neumann University of Adelaide, Australia
Peter Palensky Austrian Institute of Technology, Austria
Jan Ringelstein Fraunhofer IWES, Germany
Gareth A. Taylor Brunel University, England, UK
Andy Tyrrell University of York, England, UK

EvoFIN Program Committee:

Anthony Brabazon University College Dublin, Ireland
Dietmar Maringer University of Basel, Switzerland
Michael O’Neill University College Dublin, Ireland
David Edelman University College Dublin, Ireland
Antonia Azzini Università degli Studi di Milano, Italy
Mauro Dragoni Fondazione Bruno Kesler, Italy
Manfred Gilli University of Geneva and Swiss Finance

Institute, Switzerland
Philip Hamill University of Ulster, UK

XVI Organization

Serafin Mart́ınez Jaramillo Banco de México, Mexico
Youwei Li Queen’s University Belfast, UK
Christopher Clack University College London, UK
José Ignacio Hidalgo Universidad Complutense de Madrid, Spain
Malcolm Heywood Dalhousie University, Canada
Enrico Schumann VIP Value Investment Professionals
Piotr Lipinski University of Wroc�law, Poland
Ronald Hochreiter WU Vienna University of Economics and

Business, Austria
Ruppa Thulasiram University of Manitoba, Canada
Wei Cui University College Dublin, Ireland
Michael Mayo University of Waikato, New Zealand
Jose Pinto Instituto das Telecomunicacoes (IST/IT),

Spain
Nikos Thomaidis University of the Aegean, Greece
Eva Alfaro Instituto Tecnológico de Informática, Spain
Krzysztof Michalak Wroc�law University of Economics, Wroc�law,

Poland

EvoGAMES Program Committee:

Lurdes Araújo UNED, Spain
Simon Colton Imperial College London, UK
Ernesto Costa Universidade de Coimbra, Portugal
Francisco Fernández de

Vega Universidad de Extremadura, Spain
Leo Galway University of Ulster, UK
Mario Giacobini University of Torino, Italy
Johan Hagelbäck Blekinge Tekniska Högskola, Sweden
John Hallam University of Southern Denmark, Denmark
Pier Luca Lanzi Politecnico di Milano, Italy
Tobias Mahlmann IT-Universitetet i København, Denmark
Mike Preuss University of Dortmund, Germany
Noor Shaker IT-Universitetet i København, Denmark
Moshe Sipper Ben-Gurion University, Israel
Julian Togelius IT-Universitetet i København, Denmark
Georgios Yannakakis University of Malta, Malta

EvoIASP Program Committee:

Antonia Azzini University of Milan-Crema, Italy
Lucia Ballerini University of Dundee, UK
Leonardo Bocchi University of Florence, Italy
Oscar Cordón University of Granada, Spain
Sergio Damas European Center for Soft Computing, Spain
Ivanoe De Falco ICAR - CNR, Italy
Antonio Della Cioppa University of Salerno, Italy

Organization XVII

Laura Dipietro MIT, USA
Marc Ebner Ernst-Moritz-Arndt-Universität Greifswald,

Germany
Francesco Fontanella University of Cassino, Italy
Şpela Ivekoviç University of Strathclyde, UK
Mario Koeppen Kyushu Institute of Technology, Japan
Krisztof Krawiec Poznan University of Technology, Poland
Jean Louchet INRIA, France
Evelyne Lutton INRIA, France
Pablo Mesejo Santiago University of Parma, Italy
Luca Mussi Henesis srl, Italy
Youssef Nashed University of Parma, Italy
Ferrante Neri University of Jyväskylä, Finland
Gustavo Olague CICESE, Mexico
Riccardo Poli University of Essex, UK
Sara Silva INESC-ID Lisboa, Portugal
Stephen Smith University of York, UK
Giovanni Squillero Politecnico di Torino, Italy
Kiyoshi Tanaka Shinshu University, Japan
Andy Tyrrell University of York, UK
Roberto Ugolotti University of Parma, Italy
Leonardo Vanneschi Universidade Nova de Lisboa, Portugal

EvoINDUSTRY Program Committee:

Maŕıa Arsuaga-Rı́os CERN, Switzerland
Anna I Esparcia-Alcázar S2 Grupo, Spain
William B. Langdon University College London, England, UK
John Levine University of Strathclyde, Scotland, UK
Rhyd Lewis University of Cardiff, Wales, UK
Ender Özcan University of Nottingham, England, UK
A. Şima Etaner-Uyar Istanbul Technical University, Turkey

EvoNUM Program Committee:

Anne Auger INRIA, France
Wolfgang Banzhaf Memorial University of Newfoundland, Canada
Hans-Georg Beyer FH Vorarlberg, Austria
Ying-ping Chen National Chiao Tung University, Taiwan
Nikolaus Hansen INRIA, France
José Ignacio Hidalgo Universidad Complutense de Madrid, Spain
William B. Langdon University College London, England, UK
Salma Mesmoudi Institut des Systèmes Complexes -

Paris Île-de-France, France

XVIII Organization

Boris Naujoks University of Dortmund, Germany
Ferrante Neri University of Jyväskylä, Finland
Gabriela Ochoa University of Stirling, Scotland, UK
Petr Pošik Czech Technical University, Czech Republic
Mike Preuss University of Dortmund, Germany
Günter Rudolph University of Dortmund, Germany
Ivo Fabian Sbalzarini Max Planck Institute of Molecular Cell Biology

and Genetics, Germany
Marc Schoenauer INRIA, France
Hans-Paul Schwefel University of Dortmund, Germany
P. N. Suganthan Nanyang Technological University, Singapore
Ke Tang University of Science and Technology of China,

China
Olivier Teytaud INRIA, France
A. Şima Etaner-Uyar Istanbul Technical University, Turkey
Darrell Whitley Colorado State University, USA

EvoPAR Program Committee:

Una-May O’Reilly MIT, USA
Gianluigi Folino ICAR-CNR, Italy
Jose Carlos Ribeiro Instituto Politécnico de Leiria, Portugal
Garnett Wilson Afinin Labs Inc., Canada
Malcolm Heywood Dalhousie University, Canada
Kalyan Veermachneni MIT, USA
Juan L. Jiménez Université du Luxembourg
William B. Langdon University College London, England, UK
Denis Robilliard Université du Littoral-Côte d’Opale, France
Marco Tomassini Université de Lausanne , Switzerland
José Ignacio Hidalgo Universidad Complutense de Madrid, Spain
Leonardo Vanneschi Universidade Nova de Lisboa, Portugal

EvoRISK Program Committee:

Hussein Abbass UNSW, Australian Defence Force Academy,
Australia

Robert K. Abercrombie Oak Ridge National Laboratory, USA
Rami Abielmona University of Ottawa, Canada
Anas Abou El Kalam École Nationale Supérieure d’Ingénieurs de

Bourges, France
Nabendu Chaki University of Calcutta, India
Sudip Chakraborty Valdosta State University, USA
Mario Cococcioni NATO Undersea Research Centre, Italy
Josep Domingo-Ferrer Universitat Rovira i Virgili, Spain
Solange Ghernaouti-Hélie University of Lausanne, Switzerland

Organization XIX

Malcom Heywood Dalhousie University, Canada
Miguel Juan S2 Grupo, Spain
David Meǵıas Universitat Oberta de Catalunya, Spain
Javier Montero Universidad Complutense de Madrid, Spain
Frank W. Moore University of Alaska Anchorage, USA
Kay Chen Tan National University of Singapore
Vicenç Torra CSIC, Spain
Antonio Villalón S2 Grupo, Spain
Xin Yao University of Birmingham, UK
Nur Zincir-Heywood Dalhousie University, Canada

EvoROBOT Program Committee:

Nicolas Bredèche ISIR/UPMC-CNRS, France
Jeff Clune University of Wyoming, USA
Stéphane Doncieux ISIR/UPMC-CNRS, France
Marco Dorigo Université Libre de Bruxelles, Belgium
Heiko Hamann Karl-Franzens-Universität Graz, Austria
Giorgos Karafotias Vrije Universiteit Amsterdam, The Netherlands
Jean-Marc Montanier TAO, Université Paris-Sud XI, INRIA, France
Jean-Baptiste Mouret ISIR/UPMC-CNRS, France
Stefano Nolfi ICST-CNR, Italy
Claudio Rossi Universidad Politécnica de Madrid, Spain
Sanem Sariel Istanbul Technical University, Turkey
Florian Schlachter University of Stuttgart, Germany
Thomas Schmickl Karl-Franzens-Universität Graz, Austria
Christopher Schwarzer Eberhard-Karls-Universität Tübingen,

Germany
Jürgen Stradner Karl-Franzens-Universität Graz, Austria
Jon Timmis University of York, England, UK
Berend Weel Vrije Universiteit Amsterdam, The Netherlands
Alan Winfield University of the West of England, Bristol, UK

EvoSTOC Program Committee:

Jürgen Branke University of Warwick, UK
Ernesto Costa Universidade de Coimbra, Portugal
A. Şima Etaner-Uyar Istanbul Technical University, Turkey
Yaochu Jin University of Surrey, UK
Changhe Li China University of Geosciences, China
Jorn Mehnen Cranfield University, UK
Trung Thanh Nguyen Liverpool John Moores University, UK
David Pelta Universidad de Granada, Spain
Hendrik Richter Leipzig University of Applied Sciences,

Germany
Philipp Rohlfshagen University of Essex, UK

XX Organization

Briseida Sarasola Universidad de Málaga, Spain
Anabela Simões Coimbra Polytechnic, Portugal
Renato Tinós Universidade de São Paulo, Brazil
Krzysztof Trojanowski Polish Academy of Sciences, Poland
Shengxiang Yang De Montfort University, UK

General Track Program Committee:

Marco Gaudesi Politecnico di Torino, Italy
Ernesto Sánchez Politecnico di Torino, Italy
Alberto Tonda Institut des Systèmes Complexes, France

Sponsoring Organizations

– Algorithms and Data Structures Group, Institute of Computer Graphics and
Algorithms, Vienna University of Technology

– Institute for Informatics and Digital Innovation at Edinburgh Napier Uni-
versity, Scotland, UK

– The EvoCOMNET track was technically sponsored by the World Federation
on Soft Computing

Table of Contents

EvoCOMNET

An Evolutionary Framework for Routing Protocol Analysis in Wireless
Sensor Networks . 1

Doina Bucur, Giovanni Iacca, Giovanni Squillero, and Alberto Tonda

Routing Low-Speed Traffic Requests onto High-Speed Lightpaths by
Using a Multiobjective Firefly Algorithm . 12

Álvaro Rubio-Largo and Miguel A. Vega-Rodŕıguez

Pareto-optimal Glowworm Swarms Optimization for Smart Grids
Management . 22

Eleonora Riva Sanseverino, Maria Luisa Di Silvestre, and
Roberto Gallea

An Overlay Approach for Optimising Small-World Properties
in VANETs . 32

Julien Schleich, Grégoire Danoy, Bernabé Dorronsoro, and
Pascal Bouvry

Impact of the Number of Beacons in PSO-Based Auto-localization in
UWB Networks . 42

Stefania Monica and Gianluigi Ferrari

Load Balancing in Distributed Applications Based on Extremal
Optimization . 52

Ivanoe De Falco, Eryk Laskowski, Richard Olejnik, Umberto Scafuri,
Ernesto Tarantino, and Marek Tudruj

A Framework for Modeling Automatic Offloading of Mobile
Applications Using Genetic Programming . 62

Gianluigi Folino and Francesco Sergio Pisani

Solving the Location Areas Scheme in Realistic Networks by Using a
Multi-objective Algorithm . 72

Vı́ctor Berrocal-Plaza, Miguel A. Vega-Rodŕıguez,
Juan M. Sánchez-Pérez, and Juan A. Gómez-Pulido

EvoCOMPLEX

The Small-World Phenomenon Applied to a Self-adaptive Resources
Selection Model . 82

Maŕıa Botón-Fernández, Francisco Prieto Castrillo, and
Miguel A. Vega-Rodŕıguez

XXII Table of Contents

Partial Imitation Hinders Emergence of Cooperation in the Iterated
Prisoner’s Dilemma with Direct Reciprocity . 92

Mathis Antony, Degang Wu, and K.Y. Szeto

A Memetic Approach to Bayesian Network Structure Learning 102
Alberto Tonda, Evelyne Lutton, Giovanni Squillero, and
Pierre-Henri Wuillemin

Multiobjective Evolutionary Strategy for Finding Neighbourhoods of
Pareto-optimal Solutions . 112

Ewa Gajda-Zagórska

Genetic Programming-Based Model Output Statistics for Short-Range
Temperature Prediction . 122

Kisung Seo, Byeongyong Hyeon, Soohwan Hyun, and Younghee Lee

Evolutionary Multi-Agent System in Hard Benchmark Continuous
Optimisation . 132

Sebastian Pisarski, Adam Ruga�la, Aleksander Byrski, and
Marek Kisiel-Dorohinicki

EvoENERGY

Domestic Load Scheduling Using Genetic Algorithms 142
Ana Soares, Álvaro Gomes, Carlos Henggeler Antunes, and
Hugo Cardoso

Evolutionary Algorithm Based Control Policies for Flexible Optimal
Power Flow over Time . 152

Stephan Hutterer, Michael Affenzeller, and Franz Auinger

Using a Genetic Algorithm for the Determination of Power Load
Profiles . 162

Frédéric Krüger, Daniel Wagner, and Pierre Collet

Comparing Ensemble-Based Forecasting Methods for Smart-Metering
Data . 172

Oliver Flasch, Martina Friese, Katya Vladislavleva,
Thomas Bartz-Beielstein, Olaf Mersmann, Boris Naujoks,
Jörg Stork, and Martin Zaefferer

Evolving Non-Intrusive Load Monitoring . 182
Dominik Egarter, Anita Sobe, and Wilfried Elmenreich

EvoFIN

On the Utility of Trading Criteria Based Retraining in Forex
Markets . 192

Alexander Loginov and Malcolm I. Heywood

Table of Contents XXIII

Identifying Market Price Levels Using Differential Evolution 203
Michael Mayo

Evolving Hierarchical Temporal Memory-Based Trading Models 213
Patrick Gabrielsson, Rikard König, and Ulf Johansson

Robust Estimation of Vector Autoregression (VAR) Models Using
Genetic Algorithms . 223

Ronald Hochreiter and Gerald Krottendorfer

Usage Patterns of Trading Rules in Stock Market Trading Strategies
Optimized with Evolutionary Methods . 234

Krzysztof Michalak, Patryk Filipiak, and Piotr Lipinski

Combining Technical Analysis and Grammatical Evolution in a Trading
System . 244

Iván Contreras, J. Ignacio Hidalgo, and Laura Núñez-Letamendia

EvoGAMES

A Card Game Description Language . 254
Jose M. Font, Tobias Mahlmann, Daniel Manrique, and
Julian Togelius

Generating Map Sketches for Strategy Games . 264
Antonios Liapis, Georgios N. Yannakakis, and Julian Togelius

A Procedural Balanced Map Generator with Self-adaptive Complexity
for the Real-Time Strategy Game Planet Wars . 274

Raúl Lara-Cabrera, Carlos Cotta, and Antonio J. Fernández-Leiva

Mechanic Miner: Reflection-Driven Game Mechanic Discovery and
Level Design . 284

Michael Cook, Simon Colton, Azalea Raad, and Jeremy Gow

Generating Artificial Neural Networks for Value Function
Approximation in a Domain Requiring a Shifting Strategy 294

Ransom K. Winder

Comparing Evolutionary Algorithms to Solve the Game
of MasterMind . 304

Javier Maestro-Montojo, Juan Julián Merelo Guervós, and
Sancho Salcedo-Sanz

EvoIASP

A Genetic Algorithm for Color Image Segmentation 314
Alessia Amelio and Clara Pizzuti

XXIV Table of Contents

Multiobjective Projection Pursuit for Semisupervised Feature
Extraction . 324

Mihaela Elena Breaban

Land Cover/Land Use Multiclass Classification Using GP with
Geometric Semantic Operators . 334

Mauro Castelli, Sara Silva, Leonardo Vanneschi, Ana Cabral,
Maria J. Vasconcelos, Lúıs Catarino, and João M.B. Carreiras

Adding Chaos to Differential Evolution for Range Image Registration . . . 344
Ivanoe De Falco, Antonio Della Cioppa, Domenico Maisto,
Umberto Scafuri, and Ernesto Tarantino

Genetic Programming for Automatic Construction of Variant Features
in Edge Detection . 354

Wenlong Fu, Mark Johnston, and Mengjie Zhang

Automatic Construction of Gaussian-Based Edge Detectors Using
Genetic Programming . 365

Wenlong Fu, Mark Johnston, and Mengjie Zhang

Implicit Fitness Sharing for Evolutionary Synthesis of License Plate
Detectors . 376

Krzysztof Krawiec and Mateusz Nawrocki

Feedback-Based Image Retrieval Using Probabilistic Hypergraph
Ranking Augmented by Ant Colony Algorithm . 387

Ling-Yan Pan and Yu-Bin Yang

An Evolutionary Approach for Automatic Seedpoint Setting in Brain
Fiber Tracking . 397

Tobias Pilic and Hendrik Richter

Prediction of Forest Aboveground Biomass: An Exercise on Avoiding
Overfitting . 407

Sara Silva, Vijay Ingalalli, Susana Vinga,
João M.B. Carreiras, Joana B. Melo, Mauro Castelli,
Leonardo Vanneschi, Ivo Gonçalves, and José Caldas

Human Action Recognition from Multi-Sensor Stream Data by Genetic
Programming . 418

Feng Xie, Andy Song, and Vic Ciesielski

Novel Initialisation and Updating Mechanisms in PSO for Feature
Selection in Classification . 428

Bing Xue, Mengjie Zhang, and Will N. Browne

Table of Contents XXV

EvoINDUSTRY

CodeMonkey; a GUI Driven Platform for Swift Synthesis of
Evolutionary Algorithms in Java . 439

Reza Etemadi, Nawwaf Kharma, and Peter Grogono

Multi-Objective Optimizations of Structural Parameter Determination
for Serpentine Channel Heat Sink . 449

Xuekang Li, Xiaohong Hao, Yi Chen, Muhao Zhang, and Bei Peng

EvoNUM

Towards Non-linear Constraint Estimation for Expensive
Optimization . 459

Fabian Gieseke and Oliver Kramer

Repair Methods for Box Constraints Revisited . 469
Simon Wessing

Scalability of Population-Based Search Heuristics for Many-Objective
Optimization . 479

Ramprasad Joshi and Bharat Deshpande

EvoPAR

On GPU Based Fitness Evaluation with Decoupled Training Partition
Cardinality . 489

Jazz Alyxzander Turner-Baggs and Malcolm I. Heywood

EvoSpace: A Distributed Evolutionary Platform Based on the Tuple
Space Model . 499

Mario Garćıa-Valdez, Leonardo Trujillo,
Francisco Fernández de Vega, Juan Julián Merelo Guervós,
and Gustavo Olague

Cloud Driven Design of a Distributed Genetic Programming
Platform . 509

Owen Derby, Kalyan Veeramachaneni, and Una May O’Reilly

Cloud Scale Distributed Evolutionary Strategies for High Dimensional
Problems . 519

Dennis Wilson, Kalyan Veeramachaneni, and Una May O’Reilly

XXVI Table of Contents

EvoRISK

Malicious Automatically Generated Domain Name Detection Using
Stateful-SBB . 529

Fariba Haddadi, H. Gunes Kayacik, A. Nur Zincir-Heywood, and
Malcolm I. Heywood

EvoROBOT

Evolving Gaits for Physical Robots with the HyperNEAT Generative
Encoding: The Benefits of Simulation . 540

Suchan Lee, Jason Yosinski, Kyrre Glette, Hod Lipson, and
Jeff Clune

Co-evolutionary Approach to Design of Robotic Gait 550
Jan Černý and Jǐŕı Kubaĺık

A Comparison between Different Encoding Strategies for Snake-Like
Robot Controllers . 560

Dámaso Pérez-Moneo Suárez and Claudio Rossi

MONEE: Using Parental Investment to Combine Open-Ended and
Task-Driven Evolution . 569

Nikita Noskov, Evert Haasdijk, Berend Weel, and A.E. Eiben

Virtual Spatiality in Agent Controllers: Encoding
Compartmentalization . 579

Jürgen Stradner, Heiko Hamann, Christopher S.F. Schwarzer,
Nico K. Michiels, and Thomas Schmickl

Evolving Counter-Propagation Neuro-controllers for Multi-objective
Robot Navigation . 589

Amiram Moshaiov and Michael Zadok

Toward Automatic Gait Generation for Quadruped Robots Using
Cartesian Genetic Programming . 599

Kisung Seo and Soohwan Hyun

EvoSTOC

Adapting the Pheromone Evaporation Rate in Dynamic Routing
Problems . 606

Michalis Mavrovouniotis and Shengxiang Yang

Finding Robust Solutions to Dynamic Optimization Problems 616
Haobo Fu, Bernhard Sendhoff, Ke Tang, and Xin Yao

Table of Contents XXVII

An Ant-Based Selection Hyper-heuristic for Dynamic Environments 626
Berna Kiraz, A. Şima Etaner-Uyar, and Ender Özcan

Author Index . 637

An Evolutionary Framework for Routing

Protocol Analysis in Wireless Sensor Networks

Doina Bucur2,1, Giovanni Iacca1, Giovanni Squillero3, and Alberto Tonda4,�

1 INCAS3

Dr. Nassaulaan 9, 9401 HJ, Assen, The Netherlands
giovanniiacca@incas3.eu

2 Johann Bernoulli Institute, University of Groningen
Nijenborgh 9, 9747 AG Groningen, The Netherlands

d.bucur@rug.nl
3 Politecnico di Torino

Corso Duca degli Abruzzi 24, I-10129, Torino, Italy
giovanni.squillero@polito.it

4 INRA UMR 782 GMPA
1 Avenue Lucien Brétignières, 78850, Thiverval-Grignon, France

alberto.tonda@grignon.inra.fr

Abstract. Wireless Sensor Networks (WSNs) are widely adopted for ap-
plications ranging from surveillance to environmental monitoring. While
powerful and relatively inexpensive, they are subject to behavioural faults
whichmake them unreliable. Due to the complex interactions between net-
work nodes, it is difficult to uncover faults in aWSN by resorting to formal
techniques for verification and analysis, or to testing. This paper proposes
an evolutionary framework to detect anomalous behaviour related to en-
ergy consumption in WSN routing protocols. Given a collection protocol,
the framework creates candidate topologies and evaluates them through
simulation on the basis of metrics measuring the radio activity on nodes.
Experimental results using the standard Collection Tree Protocol show
that the proposed approach is able to unveil topologies plagued by exces-
sive energy depletion over one or more nodes, and thus could be used as an
offline debugging tool to understand and correct the issues before network
deployment and during the development of new protocols.

Keywords: Wireless Sensor Networks, Anomaly Detection, Network
Efficiency, Routing Protocols, Evolutionary Algorithms.

1 Introduction

The escalation of complexity in modern systems makes proving their correct
behaviour an increasingly hard task. Formal verification techniques require a
human and computational effort that severely limits their applicability. Thus,
formal verification methods are used in real-world problems for a subset of the

� All authors contributed equally and their names are presented in alphabetical order.

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 1–11, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 D. Bucur et al.

system’s software or hardware components [3], when the task can be artificially
constrained or when simplified models are employed, thus significantly impairing
the breadth and usability of the results. Wireless Sensor Networks (WSNs) are
an emblematic example: while each node in a network is a constrained embedded
system, the quality of networking depends upon physical topology and environ-
mental conditions. Thus, the number of configurations to test easily skyrockets.
Recent related work in the area of formal verification for WSNs [11,15,2,12]
succeeds in checking only qualitative properties (e.g., assertions), and may only
report a small number of faulty topologies.

This paper presents an evolutionary approach to routing protocol analysis for
WSNs, which has two unprecedented advantages in that it obtains (i) quantita-
tive metrics for the quality of a WSN, and (ii) a large number of faulty WSN
configurations, which allow for better generalization of the results.

An evolutionary core generates network topologies, optimizing special heuris-
tic metrics, with the final objective to uncover latent problems in the routing
protocol. In the experiments, we focus on the Collection Tree Protocol (CTP) [5]
and its TinyOS [9] implementation; we use the TinyOS simulator TOSSIM [10]
for the evaluation of a topology. The metrics we consider relate to the number of
networking (i.e., radio transmission and reception) system calls on WSN nodes,
as these form a metric which best correlates to energy depletion (and thus life-
time), independently of the hardware platforms deployed in the WSN. We then
uncover a large family of WSN configurations over which CTP causes extremely
high traffic, which would drastically diminish the lifetime of a real-world WSN
deployment. Based on this, we define a metric, named degree of disconnection,
which can predict the energy consumption of the protocol over a WSN topology.

The idea of applying evolutionary computation to verification and testing has
been explored in several different domains. Preliminary experiments in [16] show
that stochastic meta-heuristics are effective in locating the most promising parts
of the search space to test complex software modules. A flight system software is
verified in [13], where a genetic algorithm outperforms classical random testing
techniques. In [4], the operating system of a mobile phone prototype is tested
with evolved keyboard inputs, uncovering several power-related bugs.

The remaining of this paper is organized as follows. Section 2 gives a brief
overview of system faults in WSNs, including matters of energy consumption.
Section 3 describes our approach for detecting anomalous network behaviour in
CTP. The experimental results obtained by means of the evolutionary approach
are discussed in section 4. Finally, section 5 concludes based on this experience,
and outlines future works.

2 Anomalous WSN Routing and Lifetime

A WSN is a distributed, wirelessly networked, and self-organizing system most
often employed for distributed monitoring tasks. Sensing nodes deployed at loca-
tions of interest sense, store and send data to one or more sink nodes for collec-
tion; in turn, a sink may disseminate commands back to the nodes. Network-layer

Evolutionary Routing Protocol Analysis in WSNs 3

routing protocols for WSNs most often aim at organizing the nodes into a multi-
hop tree-like logical topology for this collection and/or dissemination. Among
collection protocols, the Collection Tree Protocol [5] is the de facto standard; we
analyze its behaviour in this paper.

Given the uncontrolled, distributed nature of a WSN deployment, hardware,
software, and networking faults will impact the network’s performance; of these,
networking anomalies are the most computationally intensive (and thus chal-
lenging) to verify against. Field reports [6,7,1] list a number of anomalies which
unexpectedly impaired deployments, ranging from hardware clock drifts on in-
dividual nodes caused by a different response to ambient temperature, to nodes
losing routes to the sink due to the network being unpredictably dense for the
size of the routing table, and to unforeseen shortness of network lifetime.

An example of such a lifetime anomaly is reported in [7]: a link-layer protocol
caused most sensor nodes in the deployment to run out of batteries within few
weeks. Interestingly, the scientists were never certain post factum about the
actual cause: “Back-of-the-envelope calculations reveal that [..] another effect is
causing nodes to consume more energy than anticipated. We observed that remote
nodes lasted about one week longer. We conjecture that the difference is caused by
overhearing less traffic (5 vs. 70 neighbors), but then the small (33%) difference
in lifetime indicates that there must be another factor contributing significantly
to the nodes’ power consumption.” In this paper, we aim to uncover causes for
such behavioural effects offline (at WSN design time), before deployment.

When analyzing a network protocol for the purpose of determining network
configurations of worst lifetime, a good metric to represent energy depletion
on the node is the number of system calls which execute radio receptions or
transmissions. It is for radio operations that the battery current draw is highest
on any given hardware platform; e.g., on the mainstream MicaZ sensor platform,
19.7 mA are drawn in radio-receive mode, compared to under 8 mA processor
draw. In what follows, the radio system calls are our events of interest.

3 An Evolutionary Tool for WSN Routing Protocol
Analysis

Uncovering a bug in a complex structure such as a WSN is like finding the
proverbial “needle in a haystack”: either a bug is discovered, or it is not, with no
intermediate possibilities. Such a characteristic significantly impairs any evolu-
tionary algorithm. In fact, the very idea of evolution is based on the accumulation
of small differences, each one profitable from the point of view of the organism.
In order to tackle such a difficult problem, the evolutionary algorithm is set to
design a WSN configuration able to maximize the number of events raised during
the simulation. Such a configuration is eventually used to highlight errors and
issues. In the following, individual encoding and fitness functions are described.

4 D. Bucur et al.

3.1 Individual Description

For CTP verification, an individual represents a candidate configuration of the
WSN, encoded as a square matrix N ×N , with N the number of nodes in the
network. Each position i, j in the matrix holds the strength of the signal between
nodes i and j, expressed in dBm. It is interesting to note that, given the nature
of wireless transmitters and receivers, the matrix need not be symmetrical.

While a viable connection quality between two nodes can theoretically assume
any value above -110 dBm (a threshold particular to TOSSIM), we reduce our
problem to two subintervals of primary interest:

1. strong links with signal strength in the interval SL = [−30, 0] dBm, over
which small variations may well lead to different behaviours;

2. weak links with signal strength below -30 dBm, which we equate with no
link at all.

We chose the interval SL as such in order to cap the effect that TOSSIM’s
noise model has upon network behaviour (see subsection 4.1), i.e., to confine
the statistical variation among simulations of the same topology, and thus raise
the confidence level of our evolutionary experiments (see subsection 4.2). Also,
encoding instead the link quality as the integer interval [-31,0] dBm might force
the evolutionary algorithm to a long exploration before discovering that results
with a high number of weak links are interesting; on the other hand, employing an
interval like [-60,0] dBm might lead to large groups of individuals with different
genotype but exactly the same phenotype.

In order to help the algorithm explore the search space more effectively, indi-
viduals present two different alleles for each gene in their genome: a weak link,
and a strong link with an integer strength in the interval SL. Since mutation
operators can either change a gene to its allele or fine tune the strength, an
individual with a weak link in a given matrix position is close to an individual
with a strong link in the same position regardless of the actual strength of the
link. A user-defined occurrence probability is associated to each allele.

3.2 Fitness Function

As reported above, evolutionary computation works best when there is a gradual
slope towards the best solutions. Thus, if this is not present in the problem, it
is crucial to artificially create such a slope in the fitness landscape. With this
requirement in mind, two alternative metrics are adopted to identify different
kinds of protocol anomalies. Following the intuitive idea that the more a device
is stressed, the more likely it is to show possible problems, we maximize, in
independent experiments, the following objectives:

1. maxNetworkEvents, the maximum number of node-local network system
calls (including packet reception and packet transmission) among all nodes;

2. sumNetworkEvents, the sum of node-local network system calls (as above)
on all the nodes in the network.

Evolutionary Routing Protocol Analysis in WSNs 5

With the first fitness function, we aim at finding network configurations where
at least one node generates an abnormal number of radio events, and thus will
have diminished lifetime. With the latter, we aim at finding network topologies
where a number of the nodes in the network cause a packet storm, which will
lead to decreased lifetime for all involved. Based on our experimental results,
these two fitness functions are proven smooth enough to distinguish between
well-behaved and anomalous configurations.

3.3 µGP and TOSSIM

The algorithm used in the experiments is μGP, an evolutionary framework de-
veloped at Politecnico di Torino [14]. Two interesting properties influenced the
choice of this particular evolutionary core. First, since μGP’s individuals are
represented as a succession of macros with a tunable probability of appearance,
it is possible to describe an individual structure such as the one presented in
subsection 3.1. Second, the design of the framework is based on the notion of
an external evaluator, which makes the integration with a WSN simulator quite
straightforward.

In order to test the candidate configurations, the open-source simulator
TOSSIM [10] is chosen. TOSSIM is a discrete event simulator which allows
users to test and analyze TinyOS sensor networks in a controlled and repeatable
environment. Besides guaranteeing high fidelity simulations at different levels
of granularity (from hardware interrupts to high-level system events), TOSSIM
supports two programming interfaces (Python and C++) to control simulations
and interact with them (even at runtime). In this work, the powerful scripting
and parsing features of the Python interface are used to collect the number and
type of different radio events raised by each node.

With reference to Fig. 1, the evolutionary core creates candidate configura-
tions for TOSSIM. All the system calls on each node are logged during the
simulation, and parsed successively to create an event hash map. This hash map
is finally processed to obtain the fitness function, by simply counting the number
of radio events raised by the nodes in the configuration.

Fig. 1. Conceptual scheme of the proposed evolutionary approach

6 D. Bucur et al.

4 Experimental Results

In order to investigate different kinds of protocol anomalies, we ran experiments
with three probabilities (25%, 50% and 75%) of having a strong link when gen-
erating a new connection (see subsection 3.1), and the two objectives described
in subsection 3.2, namely maxNetworkEvents and sumNetworkEvents. Thus, six
〈fitness function, strong link probability〉 configurations were tested in total.

For simplicity, we consider topologies of 10 nodes booting at simulation time
0; there is enough randomness in the network stack for this setting not to cause
network collisions due to synchronicity. Each topology is simulated for 200 se-
conds. Node 0 is the sink, while the others run CTP to form a multi-hop logical
tree topology over the physical graph topology, for the purpose of data collection
to the sink. In particular, each node samples one of its on-board sensors every
second, and after bundling a number of readings, sends them to the sink.

4.1 Noise Analysis

WSNs are affected by a number of stochastic effects, including radio-frequency
noise, interference among nodes and from external sources, packet collision, etc.
TOSSIM provides an accurate model of the mainstream MicaZ radio stack. In
addition to that, to further improve the realism of the simulation (e.g., by taking
into account bursts of interference) it is possible to add a statistical noise model
over the original links’ signal strengths. This model is generated automatically
from a trace measured experimentally in real-world testbeds, with the generation
algorithm based on Closest Pattern Matching [8]. In our experiments, we used
the light-short noise trace available with TOSSIM.

Several experiments were conducted in order to investigate the influence of the
noise on the two fitness functions defined above. More specifically, for each fitness
function and percentage of strong links, 200 topologies were sampled randomly in
the topology design space, and each one was evaluated 50 times to compute the
average fitness value and its variance σ2. From these experiments it emerged that
the variance of the noise dramatically changes depending on the specific topology,
making the problem particularly challenging from an evolutionary point of view.
Numerical results are presented in subsection 4.3, compared and contrasted with
the results obtained with the evolutionary approach.

4.2 Evolutionary Process

A detailed exposition of the μGP evolutionary process is out of the scope of
this paper. An interested reader may find all relevant information in [14]. μGP
was executed with the parameter settings displayed in Table 1, two standard
crossover operators (one-point and two-point), and mutation operators that act
at the level of a single gene. The evolutionary algorithm was configured in such
a way that a μ+λ strategy was used, together with a self-adaptation scheme on
the activation of the different genetic operators. Each evolutionary process was
allotted a computational budget of 24 hours. It should be noted that the wall

Evolutionary Routing Protocol Analysis in WSNs 7

Table 1. μGP parameters setting

Parameter Description Value

mu population size 40
lambda number of genetic operators applied at every step 5
inertia inertia for the self-adapting parameters 0.9
sigma strength of genetic operators 0.9
tau size of the tournament selection 2

Table 2. Configuration of the experiments considered in this study

Fitness function Strong links Generations Evaluations Best Fitness

maxNetworkEvents

25% 206 1231 13554.6
50% 225 1392 13603.9
75% 208 1371 12986.1

sumNetworkEvents

25% 168 1000 80574.8
50% 176 1115 87431.1
75% 221 1406 59995.9

clock time for each individual simulation heavily depends on the specific topology
and the number of events it generates. Thus, the number of individuals evalu-
ated during each experiment, which in turns affects the number of generations
performed, is extremely variable, as shown in Table 2. Additionally, in order to
compute a statistically meaningful average fitness value, also in this case each
evaluated individual was simulated multiple times with different random seeds.
Recalling that the standard error of the mean of a n-dimensional sample whose
variance is σ is σ/

√
n, and applying the central limit theorem to approximate

the sample mean with a normal distribution, it can be proved that a sample size
n = 16σ2/W 2 guarantees a 95% confidence interval of width W . Thus, in order
to guarantee a confidence interval W = σ regardless of the actual value of σ
(which in any case is not constant in the search space, as we have seen before)
we chose n = 16 simulations per topology.

4.3 Results: Faulty Topologies

We comparatively present top individuals obtained by the evolutionary algo-
rithm, and random topologies evaluated separately from the evolutionary ex-
periment; we only detail the experiments configured for 50% strong links, but
similar considerations apply to the experiments with 25% and 75% strong links.
We first analyze the top individual for sumNetworkEvents, aiming to derive an
explanation for its radio behaviour; Fig. 2 (left) depicts the top individual as an
undirected graph, computed from the original directed graph so that the undi-
rected edge between nodes m, n exists iff both directed edges m → n, n → m
exist. This shows that the topology is disconnected with respect to undirected
links; directional links may still exist between graph components, but they prove
insufficient for a well-behaved topology.

8 D. Bucur et al.

0 1

3 5

2

6 48

9 7

 0
 1
 2
 3
 4
 5

0-2 2-4 4-6 6-8 8-10 10-1212-14

N
um

be
r

of
 n

od
es

Intervals of radio events per node (x1000)

Fig. 2. (left) Undirected physical topology for sumNetworkEvents top individual with
50% strong links. (right) Histogram of radio events per node: the top two buckets
contain nodes {1, 3, 4, 5, 6, 8, 9}, which form a cycle disconnected from the sink.

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000

 0 20 40 60 80

 7
 8
 9

F
itn

es
s

su
m

 r
ad

io
 e

ve
nt

s
(b

ar
s)

W
S

N
 d

is
co

nn
ec

tio
n

(p
oi

nt
s)

Top individuals

 0
 10000
 20000

 0 20 40 60 80

 5
 7
 9

F
itn

es
s

m
ax

 e
ve

nt
s

(b
ar

s)

W
S

N
 d

is
co

nn
ec

tio
n

(p
oi

nt
s)

Top individuals

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000

 0 20 40 60 80
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

F
itn

es
s

su
m

/m
ax

 e
ve

nt
s

(b
ar

s)

W
S

N
 d

is
co

nn
ec

tio
n

(p
oi

nt
s)

Random topologies, sorted by fitness

sum radio events
max radio events

degree of disconnection

Fig. 3. Overview of fitness values (left y axis) for 100 top and random individuals, all
with 50% probability of strong links. Superimposed, we show the degree of disconnec-
tion for each individual (right y axis).

Evolutionary Routing Protocol Analysis in WSNs 9

Fig. 2 (right) gives the histogram of radio system calls per node in the net-
work. This shows that not fewer than seven out of ten nodes nearly reach the
maximum number of events per node; correlating this fact with the topology
of the individual, we can state that a traffic storm is caused among nodes in a
component disconnected from the sink.

On the basis of this observation, we define a metric for physical WSN topolo-
gies, which will qualitatively predict the values of both fitness functions. We call
this degree of disconnection, and we define it over the undirected version of the
topology graph G as the number of nodes in all those graph components of G
which (i) do not include the sink node 0, and (ii) have size greater than 2 nodes:

degree of disconnection(G) :=
∑

Ci∈ components(G)

0 �∈Ci, size(Ci)>2

size(Ci)

This metric is intuitive: it equals 0 for a connected graphG, and every graph com-
ponent which both does not contain the sink node 0 and is large enough to form
cycles contributes to the sum; small, 1- or 2-node components cause few radio
events. For a given topology, we conclude that a degree of disconnection strictly
greater than 0 is reason for concern with regard to the maxNetworkEvents fit-
ness; the higher the value of this metric, the more sumNetworkEventsmay rise.
For the top individual in Fig. 2, this degree of disconnection is 8.

Fig. 3 gives the top 100 individuals and the same number of random topologies
for both fitnesses, all with 50% strong links. The fitness value of a topology is
shown as the average and standard deviation over 16 simulations (as introduced
in subsection 4.2). All top individuals have a degree of disconnection of at least
6 (for the maxNetworkEvents fitness) and 7 (for sumNetworkEvents). As seen
from our random testing, low fitness values correlate well with zero disconnection,
which are both marks of well-behaved topologies.

When comparing random tests with our evolutionary algorithm, it becomes
clear that the power of the evolutionary analysis is to uncover a large number
of faulty topologies, all of higher fitness than found through random testing.

5 Conclusions and Future Works

Detecting anomalous behaviours in WSNs is a complex task, due to non-trivial
interactions between nodes. This paper presented an innovative approach for
analyzing the anomalous behaviour of routing protocols in WSNs. Following the
intuitive concept that stressing a device is likely to uncover eventual anomalies,
an evolutionary framework is set to generate network configurations, with the
objective to maximize the number of events raised by the nodes. Experimen-
tal results demonstrate that the proposed approach is able to identify network
layouts that generate undesired traffic storms, thus potentially being extremely
useful to analyze and correct lifetime-related issues before network deployment
and during the development of new protocols.

10 D. Bucur et al.

Future works will (i) explore the effectiveness of different fitness functions
targeting other behavioural faults, e.g., the ratio of delivered data packets, and
the number of packets received in duplicate at the sink; (ii) consider the use of
a variable-length genome, including node reboots and other node-level events;
and (iii) broaden the analysis to include other WSN protocols.

Acknowledgments. INCAS3 is co-funded by the Province of Drenthe, the
Municipality of Assen, the European Fund for Regional Development and the
Ministry of Economic Affairs, Peaks in the Delta.

References

1. Barrenetxea, G., Ingelrest, F., Schaefer, G., Vetterli, M.: The hitchhiker’s guide to
successful wireless sensor network deployments. In: Proc. 6th ACM Conference on
Embedded Network Sensor Systems, SenSys 2008, pp. 43–56. ACM (2008)

2. Bucur, D., Kwiatkowska, M.: On software verification for sensor nodes. Journal of
Systems and Software 84(10), 1693–1707 (2011)

3. D’Silva, V., Kroening, D., Weissenbacher, G.: A survey of automated techniques
for formal software verification. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 27(7), 1165–1178 (2008)

4. Gandini, S., Ruzzarin, W., Sanchez, E., Squillero, G., Tonda, A.: A framework
for automated detection of power-related software errors in industrial verification
processes. Journal of Electronic Testing 26(6), 689–697 (2010)

5. Gnawali, O., Fonseca, R., Jamieson, K., Moss, D., Levis, P.: Collection tree proto-
col. In: Proceedings of the 7th ACM Conference on Embedded Networked Sensor
Systems, SenSys 2009, pp. 1–14. ACM, New York (2009)

6. Jurdak, R., Wang, X.R., Obst, O., Valencia, P.: Wireless Sensor Network Anoma-
lies: Diagnosis and Detection Strategies. In: Tolk, A., Jain, L.C. (eds.) Intelligence-
Based Systems Engineering. ISRL, vol. 10, ch. 12, pp. 309–325. Springer, Heidel-
berg (2011)

7. Langendoen, K., Baggio, A., Visser, O.: Murphy loves potatoes: experiences from
a pilot sensor network deployment in precision agriculture. In: Proc. Int. Conf. on
Parallel and Distributed Processing, pp. 174–181. IEEE Computer Society (2006)

8. Lee, H., Cerpa, A., Levis, P.: Improving wireless simulation through noise modeling.
In: Proceedings of the 6th International Conference on Information Processing in
Sensor Networks, IPSN 2007, pp. 21–30. ACM, New York (2007)

9. Levis, P., Gay, D., Handziski, V., Hauer, J.H., Greenstein, B., Turon, M., Hui, J.,
Klues, K., Sharp, C., Szewczyk, R., Polastre, J., Buonadonna, P., Nachman, L.,
Tolle, G., Culler, D., Wolisz, A.: T2: A second generation OS for embedded sensor
networks. Tech. Rep. TKN-05-007, Technische Universität Berlin (2005)

10. Levis, P., Lee, N., Welsh, M., Culler, D.E.: TOSSIM: Accurate and scalable sim-
ulation of entire TinyOS applications. In: Proceedings of the ACM Conference on
Embedded Networked Sensor Systems (SenSys), pp. 126–137 (2003)

11. Li, P., Regehr, J.: T-Check: bug finding for sensor networks. In: Proceedings of
the 9th International Conference on Information Processing in Sensor Networks
(IPSN), pp. 174–185. ACM (2010)

12. Mottola, L., Voigt, T., Österlind, F., Eriksson, J., Baresi, L., Ghezzi, C.: Anquiro:
Enabling efficient static verification of sensor network software. In: Workshop on
Software Engineering for Sensor Network Applications (SESENA) ICSE(2) (2010)

Evolutionary Routing Protocol Analysis in WSNs 11

13. Sacco, G., Barltrop, K., Lee, C., Horvath, G., Terrile, R., Lee, S.: Application
of genetic algorithm for flight system verification and validation. In: Aerospace
Conference, pp. 1–7. IEEE (2009)

14. Sanchez, E., Schillaci, M., Squillero, G.: Evolutionary Optimization: the μGP
toolkit, 1st edn. Springer Publishing Company, Incorporated (2011)

15. Sasnauskas, R., Landsiedel, O., Alizai, M.H., Weise, C., Kowalewski, S., Wehrle, K.:
KleeNet: discovering insidious interaction bugs in wireless sensor networks before
deployment. In: Proceedings of the 9th ACM/IEEE International Conference on
Information Processing in Sensor Networks (IPSN), pp. 186–196. ACM (2010)

16. Shyang, W., Lakos, C., Michalewicz, Z., Schellenberg, S.: Experiments in apply-
ing evolutionary algorithms to software verification. In: IEEE World Congress on
Computational Intelligence (CEC), pp. 3531–3536. IEEE (2008)

Routing Low-Speed Traffic Requests

onto High-Speed Lightpaths
by Using a Multiobjective Firefly Algorithm

Álvaro Rubio-Largo and Miguel A. Vega-Rodŕıguez

Department of Technologies of Computers and Communications,
University of Extremadura, Polytechnic School, Cáceres, 10003 Spain

{arl,mavega}@unex.es

Abstract. Nowadays, the bandwidth requirements of the majority of
traffic connection requests are in the range of Mbps. However, in opti-
cal networks each physical link is able to operate in the range of Gbps
causing a huge waste of bandwidth as a result. Fortunately, using access
station at each node of the optical network, several low-speed traffic re-
quests may be multiplexed onto one high-speed channel. Multiplexing or
grooming these low-speed requests is known in the literature as the Traf-
fic Grooming problem - an NP-hard problem. Therefore, in this paper we
propose the use of Evolutionary Computation for solving this telecommu-
nication problem. The selected algorithm is an approach inspired by the
flash pattern and characteristics of fireflies, the Firefly Algorithm (FA),
but adapted to the multiobjective domain (MO-FA). After performing
several experiments and comparing the results obtained by the MO-FA
with those obtained by other approaches published in the literature, we
can conclude that it is a good approach for solving this problem.

Keywords: Firefly Algorithm, Multiobjective optimization, Traffic
Grooming, WDM optical networks.

1 Introduction

More and more people make use of the Internet; however, our current data
networks do not present enough bandwidth for handling this exponential growth
of traffic requests. Fortunately, the use of optical fiber has solved this drawback
thanks to its enormous bandwidth.

Since the bandwidth of an optical fiber link is around 50Tbps and the average
requirements of a traffic request is in the range of Mbps, a waste of bandwidth
comes up. With the aim of wasting as little as possible, the Wavelength Di-
vision Multiplexing technology tries to divide each physical link into several
wavelengths of light (λ) or channels [8]. In this way, the speed rate per channel
is in the range of Gbps.

There still exists a waste of bandwidth at each end-to-end connection from
one node to another over a specific wavelength of light (lightpath). To solve it,

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 12–21, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Routing Low-Speed Traffic onto High-Speed Lightpaths by Using MO-FA 13

the use of access stations at each node provides them the ability of grooming
several low-speed requests onto high-speed lightpaths [8].

This process of grooming low-speed traffic requests is known in the literature
as the Traffic Grooming problem, an NP-hard problem [9] which consists on
three subproblems: lightpath routing, wavelength assignment, and traffic routing.

The Traffic Grooming problem has been tackled by other authors in the lit-
erature. Zhu and Mukherjee [9] presented a mathematical formulation of the
Traffic Grooming problem, as well as two reference heuristics for solving this
telecommunication problem: Maximizing Single-hop Traffic (MST) and Maxi-
mizing Resource Utilization (MRU). These heuristics have been considered by
many other authors in order to prove the goodness of new proposals for the
Traffic Grooming problem. A procedure with an integrated grooming algorithm
based on an auxiliary graph model (INGPROC) is reported by Zhu et al. [7].
Finally, De et al. [1] described an algorithm to handle general multi-hop static
Traffic Grooming based on the Clique Partitioning (TGCP) concept.

All the aforementioned approaches are single-objective methods that try to
optimize the throughput of a given optical network. In recent literature, new
methods have been proposed for solving this telecommunication problem by us-
ing Multiobjective Optimization. Prathombutr et al. [4] proposed a well-known
Multiobjective Evolutionary Algorithm (MOEA), the Strength Pareto Evolu-
tionary Algorithm (SPEA). Later, Rubio-Largo et al. [5] tackled the problem
by applying innovative MOEAs. They propose the Differential Evolution with
Pareto Tournaments (DEPT) algorithm, the Multiobjective Variable Neigh-
borhood Search algorithm (MO-VNS), and two well-known algorithms: Fast
Non-Dominated Sorting Genetic Algorithm (NSGA-II) and the Strength Pareto
Evolutionary Algorithm (SPEA2).

In this work, we propose the use of a multiobjective version of a Swarm Intel-
ligence Evolutionary Algorithm. The single-objective version is the Firefly Algo-
rithm (FA) [6], a population-based approach inspired by the flash pattern and
characteristics of fireflies. In order to prove the goodness of the Multiobjective
FA (MO-FA), we present several comparisons with other approaches published
in the literature.

The remainder of this paper is organized as follows. Section 2 is devoted to
present the Traffic Grooming problem. In Section 3, we describe the Multiob-
jective Firefly Algorithm. A comparison with other approaches published in the
literature is reported in Section 4. Finally, the conclusions and possible lines of
future work are presented in Section 5.

2 Traffic Grooming Problem

In this work, an optical network topology is modeled as a directed graph G=(N ,
E), where N is the set of nodes and E is the set of physical links connecting
nodes.

14 Á. Rubio-Largo and M.A. Vega-Rodŕıguez

In the first place, we list several assumptions taken into account in this work:

– The number of wavelengths per optical fiber link (W) will be the same for
all links in E.

– For all links in E, the wavelength capacity (C) will be the same. Furthermore,
for every physical link (m,n)∈ E, where m,n ∈ N ; the propagation delay
(dmn) is equal to 1.

– At each node of N , the number of incoming physical links will be identical
to the number of outgoing physical links.

– The number of transceivers (Ti/Ri or simply T) will be greater than or equal
to 1, for all nodes in N .

– None of the nodes in N supports the wavelength conversion facility. Thus,
we assume the wavelength continuity constraint [3]: all lightpaths must use
the same wavelength (λ) across all physical links that they traverse.

– We suppose a static traffic pattern, where the set of low-speed traffic requests
are known in advance. The granularity of each low-speed request is OC-x
(Optical Carrier transmission rate), x ∈{1, 3, 12, and 48}. Note that the
bandwidth will be x× 51.84Mb/s.

– We assume the multi-hop grooming facility [9]: a low-speed connection can
use several concatenated lightpaths for being established. In addition, the
low-speed requests cannot be split into several lower speed connections and
routed separately.

In the second place, we briefly describe the other related parameters of the traffic
grooming problem:

– Pmn, ∀m,n ∈ N : number of fibers interconnecting nodes m and n.
– Λ: traffic demand matrix

Λx = [Λx
sd; s, d ∈ N]|N |×|N |,

where Λx
sd is the number of OC-x connection requests between node pair

(s, d).
– V w

ij , ∀w ∈ {1 . . .W}, ∀i, j ∈ N : number of lightpaths from node i to node j
on wavelength w (Virtual Topology).

– P ij,w
mn , ∀w ∈ {1 . . .W}, ∀i, j,m, n ∈ N : number of lightpaths between node

i to node j routed through fiber link (m,n) on wavelength w (Physical
Topology route).

– Sx
sd, x ∈ {1, 3, 12, and 48}, ∀s, d ∈ N : number of OC-x streams requested

from node s to node d that are successfully routed.

Hence, given an optical network topology, a fixed number of transmitters and re-
ceivers at each node, a fixed number of available wavelengths per fiber, a capacity
of each wavelength, and a set of connection requests with different bandwidth
granularity, the Traffic Grooming problem may be stated as a Multiobjective
Optimization Problem (MOOP) [2], in which our objective functions are:

Routing Low-Speed Traffic onto High-Speed Lightpaths by Using MO-FA 15

– Traffic Throughput (f1): Maximize the total successfully routed low-speed
traffic demands on virtual topology.

Max
∑|N |

s=1

∑|N |
d=1

∑Λx
sd

t=1 (x× Sx,t
sd)

x ∈ {1, 3, 12, and 48}
(1)

– Number of Transceivers or Ligthpaths (f2): Minimize the total number of
transceivers used or the total number of lightpaths established.

Min

|N |∑
i=1

|N |∑
j=1

W∑
w=1

V w
ij (2)

– Average Propagation Delay (APD, f3). Minimize the average hop count of
lightpaths established, because to we assume dmn = 1 in all physical fiber
links (m,n).

Min

∑|N |
i=1

∑|N |
j=1

∑|N |
m=1

∑|N |
n=1 (dmn ×

∑W
w=1 P

ij,w
mn)∑|N |

i=1

∑|N |
j=1

∑W
w=1 V

w
ij

(3)

For a complete formulation of the Traffic Grooming problem, including all pa-
rameters, variables, constraints, objective functions, and an illustrative example,
please see [5].

3 Multiobjective Firefly Algorithm (MO-FA)

A population-based evolutionary algorithm inspired by the flash pattern and
characteristics of fireflies is proposed by Yang in [6], the Firefly Algorithm (FA).
This innovative approach uses the bioluminescent aptitudes of fireflies to attract
other fireflies which are flying around. However, in this work, we propose a mul-
tiobjective version of the FA with the aim of dealing with the Traffic Grooming
problem. The representation of a firefly (individual) is determinant for under-
standing how the algorithm tackles the problem. In this way, the chromosome
representation adopted in this work is the same as in [5]. The chromosome is
represented as a |N |× |N | matrix, where |N | is the number of nodes in the given
network topology. At each position of this matrix, we find a vector which stores
T transmitters, and a weighting factor (WFij). So, for each pair of nodes, we
can establish a maximum of T lightpaths. A more detailed description about
the chromosome is given in [5], as well as a procedure for generating random
individuals. The MO-FA works as follows:

16 Á. Rubio-Largo and M.A. Vega-Rodŕıguez

Input:
• G(N,E): physical topology

• W : number of wavelengths per link

• T : number of transceivers per node

• C: capacity of each wavelength

• Λ: traffic demand matrix

• K: number of shortest paths

• NF : Number of Fireflies in the population

• β0: attractiveness

• γ: absorption coefficient

• α: control parameter for exploration

• Stopping Criterion

Output:
• PF : set of non-dominated solutions

Step 1) Initialization:
Step 1.1) Set PF as empty. PF = ø

Step 1.2) Compute the K shortest paths between any two nodes m,n
in N if and only if m �= n, and Λx

mn > 0 for all x ∈ {1, 3, 12, and 48}.
The set of K shortest paths for all nodes will be stored in K − sp.

Step 1.3) Generate NF random fireflies/individuals x1, x2, ..., xNF

Step 2) Update:
For i,j = 1,...,NF do

Step 2.1) If and only if xj attracts/dominates xi (xj 	 xi), then move
xi towards xj by using the following equation:

xi = xi + β0e
−γr2ij (xj − xi) + α

(
rand[0, 1]− 1

2

)
(4)

Step 2.2) Update the objective functions of xi (f1, f2, and f3) by using
G(N,E), W , T , C, Λ, and K − sp.

Step 2.3) Update the set of non-dominated solutions (PF) with xi. Add
the firefly xi to PF only if no other firefly dominates it. Then, remove
from PF all fireflies dominated by xi.

Step 3) Stopping Criterion: If the stopping criterion is satisfied, then
stop and output PF . Otherwise, go to Step 2.

As we may observe, we start initializing the set of non-dominated solutions as
empty. Then, we calculate the K shortest paths for each pair of nodes under
certain constraints (see Step 1.2) and we generate NF random fireflies. In the
original FA (single-objective version), those fireflies with better value of fitness
are considered more attractive to the rest of fireflies flying around. In our mul-
tiobjective version of the FA, we have used the concept of Dominance () [2] to

Routing Low-Speed Traffic onto High-Speed Lightpaths by Using MO-FA 17

decide whether a firefly attracts another firefly or not (see Step 2.1). In the case
of a firefly xj attracts or dominates xi, the firefly xi moves towards xj according
to equation 4. In equation 4, rij refers to the Euclidean distance between xi
and xj . Furthermore, in this equation, the second term corresponds with the
attraction, and the third one is devoted to add dispersion to the algorithm. In
this work, we assume the same factor of attractiveness as in [6], β0=1. Only in
the case of moving xi towards xj , we update the objective functions of xi, as
well as updating the set of non-dominated solutions (Steps 2.2 and 2.3). Finally,
if the stopping criterion is not satisfied, then we go to Step 2. Otherwise, we
return the set of non-dominated solutions (PF).

The firefly algorithm is very similar to the Particle Swarm Optimization al-
gorithm (PSO). In fact, according to [6], the limiting case γ = 0 corresponds to
the standard PSO. In [6], Yang presented a comprehensive comparison between
the FA and PSO in order to prove the differences between the two algorithms.

4 Experimental Results

In this section, we present a comparison between the MO-FA and other ap-
proaches published in the literature. In the first place, we introduce the method-
ology followed to perform the comparisons.

In the comparisons, on the one hand, we compare the MO-FA with the
MOEAs proposed in [5] by using multiobjective metrics. On the other hand,
we make a single-objective comparison between the MO-FA and other methods
published in the literature.

To carry out the comparison with the DEPT, MO-VNS, NSGA-II, and SPEA2,
we have used a 6-node network topology (see [5]). This network consists of 6
nodes and 16 physical links with a capacity (C) equals to OC-48. Furthermore,
in order to demonstrate the effectiveness of the MO-ABC, we have 40 differ-
ent scenarios in which we vary the available resources per node and per link:
T={3,4,5,6,7,8,9,10,11,12} and W={1,2,3,4}. The set of low-speed traffic re-
quest is the same as in [5], with a total amount of traffic of 988 OC-1 units. All
the MOEAs were run using g++ (GCC) 4.4.5 on a 2.3GHz Intel PC with 1GB
RAM. Furthermore, the number of independent runs was 30 for each data set,
where the stopping criterion is based on the runtime: 30s.

The configuration used for DEPT, MO-VNS, NSGA-II, and SPEA2 is pre-
sented in [5]. In the case of the MO-FA, we have adjust the parameters of the
algorithm. To decide the best value of each parameter, we have performed 30
independent runs and measured the HV of each run. In this way, we compute
the median HV in the 30 runs, and select the value with the highest median.
Next, we present the values tested, where we have highlighted in bold the value
with the highest median of HV for each parameter:

– Number of Fireflies (NF): 25, 50, 75, 100, 125, 150, 175, 200.
– Attractiveness (β0): 0.05, 0.1, 0.25, 0.5, 0.75, 1.
– Absorption coefficient (γ): 0.05, 0.1, 0.25, 0.5, 0.75, 1.
– Control parameter for exploration (α): 0.05, 0.1, 0.25, 0.5, 0.75, 1.

18 Á. Rubio-Largo and M.A. Vega-Rodŕıguez

Table 1. Average HV obtained by the approaches. The notation used for pointing the
statistically non-significant differences between pairs of algorithms is the following: (*)
DEPT and MO-VNS, (**) DEPT and MO-FA, (†) MO-VNS and SPEA2, (‡) MO-VNS
and MO-FA, and (§) NSGA-II and SPEA2.

T W DEPT MO-VNS NSGA-II SPEA2 MO-FA

3 1 34.96% 35.21% 33.35% 32.33% 35.42%
4 1 39.29% 40.01% 36.48% 36.58% 41.28% §
5 1 41.80% 42.67% 38.87% 38.79% 45.00% §
6 1 43.45% 44.39% 39.84% 40.24% 47.45%
7 1 44.61% 45.61% 39.99% 41.26% 49.18%
8 1 45.48% 46.53% 42.76% 42.01% 50.47%
9 1 46.88% 46.57% 43.66% 42.37% 48.18%
10 1 47.44% 47.11% 43.91% 42.83% 48.79%
11 1 47.90% 47.55% 43.61% 43.20% 49.29%
12 1 48.28% 47.91% 43.64% 43.52% 49.71% §
3 2 38.02% 37.93% 36.05% 35.50% 37.40% *
4 2 47.03% 46.53% 44.46% 43.66% 47.33%
5 2 52.60% 51.95% 50.29% 49.29% 53.31%
6 2 56.41% 55.35% 53.17% 52.51% 57.16%
7 2 58.97% 57.74% 56.41% 54.79% 59.95%
8 2 60.87% 59.52% 57.82% 56.48% 62.03%
9 2 62.30% 60.89% 59.42% 57.79% 63.63%
10 2 63.44% 61.99% 60.48% 58.84% 64.91%
11 2 64.37% 62.88% 61.40% 59.69% 65.95%
12 2 65.14% 63.63% 62.21% 60.40% 66.82%

3 3 37.95% 38.16% 36.16% 35.73% 38.40%
4 3 48.89% 48.50% 46.64% 45.88% 49.07% **
5 3 56.95% 55.52% 54.41% 53.07% 57.17%
6 3 61.40% 59.88% 59.33% 57.45% 62.33%
7 3 64.81% 63.36% 62.40% 60.68% 66.38%
8 3 67.35% 65.95% 65.52% 63.09% 69.41%
9 3 69.22% 68.90% 67.36% 65.04% 72.19%
10 3 70.80% 70.46% 68.67% 66.54% 74.08%
11 3 72.09% 71.73% 70.47% 67.74% 75.62%
12 3 73.16% 72.79% 71.07% 68.78% 76.91%

3 4 38.27% 38.20% 36.20% 35.69% 37.92% *
4 4 49.02% 48.58% 46.38% 45.95% 48.60% ‡
5 4 58.22% 56.56% 55.82% 54.95% 57.75%
6 4 64.54% 60.93% 61.75% 60.87% 64.19% †
7 4 69.04% 64.31% 66.33% 64.89% 68.75%
8 4 72.36% 67.05% 68.88% 67.87% 72.15%
9 4 74.93% 68.78% 71.40% 70.17% 74.78% **
10 4 76.98% 70.99% 73.91% 72.00% 76.87% **
11 4 78.64% 71.71% 73.63% 73.50% 78.58% **, §
12 4 80.03% 72.80% 76.93% 74.74% 79.99% **

HV 57.35% 55.93% 54.53% 53.42% 58.61%

In the first place, we compare the approaches by using the well-known Hypervol-
ume (HV)quality indicator [11]. Since thismetrics is not free fromarbitrary scaling
of objectives, we have to normalize the non-dominated solutions obtained by the
MOEAs before calculating the HV. In this work, the normalization points depend
on the data sets. Therefore, for each scenario, the maximum values for each objec-
tive are f1=Total Amount of Traffic, f2=|N | ∗ T , and f3=|N |; and the minimum
values are f1=1, f2=1, and f3=1. For example, in a data set with T=4, the non-
dominated solutions will be normalized by using the points (988,24,6) and (1,1,1);
respectively. Note that, the normalization points are different than in [5]. In Table
1, we present a comparison among DEPT, MO-VNS, NSGA-II, SPEA2, andMO-
FA by using the average value of HV obtained by each MOEA in 30 independent
runs. As we may observe, the MO-FA obtains higher values of HV in most of the
data sets. In Figure 1, we present an illustrative comparison of the MOEAs. As we
can see, theMO-FA is clearly better than the rest of approacheswhen the resources
in the optical networks are limited (W=1,W=2, andW=3); however, it performs
similar to the DEPT algorithm in the easiest scenarios (W=4). In order to ensure

Routing Low-Speed Traffic onto High-Speed Lightpaths by Using MO-FA 19

(a) W=1 (b) W=2

(c) W=3 (d) W=4

Fig. 1. Illustrative comparison among the MOEAs using the average Hypervolume in
30 runs

a certain level of confidence in the comparison, we have performed the same sta-
tistical analysis by pair of MOEAs than in [5], with a confidence level of 95%. In
Table 1, we only report those data sets in which the differences of HV between two
algorithms are statistically not significant.

Secondly, we compare the MOEAs by using the Set Coverage (SC) indicator
[10], which measures the fraction of non-dominated solutions achieved by an
algorithm B; which are covered by the non-dominated solutions achieved by an
algorithm A (A�B). In Table 2, we present the average percentage of dominance
between each pair of MOEAs with different number of wavelengths per link.
As we may observe, the MO-FA is able to dominate the vast majority of the
non-dominated solutions obtained by any other MOEA. In contrast, the other
algorithms only cover a low percentage of the solutions obtained by the MO-FA.

To perform the single-objective comparison with other heuristics published in
the literature, we use only seven out of the forty scenarios (we have not found
results of the other heuristics for the rest of scenarios): T=3 W=3, T=4 W=3,
T=5 W=3, T=7 W=3, T=3 W=4, T=4 W=4, and T=5 W=4. In this compar-
ison, we compare the maximum throughput (y1) obtained by each approach in
each scenario. We compare the MO-FA with the following methods: Maximizing

20 Á. Rubio-Largo and M.A. Vega-Rodŕıguez

Table 2. Average SC by pair of MOEAs (A�B)

A B W=1 W=2 W=3 W=4 SC

DEPT MO-VNS 79.20% 71.29% 64.23% 65.94% 70.16%
NSGA-II 97.08% 98.26% 94.69% 96.45% 96.62%
SPEA2 96.21% 97.24% 98.87% 92.79% 96.28%
MO-FA 28.65% 25.38% 16.46% 14.86% 21.34%

MO-VNS DEPT 31.90% 28.53% 31.40% 30.01% 30.46%
NSGA-II 81.94% 70.37% 67.07% 63.34% 70.68%
SPEA2 79.64% 72.36% 68.15% 62.53% 70.67%
MO-FA 26.74% 21.71% 15.13% 16.33% 19.97%

NSGA-II DEPT 7.26% 3.59% 4.77% 4.89% 5.13%
MO-VNS 16.01% 10.46% 15.28% 10.81% 13.14%
SPEA2 51.61% 53.41% 55.37% 44.31% 51.18%
MO-FA 5.03% 2.67% 2.62% 2.43% 3.19%

SPEA2 DEPT 5.60% 1.77% 3.12% 2.33% 3.21%
MO-VNS 12.83% 5.34% 12.26% 8.04% 9.62%
NSGA-II 41.23% 25.77% 29.01% 35.73% 32.94%
MO-FA 2.98% 1.40% 2.12% 1.90% 2.10%

MO-FA DEPT 88.78% 81.02% 90.89% 92.04% 88.18%
MO-VNS 93.17% 87.44% 90.48% 92.74% 90.96%
NSGA-II 99.12% 100% 99.23% 99.86% 99.55%
SPEA2 96.21% 100% 99.84% 100% 99.01%

(a) W=3 (b) W=4

Fig. 2. Illustrative comparison between the MO-FA and several approaches published
in the literature

Single-Hop Traffic (MST) [9], Maximizing Resource Utilization (MRU) [9], INte-
grated Grooming PROCedure (INGPROC) [7] with several traffic policies (Least
Cost First (LCF), Maximum Utilization First (MUF), and Maximum Amount
First (MAF)), Strength Pareto Evolutionary Algorithm (SPEA) [4], and the
Traffic Grooming based on Clique Partitioning (TGCP) [1]. In Figure 2, we can
see that the values of throughput obtained by the MO-FA are higher than or
equal to those ones obtained by other methods in almost all data sets.

5 Conclusions and Future Work

In this work, we have presented a Multiobjective Evolutionary Algorithm in-
spired by the flash pattern and characteristics of fireflies for solving a telecom-
munication problem, the Traffic Grooming problem.

After performing several experiments, we can say that the MO-FA obtains
higher quality results than the MOEAs published in [5]. Furthermore, we can

Routing Low-Speed Traffic onto High-Speed Lightpaths by Using MO-FA 21

conclude that the MO-FA not only obtains more than one solution per run
(multiobjective algorithm), optimizing three objective functions; but is also able
to obtain results better than or equal to other single-objective approaches that
only optimize one objective.

As future work, we intend to apply the MO-FA to the Traffic Grooming prob-
lem by using large network topologies with the aim of proving the effectiveness
of our proposal.

Acknowledgements. This work was partially funded by the Spanish Ministry
of Economy and Competitiveness and the ERDF (European Regional Develop-
ment Fund), under the contract TIN2012-30685 (BIO project). Álvaro Rubio-
Largo is supported by the research grant PRE09010 from Gobierno de Ex-
tremadura (Consejeŕıa de Economı́a, Comercio e Innovación) and the European
Social Fund (ESF).

References

1. De, T., Pal, A., Sengupta, I.: Traffic Grooming, Routing, and Wavelength Assign-
ment in an Optical WDM Mesh Networks Based on Clique Partitioning. Photonic
Network Communications 20, 101–112 (2010)

2. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wi-
ley & Sons, Inc., New York (2001)

3. Gagnaire, M., Koubaa, M., Puech, N.: Network Dimensioning under Scheduled
and Random Lightpath Demands in All-Optical WDM Networks. IEEE Journal
on Selected Areas in Communications 25(S-9), 58–67 (2007)

4. Prathombutr, P., Stach, J., Park, E.K.: An Algorithm for Traffic Grooming in
WDM Optical Mesh Networks with Multiple Objectives. Telecommunication Sys-
tems 28, 369–386 (2005)

5. Rubio-Largo, A., Vega-Rodŕıguez, M.A., Gomez-Pulido, J.A., Sanchez-Perez, J.M.:
Multiobjective Metaheuristics for Traffic Grooming in Optical Networks. IEEE
Transactions on Evolutionary Computation, 1–17 (2012) (available online since
June 2012)

6. Yang, X.-S.: Firefly Algorithms for Multimodal Optimization. In: Watanabe, O.,
Zeugmann, T. (eds.) SAGA 2009. LNCS, vol. 5792, pp. 169–178. Springer, Heidel-
berg (2009)

7. Zhu, H., Zang, H., Zhu, K., Mukherjee, B.: A Novel Generic Graph Model for Traffic
Grooming in Heterogeneous WDM Mesh Networks. IEEE/ACM Transaction on
Networking 11, 285–299 (2003)

8. Zhu, K., Mukherjee, B.: A Review of Traffic Grooming in WDM Optical Networks:
Architectures and Challenges. Optical Networks Magazine 4(2), 55–64 (2003)

9. Zhu, K., Mukherjee, B.: Traffic Grooming in an Optical WDM Mesh Network.
IEEE Journal on Selected Areas in Communications 20(1), 122–133 (2002)

10. Zitzler, E., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutionary Algo-
rithms: Empirical Results. Evolutionary Computation 8, 173–195 (2000)

11. Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative
Case Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary
Computation 3(4), 257–271 (1999)

Pareto-optimal Glowworm Swarms Optimization

for Smart Grids Management

Eleonora Riva Sanseverino1, Maria Luisa Di Silvestre1, and Roberto Gallea2

1 DIEETCAM, Universita’ di Palermo, Viale delle Scienze, Palermo, Italy
{eleonora.rivasanseverino,marialuisa.disilvestre}@unipa.it

2 DICGIM, Universita’ di Palermo, Viale delle Scienze, Ed.6, Palermo, Italy
roberto.gallea@unipa.it

Abstract. This paper presents a novel nature-inspired multi-objective
optimization algorithm. The method extends the glowworm swarm par-
ticles optimization algorithm with algorithmical enhancements which al-
low to identify optimal pareto front in the objectives space. In addition,
the system allows to specify constraining functions which are needed in
practical applications. The framework has been applied to the power
dispatch problem of distribution systems including Distributed Energy
Resources (DER). Results for the test cases are reported and discussed
elucidating both numerical and complexity analysis.

Keywords: evolutionary optimization, swarm-optimization, pareto op-
timization, micro-grids.

1 Introduction

The management of modern electrical distribution systems has become complex
due to the large penetration of Renewable Energy Sources (RES) and to the
uncertain behavior of customers that can inject power in the network. These
systems are referred to as ’smart grids’, namely electricity networks that can
intelligently integrate the actions of all users connected to it - generators, con-
sumers and those that do both - in order to efficiently deliver sustainable, eco-
nomic and secure electricity supplies (’European Technology Platform Smart
Grid’ definition). In these systems, an efficient energy management system and
a proper regulation of some quantities, such as voltage and frequency, are re-
quired. Optimal energy management in these systems is typically performed on
a 24-hours basis (a day-ahead) and can be regarded as optimally dispatching a
set of Distributed Energy Resources of the grid (energy production units, en-
ergy storage systems and if possible, loads). Taking into account the former
issue, the problem can be regarded as optimally dispatching a set of sources
of the grid. Optimality is achieved minimizing quantities related to dispatch,
which are namely power loss (PL), operational costs (OC), and sometime car-
bon emissions (CE). Additional constraints need to be satisfied for a pattern to
be eligible for dispatch. These may involve voltage drops limitations (VD) and
currents in branches below their ampacity, i.e. ampere capacity (AC). For these

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 22–31, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

MOGSO for Smart Grids Management 23

reasons, this optimization problem has a multi-objective nature and cannot be
handled with classical analytical methods. Altough many efforts were done in
dealing with this kind of problems, a golden standard does not exist and multi-
objective optimization is still an open issue. Since the objectives set is composed
of contrasting goals, a common way of solving multi-objective problem is to find
the Pareto-optimal front of solutions, i.e. the set of equivalent non-dominated
solutions w.r.t. to the given goals, provided that no preferences exist among the
given goals. Some of the state-of-art methods are based on enhanced Genetic
Algorithms [1,2]. In this paper we propose a novel extension of a recently pro-
posed nature-inspired algorithm, the glowworm optimization, that can deal with
pareto optimization. The method is applied to solve a real management problem,
demonstrating how it is suitable for actual problems.

The paper is arranged as follows: in Section 2 some of the state-of-art multi-
objective optimization methods based on pareto set approximation are illus-
trated. Then, in Section 3 the proposed algorithm is introduced providing both
a theoretical explaination and technical details, while in Section 4 the details
of the application to the distribution systems are elucidated. Section 5 shows
the application of the method to the micro-grid optimal management to two
actual test scenarios and the results are evaluated. Finally, in Section 6, final
considerations are taken and future directions are pointed out to the reader.

2 Related Works

Multi-objective optimization is far from being (relatively) as straightforward as
single-objective optimization. The definition itself of a ”solution“ for this kind of
problems is not univocal. Usually, the solution to a multi-objective optimization
is considered as approximating or computing all or a representative set of Pareto
optimal solutions [3,4]. Pareto Optimal solutions set is defined as the set of
solution vectors with the properties that none of the objective functions can be
improved in value without impairment in some of the other objective values. In
absence of any other preference criteria, all of the vectors in the Pareto Set can be
considered equivalent from a purely mathematical perspective. Many endeavours
have been done towards Pareto optimization using a wide range of approaches.
All of these methods lie in different taxonomies, among these scalarization, which
reduces the given problem to the optimization of a single goal, composed as a
linear combination of the given objectives (Eq. 1).

min
x∈X

k−1∑
i=0

wifi (x). (1)

Such simple approach in some cases can warrant to achieve convergence to the
actual Pareto set, but often has the drawback that it is very hard or impossibile
to find the correct weighting parametrs wi to reach convergence. In addition this
approach suffers from objective scaling.

24 E. Riva Sanseverino, M.L. Di Silvestre, and R. Gallea

Another class of methods is the so-called no-preference methods, which, pro-
vided that all of the objectives have equal importance, reduce the problem to
the minimization of the following function:

min
∥∥f (x) − zideal

∥∥ , (2)

where ‖·‖ can be any Lp norm. This method is also known as global criterion [5].
Methods which require additional knowledge given by experts are known as

apriori methods, where objectives preference is expressed before the actual opti-
mization process. Among these exist the utility function method, the lexicographic
method, and goal programming [6].

The last category presented comprises the a posteriori methods, which pro-
duce a subset of the actual Pareto set. Among the most popular a posteriori
methods, evolutionary algorithms have demonstrated to be suitable, such as
Non-dominated Sorting Genetic Algorithm-II (NSGA-II) [1] and Strength Pareto
Evolutionary Algorithm 2 (SPEA-2) [2].

The following paper hybridizes the non-domination sorting concept of NSGA-
II with a traditionally single objective method, the glowworm swarm optimiza-
tion algorithm (GSO). This synthesis is explained in the following paragraphes,
after a detailed explaination of the original methods.

Classic Glowworm algorithm. In GSO [7], a swarm of agents are initially ran-
domly distributed in the search space. Agents are modelled after glow-worms.
Accordingly, they carry a luminescent quantity called luciferin along with them.
The glow-worms emit a light whose intensity is proportional to the associated
luciferin and interact with other agents within a variable neighbourhood. In par-
ticular, the neighbourhood is defined as a local-decision domain that has a vari-
able neighbourhood range rid bounded by a radial sensor range rs (0 < rid ≤ rs.
A glow-worm i considers another glow-worm j as its neighbour if j is within the
neighbourhood range of i and the luciferin level of j is higher than that of i.

The decision domain enables selective neighbour interactions and aids infor-
mation of disjoint sub-swarms. Each glow-worm is attracted by the brighter glow
of other glow-worms in the neighbourhood. Agents in GSO depend only on in-
formation available in their neighbourhood to make decisions. Each glow-worm
selects, using a probabilistic mechanism, a neighbour that has a luciferin value
higher than its own and moves toward it. These movements, that are based only
on local information and selective neighbour interactions, enable the swarm of
glow-worms to partition into disjoint subgroups that steer toward, and meet
at, multiple optima of a given multimodal function. The GSO algorithm starts
by placing a population of n glow-worms randomly in the search space so that
they are well dispersed. Initially, all the glow-worms contain an equal quantity
of luciferin l0. Each iteration consists of a luciferin-update phase followed by a
movement phase (update-position) based on a transition rule.

Luciferin-Update Phase: The luciferin update depends on the function value
at the glow-worm position. During the luciferin-update phase, each glow-worm
adds, to its previous luciferin level, a luciferin quantity proportional (using the

MOGSO for Smart Grids Management 25

luciferin enhancement constant λ) to the fitness of its current location in the
objective function domain. Also, a fraction of the luciferin value (the quantity
(1 − ρ is multiplied by the old value of luciferin and ρ ≤ 1) is subtracted to
simulate the decay in luciferin with time.

Update-Position Phase: During the update position phase, each glow-worm
decides, using a probabilistic mechanism, to move toward a neighbour that has
a luciferin value higher than its own. The amplitude of the movement is propor-
tional to the step size s. That is, glow-worms are attracted to neighbours that
glow brighter. Further details can be found in [7].

NSGA-II. Non-dominated sorting algorithm II [1] is based on the concept of
non-dominance of the solutions. The core of the methods, which is basically
a classic evolutionary (genetic) algorithm is the fitness function definition. At
each iteration, the current solutions are ranked according to a non-domimance
criterion. Solutions which are globally non-dominated are assigned to rank 1,
solutions which are dominated by rank 1 solutions only are assigned to rank 2,
and so on, until the whole solution set is covered. The sorting rank is then used
as a fitness value to the following genetic operators (selection, cross-over, etc.). In
addition, during ranking a second parameter is computed for each individual, the
crowding distance, which measures its proximity to its neighbors. Large average
crowding distance results in a wider spread of the values in the population, thus
diversification of the solutions.

3 Methods: GSO Extension to Pareto Optimization

GSO algorithm is intrinsically single-objective. To allowMO, a strategy to embed
all of the objective values in a single quality parameter is required. Our choice
for achieving MOGSO is to plug a non-dominated sorting criterion to filter the
objectives vectors and rank them into Pareto fronts [1]. The achieved behavior is
that, at each iteration, lower-rank swarm particles move towards top-rank par-
ticles with a velocity in direct proportion to their rank itself (i.e. the better the
solution, the lesser its velocity). Thus at each iteration, vrank1 < Vrankj , where
vrank1 is the velocity of solutions belonging to the first front of non dominated
solutions and vrankj is the velocity of solutions belonging to the j-th front of
non dominated solutions (which is worst than rank 1). As a result, all of the
glowworms will eventually lie in the top rank front, approximating the optimal
Pareto front as required. Such approach has been investigated and tested for
mathematical test problems and simple toy examples in our previous work [8].
Constraints handling. In addition to the basic formulation of the MOGSO ap-
proach, in order to use it in an actual problem, a constrainints handling mecha-
nism is required. Solutions which violates constraints are not candidates for the
final Pareto front, even if they are optimal from a objective optimization per-
spective. For this reason a simple further step is added to the main algorithm.
This function checks the constraints, and swarm particles that result positive
in their violation, are automatically assigned the lowest rank, notwithstanding

26 E. Riva Sanseverino, M.L. Di Silvestre, and R. Gallea

their objective values. This warrants that inadmissible solutions are discarded
as they are spotted, moving the swarm particles away from their current posi-
tion. Finally, the complete proposed MOGSO algorithm is summarized in the
pseudocode of Algorithm 1. In the pseudo-code λ is the luciferin enhancement
constant, a real number which scales the objective function J , and β is a param-
eter that affects the rate of change of the neighborhood range. J is the objective
function which is as larger as lower the rank of the solution is. If constraints
are violated J expresses the highest rank. The step 	i(t) refers to the luciferin
update, while the step xi(t+1) refers to the position updare of each glowworm.
Ni(t) represents the neighborhood of the i-th glowworm. nt is a parameter in-
dicating the neighborhood threshold.

Data:
m = number of dimensions;
n = number of glowworms;
s = step size;
xi(t) = location of glowworm i at time t;
deploy-agents-randomly;
for i = 1 to n do

�i (0) = �0
end

ri
d

(0) = r0;

t = 1;
while (t ≤ itermax) do

J = non-dominated-sort;
J = constraints-check;
for each glowworm i do

�i (t) = (1 − ρ) � (t− 1) + λJ
(
xi (t)

)
;

end
for each glowworm i do

Ni (t) =
{
j : dij (t) < ri

d
(t) ; �i (t) < �j (t)

}
;

for each glowworm j ∈ Nj (t) do

pij (t) =
�j(t)−�i(t)∑

k∈Ni(t)
�k(t)−�i(t)

;

end

j = select-glowworm(); xi (t + 1) = min
{
rs,max

{
0, ri

d
(t) + β

(
nt −

∣
∣Ni (t)

∣
∣)}};

end
t ← t + 1;

end

Algorithm 1. Pseudocode algorithm for MOGSO optimization

4 A Test Case: Distribution System Management

As introduced in Section 1, the issue of optimal power dispatch among Dis-
tributed Energy Sources (DER) is a multi-objective task, due to multiple goals
to be attained (such as minimum power losses, operational cost and carbon emis-
sions). From the analytical point of view, optimal power dispatch through Unit
commitment in smart grid appears to be very complicated since it is highly non-
linear and several constraints are required to be met. Besides, the presence of real
and reactive storage units strongly influences the possibility to dispatch power
and to perform voltage and frequency regulation by controlling their status.
The literature on the subject can be divided according to the various solution
methods for the problem: techniques such as dynamic programming, simulated
annealing, tabu search, fuzzy computing and genetic algorithms can be applied to
solve the issue. The literature on the optimal dispatch of energy sources can also

MOGSO for Smart Grids Management 27

be tackled from the point of view of the formulation of the optimization problem
as well as of the analysis of particular technical constraints, such as generator
ramp limits, or environmental constraints, such as carbon dioxide emissions tar-
gets. The work in [9] presents a comprehensive survey of the most interesting
papers on the issue.

The regulatory frame considered is that of a private smart grid, where all
generation units are owned by the same subject [10]; the smart grid can either
be a portion of a distribution system.

For a given design configuration (size, type and location of DERs; size and
location of capacitor banks), knowing the hourly upper and lower production
limits of each DER and the hourly loading level of each bus of the electrical
distribution network, the objectives to be achieved are:

– the minimization of the yearly overall production costs;
– the minimization of the yearly CO2 emissions,

where the independent optimization variables are the hourly power productions
of the DERs.

Consider a n-bus smart grid system with: - Nfix load or generation nodes
with fixed forecasted real and reactive power demands or injections;
- NDER controllable DERs. The problem is that to identify the real valued vector
identifying the operating points of the DERs in the network hour by hour of the
Nday representative days of the different periods of the year. The vector has
NDER · 24 ·Nday real elements; a subset of it taken for a generic hour h of the
generic day d takes the following form (see Eq. 3):

xh,d =
[
P g,h,d,
1 , P g,h,d,

2 , . . . , P g,h,d,
NDER

]
, (3)

the relevant reactive powers, Qg,h,d
j , can either be deduced since the bus are

voltage controlled (PV nodes) or can also be optimization variables, in case the
generation buses are considered PQ nodes.

The whole vector x can thus be written as (Eq. 4):

x =
[
x1,1, x2,1, . . . , x24,1, x1,2, x2,2, . . . , x24,2, . . . , x1,Nday

, x2,Nday
, . . . , x24,Nday

]
,

(4)
subject to the following constraints:

1. the values of the controlled variables, namely the DERs power otuputs (both
active and reactive), taking into account the required power reserve should
lie in the range defined by an upper limit P g

j max and a lower limit P g
j min,

(see Eq. 5 and 6),
P g

j min ≤ P g,h,d
j ≤ P g

j min, (5)

Q
g
j min ≤ Q

g,h,d
j ≤ Q

g
j min, (6)

where P g,h,d
j and Qg,h,d

j represent respectively the active and reactive power
production at hour h of day d of the j-th DER;

2. the solution must give raise at all nodes of voltage below a maximum limit
ΔVmin = 5%;

28 E. Riva Sanseverino, M.L. Di Silvestre, and R. Gallea

3. the solution must satisfy the constraint about power transfer limits in the
network lines, this contraint is usually always satisfied in well designed net-
works, therefore, in this formulation, it will not be considered.

The issue is that of finding the feasible vector x optimizing the following criteria:
- Yearly joule losses in the system (Eq. 7):

O1 (x) =
∑

d=1,Nday

∑

h=1,24

∑

i=1,nr

Ri

(
Ih,d
i

)2
Δt. (7)

In this expression, the energy losses in the system are evaluated as the summation
of the power Joule losses on each of the nr branches multiplied by Δt which in
this case is 1 hour. The quantities in round brackets are considered constant in
the considered time interval. This quantity is calculated after the solution of the
power flow set of equations, which depends on the power injections at the nodes.
- Yearly fuel consumptions cost (Eq. 8)

O2 (x) =
∑

d=1,Nday

∑

h=1,24

∑

i=1,NDG

CPiP
g,h,d
i Δt, (8)

where CPi (P) denotes the unitary fuel consumption cost of the i-th source,

P g,h,d
i is the power output of the i-th source at hour h and day d, considered

constant in time interval Δt (in this case equal to 1 hour).
The dependency of unitary cost of production takes into account the reduced

efficiency of microturbines at low output power. Please check [11] to see what vari-
ability has been considered.Therefore, the formulatedproblem is that to determine
the operating points of the DERs giving rise to a technical-economical optimum as
a compromise betweenminimumcost operation andhigh quality service.Minimum
cost operation is ensured if the overall fuel consumption is minimum.

5 Results and Discussion

In order to test the MOGSO algorithm to optimal power dispatch, the method
was applied to two actual test cases. For a more detailed theoretic validation,
the reader is invited to consider the dissertation in [8].

Experimental Setup. Results section is dedicated to the minimization of pro-
duction costs and power losses in smart grid. The applications are devoted to
the minimization of the quantities in Equations 7 and 8 for a single day d and
during 24 hours of operations. The tests have been carried out on two existing
distribution test systems:

1. 11-buses smart grid, represented in Figure 1.a In the system there is one
photovoltaic generation system and one microturbine;

2. 28-buses smart grid, represented in Figure 1.b. In the system there are four
photovoltaic generation systems and two microturbines.

Simulations and Results Analysis. The simulations have been carried out
on an AMD Phenom Quad-core at 2.30Ghz on Matlab platform, using the fol-
lowing parameters for the MOGSO algorithm: population = 50; iterations = 50;

MOGSO for Smart Grids Management 29

(a) 11-buses smart grid (b) 28-buses smart grid

Fig. 1. Grid networks used for MOGSO testing applied to optimal power dispatch of
DERs: 11-buses smart grid (a) and 28-buses smart grid (b)

the other parameters have been taken from the literature [12]. In average, the ex-
ecution time te,GSO of MOGSO is ≈ 10% lower the calculation time te,NSGA−II

of NSGA-II. Figure 2 shows the approximated Pareto fronts for the considered
test cases. As can be seen the solution found using MOGSO are slightly closer
to the axis (i.e. better convergence to the actual Pareto front).

In addition to the convergence time other performance metrics were assessed.
Due to the unavailability of the actual Pareto front for this problem, the spacing
indicator SP (S) has been used, which measures the uniform distribution of
solution but which does not say anything about the number of solutions over
the Pareto front, or its coverage. The formulation of the spacing index is reported
in the following equations (Eq. 9 and 10).

SP (S) =

√

1/|S − 1|
∑|S|

i=1

(
di − d

)
, (9)

di = min
sk∈S∩sk �=si

∑M

m=1
|fm (si) − fm (sk)| . (10)

where d is the average distance between points, calculated by the sum of ab-
solute distances along each axis. We conducted 100 simulations for statistically
assessing the SP of both MOGSO and NSGA-II, mean and variance values are
reported in Table 1. Results show that the methods are comparable.

Complexity Analysis. In order to provide a complete dissertation about the
proposed algorithm, a discussion about complexity is given. Each of the main
part of the algorithm is analyzed from a computational complexity perspective:

30 E. Riva Sanseverino, M.L. Di Silvestre, and R. Gallea

−5 −4 −3 −2 −1 0

x 10
4

0.5

1

1.5

2

2.5

3

3.5

4

Power loss (MWh)

P
ro

du
ct

io
n

co
st

 (
E

ur
o)

MOGSO
NSGA−II

(a) 11-buses smart grid

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5

x 10
4

0.5

1

1.5

2

2.5

3

3.5

4

Power loss (MWh)

P
ro

du
ct

io
n

co
st

 (
E

ur
o)

MOGSO
NSGA−II

(b) 28-buses smart grid

Fig. 2. Results for the two test cases: comparisons of the proposed MOGSO method
with NSGA-II are shown for 11-buses smart grid (a) and 28-buses smart grid (b).

Table 1. Means and variances for the 100 simulations executed for the two test cases,
both for MOGSO and NSGA-II algorithms

11-buses smart grid (Fig.1.a)

Method μ SP σ2 SP

MOGSO 0.104 ∗ 10−12 7.525e ∗ 10−27

NSGA-II 0.089 ∗ 10−12 5.859e ∗ 10−28

28-buses smart grid (Fig.1.b)

Method μ SP σ2 SP

MOGSO 0.112 ∗ 10−12 7.349 ∗ 10−28

NSGA-II 0.095 ∗ 10−12 9.431 ∗ 10−27

– Luciferin-update phase: this step is independent for each of the particles, so it is
linear w.r.t the population size n (complexity O (n)).

– Update-position phase: this step is dependent on to every particle state, so, it is
quadratic w.r.t the population size n (complexity O

(
n2

)
).

– Non-dominated sorting phase: this step requires to make comparisons between al
the possible combination of pairs of swarm particle n, thus requiring exactly n2

comparisons (complexity O
(
n2

)
).

As should be clear, the MO extension of GSO algorithm, does not introduce an
increment in the complexity of the process, keeping it O

(
n2

)
regardless of the use

of non domination sorting. In addition, an important point to mention is that,
being a particle system, many parts of the method can take advantage of parallel
hardware architectures such as Multi Core processing or gpGPU processing.
Thus, a parallel implementation would drastically lower the computation time.

6 Conclusions and Future Work

In this paper a novel approach to multi-objective (Pareto) optimization was pre-
sented. It extends the traditional single-objective glowworm swarm optimization
(GSO) algorithm by introducing some enhancements that allow to deal with mul-
tiple objectives and constraints. At each simulation step, the objective vector are

MOGSO for Smart Grids Management 31

ranked according to their relative dominance. Glowworms particles are than di-
rected to follow neighbors exhibiting highest dominance. As a result, at the end
of the process, all of the particles lie on a representative subset of the complete
Pareto front. The method has been applicated to the power distribution system
in presence of DERs problem. In particular, two test cases were assessed, and the
results are shown. In addition, an insight into algorithm complexity is provided.
Further direction of research are the parallel implementation of the system and
the introduction of mechanisms to give an higher diversity to the found solutions.

References

1. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast elitist multi-objective
genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation 6,
182–197 (2000)

2. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto
Evolutionary Algorithm for Multiobjective Optimization. In: Giannakoglou, K.C.,
et al. (eds.) Evolutionary Methods for Design, Optimisation and Control with
Application to Industrial Problems (EUROGEN 2001), pp. 95–100 (2002)

3. Ehrgott, M.: Multicriteria Optimization. Lecture Notes in Economics and Mathe-
matical Systems. Springer (2005)

4. Coello, C.A.C., Lamont, G.B., Van Veldhuisen, D.A.: Evolutionary Algorithms for
Solving Multi-Objective Problems. Genetic and Evolutionary Computation Series.
Springer (2007)

5. Hwang, C.L., Masud, A.S.M.: Multiple objective decision making, methods and ap-
plications: a state-of-the-art survey. Lecture Notes in Economics and Mathematical
Systems. Springer (1979)

6. Charnes, A., Cooper, W.W.: Management models and industrial applications of
linear programming. In: Management Models and Industrial Applications of Linear
Programming, vol. 2, Wiley (1961)

7. Krishnanand, K.N., Ghose, D.: Glowworm swarm based optimization algorithm for
multimodal functions with collective robotics applications. Multiagent and Grid
Systems 2(3), 209–222 (2006)

8. Riva Sanseverino, E., Di Silvestre, M.L., Gallea, R.: Multi-modal search for mul-
tiobjective optimization: an application to optimal smart grids management.
In: MedPower. IET (2012)

9. Padhy, N.P.: Unit commitment-a bibliographical survey. IEEE Transactions on
Power Systems 19(2), 1196–1205 (2004)

10. Vahedi, H., Noroozian, R., Hosseini, S.H.: Optimal management of microgrid us-
ing differential evolution approach. In: 2010 7th International Conference on the
European Energy Market (EEM), pp. 1–6 (June 2010)

11. Graditi, G., Ippolito, M.G., Riva Sanseverino, E., Zizzo, G.: Optimal set points
regulation of distributed generation units in micro-grids under islanded opera-
tion. In: 2010 IEEE International Symposium on Industrial Electronics (ISIE),
pp. 2253–2260 (July 2010)

12. Zhang, H., Fu, P., Liu, Y.: Parameter settings analysis for glowworm swarm op-
timization algorithm. Journal of Information and Computational Science 9(11),
3231–3240 (2012)

An Overlay Approach for Optimising

Small-World Properties in VANETs

Julien Schleich1, Grégoire Danoy1, Bernabé Dorronsoro2, and Pascal Bouvry1

1 Computer Science and Communications Research Unit
University of Luxembourg

{julien.schleich,gregoire.danoy,pascal.bouvry}@uni.lu
2 Laboratoire d’Informatique Fondamentale de Lille

University of Lille 1
bernabe.dorronsoro diaz@inria.fr

Abstract. Advantages of bringing small-world properties in mobile ad
hoc networks (MANETs) in terms of quality of service has been studied
and outlined in the past years. In this work, we focus on the specific class
of vehicular ad hoc networks (VANETs) and propose to un-partition
such networks and improve their small-world properties. To this end,
a subset of nodes, called injection points, is chosen to provide back-
end connectivity and compose a fully-connected overlay network. The
optimisation problem we consider is to find the minimal set of injec-
tion points to constitute the overlay that will optimise the small-world
properties of the resulting network, i.e., (1) maximising the clustering
coefficient (CC) so that it approaches the CC of a corresponding regular
graph and (2) minimising the difference between the average path length
(APL) of the considered graph and the APL of corresponding random
graphs. In order to face this new multi-objective optimisation problem,
the NSGAII algorithm was used on realistic instances in the city-centre
of Luxembourg. The accurate tradeoff solutions found by NSGAII (as-
suming global knowledge of the network) will permit to better know and
understand the problem. This will later ease the design of decentralised
solutions to be used in real environments, as well as their future valida-
tion.

Keywords: Multi-objective optimisation, VANETs, small-world.

1 Introduction

Mobile Ad hoc Networks (MANETs) are composed of mobile devices which
spontaneously communicate with each other without any previously existing
infrastructure. In MANETs, the limited radio range of the nodes, as well as
their mobility, cause a highly fluctuating topology which can induce a severe
degradation of the quality of service (QoS) or even lead to network partitioning,
i.e., there is no available path between some pair of nodes. In order to leverage
such issues many authors proposed to study or create small-world properties,
i.e., high clustering coefficient and small mean-shortest path length, in wireless

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 32–41, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

An Overlay Approach for Optimising Small-World Properties in VANETs 33

networks as they are assumed to improve some QoS metrics, e.g., end-to-end
throughput [13] or robustness to failure [5]. The main problem is however to
find a practical way to establish any communication link in an ad hoc network,
which is characterised by bounded transmission ranges. In this aim, we introduce
the notion of injection points, which are nodes equipped with an additional
communication interface. All injection points are assumed to be fully connected,
i.e., any injection point can directly communicate with another one.

In this work, we focus on a special case of MANET called VANET, i.e., Ve-
hicular Ad hoc NETworks, in which vehicles can either communicate with each
other, in a peer to peer fashion, or with road-side units that allow access to
backend systems. The scenario we will simulate for our experiments is the centre
of Luxembourg city. The motivation for this scenario is mainly that Luxembourg
city centre is covered by Wi-Fi access points, spread all over the city [1]. This
pre-existing infrastructure will allow us to actually implement the notion of injec-
tion point in a later stage. The tackled problem is a three-objectives one, where
(1) the number of injection points is to be minimised to limit communication
overhead, and small-world properties are to be maximised, i.e., (2) the clustering
coefficient (CC) is maximised so that it approaches the CC of a corresponding
regular graph and (3) the difference between the average path length (APL) of
the generated graph and the APL of corresponding random graphs is minimised.

The contribution of this paper is twofold. First, we propose a new paradigm
based on an overlay-graph approach to cope with Watts original re-wiring pro-
cess [19]. This new approach extends previous work [8,9,10] with a more realistic
injection point model. Second, we tackle the problem in a multi-objective fash-
ion with a well-known algorithm, namely NSGAII [11], in order to obtain a set
of good compromise solutions. Therefore, we solve the problem in a centralised
way, assuming that global knowledge of the network is known. The suitability
of this approach for real world might be debeatable. It would require efficient
mechanisms to communicate the network status to the server, as well as a fast
optimisation algorithm to dynamically take decisions on the vehicles to use as
injection points. However, it will definitely allow us to better understand the
problem and find highly accurate tradeoff solutions for the three considered ob-
jectives. This is the aim of this work, because it will provide theoretical bounds
that will be later used for the difficult task of designing decentralised protocols
and validating them in reality, which will be our next step for future research.

The remainder of this paper is organised as follows. In the next section, a
literature review on the usage of small-world properties in wireless networks in
general and in MANETs in particular is provided. Then, Sect. 3 introduces the
injection points problem and the corresponding optimisation model. The multi-
objective algorithm used to tackle this problem is presented in Sect. 4. The
experimental environment is described in Sect. 5 followed by the analysis of the
obtained results in Sect. 6. Finally, the last section contains our conclusions and
perspectives.

34 J. Schleich et al.

2 Related Work

Originally, the rewiring process proposed byWatts et al. to construct small-world
networks [19] is intended to remove edges from a regular graph and replace
them with new random edges. They demonstrated that it drastically reduces
the average path length (APL), approaching the APL of random graphs, while
keeping the clustering coefficient (CC) almost as high as in regular graphs.

In [14], the authors proposed the concept of contact nodes that are used
by regular nodes to communicate with them when they need some network
services. In this work, Helmy stated that contact nodes act as shortcuts but their
implementation details are left for further research. Simulation results showed
that only a fraction of nodes should endorse this role in order to obtain small-
world properties.

Different contributions are investigating methods to choose which nodes are
more suitable to act as contact nodes or which link should be deleted / rewired.
Brust et al. proposed various decentralised algorithms to enhance small-world
properties in MANETs. These include clustering algorithms to elect contact
nodes [3], topology control algorithms that removes inefficient edges [4] or create
new ones [5] to optimise the CC. In [2], the authors designed a framework for
wireless networks to self-organise in a small-world fashion using only locally
available information. It uses a non-random rewiring process to create useful
shortcuts in wireless networks.

Other contributions focused on how to actually implement contact nodes and
the rewiring process. Cavalcanti et al. first proposed in [6] to study the size of net-
work nodes to be equipped with an additional long distance transceiver to effec-
tively improve small-world properties. In [2], the authors proposed a similar idea
but using directional beam forming. Another approach consists in increasing the
transmission power of some nodes like in [5] and [18]. The results show that these
mechanisms allow a reduction of the APL while keeping good values of CC.

Most recently, small-world properties have been studied for VANETs, in partic-
ular to design more realistic simulation environments. In [15], the authors studied
the topology characteristics of VANETs and their implication on communication
protocols design. In [17], the authors conducted a similar study on different net-
works and concluded that they already show some small-world properties. They
developed a decentralised algorithm named PSAMANET+ that makes use of the
small APL and high CC information to efficiently broadcast information.

In this work, we have used realistic VANETs instances in the city centre
of Luxembourg (see Sect. 5 for more details), in which the network is usually
partitioned and the small-world properties can be greatly improved. Thus, we
propose to use an existing infrastructure (Wi-Fi hotspots of Luxembourg City)
in order to un-partition the network and enhance its characteristics.

3 Problem Description

The problem studied in this article consists in finding the best set of injection
points to create a fully-connected overlay network that un-partitions a VANET

An Overlay Approach for Optimising Small-World Properties in VANETs 35

and maximises the resulting network small-world properties. Section 3.1 provides
details on the small-world definition and used metrics, and Sect. 3.2 presents the
tackled multi-objective optimisation problem.

3.1 Small-World Properties

In this optimisation problem, we consider small-world properties as indicators
for the good set of rules to optimise the choice of injection points. Small-world
networks [19] are a class of graphs that combines the advantages of both regular
and random networks with respectively a high clustering coefficient (CC) and
a low average path length (APL). The APL is defined as the average of the
shortest path length between any two nodes in a graph G = (V,E), that is
APL = 1

n(n−1)

∑
i,j d(vi, vj) with d(vi, vj) the shortest distance between nodes

vi, vj ∈ V . It thus indicates the degree of separation between the nodes in

the graph. The local CC of node v with kv neighbours is CCv = |E(Γv)|
kv(kv−1) where

|E(Γv)| is the number of links in the relational neighbourhood of v and kv(kv−1)
is the number of possible links in the relational neighbourhood of v . The global
clustering coefficient is the average of all local CC in the network, denoted as
CC = 1

n

∑
v CCv. The CC measures to which extent strongly interconnected

groups of nodes exist in the network, i.e., groups with many edges connecting
nodes belonging to the group, but very few edges leading out of the group.

In this work, we consider Watts original definition of the small-world phe-
nomenon in networks with APL ≈ APLrandom and CC � CCrandom, where
APLrandom and CCrandom are, respectively, the APL and CC of random graphs
with similar number of nodes and average node degree k.

3.2 Model of the Problem

This problem considers hybrid VANETs where each vehicle can potentially have
both vehicle-to-vehicle and vehicle-to-infrastructure (e.g., using Wi-Fi hotspots)
communications. Nodes elected as injection points (i.e., nodes connected to the
infrastructure) form a fully connected overlay network, that aims at increas-
ing the connectivity and robustness of the VANET. Injection points respectively
permit to efficiently disseminate information from distant and potentially discon-
nected nodes and prevent costly bandwidth overuse with redundant information.
An example network is presented in Fig. 1.

We consider small-world as the desirable network properties to reach and, as
defined in the previous section, we rely on Watts definition of a small-world net-
work by considering two metrics, i.e., APL ≈ APLrandom and CC � CCrandom.
In addition, the number of chosen injection points has to be minimised as they
may induce additional communication costs.

The proposed multi-objective optimisation problem can be formalised as fol-
lows. The solution to this problem is a binary vector s of size n (number of
nodes in the network), s[1..n] where s[i] = 1 if node vi is an injection point, and
s[i] = 0 if vi is not an injection point. The decision space is thus of size 2n.

36 J. Schleich et al.

Injection point Overlay connection

Key
Network node V2V connection
Injection Point

Fig. 1. Network with 248 nodes including 6 injections points composing the overlay
network

This problem is a three objectives one, defined as:

f(s) =

⎧⎨⎩
min {inj}
max {cc} ;
min {apldiff}

s. t. component = 1 (1)

where inj is the number of chosen injection points, cc is the average clustering
coefficient of the resulting network, and apldiff is the absolute difference between
the APL of the resulting network and the APL of the equivalent random graph
(averaged over 30 different instances): apldiff = |apl−aplrandom|. These random
graphs are generated using Watts rewiring process [19], i.e., with randomness
p = 1. Since the initial objective is to unpartition the network, a constraint is set
on the number of connected components in the created network, i.e. component
must be equal to 1.

In order to optimise this hard three-objectives problem, we rely on the well-
known multi-objective evolutionary algorithm, NSGAII, described in detail in
the next section.

4 NSGAII

The NSGAII [11] algorithm is, undoubtedly, the reference algorithm in multi-
objective optimisation. A pseudocode is given in Algorithm 1. NSGAII does not
implement an external archive of non-dominated solutions, but the population
itself keeps the best non-dominated solutions found so far. The algorithm starts

An Overlay Approach for Optimising Small-World Properties in VANETs 37

by generating an initial random population and evaluating it (lines 2 and 3).
Then, it enters in the main loop to evolve the population. It starts by generating
a second population of the same size as the main one. It is built by iteratively
selecting two parents (line 6) by binary tournament based on dominance and
crowding distance (in the case the two selected solutions are non-dominated),
recombining them (we use the two-point crossover in our case) to generate two
new solutions (line 7), which are mutated in line 8 (we use bit flip mutation)
and added to the offspring population (line 9). The number of times this cycle
(lines 5 to 10) is repeated is the population size divided by two, thus generating
the new population with the same size as the main one. This new population is
then evaluated (line 11), and merged with the main population (line 12). Now,
the algorithm must discard half of the solutions from the merged population to
generate the population for the next generation. This is done by selecting the best
solutions according to ranking and crowding, in that order. Concretely, ranking
consists on ordering solutions according to the dominance level into different
fronts (line 13). The first front is composed by the non-dominated solutions in
the merged population. Then, these solutions in the first front are removed from
the merged population, and the non-dominated ones of the remaining solutions
compose the second front. The algorithm iterates like this until all solutions are
classified. To build the new population for the next generation, the algorithm
adds those solutions in the first fronts until the population is full or adding a
front would suppose exceeding the population size (line 14). In the latter case
(lines 15 to 17), the best solutions from the latter front according to crowding
distance (i.e., those solutions that are more isolated in the front) are selected to
complete the population. The process is repeated until the termination condition
is met (lines 4 to 18).

1: //Algorithm parameters in ‘nsga’
2: InitialisePopulation(nsga.pop);
3: EvaluatePopulation(nsga.pop);
4: while ! StopCondition() do
5: for index ← 1 to cga.popSize/2 do
6: parents←SelectParents(nsga.pop);
7: children←Crossover(nsga.Pc,parents);
8: children←Mutate(nsga.Pm,children);
9: offspringPop←Add(children);
10: end for
11: EvaluatePopulation(offspringPop);
12: union←Merge(nsga.pop, offspringPop);
13: fronts←SortFronts(union);
14: (Pop’, lastFront)←GetBestCompleteFronts(fronts);
15: if size(nextPop) < nsga.popsize then
16: Pop’←BestAccToCrowding(lastFront,nsga.popsize-size(Pop’));
17: end if
18: end while

Algorithm 1. Pseudocode for NSGAII

5 Experimental Setup

We describe in this section the methodology we followed for our experiments.
Solutions are represented as a binary string, every bit representing one vehicle.

38 J. Schleich et al.

Those genes set to 1 mean that the corresponding cars act as injection points,
while a 0 value indicates the contrary.

The configuration used for NSGAII algorithm is the one originally suggested
by the authors [11]. However, we had to adapt some parameters to deal with
the binary representation of our problem (see Table 1): the two-point recombi-
nation and bit-flip mutation operators were used. In two-point recombination,
two crossover positions are selected uniformly at random in both parents, and
the values between these points are exchanged to generate two new offspring
solutions. The bit-flip mutation is to change a 1 into a 0, or vice-versa. The
algorithm evolves until 50, 000 fitness function evaluations are performed, and
30 independent runs were executed for every problem instance.

In terms of network, we have used realistic VANETs instances in the city cen-
tre of Luxembourg, simulated using the VehILux mobility model [16]. VehILux
accurately reproduces the vehicular mobility in Luxembourg by exploiting both
realistic road network topology (OpenStreetMaps) and real traffic counting data
from the Luxembourg Ministry of Transport. The 4 studied networks repre-
sent snapshots of a simulated area of 0.6 km2, 2 snapshots are taken between
6:00 a.m. and 6:15 a.m., instances and the 2 others between 7:00 a.m. and 7:15
a.m. These 4 network instances are named using their corresponding timestamp,
starting from 21900 to 25800. In the case of Luxembourg city, this time range
is characterised by a monotonously increasing number of vehicles due to a very
dense commuting activity. The properties of the instances are shown in Table 2.

Table 1. NSGA-II configuration

Parameters Values

Population size 100

Final archive size 100

Max. evaluations 50, 000

Pop. initialisation Random

Selection Binary tournament

Recombination Two-point (DPX)

Probability pc = 0.9

Mutation Bit-flip

Probability pm = 1
ChromosomeLength

Independent runs 30

Table 2. Network instances

Surface 0.6 km2

Coverage radius 100 m

6
a
.m

. Network Number 21900 22200

Number of Nodes 40 62

Partitions 10 8

Solution space 112 4.6118

7
a
.m

. Network Number 25500 25800

Number of Nodes 223 248

Partitions 10 6

Solution space 1.3467 4.5274

6 Results

We present in this section the results we obtained in our experiments. They are
plotted in Fig. 2. These Pareto fronts are obtained after merging all the non-
dominated solutions reported by NSGAII in the 30 independent runs performed
for every problem instance. In order to keep a subset of representative solutions
(a maximum of 100 solutions are selected), the strength raw fitness technique of
SPEA2 was used as density estimator to discard non-dominated solutions from
the densest area. It was selected because it is more suitable than ranking and
crowding for three dimensional problems [7].

An Overlay Approach for Optimising Small-World Properties in VANETs 39

0.75
0.8

0.85
0.9

0.95
1

0
0.2

0.4
0.6

0.8
10

15

20

25

30

35

40

CCAPL

N
um

be
r

of
 In

je
ct

io
n

P
oi

nt
s

(a) st21900

0.8
0.85

0.9
0.95

1

0
0.5

1
1.5

2
0

10

20

30

40

50

60

70

CCAPL

N
um

be
r

of
 In

je
ct

io
n

P
oi

nt
s

(b) st22200

0.75
0.8

0.85
0.9

0.95
1

0
0.5

1
1.5

2
2.5

0

50

100

150

200

250

CCAPL

N
um

be
r

of
 In

je
ct

io
n

P
oi

nt
s

(c) st25500

0.75
0.8

0.85
0.9

0.95
1

0
0.5

1
1.5

2
0

50

100

150

200

250

CCAPL

N
um

be
r

of
 In

je
ct

io
n

P
oi

nt
s

(d) st25800

Fig. 2. Pareto fronts found for the different problem instances

In Fig. 2, the black squares represent the best solutions we obtained in our
previous work [12], using two panmictic GAs (generational and steady-state),
a cellular GA, and a cooperative coevolutionary GA to solve an aggregative
function of the objectives. Two different linear combinations were used for this
single-objective approach. The first one only included the two small-world mea-
sures as a way to evaluate the number of injection points needed to reach optimal
small-world values (referred to as no-inj from now), while the second one included
all three objectives (that we call it inj). Each figure thus includes black squares
that correspond to the best solution obtained with each objective function. As it
can be seen, the solutions reported are well spread over a wide range of values.
This is important to provide the decision maker with a large choice of diverse
solutions to the problem. In these Pareto fronts, we observe that the higher the
network density is, the lower the diversity of solutions found, especially for those
solutions with high number of injection points. The reason is that dense networks
have a small APL, allowing small improvements after adding injection points.
Therefore, new injection points will mainly affect the CC value of the network.

Additionally, we analyse how good the multi-objective technique is performing
compared to the solutions provided by the single-objective methods. First, we
notice that the no-inj results are generally less accurate than their inj counter-
parts. Indeed, for the small instances, named 21900 and 22200, the no-inj solution

40 J. Schleich et al.

is dominated by 51.35%, resp. 4.41%, of the solutions in the Pareto front, while
the inj solutions are non-dominated in most cases (only dominated 0%, resp.
0.44% of the solutions in the front). For these small instances, we can conclude
that the multi-objective optimisation brings a substantial improvement as none
of its solutions are dominated by the single objective techniques and some of
them even dominate no-inj solutions. We would like to recall that the compared
inj and no-inj solutions are the best results found after 30 independent runs of
four different GAs [12]. In the case of the bigger instances, i.e., 25500 and 25800,
the tendency for the inj single objective solution to be more accurate than its
no-inj counterpart is confirmed. Indeed, the inj solution dominates 13.78%, resp.
26.69% of all the non-dominated solutions found in the 30 independent runs
performed. While these results cannot be considered as flawless, it still means
that 86.22%, resp. 73.31% of the solutions found are non-dominated and thus we
propose a wide variety of good solutions to the decision maker. This is partic-
ularly true as the number of non-dominated solutions found increases with the
size of the instance: 74, 227, 537, 532 for the considered instances, i.e., 21900,
22200, 25500, 25800. As a consequence, even if 74 solutions (26.69%) are dom-
inated by the inj single objective solution in the 25800 instance, we still found
458 non-dominated solutions.

7 Conclusions and Future Work

We tackled in this work the un-partitioning of VANETs and their connectivity
optimisation. For that, we proposed the use of road-side units to build an overlay
network of backend connected nodes, called injection points, such that the small-
world properties of the resulting VANET are optimised. We handle this new
multi-objective problem with the well-known NSGAII algorithm to find highly
accurate tradeoff solutions. The use of such algorithm using global knowledge
of the network in reality might be arguable, because it would require the use of
centralised servers to find solutions in real time, as well as high communication
overheads. However, it will allow us to better know the problem and obtain
theoretical bounds, with the aim of designing and validating novel decentralised
protocols more suitable for real VANETs. A formulation of this novel multi-
objective problem has been proposed, and two different scenarios representing
realistic networks in the city centre of Luxembourg were used. Our experimental
results show a plethora of different tradeoff solutions to the problem, offering
a larger choice for the less dense networks studied. The solutions outperform,
or are similar to, the most accurate ones we found in our previous work with
four different genetic algorithms, using two biased single-objective formulations
of the problem. Future work will exploit the obtained quasi-optimal results to
evaluate the performances of decentralised approaches to elect injection points
in order to reach unpartitioned networks with small-world properties in realistic
VANETs.

Acknowledgments. B. Dorronsoro acknowledges the support by the Fonds
National de la Recherche, Luxembourg (AFR contract no 4017742).

An Overlay Approach for Optimising Small-World Properties in VANETs 41

References

1. Hotcity network website, http://www.hotcity.lu
2. Banerjee, A., Agarwal, R., Gauthier, V., Yeo, C.K., Afifi, H., Lee, B.-S.: A self-

organization framework for wireless ad hoc networks as small worlds. CoRR,
abs/1203.1185 (2012)

3. Brust, M.R., Frey, H., Rothkugel, S.: Dynamic multi-hop clustering for mobile
hybrid wireless networks. In: Int. Conf. on Ubiquitous Information Management
and Communication (ICUIMC), pp. 130–135. ACM (2008)

4. Brust, M.R., Ribeiro, C.H.C., Turgut, D., Rothkugel, S.: LSWTC: A local small-
world topology control algorithm for backbone-assisted mobile ad hoc networks.
In: IEEE Con. on Local Computer Networks (LCN), pp. 144–151 (2010)

5. Brust, M.R., Turgut, D., Riberio, C.H.C., Kaiser, M.: Is the clustering coefficient
a measure for fault tolerance in wireless sensor networks? In: IEEE Int. Conf. on
Communications—Ad-hoc and Sensor Networking Symposium (ICC) (2012)

6. Cavalcanti, D., Agrawal, D., Kelner, J., Sadok, D.: Exploiting the small-world
effect to increase connectivity in wireless ad hoc networks. In: IEEE Int. Conf. on
Telecommunications (2004)

7. Coello Coello, C.A., Lamont, G.B., Veldhuizen, D.A.: Evolutionary Algorithms for
Solving Multi-Objective Problems, 2nd edn. Springer (2007)

8. Danoy, G., Alba, E., Bouvry, P.: Optimal interconnection of ad hoc injection net-
works. Journal of Interconnection Networks (JOIN) 9(3), 277–297 (2008)

9. Danoy, G., Alba, E., Bouvry, P., Brust, M.R.: Optimal design of ad hoc injec-
tion networks by using genetic algorithms. In: Conf. on Genetic and Evolutionary
Computation, GECCO, pp. 2256–2256. ACM (2007)

10. Danoy, G., Bouvry, P., Hogie, L.: Coevolutionary genetic algorithms for ad hoc
injection networks design optimization. In: IEEE Congress on Evolutionary Com-
putation (CEC), pp. 4273–4280 (2007)

11. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. on Evol. Comp. 6(2), 182–197 (2002)

12. Dorronsoro, B., Ruiz, P., Danoy, G., Pigné, Y., Bouvry, P.: Evolutionary Algo-
rithms for Mobile Networks. Wiley (in press, 2013)

13. Filiposka, S., Trajanov, D., Grnarov, A.: Analysis of small world phenomena and
group mobility in ad hoc networks. In: Innovative Algs. and Techns. in Automation,
Industrial Electronics and Telecommunications, pp. 425–430. Springer (2007)

14. Helmy, A.: Small worlds in wireless networks. IEEE Communications Letters 7(10),
490–492 (2003)

15. Pallis, G., Katsaros, D., Dikaiakos, M.D., Loulloudes, N., Tassiulas, L.: On the
structure and evolution of vehicular networks. In: Int. Symp. on Modeling, Analysis
& Simulation of Computer and Telecom. Systems, pp. 1–10. IEEE (2009)

16. Pigné, Y., Danoy, G., Bouvry, P.: A Vehicular Mobility Model Based on Real Traffic
Counting Data. In: Strang, T., Festag, A., Vinel, A., Mehmood, R., Rico Garcia,
C., Röckl, M. (eds.) Nets4Trains/Nets4Cars 2011. LNCS, vol. 6596, pp. 131–142.
Springer, Heidelberg (2011)

17. Rezende, C., Boukerche, A., Pazzi, R.W., Rocha, B.P.S., Loureiro, A.A.F.: The
impact of mobility on mobile ad hoc networks through the perspective of complex
networks. J. Parallel Distrib. Comput. 71(9), 1189–1200 (2011)

18. Stai, E., Karyotis, V., Papavassiliou, S.: Socially-inspired topology improvements
in wireless multi-hop networks. In: IEEE Int. Conf. on Communications (ICC), pp.
1–6 (2010)

19. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Na-
ture 393(6684), 440–442 (1998)

http://www.hotcity.lu

Impact of the Number of Beacons

in PSO-Based Auto-localization
in UWB Networks

Stefania Monica and Gianluigi Ferrari

Wireless Ad-hoc and Sensor Networks Laboratory
Department of Information Engineering

University of Parma, I-43124 Parma, Italy
stefania.monica@studenti.unipr.it

gianluigi.ferrari@unipr.it

http://wasnlab.tlc.unipr.it/

Abstract. In this paper, we focus on auto-localization of nodes in a
static wireless network, under the assumption of known position of a
few initial nodes, denoted as “beacons”. Assuming that Ultra Wide
Band (UWB) signals are used for inter-node communications, we an-
alyze the impact of the number of beacons on the location accuracy.
Three different approaches to localization are considered, namely: the
Two-Stage Maximum-Likelihood (TSML) method ; the Plane Intersec-
tion (PI) method, and Particle Swarming Optimization (PSO). Simula-
tion results show that PSO allows to obtain accurate postion estimates
with a small number of beacons, making it an attractive choice to im-
plement effective localization algorithm.

Keywords: Particle Swarm Optimization (PSO), Auto-localization,
Two-Stage Maximum-Likelihood (TSML) Algorithms, Least Square (LS)
Method, Ultra Wide Band (UWB) Signaling.

1 Introduction

The problem of locating sources in an indoor environment has been widely stud-
ied since it has many applications in various areas, such as: monitoring of people
in hospitals or in high security areas; search for victims or firefighters in emer-
gency situations; home security; and locating people or vehicles in a warehouse.
The use of wireless networks is an attractive option in this field, as they com-
bine low-to-medium rate communications with positioning capabilities [6]. As
a matter of fact, the distance between each pair of nodes can be estimated by
sending signals between them and by extracting from these signals some physical
quantities, such as the received signal strength, the angle of arrival, or the time
of flight. The position of a node can then be estimated by using the distance
measurements from a certain number of nodes with known positions, denoted
as “beacons.” The accuracy of the obtained position estimate depends on the

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 42–51, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://wasnlab.tlc.unipr.it/

PSO for Auto-localization in UWB Networks 43

errors that affect wireless communications between nodes, which, in indoor en-
vironments, are mainly due to non-line-of-sight, multipath, and multiple access
interference. To reduce the impact of these sources of errors (thus obtaining
a more accurate position estimate), Ultra Wide Band (UWB) signaling is a
promising technology, since, on one hand, the large bandwidth allows to pene-
trate through obstacles and to resolve multipath components and, on the other
hand, the high time resolution improves the ranging capability [14].

In this paper, the considered scenario is a warehouse in which fixed Anchor
Nodes (ANs) with known positions are used to locate Target Nodes (TNs),
such as people and vehicles. A very large number of ANs might be necessary
to guarantee accurate TN estimation in every accessible point inside a large
building, and their accurate positioning could be very demanding also from an
economic point of view. Moreover, if the geometry of the warehouse changes
(e.g., for varying quantities of stored goods), the ANs might be replaced and/or
new fixed ANs might be added. To overcome this problem, we focus on the
auto-localization of the ANs assuming to know the exact positions of only a few
beacons. The number of beacons should be small, in order to reduce the cost
of installation, but sufficiently large to guarantee a reliable position estimate of
other ANs. The focus of this work is to investigate the impact of the number of
beacons on the system performance.

We assume to use UWB signaling. The distances between pairs of nodes are
estimated by means of a time-based approach. More precisely, we consider a
Time Difference Of Arrival (TDOA) approach, which is based on the estimation
of the difference between the arrival times of signals traveling between each node
to locate and beacons.

Many location estimate techniques, based on range measurement, have been
proposed in the literature. Among them, it is worth recalling iterative methods,
such as those based on Taylor series expansion [5], or the steepest-descent algo-
rithm [9]. These techniques guarantee fast convergence for an initial value close
to the true solution, which is often difficult to obtain in practice, but they are
computationally expensive and convergence is not guaranteed (for instance, ig-
noring higher order terms in the Taylor series expansion may lead to significant
errors). To overcome these limitations, closed-form algorithms have been studied,
such as the Plane Intersection (PI) method [12] and the Two-Stage Maximum-
Likelihood (TSML) method [2]. These methods can be re-interpreted as possible
approaches to solve a minimization problem. According to this perspective, the
location estimate can then be found by means of optimization techniques. More
precisely, by re-formulating the initial system of equations of the TSML in terms
of an optimization problem, we solve it through the use of Particle Swarming Op-
timization (PSO). In this work we show that the proposed approach can perform
better than the PI and the TSML methods.

This paper is organized as follows. In Section 2, the PI and TSML methods
and the PSO algorithm are described. In Section 3 numerical results, relative
to the impact of the number of beacons on the performances of the different
algorithms, are presented. Section 4 concludes the paper.

44 S. Monica and G. Ferrari

2 Scenario Description

Throughout the paper, we assume that all the ANs lay on a plane, which could
be, for instance, the ceiling of a warehouse. We suppose that M beacons, whose
coordinates are denoted by si = [xi, yi]

T , ∀i = 1, . . . ,M are used to get the
position estimate of each AN with unknown position. In order to apply the
algorithms outlined in the remainder of this section, a necessary condition is
that M ≥ 4.

If we define ue = [xe, ye]
T as the true position of a generic AN (whose position

needs to be estimated) and ûe = [x̂e, ŷe]
T as its estimated position, then the true

and estimated distances between the i−th beacon and the AN of interest are,
respectively:

ri =
√
(ue − si)

T (ue − si) r̂i =
√
(ûe − si)

T (ûe − si). (1)

Since we are considering UWB signaling, it can be shown that r̂i � ri+νi, where
νi = εi + b, εi ∼ N (0, σ2

i), εi is independent from εj if i �= j (j = 1, . . . ,M),
and b is a synchronization bias [1]. Moreover, according to [1], the standard
deviation σi of the position error estimation between two UWB nodes can be
approximated as a linear function of the distance between them, namely

σi � σ0ri + β. (2)

In the following, the values σ0 = 0.01 m and β = 0.08 m are considered. These
values are obtained in [1] by considering Channel Model 3 described in [10] and
the energy detection receiver presented in [3], which is composed by a band-pass
filter followed by a square-law device and an integrator, with integration interval
set to Ts = 1 s. The results presented in the following hold under these channel
and receiver assumptions.

In the remainder of this section, the following notation will be used:

Δ1i = ri−r1, ∀ i = 2, . . . , M Ki = x2i +y2i ∀ i = 1, . . . , M. (3)

2.1 TSML Method

According to the TSML method, each TDOA measurement identifies a hyper-
bola which the source has to belong to. Therefore, given a set of TDOA mea-
surements, the position estimate can be determined by solving the system of
equations corresponding to these hyperbolas using a Least Square (LS) tech-
nique [2]. Observing that r2i = (Δ1i+r1)

2, from (1) and (3) the following TDOA
non-linear equations can be derived:

Δ2
1i + 2Δ1ir1 = −2xixe − 2yiye + x2e + y2e −Ki − r21 i = 2, . . . ,M. (4)

When using estimated distances instead of the real ones, defining φ̂
1
= [ûTe , r̂1]

T ,
the set of equations (4) can be written as

Ĝ φ̂
1
= ĥ (5)

where

PSO for Auto-localization in UWB Networks 45

Ĝ = −

⎛⎜⎜⎜⎝
x2 − x1 y2 − y1 Δ̂12

x3 − x1 y3 − y1 Δ̂13

...
...

...

xM − x1 yM − y1 Δ̂1M

⎞⎟⎟⎟⎠ ĥ =
1

2

⎛⎜⎝ K1 −K2 + Δ̂2
12

...

K1 −KM + Δ̂2
1M

⎞⎟⎠ (6)

and Δ̂1i = r̂i− r̂1, ∀i = 2, . . . ,M . This is a non-linear system because, according
to (1), r̂1 depends on x̂e and ŷe. The solution of (5) is determined in 2 steps.
First, x̂e, ŷe, and r̂1 are assumed to be three independent variables and the
(linear) system is solved by using the LS method. Consider the error vector

ψ � Ĝ(φ̂
1
− φ

1
) (7)

where φ
1
= [xe, ye, r1]

T . The Maximum Likelihood (ML) estimate of φ̂
1
is

φ̂
1
= (Ĝ

T
Ψ−1Ĝ)−1Ĝ

T
Ψ−1ĥ (8)

and Ψ � cov(ψ) = BQB where B = diag(r2, . . . , rM), Q = E[ε1ε
T
1] and

(ε1)j = Δ̂1j − Δ1j [7]. It can be shown that cov (φ̂
1
) = (GTΨ−1G)−1 [2].

Taking into account the relation between x̂e, ŷe, and r̂1, i.e., equation (1), the
following set of equations can be obtained:

ψ′ = ĥ
′ −G′φ̂

2
(9)

where

ĥ
′
= [([φ̂

1
]
1
− x1)

2, ([φ̂
1
]
2
− y1)

2, [φ̂
1
]
2

3
]T G′ =

⎛⎝1 0
0 1
1 1

⎞⎠
φ̂
2
= [(x̂e − x1)

2, (ŷe − y1)
2]T .

The ML solution of (9) is

φ̂
2
= (G′TΨ ′−1G′)−1G′TΨ ′−1ĥ

′
(10)

where Ψ ′ � cov(ψ′) = 4B′cov(φ̂
1
)B′ and B′ = diag(xe − x1, ye− y1, r1) [7]. This

leads to the following position estimate

ûe = U

[√
[φ̂

2
]1,

√
[φ̂

2
]2

]T

+ s1

where U = diag[sgn(φ̂
1
− s1)].

46 S. Monica and G. Ferrari

2.2 PI Method

According to the PI method, introduced in [12], any triple of ANs (which leads
to a pair of TDOA measurements) identifies the major axes of a conic, a focus of
which is the position of the source. Given at least two triples of ANs, the position
estimate can then be determined by solving the system given by the equations
of the corresponding axes. By considering the axes identified by {s1, s2, sk},
k = 3, . . . ,M the system can be written as

Â ûe = b̂ (11)

where

Â =

⎛⎜⎜⎜⎝
x21Δ̂13 − x31Δ̂12 y21Δ̂13 − y31Δ̂12

x21Δ̂14 − x41Δ̂12 y21Δ̂14 − y41Δ̂12

...
...

x21Δ̂1M − xM1Δ̂12 y21Δ̂1M − yM1Δ̂12

⎞⎟⎟⎟⎠ (12)

and

b̂ =
1

2

⎛⎜⎜⎜⎝
−Δ̂12Δ̂13(Δ̂13−Δ̂12)+(K1−K2)Δ̂13−(K1−K3)Δ̂12

−Δ̂12Δ̂14(Δ̂14−Δ̂12)+(K1−K2)Δ̂14−(K1−K4)Δ̂12

...

−Δ̂12Δ̂1M (Δ̂1M−Δ̂12)+(K1−K2)Δ̂1M−(K1−KM)Δ̂12

⎞⎟⎟⎟⎠ . (13)

where xj1 � x1 − xj , yj1 � y1 − yj , j = 2, . . . ,M , and Kj and Δ̂1j are defined
in (3). The LS solution of (11) is then given by

ûe = (Â
T
Â)−1Â

T
b̂. (14)

2.3 PSO Algorithm

The starting point for the TSML method was the system (5) in Subsection 2.1.
Through simple algebraic manipulations, this system can be written as

B ûe = t̂ (15)

where

B = −2

⎛⎜⎜⎜⎝
x2 − x1 y2 − y1
x3 − x1 y3 − y1

...
...

xM − x1 yM − y1

⎞⎟⎟⎟⎠ t̂ =

⎛⎜⎜⎜⎝
r̂22 − r̂21 +K1 −K2

r̂23 − r̂21 +K1 −K3

...
r̂2M − r̂21 +K1 −KM

⎞⎟⎟⎟⎠ . (16)

Notice that, while in (5) both the matrix Ĝ and the vector ĥ contain noisy data,

in (15) the measurements affected by noise only appear in vector t̂, while the

PSO for Auto-localization in UWB Networks 47

matrix B cointains known parameters. By interpreting the system (15) as an
optimization problem, its solution can be expressed as follows:

ûe = argminu||t̂−B u||. (17)

The PSO algorithm, introduced in [8], can be used to solve this problem. Accord-
ing to this algorithm, the set of potential solutions of an optimization problem is
modeled as a swarm of S particles, which are guided towards the optimal solu-
tion of the given problem, by exploiting “social” interactions between individuals
[11]. It is assumed that every particle i in the swarm (i = 1, . . . , S) at any given
instant t is associated with a position x(i)(t) in the region of interest and with a
velocity v(i)(t), which are both randomly initialized at the beginning with values
x(i)(0) and v(i)(0) and which are updated at each iteration [4]. It is also assumed
that the system has memory, so that, at every instant, each particle knows not
only its own best position reached so far, but also the best position among the
ones reached by any other particle in the swarm in the previous iterations. Each
particle also keeps track of the values of the function to optimize in correspon-
dence to both its best position and the global best position. These values are
used to update the velocity and the position of every particle at each iteration.
More precisely, the velocity of particle i is updated at consecutive iterations,
according to the rule [13]

v(i)(t+1)=ω(t)v(i)(t)+c1R1(t)(y
(i)(t)−x(i)(t))+c2R2(t)(y(t)−x(i)(t)) i = 1, . . . , S

(18)
where: ω(t) is denoted as inertial factor ; c1 and c2 are positive real parameters
denoted as cognition and social parameters, respectively; R1(t) and R2(t) are
random variables uniformly distributed in (0, 1); and y(i)(t) and y(t) are the
position of the i−th particle with the best objective function and the position
of the particle with the best (among all particles) objective function reached
until instant t [11]. In the considered minimization problem (17), they can be
described as

y(i)(t) = argminz∈{x(i)(0),... x(i)(t)}||t̂−B z||
y(t) = argminz∈{y(1)(t),... y(S)(t)}||t̂−B z||.

(19)

The idea behind the iterative step (18) is to add to the previous velocity of
particle i (which is weighted by means of a multiplicative factor) a stochastic
combination of the direction to its best position and to the best global position.
The definition of the velocity given in (18) is then used to update the position
of the i−th particle, according to the following rule:

x(i)(t+ 1) = x(i)(t) + v(i)(t) i = 1, . . . , S.

Possible stopping conditions for the PSO algorithm can be the achievement of a
satisfying value of the function to be minimized or a given (maximum) number
of iterations. At the end of the algorithm, the solution is the position of the
particle which best suits the optimization requirements in the last iteration.

The application of PSO to the considered localization problem is better ex-
plained in the next section.

48 S. Monica and G. Ferrari

3 Simulation Results

In this section, the three localization approaches described in Section 2, namely
TSML, PI, and PSO, are compared through MATLAB based simulations com-
pliant with the propagation model introduced in Section 2. In all cases, the
performance is evaluated in terms of Mean Square Error (MSE) between true
and estimated positions, i.e.:

MSE � E[(x̂e − xe)
2 + (ŷe − ye)

2]. (20)

In the following simulations, the MSE is obtained from the average of 100 inde-
pendent runs.

The PSO algorithm has been implemented by setting both the parameters c1
and c2 in (18) to 2. This choice makes the weights for social and cognition parts
to be, on average, equal to 1. The inertial factor ω(t) has been chosen to be a
decreasing function of the number of iterations, in order to guarantee low de-
pendence of the solution on the initial population and to reduce the exploitation
ability of the algorithm, making the method more simliar to a local search, as
the number of iterations increases [13]. In the following, it is assumed that the
initial value of the inertial factor is ω(0) = 0.9 and that it decreases linearly to
0.4, reached at the 50-th iteration, i.e. the last one according to the stopping
criterion we chose. A population of 40 particles is considered since previous sim-
ulations showed that this value is large enough to guarantee an accurate solution
and that incrementing it does not lead to significant improvements.

We investigate through simulation the minimum number of beacons that are
needed to obtain a reliable estimate of the ANs positions. First, we consider a
partition of the entire plane on which the ANs lay into squares, whose edges
are 10 m long. Without loss of generality, we restrict our analysis to a single
square. The considered scenario is shown in Fig. 1 (b) and Fig. 1 (d), where
circles represent beacons while squares represent ANs with unknown positions.
In the scenario shown in Fig. 1 (b), 8 out of the total 36 ANs are assumed to be
beacons and their known coordinates are then used to get the position estimate
of the remaining 28 ANs. In Fig. 1 (a), the MSE corresponding to each AN is
represented. In this case, by comparing the MSE of the three algorithm, it can
be noticed that there are no significant differences in the order of magnitude of
the error and the three algorithms guarantee an accurate position estimate of
all the ANs. On the other hand, in the scenario represented in Fig. 1 (d) only
4 beacons are assumed to be used to estimate the positions of the remaining 32
ANs. As can be noticed from Fig. 1 (c), in this case both the TSML and the
PI methods lead to a far inaccurate positioning estimate for many ANs while
the accuracy obtained when using the PSO algorithm is still good. Moreover,
by comparing the behaviour of PSO algorithm when 8 beacons are used with
the one obtained with only 4 beacons shows that the MSE has the same order
of magnitude in both cases. It can then be concluded that 4 beacons are not
enough to obtain a reliable estimate when using the TSML and the PI methods,
but they are sufficient to guarantee an accurate postion estimate when the PSO
algorithm is used.

PSO for Auto-localization in UWB Networks 49

We now consider a scenario composed by a corridor 40 m long and 5 m wide,
as shown in Fig. 2 (b) and Fig. 2 (d). In the scenario represented in Fig. 2 (b),
there are 16 beacons out of the total 44 ANs and this allows to obtain an accurate
position estimate with all the three approaches previously described, namely the
TSML and the PI method and the PSO algorithm, as shown in Fig. 2 (a).

As in the previous scenario, reducing the number of beacons, as in Fig. 2 (d),
leads to significantly worse values of the MSE corresponding both to TSML and
PI method, without changing the accuracy of the position estimate obtained via
the PSO algorithm, as shown in Fig. 2 (c).

Therefore, we can observe that the PSO algorithm can be successfully applied
with at least half the number of beacons, which allows to save money and time
in the accurate positioning of fixed ANs.

0 5 10

0

5

10

x [m]
(b)

y
[m

]

0 5 10 15 20 25

10
−5

10
0

ANs to be estimated
(a)

M
S

E
 [m

]

TSML
PI
PSO

0 5 10

0

5

10

x [m]
(d)

y
[m

]

0 5 10 15 20 25 30

10
−5

10
0

ANs to be estimated
(c)

M
S

E
 [m

]

TSML
PI
PSO

Fig. 1. Fig. 1 (b) and Fig. 1 (d) represent the beacons (circles) and the ANs whose
positions need to be estimated (squares). In Fig. 1 (a.) the MSE of the ANs relative
to the scenario described in Fig. 1 (b.) is plotted, corresponding to TSML method
(triangles), PI method (squares) and PSO algorithm (dots). In each case, the interpo-
lation lines (dotted lines for TSML, dashed lines for PI, solid lines for PSO) are shown.
Fig. 1 (c.) represents the MSE realtive to each AN when the considered scenario is the
one described in Fig. 1 (d.). In this case the PSO algorithm outperforms the TSML
and the PI method, showing that 4 beacons are enough to obtain an accurate position
estimate when using PSO.

50 S. Monica and G. Ferrari

0 10 20 30 40
−5

0

5

10

x [m]
(b)

y
[m

]

0 5 10 15 20 25

10
−5

10
0

ANs to be estimated
(a)

M
S

E
 [m

]

TSML
PI
PSO

0 10 20 30 40
−5

0

5

10

x [m]
(d)

y
[m

]

0 10 20 30 40

10
−5

10
0

ANs to be estimated
(c)

M
S

E
 [m

]

TSML
PI
PSO

Fig. 2. Fig. 2 (b) and Fig. 2 (d) represent the beacons (circles) and the ANs whose
positions need to be estimated (squares). In Fig. 2 (a) the estimation MSEs of the ANs
in the scenario described in Fig. 2 (b) are shown, using TSML method (triangles), PI
method (squares) and PSO algorithm (dots). In this case the order of magnitude of the
error is the same for all the three algorithms. Fig. 2 (c) represents the MSE realtive to
each AN when the considered scenario is the one described in Fig. 2 (d). In this case
the PSO algorithm outperforms the TSML and the PI method, showing that 4 beacons
are enough to obtain an accurate position estimate when using PSO.

4 Conclusion

In order to evaluate the impact of the number of beacons on localization accuracy,
three approaches to UWB-signaling-based auto-localization of nodes in a static
wireless network have been considered. Besides solving the localization problem
by means of the TSML and the PI methods, which are widely used for this
purpose, the original system of non-linear equations of the TSML method has
been re-formulated in terms of an optimization problem, which is then solved
by means of PSO. Our results show that the PSO approach guarantees a good
accuracy in the position estimate with a smaller number of known beacons,
allowing to reduce the installation cost of the entire localization system.

Acknowledgment. This work is supported by Elettric80 (http://www.
elettric80.it).

PSO for Auto-localization in UWB Networks 51

References

1. Busanelli, S., Ferrari, G.: Improved ultra wideband-based tracking of twin-receiver
automated guided vehicles. Integrated Computer-Aided Engineering 19(1), 3–22
(2012)

2. Chan, Y., Ho, K.C.: A simple and efficient estimator for hyperbolic location. IEEE
Trans. Signal Process. 42(8), 1905–1915 (1994)

3. Dardari, D., Chong, C.C., Win, M.Z.: Threshold-based time-of-arrival estimators
in uwb dense multipath channels. IEEE Trans. Commun. 56(8), 1366–1378 (2008)

4. Eberhart, R., Kermedy, J.: A new optimizer using particles swarm theory. In: Proc.
Sixth International Symposium on Micro Machine and Hmm Science, Nagoya,
Japan. IEEE Service Center, Piscataway (1995)

5. Foy, W.H.: Position-location solutions by Taylor-series estimation. IEEE Trans.
Aerosp. Electron. Syst. AES-12(2), 187–194 (1976)

6. Gezici, S., Poor, H.V.: Position estimation via ultra-wide- band signals. Proc.
IEEE 97(2), 386–403 (2009)

7. Ho, K.C., Xu, W.: An accurate algebraic solution for moving source location using
TDOA and FDOA measurements. IEEE Trans. Signal Process. 52(9), 2453–2463
(2004)

8. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. IEEE Interna-
tional Conf. on Neural Networks, Perth, Australia. IEEE Service Center, Piscat-
away (1995)

9. Mensing, C., Plass, S.: Positioning algorithms for cellular networks using TDOA.
In: 2006 IEEE International Conference on Proceedings of the Acoustics, Speech
and Signal Processing, ICASSP 2006, vol. 4 (May 2006)

10. Molisch, A.F., Cassioli, D., Chong, C.-C., Emami, S., Fort, A., Kannan, B.,
Karedal, J., Kunisch, J., Schantz, H.G., Siwiak, K., Win, M.Z.: A comprehensive
standardized model for ultrawideband propagation channels. IEEE Trans. Anten-
nas Propagat. 54(11), 3151–3166 (2006)

11. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intelli-
gence Journal 1(1) (2007)

12. Schmidt, R.O.: A new approach to geometry of range difference location. IEEE
Trans. Aerosp. Electron. Syst. AES-8(6), 821–835 (1972)

13. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proc. IEEE In-
ternational Conference on Evolutionary Computation, Piscataway, NJ, pp. 69–73
(1999)

14. Zhang, J., Orlik, P.V., Sahinoglu, Z., Molisch, A.F., Kinney, P.: UWB systems for
wireless sensor networks. Proc. IEEE 97(2), 313–331 (2009)

Load Balancing in Distributed Applications

Based on Extremal Optimization

Ivanoe De Falco1, Eryk Laskowski2, Richard Olejnik3, Umberto Scafuri1,
Ernesto Tarantino1, and Marek Tudruj2,4

1 Institute of High Performance Computing and Networking, CNR, Naples, Italy
2 Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland

3 Computer Science Laboratory, University of Science and Technology of Lille, France
4 Polish-Japanese Institute of Information Technology, Warsaw, Poland

{laskowsk,tudruj}@ipipan.waw.pl, richard.olejnik@lifl.fr,

{ivanoe.defalco,umberto.scafuri,ernesto.tarantino}@na.icar.cnr.it

Abstract. The paper shows how to use Extremal Optimization in load
balancing of distributed applications executed in clusters of multicore
processors interconnected by a message passing network. Composed of
iterative optimization phases which improve program task placement on
processors, the proposed load balancing method discovers dynamically
the candidates for migration with the use of an Extremal Optimiza-
tion algorithm and a special quality model which takes into account the
computation and communication parameters of the constituent parallel
tasks. Assessed by experiments with simulated load balancing of dis-
tributed program graphs, a comparison of the proposed Extremal Opti-
mization approach against a deterministic approach based on a similar
load balancing theoretical model is provided.

Keywords: distributed program design, extremal optimization, load
balancing.

1 Introduction

Efficient execution of irregular distributed applications usually requires some
kind of processor load balancing. This is even more true in a multi-user environ-
ment where, following variations in system resources availability and/or changes
of their computational load, the balance in using the executive resources can
notably vary over time. Thus, a dynamic load balancing facility, embedded in
the runtime environment or in the distributed application is essential.

The contribution of this paper is a dynamic load balancing method based
on the program and runtime system behavior observation supported by the Ex-
tremal Optimization (EO) approach [2]. The presented approach leverages some
our earlier works on load balancing, reported in [3,9], and our experience in using
Extremal Optimization to static task scheduling in distributed programs [4, 8].
The proposed load balancing algorithm is composed of iterative optimization
phases which improve program task placement on processors to determine the

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 52–61, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Load Balancing in Distributed Applications Based on EO 53

possibly best balance of computational loads and to define periodic migration
of tasks. The Extremal Optimization is used in iterative load balancing phases
which are executed in the background, in parallel with the application program.
The Extremal Optimization algorithm discovers the candidate tasks for migra-
tion based on a special quality model including the computation and commu-
nication parameters of parallel tasks. The algorithm is assessed by experiments
with simulated load balancing of distributed program graphs. In particular, the
experiments compare the proposed load balancing method including the Ex-
tremal Optimization with an equivalent deterministic algorithm based on the
similar theoretical foundations. The comparison shows that the quality of load
balancing with Extremal Optimization is in most cases better than that of the
deterministic algorithm.

A good review and classification of load balancing methods is presented in [1].
When we compare the proposed load balancing method to the current parallel
computing environments with load balancing like CHARM++ [7] or Zoltan [5],
we notice that none of them includes Extremal Optimization as a load balancing
algorithm component. So, the proposed approach has clear originality features
and enables making profit of the Extremal Optimization advantages such as low
computational complexity and limited use of memory space.

The proposed load balancing algorithms is meant for implementation in a
novel distributed program design framework which supports a programmer with
an API and GUI for the automated design of program execution control based
on global application states monitoring. This framework called PEGASUS (from
Program Execution Governed by Asynchronous SUpervision of States) [11] pro-
vides high-level distributed control primitives at process level and a special con-
trol infrastructure for global asynchronous execution control at thread level.
Monitoring of global application states in PEGASUS creates a flexible basis for
the load balancing implementation as shown in [3].

The paper consists of three parts. In the first part the Extremal Optimization
principles are shortly explained. The second part describes the theoretical base-
ment for the discussed algorithm and explains how the Extremal Optimization
is applied to the proposed method of dynamic load balancing. The third part
explains the performed experimental assessment of the proposed algorithms.

2 Extremal Optimization Algorithm Principles

Extremal Optimization is an important nature inspired optimization method. It
was proposed by Boettcher and Percus [2]. It represents a method for NP–hard
combinatorial and physical optimization problems.

EO works with a single solution S consisting of a given number of components
si, each of which is a variable of the problem and is thought to be a species of
the ecosystem. Once a suitable representation is chosen, by assuming a prede-
termined interaction among these variables, a local fitness value φi is assigned
to each of them. Then, at each time step the global fitness Φ(S) is computed
and S is evolved, by randomly updating only the worst variable, to a solution

54 I. De Falco et al.

S′ belonging to its neighborhood Neigh(S). An obtained solution is registered if
its global fitness function is better than that of the best solution found so far.

To avoid sticking in a local optimum, we use a probabilistic version of EO
based on a parameter τ , i.e., τ–EO, introduced by Boettcher and Percus. Ac-
cording to it, for a minimization problem, the species are first ranked in increas-
ing order of local fitness values, i.e., a permutation π of the variable labels i is
found such that: φπ(1) ≤ φπ(2) ≤ . . . φπ(n), where n is the number of species.
The worst species sj is of rank 1, i.e., j = π(1), while the best one is of rank
n. Then, a distribution probability over the ranks k is considered as follows:
pk ∼ k−τ , 1 ≤ k ≤ n for a given value of the parameter τ . Finally, at each
update, a generic rank k is selected according to pk so that the species si with
i = π(k) randomly changes its state and the solution moves to a neighboring
one, S′ ∈ Neigh(S), unconditionally. The only parameters are the total number
of iterations Niter and the probabilistic selection parameter τ . For minimization
problems τ–EO proceeds as in the Algorithm 1.

3 Extremal Optimization Applied to Load Balancing

3.1 System and Program Model

An executive system consists of N computing nodes interconnected by a message
passing network (e.g. a cluster of workstations). Each node, identified by an
integer value in the range [0, N − 1], is a multicore processor.

Distributed application programs are composed of processes and threads inside
each process. The application model is similar to the model presented in [10]
(Temporal Flow Graph, TFG). The application consists of the set T of indivisible
tasks (these are threads in processes). Each task consists of several computational
instruction blocks, separated by communication with other tasks.

The target problem is defined as follows: assign each task tk, k ∈ {1 . . . |T |} of
the program to a computational node n, n ∈ [0, N − 1] in such a way that the

Algorithm 1. General EO algorithm

initialize configuration S at will
Sbest ← S
while total number of iterations Niter not reached do

evaluate φi for each variable si of the current solution S
rank the variables si based on their fitness φi

choose the rank k according tok−τ so that the variablesj with j=π(k) is selected
choose S′ ∈ Neigh(S) such that sj must change
accept S ← S′ unconditionally
if Φ(S) < Φ(Sbest) then

Sbest ← S
end if

end while
return Sbest and Φ(Sbest)

Load Balancing in Distributed Applications Based on EO 55

total program execution time is minimized, assuming the program and system
representation as described earlier in this section.

The load balancing approach, proposed in the paper, consists of two main
steps: the detection of the imbalance and its correction. The first step uses
some measurement infrastructure to detect the functional state of the computing
system and executed application. In parallel with the execution of an application,
computing nodes periodically report their loads to the load balancing controller
which evaluates the current system load imbalance value. Depending on this
value, the second step (i.e. the imbalance correction) is undertaken or the step
one is repeated. In the second step, we execute the EO-based algorithm described
in next sections, which determines the set of tasks for migration and the migra-
tion target nodes. Then we perform the physical task migrations following the
best solution found by the EO algorithm and go to step one.

The state of the system is expressed in the terms of:

Indpower (n) — computing power of a node n, which is the sum of computing
powers of all cores on the node,
Time%CPU(n) — the percentage of the CPU power available for computing threads
on the node n, periodically estimated by observation agents on computing nodes.
The state metrics are used to detect and correct a load imbalance between nodes.

3.2 Detection of Load Imbalance

Computing nodes in a parallel system can be heterogeneous, therefore to detect
the current load imbalance in the system, we will base it on the percentage of
the CPU power available Time%CPU(n) for computing threads on the nodes.

A current load imbalance LI is defined based on the difference of the CPU
availability between the most heavily and the least heavily loaded computing
nodes composing the cluster in the following way:

LI =

{
true if maxn∈N(Time%CPU(n))−minn∈N(Time%CPU(n)) ≥ α
false otherwise

where: N — the set of all computing nodes. The current detected load imbalance
requires a load balancing correction. The value of the α is set using a statistical
or/and experimental approach. Following our previous research [9] on load bal-
ancing algorithms for Java-based distributed environment, this value should be
between 25% and 75%.

When LI = true, then, according to the load of each node, the set of com-
puting nodes is divided into three categories, based on the computed power
availability indexes: overloaded, normally loaded and underloaded. To build cat-
egories, we use the K-Means algorithm [6] with K = 3. The three centers that we
choose are the minimum, average and maximum availability indexes, where the
average index is simply the average of indexes measured during the last series
of measures over the whole cluster.

56 I. De Falco et al.

3.3 Load Balancing Procedure

Now, we are able to perform the second step of our approach leading to migration
of application tasks to balance the load of the system.

The application is characterized by two metrics, which should be provided
by a programmer based on the volume of computation and communication in-
troduced by application tasks:

1. COM(ts, td) is the communication metrics between tasks ts and td,
2. WP(t) is the load weight metrics introduced by a task t.

A mapping solution S is represented by a vector μ = (μ1, . . . , μ|T |) of |T |
integers ranging in the interval [0, N − 1], where the value μi = j means that
the solution S under consideration maps the i–th task ti of the application onto
computing node j. The number of processor cores is not represented inside the so-
lution encoding, however, it is implicitly taken into account (via the Indpower (n)
function) when estimating the global and local fitness functions while solving
the scheduling problem.

The global fitness function Φ(S) is defined as follows.

Φ(S) = attrExtTotal(S)∗Δ1+migration(S)∗Δ2+ imbalance(S)∗ [1−(Δ1+Δ2)]

where 1 > Δ1 ≥ 0, 1 > Δ2 ≥ 0 and Δ1 +Δ2 < 1 hold.
The function attrExtTotal(S) represents the total external communication be-

tween tasks for given mapping S. By ”external” we mean the communication
between tasks placed on different nodes (i.e. which have to be transmitted ac-
tually through communication links between computing nodes). The value of
this function is normalized in the range [0, 1], i.e. it is a quotient of an absolute
value of the total external communication volume and the total communica-
tion volume of all communications (when all tasks are placed on the same node
attrExtTotal(S) = 0, when tasks are placed in the way that all communication
became external attrExtTotal(S) = 1):

attrExtTotal(S) = totalExt(S)/COM

where: COM =
∑

s,d∈T COM(s, d) and totalExt(S) =
∑

s,d∈T :μs �=μd
COM(s, d).

The function migration(S) is a migration costs metrics. The value of this
function is in the range [0, 1], i.e. it is equal to 0 when there is no migration, when
all tasks have to be migrated migration(S) = 1, otherwise 0 ≤ migration(S) ≤ 1:

migration(S) = |{t ∈ T : μS
t �= μS∗

t }|/|T |
where: S is the currently considered solution and S∗ is the previous solution (or
the initial solution at the start of the algorithm).

The function imbalance(S) represents the numerical load imbalance metrics
in the solution S. It is equal to 1 when in S there exists at least one unloaded
(empty) computing node, otherwise it is equal to the normalized average absolute
load deviation of tasks in S, determined in the definition below:

imbalance(S) =

{
1 exists at least one unloaded node
D∗(S)/2 ∗N ∗WP otherwise

Load Balancing in Distributed Applications Based on EO 57

where: D∗(S) =
∑

n∈[0,N−1] |NWP(S, n)/Indpower (n)−WP|,
NWP(S, n) =

∑
t∈T :μt=n WP(t), WP =

∑
t∈T WP(t)/

∑
n∈[0,N−1] Indpower (n).

In the applied EO the local fitness function of a task φ(t) is designed in
such a way that it forces moving tasks away from overloaded nodes, at the
same time preserving low external (inter-node) communication. The γ parameter
(0 < γ < 1) allows tuning the weight of load metrics.

φ(t) = γ ∗ load(μt) + (1− γ) ∗ rank(t)
The function load(n) indicates whether the node n, which executes t is over-
loaded (i.e. it indicates how much its load exceeds the average load of all nodes):

load(n) =
load∗(n)

maxm∈[0,N−1] load
∗(m)

, load∗(n) = max(
NWP(S, n)

Indpower (n)
−WP, 0).

The rank(t) function governs the selection of best candidates for migration.
The chance for migration have tasks, which have low communication with their
current node (attraction) and low load deviation from the average load:

rank(t) = 1− (β ∗ attr(t) + (1− β) ∗ ldev (t))
where: β is a real number between 0 and 1 — a parameter indicating the impor-
tance of the weight of attraction metrics.

The attraction of the task t to its executive computing node is defined as:

attr(t) =
attr∗(t)

maxo∈L(t)(attr
∗(o))

where: attr∗(t) =
∑

o∈L∗(t)(COM(t, o) + COM(o, t)) — the amount of commu-

nication between task t and other tasks on the same node, L(t) = {u ∈ T : μt =
μu} — the set of threads, placed on the same node as the thread t (including t),
L∗(t) = {u ∈ T, u �= t : μt = μu} — the set of threads, placed on the same node
as a thread t (excluding t).

The load deviation compared to the average load is defined as:

ldev (t) =
ldev∗(t)

maxo∈L(t)(ldev
∗(o))

where: ldev∗(t) = |WP(t)−meanWP(t)|, meanWP(t) =
∑

o∈L(t)WP(o)/|L(t)|.

3.4 Deterministic Approach for Load Balancing

For comparison purposes, we have implemented also a fully deterministic load
balancing algorithm, based on similar migration criteria as shown in the previous
section (see [3] for the description). Similarly to the EO approach, the load
balancing triggering is controlled by the imbalance metrics LI . The deterministic
algorithm iterates over all overloaded nodes and migrates a single task from each
such node to an underloaded one. The task for migration is selected according
to the rank(t) function. The target of migration is the node that minimizes the

weighted sum of attrExtTotal(S) and Time%CPU(n).

58 I. De Falco et al.

4 Experimental Assessment of Load Balancing
Algorithms

We will present now an experimental assessment of the presented load balancing
algorithm. The experimental results have been obtained by simulated execution
of application programs in a distributed system. The assumed simulated model
of execution corresponds to parallelization based on message-passing, using the
MPI library for communication. The applied simulator was built following the
DEVS discrete event system approach [12].

Applications were run in a cluster of multi-core processors, each of which had
its own main memory and a network interface. Communication contention was
modeled at the level of the network interface of each computing node.

During experiments we used a set of 10 synthetic exemplary programs, mod-
eled as TFG (see section 3.1). These programs were randomly generated, but
their general structure resembled typical MPI-based parallel applications which
correspond to numerical analysis or physical phenomena simulation. Each ap-
plication program consisted of a set of program modules, Fig 1. A module was
composed of parallel tasks (threads). Tasks of the same module communicated.
At the boundaries between modules, there was a global exchange of data.

The number of tasks in an application varies from 16 to 80. The communica-
tion/computation ratio (the quotient of the communication time to the execution
time in our experimental environment) for applications is in the range 0.05...0.15.
Three applications have regular tasks’ execution times.The difference between reg-
ular and irregular applications is that the execution time of tasks in the irregular
applications depends on the processed data. In regular applications a load imbal-
ance can appear due to the placement of multiple tasks on the same processor.

In the first experiment, we simulated execution of applications in systems with
2, 3, 4 and 8 identical computing nodes. We used the following parameters: α =
0.5, β = 0.5, γ = 0.5, Δ1 = 0.25, Δ2 = 0.25, τ = 1.5. The number of iterations of
the EO algorithm was set to 500. The results are the averages of 5 runs of each
application, each run for 4 different methods of initial task placements (random,
round-robin, METIS, packed) i.e. 20 runs for each parameter set.

Fig. 1. The general structure of exemplary applications

Load Balancing in Distributed Applications Based on EO 59

Table 1. Speed-up improvement for irregular and regular applications due to load
balancing for different number of nodes (2,3,4,8) in the system

algorithm 2 3 4 8 average

EO – extremal optimization
irregular 18.66% 33.42% 37.32% 41.91% 35.08%
regular 21.95% 31.85% 46.85% 34.21% 34.71%

DT – deterministic
irregular 18.27% 28.17% 33.97% 43.82% 33.80%
regular 22.95% 29.54% 41.62% 35.02% 33.39%

The speed-up improvement resulting from load balancing performed by the
EO-based algorithm and the deterministic approach (DT) is shown in Tab. 1.
The general speed-up improvement over the execution without load balancing is
bigger for EO-based algorithm. As we’ll show later in this section, it is possible
to obtain even better speedup by EO through proper parameter tuning.

In Fig. 2(a) the speed-up of irregular and regular applications for different
number of computing nodes is shown. Our exemplary regular applications give
smaller speed-up than irregular ones (with or without load balancing).

Since migration costs can be very different (the single migration can be as
short as a simple task activation message, but also it can involve a transfer of
the processed data, which is usually very costly), we decided to measure also
the imposed load balancing costs as the number of tasks migrations. As shown
in Fig. 2(b), the average cost imposed by EO algorithm is generally lower than
the cost introduced by the deterministic approach.

The big advantage of the EO approach is the ability to tune its behavior
through the algorithm parameters setting. Thus, we can have bigger speedup at
a higher cost of migration, or lower speedup with a reduced migrations number.
To do so, we performed the simulations for different values of τ ∈ {0.75, 1.5, 3.0}
and varying sets of γ,Δ1, Δ2 factors. We considered the following combinations
of γ,Δ1, Δ2: U05 (imbalance least important): γ = 0.5, Δ1 = 0.25, Δ2 = 0.25;

(a) (b)

Fig. 2. (a) Speedup for different number of nodes with and without load balancing
(b) Cost of the dynamic load balancing as the number of task migrations per single
execution of an application

60 I. De Falco et al.

(a) (b)

Fig. 3. Speedup and cost for different values of EO parameters as a function of: (a)
U0x, (b) τ (tau)

U06: γ = 0.6, Δ1 = 0.18, Δ2 = 0.22; U07: γ = 0.75, Δ1 = 0.13, Δ2 = 0.17; U09
(imbalance most important): γ = 0.95, Δ1 = 0.05, Δ2 = 0.05.

For the tested applications, better results were obtained when the load imbal-
ance was the primary optimization factor, namely for U07 and U09, Fig. 3(a). On
the other hand, for U09 the cost of load balancing was very high (the algorithm
migrates tasks very often to maintain a perfect load balance). We expect that
for applications with more intense communication (i.e. higher value of commu-
nication/computation ratio) better results can be obtained for U05 and U06. It
will be investigated in further research.

Fig. 3(b) shows that an increasing value of τ decreases the number of mi-
grations, it reduces also slightly the obtained speedup (note that increasing τ
increases the probability of selection of the worst species for change).

Our experimental results collected so far by simulation confirm that the pre-
sented EO-based load balancing method performs well for different run-time con-
ditions. Other important features of the method are the low migration overhead
as well as the ease of programming and tuning the load balancing algorithm.

5 Conclusions

Dynamic load balancing in distributed systems based on application of the Ex-
tremal Optimization approach and global states monitoring has been discussed
in this paper. The load balancing algorithm composed of iterative optimization
phases based on the use of Extremal Optimization which define periodic real
migration of the tasks proved to be an efficient and successful method for load
balancing. The Extremal Optimization is executed in the background of appli-
cation computations, in parallel with the application program.

The proposed algorithm including the Extremal Optimization has been as-
sessed by experiments with simulated load balancing of distributed program
graphs. In particular, the experiments compare the proposed load balancing

Load Balancing in Distributed Applications Based on EO 61

method including the Extremal Optimization with an equivalent deterministic
algorithm based on the similar theoretical foundations for load balancing. The
comparison shows that the quality of load balancing with Extremal Optimization
is in most cases better than that of the deterministic algorithm. The proposed
load balancing method is meant for implementation in the PEGASUS distributed
program design framework, which is in the final implementation stage.

Acknowledgments. This paper has been partially sponsored by the MNiSW
grant No. NN 516 367 536.

References

1. Barker, K., Chrisochoides, N.: An Evaluation of a Framework for the Dynamic
Load Balancing of Highly Adaptive and Irregular Parallel Applications. In: Super-
computing 2003. ACM, Phoenix (2003)

2. Boettcher, S., Percus, A.G.: Extremal optimization: methods derived from coevo-
lution. In: Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO 1999), pp. 825–832. Morgan Kaufmann, San Francisco (1999)

3. Borkowski, J., Kopański, D., Laskowski, E., Olejnik, R., Tudruj, M.: A Distributed
Program Global Execution Control Environment Applied to Load balancing. Scal-
able Computing: Practice and Experience 13(3) (2012)

4. De Falco, I., Laskowski, E., Olejnik, R., Scafuri, U., Tarantino, E., Tudruj, M.:
Extremal Optimization Approach Applied to Initial Mapping of Distributed Java
Programs. In: D’Ambra, P., Guarracino, M., Talia, D. (eds.) Euro-Par 2010, Part
I. LNCS, vol. 6271, pp. 180–191. Springer, Heidelberg (2010)

5. Devine, K.D., Boman, E.G., Riesen, L.A., Catalyurek, U.V., Chevalier, C.: Get-
ting Started with Zoltan: A Short Tutorial, Sandia National Labs Tech Report
SAND2009-0578C (2009)

6. Hartigan, J.A., Wong, M.A.: A K-Means clustering algorithm. Applied Statis-
tics 28, 100–108 (1979)

7. Kalé, L.V., Krishnan, S.: CHARM++: A Portable Concurrent Object Oriented
System Based on C++. In: Proc. of OOPSLA 1993. ACM Press (September 1993)

8. Laskowski, E., Tudruj, M., De Falco, I., Scafuri, U., Tarantino, E., Olejnik, R.:
Extremal Optimization Applied to Task Scheduling of Distributed Java Programs.
In: Di Chio, C., Brabazon, A., Di Caro, G.A., Drechsler, R., Farooq, M., Grahl,
J., Greenfield, G., Prins, C., Romero, J., Squillero, G., Tarantino, E., Tettamanzi,
A.G.B., Urquhart, N., Uyar, A.Ş. (eds.) EvoApplications 2011, Part II. LNCS,
vol. 6625, pp. 61–70. Springer, Heidelberg (2011)

9. Olejnik, R., Alshabani, I., Toursel, B., Laskowski, E., Tudruj, M.: Load Balancing
Metrics for the SOAJA Framework. Scalable Computing: Practice and Experi-
ence 10(4) (2009)

10. Roig, C., Ripoll, A., Guirado, F.: A New Task Graph Model for Mapping Message
Passing Applications. IEEE Trans. on Parallel and Distributed Systems 18(12),
1740–1753 (2007)

11. Tudruj, M., Borkowski, J., Maśko, �L., Smyk, A., Kopański, D., Laskowski, E.:
Program Design Environment for Multicore Processor Systems with Program Exe-
cution Controlled by Global States Monitoring. In: ISPDC 2011, Cluj-Napoca, pp.
102–109. IEEE CS (July 2011)

12. Zeigler, B.: Hierarchical, modular discrete-event modelling in an object-oriented
environment. Simulation 49(5), 219–230 (1987)

A Framework for Modeling Automatic

Offloading of Mobile Applications
Using Genetic Programming

G. Folino and F.S. Pisani

Institute of High Performance Computing and Networking (ICAR-CNR), Italy
{folino,fspisani}@icar.cnr.it

Abstract. The limited battery life of the modern mobile devices is one
of the key problems limiting their usage. The offloading of computation
on cloud computing platforms can considerably extend the battery du-
ration. However, it is really hard not only to evaluate the cases in which
the offloading guarantees real advantages on the basis of the require-
ments of application in terms of data transfer, computing power needed,
etc., but also to evaluate if user requirements (i.e. the costs of using the
clouds, a determined QoS required, etc.) are satisfied. To this aim, in
this work it is presented a framework for generating models for taking
automatic decisions on the offloading of mobile applications using a ge-
netic programming (GP) approach. The GP system is designed using a
taxonomy of the properties useful to the offloading process concerning
the user, the network, the data and the application. Finally, the fitness
function adopted permits to give different weights to the four categories
considered during the process of building the model.

1 Introduction

The introduction of larger screens and the large usage and availability of cpu-
consuming and network-based mobile applications further reduce the battery life
of mobile devices. Therefore, due to these problems and to the proliferations of
mobile devices (i.e. tablets and smartphones), the interest in trying to improve
the limited life of their batteries is greatly increased. A possible solution to alle-
viate this problem is to offload part of the application or the whole computation
to remote servers, as explained in [6], where software-based techniques for re-
ducing program power consumption are analyzed, considering both static and
dynamic information in order to move the computation to remote servers.

In the last few years, the emergence of the Cloud Computing technology and
the consequent large availability of cloud servers [2], encouraged the research
into the usage of offloading techniques on cloud computing platforms. A number
of papers were published trying to cope with the main issues of the process of
offloading, mainly oriented toward a particular problematic, i.e. wifi issues [8],
network behavior [12] and network bandwidth [15], the tradeoff between privacy
and quality [9] and the effect of the context [1].

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 62–71, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Framework for Modeling Automatic Offloading of Mobile Applications 63

However, to the best of our knowledge, the works concerning this thematic do
not report a complete model keeping into account both the hardware/software
issues and the user’s requirements, neither an automatic and adaptive model to
take the decision of performing the offloading. Indeed, the offloading technique
potentially could improve both performance and energy consumption, however
it is a NP-hard problem to establish whether it is convenient to perform the
migration, especially considering all the correlated problems such as network
disconnections and variability, privacy and security of the data, variations of
load in the server, etc. In this work, we try to overcome these limitations, by
designing a framework for modeling automatic offloading of mobile application
using a genetic programming approach.

Logically, we divided the software architecture of the framework into two
parts: a module for simulating the offloading process and an inference engine for
building an automatic decision model on the same process of offloading. Both of
them are based on a taxonomy that defines four main categories concerning the
offloading process: user, network, data and application.

The simulator evaluates the performance of the offloading process of mobile
applications on the basis of the user requirements, of the conditions of the net-
work, of the hardware/software features of the mobile device and of the char-
acteristics of the application. The inference engine is used to generate decision
trees able to model the decisions on the offloading process on the basis of the pa-
rameters contained in the categories defined by the taxonomy. It is constituted
by a genetic programming environment, in which the functions are naturally
defined by the taxonomy, and the fitness function is parametrically defined in a
way that permits to give a different weight to the cost, the time, the energy and
the quality of service depending on what interests more.

The rest of the paper is structured as follows. Section 2 presents the overall
software architecture. In Section 3, the GP system and the taxonomy used to
build the decision model for the task of the offloading are described. In Section
4, we survey existing works. Finally, Section 5 concludes the work.

2 The Framework for Simulating and Generating
Decision Models

The main idea behind our system is using Genetic Programming to evolve mod-
els, in form of Decision Trees, which will decide if it is convenient to perform
the offloading of a mobile application on the basis of the parameters and the
properties typical of the application, of the user and of the environment. The
overall software architecture of the system is described in figure 1.

On the top of the architecture, the modules containing the data, which will be
used by the other components of the system, are illustrated. The different modules
will constitute a set of data for each of the four different categories considered.We
remind to the section 3.1 for a detailed description of these categories. It is out of
the scope of this paper to describe the techniques used to estimate these compo-
nents; we just would like to mention that in the case of the parameters describing

64 G. Folino and F.S. Pisani

Fig. 1. The overall software architecture of the system

the mobile devices, they can be found in literature for somemodels and can be esti-
mated using appropriate applications, such as PowerTutor, available in the Google
Play store for the android-basedmobile devices. The process to estimate the energy
consumption for various types of applications and for multiple classes of devices is
analogous to that presented in [11].

Afterwards, the sampler module will generate the training and the validation
dataset, simply combing randomly the data estimated by the above-mentioned
models. These two datasets will be used respectively to generate and validate
the decision models.

Analyzing the rest of the software architecture, we find the two main mod-
ules, used respectively for the simulation and for the inference of the mobile
offloading module. The inference part of the designed system consists of a Ge-
netic Programming module, developing a population of models, apt to decide
the possible offloading of a mobile application. The chosen GP system is CAGE
(CellulAr GEnetic programming), a scalable cellular implementation of GP [4].
One of the advantages of the chosen GP–based module is that it can run on
parallel/distributed architectures, permitting time-saving in the most expensive
phase of the training process, described in the following. Indeed, each single
model of the GP population represents a decision tree able to decide a strategy
for the offloading and must be evaluated using the simulation module.

A Framework for Modeling Automatic Offloading of Mobile Applications 65

The simulation module consists of the GreenCloud simulator (simulating the
cloud part of the offloading process) together with a mobile simulator built ad-
hoc, modeling the mobile device’s behavior. In practice, each model generated
by the GP module is passed to the simulator module, which provides to perform
the fitness evaluation directly on the basis of the results obtained simulating the
model using the training dataset.

At the end of the process, the best model (or the best models) will constitute
the rules adopted by the offloading engine, which will decide whether an appli-
cation must be offloaded, considering the defined conditions (user requirements,
bandwidth, characteristic of the mobile device and so on). All these models must
be validated using the simulation engine with the validation dataset; if the result
of this evaluation overcomes a predefined threshold, the model is added to a GP
model repository for future use.

3 Designing an Efficient GP System for Automatic
Mobile Offloading

In this section, the GP system and its design are described.
The GP system chosen for generating the rules used to perform the offloading

is the parallel Genetic Programming tool CAGE [4]. The motivation behind this
choice is that this system can run on parallel/distributed architectures, permit-
ting time-saving in the most expensive phase of the training process; in addition,
GP supplies the characteristic of adaptivity and the possibility of working with
a few knowledge of the domain, really useful to this particular aim. As usual, in
order to use GP for a particular domain, it is sufficient to choice an appropriate
terminal and function set and to define a fitness function. We chose a typical
approach to GP for generating decision trees, choosing as terminals simply the
two answers, yes or no to the question “Is the process offloadable?”.

In the following subsection, the taxonomy of the main parameters/properties
of the offloading process is described. This taxonomy will be used to define the
functions of the GP module, while the terminals would be constituted by the
final decision on the offloading process. In the subsection 3.2, the way in which
the fitness is evaluated is described.

3.1 A Taxonomy of the Main Properties for the Offloading Process

This section is devoted to the definition of a taxonomy of the parameters and of
the properties, which the GP module will use to build the model that will decide
the offloading strategy. Our taxonomy divides the parameters in four different cat-
egories: Application (i.e. the parameters associated to the application itself), User
(the parameters desired and imposedby the user’s needs),Network (i.e. parameters
concerning the type and the state of the network), and Device (i.e. the parameters
depending only from the hardware/software features of the devices). In practice,
the decision model, built by the GP module of our architecture, will perform the
decision of offloading or not on the basis of the different parameters associated to

66 G. Folino and F.S. Pisani

these categories. It is worth to notice thatmany parameters could bemore detailed
and complex and other could be added; however, our taxonomy does not pretend
to be exhaustive, but we tried to simplify the model and did not consider particular
aspects, which should not influence the offloading process.

On the following, we will give a short description of the parameters chosen for
each defined category. Where not differently specified, the values of the parame-
ters have been discretized in ranges, using discrete values such as low, moderate,
high, etc.

Application

The parameters associated to this category consider features, which are typical
of the application to be executed on the mobile devices, trying to characterize
all the aspects useful to take a decision on the offloading process.

Average Execution Time. The average execution time of the application mea-
sured for different typical dimensions of the input.

Memory. The size of the code and of the data of the application.

Local Computation/communication ratio. A value expressing if the application
devotes most of its execution time to the execution of the local computation or to
use the network (0 indicates an application performing only local computation,
1 an application continuously interacting with the network).

Probability of Interruption. A mobile application could be interrupted for dif-
ferent reasons: system crash, user interruption, no availability of a necessary
resource (network, gps, etc.). This parameter represents the probability the ap-
plication is interrupted before the end of the process.

User Requirements

This class of parameters considers the needs and the behavior of the user of
the mobile device, modeling the different categories of users with their different
styles.

Mobility. Every user has different behaviors and habits in terms of mobility.
Some users spend most of the time in the same place (typically at house and
at work), while other moves frequently in different places and this should be
considered in the process of offloading for the continuous changes in the network
used, the need for a better duration of battery and so on. This parameter models
the probability of mobility of the user.

Urgency. This parameter models the urgency or the priority with which the user
wants to obtain the partial/final results of the application. If the user is too
impatient to get results could prefer a greater consumption of the battery rather
than a larger time of waiting.

Privacy sensitivity. People are understandably sensitive about how the applica-
tion captures their data and how the data are used. However, different users can

A Framework for Modeling Automatic Offloading of Mobile Applications 67

present different sensibility, from the paranoiac to the too confident user. In our
context, choosing solutions privacy-preserving can degrade the performance of
the offloading process, mainly for the difficulty of moving the data or for the
additional cost of adding protection.

Cost. The cost a user can/wants to pay is a fundamental parameter in order to
perform the offloading. In fact, the cost of the cloud platform is usually correlated
with the time and the resources used.

Network

The network plays a fundamental role in the process of offloading, as it deter-
mines the velocity of the process and limits the possibility of exchanging data in
real time. In fact, application needing to exchange a stream of data cannot be
offloaded whether the networks do not permit a fast transfer of the data.

QoS of the network.We consider as Quality of Service of the network a parameter
estimating the reliability and stability of the network.

Bandwidth. The bandwidth of the network is an important parameter to establish
if the offloading of large applications/data can be quickly executed.

Latency. The latency of the network is useful when small quantities of data must
be exchanged during the offloading process.

Type of network. This parameter models the type of network available, i.e. Wifi,
3G, 2G, etc. The type of the network is crucial for saving energy, as for instance,
a device transmitting data using wifi consumes less battery than using 3G.

Mobile Device

The last class of parameters we consider is pertinent to the mobile device. Ana-
lyzing the state and the characteristics of the mobile device is essential in order
to drive the process of offloading. On the following we list the most important
parameters to be considered.

Battery Level. The battery charge level is of fundamental importance, as, when
it is low, the process of offloading can be encouraged.

CPU Load and Memory availability. The load of the cpu and the available mem-
ory are two important parameters, which can influence the choice of the offload-
ing rather than the execution on local resources.

Connectivity. This parameter represents the strength of the network signal de-
tected by the mobile device (obviously it depends both from the device and from
the quality of the network).

Example of Rules

After the description of the different parameters of the four categories defined
above, we give two examples of rules, which could be extracted from our system

68 G. Folino and F.S. Pisani

Table 1. Example of rules generated for a chess game and for a password manager
application

Password Manager if memory is high and privacy is high and bandwidth is low
then execute locally

Chess Game if privacy is low and bandwidth is high and cost is moderate
then perform offloading

concerning two typical applications, i.e. a password manager and a chess game,
shown in table 1. Note that, really, even if our framework generates decision trees,
we choose to show them in terms of if . . . then rules, for the sake of clearness.

3.2 Fitness Evaluation

This subsection defines the fitness function used in the GP inference engine. We
modeled it with a simple equation, described in the following.

First of all, we define three normalized functions, representing respectively the
energy saved, the time saved and the cost saved during the process of offloading
(really the latter is a negative value, as it is a cost not a saving): Senergy, Stime

and Scost.
Senergy =

Elocal−Eoffload

max(Eoffload,Elocal)
, i.e. the ratio between the energy saved executing

the process on remote servers and the energy necessary to perform the offloading.
The energy is computed in accordance with the analysis defined in [7].

Stime =
Tlocal−Toffload

max(Toffload,Tlocal)
, i.e. the ratio between the time saved executing

the process on remote servers and the time necessary to perform the offloading.
Differently, the cost function is computed as Scost = −Coffload

Csup
, i.e. the ratio

between the cost due to the remote execution and a parameter Csup defining a
threshold of cost (if the cost overcomes Csup , Scost becomes −1).

Finally, the fitness is computed as the weighted sum of the three equations
described above, using three positive parameters (a, b , c), modeling the impor-
tance we want to give respectively to the energy saving, to the time saving and
to the cost saving.

Considering an element Ti (representing an application running on a deter-
mined device, with a required QoS, etc.) of the training set T composed by n
tuples, the fitness of this element is computed as

f(Ti) = a ∗ Senergy + b ∗ Stime + c ∗ Scost and consequently the total fitness is

given by ftot =
∑i=n

i=1 f(Ti)− d ∗QoS
where the term QoS represent the ratio between the number of cases (tuples) of

the datasets, which does not respect the QoS constraints, and the total number
of tuples. In practice, a penalty is added to the fitness function for each case
in which the QoS is not guaranteed. A fourth parameter d is used to give a
particular weight to the QoS.

A Framework for Modeling Automatic Offloading of Mobile Applications 69

4 Related Works

Analyzing the works in literature concerning the offloading of mobile applica-
tions, the problematic of finding an automatic methodology to perform offloading
is not much explored.

A paper introducing general thematic on the process of offloading is written
by Kumar and Lee [7]. The authors analyze the main problems derived from
offloading mobile applications on the Cloud such as privacy, costs, energy con-
sumption and show which applications can benefit from this approach. They
introduce a simple model for deciding whether it is convenient to perform the
offloading and they try to apply the technique only to computationally expensive
functions while computing locally other tasks.

Other papers are devoted to the utility of performing offloading, basing on
some criteria, i.e. energy consumption, costs, network usage, etc. For instance, in
[10] the decision of performing the offloading is based on the difference between
the energy used if the task was executed locally on the mobile device or remotely
on the cloud servers. The power consumption of the local execution is estimated
by counting the cpu cycles while, as for the remote execution, it is calculated only
considering the network usage (data transfer). Our model is more sophisticated,
as it considers also the hardware components that are used during computation
and the problematic concerning the transfer of the data (i.e. cpu, wifi, 3g, display,
system, etc.).

In [6] a two-step method is used. First, a database of application power usage
is built through standard profiling technics. Then, the authors exploit the prop-
erty stated in the paper that, for a limited class of applications (i.e. applications
in which the cost depends only on the scale of the input), the algorithmic com-
plexity combined with the profiling can be used to predict the energy cost of the
execution of the application itself. Unfortunately, real-world applications can be
hardly modeled considering only their input.

Many papers are devoted to techniques and strategies to alleviate the process
of offloading analyzing the code of the application or optimizing some energy-
consuming processes, i.e. the acquisition of the GPS signal. For instance, Saari-
nen et al. [14] analyses the application source code and identifies method present-
ing hardware and/or software constraints, which do not permit the offloading. In
addition, they also consider traffic patterns and power saving modes. However,
the work does not consider network conditions and user requirements. Note that
these approaches are orthogonal to our work and can be adopted in order to
optimize some phases of the offloading process.

Spectra [3] is a remote execution system that monitors application resource
usage and the availability of the resources on the device and dynamically choose
how and where to execute application tasks. The framework provides APIs to
developers to build application suitable with the defined architecture. Xray [13]
is an automatic system, which profiles an application and decides what and when
an offloading computation is useful. The Xray profiling stage observes application
and system events (Gui, sensor, GPS, memory, CPU) and identifies remotable
methods. If a method does not use local resources then it is remotable. Differently

70 G. Folino and F.S. Pisani

form these two systems, our framework is not method-based, but considers the
entire application and the decision to perform the offloading is based not only
on the application characteristics (size of data, privacy concern) but also on the
system status (battery, 3g or wifi connection) and on some constraints requested
by the user.

Gu et al. [5] extend an offloading system with an offloading inference engine
(OLIE). OLIE solves two problems: first, it decides when to trigger the offloading
action; second, it selects a partitioning policy that decides which objects should
be offloaded and which pulled back during an offloading action. The main focus of
OLIE is to overcome memory limitations of a mobile device. To make a decision
OLIE consider available memory and network conditions (i.e. bandwidth, delay).
To achieve a more powerful triggering system, OLIE uses a Fuzzy Control model
with rules specified by the system and by the application developers. Similarly to
our approach, this paper is based to an evolutionary algorithm to automate the
decision of offloading a task in order to save energy. However, it only considers
the hardware/software characteristics of the application and of the device and
not the user’s requirements and the QoS.

5 Conclusions and Future work

This work presents an automatic approach to generate models for taking deci-
sions on the process of offloading of mobile applications on the basis of the user
requirements, of the conditions of the network, of the hardware/software features
of the mobile device and of the characteristics of the application. The system
constitutes a general framework for testing offload algorithms and includes a
mobile simulator and an inference engine. The latter is a genetic programming
module, in which the functions are the parameters of a ad-hoc designed taxon-
omy, which includes all that can influence the process of offloading and that must
be considered during the decision process. The fitness function is parametrically
defined in a way that permits to give a different weight to the cost, the time,
the energy and the quality of service depending on what interests more.

For future works, the framework will be tested with real datasets in order to
verify whether the models work in real environments. Finally, the taxonomy will
be refined on the basis of the results obtained from the experiments.

Acknowledgments, This research work has been partially funded by the MIUR
project FRAME, PON01-02477.

References

1. Abowd, G.D., Dey, A.K.: Towards a Better Understanding of Context and Context-
Awareness. In: Gellersen, H.-W. (ed.) HUC 1999. LNCS, vol. 1707, pp. 304–307.
Springer, Heidelberg (1999)

2. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing
and emerging it platforms: Vision, hype, and reality for delivering computing as
the 5th utility. Future Gener. Comput. Syst. 25(6), 599–616 (2009)

A Framework for Modeling Automatic Offloading of Mobile Applications 71

3. Flinn, J., Park, S., Satyanarayanan, M.: Balancing performance, energy, and quality
in pervasive computing. In: ICDCS, pp. 217–226 (2002)

4. Folino, G., Pizzuti, C., Spezzano, G.: A scalable cellular implementation of parallel
genetic programming. IEEE Transaction on Evolutionary Computation 7(1), 37–53
(2003)

5. Gu, X., Nahrstedt, K., Messer, A., Greenberg, I., Milojicic, D.S.: Adaptive of-
floading inference for delivering applications in pervasive computing environments.
In: Proceedings of the First IEEE International Conference on Pervasive Comput-
ing and Communications (PerCom 2003), Fort Worth, Texas, USA, March 23-26,
pp. 107–114 (2003)

6. Gurun, S., Krintz, C.: Addressing the energy crisis in mobile computing with devel-
oping power aware software. In: UCSB Technical Report. UCSB Computer Science
Department (2003)

7. Kumar, K., Lu, Y.-H.: Cloud computing for mobile users: Can offloading compu-
tation save energy? IEEE Computer 43(4), 51–56 (2010)

8. Lee, K., Rhee, I., Lee, J., Chong, S., Yi, Y.: Mobile data offloading: how much can
wifi deliver? In: CoNEXT 2010, Philadelphia, PA, USA, November 30 - December
03, p. 26. ACM (2010)

9. Liu, J., Kumar, K., Lu, Y.-H.: Tradeoff between energy savings and privacy pro-
tection in computation offloading. In: Proceedings of the 2010 International Sym-
posium on Low Power Electronics and Design, Austin, Texas, USA, August 18- 20,
pp. 213–218. ACM (2010)

10. Miettinen, A.P., Nurminen, J.K.: Energy efficiency of mobile clients in cloud com-
puting. In: Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud
Computing, HotCloud 2010, USENIX Association, Berkeley (2010)

11. Namboodiri, V., Ghose, T.: To cloud or not to cloud: A mobile device perspective
on energy consumption of applications. In: WOWMOM, pp. 1–9 (2012)

12. Ortiz, A., Ortega, J., Dı́az, A.F., Prieto, A.: Modeling network behaviour by full-
system simulation. JSW 2(2), 11–18 (2007)

13. Pathak, A., Hu, Y.C., Zhang, M., Bahl, P., Wang, Y.-M.: Enabling automatic
offloading of resource-intensive smartphone applications. Technical report, Purdue
University (2011)

14. Saarinen, A., Siekkinen, M., Xiao, Y., Nurminen, J.K., Kemppainen, M., Hui, P.:
Offloadable apps using smartdiet: Towards an analysis toolkit for mobile applica-
tion developers. CoRR, abs/1111.3806 (2011)

15. Wolski, R., Gurun, S., Krintz, C., Nurmi, D.: Using bandwidth data to make com-
putation offloading decisions. In: 22nd IEEE International Symposium on Paral-
lel and Distributed Processing, IPDPS 2008, Miami, Florida, USA, April 14-18,
pp. 1–8. IEEE (2008)

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 72–81, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Solving the Location Areas Scheme in Realistic Networks
by Using a Multi-objective Algorithm

Víctor Berrocal-Plaza, Miguel A. Vega-Rodríguez, Juan M. Sánchez-Pérez,
and Juan A. Gómez-Pulido

Dept. Technologies of Computers & Communications, University of Extremadura
Escuela Politécnica, Campus Universitario S/N, 10003, Cáceres, Spain
{vicberpla,mavega,sanperez,jangomez}@unex.es

Abstract. The optimization of the management tasks in current mobile
networks is an interesting research field due to the exponential increase in the
number of mobile subscribers. In this paper, we study two of the most important
management tasks of the Public Land Mobile Networks: the location update and
the paging, since these two procedures are used by the mobile network to locate
and track the Mobile Stations. There are several strategies to manage the
location update and the paging, but we focus on the Location Areas scheme
with a two-cycle sequential paging, a strategy widely applied in current mobile
networks. This scheme can be formulated as a multi-objective optimization
problem with two objective functions: minimize the number of location updates
and minimize the number of paging messages. In previous works, this multi-
objective problem was solved with single-objective optimization algorithms by
means of the linear aggregation of the objective functions. In order to avoid the
drawbacks related to the linear aggregation, we propose an adaptation of the
Non-dominated Sorting Genetic Algorithm II to solve the Location Areas
Planning Problem. Furthermore, with the aim of studying a realistic mobile
network, we apply our algorithm to a scenario located in the San Francisco Bay
(USA). Results show that our algorithm outperforms the algorithms proposed
by other authors, as well as the advantages of a multi-objective approach.

Keywords: Location Areas Planning Problem, Non-dominated Sorting Genetic
Algorithm II, Mobile Location Management, Multi-objective Optimization,
Stanford University Mobile Activity Traces.

1 Introduction

The Public Land Mobile Networks (PLMNs) are the networks that provide mobile
communications to the public. These networks can be represented by a hierarchical
structure with three levels: Mobile Subnet, Radio Network, and Core Network [1].
The first level (Mobile Subnet) is constituted by the subscriber terminals (or Mobile
Stations, MS). The second level (Radio Network or Access Subnet) divides the
coverage area in several smallest regions, known as cells, among which the radio-
electric resources are distributed and reused. This level is constituted by the Base

 Solving the Location Areas Scheme in Realistic Networks 73

Stations (BSs) and the Base Station Controllers (BSCs). A BS is the network entity
that provides mobile access to the MSs, and a BSC is the network entity that performs
control tasks associated with several BS. And the third level (Core Network)
comprises all systems and registries that perform the management, control and
operation tasks, e.g. the Mobile Switching Centers (MSCs), the Home Location
Registries (HLRs), and the Visitor Location Registries (VLRs) are the entities
responsible for managing the subscriber location update (LU) and paging (PA). These
management tasks (LU and PA) are used by the PLMNs to know the exact location of
the subscriber (in terms of cells) in order to automatically route an incoming call to
him, so they are considered as two of the most important tasks in the PLMNs [2].

By using the LU procedure, the MS notifies the mobile network that its location
should be updated. There are several strategies to manage the LU, mainly classified
into two groups: static LU and dynamic LU [3-5]. In static strategies, all subscribers
perceive the same logical topology of the mobile network, which is calculated by the
Location Management system (the system that controls the location update and the
paging). However, in dynamic strategies, each MS might perceive a different logical
topology and it decides to perform a location update according to its calling and
mobility patterns. With these last strategies, the signaling load associated with the LU
and PA procedures might be reduced considerably, but they require higher network
capabilities than the static strategies, since the mobile network has to store a logical
configuration per subscriber. That is why the static strategies are more popular than
the dynamic ones. Always Update, Never Update, and Location Areas are examples
of static LU strategies [3]. In the Always Update strategy, the MS updates its location
whenever it moves to a new cell, and hence, the paging is only performed in the
current cell of the callee user. In contrast to the Always Update strategy, there is not
location update in the Never Update strategy, and thus, all network cells have to be
polled in order to know the location of the callee user. The Location Areas (LA)
strategy is halfway between the Always Update and the Never Update strategies. By
means of the Location Areas scheme, the network cells are grouped into logical areas
such that the MS only updates its location when it moves to a new logical area, and
the paging is only performed in the cells within the logical area of the callee user.

On the other hand, the mobile network uses the PA procedure to know the exact
cell associated with the callee user [4]. Commonly, this procedure has to be
performed before the timer expires (known as maximum paging delay). Two-cycle
Sequential Paging, Blanket Polling, and Shortest Distance are examples of paging
procedures with delay constraint. In the Two-cycle Sequential Paging, the cells that
have to be polled are grouped into two paging areas that are polled sequentially. First,
the system checks the last cell known for the callee user, and then, if it is necessary,
the rest of cells of that location area. This is one of the PA procedures more used in
mobile networks. Fig. 1 shows an example of the LU and PA procedures.

In the last decade, due to the exponential increase in the number of mobile
subscribers, several authors have focused their researches on applying new
optimization techniques to the Location Management tasks, and concretely in the
Location Areas scheme. P. R. L. Gondim is one of the first authors arguing that the
Location Areas Planning Problem is an NP-hard combinatorial optimization problem

74 V. Berrocal-Plaza et al.

(due to the huge size of the objective space), and he defined a Genetic Algorithm
(GA) for finding quasi-optimal configurations of Location Areas [6]. P. Demestichas
et al. proposed three algorithms (GA, Simulated Annealing (SA), and Taboo Search
(TS)) to research the Location Areas scheme in different environments [7]. J. Taheri
and A. Zomaya implemented several algorithms to solve the Location Areas Planning
Problem: Hopfield Neural Networks (HNNs), GA, SA, and combinations of GA with
HNN (GA-HNN) [8-11]. R. Subrata and A. Zomaya proposed a dynamic LU strategy
based on the Location Areas scheme [12]. In their work, R. Subrata and A. Zomaya
use the network provided by the Stanford University (SUMATRA [13]: Stanford
University Mobile Activity TRAces, a trace generator that is well-validated against
real world data measured in the geographical area of the San Francisco Bay, USA).
Finally, S. M. Almeida-Luz et al. developed the Differential Evolution (DE)
algorithm [14-15] and the Scatter Search (SS) algorithm [16-17] to also solve the
SUMATRA network [13].

In all of these algorithms, the objective functions of the Location Areas Planning
Problem are linearly combined into a single objective function. This technique
reduces the complexity of the optimization algorithm but has got associated several
drawbacks, as can be seen in Section 3. That is why we propose an adaptation of the
Non-dominated Sorting Genetic Algorithm II (NSGA-II, a Multi-Objective
Evolutionary Algorithm) to solve the Location Areas Planning Problem. With a multi-
objective optimization algorithm, we can obtain a set of solutions among which the
network operator could select the one that best fits the network real state, i.e. when
the signaling load generated by other management systems is considered.

The paper is organized as follows: Section 2 defines the Location Areas Planning
Problem and presents the SUMATRA network that we have studied. Section 3 shows
the main features of a multi-objective optimization algorithm and our adaptation of
NSGA-II to solve the Location Areas Planning Problem. Results, comparisons with
other authors, and an analysis of the obtained solutions are presented in Section 4.
Finally, our conclusions and future work are discussed in Section 5.

2 Location Areas Scheme

The Location Areas scheme is being widely used in current mobile networks. By
means of this strategy, the network cells are grouped into logical areas (or Location
Areas, LAs) with the aim of reducing the number of signaling messages associated
with the subscriber location update, since the MS is free to move inside a given LA
without updating its location. Furthermore, the paging procedure is only performed in
the cells within the current LA of the callee user. It should be noted that the main
challenge of the Location Areas scheme is to find the LA configuration that
minimizes simultaneously the number of location update and the number of paging
messages.

To reduce the number of location updates, the size of the LAs should be increased,
leading to an increment in the number of paging messages because more cells have to
be paged. And vice versa, to reduce the number of paging messages, the size of the

 Solving the Location Areas Scheme in Realistic Networks 75

LAs should be reduced, leading to an increment in the number of location updates.
Therefore, the Location Areas scheme defines a Multi-objective Optimization
Problem (MOP) that can be formulated as:

userfin

ini

NT

1 cos t t ,i
t T i 1

min LU
= =

 = = γ

 f , (1)

 ()()
userfin

ini

NT

2 cos t t ,i t ,i t ,i t
t T i 1

min PA 1 NA[LA [i]]
= =

 = = ρ α + − α ×

 f , (2)

subject to

Cell AreaN N

i,k
i 1 k 1

1
= =

μ = , (3)

where the involved variables are:

• γt,i: A binary variable that is equal to 1 when the MS i moves to a new Location
Area in the time t; otherwise γt,i is equal to 0.

• ρt,i: A binary variable that is equal to 1 when the MS i has an incoming call in the
time t; otherwise ρt,i is equal to 0.

• αt,i: A binary variable that is equal to 1 when, in the time t, the MS i is located in its
last updated cell; otherwise αt,i is equal to 0.

• NA: Vector that stores the size (in terms of number of cells) of each Location Area.
• LAt: Vector that stores the Location Area associated with each user in the time t.
• μi,k: A binary variable that is equal to 1 when the cell i belongs to the Location

Area k; otherwise μi,k is equal to 0.
• Nuser: Number of mobile users.
• NCell: Number of network cells.
• NArea: Number of Location Areas.
• [Tini, Tfin]: Time interval during which the LU and PA costs are calculated.

Equation (1) defines the first objective function of the Location Areas Planning
Problem: minimize the number of location updates. Equation (2) shows the second
objective function: minimize the number of paging messages required to locate a
callee user by using the Two-cycle Sequential Paging. In this work, we use the paging
procedure proposed in [12, 15, 17]: firstly, the callee MS is searched in the last
updated cell and, if the MS is not found in this cell, the other cells of the Location
Area are simultaneously polled in order to know the exact cell in which the MS is
located. Constraint (3) establishes that a cell cannot be associated with several
Location Areas, and has to be associated always with a Location Area. Therefore, the
maximum Location Area size is limited to NCell (i.e. the Never Update strategy,
when all cells belong to the same Location Area), and the maximum number of
Location Areas is also limited to NCell (i.e. the Always Update strategy, when each
cell belongs to a different Location Area).

76 V. Berrocal-Plaza et al.

In previous works, the Location Areas Planning Problem was solved by means of
Single-objective Optimization Algorithms (SOA). For it, the linear aggregation of the
objective functions was used to adapt this multi-objective optimization problem to a
single-objective optimization problem. Equation (4) shows the objective function
proposed in [8-12, 14-17], where β is a constant defined to consider that the cost
associated with a location update is higher than the cost of performing the paging
procedure, since the location update involves more network entities than the paging.
Commonly, this coefficient is configured equal to 10, β = 10.

 (){ }SOA
tot cos t cos tmin Cost LU PA= β = β× +f , (4)

In this paper, with the aim of avoiding the drawbacks associated with the linear
aggregation (see Section 3), we propose a multi-objective optimization algorithm to
solve the Location Areas Planning Problem. With this strategy, the network operator
could select the solution that best adjusts to the network real state.

2.1 Stanford University Mobile Activity Traces

The Stanford University Mobile Activity TRAces (SUMATRA) is a set of mobile
activity traces that are available to the public via web [13]. In this work, we have
studied the BALI-2 network, which provides a real-time data of the users' mobile
activity measured in the San Francisco Bay (USA) during 24 hours. BALI-2 defines a
mobile network with 90 cells and 66,550 subscribers. The main appeal of this network
is that it will allow us to study the behavior of the Location Areas Scheme in a
realistic mobile network, since its trace is well validated against real world data. Fig.
2 shows an approximation of the BSs planning and its associated graph. Note that
each circle represents a BS and the edges represent the neighborhood among cells (i.e.
two cells are neighboring if they are connected by an edge).

Fig. 1. Example of location update and
paging in the Location Areas scheme

 Fig. 2. BALI-2 mobile network: BS planning and
associated graph

 Solving the Location Areas Scheme in Realistic Networks 77

3 Multi-objective Optimization Paradigm

A Multi-objective Optimization Problem (MOP) is the optimization problem in which
two or more conflicting objective functions have to be optimized under certain
constraints [18], e.g. the Location Areas Planning Problem. Due to the fact that there
are two or more conflicting objectives, the main task of a multi-objective optimization
algorithm consists in finding a set of solutions, each one related to a trade-off among
objectives. Commonly, these similar-quality solutions are called non-dominated
solutions and they are grouped in the known as Pareto front. For definition, the
solution x1 is said to dominate the solution x2 (denoted by x1 ≺ x2) when x1
outperforms x2 in one or more objectives, and x1equals x2 in the rest of objectives.

Traditionally, the linear aggregation of the objective functions was used to solve a
MOP by means of single-objective optimization algorithms, e.g. see Equation (4).
This strategy allows the use of less complex algorithms but has got associated several
drawbacks. Firstly, an accurate knowledge of the problem is required in order to
properly configure the values of the weight coefficients, which could be real values.
Secondly, the proper value of the weight coefficients might vary in the time (e.g. in
the Location Areas Planning Problem, different states of the signaling network could
require different values of β). And thirdly, a single-objective optimization algorithm
must perform an independent run for each combination of the weight coefficients.

In this paper, we have implemented an adaptation of the Non-dominated Sorting
Genetic Algorithm II to solve the Location Areas Planning Problem. A detailed
explanation of the adaptation of this Multi-Objective Evolutionary Algorithm
(MOEA) is discussed in Subsection 3.1.

3.1 Non-dominated Sorting Genetic Algorithm II

The Non-dominated Sorting Genetic Algorithm II (NSGA-II) is a population-based
metaheuristic algorithm in which the EVolutionary OPerators (EVOPs: recombination
of parents or crossover, mutation, and natural selection of the fittest individuals) of
biological systems are used to iteratively improve a set of solutions. This algorithm
was proposed by K. Deb et al. in [19] with the goal of reducing the computational
complexity of its predecessor NSGA [20]. The pseudo-code of our adaptation of
NSGA-II is presented in Algorithm 1. In this pseudo-code: Npop is the population
size, PC is the crossover probability, PM is the mutation probability, and the stop
condition is the Maximum Number of Cycles (MNC) executed.

Firstly, the population should be initialized and evaluated, i.e. a solution must be
calculated and evaluated for each individual. In this work, every individual (its
genome) is represented by a vector that stores the Location Area associated with each
network cell. And secondly, the EVOPs are applied iteratively until the stop condition
is not satisfied. The crossover operation is used to generate the offspring population,
where each offspring has genetic information of two parents. We have used an elitist
crossover, in which the number of crossover points and their positions are randomly
determined between [1, 4] and [0, NCell-1], respectively. The mutation operation is
applied to change the genetic information of the offspring. We have defined two

78 V. Berrocal-Plaza et al.

mutation operations: Gene Mutation (GM) and Merge-LA Mutation (MLAM). The
Gene Mutation consists in changing the Location Area of a boundary cell by its
neighboring Location Area of lower size (in terms of number of cells). And the
Merge-LA Mutation consists in merging the smallest Location Area with its
neighboring Location Area with fewer cells. These two mutation operations cannot be
applied simultaneously over the same individual, and they are configured such that
2PGM = 2PMLAM = PM, where PGM is the Gene Mutation probability and PMLAM is the
Merge-LA Mutation probability. Finally, the natural selection is performed with the
goal of selecting the Npop fittest individuals, which will be the parent population in
the next cycle. K. Deb et al. [19] provide a methodology to select the best solutions
(or individuals) in the multi-objective context, i.e. they provide a multi-objective
fitness function. This methodology consists of two functions: the Non-dominated
Sorting and the Crowding Distance. The Non-dominated Sorting is a function that
applies the non-dominance concept to arrange a set of solutions in groups (or fronts).
And the Crowding Distance measures the density of solutions surrounding a particular
point of the objective space. For detailed information about NSGA-II, please see [19].

In order to perform a fair comparison with other works, we use the same stop
condition (MNC=1000) and the same population size (Npop=300) [15]. The other
parameters of NSGA-II have been configured by means of a parametric study, in which
we have performed 30 independent runs per experiment. The parameter configuration
that provides the higher Hypervolume is: PC = 0.9, PM = 0.2. The Hypervolume is one of
the most popular multi-objective indicators, and it is used to know the quality of a multi-
objective optimization algorithm. This indicator measures the area of the objective
space covered by the Pareto front (if we assume two objectives).

Algorithm 1. Pseudo-code of our adaptation of NSGA-II

1: % Initialization of the population
2: Indv ← Initialization(Npop);
3: % Evaluation of the population
4: Indv ← ObjectiveFunctionsEvaluation(Indv);
5: Indv ← MOFitnessFunctionEv(Indv);
6: % Main loop
7: while (stop condition ≠ TRUE){
8: % Crossover or recombination of parents
9: Offsp ← Crossover(Indv,PC);
10: % Mutation of the offspring
11: Offsp ← Mutation(Offsp,PM);
12: % Evaluation of the offspring
13: Offsp ← ObjectiveFunctionsEvaluation(Offsp);
14: % Evaluation of all population
15: [Indv,Offsp] ← MOFitnessFunctionEv(Indv,Offsp);
16: % Selection of the fittest individuals
17 Indv ← NaturalSelection(Indv,Offsp);
18: }

 Solving the Location Areas Scheme in Realistic Networks 79

4 Experimental Results

With the purpose of checking the behavior of our algorithm in a realistic mobile
network, we have studied one of the networks developed by the Stanford University:
BALI-2, the network that provides real-time information of the mobile activity.
Furthermore, in order to verify the quality of our solutions, we have compared our
results with those obtained by other authors. Due to the fact that there is no other
work that addresses the Location Areas Planning Problem in a multi-objective
manner, we must compare with single-objective optimization algorithms [15, 17]. For
it, we have to find in our Pareto front the solution that best fits the Equation (4) with β
equal to 10, since it is the objective function used by these single-objective
optimization algorithms. In addition, we have calculated statistical data of the
Hypervolume (median, HVmedian, and interquartile range, HViqr) for 30 independent
runs. These statistical data are: HVmedian(%) = 93.75%, HViqr = 7.8700e-4. It should be
noted the low value of the HViqr, this denotes that our algorithm is very stable. Fig. 4
shows the Pareto front related to the median HV, the reference points that we have
used to calculate the HV (these reference points have been calculated by means of the
extreme solutions: Always Update strategy and Never Update strategy, see Section 2),
and the solution of our Pareto front that best fits the Equation (4) with β equal to 10.
In this figure, we can observe the high spread of our Pareto front, which includes the
two extreme solutions. Fig. 3-(a) presents a comparison among the Always Update
strategy, the Never Update strategy, and our proposal. This figure shows us that our
algorithm clearly outperforms the two classic strategies. Finally, Fig. 3-(b) shows a
comparison between our algorithm (NSGA-II) and the algorithms proposed in [15]
and [17]: Differential Evolution (DE) and Scatter Search (SS). In this figure we can
see that our algorithm outperforms these two single-objective optimization algorithms
in the hours with higher mobile activity (8:00h-20:00h). A summary of these two last
figures is presented in Table 1, in which we can observe that our algorithm also
obtains better results than one of the dynamic strategies proposed in [12]: Distance-
Based Location Area (DBLA). Therefore, we can conclude that our algorithm is
competitive, since it achieves better results than other algorithms and it provides a set
of solutions among which the network operator could select the one that best adjusts
to the network real state.

Fig. 3. BALI-2: (a) Comparison among strategies. (b) Comparison among algorithms.

80 V. Berrocal-Plaza et al.

Table 1. Comparison among strategies

Algorithm
24h

tott 0h
Cost (10)

=

LA-NSGA-II 2,619,519
LA-SS[17] 2,756,836
LA-DE[15] 2,799,289
Always Update 4,010,317
Never Update 10,836,953
DBLA[12] 2,695,282

Fig. 4. Median Pareto front of NSGA-II

5 Conclusions and Future Work

The main contribution of this work is that we have adapted the Non-dominated
Sorting Genetic Algorithm II (NSGA-II, a Multi-Objective Evolutionary Algorithm)
to solve the Location Areas Planning Problem in a realistic mobile network: BALI-2
[13]. Due to the fact that there is no other work that addresses this problem with a
multi-objective optimization algorithm, we must compare with single-objective
optimization algorithms. Results show that our algorithm is promising, since it
achieves better solutions than the algorithms proposed by other authors, and it gives
more vision to the network operator. In a future work, it would be interesting to
develop other multi-objective optimization algorithms and compare them with
NSGA-II. Furthermore, it would be a good challenge to study the Location Areas
Planning Problem when the network architecture is considered.

Acknowledgement. The work of Víctor Berrocal-Plaza has been developed under the
Grant FPU-AP2010-5841 from the Spanish Government. This work was partially
funded by the Spanish Ministry of Economy and Competitiveness and the ERDF
(European Regional Development Fund), under the contract TIN2012-30685 (BIO
project).

References

1. Agrawal, D.P., Zeng, Q.A.: Introduction to Wireless and Mobile Systems, 3rd edn.
Cengage Learning, Stamdford (2010)

2. Garg, V.: Wireless Communications and Networking, 1st edn. Elsevier, San Francisco
(2007)

3. Tabbane, S.: Location management methods for third-generation mobile systems. IEEE
Commun. Mag. 35(8), 72–84 (1997)

4. Wong, V.W.-S., Leung, V.C.M.: Location management for next generation personal
communications networks. IEEE Network 14(5), 18–24 (2000)

 Solving the Location Areas Scheme in Realistic Networks 81

5. Kyamakya, K., Jobmann, K.: Location management in cellular networks: classification of
the most important paradigms, realistic simulation framework, and relative performance
analysis. IEEE Transactions on Vehicular Technology 54(2), 687–708 (2005)

6. Gondim, P.: Genetic algorithms and the location area partitioning problem in cellular
networks. In: Proceedings of IEEE 46th Vehicular Technology Conference on Mobile
Technology for the Human Race, vol. 3, pp. 1835–1838 (1996)

7. Demestichas, P., Georgantas, N., Tzifa, E., Demesticha, V., Striki, M., Kilanioti, M.,
Theologou, M.: Computationally efficient algorithms for location area planning in future
cellular systems. Computer Communications 23(13), 1263–1280 (2000)

8. Taheri, J., Zomaya, A.: The use of a Hopfield neural network in solving the mobility
management problem. In: Proceedings of The IEEE/ACS International Conference on
Pervasive Services, pp. 141–150. IEEE Computer Society, Washington (2004)

9. Taheri, J., Zomaya, A.: A genetic algorithm for finding optimal location area
configurations for mobility management. In: Proceedings of the IEEE Conference on Local
Computer Networks 30th Anniversary, pp. 568–577. IEEE Computer Society, Washington
(2005)

10. Taheri, J., Zomaya, A.: A Simulated Annealing approach for mobile location management.
In: Proceedings of the 19th IEEE International Parallel and Distributed Processing
Symposium, pp. 194–201. IEEE Computer Society, Washington (2005)

11. Taheri, J., Zomaya, A.: A combined genetic-neural algorithm for mobility management.
Journal of Mathematical Modeling and Algorithms 6(3), 481–507 (2007)

12. Subrata, R., Zomaya, A.Y.: Dynamic Location Area Scheme for Location Management.
Telecommunication Systems 22(1-4), 169–187 (2003)

13. Stanford University Mobile Activity TRAces (SUMATRA),
http://infolab.stanford.edu/sumatra (accessed in 2012)

14. Almeida-Luz, S.M., Vega-Rodríguez, M.A., Gómez-Pulido, J.A., Sánchez-Pérez, J.M.:
Differential evolution for solving the mobile location management. Applied Soft
Computing 11(1), 410–427 (2011)

15. Almeida-Luz, S.M., Vega-Rodríguez, M.A., Gómez-Pulido, J.A., Sánchez-Pérez, J.M.:
Applying Differential Evolution to a Realistic Location Area Problem Using SUMATRA.
In: Proceedings of The Second International Conference on Advanced Engineering
Computing and Applications in Sciences, pp. 170–175. IEEE Computer Society,
Washington (2008)

16. Almeida-Luz, S.M., Vega-Rodríguez, M.A., Gómez-Pulido, J.A., Sánchez-Pérez, J.M.:
Applying Scatter Search to the Location Areas Problem. In: Corchado, E., Yin, H. (eds.)
IDEAL 2009. LNCS, vol. 5788, pp. 791–798. Springer, Heidelberg (2009)

17. Almeida-Luz, S.M., Vega-Rodríguez, M.A., Gómez-Pulido, J.A., Sánchez-Pérez, J.M.:
Solving a Realistic Location Area Problem Using SUMATRA Networks with the Scatter
Search Algorithm. In: Proceedings of the Ninth International Conference on Intelligent
Systems Design and Applications, pp. 689–694. IEEE Computer Society, Washington
(2009)

18. Knowles, J., Thiele, L., Zitzler, E.: A Tutorial on the Performance Assessment of
Stochastic Multiobjective Optimizers. Technical report 214, Computer Engineering and
Networks Laboratory (TIK), ETH Zurich, Switzerland (2006)

19. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197
(2002)

20. Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in genetic
algorithms. Evolutionary Computation 2(3), 221–248 (1994)

The Small-World Phenomenon Applied

to a Self-adaptive Resources Selection Model

Maŕıa Botón-Fernández1, Francisco Prieto Castrillo1,
and Miguel A. Vega-Rodŕıguez2

1 Ceta-Ciemat, Dept. Science and Technology, Trujillo, Spain
{maria.boton,francisco.prieto}@ciemat.es

2 University of Extremadura, Dept. Technologies of Computers and Communications,
Cáceres, Spain
mavega@unex.es

Abstract. Small-world property is found in a wide range of natural, bio-
logical, social or transport networks. The main idea of this phenomenon
is that seemingly distant nodes actually have very short path lengths
due to the presence of a small number of shortcut edges running be-
tween clusters of nodes. In the present work, we apply this principle for
solving the resources selection problem in grid computing environments
(distributed systems composed by heterogeneous and geographically dis-
persed resources). The proposed model expects to find the most efficient
resources for a particular grid application in a short number of steps.
It also provides a self-adaptive ability for dealing with environmental
changes. Finally, this selection model is tested in a real grid infrastruc-
ture. From the results obtained it is concluded that both a reduction in
execution time and an increase in the successfully completed tasks rate
are achieved.

Keywords: Small-world phenomenon, Optimization, Grid computing,
Self-adaptability.

1 Introduction

A grid computing environment [6][5] is a distributed system which coordinates
heterogeneous resources by using open standard protocols and interfaces without
applying a centralized control. In this way, a grid system interconnects resources
from different administration domains; by maintaining the internal security poli-
cies and the resources management software of every domain. This leads to a dy-
namic and changing environment. Moreover, this type of infrastructures presents
a double heterogeneity: on the one hand, there are several groups of resources
according to their functionalities. On the other hand, there are heterogeneous
resources within a particular group because they are provided by different cen-
tres. This fact along with the grid dynamic and changing nature varies resources
performance and availability, worsening applications execution performance.
Nowadays, applications require real-time information of grid infrastructures for

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 82–91, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

The Small-World Phenomenon 83

dealing with the environmental changes. Consequently, it has become a challenge
to efficiently perform the resources discovery, resources-application matching, re-
sources allocation, planning and monitoring (i.e. solving resources management
problems).

Recently, grid communities are addressing the adaptation concept for solving
resources management. In this regard, manifold strategies have been presented:
efficient tasks management frameworks, adaptive and autonomous grid systems,
new monitoring and discovery processes, etc (see section 2). However, none of
these implementations has been extended in a global way across the different
grid platforms. For that reason, the present contribution proposes an Efficient
Resources Selection (ERS) model which improves the infrastructure throughput
without modifying it. This model is defined from the user point of view and
located in the application layer, guiding applications during their deployment
on grid infrastructures. Two main goals were fixed: on the one hand, a reduction
of the application execution time and, on the other hand, an improvement of the
successfully finished tasks rate. In this regard, we are interested in discovering
the most efficient resources in the shortest possible time. That fact has motivated
us to apply the Small-world phenomenon [10] [13] during the selection process.
Concerning this algorithm, D. Watts and S. Strogatz [13] focussed on analysing
a certain type of random graphs with peculiar connectivity properties. They
showed that these networks could be reproduced by a random rewiring process
between nodes in a lattice network. In that seminal paper, the authors proposed
to define small-world networks as those holding a small value of characteristic
path length, like random graphs [4], and a high clustering coefficient, like regular
lattices. Regarding our proposed model, it is expected to find the most efficient
resources in a small number of steps by applying this algorithm. The model
is tested in a real grid infrastructure belonging to the Spanish National Grid
Initiative (ES-NGI).1 During this evaluation phase two scenarios were defined
to determine if the objectives had been fulfilled (see section 4).

The rest of the paper is structured as follows. In Section 2 grid computing
adaptation related work is presented. Section 3 includes the Efficient Resources
Selection model description along with basic grid concepts for a better under-
standing of the model. Next, the model evaluation and the resulting data are
discussed in Section 4. Finally, Section 5 concludes the paper and summarizes
future work.

2 Related Work

As mentioned, there are some approaches in the grid community exploiting the
adaptation concept for solving the resources management as well as for dealing
with the dynamic nature of such infrastructures. In this regard, [2] describes the
AppLes project, whose goal is to provide an adaptive ability to grid systems. A
methodology for an adaptive application scheduling is proposed, which means,

1 http://www.es-ngi.es/

http://www.es-ngi.es/

84 M. Botón-Fernández et al.

developing and deploying distributed high-performance applications in an adap-
tive form. A framework for adaptive executions in Grid based on Globus2 is
described in [7]. It has been designed for handling grid jobs in an efficient way
during execution. Here, to maintain a suitable performance level, the tasks exe-
cution adapts to the changing conditions by using new scheduling techniques.

Other work is focussed on improving the monitoring and discovery processes
[8]. In this particular case, the study presents an approach for avoiding the Infor-
mation System (IS)3 overload while improving its performance. Two adaptive
notification algorithms are exposed: a sink-based algorithm and a utilization-
based algorithm. Both are based on IS availability and on data accuracy re-
quirements. An autonomous grid system is presented in [12]. That system is
dynamically adjusted to the application parallelism by considering the chang-
ing characteristics of resources. Two rescheduling policies, for suspension and
migration, are also described. The ratios between the actual and the predicted
execution times are measured continuously for a given application. When the
average of the computed ratios is greater than the tolerance threshold, a re-
quest for migrating is sent to the rescheduler. Finally, the study also includes an
overview of self-adaptive software systems.

In [14] a thorough investigation for applications adaptation and resources se-
lection is presented. In particular, information related to resources communica-
tion and processing times is gathered periodically during applications execution.
This information is used for estimating the application requirements, so that,
when a resource overloads, affecting negatively in the application performance,
it is replaced. The approach claims to reduce bottleneck and resources overload.
Finally, in [1] a report of existing adaptive systems solutions is provided. The
article also includes recommendations for enabling autonomic operations in grid
systems.

The works detailed above have a common characteristic: to improve the grid
infrastructures performance. Several techniques are applied for that purpose
(scheduling, rescheduling, notification, etc.) but all of them are designed from
a system/administration point of view. In this work, we propose a self-adaptive
model for selecting resources in an efficient way by neither modifying nor control-
ling their behaviour (i.e. the model does not use scheduling neither allocation; it
does not apply migration neither tasks replication techniques). Hence, it is ex-
pected to improve the infrastructure throughput as well as to guide applications
for dealing with environmental changes.

3 Model Definition

As stated, in the present contribution we propose a mathematical formulation for
obtaining the efficiency of grid infrastructures resources. This formulation com-
bined with the Small-world phenomenon leads to the ERS model. This model

2 http://www.globus.org/
3 The Information System is a vital part of any grid infrastructure, providing fun-
damental mechanisms for discovery, monitoring, planning and thus for adapting
application behaviour.

http://www.globus.org/

The Small-World Phenomenon 85

provides a self-adaptive capability to the changing properties of a grid infras-
tructure (as described in Section 3.3) in an autonomous way. Before proceeding
to the detailed model, a brief introduction to certain grid concepts, for a better
understanding, is exposed below.

3.1 Basic Grid Concepts

In a typical grid infrastructure users interact with different components through
the user interface (UI). This machine is the access point to the infrastructure,
so that, at this point the authentication and authorization processes come into
place. Then, users send jobs to the infrastructure; these jobs are handled by the
Workload Management System (WMS). This service is allocated in a machine
denoted as Resource Broker (RB), and its functions are to determine the best
Computing Element (CE) and to register the status and output of jobs (the
Information System is also involved in these operations). The process used by
the RB for selecting a CE is known as match-making and is based on availability
and proximity criteria. The CE is a scheduler within a grid site (denoted as
resources centre) that determines in which computing nodes (Worker Node WN)
jobs will be executed.

Considering that the present approach is defined from the user point of view,
the actions it performs belong to the users command set. Moreover, the resources
that the model monitors, classifies and selects are the CEs, matching the selection
criteria. In the following section the mathematical formulation of the ERS model
is described.

3.2 The Mathematical Formulation to Measure Resources Efficiency

The ERS model selects the resources which best fit the application requirements
by continuously monitoring their efficiency. To obtain the efficiency value two
parameters are considered: the historical value εi of finished tasks4 of the i− th
resource and the historical value μi of processing time used for these finished
tasks. Both parameters are obtained for every CE selected during the application
execution.

The εi parameter is computed as the ratio of the amount of successfully fin-
ished tasks SFti and the total number of assigned tasks Ati (Eq.1).

εi = SFti/Ati . (1)

Concerning μi, for each finished task j the processing time consumed by resource
i is measured (Eq.2). The processing time Ti,j includes both the communication
time Tcommi,j between the i − th resource and other grid services and the
computation time Tcompi,j for the corresponding task j.

4 Every task whose grid status is Done or Aborted is considered a finished task. Also
tasks whose lifetime ends before they are fully executed are considered finished
tasks. The concept of lifetime is introduced to avoid jobs running indefinitely, due
to overload resources.

86 M. Botón-Fernández et al.

Ti,j = Tcommi,j + Tcompi,j . (2)

All these Ti,j values {Ti,1, Ti,2, Ti,SFti} are used to compute the processing
time average value χ̄i for the i− th CE (Eq.3) up to the number of finished tasks
SFti at that time.

χ̄i = (

SFti∑
j=1

Ti,j)/SFti . (3)

Then, the historical value is calculated as the normalized difference of χ̄i and
the lifetime lt fixed for performing tasks (see Eq.4).

μi = (lt− χ̄i)/lt . (4)

Finally, the efficiency value Ei is measured by using both εi and μi values along
with two relevance parameters a and b (as shown in Eq.5). These parameters
are introduced in the model for allowing users to specify their priorities (either
success tasks rate or execution time) in the experiments.

Ei = (a · εi + b · μi)/(a+ b) . (5)

3.3 The Efficient Selection Model: Combining the Mathematical
Formulation with the Small-World Phenomenon

As mentioned, the ERS model has two main goals: reducing the applications
execution time and increasing the number of successfully finished tasks. It is
expected that both objectives lead to an improvement in the infrastructure
throughput. The model is based on the mapping between two spaces: 1) A task
space J composed by n independent and parallel tasks (they only differ in the
input parameters values). 2) A dynamic resource space R consisting on the m
heterogeneous resources which are available in the corresponding grid infrastruc-
ture at execution time. This mapping is a many-to-one relationship, that is, one
or more tasks could be associated to the same CE. As shown in Figure 1, at the
beginning of application execution the model prepares a subset of J - denoted as
T - and sends it to execution. The resources selected to perform this T task set
compose a subset of R known as RT . At that moment, the model does not have
efficiency metrics of resources, hence, the elements included in RT are chosen in
a random way. The reason for launching a task set at the beginning is to foster
the model to acquire efficiency metrics more rapidly (fast learning).

During the rest of the execution, the model handles the spaces as follows:
when a task tα ∈ J ends it execution the model evaluates the resource rα ∈ R
associated to tα. Then, based on the Small-world property, an efficient resource
is selected for a new task.

Once the rules for managing the workspaces J and R are established, the
next step is to define the efficient selection process which characterized the pro-
posed approach. As mentioned above, it is based in Watts-Strogatz small-World

The Small-World Phenomenon 87

J R

Beginning of application
execution

J R

When a task ends it execution...

Finished task

... a new one is launched

RT
T

tα
rα

Fig. 1. Management of J and R spaces by the model during the whole application
execution. The spaces are managed in a special way at the beginning of the execution.

network [9][13]. As stated in [9], a Small-world effect can be implemented by
combining a random long-range search with a local shortcuts search. This type
of algorithms are denoted as Small World Optimization Algorithms (SWOA)
[3]. Hence, we apply this technique in our search process for enhancing the ERS
proposal. The components applied to both search processes are described below.

– A workload threshold � used to move from a local to a global search (i.e.
from local to long-range search). For every resource its real workload5 is mon-
itored. The model assumes that a resource is overloaded when its workload
value is equal or very close to �.

– Evaluated resource set SE : vector ordered from lowest to highest efficiency
values used in the local shortcuts search. The vector is composed by those
resources whose efficiency has been measured.

– Unevaluated resource set SUE : vector consisting on unevaluated resources of
R (unselected until that moment).

Local Shortcuts Search
The main action of this local search process is to select an efficient resource
within the rα neighbourhood. We set this neighbourhood as the two nearest
neighbours of rα (v1 and v2 in Figure 2), that is, resources with closest efficiency
values in SE . There are two special cases in which rα only has one neighbour: if
its efficiency value is the lowest or the highest.

When the efficiency of rα is obtained, its value is inserted in SE in an orderly
way. Then, the model must select one of its neighbours for the next tα. The first
option is the most efficient neighbour v1, but if it is overloaded (� is applied) the
model tries the second option: the other nearest neighbour v2. If this resource
is also overloaded, the model applies the random long-range search (there is a
jump in the search triggered by �).

5 Both the load produced by our application and local load (derived from other ex-
ternal experiments which are also using this CE) are considered. It is a normalized
value.

88 M. Botón-Fernández et al.

v1v2

rα

CE1 CE5CE8CE16 CE27 CE10

Special Cases1)

2)
rα

rα

v1

v2

CE16

CE16

CE1

CE1 CE8

CE8 CE27

CE27

CE10

CE10

CE5

CE5
0.21

0.21

0.21

0.3

0.3

0.3

0.46

0.46

0.46

0.51

0.51

0.51

0.54

0.54

0.54

0.7

0.7

0.7

Local Shortcuts Search

Neighbourhood

Fig. 2. The Local Shortcuts Search process defined for the ERS model. The resources
efficiency and workload values are considered.

Random Long-range Search
Regarding the long-range search process, from the SUE set a resource is randomly
selected6. This resource must fulfil one single requirement: not to be overloaded.
Therefore, this random search is repeated until a resource that meets the require-
ment is found. There are two special cases: on the one hand, at a certain moment
all SUE elements could be overloaded and, on the other hand, SUE could be empty.
In both cases the long-range search would be performed on the SE set.

Summarizing the model behaviour: first a task set T is launched into execution
and the corresponding tasks are monitored. When a task tα finishes its execution,
the corresponding resource rα is evaluated. This resource is inserted into SE in
order. In this step the model applies the Small-world property: a local search
is performed and an efficient neighbour of rα is selected. If the two neighbours
are overloaded, the algorithm jumps and starts a global random search. When
the Small-world process ends, a new task is assigned to the resulting efficient
resource7. These processes of monitoring, evaluation and selection are repeated
until all tα ∈ J are processed. Finally, the model registers all the information
gathered during application execution in output files.

4 Performance Evaluation

As mentioned, the model evaluation is performed on a real grid infrastructure.
The ES-NGI initiative hosts a wide range of projects, each of them with their
dedicated grid environments. We are affiliated to the Ibergrid project8 which has
about 30 CEs (a reasonable quantity for evaluating the model).

Two scenarios have been designed to determine if the main goals are achieved:
an execution time reduction and an increase of successfully finished tasks rate.
In both scenarios, the ERS-SW is compared with the Traditional Resources

6 SE ∩ SUE = ∅ and SE ∪ SUE = R
7 As the resources efficiency is monitored constantly, inefficient and overloaded re-
sources are avoided. This way, the self-adaptive ability is provided.

8 http://www.ibergrid.eu/

http://www.ibergrid.eu/

The Small-World Phenomenon 89

Selection (TRS)9 in grid computing. This selection is based on proximity and
availability criteria. Finally, the testing application used in both scenarios is a
fourth-order implicit approximation of the Runge-Kutta method [11].

Scenario 1
In this first scenario we evaluate the ERS model learning capacity and how
it is influenced by the T size. The scenario is composed by 5 tests, so that, in
every of them 10 experiments are performed for each version (ERS-SW and TRS
respectively). The space J size is fixed to 200 tasks in all tests. The size of T
ranges from 5 to 40 tasks (see Figure 3).

Fig. 3. Total execution time vs size. For higher size values the model learning improves.

As shown in Figure 3, ERS-SW reduces the execution time10 with respect
to TRS. It can be noticed that as T is increased, the difference between both
versions grows. This means that for high T values the model finds the efficient
resources faster (fast learning). Regarding the successfully finished tasks rate,
ERS-SW version does not only improve it but also its results do not depend on
the size of the initial T , as shown in Figure 4.

Scenario2
The objective of this second scenario is to determine the range of applications
in which the ERS strategy can be applied. In this case, the size of T is set
to 10 because from previous results (scenario 1) this is reported as the most
appropriate minimum value for T . Six tests compose this scenario and in all of
them the size of J is varied (from 50 to 500 tasks).

As in the first evaluation scenario, the ERS-SW improves the TRS results. For
the two first values of space J the time difference between both versions (ERS-
SW and TRS) is not very large. However, this difference becomes progressively

9 A grid user normally uses this type of selection when interacts directly with a grid
infrastructure. It is the standard grid selection mechanism denoted as match-making.

10 The execution time in ERS-SW includes the application execution time and the
whole model processing time.

90 M. Botón-Fernández et al.

Fig. 4. Successfully finished tasks rate for the two versions. ERS-SW gets a uniform
successfully tasks rate.

Fig. 5. Results obtained in the second scenario. The ERS-SW achieves better results
as the size of J increases.

more significant. For example, when J = 500 the execution time of TRS is
3019 minutes (about 50 hours) while ERS-SW gets 108 minutes. Concerning
the successfully completed tasks rate, it is improved from 70% (TRS) to 95%
(ERS-SW). Finally, it can be concluded that there is a clear benefit in using the
self-adaptive model proposed herein for large production applications in grid
environments.

5 Conclusions

This paper proposes an efficient selection model to solve the problem of resources
management in grid computing. The ERSmodel has been designed from the user
point of view and it is based on the Small-world property. This provides a self-
adaptive capability, allowing applications to deal with a changing environment.
From the results obtained in the evaluation phase it is concluded that it is a feasi-
ble solution for grid users, as it increases the successfully finished tasks rate and it
reduces the applications execution time. Future work involves enhancing the pro-
posed model by applying new algorithms and to consider other grid services.

The Small-World Phenomenon 91

Acknowledgement. Maŕıa Botón-Fernández is supported by the PhD research
grant of the Spanish Ministry of Economy and Competitiveness at the Research
Centre for Energy, Environment and Technology (CIEMAT). The authors would
also like to acknowledge the support of the European Funds for Regional Devel-
opment.

References

1. Batista, D.M., Da Fonseca, L.S.: A Survey of Self-adaptive Grids. IEEE Commu-
nications Magazine 48(7), 94–100 (2010)

2. Berman, F., Wolski, R., Casanova, H., Cirne, W., Dail, H., Faerman, M., Figueira,
S., Hayes, J., Obertelli, G., Schopf, J., Shao, G., Smallen, S., Spring, N., Su, A.,
Zagorodnov, D.: Adaptive Computing on the Grid Using AppLeS. IEEE Transac-
tions on Parallel and Distributed Systems 14(4), 369–382 (2003)

3. Du, H., Wu, X., Zhuang, J.: Small-World Optimization Algorithm for Function
Optimization. In: Jiao, L., Wang, L., Gao, X.-b., Liu, J., Wu, F. (eds.) ICNC 2006,
Part II. LNCS, vol. 4222, pp. 264–273. Springer, Heidelberg (2006)

4. Erdos, P., Rény, A.: On the Evolution of Random Graphs. Publications of the
Mathematical Institute of the Hungarian Academy of Sciences 5, 17–61 (1960)

5. Foster, I.: The Anatomy of the Grid: Enabling Scalable Virtual Organizations. In:
Sakellariou, R., Keane, J.A., Gurd, J.R., Freeman, L. (eds.) Euro-Par 2001. LNCS,
vol. 2150, pp. 1–4. Springer, Heidelberg (2001)

6. Foster, I.: What is the Grid? A three Point Checklist. GRIDtoday 1(6), 22–25
(2002)

7. Huedo, E., Montero, R.S., Llorente, I.M.: A Framework for Adaptive Execution in
Grids. Software-Practice & Experience 34(7), 631–651 (2004)

8. Keung, H.N.L.C., Dyson, J.R.D., Jarvis, S.A., Nudd, G.R.: Self- Adaptive and Self-
Optimising Resource Monitoring for Dynamic Grid Environments. In: DEXA 2004,
Proceedings of the Database and Expert Systems Applications, 15th International
Workshop, Washington DC, USA, pp. 689–693 (2004)

9. Kleinberg, J.: The Small-world Phenomenon: an Algorithm Perspective. In: Pro-
ceedings of The Thirty-second Annual ACM Symposium on Theory of Computing,
Portland, OR, USA, pp. 163–170 (2000)

10. Newman, M., Barabási, A.-L., Watts, D.J.: The Structure and Dynamics of Net-
work. Princeton University Press (2006)

11. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipies
in C. Press Syndicate of the University of Cambridge, New York (1992)

12. Vadhiyar, S.S., Dongarra, J.J.: Self Adaptivity in Grid Computing. Concurrency
and Computation: Practice and Experience 17(2-4), 235–257 (2005)

13. Watts, D.J., Strogatz, S.H.: Collective Dynamics of Small-world Networks. Na-
ture 393, 440–442 (1998)

14. Wrzesinska, G., Maasen, J., Bal, H.E.: Self-adaptive Applications on the Grid. In:
Proceedings of the 12th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, San Jose, California, USA, pp. 121–129 (2007)

Partial Imitation Hinders Emergence

of Cooperation in the Iterated Prisoner’s
Dilemma with Direct Reciprocity

Mathis Antony, Degang Wu, and K.Y. Szeto

Department of Physics, Hong Kong University of Science and Technology,
Clear Water Bay, Hong Kong

phszeto@ust.hk

Abstract. The evolutionary time scales for various strategies in the it-
erated Prisoner’s Dilemma on a fully connected network are investigated
for players with finite memory, using two different kinds of imitation
rules: the (commonly used) traditional imitation rule where the entire
meta-strategy of the role model is copied, and the partial imitation rule
where only the observed subset of moves is copied. If the players can
memorize the last round of the game, a sufficiently large random initial
population eventually reaches a cooperative equilibrium, even in an envi-
ronment with bounded rationality (noise) and high temptation. With the
traditional imitation rule the time scale to cooperation increases linearly
with decreasing intensity of selection (or increasing noise) in the weak
selection regime, whereas partial imitation results in an exponential de-
pendence. Populations with finite lifetimes are therefore unlikely to ever
reach a cooperative state in this setting. Instead, numerical experiments
show the emergence and long persistence of a phase characterized by the
dominance of always defecting strategies.

1 Introduction

We use the Prisoner Dilemma [10] (PD) as an example of a two player game
to study the impact of incomplete information in the imitation process. When
two players play the PD game, each of them can choose to cooperate (C) or
defect (D). Each player is awarded a payoff depending on his own and the op-
ponent’s move. Cooperation yields R (S) if the opponent cooperates (defects)
and defection yields T (P) if the opponent cooperates (defects). R is the Reward
for cooperation, S is the Sucker’s payoff, T is the Temptation to defect and P
is the Punishment. In the PD, T > R > P > S and 2R > T + P to prevent
collusion if the game is played repeatedly. The PD is a so called non zero sum
game because one players loss does not equal his opponent’s gain. By cooper-
ating, both players win, by mutually defecting they both lose. In this paper we
do not vary these payoff parameters but employ a set of commonly used values
with high temptation: T = 5, R = 3, P = 1, S = 0. These values were also used
in Axelrod’s famous PD computer tournament [2]. For an excellent review of the
PD literature, we refer the reader to [12].

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 92–101, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Partial Imitation Hinders Emergence of Cooperation 93

The tragedy behind the PD briefly consists in the fact that the best strategy
for a selfish individual (D) is the worst strategy for the society. The expectation
of playing D is greater than the expectation of playing C (independent of the op-
ponents strategy), but cooperating yields a higher total payoff. The state where
no player has anything to gain by changing her own strategy (the so called Nash
Equilibrium) occurs only when all players defect. Hence, if the players imitate the
behaviour of the more successful players, defection will dominate if we do not pro-
vide any additional circumstances to encourage cooperative behaviour. Nowak et
al. summarized five rules for the emergence of cooperation [5]: kin selection, direct
reciprocity [3,4], indirect reciprocity, network reciprocity [6,13] and group selec-
tion. Network reciprocity has attracted an received particular attention recently
in the light of co-evolutionary dynamics [8,9] where the network topology of the
underlying interaction network evolves alongside the agent strategies.

The mechanism at work here is direct reciprocity. Players are given a memory
or in other words the ability to remember a fixed number of recent outcomes of the
PD games. Each player is then supplied with a set of answers to respond to every
possible history. We call this set of moves a Strategy1.

Players will then imitate other players by adopting their strategies. But if
the strategies are elaborate an imitation may be challenging. As an illustration,
assume Alice and Bob are playing chess and Alice is winning every game. Even
if Bob recalls all of Alice’s moves he will not be able to imitate her strategy
completely until a huge number of games have been played. Instead he may
attempt to improve his own strategy by adapting elements of Alice’s strategy
exposed to him during previous games. Intuitively the more complex a strategy,
the more difficult it should be for a player to imitate it. We incorporate this
condition by means of an imitative behaviour we refer to as partial Imitation Rule
(pIR). According to this rule a player can only imitate based on her knowledge
about the opponent’s strategy gathered during the most recent encounter with
this opponent. This is in contrast to what we call the traditional Imitation Rule
(tIR) that allows players to imitate the complete strategy of their opponents.
Numerical experiments are performed to analyse the impact of the adjustment
to the imitation behaviour. We show that it leads to new phenomena that do
not occur under tIR, such as a phase dominated by defecting strategies.

The rest of this paper is structured as follows: in section 2 the terms memory,
strategy and the imitation rules are defined. We also provide details about our
numerical experiments. Results are presented and discussed in section 3. Our
conclusions follow in section 4.

2 Methods

In this section we explain the concepts of memory and strategies and define the
partial imitation rule we previously introduced in [14,15].

1 It is common to refer to cooperate and defect as strategies. A set of rules telling the
player when to cooperate or defect is then called a meta-strategy. For convenience we
refer to the former as “moves” and to the latter as “strategies” instead.

94 M. Antony, D. Wu, and K.Y. Szeto

2.1 Memory and Strategies

A player who can remember the last n rounds of the PD game has a n-step
memory. We denote the ensemble of n-step strategies asMn. The total number of
strategies inMn is |Mn|. As a player with one-step memory we need to remember
two moves, our move and the one of our opponent. There are four possible
outcomes (DD,DC, CD and CC, where the first letter is the move of the first
player and the second letter is the move of the second player) of the PD game.
For our one-step memory we need to have a response (either C or D) to each of
these four possible outcomes. Thus our strategy can be represented by a 4-bit
string where every bit is a response to one outcome of the previous round of
the game. We add a bit for the first move against an unknown opponent. A
strategy in M1 is denoted as S0|SDDSDCSCDSCC where S0 is the first move
and SDD, SDC , SCD and SCC are the moves that follow DD, DC, CD and
CC histories respectively. Thus there are |M1| = 25 = 32 possible strategies
as there are two choices for each Si, either C or D. Three famous strategies
are Grim-Trigger (GT): C|DDDC, Tit-For-Tat (TFT): C|DCDC and Pavlov
or “win-stay-lose-shift”: C|CDDC.

In this paper we focus entirely onM1. For models with longer memory horizon
see for example [3,4]. There are four always defecting strategies in M1, namely
D|DDDD, D|DDDC, D|DDCD and D|DDCC. We refer to these strategies
as all-D type strategies. For a given opponent, they all score the same. However
when using the partial imitation rule described below they can produce different
child strategies. The same applies to the four always cooperating strategies. A
strategy is nice if the first move and all moves that follow mutual cooperation are
C. In M1 those are the strategies C|XXXC where X may be either C or D. A
retaliating strategy defects after its attempt to cooperate is met with defection.
In M1 retaliating strategies are X |XXDX . The only four nice and retaliating
strategies in M1 are therefore TFT, GT, Pavlov and C|CCDC.

2.2 Partial Imitation Rule (pIR)

In general the traditional Imitation Rule (tIR) has the following simple charac-
ter: a player i will imitate the strategy of player j, who is usually one of the
players who interacts with i, with a certain probability given by a monotoni-
cally increasing smoothing function g(ΔU) where ΔU = Uj − Ui is the payoff
difference between player i and j. For the rest of this paper we use the following
smoothing function, which also introduces a temperature like noise factor K al-
lowing for irrational choices by players. If player i has been selected to imitate
player j then he will carry out the imitation with probability

P (i imitates j) = g(ΔU) =
1

1 + exp
(−ΔU

K

) (1)

We note that this probability has the form of Fermi distribution and is a step
function at zero noise (K = 0). For low values of the noise factor K, player i
imitates player j very rationally. For high values of K however, player i imitates

Partial Imitation Hinders Emergence of Cooperation 95

player j with a probability close to 1/2 as for K � |ΔU | we have P ≈ 1
2 +

ΔU
4

1
K .

The imitation in this case is similar to a scenario with weak selection intensity
with the addition of the constant 1/2 which introduces noise in finite sized
populations.

The traditional imitation rule implicitly makes a bold assumption in the case
of memory agents: the imitating player is assumed to know the entire strategy
of the role model. Depending on how the two players interacted, some of the role
model’s strategy may be unknown to the imitator. In order to strip the players
from these “mind reading” abilities we use the partial Imitation Rule in which
the imitator only adapts the parts of the role model’s strategy which have been
exposed during their interaction.

We illustrate the difference between the two imitation rules with the example
of a C|DDDD-strategist, Alice, imitating a TFT -strategist, Bob. Figure 1 shows
the transition graph for this encounter. As shown in the transition graph the CD

Fig. 1. Transition graph between the C|DDDD player Alice and the TFT (C|DCDC)
player Bob from Alice’s point of view. Bob’s point of view is described by the moves
in parenthesis. The recurrent states is DD and the average recurrent state payoff is
therefore P for both Alice and Bob.

state from Alice’s perspective (orDC state from Bob’s perspective) never occurs.
Bob has therefore never used the SDC move of his strategy in this encounter.
According to pIR Alice cannot copy such hidden moves. Hence if the C|DDDD
player Alice imitates the TFT player Bob according to the partial Imitation Rule
she will only imitate S0, SDD, SCD and SCC , hence becoming herself a GT - and
not a TFT -player. If Alice imitates Bob using tIR she will copy the entire TFT
strategy and become a TFT player herself. By using tIR we implicitly assume
Alice has found a way to expose Bob’s hidden response to the DC history.

2.3 Simulation

An important parameter in the iterated Prisoner’s Dilemma with memory is the
number f of rounds played during an encounter between two players i and j. If
f = 1 we have a ”one-shot” game and the agents can not make use of their mem-
ory. From our recent works in [14,15]we understand that the number f affects
our results in a complex way. Here, we follow the approach employed in [3] for
replicator dynamics: assuming that the number f is sufficiently large the average

96 M. Antony, D. Wu, and K.Y. Szeto

payoff per instance of the PD game played in a confrontation is well approxi-
mated by the average payoff from the recurrent states of the transition graph.
In other words, we address the case f → ∞ in our simulations by considering
only payoff accumulated in recurrent states of the transition graph.

Let Uij be the average recurrent state payoff obtained by an i strategist play-
ing against a j strategist. If N is the total number of players and every player i
plays against all other players and himself, his average payoff per encounter is

Ui =
1

N

N∑
j=1

ST
i USj = ST

i U 〈S〉 , i = 1, 2 . . . |Mn| (2)

Where U is the |Mn| × |Mn| real Matrix with coefficients Uij = Uij . The vector
ST
i = (0 . . . 0 1 0 . . .0) is a |Mn| boolean vector where the m-th entry is equal to

1 only if player i is an m-strategist. 〈S〉 is the |Mn| dimensional real column-
vector of the ”average strategy” that can also be written as 〈S〉m = ρm where
m = 1, 2, . . . , |Mn| and ρm is the number density of m-strategists. Note that the
summation of ρm over all m equals 1.

Initially every player is assigned a random strategy out of the 32 strategies
in M1. The system is then evolved with random sequential updating from time
t = 0 until some final time tf . We chose two players i and j and let them
play against all opponents and themselves to accumulate an average payoff per
encounter Ui and Uj. By using the reasoning above this can be achieved by
randomly selecting two strategies i and j with probabilities equal to ρi and ρj
respectively and evaluating Ui and Uj according to equation 2. Agent i then
imitates agent j with a probability given by equation 1 according to pIR or tIR.
If this imitation occurs we adjust ρi and ρk where k is the children strategy
produced by the imitation process. The outline of this procedure is given in
algorithm 1.

Algorithm 1. Outline of simulation procedure

chose N strategies randomly from a uniform distribution
compute 〈S〉
for t = 0 to tf do

for n = 1 to N do
pick random strategy i and j with probability ρi and ρj respectively
compute Ui and Uj

i imitates j according to tIR or pIR with probability g(ΔU)
ρi ← ρi − 1

N

ρk ← ρk + 1
N

end for
end for

A Monte Carlo sweep, generation or one time unit corresponds to N such
updates. As a result of introducing noise, the strategy fractions during a typi-
cal simulation fluctuate considerably even if N is large. The fate of the entire

Partial Imitation Hinders Emergence of Cooperation 97

population is then subject to the survival of a few key strategies, such as GT , in
the early phase of evolution. As our primary interest is neither directed towards
these special cases of evolution nor towards finite size effects we use a very large
number of players. We have found that by choosing N = 2.5 · 107 we can ob-
tain reliable data for noise factors up to at least K = 150, which is sufficient
for our observations. Based on our experiments we may state here that if the
aforementioned extinctions of key strategies due to random fluctuations do not
occur, the strategy fractions as a function of time for smaller population sizes
are very similar to those we will observe below.

3 Results

In this section we first discuss a typical simulation at high noise in section 3.1 for
illustrative purposes and to introduce the all-D phase. In section 3.2 we report
and discuss the time scale of the evolution of cooperation in our model.

3.1 All-D Phase

The number density, concentration or fraction of a strategy i in a population
of players is denoted as ρi. Figure 2 shows the number density of key strategies
as a function of time for a typical pIR simulation with high noise factor (here
K = 100). We notice that in a first phase the D|DDCD and D|DDCC fraction
increase rapidly but die out soon thereafter to make room for the D|DDDD
and D|DDDC strategy. These two strategies dominate for a long time but the
C|DDDD and GT fraction increase progressively up to a point where all four
remaining strategies are about equally abundant. In figure 2 this occurs around
t = 9500. The GT fraction then rises rapidly while the other strategies die out.
Eventually we are left in an equilibrium state where all players cooperate by
using the GT strategy.

We first give a intuitive explanation of these observations. When noise is high,
the imitation probability is close to 1/2, thus, the imitation processes occur in
many directions with only marginal drift towards imitation of better strategies.
We denote the process of an A-strategist becoming a C-strategist by imitating

a B-strategist as A
B−→ C. If the C-strategist may turn back into an A-strategist

by imitating the A-strategist we say that this imitation is directly reversible.
In an early tumultuous phase the majority of strategies die out rapidly. The

famous and well scoring strategies TFT and Pavlov do not survive this phase
either. Due to the nature of pIR there is a net drift away from these strategies at
K = 100. In this early period of evolution, the players will obtain the highest pay-
off by exploiting the naive players in the initial random setup and adopt the all-D
type strategies. As a result, most players go out of this early extinction phase as
D|DDCD and D|DDCC defectors. The fate of these two strategies is governed

by D|DDCD
GT orC|DDDD−−−−−−−−−−→ C|DDDD and D|DDCC

GTorC|DDDD−−−−−−−−−−→ GT . Note
that these imitation processes are not directly reversible under pIR. To illustrate

98 M. Antony, D. Wu, and K.Y. Szeto

0 2000 4000 6000 8000 10000

t

0.0

0.2

0.4

0.6

0.8

1.0

ρ

D|DDDD

D|DDDC

D|DDCD

D|DDCC

C|DDDD

GT

cum. all-D

Fig. 2. Strategy fractions during a typical simulation at high noise, K = 100. The
cumulative all-D fraction is given by ρcum all-D = ρD|DDDD + ρD|DDDC + ρD|DDCD +
ρD|DDCC.

this interesting phenomena, note that we have GT
D|DDCC−−−−−−→ D|DDDC. This

means that once a D|DDCC-strategist has imitated a GT -strategist, he may
not turn back into a D|DDCC-strategist simply by imitating the D|DDCC
strategy. As a result, the D|DDCD and D|DDCC-strategists are gradually con-
verted into D|DDDD and D|DDDC strategists by the interaction with GT and
C|DDDD players. The extinction of D|DDCD and D|DDCC is the inevitable
consequence.

The main imitation processes during the following long phase of dominance of

theD|DDDD andD|DDDC strategies areD|DDDD
GT orC|DDDD−−−−−−−−−−→ C|DDDD,

D|DDDC
GT orC|DDDD−−−−−−−−−−→ GT and C|DDDD

GT−−→ GT . As all these processes
are directly reversible it takes a very long time for the players to drift towards the
better scoring GT strategy. GT is the only strategy that scores higher than the
other three remaining key strategies asGT players cooperate withGT players but
defect against all the other remaining strategies.

3.2 Time Scale for Emergence of Cooperation

From extensive simulations we know that all populations eventually reach an
equilibrium state2 in which more than half the players use GT . We use this fact

2 Note that for tIR and pIR and all considered values of the noise factor K only nice
strategies exist in the equilibrium state. In this state we have completely random
drift among the surviving strategies for tIR. For pIR on the other hand there is no
such drift as nice strategies do not change by imitating other nice strategies.

Partial Imitation Hinders Emergence of Cooperation 99

to analyse the time scale of our numerical experiments and define a quantity
called the GT First Passage Time τGT , which is the time at which the population
contains more GT players than defectors for the first time or in other words the
GT First Passage Time is the earliest time t such that ρGT > ρcum. all-D. Where
ρcum. all-D = ρD|DDDD + ρD|DDDC + ρD|DDCD + ρD|DDCC is the cumulative
all-D fraction. We can use this definition for the GT First Passage Time τGT as
an indicator of the time scale to equilibrium of tIR and pIR populations. The
first passage times τGT as function of K are shown in figure 3.

10
-3

10
-2

10
-1

10
0

10
1

10
2

K

10
1

10
2

10
3

10
4

τ
G
T

pIR

tIR

10
2

K

10
2

10
3

10
4

τ
G
T

pIR

tIR

Fig. 3. First passage time τGT for ρGT > ρc.all−D for both imitation rules. For illustra-
tive purpose the data is shown in two figures, focusing on the higher end of the noise
factor scale on right hand side. The figure on the right hand side also shows a linear
and exponential fit for tIR and pIR respectively. Note the logarithmic scale on both
axes on the left and linear scale on the x-axis and logarithmic scale on the y-axis on
the right.

We first examine the figure on the left hand side. For both imitation rules τGT

increases monotonically with K. For K < 0.1 τGT is practically constant for tIR
and increases only marginally with K for pIR. For tIR the growth is linear for
K � 0.5. Between 0.5 � K � 5, τGT also exhibits a linear relationship with K
for pIR. However, by examining the figure on the right hand side we observe an
exponential increase of τGT for pIR and K > 40.

The exact rate at which τGT increases with K depends on the values of the
payoff parameters R, T , S and P . We note in passing that an exponential re-
lationship for high values of the noise factor K is not unique to our choice of
parameters. Notably, we also observe it for the entire range of T in the weak
Prisoner’s Dilemma [7] with R = 1, 1 < T < 2 and S = P = 0.

In summary we make two important observations: the time scale to coopera-
tion increases with the noise factor K for both imitation rules and in the high
noise regime the relation is linear with K for tIR and exponential with K for

100 M. Antony, D. Wu, and K.Y. Szeto

pIR. The importance of random fluctuations increases with K. This makes the
emergence of cooperation less certain in finite sized populations for higher values
of K. Furthermore, due to the exponential growth of τGT for pIR and because
the lifetimes of real populations are finite the cooperative equilibrium might
never be reached3. The partial imitation rule thus introduces a new obstacle for
the emergence of cooperation.

4 Conclusion

By performing numerical experiments on a large population of prisoners with fi-
nite memory playing the iterated Prisoner’s Dilemma game on a fully connected
network we have shown that a direct and fast route to cooperation may not exist
unless the players are given the ability to copy unknown parts of their role models’
strategies.Our adjustment to the imitative behaviour shows that incomplete infor-
mation about opponent strategies has important consequences for the emergence
of cooperation in such a society of prisoners. If the information about the wealth
of opponents is vague (at high noise or in the weak selection regime) the major-
ity of prisoners stick to defecting strategies for a very long time. As we have seen
that in this environment the duration of this route to cooperation scales exponen-
tially with the noise factor, wemust question the significance of such a cooperative
equilibrium for populations with finite life times.

The partial Imitation Rule also presents a new challenge for famous PD strate-
gies. The Grim Trigger strategy has a fundamental advantage over other nice
strategies such as TFT and Pavlov, despite the very similar performance of all
these strategies: GT is the only strategy that is easy to imitate for always defect-
ing strategies. Or in other words, we observe that all other things being equal,
the easiest strategy to adopt is the most successful strategy.

Many of the problems involving evolutionary games and memory could be
reexamined under the new light of partial information. Although we have shown
that considering partial rather than complete information has a strong impact
already in the case of a one-step memory, we expect even more drastic effects in
the case of longer memory. A natural extension of our work will therefore include
more intelligent prisoners with longer memory. We expect that the simple GT
strategy will not be as efficient anymore because once defecting it does not
provide a way to reestablish cooperation.

Finally, finite size effects as well as the topology of the underlying network
is an interesting topic for further investigation. In two dimensions [14,15], we
also reported striking difference for the two imitation rules considered here. We
may therefore extend our studies to other networks, such as scale-free networks
which model the topology of real societies more accurately [1].

Acknowledgements. We thank the three anonymous referees for their valuable
comments. K.Y. Szeto acknowledges the support of grant FSGRF13SC25.

3 For instance, an estimated 99.9% of all species that ever lived on earth have become
extinct [11].

Partial Imitation Hinders Emergence of Cooperation 101

References

1. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Reviews of
Modern Physics 74(1), 47–97 (2002)

2. Axelrod, R.: The Evolution of Cooperation. Basic Books (1984)
3. Baek, S.K., Kim, B.J.: Intelligent tit-for-tat in the iterated prisoner’s dilemma

game. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics) 78(1),
011125 (2008)

4. Lindgren, K., Nordahl, M.G.: Evolutionary dynamics of spatial games. Physica D
Nonlinear Phenomena 75, 292–309 (1994)

5. Nowak, M.A.: Five rules for the evolution of cooperation. Science 314(5805), 1560–
1563 (2006)

6. Nowak, M.A., May, R.M.: The spatial dilemmas of evolution. Int. J. of Bifurcation
and Chaos 3(1), 35–78 (1993)

7. Nowak, M.A., May, R.M.: Evolutionary games and spatial chaos. Nature 359(6398),
826–829 (1992)

8. Pacheco, J.M., Traulsen, A., Nowak, M.A.: Coevolution of strategy and structure
in complex networks with dynamical linking. Phys. Rev. Lett. 97, 258103 (2006)

9. Perc, M., Szolnoki, A.: Coevolutionary games–a mini review. Biosystems 99(2),
109–125 (2010)

10. Poundstone, W.: Prisoner’s Dilemma: John Von Neumann, Game Theory and the
Puzzle of the Bomb. Doubleday, New York (1992)

11. Raup, D.M.: Extinction: Bad genes or bad luck? W.W. Norton, New York (1991)
12. Szabo, G., Fath, G.: Evolutionary games on graphs. Physics Reports 446(4-6),

97–216 (2007)
13. Szabo, G., Vukov, J., Szolnoki, A.: Phase diagrams for an evolutionary prisoner’s

dilemma game on two-dimensional lattices. Phys. Rev. E 72(4), 047107 (2005)
14. Wu, D., Antony, M., Szeto, K.Y.: Evolution of Grim Trigger in Prisoner Dilemma

Game with Partial Imitation. In: Di Chio, C., Cagnoni, S., Cotta, C., Ebner, M.,
Ekárt, A., Esparcia-Alcazar, A.I., Goh, C.-K., Merelo, J.J., Neri, F., Preuß, M.,
Togelius, J., Yannakakis, G.N. (eds.) EvoApplicatons 2010, Part I. LNCS, vol. 6024,
pp. 151–160. Springer, Heidelberg (2010)

15. Wu, D., Antony, M., Szeto, K.Y.: Partial Imitation Rule in Iterated Prisoner
Dilemma Game on a Square Lattice. In: González, J.R., Pelta, D.A., Cruz, C., Ter-
razas, G., Krasnogor, N. (eds.) NICSO 2010. SCI, vol. 284, pp. 141–150. Springer,
Heidelberg (2010)

A Memetic Approach
to Bayesian Network Structure Learning

Alberto Tonda1, Evelyne Lutton2,
Giovanni Squillero3, and Pierre-Henri Wuillemin4

1 INRA UMR 782 GMPA, 1 Av. Brétignières, 78850, Thiverval-Grignon, France
alberto.tonda@grignon.inra.fr

2 INRIA Saclay-Ile-de-France, AVIZ team, Bâtiment 650, 91405, Orsay Cedex, France
evelyne.lutton@grignon.inria.fr

3 Politecnico di Torino, DAUIN, Corso Duca degli Abruzzi 124, 10129, Torino, Italy
giovanni.squillero@polito.it

4 LIP6 - Département DÉSIR, 4, place Jussieu, 75005, Paris
pierre-henri.wuillemin@lip6.fr

Abstract. Bayesian networks are graphical statistical models that rep-
resent inference between data. For their effectiveness and versatility, they
are widely adopted to represent knowledge in different domains. Several
research lines address the NP-hard problem of Bayesian network struc-
ture learning starting from data: over the years, the machine learning
community delivered effective heuristics, while different Evolutionary Al-
gorithms have been devised to tackle this complex problem. This paper
presents a Memetic Algorithm for Bayesian network structure learning,
that combines the exploratory power of an Evolutionary Algorithm with
the speed of local search. Experimental results show that the proposed
approach is able to outperform state-of-the-art heuristics on two well-
studied benchmarks.

Keywords: Memetic Algorithms, Evolutionary Algorithms, Local Op-
timization, Bayesian Networks, Model Learning.

1 Introduction

Bayesian networks are probabilistic graphical models that represent a set of
random variables and their conditional dependencies via a directed acyclic graph
(DAG). They are widely used to encode knowledge and perform predictions in
many different fields, ranging from medicine to document classification, from
computational biology to law.

It is theoretically possible to learn the optimal structure for a Bayesian net-
work from a dataset. However, the number of possible structures is superexpo-
nential in the number of variables of the model [1] and the problem of Bayesian
network learning is proved to be NP-hard [2].

The machine learning community delivered fast heuristic algorithms that build
the structure of a Bayesian network on the basis of conditional independence

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 102–111, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Memetic Approach to Bayesian Network Structure Learning 103

evaluations between variables [3] [4]. On the other hand, several attempts have
been made in evolutionary computation to tackle this complex issue [5] [6] [7].
Interestingly, many evolutionary approaches also feature local search techniques
to improve the quality of the results.

This paper presents a memetic approach to Bayesian network structure learn-
ing. The proposed technique exploits an evolutionary framework evolving ini-
tial conditions for a state-of-the-art heuristic that efficiently explores the search
space. The fitness function is based on the Akaike information criterion, a metric
taking into account both the accuracy and the complexity of a candidate model.

An additional objective of this work is to link the community facing the com-
plex Bayesian network structure learning problem, to the community of memetic
computing. While combinations of heuristics and evolutionary optimization are
prominently featured in the literature related to structure learning, to the au-
thors’ knowledge the methods presented are almost never ascribed to the field
of memetic algorithms. In the authors’ opinion, an explicit interaction between
the two communities could lead to extremely beneficial results.

2 Background

In order to introduce the scope of the present work, some necessary concepts about
Bayesian networks and memetic algorithms are summarized in the following.

2.1 Bayesian Networks

A Bayesian Network (BN) is defined as a graph-based model of a joint multivari-
ate probability distribution that captures properties of conditional independence
between variables [8]. For example, a Bayesian network could represent the prob-
abilistic relationships between diseases and symptoms. The network could thus
be used to compute the probabilities of the presence of various diseases, given
the symptoms.

Formally, a Bayesian network is a directed acyclic graph (DAG) whose nodes
represent variables, and whose arcs encode conditional dependencies between
the variables. This graph is called the structure of the network and the nodes
containing probabilistic information are called the parameters of the network.
Figure 1 reports an example of a Bayesian network.

The set of parent nodes of a node Xi is denoted by pa(Xi). In a Bayesian
network, the joint probability distribution of the node values can be written as
the product of the local probability distribution of each node and its parents:

P (X1, X2, ..., Xn) =

n∏
i=1

P (Xi|pa(Xi))

2.2 The Structure Learning Problem

Learning the structure of a Bayesian network starting from a dataset is proved
to be a NP-hard problem [2]. The algorithmic approaches devised to solve this

104 A. Tonda et al.

Node Parents Probabilities

A P(A=a1) = 0.99
P(A=a2) = 0.01

B A,E P(B=b1|A=a1,E=e1) = 0.5
P(B=b2|A=a1,E=e1) = 0.5
P(B=b1|A=a1,E=e2) = 0.1
P(B=b2|A=a1,E=e2) = 0.9
P(B=b1|A=a2,E=e1) = 0.4
P(B=b2|A=a2,E=e1) = 0.6
P(B=b1|A=a2,E=e2) = 0.2
P(B=b2|A=a2,E=e2) = 0.8

Node Parents Probabilities

C B P(C=c1|B=b1) = 0.3
P(C=c2|B=b1) = 0.7
P(C=c1|B=b2) = 0.5
P(C=c2|B=b2) = 0.5

D A P(D=d1|A=a1) = 0.8
P(D=d2|A=a1) = 0.2
P(D=d1|A=a2) = 0.7
P(D=d2|A=a2) = 0.3

E P(A=e1) = 0.75
P(A=e2) = 0.25

Fig. 1. On the left, a directed acyclic graph. On the right, the parameters it is as-
sociated with. Together they form a Bayesian network BN whose joint probability
distribution is P (BN) = P (A)P (B|A,E)P (C|B)P (D|A)P (E).

problem can be divided into two main branches: score-and-search meta-heuristics
and algorithms that rely upon statistical considerations on the learning set.

Evolutionary Approaches. Among score-and-search meta-heuristics, evolu-
tionary algorithms are prominently featured. Several attempts to tackle the prob-
lem have been tested, ranging from evolutionary programming [6], to cooperative
coevolution [5], to island models [7].

Interestingly, some of the evolutionary approaches to Bayesian network struc-
ture learning in literature already show features of memetic algorithms, hinting
that injecting expert knowledge might be necessary to obtain good results on
such a complex problem. For example, [6] employs a knowledge-guided mutation
that performs a local search to find the most interesting arc to add or remove.
In [9], a local search is used to select the best way to break a loop in a non-valid
individual. The K2GA algorithm [10] exploits a genetic algorithm to navigate
the space of possible node orderings, and then runs the greedy local optimization
K2, that quickly converges on good structures starting from a given sorting of
the variables in the problem.

Dependency Analysis Algorithms. Dependency analysis algorithms are a
class of heuristics that build Bayesian network structures from data through an
evaluation of the conditional independence between variables. They are able to
deliver results of high quality in negligible time, even if they suffer from the
classical issues of greedy algorithms, such as being trapped into local optima.

One of the best algorithms in this category is known as Greedy Thick Thin-
ning (GTT) [3]. Starting from a completely connected graph, first GTT applies
the well-known PC algorithm [11], that cuts arcs on the basis of conditional
independence tests; then, it starts first adding and then removing arcs, scoring
the network after each modification and using a set of heuristic metrics to avoid
a premature convergence.

Bayesian Search (BS) [4] is another state-of-the-art heuristic in the same
group. Unlike GTT, BS is not deterministic: it makes use of a given number of

A Memetic Approach to Bayesian Network Structure Learning 105

restarts from random sparse network layouts, finally returning the best network
to the user.

Both GTT and BS implementations can be found in products such as Ge-
Nie/SMILE [12].

2.3 Memetic Algorithms

Memetic algorithms are population-based metaheuristics composed of an evolu-
tionary framework and a set of local search algorithms which are activated within
the generation cycle of the external framework. [13]. First presented in [14], they
gained increasing popularity in the last years [15].

The main attractiveness of these stochastic optimization techniques lies in
their ability of finding quickly high-quality results, but still maintaining the
exploration potential of a classic evolutionary algorithm. Their effectiveness is
proven in several real-world problems [16] [17].

3 Proposed Approach

Trying to reap the benefits of both evolutionary algorithms (efficient exploration,
resistance to local optima attraction) and human-devised heuristics (speed, ef-
ficient exploitation of small parts of the search space), a memetic algorithm is
applied to the complex problem of Bayesian network structure learning. The
algorithm evolves an initial Bayesian network that will be then optimized by a
state-of-the-art dependency analysis algorithm. In this first approach, the local
search heuristic is applied to every individual.

The main novelties introduced by the proposed approach are the local op-
timization used, the state-of-the-art GTT heuristic, and the evolutionary algo-
rithm’s individual representation, expressing a set of forced and forbidden links
of arbitrary size.

The framework structure is summarized in Figure 2.

3.1 Evolutionary Framework

The evolutionary core chosen for the experiments is an open-source EA [18].
Each individual represents a set of initial conditions, forbidden and forced arcs
that have to appear inside the final network created by the local search. Every
condition in the set follows the syntax:

<forbidden/forced> <starting node> <end node>
The genome has a minimum length of 1 condition, and no maximum length.

It is interesting to notice that there is no apriori control on repetitions, or
contradictory conditions (e.g., forbid and force the arc between A and B). Each
group of repeated conditions is considered only once, while individuals with
contradictions are discarded with a low fitness value. Finally, individuals whose
condition enforce the local search to produce an invalid Bayesian network (e.g.,
forcing an arc from A to B and an arc from B to A would create a graph with
a cycle) are discarded during fitness evaluation.

106 A. Tonda et al.

Fig. 2. Structure of the proposed approach. The evolutionary algorithm creates starting
conditions where some arcs are forced (e.g. arc from E to B and from A to D) and
some arcs are forbidden (e.g. arc from B to D and arc from E to D). The local
search performed by GTT returns a complete structure, compliant with the conditions,
manipulating freely the unconstrained arcs. The final structure is evaluated, and its
AIC score is used as fitness by the evolutionary algorithm.

3.2 Fitness Function

The Akaike information criterion (AIC) is a measure of the relative goodness
of fit of a statistical model [19]. It is grounded in the concept of information
entropy, in effect offering a relative measure of the information lost when a given
model is used to describe reality. It can be said to describe the trade-off between
bias and variance in model construction, or loosely speaking, between accuracy
and dimension of the model. Given a data set, several candidate models may be
ranked according to their AIC values: thus, AIC can be exploited as a metric for
model selection.

When dealing with Bayesian networks, AIC is expressed as a composition of the
loglikelihood, a measure of how well the candidate model fits the given dataset,
and a penalty tied to the dimension of the model itself. The dimensional penalty is
included because, on the one hand, the loglikelihood of a Bayesian network usually
growsmonotonicallywith the number of arcs, but on the other hand, an excessively
complex network cannot be validated or even interpreted by a human expert. The
loglikelihood of a model M given a dataset T is computed as

LL(M |T) =
n∑

i=1

qi∑
j=1

ri∑
k=1

Nijklog2
Nijk

Nij

where n is the number of variables, qi is the total number of possible configu-
rations the parent set pa(Xi) of the stochastic variable Xi, ri is the number of
different values that variable Xi can assume, Nijk is the number of instances in
the dataset T where the variable Xi takes its k-th value xik and the variables
in pa(Xi) take their j-th configuration wij , and Nij is the number of instances
in the dataset T where the variables in pa(Xi) take their j-th configuration wij .

Taking for example the Bayesian network BN described in Figure 1, the
loglikelihood of a dataset composed of one sample such as T = (a1, b2, c1, d2, e2)
would be equal to

A Memetic Approach to Bayesian Network Structure Learning 107

LL(BN |T) = log2(P (A = a1) · P (B = b2|A = a1, E = e2) ·
·P (C = c1|B = b2) · P (D = d2|A = a1) · P (E = e2)) =

= log2(0.99 · 0.9 · 0.5 · 0.2 · 0.25) = −5.49
It is important to notice that datasets are usually composed by multiple sam-
ples, and that the final loglikelihood is the sum of the loglikelihoods of each
sample. Using the same formulation, the dimensional penalty of model M can
be expressed as

|M | =
n∑

i=1

(ri − 1)qi

In the canonical representation, the final AIC score is expressed as:

AIC = −2 · (LL− |M |)
AIC is to be minimized.

4 Experimental Setup

The effectiveness of the proposed approach is compared against GTT and BS.
First, the memetic algorithm is run with a stagnation condition: if the best
individual in the population remains the same for 10 generations, the algorithm
stops. Then, the total number of evaluations performed is used as a reference
to compare its performance against the two other approaches. BS is assigned an
equal number of restarts; for the deterministic GTT, an equal number of starting
random configurations are generated, following the same initialization procedure
of the memetic algorithm.

In all the experimental evaluations, the algorithm has a population size μ=30,
an offspring size1 λ=30, a stagnation stop condition of 10 generations, and a
set of operators that can collectively alter, remove or add a condition from an
individual, and cross over two individuals, with one or two cut points. Individuals
are chosen for reproduction with a tournament selection scheme. The strength
and the activation probability of the genetic operators, as well as the size of the
tournament selection, are self-adapted during the evolutionary run.

GTT and BS use default settings2 with the exception of the maximum number
of parents for each node, set to 10. GTT makes use of K2 as the type of priors,
while BS has a probability 0.1 of an arc appearing in a random restart, a prior
link probability 0.001 and a prior sample size 50.

When GTT is run as local search in the proposed memetic algorithm, it makes
use of the same settings.
1 In the chosen evolutionary framework, λ represents the number of genetic operators

applied at each generation. Since some of the operators, most notably crossovers, can
produce more than one child individual, the number of individuals actually generated
at each step fluctuates between 30 and 60, with values often falling around 45.

2 Default settings for the heuristics provided by the SMILE [12] framework, see
http://genie.sis.pitt.edu/wiki/SMILearn

108 A. Tonda et al.

5 Experimental Results

Two widely studied Bayesian network benchmarks are chosen for the experi-
ments: ALARM [20], that features 37 variables and 42 arcs; and INSURANCE
[21], that features 27 variables and 52 arcs. For each of the considered Bayesian
network benchmarks, three datasets with 500, 1,000 and 10,000 samples respec-
tively are created. The structure learning algorithms are executed 10 times for
each dataset, each run with a given number of restarts/evaluations.

The Bayesian networks reconstructed by each algorithm are compared on
three different metrics: loglikelihood, dimension and overfitting. Loglikelihood
expresses the adherence of the given model to the training data. The dimension
of the model is a measure of its complexity, where simpler models are preferred
to more complex ones from a human perspective. Finally, the overfitting on
the training data is evaluated by computing the loglikelihood of the candidate
solution on a validation set of unseen data, composed of 5,000 samples.

Results are summarized in Table 1 and Table 2, with a highlight in Figures 3
and 4.

Table 1. Results for the three algorithms on the considered datasets of the Bayesian
network ALARM. Results in bold are the best, on the basis of a two-sample
Kolmogorov-Smirnov test with p < 0.05 ; when two distributions are indistinguish-
able but better than the third, they are highlighted in bold italics.

alarm-500
Methodology Dimension StDev Loglikelihood StDev Overfitting StDev

Original 509.00 - -7,510.47 - -75,195.1 -
(trained on dataset) 509.00 - -7,588.84 - -77,989.3 -
GTT (1,900 restarts) 464.90 11.30 -7,673.69 16.35 -79,618.9 84.41
BS (1,900 restarts) 1,298.90 87.34 -7,896.71 143.34 -85,260.0 1,781.41
Memetic Algorithm 463.20 28.44 -7,629.34 33.02 -79,118.8 451.57

alarm-1,000
Original 509.00 - -15,023.0 - -75,195.1 -

(trained on dataset) 509.00 - -15,045.8 - -76,919.9 -
GTT (1,400 restarts) 564.70 19.78 -15,097.2 21.74 -77,659.3 187.28
BS (1,400 restarts) 1,546.20 149.36 -15,808.8 130.65 -83,381.4 680.57
Memetic Algorithm 537.40 35.80 -15,057.7 24.58 -77,438.3 236.46

alarm-10,000
Original 509.00 - -150,099 - -75,195.1 -

(trained on dataset) 509.00 - -149,993 - -75,357.6 -
GTT (1,300 restarts) 779.00 40.57 -150,088 73.55 -75,506.8 31.79
BS (1,300 restarts) 3,369.90 553.5 -156,690 940.70 -79,550.9 447.24
Memetic Algorithm 674.00 53.80 -150,026 27.92 -75,433.7 26.96

6 Results Discussion

The proposed approach is proved to outperform state-of-the-art heuristic tech-
niques for the considered metrics on all the datasets, providing networks with
smaller dimension, higher loglikelihood. There are, however, open research ques-
tions raised by the analyses, that is worth addressing separately.

A Memetic Approach to Bayesian Network Structure Learning 109

Table 2. Results for the three algorithms on the considered datasets of the Bayesian
network INSURANCE. Results in bold are the best, on the basis of a two-sample
Kolmogorov-Smirnov test with p < 0.05 ; when two distributions are indistinguishable
but better than the third, they are highlighted in bold italics.

insurance-500
Methodology Dimension StDev Loglikelihood StDev Overfitting StDev

Original 1,008.00 - -9,337.06 - -94,354.2 -
(trained on dataset) 1,008.00 - -9,678.63 - -101,884 -
GTT (1,700 restarts) 497.90 29.86 -9,598.68 14.67 -100,792 133.40
BS (1,700 restarts) 706.30 95.64 -9,668.27 74.27 -102,599 915.88
Memetic Algorithm 458.60 9.60 -9,562.40 9.86 -100,278 132.36

insurance-1,000
Original 1,008.00 - -19,024.7 - -94,354.2 -

(trained on dataset) 1,008.00 - -19,335.0 - -98,346.4 -
GTT (1,600 restarts) 673.60 62.08 -19,357.9 51.16 -98,166.9 177.04
BS (1,600 restarts) 1,020.10 142.30 -19,606.9 196.80 -100,324 1,022.27
Memetic Algorithm 574.80 50.64 -19,323.3 52.60 -97,884.2 234.84

insurance-10,000
Original 1,008.00 - -187,858 - -94,354.2 -

(trained on dataset) 1,008.00 - -188,070 - -95,194.7 -
GTT (2,000 restarts) 1,090.50 113.40 -188,274 96.98 -94,929.5 37.94
BS (2,000 restarts) 2,063.70 480.24 -192,121 883.16 -97,215.5 407.24
Memetic Algorithm 882.00 59.80 -188,155 57.76 -94,834.0 33.75

1000

2000

3000

4000

5000

gt
t bs m

a

di
m

en
si

on

−1.58

−1.56

−1.54

−1.52

−1.5
x 10

5

gt
t bs m

a

lo
gl

ik
el

ih
oo

d

−8

−7.9

−7.8

−7.7

−7.6

x 10
4

gt
t bs m

a

ov
er

fit
tin

g

Fig. 3. Boxplots for the 10,000-sample dataset of ALARM network, for dimension,
loglikelihood and overfitting

The memetic framework presented is still relatively rough. Since the local
search is applied to all individuals, the very same problem can be also expressed
as finding the best set of initial conditions for the heuristic optimization algo-
rithm. The authors see the current work as a first step, and are currently working
on an extension of the framework to include other state-of-the-art optimization
heuristics, such as BS, in order to give more freedom to the memetic algorithm.

The exact meaning of the initial conditions used in the framework is an inter-
esting point of reflection. At a first glance, they might be simply considered as the
point from which the heuristic will start its local search. The reality, however, is
more complex: arcs forbidden and arcs forced in the initial conditions cannot be
altered by the local search. This significantly changes the search space, providing
the heuristic not only with a starting point, but also with a set of hard constraints
that cannot be altered, and that will limit the exploration to a restricted part of
the original search space. Further experiments are needed to fully understand the
repercussions of forbidden and forced arcs on the adopted heuristics.

110 A. Tonda et al.

1000

2000

3000

gt
t bs m

a

di
m

en
si

on

−1.94

−1.92

−1.9

−1.88
x 10

5

gt
t bs m

a

lo
gl

ik
el

ih
oo

d

−9.8

−9.7

−9.6

−9.5

x 10
4

gt
t bs m

a

ov
er

fit
tin

g

Fig. 4. Boxplots for the 10,000-sample dataset of INSURANCE network, for dimension,
loglikelihood and overfitting

For a final remark on time, the heuristics with restarts and the proposed
approach operate in the same order of magnitude, ranging from a few minutes
for small training sets to a little more than an hour for larger ones, on the same
machine.

7 Conclusions and Future Works

This paper proposes a memetic algorithm for Bayesian network structure learn-
ing, coupling the speed of local search with the exploration ability of an evo-
lutionary algorithm. The algorithm evolves the initial conditions of a network,
forcing and forbidding some of the arcs, and letting a local search manipulate
the remaining connections from that starting point. Experimental results show
that the approach is significantly more effective than a set of random restarts of
state-of-the-art heuristic algorithms.

Future works will assimilate different structure learning heuristics in the
memetic framework, embedding inside the genome of each individual additional
information about the type and settings of the local search to apply.

References

1. Robinson, R.: Counting unlabeled acyclic digraphs. In: Little, C. (ed.) Combinato-
rial Mathematics V. Lecture Notes in Mathematics, vol. 622, pp. 28–43. Springer,
Heidelberg (1977), 10.1007/BFb0069178

2. Chickering, D.M., Geiger, D., Heckerman, D.: Learning bayesian networks is np-
hard. Technical Report MSR-TR-94-17, Microsoft Research, Redmond, WA, USA
(November 1994)

3. Cheng, J., Bell, D.A., Liu, W.: An algorithm for bayesian belief network construc-
tion from data. In: Proceedings of AI & STAT 1997, pp. 83–90 (1997)

4. Cooper, G.F., Herskovits, E.: A bayesian method for the induction of probabilistic
networks from data. Machine Learning 9, 309–347 (1992), 10.1007/BF00994110

5. Barriere, O., Lutton, E., Wuillemin, P.H.: Bayesian network structure learning
using cooperative coevolution. In: Genetic and Evolutionary Computation Confer-
ence, GECCO 2009 (2009)

A Memetic Approach to Bayesian Network Structure Learning 111

6. Wong, M.L., Lam, W., Leung, K.S.: Using evolutionary programming and min-
imum description length principle for data mining of bayesian networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence 21(2), 174–178 (1999)

7. Regnier-Coudert, O., McCall, J.: An Island Model Genetic Algorithm for Bayesian
network structure learning. In: 2012 IEEE Congress on Evolutionary Computation,
pp. 1–8 (June 2012)

8. Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using bayesian networks to ana-
lyze expression data. In: Proceedings of the Fourth Annual International Confer-
ence on Computational Molecular Biology, RECOMB 2000, pp. 127–135. ACM,
New York (2000)

9. Delaplace, A., Brouard, T., Cardot, H.: Computational intelligence and security,
pp. 288–297. Springer, Heidelberg (2007)

10. Larranaga, P., Kuijpers, C., Murga, R., Yurramendi, Y.: Learning bayesian network
structures by searching for the best ordering with genetic algorithms. IEEE Trans-
actions on Systems, Man and Cybernetics, Part A: Systems and Humans 26(4),
487–493 (1996)

11. Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search, 2nd edn.,
vol. 1. The MIT Press (2001)

12. Druzdzel, M.J.: SMILE: Structural modeling, inference, and learning engine and
GeNIe: A development environment for graphical decision-theoretic models. In:
American Association for Artificial Intelligence, pp. 902–903 (1999)

13. Hart, W.E., Krasnogor, N., Smith, J.E.: Memetic Evolutionary Algorithms. In:
Hart, W.E., Smith, J., Krasnogor, N. (eds.) Recent Advances in Memetic Algo-
rithms. STUDFUZZ, vol. 166, pp. 3–27. Springer, Heidelberg (2005)

14. Norman, M., Moscato, P.: A competitive and cooperative approach to complex
combinatorial search. In: Proceedings of the 20th Informatics and Operations Re-
search Meeting, pp. 3–15 (1991)

15. Neri, F., Cotta, C.: Memetic algorithms and memetic computing optimization: A
literature review. Swarm and Evolutionary Computation 2, 1–14 (2012)

16. Fan, X.F., Zhu, Z., Ong, Y.S., Lu, Y.M., Shen, Z.X., Kuo, J.L.: A direct first
principles study on the structure and electronic properties of bexzn1−xo. Applied
Physics Letters 91(12), 121121 (2007)

17. Nguyen, Q.H., Ong, Y.S., Lim, M.H.: A probabilistic memetic framework. IEEE
Transactions on Evolutionary Computation 13(3), 604–623 (2009)

18. Sanchez, E., Schillaci, M., Squillero, G.: Evolutionary Optimization: the uGP
toolkit. Springer (2011)

19. Akaike, H.: A new look at the statistical model identification. IEEE Transactions
on Automatic Control 19(6), 716–723 (1974)

20. Beinlich, I.A., Suermondt, H.J., Chavez, R.M., Cooper, G.F.: The ALARM Moni-
toring System: A Case Study with Two Probabilistic Inference Techniques for Belief
Networks. In: Second European Conference on Artificial Intelligence in Medicine,
London, Great Britain, vol. 38, pp. 247–256. Springer, Berlin (1989)

21. Binder, J., Koller, D., Russell, S., Kanazawa, K.: Adaptive probabilistic networks
with hidden variables. Machine Learning 29 (1997)

Multiobjective Evolutionary Strategy

for Finding Neighbourhoods
of Pareto-optimal Solutions

Ewa Gajda-Zagórska

AGH University of Science and Technology, Krakow, Poland
gajda@agh.edu.pl

Abstract. In some cases of Multiobjective Optimization problems find-
ing Pareto optimal solutions does not give enough knowledge about the
shape of the landscape, especially with multimodal problems and non-
connected Pareto fronts. In this paper we present a strategy which com-
bines a hierarchic genetic algorithm consisting of multiple populations
with rank selection. This strategy aims at finding neighbourhoods of so-
lutions by recognizing regions with high density of individuals. We com-
pare two variants of the presented strategy on a benchmark two-criteria
minimization problem.

Keywords: genetic algorithm, multiobjective optimization, clustering,
hierarchic genetic strategy.

1 Introduction

The aim of this paper is to present Multiobjective Clustered Evolutionary Strat-
egy (MCES) - a method for recognizing sets and separating neighbourhoods of
the Pareto sets’ non-connected parts in multimodal multiobjective problems. It
was firstly introduced in [5]. We will consider a basic variant of the strategy and
its new modification.

A group of evolutionary algorithms approximating solutions of multiobjec-
tive problems is called Multiobjective Optimization Evolutionary Algorithms
(MOEA, for comparison of MOEAs see e.g. [17]). Usually, a MOEA aims at
finding a set of Pareto-optimal solutions which may not give enough information
in some cases, for example in problems with non-connected Pareto fronts. It is
difficult to extract knowledge about how small perturbations affect domination
among solutions from the existing algorithms. In our approach, solutions from
the neighbourhood of the Pareto-set are detected and may be analysed. We will
focus on a Pareto-based selection (FFGA) by Fonseca and Fleming [3], where
an individual’s rank equals to the number of solutions by which it is dominated.
Pareto sets and fronts in multiobjective problems were investigated for example
by Preuss, Naujoks and Rudolph in [10].

We will develop the idea of recognizing sets by clustering dense regions.
Whereas in many papers (see e.g. [7]) a genetic algorithm is used as a help

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 112–121, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Multiobjective Evolutionary Strategy for Finding Neighbourhoods 113

tool in clustering, we consider a combination of the two methods in the opposite
way. Genetic algorithm here is used to provide a clustering method with data set
as an input. The advantages of clustering in single-objective genetic algorithms
were studied by Schaefer, Adamska and Telega (CGS, see e.g. [12], [1]). For other
examples of two-phase global optimization strategies see [8] and [14]. Separation
and estimation of the number of basins of attraction was performed by Stoean,
Preuss, Stoean and Dumitrescu in [15] and in [11].

2 Strategy

The idea of MCES strategy of detecting neighbourhoods of the Pareto sets
consists of combining a genetic algorithm with rank selection and a cluster-
ing method. Among many GA we would like to distinguish those which may
provide best samples for clustering. In case of single-population algorithms (like
Simple Genetic Algorithm, SGA [16]), early convergence may eliminate some
solutions. This behaviour may result in losing information about parts of the
Pareto front. Therefore, we propose to use an algorithm having both high selec-
tion pressure and globality and which properties may be theoretically verified,
called Hierarchic Genetic Strategy (HGS, see [13]).

2.1 Preliminaries

In the multiobjective optimization, we are given k ≥ 2 objective functions

fi : D → [0,M] ⊂ R, M < +∞, i ∈ {1, . . . , k} (1)

defined over a decision space D. For single-objective problems k = 1. We assume
that all objectives shall be minimized.

Definition 1. (Pareto dominance) For any pair (p, q) ∈ D × D, p is said to
dominate q, denoted as p 	 q, if and only if

∀i=1,...,k fi(p) ≤ fi(q) and ∃i=1,...,k fi(p) �= fi(q). (2)

The Pareto set P is the set of non-dominated elements from D and its image
f(P) ⊂ [0,M]k is called the Pareto front. Therefore to solve the exact problem

min
x∈D

{f(x) = (f1(x), . . . , fk(x))} (3)

the Pareto set P ⊂ D (or the Pareto front) is sought.
Next, we present encoding function used by genetic algorithms, code : U → D,

where U is a set of all genetic codes called the genetic universum. The encoding
function introduces a grid of admissible points Dr = code(U). We assume that
#U = r < +∞.

The genetic algorithm solves an approximate problem

min
p∈U

{f(code(p)) = (f1(code(p)), . . . , fk(code(p))} , (4)

where the solution is a Pareto set PU ⊂ U .

114 E. Gajda-Zagórska

In the algorithm we use a selection mechanism such that selection probability
reaches highest values on PU . We may assume that code(PU) is close to P in a
sense; both sets are in metric vector space Rn. The exact analysis of distance
between code(PU) and P is still an open problem.

2.2 Hierarchic Genetic Strategy

HGS is an algorithm producing a tree-structured set of concurrent evolutionary
processes (see Figure 1). The strategy was introduced by Ko�lodziej and Schaefer
in [13]. The structure of HGS tree changes dynamically and its depth is bounded
by m < +∞. We will focus on the case in which each evolutionary process is
governed by SGA.

branch
demes

j=3

j=1

j=2

�1

�2

�3

root deme

leaf demes

Fig. 1. HGS tree and corresponding two-dimensional meshes, m = 3

HGS starts with a single root deme (population), a process of the first or-
der, performing chaotic search with low accuracy. After a fixed number of ge-
netic epochs K called the metaepoch the root deme sprouts child-demes in the
promising regions of the evolutionary landscape surrounding the best fitted indi-
viduals distinguished from the parental population. Child-demes perform more
local search with higher accuracy. The evolution in existing demes continues in
the second metaepoch, after which new demes are sprouted. Demes of order m
(leaves) perform local and most accurate search. The algorithm continues until
the global stop condition is reached.

HGS implements two mechanisms that prevent redundancy of the search:
conditional sprouting and branch reduction. The former allows new demes to
be sprouted only in regions which are not explored by sibling-demes (demes
sprouted by the same parent). The latter reduces (kills) populations of the same
order that perform search in the common landscape region or in already explored
regions. A population is also killed when its average fitness does not change in
several consecutive epochs.

Multiobjective Evolutionary Strategy for Finding Neighbourhoods 115

Diverse search accuracies are obtained by various encoding precisions. In bi-
nary encoding, lengths of binary genotypes are different in demes at different lev-
els. The root utilizes the shortest genotypes and leaves utilize the longest ones.
To obtain search coherency for demes at various levels, a hierarchical nested
encoding is used. Firstly, we define the densest mesh of phenotypes for demes
of the m-th order. Afterwards, the meshes for lower order demes are recursively
defined by selecting nodes from previous ones. The maximum diameter of the
mesh δj associated with populations of the order j determines the search ac-
curacy at this level of the HGS tree (see Figure 1). Defined mesh parameters
satisfy δm < . . . < δ1.

In real-number encoding implementation of HGS, a genotype is a vector of
floating point numbers. We use scaling functions to obtain a sequence of increas-
ing genetic spaces for subsequent orders of branches. These genetic spaces are
smaller for lower order branches, and spaces for the highest order branches have
the genetic space of the size of the numerical representation of the given domain.
For details of this representation, refer to [14].

Selection pressure is tightly connected with the probability of sampling mea-
sure in central parts of basins of attraction. It was formally proven for HGS in
[6] that with certain assumptions the sampling measures spanned by the sum
of leaves in HGS are sufficiently close to the sampling measure associated with
the unique fixed point of the genetic operator. HGS is also effective in find-
ing multiple local extrema (see [13]). It consists of multiple populations which
explore different areas of the search space. Even when considering only highest-
order demes, the algorithm performs global search and, with a small number of
individuals, can cover the whole domain.

2.3 Genetic Algorithms with Heuristic

We consider genetic algorithms, from which the simplest operate on a single
population being the multiset P = (U, η) of the search space members called
individuals. The occurrence function η : U → Z+ ∪ {0} returns η(i) which is the
number of individuals with the genotype i ∈ U . The population cardinality is
μ =

∑
i∈U η(i) < +∞.

The algorithm consists of producing a sequence of populations {P t} in the
consecutive genetic epochs t = 1, 2, . . . starting from the population P 0 uni-
formly sampled from U . Mixing and selection operations depend on the algo-
rithm, for example in case of MOEA selection is often performed with respect
to the Pareto–dominance relation (see e.g. [2]).

Each finite population represented as the multiset P = (U, η) may be identified
with its frequency vector x = { 1

μ η(p)}, p ∈ U . All such vectors belong to the
finite subset Xμ of the Vose simplex:

Λr =

⎧⎨⎩x = {xp}; 0 ≤ xp ≤ 1, p ∈ U,
∑
p∈U

xp = 1

⎫⎬⎭ . (5)

116 E. Gajda-Zagórska

An important group of algorithms which properties can be theoretically verified
are genetic algorithms with heuristic. SGA is one of a few instances of genetic
algorithms with heuristic; in SGA the probability distribution of sampling the
next epoch population can be given explicitly (for details see [16]). For definition
of heuristic refer to [14].

The second example of a genetic algorithm with heuristic refers to multiobjec-
tive case and was introduced in [4]. Selection operator in the presented algorithm
was inspired by the Pareto-based ranking procedure FFGA where an individ-
ual’s rank equals the number of solutions by which it is dominated. In the next
step, population is sorted according to rank and fitness values are assigned to
individuals by interpolating from the best (with the lowest rank) to the worst
(with the highest rank) according to some function.

The selection operator F : Λr → Λr for the MOEA rank selection has the
form:

F (x) =
1

xT G(Ξ x)
diag(x) G(Ξ x) , (6)

where x ∈ Λr, diag(x) denotes the r × r diagonal matrix with the diagonal x,
Ξ ∈ {0, 1}r×{0, 1}r is a binary Pareto dominance matrixwhere ∀ p, q ∈ U Ξp,q =
1 if q dominates p and 0 otherwise, G : [0, 1]r → [0, 1]r, G(x)p = g(xp), p ∈ U ,
and g : [0, 1]→ [0, 1] is a decreasing validating function (e.g. g(ζ) = 1− ζ).

In each MOEA epoch, selection is followed by genetic operations (e.g. muta-
tion, crossover) which can be represented by the mixing operator M ∈ C1(Λr →
Λr). We do not impose any specific restrictions for this mapping. For an exem-
plary mixing operator see [16].

We compose selection and mixing to obtain a heuristic operator of the par-
ticular class of MOEA considered in this paper

H = M ◦ F. (7)

It can be proven that, with certain assumptions, the sampling measure con-
centrates on the set of fixed points of H [4]. Applied rank selection causes the
individuals to concentrate on the neighbourhood of Pareto-optimal solutions.
Coupled with a multi-population strategy like HGS, the algorithm produces a
sample ready to clustering.

2.4 Clustering

In the presented strategy, clustering is not restricted to any particular method.
It is applied to recognize regions with high density of individuals. What is im-
portant, is to cluster populations that concentrate on the neighbourhoods of
the Pareto-set. Leaves in HGS with applied MOEA selection scheme have this
property, therefore we can use individuals from leaves as samples for clustering.

3 Example

In the following section we present two variants of the strategy, with different
policies for sprouting leaves and finding clusters. These variants are illustrated

Multiobjective Evolutionary Strategy for Finding Neighbourhoods 117

by a simple example problem in which we use two-level HGS implementation.
In real-world problems more levels are usually used.

As an example we have chosen a two-criteria, two-dimensional minimization
problem with the following objective functions:

f1(x, y) = x (8)

f2(x, y) = g(y)(1−
√

x

g(y)
− x

g(y)
sin(10πx)) + 0.5 (9)

where g(y) = 1 + 9y, (x, y) ∈ [0, 1]× [0, 1] (see Figure 2).

Fig. 2. Objective function f2 (see Eq. 9)

The problem is not so easy to solve because it is multimodal and its Pareto-
optimal front consists of several non-connected parts.

In the first case as a genetic engine we use a two-level real-encoding HGS with
rank selection presented in the paper. Root deme consists of 50 individuals. After
every 5 metaepochs non-dominated solutions are stored externally, and when the
stopping condition for root is reached (20 metaepochs), leaves are sprouted from
stored values. Each leaf population consists of 10 individuals and they evolve
for 10 metaepochs. Parameters were set by experiments – a lower number of
individuals or metaepochs resulted in unsatisfactory results (only 2 – 3 non-
connected parts of Pareto set were found). From simulations with presented
parameters the best run was selected.

In Figure 3 we present all individuals created by root. The individuals are
quite well-spread in the entire search space and concentrate in regions with low
ranks.

We obtained 30 stored points, from which leaves were sprouted and continued
exploration in interesting parts of the landscape. Most of these regions are the

118 E. Gajda-Zagórska

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x

y

Fig. 3. Root individuals in the decision space

��
�����

�
�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

��

�
��

�

�

�

�

�

�

�

�

�

�

�

��

�

����

�
�

�
�

�
�

�
�

�
�

�

�

��

�
���

�
���

�

� �

�
�

�

�

�

��

�

�

��

�

�

�
��

�

�� �
�

�
�

�

�

�

�

��
�� ��

�
��

�
��

�

��
��

� ��

��

�
�

�

� ��
�

�
��

�

�
�

�

�

�
��

�

�
�

�

�
��
�

�

�

�
�

�

�

� ��

����
�

�

�

�

�
�

���

�

�
�

�

�

�

�

�
��

�

�
�

�
�

�

�
�

�

�

�
�

�
�

�

�

�

� ��
��

��
�

�

�
�
�
�

�

�

�

�
�

�
��

�

�

�
�

� �
�

�
�
��

�

����
�

�
� ���

�
�
�

��

�
�

�

��

�
��

�
�

��
��
�

�

�

�
�

�� ��
�

�

��
�

�
��
�

�

�
�

� ��
� �

����
���
�

��

�

��

�

�

0.0 0.2 0.4 0.6 0.8

0.0

0.1

0.2

0.3

0.4

x

y

Fig. 4. Leaf individuals in the decision space. Different point markers represent clusters.

neighbourhoods of the Pareto-optimal sets. Afterwards, the results of search in
leaves were clustered by k-medoids method (see e.g. [9]) with the number of
clusters set to 5. In the presented example problem, found clusters represent
existing parts of Pareto set quite well. The upper cluster (Figure 4) is a result of
early phase of computation in root and two right-most groups of points were put
in the same cluster, but these problems can be avoided by adding constraints to
stored individuals and changing the assumed number of clusters.

The second case differs from the first one in several ways. Firstly, we change
sprouting policy to parameterized conditional sprouting performed after each
metaepoch - leaves are created only in interesting areas that were not yet ex-
plored. Secondly, it is possible to reduce the number of metaepochs (in the pre-
sented example to 15 in total). Thirdly, we treat each leaf separately instead of

Multiobjective Evolutionary Strategy for Finding Neighbourhoods 119

clustering a set of all leaf individuals. Exemplary obtained results are presented
in Figure 5. The first two groups of points overlap but all non-connected parts
of Pareto set were found and there were no false solutions.

�

�

�

�
�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
��

�

��

�

�

�
�

�
�

�

�

�

�

�

�� �

�

� �

�

�
��

�
�

�
�

�

��

�

�� ���

�

����

�

�

�

�

�

�

�
�

� �

�

�

�
��

����

� �
�

�

��

�
����

�
�

�� ��
�

�

�

��

����
�

�
�

�

�
�
�

�
��

�

�

����
���

�

�

�
�
�

�

�

�

���

�
�

��
���

�
�

��

�

�

��

�

�
�

�

�

�

�

�

�

�

�
�

�

�

�

�
�

�

�

�
�

�

�
� ��

�
�

��
�

��
�

��

�

�

� ��
� � �

�

�

�

�

�
�

�

�

�
�

��

�

����

�

�

�
���

�

�
�

��

�

�

�

�

�

�

�
�

�

�

� �

�

�� �� ��

�

�
�

�

��
�

�
�

�
�

�

�

�
�
�

�

� ��
�

� �

�

��
��

�
�

����

�

�

�
��
�

�
�

�

� �

��

�
�

�

�
�

� ��

�

�

�

�

��
�

��

��

�

��
�
� ������� �� ��

�

�
�

�

��� ������ � ��

�

�
�

�

� ��
�

��

�

�

�
� ���

�

�

�

�

� �
� �� ��

�

�
�

�
�

��

�

�� ���

�

�
�� �

�

�
�

�

���

�

��

�

�
�

��
�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

��
�

�

� �
�

� �

�
�

�

�

�

��

�

�
��
�
�

�

�

�

�

	
	

	
	

	

		
	

	 	

	
	

			

	

	

	

		

0.0 0.2 0.4 0.6 0.8
0.0

0.1

0.2

0.3

0.4

x

y

Fig. 5. Leaf individuals. Different point markers represent individuals from different
leaves.

Results from the second case can be clustered with the number of clusters,
which has to be provided to many clustering methods, related to number of
leaves but we can also omit this last phase of MCES and assume that each leaf
represents a part of the Pareto set. A comparison of average values of individuals
in the first and second case, as well as the differences between them, are presented
in Table 1. The upper cluster from the first case is omitted and for the two right-
most leaves (Fig. 5), which equivalents were merged into one cluster (Fig. 4), we
firstly calculate the average value of both leaves together and next, calculate the
distance to the cluster.

Table 1. Average values of clusters (in the first case) and leaves (in the second case)
and euclidan distances between them

Case 1 Case 2

x y x y Distance

0.036 0.066 0.065 0.029 0.047
0.215 0.031 0.186 0.012 0.035
0.43 0.031 0.441 0.021 0.014

0.739 0.048
0.632 0.032

0.024
0.829 0.020

120 E. Gajda-Zagórska

Both variants of MCES found similar results for the example problem, even
two overlapping leaves represent the neighbourhoods of the Pareto set non-
connected parts well. The distances between the average values of clusters in
case 1 and leaves in case 2 are all below 0.05.

The computational cost for the first case was higher than for the second one.
Firstly, to maintain a similar quality of results (all non-connected parts of the
Pareto front found) 5 more metaepochs were necessary. Secondly, there were 30
leaf populations in the first case and only 5 in the second one. In total, there
were 1000 evaluations of root individuals and 3000 of leaf individuals in the first
case and, respectively, 750 and 470 in the second case. If we assume that the
evaluation time is the same for root and leaf individuals (which is true for the
example), we obtain results 3.3 times faster in the second case. Usually, in more
complex problems, the evaluation of higher order demes is much more costly
than for root, therefore the difference could be even more noticeable.

There are several factors that were not included in the above estimation of
computational cost. In the first case, the computational cost of the clustering
phase should be added. In the second case, proper parameter tuning is necessary.
It may be performed basing on some knowledge about the problem or by multiple
short runs before the main calculations.

Concluding, in this section we presented an example which illustrates how
two variants of MCES may be used in practice. The strategy may be successfully
applied to multimodal problems and gives a better insight into the shape of a
problem landscape.

4 Conclusions and Future Research

– The presented strategy of solving multiobjective optimization problem gives
additional knowledge about the shape of the evolutionary landscape. What
is more, it copes with multimodal problems without losing local solutions.

– Both variants of MCES can find all non-connected parts of the Pareto set.
The one utilizing conditional sprouting has lower computational cost and
does not require post-processing of the genetic sample. On the other hand,
it requires parameter tuning to prevent repetitive leaves to be sprouted.
Variant including clustering has higher computational cost but does not
require any additional knowledge about the problem to be properly tuned.

– In future papers, we plan to develop the theorem allowing for theoretical
verification of MCES, investigate its applicability to other types of problems
and compare with different MOEAs.

References

1. Adamska, K.: Genetic Clustering as a Parallel Algorithm for Approximating Basins
of Attraction. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J.
(eds.) PPAM 2004. LNCS, vol. 3019, pp. 536–543. Springer, Heidelberg (2004)

Multiobjective Evolutionary Strategy for Finding Neighbourhoods 121

2. Coello Coello, C.A., Lamont, G.B.: Applications of Multi-objective Evolutionary
Algorithms. World Scientific (2004)

3. Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization:
Formulation, discussion and generalization. In: Gen. Alg.: Proc. of the Fifth Int.
Conf., pp. 416–423 (1993)

4. Gajda, E., Schaefer, R., Smo�lka, M.: Evolutionary Multiobjective Optimization
Algorithm as a Markov System. In: Schaefer, R., Cotta, C., Ko�lodziej, J., Rudolph,
G. (eds.) PPSN XI, Part I. LNCS, vol. 6238, pp. 617–626. Springer, Heidelberg
(2010)

5. Gajda-Zagórska, E.: Recognizing sets in evolutionary multiobjective optimization.
Journal of Telecommunications and Information Technology 1, 74–82 (2012)

6. Kolodziej, J.: Modelling Hierarchical Genetic Strategy as a Family of Markov
Chains. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.)
PPAM 2001. LNCS, vol. 2328, pp. 595–598. Springer, Heidelberg (2002)

7. Maulik, U., Bandyopadhyay, S.: Genetic algorithm-based clustering technique. Pat-
tern Recognition 33(9), 1455–1465 (2000)

8. Pardalos, P.M., Romeijn, H.E. (eds.): Handbook of Global Optimization, vol. 2.
Kluwer (1995)

9. Park, H., Jun, C.: A simple and fast algorithm for k-medoids clustering. Expert
Systems with Applications 36(2, Part 2), 3336–3341 (2009)

10. Preuß, M., Naujoks, B., Rudolph, G.: Pareto Set and EMOA Behavior for Simple
Multimodal Multiobjective Functions. In: Runarsson, T.P., Beyer, H.-G., Burke,
E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS,
vol. 4193, pp. 513–522. Springer, Heidelberg (2006)

11. Stoean, C., Stoean, R., Preuss, M.: Approximating the number of attraction basins
of a function by means of clustering and evolutionary algorithms. In: Tandareanu,
N. (ed.) 8th Int. Conf. on AIDC. Res. No. in AIDC, pp. 171–180. Reprograph Press
(2008)

12. Schaefer, R., Adamska, K., Telega, H.: Clustered genetic search in continuous land-
scape exploration. Engineering Applications of Artificial Intelligence 17(4), 407–416
(2004)

13. Schaefer, R., Kolodziej, J.: Genetic search reinforced by the population hierarchy.
In: Poli, R., De Jong, K.A., Rowe, J.E. (eds.) Foundations of Genetic Algorithms
7, pp. 383–388. Morgan Kaufmann (2003)

14. Schaefer, R., Telega, H.: Foundation of Global Genetic Optimization. Springer
(2007)

15. Stoean, C., Preuß, M., Stoean, R., Dumitrescu, D.: EA-Powered Basin Num-
ber Estimation by Means of Preservation and Exploration. In: Rudolph, G.,
Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199,
pp. 569–578. Springer, Heidelberg (2008)

16. Vose, M.D.: The Simple Genetic Algorithm. MIT Press (1999)
17. Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and

Applications. PhD thesis, ETH Zurich, Switzerland (1999)

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 122–131, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Genetic Programming-Based Model Output Statistics
for Short-Range Temperature Prediction

Kisung Seo1, Byeongyong Hyeon1, Soohwan Hyun2, and Younghee Lee3

1 Dept. of Electronic Engineering, Seokyeong University, Seoul, Korea
2 Hyundai Heavy Industries Research Institute, Yongin, Korea

3 National Institute of Meteorological Research/Korea Meteorological Administration,
Seoul, Korea

Abstract. This paper introduces GP (Genetic Programming) based robust
compensation technique for temperature prediction in short-range. MOS (Model
Output Statistics) is a statistical technique that corrects the systematic errors of
the model. Development of an efficient MOS is very important, but most of
MOS are based on the idea of relating model forecasts to observations through a
linear regression. Therefore it is hard to manage complex and irregular natures
of the prediction. In order to solve the problem, a nonlinear and symbolic
regression method using GP is suggested as the first attempt. The purpose of
this study is to evaluate the accuracy of the estimation by GP based nonlinear
MOS for the 3 days temperatures for Korean regions. This method is then
compared to the UM model and shows superior results. The training period of
summer in 2007-2009 is used, and the data of 2010 summer is adopted for
verification.

Keywords: temperature forecast, MOS, UM, KLAPS, genetic programming.

1 Introduction

As numerical techniques and computational power have steadily improved, various
scales and types of numerical weather prediction models are becoming the most
powerful tools in the quantitative forecasting of various weather elements such as
temperature, precipitation, and snowfall [6,13]. The Unified Model(UM) [10] has
been adopted by the Korean Meteorological Administration(KMA) as an operational
model since 2007 [13].

It is well known that forecasts of numerical weather prediction models have certain
defects that can be removed by statistically postprocessing their output [2,9]. Forecast
models do not reliably determine weather conditions near ground level, therefore a
compensation technique is required to enhance an accuracy of prediction outputs for
numerical models [2,6,9,12,13]. Different statistical procedures are used in
meteorology for adjusting the estimates of air temperature obtained by numeric
forecasting models of climate [1-3,5,8,9,11,12].

MOS(Model Output Statistics) is an statistical technique that corrects the
systematic errors of the model. A couple of indices (temperature, relative humidity,

 Genetic Programming-Based Model Output Statistics 123

wind speed and wind direction) are expected to be improved by the MOS, compared
to the UM forecast alone [4,5]. The linear regression methods have been still widely
used in those systems [12]. The MOS currently used in KMA for short range
prediction of temperature have adopted a linear regression too.

However, a linear regression is not adequate to represent non-linear behavior of
predictor variables. Moreover this approach requires pre-selected parameters to
construct a regression model also, but it is difficult to decide what parameters should
be included in the regression model to get best results even though some correlations
can be analyzed. Therefore it has fundamental limitations to manage highly complex
nature of weather predictions. Some neural network based approach [11] can
represent nonlinear behaviors of model but it still requires the pre-defined variables.

To overcome these problems of existing approaches, we have proposed a
seemingly more efficient approach that optimizes a compensation model for
temperature predictions through nonlinear combinations of potential predictors using
GP(Genetic Programming) [7]. GP based nonlinear regression can effectively search
open-ended space for order and coefficient of equations. It is also powerful mean to
generate open-ended high order equations and complex nonlinear forms using
transcendental functions. This allows it to solve the limitations of search for a fixed
linear regression model.

In this paper, a generation technique of nonlinear regression model for MOS using
Genetic Programming is proposed as a first attempt as far as we know. GP based
symbolic regression approach is used to perform a nonlinear regression for
correcting(or compensating) a temperature prediction model.

This paper is organized as follows. Section 2 introduces a notion of numerical
weather prediction. Section 3 describes genetic programming based method for non-linear
MOS. Section 4 presents experimental results of temperature forecast for Korean
regions by the proposed GP_MOS method, and Section 5 concludes the paper.

2 Numerical Weather Prediction

2.1 Unified Model and KLAPS

The UM(Unified Model) [10] is a numerical weather prediction and climate modeling
software suite originally developed by the United Kingdom Met Office, and now both
used and further developed by many weather-forecasting agencies around the world.

The Korea Meteorological Administration have an operational 12km resolution
global forecasting system utilizing the Unified Model. The UM is run twice a day (00
and 12 UTC) producing forecasts from 6 h to 66 h at a 3 h interval. KLAPS(Korea
Local Analysis and Prediction System) was designed to provide a computationally
efficient method of combining all available sources of meteorological information
into three dimensional depiction of the atmospheric state [6].

15 kinds of total 49 potential predictors were employed in our work including
temperature, humidity, wind speed and accumulated rainfall as shown in Table 1.

124 K. Seo et al.

Table 1. Potential Predictors

Types Potential Predictors
Air Temperature TS, T8, T7, T5

Thickness DZ18, DZ17, DZ85
Dew-point TDD8, TDD7, TDD5

Specific humidity QS, Q8, Q7, Q5
Difference between specific humidity and
saturated specific humidity at 500 hPa

DQ85, DQ75

Relative humidity RH8, RH7, RH5
Layer averaged RH MRH17, MRH15, MRH85

Zonal wind US, U8, U7, U5
Meridional wind VS, V8, V7, V5

Wind speed WSS, WS8, WS7, WS5
Wind direction WDS, WD8, WD7, WD5

North-westerly wind speed NWS, NW8, NW7, NW5
North-easterly wind speed NES, NES8, NES7, NE5

Lapse rate LR87, LR85
Total rain amount(3hr accumulated) PCP

2.2 MOS (Model Output Statistics)

The MOS technique aims at correcting current forecasts based on statistical
information gathered from past forecasts. Not only MOS can illustrate systematic
errors of the prediction model, but produce a prediction closed to average of samples.
In its most popular form, it is based on a linear relation between the reference
variables that we want to predict a set of model predictors at a certain lead time
[2,9,12].

The MOS currently used in KMA for short term prediction of temperature have
adopted a similar linear regression with equation (1). It consists of linear combination
of potential predictors. TSΔ

is a compensated amount for the corrected forecast.

NNVARaVARaVARaTS +++=Δ 2211 (1)

where, represents one of potential predictors in Table 1.

One of problems is that the number and kind of predictors for above MOS should
be fixed in advance throughout the process of a pre-selection. However, it is difficult
to decide what predictors should be included in the regression model to get best
results, because it is hard to analyze exact correlations among around 50 predictors
for huge number of locations and periods. The other is that above linear regression is
inappropriate to model non-linear relationships between a temperature prediction and
predictor variables Therefore these two drawbacks hinder to build compensation
model precisely.

iVAR

3 Genetic Program

3.1 A Proposed Genetic

Genetic programming [7] i
optimize actual computer
automated synthesis. Genet
can be used to “grow” trees
of GP MOS regression by G
the linear regression, GP b
more flexibly involving mu

Therefore it is possible t
nonlinear forms using a tre
regression approach

Especially the fundamen
naturally solved in GP ba
automatically through the e
candidates of predictors are
advance, therefore the pos
much better than predeterm

Every solution of GP
because not only the size a
but also selected predictors
tailor-made compensation
which have different charac

3.2 Function and Term

The function set for the pro
terminal set includes 49
constants) as follows.

Function = {+, *, -, /, cos
Terminal = {49 variables

Genetic Programming-Based Model Output Statistics

mming Based Compensation Technique

c Programming Approach

s an extension of the genetic algorithm, using evolution
programs or algorithms to solve some task, such

tic programming can manipulate variable-sized entities
s that specify increasingly complex predictors. An exam
GP tree is shown in Figure 1. Compared to equation (1

based MOS can express nonlinearity and periodicity m
ultiplication, division and sinusoidal functions.
to generate open-ended high order equations and comp
ee structure and allows to solve the limitations of a lin

Fig. 1. Example of GP tree

ntal problem of preselection for potential predictors can
sed approach, because dominant predictors are extrac
evolution process of genetic programming. That means
e considered without excluding some potential predictor
ssibility of optimized selection of potential predictors

mined predictors.
based MOS doesn’t necessarily have same predict

and shape of GP tree for optimized solutions are differ
s are varied for each solution. Therefore we can generat
equation for various locations in wide range of per

cteristics.

minal Sets

oposed GP-based MOS involves 6 arithmetic operators
potential predictors and one ERC(ephemeral rand

sine, sine}
s, ERC}

125

n to
h as
and

mple
) of

much

plex
near

n be
cted
s all
rs in
s is

tors,
rent
te a
riod

and
dom

126 K. Seo et al.

The set of primitive functions should be sufficient to allow solution of the problem at
hand, but there are typically many possible choices of sets of operators that meet this
condition. Through preliminary experiments, the function set above is selected.

3.3 Fitness Function

Fitness function of GP-MOS prediction is defined to minimize RMSE(Root Mean
Square Error) for temperature prediction between KLAPS reference data and obtained
forecast data by GP based compensation technique. It is described in equation (2),
where TSi is the surface temperature obtained by UM.

byGPTSTSMOSGP

Days

MOSGPKLAPS
fitness

iii

Days

i
ii

__

)_(
1

Δ+=

−
=

= (2)

4 Experiments

4.1 GP Parameters

The GP programs were run on a Intel Core I7 960 3.4GHz with 4GB RAM using lil-
gp [14]. The GP parameters used for the GP_MOS evolution were as follows:

Population sizes: 300
Max generation: 300
Initial Tree Depth: 2-5
Initial Tree Method: Half and Half
Max Depth: 9
Crossover Rate: 0.9
Mutation Rate: 0.1

Learning experiments are repeated 20 times from June 2007 to August 2009 for entire
stations for Korea with 00 UTC(Coordinated Universal Time) and 12 UTC. A test is
executed from June 2010 to August 2010 for same environment.

4.2 Experimental Results

The comparison results of average RMSE in learning experiments for 00 UTC
forecast between UM and GP_MOS are shown in Figure 2 and 3. The numeric results
represent RMSE between UM and GP-MOS comparing with KLAPS reference data.

The wave pattern of results by time occurs periodically. RMSE values of daytime
(+06h, +27h~30h, +51h~54h) are higher than others. The average RMSE of UM is
2.035 and GP is 1.512 in learning stage, showing an improvement of 25.7%. In
verification process, the average RMSE of UM is 2.059 and the result of GP is 1.565,
24.0% is improved. We observe that GP-based MOS yielded superior average RMSE
to UM for both cases.

Fig. 2. Comp

Fig. 3. Compar

Similar experimental res
periodic wave pattern by t
showed superior average R
an improvement, of 24.5%
phase.

Fig. 4. Comp

Genetic Programming-Based Model Output Statistics

parison of average RMSE in learning for 00UTC

rison of average RMSE in verification for 00UTC

sults for 12 UTC are shown in Figure 4 and 5. The sim
time occurs but it is shifted by 12 hours. GP-based M

RMSE to UM for both cases like 00 UTC. GP shows ag
% in the learning stage and of 23.0% in the verificat

parison of average RMSE in learning for 12UTC

127

milar
MOS
gain
tion

128 K. Seo et al.

Fig. 5. Compar

Table 2. Summary

R

mi

00
UTC

UM 0.86

GP_MOS 0.73

12
UTC

UM 0.83

GP_MOS 0.59

The summary of compa

Table 2. We do not report
method and the linear MOS
not available. Rather we
researchers [5] where, a
UMOS(Updateable MOS)
summer in 2007. And the b
Therefore it is certain our
linear based MOS used in K

4.3 An Example of GP

One of example solutions o
west area of South Korea)
form of GP tree with infix n
+, -, and * operators. Func
Especially, a series of La
several times.

GP_TREE: { sin(sin(((W
US + DZ18 - sin(V8))) }
sin(sin(LR87-MRH85+DZ
sin(V7))))) } - sin(sin(TS

rison of average RMSE in verification for 12UTC

of comparisons for RMSE between UM and GP_MOS

RMSE(K) in learning
(summer 2007-2009)

RMSE(K) in validation
(summer 2010)

in average max min average max

63 2.035 7.822 0.718 2.059 7.416

32 1.512 3.514 0.673 1.565 3.344

30 2.049 7.775 0.659 2.066 7.403

91 1.547 3.705 0.643 1.591 3.585

arisons for above results from Figure 2 to 5 are shown
t on a direct comparison between our proposed GP_M
S in KMA, because that information for used predictor
do compare our results indirectly with results by ot
couple of MOS methods including the most popu
were tested. The result of RMSE by UMOS is 2.115

best RMSE result is 1.77 which is obtained by MOS_R
r GP based MOS approach is quite competitive than
KMA.

Based Temperature Compensation in Specific Locatio

of GP based approach for 051.107 location(near Hongsu
is shown in below as a LISP expression. It is represen
notation, which has 63 nodes and depth 9, consists of s
ction cosine and division(/) are not selected in evoluti
yer averaged RH and Lapse rate predictors are cho

S8+WS8-TS) * (LR87-RH7)) + sin(KI - sin(TS))) +
 + { sin(sin(sin(LR87-MRH85+LR87-MRH15))) }

Z17-MRH15+DZ17-MRH15)) } + { sin(sin(sin(
S)) - U7

n in
MOS
rs is
ther
ular
for

[5].
the

on

ung,
nted
ine,
ion.

osen

sin(
+ {
sin(

Fig. 6. Forecast temp

Figure 6 shows obtained
051.107 with +09h(00UT
observation temperature, th
indicates a prediction by U
2009 period, average RMS
shows 58.8% improvement
August 2010, the result of G

4.4 RMSE Distribution

RMSE of temperature forec
are shown in Figure 7 and
are displayed in left and the
larger RMSE and blue indic
GP approach are better than

Fig. 7. RM

Genetic Programming-Based Model Output Statistics

perature of +09h, 00UTC in 051.107 location(Hongsung)

d prediction results of period (summer 2007 ~ 2010)
TC). The gray(brighter one) line represents KLA
hin dot line means forecast by GP_MOS and thick dot l

UM. Learning process was executed in June 2007 ~ Aug
SE of UM is 3.587 and of GP_MOS is 1.478. Therefor

than UM. Validation process was executed in June 201
GP_MOS is improved 72.01 % than UM.

n of UM and GP

cast distributions of entire Korean region for each meth
8. In Figure 7, the RMSE distributions of UM for 00 U

e results of GP based method are right. Red color represe
cates smaller RMSE. We can see the results of the propo
n UM. Similar results for 12 UTC are shown in Figure 8.

MSE distributions for UM and GP in 00 UTC

129

for
APS
line
gust
re it
10 ~

hod
UTC
ents
osed

130 K. Seo et al.

Fig. 8. RM

5 Conclusions

In order to improve for
technique, based on symbol
compared to UM. Experim
two UTCs. Learning is p
validation is processed in
average RMSE for both tim
that the proposed GP based
MOS used in KMA [5] al
selection and extension of t

Acknowledgements. Thi
Administration Research an

References

1. Carvalho, J.R.P., Assad, E
estimated by PRECIS mo

2. Glahn, H.R., Lowry, D.A
forecasting. J. Appl. Mete

3. Glahn, B., Gilbert, K., C
Weather and Forecasting

4. Homleid, M.: Weather d
using regression methods
Institute (2004)

MSE distributions for UM and GP in 12 UTC

temperature prediction, a new nonlinear compensat
lic regression using Genetic Programming, is proposed

ments are executed for 9,291stations with 21 intervals
performed in period of June 2007 ~ August 2009
summer 2010. The GP method shows superior results
me period and regions compared to UM. It becomes cl
d method is quite competitive than the result of linear ba
lso. Further study will aim at refinement of the predic
the advanced GP search.

s work was supported by Korean Meteorolog
nd Development Program 2012(NIMR 2012-B-1)

E.D., Pinto, H.S.: Kalman filter and correction of the temperatu
del. Atmospheric Research 102, 218–226 (2011)

A.: The use of model output statistics (MOS) in objective wea
eor. 11, 1203–1211 (1972)
Cosgrove, R., Ruth, D.P., Sheets, K.: The gridding of M
24, 520–529 (2009)

dependent statistical adaption of 2 meter temperature forec
s and Kalman filter. met. no report, Norwegian Meteorolog

tion
and
and
and
s in
lear

ased
ctor

gical

ures

ather

MOS.

casts
gical

 Genetic Programming-Based Model Output Statistics 131

5. Kang, J., Suh, M., Hong, K., Kim, C.: Development of updateable Model Output Statistics
(UMOS) System for Air Temperature over South Korea. Asia-Pacific Journal of
Atmospheric Sciences 47, 199–211 (2011)

6. Kim, Y., Park, O., Hwang, S.: Realtime Operation of the Korea Local Analysis and
Prediction System at METRI. Asia-Pacific Journal of Atmospheric Sciences 38, 1–10
(2002)

7. Koza, J.R.: Genetic Programming: On the Programming of Computers by Natural
Selection. MIT Press, Cambridge (1992)

8. Lee, Y.H., Park, S.K., Chang, D.-E.: Parameter estimation using the genetic algorithm and
its impact on quantitative precipitation forecast. Annales Geophysicae 24, 3185–3189
(2006)

9. Termonia, P., Deckmyn, A.: Model-inspired predictors for model output statistics. Mon.
Wea. Rev. 135, 3496–3505 (2007)

10. United Kingdom Met Office, http://www.metoffice.gov.uk
11. Ustaoglu, B., Cigizoglu, H.K., Karaca, M.: Forecast of daily mean, maximum and

minimum temperature time series by three artificial neural network methods.
Meteorological Applications 15, 431–445 (2008)

12. Vannitsem, S.: Dynamical Properties of MOS Forecasts: Analysis of the ECMWF
Operational Forecasting System. Weather and Forecasting 23, 1032–1043 (2008)

13. Yu, X., Park, S., Lee, K., Ahn, K., Choo, S.: The gridding of MOS for high resolution
forecasting. In: The Fifth Korea-Japan-China Joint Conference on Meteorology, pp. 18–21
(2011)

14. Zongker, D., Punch, B.: Lil-GP User’s Manual, Michigan State University (1995)

Evolutionary Multi-Agent System

in Hard Benchmark Continuous Optimisation

Sebastian Pisarski, Adam Ruga�la, Aleksander Byrski,
and Marek Kisiel-Dorohinicki

AGH University of Science and Technology
Al. Mickiewicza 30, 30-059 Kraków, Poland

{pisarski,rugala}@student.agh.edu.pl, {olekb,doroh}@agh.edu.pl

Abstract. It turns out that hybridizing agent-based paradigm with
evolutionary computation brings a new quality to the field of meta-
heuristics, enhancing individuals with possibilities of perception, interac-
tion with other individuals (agents), adaptation of parameters, etc. In the
paper such technique—an evolutionary multi-agent system (EMAS)—is
compared with a classical evolutionary algorithm (Michalewicz model)
implemented with allopatric speciation (island model). Both algorithms
are applied to the problem of continuous optimisation in selected bench-
mark problems. The results are very promising, as agent-based comput-
ing turns out to be more effective than classical one, especially in difficult
benchmark problems, such as high-dimensional Rastrigin function.

1 Introduction

The paper concerns a hybrid evolutionary-agent [1] approach to solving continu-
ous optimisation problems. In most such applications reported in literature (see
e.g., [2] or [3] for a review) an evolutionary algorithm is used by an agent to aid
realisation of some of its tasks, often connected with learning or reasoning, or to
support coordination of some group (team) activity. In other approaches, agents
constitute a management infrastructure for a distributed realisation of an evo-
lutionary algorithm [4]. Yet evolutionary processes are decentralised by nature
and indeed one may imagine the incorporation of evolutionary processes into a
multi-agent system at a population level [5]. It means that apart from interac-
tion mechanisms typical of MAS (such as communication), agents are able to
reproduce (generate new agents) and may die (be eliminated from the system).
A similar idea but with limited autonomy of agents located in fixed positions
on some lattice (like in a cellular model of parallel evolutionary algorithms)
was developed by e.g., [6]. The key idea of the decentralised model of evolution
employed by an evolutionary multi-agent system (EMAS) was to ensure full au-
tonomy of agents. Different variants of this model have been successfully applied
to different optimisation problems (e.g., single-criteria, multi-criteria, discrete,
continuous) [7].

This paper is devoted to the examination of the efficiency of EMAS in the
problem of optimisation of a high-dimensional benchmark function. Therefore,

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 132–141, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

EMAS in Hard Benchmark Continuous Optimisation 133

after recalling the basics of evolutionary, and agent-based computation and pre-
senting the concepts of the examined systems, the experimental setting is given
and the results concerning optimisation of 100-dimensional Rastrigin function
are discussed for several selected population sizes and allopatric speciation con-
figurations.

2 Evolutionary Agent-Based Optimization

Over the years evolutionary algorithms proved to be an effective universal tech-
nique for solving optimisation problems [8]. Instead of directly solving the given
problem, subsequent populations of potential solutions are constructed, mod-
elling phenomena of natural evolution. This process consists of two components:
selection performed based on the solutions evaluation (fitness function), and gen-
eration of new solutions with the use of variation operators (such as crossover
and mutation). The process continues until some stopping condition is reached
(e.g., number of generations, lack of changes in the best solution found so far).

This kind of search has some drawbacks since many algorithms tend to prema-
turely loose useful diversity of the population and therefore there is a possibility
that the population might get stuck in some part of the search space. To deal
with this situation several techniques may be applied, as multi-deme approaches
[9]. The schematic presentation of this so-called parallel evolutionary algorithm
used as a reference in this paper is presented in Figure 1a. It may be seen that
the population of potential solutions is decomposed into evolutionary islands,
and there is a possibility of migration between them.

One of the problems with evolutionary algorithms is that the selection of the
proper evolutionary algorithm for the given task is an open problem. One of the
reasons for that is the weakness of the theory of evolutionary algorithms: “We
know that they work, but we do not know why” [8]. What is more, the model of
evolution followed by most EAs (with noticeable exceptions) is much simplified
and lacks important phenomena observed in organic evolutions, like the one that
neither global knowledge nor generational synchronisation is assumed in nature.

The idea of an evolutionary multi-agent system (EMAS) helps to avoid some
of the shortcomings of the model of evolution employed in classical evolutionary
computation techniques. Agents of EMAS represent solutions for a given optimi-
sation problem like in classical evolutionary algorithms. They may be located on
islands, which constitute their local environment where direct interactions may
take places, and represent a distributed structure of computation. Obviously,
agents are able to change their location, which allows for diffusion of informa-
tion and resources all over the system.

The main components of evolutionary processes—inheritance and selection—
are modelled via agent actions of death and reproduction (see Fig. 1b). Repro-
duction consists in the production of a new individual in cooperation with one
of its neighbours that is chosen randomly, with the solution inherited from its
parent(s) with the use of variation operators (mutation and recombination). As-
suming no global knowledge available and the autonomy of agents, selection is
based on the non-renewable resources [10].

134 S. Pisarski et al.

(a) Parallel evolutionary algorithm (PEA)

(b) Evolutionary multi-agent system (EMAS)

Fig. 1. Schematic presentation of the algorithms discussed in the paper

In the simplest possible model of EMAS there is one type of agents and one
resource defined (called life energy). Energy is exchanged by agents in the process
of evaluation. The agent increases its energy when it finds out that one (e.g.,
randomly chosen) of its neighbours has lower fitness. In this case, the agent takes
part of its neighbour’s energy, otherwise, it passes part of its own energy to the
evaluated neighbour. The level of life energy triggers agents’ actions [5]:

– Reproduction – performed when the agent’s energy raises above a certain
level, a part of energy (usually half of its initial value) is passed to a new
agent from each of its parents.

– Death – agent is removed from the system when its energy falls below a
certain level, the remaining energy is distributed among its neighbours.

– Migration – agent (with some probability) may migrate, then it is removed
from one evolutionary island and moved to another (random) according to
predefined topology.

EMAS in Hard Benchmark Continuous Optimisation 135

Each action is attempted randomly with certain probability, and it is performed
only when their basic preconditions are met (e.g., an agent may attempt to
perform the action of reproduction only if it meets an appropriate neighbour).

The topology of an island, defining the structure of inter-agent relations
may be random (full graph of connections between the agents), but in order
to enhance diversity of the population, an additional level of population de-
composition (beside the evolutionary islands) may be introduced. Thus, a two-
dimensional square lattice (similarly to the ones used in Cellular Automata [11])
may be considered. In such lattice, different neighbourhoods (e.g., Moore’s) and
boundary conditions (e.g., periodic, reflexive and fixed) may be utilised. In such
an island, the agents may interact between themselves only providing they are
in the zone of each other’s neighborhood.

3 Methodology of Experimental Studies

Having vast experience in the development of component-based agent-oriented
computing platforms (cf. AgE1 [12]), a simplified version of a discrete-event sim-
ulation and computing system was developed using Python language. The choice
of this technology was conditioned by a relatively easy implementation process
and high portability [13]. Using this software environment, both a classical evo-
lutionary algorithm (as proposed by Michalewicz [14]) and EMAS were similarly
implemented and configured. Another important assumption of the experimen-
tal study was that all possible parameters of both systems were set to the same
values. For each considered case the experiments were repeated 30 times and
the standard deviation (or other statistical measures, such as median and ap-
propriate quartiles for box-and-whiskers plots) was computed as a measure of
repeatability. The results presented below concern the observation of the best fit-
ness according to the step of computation, moreover, the observation of diversity
was also performed using two selected definitions of this measure:

MOI – Morrison-De Jong measure based on concept of moment of inertia for
measurement of mass distribution into arbitrarily high dimensionality spaces
[15],

MSD – maximum standard deviation of each gene computed for all individuals
in the population.

Common configuration of the algorithms

– Representation: real-valued.
– Mutation: normal distribution-based modification of one randomly chosen

gene.
– Crossover: single-point.
– Migration topology: 3 fully connected islands.
– Migration probability: 0.01 per agent/individual (each one migrates

independently—possibly to different islands).

1 http://age.iisg.agh.edu.pl

http://age.iisg.agh.edu.pl

136 S. Pisarski et al.

EMAS configuration

– Initial energy: 100 units received by the agents in the beginning of their lives.
– Evaluation energy win/loose: 20 units passed from the looser to the winner.
– Minimal reproduction energy: 90 units required to reproduce.
– Death energy level: 0, such agents should be removed from the system.
– Boundary condition for the intra-island lattice: fixed, the agents cannot cross

the borders.
– Intra-island neighbourhood: Moore’s, each agent’s neighbourhood consists

of 8 surrounding cells.
– Size of 2-dimensional lattice as an environment: 10x10.

Configuration for preliminary experiments

– Stop condition: 3000 steps of experiment.
– Benchmark problems: Ackley, DeJong, Rastrigin, and Rosenbrock functions

[16].
– Problem size: 50 dimensions.
– For EMAS the evaluation energy win/loose was set to 40 units.
– Population size: 30 individuals/agents located on each island.

Configuration for main experiments

– Stop condition: 100000 steps of experiment.
– Benchmark problem: Rastrigin function [16].
– Problem size: 100 dimensions.
– Population size configurations:

• 25 individuals on 1 island,
• 25 individuals on 3 islands,
• 40 individuals on 1 island,
• 40 individuals on 3 islands.

4 Experimental Results

In the preliminary experiments, selected benchmark functions were tackled [16]
with both EMAS and PEA (Michalewicz version [14]). The results point out,
that EMAS turns out to be much more effective in localising optimum of the
problems tackled for all tested benchmark functions 2. Though PEA converges
faster, it seems to be stuck in a local extremum of the function, while EMAS
overcomes this problem and produces significantly better solutions.

In main experiments, different configurations for higher dimensionality (100
dimensions) were tested. In Figure 3, a simple comparison of the results of com-
putation, obtained for one-population configuration (1 islands, 40 individuals),
namely observation of the best fitness in each step of the computation may be
seen. It turns out that EMAS outperforms PEA for over two orders of magni-
tude. This is a very promising result, and it may be further verified by checking

EMAS in Hard Benchmark Continuous Optimisation 137

(a) Ackley (b) De Jong

(c) Rastrigin (d) Rosenbrock

Fig. 2. Comparing of PEA and EMAS best fitness for selected 50-dimensional bench-
mark problems

Fig. 3. Result comparison—EMAS vs PEA (1 island, 40 agents/individuals) with stan-
dard deviations

138 S. Pisarski et al.

Table 1. EMAS and PEA optimization results obtained for 25 and 40 individuals

1 island 3 islands

EMAS PEA EMAS PEA

25 individuals

Result 1.77 242.96 0.71 156.34
St. Dev. 0.22 6.54 0.10 6.84
St. Dev. % 12.24 2.69 14.46 4.38

40 individuals

Result 0.90 180.48 0.37 111.45
St. Dev. 0.13 6.45 0.05 4.16
St. Dev. % 15.24 3.57 13.56 3.73

(a) MSD diversity (b) MOI diversity

Fig. 4. Diversity computed according to MOI and MSD schemes, 1 island 40
agents/individuals with standard deviations

the results obtained in both computations in the last step that are presented in
Table 1.

In this table, the results obtained for other configurations (3 islands, 40 in-
dividuals) were also presented. In these cases the domination of EMAS is still
retained. It is easy to see that the results are repeatable (as standard deviation
is relatively low).

Another important information is that the multi-population models of com-
putation tends to be better than single-population, as these former have better
capabilities of exploration (as the population is decomposed), still retaining the
capability of exploitation (in each single sub-population). It is to note also that
increasing the number of individuals (from 25 to 40) improved the final result
(although this requires further proving and many more experimental cases).

In Figures 4a and 4b, the diversity computed according to MSD and MOI
schemes were shown. It is easy to see that EMAS has lower diversity than PEA
in both cases. However, it turns out that it does not hampers the computing
efficiency (as EMAS outperforms PEA). Moreover, the diversity, though lower,

EMAS in Hard Benchmark Continuous Optimisation 139

Table 2. EMAS and PEA MSD and MOI diversity for 25 and 40 individuals

1 island 3 islands

EMAS PEA EMAS PEA

25 individuals

Result 0.56 0.99 0.65 1.31
St. Dev. 0.22 0.14 0.29 0.14
St. Dev. % 38.67 14.04 44.05 10.87

40 individuals

Result 0.50 1.00 0.57 1.30
St. Dev. 0.23 0.14 0.30 0.15
St. Dev. % 45.01 13.84 52.35 11.16

(a) MSD diversity

1 island 3 islands

EMAS PEA EMAS PEA

25 individuals

Result 77.51 287.63 271.64 1253.43
St. Dev. 903.60 1004.92 2883.95 3000.84
St. Dev. % 1165.86 349.37 1061.69 239.41

40 individuals

Result 135.22 313.53 460.94 1340.27
St. Dev. 1590.73 1030.57 4962.78 3066.69
St. Dev. % 1176.37 328.69 1076.66 228.81

(b) MOI diversity

Table 3. EMAS and PEA average and maximum number of steps between subsequent
improvements of the computation result for 25 and 40 individuals

1 island 3 islands

EMAS PEA EMAS PEA

25 individuals

Result 116.90 133.74 142.61 195.33
St. Dev. 4.26 72.37 5.12 72.90
St. Dev. % 3.64 54.12 3.59 37.32

40 individuals

Result 119.07 166.13 147.16 234.57
St. Dev. 4.43 87.15 5.97 77.02
St. Dev. % 3.72 52.46 4.05 32.84

(a) Average number of steps

1 island 3 islands

EMAS PEA EMAS PEA

25 individuals

Result 4042.37 27441.57 3940.23 42225.17
St. Dev. 1580.74 17264.97 1330.81 17906.04
St. Dev. % 39.10 62.92 33.77 42.41

40 individuals

Result 3850.93 33019.87 3596.30 47966.66
St. Dev. 1173.24 23218.82 889.32 20118.41
St. Dev. % 30.47 70.32 24.73 41.94

(b) Maximum number of steps

is still quite stable (see standard deviation range marked on the graphs) that
leads to the conclusion that though the population in EMAS is not so diverse as
in PEA, the exploration and exploitation features of the system are balanced.

The final values of both diversity measures (MOI and MSD) shown in Tables
2a, 2b confirm the observation of the behaviour of the computation observed in
Figures 4a and 4b.

In order to examine the dynamics of the computing process for PEA andEMAS,
average number of steps between subsequent improvements of the best fitness ob-
served are presented in Table 3a. It is easy to see that also in this case, EMAS out-
performsPEA.This result confirms that lower diversity of EMAS in comparison to
PEA does not hamper the capability of improving the result of the computation.

Another confirmation of the above observation may be found when looking at
Table 3b. There, maximum number of steps, required for improving the value of
the fitness function were shown. It is easy to see that EMAS outperforms PEA
also in this case.

140 S. Pisarski et al.

5 Conclusions

Search for complex computing paradigms will be always justified, at least as
long as new problems will be found (cf. “no free lunch theorem” by Wolpert and
Macready [17]). On the other hand, one must remember about famous “Occham
razor” principle, and avoid creation of unnecessary, complex computing systems,
just for the sole creation.

High dimensional, multi modal problems require dedicated systems, appro-
priately suited to their features. Biologically-inspired computing systems seem
to be a good answer to such requirements, connected with solving such complex
problems, as maintaining the balance between exploitation and exploration, by
stabilizing its diversity, still being able to escape from the danger of premature
convergence.

In this paper, the evolutionary multi agent-system was recalled and compared
to a classical evolutionary algorithm. It turns out that conceptually, the agent-
oriented approach differs mainly in the model of selection and ontogenesis. Al-
though as one of the results, lower diversity was observed in EMAS than in PEA,
it was still maintained in stable level. Other experiments proven that the dynam-
ics of EMAS turned out to be better than PEA, in the means of approaching the
globalminimum (as average andmaximum steps required for improving the fitness
function were tested). However, the main result concernes the attained solution.
Namely in the case of EMAS, for high dimensional Rastrigin benchmark function,
is over two orders of magnitude better than the one observed for PEA. This makes
EMAS a promising tool to solve complex problems.

Predictably, the multi-population systems were better in the means of mea-
sured parameters (best fitness, average number of steps between improvement
of the results, etc.), this feature was observed both for PEA and EMAS. Other
predictable result, regarding increasing the number of individuals in the popu-
lations, affected positively the quality of the final solution in both cases (EMAS
and PEA), however these results may be treated as preliminary, as only two
experimental cases were tested.

In the future, further testing is planned, including covering a broader range
of benchmark functions, as well as real-world problems. Other modifications of
classical and evolutionary-agent computing models (such as immunological or
memetic) will also be examined.

Acknowledgment. The research presented here was partially supported by
the grant “Biologically inspired mechanisms in planning and management of
dynamic environments” funded by the Polish National Science Centre, No. N
N516 500039.

References

1. Kisiel-Dorohinicki, M., Dobrowolski, G., Nawarecki, E.: Agent populations as com-
putational intelligence. In: Rutkowski, L., Kacprzyk, J. (eds.) Neural Networks and
Soft Computing. Advances in Soft Computing, Physica-Verlag (2003)

EMAS in Hard Benchmark Continuous Optimisation 141

2. Sarker, R., Ray, T.: Agent-Based Evolutionary Search. Springer (2010)
3. Chen, S.H., Kambayashi, Y., Sato, H.: Multi-Agent Applications with Evolutionary

Computation and Biologically Inspired Technologies. IGI Global (2011)
4. Schaefer, R., Ko�lodziej, J.: Genetic search reinforced by the population hierarchy.

Foundations of Genetic Algorithms 7 (2003)
5. Kisiel-Dorohinicki, M.: Agent-Oriented Model of Simulated Evolution. In: Grosky,

W.I., Plášil, F. (eds.) SOFSEM 2002. LNCS, vol. 2540, pp. 253–261. Springer,
Heidelberg (2002)

6. Zhong, W., Liu, J., Xue, M., Jiao, L.: A multiagent genetic algorithm for global
numerical optimization. IEEE Trans. on Systems, Man, and Cybernetics, Part B:
Cybernetics 34(2), 1128–1141 (2004)

7. Byrski, A., Dreżewski, R., Siwik, L., Kisiel-Dorohinicki, M.: Evolutionary multi-
agent systems. The Knowledge Engineering Review (2012) (accepted for publica-
tion)

8. Back, T., Hammel, U., Schwefel, H.P.: Evolutionary computation: Comments on
the history and current state. IEEE Trans. on Evolutionary Computation 1(1)
(1997)

9. Cantú-Paz, E.: A summary of research on parallel genetic algorithms. IlliGAL
Report No. 95007. University of Illinois (1995)

10. Dreżewski, R., Cetnarowicz, K.: Sexual Selection Mechanism for Agent-Based Evo-
lutionary Computation. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A.
(eds.) ICCS 2007, Part II. LNCS, vol. 4488, pp. 920–927. Springer, Heidelberg
(2007)

11. Wolfram, S.: A New Kind of Science. Wolfram Media (2002)
12. Byrski, A., Kisiel-Dorohinicki, M.: Agent-Based Model and Computing Environ-

ment Facilitating the Development of Distributed Computational Intelligence Sys-
tems. In: Allen, G., Nabrzyski, J., Seidel, E., van Albada, G.D., Dongarra, J.,
Sloot, P.M.A. (eds.) ICCS 2009, Part II. LNCS, vol. 5545, pp. 865–874. Springer,
Heidelberg (2009)

13. Lutz, M.: Programming Python. O’Reilly Media (2011)
14. Michalewicz, Z.: Genetic Algorithms Plus Data Structures Equals Evolution Pro-

grams. Springer-Verlag New York, Inc., Secaucus (1994)
15. Morrison, R.W., De Jong, K.A.: Measurement of Population Diversity. In: Collet,

P., Fonlupt, C., Hao, J.-K., Lutton, E., Schoenauer, M. (eds.) EA 2001. LNCS,
vol. 2310, pp. 31–41. Springer, Heidelberg (2002)

16. Digalakis, J., Margaritis, K.: An experimental study of benchmarking functions for
evolutionary algorithms. Int. J. of Computer Mathemathics 79(4), 403–416 (2002)

17. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation 1(1), 67–82 (1997)

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 142–151, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Domestic Load Scheduling Using Genetic Algorithms

Ana Soares1, Álvaro Gomes1,2, Carlos Henggeler Antunes1,2, and Hugo Cardoso2

1 INESC Coimbra, Rua Antero de Quental 199, 3000-033 Coimbra, Portugal
argsoares@gmail.com

2 Dept. of Electrical Engineering and Computers, University of Coimbra, Coimbra, Portugal
{agomes,ch}@deec.uc.pt, hugodcardoso@gmail.com

Abstract. An approach using a genetic algorithm to optimize the scheduling of
domestic electric loads, according to technical and user-defined constraints and
input signals, is presented and illustrative results are shown. The aim is mini-
mizing the end-user’s electricity bill according to his/her preferences, while ac-
counting for the quality of the energy services provided. The constraints include
the contracted power level, end-users’ preferences concerning the admissible
and/or preferable time periods for operation of each load, and the amount of
available usable power in each period of time to account for variations in the
(non-manageable) base load. The load scheduling is done for the next 36 hours
assuming that a dynamic pricing structure is known in advance. The results ob-
tained present a noticeable decrease of the electricity bill when compared to a
reference case in which there is no automated scheduling.

Keywords: Domestic Load Scheduling, Genetic Algorithms, Electric Loads,
Automated Energy Management.

1 Introduction

The evolution of power systems towards smart grids will expectedly foster the im-
plementation of dynamic tariffs requiring a more proactive attitude from the typical
domestic end-user to optimize electricity use in face of dynamic variables such as
electricity prices, weather conditions, comfort requirements, and local generation
availability. However, this is a very challenging task and the effort required to reach
an optimal solution is excessive for most users, namely for the elderly or those work-
ing outside home, blocking them from effectively achieving benefits from those tariff
structures. In that context, some form of automated decision support system to
achieve optimal solutions is needed. Therefore, adequate algorithms able to manage
different loads without depreciating the quality of the energy services provided must
be developed.

The main objective of scheduling domestic loads is helping users to take advantage
of different alternatives of using energy services and reducing the electricity bill. This
can be done by implementing some demand response actions: shifting appliances to
time periods when the kWh price is lower; interrupting the working cycles for short
periods of time and/or changing the parameterization of some loads, namely tempera-
ture parameters in heating, ventilation and cooling systems (HVAC) [1–4, 13–15].

 Domestic Load Scheduling Using Genetic Algorithms 143

Considering a smart grid scenario and the existence of dynamic tariffs, some stu-
dies focus on domestic load control. This control mainly uses scheduling optimization
algorithms to allocate loads in a certain time period [1, 2, 5–9, 11–13]. The study
presented in [1] depicts an approach to calculate the optimal starting point for differ-
ent appliances while assuring that the load limitation curve is not exceeded. The
electrical load management problem is modeled as a nonlinear integer programming
problem and the methodology used to minimize energy costs to the consumer and the
violation of the load limitation curve is a customized evolutionary algorithm with
local search. This method is used to implement demand response actions over electric
vehicles, washing machines, dryers and dishwashers. In [11], an optimization frame-
work is developed to achieve a desired trade-off between the minimization of the
electricity bill and the waiting time for the operation of each appliance. The metho-
dology chosen considers almost real-time prices and price forecasts to calculate the
optimal scheduling operation and energy consumption for each appliance. Another
methodology designed to optimize the use of several energy services from the end-
users’ perspective is presented in [13], which uses Particle Swarm Optimization to
maximize the net benefits resulting from the total energy service benefits minus the
costs of energy provision.

The main difference between our work and those mentioned above is the incorpo-
ration of end-users’ preferences regarding admissible and preferable time slots for
load operation. Moreover, it considers both load demand maximum value, which
should be as far as possible from contracted power values, and the amount of availa-
ble usable energy in each period of time, which should be as high as possible.

This section provided the interest and motivation for the study. Section 2 focuses
on the description of the problem while in Section 3 the case study and the simulation
results are presented. Conclusions and future work are outlined in Section 4.

2 Problem Description

The aim of this study is to develop a model and an algorithm to minimize the electric-
ity bill for a domestic end-user taking into account his/her preferences, electricity
prices and available contracted power. This is achieved by implementing control ac-
tions over manageable loads, namely shiftable loads. Shiftable loads can have the
working cycle delayed or anticipated while respecting end-users’ preferences [16].
Loads like cloth washing machines, cloth dryers, dishwashers, electric vehicles and
electric water heaters may be included in this category. It is still considered that a
base load exists that is not available to be changed by the scheduling algorithm, such
as ovens, entertainment systems, lighting, etc. This assumption is made since the end-
user is not willing to give up the energy services provided by those loads.

The complexity of this problem arises from the combination of the allocation of
shiftable loads over time, the kWh price variation, the existence of more than one
level for the contracted power, the need to assure the continuity of the energy services
provided and the end-users’ preferences concerning the time slots. Time slots are the
periods of the day in which the end-user indicates, by assigning different degrees of
preference, the energy service should be provided. When the same energy service can

144 A. Soares et al.

be provided in different time slots, each one of them may be characterized by differ-
ent preference levels. Time slot preferences should be respected as closely as possible
to reduce the discomfort caused to the end-users and thus maintain a high rate of ac-
ceptance of the proposed schedule.

A genetic algorithm (GA) is used to perform the search of the solution space cop-
ing with the combinatorial nature of the problem. Genetic algorithms are based on the
mechanisms of natural genetics and selection and are used to perform an efficient and
effective search to find the global optimal solution to a single-objective optimization
problem or make the characterization of the non-dominated solution set to a multi-
objective optimization problem. The solutions (individuals) population is dealt with
three main operators to produce new offspring for the next generation. These opera-
tors are selection, crossover, and mutation. In each generation the population is eva-
luated to compute the fitness of every member and a group of individuals is selected
based on their performance. Therefore, some of these individuals may undergo repro-
duction by means of the crossover operator and possibly mutate to give rise to a new
generation (potential solutions) [10]. The process repeats until a convergence criterion
is satisfied.

In our problem, a solution is encoded by a string of integers, each position denoting
the minute in which each load begins its working cycle. Solutions are therefore
represented by a vector of integers , , … , where 0, … , , with 2160, is the minute in which load 1, … , starts its working cycle. is
the number of loads to be scheduled. The working cycle to be scheduled within the
planning period is known for each load (see section 3).

A crossover operator based on a random mask was implemented combining the
features of the two parents, selected through a ternary tournament, to form two new
children by swapping their chromosome segments. The crossover operator is respon-
sible for the information exchange between potential solutions by switching the initial
instant of one or more operation cycles between different loads (Fig. 1). The mutation
operator may introduce some extra variability into the population by implementing
small displacements in the starting minute of the working cycles of loads. In this case,
the mutation operator changes the initial instant of a given load (gene) within a given
range [-δ,+δ], in which δ is a deviation bound, in minutes. (Fig. 2).

Fig. 1. Example of crossover considering 4 loads

 Domestic Load Scheduling Using Genetic Algorithms 145

Fig. 2. Example of mutation of the two children in Fig. 1

The objective function is the overall cost to be minimized, which is the sum of the
following terms: cost of the energy consumed by the loads being managed, (mone-
tized) cost of the penalties associated with the end-users’ preferences concerning the
time slots for the operation of each load, (monetized) cost of the penalty associated
with the closeness of the actual peak power with respect to the contracted power (as a
proxy for the possibility of interruption of the energy services provided if there is an
unexpected variation of the base load, which is not being controlled), and the (mone-
tized) cost associated with the available energy in each time slot (the penalty increases
if the energy available decreases).

The penalties associated with the end-users preferences are incorporated into the
objective function since there is a cost inherent to the time slots: the cost is zero if the
load is operating in the preferred time slot, the cost may be extremely high in those
periods of time where the end-user does not allow a certain working cycle to be allo-
cated (thus turning this preference into a hard constraint). Moderate, increasing or
decreasing costs may also be assigned to the time slots, thus turning these preferences
into soft constraints, as it will be presented in section 3.

In order to better deal with possible unexpected variations of the base load, load
schedules presenting higher peak power values and lower available energy in the time
slots are penalized. These penalties are also monetized and encompassed in the objec-
tive function in order to keep the power peaks as far as possible from the contracted
power and the energy available in each time slot as high as possible (lower demand
patterns) (Fig. 3 and Fig. 4). Therefore, for each instant in the time slot where the
working cycle may be allocated, the penalty will be higher when the difference be-
tween the contracted power and the power peak (∆P) is smaller. Additionally, the
available energy is also considered in the objective function: if the amount of energy
still available to be consumed in the time slot is high, taken into account the con-
tracted power level, then the penalty is small. If the amount of energy available for
time slot decreases, the penalty will increase.

In this approach the contracted power is considered as a hard constraint and thus
cannot be violated to prevent the occurrence of interruption of the energy services.

Since the performance of genetic algorithms is highly dependent on the parameters
chosen, the identification and selection of a suitable value or range of values for every
parameter is a crucial step. Those values were tuned through experimentation and are
presented in Table 1. The value considered for the mutation operator is high in order
to guarantee the construction of good diversified solutions [10]. An elitist strategy
was considered to preserve in the population a number of individuals with the best
fitness. The elite set is composed by 10 individuals. These individuals replace new
ones generated with the worst fitness.

146 A. Soares et al.

Fig. 3. Base load variation and its implication on the total power required, which would lead to
the interruption of the energy services provided (an infeasible solution in our approach)

Fig. 4. Constraints included in the model to prevent the interruption of the energy services
provided when facing unexpected base load variation

Table 1. Some characteristics of the genetic algorithm

Parameters

General
Size of population 200
Number of generations 100

Selection Number of participants in the tournament 3
Crossover Crossover Rate 0.5
Mutation Mutation rate 0.8

Deviation bound (min.) 5

 Domestic Load Scheduling Using Genetic Algorithms 147

3 Case Study and Simulation Results

The case study considers an individual house and the loads to be scheduled are cloth
washing machines (CWM – load 1 and load 3), dishwasher (DW – load 2), cloth dryer
(CD –load 4), electric water heater (EWH – load 5) and electric vehicle (EV – load 6)
(Fig. 5). For these five loads, the type of control applied consists in shifting the work-
ing cycles over time. In the case of the electric water heater, due to the dissociation
that may exist between the energy service provided and the respective electricity con-
sumption, the possible increase of heat losses associated with the displacement of the
working cycle was considered by increasing the period during which the EWH is on.
It was considered that the EV can be charged at power levels multiple of 1 kW up to 6
kW. In this case study the amount of energy to be provided to the EV is 20 kWh.

Real working cycles and a small time step - 1 minute - have been considered to
make this model as close as possible to reality. This time resolution ensures that any
power peaks that could be too close to the contracted power or even overcome it caus-
ing the interruption of the energy services provided are taken into account.

Fig. 5. Working cycles of the manageable loads

The contracted power is considered as a hard constraint and has two levels: 3.45 kW
between 4 am and 8 pm and 6.9 kW between 8 pm and 4 am (Fig. 6). The tariff struc-
ture considered is also presented in Fig. 6. The end-user’s preferences concerning the
time slots for each manageable load are displayed in Fig. 7. These preferences can be
seen as hard or soft constraints depending on the situation. For example, the end-user
identifies two possible time slots for the operation of load 1 (CWM), even though with
different preferences associated with them. In this case and for this load, the end-user

148 A. Soares et al.

prefers the first time slot (no penalty is associated with it), but he/she is also willing to
accept the functioning of the CWM in the second time slot (but in this case with a high
penalty stating that he/she accepts the operation in this time slot but he/she wants to
disfavor it). Therefore this is a soft constraint modeling the higher or lower willingness
of the user to accept the working cycle to be scheduled in specified time slots. The end-
user may also specify the periods in which the loads are not allowed to operate, which
may happen due to several reasons, and therefore this is modeled as a hard constraint.
Several other preference structures and levels are also shown in Fig. 7 including time
increasing or decreasing preferences to schedule load operation. The penalty coeffi-
cients, which may be adjusted to take into account different contexts and/or user pro-
files, are monetized to be included in the overall cost objective function.

Fig. 6. Tariff structure and contracted power

Fig. 7. End-user time slot preferences for each load

The problem of load scheduling consists in allocating the cycles of each load in the
most adequate time slot, minimizing the overall cost while respecting the constraints
associated with each appliance. Since the load scheduling is done based on demand
forecasts for the next day and a half (36 hours = 2160 minutes), it is not possible to

 Domestic Load Scheduling Using Genetic Algorithms 149

accurately predict the uncontrollable demand. Thus, in order to avoid exceeding the
contracted power, solutions presenting lower demand (higher available power) in the
periods of time in which loads were allocated are preferred. The use of the penalty
allows benefiting such solutions, thus contributing to reduce the possibility of occur-
rence of any interruption of the energy services when unexpected variations in the
base load happen (Fig. 3 and Fig. 4).

When analyzing the solutions obtained for this load scheduling problem for 30
runs, the minimum cost achieved is 2.521 monetary units (m.u.) while the worst min-
imum value is 2.523 m.u.. The average of the best solutions for the 30 runs is 2.522
m.u.. The best solutions for the 30 runs are displayed in Fig. 8 converging to an op-
timal solution. For the preferences and constraints presented in Fig. 6 and Fig. 7 it can
be seen that the algorithm converges well before reaching 100 generations. The sche-
duling obtained for the best solution computed is displayed in Fig. 9.

Fig. 8. Best cost achieved for the objective function in each generation of the 30 runs

Up to 40% of savings have been achieved when comparing the results obtained
by using the proposed approach with a reference case. In the reference case, loads
are operated in the end-users’ preferred time slot (not penalized time slots in Fig. 6),
only guaranteeing that the contracted power is not exceeded. In that situation the av-
erage minimum cost was 4.218 m.u.. The savings achieved may still increase in other
tariff structures, especially if there is a higher variation between the kWh prices along
the day.

150 A. Soares et al.

Fig. 9. Best solution

4 Conclusion and Future Work

An approach based on GA has been presented, which is aimed at minimizing the elec-
tricity bill by scheduling end-use loads while assuming a real-time pricing structure
and considering several end-user’ preferences regarding the energy service provided
by loads. Additionally, the use of penalties to make less attractive solutions presenting
lower levels of available energy (higher demand levels) in the time slots together with
the inclusion of end-users’ preferences attempts to guarantee end-users’ satisfaction.
Savings for a real case study were computed and compared to a reference case where
there is no automated scheduling.

These algorithms may be implemented in energy management systems, such as the
one proposed in [8], to coordinate the different energy resources within a house. To
simplify the process of inserting information the system must incorporate an intuitive
interface so that the end-user may easily select which loads should be scheduled and
under which time slots preferences. For this purpose, a-priori defined profiles may be
available to facilitate the users’ tasks.

Future work will include other energy resources (for instance, local micro-
generation and stationary storage systems), more automated demand response actions
(e.g., temperature reparameterization and short-period interruptions for other loads)
and different tariff schemes. The genetic algorithm may be improved regarding adap-
tive parameters and dynamic environments. Models taking explicitly into considera-
tion the multiple objective characteristic of the problem are being developed. These
models include the minimization of energy and power costs and the maximization of
the quality of the energy services provided, namely end-user’s comfort as captured by
his/her preferences expression.

 Domestic Load Scheduling Using Genetic Algorithms 151

Acknowledgements. This work has been framed under the Energy for Sustainability
Initiative of the University of Coimbra and supported by Energy and Mobility for
Sustainable Regions Project CENTRO-07-0224-FEDER-002004 and Fundação para a
Ciência e a Tecnologia (FCT) under grant SFRH/BD/88127/2012, and project grants
MIT/SET/0018/2009 and PEst-C/EEI/UI0308/2011.

References

1. Allerding, F., Premm, M., Shukla, P.K., Schmeck, H.: Electrical Load Management in
Smart Homes Using Evolutionary Algorithms. In: Hao, J.-K., Middendorf, M. (eds.) Evo-
COP 2012. LNCS, vol. 7245, pp. 99–110. Springer, Heidelberg (2012)

2. Du, P., Lu, N.: Appliance Commitment for Household Load Scheduling. IEEE Transac-
tions on Smart Grid 2(2), 411–419 (2011)

3. Gomes, A., et al.: A Multiple Objective Evolutionary Approach for the Design and Selec-
tion of Load Control Strategies. IEEE Transactions on Power Systems 19(2), 1173–1180
(2004)

4. Gudi, N., et al.: Demand response simulation implementing heuristic optimization for
home energy management. In: North American Power Symposium 2010, pp. 1–6. IEEE
(2010)

5. He, Y., et al.: Optimal Scheduling for Charging and Discharging of Electric Vehicles.
IEEE Transactions on Smart Grid 3(3), 1095–1105 (2012)

6. Koutitas, G.: Control of Flexible Smart Devices in the Smart Grid. IEEE Transactions on
Smart Grid 3(3), 1333–1343 (2012)

7. Kwag, H.-G., Kim, J.-O.: Optimal combined scheduling of generation and demand re-
sponse with demand resource constraints. Applied Energy 96, 161–170 (2012)

8. Livengood, D., Larson, R.: The Energy Box: Locally Automated Optimal Control of Resi-
dential Electricity Usage. Service Science 1(1), 1–16 (2009)

9. Lu, N.: An Evaluation of the HVAC Load Potential for Providing Load Balancing Service.
IEEE Transactions on Smart Grid 3(3), 1263–1270 (2012)

10. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer
(1992)

11. Mohsenian-Rad, A.-H., Leon-Garcia, A.: Optimal Residential Load Control With Price
Prediction in Real-Time Electricity Pricing Environments. IEEE Transactions on Smart
Grid 1(2), 120–133 (2010)

12. Molina, A., et al.: Implementation and assessment of physically based electrical load mod-
els: application to direct load control residential programmes. IEE Proceedings - Genera-
tion, Transmission and Distribution 150(1), 61 (2003)

13. Pedrasa, M.A.A., et al.: Coordinated Scheduling of Residential Distributed Energy Re-
sources to Optimize Smart Home Energy Services. IEEE Transactions on Smart Grid 1(2),
134–143 (2010)

14. Pedrasa, M.A.A., et al.: Scheduling of Demand Side Resources Using Binary Particle
Swarm Optimization. IEEE Transactions on Power Systems 24(3), 1173–1181 (2009)

15. Roe, C., et al.: Simulated demand response of a residential energy management system. In:
IEEE 2011 EnergyTech, pp. 1–6. IEEE (2011)

16. Soares, A., et al.: Domestic load characterization for demand-responsive energy manage-
ment systems. In: 2012 IEEE International Symposium on Sustainable Systems and Tech-
nology (ISSST), pp. 1–6. IEEE, Boston (2012)

Evolutionary Algorithm Based Control Policies

for Flexible Optimal Power Flow over Time

Stephan Hutterer1, Michael Affenzeller1,2, and Franz Auinger1

1 Upper Austria University of Applied Sciences
{stephan.hutterer,franz.auinger}@fh-wels.at

2 Josef Ressel Center Heureka!
michael.affenzeller@heuristiclab.com

Abstract. General optimal power flow (OPF) is an important problem
in the operation of electric power grids. Solution methods to the OPF
have been studied extensively that mainly solve steady-state situations,
ignoring uncertainties of state variables as well as their near-future. Thus,
in a dynamic and uncertain power system, where the demand as well as
the supply-side show volatile behavior, optimization methods are needed
that provide solutions very quickly, eliminating issues on convergence
speed or robustness of the optimization. This paper introduces a policy-
based approach where optimal control policies are learned offline for a
given power grid based on evolutionary computation, that later provide
quick and accurate control actions in volatile situations. With such an
approach, it’s no more necessary to solve the OPF in each new situation
by applying a certain optimization procedure, but the policies provide
(near-) optimal actions very quickly, satisfying all constraints in a reliable
and robust way. Thus, a method is available for flexible and optimized
power grid operation over time. This will be essential for meeting the
claims for the future of smart grids.

1 Introduction

Optimization plays an essential role in power grid operation, offering a wide range
of different practical applications for example in power flow studies, maintenance
scheduling or infrastructure planning. Here, numerous findings in system engi-
neering and analysis as well as actual achievements in computer sciences enabled
an established usage of optimization in todays operation centers. Starting its ap-
plication in the early 1970s, the general class of OPF aims at finding an optimal
configuration of controllable units (generator real power output, transformer tap
setting, FACTS devices, etc.) within a given power system for minimizing some
cost function with respect to operational constraints, where different extensions
exist in both literature and practice [15] [9]. Based on these essential formu-
lations, further optimization applications have been identified within the last
decades such as infrastructure planning issues or computation of optimal main-
tenance schedules of supply, transmission or distribution equipment [9], that also
mostly base on the general optimal power flow formulation.

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 152–161, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Evolutionary Algorithm Based Control Policies 153

However, all general OPF-approaches principally aim at finding a solution
for a steady-state situation (defined by the load and supply configuration at a
specific time step), ignoring uncertainties of various state variables as well as
their near-future. Thus, in a dynamic and uncertain power system, where the
demand as well as the supply-side show volatile behavior, optimization meth-
ods are needed that provide solutions very quickly, eliminating problems with
convergence speed or robustness of the optimization. Therefore, a policy-based
approach is introduced within this paper, where optimal control-policies are
learned offline for a given power grid based on evolutionary computation, that
later provide quick and accurate control actions in volatile situations. The va-
lidity of this approach will be demonstrated by applying it to the well known
benchmark problem; the IEEE 30-bus test system. Comparisons are made be-
tween the proposed approach and the exact OPF solution by comparing the
achievable qualities of the flexible policie’s actions with the exact OPF solution
in examplarily fixed situations that build the test set for analysis.

The rest of the paper is organized as follows: the next section introduces
the general aim and a literature review on non-stationary optimization over
time. Section 3 proposes the evolution of flexible policies that are built upon so
called “atomic rules”. Since the formulation of those “atomic rules” is crucial
to the success of the approach, they will be discussed in section 4. Section 5
then describes the experimental evaluation yielding to analysis that show the
approach’s validity. Finally, section 6 rounds up the paper with some concluding
remarks as well as an outlook to further investigations.

2 Non-stationary Optimization

Many task in the optimization of power grids are naturally dynamic and non-
stationary. Consider the general OPF as stated earlier, the aim is to find the
optimal configuration of all controllable units for satisfying a given load situa-
tion, using steady-state representation of the power grid. Thus, the solution of
this problem addresses exactly one stationary state J(t), disregarding possible
states in the near future or eventual uncertain conditions in the system. Con-
sidering the system one time step later (J(t+ 1)) due to changing conditions of
weather, customer-behavior or any other influence, the power flow in the system
would change, hence, requiring a new solution to the optimal power flow problem
further necessitated by the non-linear behavior of an electric power distribution
system. Such a new computation would require a robust and fast-converging
solution method, that guarantees quick support with a new optimal solution, in-
dependent of system complexity and starting point. This cannot be guaranteed
by traditional OPF methods [12]. Thus, electric power systems fundamentally
exhibit situations where non-stationary optimization techniques (ones that op-
timize over time), are required.

154 S. Hutterer, M. Affenzeller, and F. Auinger

2.1 Optimization over Time in Power Grid Engineering

Principally, optimal solutions can be computed in a stationary way for future
time steps t + K, assuming that the near future can be predicted sufficiently.
In such a case, K solutions can be obtained beforehand, considering variations
of the system in the near-term interval, but expecting them to be deterministic
and ignoring their potential stochastic nature.

However, in a dynamic and volatile system such as an electric power grid, it is
more appropriate to make decisions as they come up. Thus, reacting to new order
situations very quickly without computing a completely new solution at each time
step t. This can be seen as the general aim of so called optimization over time.

Werbos [14] developed a class of methods to perform this kind of optimiza-
tion in any engineering application, stating Aproximate Dynamic Programming
(ADP) as a flexible and scalable technology being suitable for future smart grid
issues as well. While classical Dynamic Programming is an exact method being
limited by the so called “curse of dimensionality”, ADP comes up with concepts
of finding - as the name already says - sufficiently accurate approximate solutions
to control problems [13]. Extending ADP, Werbos proposed a family of Adaptive
Critic Designs (ACD), that combine ADP with reinforcement learing techniques
for finding an optimal series of control actions that must be taken sequentially,
not knowing their effects until the end of the sequence. While the standard ACD
combines a set of artifical neural networks (ANN) within a neurocontroller for
approximating the Hamilton-Jacobi-Bellman equation associated with optimal
control theory, further concepts like Dual Heuristic Programming, Globalized
Dual Heuristic Programming and Action-Dependent Heuristic Programming ex-
tend this formulation and build the family of ACDs.

Several researchers already picked up this idea of ACD, applying these con-
cepts to electric power grid problems. Venayagamoorthy adapted it for building
an automated voltage regulator of a generator system in [11] or even for oper-
ating a 12-bus power grid with an ACD-enabled Dynamic Stochastic Optimal
Power Flow (DSOPF) controller in [7]. The necessity of solving such a DSOPF
in future power grid operation has been substantiated by Momoh [8] [10] who
proposed its generality and suitability to a large number of problems.

However all approaches related to ACD come from optimal control theory
and thus try to approximate the Hamilton-Jacobi-Bellman equation with com-
putational intelligence techniques. Building an alternative approach for opti-
mization over time, the evolution of flexible control policies using metaheuristic
algorithms as demonstrated within this work shows validity for electric power
engineering problems as demonstrated further on, that does not necessitate a se-
quential decision process. Additionally, policies of less-complex and interpretable
mathematical structure are evolved, rather than neurocontrollers composed of
several ANNs and their interconnections as in ACDs.

2.2 Evolution of Flexible Control Policies

When optimizing power flows over time in a given distribution system, the aim
is to find actions u(t) of controllable units that lead to optimal behavior over a

Evolutionary Algorithm Based Control Policies 155

given time interval [t, (t +K)]. In such a case, if all possible information of the
system in near-future states J(t+1)...J(t+K) could be predicted accurately, it
would be possible to compute solutions (actions) u(t+ 1)...u(t+K) beforehand
that are optimal to each state, enabling optimal power grid operation in the
near future. Here, steady-state optimization would be appropriate for finding an
accurate solution to each state. But, what if the system changes at time t + k
with k < K? This event would cause the necessity of computing a completely
new solution, making the usage of such a predictive steady-state optimization
useless in dynamic systems. Here, it would be more appropriate to not compute
all actions u(t+1)...u(t+K) beforehand, but to make decisions online in a robust
and quick way. Therefore, flexible policies can be used that are trained offline but
lead to accurate decisions that react to new situations quickly, avoiding the need
of re-optimization in each event while being able of considering full volatility
and uncertainty of the system.

Figure 1 illustrates these two variants, namely the predictive computation of
steady-state solutions in the upper part of the figure, versus the offline-training
of a flexible policy, that takes system states at runtime and directly computes
accurate actions online. While the first approach computes fixed solutions be-
forehand, that are unable to react to dynamic and uncertain conditions, the
flexible policy-based approach keeps full flexibility during operation.

Fig. 1. Principles of Policy-Based Control

3 Policy Synthesis

Considering the steady-state solution to the general optimal power flow, the vector
u typically consists of generator real power outputs (except the slack bus), genera-
tor voltages (including slack bus), shuntVARcompensators1 aswell as transformer

1 Shunt-connected static reactive power (VAR) compensators.

156 S. Hutterer, M. Affenzeller, and F. Auinger

tap settings. Hence, u = [P2...PNG, V1...VNG, Q1...QNVAR, T1...TNT], with num-
ber of generator busesNG, number of VAR compensatorsNV AR and the number
of switchable transformersNT .

When using flexible policies, each variable (P,V,Q,T) is represented by a pol-
icy. This policy is a function of the system’s global state J(t) as well as the
unit’s local conditions and outputs the unit’s actions u(t) in order to achieve the
optimal power flow in the grid. This policy is principally the same for all con-
trollable units of one variable (like for all shunt VAR compensators), but using
information about the unit’s specific situation, it leads to individual but globally
optimal actions throughout the grid. Thus, the used information is crucial for
building the policies since they have to represent the systems state sufficiently.

3.1 Construction of Atomic Rules

Tentatively, we assume a fixed mathematical structure f(x) that represents the
policy, where the vector x contains all state variables. Further, we assume that
it is not necessary for the policy to consider the whole set of state variables,
but to only use metrics that are important for power flow decisions. Thus, for
these metrics so called “atomic rules” are introduced similar to [5], that gather
necessary information from the system’s state, supposing that this information
is sufficient for achieving valid and accurate actions. All atomic rules are shown
in Table 1.

This set of rules is considered to be necessary as well as sufficient in order
to derive accurate actions for power flow control; the prove will be performed
experimentally later. Here, the third column indicates which rules are necessary
for learning a policy of a given variable. For example, the policy for variable P of a
generator bus is a function f(LLF,NLF,GLF,MARF,MERF,LCCF,QCCF).
The application of atomic rules instead of using all state variables x is twofold:
First, the cardinality of x is much smaller than the number of rules which is
advantageous to the optimization of the rules. Second, the rules are completely
independent of the grid’s topology, making this approach applicable to any dis-
tribution or transmission grid model in a generic way.

Having the set of atomic rules r, the policy f(r) has to be computed in
some way where a fixed mathematical structure is assumed which gets optimized
by evolutionary algorithms. Since rules are normalized (by division with the
maximum value in each rule), they can be integrated in any given mathematical
structure.

3.2 Policy Synthesis and Optimization

In this work, two fixed mathematical structures are used for combining atomic
rules and thus synthesizing the final policy out of them: a linear combination as
well as a polynomial combination (for modeling eventual nonlinearities between
rules). Using the linear combination of rules according to Equation 1 (variable P
is shown as example), the set of weights has to be optimized when learning the
policy for P , with NR being the cardinality of rules r, i indicating the index of

Evolutionary Algorithm Based Control Policies 157

Table 1. Atomic Rules

Rule Explanation Variable

LLF Local Load Factor: active load at bus divided by maximum active
power output at bus

P

NLF Neighborhood Load Factor: sum of active load at directly con-
nected buses and their neighbors divided by maximum active
power output at those buses

P,V,Q,T

GLF Global Load Factor: sum of total active load in grid divided by
sum of maximum active power generation

P,V,Q,T

MARF Max Rating Factor: maximum MVAR rating of connected
branches divided by maximum MVAR rating of all branches

P,Q

MERF Mean Rating Factor: mean MVAR rating of connected branches
divided by maximum MVAR rating of all branches

P,Q

LCCF Linear Cost Coefficient: linear cost coefficient of generator divided
by maximum linear cost coefficient of all generators

P

QCCF Quadratic Cost Coefficient: quadratic cost coefficient of generator
divided by maximum quadratic cost coefficient of all generators

P

NRLF Neighboring Reactive Load Factor: sum of reactive load at directly
connected buses and their neighbors divided by maximum reactive
power output at those buses

V,Q,T

GRLF Global Reactive Load Factor: sum of total reactive load in grid
divided by sum of maximum reactive power output

V,Q,T

the controllable unit. c additionally represents a constant that is evolved during
the optimization process as well. Using the second representation as shown in
Equation 2, policies are combined using polynomials of degree 2, thus, for each
rule two weights (nr, 1 and nr, 2) are learned.

Pi =

∑NR
nr=1 rnr,i ∗ wnr

NR
+ c (1)

Pi =

∑NR
nr=1 rnr,i ∗ wnr,1 + r2nr,i ∗ wnr,2

NR
+ c (2)

Assuming the following policies to be optimized for all variables: P (wLLF,P ,
wNLF,P , wGLF,P , wMARF,P , wMERF,P , wLCCF,P , wQCCF,P , cP), V (wNLF,V ,
wGLF,V , wNRLF,V , wGRLF,V , cV), Q(wNLF,Q, wGLF,Q, wMARF,Q, wMERF,Q,
wNRLF,Q, wGRLF,Q, cQ) and T (wNLF,T , wGLF,T , wNRLF,T , wGRLF,T , cT), 21
real-valued weights (w) and 4 constants (c) need to be optimized, yielding 25
control variables (46 for the polynomial synthesis). In order to maintain bounding
constraints for the variables P, V, Q and T, the output of the respective policy is
multiplied by the variable’s maximum value while guaranteeing that this value
is not exceeded. Hence, policy optimization can be seen as regression problem.

158 S. Hutterer, M. Affenzeller, and F. Auinger

3.3 Learning: Evolutionary Simulation Optimization

As already indicated in Figure 1, the learning of the policy is done offline by
evolutionary optimization of the control variables. Since this optimization is per-
formed within an uncertain system, namely a power grid dealing with stochastic
and volatile load situations, a simulation model is chosen as appropriate system
representation. This kind of simulation optimization has been studied exten-
sively in [5] [6] [4] and enables the full integration of uncertain system behaviour
into the optimization procedure. Thus, a solution candidate is represented by
a real-valued vector, which is evaluated through simulation for expressing its
fitness value. Figure 2 describes the decomposition of the real-valued solution
vector into single policies.

Fig. 2. Decomposition of the Solution Into Policies

4 Experimental Evaluation

In order to show the validity of the policy-based OPF approach as well as for
fostering the reader’s understanding of this method, it shall be demonstrated
that it can solve the the general OPF for the IEEE 30-bus test system2 [2].
This model consists of 30 buses and 41 branches, with the controllable units
of 6 generator (PV) buses (including 1 slack bus) with variables P and V , 4
transformer tap changers with variable T and 9 shunt VAR compensators with
variable Q. Solving the steady-state OPF, the solution vector u therefore has
24 variables. The formulation of the general OPF with all its constraints can be
taken from the appropriate literature [15] [9] and would exceed the scope of this
paper.

4.1 Training: Learning Optimal Policies

For modeling the optimal power flow control in a dynamic and uncertain envi-
ronment based on this testcase, the power grid is simulated using Matpower3

along a time-horizon of K = 24 hours, where the load changes over time accord-
ing to a profile, but is additionally randomized in order to simulate real-world
uncertain conditions. Within this simulation, the policies are trained such that
they lead to optimal power flows within each possible simulated system state.
For guaranteeing this, each solution is evaluated within 30 simulated power grid
states that are spread along the time horizon in a probabilistic manner.

2 http://www.ee.washington.edu/research/pstca/, Retrieved: 25.10.2012.
3 http://www.pserc.cornell.edu/matpower/ , Retrieved 25.10.2012.

http://www.ee.washington.edu/research/pstca/
http://www.pserc.cornell.edu/matpower/

Evolutionary Algorithm Based Control Policies 159

Fig. 3. Results: Exact Steady-State OPF vs. Policy Optimization over Time

As optimization algorithms, Evolution Strategies according to [3] are applied,
since they are proven to perform well in real-valued optimization, also in sim-
ulation optimization for power grids [5] [6]. For the studies within this paper,
finally (10+40)-ES has been proven to be successful, with discrete crossover and
self adaptive manipulation described in [3]. This setting has been applied for
all analysis herein, where the algorithm terminates after 3000 generations. Fur-
ther information can be obtained from the documentation of the HeuristicLab 4

software [1], which is the core framework for our investigations.

4.2 Testing: Evaluating the Learned Policies

In order to evaluate the validity of the learned flexible policies on a separate
test set, ten discrete system states spread over the day are expressed from the
simulation. For these states, the exact steady-state solution to the OPF is com-
puted with primal dual interior point method, implemented in MatPower. This
solution is then compared to the solution that the policies would lead to in this
state, shown in Figure 3. In this diagram, the fitness of the exact solution (grey
dottel horizontal lines) is plotted with respect to the fitness of the best found
policy’s output (black plus-signs), where the relative difference is indicated for
each discrete state. On the right-hand ordinate, the electric load of the system is
shown along the day, represented by the dotted line. Since uncertainties are mod-
eled in the simulation, this line only indicates the mean estimated load profile,

4 HeuristicLab, a paradigm-independent and extensible environment for heuristic op-
timization, http://dev.heuristiclab.com/

http://dev.heuristiclab.com/

160 S. Hutterer, M. Affenzeller, and F. Auinger

which is randomized in each sampled state. In order to prove the approach on a
volatile system, the variance of the load over the day as well as its uncertainty
is taken to be much higher than in typical real-world scenarios.

For these then test-states, an impressive result can be stated: the outputs of the
flexible policy are competitive with the exact solutions computed separately for
each state, with an average relative difference in fitness of 0.48%. Especially for
two low-load states in the early morning, the policy outputs even perform slightly
better. This may occur because the interior-point method uses a linearized model
of the power grid for optimization, which is only an approximation, while the sim-
ulation optimization of policies uses the actual power flow model.

The results clearly demonstrate the power of this approach, where a flexible
policy is learned offline and avoids any re-optimization during operation of a
volatile and uncertain power grid. These best found policies are based on poly-
nomial synthesis as described above, where the best found policies with linear
synthesis perform in average 1% worse in means of fitness, but nevertheless are
competitive to the exact solutions.

5 Conclusion

A novel method has been introduced that provides a suitable approach for power
flow optimization over time. It eliminates the necessity of computing the exact
steady-state solution to the OPF in each situation of a dynamic and uncertain
system, while intelligent policies deliver accurate actions quickly and robust at
runtime. These policies are learned offline using heuristic simulation optimiza-
tion with Evolution Strategies, which enables full integration of the dynamic
and probabilistic system behaviour into the optimization procedure. Here, the
application to the general OPF has been demonstrated for the IEEE 30-bus
test system for proving its validity, but numerous additional applications lie on
hand like shown in [5], that potentially benefit using the discussed principles. For
example, with the same approach policies could be evolved for intelligent and
autonomous error recovery after system outages, or even policies for optimal
unit commitment in a volatile microgrid, to name just a few. Thus, a generic,
flexible and scalable approach was presented that is capable of representing a
fundamental tool for future smart electric grids.

Acknowledgment. This project was supported by the program Regionale Wet-
tbewerbsfähigkeit OÖ 2010-2013, which is financed by the European Regional
Development Fund and the Government of Upper Austria, as well as the “Clean
Motion Offensive” Project (FFG-Nr.: 829100).

References

1. Affenzeller, M., Wagner, S., Winkler, S., Beham, A.: Genetic Algorithms and
Genetic Programming: Modern Concepts and Practical Applications. CRC Press
(2009)

Evolutionary Algorithm Based Control Policies 161

2. Alsac, O., Stolt, B.: Optimal load flow with steady-state security. IEEE Transac-
tions on Power Apparatus and Systems PAS-93(2), 745–751 (1974)

3. Beyer, H.G., Schwefel, H.P.: Evolution strategies - a comprehensive introduction.
Natural Computing 1 (2002)

4. Fu, M.C.: Feature article: Optimization for simulation: Theory vs. practice. IN-
FORMS Journal on Computing 14, 192–215 (1977)

5. Hutterer, S., Auinger, F., Affenzeller, M.: Evolutionary optimization of multi-agent
control strategies for electric vehicle charging. In: Companion Publication of the
2012 Genetic and Evolutionary Computation Conference (2012)

6. Hutterer, S., Auinger, F., Affenzeller, M.: Metaheuristic optimization of electric
vehicle charging strategies in uncertain environment. In: International Conference
on Probabilistic Methods Applied to Power Systems (2012)

7. Liang, J., Venayagamoorthy, G.K., Harley, R.G.: Wide-area measurement based
dynamic stochastic optimal power flow control for smart grids with high variability
and uncertainty. IEEE Transactions on Smart Grid 3, 59–69 (2012)

8. Momoh, J.A.: Toward dynamic stochastic optimal power flow. In: Si, J., Barto, A.,
Powell, W., Wunsch, D. (eds.) Handbook of Learning and Approximate Dynamic
Programming, pp. 561–598. Wiley Interscience (2004)

9. Momoh, J.A.: Electric Power System Applications of Optimization, 2nd edn.
CRC/Taylor & Francis (2009)

10. Momoh, J.A., Zivi, E.: Control, optimization, security, and self-healing of bench-
mark power systems. In: Si, J., Barto, A., Powell, W., Wunsch, D. (eds.) Handbook
of Learning and Approximate Dynamic Programming, pp. 599–637. Wiley Inter-
science (2004)

11. Venayagamoorthy, G.K., Harley, G., Wunsch, D.: Applications of approximate dy-
namic programming in power systems control. In: Si, J., Barto, A., Powell, W.,
Wunsch, D. (eds.) Handbook of Learning and Approximate Dynamic Program-
ming, pp. 479–515. Wiley Interscience (2004)

12. Wang, H., Murillo-Sánchez, C.E., Zimmerman, R.D., Thomas, R.J.: On compu-
tational issues of market-based optimal power flow. IEEE Transactions on Power
Systems 22(3), 1185–1193 (2007)

13. Werbos, P.J.: Adp: Goals, opportunities and principles. In: Si, J., Barto, A., Powell,
W., Wunsch, D. (eds.) Handbook of Learning and Approximate Dynamic Program-
ming, pp. 3–44. Wiley Interscience (2004)

14. Werbos, P.J.: Computational intelligence for the smart grid - history, challenges,
and opportunities. IEEE Computational Intelligence Magazine 6(3), 14–21 (2011)

15. Wood, A.J., Wollenberg, B.F.: Power Generation, Operation, and Control, 2nd
edn. Wiley Interscience (1996)

Using a Genetic Algorithm

for the Determination of Power Load Profiles

Frédéric Krüger1, Daniel Wagner2, and Pierre Collet1

1 Université de Strasbourg, ICube Laboratory
2 Électricité de Strasbourg Réseaux

{frederic.kruger,pierre.collet}@unistra.fr,
daniel.wagner@es-groupe.fr

Abstract. Electrical distribution companies struggle to find precise es-
timations of energy demand for their networks. They have at their dis-
posal statistical tools such as power load profiles, which are however
usually not precise enough and do not take into account factors such as
the presence of electrical heating devices or the type of housing of the
end users. In this paper, we show how a genetic algorithm generated with
the EASEA language can be successfully applied to solve a noisy blind
source separation problem and create accurate power load profiles using
real world data provided by ”Électricité de Strasbourg Réseaux”. The
data includes load measurements of 20kV feeders as well as the energy
consumption of more than 400,000 end users. The power load profiles ob-
tained demonstrate considerable improvement in the estimation of load
curves of 20kV feeders.

1 Introduction

Accurate predictions of the energy demand of a small group of low-voltage con-
sumers are very difficult to achieve. Power load profiles have been designed to
address this problem. Load profiles are statistical tools that model the energy
consumption of a certain class of customers for a given half-hour of the day. The
issue with these load profiles is that they are often imprecise as they do not take
into account important external factors such as the end user’s heating devices
or their type of housing (single house or apartment). Blanking out these factors
results in the creation of inaccurate load curves for areas very sensitive to tem-
perature changes (for example areas with a great amount of electrical heating
devices, very sensitive to small temperature variations in the winter time). Pre-
dicting the energy demand accurately remains a challenge electrical distribution
keep struggling with.

The determination of load profiles is a very prolific area of research [1–8]. But
it seems that most of the articles addressing the problem are related to series
analysis of measurements of medium voltage to low voltage (MV-LV) substa-
tions or low voltage (LV) end users. The measurement series are usually ob-
tained through very time consuming and expensive measurement campaigns. A
lot of examples simply apply data mining techniques on individual end user load

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 162–171, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Using a Genetic Algorithm for the Determination of Power Load Profiles 163

curve measurements [1–3]. Sometimes external factors such as the outside tem-
perature are taken into account to study their influence on the shape of the load
profiles [4]. Some studies show how the generation of profiles can be combined
with customer segmentation [5]. Some authors propose a bottom-up approach
combining socio-economic as well as demographic end user information along
with individual household appliance load profiles to determine end user profiles
through simulations [6, 7]. The issue with measurement time series is that as
they are very time consuming and expensive, they are very difficult to acquire
making the creation of new load profiles tedious with the absence of such infor-
mation. Yet, a paper of 2003 [8] demonstrates that it is possible, without any
prior knowledge of the electrical network and without costly measurement series,
to find load profiles. The authors handle the problem as a blind source separation
and apply their method on artificial datasets. In this paper we propose a similar
method to [8] to determine specific power load profiles without measurement
campaigns, only using knowledge from a real world electrical network and an
evolutionary algorithm.

2 General Setup

This section gives information regarding the structure of the electrical network
operated by Électricité de Strasbourg Réseaux (ÉSR), the data available in this
study, as well as the process applied for the creation of the load profiles.

2.1 Available Data

The data accessible during this research was supplied by ÉSR. ÉSR is an energy
distribution company that provides electricity to more than 440,000 low voltage
as well as high voltage end users. ÉSR maintains and operates a network of
about 14,000 km.

Structure of the Electrical Network. The network is structured in different
sub-networks:

1. The high voltage sub-network. This meshed network has a voltage of
63kV. It includes several 63kV/20kV high voltage to medium voltage (HV-
MV) substations. Each substation feeds several hundreds distribution sta-
tions connected through 20kV feeders to the medium voltage network. The
ÉSR high voltage network has about 40 substations.

2. The medium voltage sub-network. This tree-shaped network has a volt-
age of 20kV. It feeds 20kV/400V MV-LV substations connected to the low
voltage network or to high voltage end-users. The ÉSR medium voltage net-
work has about 7000 MV-LV substations.

3. The low voltage sub-network. This tree-shaped network delivers power
to end users. A MV-LV substation (the root of the sub-network) delivers
electricity to about 100 end users in average.

164 F. Krüger, D. Wagner, and P. Collet

Each 20kV feeder is equipped with a measurement device that records its average
load at a 10mn interval. The resulting load curves are stored in a database. ÉSR
also records each end user’s energy consumption through meter readouts over 6
months intervals.

Types of End Users. Load profiles embody the load curve of a category of
end users. The end users have hence to be separated into different groups. In
this study, the end users are separated into 8 classes following specific criteria:

1. Use: domestic or professional
2. Type of heating: with or without electrical heating
3. Type of housing: apartment or house
4. Tariff: single or double rate tariff (offpeak/peak hours)

The classes identified in table 1 were formed through statistical analysis of the
information found in the different databases concerning the end users. Machine
learning techniques were applied to detect the presence of electrical heating
allowing the separation of the end users in 2 groups with/without electrical
heating.

Table 1. Different classes of end users

Use With/Without Type of Tariff Relative
Electrical heating housing amount

Professional With - - 4%

Professional Without - - 10%

Domestic With House - 7%

Domestic Without House Single rate 18%

Domestic Without House Double rate 8%

Domestic With Apartment - 15%

Domestic Without Apartment Single rate 31%

Domestic Without Apartment Double rate 7%

2.2 Methodology

We make the following assumption: the load curve of a single feeder contains
the load curve and hence the profiles of the end users connected to that feeder.
The resulting problematic is very close to a blind signal separation [9]: separate
a set of signals (in our case a set of 8 profiles) from a set of mixed signals
(in our case a set of feeder load curves). We assume that the different profiles
are mutually independent. Using that approach, the electrical network must be
virtually reconstructed and every end user has to be correctly connected to its
HV-MV feeder. This compels us to verify that the topology of the electrical
network used is accurate.

As a matter of fact, the electrical network has a nominal topology that can be
subject to short localized changes as well as long term changes as (for instance, in

Using a Genetic Algorithm for the Determination of Power Load Profiles 165

the case of new constructions). These changes in the network topology necessarily
impact the shape of the load curves. Failures of a feeder’s measuring device can
also lead to errors and irregularities in the load curves. In order to successfully
perform the signal separation we need to make sure that the set of mixed signals
i.e. the feeder load curves are not subject to topology changes of the MV network
or measurement errors.

The verification is achieved by comparing the energyWm (in kWh) distributed
by a feeder d during the period of time t with the energy Wc (in kWh) consumed
by all the end users connected to d. For the time period t we chose a time span of
one month. That time span matches the energy measurement cycles of HV end
users. The energy consumption of the LV end users is calculated by estimating
a monthly energy from their biannual energy readings.

For every month of a year and every feeder, we perform the following com-
parison

Wm = Wc + ε (1)

The value ε can be explained by a lot of factors such as energy loss (Joule’s law),
monthly energy estimation errors (when computing the LV end user’s monthly
energy), measurement device failure, network topology changes, errors in the
databases, etc. . . The factor that influence the most the ε value are network
topology changes. The greater ε for a feeder d, the greater chances are that
the topology used to reconstruct d’s sub-network is imprecise. Keeping only the
load curves of the distribution stations which energy minimizes ε ensures us that
the load curves in the mixed signal set is free from ”excessive” external noise.
Unfortunately, we cannot be too demanding with the quality of the load curves.
By keeping load curves which ε value ranges between -10% and 20%, we manage
to keep between 10% and 15% of the load curves.

To perform the blind signal separation, we chose to use a genetic algorithm.
These metaheuristic optimization algorithms have proven being very efficient in
solving this class of problems [10, 11]. The challenge in the case of our study is
to overcome the noise caused by the load curves with a great ε value, but the
authors of [12] showed that genetic algorithms are more than capable of solving
this kind of noisy problems.

3 Genetic Algorithm

Genetic Algorithms (GA) are population-based optimization algorithms belong-
ing to the larger class of evolutionary algorithms (EA) . They are inspired by
biological evolution and Darwin’s theories of the survival of the fittest individual.

3.1 Basic Genetic Algorithm

A genetic algorithm strives to find the optimal solution to a problem by evolving
a population of potential solutions for a certain amount of iterations (genera-
tions). The basic evolutionary algorithm [13] creates a random population of

166 F. Krüger, D. Wagner, and P. Collet

individuals, evaluates their fitness and starts the evolution process. Individuals
from the initial ”parent” population are selected with a bias towards the best to
create ”children” via crossover and mutation functions that combine the individ-
uals’ genetic material. The fresh children population is then evaluated as well.
Finally another selection operator takes the best from parents and children to
create the population for the next generation. This process is usually repeated
until the maximum number of generations is achieved.

3.2 EASEA

The genetic algorithm implemented to find the load profiles was generated with
EASEA (EAsy Specification of Evolutionary Algorithms)1. EASEA is a language
and platform that allows an easy specification of an evolutionary algorithm [14].
Only problem specific pieces of code, i.e. individual representation, initialization,
crossover, mutation and fitness function, need to be supplied in an .ez file that
also contains the parameters for the evolutionary engine. EASEA can generate
a multitude of different evolutionary paradigms such as (GA, GP, memetic algo-
rithms, island models, etc) by the means of the same specification file. A unique
feature of the EASEA language is its ability to parallelize the fitness function
on a GPGPU card, making it possible to achieve great speedups and solving
problems a lot faster.

3.3 Fitness Function

The fitness evaluation function is a mix of two different functions: a function
that compares the estimated curve with the measured curve and a function that
measures the irregularity of the load profiles. The following equation allows the
genetic algorithm to rate, for a single distribution station c, the difference be-
tween the measured load curve and the estimated load curve using an individual
i.e. a set of profiles

Fc =

t1∑
t=t0

|p(t)− (W1P1(t) + . . .+WnPn(t))|

p(t)
(2)

where
• p(t) load of the distribution station at time t (in kW);
•Wn average power of end users with profile n (in kW);
• Pn(t) value of profile n at time t (no unit);

The total fitness F for an individual is given over the complete set of m load
curves

F −

m∑
c=1

Fc +

n∑
i=1

MAX((d−Di), 0)

n+ 1
(3)

1 http://sourceforge.net/projects/easea

http://sourceforge.net/projects/easea

Using a Genetic Algorithm for the Determination of Power Load Profiles 167

where
• m number of measured load curves in the dataset;
• n number of profiles (10 in the case of this study);
• d overall average distance between two half-hour points in a profile;
• Di average distance between two half-hour points of profile i;

The genetic algorithm must find the best individual i.e. the best set of pro-
files that minimizes the fitness value F . The first part of the fitness function,
the distance between measured and estimated load curve, is designed to make
the genetic algorithm find the basic shape of the profiles. The second part of
the fitness function, the distance between the half-hour points of the profiles, is
designed to install regularity within the profiles and smooth their shape.

3.4 Engine of the Genetic Algorithm

Initialization Function. The initialization function commonly generates the
individuals randomly. We chose to implement a problem specific initialization
function based on the average distance between each profile half-hour point. The
first half-hour coefficient of each profile is initialized randomly. Then, the value
of each subsequent coefficient is given by the following function

p[i] = p[i− 1] + random(−MaxCoeffDistance

2
,
MaxCoeffDistance

2
) (4)

The problem specific initialization function allows the GA to converge a lot faster
than the random initialization. Figure 1 shows that the GA with the random
initialization requires 2000 generations to achieve the same fitness where the GA
with the custom initialization requires less than 1000 generations. What Figure
1 does not clearly reveal is that the GA with the custom initialization returns
results with better fitness at the end of the 3000th generation.

Fig. 1. Comparing the average convergence over 30 runs of the GA with the custom
initialization function and the GA with the random initialization function

168 F. Krüger, D. Wagner, and P. Collet

Genotype Depiction. An individual represents a set of 8 profiles for a specific
day in the month. Each profile is represented as an array of 48 floating points
(one for every half-hour in the day). Therefore, the genotype of an individual is
a 48× 8 long floating point array.

GA Parameters. As a mutation function we chose a simple addition of noise
to a random coefficient of a profile. A coefficient has a probability of 0.005 to be
mutated. An average of 0.5% genes is being mutated. As a crossover function we
chose to implement a barycentrical crossover.

Table 2 gives the parameters used to determine the load profiles. These pa-
rameters where determined through a selection process based on computation
time and fitness quality.

Table 2. Evolutionary engine

Parameter Value

Number of generations 6000

Population size 750

Number of offspring 500

Selection operator Tournament

Selection pressure 20

Reduction operator Tournament

Reduction pressure 10

4 Results

4.1 Load Profiles

The evolutionary algorithm computes the load profiles on a daily basis meaning
that, for a given month, the GA optimizes each day of the month independently
of the other. As a result a set of profiles for each day of a given month is obtained.
Figure 2 shows 3 of the 8 profiles returned by the GA for a day of January 2009.

The dotted curve in figure 3 shows the profile of professional end users without
electrical heating with a typical business time load (peak hours between 8am-
12am and 2pm-5pm).

The lined curve shows the profile of domestic end users without electrical
heating living in apartments. We can see that the curve has a large load dynamic
with Max−Min

Avg ≈ 150% and the peak around 7pm.
Finally, the dashed curve shows the profile of domestic end users with elec-

trical heating living in apartments. The curve has a flatter load dynamic with
Max−Min

Avg ≈ 60%.

Using a Genetic Algorithm for the Determination of Power Load Profiles 169

Fig. 2. Example of 3 profiles found by the genetic algorithm

4.2 Load Curve Estimation

The profiles found by the genetic algorithm have been approved by an expert
and validated as coherent with reality. Nevertheless, their quality was checked
by comparing a) the load curve estimated by using the GA profiles with b) the
load curve built with the profiles used before this study, and c) the measured
load curve of the MV feeders.

Figures 3 and 4 show the comparison performed for two feeders. Feeder d1
has a greater proportion of end users living in apartments with electrical heating
(99% of the 31% of end users with electrical heating), whereas feeder d2 has a
greater proportion of end users living in independent households with electrical
heating (60% of the 25% of end users with electrical heating). The two figures
clearly reveal that the estimated load curve built using the optimized profiles
match the measured load curve. The dotted curves completely underestimate
the energy demand due to the electrical heating. The figures also reveal that the
shape of the two estimated load curves are completely different.

Fig. 3. Feeder d1. The chart on the right side shows the end user proportions (simpli-
fied), the chart on the left side the different load curves: measured load curve (lined
curve), estimated load curve using the original profiles (dotted curve) and estimated
load curve using the optimized profiles (dashed curve).

170 F. Krüger, D. Wagner, and P. Collet

Fig. 4. Feeder d2. The chart on the right side shows the end user proportions (simpli-
fied), the chart on the left side the different load curves: measured load curve (lined
curve), estimated load curve using the original profiles (dotted curve) and estimated
load curve using the optimized profiles (dashed curve).

Table 3 and 4 show the results for two quality metrics: correlation coefficient
to verify the similarity between the shape of the curves and the root mean
square error (RMSE). Table 3 compares measured curves and estimated curves
for feeder d1 and table 4 compares measured curves and estimated curves for
feeder d2. The close to 1 correlation coefficient values as well as the low RMSE
values attest of the quality of the profiles found by the GA.

Table 3. Quality metrics for feeder d1

Quality quantification
Measured load curve vs

Estimated load curve Estimated load curve
using GA profiles using old profiles

Correlation Coefficient 0.92 0.51
RMSE (kW) 91.12 608.62

Table 4. Quality metrics for feeder d2

Quality quantification
Measured load curve vs

Estimated load curve Estimated load curve
using GA profiles using old profiles

Correlation Coefficient 0.94 0.53
RMSE (kW) 144.08 901.10

5 Conclusion

In this study we show how genetic algorithms can be successfully used to find
high quality load profiles without expensive measurement campaigns and suc-
cessfully solve the signal separation problem with a genetic algorithm. Including
external factors such as electrical heating or type of housing in the design of
the load profiles enhances drastically the accuracy of the estimated load curves.
This paper paves the way for much more accurate predictions of load curves at
the local network level for instance MV/LV transformers.

Using a Genetic Algorithm for the Determination of Power Load Profiles 171

Acknowledgments. The authors gratefully acknowledge the financial contri-
bution of ”Région Alsace”, as well as the contribution of G. Arnold for his work
in the field of electrical heating detection.

References

1. Jardini, J.A., Tahan, C.M., Gouvea, M.R., Ahn, S.U., Figueiredo, F.M.: Daily Load
Profiles for Residential, Commercial and Industrial Low Voltage Consumers. IEEE
Transactions on Power Delivery 15(1), 375–380 (2000)

2. Gerbec, D., Gasperic, S., Smon, I., Gubina, F.: Allocation of the Load Profiles
to Consumers Using Probabilistic Neural Networks. IEEE Transactions on Power
Systems 20(2), 548–555 (2005)

3. Chen, C.C., Wu, T.H., Lee, C.C., Tzeng, Y.M.: The Application of Load Models of
Electric Appliances to Distribution System Analysis. IEEE Transaction on Power
Systems 10(3), 1376–1382 (1995)

4. Chen, C.S., Kang, M.S., Hwang, J.C., Huang, C.W.: Temperature Effect to Dis-
tribution System Load Profiles and Feeder Losses. IEEE Transactions on Power
Systems 16(4), 916–921 (2001)

5. Espinoza, M., Joye, C., Belmans, R., De Moor, B.: Short-Term Load Forecasting,
Profile Identification, and Customer Segmentation: A Methodology Based on Pe-
riodic Time Series. IEEE Transactions on Power Systems 20(3), 1622–1630 (2005)

6. Figueiredo, V., Rodriguez, F., Vale, Z., Gouveia, J.B.: An Electric Energy Con-
sumer Characterization Framework Based on Data Mining Techniques. IEEE
Transactions on Power Systems 20(2), 596–602 (2005)

7. Capasso, A., Grattieri, W., Lamedica, R., Prudenzi, A.: A Bottom-Up Approach
to Residential Load Modeling. IEEE Transactions on Power Systems 9(2), 957–964
(1994)

8. Liao, H., Niebur, D.: Load Profile Estimation in Electric Transmission Net-
works Using Independent Component Analysis. IEEE Transactions on Power Sys-
tems 18(2), 707–715 (2003)

9. Acharyya, R.: A New Approach for Blind Source Separation of Convolutive Sources
(2008)

10. Rojas, I., Clemente, R.M., Puntonet, C.G.: Nonlinear Blind Source Separation
Using Genetic Algorithms. In: Independent Component Analysis and Signal Sep-
aration (2001)

11. Shyr, W.J.: The Hybrid Genetic Algorithm for Blind Signal Separation. In: Neural
Information Processing, pp. 954–963 (2006)

12. Katou, M., Arakawa, K.: Blind Source Separation in Noisy and Reverberating
Environment Using Genetic Algorithm. In: Proceeding of 2009 APSIPA Annual
Summit and Conference (2009)

13. De Jong, K.: Evolutionary computation: a unified approach. In: Proceedings of the
10th Annual Genetic and Evolutionary Computation Conference, GEGGO (2008)

14. Collet, P., Lutton, E., Schoenauer, M., Louchet, J.: Take it EASEA. In: Deb, K.,
Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X.
(eds.) PPSN 2000. LNCS, vol. 1917, pp. 891–901. Springer, Heidelberg (2000)

Comparing Ensemble-Based Forecasting Methods
for Smart-Metering Data

Oliver Flasch, Martina Friese, Katya Vladislavleva, Thomas Bartz-Beielstein,
Olaf Mersmann, Boris Naujoks, Jörg Stork, and Martin Zaefferer

Fakultät für Informatik und Ingenieurwissenschaften, FH Köln
Steinmüllerallee 1, 51643 Gummersbach

{First Name.Last Name}@fh-koeln.de,
katya@evolved-analytics.com

Abstract. This work provides a preliminary study on applying state-of-the-art
time-series forecasting methods to electrical energy consumption data recorded
by smart metering equipment. We compare a custom-build commercial baseline
method to modern ensemble-based methods from statistical time-series analysis
and to a modern commercial GP system. Our preliminary results indicate that
that modern ensemble-based methods, as well as GP, are an attractive alternative
to custom-built approaches for electrical energy consumption forecasting.

1 Introduction

Smart metering equipment records electrical energy consumption data in regular inter-
vals multiple times per hour, streaming this data to a central system, usually located at a
local public utility company. Here, consumption data can be correlated and analyzed to
detect anomalies such as unusual high consumption and to provide energy consumption
forecasts.

This paper describes results from an ongoing project with GreenPocket GmbH
(http://greenpocket.de), a software provider for smart metering infrastructure.
GreenPocket’s software aims at giving consumers insight into their consumption habits
and provide them with accurate forecasts of their future energy consumption. Among
GreenPocket’s customers are electric utility companies who collect and analyze smart
metering data of thousands of customers. This means that the energy consumption fore-
casting methods employed have to be scalable and efficient. Since the forecast models
applied by GreenPocket are relatively simple, it is of great interest to compare them
with more sophisticated modeling approaches, including symbolic regression (SR) and
ensemble-based model selection. From our experience, both of these approaches pro-
vide very good accuracy and scalability. We present a preliminary experimental study
based on real-world data to analyze the applicability of these approaches in a real-world
setting. At this stage we focus on comparing modern existing approaches.

Research goals of this study will be presented in Section 2, while Section 3
describes data and experiments. The different prediction methods are introduced in Sec-
tion 4 and Section 5 discusses the results. The paper concludes with a short outlook in
Section 6.

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 172–181, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://greenpocket.de

Comparing Ensemble-Based Forecasting Methods for Smart-Metering Data 173

2 Research Goals

The first goal of our study is to analyze benefits of ensemble-based approaches, i.e., ap-
proaches that evaluate several time-series models in parallel and allow an adaptation or
even change of the current model based on new features and trends in the data. In theory,
model adaptation improves the prediction accuracy. The second goal of our study is to
analyze the performance of symbolic regression, a generic modeling approach, on the
same real-world problem of electrical energy consumption forecasting. This application
is based on genetic programming (GP) and not limited to time-series forecasting.

This study will investigate the following research questions:
– Q1 Can modern ensemble-based approaches, without further domain knowledge

about the data used, compete with custom-built approaches in a real-world energy
consumption time-series prediction scenario?

– Q2 Is symbolic regression, as a generic method, able to create time-series predic-
tion models as accurate as custom-built approaches in the same scenario?

3 Data and Experiments

All models are trained on the same data set and are then used to predict the same time
interval. The experiments are run on energy consumption time-series data supplied by
GreenPocket. The data was recorded by two independent smart metering devices, in-
stalled at a commercial customer. Some data points are missing due to measurement or
transmission issues, which is a common situation in real-world settings.

3.1 Training- and Test-Datasets

The data provided by GreenPocket are series of timestamp and meter reading pairs taken
quarter-hourly, a standard frequency for modern smart metering equipment. Times-
tamps are given an ISO 8601 derived date/time format, meter readings are given in
kilowatt hours (KWH). As the energy consumption time-series data was recorded by
two independent smart metering devices (meter1 and meter2), each split into two
time intervals (series1 and series2) this results in four data sets.

We focus on the first time-series data set, i.e., meter1_series1, which was split
into a training and a test data set for our experiments. The training interval of this data
set starts at 2010-12-06 23:15:00 and ends at 2011-03-06 00:00:00, the
test interval starts at 2011-03-06 00:15:00 and ends at 2011-04-04 21:45:
00. This amounts to a training data length of approximately 12 weeks and a test data
length of 4 weeks. Figure 1 shows plots of this training data set. Note that there are
missing data points in the training data set. Visual inspection reveals daily periods, while
weekly periods are detectable, but not as clearly defined. To give a first assessment of
the generalizability of our ensemble methods, we also conducted first experiments with
meter1_series2 data.

3.2 Prediction Quality Rating

For these experiments each approach was fitted on the training data introduced above
and had to deliver a quarter-hourly prediction time series for the 4 weeks of test data

174 O. Flasch et al.

Jan Mär

0
2

4
6

8
TrainingData

Date

A
m

ou
nt

 (
kW

h)

Feb 20 Feb 25 Mär 02

0
2

4
6

TrainingData (Excerpt)

Date

A
m

ou
nt

 (
kW

h)

Fig. 1. Plots of the training time series meter1_series1. Energy consumption meter readings
(measured in KWH) were recorded every fifteen minutes. The upper plot shows the complete data
range, the lower plot the last two weeks.

given above. To evaluate the quality of a predicted electrical energy consumption time
series we consider three different error measures.

MAE. The mean absolute error (MAE) between the predicted time series t̂ and the
respective true energy consumption (test) time series t. Equation 1 defines the RMSE.

MAE(t̂, t) :=

∑n
i=1|t̂i − ti|

n
(1)

RMSE. The root mean square error (RMSE) between the predicted time series t̂ and the
respective true energy consumption (test) time series t. Equation 2 defines the RMSE.

RMSE(t̂, t) :=

√∑n
i=1(t̂i − ti)2

n
(2)

RMSElog. The root mean square error log (RMSElog) is the RMSE between the log-
arithm of the predicted time series t̂ and the logarithm of the respective true energy
consumption (test) time series t:

RMSElog(t̂, t) :=

√∑n
i=1(log(1 + t̂i)− log(1 + ti))2

n
. (3)

Comparing Ensemble-Based Forecasting Methods for Smart-Metering Data 175

We apply a logarithmic transformation because energy consumption is always positive
or zero and its distribution is highly skewed. The RMSE on the other hand is a symmet-
ric loss function and therefore is best applicable if the error distribution is symmetric.
By applying a log-transformation we hope to obtain a less skewed distribution. We also
postulate that this loss is closer to what is important in a practical application.

4 Methods

The ensemble-based methods that we focus on in this work are implemented in the R
forecast package and include Exponential smoothing state space (ETS) models and au-
tomated Autoregressive Integrated Moving Average (ARIMA) modeling [1]. Using en-
sembles the software chooses a single model from the large model class, which is used
for prediction. In addition, we study the performance of symbolic regression via GP as
a general method not limited to univariate time-series forecasting. The symbolic regres-
sion [2] implementation we use is DataModeler, a commercial GP package based on
Mathematica. All methods where applied with their default parameter settings.

4.1 Baseline (GreenPocket)

The baseline method provided by GreenPocket and applied in their production systems
is an example of an extremely simple yet computationally highly efficient time-series
prediction method. The prediction is the average energy consumption of the last 14 days
at the same time of day as the prediction. This model is even simpler than a moving
average as it has a fixed time horizon (14 days) after which an observation has no
influence on a prediction.

4.2 Ensemble-Based Methods

Classical time-series forecasting methods, including exponential smoothing state space
models or ARIMA models, are widely and successfully applied to practical time-series
forecasting problems much like the one discussed in this work. Both ETS and ARIMA
models can capture a wide variety of different data generating processes. Consequently
it is the burden of the user to choose a set of parameters for the model such that it
adequately fits the data. Because selecting an appropriate model structure for a given
forecasting problem is essential for obtaining good results, this selection process is often
considered difficult by users not trained in statistical time-series analysis. Furthermore,
manual model structure selection is a time-consuming and error prone task even for
trained users.

To alleviate these difficulties and to enable automatic forecasting for time-series data
of unknown structure, ensemble-based methods have been developed that automate the
model selection process. In this work, we study the accuracy of two state-of-the art
methods for automatic time-series forecasting: Automated ARIMA models and auto-
mated exponential smoothing state space models.

Both methods are limited to time-series with small to medium-sized seasonal fre-
quencies. The automated ARIMA implementation we use in this study is able to sup-
port seasonal period lengths of up to m = 350 time units, while in practice, memory

176 O. Flasch et al.

constraints of our implementation will limit this value to about m = 200. Yet, in the-
ory, the number of parameters to be estimated during ARIMA model fitting does not
depend on m, so any m should be possible. Similarly, the automated ETS implementa-
tion we use restricts seasonality to a maximum period of 24 time units. This limitation
stems from the fact that there are m − 1 parameters to be estimated for the initial sea-
sonal states. As model parameters have to be estimated for many models structures, the
automated ETS algorithm becomes computationally infeasible for large m.

As mentioned in Section 3, our quarter-hourly training data (96 measurements per
day) indicates daily as well as weekly periods, warranting a period length ofm = 672 to
capture the weekly periodicity in the data. Unfortunately, this puts this problem clearly
out of reach of our current implementations of both automated ARIMA and automated
ETS. As a simple workaround, we therefore applied the STL decomposition to sea-
sonally adjust the data, only then applied automated ETS or automated ARIMA to
forecast the adjusted data, and finally added the seasonal component back into the fore-
casts. STL is a procedure that decomposes a seasonal time-series into trend, seasonal,
and remainder components by a sequence of applications of the LOESS smoother [3].
We used the STL implementation from the R stats package [4].

Automated ARIMA Models. By using STL to seasonally adjust the input data, we are
able to apply a non-seasonal ARIMA(p, d, q) process of the form

φ(B)(1 −B)dyt = c+ θ(B)εt. (4)

Here, {εt} is a white noise process with mean zero and variance σ2. B is the backshift
operator, and φ(z) and θ(z) are polynomials of order p and q. For c �= 0, the implied
polynomial in the forecast function has order d. Automated ARIMA forecasting then
consists of selecting appropriate values p, q and d, i.e. an appropriate model order. We
do this using Akaike’s Information Criterion (AIC).

AIC := −2 log(L) + 2(p+ q + k), (5)

where k := 1 if c �= 0 and 0 otherwise. L is the likelihood of the model when fit
to the differenced data (1 − B)dyt. As the likelihood of the full model for yt is not
actually defined and therefore AIC values for different levels of differencing are not
comparable, d is chosen via unit-root tests based on a null hypothesis of no unit-root.
ARIMA(p, d, q) models where d is selected based on successive KPSS unit-root tests
are considered as models. The procedure successively tests higher order differences of
the data for a unit root until a non-significant p value is observed.

There are too many parameter combinations of p, q, and d to afford an exhaustive
search for the model with global best AIC. Therefore, a step-wise algorithm is ap-
plied. First, the four models ARIMA(2, d, 2), ARIMA(0, d, 0), ARIMA(1, d, 0), and
ARIMA(0, d, 1) are fitted with c �= 0 if d ≤ 1 or with c = 0 otherwise. The model
with the best AIC is designated as the current model. Second, variations of the current
model are considered by varying the model parameters by ±1 in an iterative process,
respecting several constraints on the fitted models. When a model of better AIC is dis-
covered, it becomes the new current model, until no variation of the current model with
lower AIC is found. The final current model is used to produce forecasts. [1]

Comparing Ensemble-Based Forecasting Methods for Smart-Metering Data 177

Automated ETS Models. As shown in [1], exponential smoothing methods are equiva-
lent to optimal forecasts from innovations state space models. We thus consider the class
of all innovations state space models as the pool for model selection in automated ETS
modeling. To distinguish model structures, the notation ETS(error, trend, seasonality)
is employed. The error component can be either additive or multiplicative, the trend
component can be either missing, additive, additive damped, multiplicative, or multi-
plicative damped, and the seasonality component can be either missing, additive, or
multiplicative. Considering all combinations, there are 30 model structures. In our case,
as our input data is not strictly positive and already seasonally adjusted, multiplica-
tive error models are not applicable, and the seasonality component may be disabled
(missing), reducing the pool to only 5 model structures.

All 30 (in our case only 5) innovations state space model structures share a general
layout consisting of a state vector xt := (lt, bt, st, st−1, . . . , st−m+1)

′ and the state
space equations

yt = w(xt−1) + r(xt−1)εt (6)

xt = f(xt−1) + g(xt−1)εt. (7)

In these equations, {εt} is a Gaussian white noise process with mean zero and variance
σ2, and μt = w(xt−1). In the model with additive errors, r(xt−1) = 1 holds, so
that yt = μt + εt. To calculate point forecasts until horizon h, these equations can
be iteratively applied for t = n + 1, n + 2, . . . , n + h, while setting εn+j = 0 for
j = 1, . . . , h.

Parameters for these innovations state space models are obtained by maximum like-
lihood estimation. The model structure most appropriate for the input data at hand can
then be selected based on AIC, leading to the automated ETS forecasting algorithm of
[1]:

1. Apply all model structures to forecast the input time series, choosing model param-
eters by maximum likelihood estimation.

2. Select the model with the best AIC.
3. Use this model to produce h point forecasts.

4.3 DataModeler

In addition to GreenPocket’s approach and our ensemble approach a state of the art
modeling approach based on Genetic Programming (GP), namely Evolved Analytics’
DataModeler, will be included in our study as the third modeling tool. [5]

We would argue that the challenge of predicting one month of energy consumption
based on three months worth of data is not a conventional problem for symbolic regres-
sion (SR) modeling with GP. Symbolic regression is a methodology for finding global
relationships in data and for global approximation. SR via GP uses a stochastic itera-
tive search process (evolution) to evolve appropriate model forms using supplied sets of
input variables, functional primitives, and constants. Models are developed to achieve
optimal trade-offs between prediction accuracy on provided input-response data and
model complexity as well as numerical stability. SR is particularly useful for finding
laconic expressions for smooth albeit high-dimensional response surfaces.

178 O. Flasch et al.

The main goal of applying ensemble-based symbolic regression to the non-smooth
data was to see whether this flexible methodology is capable to appropriately identi-
fying the time lags and combine them together into acceptable dynamic models. We
used ensemble-based symbolic regression implemented in DataModeler [2], because it
is best suited for modeling very high dimensional data with a only small fraction of
input variables significantly related to the response. Due to space limitations we only
report the results of GP experiments which used variations of lagged consumption as
input variables. While predicting energy consumption one day ahead did not pose real
challenges for GP, achieving success for predictions one month ahead has hit a wall
of decreased prediction accuracy on both training and test data. To predict four weeks
ahead we were forced to set the considered time-lags to 28 days (2688 intervals) and
earlier.

In described experiments we used the quarter-hourly time lags between 28 and 35
days from the moment of prediction (672 time-lags, i.e. input variables), and we also
constructed a reduced set of inputs of all quarter-hour intervals between 28 and 29
days ago, lags between exactly 28 and 35 days ago, and lags between 28 days and
one quarter-hours and 35 days and one quarter-hour ago – 110 variables in total. The
variables used in the experiment are:
d2688–d2784, d2880, d2976, d3072, d3168, d3264, d3360, d2785, d2882, d2979, d3076, d3173,

d3270, d3367, where di(t) = c(t−i), for c(t) being a quarter-hourly energy consumption
at time moment t. Because of the large backshift we could only use 5093 records from
the given training data (63%). All GP runs used arithmetic operators and square, minus,
inverse as functional primitives, random constants sampled from the interval [−5, 5] ,
and time-limited evolutions of 20 minutes each (for other default GP settings see [2]).
In the first evolutions a consistent set of driving variables was discovered (see Figure
2). The top ten driving variables were further used for new runs in a reduced space with
all other settings unchanged.

Fig. 2. GP results of the first experiments: Selected Model Set and Driving Variables. Left plot
presents the selected set of models plotted in the space of model complexity (sum of nodes of all
subtrees corresponding to the parse-tree defining the model) and model accuracy (1-R2). Variable
presence in the right plot stands for the fraction of models in the selected set containing variable
in question.

Comparing Ensemble-Based Forecasting Methods for Smart-Metering Data 179

The runs in the second batch generated models of higher prediction accuracy and
smaller complexity. From these models we selected an ensemble of models using the
SelectModelEnsemble. DataModeler defines final model prediction at a certain point as
an average of five predictions closest to the median of predictions of ensemble models
at this point. The model closest to the median prediction on test data was the model
from the knee of the Pareto Front of the ensemble models:

t(i) = 8.94 −
253.62

28.15 + t(i − 2688) + t(i − 2689) + t(i − 2690) + t(i − 2785) + t(i − 3360)
.

Even without constant optimization the model alone produces the prediction error
on the test set of RMSE = 1.03. This accuracy is comparable with an accuracy of the
RMSE = 0.97 of the golden batch week prediction constructed by averaging available
consumption per day of the week (from Monday to Sunday) and predicting test data
only using day of the week and a quarter-hour time moments.

Our results indicate that ensemble-based symbolic regression while used for con-
structing global approximation of high-dimensional data is capable of identifying ap-
propriate time lags and creating small and very interpretable dynamic models in such a
challenging problem like energy consumption.

5 Results and Discussion

The predicted energy consumption for all four models is shown in Figure 3. From that
figure it is easy to see that the GreenPocket prediction for each day is the same which
is explained by the fact that their model has no covariates and only carries the average
daily consumption profile of the last 14 days of the training data forward. Consequently,
it fails to predict the days of low consumption (Sundays) in the test data. Both the ETS
as well as the ARIMA prediction are dominated by the seasonal effect which is es-
timated by the STL procedure. Therefore their predictions differ only slightly. If we
check the chosen ARIMA model, we see that it has, as expected, no lag. The ETS
model is a simple additive model without any periodicity. The prediction from Data-
Modeler, the GP system in our comparison, appears quite different. It has a lower intra-
day variance and mispredicts the consumption on “off” days by a small but noticeable
offset.

It is unclear which of the three models is the “best”. In practice there are likely no
measurable differences between the ARIMA and ETS model so one would choose
the model with the lower computational burden. This is confirmed by the three error
measures depicted in Table 1. The results of the ensemble-based approaches pass a pre-
liminary test of generalizability, as the result ranking of meter1_series2 matches
the result ranking of meter1_series1.

According to those error measures, the predictions by DataModeler are always slightly
better, regardless of the error measure used. This is not all that surprising given that Data-
Modeler can choose its model from a much broader and richer class of models.

Overall it is entirely not clear which error measure is the most appropriate for this
problem. All of the models discussed still have weaknesses which are not necessar-
ily captured by the error measures used. In the future we want to investigate loss
functions which model the actual business case—Euros saved or spent based on the

180 O. Flasch et al.

(mis)prediction of the model. This would require yet another time series, the energy
prices per quarter hour, and its prediction to evaluate a joint model for a purchasing
strategy.

Mar 07 Mar 12 Mar 17 Mar 22 Mar 27 Apr 01 Apr 06

0
1

2
3

4
5

6

AutoArimaPrediction

Date

A
m

ou
nt

 (
kW

h)

Mar 07 Mar 12 Mar 17 Mar 22 Mar 27 Apr 01 Apr 06

1
2

3
4

DataModelerPrediction

Date

A
m

ou
nt

 (
kW

h)

Mar 07 Mar 12 Mar 17 Mar 22 Mar 27 Apr 01 Apr 06

0
1

2
3

4
5

6

EtsPrediction

Date

A
m

ou
nt

 (
kW

h)

Mar 07 Mar 12 Mar 17 Mar 22 Mar 27 Apr 01 Apr 06

1
2

3
4

5

GreenPocketPrediction

Date

A
m

ou
nt

 (
kW

h)

Fig. 3. Time series plots of the test data range predictions generated by the methods studied in this
paper. From top to bottom: Ensemble-based ARIMA (AutoArimaPrediction), symbolic regres-
sion (DataModelerPrediction), ensemble-based exponential smoothing (EtsPrediction), Green-
Pocket baseline (GreenPocketPrediction). The true energy consumption time series is shown as a
gray backdrop in each plot.

Comparing Ensemble-Based Forecasting Methods for Smart-Metering Data 181

Table 1. Experiment results for time series 1 and 2. Error measure values were truncated to 3
decimal digits. Best error values are shown in bold font. DataModeler results for time series 2
where not available at the time of publication.

Series 1 Series 2
Method RMSE MAE RMSElog RMSE MAE RMSElog

Automated ARIMA 1.157 0.710 0.352 0.962 0.596 0.235
Automated ETS 1.157 0.710 0.352 0.967 0.605 0.239
DataModeler 1.030 0.699 0.328
GreenPocket 1.151 0.741 0.382 1.196 0.763 0.360

6 Conclusions and Outlook

The two ensemble-based time-series prediction methods are easily applicable and are
able to provide precise forecasts. Regarding research question Q1 posed in Section 2
of this work, our experiments show that modern ensemble-based approaches, without
further domain knowledge about the data used, are able to compete with custom-built
approaches in our real-world energy consumption time-series prediction scenario.

GP and symbolic regression in particular is a promising model generation strategy,
because it can find structure as well as driving variables at the same time. Given such a
model, the constants can then be adapted to fit different data from the same domain. It
should also be applicable to other consumption problems. Regarding research question
Q2, our results show that symbolic regression, as a generic method, is able to create
time-series prediction models that are as accurate as custom-built approaches, at least
in our application scenario. All models studied in this work are efficiently executable,
making them applicable to the large data volumes common in smart metering.

In future work we will investigate whether the models constructed for one particular
customer can be used to predict energy consumption of other customers by merely re-
fitting model parameters.

References

1. Hyndman, R.J., Khandakar, Y.: Automatic time series forecasting the forecast package for r.
Journal of Statistical Software 27(3), 1–22 (2008)

2. Evolved Analytics LLC: DataModeler Release 8.0 Documentation. Evolved Analytics LLC
(2011)

3. Cleveland, R.B., Cleveland, W.S., McRae, J.E., Terpenning, I.: STL: A Seasonal-Trend De-
composition Procedure Based on Loess. Journal of Official Statistics 6(1), 3–33 (1990)

4. R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria (2012) ISBN: 3-900051-07-0

5. Kordon, A.K., Smits, G., Kotanchek, M.E.: Industrial evolutionary computing. In: Thierens,
D. (ed.) GECCO (Companion), pp. 3297–3322. ACM (2007)

Evolving Non-Intrusive Load Monitoring

Dominik Egarter1, Anita Sobe2, and Wilfried Elmenreich1,3

1 Institute of Networked and Embedded Systems / Lakeside Labs
Alpen-Adria-Universität Klagenfurt, Austria

2 Institut d’informatique, Université de Neuchâtel, Switzerland
3 Complex Systems Engineering, Universität Passau, Germany

{dominik.egarter,wilfried.elmenreich}@aau.at, anita.sobe@unine.ch

Abstract. Non-intrusive load monitoring (NILM) identifies used appli-
ances in a total power load according to their individual load character-
istics. In this paper we propose an evolutionary optimization algorithm
to identify appliances, which are modeled as on/off appliances. We eval-
uate our proposed evolutionary optimization by simulation with Matlab,
where we use a random total load and randomly generated power profiles
to make a statement of the applicability of the evolutionary algorithm
as optimization technique for NILM. Our results shows that the evolu-
tionary approach is feasible to be used in NILM systems and can reach
satisfying detection probabilities.

Keywords: Evolutionary Algorithm, Knapsack Problem, Evolution,
Non-Intrusive Load Monitoring, NILM.

1 Introduction

With the upcoming of decentralized regenerative energy sources, the amount
of available energy at a particular time and, due to network capacity con-
straints, location becomes dependent on the current weather situation (photo-
voltaic production depends on amount of sunshine, windmill-powered plants on
wind speed). One way to mitigate this issue is to provide energy storage (e. g., by
batteries, pumped-storage hydropower plants, conversion to methane, etc). The
other way is shaping the energy consumption at the consumer side. A typical
household contains hundreds of electric appliances, whereof a few dozen are rel-
evant in terms of energy consumption. In order to keep the convenience level for
the customer high, we need an intelligent control system that identifies devices
currently turned on and proposes minimal-invasive changes to their usage. To get
this information, each relevant appliance could be equipped with a smart meter
or an embedded communication and control interface able to deliver power infor-
mation and characteristics [5]. Upgrading all devices in a current household this
way would be painstaking and costly. An alternative approach is non-intrusive
load monitoring (NILM)[8], which determines and classifies individual appliances
based on characteristic load profiles. For identification only a single smart me-
ter measuring the total power consumption with appropriate timely resolution

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 182–191, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Evolving Non-Intrusive Load Monitoring 183

is sufficient. NILM extracts features like active power, frequency etc., classifies
appliances and identifies appliances by matching the measured data to a ref-
erence database. Thus, the identification can be described as an optimization
problem of superimposed power profiles. Possible solutions for this problem are
optimization techniques like integer linear programming [16] or pattern recog-
nition methods like artificial neural networks [4]. In recent years, the technique
of NILM has been extended and improved, but up to now no universal solution
has been developed [18].

We propose an evolutionary optimization approach that identifies a variable
number of appliances by their given power profile. The idea is that the potential
appliance profiles (out of a database) have to be matched with the given power
profile with minimum error [2]. The presented problem is related to the Knapsack
problem, which is NP-hard [6, 14]. Possible techniques to tackle the Knapsack
problem are either exact, heuristic or meta-heuristic solutions [11]. Genetic al-
gorithms have successfully been used for handling the Knapsack problem during
the last twenty years. Implementations are ranging from solving the simple 0-1
knapsack problem [15] to more lavish techniques like hybrid optimization [17]
and multidimensional Knapsack problems techniques [9].

In the context of NILM, the genetic algorithm is typically used for detecting
features and patterns of appliance power profiles [1, 3] and for optimizing existing
parameters which are used in fuzzy systems [13]. Furthermore, Leung, Ng and
Cheng presented in [12] a possible approach to use the genetic algorithm to
identify appliances. In their paper they grouped power signatures out of one load
signature data set into the groups sinusoid, quasi-sinusoid and non-sinusoid load
signatures by averaging 50 consecutive one-cycle steady state current waveforms.
They built a composition of load signatures of the same group between each
other and a composition of load signatures among the groups. Finally, they used
the genetic algorithm to identify the wanted load signatures. In contrast to this
approach, we use the entire power load signal of a household over two hours
and not the mean current waveform of 50 consecutive one-cycles. Further, we do
not split up the appliances into groups. We randomly generate common power
profiles in steady state and detect these power profiles in a random superimposed
composition of power profiles over a time window of two hours. Accordingly, we
make a statement about which appliance have been used and also at which point
in time. The remainder of this paper is organized as follows: in Section 2 we
describe the optimization problem of overlapping power profiles in more detail
and how it can be solved with the help of the evolutionary algorithm. In Section
3 we evaluate the presented genetic algorithm by different test scenarios like
algorithm dependence on the number of wanted power profiles or the detection
behavior under the influence of noise. Finally, in Section 4 we conclude this paper
and present future work.

2 Evolutionary Appliance Detection

The knapsack problem is a well-known optimization problem with the aim of
packing a set of n items with a certain weight wi and profit di into a knapsack

184 D. Egarter, A. Sobe, and W. Elmenreich

of capacity C in the most profitable way. If it is possible to place a item into
the knapsack without exceeding the capacity C by using xi ∈ {0, 1}, which is
responsible for whether or not a certain item is used, a profit di is earned. This
context can be summarized as follows:

maximize

n∑
i=1

di · xi (1)

subject to
n∑

i=1

wi · xi ≤ C. (2)

The problem of packing items into a desired shape can easily be compared to
the appliance detection and classification in NILM systems. NILM has the major
aim of detecting and identifying appliances according to their own power profile
Pi in the measured total load P (t). The power profiles Pi are characterized by
their power magnitude mi and time duration τi and the total load is given by:

P (t) =

n∑
i=1

Pi · ai(t) + e(t), (3)

where n is the number of known and used appliances, ai(t) ∈ [0, 1] represents
the state timing vector of the appliance being on (ai(ts) = 1) at switching time
ts or off (ai(t) = 0) and e(t) describes an error term. Therefore the general
optimization problem of NILM can be formulated as the minimum error e(t) of
the total power load and the composite appliance power profiles Pi:

e(t) = argmin

∣∣∣∣P (t)−
n∑

i=1

Pi · ai(t)
∣∣∣∣. (4)

In contrast to the traditional knapsack problem, which allows only bounded values
smaller than capacity C, we allow positive and negative error values and take the
absolute error value for our fitness evaluation. Turning back, a NILM system tries
to find the right switching points ai(t) and their corresponding appliances to min-
imize the error between the sum of superimposed appliance power profiles and the
total load P (t). This relates to the knapsack problem, where in the case of NILM
the capacity C of the knapsack corresponds to the total load P (t) and the items
of the knapsack correspond to the appliance power profiles Pi. Further, we assume
that the profit di equals 1, because we suppose that all appliances in the household
are of equal importance concerning their usage. The aim of the evolutionary ap-
proach is to find a composition of power profiles Pi, which can be packed into the
measured total load P (t) with minimum error. Therefore, we modify the general
knapsack problem by dismissing the profit maximization with an error minimiza-
tion.An illustration of the basic principle canbe seen inFigure 1, where a collection
of possible power profiles Pi and the trend of the total power load are presented.
Out of the collection a selection of power profilesPi is met and this selection is then
packed into the trend of the total power load to best approximate the trend of the
total power load.

Evolving Non-Intrusive Load Monitoring 185

Fig. 1. Basic principle of the ON/OFF time genome appliance detection. Find a com-
position of saved power profiles Pi, place it at the switching times ts and try to minimize
the error between the evolved power load and the given total power load.

To solve this error minimization, we use an evolutionary algorithm as de-
scribed in [7] with uniform mutation, single point crossover and elite selection.
In detail, the used evolutionary algorithm has to evolve the set of used power
profiles Pi. To be able to reduce the complexity of the optimization problem we
assume that we know the starting points of the appliances’ power profiles. A
possible technique to detect the switching times ts is mentioned by Hart in [8]
and is called edge detection of P (t). The edge detection calculates the difference
of the current power signal P (t) and the delayed power signal P (t− 1) and tries
to detect the switching event by thresholding the calculated difference value.
A switching time ts is given if the difference value is larger than a predefined
threshold d and accordingly, ai(ts) is set to 1.

Thus, the evolutionary algorithm examines a composition of appliance power
profiles Pi, place them at the switching time ts by multiplying Pi with its corre-
sponding state timing vector ai(t) and approximate the total load P (t). There-
fore, a genome maps a set of power profiles Pxi, where xi represents the index
of the power profile1 Pi stored in the database. The fitness function Fs for the
optimization is given by:

Fs = −
∣∣∣∣P (t)−

Nb∑
i=1

Pxi · ai(t)
∣∣∣∣, (5)

1 We assume that each power load profile Pi is only stored once in the database. The
database has a size of db.

186 D. Egarter, A. Sobe, and W. Elmenreich

where Nb represents the number of switching times ts and correspondingly, also
the number of used appliances, because we assume that every appliance occurs
only ones at different switching times ts. According to presented fitness function
Fs, the best achievable fitness value is Fs = 0, which corresponds to an error of
0 between the evolved power load and the total power load P (t).
In the following section we evaluate the detection ability of the presented mod-
ified knapsack problem by the evolutionary algorithm.

3 Evaluation

To be able to evaluate the presented evolutionary algorithm with its genome
representation and fitness function, we compute simulations of the evolutionary
algorithm in Matlab. The parameter properties for the evolutionary algorithm
can be found in Table 1 and were determined empirically. We performed S sim-
ulation runs for each test case and generated the mean fitness F =

∑
s∈S

Fs

S
and the mean detection probability P̄det. The mean detection probability P̄det

is given by P̄det =
∑

s∈S Pdet/S, where Pdet is given by Pdet = #det
Nb and is

the detection probability by simulation run. The variable #det is the counted

Table 1. Parameters used for the evolutionary algorithm and the simulations

Variable Description Value range

Pelite Elite selection 10%
Pmutate Uniform mutation 40%
Pcrossover Single point crossover 40%

Pnew New individuals 10%
PmutateRate Mutation rate 10%

G Number of generations for the GA 500
N Number of populations for the GA 500
Pi Power profile Pi of appliances
mi Randomly generated power magnitude2 mi mi ∈ [100, 4000]
τi Randomly generated time duration3 τi τi ∈ [60, 3600]
Pg Random generated total power load over two hours in sec-

onds resolution (T = [1, 7200]). Total power load equals
a random set of power profiles Pi out of the database.

db Number of random generated and stored power profiles
Pi

50

Nb Number of used appliances 5
S Simulation runs 10

2 The power magnitude mi was chosen in a common power range of household appli-
ances.

3 The time duration τi represents a common usage of household appliances between
one minute and one hour. The time window of 2 hours will produce a variety of
superimposed power loads.

Evolving Non-Intrusive Load Monitoring 187

number of correctly detected power profiles Pi and Nb is, as mentioned before,
the number of switching events and also the number of used power profiles4 Pi.
Beyond that, Table 2 show how many errors es = Nb −#det occurred for every
simulation run s ∈ S and further, we calculate the mean error ē =

∑
s∈S es/S

per the simulation runs s ∈ S. For the evaluation we used the following different
test scenarios:

– influence of the number of wanted and stored power profiles and
– influence of disturbances like noise and unknown power loads

to make a statement on their influence on the detection ability of the presented
NILM technique, which we will describe in the following sections in more detail.

3.1 Variation of Wanted and Stored Appliances

In Figure 2 the results for different numbers of active devices and different sizes
of the power profile database is shown. First, we consider the case of varying
number of power profiles. For this test scenario we chose a database size db = 50
and the number of wanted power profiles Pi was Nb = [4, 6, 10, 25]. We have
taken these values of Nb to cover the cases of household common and high
Nb appropriate to the size of db and the considered period of time (2 hours).
Considering Figure 2, the fitness F and detection percentage Θ reach satisfying
and sufficient results of a detection percentage up to 100%. We can see that
the fitness value F of Figure 2(c)5 depends on the number of devices (curves
are from low Nb at top of the figure to high Nb at the bottom). The lower the
number, the better the fitness, because it is harder to find a set of correctly
ordered power loads of size 10 than of size 5. The evolutionary algorithm is able
to find sufficient results after 100 to 200 generations, which is acceptable for the
intended application scenario. The detection behavior is similar in the case of
the detection percentage Θ in Figure 2(a). The lower the number of used power
loads, the better is the result of detected power loads. We claim that the worst
case in this example is finding 25 power loads, reasoning that our optimization
problem can be seen as a problem of combining several things k out of a larger
group n, where the order is not taken into consideration and accordingly, can
be considered as the well known combination problem. A combination can be
formulated as n!

k!·(n−k)! and the worst case for this problem is, if k = n/2, which

is in our case with k = Nb = 25 and n = db = 50.
Beyond that, we varied the number of stored power profiles db in the sec-

ond test scenario in Figure 2(b). For this we used a database size of db =
[25, 50, 75, 100] and Nb = 5 to make a statement regarding scalability of the

4 Every appliance power load Pi can only be used once and accordingly, the number
of wanted power profiles is the same like the number of switching times ts.

5 The boxplot of the fitness trend for Nb variation should give a general impression
how the fitness is evolving over generations and is comparable for fitness evaluation
and detection probability, because the fitness has a direct relation to the detection
probability.

188 D. Egarter, A. Sobe, and W. Elmenreich

0 100 200 300 400 500
0

10

20

30

40

50

60

70

80

90

100
D

et
ec

tio
n

P
er

ce
nt

ag
e

in
 %

Generations

Nb=4 Nb=6 Nb=10 Nb=25

(a) Detection percentage Θ for Nb
Variation

0 100 200 300 400 500
0

10

20

30

40

50

60

70

80

90

100

D
et

ec
tio

n
P

er
ce

nt
ag

e
in

 %

Generations

db=25 db=50 db=75 db=100

(b) Detection percentage Θ for db
Variation

10 100 200 300 400 500
−2000

−1800

−1600

−1400

−1200

−1000

−800

−600

−400

−200

0

Generations

F
itn

es
s

Comparison BoxPlot

Nb=4 Nb=6 Nb=10 Nb=25

(c) Boxplot of fitness F for Nb Variation

Fig. 2. This figure shows the trend for the varying Nb = [4, 6, 10, 25], for varying
db = [25, 50, 75, 100] with Nb = 5 and also the boxplot of the mean fitness F for
varying Nb

evolutionary algorithm. We can see that the evolutionary algorithm is able to
reach a high detection percentage Θ dependent on used db. If the number of db
is increased, the evolutionary algorithm evolves a lower Θ, because the search
space is becoming bigger.

In addition, we present the mean error ē and the mean detection probability
P̄det of the detection process in Table 2. According to this table, we can claim
that the lower Nb, the better the result of no errors and that the evolutionary
algorithm is dependent on db. Finally, the simulations shows, that the detection
depends on the characteristic of overlapping power loads. The more power loads
are superimposed, the more difficult it is to make a correct decision and to
minimize the error between the total power load and the evolved power load.
In our test scenarios the probability of overlapping power loads is rather high,
because of the chosen time duration of τi = [60, 3600] in a time window of 2
hours (T = [1, 7200]) and correspondingly, the detection algorithm still works
sufficiently and satisfying.

Evolving Non-Intrusive Load Monitoring 189

Table 2. Table for error es by simulation run S and the mean error ē for varying
Nb = [6, 10, 25, 45] with db = 50, varying db = 100 with Nb = 5, under the influence
of noise and under the influence of unknown power loads Unkn = [1, 2]

Detection errror es and mean detection probability P̄det by

Nb-Variation db-Variation6 with Noise7 with unknown6

4 5 6 10 25 100 1 2

ē 0 0.7 1.6 5.7 14.6 1.8 0.9 1.9 3

P̄det in % 100 86 73 43 41 64 82 62 40

0 100 200 300 400 500
0

10

20

30

40

50

60

70

80

90

100

D
et

ec
tio

n
P

er
ce

nt
ag

e
in

 %

Generations

Nb=4, no Noise
Nb=4, with Noise
Nb=5, no Noise
Nb=5, with Noise

(a) Trend of the detection percentage Θ
with noise

0 100 200 300 400 500
0

10

20

30

40

50

60

70

80

90

100

D
et

ec
tio

n
P

er
ce

nt
ag

e
in

 %

Generations

Nb=5, no Unkn
Nb=5,Unkn=1
Nb=5,Unkn=2
Nb=5,Unkn=3

(b) Trend of the detection percentage Θ
with unknown power loads

Fig. 3. This figure shows the trend under the influence of noise and unknown power
loads Unkn = [1, 2, 3]. The size of db = 50 and Nb = [4, 5].

3.2 Influence of Disturbances

To make a better statement of the ability and the quality of the presented
algorithm, we examined the detection behavior of the evolutionary algorithm
under the influence of noise and unknown, not stored appliances. In Figure 3(a)
noise with zero mean μ = 0 and the standard deviation σ =

√
max(P (t)) was

added to our simulated total power load P (t) and we added unknown power loads
Unkn = [1, 2, 3] to the total load P (t) in Figure 3(b). At first, we consider the
detection scenario under the influence of noise. In this scenario, the simulation
results show that the detection percentage Θ in Figure 3(a) is slightly influenced
by noise and therefore, we claim that the presented algorithm is robust to noise.
We observe this behavior in the cases of Nb = 4 and Nb = 5. Both test scenarios
show satisfying detection results of 0 errors. Further, we consider the case of
adding unknown appliances to the total load P (t) in Figure 3(b). This figure
indicates that the detection percentage Θ depends on the number of unknown
power loads8, because the more unknown information is in the system the more

6 Nb = 5.
7 Nb = 5, μ = 0,σ =

√
max(P (t)).

8 Nb=5 for this test scenario.

190 D. Egarter, A. Sobe, and W. Elmenreich

complicated it is for the evolutionary algorithm to establish a correct evolved
composition of power loads Pi to approximate P (t). Finally, we also present
the mean error ē and the mean detection probability P̄det in Table 2, which
confirms our statements that our algorithm is noise robust and is dependent on
the number of known and accordingly, on the number of unknown appliances.

4 Conclusion and Future Work

In this paper we present an evolutionary algorithm to solve the task of detecting
an appliance based on their power loads in the total load of a household over
a time window of 2 hours. Our algorithm provides promising results to detect
superimposed respective power loads with up to 100% certainity. In more detail,
the presented algorithm has the following detection characteristics:

– Detection percentage Θ up to 100% depending on Nb and db
– The higher Nb and the higher db, the lower the detection percentage Θ
– Sufficient results at generation G > 100
– Robustness against noise
– Dependent on additive unknown and the quantity of overlapping power loads

Our results show that the presented algorithm is feasible for use in NILM sys-
tems and can achieve a detection probability of 100% in case of low number
of devices Nb and records used power loads even if not all power loads are de-
tected correctly. With our algorithm applied to a real household the results can
be used for tracking the used power consumption and the usage of appliances
and can improve the energy-awarness concerning the energy consumption of ap-
pliances. The current version of the algorithm was tested for on/off appliances
with constant time duration. In future work, we plan to extend our algorithm
for arbitrary shapes of power profiles and to evaluate the approach using real
appliances [10].

Acknowledgments. This work was supported by Lakeside Labs GmbH, Kla-
genfurt, Austria and funding from the European Regional Development Fund
and the Carinthian Economic Promotion Fund (KWF) under grant KWF-20214 |
22935 | 24445. We would like to thank Kornelia Lienbacher for proofreading the
paper.

References

[1] Baranski, M., Voss, J.: Genetic algorithm for pattern detection in nialm systems.
In: IEEE International Conference on Systems, Man and Cybernetics, vol. 4,
pp. 3462–3468 (2004)

[2] Bijker, A., Xia, X., Zhang, J.: Active power residential non-intrusive appliance
load monitoring system. In: AFRICON 2009, pp. 1–6 (September 2009)

Evolving Non-Intrusive Load Monitoring 191

[3] Chang, H.H., Chien, P.C., Lin, L.S., Chen, N.: Feature extraction of non-intrusive
load-monitoring system using genetic algorithm in smart meters. In: IEEE 8th
International Conference on e-Business Engineering (ICEBE), pp. 299–304 (2011)

[4] Chang, H.H., Lin, C.L., Lee, J.K.: Load identification in nonintrusive load moni-
toring using steady-state and turn-on transient energy algorithms. In: 14th In-
ternational Conference on Computer Supported Cooperative Work in Design
(CSCWD), pp. 27–32 (2010)

[5] Elmenreich, W., Egarter, D.: Design guidelines for smart appliances. In: Proc. 10th
International Workshop on Intelligent Solutions in Embedded Systems (WISES
2012), pp. 76–82 (2012)

[6] Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1990)

[7] Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston (1989)

[8] Hart, G.: Nonintrusive appliance load monitoring. Proceedings of the
IEEE 80(12), 1870–1891 (1992)

[9] Hoff, A., Løkketangen, A., Mittet, I.: Genetic Algorithms for 0/1 Multidimensional
Knapsack Problems. In: Proceedings Norsk Informatikk Konferanse, NIK 1966
(1996)

[10] Kolter, J.Z., Johnson, M.J.: REDD: A Public Data Set for Energy Disaggregation
Research. In: Proceedings of the SustKDD Workshop on Data Mining Applica-
tions in Sustainability (2011)

[11] Lagoudakis, M.G.: The 0-1 Knapsack Problem An Introductory Survey. Technical
report

[12] Leung, S.K.J., Ng, S.H.K., Cheng, W.M.J.: Identifying Appliances Using Load
Signatures and Genetic Algorithms. In: International Conference on Electrical
Engineering, ICEE (2007)

[13] Lin, Y.H., Tsai, M.S., Chen, C.S.: Applications of fuzzy classification with fuzzy
c-means clustering and optimization strategies for load identification in nilm
systems. In: 2011 IEEE International Conference on Fuzzy Systems (FUZZ),
pp. 859–866 (2011)

[14] Martello, S., Toth, P.: Knapsack problems: algorithms and computer implemen-
tations. John Wiley & Sons, Inc., New York (1990)

[15] Singh, R.P.: Solving 0/1 Knapsack problem using Genetic Algorithms. In: IEEE
3rd International Conference on Communication Software and Networks (ICCSN),
pp. 591–595. IEEE (2011)

[16] Suzuki, K., Inagaki, S., Suzuki, T., Nakamura, H., Ito, K.: Nonintrusive appliance
load monitoring based on integer programming. In: SICE Annual Conference,
pp. 2742–2747 (2008)

[17] Cotta, C., Troya, J.: A hybrid genetic algorithm for the 0-1 multiple knapsack
problem. Artificial Neural Nets and Genetic Algorithms 3, 251–255 (1998)

[18] Zeifman, M., Roth, K.: Nonintrusive appliance load monitoring: Review and out-
look. IEEE Transactions on Consumer Electronics 57(1), 76–84 (2011)

On the Utility of Trading Criteria

Based Retraining in Forex Markets

Alexander Loginov and Malcolm I. Heywood

Faculty of Computer Science,
Dalhousie University, Halifax, NS, Canada
a.loginov@yahoo.ca, mheywood@cs.dal.ca

http://www.cs.dal.ca

Abstract. This research investigates the ability of genetic programming
(GP) to build profitable trading strategies for the Foreign Exchange Mar-
ket (FX) of three major currency pairs (EURUSD, USDCHF and EU-
RCHF) using one hour prices from 2008 to 2011. We recognize that such
environments are likely to be non-stationary. Thus, we do not require
a single training partition to capture all likely future behaviours. We
address this by detecting poor trading behaviours and use this to trig-
ger retraining. In addition the task of evolving good technical indicators
(TI) and the rules for deploying trading actions is explicitly separated.
Thus, separate GP populations are used to coevolve TI and trading be-
haviours under a mutualistic symbiotic association. The results of 100
simulations demonstrate that an adaptive retraining algorithm signifi-
cantly outperforms a single-strategy approach (population evolved once)
and generates profitable solutions with a high probability.

Keywords: Coevolution, non-stationary, FX, Forex, Currency.

1 Introduction

The Foreign Exchange (FX) Market is the world biggest financial market which
produces 1/3 of all financial transactions in the world [1]. The average daily
turnover of FX was almost $4 trillion in 2010 and it was 20% higher in April
2010 than in April 2007 [2]. An FX market consists of currency pairs which are
weighted by economic conditions for that specific denomination versus any or all
others in the marketplace. Thus, the perceived value of a currency is a reflection
of the market’s ranking for that denomination’s economy on any given day. An
FX market is technically ‘purer’ than a stock market i.e., a currency price action
reacts more strongly to resistance and support levels than equity market does [3].
All the above factors make FX markets very attractive for traders and expands
the demand for automated trading systems, albeit under demanding conditions.

However, the underlying data describing such trading environments is typically
non-stationary. Thus, assuming the classical approach of training over fixed par-
titions of data (e.g., training, validation and test) results in brittle solutions that
could be specific to the partition on which they are evolved [4], Chapter 7. More-
over, the use of validation data in financial data forecasting is not in itself a “silver

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 192–202, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.cs.dal.ca

On Trading Criteria Based Retraining in FX Markets 193

bullet” [5]. One solution proposed to this problem is to train on a continuous basis,
while explicitly maintaining population diversity [4], Chapter 8. Thus, following
the initial evolution of a population of trading agents, taking G generations, the
best solution trades for ‘n’ days. The same ‘n’ trading days are then employed to
readapt the population for g < G generations. However, the selection of appropri-
ate g and n is in itself a function of the data (market dynamic). Another approach
might be to coevolve a subset of the training partition [6] or to combine coevolution
of the training partition with an explicitly streaming context [7].

In this work we investigate a somewhat different approach. As emphasized
by the study of [4], we recognize that under non-stationary environments as-
suming a modular representation can be beneficial. There are several ways of
potentially achieving this. In this work we adopt a symbiotic approach to ge-
netic programming (e.g., [8,9]). Specifically, trading indicators (TI) are coevolved
with trading decision trees (DT). Assuming a symbiotic approach enables us to
adopt unique representations for each while searching both representations in a
co-ordinated way. Secondly, we define specific trading criteria that characterize
when retraining should take place. Thus, relative to a fixed training–validation
parameterization, training is only ever re-triggered by the trading criteria. Now,
relative to the point of re-triggering, an entirely new training–validation sample
is defined to evolve a new trading agent. Naturally, there is a trade off with
regards to the cost of retraining versus maintaining a population of previously
evolved models for redeployment e.g., [10]. Under this particular deployment,
the retraining cost is significantly smaller than the interval between consecutive
data pairs, thus the retraining cost does not detract from ‘real-time’ operation.

The proposed approach – hereafter FXGP – is demonstrated relative to the
task of FX trading under three currencies for 3 year periods in each case. A
base case employing the same symbiotic representation but without retraining
provides a performance baseline. Conversely, adding the capability to dynami-
cally identify retraining points through trading criteria results in a significant
improvement.

1.1 Glossary

Hereafter the following terminology will be assumed [11]:

Ask: Price at which broker/dealer is willing to sell. Also referred to as “Offer”.

Balance: The value of your account not including unrealized gains or losses on
open positions.

Bid: Price at which broker/dealer is willing to buy.

Drawdown: The magnitude of a decline in account value, either in percentage
or currency terms, as measured from peak to subsequent trough.

Fundamental Analysis: Macro or strategic assessment of where a currency
should be trading on any criteria but the price action itself. The criteria often
includes the economic condition of the country that the currency represents
e.g., monetary policy, and other ”fundamental” elements.

194 A. Loginov and M.I. Heywood

Leverage: The amount, expressed as a multiple, by which the notional amount
a trader exceeds the margin required to trade. The specific approach taken
to this is described in Section 3.

Pip: The smallest price increment in a currency. Often referred to as “ticks” in
the future markets. For example, in EURUSD, a move of 0.0001 is one pip.

Spread: The distance, usually in pips, between the Bid and Ask prices. Section
3 details the fixed spread assumed in this work.

Stop: Also called “Stop Loss” or “S/L”. An order to buy or sell when the market
moves to a specific price.

Technical Analysis: Analysis applied to the (price) action of the market to
develop a trading decision, irrespective of fundamental factors.

2 Proposed Algorithm

2.1 The FXGP Algorithm Overview

As established in the introduction, a cycle of evolution is initially completed
against the first 1,000 records (Nt) and validated against the next 500 (Nv); or
≈ 2 months and 1 month respectively. Trading then commences until some fail-
ure criteria is satisfied – e.g., an excessive drawdown is encountered – at which
point the Nt + Nv records leading up to the failure are used to evolve a new
trading agent, and the process repeats. Note, however, that such a scheme is
distinct from the purpose or configuration of N -fold cross validation. The first
training–validation pair as initially employed to evolve the first FXGP individ-
ual, any later calls to evolve a new FXGP individual are relative to the failure
criteria triggering retraining. Moreover, retraining results in all current popula-
tion content being reset as the re-trigger event is taken to imply that the current
content is inappropriate.

The trading agent takes the form of a decision tree and corresponding set of
coevolved technical indicators or DT and TI populations respectively. Evolving
the TI provides the opportunity to capture properties pertinent to specific nodes
of a decision tree defining the overall trading rule; where the characterization
of such temporal properties is known to be significant for a wide range of time
series tasks [12]. Four prices – Open, High, Low and Close – are used as inputs
to the TI population. Members of the DT population define the trading rule,
and it is only with respect to the DT individuals that fitness is evaluated i.e., a
symbiotic GP relationship [8,9].

2.2 Training

2.2.1 Initialization
The TI population is randomly initialized with (initial) size defined by the user.
TI individuals assume a linear GP representation (e.g., [13]) with instruction set
summarized by Table 1. Moreover, each TI has a header defining the basic TI
properties: type, scale, period, shift (Table 2).

On Trading Criteria Based Retraining in FX Markets 195

Table 1. TI functions. Note the three forms of division.

Function Definition Function Definition

Addition R[x] ← R[x] +R[y] Subtraction R[x] ← R[x]−R[y]

Multiplication R[x] ← R[x]×R[y] Square root R[x] ← √
R[y]

Division R[x] ← R[x]÷R[y] Invert R[x] ← 1÷R[x]

Div-by-2 R[x] ← R[x]÷ 2 – –

Table 2. TI parameters. Estimated relative to the current hour t of trading.

Parameter Description

TI type Moving Average (MA), Weighted Moving Average (WMA) or Value

TI scale TI that crosses 0 or TI that crosses price

Period n Number n of hours in a price history to calculate MA or WMA

Shift m Price m hours back

TI programs assume a register level transfer language (Table 1). Thus, R[x]
denotes the content of register x, R[y] denotes either: register y content; a price,
or; a price m hours back in (relative) time. Register R[0] is assumed to contain
a TI value after executing a TI program. The MA type of TI is calculated as (1)
whereas the WMA type of TI is calculated as (2), where Vj is a TI value.

MAi =

∑n
j=1 Vj

n
(1)

WMAi =

∑n
j=1

Vk

j+1∑n
j=1

1
j+1

(2)

The DT population is initialized to a fixed size as defined the user. A DT header
includes the following information: DT score in pips, number of trades and a size
of a S/L order in pips. The score and number of trades are initialized with 0;
whereas the S/L is assumes a fixed interval. A DT consists of a variable number
of nodes. Each node consists of a conditional statement with either single or dual
antecedent tests of the form:

– if(Xi > Yi) then else
– if((Xi > Yi) and (Xi+m < Yi+m)) then else

where Xi and Yi can be 0, price or a TI. The then and else statements reference
either: the next node or one of the trading signals: buy, sell or stay. Thus, a DT
population is randomly generated with respect to Xi and Yi scales; albeit under
the following constraints:

1. if Xi is 0, then Yi can be any TI which crosses 0 and can not be a price or
a TI which crosses the price, or;

2. if Xi is price, then Yi can be also a price or a TI which crosses the price,
and can not be 0 or a TI which crosses 0.

196 A. Loginov and M.I. Heywood

Note in the case of a dual antecedent clause, Xi+m and Yi+m represent the value
of Xi or Yi respectively, albeit m samples back in (relative) time. FXGP can
generate additional TI during DT population initialization if the TI population
does not have a TI capable of satisfying the DT initialization constraints.

2.2.2 Fitness and Selection
The DT fitness is defined as a DT score in pips over the training records. When
TI and DT populations are initialized, FXGP simulates the trading activity for
each DT over the training records and stores the score and the number of trades
in the DT header. The number of trades is used to penalize the DT score for too
high or low a frequency of trading. Moreover, if a DT generates only buy or sell
signals its score is discarded and the DT targeted for replacement. The subset
of DT individuals with lowest scores are explicitly identified for replacement cf.,
a breeder model of selection / replacement. Thus, a fixed percentage or gap size
of the DT population is replaced per generation. All variation is asexual, thus
following parent selection, cloning and variation takes place where either the
DT or TI component of a clone can be varied. Following DT selection, any TI
individual that no longer receive a DT index are considered ineffective and are
also deleted (resulting in a variable size TI population).

2.2.3 Mutation
FXGP uses mutation to produce offspring. Only one DT node or one linked TI
can be mutated in each cloned TI–DT pair. FXGP randomly selects the target
for mutation (TI or node) according to the probability of mutation (Table 4).
A mutated TI is first cloned to avoid interfering with other DT employing the
same TI. The following parameters and functions of a TI can be mutated: TI
type, period (n), shift (m), generate a new function, delete a function, or insert
a function. Likewise, a DT Mutation also begins by cloning the parent, and then
applies one of the following to define an offspring:

1. Generate a new conditional function;
2. Increment / decrement shift parameter m;
3. Generate new Xi and Yi;
4. Switch Xi and Yi;
5. Switch content of then and else clauses;
6. Insert new then clause content.
7. Insert new else clause content.

Training stops when the specified number of generations was reached or when
the best score in the DT population plateaus for a fixed number of generations,
τ (Table 4). Thereafter a validation cycle is initiated.

2.3 Validation

During validation we require a proportion of the population αv to demonstrate
feasible trading behaviour before trading may actually commence. FXGP checks

On Trading Criteria Based Retraining in FX Markets 197

the score of every tree in a DT population and if the DT score is greater than
αv× best score it tests the DT and increments the tested tree’s counter. When all
DT are evaluated, FXGP checks the number of the tested DT and if it is greater
than αv× DT population size then the TI–DT pair with best score on validation
is selected as the ‘champion’ for trading, otherwise the entire training procedure
is restarted i.e., rather than invest more generations in a population which fails
under validation we choose to reinitialize and restart the training cycle.

2.4 Trading and Retraining Criteria

During FX trading, the following three trading quality criteria are monitored
and used to trigger retraining from an entirely new population pair of TI–DT
populations: 1) Drawdown i.e., decline in account value – see Glossary; 2) The
number of consecutive losses permitted; and 3) The number of consecutive hours
without trading activity. This approach lets FXGP retrain the DT population
only when the market situation is deemed to differ from that of the last train-
ing period. In doing so we explicitly recognize the non-stationary nature of the
task. Specific values for the quality criteria are established by the user. When
the quality criteria are exceeded, FXGP stops trading, reinitializes the TI and
DT populations and restarts the training-and-validation cycle. Content of the
training and validation partitions is taken relative to the point ‘t ’ at which the
trading quality criteria interrupted trading. Once a new TI–DT champion is
identified trading resumes at the point trading was interrupted.

2.5 Source Data

The historical rates for EURUSD, USDCHF and EURUSD (1 hour resolution)
were downloaded with MetaTrader 4 FX terminal from the MetaQuotes Software
Corp. history centre [11,14]. Each 24 hour period therefore typically consists of
24 samples. Sampling at the rate of one hour intervals is conducted to reduce
the impact of “trading noise” [15]. Three datasets are employed each of which
includes 2008-2011 historical rates and consists of following fields: Date, Time,
bid price Open (Open), bid price High (High), bid price Low (Low), bid price
Close (Close) and Volume.

3 Experimental Setup

Performance is evaluated for the case of TI–DT trading agents as evolved from
a single initial cycle of evolution versus the proposed scheme for retraining TI–
DT trading agents interactively as established by the trading quality criterion
(100 runs in each case); hereafter static and retrain respectively. Each run sim-
ulates trading activity for three major currency pairs (EURUSD, USDCHF and
EURCHF) over the trading period from January 2, 2009 to December 30, 2011
(approx. 18,500 hours). These pairs are popular during all trading sessions i.e.,

198 A. Loginov and M.I. Heywood

Table 3. Trading conditions with initial trading balance of 100,000 USD

Condition Value Condition Value

Spread USDCHF 0.0003 Min. S/L level 0.0005

Spread EURUSD 0.0002 Pip 0.0001

Spread EURCHF 0.0005 Leverage 1:100

a trading day typically consists of 24 samples. The trading conditions [14] are
described in the Table 3.

An initial balance of 100,000 USD is assumed and the leverage is 1:100. The
account balance was then recalculated in USD based on a “2% Rule” [16] i.e.,
only two percent of the current balance may be reinvested at the next round
of trading. Moreover, in addition to quoting the resulting pips and USD at the
end of 3 years, we also consider the ‘overall’ trading outcome when conduct-
ing trading across a portfolio of currencies. This represents the case of a trader
conducting independent runs for all three currency pairs and expressing perfor-
mance as the combined income from the portfolio of three currency pairs (again
at the end of the 3 year period).

Table 4. FXGP parameterization

Parameter Value Parameter Value

DT pop. size 100 DT gap 25

Training period, hours (Nt) 1,000 Validation period, hours (Nv) 500

Max. generation 1,000 Max. DT size, nodes 6

Max. TI program size, steps 8 Number of TI registers 2

Probability of TI mutation 0.5 S/L size, pips 100

Training plateau length (τ) 200 TI–DT validation fraction (αv) 0.7

Trading Quality Criteria

Num. consecutive losses 5 Drawdown, pips 400

– – Max. time without trading activity, hrs 72

4 Results

The resulting (pips) distribution for one hundred runs for TI–DT under ‘static’
and ‘retrain’ deployments are shown in the Fig. 1(a) and Fig. 1(b) respectively.
Table 5 provides summary statistics. Not only is the profitability of TI–DT
traders with retraining significantly higher, but the number of profitable runs are
discovered between 1.3 to 3.5 times more frequently (depending on the currency
pair). For completeness the account balance during trading of the best, typical
and worse runs are shown in Fig 2(a) (pips) and Fig 2(b) (USD).

Finally, we can also consider the typical interval between retraining episodes,
Figure 3. Retraining appears to be called at a median rate of 200 hours, implying
that over the total (three year) trading interval, there are 92 calls for retraining.
From an end user perspective this corresponds to retraining once every 8 days

On Trading Criteria Based Retraining in FX Markets 199

Table 5. TI–DT Static versus Retraining summary. For consistency with Figure 2(b)
‘Overall balance’ include the initial trading balance of 100,000 USD.

Description retrain static retrain vs static, %

EURUSD profitable runs, % 75 58 129.3

USDCHF profitable runs, % 88 25 352.0

EURCHF profitable runs, % 89 38 234.2

Overall profitable runs, % 92 34 270.6

Best overall score, pips 13929 7036 n/a

Typical overall: pips 7500 -2000 n/a

Worse overall: pips -2922 -8753 n/a

Best overall balance: USD 1,242,920.54 414,005.96 n/a

Typical overall balance: USD 356,825.19 61,528.97 n/a

Worse overall balance: USD 44,816.85 13,513.47 n/a

EURUSD USDCHF EURCHF Overall

−10000

−5000

0

5000

10000

(a) Pips

EURUSD USDCHF EURCHF Overall

−5000

0

5000

10000

15000

(b) USD

Fig. 1. Performance distributions for TI–DT in pips: (a) static TI–DP and (b) TI–
DP with retraining criteria. Internal box-plot provides quartile statistics. Violin profile
characterizes the distribution.

−5000

0

5000

10000

Pips

0 5000 10000 15000 Hours

Best
Typical
Worse

(a) Pips

0

100000

500000

1000000

USD

0 5000 10000 15000 Hour

Best
Typical
Worse

(b) USD

Fig. 2. Adaptive TD results best, typical and worse runs for (a) Pips metric and (b)
USD (including initial balance of 100,000 USD)

200 A. Loginov and M.I. Heywood

(with trading performed on a 5 day trading week). Retraining the population
under the current parameterization takes 30 seconds on an iMac desktop.1 This
implies that the approach is able to complete the retraining cycle well before the
next (1 hour) sample is received, effectively rendering the approach ‘real-time’
from a deployment perspective.

EURUSD USDCHF EURCHF

0

500

1000

1500

Hours

Fig. 3. Distribution of retraining per currency over trading period

Finally, by way of comparison, we note that investing $100,000 in a commercial
mutual fund over the same period (January 2, 2009 to December 30, 2011) would
result in a best case rate of return of 5.58% [17] i.e., an account balance of
$117,687 at the end of the period. This is clearly better than the case of static
TI–DP, but is typically bettered by TI–DP with retraining enabled. Moreover,
post 2011 hindsight would be necessary to select such a profitable mutual fund.

5 Conclusion

It is increasingly being acknowledged that the non-stationary aspect of trading
environments places additional requirements on the model building process for
constructing trading agents. There are at least three different factors: providing
an appropriate representation, detecting change, and maintaining diversity in the
models proposed. This work assumes two specific properties: 1) a highly modular
representation care of coevolving TI and DT populations, and 2) dynamically
re-triggering training relative to a set of trading criteria or change detection.
Moreover, the approach taken to change detection is to adopt criteria that a
trader might well assume in practice. Such a scheme appears to be feasible
with both profitable trading strategies typically discovered and, given the hourly
rate of receiving new data, sufficient time to complete retraining before a new
sample is received. As a final verification of the approach, randomly selected

1 Intel Core i7, 2.8 GHz, 16 Gb RAM 1333 MHz DDR3, OS X 10.7.5.

On Trading Criteria Based Retraining in FX Markets 201

TI–DT ‘traders’ were implemented in the MetaTrader 4 trading terminal [14] as
Expert Advisors and tested on the FxPro demo account. The obtained result
were similar to the results of the FXGP simulation.

Acknowledgements. The authors gratefully acknowledge support from MI-
TACS and NSERC (Canada).

References

1. Morozov, I.V., Fatkhullin, R.R.: Forex: from simple to complex. Teletrade Ltd.
(2004)

2. Settlement, B.F.I.: Triennial central bank survey of foreign exchange and otc deriva-
tives market activity - preliminary global results (April 2010),
http://www.bis.org/press/p100901.htm

3. Passamonte, A.: Six facts that give forex traders an edge. Forex Journal (2011),
http://www.forexjournal.com/fx-education/

forex-trading/12125-six-facts-that-give-forex-traders-an-edge.html

4. Dempsey, I., O’Neill, M., Brabazon, A.: Foundations in Grammatical Evolution for
Dynamic Environments. SCI, vol. 194. Springer, Heidelberg (2009)

5. Tuite, C., Agapitos, A., O’Neill, M., Brabazon, A.: A Preliminary Investigation
of Overfitting in Evolutionary Driven Model Induction: Implications for Financial
Modelling. In: Di Chio, C., Brabazon, A., Di Caro, G.A., Drechsler, R., Farooq,
M., Grahl, J., Greenfield, G., Prins, C., Romero, J., Squillero, G., Tarantino, E.,
Tettamanzi, A.G.B., Urquhart, N., Uyar, A.Ş. (eds.) EvoApplications 2011, Part
II. LNCS, vol. 6625, pp. 120–130. Springer, Heidelberg (2011)

6. Mayo, M.: Evolutionary Data Selection for Enhancing Models of Intraday Forex
Time Series. In: Di Chio, C., Agapitos, A., Cagnoni, S., Cotta, C., de Vega, F.F.,
Di Caro, G.A., Drechsler, R., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Lang-
don, W.B., Merelo-Guervós, J.J., Preuss, M., Richter, H., Silva, S., Simões, A.,
Squillero, G., Tarantino, E., Tettamanzi, A.G.B., Togelius, J., Urquhart, N., Uyar,
A.Ş., Yannakakis, G.N. (eds.) EvoApplications 2012. LNCS, vol. 7248, pp. 184–193.
Springer, Heidelberg (2012)

7. Atwater, A., Heywood, M.I., Zincir-Heywood, A.N.: GP under streaming data con-
straints: A case for Pareto archiving? In: ACM Genetic and Evolutionary Compu-
tation Conference, pp. 703–710 (2012)

8. Lichodzijewski, P., Heywood, M.I.: Symbiosis, complexification and simplicity un-
der GP. In: ACM Genetic and Evolutionary Computation Conference, pp. 853–860
(2010)

9. Doucette, J.A., McIntyre, A.R., Lichodzijewski, P., Heywood, M.I.: Symbiotic
coevolutionary genetic programming. Genetic Programming and Evolvable Ma-
chines 13(1), 71–101 (2012)

10. Contreras, I., Hidalgo, J.I., Núñez-Letamendia, L.: A GA Combining Technical and
Fundamental Analysis for Trading the Stock Market. In: Di Chio, C., Agapitos,
A., Cagnoni, S., Cotta, C., de Vega, F.F., Di Caro, G.A., Drechsler, R., Ekárt, A.,
Esparcia-Alcázar, A.I., Farooq, M., Langdon, W.B., Merelo-Guervós, J.J., Preuss,
M., Richter, H., Silva, S., Simões, A., Squillero, G., Tarantino, E., Tettamanzi,
A.G.B., Togelius, J., Urquhart, N., Uyar, A.Ş., Yannakakis, G.N. (eds.) EvoAppli-
cations 2012. LNCS, vol. 7248, pp. 174–183. Springer, Heidelberg (2012)

http://www.bis.org/press/p100901.htm
http://www.forexjournal.com/fx-education/forex-trading/12125-six-facts-that-give-forex-traders-an-edge.html
http://www.forexjournal.com/fx-education/forex-trading/12125-six-facts-that-give-forex-traders-an-edge.html

202 A. Loginov and M.I. Heywood

11. ICM Trade Capital Markets Ltd.: Guide to online forex trading 19 pages
12. Wagner, N., Michalewicz, Z., Khouja, M., McGregor, R.R.: Time series forecasting

for dynamic environments: The DyFor genetic program model. IEEE Transactions
on Evolutionary Computation 11(4), 433–452 (2007)

13. Brameier, M., Banzhaf, W.: Linear Genetic Programming. Springer (2007)
14. MetaQuotes Software Corp., http://www.fxpro.com/trading/cfd/mt4/forex

(accessed September 2012)
15. Investopedia, http://www.investopedia.com/terms/n/noise.asp#axzz27d0d2rid

(accessed September 2012)
16. Investopedia, http://www.investopedia.com/terms/t/

two-percent-rule.asp#axzz2710QU8jR (accessed September 2012)
17. RBC Global Asset Management: Investment portfolio tools (January 2013),

https://services.rbcgam.com/portfolio-tools/

public/investment-performance/

http://www.fxpro.com/trading/cfd/mt4/forex
http://www.investopedia.com/terms/n/noise.asp#axzz27d0d2rid
http://www.investopedia.com/terms/t/two-percent-rule.asp#axzz2710QU8jR
http://www.investopedia.com/terms/t/two-percent-rule.asp#axzz2710QU8jR
https://services.rbcgam.com/portfolio-tools/public/investment-performance/
https://services.rbcgam.com/portfolio-tools/public/investment-performance/

Identifying Market Price Levels

Using Differential Evolution

Michael Mayo

University of Waikato, Hamilton, New Zealand
mmayo@waikato.ac.nz

http://www.cs.waikato.ac.nz/~mmayo/

Abstract. Evolutionary data mining is used in this paper to investigate
the concept of support and resistance levels in financial markets. Specif-
ically, Differential Evolution is used to learn support/resistance levels
from price data. The presence of these levels is then tested in out-of-
sample data. Our results from a set of experiments covering five years
worth of daily data across nine different US markets show that there is
statistical evidence for price levels in certain markets, and that Differen-
tial Evolution can uncover them.

Keywords: differential evolution, finance, support and resistance.

1 Introduction

Do price levels exist in market series? The idea of price levels – often referred
to as “support” and “resistance” – has been prevalent anecdotally for nearly as
long as financial markets have existed. These phenomenon are a staple feature
in most trading and finance textbooks (e.g. [3]), which typically teach people
to buy assets at support lines (because prices are likely to rise from them) and
conversely sell assets at resistance lines (because prices are likely to fall). But is
there statistical evidence that support and resistance lines exist?

Answering this question is the focus of this paper. We adopt a machine
learning-based methodology, utilizing Differential Evolution (DE) [4], in an at-
tempt to learn price levels from market data. We then compare these optimized
levels to randomly selected levels in order to determine appreciable differences.
Specifically, if a set of levels where price reverses are found in the training/in-
sample data, then we want to know if these levels continue to persist in chrono-
logically subsequent testing/out-of-sample data. If the levels do persist, then it
can be said that the concepts of support and resistance have foundation. On the
other hand, if the best levels found in-sample cannot be used to predict rever-
sals out-of-sample, then we can conclude confidently that the dual concepts of
support and resistance have no foundation.

To date, there has been little consideration of this question in the applied
machine learning/finance research literature. Most other approaches deal with
pattern-based turning point prediction and often ignore absolute prices. This
research, on the other hand, focuses on turning points based on absolute price

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 203–212, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.cs.waikato.ac.nz/~mmayo/

204 M. Mayo

levels. The question is whether or not the market “remembers” these old levels
and therefore whether history may repeat predictably. Note that the levels used
here are basically horizontal lines; we leave the generalization of the method to
angled trend lines and channels for future work.

Our results described in this paper show that in some markets, especially
indices such as the Dow Jones Industrial Average, the presence of price levels
can be detected with statistical significance.

2 Background

In this section, we cover the concept of a “price level” in a little more detail and
briefly explain the variant of DE used here.

2.1 Price Levels in Markets

A support or resistance line is, by definition, a point in the market where price
has an increased probability of reversal. For the purposes of this paper, a good
price level is therefore any price that the market often reaches but infrequently
penetrates. To illustrate this concept, consider Figures 1 and 2.

Fig. 1. Example of a poor level with excessive distance from price

Fig. 2. Example of a poor level with excessive penetrations by price

Fig. 3. Example of a strong level with a high ratio of failed to successful penetrations

These figures both depict poor levels. In the first case, price never reaches the
level and therefore there is no opportunity for price to reverse at the level. In
the second case, price frequently penetrates the level, so the level is clearly not
a support or resistance for price.

Figure 3, on the other hand, depicts conceptually a good level. In this case,
price frequently reverses at the level, and when it does eventually break through,
the level that was formally support now becomes resistance. The same concept
is depicted again in Figure 4, this time somewhat more realistically using can-
dlesticks.

Identifying Market Price Levels 205

Fig. 4. Figure similar to Fig. 3 but depicted more realistically using candlesticks

Table 1. Key parameters in differential evolution and
the values used in this paper for V S = 10 as suggested
by [2]

Parameter Value Definition
V S 10 Individual size (i.e. dimension)
NP 18 Population size
F 0.67 Amplification factor
CR 0.50 Probability of crossover
E 20,000 Max. number of function evals

In this paper, we de-
fine a level as any price
point with a high prob-
ability of a “failed pen-
etration” on the daily
charts. A failed penetra-
tion occurs when a can-
dlestick’s wick touches
the level, but the open
and close prices are both
on the same side of the
level.

For example, in Figure 4, the first and last pair of candlesticks depict failed
penetrations; however the fifth candlestick is a successful penetration because the
open and close prices straddle the level. We can therefore estimate the probability
of a failed penetration at the level as 4

5 . This is the essence of how we measure
the value of a price level in this paper.

2.2 Differential Evolution

Lack of space prevents a complete description of the DE algorithm here. Essen-
tially, DE is an evolutionary optimization algorithm for continuous spaces first
proposed in [4]. The algorithm has been used in financial applications previously
[1].

There are two main reasons for using DE in this research. Firstly, DE’s pro-
ponents claim that the algorithm’s global convergence properties are very good,
and this has been demonstrated in past studies. Secondly, DE requires very few
user-specified parameters. Furthermore, a recent study [2] has elucidated the

206 M. Mayo

best combinations of parameters for different problem sizes. In the experiments
described here, the problem size (i.e. the number of dimensions) V S is set to 10,
and the corresponding set of parameter values (according to [2]) that we use is
given in Table 1.

In all of our experiments, we use the standard DE/rand/1/bin variant of DE
described in [4].

3 Differential Evolution for Price Level Identification

In this section, the basic adaptation of DE for price level identification is de-
scribed. We also describe the randomized algorithm used as a control case in the
experiments in the next section.

3.1 Individual Representation

Recall that the aim of this research is to use DE to optimize a set of levels, such
that the probability of penetration failures at those levels is maximized. The
set of levels found would thus correspond to a set of support/resistance levels.
Ideally, the size of this set of levels should be variable because, for example, in
one market at a particular time there may be many active levels, but in another
market (or in the same market but at a different time) there may only be a few
active levels.

However, varying the number of levels like this poses difficulties when DE
is applied to the problem, because DE expects vectors to be fixed-length. We
therefore modify the problem slightly and require that the cardinality of the set
of levels be fixed to V S. In other words, a set S of price levels can be defined
according to Equation 1. The levels l0, l1, etc, can therefore be encoded directly
as vector elements for DE to optimize.

S = {l0, l1, ..., lV S−1}, li ∈ R (1)

An issue is that the individual levels, if unconstrained, may be “optimized” to
the same single best value. This was in fact the case in early testing of the
algorithm: if a single level proved to have high value, then it was usually the
case that DE would set l0, l1, etc, all to that price, with the net result being
that only a single level was discovered.

The solution to this problem is to limit the values of each variable li ∈ S to
non-overlapping ranges. Let us assume that the price series being used is divided
into a training series T0 that is followed chronologically by a testing series T1.
T0 is used for optimization, and T1 is set aside (it will be used later to calculate
the out-of-sample values of the best individual from the T0 optimization phase).

From the training series T0, a price range can be straightforwardly calculated,
and this range can be divided by the number of levels V S to give a range size
per level, as Equation 2 shows.

rangeSize =
high(T0)− low(T0)

V S
(2)

Identifying Market Price Levels 207

Once the range is known, then upper and lower bounds on the value of each level
can be calculated, Equations 3 and 4 show.

loweri = low(T0) + (i× rangeSize) (3)

upperi = loweri + rangeSize (4)

We therefore modify the standard DE algorithm and require that:

loweri ≤ li ≤ upperi, ∀li ∈ S. (5)

This is achieved by (i) initializing all new individuals with values for li selected
uniformly and randomly in the appropriate range and (ii) scoring all offspring
individuals with levels outside of the appropriate range with maximum negative
value, i.e. such individuals are allowed to be generated by the search process but
are immediately “aborted”.

3.2 Value Function

Evolutionary search algorithms require a value function that is either maximized
or minimized by the search process. In our case, the value function is an estimate
of the probability of the failure of price to penetrate the levels in the current set
of levels S being considered. Value should therefore be maximized.

Recall that we have a training set T0 used to estimate value for each set S –
and more generally, let T be any series of daily Open-High-Low-Close (OHLC)
data.

Given some T and a particular level l ∈ S, let us define two useful functions:
f(l, T), specifically the number of failed penetration attempts of price against
level l in the series T (i.e. the number of wicks that intersect l where the open
and close of the day are both on the same side of the level); and t(l, T), the total
number of intersections between price and l in T (i.e. the number of bars in T
that overlap l regardless of whether it is only a wick or a full candlestick body).

Obviously, then, it follows that t(l, T) ≥ f(l, T) will always hold.
To illustrate these functions, consider Figure 4. If the figure depicts the only

touches to the level l in T , then f(l, T) = 4 and t(l, T) = 5.
Clearly, then, for each level l wewill want to maximize the ratio of the first func-

tion to the second function in order to find good levels that are likely to “repel”
price. Mathematically, this is expressed in the function defined by Equation 6.

V (S, T) =

∑
l∈S f(l, T)

(
∑

l∈S t(l, T)) +K
(6)

A constant K is added to the denominator in order to reduce the value of levels
with only a small number of touches. For example, suppose V S = 1, S = {l},
f(l, T) = 1 and t(l, T) = 1. Then the ratio of f to g expressed as a percentage
is 100%, but the sample size is very small and this result is therefore unreliable.

208 M. Mayo

With K fixed to 10 (which is K’s value in all experiments reported here), the
value of this level is reduced appropriately to 1

11 . For the level depicted in Figure
4, the value would therefore be 4

5+10 = 4
15 , which is an underestimate of the true

probability of a failed penetration but certainly reasonably greater than 1
11 .

In summary, the optimization problem that we will use DE for can be ex-
pressed as the problem of finding a set SDE such that V (SDE , T0) is maximized,
with the out-of-sample value of interest denoted by V (SDE , T1).

3.3 Control Case

In order to evaluate the efficacy of DE for price level identification, we need
something to compare it to. In this research, we consider the case of simply
randomly generating the levels subject to the constraints expressed by Equations
1-5. This is performed using the training data T0 and is used as the control for
our evaluation. We refer to such a randomly generated set of levels by SRN and
therefore the out-of-sample value (of the control algorithm for a single trial) is
V (SRN , T1).

Note that we also use the exact same method to randomly initialize new
individuals at the start of each DE run – thus the key difference being tested is
the ability of DE to optimize levels within each level’s range.

4 Evaluation

In this section, the details of the evaluation and the results are covered.

4.1 Datasets

Three US stock indices and six US company stock markets were selected for
the evaluation. The indices (S & P 500, Dow Jones Industrial Average and the
Nasdaq Composite) were chosen because they are representative of the market
at large. The six companies were chosen randomly from those that make up the
respective indices, the only criteria being that (i) they needed to have at least
five year’s worth of price data available and (ii) no two companies from the same
industry were chosen. Table 2 lists details of the selected markets.

For each market, daily OHLC data for the five years to 3rd August 2012 was
downloaded from Yahoo! Finance [5].

4.2 Method

For each of the market data sets listed in Table 2, we conducted 50 trials.
Each trial consisted of (i) selecting a random 1 year subsample from the five

year’s worth of data, of which the first 6 months was used for training (T0) and
the second six months for testing (T1);(ii) generating a random set of levels SRN

given T0 which are subject to the constraints specified by Equations 1-4; and

Identifying Market Price Levels 209

Table 2. Markets analyzed in this study. Market data is daily OHLC bars for five years
to 3rd August 2012. Three month volume data from [5] as at 14th August 2012 is also
given for the company stock markets, so as to provide an indication of the liquidity of
each market.

Symbol Market Volume (3m)

SPY S & P 500 na
DJIA Dow Jones Industrial Average na
COMP Nasdaq Composite Index na

AAPL Apple 14,696,400
BA Boeing Airlines 4,163,520
CELG Celgene 3,622,660

JEC Jacobs Engineering Group 955,114
JNJ Johnson & Johnson 15,793,800
KMB Kimberly-Clark 2,845,560

(iii), generating an optimized set SDE using differential evolution to maximize
the value function on T0.

The out-of-sample values V al(SRN , T1) and V al(SDE , T1) were then com-
puted and recorded.

Thus, a total of nine markets × 50 trials or 450 experiments were conducted.

4.3 Results

Fig. 5. Market-algorithm (x axis) vs out-of-
sample value for best individual (y axis), for
indices

We present the results first graph-
ically using standard box-plots in
Figures 5-7 . Each figure depicts
the results of applying each algo-
rithm – randomized control and
DE – fifty times to a random 1 year
sub-sample of each five year mar-
ket price series. We will then we
discuss the statistical significance
of the results.

Examining firstly the results on
the index data in Figure 5, we
can see that the DE algorithm
does indeed find levels in two out
of the three indices that lead to
out-of-sample improvements. For
example, in the Dow Jones Indus-
trial Average data, median out-
of-sample value improves from
approximately 0.47 to 0.51. Simi-
larly, the S & P 500 index also appears to exhibit price levels, but the mean out-
of-sample value is less: the improvement is from a median of 0.34 to 0.36 instead.

210 M. Mayo

Fig. 6. Market-algorithm (x axis) vs out-of-sample value for best individual (y axis),
for stocks 1-3

Fig. 7. Market-algorithm (x axis) vs out-of-sample value for best individual (y axis),
for stocks 4-6

(Remember that value is a significant underestimate of the true probability of a
failed penetration due to the smoothing factor K in the value function.)

The NASDAQ Composite Index, on the other hand, exhibits an out-of-sample
experimental decrease in median value from 0.36 to 0.34. However, it should be
noted that out that the variance in the level values for this index is quite high in
the control case, but when DE is applied, the optimization process decreases vari-
ance considerably. In other words, DE makes the level quality more predictable,
albeit at the cost of a slight decrease in median value.

Identifying Market Price Levels 211

Table 3. P-values from paired statistical significance tests comparing the mean (T-
Test) and median (Wilcoxon) out-of-sample values of the best individuals obtained
using DE compared to randomized level selection. Circles denote significant differences
in the means/medians at 95% confidence.

T-Test Wilcoxon

SPY 0.062 0.013 •
DJIA 0.003 • 0.003 •
COMP 0.069 0.121

AAPL 0.677 0.478
BA 0.023 • 0.043 •
CELG 0.861 0.905

JEC 0.293 0.255
JNJ 0.071 0.135
KMB 0.104 0.107

Figures 6-7 depict the results of applying the control and DE algorithms to
the six stocks. Again, DE results in improvements in some cases (namely, Apple,
Johnson & Johnson and Boeing Airlines), but in other cases it fails to improve
median value. The probable explanation for this may be market volume: accord-
ing to Table 2, these are the three stocks with largest volume. The remaining
three markets have less volume, therefore less liquidity, and therefore the pres-
ence of price levels appears to be more difficult to detect.

Finally, we performed a series of statistical significance tests to verify the
results inferred visually from the box plots. For each market, two statistical
tests were carried out: a standard T-Test comparing the mean out-of-sample
performance of the control algorithm vs DE, and a non-parametric Wilcoxon
signed rank test comparing the medians. Both tests are those implemented in
the widely used statistical computing package R [6].

The results of these tests are shown in Table 3, where lower p-values indicate
increased likelihood that the out-of-sample means/medians over fifty trials are
not the same. A number of the tests, particularly those on the Dow Jones In-
dustrial Average data and Boeing Airlines, are significant with 95% confidence
(in fact, the DJIA tests are also significant at 99% level). Conversely, the tests
show no significant differences for some of the other markets such as Apple and
Celgene – although several of the test are close to significant.

5 Conclusion

To conclude, this paper has investigated the concept of price levels – anecdotally
“support” and “resistance” – in markets. We have used Differential Evolution
to learn these levels in markets. The learned levels were then compared to levels
selected randomly. The results indicate that in some markets (especially those
with higher liquidity) these levels do exist, and their presence can be detected
with statistical significant using our approach.

212 M. Mayo

References

1. Brabazon, A., O’Neill, M.: Biologically Inspired Algorithms for Financial Modelling.
Natural Computing Series. Springer (2006)

2. Pederson, M.: Good Parameters for Differential Evolution. Hvass Laboratories.
Technical Report HL1002 (2010)

3. Pring, M.: Technical Analysis Explained. McGraw-Hill (2002)
4. Storn, R., Price, K.: Differential Evolution – A Simple and Efficient Heuristic for

Global Optimization over Continuous Spaces. Journal of Global Optimization 11,
341–359 (1997)

5. http://nz.finance.yahoo.com/

6. R Development Core Team, R: A language and environment for statistical comput-
ing. R Foundation for Statistical Computing, Vienna, Austria,
http://www.R-project.org

http://nz.finance.yahoo.com/
http://www.R-project.org

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 213–222, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Evolving Hierarchical Temporal
Memory-Based Trading Models

Patrick Gabrielsson, Rikard König, and Ulf Johansson

School of Business and Information Technology, University of Borås, Sweden
{patrick.gabrielsson,rikard.konig,ulf.johansson}@hb.se

Abstract. We explore the possibility of using the genetic algorithm to optimize
trading models based on the Hierarchical Temporal Memory (HTM) machine
learning technology. Technical indicators, derived from intraday tick data for
the E-mini S&P 500 futures market (ES), were used as feature vectors to the
HTM models. All models were configured as binary classifiers, using a simple
buy-and-hold trading strategy, and followed a supervised training scheme. The
data set was partitioned into multiple folds to enable a modified cross validation
scheme. Artificial Neural Networks (ANNs) were used to benchmark HTM
performance. The results show that the genetic algorithm succeeded in finding
predictive models with good performance and generalization ability. The HTM
models outperformed the neural network models on the chosen data set and
both technologies yielded profitable results with above average accuracy.

1 Introduction

One recent machine learning technology that has shown good potential in algorithmic
trading is Hierarchical Temporal Memory (HTM). It borrows concepts from neural
networks, Bayesian networks and makes use of spatiotemporal clustering algorithms
to handle noisy inputs and to create invariant representations of patterns discovered in
its input stream. In a previous paper [3], an initial study was carried-out where the
predictive performance of the HTM technology was investigated within algorithmic
trading of financial markets. The study showed promising results, in which the HTM-
based algorithm was profitable across bullish-, bearish and horizontal market trends,
yielding comparable results to its neural network benchmark. Although, the previous
work lacked any attempt to produce near optimal trading models.

One popular group of optimization methods are evolutionary optimization me-
thods. The simplest evolutionary optimization technique is the genetic algorithm. This
paper extends the HTM-based trading algorithm, developed in the previous work, by
employing the genetic algorithm as an optimization method. Once again, neural net-
works are used as the benchmark technology.

2 Background

2.1 Technical Indicators

This study uses technical indicators, derived from the E-mini S&P 500 futures market
(ES), as features vectors to the HTM models. Technical indicators are commonly used

214 P. Gabrielsson, R. König, and U. Johansson

in technical analysis, which is the forecasting of future price movements based on an
examination of past price movements. To aid in the process, technical charts and
technical indicators are used to discover price trends and to time market entry and
exit. Technical analysis has its roots in Dow Theory, developed by Charles Dow in
the late 19th century and later refined and published by William Hamilton in the first
edition (1922) of his book “The Stock Market Barometer”. Robert Rhea developed
the theory even further in “The Dow Theory”, first published in 1932. Modern day
technical analysis [12] is based on the tenets from Dow Theory; prices discount eve-
rything, price movements are not totally random and the only thing that matters is
what the current price levels are. The reason why the prices are at their current levels
is not important.

2.2 Predictive Modeling

A common way of modeling financial time series is by using predictive modeling
techniques [17]. The time series, consisting of tick data, is usually aggregated into
bars of intraday-, daily-, weekly-, monthly- or yearly data. From the aggregated data,
features (attributes) are created that better describe the data, for example technical
indicators. The purpose of predictive modeling is to produce models capable of pre-
dicting the value of one attribute, the dependent variable, based on the values of the
other attributes, the independent variables. If the dependent variable is discrete, the
modeling task is categorized as classification. Classification is the task of classifying
objects into one of several predefined classes by finding a classification model capa-
ble of predicting the value of the dependent variable using the independent variables.

One common approach to solving a classification problem splits the data set into a
training-, validation- and test set. The training set is used to train a classification mod-
el, while the validation set is used to determine the performance of the classifier
and when to stop training in order to avoid over-fitting the model. The model is sub-
sequently applied to the test set to determine the performance of the classifier on
previously unseen data, i.e. its generalization ability.

This paper uses a modified k-fold cross validation technique, in which the data set
is partitioned into k folds. Classification models are then trained on k-2 folds, where
the two remaining folds are used as the validation set and the test set respectively.
This procedure is then repeated, using a different fold as the validation set and test set
in each run. The performance of the classification models are then averaged over all
runs to produce a final performance measure.

2.3 Hierarchical Temporal Memory

Hierarchical Temporal Memory (HTM) is a machine learning technology based on
memory-prediction theory of brain function described by Jeff Hawkins in his book On
Intelligence [8] and are modeled after the structure and behavior of the mammalian
neocortex. Just as the neocortex is organized into layers of neurons, HTMs are orga-
nized into tree-shaped hierarchies of nodes, where each node implements a common
learning algorithm [5].

 Evolving Hierarchical Temporal Memory-Based Trading Models 215

The input to any node is a temporal sequence of patterns. Bottom layer nodes sam-
ple simple quantities from their input and learn how to assign meaning to them in the
form of beliefs. A belief is the probability that a certain cause of a pattern in the input
stream is currently being sensed by the node. As the information ascends the tree-
shaped hierarchy of nodes, it incorporates beliefs covering a larger spatial area over a
longer temporal period. Higher-level nodes learn more sophisticated causes of pat-
terns in the input stream [9].

Frequently occurring sequences of patterns are grouped together to form temporal
groups, where patterns in the same group are likely to follow each other in time. This
contraption, together with probabilistic and hierarchical processing of information,
gives HTMs the ability to predict what future patterns are most likely to follow cur-
rently sensed input patterns. This is accomplished through a top-down procedure, in
which higher-level nodes propagate their beliefs to lower-level nodes in order to up-
date their belief states, i.e. conditional probabilities [6-7].

HTMs use Belief Propagation (BP) to disambiguate contradicting information
and create mutually consistent beliefs across all nodes in the hierarchy [14]. This
makes HTMs resilient to noise and missing data, and provides for good generalization
behavior.

With support of all the favorable properties mentioned above, the HTM technology
constitutes an ideal candidate for predictive modeling of financial time series, where
future price levels can be estimated from current input with the aid of learned
sequences of historical patterns.

In 2005 Jeff Hawkins co-founded the company Numenta Inc, where the HTM
technology is being developed. Numenta provide a free legacy version of their devel-
opment platform, NuPIC, for research purposes. NuPIC version 1.7.1 [13] was used to
create all models in this study.

3 Related Work

Following the publication of Hawkins' memory-prediction theory of brain function
[8], supported by Mountcastle's unit model of computational processes across the
neocortex [11], George and Hawkins implemented an initial mathematical model of
the Hierarchical Temporal Memory (HTM) concept and applied it to a simple pattern
recognition problem as a successful proof of concept [4]. This partial HTM imple-
mentation was based on a hierarchical Bayesian network, modeling invariant pattern
recognition behavior in the visual cortex.

An independent implementation of George's and Hawkins' hierarchical Bayesian
network was created in [18], in which its performance was compared to a backpropa-
gation neural network applied to a character recognition problem. The results showed
that a simple implementation of Hawkins' model yielded higher pattern recognition
rates than a standard neural network implementation.

In [19], the HTM technology was benchmarked with a support vector machine
(SVM). The most interesting part of this study was the fact that the HTM's performance
was similar to that of the SVM, even though the rigorous preprocessing of the raw data
was omitted for the HTM. In [2] a novel study was conducted, in which the HTM tech-
nology was employed to a spoken digit recognition problem with promising results.

216 P. Gabrielsson, R. König, and U. Johansson

The HTM model was modified in [10] to create a Hierarchical Sequential Memory
for Music (HSMM). This study is interesting since it investigates a novel application
for HTM-based technologies, in which the order and duration of temporal sequences
of patterns are a fundamental part of the domain. A similar approach was adopted in
[15] where the topmost node in a HTM network was modified to store ordered se-
quences of temporal patterns for sign language recognition.

In 2011 Fredrik Åslin conducted an initial evaluation of the HTM technology
applied to algorithmic trading [1]. In [3], the predictive performance of the HTM
technology was investigated within algorithmic trading of financial markets. The
study showed promising results, in which the HTM-based algorithm was profitable
across bullish-, bearish and horizontal market trends, yielding comparable results to
its neural network benchmark.

4 Method

4.1 Data Acquisition and Feature Extraction

The S&P (Standard and Poor’s) 500 E-mini index futures contract (ES), traded on the
Chicago Mercantile Exchange's Globex electronic platform, was chosen for the re-
search work. Intra-minute data was downloaded from Slickcharts [16] which provides
free historical tick data for E-mini contracts. Two months worth of ES market data
(5th July – 2nd September 2011) was used to train, validate and test the HTM classifi-
ers using a cross-validation approach.

The data was aggregated into one-minute epochs (bars), each including the open-,
high-, low- and close prices, together with the 1-minute trade volume. Missing data
points, i.e. missing tick data for one or more minutes, was handled by using the same
price levels as the previously existing aggregated data point.

A set of 12 technical indicators were extracted from the aggregated data in order to
populate the feature vectors for the classification models (the default parameter values
used, in minutes, are enclosed within parentheses); Percentage Price Oscillator
(12,26), Percentage Price Oscillator Signal Line (9), PPO Histogram (12,26,9), Rela-
tive Strength Indicator (14), William's %R (14), Normalized Volatility Indicator (10
and 20), Chaikin Money Flow (20), Bollinger Band %B (20,2), Rate Of Change (12),
Fast Stochastic Oscillator (14), Fast Stochastic Oscillator Signal Line (3).

4.2 Dataset Partitioning and Cross Validation

The dataset was split into a number of folds in order to support a cross-validation
approach. This was accomplished by creating a large enough window of size
N=22533 to be used as the initial training set, followed by partitioning the remaining
dataset into k=5 folds of size M=7035. The model was then trained using the training
window and validated on the closest fold ahead of the training window. This was
done for all individuals through a number of generations using the genetic algorithm.
The fittest individual from the final generation was then tested on the closest fold
ahead of the validation fold. Next, the window of size N was rolled forward M data
points to include the first fold in the training set and, hence, omitting the oldest M

 Evolving

data points of the initial wi
of size N, validated on the
closest fold ahead of the va
had been used as the valid
once. The performance me
to yield an overall performa
validation. Similarly, the p
averaged to yield an overall
Finally, since the genetic
repeated three times and a f
aging the averaged perform

The training, validation
window (training window 0
tion window 01 and test wi
picted in the figure and th
bottom of the figure. The l
to get the moving average c

Fig.

4.3 Classification Task

The classification task was

• Class 0 - The price will n
• Class 1 - The price will r

A tick is the minimum amo
mini S&P 500, the minimu
per contract. A simple buy
predicted to rise with at lea
1 contract of ES, hold on to

g Hierarchical Temporal Memory-Based Trading Models

indow. The model was then trained on the second wind
next fold ahead of the training window and tested on

alidation fold. This procedure was repeated until k-1 fo
dation set once and k-1 folds had been used as the test
asure obtained from all k-1 validations was then avera
ance measure for the model, similar to normal k-fold cr

performance measure obtained from all k-1 test folds w
l performance measure for the fittest models on the test
algorithm is non-deterministic, the whole procedure w
final averaged performance measure was obtained by av

mance measures from all three individual iterations.
and test datasets are shown in Fig.1. The initial train

01) is show to the far left in the figure, followed by vali
indow 01. Validation and test windows 02-04 are also

he range of training windows 01-04 are shown along
ighter patch to the left in the figure shows the buffer u

calculations going for the technical indicators.

. 1. The dataset for the E-mini S&P 500

k and Trading Strategy

defined as a 2-class problem:

not rise >= 2 ticks at the end of the next ten-minute perio
rise >= 2 ticks at the end of the next ten-minute period.

ount a price can be incremented or decremented. For the
m tick size is 0.25 points, where each tick is worth $12
y-and-hold trading strategy was adopted; if the marke
ast 2 ticks at the end of the next 10-minute period, then b
o it, and then sell it at the end of the period.

217

dow
the

olds
t set
aged
ross
was
set.
was
ver-

ning
ida-
de-
the

used

od.

e E-
2.50
et is
buy

218 P. Gabrielsson, R. König, and U. Johansson

4.4 Performance Measure and Fitness Function

The PNL (profit and loss) was chosen as the performance measure. Furthermore,
trading fees consisting of $3 per contract and round trip were deducted to yield the
final PNL, i.e. $3 for every true positive or false positive. This performance measure
was also used as the fitness function for the genetic algorithm. In order to accommo-
date negative PNLs, tournament selection was used.

4.5 Experiments

The set of feature vectors were fed to the HTM’s sensor, whereas the set of class vec-
tors were fed to the category sensor during training as shown in Fig 2. The top-level
node receives input from the hierarchically processed feature vector and from the
class vector via the category sensor. The output from the top node is class 0 or 1.

Fig. 2. HTM network configured as a classifier

An HTM network has a number of different parameters that can be optimized. The
most important parameters, shown in Table 1, were chosen for the optimization task.

The resulting HTM chromosome consisted of a bit string of length 274. The genet-
ic algorithm was configured to use tournament selection with a tournament size of 4,
single-point crossover with a 80% crossover probability and bit-flip mutation with a
4% mutation probability. A population of 50 individuals were evolved over 20 gener-
ations and elitism was used.

Each time the genetic algorithm requested a fitness score from an individual, the
following sequence of events took place; firstly, an HTM network was created with
the parameter settings derived from the individual's bit string pattern. Next, the HTM
was trained on the data points contained within the training window and validated
on the corresponding validation fold. Each training and validation step produced
a performance measure consisting of the PNL subtracted by the total trading cost

 Evolving Hierarchical Temporal Memory-Based Trading Models 219

Table 1. HTM Parameters

 Parameter Description

Network Topology Number of layers, including number of nodes per layer
Coincidences The maximum number of spatial patterns that can be learned
Max Distance Max. Euclidean distance for clustering spatial patterns to centroids
Sigma Sigma for the radial-basis function in Gaussian inference mode
SP Algorithm Spatial Pooler's inference algorithm {Gaussian, Kth Root Product}
Groups The maximum number of temporal patterns that can be learned
Complexity Model Complexity of the sequence model built by the sequencer [0 - 1.0]
Window Count Number of windows over which the sequencer will build a model
Window Length Samples per window where the sequencer will build a model
TP Algorithm Temporal Pooler's inference algorithm {Max Prop, Sum Prop, TBI}
Transition Memory How far back in time to look for temporal transitions

(calculated as $3 per trade including brokerage-, transaction- and exchange fees). At
the end of each generation, each individuals' performance measure was used as the
individual's fitness value by the genetic algorithm.

The neural network benchmark consisted of a recurrent network with feedback
loops from the hidden layers. The number of hidden layers, nodes per hidden layer,
the learning rate parameter and the momentum were encoded in a chromosome and
optimized by the genetic algorithm. Network permutations were left entirely to the
discretion of the genetic algorithm, but restricted to a maximum of two layers. The
backpropagation learning algorithm was used to update the network weights during
training. Sigmoid activation functions were used for all neurons except the output
layer which used a softmax activation function. The resulting chromosome had a bit
length of 25. The other settings for the genetic algorithm were the same as for the
HTM models.

Both technologies were run though Python code, where the execution time re-
quirements for the HTM models were more demanding than the neural networks.

5 Results

The optimization results show that a three-layer HTM was preferred over a two- or
four-layer topology. It was also obvious that the Gaussian inference algorithm was
preferred for the spatial pooler in every node. Furthermore, a Sigma value close to 1
standard deviation worked best together with the Gaussian inference algorithm. The
temporal pooler algorithm used Time Based Inference (TBI) for half the models on
average, whereas the maxProp algorithm was preferred for Flash Inference. The re-
maining parameters settings varied quite a lot amongst the various models.

All models showed positive PNLs in all datasets with minor differences between
the validation- and test sets on average. The differences between the validation- and
test sets for model accuracy and precision were also insignificant. There was a small
loss in accuracy between the training set and the validation set and a noticeable decay
in precision. One interesting observation is that even though the number of bad trades
(False Positives) outnumber the number of good trades (True Positives) in both the

220 P. Gabrielsson, R. König, and U. Johansson

validation- and test sets, all models still yielded positive PNLs. This suggests that the
models identified major increases in price levels correctly. The averaged performance
measures for each iteration are shown in Table 2, together with the total averaged
performance measures (arithmetic mean for all three iterations).

Table 3. ANN Average Performance

Dataset TP TN FN FP Accuracy Precision PNL

ITERATION 1

Training 200 14714 7333 288 0.662 0.399 $555.00
Validation 50 4274 2644 64 0.615 0.636 $1507.00
Test 35 4295 2645 57 0.616 0.555 $437.50

ITERATION 2
Training 45 14936 7488 66 0.665 0.410 $499.00
Validation 14 4324 2681 13 0.617 0.646 $872.00
Test 12 4335 2669 17 0.618 0.503 $135.00

ITERATION 3
Training 91 14894 7442 107 0.665 0.432 $4174.00
Validation 19 4316 2675 22 0.617 0.499 $773.00
Test 7 4342 2673 11 0.618 0.434 $140.00

TOTAL AVERAGE (ALL ITERATIONS)

Training 112 14848 7421 154 0.664 0.413 $1742.50
Validation 28 4305 2667 33 0.616 0.594 $1051.00
Test 18 4324 2662 29 0.617 0.497 $237.50

Table 2. HTM Average Performance

Dataset TP TN FN FP Accuracy Precision PNL

ITERATION 1

Training 1464 14897 6066 101 0.726 0.921 $111933.00
Validation 126 3633 2212 173 0.612 0.425 $1958.50
Test 128 3602 2201 213 0.607 0.491 $873.00

ITERATION 2
Training 1307 14874 6223 124 0.719 0.890 $97762.50
Validation 129 3633 2209 173 0.612 0.412 $2165.00
Test 113 3633 2216 182 0.610 0.439 $1023.50

ITERATION 3
Training 985 14746 6545 252 0.698 0.832 $58020.00
Validation 101 3640 2237 166 0.609 0.397 $1386.00
Test 93 3656 2236 159 0.610 0.364 $473.00

TOTAL AVERAGE (ALL ITERATIONS)
Training 1252 14839 6278 159 0.714 0.881 $89238.50
Validation 119 3635 2219 171 0.611 0.411 $1836.50
Test 111 3630 2217 185 0.609 0.431 $790.00

 Evolving Hierarchical Temporal Memory-Based Trading Models 221

For the ANNs, the genetic algorithm (GA) favored a single layer of hidden neu-
rons. It also produced a higher number of neurons in the hidden layers as compared to
the number of inputs. A low learning rate and momentum was selected by the GA.

The PNL was positive in all datasets except two test sets and the difference in
model accuracy and precision between the various datasets was insignificant. Despite
many ANN models having more bad trades (False Positives) than good trades (True
Positives), the PNL was positive for all models but 2 when applied to the test sets. As
with the HTM models, the ANN models identified major increases in price levels
correctly. The average performance measures are shown in Table 3. All average PNLs
are positive and model accuracy and precision are similar to each other in all datasets.

The results show that the HTM models outperformed the neural network models,
yielding 2-8 times as much in PNL. Both technologies had above average accuracy in
all datasets, whereas the precision was slightly below average in the validation- and
test sets. Overall, both models were profitable. The positive PNLs in both the valida-
tion- and test sets suggest that both technologies produced models with good genera-
lization abilities.

6 Conclusion

The results show that the genetic algorithm succeeded in finding predictive models
with good performance and generalization ability. Although the HTM models outper-
formed the neural networks with regards to PNL, both technologies yielded profitable
results with above average accuracy. The optimization results show that the HTM
models prefer a 3-layer network topology with a variable max distance setting and
number of coincidences and groups in each layer when applied to the E-mini S&P
500. A Gaussian inference algorithm with a Sigma setting close to 1 standard devia-
tion was preferred by the spatial pooler in all nodes in the network. With respect to
the temporal pooler's inference algorithm, flash inference and time-based inference
were equally prevalent amongst the nodes. The neural network preferred a single
hidden layer with a node count close to the dimensionality of its input and small val-
ues for its learning rate and momentum.

References

1. Åslin, F.: Evaluation of Hierarchical Temporal Memory in algorithmic trading, Depart-
ment of Computer and Information Science, University of Linköping (2010)

2. Doremale, J.V., Boves, L.: Spoken Digit Recognition using a Hierarchical Temporal
Memory, Brisbane, Australia, pp. 2566–2569 (2008)

3. Gabrielsson, P., Konig, R., Johansson, U.: Hierarchical Temporal Memory-based algo-
rithmic trading of financial markets. In: 2012 IEEE Conference on Computational Intelli-
gence for Financial Engineering & Economics (CIFEr), pp. 1–8 (2012)

4. George, D., Hawkins, J.: A hierarchical Bayesian model of invariant pattern recognition in
the visual cortex, in. In: Proceedings of the IEEE International Joint Conference on Neural
Networks, IJCNN 2005, vol. 3, pp. 1812–1817 (2005)

222 P. Gabrielsson, R. König, and U. Johansson

5. George, D., Jaros, B.: The HTM Learning Algorithms. Numenta Inc. (2007),
http://www.numenta.com/htm-
overview/education/Numenta_HTM_Learning_Algos.pdf

6. George, D., et al.: Sequence memory for prediction, inference and behaviour. Philosophi-
cal Transactions - Royal Society. Biological Sciences 364, 1203–1209 (2009)

7. George, D., Hawkins, J.: Towards a mathematical theory of cortical micro-circuits. PLoS
Computational Biology 5, 1000532 (2009)

8. Hawkins, J., Blakeslee, S.: On Intelligence. Times Books (2004)
9. Hawkins, J., George, D.: Hierarchical Temporal Memory - Concepts, Theory and Termi-

nology. Numenta Inc. (2006),
http://www.numenta.com/htm-overview/education/
Numenta_HTM_Concepts.pdf

10. Maxwell, J., et al.: Hierarchical Sequential Memory for Music: A Cognitive Model. Inter-
national Society for Music Information Retrieval, 429–434 (2009)

11. Mountcastle, V.: An Organizing Principle for Cerebral Function: The Unit Model and the
Distributed System, pp. 7–50. MIT Press (1978)

12. Murphy, J.: Technical Analysis of the Financial Markets, NY Institute of Finance (1999)
13. Numenta. NuPIC 1.7.1, http://www.numenta.com/legacysoftware.php
14. Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible inference.

Morgan Kaufmann (1988)
15. Rozado, D., Rodriguez, F.B., Varona, P.: Optimizing Hierarchical Temporal Memory for

Multivariable Time Series. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds.) ICANN
2010, Part II. LNCS, vol. 6353, pp. 506–518. Springer, Heidelberg (2010)

16. Slickcharts, E-mini Futures (2012), http://www.slickcharts.com
17. Tan, P.N., et al.: Introduction to Data Mining. Addison Wesley (2009)
18. Thornton, J., Gustafsson, T., Blumenstein, M., Hine, T.: Robust Character Recognition Us-

ing a Hierarchical Bayesian Network. In: Sattar, A., Kang, B.-H. (eds.) AI 2006. LNCS
(LNAI), vol. 4304, pp. 1259–1264. Springer, Heidelberg (2006)

19. Thornton, J., Faichney, J., Blumenstein, M., Hine, T.: Character Recognition Using Hie-
rarchical Vector Quantization and Temporal Pooling. In: Wobcke, W., Zhang, M. (eds.) AI
2008. LNCS (LNAI), vol. 5360, pp. 562–572. Springer, Heidelberg (2008)

Robust Estimation of Vector Autoregression

(VAR) Models Using Genetic Algorithms

Ronald Hochreiter and Gerald Krottendorfer

Department of Finance, Accounting and Statistics,
WU Vienna University of Economics and Business

ronald.hochreiter@wu.ac.at, gerald@krottendorfer.eu

Abstract. In this paper we present an implementation of a Vector au-
toregression (VAR) estimation model using Genetic Algorithms. The al-
gorithm was implemented in R and compared to standard estimation
models using least squares. A numerical example is presented to outline
advantages of the GA approach.

Keywords: Genetic algorithms, Time series, Vector autoregression
(VAR).

1 Introduction

Vector autoregression (VAR) models have been advocated by Sims [9] for appli-
cation in various fields of Finance, as those models provide a theory-free method
to estimate economic relationships. In this paper, we present an implementation
of a VAR estimation and simulation for predicting future asset returns using a
specially designed Genetic Algorithm and compare the properties of the solu-
tion to a model estimated using standard methods. For comparison we apply
the model to the Infineon stock. This paper is organized as follows: Section 2
provides an introduction to Vector autoregression (VAR) models. Section 3 out-
lines theoretical details of the implementation of VAR models using Genetic
Algorithms, while section 4 discusses its practical implementation. Section 5
provides numerical results, and Section 6 concludes the paper.

2 Vector Autoregression (VAR) Models

We use a VAR model to predict the next day return of a reference asset, with
the VAR model to be described as follows:

β1 · za1,l1 + β2 · za2,l2 + ...+ βm · zam,lm + ...+ βM · zaM,lM = ŷT (1)

In this formula ŷT is the predicted next day return at t = T and zam,lm are the
selected lags from asset am with lag index lm and βm are appropriate weighting
coefficients. Note that samples zam,lm in Equation (1) do not necessarily appear
in any consecutive order but are an unordered list of all asset samples that fulfill

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 223–233, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

224 R. Hochreiter and G. Krottendorfer

a certain selection criterion. Establishing a VAR model can be broken up in
the following steps. Firstly one has to provide a portfolio of assets, whose most
appropriate lags are selected for being part of the VAR model (lag selection). In
a next step weighting coefficients, one for every selected lag, need to be estimated
(weighting coefficient estimation) to create the VAR estimation model to forecast
the next days return of the reference asset according to equation (1).

2.1 Asset Selection

We have chosen the IFX stock (Infineon Technologies AG) to be the reference
asset yt. In general, every asset that exhibits an economic relationship to In-
fineon qualifies to be a relevant assets for the VAR model portfolio. These are
stocks of IFX stakeholders, such as customers, strategic partners, suppliers or
competitors of Infineon. Note that the IFX stock itself is also included in the
VAR asset portfolio. These assets have been manually derived from Infineon’s
financial reports (quarterly and annual reports 2010/2011)1 and from a market
analysis. Furthermore the portfolio includes assets that reflect the actual eco-
nomic situation of Infineon such as exchange rates or relevant stock indices. A
separate script checks all assets and rejects those which are inconsistent. An
asset is flagged to be inconsistent, when its daily return exceeds a certain value,
when samples are lost or when it is not traded for a longer period.

2.2 Lag Selection

We have adopted the cross correlation function (ccf) as a measure of similarity
of an asset of the portfolio against the reference asset as a function of a time-lag
applied to it. The ccf value ρr,am(lm) of asset number am against the reference
asset yt at lag lm is given by

ρy,am(lm) =
E [(yt−lm − μy)(zam,t − μam)]

ρy · ρam (2)

where μy and μam are the means of the reference asset and the comparison asset
respectively, and ρy and ρam are their standard deviation values. Furthermore
zam,t is the return time series of asset am and yt of the reference asset accord-
ingly. For practical implementations μy, μam, ρy and ρam have to be estimated
by observing samples of the involved time series within a limited time period
Tccf . Similarly, the expectation E in Eq. (2) will be applied within the time
period Tccf .

Since a large ccf value at lag lm expresses a strong correlation of the reference
asset to a lag-shifted asset, we assume that this indicates a strong correlation
of the actual sample of the reference asset and the lag-shifted (by lag lm) time
sample of this asset. Hence we assume those lags which have a sufficiently large
corresponding ccf values ρr,am(lm) to be strong lags and select those to be used
for the VAR estimation. We have tested two selection mechanisms:
1 http://www.infineon.com/cms/de/corporate/nvestor/

ireporting/reporting.html

http://www.infineon.com/cms/de/corporate/investor/reporting/reporting.html
http://www.infineon.com/cms/de/corporate/investor/reporting/reporting.html

Robust Estimation of Vector Autoregression (VAR) Models 225

– Constant lag number: select M strongest lags out of all past samples of all
assets of the portfolio, with M being a preselected value.

– Constant threshold: select all lags, whose corresponding ccf value exceeds a
preselected threshold level th. A suitable threshold value has been defined
by Tiao and Box [10]:

th = ± 2√
Tccf

(3)

2.3 Weighting Coefficient Calculation

The coefficients will be computed with two methods: a least squares calculation
(LS model) and by using a genetic algorithm (GA model). Both methods fit the
weighting coefficients to generate N past sample estimations of ŷt using Eq. (1)
as described in (4) to fit to their corresponding known historical values of yt.

β1 · za1,l1−1 + ...+ βm · zam,lm−1 + ...+ βM · zaM,lM−1 = ŷT−1 ≈ yT−1

β1 · za1,l1−2 + ...+ βm · zam,lm−2 + ...+ βM · zaM,lM−2 = ŷT−2 ≈ yT−2

· · ·
β1 · za1,l1−N + ...+ βm · zam,lm−N + ...+ βM · zaM,lM−N = ŷT−N ≈ yT−N

(4)

The system of linear equations (4) may be written in matrix notation.

B · Z = Ŷ (5)

where B is a vector containing the weighting coefficients βm, Z is a matrix
containing lags zam,lm and Ŷ is a vector containing the reference asset sample
estimates yT−n.

We will calculate B by adopting a GA optimization that uses a fitness function
which penalizes large differences of past estimates of ŷt and their corresponding
actual past samples yt:

fitness =
1

N

T−N∑
t=T−1

(yt − ŷt)
2 = optimization error (6)

Finally, the winning chromosome of the GA optimization is the coefficient vector
B, since it produces the smallest fitness function result, which we will refer to
as the optimization error. Note that solving equation (5) does not consider any
statistical variance in the VAR process an hence constitute an unrealistic model
of a real world process. However, we will address this issue in section (3) and will
deliver the mathematical motivation to use the GA optimization for Eq. (5).

For the LS method we have to consider the VAR process model [8]:

Y = B · Z + U (7)

According to (7), the actual past sample vector Y may be expressed by multi-
plying the coefficient vector B with lag matrix Z and adding an additional noise
vector U , that reflects the statistical behavior of the VAR process. The noise

226 R. Hochreiter and G. Krottendorfer

vector U equals the residual Y − Ŷ , hence the LS method can be applied by
minimizing the squared noise vector U · U ′. 2 The solution to this optimization
problem eventually delivers the LS optimal coefficient vector B̂:

B̂ = Y Z ′(ZZ ′)−1 (8)

Finally, we may use the coefficients, calculated by either the LS or the GA, to
forecast the next days yield using (1).

2.4 Robustness

Consider an economic shock that has a relevant and unforeseeable impact on
the time series of the VAR model portfolio (exogenous shock). Forecasts based
on past samples will deliver poor forecasts, since samples prior to the shock do
not reflect the actual time series trend anymore. However, the estimation per-
formance will be restored, after the estimation model will solely access samples
that occurred past the shock. Consequently, a VAR model which needs fewer
past samples for coefficient estimation will recover faster, being more robust to
such shocks.

The dimension of matrix Z is [M ×N], with M being the number of selected
lags and N being the number of equations in (4). N also determines, how many
samples of the past are observed and hence determines how fast a model recovers
from an exogenous shock.

– GA model: requires a squared matrix, and therefore N equals M , see Section
3 below.

– LS model: To deliver useful results, the dimension of lag matrix Z needs to
be non-square, with N > M 3. Here, the number of observed past samples
may be expressed by N = M + k, with k being an additional factor that
expresses how much the equation system (7) is over-determined.

In addition, one needs to add the maximal delay of lags (largest lm) resulting
in a total number of past lags L required for the estimation model:

GA model: LGA = M +max(lm)
LS model: LLS = M + k +max(lm)

(9)

Since the GA approach requires fewer past samples for coefficient estimation,
it will require less time to recover after an exogenous shock, and hence will be
more robust.
2 The tickle symbol at U ′ and Z′ in equation (8) designates the matrix transpose
operand.

3 If N < M , Eq. (8) does not have a solution at all. In case of a squared matrix

(N = M), Eq. (8) simplifies to B̂ = Y Z−1 which reflects the trivial solution of Eq.
(7) with U = O (O is the null-vector). A solution that neglects the existence of the
noise value U does not deliver realistic values for the sought coefficients, hence the
estimation quality will suffer. In fact, the larger N is, the better is the quality of an
LS estimation.

Robust Estimation of Vector Autoregression (VAR) Models 227

3 A New Approach Using Genetic Algorithms

Genetic algorithms and other biologically inspired algorithms have been applied
to various time series estimation problems successfully, see especially [3], but
also e.g. [11], [2], [7], [5], [1], [6] and [4] among others.

To explain the GA-based VAR method, let us assume the hypothetical case,
that the noise vector U of the VAR process is zero. We furthermore assume the
lag matrix Z to be square. The VAR model is then defined by:

Y = B0 · Z (10)

Although we could easily solve (10) analytically, we want to apply an optimizing
algorithm to solve this equation. Furthermore, although we assume that the
optimization error would converge to zero, we prematurely stop the iterative
optimization process. This causes the estimations Ŷ to substantially differ from
Y , which in equation (11) is expressed by the residual vector W :

Ŷ = B̂0 · Z +W (11)

Since we stopped the iterative optimization process before it has converged suffi-
ciently, B̂0 and B0 will differ substantially. Let us now assume, that we are able
to control the optimization algorithm such that the residual vector W is equal
to the noise vector U of the real world VAR model described in (7). In this case

B̂0 of the hypothetical model with noise vector set to zero is identical with the
coefficient vector B of the real world VAR model.

real world model: B · Z + U
hypothetical model: B0 · Z (12)

W = U ⇒ B̂0 · Z +W = B̂0 · Z + U ⇒ B̂0 = B

Now we obtain the estimated sample of the reference asset by applying the
coefficient set B to equation (1) and adding the residual wT .

β1 · za1,l1 + β2 · za2,l2 + ...+ βm · zam,lm + ...+ βM · zaM,lM = ŷT + wT (13)

The difference of the estimated return derived from the GA optimization ŷT and
the real world return value yT is then:

yT − ŷT = wT + uT (14)

By carrying out this optimization repeatedly (with a repetition factor R) and
calculating the mean value of these estimated returns we finally get:

yT − 1

R

R∑
r=1

ŷT (r) ≈ uT ⇒ ŷT =
1

R

R∑
r=1

ŷT (r) (15)

228 R. Hochreiter and G. Krottendorfer

During the GA optimization, we monitor the optimization error defined in (6)
rather than the residual vector W . Therefore we need a corresponding scalar
that reflects the noise vector U . To do so, we first calculate the noise vector U
of the LS model. From that, we compute the geometrical mean of the elements
ui of vector Û with length N and eventually gain the noise value u:

u =
1

N

√√√√ N∑
i=1

u2
i with Û = Y − B̂ · Z = {ui} (16)

According to above theory, we may derive ŷT when repetitively performing GA
optimizations solving (10), with each single optimization being aborted at an
optimization error (6) matching u.

4 Implementation

The GA model may be described as follows:

– Population: Set of chromosomes, each representing a possible weighting co-
efficient vector B.

– Initial population: The initial size of the weighting coefficients are assumed
to be of approximately the same magnitude, with the sum of all coefficients
to be one. Therefore coefficients are initially set by a random number with
standard deviation stdinit = 1 / number of coefficients per chromosome.

– Mutation: Add a normal distributed random value with given standard de-
viation stdGA to a coefficients of a chromosome with probability pm.

– Crossover: Crossover of two randomly selected (probability pc) chromosomes
with randomly selected crossover point. The Offspring replace their parents.

– Fitness calculation: The Fitness function is implemented according to equa-
tion (6).

– New population: New populations are selected using the fitness proportionate
roulette wheel selection method.

– Freezing: To keep the values of the weighting coefficients in a realistic range
and to speed up the optimization process, the updating value of the mutation
operator is frozen whilst operation by repeatedly reducing the standard devi-
ation factor stdGA. If freezing is not established, some weighting coefficients
tend to adapt to unrealistic large numbers.4

– Optimization cycles: The GA optimization shall be terminated when the
optimization error equals the noise value u. This is done indirectly by pre-
defining the number of optimization cycles. This simple method to control
the optimization error proved to be very accurate. Moreover, it allows for a
simple mechanism to implement the freezing mechanism. Freezing of stdGA

is performed at a fraction of the total number of optimization cycles.
– Repetition: The whole GA optimization is performed R times with the final

estimation computed according to (15).

4 This is due to the fact, that we optimize an unrealistic model which neglects U .

Robust Estimation of Vector Autoregression (VAR) Models 229

5 Numerical Results

5.1 Measurement of the Estimation Quality

Measuring the quality of the estimation will be conducted by actively managing
the IFX stock according to the daily return forecast. In case of an estimated yield
which is positive, we will either buy the share (in the case that we do not own it)
or keep it (when it has been already bought before). In case of an estimated yield
which is negative, we will either sell it (when we own the stock) or do nothing
(when the stock has been sold before). The return of the managed asset is the
return we gain after 100 trading days of applying this strategy. The annualized
ROI might be gained by extrapolating the return results to a whole year by
simply multiplying managed asset return by a factor of 2.6, a virtual number
though, which should be judged with caution. The first observed trading day is
January the 26th of 2012 and the last observed day is June the 13th in 2012.
Note that no transaction costs have been considered in this measurement. The
standard deviation of the IFX stock return within this period is 0.024. Within
this period the IFX stock fell from EUR 7, 02 to EUR 6, 16.

5.2 Settings of the Genetic Algorithm

The parameters of the GA have been chosen empirically, such that an
approximately constant number of improvements per iteration is established.
The standard deviation for the initial population generation and the first value
of standard deviation value for the mutation operand have been chosen to reflect
a typical value of weighting coefficients. Consecutive values of stdGA have been
selected to establish an approximately constant number of improvements during
the optimization cycles.

– population size: 100 chromosomes.

– Probability of crossover: pc = 0.01.

– Probability of mutation: pm = 0.01.

– Standard deviation for the initial population generation: stdinit = 0.1.

– Standard deviation value for the mutation operand: stdGA =
(0.1, 0.05, 0.03, 0.01). These 4 values are implemented one after an-
other, at a quarter of the total optimization cycle number respectively to
perform freezing.

– Number of optimization cycles: default setting: 200 optimization cycles re-
ferring to an optimization error of 0.12.

– Number of lags M (default setting): 20.

– Threshold value (default setting): as given by equation (3).

– Repetition factor R (number of repeated optimizations): 50 or 100.

– Window size Tccf for the ccf to perform lag selection: 50 samples.

– Lag number restricted to lm < 20.

230 R. Hochreiter and G. Krottendorfer

Fig. 1. Simulation Results

Robust Estimation of Vector Autoregression (VAR) Models 231

5.3 Simulation Results

Figure (1) shows numerical results we obtained from the simulations.
Before running the GA optimization, the magnitude of the noise value is

required to calibrate the GA optimization. Therefore the noise value is obtained
by doing a LS simulation, and will be used as a directive to set the GA model
optimization error subsequently. Part 1 of Figure 1 shows the noise value, which
has been measured at every trading day within the defined trading period of 100
days. The noise value varies from 0.008 to 0.013 with a mean of approximately
0.011.

Part 2 depicts the return of the managed asset using forecasts from the GA
model. The GA optimizations have been performed with different optimization
error settings, reflecting the spread of the noise value as shown in Part 1. This
evaluation is performed by lag selection methods (as described in Section 2.2,
i.e. by applying a constant number of lags M (10 and 20)) as well as by setting
a constant threshold value according to Tiao and Box defined in (3). Part 2
does not show any significant curve progression and variations of the return at
different optimization errors may rather reflect the statistical behavior of the
simulation than highlighting the optimization error to be optimal.

Part 3 compares the obtained return of a managed asset (y-axis) from the
GA based VAR model versus the LS based VAR model when applying the con-
stant lag number method. Here, a predefined number of strongest lags (number
of lags M , horizontal axis) are selected per ccf. Results of the GA model (solid
line) show a rather flat line with a slight increase as M is increased if we ig-
nore low returns for small values of M ≤ 12. The LS method has been tested
for different values of k, which expresses how much the system of equations
for the LS optimization is overdetermined. As expected, larger k yields better
returns. Assuming a VAR model with M = 15, the total number of past sam-
ples required for the GA model would typically add up to LGA = 25 (with
max(lm) ≈ 10). Compared to the best LS model with k = 30, the total number
of past samples used for coefficient estimation is LLS = 45, and hence more
than two months5 are required for this LS model to settle from an exogenous
shock.

The fourth part provides a comparison of the GA and LS models when ap-
plying the constant threshold lag selection method. The LS model (solid line)
has been tested for different values of k (x-axis) and is compared to the GA
model (dotted line).6 The number of selected lags is defined inherently by the
threshold value (3) and therefore varies from day to day. On averageM is about
50 and its maximal value exceeds 90. Lowering the threshold to lower M would
not work, since M would soon become zero for some trading days. Therefore
the constant threshold method can’t be recommended for modeling a robust
estimation model.

5 45 trading days are approx. 63 calendar days.
6 Since k is not applicable to the GA method, the according graph is a straight line.

232 R. Hochreiter and G. Krottendorfer

An LS model based computation of estimates for 100 trading days required
less than a minute on a standard PC. The GA model, however, required ap-
proximately 30 hours to compute 100 estimation with 50 repetitions each. Par-
allelization is necessary to include the method into real-world environments.

6 Conclusion

We have shown that a GA based model constitutes comparable estimation per-
formance than a state-of-the-art LS model. This was proved numerically by using
return forecasts to actively manage the Infineon stock and compare the return
of the managed asset of the GA versus the LS method after 100 trading days.
The GA optimization method can be designed to have a much shorter recovery
time in the case of exogenous shocks. This is due to the shorter sample history
which is required for the GA based coefficient estimation. A drawback of the GA
model is its larger simulation time compared to the LS model. Simulations have
been run for a single stock and for a single time period. Hence more simulations
are necessary to improve the credibility.

References

1. Agapitos, A., O’Neill, M., Brabazon, A.: Evolving Seasonal Forecasting Models
with Genetic Programming in the Context of Pricing Weather-Derivatives. In: Di
Chio, C., Agapitos, A., Cagnoni, S., Cotta, C., de Vega, F.F., Di Caro, G.A.,
Drechsler, R., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Langdon, W.B.,
Merelo-Guervós, J.J., Preuss, M., Richter, H., Silva, S., Simões, A., Squillero, G.,
Tarantino, E., Tettamanzi, A.G.B., Togelius, J., Urquhart, N., Uyar, A.Ş., Yan-
nakakis, G.N. (eds.) EvoApplications 2012. LNCS, vol. 7248, pp. 135–144. Springer,
Heidelberg (2012)

2. Azzini, A., Dragoni, M., Tettamanzi, A.G.B.: Using Evolutionary Neural Networks
to Test the Influence of the Choice of Numeraire on Financial Time Series Modeling.
In: Di Chio, C., Brabazon, A., Di Caro, G.A., Drechsler, R., Farooq, M., Grahl,
J., Greenfield, G., Prins, C., Romero, J., Squillero, G., Tarantino, E., Tettamanzi,
A.G.B., Urquhart, N., Uyar, A.Ş. (eds.) EvoApplications 2011, Part II. LNCS,
vol. 6625, pp. 81–90. Springer, Heidelberg (2011)

3. Brabazon, A., O’Neill, M.: Biologically Inspired Algorithms for Financial Mod-
elling. Springer (2006)

4. Chung, F., Fu, T., Ng, V., Luk, R.: An evolutionary approach to pattern-based
time series segmentation. IEEE Transactions on Evolutionary Computation 8(5),
471–489 (2004)

5. Dang, J., Brabazon, A., O’Neill, M., Edelman, D.: Estimation of an Egarchvolatil-
ity Option Pricing Model using a Bacteria Foraging Optimisation Algorithm. In:
Brabazon, A., O’Neill, M. (eds.) Natural Computing in Computational Finance.
SCI, vol. 100, pp. 109–127. Springer, Heidelberg (2008)

6. Ferreira, T., Vasconcelos, G., Adeodato, P.: A new evolutionary method for time
series forecasting. In: ACM GECCO 2005, pp. 2221–2222 (2005)

Robust Estimation of Vector Autoregression (VAR) Models 233

7. Larkin, F., Ryan, C.: Modesty Is the Best Policy: Automatic Discovery of Viable
Forecasting Goals in Financial Data. In: Di Chio, C., Brabazon, A., Di Caro,
G.A., Ebner, M., Farooq, M., Fink, A., Grahl, J., Greenfield, G., Machado, P.,
O’Neill, M., Tarantino, E., Urquhart, N. (eds.) EvoApplications 2010, Part II.
LNCS, vol. 6025, pp. 202–211. Springer, Heidelberg (2010)

8. Lütkepohl, H.: New Introduction to Multiple Time Series Analysis. Springer (2007)
9. Sims, C.: Macroeconomics and reality. Econometrica 48(1), 1–48 (1980)

10. Tsay, R.: Analysis of Financial Time Series. Wiley Series in Probability and Statis-
tics. John Wiley & Sons (2005)

11. Tuite, C., Agapitos, A., O’Neill, M., Brabazon, A.: A Preliminary Investigation
of Overfitting in Evolutionary Driven Model Induction: Implications for Financial
Modelling. In: Di Chio, C., Brabazon, A., Di Caro, G.A., Drechsler, R., Farooq,
M., Grahl, J., Greenfield, G., Prins, C., Romero, J., Squillero, G., Tarantino, E.,
Tettamanzi, A.G.B., Urquhart, N., Uyar, A.Ş. (eds.) EvoApplications 2011, Part
II. LNCS, vol. 6625, pp. 120–130. Springer, Heidelberg (2011)

Usage Patterns of Trading Rules in Stock

Market Trading Strategies Optimized
with Evolutionary Methods

Krzysztof Michalak1, Patryk Filipiak2, and Piotr Lipinski2

1 Institute of Business Informatics,
Wroclaw University of Economics, Wroclaw, Poland

krzysztof.michalak@ue.wroc.pl
2 Institute of Computer Science,

University of Wroclaw, Wroclaw, Poland
{patryk.filipiak,lipinski}@ii.uni.wroc.pl

Abstract. This paper proposes an approach to analysis of usage pat-
terns of trading rules in stock market trading strategies. Analyzed strate-
gies generate trading decisions based on signals produced by trading
rules. Weighted sets of trading rules are used with parameters optimized
using evolutionary algorithms. A novel approach to trading rule pattern
discovery, inspired by association rule mining methods, is proposed. In
the experiments, patterns consisting of up to 5 trading rules were dis-
covered which appear in no less than 50% of trading experts optimized
by evolutonary algorithm.

Keywords: stock market, trading rules, evolutionary computing.

1 Introduction

Evolutionary computing is often applied to various economic and financial prob-
lems [1,7,16] such as optimization of investment portfolios [3,13,15,18] and sup-
porting financial decision making [9,12,22]. Training of trading experts based on
sets of trading rules is an important task with practical applications in stock
market trading [6,10,11].

In this paper we consider optimization of trading experts based on a predefined
set of trading rules. An individual rule may be parameterized by several variables
such as time period for which underlying indicators are calculated and various
coefficients. Most often ”buy” and ”sell” signals are generated in response to
certain indicators crossing each other or crossing a selected threshold. In the
latter case, thresholds used by the rule are also considered as parameters affecting
the behaviour of this particular rule. Each expert is based on the same set of
rules, but with differing weights from range [−1, 1], so, in principle, it may skip
certain rules (weight = 0) or even negate their behaviour (weight < 1). Final
decision returned by an expert at any time instant is determined by calculating
a weighted sum of outputs of all trading rules and by applying buy and sell

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 234–243, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Usage Patterns of Trading Rules in Stock Market Trading Strategies 235

decision thresholds assigned to that particular expert. Expert parameters form
a vector with numeric coordinates each of which is interpreted accordingly as:
rule weight, rule parameter (time period, coefficient, rule decision threshold) or
expert decision threshold.

The approach used in this paper consists of application of two separate steps:
evolutionary optimization that adjusts parameters of trading experts in order to
achieve good performance and frequent set analysis algorithm which identifies
patterns of trading rules that occur together in successful experts. Identification
of frequent patterns in trading rules is intended as a further step in relation
to work described in [14]. The first step, i.e. expert parameters optimization
was performed using evolutionary algorithm described later in the paper which
ran for a predefined number of generations. The performance of the trading
expert was optimized separately for each trading day (with the assumption,
that only intra-day trading is performed) and a separate optimization procedure
was performed for each stock. From the optimized population a constant fraction
of best experts was taken as input data for the process of discovering patterns
of usage of trading rules.

2 Evolutionary Optimization

Trading experts generate decisions based on trading rules. The rules require var-
ious parameters, the signals generated by the rules are weighted and compared
to decision thresholds. Therefore, the behaviour of a trading expert can be pa-
rameterized by a vector of constant length with coordinates corresponding to
the above mentioned parameters.

Vector parameterizing a trading expert can be used as a chromosome of a
specimen in an evolutionary algorithm. Such a chromosome can be stored in the
following form:

weight1, par1,1, . . . , par1,k1 , . . . , weightn, parn,1, . . . , parn,kn , Θbuy, Θsell

where:
weighti - i-th rule weight,
pari,j - j-th parameter of the i-th rule,
ki - number of parameters for the i-th rule,
Θbuy , Θsell - decision thresholds.

In order to optimize the performance of trading experts an evolutionary al-
gorithm Algorithm 1 was employed.

In the presented algorithm the following operations are used:

SelectMatingPool - selection of a mating pool for crossover and mutation
consisting ofNmate specimens. This selection is performed using a series of binary
tournaments in which the better one of the two randomly selected specimens is
included in the mating pool.

Crossover - a single-point crossover operator.

236 K. Michalak, P. Filipiak, and P. Lipinski

Algorithm 1. Evolutionary algorithm used for optimizing trading experts

Npop - population size
Nmate - mating pool size
Pmut - probability of mutating a single parameter

P1 = InitPopulation()
Evaluate(P1)
for i = 1 → NGen do

P ′
i = SelectMatingPool(Pi, Nmate)

P ′
i = Crossover(P ′

i)
P ′
i = Mutate(P ′

i , Pmut)
Evaluate(P ′

i)
Pi = Pi ∪ P ′

i

Pi+1 = Reduce(Pi, Npop)
end for

Mutate - a mutation procedure which changes any given vector coordinate
with Pmut probability.

Evaluate - specimen evaluation based on simulated performance of the trad-
ing expert. For a given specimen trading decisions are generated by an expert
based on parameters vector equal to the genotype of the specimen. The evalu-
ation of the specimen is the return which would be achieved if the suggestions
of the expert were used to buy and sell stocks in the intra-day trading model.
Additionally, a specimen is required to perform at least one transaction during
the day (specimens that do not generate any ”buy” signals are therefore given
an evaluation of 0). A commision of 0.4% is applied to each transaction (each
buy and each sell).

Reduce - reduction of Pi ∪P ′
i back to Npop specimens with Nelite best spec-

imens guaranteed to be copied to the next population and the rest filled using
fitness proportionate selection.

Parameters of the evolutionary algorithm in the experiments were set as pre-
sented in Table 1.

Table 1. Parameters of the evolutionary algorithm

Desctiption Symbol Value

Number of generations Ngen 30
Size of the population Npop 100
Size of the mating pool Nmate 50
Number of the best specimens Nelite 20
copied to the next population
Probability of mutating Pmut 0.1
each parameter

Usage Patterns of Trading Rules in Stock Market Trading Strategies 237

3 Analysis of Trading Rule Sets

In this paper we aimed at finding sets of trading rules that appear together
in trading experts optimized using evoluationary algorithm. The data set for
pattern discovery was a top 20% of specimens present in the last population in
evolutionary algorithm (after Ngen generations). These 20% of specimens were
selected separately for each stock and each trading day. To increase the size of
the data set (which is only 20 specimens for Npop = 100) specimens for each
stock obtained on all trading days were used together in a single set for pattern
discovery.

The general approach is similar to frequent set discovery techniques used in as-
sociation rule mining [4,5,17]. The algorithm that generates sets of trading rules
that are frequently found in good trading experts is presented in Algorithm 2. It
builds frequent rule sets incrementally, starting from sets containg one element
each (which are simply equivalent to individual rules). Building larger sets is
based on the observation, that if a set is frequent then all of its subsets must
also be frequent. Based on this property it is possible to build larger frequent
sets by extending the already found smaller frequent sets. The support needs to
be calculated for the newly constructed sets, but there is a gain in that the num-
ber of candidate sets is lower than when all possible sets of given size would be
considered. This algorithm is parameterized by the number minSupport which
defines what percentage of specimens a rule set must appear in to be considered
frequent. In the experiments this number was set to minSupport = 50%. The
rule is considered to be used in a particular expert if the absolute value of its
weight is not less than minWeight parameter. In the experiments the minimum
weight was set to minWeight = 0.7.

Algorithm 2. Frequent rule set discovery algorithm
i = 1
C1 = family of sets, each containing one rule
S1 = CheckSupport(C1)
while |Si| > 1 do

Ci+1 = Combine(Si)
Si+1 = CheckSupport(Ci+1)
i = i+ 1

end while

The procedures used in this algorithm are as follows:

CheckSupport - processes a family Ci of candidate sets of rules. For each set
of rules R ∈ Ci iterates over the entire data set V (consisting of N specimens).
If in a given specimen each of the rules in the candidate set R has a weight with
absolute value at least minWeight the count m is increased. The procedure
returns those candidate sets from Ci, which have m ≥ minSupport ∗ N . The
CheckSupport procedure is detailed in Algorithm 3.

238 K. Michalak, P. Filipiak, and P. Lipinski

Algorithm 3. CheckSupport - a procedure for selecting rule sets with support
≥ minSupport

Ci - a family of candidate sets
Si - a family of frequent sets
V - data set of the best specimens generated by evolutionary algorithm
N - the size of the data set V (N = |V |)

Si = ∅
for R ∈ Ci do

m = 0
for v ∈ V do

if ∀k ∈ R · |v[k]| ≥ minWeight then
m = m+ 1

end if
end for
if m ≥ minSupport ∗N then

Si = Si ∪ {R}
end if

end for

Combine - given a family of frequent sets Si of size i generates a family
of candidate sets Ci+1 of size i + 1. This family includes all sets that have the
property, that each subset of size i of each candidate set is in Si (i.e. is a frequent
set). The Combine procedure is detailed in Algorithm 4.

Algorithm 4. Combine - a procedure generating a family Ci+1 of candidate
sets of size i+ 1 based on a family Si of frequent sets of size i

Ci+1 - a family of candidate sets of size i+ 1
Si - a family of frequent sets of size i

Ci+1 = ∅
for Tj ∈ Si do

for Tk ∈ Si do
if |Tj\Tk| = 1 and |Tk\Tj | = 1 then

Ci+1 = Ci+1 ∪ {TJ ∪ Tk}
end if

end for
end for

4 Experiments

The experiments were performed on high-frequency data from the New-York
Stock Exchange. 50 stocks were analyzed: AAPL, AMZN, BIDU, BIIB, C, CAT,
CF, CHK, CMI, CRM, CSCO, CVX, DIA, EMC, EOG, F, FAS, FFIV, GE,
GLD, GLW, GOOG, GS, HPQ, IBM, INTC, IVV, JPM, MDY, MO, MS, MSFT,

Usage Patterns of Trading Rules in Stock Market Trading Strategies 239

Table 2. Maximum sizes of frequent rule sets and the number of sets of the maximum
size

Ticker Max set Num. Ticker Max set Num. Ticker Max set Num.
size sets size sets size sets

AAPL 4 471 FFIV 3 235 NVDA 3 2907
AMZN 3 1 GE 3 14 ORCL 3 4237
BIDU 3 141 GLD 3 2057 PFE 3 1622
BIIB 3 1466 GLW 5 7 PX 2 1267
C 3 249 GOOG 4 2 SPG 3 86
CAT 3 191 GS 3 518 SPY 3 1456
CF 3 724 HPQ 3 1310 T 5 29
CHK 3 288 IBM 3 567 TLT 3 277
CMI 4 4 INTC 3 197 UNP 3 1
CRM 3 105 IVV 3 15 V 3 277
CSCO 3 227 JPM 3 920 VALE 3 1190
CVX 3 74 MDY 3 4227 VZ 3 569
DIA 2 2177 MO 3 3 WFC 2 899
EMC 3 2748 MS 3 1777 WYNN 5 14
EOG 3 9 MSFT 3 118 XLF 3 196
F 3 192 NFLX 5 1 YHOO 4 5
FAS 4 5 NKE 2 1725

Table 3. Examples of frequent rule sets of size 5 obtained in the experiments

Ticker Rules

GLW EMV(3)+TBR, EMV(3)+Trend, EMV(3)+WiO
LinDir, EMV(3)+NormPrice

NFLX EMV(2)+RoC, K-Stochastic, NormPrice+WiO
EMV(2)+NormPrice, RSI

T NormPrice+MA, NormPrice+two MAs, NormPrice+TBR,
NormPrice+V &P(1), V&P(2)

WYNN EMV(1)+OvO, EMV(2)+V&P(2), NormPrice+two MAs,
RoC, WiO

NFLX, NKE, NVDA, ORCL, PFE, PX, SPG, SPY, T, TLT, UNP, V, VALE, VZ,
WFC, WYNN, XLF and YHOO. Minute quotations were used from trading days
in the period from 2012.01.01 to 2012.06.30. This period contains 125 trading
days.

A set of 78 trading rules was used. The rules were based on indicators such as
Moving Averages [21], Chaikin Oscillator [19], Overbought/Oversold [20], RSI
[2], Williams %R Oscillator [8], etc. Due to space limitations it is not possible
to describe all the rules in detail. Some of the indicators were based on moving

240 K. Michalak, P. Filipiak, and P. Lipinski

0

1000

2000

3000

4000

5000

Ticker

N
um

be
r

of
 s

et
s

A
A

P
L

A
M

Z
N

B
ID

U
B

IIB C
C

A
T

C
F

C
H

K
C

M
I

C
R

M
C

S
C

O
C

V
X

D
IA

E
M

C
E

O
G F

F
A

S
F

F
IV G
E

G
LD

G
LW

G
O

O
G

G
S

H
P

Q
IB

M
IN

T
C

IV
V

JP
M

M
D

Y
M

O
M

S
M

S
F

T
N

F
LX

N
K

E
N

V
D

A
O

R
C

L
P

F
E

P
X

S
P

G
S

P
Y T

T
LT

U
N

P V
V

A
LE V
Z

W
F

C
W

Y
N

N
X

LF
Y

H
O

O

Fig. 1. Number of 2-element frequent rule sets for stocks used in the experiments

0

1

2

3

4

5

6x 10
4

Ticker

N
um

be
r

of
 s

et
s

A
A

P
L

A
M

Z
N

B
ID

U
B

IIB C
C

A
T

C
F

C
H

K
C

M
I

C
R

M
C

S
C

O
C

V
X

D
IA

E
M

C
E

O
G F

F
A

S
F

F
IV G
E

G
LD

G
LW

G
O

O
G

G
S

H
P

Q
IB

M
IN

T
C

IV
V

JP
M

M
D

Y
M

O
M

S
M

S
F

T
N

F
LX

N
K

E
N

V
D

A
O

R
C

L
P

F
E

P
X

S
P

G
S

P
Y T

T
LT

U
N

P V
V

A
LE V
Z

W
F

C
W

Y
N

N
X

LF
Y

H
O

O

Fig. 2. Number of 3-element frequent rule sets for stocks used in the experiments

0

1000

2000

3000

4000

5000

6000

Ticker

N
um

be
r

of
 s

et
s

A
A

P
L

A
M

Z
N

B
ID

U
B

IIB C
C

A
T

C
F

C
H

K
C

M
I

C
R

M
C

S
C

O
C

V
X

D
IA

E
M

C
E

O
G F

F
A

S
F

F
IV G
E

G
LD

G
LW

G
O

O
G

G
S

H
P

Q
IB

M
IN

T
C

IV
V

JP
M

M
D

Y
M

O
M

S
M

S
F

T
N

F
LX

N
K

E
N

V
D

A
O

R
C

L
P

F
E

P
X

S
P

G
S

P
Y T

T
LT

U
N

P V
V

A
LE V
Z

W
F

C
W

Y
N

N
X

LF
Y

H
O

O

Fig. 3. Number of 4-element frequent rule sets for stocks used in the experiments

Usage Patterns of Trading Rules in Stock Market Trading Strategies 241

0

2

4

6

8

10

12

14

Ticker

N
um

be
r

of
 s

et
s

A
A

P
L

A
M

Z
N

B
ID

U
B

IIB C
C

A
T

C
F

C
H

K
C

M
I

C
R

M
C

S
C

O
C

V
X

D
IA

E
M

C
E

O
G F

F
A

S
F

F
IV G
E

G
LD

G
LW

G
O

O
G

G
S

H
P

Q
IB

M
IN

T
C

IV
V

JP
M

M
D

Y
M

O
M

S
M

S
F

T
N

F
LX

N
K

E
N

V
D

A
O

R
C

L
P

F
E

P
X

S
P

G
S

P
Y T

T
LT

U
N

P V
V

A
LE V
Z

W
F

C
W

Y
N

N
X

LF
Y

H
O

O

Fig. 4. Number of 5-element frequent rule sets for stocks used in the experiments

averages. These indicators were used in conjunction with both the simple moving
average (SMA) and the exponential moving average (EMA). Thus, the total
number of rules active in the system was 96.

The rules were further parameterized. For example if moving average was used,
the period of the moving average was modified by the evolutionary algorithm. Pe-
riods were adjusted in the range [5, 30]. Other parameters and decision thresholds
were adjusted within ranges depending of the meaning of the parameter.

The results of experiments are summarized in Table 2. This table shows the
maximum size of frequent rule set obtained for each stock and the number of
frequent rule sets of the maximum size generated in the experiments. The max-
imum size of frequent rule sets varies from 2 to 5 depending on what stock the
rules are related to. For most of the stocks frequent rule sets were found con-
taining at least 3 rules. In the experiments no frequent rule sets containing 6 or
more rules were found. While such sets were generated as candidate sets, none
of them has reached the required support of at least 50% (however, some of the
6-elements sets have reached the support of about 47.5%).

The number of n-element frequent rule sets found in the experiments (for
n=2,3,4 and 5) is shown in Figures 1-4.

Frequent rule sets of larger size seem to be more interesting because they may
indicate more complex dependencies among the rules. The maximum frequent
rule set size obtained in the experiments was 5. In Table 3 examples of frequent
rule sets of size 5 are presented.

Abbreaviations used in Table 3 have the following meaning.
EMV - Ease of Movement Value
LinDir - Linear Regression Direction
NormPrice - Price normalized by Dow Jones Index
OvO - Overbought / Oversold
RoC - Rate of Change
RSI - Relative Strength Index
TBR - Top / Bottom Reversal
V&P - Volume and Price
WiO - Williams Oscillator

242 K. Michalak, P. Filipiak, and P. Lipinski

5 Conclusion

In this paper a task of finding repetitive patterns in trading experts was ap-
proached. Trading experts were constructed from trading rules. Parameters and
weights of the trading rules were optimized using evolutionary algorithm in or-
der to improve performance of the experts. Based on the optimized experts a
discovery of usage patterns of the trading rules was performed.

The novel approach to this topic proposed in this paper is inspired by fre-
quent set discovery methods used in assiociation rule mining. These methods
were adapted to finding patterns emerging in a population of trading experts
optimized by an evolutionary algorithm to achieve good performance in stock
market trading. The results of experiments have shown that patterns of up to 5
trading rules emerge in the population. Each of the patterns is supported in at
least 50% of the optimized experts.

The results of the experiments suggest, that repetitive patterns are present
in trading rule sets. In the context of evolutionary optimization of trading rules
such patterns could be used to improve solutions in dynamically changing en-
vironment of stock market trading, especially for shortening generation of good
populations for evolutionary algorithms.

References

1. Bauer, R.: Genetic Algorithms and Investment Strategies. Wiley, Chichester (1994)
2. Bauer, R.J., Dahlquist, J.R.: Technical Markets Indicators: Analysis & Perfor-

mance, p. 129. John Wiley & Sons (1998)
3. Best, M.J.: Portfolio Optimization. Chapman&Hall/CRC (2010)
4. Borgelt, C.: Frequent item set mining. Wiley Interdisciplinary Reviews: Data Min-

ing and Knowledge Discovery 2(6), 437–456 (2012)
5. Chopra, D., Vishwakarma, D.: Efficient Frequent Item set Discovery Technique in

Uncertain Data. International Journal of Engineering and Advanced Technology
(IJEAT) 1(6) (2012)

6. Dempsey, I., O’Neill, M., Brabazon, A.: Adaptive Trading with Grammatical Evo-
lution. In: Proceedings of the 2006 Congress on Evolutionary Computation (CEC
2006), pp. 2587–2592. IEEE, Los Alamitos (2006)

7. Dempster, M., Jones, C.: A Real-Time Adaptive Trading System using Genetic
Programming. Quantitative Finance 1, 397–413 (2001)

8. Kirkpatrick, C.D., Dahlquist, J.R.: Technical Analysis: The Complete Resource for
Financial Market Technicians, pp. 440–441. FT Press (2010)

9. Li, J., Taiwo, S.: Enhancing Financial Decision Making Using Multi-Objective Fi-
nancial Genetic Programming. In: Proceedings of IEEE Congress on Evolutionary
Computation, pp. 2171–2178 (2006)

10. Lipinski, P.: Dependency Mining in Large Sets of Stock Market Trading Rules. In:
Pejas, J., Piegat, A. (eds.) Enhanced Methods in Computer Security, Biometric
and Intelligent Systems, pp. 329–336. Kluwer Academic Publishers (2005)

11. Lipinski, P.: Discovering Stock Market Trading Rules Using Multi-layer Percep-
trons. In: Sandoval, F., Prieto, A.G., Cabestany, J., Graña, M. (eds.) IWANN
2007. LNCS, vol. 4507, pp. 1114–1121. Springer, Heidelberg (2007)

Usage Patterns of Trading Rules in Stock Market Trading Strategies 243

12. Lipinski, P.: ECGA vs. BOA in Discoverying Stock Market Trading Experts. In:
Proceedings of Genetic and Evolutionary Computation Conference, GECCO 2007,
pp. 531–538. ACM (2007)

13. Lipinski, P.: Evolutionary Strategies for Building Risk-Optimal Portfolios. In:
Brabazon, A., O’Neill, M. (eds.) Natural Computing in Computational Finance.
SCI, vol. 100, pp. 53–65. Springer, Heidelberg (2008)

14. Lipinski, P.: Frequent Knowledge Patterns in Evolutionary Decision Support
Systems for Financial Time Series Analysis. In: Brabazon, A., O’Neill, M.,
Maringer, D.G. (eds.) Natural Computing in Computational Finance. SCI, vol. 293,
pp. 131–145. Springer, Heidelberg (2010)

15. Michalak, K., Filipiak, P., Lipiński, P.: Evolutionary Approach to Multiobjective
Optimization of Portfolios That Reflect the Behaviour of Investment Funds. In:
Ramsay, A., Agre, G. (eds.) AIMSA 2012. LNCS, vol. 7557, pp. 202–211. Springer,
Heidelberg (2012)

16. Michalak, K., Lipinski, P.: Prediction of high increases in stock prices using neural
networks. Neural Network World 15(4), 359–366 (2005)

17. Park, B.J.: Efficient Tree-based Discovery of Frequent Itemsets. International Jour-
nal of Multimedia and Ubiquitous Engineering 7(2) (2012)

18. Radziukyniene, I., Zilinskas, A.: Evolutionary Methods for Multi-Objective Port-
folio Optimization. In: Proceedings of the World Congress on Engineering 2008,
pp. 1155–1159. Newswood Limited (2008)

19. Ranganatham, M.: Investment Analysis and Portfolio Management, pp. 387–388.
Pearson Education (2004)

20. Schwager, J.D.: Technical Analysis. pp. 174–178. John Wiley & Sons (1995)
21. Srivastava, U.K., Shenoy, G.V., Sharma, S.C.: Quantitative Techniques For Man-

agerial Decisions, pp. 392–394. New Age International (1989)
22. Tsang, E., Li, J., Markose, S., Er, H., Salhi, A., Iori, G.: EDDIE in Financial

Decision Making. Journal of Management and Economics 4(4) (2000)

Combining Technical Analysis and Grammatical

Evolution in a Trading System

Iván Contreras1, J. Ignacio Hidalgo1, and Laura Núñez-Letamendia2

1 Facultad de Informática, Universidad Complutense de Madrid, - Spain
ivancontreras@pas.ucm.es,hidalgo@dacya.ucm.es

2 IE Business School, Madrid - Spain
Laura.Nunez@ie.edu

Abstract. Trading Systems are beneficial for financial investments due
to the complexity of nowadays markets. On one hand, finance markets
are influenced by a great amount of factors of different sources such
as government policies, natural disasters, international trade, political
factors etc. On the other hand, traders, brokers or practitioners in general
could be affected by human emotions, so their behaviour in the stock
market becomes nonobjective. The high pressure induced by handling
a large volume of money is the main reason of the so-called market
psychology. Trading systems are able to avoid a great amount of these
factors, allowing investors to abstract the complex flow of information
and the emotions related to the investments. In this paper we compare
two trading systems based on Evolutionary Computation. The first is a
GA-based one and was already proposed and tested with data from 2006.
The second one is a grammatical evolution approach which uses a new
evaluation method. Experimental results show that the later outperforms
the GA approach with a set of selected companies of the spanish market
with 2012 data.

1 Introduction

The complexity of the search space in the problem of finding the optimal series
of investments makes metaheuristics one of the best ways to achieve a good so-
lution in short time. Therefore, this problem becomes a challenge to be faced
by researchers. The field of metaheuristics applied to trading problems has been
growing rapidly, both within the scientific and the professional world. As a con-
sequence investment systems have benefited from the development of complex
computer-aided systems and the large amount of data and information available
(some of them using evolutionary metaheuristics).

We can find in the literature different approaches using Evolutionary Algo-
rithms (EAs) for discovering Trading Rules. For instance, Allen and Karjalaein
[3] proposed to use Genetic Algorithms (GAs) to find technical Trading Rules.
Nuñez [17] designed several GA models to develop financial investment strate-
gies. This work was applied on the 1987-1996 share price data from the Madrid
Stock Exchange (Spain) and we can not affirm that conclusions can be extrap-
olated to nowadays economic circumstances. In [14] the authors describe a GA-
based trading system that uses different kinds of rules for market and companies

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 244–253, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Combining Technical Analysis and Grammatical Evolution 245

information. The system is applied, on a daily basis, to companies belonging to
the S&P 500 index. In this work they propose to apply the methodology to Tech-
nical Analysis (TA) and fundamental Analysis (FA) separately and the authors
claim that the main problem is the computational time required for training the
trading system with the daily data of stock prices. This restriction was partially
solved in [8] [9] with the implementation of a GA over a parallel computer archi-
tecture. There are also other approaches that use Genetic Programming (GP) to
obtain a set of rules and signals for investing [15] [16]. More recently, Bodas et
al. in [4] and [22] showed an approximation using a multi-objetive approach and
optimizing the parameters of the selected Technical Indicators every time a new
data was read. This approach improves not only performance but also profits.
However they used only two Technical Indicators (TI).

A different approach was presented in [7]. In this work, the authors proposed
the use of EAs to optimise jointly the parameters of selected FA and TA Indica-
tors. Although experimental results seemed to be satisfactory, it was concluded
that it would be necessary to test this methodology with new data. The current
economic circumstances do not appear to be the same as those simulated in the
aforementioned work.

Grammatical Evolution (GE) is a relatively new evolutionary alternative to
the above mentioned proposals [19]. GE is presented as a smart solution that fits
perfectly in the context of the complexity of Stock Markets. Thus, other previous
works already made use of GE as a methodology to invest in stock markets. The
BDS Group at the University of Limerick has carried out an excellent work about
this topic, for example in [10] the authors propose a GE to evolve a financial
trading system. In this approach the authors show an adaptive grammar with
a variant of the moving window. The different rules of the grammar are in
constant evolution during the execution of the trading system while new data
is uploading. Other works of this group show the proficiency of GE in foreign-
exchange markets or in different indexes of the stock market as [5] [11] among
others. Other authors proposed trading system based in GE, as in [1], where the
authors build a system that uses the co-evolution of the entries, exits and stop
loss for long positions, and short positions. These authors update their work
in [2] where they change the fitness function (sharpe index) with a complex
fitness proposed by P.Saks [20]. Those works inspired our GE implementation.
We have changed the way the solutions are evaluated. The main target of this
work is to analyse the results provided by two trading systems within a recession
economy period and to propose a methodology that works properly in a hostile
environment. In this paper we set the initial stage for the development of our next
project that will allow an exhaustive analysis of the more profitable companies
in major world regions. So, the contributions of the paper are two-fold:

1. The Trading System presented in [7] is tested with new data from 2012. The
results are not as satisfactory as those obtained with the 2006 data. Thus
we check that earnings depend on the environment and selected period.

2. We need a new approach able to obtain profits within a recession period. We
propose the application of a new evolutionary technique based on grammars.

246 I. Contreras, J.I. Hidalgo, and L. Núñez-Letamendia

Experimental results with this proposal are encouraging, both for the data
used in the previous articles, as well as for the new data.

The rest of the paper is organized as follows. Section 2 briefly describes the GA
Trading System (TS) previously presented in [7]. Section 3 presents the methodol-
ogy which uses GE to obtain the trading rules. Section 4 presents the experimental
results when applying the proposedmethodology to a set of companies during a pe-
riod of 2012 and we compare themwith those of the GA of [7]. Finally, we conclude
the paper and outline some future research lines in Section 5.

2 GA Based Trading System

The details of the GA system were presented in [7]. However we will discuss
briefly its main characteristics. In the mentioned paper the authors propose the
use of an EA to optimise the trading system. The objective was to obtain a set of
trading signals indicating buy, sell or do nothing. A solution gives a set of values
indicating weights and parameters or thresholds for a pre-selected set of technical
and fundamental indicators. The evolutionary approach uses a GA with a Filling
Operator (GAwFO), which is basically a simple GA with a modification of the
selection and crossover operators. The trading system works as follows:

1. The investor selects a set of Technical Indicators for TA
2. The investor selects a set of Fundamental Indicators for FA
3. Establish Thresholdbuy and Thresholdsell ranges and Weights ranges
4. For each company i

(a) Apply GAwFO over a period of years to obtain a solution
(b) Apply TA and FA using the parameters given by (a) to the target year

i. For each indicator Ij generate the indicator signal Ijs (Buy = 1, Sell
= −1 or Neutral = 0) as follows:
A. if Ij > or < Thresholdbuy on a day Buy Ijs = 1
B. elseif Ij > or < Thresholdsell on a day Sell Ijs =-1
C. else Neutral Ijs=0

ii. Compute the Raw Trading System Signal by adding the indicators
signals weighted by their weights RTSs =

∑n
j=1 Ijs ·Wj

iii. Compute the Net Trading System Signal choosing values for X and
Y as follows:
A. If RTSs = or > X then TSs = 1
B. elseif RTSs = or < −Y then TSs = −1
C. else TSs = 0

iv. Compute the profit given by the Trading System

The TS presented in that paper combines TA and FA. TA is formulated by four
Technical Indicators (TI); Moving Average (MA), market Volume (V), Relative
Strength Index Divergences (RSI) and Support and Resistances (SR). FA also
uses four Fundamental Indicators (FIs): Price Earning Ratio (PER), Price Book
Value (PBV), Return On Assets (ROA) and Sales Growth (SG). Each one of

Combining Technical Analysis and Grammatical Evolution 247

these indicators gives us a signal of buy, sell or neutral. There are eight weights
corresponding to each indicator that weight the importance of each indicator in
obtaining buy or sell signals. An individual of the GA encodes the thresholds
and the weights to be applied.

3 GE Based Trading System

A relatively new approach called Grammatical Evolution (GE) arose during the
last years as a powerful EA tool. This evolutionary computation technique was
promoted by C.Ryan, JJ. Collins and M. O’Neill in 1998 [19]. We can sum-
marise the definition of GE as a type of Evolutionary Algorithm designed to
evolve computer programs defined by a grammar (usually in BNF notation).
The most similar procedure is Genetic Programing (GP), which is able to evolve
computers programs as well. The main dissimilarity that makes the GE an at-
tractive and elegant solution is the difference between the phenotype and the
genotype. Thus, instead of representing the programs as a tree-solution, GE
presents a chromosome composed by codons that are directly connected with a
specific rule of the grammar. The chromosome itself is considered the genotype
and the real code derivative of the codons is called phenotype.

3.1 Fitness Fuction

The fitness function which guides our trading system is the accumulated return
of the investments for the analysed period. Each one of the investments are
guided by the signals that the trading algorithm provides (buy, sell or nothing).

ARi =

i=1∏
f

(1 +DRi) (1)

Where ARf is the accumulated return at the end of the trading period and DRi
is the daily return given by:

DRi =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Pi−Pi−1

Pi−1
if the TS gives a long signal

−(Pi−Pi−1)
Pi−1

if the TS signal is short selling

∅ if the TS signal is neutral

(2)

Pi denotes the close price at day “i”
It is worth mentioning, as we can see in equation 2, that a neutral signal do

not provide any return. That issue represents a disadvantage with respect to the
practitioners or other trading systems. This is because usually the return of a
neutral signal is a risk-free return given by the country target of the analysis (e.g
the US Treasury Bills). It is also possible to use a fitness function based on return
and risk as the Sharpe ratio, however we considered that technical indicators are

248 I. Contreras, J.I. Hidalgo, and L. Núñez-Letamendia

supposed to control risk in some way (e.g. break of support levels). Furthermore
we want to collate the GA and GE TSs, so it is more suitable in order to evaluate
the differences. Nevertheless, we will test different fitness functions in a future
work.

3.2 Trading System

The GE trading system is managed by six TI and the six weights corresponding
to each indicator (W1, W2, W3, W4, W5 and W6) . In this work the selected
TIs are Moving Average crossover (MA), Volume-Price (VOL), Moving Average
Convergence Divergence (MACD), Support and Resistances (SR) and Relative
Strength Index used in two ways, to spot divergences that show if a trend is
fading (RSId), and to identify Overbought/Oversold levels (RSIo). Each one of
these technical indicators gives us a signal of buy, sell or neutral. The values of the
weights represent the importance of each indicator in obtaining the investment
signals of the TA. We have chosen the above indicators guided by the their utility
in the world of professional finances and literature. If readers are interested in
obtaining complete descriptions of the TIs that have been cited here, we refer
them to [6] where these indicators are widely explained.

Fig. 1. Data set divisions. The Data set is divided in nine groups (A,B,C,D,E,F,G,H
and I) corresponding each to a two years period.

Systems trained with series of historical data are based on the theory that
there are continuous and repetitive patterns in the historical price series. Train-
ing with this data aims to identify these patterns with the target of building a
solution that allows a TS to apply the achieved solutions in the future. These
patterns could be short or long series located in any time of the historical data.
Based on this theory, and in an attempt to supply a proper environment to ex-
tract the best patterns, we proceed in the following way. We divide the data set
in nine groups Yj , (A,B,C,D,E,F,G,H and I) corresponding each to a two years
period (see Figure 1). For each company we apply our GE algorithm and we
extract a set of rules for each two pairs of years. When we have the collection
of rule sets, we test all of them for the last year (α1). We apply the set of rules
with higher performance in the data series to obtain the signal prediction for the

Combining Technical Analysis and Grammatical Evolution 249

next day. We repeat this process for each day we want to forecast using all the
data already available until the day to predict (α1 plus the daily prices already
forecasted of α2). This methodology can be formalised in the following way:

1. The investor selects a set of Technical Indicators for TA
2. Establish Weights ranges
3. Define a Grammar in BNF
4. For each company i

(a) For each 2 years Data Yj

i. Obtain a GE solution Si[Yj]
ii. Obtain a set of rules Rulei[Yj] by decoding Si[Yj]

(b) For each day Di in 2012 and For each Rulei[Yj]
i. Compute Returnsij of Rulei[Yj] on Data [2011 +Di − 1]

5. FinalRule = Rulei[Yj] with maximum Returnsij

3.3 GE Implementation

We use an integer codification and allow our individuals to generate the offspring
by the crossover operation, crucial for the right working of the algorithm as
ONeill demonstrates in [18]. We use the single point crossover which has already
been demonstrated to be a successful crossover operator and capable to achieve
good performance in terms of utility in the process of interchanging blocks in
the chromosomes. Finally, we use also the wrapping operator. Wrapping is an
advantageous operator as Huggoson shows in the results of [13]. As we explained
before, GE uses grammars to build a set of rules that guide our TS. We tested
several grammars, and for simplicity we expose the following grammar as the
simplest example we are testing:

<code> ::= <code><indicator> | <indicator>

<indicator> ::= <MA> | <MACD> | <RSId> | <RSIo>| <SR> | <VOL>

<MA> ::= "MA("<short>","<long>","<weigh>");"

<MACD> ::= "MACD("<short>","<long>","<signal>","<weigh>");"

<VOL> ::= "VP("<digit>","<weigh>");"

<SR> ::= "SR("<long>","<long>","<weigh>");"

<RSIo> ::= "RSI(false,"<short>","<long>","<short>","<weigh>");"

<RSId> ::= "RSI(true," <short> ","<short>","<weigh> ");"

<weigh> ::= <GECodonValue(1,4)>

<short> ::= <GECodonValue(1,49)>

<long> ::= <GECodonValue(50,99)>

<signal>::= <GECodonValue(60,89)>

<digit> ::= <GECodonValue(0,9)>

250 I. Contreras, J.I. Hidalgo, and L. Núñez-Letamendia

4 Experimental Results

4.1 Data Set

Being the objectives of the paper not only to test [7] with new data, but also
to compare it with a new GE approach.As we want a fair comparation between
both systems, the set of indicators was adjusted. Thus, we use six technical
indicators for both systems (explained in the last section).

Data2012. The trading system is used to invest in the market through the
analysis of historical data. The selection of historical data is an important deci-
sion in the development of the system, the quality of the results are biased by
stability and how profitable are the trends of the market in the analised period.
Thus, it should be easier to achieve better returns in a period of rising market
than in a diminishing market. So, the already difficult and exciting challenge
of building a trading system able to predict the intricate behavior of the stock
market becomes more difficult and interesting in a hostile environment. Thus,
we test our trading system with current data and analise its performance in one
of the most hostile scenarios, the current recession economy. We updated our old
dataset that comprised the daily data of the years ranging from 1994 to 2004.
Thus, our current data is located between the 2001 and 2012, in the middle
of one of the most important economy cracks. We are fixing the period, which
answers the question When. Nevertheless there is another important parameter
to choose the historical data, that is where. Our old data is retrieved from the
SP&500 which is one of the most important indexes of the stock market. Now,
we are considering a group of listed companies in Spain, one of the countries with
more economic problems in this economy recession. The companies that form
our dataset have been listed with Orbis [12] and have been chosen according to
the next criterions:

– Publicly Listed companies of Spain.
– Active companies with at least 5 last years of historical data in the stock

market.
– Current market capitalisation greater than 25.000.000 .
– Without pension fund.
– Without financial firms (Financial and insurance activities).
– Without Public administration.
– Without Activities of extraterritorial organism.

Due to lack of time, our experiments are based on a small sample of the data
explained above. We select three random companies to check the results in both
scenarios (GA and GE). Later, we carry out another experiment with a broader
set of nine random companies. The historical series of data have been downloaded
by Bloomberg software. We use a daily frequency data of common shares. We
refer to this Data set as Data2012 when testing the [7] GA and our GE proposal.

Combining Technical Analysis and Grammatical Evolution 251

Fig. 2. Returns of three spanish companies with the GA TS, the GE TS and the B&H
strategy

Fig. 3. Returns of nine spanish companies with the GE system and B&H strategy

4.2 GA vS GE on Data2012

Figure 2 shows the results of three enterprises from the Spanish listed companies.
The figure is divided in three main sections. First, the left side presents the GA
TS returns on 2012, secondly the middle section provides the returns of the GE
TS in the same year, and finally the left side represents the profits of the well
know Buy and Hold (B&H) strategy. The TS implemented with GE gets profits
around the 14%, while the GA can not get earnings, reaching a loss of about
20%. The B&H strategy gets the worst profits, with losses exceeding 90%. We
can also see that the two first sections are proportional, so the lower return is
provided in the last enterprise, the better result falls in the second company and
the first one is located in a middle term.

Figure 3 shows the analysis of an extended set of enterprises related with the
GE TS. On one hand, the gray bars represents the profits of the GE TS. On the
other hannd the black bars provide the returns of the B&H strategy. The aim of
this experiments is to check the genneral profits in a bigger sample of enterprises.

252 I. Contreras, J.I. Hidalgo, and L. Núñez-Letamendia

We carry out the same methodology, explained in the previous sections, with nine
selected companies from Spain. The general profit of the investment that GE TS
is able to achieve is very low, however if we compare against B&H is still much
more profitable. Furthermore we can observe a significant fact in this graph.
The companies that produce higher losses are both companies related with the
building world. Construction companies are the most affected companies in this
recession period [21], so this point encourages us to follow with the present
research line. In our next researching step we will develop a TS able to chose
the set of companies in which we should invest. If we could select the companies
with better situation, the investor returns could be multiplied.

5 Conclusions

In this paper we present a Grammatical Evolution Trading system. We tested
its behaviour on real data from 2012 for Spanish Companies. In addition we
compare the GE system with the work in [7] where the authors applied a GA
approach. The TS implemented with GE gets profits around the 14%, while
the GA can not get earnings, reaching a loss of about 20%. The analysis with
a extended set of nine selected companies from Spain shows that the general
profit of the investment is greater than the B&H strategy. Futhermore, we can
observe that the companies that produce higher losses are companies related
with construction. Those companies are among the hardest hit in this recession
period. Thus, in future works we analyse this issue closer and we will test more
intensive experiments in our data set.

Acknowledgements. Iván Contreras is supported by Spanish Government
Iyelmo INNPACTO-IPT- 2011-1198-430000 project.The work has also been
supported by Spanish Gov- ernment grants TIN 2008-00508 and MEC CON-
SOLIDER CSD00C-07-20811.

References

1. Adamu, K., Phelps, S.: Modelling financial time series using grammatical evolution.
In: Proceedings of the Workshop on Advances in Machine Learning for Computa-
tional Finance, London, UK (2009)

2. Adamu, K., Phelps, S.: Coevolution of technical trading rules for high frequency
trading. In: Proceedings of the World Congress on Engineering, pp. 96–101 (2010)

3. Allen, F., Karjalainen, R.: Using genetic algorithms to find technical trading rules.
Journal of Financial Economics 51(2), 245–271 (1999)

4. Bodas-Sagi, D., Soltero, F., Hidalgo, J., Fernández, P., Fernandez, F.: A technique for
the optimization of the parameters of technical indicators withmulti-objective evolu-
tionary algorithms. In: IEEECongress onEvolutionaryComputation, pp. 1–8 (2012)

5. Brabazon, A., O’Neill, M.: Evolving technical trading rules for spot foreign-
exchange markets using grammatical evolution. Computational Management Sci-
ence 1(3), 311–327 (2004)

6. Colby, R.W., Meyers, T.A.: The encyclopedia of technical market indicators. Irwin,
New York (1988)

Combining Technical Analysis and Grammatical Evolution 253

7. Contreras, I., Hidalgo, J.I., Núñez-Letamendia, L.: A GA Combining Technical and
Fundamental Analysis for Trading the Stock Market. In: Di Chio, C., Agapitos,
A., Cagnoni, S., Cotta, C., de Vega, F.F., Di Caro, G.A., Drechsler, R., Ekárt, A.,
Esparcia-Alcázar, A.I., Farooq, M., Langdon, W.B., Merelo-Guervós, J.J., Preuss,
M., Richter, H., Silva, S., Simões, A., Squillero, G., Tarantino, E., Tettamanzi,
A.G.B., Togelius, J., Urquhart, N., Uyar, A.Ş., Yannakakis, G.N. (eds.) EvoAppli-
cations 2012. LNCS, vol. 7248, pp. 174–183. Springer, Heidelberg (2012)

8. Contreras, I., Jiang, Y., Hidalgo, J., Núñez-Letamendia, L.: Using a gpu-cpu ar-
chitecture to speed up a ga-based real-time system for trading the stock market.
In: Soft Computing - A Fusion of Foundations, Methodologies and Applications,
pp. 1–13 (2011)

9. Contreras, I., Jiang, Y., Hidalgo, J.I., Núñez-Letamendia, L.: Using a gpu-cpu
architecture to speed up a ga-based real-time system for trading the stock market.
Soft Comput. 16(2), 203–215 (2012)

10. Dempsey, I., O’Neill, M., Brabazon, A.: Grammatical Constant Creation. In: Deb,
K., Tari, Z. (eds.) GECCO 2004. LNCS, vol. 3103, pp. 447–458. Springer, Heidel-
berg (2004)

11. Dempsey, I., O’Neill, M., Brabazon, A.: Adaptive trading with grammatical evo-
lution. In: Proceedings of the 2006 IEEE Congress on Evolutionary Computation,
July 6-21, pp. 9137–9142. IEEE Press, Vancouver (2006)

12. https://orbis-bvdinfocom.ezxy.ie.edu.Orbis

13. Hugosson, J., Hemberg, E., Brabazon, A., O’Neill, M.: Genotype representations
in grammatical evolution. Appl. Soft Comput. 10(1), 36–43 (2010)

14. Jiang, Y., Núñez, L.: Efficient market hypothesis or adaptive market hypothesis?
a test with the combination of technical and fundamental analysis. In: Proceed-
ings of the 15th International Conference. Computing in Economics and Finance,
University of Technology, Sydney, Australia (July 2009)

15. Lohpetch, D., Corne, D.: Discovering effective technical trading rules with genetic
programming: Towards robustly outperforming buy-and-hold. In: NaBIC, pp. 439–
444. IEEE (2009)

16. Lohpetch, D., Corne, D.: Multiobjective algorithms for financial trading: Multiob-
jective out-trades single-objective. In: IEEE Congress on Evolutionary Computa-
tion, pp. 192–199. IEEE (2011)

17. Núñez, L.: Trading systems designed by genetic algorithms. Managerial Finance 28,
87–106 (2002)

18. O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Program-
ming in an Arbitrary Language. Kluwer Academic Publishers (2003)

19. Ryan, C., Collins, J.J., Neill, M.O.: Grammatical Evolution: Evolving Programs
for an Arbitrary Language. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty,
T.C. (eds.) EuroGP 1998. LNCS, vol. 1391, p. 83. Springer, Heidelberg (1998)

20. Saks, P., Maringer, D.: Evolutionary Money Management. In: Giacobini, M.,
Brabazon, A., Cagnoni, S., Di Caro, G.A., Ekárt, A., Esparcia-Alcázar, A.I., Fa-
rooq, M., Fink, A., Machado, P. (eds.) EvoWorkshops 2009. LNCS, vol. 5484, pp.
162–171. Springer, Heidelberg (2009)

21. Dı́az-Giménez, J., Dolado, J.J., Bentolila, S., Boldrin, M.: La crisis de la economı́a
española. Análisis económico de la gran receśıon. Monografias fedea (2012)

22. Soltero, F.J., Bodas-Sagi, D.J., Fernández-Blanco, P., Hidalgo, J.I., de Vega, F.F.:
Optimization of technical indicators in real time with multiobjective evolutionary
algorithms. In: Soule, T., Moore, J.H. (eds.) GECCO (Companion), pp. 1535–1536.
ACM (2012)

https://orbis-bvdinfocom.ezxy.ie.edu.Orbis

A Card Game Description Language

Jose M. Font1, Tobias Mahlmann2, Daniel Manrique1, and Julian Togelius2

1 Departamento de Inteligencia Artificial, Universidad Politcnica de Madrid. Campus
de Montegancedo, 28660, Boadilla del Monte, Spain

{jfont,dmanrique}@fi.upm.es
2 Center for Computer Games Research, IT University of Copenhagen,

Rued Langaards Vej 7, 2300 Copenhagen, Denmark
{tmah,juto}@itu.dk

Abstract. We present initial research regarding a system capable of
generating novel card games. We furthermore propose a method for com-
putationally analysing existing games of the same genre. Ultimately, we
present a formalisation of card game rules, and a context-free grammar
Gcardgame capable of expressing the rules of a large variety of card games.
Example derivations are given for the poker variant Texas hold ’em,
Blackjack and UNO. Stochastic simulations are used both to verify the
implementation of these well-known games, and to evaluate the results of
new game rules derived from the grammar. In future work, this grammar
will be used to evolve completely novel card games using a grammar-
guided genetic program.

Keywords: Game design, game description language, evolutionary
computation, grammar guided genetic programming, automated game
design.

1 Introduction

The ruleset is essential to any game, defining its mechanics and in many ways
being the “core” of the game. Rules can’t be removed or edited without chang-
ing a game’s computational properties. The digital and unambiguous nature of
most rules (rules for computer games) makes them easy to model as program
code. The modelling of rules can serve several different purposes, but the two
most prominent are computational analysis (of gameplay) and generation of new
games. Computational analysis uses existing games to simulate many playouts
under various circumstances to analyse the balance, depth, variety and other
aspects of a game. One approach to game (rules) generation may be done by
searching a space of games, expressed in some game description language (GDL)
to find games with desirable properties. These two purposes go well together,
as modelling several related games is a good way of constructing a GDL, and
computational analysis is typically used to evaluate candidate games when gen-
erating novel game rules.

Card games seem to be an interesting application for automated design and
computational analysis for several reasons. An important factor is clearly their

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 254–263, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Card Game Description Language 255

ubiquity and popularity; different card games originated from many parts of the
world, and have been played since hundreds of years. Another important factor
is their computational simplicity: most card games could be simulated with very
limited computational effort compared to games which are designed to be played
with a computer and are normally very calculation heavy (e.g. simulation games).
Card games share these two aspects with another type of games: classic board
games such as Chess, Go and Backgammon. But unlike board games, card games
share a common prop: the classic French deck of cards (52 cards of four colours
and two jokers). Most card games (certainly most Western card games) can be
played using only one or two such decks, and perhaps a few tokens representing
money or score. This enables us to model a large variety of card games by simply
altering the form of their rules.

In recent years, several authors have attempted to formally describe and au-
tomatically generate game rules. The two main game genres where this has been
attempted are board games and simple 2D arcade games. In board games, the
early work of Hom and Marks [7] was followed by Browne’s Ludi system, which
managed to evolve a board game of sufficient novelty and quality to be sold
commercially [2,1]. A system generating simple arcade games was proposed by
Togelius and Schmidhuber [11], which was followed up by work by Smith and
Mateas [10] and Cook and Colton [3]. In a related genre, Mahlmann et al. have
defined a GDL for turn-based strategy games [9]. Mahlmann et al. also published
similar work to our approach, evaluating different game mechanics of the card
game Dominion [8]. The representation of game rules and level of abstraction
in these examples varies wildly, from expression trees reminiscent of those used
in genetic programming, to tables of actions and consequences, to first-order
logic expressed in AnsProlog. In all of these examples, the space of games was
searched using evolutionary algorithms, except Smith and Mates who use answer
set programming and constraint solving. An overview of this line of research can
be found in a recent tutorial by Nelson1.

There are several important considerations when devising a GDL for a partic-
ular game genre. Prominent among these is the expressivity of the language: all
games in scope have to be expressible in the language. Normally opposing the
expressivity stands the compactness or verbosity of the language, i.e. its human-
readability, and how efficiently the search space can be traversed by using for
example an evolutionary algorithm. Especially the latter is only marginally ex-
plored, and more research needs to be done.

2 Definition of a Search Space for Card Games

It is not possible to evolve any kind of game without setting the constraints that
define the basics of the search space [11]. Insofar as card games are the subject
of the evolutionary process described here, it is mandatory to define a set of
axioms that will be shared by any card game in the evolutionary population.

1 http://kmjn.org/

http://kmjn.org/

256 J.M. Font et al.

Fig. 1. Main components of a card game with three players and two table locations
(P = 3 and T = 2)

Those axioms are the following:

– The card game is played by exactly P players.
– A card location is defined as a place where any number of cards can be placed

during the game. Every game has the following card locations L:
• A number of hands H , one for each player in P . Hereafter, HX refers to
the “hand of the current player” and HA to “hands of all other players”.
H0, H1, H2 refer to the hand of player one, two, or three respectively.

• One standard French deck of cards D, composed of four suits with 13
cards each, numbered from 1 to 13 (jokers are excluded). Cards in the
deck are always placed face down.

• A number of table locations T , which are areas in a virtual table where
cards can be placed, always face up.

– Insofar as many card games involve bets, tokens are defined as virtual repre-
sentations of coins or chips. Analogously to card locations, a token location
K is defined as a place where any number of tokens can be placed during the
game. Every player J has two token locations,KJ0 andKJ1.KJ0 functions
as a player’s stash), and KJ1 may be used to place bets. To illustrate the
nomenclature, player 0 has two token locations denoted by K00 and K01.
The term KX1 refers to “the current bet of the current player”, and KA1
to “the current cumulative bets of all other players”. Figure 1 shows the
main components of a card game with P = 3 and T = 2, therefore includ-
ing six token locations (K00,K01,K10,K11,K20,K21), and three hands
(H0, H1, H2).

– A card game consists of several stages, each one composed by a set of rules.
The stages are played in sequential order.

– Stages are played out in a turn-based way with a round-robin turn order.
Within each stage and during his turn, a player may play a variable number
of rules. A player’s turn is over when he is done, next or out :
• done refers to a player being done with the current stage (but will return
to play in the nest stage).

A Card Game Description Language 257

• next indicates that the player has finished his turn but will be able to
play again during the current stage when all other players’ turns are
over.

• out defines a player as being out of the game. He will not play in any
remaining stages of the game.

– A stage ends when all players are either done or out. While one or more
player are next, their turns alternate in a round-robin order.

– A game ends when all stages have been played or when all players are out.

Given these specifications, a card game is defined as a set of stages, a ranking
of card combinations, and a set of winning conditions. Every stage comprises
a set of conditional rules (production rules) in the form “if antecedent then
consequent”. Antecedents are conditions that - when fulfilled - trigger actions
defined in consequents. For example: “if the player has no cards, then he draws
a card”. Optionally, a rule may have no antecedents at all, meaning that it can
be played without any particular prerequisites. Following this structure, three
different kinds of rules can be found:

– Optional rule. Standard rule which can be played a multiple number of times.
If the current player satisfies the condition defined in the antecedent, he can
play the action defined in the consequent.

– Play-only-once rule. These rules (marked with a “once” modifier) can only
be played once per stage.

Table 1. Types of antecedents and their related conditions

Antecedent Condition Example

tokens, KA,
RESTRICTION, KB

Compares the amount of tokens in token location KA
with the amount of tokens in KB. Condition is

fulfilled if the comparison satisfies the
RESTRICTION (<,>,=,≤,≥)

tokens, K01, ≥,
K11

play, LA,
RESTRICTION, LB

Compares the play in card locations LA with the
play in LB. Condition is fulfilled if the comparison

satisfies the RESTRICTION (<,>,=,≤,≥)

play, H0 + T0, <,
H1 + T0

sum, LA,

RESTRICTION, LB

Sums up the numbers of the cards in locations LA

and the ones in LB. Condition is fulfilled if the

comparison satisfies the RESTRICTION

(<,>,=,≤,≥)

sum, H0,=,H1

have, COMBINATION Check if the player has a given COMBINATION of

cards, suits or numbers in his hand.

have, 2 of

diamonds

draw Draw one card from the deck and place it in the hand

of the current player

draw

show, RESTRICTION,

LA

Show a set of cards from player’s hand that satisfy a

given RESTRICTION

(<,>,=,≤,≥, same suit, same number) when

compared with a card in LA.

show, card with

same suit, T0

λ (LAMBDA) No condition to satisfy. unconditional

258 J.M. Font et al.

– Mandatory rules. Mandatory rules must be played (and only once) by every
player at the beginning of his first turn of the stage. They are marked with
a “mandatory” modifier.

Additionally, so called computer commands are always played once by the game
(i.e. a virtual dealer) at the beginning of the stage before the players’ turns. These
rules are marked with a “com” modifier. Command rules include no conditions,
i.e. no antecedent, and only one consequent which describes the action to be
played. Table 2(b) illustrates the implemented types of computer rules.

Once the game’s setup is finished, the first player’s turn begins. After all
“mandatory” rules have been invoked (which may be none), he may play as
many “once” and/or optional rules as possible. When there are no satisfiable
antecedents left, the player is marked as done. Optionally, a player may choose
to not play any (more) rules, deliberately changing his state to next (if he wants
to play again during the current stage) or done (otherwise). Table 1 shows the
different kinds of antecedents possibly involved in a rule. Notice that the terminal
symbol “lambda” (λ) is used to represent a “null” value for any given variable,
and LA and LB refer to any two valid card locations.

When played, rules trigger consequents which modify the game state. Ta-
ble 2(a) shows the types of consequents which can be found in a rule. Notice
that the “bet” consequent does not specify any location. Betting always refers
to moving tokens from a player’s total amount of tokens to his current bet.
“Gain” always implies moving tokens from the specified location to a player’s
total amount of tokens.

Every card game has its own card and play values. Those features are specified
in the ranking: a table that contains pairs in the form [play, score], in order to
assign a fixed score to a given play (card combination). This table is used every
time a condition “play” is evaluated in order to know the actual value of the
card combinations in comparison. For example, when playing poker, all valid
poker hands have to be indexed in the ranking table, therefore it is possible
to know that two pairs have a lower value than three of a kind. When a given
hand has no specified value, the standard ranking of cards is assumed. Thus:
1 > 13 > 12 > 11 > 10 > 9 > 8 > 7 > 6 > 5 > 4 > 3 > 2. Upon finishing the
game, winning conditions determine which player wins. This is done by assigning
points to the remaining amount of tokens the player has and extra points if the
player status is not out. An exception here is, that certain consequents may
declare a certain player as the winner a priori.

2.1 The Card Game Language

A context-free grammar (CFG) G is defined as a string-rewriting system com-
prising a 4-tuple G = (SN , ST , S, P)/SN

⋂
ST = /O, where SN is the alphabet

of non-terminal symbols, ST is the alphabet of terminal symbols, S represents
the start symbol or axiom of the grammar, and P is the set of production rules
in Backus-Naur form. Every grammar generates a language composed where all
sentences are grammatically valid, meaning they conform to the constraints de-
fined by that grammar. The context-free grammar Gcardgame has been designed

A Card Game Description Language 259

Table 2. Overview of rule Consequences

(a) Types of consequents in a rule

Consequent Action Example

pifr, LA * AMOUNT,

FACE

Draw a given AMOUNT of cards from location LA.

FACE indicates if cards are drawn face up or down.

pifr, D ∗ 2, down

puin, LA * AMOUNT,

RESTRICTION,

FACE

Put a given AMOUNT of cards from player’s hand

in card location LA, only if those cards satisfy a

given RESTRICTION (<,>,=,≤,≥) .

puin, T0 ∗ 1, >, up

bet, RESTRICTION,

KX

Bet an amount of tokens that satisfy a given

RESTRICTION (<,>,=,≤,≥, lambda) when

compared with the amount of tokens in location

KX.

bet, >,K01

gain, KX Gain the amount of tokens in token location KX. gain, K21

playit Place the set of cards specified in the antecedent in

the location specified in the antecedent

-

next The player status is set to next. -

done The player status is set to done. -

out The player status is set to out. -

win The player immediately wins and the game ends. -

end The game immediately ends. -

(b) Special Consequences in computer rules

Rule Action Example

com deal, PLAYERS,

AMOUNT

deal a given AMOUNT of cards from the deck to

a set of PLAYERS

deal, player 1, 4

com deal, L0,

AMOUNT

deal a given AMOUNT of cards from the deck to

location L0

deal, T0, 4

com give, PLAYERS,

AMOUNT

give a fixed AMOUNT of tokens to a set of

PLAYERS

give, players 0 and

1, 100

to generate the language composed by all the valid card games that comply with
the axioms described above.

A grammar-guided genetic program (GGGP) is an evolutionary system that
could potentially find solutions to any problem whose syntactic restrictions can
be formally defined by a CFG [5]. Individuals are derivation trees of the CFG
that, when the algorithm starts, are generated by a grammar-based initialization
method [6]. Neither this method nor crossover and mutation operators can gener-
ate invalid individuals because they are not contained in the language described
by the CFG [4]. Thus the individual population of a GGGP using Gcardgame is a
set of derivation trees, each of them defining a card game that follows the above

260 J.M. Font et al.

Table 3. Codification of Texas hold’em poker stages

STAGES

NAME RULES

STAGE 0 com deal, ALL PLAYERS, 2

(pre-flop) com give, ALL PLAYERS, 99

STAGE 1 mandatory unconditional bet, λ, λ

(first bet) unconditional bet, =, KA1

once unconditional next

once unconditional done

STAGE 2

(check bets)

mandatory tokens, KX1, <, KA1

out

STAGE 3 com deal, T1, 1

(flop) com deal, T0, 3

STAGE 4 unconditional bet, ≥, KA1

(2nd bet) once unconditional next

once unconditional done

STAGE 5

(check bets)

mandatory tokens, KX1, <, K

out

NAME RULES

STAGE 6 com deal, T1, 1

(turn) com deal, T0, 1

STAGE 7 unconditional bet, ≥, KA1

(3rd bet) once unconditional next

once unconditional done

STAGE 8
(check bets)

mandatory tokens, KX1, <, KA1

out

STAGE 9 com deal, T1, 1

(river) com deal, T0, 1

STAGE 10 unconditional bet, ≥, KA1

(final bet) once unconditional next

once unconditional done

STAGE 11

(check bets)

mandatory tokens, KX1, <, KA1

out

STAGE 12

(showdown)

mandatory play, HX + T0, >,

HA + T0 gain, KA1

constraints. Our card games are codified in the genotype of individuals with the
structure STAGES : RANKING : WINNING CONDITIONS, where:

– STAGES represents several sets of rules, each of them corresponding to a
stage of the game.

– RANKING is a list of pairs in the form [play, score] which will be later
translated into a ranking table.

– WINNING CONDITIONS specifies two natural numbers that are the amount
of points awarded to a player for each remaining token and for not being out
of the game respectively.

Gcardgame has been intentionally designed to generate a high level language
containing a great variety of card games. Since individuals of a GGGP have
no fixed size, the evolutionary system becomes a flexible tool, being able to
design games from simple one-stage games up to long strongly ruled games.
Nevertheless, despite the high level approach, this language contains at least
three very well known card games: Texas hold ’em poker, Blackjack and UNO.
For brevity, the following paragraphs assume that the reader is familiar with
said games and their terms.

Table 3 presents Texas hold ’em poker’s stages codified as a sentence of the
language generated by Gcardgame. The game is composed by 12 stages which
cover the standard parts of the game (pre-flop, flop, turn, river and showdown)
as well as additional stages for player bets and bet checking. Bets are checked in
order to set the status of players which have folded as out. The ranking includes
poker hands, and the winning conditions define that the winner is the player with
the most tokens at the end of the game. Please note that single cards are not

A Card Game Description Language 261

Table 4. Codification of the two example games Blackjack and UNO

(a) Blackjack

STAGES

NAME RULES

STAGE 0 com deal, ALL PLAYERS, 2

com give, ALL PLAYERS, 99

STAGE 1 mandatory unconditional bet, λ, λ

STAGE 2 unconditional pifr, D*1, up

unconditional done

STAGE 3 mandatory sum, HX > 21 out

mandatory sum, HX > HA gain, KA

(b) UNO

STAGES

NAME RULES

STAGE 0 com deal, ALL PLAYERS, 7

com deal, T0, 1

STAGE 1 show, same suit, T0 playit

show, same number, T0 playit

draw next

mandatory have, λ win

listed in the ranking table as poker uses the default card ranking. The ranking
used for the poker hands is: Straight flush (900), Poker (800), Full house (700),
Flush (600), Straight (500), Three of a kind (400), Two pairs (300), and One
pair (200).

Table 4(a) shows the codification of blackjack. In this implementation of black-
jack, players play against each other instead of the dealer. The winner of the game
is the player who earned more tokens during the game, meaning the player who
bet most and got the highest score below or equal to 21. The ranking sets all
figures’ values (13, 12, 11) to 10, and includes the two possible values for an ace:
1 and 10. The only winning condition is one point per token earned.

Table 4(b) shows the codification the basic rules of UNO. For simplicity, we
excluded cards with any special effect, e.g. changing the turn order or skipping
players. Notice that the ranking table is empty because the goal for a player is
to empty his hand (rather than getting the best play). There is no need to set
winning conditions or rankings because the winner is determined by the last rule
of stage 1.

3 Experimental Results

In order to test the quality of the card games generated by Gcardgame, random
plays have been run over a set of games expressed by its language. All games have
been designed for three players and up to two table locations (P = 3, T = 2).
The term “random” herein refers to artificial players playing random moves.

The set of games is composed by the sample games presented above: Texas
hold ’em poker, Blackjack and UNO. Each of these has been run a 1000 times. In
addition to this, 1000 random mutations of each of them have also been tested.
Ultimately, we also sampled 1000 randomly generated card games.

For each game the following data has been collected: number of plays won by
each player, number of plays ended in a draw, number of games which crashed
and the average number of turns needed to properly finish the game. A game

262 J.M. Font et al.

is considered to be crashed when it hasn’t finished within 100 turns or when a
non semantic expression occurs, e.g. forcing a player to bet an amount of tokens
lower than zero.

Table 5. Results obtained from running Texas hold ’em poker, Blackjack, UNO, ran-
dom mutations of them and randomly generated games, 1000 times each

Game Times run
Times won Times

draw
Times
crashed

AVG turns
to finish0 1 2

Texas 1000 235 324 437 4 0 39

Blackjack 1000 401 282 317 0 0 20

UNO 1000 319 285 294 102 0 59

Random Texas
mutations

1000 237 15 15 523 210 13

Random blackjack
mutations

1000 49 30 103 516 302 32

Random UNO
mutations

1000 79 45 22 293 561 26

Random games 1000 174 32 36 485 273 19

Table 5 shows the results obtained from these tests. The three sample games
have been properly played during all 1000 runs, showing that the language de-
fined by Gcardgame allows to codify well-formed and semantically valid card
games. These games are finished in a very reasonable number of turns, whereas
UNO seems to be the longest one. It seems easy to conclude, that this may
because UNO’s last stage is not finished until one of the players gets rid of all
his cards. UNO is also the game most likely to end in draw. A draw takes place
when the deck and the table location run out of cards before any player has been
able to win.

As expected, random mutations on these games lead to an increase in their
crash rate. Nevertheless, almost 80% of poker mutations, 70% of blackjack mu-
tations and 45% of UNO mutations can be properly played until the end of the
game. Draw rates also increased, meaning that changes produced by mutations
create games where winners are not clearly defined.

Randomly generated games produce similar results, showing a rate of playable
games close to 73%.

4 Conclusions and Future Work

A context-free grammar, Gcardgame, that generates a game description language
for card games has been presented. All card games contained in this language
share a fixed set of basic axioms, that represent the main components of a
game. Every game defines its very own rules that, when played along with these
axioms, compose a playable card game. This language contains a set of high-
level instructions that allows the codification of a high variety of games. To

A Card Game Description Language 263

show this, examples codifications of Texas hold ’em poker, Blackjack and UNO
have been proposed. The experiments conducted show the ability of Gcardgame

to produce randomly generated but playable card games. Our results indicate,
that it is possible to improve the generation of card games with searching and
optimizing techniques. For this reason, our grammar is intended to be part of
a grammar-guided genetic program that evolves populations of card games in
order to automatically generate entertaining and playable card games. Leading
the evolutionary process to improve the satisfaction achieved by players when
playing these games will allow the possibility of creating interesting card games
without human assistance. In other words, mimicking human creativity inside a
computer process.

References

1. Browne, C., Maire, F.: Evolutionary game design. IEEE Transactions on Compu-
tational Intelligence and AI in Games 2(1), 1–16 (2010)

2. Browne, C.: Automatic generation and evaluation of recombination games. Ph.D.
thesis, Queensland University of Technology (2008)

3. Cook, M., Colton, S.: Multi-faceted evolution of simple arcade games. In: Pro-
ceedings of the IEEE Conference on Computational Intelligence and Games, CIG
(2011)

4. Font, J.M., Manrique, D., Ŕıos, J.: Evolutionary construction and adaptation of
intelligent systems. Expert Systems with Applications 37, 7711–7720 (2010)

5. Font, J.M.: Evolving Third-Person Shooter Enemies to Optimize Player Satisfac-
tion in Real-Time. In: Di Chio, C., Agapitos, A., Cagnoni, S., Cotta, C., de Vega,
F.F., Di Caro, G.A., Drechsler, R., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M.,
Langdon, W.B., Merelo-Guervós, J.J., Preuss, M., Richter, H., Silva, S., Simões,
A., Squillero, G., Tarantino, E., Tettamanzi, A.G.B., Togelius, J., Urquhart, N.,
Uyar, A.Ş., Yannakakis, G.N. (eds.) EvoApplications 2012. LNCS, vol. 7248,
pp. 204–213. Springer, Heidelberg (2012)

6. Garcia-Arnau, M., Manrique, D., Rios, J., Rodriguez-Paton, A.: Initializa-
tion method for grammar-guided genetic programming. Knowledge-Based Sys-
tems 20(2), 127–133 (2007)

7. Hom, V., Marks, J.: Automatic design of balanced board games. In: Proceedings of
the AAAI Conference on Artificial Intelligence and Interactive Digital Entertain-
ment (AIIDE), pp. 25–30 (2007)

8. Mahlmann, T., Togelius, J., Yannakakis, G.: Evolving card sets towards balancing
dominion. In: IEEE World Congress on Computational Intelligence, WCCI (2012)

9. Mahlmann, T., Togelius, J., Yannakakis, G.: Modelling and evaluation of complex
scenarios with the strategy game description language. In: Proceedings of the Con-
ference on Computational Intelligence and Games (CIG) 2011, Seoul, KR (2011)

10. Smith, A.M., Mateas, M.: Variations forever: Flexibly generating rulesets from a
sculptable design space of mini-games. In: Proceedings of the IEEE Conference
on Computational Intelligence and Games, Copenhagen, Denmark, August 18–21,
pp. 273–280 (2010)

11. Togelius, J., Schmidhuber, J.: An experiment in automatic game design. In: IEEE
Symposium on Computational Intelligence and Games, CIG 2008, pp. 111–118.
IEEE (2008)

Generating Map Sketches for Strategy Games

Antonios Liapis1, Georgios N. Yannakakis1,2, and Julian Togelius1

1 Center for Computer Games Research, IT University of Copenhagen, Copenhagen, Denmark
2 Department of Digital Games, University of Malta, Msida, Malta

Abstract. How can a human and an algorithm productively collaborate on gener-
ating game content? In this paper, we try to answer this question in the context of
generating balanced and interesting low-resolution sketches for game levels. We
introduce six important criteria for successful strategy game maps, and present
map sketches optimized for one or more of these criteria via a constrained evolu-
tionary algorithm. The sketch-based map representation and the computationally
lightweight evaluation methods are geared towards the integration of the evolu-
tionary algorithm within a mixed-initiative tool, allowing for the co-creation of
game content by a human and an artificial designer.

1 Introduction

The games industry has often used procedurally generated content to increase the un-
expectedness of a game, and thus its replayability value. As games increase in scale, it
is becoming common practice for game designers to use procedural content generation
tools during development time in order to limit costs and time requirements. In order
to assist such design work, computer-assisted design tools should be able to automate
the mechanizable parts of content creation (such as ensuring playability and evaluating
game balance) and to optimize, on their own, specific gameplay features deemed signif-
icant by the designer. Not only would such a tool increase a designer’s creative output,
it should be able to incite human creativity through the dialogue between the artificial
and the human designer.

This paper presents steps towards actualizing such a tool, using maps for strategy
games as its test domain. Six important measures of quality for strategy game maps
are introduced, inspired by game design patterns [1] popular within strategy games and
by previous experiments on map evolution [12]. These criteria are optimized via evolu-
tionary algorithms and their impact on map generation is evaluated. The map generation
component is integrated within a mixed-initiative design tool which allows for the co-
creation of strategy maps with designers. With the proposed tool we try to overcome
some of the limitations of mixed-initiative design as we rely on simple map sketches to
counter user fatigue and designer biases reported in the literature [8].

2 Related Work

While procedural content generation has been used in some games since the eight-
ies, recent trends have seen an increasing use of PCG tools such as SpeedTree1 during

1 http://www.speedtree.com

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 264–273, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.speedtree.com

Generating Map Sketches for Strategy Games 265

development time, to partly automate design work. PCG tools have to balance between
expressivity and controllability, with methods capable of producing a wide range of
content usually being very hard for designers to work with. Academic interest on more
controllable PCG methods is only a few years old [14], but search-based processes [13]
such as genetic algorithms are becoming a popular solution to this problem [2,11,4,6].

Maps have often been generated algorithmically in games such as Civilization (Mi-
croProse, 1991) and SimCity (Maxis, 1989); such games usually rely on tightly designed
processes to construct playable maps. Within academia, strategy game maps have also
been optimized via stochastic search [3,12] or answer-set solvers [10]; while designers
can decide on the objectives or constraints of the generated content prior to the gen-
erative process, these projects are hardly interactive. In the authors’ previous work, a
mixed-initiative tool attempted to address the issues of authorial control and capturing
human preferences [8]. The tool failed to achieve its stated goals, primarily due to the
requirement of hand-crafting a large-scale initial map, which introduced designer bias
and fatigue. In order to counter such limitations, this paper reduces the resolution of the
human-authored sketches and allows more user control over the optimized features.

3 Methodology

The tool presented in this paper allows a human or an artificial designer to create low-
resolution map sketches. These sketches contain the necessary elements for a simple
strategy game, and can be optimized via a genetic algorithm on a number of selected
fitness dimensions pertaining to balanced strategic gameplay.

The maps used in this experiment are abstractions of levels used in successful strat-
egy games such as Starcraft (Blizzard, 1998). A map is presented to the user as a sketch
consisting of a small number of tiles (see Fig. 1a). Tiles can be passable (light) or
impassable (dark), and passable tiles can contain player bases (circles) or resources
(rhombi). The map layout assumes that each player starts at a base and gathers resources
to produce units; units move through passable tiles to attack the opponent’s base.

3.1 Map Design Tool

A graphical interface has been developed to allow a user to manually edit a map sketch
(see Fig. 1a). While the sketch is being edited, its scores in several fitness dimensions
(see Section 3.2 below) are updated and displayed to the user; the user can also select
one or more fitness labels and generate an optimal map on the selected fitness dimen-
sions. At any point, the designer can switch to the final map view (see Fig. 1b), display-
ing the complete map on which the strategy game can be played. Currently the final
map is constructed via random processes and cellular automata to create an organic-
looking map which however retains all the properties (chokepoints, passable paths) of
the low-resolution sketch. Manual editing, evaluation and evolution (see Section 3.2)
are all done on the sketch level, making computations such as pathfinding easier and
reducing the required human effort.

266 A. Liapis, G.N. Yannakakis, and J. Togelius

(a) Sketching interface while the user gener-
ates a rough level sketch

(b) The sketch in Fig. 1a rendered as a com-
plete map, generated with cellular automata

Fig. 1. The User Interface for the mixed-initiative level generation tool

3.2 Evolutionary Optimization

Each map is encoded as an array of integers: each integer represents a tile’s type
(passable, impassable, base or resource). These parameters are adjusted via constrained
optimization — ensuring the playability of feasible maps — carried out by a feasible-
infeasible two-population genetic algorithm [5] (FI-2pop GA). FI-2pop GA evolves two
populations, one with feasible maps and the other with infeasible maps. Each popula-
tion selects parents among its own members, but feasible offspring of infeasible parents
are moved to the feasible population and vice versa. This interbreeding increases the
occurrence of feasible individuals and boosts the feasible population’s diversity.

Both populations evolve via fitness-proportionate roulette-wheel selection of parents;
parents are recombined using two-point crossover. Mutation can occur on an offspring
of two parents (1% chance), or on a single parent (5% chance) in order to create a
single-parent offspring. During mutation, 2 to 6 tiles may be transformed: a tile may
be swapped with its adjacent (15% chance), an impassable tile can be transformed
into passable and vice versa (5% chance) or a passable tile can be transformed into
a resource (1% chance). The small number of tiles transformed with each mutation in-
creases the locality (in terms of map structure) of the stochastic search; preliminary
tests have shown that when this mutation strategy is combined with the relatively high
chance of mutation chosen, the population does not suffer from premature convergence.

The fitnesses used to evolve the feasible population are presented below, while the
infeasible fitness is presented at the end of this section.

Feasible Fitnesses. A feasible map sketch is evaluated on six fitness dimensions (see
(3) to (8) below) which are inspired by game design patterns [1] suitable for strategic
gameplay and geared towards game pace and player balance in terms of starting condi-
tions. Game pace is affected by the area control afforded by a player’s starting location
— including control of strategic resources — and by the challenge for enemies to dis-
cover this location via exploration. If a player has an easily controllable, resource-rich
area around their base and their base is difficult to reach by enemies, then defensive

Generating Map Sketches for Strategy Games 267

(a) (b) (c) (d) (e)

Fig. 2. Visualization of resource safety, safe areas and exploration on a test map (Fig. 2a) with
impassable tiles (dark), resources (rhombi), base 1 at the map’s top and base 2 at the bottom.
Resources at the map’s top are much closer to base 1 than to base 2, and therefore have large st,1
values (connected in Fig. 2b). The bottom-most resource has an equal distance between the two
bases, therefore it is contested (st,1≈st,2≈0). Figure 2c shows the areas around the two bases
with safety values over Cs (A1 at the top, A2 at the bottom). By applying flood fill from base 1
until base 2 is covered (Fig. 2d) and from base 2 until base 1 is covered (Fig. 2e), we calculate
E1→2 and E2→1 respectively.

play is favored and game pace is slow. If a base is within the enemy’s reach, and re-
sources are in contested and difficult to control areas, then fast-paced aggressive play is
favored. On the other hand, player balance is a universal design pattern for any multi-
player game [1], and is captured in this paper as the symmetry in affordances for game
pacing among players. The concepts of safety, fairness and path overlap presented in
this paper have been covered in previous work [12], but they are evaluated differently:
while the safety metric in (1) is similar, base safety and exploration are only loosely
captured in [12] by base space and base distance, respectively; more emphasis is also
placed on balance, with three fitnesses rather than the single resource fairness of [12].

In order to evaluate area control and exploration, two heuristics for safety and explo-
ration are used in the calculation of the fitnesses in (3)–(8). The safety metric (st,i) in
(1) evaluates a tile t according to its safety with respect to a player base i; the closer the
tile is to base i compared to any other base, the larger its safety value. The exploration
metric (Ei) evaluates the effort required to discover all other player bases from base i;
it uses a simple flood fill algorithm to simulate random exploration of the map, which
ends once one base is discovered and runs again for every other base. It is calculated as
per (2), and has high values for distant bases and if open areas exist between bases.

st,i = min
1≤j≤NB

j �=i

{
max

{
0,

dt,j − dt,i
dt,j + dt,i

}}
(1)

Ei =
1

NB − 1

NB∑
j=1
j �=i

Ei→j

wmhm −NI
(2)

where NB is the number of bases; dt,i is the distance from tile t to base i (using A*
pathfinding);wm and hm is the map’s width and height, respectively; NI is the number
of impassable tiles and Ei→j is the map coverage when a four-direction flood fill is
applied starting from base i and stopping once base j has been found (see Fig. 2).

268 A. Liapis, G.N. Yannakakis, and J. Togelius

The resource safety fitness (fres) in (3) uses the safety metric from (1) to calculate
the safety of the map’s resources. Low scores in this fitness correspond to maps with
resources in contested areas, equally accessible to two or more player bases. The base
safety fitness (fsaf) in (4) calculates the safe areas around every player’s base. Low
scores in this fitness correspond to maps with insecure bases, since many areas around
them are easily accessible by at least one enemy base. The exploration fitness (fexp) in
(5) uses the exploration metric from (2) to simulate the difficulty in finding other bases
from each player’s base.

fres =
1

NR

NR∑
j=1

max
1≤i≤NB

{
stj ,i} (3)

fsaf =
1

wmhm −NI

NB∑
i=1

Ai (4)

fexp =
1

NB

NB∑
i=1

Ei (5)

stj ,i is the safety metric of resource j (located at tile tj) to base i;Ai is the map coverage
of safe tiles for base i and Ei is the exploration metric for base i. A tile t is safe for base
i if its st,i < Cs; the constant Cs = 0.35 throughout this paper, as it amounts to a good
ratio of contested areas in most maps (see Fig. 2c).

Fitnesses in (3)–(5) do not differentiate between players; for instance, high scores in
fres can correspond to a map where all resources are safe for only one base. Since com-
petitive strategy games favor equivalent starting conditions for each player, the fitnesses
in (6)–(8) are evaluated with regards to player balance. Thus, resource balance (bres),
base safety balance (bsaf), and exploration balance (bexp) are calculated as follows:

bres = 1− 1

NRNB(NB − 1)

NR∑
k=1

NB∑
i=1

NB∑
j=1
j �=i

|stk,i − stk,j | (6)

bsaf = 1− 1

NB(NB − 1)

NB∑
i=1

NB∑
j=1
j �=i

|Ai −Aj |
max{Ai, Aj} (7)

bexp = 1− 1

NB(NB − 1)

NB∑
i=1

NB∑
j=1
j �=i

|Ei − Ej |
max{Ei, Ej} (8)

Infeasible Fitness. Infeasible maps fail to satisfy playability constraints (having un-
reachable bases or resources) or designer specifications regarding the number of map
features. In order to increase the chances of infeasible parents creating feasible off-
spring, the infeasible population must shift its members towards the border with feasi-
bility [9]. The infeasible population optimizes its members according to the infeasible
fitness (finf) in (9), which aims to minimize the distance from feasibility. This distance

Generating Map Sketches for Strategy Games 269

0 20 40 60 80 100
Generations

0.25

0.50

0.75

1.00

Fi
tn

es
sS

co
re

fres
fsa f
fexp

bres
bsa f
bexp

Fig. 3. Optimization of the populations’ maxi-
mum fitness scores when evolving strategy maps
on a single fitness. Error bars represent standard
deviation across 20 runs.

(a) fres (b) fsaf (c) fexp

(d) bres (e) bsaf (f) bexp

Fig. 4. Best final individuals among 20 evo-
lutionary runs, optimized for a single fitness
dimension displayed in each map’s caption

from feasibility has four components, equal to the number of constraints for feasible
maps: a) fidelity with designer-specified number of bases, b) fidelity with designer-
specified number of resources, c) passable paths between bases and d) passable paths
between resources and bases.

finf = 1−
[
1

4
|NB −NB,d|+ 1

4
|NR −NR,d|+ 1

4

2db
NB(NB − 1)

+
1

4

dr
NRNB

]
(9)

where NB,d and NR,d is the designer-specified allowed number of bases and resources,
respectively, and db and dr is the number of base pairs and base-resource pairs that are
not connected, respectively.

4 Experiments

Several experiments were conducted to test the efficiency of the genetic algorithm used
to optimize the rough map sketches of the mixed-initiative tool. These experiments were
conducted without any user interaction or human-authored sketches, and assess the al-
gorithm’s ability to optimize one or more fitness dimensions. All experiments presented
below run for 100 generations, on a population of 100 individuals including both feasi-
ble and infeasible genes; the number of individuals is large enough for the simultaneous
optimization of two populations while allowing for sufficiently fast evolutionary runs
as demanded by a responsive mixed-initiative tool. Evolving maps have 64 tiles (with
equal width and height of 8 tiles), 2 bases and anywhere between 4 and 10 resources.

4.1 Optimizing a Single Fitness Dimension

Using a single fitness dimension as the objective function, the genetic algorithm aims
to optimize a single gameplay feature; the generated maps are, thus, expected to be

270 A. Liapis, G.N. Yannakakis, and J. Togelius

one-sided and lack the necessary features for competitive strategy play. Figure 3 shows
the evolutionary progress of the maximum fitness in the population; displayed values
are averaged from 20 independent runs, with the standard deviation shown as error
bars. The highest scoring final individual among the 20 runs for each fitness dimen-
sion is shown in Fig. 4. Results indicate that optimal fitness scores for balance (bres,
bsaf , bexp) are easily attainable, since high-scoring individuals exist even in the random
initial populations and evolution quickly finds optimal solutions for these fitness dimen-
sions within few generations. Observing the maps in Fig. 4, optimal maps in bres have
symmetrical resources between players; resources are often far from player bases, so
that differences between their distances from each base remain relatively small. Opti-
mal maps in bsaf have bases near each other and safe areas are small but equal between
the bases. Optimal maps in bexp often have bases near each other (even adjacent), and
finding the other base is equally effortless for either player. Among the other dimen-
sions, fres is the most difficult to optimize, mainly because of how the safety metric is
calculated: based on (1), st,i cannot reach its optimal value (1.0), but approaches it if
dt,j�dt,i for all bases j �=i. Granted that the small size of the maps cannot allow such
disparities between distances, it is expected that even in the best circumstances st,i and
thus fres will be considerably lower than 1.0. Similarly, fsaf cannot reach optimal val-
ues since there will be at least one tile in the map at equal distance from both bases
(and thus not safe). The best maps in fres have resources adjacent to bases, while the
bases are far from each other. The best maps in fsaf have numerous impassable regions
between bases; in Fig. 4b, one base is hidden behind impassable tiles while the other
base has safe access to the rest of the map. The best maps in fexp have bases far from
each other, with impassable regions between them to make navigation more difficult.

4.2 Optimizing Multiple Fitness Dimensions

Experiments in Section 4.1 showed that maps optimized for a single dimension usu-
ally have interesting traits, but lack the necessary features needed for competitive play.
Combining multiple fitness dimensions into a weighted sum and using it as the objec-
tive function for the genetic algorithm is expected to generate better designed maps.
Experiments in this section will assess the combined optimization of two or more fit-
ness dimensions. For space considerations, the following representative fitness function
combinations are explored in this paper:

– Fres =
1
2fres +

1
2bres

– Fsaf = 1
2fsaf + 1

2bsaf
– Fexp = 1

2fexp +
1
2bexp

– Fall−f = 1
3fres +

1
3fsaf + 1

3fexp
– Fall−b =

1
3bres +

1
3bsaf + 1

3bexp
– Fall =

1
6fres +

1
6fsaf + 1

6fexp +
1
6bres +

1
6bsaf + 1

6bexp

Figure 5 shows the evolutionary progress of the contributing fitness scores for the fittest
individuals in the different fitness combinations; displayed values are averaged from 20
independent runs, with the standard deviation values depicted as error bars. The high-
est scoring final individual among the 20 runs for each fitness combination is shown

Generating Map Sketches for Strategy Games 271

0 20 40 60 80 100
Generations

0.25

0.50

0.75

1.00
Fi

tn
es

s
Sc

or
e

f res bres

(a) Fres

0 20 40 60 80 100
Generations

0.25

0.50

0.75

1.00

Fi
tn

es
s

Sc
or

e

fsaf bsaf

(b) Fsaf

0 20 40 60 80 100
Generations

0.25

0.50

0.75

1.00

Fi
tn

es
s

Sc
or

e

f exp bexp

(c) Fexp

0 20 40 60 80 100
Generations

0.25

0.50

0.75

1.00

Fi
tn

es
s

Sc
or

e

fres
fsaf
fexp

(d) Fall−f

0 20 40 60 80 100
Generations

0.25

0.50

0.75

1.00
Fi

tn
es

s
Sc

or
e

bres
bsaf
bexp

(e) Fall−b

0 20 40 60 80 100
Generations

0.25

0.50

0.75

1.00

Fi
tn

es
s

Sc
or

e

f res
f saf
f exp

bres
bsaf
bexp

(f) Fall

Fig. 5. Optimization of the contributing fitness dimensions in the fittest individuals in the popula-
tion, when evolving strategy maps for multiple fitness dimensions. Error bars represent standard
deviation across 20 runs.

in Fig. 6. Results indicate that, for Fres, Fsaf and Fexp, optimization is dominated by
the fitness dimension of balance, which is optimized quickly and largely determines the
selection of parents; since fres and fsaf are slower to optimize, they do not achieve as
high scores as when optimized individually. Their best maps in Fig. 6 are, however, of
good quality: Fres has an equal number of resources adjacent to each base, while Fsaf

has a single chokepoint in the map, with areas on either side of the chokepoint being
of equal size; finally, Fexp has bases far away from each other, hidden behind large
impassable regions. On the more complex fitness combinations, Fall−b easily finds op-
timal maps in all the contributing fitnesses; Fall−f , on the other hand, does not achieve
as high scores as when each dimension is optimized on its own, but it does not seem to
be dominated by any dimension. Finally, the optimization of Fall unsurprisingly shows
difficulties in reaching high fitness scores in all contributing fitnesses; fitness dimen-
sions of balance dominate fres, fsaf and fexp, which are harder to optimize and show
higher sensitivity with respect to their convergence (as depicted by their large standard
deviation values). The best maps for Fall−f have all the features of the contributing fit-
ness dimensions, but are very unbalanced. The best maps forFall−b have bases adjacent
to each other, since that is often optimal both for bexp and bsaf ; such maps are not gen-
erally playable in a strategy game. Despite the slow and asymmetrical optimization of
Fall, its best maps are probably the most appropriate for use in a strategy game. Even
better maps may be possible with other combinations of criteria, such as minimizing
fsaf and fres to create maps suited for aggressive gameplay.

272 A. Liapis, G.N. Yannakakis, and J. Togelius

(a) Fres (b) Fsaf (c) Fexp (d) Fall−f (e) Fall−b (f) Fall

Fig. 6. Best final individuals among 20 evolutionary runs, optimized for a combination of two or
more fitness dimensions displayed in each map’s caption

5 Conclusion

This paper presented the concept of map sketches which are appropriate for a mixed-
initiative tool allowing for the collaborative creation of maps for strategy games. With
this tool, a computer can evaluate the human-authored map in real-time, and the user
can request improved maps in several fitness dimensions. Since maps are represented
as low-resolution sketches, computational time for map evaluation and optimization
is minimized, while designer fatigue and fixation are also expected to be reduced.
Experiments conducted on random initial populations, with sufficient time to evolve,
demonstrated that small two-player maps of high quality can be easily optimized by
the genetic algorithm on one or more fitness dimensions. While the combination of
more fitness dimensions into a weighted sum limited the efficiency of optimization
somewhat, the evolved maps are more appropriate for use in strategy games than those
optimized on a single fitness dimension. Aggregating multiple objectives into a single
fitness has its caveats, although the fitness dimensions combined in this paper are not
particularly conflicting. While multi-objective evolutionary algorithms such as those
used in [12] could potentially lead to better results, such algorithms are generally more
computationally demanding and thus inappropriate for the fast feedback mechanisms
of a mixed-initiative tool. Preliminary tests show that, while slower to evolve, the same
processes can optimize, to a high quality, larger maps with more bases and resources.

Future work includes using the evolutionary methods described in this paper to op-
timize a user-created map via the map editor. The experiments presented in this paper
were strictly offline, starting from large random populations and without any time con-
straint. Online evolution while a user edits the map may have its own challenges, par-
ticularly since the general form of the user-created map must be retained. Additionally,
while the fitness scores are fast to calculate, they are built on design decisions that may
not be accurate enough: for instance, exploration is measured via flood fill (which is not
how players explore maps in strategy games), while the safety metric underestimates
the impact of chokepoints. Future work should refine the existing fitnesses and possibly
add new ones; however, the more fitnesses are added, the more difficult their simulta-
neous optimization will become. Finally, while the user may enjoy controlling which
fitness dimension is being optimized, it may also become cumbersome and unintuitive
to guess which combination of fitness dimensions are needed for the designer’s pur-
poses. This can be addressed by indirectly modelling the designer’s intentions based on
their history of content authoring and content selection through choice-based interac-
tive evolution, which has been used in previous work to automatically adapt models of
aesthetic preferences [7].

Generating Map Sketches for Strategy Games 273

Acknowledgements. The research is supported, in part, by the FP7 ICT project SIREN
(project no: 258453) and by the FP7 ICT project C2Learn (project no: 318480).

References

1. Bjork, S., Holopainen, J.: Patterns in Game Design. Charles River Media (2004)
2. Browne, C., Maire, F.: Evolutionary game design. IEEE Transactions on Computational In-

telligence and AI in Games 2(1), 1–16 (2010)
3. Frade, M., de Vega, F.F., Cotta, C.: Evolution of Artificial Terrains for Video Games Based

on Accessibility. In: Di Chio, C., Cagnoni, S., Cotta, C., Ebner, M., Ekárt, A., Esparcia-
Alcazar, A.I., Goh, C.-K., Merelo, J.J., Neri, F., Preuß, M., Togelius, J., Yannakakis, G.N.
(eds.) EvoApplicatons 2010, Part I. LNCS, vol. 6024, pp. 90–99. Springer, Heidelberg (2010)

4. Hastings, E.J., Guha, R.K., Stanley, K.O.: Evolving content in the galactic arms race video
game. In: Proceedings of the IEEE Symposium on Computational Intelligence and Games,
pp. 241–248 (2009)

5. Kimbrough, S.O., Koehler, G.J., Lu, M., Wood, D.H.: On a feasible-infeasible two-
population (FI-2Pop) genetic algorithm for constrained optimization: Distance tracing and
no free lunch. European Journal of Operational Research 190(2), 310–327 (2008)

6. Liapis, A., Yannakakis, G.N., Togelius, J.: Neuroevolutionary constrained optimization for
content creation. In: Proceedings of the IEEE Conference on Computational Intelligence and
Games, pp. 71–78 (2011)

7. Liapis, A., Yannakakis, G.N., Togelius, J.: Adapting models of visual aesthetics for per-
sonalized content creation. IEEE Transactions on Computational Intelligence and AI in
Games 4(3), 213–228 (2012)

8. Liapis, A., Yannakakis, G.N., Togelius, J.: Limitations of choice-based interactive evolution
for game level design. In: Proceedings of the Artificial Intelligence and Interactive Digital
Entertainment Conference (2012)

9. Schoenauer, M., Michalewicz, Z.: Evolutionary Computation at the Edge of Feasibility.
In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS,
vol. 1141, pp. 245–254. Springer, Heidelberg (1996)

10. Smith, A., Mateas, M.: Answer set programming for procedural content generation: A design
space approach. IEEE Transactions on Computational Intelligence and AI in Games 3(3),
187–200 (2011)

11. Sorenson, N., Pasquier, P., DiPaola, S.: A generic approach to challenge modeling for the
procedural creation of video game levels. IEEE Transactions on Computational Intelligence
and AI in Games 3(3), 229–244 (2011)

12. Togelius, J., Preuss, M., Beume, N., Wessing, S., Hagelback, J., Yannakakis, G.N.: Multiob-
jective exploration of the StarCraft map space. In: Proceedings of the IEEE Symposium on
Computational Intelligence and Games, pp. 265–272 (2010)

13. Togelius, J., Yannakakis, G.N., Stanley, K.O., Browne, C.: Search-based procedural content
generation: A taxonomy and survey. IEEE Transactions on Computational Intelligence and
AI in Games (99), 172–186 (2011)

14. Yannakakis, G.N.: Game AI revisited. In: Proceedings of the ACM Computing Frontiers
Conference, pp. 285–292 (2012)

A Procedural Balanced Map Generator

with Self-adaptive Complexity for the Real-Time
Strategy Game Planet Wars

Raúl Lara-Cabrera, Carlos Cotta, and Antonio J. Fernández-Leiva

Department “Lenguajes y Ciencias de la Computación”, ETSI Informática,
University of Málaga, Campus de Teatinos, 29071 Málaga – Spain

{raul,ccottap,afdez}@lcc.uma.es

Abstract. Procedural content generation (PCG) is the programmatic
generation of game content using a random or pseudo-random process
that results in an unpredictable range of possible gameplay spaces. This
methodology brings many advantages to game developers, such as re-
duced memory consumption. This works presents a procedural balanced
map generator for a real-time strategy game: Planet Wars. This gen-
erator uses an evolutionary strategy for generating and evolving maps
and a tournament system for evaluating the quality of these maps in
terms of their balance. We have run several experiments obtaining a set
of playable and balanced maps.

1 Introduction

Procedural content generation (PCG) refers to creating game content automat-
ically, through algorithmic means. This content refers to all aspects of the game
that affect gameplay other than non-player characters (NPCs), such as maps,
levels, dialogues, characters, rule-sets and weapons. PCG is interesting for the
game developing community due to several reasons, such as reduced memory
consumption and the saving in the expense of manually creating game content.

Due to the benefits detailed previously, procedural content generation has
been used in many well-known videogames. Borderlands [10] uses a PCG system
to create weapons and items, which can alter their firepower, rate of fire, and
accuracy, add in elemental effects such as a chance to set foes on fire or cover them
in burning acid, and at rare times other special bonuses such as regenerating the
player’s ammo. PCG system is also used to create the characteristic of random
enemies that the player may face. Another example of a game that uses PCG is
Minecraft [15], a sandbox-building game with an infinite map which is expanded
dynamically. Spore [14] is a god game simulation that contains multiple levels
of play, from starting as a multi-celled organism in a tide pool, up to exploring
a dynamically generated universe with advanced UFO technology. The music of
the game is also procedurally generated.

From an academic point of view, there are several papers related to procedural
map generation. In [19] the authors designed a system for offline/online genera-
tion of tracks for a simple racing game. A racing track is created from a parameter

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 274–283, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Procedural Balanced Map Generator with Self-adaptive Complexity 275

vector using a deterministic genotype-to-phenotype mapping. A search-based
procedural content generation (SBPCG) algorithm for strategy game maps is
proposed in [21] from a multi-objective perspective. A multi-objective evolution-
ary algorithm is used for searching the space of maps for candidates that satisfy
pairs of these multiple objectives. Another search-based method for generating
maps is presented in [20]. In this case, the maps are generated for the game Star-
craft [2]. Frade et al. have introduced the idea of terrain programming, namely
the use of genetic programming to evolve playing maps for videogames, using
either subjective human-based feedback [7], [8] or automated quality measures
such as accessibility [6] or edge-length [9]. In [13] the authors describe a search-
based map generator for an abstract version of the real-time strategy game Dune
2. Map genotypes are represented as low-resolution matrices, which are then con-
verted to higher-resolution maps through a stochastic process involving cellular
automata.

Real-time strategy (RTS) games are a genre of videogames which require
managing different kind of units and resources in real-time. In a RTS game the
participants position and maneuver units and structures under their control to
secure areas of the map and/or destroy their opponents’ assets. In a typical
RTS, it is possible to create additional units and structures during the course of
a game, but this is generally limited by the number of accumulated resources.
These resources are gathered by controlling special points on the map and/or
possessing certain types of units and structures devoted to this purpose. The
typical game of the RTS genre features resource gathering, base building, in-
game technological development and indirect control of units. They are usually
played by two or more players (human or not). These players have to deal with
incomplete information during the game (the map is covered by fog of war, the
technology developed by a player is unknown by every other player, ...). These
features make RTS games a great tool for computational intelligence research,
since a RTS game player needs to master many challenging problems such as
resource allocation [3,11], strategy planning [1,5,16] and opponent’s strategy pre-
diction [4,18]. In addition, procedural content generation can be used to create
maps, units and technologies for RTS games. Traditionally, academic game arti-
ficial intelligence (AI) was mainly linked to non player character (NPC) behavior
and pathfinding. However, there are new research areas that have recently pro-
vided innovative solutions for a number of game development challenges, like
player experience modeling (PEM), procedural content generation (PCG) and
large scale game data mining [23].

This paper introduces a map generation method for a RTS game that can be
categorized (using the taxonomy proposed in [22]) as an off-line method that gen-
erates necessary content, using random seeds and deterministic generation and
following a generate-and-test schema. This method generates balanced maps, i.e.
maps where players do not have any advantage over their opponents regardless
of their ability or strategy type.

276 R. Lara-Cabrera, C. Cotta, and A.J. Fernández-Leiva

2 Game Description

Planet Wars is a real-time strategy (RTS) game based on Galcon and used in
the Google AI Challenge 2010. The game is set in outer space and its objective
is to take over all the planets on the map or eliminate all of your opponents
ships. A game of Planet Wars takes place on a map that contains several planets
with some number of ships on it. Each planet may have a different number of
ships. The planets may belong to some player or may be neutral. The game has
a certain maximum number of turns and it may end earlier if one of the players
loses all his ships, and in this case the player that has ships remaining wins
instantly. If both players have the same number of ships when the game ends, it
is considered a draw. On each turn, the player may choose to send fleets of ships
from any planet he owns to any other planet on the map. He may send as many
fleets as he wishes on a single turn as long as he has enough ships to supply them.
After sending fleets, each planet owned by a player (not owned by neutral) will
increase the forces there according to that planets growth rate. Different planets
have different growth rates. The fleets will then take some number of turns to
reach their destination planets, where they will then fight those opposing forces
there and, if they win, take ownership of the planet. Fleets cannot be redirected
during travel. Players may continue to send more fleets on later turns even while
older fleets are in transit. Despite players make their orders on a turn-by-turn
basis, they issue these orders at the same time, so we can treat this game as a
real-time game.

Maps have no particular dimensions and are defined completely in terms of
the planets and fleets in them. They are defined in plain text files, with each
line representing a planet or a fleet. Planet positions are specified relative to a
common origin in Euclidean space. The coordinates are given as floating point
numbers. Planets never move and are never added or removed as the game
progresses. Planets are not allowed to occupy the exact same position on the
map. A planet can be neutral or owned by some player. The number of ships is
given as an integer, and it may change throughout the game. Finally, the growth
rate of the planet is the number of ships added to the planet after each turn. It
is given as an integer and it also represents the size (i.e. radius) of the planet. If
the planet is currently owned by neutral, the growth rate is not applied. Only
players can get new ships through growth. The growth rate of a planet will never
change.

3 A Procedural Balanced Map Generator

A map is balanced if players do not have any advantage over their opponents
regardless of their ability or strategy type. Due to this feature, this kind of maps
are important for the evaluation of human or artificial players, since they do
not boost the performance of any player. In order to create balanced maps, we
have designed a procedural map generator that is composed of an evolutionary
strategy and a tournament system. The evolutionary strategy is responsible for

A Procedural Balanced Map Generator with Self-adaptive Complexity 277

generating new random maps and evolving them, while the tournament system
evaluates the quality of the generated maps based on the results obtained from
several matches between non-player characters.

3.1 Evolutionary Strategy

As mentioned before, the evolutionary strategy (ES) is devoted to generate maps
with an arbitrary number of neutral planets ranged between 15 and 30 following
the rules of the game. These maps are the individuals of the ES and they are
represented by a variable-length vector of planets. As described on the previous
section, every planet has five properties: x-position, y-position, owner, growth
rate and number of ships. We have fixed planet’s holders so that players own the
first and second planet of every map while the rest of the planets are neutral, so
individuals’ genes are groups of 4 parameters. In addition to these parameters
the algorithm needs 4 additional parameters since this is a self-adaptive evolu-
tionary strategy so the parameters of the mutation operator evolve along with
the planets’ parameters.

Regarding these planets’ parameters, two of them have real values (x and y
position) while the other two (growth rate and number of ships) have integer
values. In addition to this, x and y positions range between 0 and 15, while the
growth rate and the number of ships fluctuate between 1 and 5, and 100.

Due to the types of the parameters (real and integer), the evolutionary strat-
egy uses an hybrid mutation operator that uses different mutation methods for
real and integer parameters. The operator mutates x and y coordinates follow-
ing a Gaussian mutation scheme with self-adaptive step sizes. The problem with
applying Gaussian mutation to integer values is that this kind of mutation gen-
erates real-value perturbations which are rounded to an integer perturbation. To
prevent this, this mutation operator uses a method [12,17] that generates suit-
able integer mutations for the growth rate and number of ships. This method is
similar to the self-adaptive mutation of real values, with a set of step-size pa-
rameters controlling the strength of the mutation, but using the difference of two
geometrically distributed random variables to generate the perturbation instead
of the normal distributed random variables used by the real values method.

In the case of real-valued parameters 〈x1, ..., xn〉 they are extended with n step
sizes, one for each parameter, resulting in 〈x1, ..., xn, σ1, ..., σn〉. The mutation
mechanism is specified as follows:

σ′
i = σi · eτ ′·N(0,1)+τ ·Ni(0,1)

x′i = xi + σi ·Ni(0, 1)

where τ ′ ∝ 1/
√
2n, and τ ∝ 1/

√
2
√
n. A boundary rule is applied to step sizes

to prevent standard deviations very close to zero: σ′
i < ε0 ⇒ σ′

i = ε0 (in this
algorithm, σ0 represents 1% of the parameter’s range).

278 R. Lara-Cabrera, C. Cotta, and A.J. Fernández-Leiva

Regarding integer-valued parameters 〈z1, ..., zm〉 they are extended in a similar
way than real-valued parameters, resulting in 〈z1, ..., zm, ς1, ..., ςm〉. The mutation
mechanism is specified as follows:

ς ′i = max(1, ςi · eτ ·N(0,1)+τ ′·N(0,1))

ψi = 1− (ς ′i/m)

⎛⎝1 +

√
1 +

(
ς ′i
m

)2
⎞⎠−1

z′i = zi +

⌊
ln(1− U(0, 1))

ln(1− ψi)

⌋
−

⌊
ln(1− U(0, 1))

ln(1− ψi)

⌋
where τ = 1/

√
2m and τ ′ = 1/

√
2
√
m. As described before, the main difference

between the two methods is the distribution used to generate the perturbation.
Continuing with operators, this evolutionary strategy uses a “cut and splice”

operator that recombines two individuals by swapping cut pieces with different
sizes (this way, generated maps have different numbers of planets). We have
chosen this operator due to the arbitrary length of the individuals. Table 1
summarizes the algorithm’s parameters.

Table 1. Algorithm’s parameters

Representation Vector of planets

Recombination Cut and slice

Mutation Gaussian perturbation (real) and geometric difference (integers)

Parent selection Binary tournament

Survivor selection (μ+ λ) with μ = 10 and λ = 100

Speciality Self-adaption of mutation step sizes and genome length

To evaluate the quality of every individual the algorithm runs a tournament
that takes place on the generated map between several players. Once the tourna-
ment has finished, the algorithm gathers the individual’s fitness from the result
of the tournament. Equation (3) defines the fitness, with Nm being the number
of matches played during the tournament, ti being the number of turns of match
i, Ki being the added up percentage of occupied planets by both players at the

end of the game, P
(1)
ij , P

(2)
ij being the percentage of owned planets by player 1

and player 2 respectively, in match i and turn j and S
(1)
ij , S

(2)
ij being the per-

centage of the total ships owned by player 1 and player 2 respectively in match
i and turn j.

P̄i =

∑ti
j=1

∣∣∣P (1)
ij − P

(2)
ij

∣∣∣
ti

(1)

S̄i =

∑ti
j=1

∣∣∣S(1)
ij − S

(2)
ij

∣∣∣
ti

(2)

A Procedural Balanced Map Generator with Self-adaptive Complexity 279

fitness =

(
1

Nm

Nm∑
i=1

Ki · ti
P̄i + S̄i + 1

)2

(3)

Fitness function (3) promotes balanced maps through its components: P̄i and S̄i

promotes maps where players have similar number of planets and ships (it sums
up 1 to avoid dividing by zero), while ti promotes long games because it means
that there have not been a winner or the winner is determined nearly at the end
of the game. Finally, Ki promotes maps where there have been high activity, i.e.
players have conquered many planets.

3.2 Tournament System

The tournament system is the component devoted to evaluate the quality of the
generated maps. This component runs a set of Planet Wars games between an
arbitrary number of non-player characters (NPC). Every NPC plays at least a
game against each other, although this parameter is customizable. The tour-
nament system evaluates every game analyzing the logs generated by a Java
console-style tool, which was developed by Google for the Google AI Challenge
2010. The evolutionary strategy provides the maps to the tournament system,
which evaluates the map and returns this evaluation to the former.

Fig. 1. An example of a balanced procedural generated map

4 Experiments and Results

We have run two experiments (10 executions each) with different parameters,
obtaining a set of playable and balanced maps (one of these maps is shown in

280 R. Lara-Cabrera, C. Cotta, and A.J. Fernández-Leiva

Figure 1). The first experiment uses an evolutionary strategy with the
parameters described before (see Table 1), using a self-adapting strategy for
mutation steps and genome length (i.e. number of planets in the map), while
the second experiment uses the same parameters except for the fixed genome
length (23 planets in every map since the number of planets ranges between
15 and 30). We have evaluated the quality of the maps using the tournament
system with three NPCs who were participants of the Google AI Challenge 2010
(Manwe1, Flagscapper’s bot2 and fglider’s bot3) , all of them ranked in the top
100 and having their source code available (there were over 4600 participants).
The maximum number of turns per game has been limited to 400 turns. We have
observed that the planets of many generated maps are much separated from each
other. Maps of this kind should be considered as balanced maps because it takes
a long time (number of turns) to reach the enemy and fight him, so players
can conquest new planets without troubles and their fleet grows with a similar
rate —the fitness of this kind of maps will be high because of the low difference
between the number of owned planets and ships.

Fig. 2. Evolution of the averaged fitness

1 https://github.com/Manwe56/Manwe56-ai-contest-planet-wars
2 http://flagcapper.com/?c1
3 http://planetwars.aichallenge.org/profile.php?user_id=8490

 https://github.com/Manwe56/Manwe56-ai-contest-planet-wars
http://flagcapper.com/?c1
http://planetwars.aichallenge.org/profile.php?user_id=8490

A Procedural Balanced Map Generator with Self-adaptive Complexity 281

Figure 2 shows the evolution of the averaged fitness for the two experiments
(solid line for self-adaption of the genome size and mutation steps and dashed
line for self-adaption of mutation steps only). Grey areas show the standard mean
error of the averaged fitness values. As we can see in the figure, both experiments
have a similar behavior over the first evaluations but the self-adaptive algorithm
(experiment 1) gets a better fitness over the subsequent evaluations. Figure 3
shows the evolution of the averaged number of planets in the best map (i.e.
the individual with the highest fitness). As we can observe in the figure, after
some evaluations, this number converges to the value 17, so we should think that
maps with 17 planets are more balanced than other maps with a higher number
of planets.

Fig. 3. Evolution of the averaged number of planets in the best map

5 Conclusion and Future Work

In this paper we have introduced a procedural map generator for a RTS game
that is capable of generating balanced maps for a real-time strategy game: Planet
Wars. These maps do not give any advantage to the players regardless of their
ability or strategy type. This generator turns Planet Wars into an endless game
and makes the game more interesting to weak players (since they do not lose with
ease), raising the competitiveness of the stronger player with harder challenges.

282 R. Lara-Cabrera, C. Cotta, and A.J. Fernández-Leiva

Despite this algorithm generates fully playable maps, there are some improve-
ments that could be made to this generator. The evolutionary strategy uses only
a mutation operator, so it could be interesting to improve the breeding pipeline,
adding additional or improved mutation and recombination operators. Moreover,
maps generated by this algorithm are not symmetrical and some planets should
be overlapped, although the evolutionary strategy avoids overlapped planets
since this is an advantage to the player who has this overlapped planets nearer.
In addition to this, it is possible to obtain other characteristics of the maps that
make them more balanced, such as the averaged distance between the planets,
players’ initial positions or the distribution of the planets over the map.

In the near future, we are going to introduce interactivity and pro-activity
to this procedural map generator, in order to improve its performance and the
quality of generated maps.

Acknowledgements. This work is partially supported by Spanish MICINN
under project ANYSELF (TIN2011-28627-C04-01), and by Junta de Andalućıa
under project P10-TIC-6083 (DNEMESIS).

References

1. Aha, D.W., Molineaux, M., Ponsen, M.: Learning to Win: Case-Based Plan Selec-
tion in a Real-Time Strategy Game. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR
2005. LNCS (LNAI), vol. 3620, pp. 5–20. Springer, Heidelberg (2005)

2. Blizzard Entertainment: Starcraft. Blizzard Entertainment (1998)
3. Chan, H., Fern, A., Ray, S., Wilson, N., Ventura, C.: Online planning for resource

production in real-time strategy games. In: Boddy, M.S., et al. (eds.) International
Conference on Automated Planning and Scheduling, pp. 65–72. The AAAI Press
(2007)

4. Cheng, D., Thawonmas, R.: Case-based plan recognition for real-time strategy
games. In: El-Rhalibi, A., van Welden, D. (eds.) GameOn Conference, pp. 36–40.
EUROSIS (2004)

5. Chung, M., Buro, M., Schaeffer, J.: Monte Carlo Planning in RTS Games. In: IEEE
Symposium on Computational Intelligence and Games. IEEE (2005)

6. Frade, M., de Vega, F.F., Cotta, C.: Evolution of Artificial Terrains for Video
Games Based on Accessibility. In: Di Chio, C., Cagnoni, S., Cotta, C., Ebner, M.,
Ekárt, A., Esparcia-Alcazar, A.I., Goh, C.-K., Merelo, J.J., Neri, F., Preuß, M.,
Togelius, J., Yannakakis, G.N. (eds.) EvoApplicatons 2010, Part I. LNCS, vol. 6024,
pp. 90–99. Springer, Heidelberg (2010)

7. Frade, M., de Vega, F.F., Cotta, C.: Modelling Video Games’ Landscapes by Means
of Genetic Terrain Programming - A New Approach for Improving Users’ Experi-
ence. In: Giacobini, M., Brabazon, A., Cagnoni, S., Di Caro, G.A., Drechsler, R.,
Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Fink, A., McCormack, J., O’Neill,
M., Romero, J., Rothlauf, F., Squillero, G., Uyar, A.Ş., Yang, S. (eds.) EvoWork-
shops 2008. LNCS, vol. 4974, pp. 485–490. Springer, Heidelberg (2008)

8. Frade, M., de Vega, F.F., Cotta, C.: Breeding terrains with genetic terrain pro-
gramming: The evolution of terrain generators. International Journal of Computer
Games Technology 2009 (2009)

A Procedural Balanced Map Generator with Self-adaptive Complexity 283

9. Frade, M., de Vega, F.F., Cotta, C.: Evolution of artificial terrains for video games
based on obstacles edge length. In: IEEE Congress on Evolutionary Computation,
pp. 1–8. IEEE (2010)

10. Gearbox Software: Borderlands. 2K Games (2009)
11. Kovarsky, A., Buro, M.: A First Look at Build-Order Optimization in Real-Time

Strategy Games. In: Wolf, L., Magnor, M. (eds.) GameOn Conference, pp. 18–22.
EUROSIS (2006)

12. Li, R.: Mixed-integer evolution strategies for parameter optimization and their
applications to medical image analysis. Ph.D. thesis (2009)

13. Mahlmann, T., Togelius, J., Yannakakis, G.N.: Spicing Up Map Generation. In: Di
Chio, C., Agapitos, A., Cagnoni, S., Cotta, C., de Vega, F.F., Di Caro, G.A.,
Drechsler, R., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Langdon, W.B.,
Merelo-Guervós, J.J., Preuss, M., Richter, H., Silva, S., Simões, A., Squillero, G.,
Tarantino, E., Tettamanzi, A.G.B., Togelius, J., Urquhart, N., Uyar, A.Ş., Yan-
nakakis, G.N. (eds.) EvoApplications 2012. LNCS, vol. 7248, pp. 224–233. Springer,
Heidelberg (2012)

14. Maxis: Spore. Electronic Arts (2008)
15. Mojang: Minecraft. Mojang (2011)
16. Ng, P.H.F., Li, Y.J., Shiu, S.C.K.: Unit formation planning in RTS game by using

potential field and fuzzy integral. In: Fuzzy Systems, pp. 178–184. IEEE (2011)
17. Rudolph, G.: An Evolutionary Algorithm for Integer Programming. In: Davidor,

Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 139–148.
Springer, Heidelberg (1994)

18. Synnaeve, G., Bessiere, P.: A bayesian model for opening prediction in RTS
games with application to StarCraft. In: Computational Intelligence and Games,
pp. 281–288. IEEE (2011)

19. Togelius, J., De Nardi, R., Lucas, S.: Towards automatic personalised content cre-
ation for racing games. In: IEEE Symposium on Computational Intelligence and
Games, CIG 2007, pp. 252–259 (2007)

20. Togelius, J., Preuss, M., Beume, N., Wessing, S., Hagelback, J., Yannakakis, G.:
Multiobjective exploration of the starcraft map space. In: 2010 IEEE Symposium
on Computational Intelligence and Games (CIG), pp. 265–272 (2010)

21. Togelius, J., Preuss, M., Yannakakis, G.N.: Towards multiobjective procedural map
generation. In: Proceedings of the 2010 Workshop on Procedural Content Genera-
tion in Games, pp. 1–8 (2010)

22. Togelius, J., Yannakakis, G.N., Stanley, K.O., Browne, C.: Search-based procedural
content generation: A taxonomy and survey. IEEE Transactions on Computational
Intelligence and AI in Games 3(3), 172–186 (2011)

23. Yannakakis, G.N.: Game ai revisited. In: Proceedings of the 9th Conference on
Computing Frontiers, CF 2012, pp. 285–292. ACM, New York (2012)

Mechanic Miner: Reflection-Driven

Game Mechanic Discovery and Level Design

Michael Cook, Simon Colton, Azalea Raad, and Jeremy Gow

Computational Creativity Group
Imperial College, London

Abstract. We introduce Mechanic Miner, an evolutionary system for
discovering simple two-state game mechanics for puzzle platform games.
We demonstrate how a reflection-driven generation technique can use a
simulation of gameplay to select good mechanics, and how the simulation-
driven process can be inverted to produce challenging levels specific to a
generated mechanic. We give examples of levels and mechanics generated
by the system, summarise a small pilot study conducted with example
levels and mechanics, and point to further applications of the technique,
including applications to automated game design.

Keywords: game mechanics, automated game design, platform games.

1 Introduction

Procedural content generation (PCG) is a highly active area of research, both in
academia and game development. The ability to generate high-quality content
on-demand and in large volumes not only can improve a game’s quality, but has
made possible new types of game dependent on their ability to generate content
in this way - such as Betts’ In Ruins or Smith’s Endless Web [5]. However, much
PCG focuses on the generation of consumable data, such as terrain, quests, items
or narrative. In order to explore the concept of fully-automated game design, we
must find techniques for generating all aspects of a game, including higher-level
concepts that describe how game systems interact with one another; and in
particular how they interact with the player.

Game mechanics are an important type of player-game interactions; they
range from the well-known (such as jumping in a platform game) to the experi-
mental (such as in [9], where the player’s movement was controlled by shouting
loudly or softly into a microphone). Novel mechanics are still a major source of
interest in the independent development community, with many events focusing
on mechanics1 and many awards rewarding innovative design2. One approach to
generating game mechanics is to compose them out of smaller rules or concepts
defined by hand. However, doing this explores a restricted search space, and lim-
its the system’s potential for novelty or surprise. Reducing the use of predefined
rules or domain knowledge may help mitigate this.

1 E.g. The Experimental Gameplay Project (http://experimentalgameplay.com/).
2 E.g. The Independent Games Festival’s Nuovo Award.

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 284–293, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://experimentalgameplay.com/

Reflection-Driven Game Mechanic Discovery and Level Design 285

We introduce here Mechanic Miner, an evolutionary system designed to gen-
erate simple game mechanics, and then design levels that specifically require the
use of those mechanics in their solution. We show how the reflective properties of
a programming language can be used to generate mechanics programmatically
without metalevel domain knowledge, and demonstrate a simulation-driven ap-
proach to evaluating mechanics for utility. We then show how, by inverting the
evolutionary system, we can use the same process and principles to design levels
for specific mechanics, with control over features like difficulty and complexity.

The rest of the paper is organised as follows: in section 2 we describe the
process of evolving game mechanics through simulation; in section 3 we show
how this process can be reversed to design levels that use certain mechanics; in
section 4 we give examples of generated content and describe a small pilot study;
in section 5 we review related work to this project and distinguish our approach
and in section 6 we conclude and describe some directions for future work.

2 Automatic Generation of Game Mechanics

2.1 Background

Reflection. Reflection is the ability of a programming language to inspect itself
at runtime, allowing for the runtime creation of new classes, the modification of
code, and the inspection, invocation and alteration of fields and methods. The
following code retrieves a list of objects describing the fields of an object o:

Class<?> c = o.getClass(); List<Field> fs = c.getFields();

Mechanic Miner is further extended by the open source Reflections library3 in
order to overcome the limitations of Java’s standard reflection.

Toggleable Game Mechanics. In the remainder of this paper we refer to
toggleable game mechanics (TGM), an intentionally simplified subspace of game
mechanics that we identify for the purposes of demonstrating Mechanic Miner.
A TGM is an action the player can take to change the state of a variable. That
is, given a field foo and a modification function m with inverse m−1, a TGM is
an action the player can take which applies m(foo) when pressed the first time,
and m−1(foo) when pressed a second time. The action may not be perfectly
reversible; if foo is changed elsewhere in the code between the player taking
actions m and m−1, the inverse may not set foo back to the value it had when
m was applied to it. For instance, if foo is the player’s x co-ordinate, the and the
player moves around after applying m, then their x co-ordinate will not return to
its original value after applying m−1, as it was modified by the player moving.

Flixel and Flixel-Android. Flixel4 is a popular open-source game library
built on top of Actionscript 3. Flixel-Android5 is a port of the Flixel library to

3 http://code.google.com/p/reflections/
4 http://www.flixel.org
5 http://code.google.com/p/flixel-android/

http://code.google.com/p/reflections/
http://www.flixel.org
http://code.google.com/p/flixel-android/

286 M. Cook et al.

the LibGDX framework. It follows the same structure and has the same method
calls (with some concessions made for differences in programming language ca-
pabilities). LibGDX6 is a Java library that compiles to many platforms.

2.2 Mechanic Miner

Mechanic Miner is an evolutionary system for searching a codebase for usable
TGMs. The codebase is defined as any code in the game being analysed – for our
experiments, this means both the Flixel-Android library code, and the code of a
simple platform game written using the library. We define a usable mechanic as
one which enables the player to overcome some obstacle in order to complete a
task, such as reaching an exit. Figure 1 shows a sample level where the player’s
progress to the exit, marked ’X’, is blocked by a tower of impassable blocks.
The player starts in the square marked ’S’, falls to the ground under gravity,
and is unable to jump over the tower. A usable TGM is any TGM that allows
them to reach the exit from this starting configuration. One example would be
a mechanic that toggled gravity off, allowing the player to jump as high as they
wanted temporarily, and thereby leap over the tower in the centre.

Fig. 1. A sample puzzle level. The player starts at the ‘S’ mark, and must reach the
‘X’ mark. Black squares are solid, and gravity acts on the player pulling them down.

Population Generation via Codebase Inspection. In section 2.1, we de-
fined a TGM as a combination of a game variable and a function that modifies
it. In Mechanic Miner, we formalise this by describing a mechanic as being com-
prised of two parts: a java.lang.Field object that refers to a field present either
in the game library’s code or the code of the template game; and a Modifier

that encapsulates an operation on a field to change it. In order to generate
such mechanics, we use reflection to search through all the classes defined in the
Flixel-Android library and the template game. We choose fields at random, and
based on their type we randomly select a modifier to use. The two together com-
prise a TGM. Modifiers are type-specific because the range of operations that
can be performed on a field are restricted by the type system. For numerical

6 https://github.com/libgdx/libgdx

https://github.com/libgdx/libgdx

Reflection-Driven Game Mechanic Discovery and Level Design 287

types like float or integer, we offer modifiers that double or halve the value,
or multiply it by -1. For boolean fields, we invert the sign of the boolean. The
set of modifiers we use is limited for this work to simplify the system.

Fitness Evaluation via Simulation. We evaluate the fitness of a mechanic
during evolution by simulating its use in the sample level, testing its usability,
and calculate its score based on the area the player gains access to. The process
of simulation is intended to find all valid sequences of actions under a certain
length, using a breadth first search. An action is a set of steps that the simulated
character performs until it can no longer reach any new space. For instance, the
action MOVE encapsulates moving left or right, until all areas reached by only
moving left or right have been found.

The breadth-first search process simulates one action at a time, and for each
level location reached by the character the simulator checks a data structure
for that location to see if the same (or shorter) sequence of actions has already
reached that location. If not, the sequence is new for this co-ordinate, and so it
adds a new node to the search space to be explored. Because this node is one move
longer than the node that was just explored, the breadth-first search will only
expand it after it has finished searching all the nodes with shorter sequences. In
this way, we find the shortest sequence that reaches the exit. For the mechanics
and levels described in this paper, the actions used were MOVELEFT, MOVERIGHT,
JUMP, SPECIAL and NOTHING. NOTHING is an action used when simulating a fall.

When a sequence of moves that reaches the exit location has been found, it is
returned instantly (as this proves the TGM is usable, under the earlier definition).
The fitness of a mechanic in this instance is proportional to the amount of the
game world that the player was able to access before reaching the exit. This is
a good metric as it allows the system to avoid finding mechanics that are too
empowering (allowing the player to reach everywhere in the game world) or not
empowering enough (mechanics that, for instance, instantly teleport the player
to the exit location, which offer little flexibility for interesting level design).

Crossover, Mutation, and Evolutionary Parameters. Mutation of a TGM
is performed by either randomly varying the modifier on the mechanic (e.g.
changing a Float’s modifier from Halve to InvertSign), or by changing the
TGM’s target field to another field from the same class within the game en-
gine. Specific mutations are selected randomly from all legal mutations for the
mechanic (if a type has only one modifier, for instance, it will not attempt to ran-
domly reassign the modifier as it will result in an identical mechanic). Crossover
of two mechanics uses uniform crossover where the two mechanics affect fields of
the same type. In the case that the two mechanics do not, mutation takes place
instead. 10% of the new population is comprised of newly-generated TGMs.

A standard run of Mechanic Miner maintains a population of 100 mechanics,
evolved for 15 generations. Simulation (for fitness evaluation) is limited to ten
discrete actions, such as MOVERIGHT, before the simulator stops under the as-
sumption that no solution can be found (the simplicity of the sample problem

288 M. Cook et al.

means that it is unlikely that solutions longer than ten moves will be found - none
found during experimentation took more than ten moves). These parameters
were all determined through experimentation with the system.

3 Mechanic-Led Level Design

Once a TGM has been identified by Mechanic Miner as potentially usable for the
candidate problem, we can use it as the basis for designing levels that specifically
require the use of that mechanic by players en route to finishing the level. This
section outlines the process of evolving level designs for specific mechanics.

Population Generation. A level is described abstractly as a collection of
geometric shapes that prescribe the placement of impassable blocks, similar to
the system described in [1]. Each shape is either a Line or a Box. Boxes may be
filled or outlines only, and Lines may be standard blocks, or spikes which kill the
player on contact. The generation of a level consists of the random placement
of shapes, with a limit on the minimum and maximum number of shapes a level
can contain. For the levels generated in this paper, they contain no fewer than
2 elements and no more than 20.

Simulation-Driven Fitness Evaluation. In order to evaluate the level, we
simulate multiple attempts at solving it, using the simulation method outlined
in the previous section. The first simulation does not use any mechanics, to test
if the level can be completed without mechanic use at all. If this is the case,
the level receives a penalty to its fitness, as we want to end up with levels that
can only be solved using the new mechanic. The second simulation is a standard
simulation using the mechanic found by Mechanic Miner. A third simulation can
also be run in order to evaluate the difficulty of the level. In this simulation, the
mechanic is used but the amount of time processed between each simulation step
is increased. By increasing the time the game engine runs between actions by the
simulator, we can simulate the player having slower reaction times. This makes
it possible to approximately parameterise the difficulty of a level, by penalising
the fitness of levels that can be solved with long reaction times.

When the three simulations are complete, assuming the level was not com-
pletable without mechanic use, the fitness is scored as follows: first, the length
of the shortest successful trace is compared to the target trace length, TTL.
We assume that longer traces, implying more complex chains of action, imply a
harder puzzle to solve (since we are agnostic to the mechanic being designed for,
this seems a reasonable assumption). Levels whose shortest trace is closer to the
target trace length receive a higher fitness. This accounts for half of the total
fitness score, normalised between 0 and 0.5, where 0.5 represents a level whose
shortest trace is as long as the target trace length. We also compare the number
of times the mechanic was used with a target mechanic use variable, TMU , using
the logic that frequent use of the mechanic implies a complex solution. This is
also normalised between 0 and 0.5. The variables TTL and TTM allow us to
adjust both the overall complexity of the level’s solution, as well as the ratio of
mechanic use to other actions.

Reflection-Driven Game Mechanic Discovery and Level Design 289

Crossover, Mutation, and Evolutionary Parameters. Mutating a level
involves the random replacement of abstract level elements with new elements,
or the adjustment of parameters such as the length of the lines and box sides,
or their starting co-ordinates. We employ uniform crossover by selecting a point
in the level grid, and performing crossover of any level elements whose starting
co-ordinate lies before that point on the grid. Parameters vary depending on
the desired difficulty of the level being designed, which is adjusted by the user
through the target trace length and other parameters described in the previous
section. A typical run maintains a population of 100 levels, run for 15 generations,
with a target mechanic use of 2 and a target trace length of 6. The standard
target reaction time is a step of 64ms, with a slower reaction time of 256ms.

4 Results and Evaluation

This section includes three game mechanics, and three levels designed for each,
which require the use of the associated mechanic in order to be solved. The
player starts in the ‘S’ position and must reach the exit, marked ‘X’. Red tiles
kill the player, while black squares are solid ground.

4.1 Mechanic - Gravity Inversion

In Flixel, setting an object’s acceleration field is a way to simulate gravity, so
a typical platform game normally sets the acceleration.y field to a positive
integer. Multiplying this value by -1 has the effect of inverting gravity. Figure 2
shows three sample levels.

Fig. 2. Gravity inversion mechanic: INVERTSIGN player.acceleration.y

4.2 Mechanic - ‘Teleportation’

Halving (doubling, if activated again) the player’s y co-ordinate allows for tele-
portation around the game world. This mechanic is unusual, as the classic mental
model of a platform game does not match up to the co-ordinate model the game
engine uses. Here, (0,0) refers to the top-left corner of the screen. Halving the
distance between the player’s position and the ceiling has no natural analogue
in real-world physics. This makes the mechanic technically usable, but confusing
to the player. Figure 3 shows three sample levels.

290 M. Cook et al.

Fig. 3. Teleportation mechanic: HALVE player.y

4.3 Mechanic - ‘Bounce’

Elasticity affects how an object interacts with the game’s physics engine. Elas-
ticity is normally set to 0; any positive number will cause the player to bounce
when it collides with things. This mechanic allows the player to become ’bouncy’
on demand, gaining momentum to bounce over larger gaps or to greater heights.
Figure 4 shows three sample levels.

Fig. 4. Bounce mechanic: ADD 1 player.elasticity;

4.4 Pilot Study

We performed a small pilot study to gain insight into how some of the mechanics
and levels generated would be received by human players. 7 participants with a
variety of experience with videogames took part in the study, which consisted of
twelve levels split into sets of three sharing a common mechanic. The levels were
designed with variable evolutionary parameters; in particular, we attempted to
present progressively harder levels to the participants by increasing parameters
such as overall solution length and reflex requirements. The mechanics presented
to the player were those described above, and a fourth mechanic that allowed
the player to halve the effect of gravity. The participants were not told how the
mechanics worked, beyond being told they had a special ability they could use.

When asked to describe how they thought the mechanics worked, all five par-
ticipants failed to describe the teleportation mechanic accurately, and all rated
it as unenjoyable. This supports our belief that some mechanics invented by

Reflection-Driven Game Mechanic Discovery and Level Design 291

Mechanic Miner in its current form are confusing for players, because they may
refer to elements of the game code that are not in the player’s mental model of
how the game world works. By contrast, all of the participants rated the gravity
inversion mechanic highly, with the hardest level of the set described as ”impres-
sive” and ”fun” by two of the participants. Comprehension of a mechanic seems
understandably integral to a player’s enjoyment of using it, and the feedback
from the study raises questions as to whether pure utility may be an effective
evaluation criteria for a reflection-driven system. Participants were also asked to
rank the levels in order of perceived difficulty for each set of three levels. From
the responses received, it seems that our metrics (such as the number of times a
mechanic must be used in a solution) model difficulty well for some mechanics,
but poorly for others - participants tended to agree on which levels were harder
than others, but in the case of mechanics such as bouncing, it did not match
up to our intended difficulty ordering. This may imply that different mechanics
require different metrics, as some may be suited to reaction challenges, while
others may be about ordering of actions or puzzle solving.

The study has informed the design of a larger survey that will focus on a subset
of mechanics. We hope this will provide more evidence for our hypotheses.

5 Related Work

Our relatedwork covers both ruleset andmechanic invention.A common approach
is to selectmechanics froman annotateddatabase. The systemdescribed in [4] uses
a list of knownmechanics and game content, associatedwithwords, andusesWord-
Net to connect input strings to words attached to known game content. This allows
for the verb shoot to connect to mechanics where the player controls a crosshair
shooting at objects, for example. The work in [7] uses smaller mechanical pieces
which the authors callmicro-rhetorics (see [8]). The Game-O-Matic [7] takes sets
of these micro-rhetorics and matches them with a human-specified network of en-
tity relationships. In one example in the paper, the relationship dog needs food is
expressed through two objects labelled ‘dog’ and ‘food’, with the player being able
to control the dog, tasked with gathering food.

These annotated-database approaches work well where a human designer is
able to construct a database of known concepts beforehand, but this limits the
autonomy of the system, as well as its ability to surprise us through novel out-
put. This makes it a promising direction for mixed-initiative tasks. However, we
are interested in building an autonomous game designer, from a Computational
Creativity perspective [3], and this approach is less suited to our interests.

The other main approach to mechanic design is a grammar-based constructive
approach that uses templates, into which small sub-mechanic components are
inserted to construct high-level rules [6,2]. Here, rule templates describe abstract
notions of mechanics (such as an event where two objects collide and effects are
applied to them) and then abstract notions of smaller objects/events/effects that
are in common videogame vocabulary (game objects such as the player, moving
entities, or the game level wall; sub-events such as an object being killed, or

292 M. Cook et al.

teleported to a new location). This allows for novel composite mechanics to be
constructed, but the essential elements of the rules still direct the system towards
rediscovering known concepts or slightly elaborating on them. The need for a
technique that is not dependent on prior definitions is still evident.

6 Conclusions and Future Work

In this paper we introduced Mechanic Miner, an evolutionary system that gener-
ates new game mechanics through Reflection and then validates their usefulness
by simulating game playouts. We also showed how the same techniques can be
used to design levels that can only be solved using the mechanics invented. Me-
chanic Miner represents a novel method for both discovering potential game
mechanics and exploiting them through level design, without knowing anything
about the game engine or the mechanics found during the search. We have found
the system to be capable of producing mechanics unexpected to us (such as the
mechanic in section 4.3) as well as discovering mechanics similar to those used
by human game designers ([11] uses a mechanic similar to 4.1).

The simulation-driven level design system also surprised us by discovering
exploits within the game code we had supplied it. The sample game includes
a check that the player is touching the floor before allowing them to jump.
Mechanic Miner found that by using a teleportation mechanic it could teleport
inside a solid wall, which Flixel registers as the same as touching the floor,
effectively allowing the player to ‘wall jump’. Exploiting game engines in such a
way is common in certain game communities, and integral to competitive ‘speed
runs’ of games, where players try to find new ways to shortcut or break the rules
of a game. That Mechanic Miner was able to do this, without any anticipation
from the system’s authors, is an exciting indication that the system may be able
to find more complex, emergent game mechanics in future.

Some of the areas suggested for possible future work include:

Game Object Synthesis. Rich game mechanics often affect in-game objects
that are created as extensions of the game engine. For instance, some of the
mechanics found by Mechanic Miner affect the Player object, which extends
Flixel’s basic FlxSprite object. By allowing Mechanic Miner to create new types
of game object as part of its search process, and then find mechanics that exploit
interactions between the new game objects and the game world, we open up more
interesting possibilities for discovery.

Richer Reflection and Constraint Generation. Some mechanics only make
sense in the context of complementary vulnerability. Mechanic Miner discovered
the notion of gravity inversion, which is used in [11]. However, in [11] the player
is unable to jump. This simple adjustment allows for many new challenges to
be designed. Constraints are just one way that reflection could be leveraged to
create more intricate mechanics. Reflection can be used to call methods or run

Reflection-Driven Game Mechanic Discovery and Level Design 293

arbitrary code at runtime, opening up the possibility for more complex, multi-
operation mechanics to be constructed beyond field modification.

Emergent Mechanics. In some games, problems are presented to the player
that cannot be solved with a single mechanic, but can be completed using a
combination two. By modifying Mechanic Miner, we believe it can be used to
solve levels using multiple mechanics at a time, potentially discovering scenarios
where mechanics can combine to solve new types of problem.

Acknowledgements. Thanks to Julian Benson for discussion of his work on
player traces in Braid, and Julian Togelius for input into the Mechanic Miner
evaluation. Thanks also to the anonymous reviewers for some insightful com-
ments.

References

1. Cardamone, L., Yannakakis, G.N., Togelius, J., Lanzi, P.L.: Evolving Interesting
Maps for a First Person Shooter. In: Di Chio, C., Cagnoni, S., Cotta, C., Ebner,
M., Ekárt, A., Esparcia-Alcázar, A.I., Merelo, J.J., Neri, F., Preuss, M., Richter,
H., Togelius, J., Yannakakis, G.N. (eds.) EvoApplications 2011, Part I. LNCS,
vol. 6624, pp. 63–72. Springer, Heidelberg (2011)

2. Cook, M., Colton, S.: Multi-faceted evolution of simple arcade games. In: Proc. of
the IEEE Conference on Computational Intelligence and Games (2011)

3. Colton, S., Wiggins, G.: Computational creativity: The final frontier? In: Proc. of
the 21st European Conference on Artificial Intelligence (2012)

4. Nelson, M.J., Mateas, M.: Towards Automated Game Design. In: Basili, R.,
Pazienza, M.T. (eds.) AI*IA 2007. LNCS (LNAI), vol. 4733, pp. 626–637. Springer,
Heidelberg (2007)

5. Smith, G., Othenin-Girard, A., Whitehead, J., Wardrip-Fruin, N.: PCG-based
game design: creating endless web. In: Proc. of the International Conference on
the Foundations of Digital Games, FDG (2012)

6. Togelius, J., Schmidhuber, J.: An experiment in automatic game design. In: Proc.
of the IEEE Conference on Computational Intelligence and Games (2008)

7. Treanor, M., Blackford, B., Mateas, M., Bogost, I.: Game-o-matic: Generating
videogames that represent ideas. In: Proc. of the Third Workshop on Procedural
Content Generation in Games, FDG 2012 (2012)

8. Treanor, M., Schweizer, B., Bogost, I., Mateas, M.: The micro-rhetorics of game-
o-matic. In: Proc. of the International Conference on the Foundations of Digital
Games, FDG (2012)

9. GNILLEY, Radix (2010), http://www.gnilley.com/
10. Offspring Fling, KPULV (2011), http://offspringfling.com/
11. VVVVVV, Terry Cavanaugh (2010), http://www.thelettervsixtim.es

http://www.gnilley.com/
http://offspringfling.com/
http://www.thelettervsixtim.es

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 294–303, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Generating Artificial Neural Networks
for Value Function Approximation in a Domain

Requiring a Shifting Strategy

Ransom K. Winder

The MITRE Corporation
rwinder@mitre.org

Abstract. Artificial neural networks have been successfully used as approx-
imating value functions for tasks involving decision making. In domains where
a shift in judgment for decisions is necessary as the overall state changes, it is
hypothesized that multiple neural networks are likely be beneficial as an
approximation of a value function over those that employ a single network. For
our experiments, the card game Dominion was chosen as the domain. This work
compares neural networks generated by various machine learning methods suc-
cessfully applied to other games (such as in TD-Gammon) to a genetic algo-
rithm method for generating two neural networks for different phases of the
game along with evolving a transition point. The results demonstrate a greater
success ratio with the method hypothesized. This suggests future work examin-
ing more complex multiple neural network configurations could apply to this
game domain as well as being applicable to other problems.

1 Introduction

Artificial neural networks have proven to be a robust computational method for data
modeling and pattern recognition. An application where this method has enjoyed
successful implementation is in decision making. While several successes have been
achieved using single neural networks as approximators of nonlinear value functions,
a question arises as to whether an individual, traditional feed-forward neural network
is sufficient for handling an environment where there are shifts in strategy required as
the overall state changes. In this situation, it is hypothesized that multiple neural net-
works that approximate different policies and are gated by simple conditions will be
more competitive. Given the difficulty of learning such a system, evolutionary com-
putation (specifically genetic algorithms) is an attractive method for discovering
neural networks and state transitions where the neural network applied should change.

Neural networks as decision makers have been applied impressively for certain
games. This paper intends to apply the genetic algorithm method described to a deck-
building card game called Dominion, where a change in policy during play makes for
an effective strategy. The goal is to generate a neural network to accurately approx-
imate the value of game states in order to make decisions. These neural networks will
take as input possible and predicted game states and output value judgments on those

 Generating Artificial Neural Networks for Value Function Approximation 295

states to make a decision. Ideally, when used throughout a game, these networks pro-
vide an optimal strategy. This method will be compared against reinforcement learn-
ing and hill-climbing techniques, which have been demonstrated successfully in other
domains.

2 Background

2.1 TD-Gammon and Variants

TD-Gammon [15-16] still remains a marked success in the application of machine
learning to the problem of developing automated systems to play games. The original
application of TD-Gammon demonstrated reinforcement learning [14] in the game of
backgammon, using a neural network trained with backpropagation as an approxima-
tion of a nonlinear function of a game state’s value. Reinforcement learning has been
shown to achieve measures of success in other game domains such as simpler, solved
games like Tic-Tac-Toe and Connect 4 [6] and more complex ones such as The Set-
tlers of Catan [11], but the process is often brittle with respect to the feature space
used, requiring this to be finely tuned [8]. The method has been successfully enhanced
with genetic algorithms for game environments such as Pac-Man [5].

After TD-Gammon, other machine learning methods have been applied against
backgammon. [12] found a simple hill-climbing method used in conjunction with
player co-evolution based on relative player fitness was also capable of achieving a
measure of success at learning the game. This work suggested it was specifically self-
play over iterations of games that drove the success in learning. Yet this approach was
still found to be subject to being trapped in local optima as it searched the fitness
space of neural network policies [10]. Another learning strategy capable of a wider
search of the fitness space that has been demonstrated successfully against backgam-
mon is genetic programming [1], again involving play between learning players.

The implication here is that employing evolution and self-competition is often a
part of successful methods. Evolutionary computation methods such as genetic pro-
gramming or genetic algorithms have enjoyed success across many game-related
scenarios, including completely player deterministic games such as chess and chess
end-games [4,7], checkers [3], and Go [2]. There is also recent evolutionary computa-
tion work applied to Dominion, evolving card sets to balance the game for players of
different skill levels [9].

2.2 Domain Space – Dominion

Dominion [17-20] is a card game designed by Donald X. Vaccarino and published by
Rio Grande Games. In the game, players start with an initial seed deck of low-
powered cards (3 Estates and 7 Coppers) and grow their deck by adding cards to it
from a common Supply with the goal of achieving the highest number of points by the
game’s end. Important card types in this Supply include treasure, the currency by
which players buy new cards (i.e., Copper, Silver, and Gold with cost/values of 0/1,
3/2, and 6/3, respectively), victory, cards that are only worth points at the end of the

296 R.K. Winder

game (i.e., Estates, Duchies, and Provinces with cost/values of 2/1, 5/3, 8/6), and
action, cards which allow players to take actions (in our scenario: Adventurer, Bazaar,
Chapel, Conspirator, Festival, Moneylender, Village, Woodcutter, Worker’s Village,
and Workshop with rules available in [17-20]). These action cards are a subset of
many possible kingdom cards that can be included in varied Dominion games, but
those not listed do not apply here.

Dominion exhibits an apparent difference between early strategies and late-game
strategies that can be expressed simply. Only victory cards are worth points at the end
of the game, but they take up space in a player’s deck and hand during the game, di-
minishing a player’s efficiency. It is not trivial to determine what cards to acquire and
when to acquire them to ensure a higher score than an opponent at the end of the
game. This indicates the early strategy should be to increase the player’s power to buy
points at the end by gaining the most effective treasure and kingdom cards in a good
distribution. Capturing this change in strategy is important in a successful neural net-
work for assessing a state’s value when applied to games of Dominion.

3 Methods

The feed-forward neural network is applied to the game state by a player whenever
the player is required to make a choice. Choices include taking an action, making a
decision implied by an action taken, and buying a card to add to the deck. The input
values to this network are the counts of the different cards in varied game conditions.
These conditions include the counts of cards in the Supply, in the player’s hand, in the
player’s discard pile, in the player’s draw pile, in the player’s play space (that is,
cards the player has played down this turn), or in the opponent’s deck. Further, there
are input values representing the number of actions a player has, the number of buys
the player can perform, and the amount of treasure available for those buys. Finally,
there is also an input for a count of unknown cards, as some actions require the player
to draw an unknown card from the deck. These inputs, which represent a game state,
are fully connected to a hidden layer of 200 nodes. These in turn are fully connected
to an output layer. A sigmoid function is applied to the sum of nodes and weights for
all incoming weights to a node to ensure a result falls between 0 and 1.

Players have two consecutive phases, A and B, where actions are taken and cards
are purchased, respectively. During a player’s turn where an action can be taken
(phase A), the players apply all predicted states from legal actions against the neural
network. The resulting outputs from the network are then compared. The highest val-
ue is considered to be the optimal predicted state and the player will take that action.
A state where no action is taken is also evaluated. If this state is optimal or a player
has no further legal actions, then the player applies the same network to all predicted
states resulting from buying any cards that can be afforded (phase B). If a state where
nothing is bought is judged optimal or there is insufficient currency to buy any cards
or the player has no buys left, then the player will discard the hand and play space and
draw a new hand for next turn.

 Generating Artificial Neural Networks for Value Function Approximation 297

Although the common Supply and the knowledge of what players have added to
their deck is open to all players, much of the information of the game state is hidden
from a player at any given point in the game. Decks are shuffled into an unknown
draw-order and the content of an opponent’s hand is not known. This makes the pre-
dictability of the game highly limited as the possibility of what the opponent is capa-
ble of doing next turn—let alone what a player himself is able to do next turn—is
highly dependent on the random card draw. While a deck’s overall contents are
known and probabilities of card draws can be ascertained, the combinations of cards
are often more important than the likelihood of any one card emerging, and this is
more difficult to predict. Turns are independent of actions taken immediately preced-
ing them and, therefore, prediction past this turn is unlikely to be helpful.

The reinforcement learning and backpropagation used here are similar to what was
applied in TD-Gammon. Offline temporal-difference learning is used for reinforce-
ment learning here. Experiments where only the final state is rewarded or punished
are also attempted. Resilient backpropagation, or RPROP [13] is applied here with η-
and η+ values of 0.5 and 1.2, respectively. Games are played with a variety of differ-
ent values for the key parameters, including the learning rate for the backpropagation,
the temporal difference learning rate, and the type of opponent played against, which
can be a co-learning player, a mutant of the player (generated by Gaussian noise ap-
plied to its neural network’s weights and normalized by the overall network size), or
the player itself.

A simpler method for learning that involves simply hill-climbing to a state that has
been exhibited in play to be more successful appears to be a reasonable alternative for
consideration. Again in these experiments, the player plays against a mutant of itself
generated in the same manner as described above, and if the mutant player is more
successful, the player’s neural network weights are then adjusted in the direction of
the mutant by a learning rate (default value of 0.1).

Genetic algorithms as applied to this problem bear some resemblance to the hill-
climbing effort. This is performed with an initial population of players with random
neural networks. Each player is pitted against the rest of the population in pairwise
games. The population of winners is taken to be the subset of these players with the
highest rate of victory. These winners are kept for the next generation and also used to
generate a new population of mutants and partial mutants, where there is some proba-
bility that all network weights will be adjusted by Gaussian noise normalized to the
network size (mutant) and a separate probability that any individual weight will be
adjusted in the same manner (partial mutant). By the end of the evolutionary process,
the final best player is taken to be the equivalent of the player produced by the other
methods and is used for a final assessment of the methods’ efficacy.

This process can be enriched by allowing different subpopulations to compete in
tournaments but have their own pool of winners, which can help to mitigate a problem
that occurs where a single winner and its offspring are powerful enough to become
the entire population, making the population too similar after several generations.

It seems likely in Dominion that there is a difference between early strategies and
late-game strategies. Because victory cards are only valuable after the game is over,
and they are the only thing that are valuable at the end, a simple assessment of the

298 R.K. Winder

game indicates that the early strategy should be to increase the player’s power to buy
points at the end, by gaining treasure and effective kingdom cards. A single nonlinear
function approximation, such as the neural network represents, might have difficulty
representing this change in policy. Thus, experiments are performed that attempt to
evolve two feedforward neural networks as well as the threshold (in terms of the turn
number) at which the policy changes from one to the other. It is expected that this
might be more effective at capturing a change in strategy.

In order to gauge the success of a strategy learned by the neural network, it is ne-
cessary to establish baseline policies for taking actions and buying cards in the game.
Ideally, the neural networks generated should be able to achieve success against these
baselines in a significant percentage of games played. These experiments compare
against three different baselines of varying quality or depth, including a policy that
builds a deck randomly and takes random actions (Random), a policy that builds a
deck with only treasure cards and victory cards (Money), and a policy that builds a
deck with only treasure cards, victory cards, and one Chapel card (Chapel).

The Random policy takes random actions from any available actions in the hand
(taking no action being viable) and then buys a random card that the current hand can
afford (buying no card being viable). This policy is highly naïve and expected to fail,
considering the space of available cards is wide and that, without direction, the score
is apt to stay stagnant or fall if cards of negative value are purchased.

The other policies are less naïve and based on known successful simple strategies
in Dominion, where an emphasis is placed on buying only treasure cards as opposed
to relying on action cards and then changing the emphasis to purchasing high-valued
victory points. Because one of the ending conditions is when the highest valued cards
are all purchased, these strategies are designed simply to pursue building a deck that
will purchase those cards as quickly as possible.

The Money policy only purchases the most expensive affordable treasure card on
each turn until two Gold cards are present in the deck. Once that threshold is reached,
the policy changes to prioritize purchases such that the most expensive treasure or
victory card is bought each turn. The intent here is to avoid purchasing victory cards,
which do not help in buying cards until later, to ensure that there are a sufficient num-
ber of treasure cards in the deck to buy higher cost cards. The threshold of two Gold
cards in the deck is an estimate of this point.

The Chapel policy will purchase a Silver card and a Chapel card on the first two
turns. The Chapel card is an action that can permanently remove up to four cards in a
player’s hand from the deck. Subsequent turns will follow the policy of purchasing
Provinces, Gold, and Silver cards in that order of preference given what a hand can
afford. After 25 turns, the policy will prefer to buy Duchy cards over Silver cards.
The intent here is similar to the above policy, but with the added power of the Chapel.
Hands that contain the Chapel will remove any Estate cards or Copper cards, unless
the Copper cards are combined with higher valued treasure cards to ensure the pur-
chase of a Province, Gold, or Silver. This strategy attempts to remove low-valued
cards from the deck completely, increasing the efficiency of the average hand, which
will have fewer Estate or Copper cards that provide little value relative to the others
over the course of the game.

 Generating Artificial Neural Networks for Value Function Approximation 299

Table 1 shows the mean results of example games of these policies playing each
other, including the percentage of games won and the average number of total hands
of any player in the game. As anticipated, the Random policy is slower and achieves a
far lower score than the other two. Because cards with a negative score have no cost,
the overall score of a Random policy deck often drops below zero. Of the scripted
Money and Chapel policies, the Chapel policy is the faster and more apt to win.

Table 1. Baseline policies compared against one another averaged over 10000 games for each
pairing of Player 1 (P1) and Player 2 (P2)

P1 Policy P2 Policy P1 Win% P2 Win% P1 Score P2 Score # Turns

Random Random 49.6 50.4 2.4 2.4 70.7

Random Money 0.0 100.0 -0.2 60.0 57.6

Random Chapel 0.0 100.0 -0.2 65.9 65.0

Money Money 50.2 49.8 32.0 31.8 36.7

Money Chapel 35.7 64.3 28.8 32.0 34.3

Chapel Chapel 50.3 49.8 27.8 27.8 31.9

These policies are not intended to be finely tuned, and further alterations that

would enhance their performance could be made to their algorithms. They are in-
tended to serve as baselines against which learned policies can be benchmarked.

4 Results and Discussion

Several variations on each of the described learning methods were applied. For brevi-
ty’s sake the best results achieved with each method assessed against the baseline
strategies are listed in Table 2, with the exception of reinforcement learning, where
the best of multiple variations are shown as the changes make significant differences
in how learning proceeds.

Player R/FS was trained with reinforcement learning using a backpropagation
learning rate of 0.01 and only learned on the final state of the game, playing its games
against a mutant of itself. The mutant was generated from the current neural network
of the player before each learning iteration. Player R/TD similarly used backpropaga-
tion and competition against a mutant, but also applied temporal difference learning
with a decay rate of 0.9999 to diminish the reward as states went from the final state
back to the beginning. Player HC was trained using the hill-climbing method with a
rate of change toward a winning mutant of 0.1. Player GA/S was trained in a genetic
algorithm tournament where there were 5 separate subpopulations of 10 that were
pitted against each other with a single winner per population after each tournament
that was used to seed the following generation. The chance of complete mutation was
0.1 while the chance of mutation in a descendant for any given network connection
was 0.01. Player GA/M was trained using the genetic algorithm method that evolved
two feedforward neural networks and the turn threshold where the network utilized
changed from the first to the second. In these results there were 100 members of a
population with the 50 highest scorers carried forward to the next generation. The
rates of mutation here were the same as for player GA/S.

300 R.K. Winder

Table 2. Performance (averaged over 1000 games) of players and their neural network policies
against the baselines as well as between one another for the higher scoring policies

P1

Method

P2 Policy P1 Win% P2 Win% P1 Score P2 Score # Turns

R/FS Random 100.0 0.0 51.0 -0.1 51.6

R/FS Money 39.0 61.0 28.6 30.0 35.3

R/FS Chapel 29.7 70.4 25.8 29.9 33.2

R/TD Random 100.0 0.0 11.0 -2.4 95.8

R/TD Money 0.0 100.0 11.0 59.4 57.0

R/TD Chapel 0.0 100.0 11.0 65.8 65.1

HC Random 100.0 0.0 63.4 -0.2 68.2

HC Money 70.3 29.7 37.3 33.5 37.9

HC Chapel 44.8 55.2 32.6 33.3 35.5

GA/S Random 100.0 0.0 51.6 -0.1 51.7

GA/S Money 47.9 52.1 29.6 29.4 34.9

GA/S Chapel 38.5 61.6 26.4 29.3 32.5

GA/M Random 100.0 0.0 63.0 -2.2 66.2

GA/M Money 76.1 23.9 38.0 32.7 37.2

GA/M Chapel 61.2 38.8 33.7 31.8 34.6

Table 3. Distribution of cards in players’ decks averaged over 1000 games against the Chapel
strategy. Cards in the Supply that were never purchased are not listed.

 R/FS R/TD HC GA/S GA/M

Copper 7.000 13.765 7.024 4.952 7.000

Silver 7.200 17.614 5.675 4.060 3.874

Gold 5.249 -- 3.635 4.653 3.423

Estate 3.000 11.000 3.519 3.411 5.114

Duchy -- -- 2.959 -- 2.524

Province 3.805 -- 3.365 3.834 3.507

Adventurer -- -- 0.020 -- --

Bazaar -- -- -- 2.716 --

Conspirator -- -- 0.005 -- 0.081

Festival -- -- -- -- 2.342

Moneylender -- -- -- 0.550 --

Woodcutter -- -- 1.185 -- 0.001

Worker’s Village -- -- 0.007 -- --

Workshop -- -- -- -- 0.039

Table 3 further lists the distribution of cards witnessed in the players’ decks aver-

aged over the 1000 games played against the Chapel policy. Some cards appear in
negligible quantities (e.g. Adventurer, Workshop), but others are consistent purchases
that distinguish the strategies from one another and are revealing about how the neural

 Generating Artificial Neural Networks for Value Function Approximation 301

networks drive the player. In most cases a modest number of kingdom cards are added
to a deck, outweighed by the total of treasure and victory cards purchased.

While each of the depicted players is able to beat the trivial baseline of the Ran-
dom strategy, none is able to consistently best the Money or Chapel strategies (Table
2). Player R/TD’s inability to win any games against these strategies suggests that
temporal difference learning is not suited for this game domain. Temporal difference
methods that pitted a learning player either against a co-learning player or an oppo-
nent with an identical neural network resulted in performances that were not even
capable of defeating the Random strategy consistently. Player R/FS’s inability to win
more than 50% of the games against the Money or Chapel strategies seems to further
indicate that backpropagation applied against trying to learn a policy based on a final
state is a flawed method for Dominion.

The other strategies find more success, though neither the J nor the GA/S player
are able to win more than 50% against the more efficient Chapel strategy. Only player
GA/M, who has evolved two neural networks to approximate an early and a late game
policy, is able to win well over 50% of the games against both the Money and Chapel
strategies. This suggests that there is indeed a need for a change in policy as the game
progresses, which is difficult to capture in a single neural network approximation.

It is worth noting that there is some variance in the expense required to find the
neural networks. Generating the genetic algorithm solutions takes considerably longer
than the other methods because tournaments must be run between many players to
discover the best neural networks. However, granted that the most successful solution
falls into this category, the expense is justified.

What is intriguing about the most successful method (GA/M) is that fewer treasure
cards are purchased here than with the other methods, and a wider variety of victory
cards are purchased (Table 3). A diversity of action cards are purchased, but only one
(Festival) is purchased with any consistency. Therefore rather than an optimized ver-
sion of the Money or Chapel policies, a different and better strategy appears to have
been uncovered by the genetic algorithm method, which is encouraging when consi-
dering applying this method to discover strategies on other sets of 10 kingdom cards.

Notable for its absence is the purchase of the Chapel card by any of the best ob-
served strategies. Rather than suggesting the Chapel is not part of an optimal strategy,
it is likely that these methods have difficulty in discovering its complex use. The
Chapel has many possible states must be assessed when performing the prediction
because of the varied combinations of cards the Chapel can remove.

5 Conclusions

This paper has examined an array of machine learning methods applied against the
Dominion card game, demonstrating methods that have been successfully applied to
backgammon and other games in the past (reinforcement learning, hill-climbing) to be
less successful in this domain, at least with the features selected. One expected limita-
tion of these methods was due to a suspicion that a single feed-forward neural net-
work is unable to capture a key change in strategy that is often effective when playing

302 R.K. Winder

a game of Dominion, namely that a player should at some point switch from building
a deck with effective actions and high-valued treasure cards to buying victory cards.
Applying a genetic algorithm method that evolved two neural networks and the time
threshold at which a change in policy occurs was able to discover policies that could
effectively defeat the human-defined baselines that the other methods could not beat
more than 50% of the time. This is an encouraging result and potentially could be
applied to other scenarios, games or otherwise, where a change in policy is required,
either at a certain point in time or when certain criteria are met.

Looking forward, there are many avenues of future work both in this game domain
and using the methods applied here as a basis. First and foremost, the evolution of
multiple neural networks to act as approximators of nonlinear value functions and the
decision points where switching engines occurs can be enriched and applied to other
domains. Allowing for evolution to allow also for a variable number of networks and
switching points would be the first step to subsequently evolving modular neural net-
works that have more flexibility in their construction and flow of information depend-
ing on the current state in which the neural network is operating and the predicted
states. It can also lead to evolving networks that, instead of providing judgments on a
state’s quality, act as gating mechanisms to those neural networks that evaluate the
quality of states. This applies across Dominion and other domains. Further, while the
change in neural network policies achieved here occurs based on a turn threshold, in
other scenarios this can be evolved to be driven by certain intermediate states arising
or conditions being met. Discovering those states and conditions can be evolved.

While the best examples of the genetic algorithm found strategies that exceeded the
baselines’ win rates, it is still the case that some of these were only able to achieve
lesser success, ending the evolutionary process with a different strategy. This indi-
cates that there are pitfalls in the way of local maxima that strategies can enter which
can be difficult to escape, even for the genetic algorithm method. While repeated
evolution from different initial states allows for further exploration of the space of
neural networks, future work will explore other methods of escaping local maxima.

While it is encouraging to learn approximate policies can be induced using these
methods on neural networks for an individual game setup as demonstrated here, there
are presently approximately 14 quadrillion setups of Dominion depending on which
ten kingdom cards are included from over the 190 possible. What has been learned
here will not extend to games where the chosen kingdom cards are not part of the
Supply. Discovering a general policy for Dominion with genetic algorithms (effec-
tively creating a GA-Dominion) is an intriguing prospect, but requires a greater depth
of input feature representation and state interpretation than is achieved here.

References

1. Azaria, Y., Sipper, M.: GP-Gammon: Using Genetic Programming to Evolve Backgam-
mon Players. In: Keijzer, M., Tettamanzi, A.G.B., Collet, P., van Hemert, J., Tomassini,
M. (eds.) EuroGP 2005. LNCS, vol. 3447, pp. 132–142. Springer, Heidelberg (2005)

2. Cai, X., Wensch, D.: Computer Go: a Grand Challenge to AI. SCI, vol. 63, pp. 443–465.
Springer, Heidelberg (2007)

 Generating Artificial Neural Networks for Value Function Approximation 303

3. Chellapilla, K., Fogel, D.: Evolving Neural Networks to Play Checkers without Relying on
Expert Knowledge. IEEE Trans. on Neural Networks 10(6), 1382–1391 (1999)

4. Fogel, D., Hays, T., Hahn, S., Quon, J.: A Self-Learning Evolutionary Chess Program.
Proc. of the IEEE 92(12), 1947–1954 (2004)

5. Galway, L., Charles, D., Black, M.: Improving Temporal Difference Game Agent Control
Using a Dynamic Exploration Rate During Control Learning. In: Proc. of IEEE Sympo-
sium on Computational Intelligence and Games, pp. 38–45 (2009)

6. Ghory, I.: Reinforcement Learning in Board Games. Technical Report CSTR-04-004. De-
partment of Computer Science, University of Bristol, UK (2004)

7. Hauptman, A., Sipper, M.: GP-EndChess: Using Genetic Programming to Evolve Chess
Endgame Players. In: Keijzer, M., Tettamanzi, A.G.B., Collet, P., van Hemert, J., Tomas-
sini, M. (eds.) EuroGP 2005. LNCS, vol. 3447, pp. 120–131. Springer, Heidelberg (2005)

8. Konen, W., Bartz-Beielstein, T.: Reinforcement Learning for Games: Failures and Suc-
cesses. In: Proc. of GECCO 2009, pp. 2641–2648 (2007)

9. Mahlmann, T., Togelius, J., Yannakakis, G.: Evolving Card Sets Toward Balancing Domi-
nion. In: IEEE World Congress on Computational Intelligence (2012)

10. Oon, W., Henz, M.: M2ICAL Analyses HC-Gammon. In: ICTAI 2007, pp. 28–35 (2007)
11. Pfeiffer, M.: Reinforcement Learning of Strategies for Settlers of Catan. In: International

Conference on Computer Games: Artificial Intelligence, Design and Education (2004)
12. Pollack, J., Blair, A.: Co-evolution in the Successful Learning of Backgammon Strategy.

Machine Learning 32(3) (1998)
13. Riedmiller, M., Braun, H.: A Direct Adaptive Method for Faster Backpropagation Learn-

ing: the RPROP algorithm. In: IEEE Conference on Neural Networks, pp. 586–591 (1993)
14. Sutton, R., Barto, A.: Reinforcement Learning. MIT Press, Cambridge (1998)
15. Tesauro, G.: Practical Issues in Temporal Difference Learning. Machine Learning 8,

257–277 (1992)
16. Tesauro, G.: Temporal Difference Learning and TD-Gammon. Comm. of the ACM 38(3)

(1995)
17. Vaccarino, D.X.: Dominion, Game Rules,

http://www.riograndegames.com/uploads/Game/
Game_278_gameRules.pdf (retrieved October 2012)

18. Vaccarino, D.X.: Dominion: Intrigue, Game Rules.,
http://www.riograndegames.com/uploads/Game/
Game_306_gameRules.pdf (retrieved October 2012)

19. Vaccarino, D.X.: Dominion: Seaside, Game Rules,
http://www.riograndegames.com/uploads/Game/
Game_326_gameRules.pdf (retrieved October 2012)

20. Vaccarino, D.X.: Dominion: Prosperity, Game Rules,
http://www.riograndegames.com/uploads/Game/
Game_361_gameRules.pdf (retrieved October 2012)

Comparing Evolutionary Algorithms

to Solve the Game of MasterMind

Javier Maestro-Montojo1, Juan Julián Merelo2, and Sancho Salcedo-Sanz2,�

1 Department of Signal Processing and Communications, Universidad de Alcalá,
28871 Alcalá de Henares, Madrid, Spain

sancho.salcedo@uah.es
2 Departamento de Arquitectura y Tecnoloǵıa de Computadores,

Universidad de Granada, Granada, Spain
jmerelo@geneura.ugr.es

Abstract. In this paper we propose a novel evolutionary approach to
solve the Mastermind game, and compare the results obtained with that
of existing algorithms. The new evolutionary approach consists of a hi-
erarchical one involving two different evolutionary algorithms, one for
searching the set of eligible codes, and the second one to choose the best
code to be played at a given stage of the game. The comparison with
existing algorithms provides interesting conclusions regarding the perfor-
mance of the algorithms and how to improve it in the future. However,
it is clear that Entropy is a better scoring strategy than Most Parts, at
least for these sizes, being able to obtain better results, independently of
the evolutionary algorithm.

1 Introduction and State of the Art

Mastermind is a classic board game for two players, invented by M. Meirowitz in
1970. One of the players acts as a codemaker, and the other one as codebreaker.
The codemaker starts the game by choosing a secret code, i.e. a sequence of P
different pegs of colors, out of N possible colors (repetitions are allowed). The
codebreaker tries to guess the code by means of a set of guesses. After each
guess, the codemaker gives an answer to the guess, in terms of two numbers: a
number of black pegs for those elements in the guess that coincide in color and
position with the ones in the secret code, and a number of white pegs for those
elements in the guess that coincide in color, but not in position with the ones
of the secret code. Figure 1 shows an example of the game, with the secret code
and two guesses (with their respective answers).

Mastermind is a challenging problem from the algorithmic point of view. The
game caught the attention of many researchers by the end of the seventies so
there are a good amount of works dealing with this problem in the literature.
Different techniques have been applied to the solution of the problem: full enu-
meration approaches, heuristics based on simple rules and also meta-heuristic
algorithms.

� Corresponding author.

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 304–313, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Comparing EAS for Mastermind 305

Secret code

Guesses

answer

Fig. 1. Example of a Mastermind game

Among full enumeration techniques, the pioneering proposal by Knuth et al.
[1] (known as Worst Case strategy) was able to succeed for N = 4, P = 6 in
less than five moves, and was based on choosing the combination that minimizes
the maximum number of remaining eligible codes. Other approaches to Master-
mind applying full enumeration techniques are [2,3]. In [4], a full enumeration
technique was mixed with Information Theory in order to obtain the best enu-
meration strategy. This approach was named as “Max Entropy” and is currently
in use in different algorithms for the Mastermind. In [5] the strategy known as
“Most Parts” were introduced and applied to obtain a solid exhaustive algorithm
to the problem. More recently, in [6] and [7], a variant of full enumeration via
depth-first search is proposed, and in [8] different new exhaustive search strate-
gies are proposed, after a full statistical revision of the problem and alternative
exhaustive approaches.

In a different approach to the problem, there are different heuristic-based
approaches which try to obtain good solutions to the problem with a short
computation time. The first approach of this kind is [9], where the codebreaker
constructs a list of colors elements, and for each guess, he starts from the last ex-
amined position in the previous guess until find an eligible code. The approach in
[10] is similar, with a variant in the ordering colors in the list. In [11] a hill climb-
ing approach is proposed, which minimizes the average number of guesses and
also the number of evaluated codes. The most recent approaches to Mastermind
relay on meta-heuristics algorithms. The first evolutionary-based algorithms for
tackling the Mastermind game appeared in the last 90’s and first years of 2000
[12,13,14]. More recently, in [15] a stepwise evolutionary approach was first pro-
posed. That approach played any eligible code as soon as it was found by the
algorithm. A subsequent approach also based on evolutionary algorithm was
presented in [17], where an evolutionary algorithm selects a number of eligible
codes, and then the one played is selected by a mechanism of Expected Size. The
most recent approach to Mastermind with evolutionary computation was pre-
sented in [16], where new strategies to improve the performance of evolutionary
algorithms in Mastermind were suggested.

In this paper we propose a novel evolutionary approach to the Mastermind
based on a nested hierarchical evolutionary search. The proposed approach solves
the problem by an initial evolutionary search of the eligible set, and a second
evolutionary approach to obtain the best possible guess to play, based on different
predictive strategies. We present a comparison study of the performance of the

306 J. Maestro-Montojo, J.J. Merelo, and S. Salcedo-Sanz

proposed nested hierarchical approach with the algorithm in [18], in which we
introduce a new variant that uses a different scoring algorithm.

The structure of the rest of the paper is the following: next section presents
some important notation and definitions used in evolutionary algorithm pro-
posed. Section 3 presents the nested hierarchical evolutionary algorithm intro-
duced in this paper, and also reviews the main of the stepwise approach in [16].
Section 4 shows the results obtained by both approaches in a number of numer-
ical experiments, to show the performance of both algorithms. Section 5 closes
the paper with some final remarks and conclusions.

2 Mastermind: Basic Notation and Definitions

The usual notation for a Mastermind game is G(P,N), where P stands for the
number of pegs that the secret code must have, and N the number of different
colors that can be chosen to form the code. A classical encoding for a given
guess (g) consists of a string of P numbers, P ∈ {1, N}, representing the colors
of the secret code. In addition, we denote by X the number of black pegs in the
codemaker answer, and Y the number of white pegs. Note that if the code is
finally guessed, then X = P and Y = 0.

Definition: We denote the eligible set after n guesses (En) as the subset of
global combinations that can still be the secret code.

As an example, Figure 2 shows the way in which the eligible set changes after
different guesses in a game. Note that E0 ⊃ E1 ⊃ E2 ⊃ E3 = {(3, 2)}. Finally
the only possible combination that can be the secret code is (3, 2). Note also that
a given guess gn+1 (after the current one gn), will divide En in different subsets,
depending on the answers (X and Y) that can be given to the try. Figure 3
shows this process. We denote the partitions produced by a try as En+1,ri .

E0

(1,3)
(1,2)

(3,1)

(2,1)

(3,3)

(2,2)

(3,2)

(1,1)
(2,3)

E1

E2
E3

Secret code: (3,2)

guess

g =(1,1)0

g =(3,3)1

g =(2,3)2

g =(2,0)3

X Y

0 0

1 0

0 2

2 0

Fig. 2. Example of the eligible set changes after different guesses in the game

Comparing EAS for Mastermind 307

Definition: We denote matrix XY for a given guess gn+1 as the matrix formed
by all the cardinals of the eligible subsets partitions En+1,ri , i.e.,

XY = {|En+1,r1 |, |En+1,r2 |, . . . , |En+1,rk |},

where k is the number of possible answers to gn+1.

En

En+1,r1

En+1,r2

En+1,r3

En+1,rk-1

En+1,rk

Fig. 3. Example of eligible subsets partitions once a given guess has been played

3 Compared Algorithms

In this section we will present the two algorithms that are being compared in
this paper, BS in Subsection 3.1 and Evo++ in Subsection 3.2

3.1 Proposed Nested Hierarchical Evolutionary Approach

The proposed nested hierarchical evolutionary approach is based on a significant
modification of the evolutionary approach in [17]. In this case, the selection
of the combination played (guess gn+1) is obtained by a second evolutionary
algorithm, launched for the eligible set En from the first evolutionary approach.
The final algorithm is therefore a combination of two (nested and hierarchical)
evolutionary algorithms, the first one (Search EA) focused on obtaining the best
possible eligible set, and the second one (Decision EA) on providing the optimal
guess gn+1 among the elements in En. Both algorithms must be run several times
to obtain a final solution to the Mastermind. Note that the best individual in
the Decision EA provides the information necessary to calculate the fitness for
another run of the Search EA.

The Search EA can be described as follows: For a generic Mastermind game
G(P,N), and a first played guess g1, a first initial population is randomly gen-
erated containing the different tempted solutions (codes) to the problem. The
Search EA aims to obtain a set of codes belonging to the eligible set En, tak-
ing into account the sequence of n previously played codes (n = 1 in the first

308 J. Maestro-Montojo, J.J. Merelo, and S. Salcedo-Sanz

generation of the algorithm). The fitness value of each code is calculated by using
the expression proposed in [17]:

f(C) =

n∑
i=1

2 · P − |X ′
i −Xi| − |Y ′

i − Yi|, (1)

where C stands for the code to be evaluated, n is the number of codes previously
evaluated, X , Y are the responses of the code evaluated with respect to the real
secret code, and X ′, Y ′ stand for the responses give if we consider C as the
secret code. Note that when X ′

i and Y ′
i are equal to Xi and Yi, the value of

f(C) = 2 · P · n, and C belongs to the eligible set En.
The evolutionary operators applied in this Search EA are one and two points

crossover (selected with a probability of 0.5 at the time of their application), and
direct random, swapping and inversion mutations (these applied with a small
probability). In addition, an operator of hyper-mutation, similar to the one in-
troduced in [15] is considered after a number of generations. Hyper-mutation
consists of re-starting a high percentage of the population to random individuals
if some conditions are fulfilled. The selection procedure to choose the parents is
the roulette wheel, and a mechanism of elitist population replacement between
the initial and the new generated one (after the application of the evolutionary
operators) is considered. To do this, the initial and new population are merged
together, a percentage of the best individuals are kept, and the rest of the popu-
lation is completed by randomly choosing the remaining individuals. A diversity
mechanism is also applied, in such a way that if two elements in the popula-
tion are equal, one of them is removed and replaced by a randomly generated
individual.

Note that we have set upper and lower bounds for the eligible set size. At
the beginning of the algorithm, this size can be huge, whereas in the final steps
of the algorithm the eligible set size will be much smaller. In this latter case,
the Search EA is stopped when a maximum number of generations have been
reached, if there is at least one element in the eligible set.

Once the Search EA has finished its run n, an eligible set outcome En is ob-
tained. The Decision EA is launched at this stage, in order to come up with the
best guess gn+1, out of the elements of En. This process uses specific strategies
applied over the eligible set En in order to estimate the predictive power of each
code in En. These strategies are the one-step anticipation strategies, i.e. Ex-
pected Size (ES), Most-Parts (MP), Worst Case (WC) and Entropy (EN). The
Decision EA uses the same encoding that the Search EA, so we have considered
similar operators in both algorithms. The fitness function used depends on the
anticipation strategy considered. Note that anticipation strategies determine the
prediction power for a combination by means of operations in the XY matrix
of the game. Recall that, for a specific point of a game G(P,N), XY represents
the way in which a given guess divides the eligible set En. Let M be the XY

Comparing EAS for Mastermind 309

matrix of an specific guess g, the fitness functions defined for each anticipation
strategy are the following:

f(M)ES =
k∑

i=1

|En|
|En+1,ri |

, (2)

f(M)MP =

k∑
i=1

1, (3)

f(M)EN =

k∑
i=1

−|En+1,ri |
|En| · log

(|En+1,ri |
|En|

)
, (4)

f(M)WP =
|En|

max(|En+1,r1 |, |En+1,r2 |, . . . , |En+1,rk |)
, (5)

In addition, note that f(M) = 0 if |En| = |En+1,rj | for any j ∈ 1, . . . , k, and
|En| �= 1 (those combinations that do not reduce the eligible set size do not have
any predictive power).

3.2 Stepwise Evolutionary Approach for Comparison

This approach has been already presented in [16]. It uses a single evolutionary
algorithm to first find feasible solutions and then continue evolution for a few
generations within the set of feasible solutions so that there is a certain degree
of optimization of the score of feasible solutions. In that sense, it is also similar
to Berghmanś although the way of obtaining the score is completely different.

The fitness function used by this method combines the two evolutionary algo-
rithms mentioned above in a single one. First factor is the distance to feasibility
used by the Search EA above. Instead of Equation (1), this formula is used:

f(C) =
n∑

i=1

|X ′
i −Xi| − |Y ′

i − Yi|, (6)

Unlike above, C is eligible when f(C) is 0. In that case, the second factor is
considered. This second factor includes the feasibility score, but instead of using
the expected value as in the Decision EA above (expressed in Equation (2)
and subsequent), two different scoring methods are used: Entropy (called EN
above) and Most Parts (MP). These two factors (which we can call “search” and
“decision” terms, fS and fD are then combined in a single fitness function as
follows:

f(C) = fD(C) + 1−min
k
{fS(k)}

where k runs over all non-feasible combinations in the population. This implies
that the worst non-feasible combination will have fitness equal to 0, and all
feasible combinations have a fitness that is above all non-feasible combinations.

310 J. Maestro-Montojo, J.J. Merelo, and S. Salcedo-Sanz

Table 1. Values for the Evo++ parameters that obtain the best result. Permutation,
crossover and mutation are priorities; they are normalized to one to convert them
to application rates. In practice, crossover will be applied to 80% and mutation and
permutation to 10% of the newly generated combinations each.

Parameter Value

Crossover 8
Mutation 1
Permutation 1
Replacement rate 0.75
Tournament size 7

Table 2. Values for the BS parameters used in the simulations

Parameter Value

One point Crossover Prob. 0.5
Two points Crossover Prob. 0.5
Mutation 0.03
Inversion 0.02
Swapping 0.03

This evolutionary algorithm has been also optimized so that the maximum
number of evaluations achieved in the worst case is minimized. The only change
with respect to results already published is that, besides using the MP strategy,
we have used here for the first time EN. Results will be shown in the next section.

4 Experimental Results

The experiments were done just on two problem instances, P = 5, N = 8 and
P = 6, N = 9. These are difficult enough to be able to make the quality of the
different algorithms apart, but also simple enough to perform the experiments
in an amount of time that is affordable. The experiments were performed on
a published set of 5000 instances and playing a single game for each instance.
Experiments for BS and Evo++ were done on different computers. Evo++ used
a single parametrization, shown in table 1 except for population and consistent
set size. Population and consistent set size are found by testing different values
and using rules of thumb (consistent set size should be approximately 1/10 of
population size). However, the results in this case are not guaranteed to be the
best; we stopped when we found the best average number of moves, but from
that point population and consistent set size (and thus number of evaluations)
could be improved.

Parameters for the BS approach are shown in Table 2. These parameters are
the same for the Search and Decision EAs in the BS algorithm. The specific
values of these parameters were found through systematic experimentation.

Comparing EAS for Mastermind 311

Table 3. Comparison among approaches in this paper: BS, Evo and Berghman et al.
[17]

(a) Mean number of guesses with standard deviation; the quantities
in parentheses indicate population and consistent set size (in the case
of Evo++). The horizontal line indicates significant differences using
Wilcoxon paired test. There is also significant difference for P =
6, N = 9 between the two versions of Evo++, but not in the other
case.

P = 5, N = 8 P = 6, N = 9

Berghman et al. 6.475
Evo++ (EN) (1000,200) 5.555 ± 0.011 (2000,200) 6.373 ± 0.011
BS 5.518 ± 0.009 6.382 ± 0.011

Evo++ (MP) (1000,80) 5.602 ± 0.012 (2000,200) 6.436 ± 0.012

(b) Mean number of evaluations with standard
deviation; differences are always significant

P = 5, N = 8 P = 6, N = 9

Evo++ (EN) 26098 ± 144 67521 ± 384
BS 40619 ± 115 45478 ± 168
Evo++ (MP) 20120 ± 114 68860 ± 406

Two different measures of quality were used: the average number of moves
and the number of evaluations. The first is a measure of the quality of the
algorithm playing the game, and the second of algorithm performance; being EAs
search algorithms, the smaller percentage of the search space that is explored,
the better. Results are shown in Table 3.

The first outstanding result, looking at Table 3(a) is that BS and Evo++
are able to obtain roughly the same results (statistically insignificant difference)
using Entropy as score, even if the methods to obtain the consistent set, and even
the size of the set, is completely different; at the same time, we can say that it
is also proved that EN is significantly better than MP at least for these sizes,
even if at smaller sizes there is not a significant difference, at least in exhaustive
search studies [8]. We could thus affirm that the main factor in optimizing the
number of moves is the scoring method.

The conclusion is not so clear regarding the evaluations, and thus the running
time it depends on. These are shown in Table 3(b). Evo++ in all versions beats
BS for the smaller size. However, its results are much worse for the bigger size
P = 6, N = 9. In that sense, and taking into account both results, we could say
that depending on the size, BS or Evo++ (EN) are the best methods. Evo++
(MP) is always dominated, in both senses, by the other methods. This supports
the conclusion, advanced in the abstract, that Entropy is a better scoring strat-
egy than Most Parts; both were proved better than the rest (at least for small
sizes) in [18], which leads us to conclude that, to minimize the number of moves
needed to obtain the solution, Entropy should be used to score eligible solutions.

312 J. Maestro-Montojo, J.J. Merelo, and S. Salcedo-Sanz

5 Conclusions and Future Work

This paper presents a comparison between a novel and two existing evolution-
ary approaches for the Mastermind game. The novel approach is a hierarchical
algorithm that involves two different evolutionary approaches, one for selecting
the best eligible set and another one to select the best playable code. We have
detailed this new algorithm and carried out an experimental comparison with
two existing evolutionary approaches to draw some interesting conclusions on
the performance of the evolutionary techniques for the Mastermind.

It is interesting to note that, independently of the method used, the results
obtained are quite similar. Evo++(EN) and BS obtain a number of moves that
is quite similar, and better (at least a priori and without complete statistical
information) than the result published by Berghman [17], who uses Expected
Size. This probably leads to the conclusion that the best strategy for scoring
eligible solutions in the game of Mastermind is Entropy, at least if the method
for searching them is biased towards those with better score, as evolutionary
algorithms are.

An interesting conclusion is also that BS does not increase the number of
evaluations so steeply as Evo++ does. While the latter almost triples the number
of evaluations (and thus the time needed to examine them), BS does not need
so many evaluations. However, it remains to be seen their behavior time-wise,
since their mechanisms are completely different.

As future lines of work we will try to examine more closely what are the
precise mechanisms that make the algorithms behave differently with respect
to the number of evaluations needed to find a playable move. It will be also
necessary to measure speeds in similar conditions and, finally, to find out the
way they behave when taken to more difficult problems (P = 7, N = 10).

Acknowledgement. This work has been partially supported by Spanish Min-
istry of Science and Innovation, under project numbers ECO2010-22065-C03-02.
and TIN2011-28627-C04-02 and P08-TIC-03903 awarded by the Andalusian Re-
gional Government.

References

1. Knuth, E.: The computer as Master Mind. Journal of Recreational Mathematics 9,
1–6 (1977)

2. Irving, W.: Towards an optimum Mastermind strategy. Journal of Recreational
Mathematics 11(2), 81–87 (1979)

3. Koyama, K., Lai, T.: An optimal Mastermind strategy. Journal of Recrational
Mathematics 25(4), 251–256 (1993)

4. Bestavros, A., Belal, A.: Master Mind: a game of diagnosis strategies. In: Bulletin
of the Faculty of Engineering, Alexandria University, Alexandria (1986)

5. Kooi, B.: Yet another mastermind strategy. ICGA Journal 28(1), 13–20 (2005)
6. Chen, S.T., Lin, S.S., Huang, L.T.: A two-phase optimization algorithm for Mas-

termind. The Computer Journal 50(4), 435–443 (2007)

Comparing EAS for Mastermind 313

7. Chen, S.T., Lin, S., Huang, L., Hsu, S.: Strategy optimization for deductive games.
European Journal of Operational Research 183, 757–766 (2007)

8. Merelo, J.J., Mora, A.M., Cotta, C., Runarsson, T.P.: An experimental study of
exhaustive solutions for the Mastermind puzzle. ARXiV (2012)

9. Shapiro, E.: Playing Mastermind logically. SIGART Bulleting 85, 28–29 (1983)
10. Swaszek, P.: The mastermind novice. Journal of Recreational Mathematics 30,

130–138 (2000)
11. Temporal, A., Kovacs, T.: A heuristic hill climbing algorithm for Mastermind. In:

Proc. of the UKWorkshop on Computational Intelligence, Bristol, UK, pp. 183–196
(2003)

12. Bernier, J., Herráiz, C., Merelo-Guervós, J.J., Olmeda, S., Prieto, A.: Solving Mas-
termind using GAs and simulated annealing: a case of dynamic constraint optimiza-
tion. In: Proc. of the 4th International Conference on Parallel Problem Solving from
Nature, London, UK, pp. 554–563 (1996)

13. Bento, L., Pereira, L., Rosa, A.: Mastermind by evolutionary algorithms. In: Proc.
of the Sixth Annual Workshop on Selected Areas in Cryptography, Kingston, On-
tario, Canada, pp. 307–311 (1999)

14. Kalister, T., Camens, D.: Solving Mastermind using Genetic Algorithms. In: Cantú-
Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G.,
Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A.,
Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO
2003. LNCS, vol. 2724, pp. 1590–1591. Springer, Heidelberg (2003)

15. Merelo-Guervós, J.J., Castillo, P., Rivas, V.: Finding a needle in a haystack using
hints and evolutionary computation: the case of evolutionary MasterMind. Applied
Soft Computing 6(2), 170–179 (2006)

16. Some A. Uthor, A fine paper (2012)
17. Bergman, L., Goossens, D., Leus, R.: Efficient solutions for Mastermind using

genetic algorithms. Computers & Operations Research 36(6), 1880–1885 (2009)
18. Runarsson, T.P., Merelo-Guervos, J.J.: Adapting heuristic Mastermind strategies

to evolutionary algorithms. In: Proc. of the International Workshop on Nature
Inspired Cooperative Strategies for Optimization, Granada, Spain (2010)

A Genetic Algorithm for Color Image Segmentation

Alessia Amelio and Clara Pizzuti

Institute for High Performance Computing and Networking,
National Research Council of Italy, CNR-ICAR,

Via P. Bucci 41C, 87036 Rende (CS), Italy
{amelio,pizzuti}@icar.cnr.it

Abstract. A genetic algorithm for color image segmentation is proposed. The
method represents an image as a weighted undirected graph, where nodes corre-
spond to pixels, and edges connect similar pixels. Similarity between two pixels
is computed by taking into account not only brightness, but also color and texture
content. Experiments on images from the Berkeley Image Segmentation Dataset
show that the method is able to partition natural and human scenes in a number of
regions consistent with human visual perception. A quantitative evaluation of the
method compared with other approaches shows that the genetic algorithm can be
very competitive in partitioning color images.

1 Introduction

Image segmentation is an important problem in pattern recognition that aims at di-
viding an image into a number of regions having high homogeneity inside the same
region, while adjacent regions are significantly dissimilar with respect to some adopted
homogeneity measure. Many approaches have been proposed to segment monochrome
and color images [7, 25, 27]. However, as observed by Cheng et al. [7], color image
segmentation techniques are considered more appealing since they can provide more
information than grey level images, and human eye is able to better detect objects when
color is present. Most of these proposals, as outlined in [7], extend gray level image seg-
mentation methods, such as histogram thresholding, boundary detection, region based
approaches, with color representations. Furthermore, it has been recognized that no
general algorithm exists for all monochrome and color images. Thus, techniques spe-
cialized for particular application domains have been presented [3–6, 12–14].

Among the several techniques proposed for image segmentation, methods represent-
ing an image as a graph [9, 20, 23, 24, 26], in which nodes correspond to pixels, and
an edge between two pixels exists if they are similar, on the base of a suitably defined
similarity criterion, revealed competitive both in terms of efficiency and segmentation
quality [9]. In particular, Shi and Malik [20] introduced the concept of normalized cut
that allows the partitioning of a graph in groups of nodes such that the homogeneity
inside each region is maximized, while minimizing the dissimilarity between regions.
More recently, Maji et al. [16] proposed the biased normalized cut, a modification of
the normalized cut to incorporate priors which can be used for constrained color-texture
based image segmentation.

In this paper a genetic algorithm for color image segmentation that adopts the repre-
sentation of an image as a graph is proposed. The algorithm, named C-GeNCut (Color

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 314–323, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Genetic Algorithm for Color Image Segmentation 315

Genetic Normalized Cut), extends the approach proposed in [1] to take into account
color, brightness, and texture, by computing the affinity between two pixels with the In-
tervening Contour cue [8, 10, 11, 15], that uses the multispectral Pb detector as defined
by Arbelaez et al. in [2]. Experiments on ten color images from the Berkeley Image
Segmentation Dataset (BSDS300) [17] show that the method is able to partition natural
and human scenes in meaningful objects. A quantitative evaluation based on the well
known concept of Probabilistic Rand Index, defined by Unnikrishnan et al. [21, 22],
shows that the inclusion of color and texture improves the segmentation accuracy with
respect to the algorithm of Amelio and Pizzuti [1], that considers only the gray-level
information, as well as with the segmentations obtained by the algorithm of Maji et al.
[16] for color images.

The paper is organized as follows. In the next section the problem of image segmen-
tation is defined, together with its formalization as a graph partitioning problem, and a
description of the homogeneity measure adopted. Section 3 describes fitness function,
the genetic representation, and operators employed. Section 4 describes the evaluation
measure used. Section 5 presents the experimental results. Finally, section 6 summa-
rizes the approach.

2 Graph-Based Segmentation

An image R can be represented as a weighted undirected graph G = (V,E,w), where
V is the set of the nodes,E is the set of edges in the graph, andw : E →R is a function
that assigns a value to graph edges. Each node corresponds to a pixel in the image,
and an edge (i, j) connects two pixels i and j, provided that these two pixels satisfy
some property suitably defined that takes into account both pixel characteristics and
spatial distance. The weight w(i, j) associated with a graph edge (i, j) represents the
likelihood that pixels i and j belong to the same image region and provides a similarity
value between i and j. The higher the value of w(i, j), the more likely the two pixels
are members of the same region. Let W be the adjacency weight matrix of the graph G.
Thus Wij contains the weight w(i, j) if the nodes i and j are connected, zero otherwise.
Depending on the method adopted to compute the weights, any two pixels may or may
not be connected.

2.1 Affinity Computation

In order to compute the weights, differently from [1], in this approach we employed the
Intervening Contour cue [8, 10, 11, 15] that uses the multispectral Pb detector as defined
in [2]. In this framework, given a generic pixel, the value of the multiscale Pb detector
at that pixel is considered. If the maximum value along a straight line connecting the
two pixels i and j in the image plan is large, then a deep change and, consequently, an
intervening contour is present, indicating that the two pixels don’t belong to the same
segment. Hence, the weight w(i, j) between these pixels will be low. On the other hand,
if the value of the multiscale Pb detector is sufficiently weak, this usually happens in
a region that is flat based on brightness, color and texture, the affinity between the two

316 A. Amelio and C. Pizzuti

pixels will be very high. More formally, the weight w(i, j) between the pixels i and j
is computed as:

w(i, j) =

{
e−maxp∈line(i,j){mPb(p)}/ρ if ||X(i)−X(j)||2 < r, i �= j

0 otherwise

where line(i,j) is a straight line between i and j, X(i) is the spatial location of the pixel
i, r is a distance threshold and ρ is a constant.

Multiscale Pb detector is based on the Pb detector function Pb(x, y, θ). Given an
image pixel at position (x, y), it represents the posterior probability of a boundary with
orientation θ at that pixel. This measure is obtained by evaluating the difference in local
image brightness, color and texture channels.

Specifically, input image is transformed into four distinct channels. The first three
channels are those of the CIE Lab colorspace: brightness, color a and color b. Color
a represents the position of the color between red/magenta and green, while color b
indicates the position of the color between yellow and blue. The last channel is related to
the image texture content and it assigns to each pixel a texton id. Associations between
pixels and texton ids come from another previous filtering stage. In particular, the input
image is converted to grayscale and processed by a set of 17 Gaussian derivative and
center-surround filters. Consequently, each pixel is represented by a 17-dimensional
vector of responses, composed of one value from each filter. After that, these vectors
are clustered by using k −Means: the cluster centers identify the image textons and
each pixel is associated with the id in [1, k] of the closest cluster center. Experiments
provided 32 as a sufficient value for k. Finally, the texton channel is built, where each
pixel of the original image is substituted by its corresponding texton id.

For each image channel, an oriented gradient signal G(x, y, θ) is computed at posi-
tion (x, y), by placing a circular disc centered at location (x, y) and splitting it into two
half-discs g and h by a diameter at angle θ. For each half-disc, an histogram of the in-
tensity values of the pixels covered by it, is built. The gradient magnitude G at location
(x, y) is defined by the χ2 distance between the two half-disc histograms g and h.

χ2(g, h) =
1

2

∑
i

(g(i)− h(i))2

g(i) + h(i)

Furthermore, gradients at three scales [σ/2, σ, 2σ] are considered for each channel, in
order to detect fine and coarse image features.

The Pb detector processes the channels separately and then combines the oriented
gradient signals obtained from the different channels at multiple scales into a single
multiscale oriented signal:

mPb(x, y, θ) =
∑
s

∑
i

αi,sGi,σ(i,s)(x, y, θ)

where s represents the scales index, i the feature channel index (brightness, color a,
color b and texture) andGi,σ(i,s)(x, y, θ) the oriented gradient signal at (x, y) in channel
i where the radius of the disc is σ(i, s) and the angle is θ. The parameters αi,s weight
the contribution of each gradient signal. The angle θ defining the orientation, takes eight

A Genetic Algorithm for Color Image Segmentation 317

different values in the interval [0, π). The final value of the multispectral Pb detector is
the maximum response over the eight orientations:

mPb(x, y) = maxθ{mPb(x, y, θ)}

3 Algorithm

In this section we briefly describe the genetic operators and fitness function proposed
in [1] and adopted also for C-GeNCut. The representation of individuals is based on the
locus-based adjacency representation proposed in [18]. In this graph-based representa-
tion an individual of the population consists of N genes g1, . . . , gN and each gene can
assume allele values j in the range {1, . . . , N}. Genes and alleles represent nodes of
the graph G = (V,E,w) modelling an image, and a value j assigned to the ith gene
is interpreted as a link between the pixels i and j. The initialization process assigns to
each node i one of its neighbors j, and the kind of crossover operator adopted is uniform
crossover. The mutation operator randomly assigns to each node i one of its neighbors.
For both initialization and mutation, an important aspect to consider is the determina-
tion of the neighbors of each node. The concept of neighbors of a node introduced in [1]
takes into account not only the spatial closeness but also the pixel affinity. More in de-
tails, given a generic node i in the graph, let wh

max = {w1, . . . , wh | w1 ≥, . . . ,≥ wh}
be the first h highest weights of row i in the weight adjacency matrix W .

The h nearest neighbors of i, denoted as nnh
i , are then defined as nnh

i = {j |
w(i, j) ∈ wh

max}. nnh
i is thus the set of those pixels that are no more than r pixels apart

from i, and that have maximum similarity with i. It is worth to note that, even if h is
fixed to 1, the number of nearest neighbors of i could be sufficiently large if many of
its spatial neighbors have the same maximum weight wh

max. This definition of nearest
neighbors guaranties to choose the most similar neighbors during the initialization pro-
cess, and to bias the effects of the mutation operator towards the most similar neighbors,
thus it contributes to improve the results of the method.

The fitness function is an extension of the concept of normalized cut of Shi and Malik
[20]. Let G = (V,E,w) be the graph representing an image, W its adjacency matrix,
and P = {R1, . . . , Rk} a partition of G in k clusters.

For a generic cluster R ∈ P , let

cr =
∑

i∈R,j /∈RWij mr =
∑

i∈R,j∈R Wij m =
∑

i∈V,j∈V Wij

be respectively the sum of weights of edges on the boundary of R, the sum of weights
of edges inside R, and the total graph weight sum. The weighted normalized cut WNCut
measures for each cluster in P the fraction of total edge weight connections to all the
nodes in the graph

WNCut =
k∑

r=1

cr
mr + cr

+
cr

(m−mr) + cr

Because of the affinity measure w defined in the previous section, more uniform regions
can be obtained with low cut values between the subgraphs representing the regions and
the rest of the graph. This implies that low values of WNcut are preferred.

318 A. Amelio and C. Pizzuti

4 Evaluation Measure: Probabilistic Rand Index

In the Berkeley dataset, for each image, multiple human-traced segmentations for color
images are available. All the segmentations are considered equally reliable. As observed
in [22], when multiple ground-truth segmentations are available for the same image,
the comparison should be made against all the manually obtained segmentations. To
this end, Unnikrishnan et al. [21, 22] introduced the Probabilistic Rand Index as an
extension of the concept of Rand Index [19], employed to assess clustering methods.
Given a set {S1, . . . , ST } of ground-truth segmentations of an image I consisting of n
pixels, and a test segmentation S, the Probabilistic Rand Index is defined as :

PRI(S, {S1, . . . , ST } = 1

H

∑
i<j

[cijpij + (1 − cij)(1 − pij)]

where cij denotes the event that pixels i and j have the same label, pij is its probability,
and H = n∗(n−1)/2 is the total number of pixel pairs. The PRI value varies between
0 and 1. When its value is 0 it means that S and {S1, . . . , ST } are completely dissimilar.

5 Experimental Results

In this section we present the results of C-GeNCut on ten images from the Berkeley
Image Segmentation Dataset (BSDS300) [17] and compare the performances of our
algorithm in partitioning natural and human scenes in meaningful objects with the seg-
mentations obtained by the algorithm of Maji et al. [16] (Biased NCut) for color im-
ages, in the following referred as C-NCut, and by the algorithm of Amelio and Pizzuti
[1] (GeNCut), that takes into account only grayscale information, on the same images.

The version of the Biased NCut software is written in MATLAB and it is available at
http://ttic.uchicago.edu/ smaji/projects/biasedNcuts/. However we eliminated the inter-
active mode from the available algorithm specifically for performing comparisons with
our technique.

The C-GeNCut algorithm has been written in MATLAB 7.14 R2012a, using the Ge-
netic Algorithms and Direct Search Toolbox 2. In order to set parameter values, a trial
and error procedure has been employed and then the parameter values giving good re-
sults for the benchmark images have been selected. Thus we set crossover rate to 0.9,
mutation rate to 0.2, elite reproduction 10% of the population size, roulette selection
function. The population size was 100, the number of generations 60. The value h of
nearest neighbors to consider has been fixed to either 1 or 2. As already pointed out,
this does not mean that the number of neighbors is 1 or 2, but that the first (and second)
most similar neighbors are taken into account for the initialization and mutation oper-
ators. The fitness function, however, is computed on the overall weight matrix. For all
the data sets, the statistical significance of the results produced by C-GeNCut has been
checked by performing a t-test at the 5% significance level. The p-values returned are
very small, thus the significance level is very high since the probability that a segmen-
tation computed by C-GeNCut could be obtained by chance is very low.

The weight matrix of each image is computed in the same way for both C-NCut and
C-GeNCut methods, and, as already described in section 2, it is based on the Intervening

A Genetic Algorithm for Color Image Segmentation 319

Fig. 1. Segmentation of C-GeNCut on ten images of the Berkeley Image Segmentation dataset
(BSDS300). For each image, the original version together with the segmentation result of C-
GeNCut are presented.

Contour framework that uses the multiscale Pb detector by fixing r = 5 and ρ = 0.1.
About the Pb detector, the parameterσ, which defines the scales, is set to 5 pixels for the
brightness channel, while for color and texture channels σ is set to 10 pixels. The pa-
rameters αi,s are fixed to 0.01, 0.01, 0.02, 0.02, 0.02, 0.03, 0.02, 0.02, 0.02, 0.01, 0.01
and 0.01. The weight matrix of each image is computed for GeNCut as in [1], by fixing
r = 10, number of scales 3, number of orientations 4 and σ = 0.1. The value h of
nearest neighbors to consider has been fixed to either 1 or 2.

In order to compare C-GeNCut and C-NCut, given an image I , we executed C-NCut
as many times as the different number of segmentations available for I , by giving as
input the distinct values k of ground-truth segments corresponding to the color human-
segmentations. This implies that C-NCut has been executed for the best input parameter
value k. For each image and for each distinct number of segments from the ground-truth
segmentations, C-NCut has been run 10 times. The average values of the Probabilis-
tic Rand Index (PRI) [21] have been computed, together with the standard deviation,
for the partitioning found by C-NCut and GeNCut, and compared with that obtained

320 A. Amelio and C. Pizzuti

Table 1. Probabilistic Rand Index evaluated for C-NCut, C-GeNCut and GeNCut on a subset of
the Berkeley Image Segmentation Dataset (BSDS300). PRI represents the Probabilistic Rand
Index, nc the number of segments.

GeNCut C-GeNCut C-NCut
nc PRI nc PRI nc PRI

5 0.7299 (0.0003)
24 0.7858 (0.0008)
4 0.7333 (0.0001)

I1 11 0.6443 (0.0637) 5 0.7526 (0.0263) 23 0.7862 (0.0003)
41 0.7858 (0.0002)
17 0.7856 (0.0006)
5 0.6728 (0)
3 0.7068 (0.0001)
8 0.6794 (0.0078)

I2 8 0.7035 (0.0081) 3 0.7613 (0.0063) 7 0.6799 (0.0001)
9 0.6774 (0.0001)
11 0.6545 (0.0001)
16 0.6446 (0.0001)
30 0.6202 (0.0007)

I3 13 0.7041 (0.0183) 11 0.7052 (0.0183) 10 0.6651 (0.0017)
26 0.6235 (0.0009)
7 0.7277 (0.0003)
3 0.8200 (0.0001)

I4 16 0.7889 (0.0368) 5 0.8339 (0.0213) 5 0.8260 (0.0001)
8 0.7082 (0.0144)
6 0.8047 (0.0001)
7 0.8168 (0.0001)
6 0.8338 (0.0001)
10 0.7977 (0.0001)

I5 13 0.8088 (0.0198) 7 0.8235 (0.0065) 8 0.8191 (0.0060)
15 0.7861 (0.0001)
13 0.7565 (0.0001)
6 0.7455 (0.0003)

I6 4 0.8036 (0.0186) 6 0.8288 (0.0379) 19 0.7405 (0.0001)
23 0.7405 (0.0013)
6 0.7512 (0.0018)
4 0.7345 (0.0001)

I7 9 0.7308 (0.0118) 6 0.7820 (0.0101) 10 0.7101 (0.0062)
2 0.5763 (0)
5 0.7827 (0.0001)
8 0.8217 (0.0001)

I8 10 0.8215 (0.0002) 5 0.8361 (0.0163) 7 0.8122 (0.0001)
10 0.8109 (0.0012)
6 0.7399 (0.0001)
5 0.7352 (0.0001)
3 0.7114 (0.0001)

I9 18 0.7425 (0.0059) 6 0.7653 (0.0076) 9 0.7212 (0.0001)
8 0.7041 (0.0001)
28 0.6825 (0.0009)
39 0.8339 (0.0005)
10 0.8557 (0.0001)
8 0.8446 (0.0001)

I10 8 0.7797 (0.0375) 8 0.8361 (0.0075) 15 0.8471 (0.0001)
26 0.8405 (0.0001)
24 0.8447 (0.0001)

A Genetic Algorithm for Color Image Segmentation 321

by C-GeNCut on the same images. Since C-GeNCut and GeNCut generate a single
segmentation, the average value of PRI is the same for each of the values of ground-
truth segments of the image under consideration.

Table 1 reports the PRI for C-GeNCut, C-NCut and GeNCut. In particular, for each
image I we computed the PRI value of the segmentation returned by C-GeNCut and by
GeNCut, considered as test segmentation, against the set of ground-truth segmentations
associated with I in the Berkeley dataset. As regards C-NCut, the PRI values have
been computed by considering as test segmentation that obtained by C-NCut for each
of the executions performed, i.e. one for the input parameter k fixed to the number
of segments obtained by C-GeNCut, and one for every distinct value of ground-truth
segments available for the image under consideration.

For example, if we consider image I1, for which five human segmentations are avail-
able, C-GeNCut found a segmentation of 5 segments with PRI value equal to 0.7526,
while GeNCut obtained 11 regions and PRI value 0.6443. The PRI values for C-
NCut are 0.7299, 0.7858, 0.7333, 0.7862, 0.7858, 0.7856 when as test segmentations
are used those obtained for input parameter k equal to 5, which is the number of seg-
ments returned by C-GeNCut, and 24, 4, 23, 41, and 17, respectively, that correspond
to the distinct number of segments from the ground-truth segmentations. Note that, for
images I2, I4, I6, I7, and I10 C-GeNCut found a number of segments equal to one of
the ground-truth segmentations.

The table points out that the PRI value of C-GeNCut is always higher than the cor-
responding PRI value of GeNCut. Furthermore, the PRI value of C-GeNCut is the
highest for seven out of the ten images, i.e. for I2, I3, I4, I6, I7,I8, and I9, also with
respect to C-NCut. As regards the other three images, C-NCut overcomes C-GeNCut
on I1 for 4 out of 6 segmentation values, on I5 for 1 out of 5 segmentation values, and
on I10 for 5 out of 6 segmentation values. C-GeNCut thus improves the results of the
genetic approach when color and texture information are included, and it is competitive
with respect to C-NCut, that is specialized for color images.

Finally, in Figure 1, for each of the ten images, we present the segmentation out-
puts of C-GeNCut by depicting the contours of the regions on the original image. The
visual perception of the segmentation results is quite positive: the main objects of a
scene are identified and the most meaningful features extracted from the images by the
segmentation process.

6 Conclusions

The paper presented a graph-based approach to image segmentation that employs ge-
netic algorithms. The method extends the method proposed in [1], by considering not
only brightness but also color and texture for image segmentation. The method revealed
particularly apt to deal with color-texture images modeled as graphs. In fact, as experi-
mental results showed, the genetic approach is able to segment color-texture images in a
number of regions that well adhere to the human visual perception, and it is competitive
with state-of-the-art methods for color image segmentation.

Acknowledgements. This work has been partially supported by the project MERIT :
MEdical Research in Italy, funded by MIUR.

322 A. Amelio and C. Pizzuti

References

1. Amelio, A., Pizzuti, C.: An Evolutionary and Graph-Based Method for Image Segmentation.
In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN
2012, Part I. LNCS, vol. 7491, pp. 143–152. Springer, Heidelberg (2012)

2. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image
segmentation. IEEE Transactions on Pattern Anal. Mach. Intell. 33(5), 898–916 (2011)

3. Ballerini, L., Bocchi, L., Johansson, C.B.: Image Segmentation by a Genetic Fuzzy c-Means
Algorithm Using Color and Spatial Information. In: Raidl, G.R., Cagnoni, S., Branke, J.,
Corne, D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf,
F., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 260–269.
Springer, Heidelberg (2004)

4. Bevilacqua, V., Mastronardi, G., Piazzolla, A.: An Evolutionary Method for Model-Based
Automatic Segmentation of Lower Abdomen CT Images for Radiotherapy Planning. In: Di
Chio, C., Cagnoni, S., Cotta, C., Ebner, M., Ekárt, A., Esparcia-Alcazar, A.I., Goh, C.-K.,
Merelo, J.J., Neri, F., Preuß, M., Togelius, J., Yannakakis, G.N. (eds.) EvoApplicatons 2010,
Part I. LNCS, vol. 6024, pp. 320–327. Springer, Heidelberg (2010)

5. Chaabane, S.B., Sayadi, M., Fnaiech, F., Brassart, E.: Dempster-shafer evidence theory for
image segmentation: Application in cells images. International Journal of Information and
Communication Engineering 5(2), 126–132 (2009)

6. Chen, C.W., Luo, J., Parker, K.J.: Image segmentation via adaptive k-means clustering and
knowledge-based morphological operations with biomedical applications. IEEE Transac-
tions on Image Processing 7(12), 1673–1683 (1998)

7. Cheng, H., Jiang, X., Sun, Y., Wang, J.: Color image segmentation: advances and prospects.
Pattern Recognition 34, 2259–2281 (2001)

8. Cour, T., Bénézit, F., Shi, J.: Spectral segmentation with multiscale graph decomposition. In:
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR
2005)), pp. 1124–1131 (2005)

9. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Interna-
tional Journal of Computer Vision 59(2), 167–181 (2004)

10. Fowlkes, C., Malik, J.: How much does globalization help segmentation. Tech. rep. (2004)
11. Fowlkes, C., Martin, D., Malik, J.: Learning Affinity Functions for Image Segmentation:

Combining Patch-based and Gradient-based Approaches. In: IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition, vol. 2 (2003)

12. Ghosh, P., Mitchell, M.: Segmentation of medical images using a genetic algorithm. In: Pro-
ceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, GECCO
2006, pp. 1171–1178. ACM (2006)

13. Harrabi, R., Braiek, E.B.: Color image segmentation using multi-level thresholding approach
and data fusion techniques: application in the breast cancer cells images. Eurasip Journal of
Image and Video Processing 11 (2012)

14. Kim, S.-M., Kim, W.: An Algorithm for Segmenting Gaseous Objects on Images. In: Raidl,
G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado,
P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2004. LNCS,
vol. 3005, pp. 322–328. Springer, Heidelberg (2004)

15. Leung, T., Malik, J.: Contour Continuity in Region Based Image Segmentation. In:
Burkhardt, H.-J., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, pp. 544–559. Springer,
Heidelberg (1998)

16. Maji, S., Vishnoi, N.K., Malik, J.: Biased normalized cuts. In: CVPR, pp. 2057–2064. IEEE
(2011)

A Genetic Algorithm for Color Image Segmentation 323

17. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images
and its application to evaluating segmentation algorithms and measuring ecological statistics.
In: Proc. 8th Int’l Conf. Computer Vision, vol. 2, pp. 416–423 (2001)

18. Park, Y., Song, M.: A genetic algorithm for clustering problems. In: Proc. of 3rd Annual
Conference on Genetic Algorithms, pp. 2–9 (1989)

19. Rand, W.: Objective criteria for the evaluation of clustering methods. Journal of the American
Statistical Association 66, 846–850 (1971)

20. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence 22(8), 888–905 (2000)

21. Unnikrishnan, R., Hebert, M.: Measures of similarity. In: Seventh IEEE Workshops on Ap-
plication of Computer Vision, WACV/MOTIONS 2005, vol. 1 (2005)

22. Unnikrishnan, R., Pantofaru, C., Hebert, M.: Towards objective evaluation of image segmen-
tation algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(6),
929–944 (2007)

23. Urquhart, R.: Graph theoretical clustering based on limited neighborhood sets. Pattern
Recognition 15(3), 173–187 (1982)

24. Wu, Z., Leahy, R.: An optimal graph theoretic approach to data clustering: Theory and ap-
plications to image segmentation. IEEE Transactions on Pattern Analysis and Machine In-
telligence 15(11), 1101–1113 (1993)

25. Xu, Y., Olman, V., Uberbacher, E.C.: A segmentation algorithm for noisy images: Design
and evaluation. Pattern Recognition Letters 19, 1213–1224 (1998)

26. Zahn, C.T.: Graph theoretical methods for detecting and describing gestalt clusters. IEEE
Transactions on Computers 20(1), 68–86 (1971)

27. Zhang, Y.: Evaluation and comparison of different segmentation algorithm. Pattern Recog-
nition Letters 18, 963–974 (1997)

Multiobjective Projection Pursuit

for Semisupervised Feature Extraction

Mihaela Elena Breaban

Faculty of Computer Science, Al. I. Cuza University, Iasi, Romania
pmihaela@infoiasi.ro

Abstract. The current paper presents a framework for linear feature ex-
traction applicable in both unsupervised and supervised data analysis,
as well as in their hybrid - the semi-supervised scenario. New features
are extracted in a filter manner with a multi-modal genetic algorithm
that optimizes simultaneously several projection indices. Experimental
results show that the new algorithm is able to provide a compact and
improved representation of the data set. The use of mixed labeled and un-
labeled data under this scenario improves considerably the performance
of constrained clustering algorithms such as constrained k-Means.

1 Introduction

Feature extraction plays several key roles in data analysis. Firstly, it aims at
providing a reduced representation of the data set in order to visualize data or
lower the computational cost for further analysis. Secondly, it extracts explana-
tory variables that highlight the presence of groups in clustering (also named
unsupervised classification) or predict with high accuracy the class labels (clas-
sification) or a numerical outcome (regression). Feature extraction can serve
more specific goals, as extracting independent signals from data.

The current paper proposes a framework for feature extraction in the context
of classification. It covers the supervised case when the data is labeled, the unsu-
pervised case when labels are not provided but groups must be uncovered in data
(clustering) and the mixed scenario when only part of the cases are labeled while
some are not. The last scenario is known as semisupervised learning/classification
and is generally approached from two perspectives: 1) clustering algorithms are
guided by a few constraints expressed as pairs of items that must lie in the same
cluster and pairs of items that must lie in distinct clusters and 2) classifiers are
provided unlabeled data in order to refine their decision boundary.

Our framework draws its roots from classical Projection Pursuit (PP). Such an
approach for feature extraction benefits from reduced computational complexity
relative to wrapper scenarios. It allows us to perform feature extraction in a
filter manner: the evaluation of a new feature is based on a projection index and
does not require expensive supervised/unsupervised classification algorithms to
assess the quality of the new features as wrapper methods do.

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 324–333, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Multiobjective Projection Pursuit for Semisupervised Feature Extraction 325

Our framework performs a multi-modal search and simultaneously optimizes
two (possible conflicting) objectives, delivering in one run several new features
that correspond to an improved multi-dimensional representation of the data
set.

The paper is structured as follows. Section 2 describes the traditional frame-
work of projection pursuit and section 3 shortly reviews some PP indices. Section
4 describes the multi-objective framework we propose to extract a new meaning-
ful representation of data. Section 6 concludes the paper with a short discussion
and future directions.

2 Projection Pursuit

Projection Pursuit (PP) is essentially an exploratory data analysis technique. It
generally aims to deliver low-dimensional linear projections of a data set that
reveal interesting properties. Its applicability ranges from simple tasks as data
visualization, to assisting unsupervised learning by discovering clusters in data,
or supervised learning by deriving linear combinations of attributes that dis-
criminate between given classes and predict a numerical variable.

A k dimensional projection of a data set X ∈ Rn×d consisting of n items
described by d numerical attributes is a linear transformation involving k or-
thogonal vectors in a d-dimensional space. These vectors form an orthogonal
basis A ∈ Rk×d. The projection of X into A is the product Z = X ·AT resulting
in a new representation for each of the n data items in a k-dimensional space.

PP originates in the work of Kruskal [4] but the term was introduced later by
Friedman and Tukey [6] and generally designates any method that derives linear
projections of data that present some meaningful structures.

A PP method mainly consists of two components:

– a projection index to measure the quality of the projection;
– an optimization algorithm to deliver linear combinations that optimize the

projection index.

The first component is formulated in accordance with the data analysis task.
For simple visualization or dimensionality reduction, random projections can
be used or ones that maximize the variance (Principal Component Analysis),
the distance from Gaussianity or the Mutual Information (Independent Compo-
nent Analysis), an index that measures the grouping tendency or indicates the
presence of outliers (Friedman’s index or Kurtosis). If the main task is data clas-
sification, Fisher’s criterion can be used, leading to the well-known classification
method named Linear Discriminant Analysis.

The second component is closely related to the index under optimization. In
isolated cases analytical methods exist (the case of PCA). If the index is differ-
entiable, gradient-based methods are used, otherwise general-applicable proba-
bilistic heuristics can be used.

326 M.E. Breaban

3 PP Indices for Unsupervised and Supervised
Classification

In order to detect clusters in data, an index able to measure the grouping ten-
dency must be used. Several indices exist in literature with this goal. Most of
them are formulated for identifying only one-dimensional projections of data;
these are faster to compute and easier to optimize. One-dimensional projection
indices for clustering are based on computing the entropy or higher-order mo-
ments [8].

The current work makes use of one-dimensional projection indices that have
low computational complexity.

Kurtosis for a one-dimensional projection y of n data items is defined as the
fourth moment around the mean divided by the square of the variance:

kurt(z) =
1

n− 1

n∑
l=1

(z(l) − μ)4

σ4
(1)

where μ is the mean and σ is the standard deviation of the single-dimensional
projection. A value close to 3 indicates a normal distribution. Higher values in-
dicate the presence of extreme deviations while lower values indicate bimodal
distributions. We choose to minimize this index mainly because of its reduced
computational complexity compared to other proposed indices for cluster detec-
tion. When the projection is normalized to mean 0 and variance 1 the index
consists in summing up the values raised to the fourth power, divided by the
total number of items minus 1.

The holes index [2] is maximized for projections that have a hole in the center,
corresponding also to bimodal distributions:

holes(z) =
1

n

n∑
l=1

e(−z(l))2 (2)

There also exist indices that address two-dimensional or higher dimensional pro-
jection spaces [5] for clustering. Generally, indices based on the distribution of
the distances between data items can be employed for multi-dimensional projec-
tions, but these are computationally expensive.

Regarding supervised classification, the most popular PP algorithm is Linear
Discriminant Analysis (LDA). Originally introduced by Fisher in 1936, LDA
builds a classifier by searching linear projections that best discriminate between
given classes. The index widely used in this context is known as Fisher’s criterion
and, for any two classes C1 and C2 it computes the ratio between the inter-class
variance and the sum of the intra-class variances:

F (z) =
(m1 −m2)

2

s21 + s22
(3)

Multiobjective Projection Pursuit for Semisupervised Feature Extraction 327

Where
mi =

1
|Ci|

∑
z(l)∈Ci

z(l) is the mean of class Ci,

and
s2i = 1

|Ci|
∑

z(l)∈Ci
(z(l) −mi)

2 is the variance within class Ci.

It can be generalized to multi-class classification with k classes as follows:

F (z) =

∑k
i=1 |Ci|(mi −m)2∑k

i=1 s
2
i

(4)

Where
m = 1

|S|
∑

z(l)∈S z
(l) is the mean of all data items.

4 Multiobjective PP

Projection Pursuit is essentially a multi-modal problem: distinct projections may
highlight various patterns in data. As highlighted by several authors [6], projec-
tion pursuit analysis should offer several interesting projections, not only the one
that corresponds to the global maximum with regard to the projection pursuit
index. The most frequent approach reported in literature with this aim is to use
local optimization methods like gradient-based (requiring differentiable indices),
hill climbing or simulated annealing with several different initializations [6,7,8].
Also structure removal is proposed once interesting projections are found by con-
ducting the search for subsequent orthogonal projections [6] or by transforming
the data along the interesting direction into standard normal [5]. Only recently
multi-modal search by means of evolutionary algorithms was used to successfully
provide several good linear projections [9].

In the current work we design a genetic algorithm that conducts a multi-modal
search while optimizing several objectives. Due to the encoding we use it is able
at the same time to deal with high dimensional data.

4.1 Solution Encoding

The Genotype: To scale our algorithm to high dimensional data we use an
encoding that allows us to incorporate a mechanism of attribute selection while
optimizing at the same time the weights of the selected attributes in a linear
combination. A candidate solution corresponding to a chromosome in population
thus consists of two parts:

– a boolean string b ∈ {0, 1}d of length equal to the number of attributes d;
the string is constrained to have at list one bit set;

– a vector w ∈ Rd in the d-dimensional Euclidean space (a string of length
d of real numbers) playing the role of the projection axis, corresponding in
fact to numerical weights in the associated linear transformation.

328 M.E. Breaban

The Phenotype: The projection z(l) ∈ R of an item x(l) ∈ Rd in the subspace

encoded by a chromosome is computed as follows: z(l) =
∑d

i=1 bi · wi ∗ x(l)i .
Unselected attributes in a linear combination correspond to 0 weight at-

tributes. This simple trick speeds-up the convergence for high-dimensional spaces:
irrelevant attributes do not consume resources while their weights would con-
verge to 0.

4.2 Multi-modal Search along Several Objectives

In order to exploit several good attribute subspaces for optimal projections we
use the Multi Niche Crowding GA (MNC-GA) [10], an algorithm able to main-
tain subpopulations within different niches, to maintain diversity throughout the
search and to converge to multiple local optima. The multi-modal approach is
necessary in order to deliver several good solutions/projections when our frame-
work is used for unsupervised or supervised classification and is further extended
to allowmulti-objective optimization when several ”disagreeing” evaluation func-
tions are used in the semi-supervised scenario of classification.

MNC-GA is a steady state algorithm that implements replacement based
on pairwise comparisons. The few parameters involved can be very easily fine-
tuned. Furthermore, its authors offer in-depth mathematical results that show
the dynamic of the population and offer guidelines about the parameter values
to be used in order to achieve the desired niching pressure during a run.

Both the selection and replacement operators implement a crowding mecha-
nism. Mating and replacement within members of the same niche are encouraged
while allowing at the same time some competition for the population slots among
the niches.

Selection for recombination takes place in two steps: one individual is
selected randomly from the population; its mate is the most similar individual
from a group of size s which consists of randomly chosen individuals from the
population. The two chosen individuals are subject to recombination operators
and one offspring is created. The similarity between two individuals is computed
based on the boolean part of the chromosome that encodes the monomial sub-
space; the Hamming distance is used. Recombination between individuals that
encode similar subspaces (selected attributes) is necessary in order to conduct a
meaningful search in the space of numerical weights.

Regarding selection for survival, the individual to be replaced by the off-
spring is chosen according to a replacement policy called worst among most
similar : f groups are created by randomly picking g (crowding group size) indi-
viduals per group from the population and one individual from each group that
is most similar to the offspring is identified. This phase results in f individuals
similar to the offspring. One of them must be substituted by the offspring. While
all other decisions are taken randomly or are based on measuring similarities,
this is the step where decisions involve the fitness of the individuals. Performing
multi-criteria optimization, replacement is performed based on the concept of
Pareto dominance. The substitution takes place only if there exist a solution
among the selected ones that is dominated by the offspring with regard to all

Multiobjective Projection Pursuit for Semisupervised Feature Extraction 329

objectives. If several solutions are dominated, the solution to be substituted is
the one with the lowest fitness under the supervised criterion (Fisher index).

4.3 Variation Operators

Recombination between two chosen individuals consists of crossover that gener-
ates one offspring which is subsequently mutated.

The crossover operator applied to two chromosomes consists in fact of two
operations performed independently on the two parts of the chromosomes. Uni-
form crossover is used on the binary segment encoding the monomial subspace.
On the numerical segment, the offspring is obtained as a convex combination of
the two numerical parent strings.

Mutation is also applied in two distinct phases. Each gene in the binary seg-
ment is flipped with a given probability which we call binary mutation rate.
To each weight in the numerical segment corresponding to a selected monomial
a random value in the interval (-0.25, 0.25) is added with a probability called
weights’ mutation rate. The binary mutation rate is lower than the weights’
mutation rate in order to encourage better exploitation of a given subspace for
optimal projection axes.

4.4 Evaluation

Before evaluation, the weight vector in the selected subspace of the offspring is
normalized to unit length. The evaluation consists in computing the projection
of all data items on the axis given by the weight segment of the chromosome in
the encoded monomial subspace, followed by the computation of the projection
indices employed as objectives.

Usually, projection pursuit is preceded by a linear transformation on the data
called sphering that guarantees that every linear projection is distributed with
mean 0 and standard deviation 1, eliminating the need for further normalization.
The data sphering achieves invariance of the projection indices. In our experi-
ments the data sets are not sphered but we achieve this invariance by normalizing
each projection prior to computing the projection indices.

In our experiments we perform two-criterion optimization with one unsuper-
vised index in order to highlight groups in data and one supervised index in
order to extract features that maximize the separation between known classes
of data items.

4.5 The Solutions

The algorithm returns the set of non-dominated solutions at the end of the
run. These constitute projection axis in a d-dimensional space that are used to
deliver a new representation of the data. They are not orthogonal vectors but an
orthogonal basis can be constructed based on simple Gram-Schmidt transforms.
By projecting the data onto the new axes new features are extracted that can
be used further in clustering or classification or in semi-supervised analysis.

330 M.E. Breaban

Our framework is generally applicable. When no labels are provided, the al-
gorithm optimizes the unsupervised criterion and delivers projection axes that
reveal groups in data. With respect to the concept of Pareto-dominance, only
one solution is returned. However, because we employ a multi-modal algorithm
the entire population of candidate solutions in the last iteration of the algorithm
can be processed to extract several local optima with regard to the projection
index.

For the case when all data labels are available, the unsupervised objective
delivers new projection axes that do not alter the axes maximizing the super-
vised criterion. If considered, they can increase the generalization ability of the
classifier.

5 Experiments

Our framework for feature extraction is validated on real data sets from UCI
Repository 1. To compare our results with previous work in literature on feature
selection, some data sets are modified as in [1,3] in order to contain equal-sized
classes.

As projection indexes we use Kurtosis and Fisher’s index. The set of non-
dominated solutions returned at the end of the run are used to compute new
features as linear combinations of the original ones. The new features are then
used in clustering performed with the traditional k-Means algorithm. As mea-
sures of performance, the Adjusted Rand Index (ARI) and the error rate (1-
accuracy) are computed.

All experiments were carried out with the following parameter settings: s =
0.15 · popsize, g = 0.10 · popsize, f = 0.15 · popsize. The mutation operator is
applied at different rates on the two segments of a chromosome: approximately
one mutation during 10 iterations is applied on the binary segment while 1
mutation per iteration is applied on the numerical segment; using a steady-
state scheme, only one offspring is generated and evaluated at each iteration.
The population consists of 100 individuals, randomly initialized: on the binary
segment 50% of the attributes are selected while on the numerical segment the
values are generated in the interval [-1,1]. The results are reported after 20000
fitness evaluations.

Table 1 presents the results obtained with standard k-Means on the original
data set and constrained k-Means when 5% of the data set is labeled. The average
and standard deviations over 20 runs are reported. A small improvement is
obtained with regard to the quality of the partition when labels are provided.

Table 2 presents the results obtained with standard k-Means when a new
representation of the data set is obtained with our multi-objective projection
pursuit algorithm. When no labels are provided (column k-Means unsupervised)
only one projection (extracted feature) is used - the best projection optimizing
the Kurtosis criterion. A significant improvement is observed over the results in
Table 1 showing that unsupervised feature extraction by PP is able to eliminate

1 http://archive.ics.uci.edu/ml/

http://archive.ics.uci.edu/ml/

Multiobjective Projection Pursuit for Semisupervised Feature Extraction 331

noise and provide an improved representation of the data set. When labels are
provided only two projections are used in k-Means - the best with regard to
Kurtosis and the best with regard to Fisher’s criterion. The table also shows the
average size of the Pareto front extracted at the end of the run. The accuracy
of classification is increased in all test cases. All the results presented in Table 2
are also averaged over 20 runs.

The results indicate that feature extraction as a pre-processing step prior to
(semi)supervised clustering improves considerably the accuracy of classification.
Constrained k-Means in the original feature space is significantly outperformed
by k-Means in the optimized feature space.

Figure 1 presents the two-dimensional representation of the data sets obtained
under the unsupervised criterion when no data labels are provided. On the final
population of the multi-modal GA k-Means was applied to extract 3 clusters.
The best individual in each cluster was kept and then the Gram-Schmidt trans-
form was applied to derive a 3-dimensional basis. The data was then projected
onto this basis and only the first two projections are illustrated. The figure
demonstrates the ability of the algorithm that performs a multi-modal search to
extract good multi-dimensional projections in one run.

Figure 2 presents the data sets under the new representations corresponding to
the two projections extracted when labels are provided. The colors indicate the
real labels. Generally, the two projections corresponding to the unsupervised PP
index (on the horizontal axis) and respectively the supervised PP index (on the
vertical axis) are highly correlated. This observation justifies the use of unlabeled

Table 1. The average ARI and the average error rate for 20 runs for k-Means and
constrained k-Means algorithms applied on the original data set

Problem #items #features # classes k-Means unsupervised k-Means constrained (5%)
(m) (k) ARI error ARI error

LetterAB 1555 16 2 0.71 ± 0 10.16±5.60 0.73 ±0 7.20 ± 0

satImage 2110 36 2 0.47 ± 0.00 15.69±0.01 0.48 ± 0.003 15.21 ±0.11

WDBC 424 31 2 0.34 ± 0 20.75±0.00 0.37 ±0.005 19.20± 0.23

Table 2. The average ARI and the average error rate for 20 runs for k-Means on the
new representation of the data set derived with our algorithm. The average number
of projection axes (extracted features) in the Pareto front is also reported when labels
are provided.

Problem k-Means unsupervised k-Means 5%
ARI error #extracted features ARI error

LetterAB 0.78± 0.008 5.77 ± 0.24 37± 8 0.79 ± 0.01 5.29 ± 0.39

satImage 0.96 ± 0.01 0.78 ± 0.26 12± 4 0.97 ± 0.03 0.70 ± 0.09

WDBC 0.72 ± 0.04 7.39 ± 1.35 24± 10 0.78 ± 0.05 5.63 ± 1.57

332 M.E. Breaban

(a) (b) (c)

Fig. 1. A two dimensional representation of the data sets obtained with our algorithm
with the unsupervised PP index and Gram-Schmidt transform: a)Letter AB, b) SAT
Image, c)WDBC

(a) (b) (c)

Fig. 2. A two dimensional representation of the data sets obtained with our algorithm
with the unsupervised and the supervised PP indices when 5% of the data items are
labeled. The best projection axis under the unsupervised criterion(on horizontal) and
the best under the supervised criterion (on the vertical) are used. a)Letter AB, b) SAT
Image, c)WDBC

data to assist supervised classification algorithms. As expected from the nature
of the problem (supervised vs unsupervised classification) and shown by the good
correlation between the obtained projections and also by the reduced size of the
solutions approximating the Pareto front, the two objectives are not entirely
conflicting; however, they disagree on the expected partition.

6 Conclusions

This paper proposes a multi-modal genetic algorithm to extract linear features
from data by optimizing several projection indices. The use of an unsupervised
index along with a supervised one makes the algorithm general applicable. The
current experiments prove the feasibility of the approach on data sets consisting
of two classes: the subsequent clustering algorithm achieves better accuracy in
the extracted feature space compared to the original feature space. Because
kurtosis favors bimodal distributions, future work will extend the framework

Multiobjective Projection Pursuit for Semisupervised Feature Extraction 333

with projection indices able to detect an arbitrary number of clusters in data.
Also, a new encoding scheme along with multi-dimensional projection indices will
be introduced in order to search for multi-dimensional orthogonal projections;
these are necessary because the Gram-Schmidt transformation may alter the
quality of the projections with regard to the projection indices.

Acknowledgements. This work was supported by POSDRU/89/1.5/S/63663
CommScie grant.

References

1. Breaban, M.E.: Optimized Ensembles for Clustering Noisy Data. In: Blum, C.,
Battiti, R. (eds.) LION 4. LNCS, vol. 6073, pp. 220–223. Springer, Heidelberg
(2010)

2. Cook, D., Buja, A., Cabrera, J.: Projection pursuit indexes based on orthonormal
function expansions. Journal of Computational and Graphical Statistics 2(3), 225–
250 (1993)

3. Domeniconi, C., Al-Razgan, M.: Weighted cluster ensembles: Methods and analysis.
CM Transactions on Knowledge Discovery from Data 2(4) (2009)

4. Friedman, J.H.: Toward a practical method to help uncover the structure of a set
of multivariate observations by finding the linear transformation which optimizes a
new ’index of condensation. Statistical Computation 82(397) (1969), Milton, R.C.,
Nelder, J.A.(eds.)

5. Friedman, J.H.: Exploratory projection pursuit. Journal of the American Statistical
Association 82(397), 249–266 (1987)

6. Friedman, J.H., Tukey, J.W.: A projection pursuit algorithm for exploratory data
analysis. IEEE Trans. Comput. 23(9), 881–890 (1974)

7. Graham, R., Knuth, D., Patashnik, O.D., Cook, Swayane, D.F.: Springer, New
York (2007)

8. Jones, M.C., Sibson, R.: What is projection pursuit (with discussion). Journal of
the Royal Statistical Society 150, 1–37 (1987)

9. Marie-Sainte, S.L., Berro, A., Ruiz-Gazen, A.: An Efficient Optimization Method
for Revealing Local Optima of Projection Pursuit Indices. In: Dorigo, M., Birattari,
M., Di Caro, G.A., Doursat, R., Engelbrecht, A.P., Floreano, D., Gambardella,
L.M., Groß, R., Şahin, E., Sayama, H., Stützle, T. (eds.) ANTS 2010. LNCS,
vol. 6234, pp. 60–71. Springer, Heidelberg (2010)

10. Vemuri, V., Cedeño, W.: Multi-niche crowding for multimodal search. Practical
Handbook of Genetic Algorithms: New Frontiers (1995)

Land Cover/Land Use Multiclass Classification

Using GP with Geometric Semantic Operators

Mauro Castelli1,2, Sara Silva1,3, Leonardo Vanneschi2,1, Ana Cabral4,
Maria J. Vasconcelos4, Lúıs Catarino4,5, and João M.B. Carreiras4

1 INESC-ID, IST, Universidade Técnica de Lisboa, 1000-029 Lisboa, Portugal
2 ISEGI, Universidade Nova de Lisboa, 1070-312 Lisboa, Portugal
3 CISUC, Universidade de Coimbra, 3030-290 Coimbra, Portugal

4 Instituto de Investigação Cient́ıfica Tropical, 1300-344 Lisboa, Portugal
5 CIBIO, Universidade do Porto, 4485-661 Vairão, Portugal

sara@kdbio.inesc-id.pt

Abstract. Multiclass classification is a common requirement of many
land cover/land use applications, one of the pillars of land science stud-
ies. Even though genetic programming has been applied with success to
a large number of applications, it is not particularly suited for multiclass
classification, thus limiting its use on such studies. In this paper we take
a step forward towards filling this gap, investigating the performance of
recently defined geometric semantic operators on two land cover/land
use multiclass classification problems and also on a benchmark problem.
Our results clearly indicate that genetic programming using the new ge-
ometric semantic operators outperforms standard genetic programming
for all the studied problems, both on training and test data.

1 Introduction

A new integrated land science, joining environmental, human, and remote sens-
ing sciences, is emerging. It addresses questions about the impacts of land use
and land cover changes, both on the environment and on the livelihoods of
people [8]. This recently developed discipline led to the development of a large
amount of case studies and data sets, with a corresponding plethora of method-
ologies for analysis. However, the complexity of causes, processes and impacts
of land change has, so far, impeded the development of an integrated theory.
Land science studies require versatile data analysis tools that can solve multi-
type pattern identification problems, ranging for instance from classification of
satellite images into several land cover type classes in a map, to identifying land
cover transition patterns in multi-temporal map data sets, or to prediction of
pattern evolution through time.

Genetic Programming (GP) is the automated learning of computer programs,
using Darwinian selection and Mendelian genetics as sources of inspiration [5].
In the last decade, GP has been extensively used both in Industry and Academia
and it has produced a wide set of results that have been characterized as human-
competitive [6]. Although in principle GP has the potential to evolve any kind of

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 334–343, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Land Cover/Land Use Multiclass Classification Using GP 335

solution, including decision trees, it has never been particularly suited for mul-
ticlass classification problems. This inadequacy, in many cases, derives not from
limitations of the algorithm, but from the particular representation used for the
solutions. The interested reader is referred to [13] for discussions on the difficul-
ties of GP in facing multiclass classification problems and to [3] for a complete
review of the state of the art methods in using GP for classification problems.
It is a common procedure to address two-class classification problems using GP
as regression ones, applying a cutoff to the predicted output. This approach can
also be used for multiclass classification, but the approach in general becomes
less effective as a larger number of classes is considered, and the performance of
GP degrades to the point where other machine learning techniques become the
only reasonable option. Therefore, even though GP has the potential to address
the complexity of land science studies, the “simple” task of land use/land cover
multiclass classification represents a potential obstacle.

Research in GP has recently focused on an aspect that was only marginally
considered up to some years ago: the definition of methods based on the seman-
tics of the solutions (see for instance [1,9]), where by semantics we generally mean
the behavior of a program once it is executed on a set of data or, more specifically,
the set of outputs a program produces on the training data. Using this defini-
tion of semantics (which is also the one that we adopt here), Moraglio et al. have
recently defined new genetic operators, called geometric semantic genetic oper-
ators [10]. They have a number of theoretical advantages compared to the ones
of standard GP; in particular, as proven in [10], they induce a unimodal fitness
landscape on any problem consisting in finding the match between a set of input
data and a set of known outputs (like for instance classification and regression).
This should facilitate evolvability [4], making these problems potentially easier
to solve for GP. However, they have a major drawback that makes them unus-
able in practice: they always create offspring that are larger than their parents,
causing an exponential growth of the code in the population. We have proposed a
new and very efficient implementation of the geometric semantic operators [12].
This new GP system evolves the semantics of the individuals without explicitly
building their syntax, freeing us from dealing with exponentially growing trees
and thus allowing us to test, for the first time, the potentiality of the semantic
operators on complex real-life problems.

In this paper we want to assess how much improvement the geometric semantic
operators introduce when compared to standard GP operators, in particular
when dealing with multiclass classification problems in a ‘regression and cutoff’
manner. We tackle three problems: two real-life land cover/land use applications
of four and ten classes, and a well-known benchmark of three classes.

The paper is organized as follows: Section 2 describes the geometric semantic
operators of Moraglio et al. used in this work. Section 3 presents the experimen-
tal study, describing the test problems and settings, and discussing the results
obtained. Section 4 concludes and describes our intended future work.

336 M. Castelli et al.

2 Geometric Semantic Operators

Many semantically aware methods presented so far [1,9] are indirect: search
operators act on the syntax of the parents to produce offspring that are only ac-
cepted if some semantic criterion is satisfied. As reported by Moraglio et al. [10],
this has at least two drawbacks: (i) these implementations are very wasteful as
heavily based on trial-and-error; (ii) they do not provide insights on how syn-
tactic and semantic searches relate to each other. To overcome these drawbacks,
Moraglio et al. introduced new operators that directly search the semantic space.

To explain the idea, we first provide an example using Genetic Algorithms
(GAs). Let us consider a GA problem in which the target solution is known
and the fitness of each individual corresponds to its distance to the target (our
reasoning holds for any distance measure used). This problem is characterized
by a very good evolvability and it is in general easy to solve for GAs. In fact,
for instance, if we use point mutation, any possible individual different from the
global optimum has at least one neighbor (individual resulting from its mutation)
that is closer to the target than itself, and thus is fitter. So, there are no local
optima. In other words, the fitness landscape is unimodal. Similar considerations
hold for box mutation and for many types of crossover, including various kinds
of geometric crossover [7].

Now, let us consider the typical GP problem of finding a function that maps
sets of input data into known target outputs (regression and classification are
particular cases). The fitness of an individual for this problem is typically a dis-
tance between its predicted output values and the expected ones (error measure).
Now let us assume that we are able to find a transformation on the syntax of
an individual whose effect is just a random perturbation of one of its predicted
output values. In other words, let us assume that we are able to transform an
individual G into an individual H whose output values are like the outputs of G,
except for one value, that is randomly perturbed. Under this hypothesis, we are
able to map the considered GP problem into the GA problem discussed above, in
which point mutation is used. So, this transformation, if known, would induce a
unimodal fitness landscape on every problem like the considered one (e.g. regres-
sions and classifications), allowing GP to have a good evolvability, at least on
training data. The same also holds for transformations that correspond to box
mutation or semantic crossovers. Although not without limitations, the work of
Moraglio et al. [10] accomplishes this task, defining the following operators.

Definition 1. (Geometric Semantic Crossover). Given two parent func-
tions T1, T2 : Rn → R, the geometric semantic crossover returns the real func-
tion TXO = (T1 ·TR)+ ((1−TR) ·T2), where TR is a random real function whose
output values range in the interval [0, 1].

The interested reader is referred to [10] for a formal proof of the fact that this
operator corresponds to a geometric crossover on the semantic space, in the sense
that it produces an offspring that stands between its parents in this space. We do
not report the proof here, but we limit ourselves to remark that, even without a
formal proof, we can have an intuition of it considering that the (only) offspring

Land Cover/Land Use Multiclass Classification Using GP 337

Fig. 1. Visual intuition of the fact that geometric semantic crossover creates an off-
spring that is at least not worse than the worst of its parents. In this toy example,
offspring O (which stands between parents P1 and P2 in the semantic space by con-
struction) is clearly closer to target T (training points represented by “×” symbols)
than parent P2. In Section 3 we also discuss the geometric properties of this operator
on test data, represented by τ (test points represented by “∗” symbols).

generated by this crossover has a semantic vector that is a linear combination of
the semantics of the parents with random coefficients included in [0, 1] and whose
sum is equal to 1. Moraglio et al. [10] also prove an interesting consequence of
this fact: the fitness of the offspring cannot be worse than the fitness of the worst
of its parents. Also in this case, we do not replicate the proof here, but we limit
ourselves to providing a visual intuition of this property: in Figure 1 we represent
a simple two-dimensional semantic space in which we draw a target function T
(training points are represented by “×” symbols), two parents P1 and P2 and
one of their offspring O (which by construction stands between its parents), plus
a test set (composed by test points represented by “∗” symbols) that will be
discussed in the final part of Section 3. It is immediately apparent from Figure 1
that O is closer to T than P2 (which is the worst parent in this case). The
generality of this property is proven in [10]. To constrain TR in producing values
in [0, 1] we use the sigmoid function: TR = 1

1+e−Trand
where Trand is a random

tree with no constraints on the output values.

Definition 2. (Geometric Semantic Mutation). Given a parent function
T : Rn → R, the geometric semantic mutation with mutation step ms returns
the real function TM = T + ms · (TR1 − TR2), where TR1 and TR2 are random
real functions.

Moraglio et al. [10] prove that this operator corresponds to a box mutation on
the semantic space, and induces a unimodal fitness landscape. Even without
a formal proof it is not difficult to have an intuition of it, considering that
each element of the semantic vector of the offspring is a “weak” perturbation
of the corresponding element in the parent’s semantics. We informally define
this perturbation as “weak” because it is given by a random expression centered
in zero (the difference between two random trees). Nevertheless, by changing
parameter ms, we are able to tune the ”step” of this perturbation, and its
importance.

338 M. Castelli et al.

3 Experimental Study

Test Problems. Two land cover/land use applications and a well-known bench-
mark have been used as test problems.

LANDMAP: Land cover mapping. The objective of this application is mapping
land use/land cover types of Guinea-Bissau as function of six different metrics
extracted from Landsat TM and ETM+ data for 2010. Mapping land use/land
cover is one of the foremost requirements for planning, management and con-
servation of land and forest. This study considers 10 land cover types, among
which three forest types (closed forest, open forest, savanna woodland) on a total
of 6798 instances. Distinguishing between different forest types is a challenging
task given the spectral similarity between them.

CASHEW: Cashew in West Africa. West Africa has one of the most modi-
fied tropical forest landscapes in the world, where tree cover is often part of
a forest-savanna agriculture mosaic [11]. The objective of this application is to
discriminate different land cover classes occurring in a forest and agriculture mo-
saic from 12 different metrics obtained from the RapidEye or Landsat Thematic
Mapper data over Guinea-Bissau. The original data set contains 10 classes, on
a total of 370 instances. However, as a preliminary study we used only four of
these classes, on a total of 221 instances.

IRIS: Flower classification. This is a well-known benchmark problem available
at the UCI Machine Learning Repository. The data set contains three classes of
50 instances each, where each class refers to a type of iris plant and each instance
is described by four attributes.

Experimental Setting. We tackle each of the test problems with the two
different GP systems: standard GP (ST-GP) and GP that uses the geometric
semantic operators described in Section 2 (GS-GP). In all cases GP is used
as if we were dealing with regression problems, i.e. the numeric class label is
interpreted as the expected output value of the function to be learned.

For each of the GP systems, 50 independent runs have been performed with
a population of 200 individuals. For each run, different randomly generated par-
titions of the data sets into training (70%) and test (30%) sets where used.
The evolution stopped after 10000 fitness evaluations for both GP variants. Tree
initialization was performed with the Ramped Half-and-Half method [5] with
a maximum initial depth of 6. The function set contained the four arithmetic
operators +, −, ∗, and / protected as in [5]. For each studied problem, the ter-
minal set contained a number of variables equal to the number of features in
the data set. Fitness was measured as the Root Mean Square Error (RMSE) be-
tween predicted and expected outputs, and tournament selection was used with
tournament size of 4. The reproduction (replication) rate was 0.1, meaning that
each selected parent has a 10% chance of being copied to the next generation
instead of being engaged in breeding. ST-GP used standard subtree mutation
and crossover (with uniform selection of crossover and mutation points among
different tree levels), with probabilities 0.1 and 0.9 respectively. The new random

Land Cover/Land Use Multiclass Classification Using GP 339

branch created for mutation has maximum depth 6. Selection for survival was
elitist, guaranteeing the survival of the best individual from one generation to
the next. No maximum tree depth was imposed. GS-GP used a higher mutation
rate of 0.5, which was found to be necessary in order for GS-GP to properly
explore the search space. The mutation step ms was 0.001.

Experimental Results. We compare the results of GS-GP and ST-GP ob-
tained on training data and, in order to compare the generalization ability of
the two methods, on out-of-sample test data. We report the RMSE on the train-
ing data, and the accuracy, expressed as the proportion of correctly classified
samples, on the test data. In order to calculate accuracy, each predicted output
is rounded to its nearest integer value, which represents the class label.

On Figure 2, the plots on the left report, for each studied problem, the evo-
lution of the mean RMSE of the best individual on the training set over the 50
runs. They clearly show that GS-GP reaches the lowest RMSE on all the con-
sidered test problems. The boxplots on the right report the RMSE of the best
individual on the training set at the end of each run. It can be observed that GS-
GP produces solutions with a lower dispersion of RMSE than ST-GP on both
LANDMAP and CASHEW problems. To analyze the statistical significance of
these results, a set of tests has been performed on the RMSE values. As a first
step, the Kolmogorov-Smirnov test has shown that the data are not normally
distributed and hence a rank-based statistic has been used. More precisely, we
have used the Mann-Whitney test [2], considering a confidence of 95% with a
Bonferroni correction. According to this test, the results produced by GS-GP are
statistically different from the ones produced by ST-GP on all the considered
test problems; the respective p-values are reported in Table 1.

On Figure 3, the plots on the left report, for each studied problem, the evolu-
tion of the mean accuracy on the test set of the best individual on the training
set over the 50 runs. Also in this case it is clear that GS-GP reaches higher
accuracy, i.e. generalizes better, than ST-GP. The boxplots on the right report
the accuracy on the test data of the best individual at the end of each run. Also
here GS-GP produces solutions with a lower dispersion of RMSE than ST-GP.
According to the Mann-Whitney test, the results produced by GS-GP are sta-
tistically different from the ones produced by ST-GP on all the considered test
problems, as reported in Table 1.

Table 2 summarizes the results obtained on the different studied problems
with both GP variants, in terms of minimum, maximum, median, mean and
standard deviation of both RMSE on the training set and accuracy on the test
set.

Discussion. From the above results we realize that neither ST-GP nor GS-
GP overfit, since the accuracy values on the test set do not degrade during the
evolution. However, GS-GP has obtained much better results than ST-GP in
both training and test data. The good results on the training data were expected:
the geometric semantic operators induce an unimodal fitness landscape, which
facilitates evolvability. However, this could have caused a loss of generalization

340 M. Castelli et al.

Table 1. The p-values obtained comparing the median fitness (RMSE on the training
set and accuracy on the test set) of GS-GP and ST-GP, using the Mann-Whitney
statistical test.

LANDMAP CASHEW IRIS

TRAINING 7.066e-018 1.914e-009 6.0178e-018
TEST 2.194e-017 4.778e-011 5.248e-018

Table 2. Summary of the results obtained on 50 independent runs. Training fitness
is the RMSE (optimal fitness 0), while testing fitness is the classification accuracy
(optimal fitness 1).

LANDMAP

RMSE on TRAINING
Min Max Median Mean Std Dev

GS-GP 1.012 1.141 1.074 1.073 0.032
ST-GP 1.147 1.568 1.379 1.350 0.101

ACCURACY on TEST
Min Max Median Mean Std Dev

GS-GP 0.612 0.743 0.696 0.690 0.033
ST-GP 0.337 0.645 0.518 0.511 0.082

CASHEW

RMSE on TRAINING
Min Max Median Mean Std Dev

GS-GP 0.839 0.946 0.913 0.906 0.024
ST-GP 0.879 1.260 1.211 1.136 0.142

ACCURACY on TEST
Min Max Median Mean Std Dev

GS-GP 0.239 0.388 0.313 0.317 0.034
ST-GP 0.194 0.328 0.224 0.243 0.045

IRIS

RMSE on TRAINING
Min Max Median Mean Std Dev

GS-GP 0.096 0.176 0.143 0.145 0.016
ST-GP 0.380 0.494 0.445 0.444 0.030

ACCURACY on TEST
Min Max Median Mean Std Dev

GS-GP 0.860 0.980 0.940 0.937 0.025
ST-GP 0.680 0.880 0.720 0.760 0.067

Land Cover/Land Use Multiclass Classification Using GP 341

LANDMAP

0 200 400
1

1.5

2

Generations

R
M

S
E

GS−GP ST−GP
1

1.5

2

R
M

S
E

CASHEW

0 200 400

1

1.5

2

Generations

R
M

S
E

ST−GP
GS−GP

GS−GP ST−GP

1

1.5

2

R
M

S
E

IRIS

0 200 400
0.1
0.2
0.3
0.4
0.5

Generations

R
M

S
E

GS−GP ST−GP

0.1

0.2

0.3

0.4

0.5

R
M

S
E

Fig. 2. Results obtained on the training set. Plots on the left: evolution of best fitness
(RMSE), mean of 50 runs. Boxplots on the right: best fitness (RMSE) at the end of
each run.

ability on the test data - it did not. Not so obvious at first sight, the geometric
properties of the semantic operators hold independently from the data on which
individuals are evaluated. In other words, geometric semantic crossover produces
an offspring that stands between the parents also in the semantic space induced
by test data. As a direct implication, following exactly the same argument as
Moraglio et al. [10], each offspring is, in the worst case, not worse than the worst
of its parents on the test set. This can be seen by looking back at Figure 1,
where a simple test set τ is drawn (test points are represented by “∗” symbols).
Analogously, geometric semantic mutation produces an offspring that is a “weak”
perturbation of its parent also in the semantic space induced by test data. This
has an important consequence on the behavior of GS-GP on test data: even
though the geometric semantic operators do not guarantee an improvement of
test fitness each time they are applied (e.g. there is a very slight overfitting
observed on the IRIS dataset with GS-GP, Figure 3), they at least guarantee
that the possible worsening of the test fitness is “limited” (by the test fitness of
the worst parent for crossover, and by the mutation step ms for mutation) [12].

342 M. Castelli et al.

LANDMAP

0 200 400

0.4

0.6

0.8

Generations

A
cc

ur
ac

y

GS−GP ST−GP

0.4

0.6

0.8

A
cc

ur
ac

y

CASHEW

0 200 400
0.1

0.2

0.3

0.4

Generations

A
cc

ur
ac

y

ST−GP
GS−GP

GS−GP ST−GP
0.1

0.2

0.3

0.4

A
cc

ur
ac

y

IRIS

0 200 400

0.7

0.8

0.9

1

Generations

A
cc

ur
ac

y

GS−GP ST−GP

0.7

0.8

0.9

1

A
cc

ur
ac

y

Fig. 3. Results obtained on the test set. Plots on the left: evolution of the accuracy on
the test set of the best individual on the training set, mean of 50 runs. Boxplots on
the right: accuracy on the test set at the end of each run.

4 Conclusions and Future Work

Multiclass classification is a common requirement of many land cover/land use
applications, one of the pillars of land science studies. However, as reported
in the literature, Genetic Programming (GP) is not particularly suited for this
task. We have investigated the use of recently defined geometric semantic oper-
ators on multiclass classification problems, using two land cover/land use real-
life applications, and one well-known benchmark, as test problems. Our results
clearly indicate that GP that uses the geometric semantic operators (GS-GP)
outperforms standard GP on all the studied problems. GS-GP returned much
better results on training data without loss of generalization on test data. As
future work we intend to qualitatively interpret the results achieved by GS-GP
from the point of view of the applications, and compare its performance with
other machine learning techniques using these and other multiclass classification
problems, in order to determine if GS-GP is a competitive method for solving
multiclass classification problems.

Land Cover/Land Use Multiclass Classification Using GP 343

Acknowledgments. This work was partially supported by national funds
through FCT under contract Pest-OE/EEI/LA0021/2011. The authors acknowl-
edge projects “EnviGP - Improving Genetic Programming for the Environ-
ment and Other Applications” (PTDC/EIA-CCO/103363/2008), “Cashew in
West Africa: socio-economic and environmental challenges of an expanding cash
crop” (PTDC/AFR/117785/2010) and “MassGP - Improving Semantic Ge-
netic Programming for Maritime Safety, Security and Environmental Protection”
(PTDC/EEI-CTP/2975/2012) funded by the FCT, Portugal, and also project
CarboVeg GB (funded by the Ministry of Environment, Portugal) and the Secre-
tary of State of the Environment and Sustainable Development (SEAD, Guinea-
Bissau).

References

1. Beadle, L., Johnson, C.G.: Semantic analysis of program initialisation in genetic pro-
gramming. Genetic Programming and Evolvable Machines 10(3), 307–337 (2009)

2. Corder, G., Foreman, D.: Nonparametric statistics for Non-Statisticians. Wiley,
New York (2009)

3. Espejo, P., Ventura, S., Herrera, F.: A survey on the application of genetic pro-
gramming to classification. IEEE Transactions on Systems, Man, and Cybernetics,
Part C: Applications and Reviews 40(2), 121–144 (2010)

4. Gustafson, S., Vanneschi, L.: Crossover-based tree distance in genetic program-
ming. IEEE Transactions on Evolutionary Computation 12(4), 506–524 (2008)

5. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge (1992)

6. Koza, J.R.: Human-competitive results produced by genetic programming. Genetic
Programming and Evolvable Machines 11(3/4), 251–284 (2010); Tenth Anniversary
Issue: Progress in Genetic Programming and Evolvable Machines

7. Krawiec, K., Lichocki, P.: Approximating geometric crossover in semantic space.
In: GECCO 2009: Proceedings of the 11th Annual Conference on Genetic and
Evolutionary Computation, pp. 987–994. ACM (2009)

8. Lambin,E.R.,Geist,H.,Rindfuss,R.R.:Localprocesseswithglobal impacts. In:Lam-
bin, E.R., Geist, H. (eds.) LandUse and LandCoverChange, pp. 1–8. Springer (2006)

9. McPhee, N.F., Ohs, B., Hutchison, T.: Semantic Building Blocks in Genetic Pro-
gramming. In: O’Neill, M., Vanneschi, L., Gustafson, S., Esparcia Alcázar, A.I., De
Falco, I., Della Cioppa, A., Tarantino, E. (eds.) EuroGP 2008. LNCS, vol. 4971,
pp. 134–145. Springer, Heidelberg (2008)

10. Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric Semantic Genetic Program-
ming. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M.
(eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 21–31. Springer, Heidelberg (2012)

11. Norris, K., Asase, A., Collen, B., Gockowksi, J., Mason, J., Phalan, B., Wade,
A.: Biodiversity in a forest-agriculture mosaic – the changing face of west african
rainforests. Biological Conservation 143, 2341–2350 (2010)

12. Vanneschi, L., Castelli, M., Manzoni, L., Silva, S.: A new implementation of geomet-
ric semantic GP applied to predicting pharmacokinetic parameters. In: Proceedings
of EuroGP-2013. Springer (to appear, 2013)

13. Zhang,M., Smart,W.:Multiclass Object Classification UsingGenetic Programming.
In: Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., John-
son, C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.)
EvoWorkshops 2004. LNCS, vol. 3005, pp. 369–378. Springer, Heidelberg (2004)

Adding Chaos to Differential Evolution

for Range Image Registration

Ivanoe De Falco1, Antonio Della Cioppa2, Domenico Maisto1,
Umberto Scafuri1, and Ernesto Tarantino1

1 ICAR-CNR, Via P. Castellino 111, 80131 Naples, Italy
{ivanoe.defalco,domenico.maisto,umberto.scafuri,

ernesto.tarantino}@na.icar.cnr.it
2 Natural Computation Lab, DIEM, University of Salerno Via Ponte don Melillo 1,

84084 Fisciano (SA), Italy
adellacioppa@unisa.it

Abstract. This paper presents a method for automatically pair–wise
registering range images. Registration is effected adding chaos to a Dif-
ferential Evolution technique and by applying the Grid Closest Point
algorithm to find the best possible transformation of the second image
causing 3D reconstruction of the original object. Experimental results
show the capability of the method in picking up efficient transforma-
tions of images with respect to the classical Differential Evolution. The
proposed method offers a good solution to build complete 3D models of
objects from 3D scan datasets.

1 Introduction

In computer vision Range Image Registration (RIR) is a fundamental task used
for integrating information acquired under diverse viewing angles (multi–view
analysis). During the years several multi–view RIR techniques have been de-
veloped [21, 22] to tackle many practical applications, such as 3D modeling
ranging from medical imaging, remote sensing, physical objects, digital archae-
ology, restoration of historic buildings, virtual museum, artificial vision, reverse
engineering and computer–aided design [19]. These applications require the con-
struction of precise 3D models preserving as much information as possible.

Since a physical object cannot be completely scanned with a single image due
to the occlusions and the limited field of view of a sensor, a set of range images
taken from different positions are required to supply the information needed to
construct the whole 3D model. These multiple images are acquired by a range
scanner involved in surface reconstruction. The registration strategy can differ
according to whether all range views of the objects are registered at the same
time (simultaneous registration) or only a pair of adjacent range images are
processed in every execution (pair–wise registration). This paper is focused on
the pair–wise registration of range images.

The objective of the registration process for two views consists in finding the
best spatial transformation that, when applied to one view, aligns it with the

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 344–353, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Adding Chaos to Differential Evolution for Range Image Registration 345

other in a common coordinate system. Such a transformation estimation is usu-
ally formulated as an optimization problem solved by an iterative procedure.
In literature there exist several methods for RIR approaches based on the It-
erative Closest Point (ICP) algorithm [2] which requires a good prealignment
of the views to converge to the global optimum. Unfortunately, an exhaustive
exploration of the search space of all the candidate solutions is impracticable in
case of a large number of degrees of freedom of the transformation, and thus
stochastic optimization algorithms, such as Evolutionary Algorithms (EAs) [1],
capable of providing a solution acceptably close to the global optimum in a rea-
sonable time, have been successfully applied to complex real–world problems in
computer vision and image registration [6, 8–10, 14, 22].

Differential Evolution (DE) [18] is an EA which has proven fast and reliable
to face several multivariable optimization tasks in many areas [7, 18]. Here we
propose and examine the ability of adaptive updating schemes for DE based on
chaos theory to perform automatic pair–wise image registration by exploiting
the Grid Closest Point (GCP) [25] transformation with no a priori knowledge of
the pose of the views. This system is tested on a set of eight 3D range images.

The paper structure is as follows: Section 2 describes the state of the art.
Section 3 contains the description of a DE adopting chaotic sequences and illus-
trates the application of our system to the registration task defining the encoding
and the fitness of the related optimization problem. Section 4 reports the results
achieved by our tool. The last section contains final remarks and future works.

2 State of the Art

Several surveys on RIR are available in literature. For example, ICP methods
centered on the point–to–point and point–to–plane correspondences are reported
in [20]. A complete study focused on pair–wise registration is presented in [5],
while different techniques for both pair–wise and multi–view registration, and a
new classification, can be found in [21].

In the last two decades, EAs have been extensively applied to the image regis-
tration problems. Differently frommethods based on the ICP algorithm, the most
popular family of methods to date, EAs need neither rough nor near–optimal
prealignment of the images to proceed. An extensive review of evolutionary im-
age registration methods is reported in [22].

He and Narayana [13] propose a real coding scheme that makes use of arith-
metic crossover and uniform mutation operators within an elitist generational
model including a restart mechanism. The evolutionary method uses a real–
coded Genetic Algorithm (GA) to estimate the rigid transformation and a local
search procedure to refine the obtained preliminary solution.

Chow et al. [3] still propose the use of real–coded GA considering a rigid
transformation but introduce a crossover operator that randomly selects the
number of genes to be swapped and a different sophisticated restart mechanism.

Silva et al. [24] face the pair–wise registration problem of range images cap-
tured by a 3D laser range scanner through a parameter–based approach for rigid

346 I. De Falco et al.

transformations. The proposed technique is inspired to the steady-state GA used
together with a hill–climbing algorithm to improve the precision of the results.

In [14] a new method for pair–wise registration is introduced. The novelty
consists in the inclusion in the solution vector of a surface overlap parameter
and the use of the trimmed square metric as objective function.

Cordón et al. [4] present a Scatter Search EA adopting a matching-based
approach while Santamaria et al. propose different memetic–based image regis-
tration techniques to deal with 3D reconstruction of forensic objects [23].

3 Chaotic Differential Evolution

The performance of DE is sensitive to the choice of the scale factor F and of
the crossover rate CR [15]. In this paper we introduce several adaptive updating
schemes for setting such parameters based on chaos theory [26]. Chaos describes
the complex behavior of a nonlinear deterministic system which is dynamic,
pseudo–random, ergodic, and sensitive to initial conditions [17]. One of the sim-
plest and most commonly used dynamic systems evidencing chaotic behavior is
the logistic map described by the following quadratic recurrence equation:

yt+1 = μ · yt · (1 − yt), with t = 1, 2, 3, . . . (1)

where μ is a positive constant sometimes known as biotic potential. The behavior
of the system is greatly affected by the value of μ which determines whether y
stabilizes at a constant size, oscillates among a limited sequence of sizes, or
behaves chaotically in an unpredictable pattern. A very small difference in the
initial value y1 could cause large differences in its long–time behavior. Eq. (1)
exhibits chaotic dynamics with values within the range [0, 1] at μ approximately
3.57. Beyond μ = 4 and y1 �= 0, 0.25, 0.50, 0.75, 1, the values eventually leave the
interval [0, 1] and diverge for almost all initial values.

The application of chaotic sequences can be a viable means to improve the ex-
ploration capability of an optimization algorithm. In fact, due to the ergodicity
property, chaos can be used to enrich the searching behavior and to avoid being
trapped into local optima [26]. Our schemes, based on logistic maps, are imple-
mented in a global and a local strategy. The control parameters are randomly
initialized in both strategies.

In the global strategy (A–GlChDE) the same values for F and CR are used
for all the individuals xi (potential solutions of the problem), and the control
parameters between consecutive generations t and t+ 1 are updated as follows:{

Ft+1 = μ · Ft · (1− Ft)

CRt+1 = μ · CRt · (1− CRt)
(2)

In the local strategy (A–LocChDE) F and CR are associated to each individual
xi in the population, and adjusted according to independent logistic chaotic
sequences. In formulae:{

Ft+1(xi) = μ · Ft(xi) · (1− Ft(xi))

CRt+1(xi) = μ · CRt(xi) · (1− CRt(xi))
(3)

Adding Chaos to Differential Evolution for Range Image Registration 347

Moreover, two further schemes adopt a form of control of the quality of the
current parameters based on fitness evaluations. This allows further exploiting
the most promising parameter couples and, at the same time, assuring the ex-
ploration of new potentially propitious search parameter values.

Let us suppose that Φ(·) is the fitness function for a minimization problem.
For the global strategy F and CR at the time t+1 are updated by using Eq. (2)
only if 〈Φt〉 � 〈Φt−1〉, i.e., the average fitness in the population at the generation
t is not better than that at the previous generation t−1. This strategy is referred
to as A–GlChDEAvg.

For the local strategy Ft+1(xi) and CRt+1(xi) of each individual xi at the
generation t+1 are updated as follows: if Φt(xi) � 〈Φt−1〉, i.e., the fitness of the
current individual is not better than the average fitness value in the population
at the previous generation, the values of its control parameters are updated based
on independent logistic chaotic sequences by means of Eq. (3). On the contrary,
the current values of the control parameters are retained. Such a strategy is
indicated as A–LocChDEAvg.

In these last two strategies the number of parameter couples involved changes
dynamically over generations depending on the fitness feedback from the search.

It should be noted that the introduction of the above strategies does not im-
pact computational complexity of the whole DE algorithm. In fact, in the case of
the computationally heaviest strategy, i.e., A–LocChDEAvg, the computational
complexity of the added scheme is O(tmaxp), where p is the population size and
tmax is the maximum number of generations.

3.1 Encoding and Fitness

Given two input images, named scene Is = {p1, . . . ,pn} and model Im =
{p′

1, . . . ,p
′
m} with n andm points respectively, RIR aims to find the best possible

Euclidean motion f for Is determined by the rotation R = (θ, Axx, Axy , Axz)
and the translation t = (tx, ty, tz) with θ being the angle and Ax the axis of
rotation. Then the transformed points are denoted as: f(pi) = R(pi) + t, i =
1, . . . , n. Actually unit quaternions are used to manage rotations in order to
avoid singularities and discontinuities, e.g. gimbal lock.

The pair–wise RIR problem can then be seen as a numerical optimization
problem in which solutions are encoded as seven–dimensional vectors of real val-
ues x = (θ, Axx, Axy , Axz , tx, ty, tz). The aim is to search the Euclidean trans-
formation f∗ achieving the best alignment of both f(Is) and Im based on the
chosen similarity metric Φ to optimize:

f∗ = arg min
f

Φ(Is, Im; f) (4)

Due to its robustness in presence of outliers (i. e., acquired noisy range images),
the similarity metric Φ usually considered in 3D modeling is the median square
error (MedSE) [19]. It can be formulated as:

Φ(Is, Im; f) = MedSE(d2i), ∀i = {1, . . . , n} (5)

348 I. De Falco et al.

Table 1. The results

Algorithm Angel Bird Buddha Bunny Duck Frog Lobster Teletubby
Φb 1.620 1.360 1.832 1.182 1.252 1.299 1.451 1.325

DE 〈Φ〉 1.622 1.878 1.841 1.183 1.285 1.362 1.458 1.325
σΦ 0.002 0.371 0.010 0.005 0.033 0.082 0.011 0.003
Φb 1.620 1.298 1.540 1.182 1.195 1.251 1.451 1.325

A–LocChDE 〈Φ〉 1.620 1.468 1.817 1.182 1.211 1.293 1.451 1.325
σΦ 0.000 0.410 0.085 0.000 0.020 0.016 0.000 0.000
Φb 1.620 1.298 1.832 1.182 1.195 1.251 1.451 1.325

A–LocChDEAvg 〈Φ〉 1.620 1.418 1.865 1.192 1.232 1.334 1.451 1.325
σΦ 0.001 0.326 0.026 0.047 0.048 0.120 0.000 0.000
Φb 1.620 1.298 1.661 1.182 1.195 1.251 1.451 1.325

A–GlChDE 〈Φ〉 1.620 1.643 1.835 1.182 1.221 1.327 1.451 1.325
σΦ 0.000 0.475 0.018 0.000 0.039 0.118 0.000 0.000
Φb 1.620 1.298 1.661 1.182 1.195 1.251 1.451 1.325

A–GlChDEAvg 〈Φ〉 1.620 1.531 1.846 1.182 1.239 1.363 1.451 1.358
σΦ 0.002 0.484 0.047 0.000 0.058 0.160 0.000 0.130

where MedSE corresponds to the median value of all the squared Euclidean
distances, d2i = ||f(pi)− p′

j ||2 (j = 1, . . . ,m), between the transformed scene
point, f(pi), and its corresponding closest point, p′

j , in the model view Im. To
speed up the computation of the closest point the GCP transform is used [25].

4 Experimental Results

To investigate the behavior of the presented chaotic DE algorithms in the RIR
domain, a set of benchmarks from the image repository [16] collected at Signal
Analysis and Machine Perception Laboratory (SAMPL) at the Ohio State Uni-
versity has been taken into account. From that repository, the following eight
objects have been considered: Angel, Bird, Buddha, Bunny, Duck, Frog, Lobster,
and Teletubby. For each of them the couple of images taken at angles 0 and 40
degrees have been chosen as exemplary instances for pair–wise RIR.

Throughout our experiments we have used a DE/rand/1/bin. Its parameter
setting has been arbitrarily chosen as follows: p = 30, tmax = 500, CR = 0.3 and
F = 0.7. For the logistic map, we have used μ = 4 and y(1) =]0, 0.5[−{0.25},
where 0.25 should be avoided because y(t) goes to a fixed point.

For each algorithm and for each problem Tab. 1 reports the best final value
Φb achieved in 25 runs, the average value 〈Φ〉 over the 25 final values, and the
related standard deviation σΦ. For each such index, the table shows in bold the
algorithm with the best value for each problem. As a first remark, the results
achieved by DE are improved by those of all the chaos–based algorithms. This
evidences that our idea of adding chaos to the classical DE is sensible.

Among the chaotic algorithms, A–LocChDE always achieves the best value for
Φb and on seven problems obtains the best performance for 〈Φ〉, so it appears
to be the best performing chaotic version. Moreover, on six out of the eight
problems it shows the lowest value for σΦ, meaning that it is very robust too

Adding Chaos to Differential Evolution for Range Image Registration 349

Fig. 1. Some examples of results for Bird problem. Top left: original image at zero
degrees. Top center: original image at forty degrees. Top right: the best transformation
of the second image achieved by DE. Bottom left: the best transformation of the second
image achieved by A–LocChDE. Bottom center: Bird reconstructed by DE. Bottom
right: Bird reconstructed by A–LocChDE.

independently of the starting seed. The remaining three chaotic algorithms seem
to be about equivalent one another in terms of performance.

As an example of the results obtained by the different algorithms, Fig. 1 shows
the outcome for Bird object. A–LocChDE causes many more points of the second
image to be correctly transformed and contribute to successfully reconstruct the
object surface than DE does: this takes place in the areas of the left sides of the
left eye, of the face between mouth and ear, and of the body.

The improvement in the results achieved when adding chaos–based evolution
to DE can be visually appreciated in the two images shown in Fig. 2.

In the left pane of the figure, dealing with classical DE, it can be seen that the
cloud of points representing the second image after the transformation, sketched
in light blue, is in several parts of the image quite far from that representing
the first image, drawn in white. This is true especially in the area in front of
the nose and of the mouth. The right pane shows the same issue for the best
transformation proposed by A–LocChDE. The difference between corresponding
pairs of points is in this case much lower, as the same area investigated in the

350 I. De Falco et al.

Fig. 2. The differences between the cloud of points representing the first image (in
white) and that for the best transformation of the second image (in light blue). Left
pane: classical DE. Right pane: A–LocChDE.

other pane evidences. This is just an example, yet holds true for all the faced
problems. Therefore, the conclusion can be drawn that adding chaos to DE allows
achieving transformations of the second image that are closer to the first one,
thus leading to better 3-D object reconstructions.

4.1 Statistical Analysis

To compare the algorithms from a statistical point of view, a classical approach
based on nonparametric statistical tests has been carried out, following [11, 12].
To do so, the ControlTest package [12] has been used. It is a Java package
freely downloadable at http://sci2s.ugr.es/sicidm/, developed to compute the
rankings for these tests, and to carry out the related post–hoc procedures and
the computation of the adjusted p–values.

The results for the one–to–all analysis are reported in the following. Table 2
contains the results of the Friedman, Aligned Friedman, and Quade tests in terms
of average rankings obtained by all the DE versions. The last two rows show the
statistic and the p–value for each test, respectively. For Friedman and Aligned
Friedman tests the statistic is distributed according to chi–square with 4 degrees
of freedom, whereas for Quade test it is distributed according to F–distribution
with 4 and 28 degrees of freedom. In each of the three tests, the lower the value
for an algorithm, the better the algorithm. A–LocChDE turns out to be the best
in all of the three tests. Among the other algorithms, their order is in all the tests
the following: A–GlChDE is always the second best heuristic, A–LocChDEAvg

is the third, followed by A–GlChDEAvg, and finally the classical DE is the fifth.
Furthermore, with the aim to examine if some hypotheses of equivalence be-

tween the best performing algorithm and the other ones can be rejected, the
complete statistical analysis based on the post–hoc procedures ideated by Holm,
Hochberg, Hommel, Holland, Rom, Finner, and Li has been carried out following
[12]. Moreover, the adjusted p–values have been computed by means of [12].

Adding Chaos to Differential Evolution for Range Image Registration 351

Table 2. Average rankings of the algorithms

Algorithm Friedman Aligned Friedman Quade

DE 4.188 29.563 4.194
A–LocChDE 1.813 11.188 1.597

A–LocChDEAvg 3.063 19.563 2.903
A–GlChDE 2.438 17.438 2.542

A–GlChDEAvg 3.500 24.750 3.764

test statistic 10.850 6.566 3.500
p–value 0.028 0.161 0.019

Table 3. Results of post–hoc procedures for Friedman(top), Aligned Friedman (center),
and Quade (bottom) tests over all tools (at α = 0.05)

i Algorithm z = (R0 − Ri)/SE p Holm/Hochberg/Hommel Holland Rom Finner Li
4 DE 3.004 0.003 0.013 0.013 0.013 0.013 0.030
3 A–GlChDEAvg 2.135 0.033 0.017 0.017 0.017 0.025 0.030
2 A–LocChDEAvg 1.581 0.114 0.025 0.025 0.025 0.038 0.030
1 A–GlChDE 0.791 0.429 0.050 0.050 0.050 0.050 0.050

Th 0.017/0.013/0.017 0.017 0.013 0.025 0.030

i Algorithm z = (R0 − Ri)/SE p Holm/Hochberg/Hommel Holland Rom Finner Li
4 DE 3.14 0.002 0.013 0.013 0.013 0.013 0.038
3 A–GlChDEAvg 2.320 0.020 0.017 0.017 0.017 0.025 0.038
2 A–LocChDEAvg 1.433 0.152 0.025 0.025 0.025 0.038 0.038
1 A–GlChDE 1.069 0.285 0.050 0.050 0.050 0.050 0.050

Th 0.017/0.013/0.017 0.017 0.013 0.038 0.038

i Algorithm z = (R0 − Ri)/SE p Holm/Hochberg/Hommel Holland Rom Finner Li
4 DE 2.070 0.038 0.013 0.013 0.013 0.013 0.029
3 A–GlChDEAvg 1.727 0.084 0.017 0.017 0.017 0.025 0.029
2 A–LocChDEAvg 1.041 0.299 0.025 0.025 0.025 0.038 0.029
1 A–GlChDE 0.753 0.452 0.050 0.050 0.050 0.050 0.050

Th 0.013/—/0.013 0.013 — 0.013 0.029

Tables 3 reports the results of this analysis performed at a level of significance
α = 0.05. In this table the other algorithms are ranked in terms of distance from
the best performing one, and each algorithm is compared against this latter
to investigate whether or not the equivalence hypothesis can be rejected. For
each algorithm each table reports the z value, the unadjusted p–value, and the
adjusted p–values according to the different post-hoc procedures. The variable
z represents the test statistic for comparing the algorithms, and its definition
depends on the main nonparametric test used. In [12] all the different definitions
for z, corresponding to the different tests, are reported. The last row in each sub–
table contains for each procedure the threshold value Th such that the procedure
considered rejects those equivalence hypotheses that have an adjusted p–value
lower than or equal to Th.

Summarizing the results of these tables, A–LocChDE is for all the three tests
and for all the post–hoc procedures statistically better than the classical DE.
Therefore, statistical analysis confirms that the introduction of chaos into the
classical DE improves the ability of this latter to efficiently face RIR problem.

352 I. De Falco et al.

5 Conclusions and Future Works

In this paper an adaptive chaotic Differential Evolution technique has been in-
vestigated to optimize a 3D rigid transformation for automatic pair–wise regis-
tration of range images without considering any previous knowledge of the pose
of the view. The Grid Closest Point transformation has been used to speed up
the computation of the closest points. The experimental phase, carried out on a
set of benchmark range images, shows that our chaotic evolutionary system per-
forms better than the classical DE and is promising, yet there is plenty of work
still to do to further evaluate the effectiveness of our system and its limitations.

Firstly, we plan to compare our method against other chaotic evolutionary
systems. Moreover, the use of other chaotic maps will be investigated. Lastly,
we aim to explore the behavior of the proposed algorithms in dealing with affine
transformations.

References

1. Bäck, T., Fogel, D., Michalewicz, Z.: Handbook of Evolutionary Computation. IOP
Publishing Ltd. (1997)

2. Besl, P.J., McKay, N.D.: A method for registration of 3–d shapes. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 14(2), 239–256 (1992)

3. Chow, K.W., Tsui, T.: Surface registration using a dynamic genetic algorithm.
Pattern Recognition 37, 105–117 (2004)

4. Cordón, O., Damas, S., Santamaŕıa, J., Mart́ı, R.: Scatter search for the point-
matching problem in 3D image registration. Informs J. on Computing 20(1), 55–68
(2008)

5. Dalley, G., Flynn, P.: Pair-wise range image registration: a study in outlier classi-
fication. Computer Vision and Image Understanding 87(1-3), 104–115 (2002)

6. Damas, S., Cordón, O., Santamaŕıa, J.: Medical image registration using evolu-
tionary computation: An experimental survey. IEEE Computational Intelligence
Magazine 6(4), 26–42 (2011)

7. De Falco, I., Della Cioppa, A., Iazzetta, A., Tarantino, E.: An evolutionary ap-
proach for automatically extracting intelligible classification rules. Knowledge and
Information Systems 7(2), 179–201 (2005)

8. De Falco, I., Della Cioppa, A., Maisto, D., Scafuri, U., Tarantino, E.: Satellite
Image Registration by Distributed Differential Evolution. In: Giacobini, M. (ed.)
EvoWorkshops 2007. LNCS, vol. 4448, pp. 251–260. Springer, Heidelberg (2007)

9. De Falco, I., Della Cioppa, A., Maisto, D., Tarantino, E.: Differential evolution as a
viable tool for satellite image registration. Applied Soft Computing 8(4), 1453–1462
(2008)

10. De Falco, I., Maisto, D., Scafuri, U., Tarantino, E., Della Cioppa, A.: Distributed
differential evolution for the registration of remotely sensed images. In: 15th EU-
ROMICRO International Conference on Parallel, Distributed and Network-Based
Processing, pp. 358–362. IEEE (2007)

11. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. Journal
of Machine Learning Research 7, 1–30 (2006)

Adding Chaos to Differential Evolution for Range Image Registration 353

12. Derrac, J., Garćıa, S., Molina, D., Herrera, F.: A practical tutorial on the use
of nonparametric statistical tests as a methodology for comparing evolutionary
and swarm intelligence algorithms. Swarm and Evolutionary Computation 1, 3–18
(2011)

13. He, R., Narayana, P.A.: Global optimization of mutual information: application to
three–dimensional retrospective registration of magnetic resonance images. Com-
put. Med. Imag. Grap. 26, 277–292 (2002)

14. Lomonosov, E., Chetverikov, D., Ekárt, A.: Pre-registration of arbitrarily oriented
3D surfaces using a genetic algorithm. Pattern Recognition Lett. 27(11), 1201–1208
(2006)

15. Neri, F., Tirronen, V.: Recent advances in differential evolution: a survey and
experimental analysis. Artificial Intelligence Review 33(1), 61–106 (2010)

16. Ohio State University: SAMPL image repository (2009),
http://sampl.eng.ohio-state.edu/~sampl/database.htm

17. Peitgen, H.O., Jürgens, H., Saupe, D.: Chaos and Fractals: New Frontiers of Sci-
ence. Springer (2004)

18. Price, K., Storn, R., Lampinen, J.: Differential Evolution: A Practical Approach
to Global Optimization. Natural Computing Series. Springer (2005)

19. Rodrigues, M., Fisher, R., Liu, Y.: Introduction: Special issue on registration and
fusion of range images. Computer Vision and Image Understanding 87, 1–7 (2002)

20. Rusinkiewicz, S., Levoy, M.: Efficient variant of the icp algorithm. In: Third Inter-
national Conference on 3–D Digital Imaging and Modeling, pp. 145–152 (2001)

21. Salvi, J., Matabosch, C., Fofi, D., Forest, J.: A review of recent range image reg-
istration methods with accuracy evaluation. Image and Vision Computing 25(5),
578–596 (2007)

22. Santamaŕıa, J., Cordón, O., Damas, S.: A comparative study of state–of–the–art
evolutionary image registration methods for 3d modeling. Computer Vision and
Image Understanding 115(9), 1340–1354 (2011)

23. Santamaŕıa, J., Cordón, O., Damas, S., Aleman, I., Botella, M.: A scatter search-
based technique for pair-wise 3d range image registration in forensic anthropology.
Soft Computing-A Fusion of Foundations, Methodologies and Applications 11(9),
819–828 (2007)

24. Silva, L., Bellon, O.R.P., Boyer, K.L.: Precision range image registration using a
robust surface interpenetration measure and enhanced genetic algorithms. IEEE
Transactions on Pattern Analysis 27(5), 762–776 (2005)

25. Yamany, S.M., Ahmed, M.N., Heyamed, E.E., Farag, A.A.: Novel surface registra-
tion using the grid closest point (cgp) transform. In: Int. Conf. on Image Processing,
vol. 3, pp. 809–813. IEEE Press (1998)

26. Yu, G., Wang, X., Li, P.: Application of chaotic theory in differential evolution
algorithms. In: Sixth International Conference on Natural Computation, vol. 7,
pp. 3816–3820. IEEE Press (2010)

http://sampl.eng.ohio-state.edu/~sampl/database.htm

Genetic Programming for Automatic

Construction of Variant Features
in Edge Detection

Wenlong Fu1, Mark Johnston1, and Mengjie Zhang2

1 School of Mathematics, Statistics and Operations Research
Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand

2 School of Engineering and Computer Science
Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand

wenlong.fu@msor.vuw.ac.nz, {mark.johnston,mengjie.zhang}@vuw.ac.nz

Abstract. Basic features for edge detection, such as derivatives, can be
further manipulated to improve detection performance. However, how to
effectively combine different basic features remains an open issue and needs
to be investigated. In this study, Genetic Programming (GP) is used to
automatically and effectively construct rotation variant features based on
basic features from derivatives, F -test, and histograms of images. To re-
duce computational cost in the training stage, the basic features only use
the horizontal responses to construct new horizontal features. These new
features are then combined with their own rotated versions in the vertical
direction in the testing stage. The experimental results show that the ro-
tation variant features constructed by GP combine advantages from the
basic features, reduce drawbacks from basic features alone, and improve
the detection performance.

Keywords: Genetic Programming, Edge Detection, Feature Construc-
tion.

1 Introduction

Features in edge detection are functions of raw pixel values in an image relative
to a local point and are used in the process of classifying pixels as edge points or
not. Features can be categorised as variant features and invariant features. An
invariant feature is not affected by image rotation, however, a variant feature has
different responses on pixels from an image when the image is rotated. Therefore,
an invariant feature method usually uses one vector to store extracted results,
but a variant feature method needs multiple vectors based on different angles to
store extracted results [2,12].

Since edge detection is subjective, various approaches have been developed
to extract features for detecting edges [2,12,15]. In general, one feature for edge
detection is not sufficient to fully identify the edges in an image. For instance,
features based on image gradients are not good to detect texture edges [12].
A set of features can be combined to improve detection performance [12,14,15].

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 354–364, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Genetic Programming for Automatic Construction 355

However, e.g., a Boosted Edge Learning algorithm [2] using approximately 50000
features for natural images only has similar evaluation performance to a contour
detector proposed in [12] with nine local features. Features combined by dif-
ferent learning approaches might have very similar detection performance [12].
Therefore, how to efficiently and effectively combine features still needs to be
investigated.

Genetic Programming (GP) has been utilised to evolve low-level edge detec-
tors [6,16]. The existing work is mainly concentrated on constructing low-level
edge detectors via choosing raw pixels [19], or combining image operators [10].
These works show that GP can evolve good edge detectors [6,10,19], and it is
promising to use GP for automatically constructing features for edge detection
based on existing feature extraction methods.

The overall goal of this paper is to investigate using GP to automatically
constructing rotation variant features for edge detection from a set of basic
variant features (only extracted based on a fixed direction). In the same extracted
feature, the distribution of the responses to one direction should be similar to the
distribution of the responses to other directions. Note that we do not consider
pixel positions in an extracted feature based on one direction and there are
enough different directional edges. Therefore, if we can find a method to get
responses on one direction, it might be possible to use the method to obtain
responses on other directions. During the training stage, we only need partial
information (from one direction) of the training data to construct new features
so that the evaluation cost on these new features is reduced.

The image derivatives and histogramderivatives [12] are popularly used to train
contour detectors, so they are used as basic features. In order to enrich the set of
features for edge detection, anF -test is also used as a basic feature. Based on these
three basic features (only extracted from the horizontal direction), composite fea-
tures (in the horizontal direction) will be constructed automatically byGP. Specif-
ically, we would like to investigate the following research objectives: (1) whether
the features constructed by GP only based on a fixed direction can perform edge
detection via combining with their own rotated versions; (2) whether the features
constructed by GP can improve the detection performance, compared with each
basic feature alone; (3) whether the constructed features are better than the fea-
tures constructed by a popular method, such as a Bayesian model.

In the remainder of the paper, Section 2 briefly describes some relevant back-
ground. Section 3 presents how GP can be used to construct variant features for
edge detection. After presenting the experimental design in Section 4, Section 5
describes the results with discussions. Section 6 gives conclusions and future
work directions.

2 Background

2.1 Edge Detection

Fig. 1 shows a general edge detection process flow. For an image I, an inter-
mediate result I ′ will be obtained after pre-processing. The feature extraction

356 W. Fu, M. Johnston, and M. Zhang

Fig. 1. General edge detection flow

stage is divided into two phases, namely response computation and feature ma-
nipulation. In the response phase, the computation can come from gradients,
and also statistics [11], and a set of features R is obtained. Note that, some edge
detectors combine the pre-processing and response computation together, such
as the image gradients after filtering noise by a Gaussian filter in the Canny
detector [1]. In the feature manipulation phase, feature selection [2] and fur-
ther feature construction [8,12] are included, and the output is a set of features
M . After post-processing, a final edge map B is obtained. In general, the post-
processing techniques can usefully follow most feature extraction approaches.
The evaluation of the features in edge detection is important [13] although the
performance evaluation usually focuses on final edge maps.

Feature extraction mainly works on local features for the sake of simplicity and
ease of implementation. Local features mainly come from gradient computation,
such as image derivatives [1,8] or local histogram derivatives [12]. The image
derivatives based on different directions have been widely applied in different
edge detectors [15], such as the popular Canny edge detector [1]. The derivative
for a Gaussian filter extracted in the horizontal direction (horizontal edges, not
horizontal derivatives) are described in Equation (1), where (u, v) is the position
of a point relative to a center pixel, and σ is the parameter. After performing
convolution (�) between image I(x, y) with the derivative g0◦(u, v), the image
Gaussian filter derivatives Tgd,0◦ are obtained (see Equation (2)).

g0◦(u, v) = − v

2πσ4
exp

(
−u2 + v2

2σ2

)
(1)

Tgd,0◦(x, y) = g0◦(u, v)� I(x, y) (2)

Local image histogram derivatives have shown good performance for detecting
edges [12]. The image local histogram gradients are extracted based on different
directions. The local histogram derivative hθ(x, y) in the direction θ is defined
in Equation (3), where pixels around pixel (x, y) in a local area are divided into
two groups based on the boundary with direction θ. Here lθ,i and rθ,i are the
occurrences for the pixels located in the bin i (i = 1, 2, . . . , 32 based on intensity)
from the two groups, respectively.

hθ(x, y) =
1
2

∑
i

(lθ,i − rθ,i)
2

lθ,i + rθ,i
(3)

However, the local features from derivatives contain high responses on non-edge
points affected by noise or textures. Techniques for manipulating these local
features are useful to improve the detection performance. For instance, surround

Genetic Programming for Automatic Construction 357

suppression can reduce some texture responses on image gradients [8]. Therefore,
construction of features from basic local features can potentially improve the
detection performance.

2.2 Related Work to GP for Edge Detection

GP has been used to choose raw pixels to construct low-level edge detectors.
Poli [16] suggested using four macros for searching a pixel’s neighbours in image
processing using GP, and Ebner [4] approximated the Canny detector by using
four shifting functions and other functions in GP. Search operators based on
a modified shifting function were used in GP for constructing edge detectors
based on ground truth without using windows, and different fitness functions
were investigated to evaluate edge detectors [5,6]. A 13 × 13 window filter was
evolved to compare with the Canny edge detector in [19]. A 4 × 4 window was
employed to evolve digital circuits for edge detection by GP [7]. Harris and
Buxton [9] designed edge detectors based on the approximation of the responses
on one-dimensional signals by GP. All these GP edge detectors are based on raw
pixels and their output can be considered as R in Fig. 1.

Also, some image operators have been used to extract features in GP. Morpho-
logical operators (erosion and dilation) as terminals were utilised in Linear GP
for detecting binary image edges [18]. A rotation variant GP feature constructed
based on image filters was used to train a logistic regression classifier with tex-
ture gradients in boundary detection [10]. However, only one composite feature
(combined with texture gradients) in their work was presented to compete with
other edge and contour detectors. The variant feature is based on multiple direc-
tions, which leads to high computational cost. In addition, the GP feature needs
to be combined with other existing approaches to perform boundary detection.

In summary, there has not been much research for constructing composite fea-
tures (based on existing features) using GP. Although only one solution in [10] is
found in the response computation phase, it makes automatic feature construc-
tion in the feature manipulation phase appealing for edge detection.

3 Constructing Variant Features Using GP

3.1 Terminal Set

Variant features (by definition) are dependent on a direction to do extraction,
and the number of features is generally large. A variant feature method usually
extracts features based on four different directions, namely θ = 0◦, 45◦, 90◦, 135◦.
For further constructing features by GP, the basic features in the terminal set
of the proposed tree-based GP system will only contain variant features based
on the fixed direction θ = 0◦, so the terminal set size is reduced and the GP
system can easily choose these features to construct a new variant feature based
on θ = 0◦.

In this study, only three variant (horizontal) features are used to construct
new features: the image Gaussian derivative Tgd,0◦ ; a feature Tf,0◦ based on

358 W. Fu, M. Johnston, and M. Zhang

an F -test on the two groups of pixels separated by a horizontal line; and the
histogram derivative Thd,0◦ [12]. Since the three features are totally different,
it is possible to construct new features for improving detection performance. In
addition, we also use random constants rnd in the range of [−100, 100] in the
terminal set. Here, only image grayscales are used.

3.2 Primitive Functions

The function set contains the four arithmetic functions {+,−, ∗,÷} and three
logical operators {IF,<,>}. Here, ÷ is protected division, producing a result of
1 for a 0 divisor. IF contains three arguments, and the first one is a boolean.
IF will return the second argument with a real number when the first is true,
otherwise will return the third argument with a real number. It is possible that
a feature is better than another feature for some edge responses, but worse for
other responses. The logical operators can be used to only select a good part
from one feature, and GP will choose partial responses from one feature.

3.3 Fitness Function

Since we only use the three features based on the horizontal direction, the hor-
izontal true edges from ground truth need to be extracted. Pixels on the other
directional (true) edges or on non-edges are considered as negative labels. The
output (oθ) of a program is not the final output for a constructed feature. We
employ a simple Bayesian model [3] to map the scale of oθ into the range of
[0, 1] (as the final output TGP,θ). Here the output oθ is considered as following a
Gaussian distribution, which is similar to the work in [17]. Formula (4) presents
the weight value pj (probability) for non-edge points (j = 0) or edge points
(j = 1), where, Pj is the prior probability of each class (using 0.5 for each class

in this paper), and μ̂j and Σ̂j are the estimated mean(s) and estimated covari-
ance matrix. For the output oθ, the estimated covariance matrix is only one
element, namely the estimated standard deviation from each class. When p1 is
larger than p0, the output oθ is considered as an edge point (in a soft edge map),
otherwise, a non-edge point. The soft output TGP,θ for a constructed feature is
defined in formula (5).

pj =
Pj

|2πΣ̂j | 12
exp

(
− 1

2 (oθ − μ̂j)
T Σ̂−1

j (oθ − μ̂j)
)

(4)

TGP,θ =

{
p1

p0+p1
if p1 > p0

0 otherwise
(5)

We treat the edge detection task as a binary classification task (with the edge
pixels as the main class) in the evolutionary training process. Therefore, the
accuracy (the number of pixels correctly discriminated as a proportion of the
total number of pixels in the training data) is used as the fitness function. The
fitness function is based on the output TGP,θ without post-processing, following
the suggestion from [13].

Genetic Programming for Automatic Construction 359

4 Experiment Design

The Berkeley Segmentation Dataset (BSD) [12] consists of natural images (of
size 481 × 321 pixels) with ground truth provided. All images are independent
and are taken throughout the world. The training dataset contains 200 images
and the test dataset has 100 images. The ground truth are combined from five
to ten persons as graylevel images for fairness of judgement of edges. Fig. 2
shows two example training images and their ground truth. For simplicity, we
sample image pixels with the same ratio of edge points and non-edge points as
our training data. We mark the horizontal edge points based on three straight
connected edge points in the horizontal direction as positive labels, and the
others are negative labels. Approximately 125 horizontal edge points, 125 non-
horizontal edge points and 250 non-edge points are randomly sampled from each
training image. Therefore, the training data includes approximately 100, 000
((125 + 125 + 250) ∗ 200 images) cases and the three features in the horizontal
direction. The window size for Tgd,0◦ , Tf,0◦ and Thd,0◦ is 7× 7.

(a) 23080.jpg (b) 61060.jpg

Fig. 2. Two example images from BSD Training dataset and their ground truth

The parameter values for GP are: population size 500; maximum generations
200; maximum depth (of a program) 8; and probabilities for mutation 0.15,
crossover 0.80 and elitism (reproduction) 0.05. These values are chosen based on
common settings and initial experiments. There are 30 independent runs.

In order to test new variant features constructed by GP, we apply these new
horizontal features to the vertical direction, and then combine the outputs from
the horizontal and vertical directions together by the square root of sum of
squares as a final detection result. Note that when we apply a new horizontal
feature TGP,0◦ to the vertical direction TGP,90◦ , the basic features (Tdg,0◦ , Tf,0◦ ,
Thd,0◦) are changed to the relevant outputs (Tdg,90◦ , Tf,90◦ , Thd,90◦) from 90◦.

To measure the performance of these features constructed by GP, the F -
measure is used in the test phase [2,12]. The F -measure (used in [2,12] as
F = 2recall∗precision

recall+precision) is the combination of recall (the number of pixels on the
edges correctly detected as a proportion of the total number of pixels on the
edges) and precision (the number of pixels on the edges correctly detected as a
proportion of the total number of pixels detected as edges). In the F -measure
evaluation system, pixels are discriminated as edge points based on the value
of their features larger than a threshold, and the predicted edges are simply
thinned by the thinning operator [12]. After obtaining thinned prediction, an
optimal matching operator will be used to match the prediction and the ground
truth. Based on different threshold level indices k = 0, 1, ..., 51, a maximum Fmax

360 W. Fu, M. Johnston, and M. Zhang

Table 1. Comparison of Fmax values among constructed features by GP, Image Gaus-
sian Derivatives Tgd, F -tests Tf , Histogram Derivatives Thd, and a Bayesian Model for
the 100 BSD test images

Fmax

GP 0.5776 ± 0.0015
Tgd 0.4737
Tf 0.5489
Thd 0.542

Bayesian 0.5274

(Fmax = max{Fk}) will be considered as the measurement for the feature, where
Fk is the F value when the threshold level index k is used. The threshold value
at the threshold index level k is k

52 .
For fair comparison, the Fmax values of the three basic features (after normal-

isation) also are given without post-processing, so their values are different from
the final performance evaluation in [12]. The final detection result from a variant
feature are selected from the maximum outputs from θ = 0◦, 45◦, 90◦, 135◦, and
we use Tgd, Tf and Thd to indicate the final results from Gaussian derivatives,
F -tests and histogram derivatives, respectively.

5 Results and Discussion

5.1 Overall Results

Table 1 presents the mean and standard deviation of Fmax values of the results
from the combination of 30 features constructed by GP and their rotated ver-
sions TGP,90◦ , and Fmax values from Tgd, Tf , Thd. Also, an estimated Bayesian
model (using formulae (4) and (5)) [3] based on the sampling dataset is used to
extract features in 0◦ for the test images when Tgd,0◦ , Tf,0◦ , Thd,0◦ are considered
as independent variables, replacing oθ. The detection results for the estimated
Bayesian model are the square root of sum of squares of the horizontal and verti-
cal directions. The training time for each constructed feature is around 11 hours
but the testing time is very short (several milliseconds). Here, C++ is used for
the implementation on a single machine with CPU 3.1 GHz. Note that the three
basic features are pre-calculated and ready to use for testing.

The results from GP are significantly better than the others based on the one
sample t -test with significance level 0.05. The test results show that the vari-
ant features constructed by GP significantly improve the detection performance
based on the combination in the horizontal and vertical directions. However, the
combination of the three features by the Bayesian model does not improve the
detection performance. Only using the horizontal response information to esti-
mate a Bayesian model, the estimated model has worse detection results than the
results from Tf and Thd. Therefore, we can see that GP is effective for automatic
construction of variant features, only using one directional edge information.

Genetic Programming for Automatic Construction 361

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

@0.54

@0.55

@0.47

@0.53

@0.58

r

p

T
hd

T
f

T
gd

Bayesian
GP

Fig. 3. Details for recall and precision of Tgd, Tf , Thd and GP (average)

From Table 1, we can see that the standard deviation of the detection results
from GP is very low. Therefore, the evolved variant features have good stabil-
ity to do edge feature extraction, although they are trained based only on the
horizontal edge information.

5.2 Comparison among GP, Tgd, Tf and Thd

Fig. 3 shows the details for recall and precision with different threshold levels.
Here, “@” is the position for the Fmax. Compared with the detection from Tgd, Tf

and Thd, the curve for the averages of recall and precision of the detection results
from GP is obviously better than the three basic curves from Tgd, Tf and Thd.
Therefore, the recall vs precision curves also show that GP can construct good
variant features based on fixed directional edge information. Based on formula (5)
(TGP,θ), the 30 features constructed by GP do not consider responses with low
probabilities for discriminating pixels as edge points (p1 is not larger than p0),
which is a reason that the curve for GP is short (by only showing the points
with both precision and recall higher than 0.5).

5.3 Detected Images

Fig. 4 visually presents some detection results from GP, Tgd, Tf , Thd and the
estimated Bayesian model, where “GT” is ground truth. The five example images
presented from the BSD test images contain very different content. Firstly, it is
found that the detected results from Tgd are affected by noise and textures, such
as the responses on the wall texture in image 385039. Secondly, most of the
detected results from Tf are correct, but some have weak responses on edges in
low contrast areas, such as the boundaries of the objects in images 62090 and
106024. Thirdly, histogram derivatives Thd have stronger responses on edges in
low contrast areas, but overreact to tiny discontinuities (because of overweighting
discontinuities from local histograms), such as the water wave in image 101087.

The variant feature constructed by the Bayesian model improves responses on
edges in low contrast areas, such as the boundary of the object in image 69020,
but still has problems existing in the basic features, such as the responses on
the walls in image 385039. However, the detected results from GP present very
good detection performance on these images. The constructed feature enhances

362 W. Fu, M. Johnston, and M. Zhang

Image

GT

GP

Tgd

Tf

Thd

Bayesian
69020.jpg 101087.jpg 106024.jpg 296059.jpg 385039.jpg

Fig. 4. Detected images based on the different features

responses on edges in low contrast areas, such as the boundary of the object in
image 69020. Also it suppresses noise and textures, such as the background in
image 69020. From these detected images, the feature constructed by GP has the
advantages from the basic features, and avoids some disadvantages from them.
Therefore, these examples confirm the effectiveness of the GP method.

6 Conclusions

The goal of this paper was to investigate using GP to construct variant features
for edge detection to improve the detection performance. The goal was suc-
cessfully achieved based on construction of variant features in a fixed direction.
Three variant features, namely image Gaussian derivatives, F -test and image
local histogram derivatives were used to construct variant GP features. Com-
putational results suggest these features are significantly better than the basic
features alone on the BSD test image dataset (based on the F -measure). Also,
the comparison between GP and a simple Bayesian model shows that GP has
ability to find a way of effectively combining different features together.

Genetic Programming for Automatic Construction 363

For future work, we will test this technique on a larger set of basic features and
analyse the complexity of evolved programs. In addition, other machine learning
algorithms will be used to compare with GP. Post-processing techniques will be
employed to obtain the final solutions, and the final edge maps will be compared
to state-of-the-art edge and contour detectors.

References

1. Canny, J.: A computational approach to edge detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence 8(6), 679–698 (1986)

2. Dollar, P., Tu, Z., Belongie, S.: Supervised learning of edges and object boundaries.
In: Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, vol. 2, pp. 1964–1971 (2006)

3. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley Inter-
science (2000)

4. Ebner, M.: On the edge detectors for robot vision using genetic programming. In:
Proceedings of Horst-Michael Groβ, Workshop SOAVE 1997 - Selbstorganisation
von Adaptivem Verhalten, pp. 127–134 (1997)

5. Fu, W., Johnston, M., Zhang, M.: Genetic programming for edge detection using
blocks to extract features. In: Genetic and Evolutionary Computation Conference,
pp. 855–862 (2012)

6. Fu, W., Johnston, M., Zhang, M.: Genetic programming for edge detection via
balancing individual training images. In: IEEE Congress on Evolutionary Compu-
tation, pp. 1–8 (2012)

7. Golonek, T., Grzechca, D., Rutkowski, J.: Application of genetic programming to
edge detector design. In: Proceedings of the International Symposium on Circuits
and Systems, pp. 4683–4686 (2006)

8. Grigorescu, C., Petkov, N., Westenberg, M.A.: Contour and boundary detection
improved by surround suppression of texture edges. Image and Vision Comput-
ing 22(8), 609–622 (2004)

9. Harris, C., Buxton, B.: Evolving edge detectors with genetic programming. In:
Proceedings of the First Annual Conference on Genetic Programming, pp. 309–
314 (1996)

10. Kadar, I., Ben-Shahar, O., Sipper, M.: Evolution of a local boundary detector for
natural images via genetic programming and texture cues. In: Proceedings of the
11th Annual Conference on Genetic and Evolutionary Computation, pp. 1887–1888
(2009)

11. Lim, D.H., Jang, S.J.: Comparison of two-sample tests for edge detection in noisy
images. Journal of the Royal Statistical Society. Series D (The Statistician) 51(1),
21–30 (2002)

12. Martin, D., Fowlkes, C., Malik, J.: Learning to detect natural image boundaries
using local brightness, color, and texture cues. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 26(5), 530–549 (2004)

13. Moreno, R., Puig, D., Julia, C., Garcia, M.: A new methodology for evaluation
of edge detectors. In: Proceedings of the 16th IEEE International Conference on
Image Processing (ICIP), pp. 2157–2160 (2009)

14. Papari, G., Campisi, P., Petkov, N., Neri, A.: A biologically motivated multireso-
lution approach to contour detection. EURASIP Journal on Applied Signal Pro-
cessing 2007, 119–119 (2007)

364 W. Fu, M. Johnston, and M. Zhang

15. Papari, G., Petkov, N.: Edge and line oriented contour detection: state of the art.
Image and Vision Computing 29, 79–103 (2011)

16. Poli, R.: Genetic programming for image analysis. In: Proceedings of the First
Annual Conference on Genetic Programming, pp. 363–368 (1996)

17. Smart, W., Zhang, M.: Probability Based Genetic Programming for Multiclass
Object Classification. In: Zhang, C., Guesgen, H.W., Yeap, W.-K. (eds.) PRICAI
2004. LNCS (LNAI), vol. 3157, pp. 251–261. Springer, Heidelberg (2004)

18. Wang, J., Tan, Y.: A novel genetic programming based morphological image anal-
ysis algorithm. In: Proceedings of the 12th Annual Conference on Genetic and
Evolutionary Computation, pp. 979–980 (2010)

19. Zhang, Y., Rockett, P.I.: Evolving optimal feature extraction using multi-objective
genetic programming: a methodology and preliminary study on edge detection.
In: Proceedings of the Conference on Genetic and Evolutionary Computation,
pp. 795–802 (2005)

Automatic Construction of Gaussian-Based Edge

Detectors Using Genetic Programming

Wenlong Fu1, Mark Johnston1, and Mengjie Zhang2

1 School of Mathematics, Statistics and Operations Research Victoria University of
Wellington, P.O. Box 600, Wellington, New Zealand

2 School of Engineering and Computer Science
Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand

wenlong.fu@msor.vuw.ac.nz, {mark.johnston,mengjie.zhang}@vuw.ac.nz

Abstract. Gaussian-based edge detectors have been developed for many
years, but there are still problems with how to set scales for Gaussian
filters and how to combine Gaussian filters. In order to address both
problems, a Genetic Programming (GP) system is proposed to automat-
ically choose scales for Gaussian filters and automatically combine Gaus-
sian filters. In this study, the GP system is utilised to construct rotation
invariant Gaussian-based edge detectors based on a benchmark image
dataset. The experimental results show that the GP evolved Gaussian-
based edge detectors are better than the Gaussian gradient and rotation
invariant surround suppression to extract edge features.

Keywords: Genetic Programming, Edge Detection, Gaussian Filter.

1 Introduction

Edge detection is a well developed area of image analysis [1,20]. Generally, the
goal of edge detection is to find discontinuities between different regions or be-
tween background and objects. Many methods have been proposed for detecting
edges in images [1,10,20]. However, edge detection is a subjective task and the
suitability of a solution for one image is normally dependent on human obser-
vation, which makes automatically constructing edge detectors for special tasks
more appealing.

Gaussian-based edge detection techniques have been developed for many years,
and some advantages for detecting edges exist in these techniques [1]. Different
Gaussian-based techniques have been developed, such as Difference of Gaussians
(DoG) and Laplacian of Gaussian (LoG) [18], the Canny edge detector [5], and
surround suppression [13]. Multiple Gaussian filters can be combined to improve
detection performance [1,20]. However, how to choose scales for Gaussian filters
and how to combine multiple Gaussian filters still need to be investigated [1].

Genetic Programming (GP) has been employed for edge detection since at
least 1996 [14,21]. GP has been used to evolve low-level edge detectors [8,9].
Since GP can automatically construct edge detectors, it would be interesting
to utilise GP to evolve Gaussian-based edge detectors, i.e., where a GP system

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 365–375, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

366 W. Fu, M. Johnston, and M. Zhang

selects the scale of the Gaussian filters and combines different Gaussian filters
to perform edge detection.

The goal of this paper is to investigate automatic construction of rotation
invariant Gaussian-based edge detectors using GP. In order to address the scale
setting problem for a Gaussian filter, the proposed GP system needs to automat-
ically choose a good scale for a Gaussian filter used to construct edge detectors.
To address the combination problem for Gaussian filters, the proposed GP sys-
tem needs to construct new edge detectors based on the selected Gaussian filters
with different scale values. Specifically, we investigate the following research ob-
jectives: (1) how to design a GP system so that GP can automatically choose
Gaussian filters with different scales and combine them as rotation invariant
edge detectors; (2) whether evolved Gaussian-based edge detectors can compete
with some existing Gaussian-based edge detectors designed by humans; and (3)
what characteristics of GP edge detectors can be obtained from visual results
detected by these edge detectors.

In the remainder of the paper, Section 2 briefly describes some relevant back-
ground. Section 3 presents how GP can be used to construct invariant Gaussian-
based edge detectors. After presenting the experimental design in Section 4,
Section 5 describes the results with discussions. Section 6 draws conclusions and
suggests future work directions.

2 Background

2.1 Gaussian-Based Edge Detection

Gaussian filters are widely used as smoothing filters, playing an important role
in edge detection in human visual systems [1]. Gaussian-based filters have been
developed based on a combination of smoothing and differentiation. The differ-
ent responses on edges from different scales of Gaussian filters are also useful
for detecting boundaries between two different regions, or between objects and
background [18,23].

In order to filter noise, methods based on approximation to the shape of spa-
tial receptive fields employ Gaussian filters and differentiation to perform edge
detection, such as DoG [1]. Given a Gaussian filter gσ(x, y) (see Equation (1),
where σ is a scale parameter), the DoG is defined in Equation (2), where σ1 and
σ2 are different scale parameters. DoG is a second derivative filter [24], approx-
imating LoG well. DoG, as a kind of band filter, suppresses noise with a high
spatial frequency, but decreases overall image contrast [18].

gσ(x, y) =
1

2πσ2
exp

(
−x2 + y2

2σ2

)
(1)

DoGσ1,σ2(x, y) = gσ1(x, y) − gσ2(x, y) (2)

Canny detectors [5] are derived from an optimal filter based on the local maxima
resulting from the convolution of a filter with the signal affected by white noise in
one dimension, which is approximated by the derivative of a Gaussian function

Automatic Construction of Gaussian-Based Edge Detectors 367

[1]. Canny edge detectors use adaptive thresholding with hysteresis to eliminate
breaking of edge contours, but they are slightly sensitive to weak edges and
susceptible to spurious and unstable boundaries with non-significant change in
intensity [1,20].

Gaussian filters are often combined to detect edges based on responses at
different scales. The basic premise of using multi-Gaussian filters (multi-scale
edge detectors) is that different areas of an image have varying noise and edge
types; therefore a special filter is used to smooth a relevant area of the image.
There are three directions to use the multi-scale technique. The first proceeds
from a coarse solution to a fine solution, namely edge focusing [3]. In this method,
a large scale (high σ) Gaussian filter is used to detect edges, and then the next
smaller scale is used to find the locations of edges. Multi-scale Gaussian filters
are used to reverse the effect of the blurring caused by large scale Gaussian
filters. However, how to set each level scale and choose the threshold in each
level is hard. The threshold at the coarsest level determines the detected edge
quality. The second is from fine to coarse [17]. When coarse solutions are used
to detect edges, the localisation error problem still exists. Again, how to choose
scales is not clear. The third direction is to use adaptive Gaussian filters (whose
scales are adapted to both the noise characteristics and the local variance of a
small area in an image) to detect edges [2]. Assuming that noise can be modelled
by a Gaussian distribution with a known variance, this method smooths areas
using a large scale to filter out noise. For real images, the noise variance has to
be estimated.

Over the most recent ten years, contextual information has been used in
Gaussian-based edge detection. In order to detect edges and filter noise, sur-
round suppression [12,13] has been developed. In this technique, an operation,
called inhibition, is used to suppress responses on textures via combining the
responses from a DoG and the gradient of a Gaussian filter. In surround sup-
pression, Gabor filters are normally used [13]. Since a two-dimensional Gabor
filter is the product of a Gaussian kernel function and a sinusoidal function, and
Gaussian filters can replace Gabor filters in this method, the surround suppress-
ing technique can still be considered as a kind of Gaussian-based edge detection.
The main benefit of surround suppression is to filter noise caused by textures [20].

2.2 Related Work to GP for Edge Detection

There has not been much previous work done using GP for edge detection. Har-
ris and Buxton [14] designed approximate response detectors in one-dimensional
signals with GP. Poli [21] suggested using four macros for searching a pixel’s
neighbours in image processing using GP, and Ebner [7] used four shifting func-
tions and other functions to approximate the Canny detector by GP. The Sobel
detector was approximated by hardware design [15] with the relationship be-
tween a pixel and its neighbourhood as terminals. Bolis et al [4] used GP to
evolve programs to search edges in images. Zhang and Rockett [26] evolved a
13× 13 window filter for comparison with the Canny edge detector. A 4× 4 win-
dow was used to evolve digital circuits (combination of bit operators or gates)

368 W. Fu, M. Johnston, and M. Zhang

for edge detection by GP [11]. Ground truth and a shifting function were used
to evolve low-level edge detectors by GP without using windows [8,9].

Also, some image operators have been used to extract features in GP. Wang
and Tan [25] used Linear GP to find edges, inspired by morphological opera-
tors (erosion and dilation) as terminals [22], for binary images. GP was used to
construct rotation variant features with image filters in different directions, and
these features were combined with texture gradients to train a logistic regression
classifier for boundary detection [16]. However, only one solution (combined with
texture gradients) in their work was presented to compete with other edge and
contour detectors.

In summary, the existing work does not include much research for constructing
Gaussian-based edge detectors. Since Gaussian-based edge detectors are consid-
ered a popular method to detect images [20], it is worth investigating how to
employ GP to construct Gaussian-based edge detectors.

3 Constructing Invariant Gaussian-Based Edge Detectors
Using GP

3.1 Terminals Based on Gaussian Models

To rapidly find a Gaussian-based edge detector, the terminal set in our proposed
GP system includes the gradient of a Gaussian filter, LoG, and DoG. The gra-
dient magnitude of a Gaussian filter is shown in Equation (3). LoG is given in
Equation (4). DoG is shown in Equation (2).

∂g(x, y)

∂x
= − x

2πσ4
exp

(
−x2 + y2

2σ2

)
∂g(x, y)

∂y
= − y

2πσ4
exp

(
−x2 + y2

2σ2

)

∇g(x, y) =
√(

∂g(x, y)

∂x

)2

+

(
∂g(x, y)

∂y

)2

(3)

∇2g(x, y) =
x2 + y2 − 2σ2

2πσ6
exp

(
−x2 + y2

2σ2

)
(4)

The terminal set also includes random constants rnd (real numbers) in the range
of [−10, 10]. In this terminal set, the parameter σ is randomly generated in the
range of [1..5]. Let the large scale in the DoG be double the small one, the scale
range of all Gaussian filters is from 1 to 10. Therefore, the coarsest scale (from
2 to 10) covers the range of [3..6] as suggested in [3] so that it is possible to find
more Gaussian filters.

3.2 Function Set

Since Gaussian filters in the terminal set can be considered as edge detectors,
we choose a simple function set, namely {+,−,×,÷,�}. Here, ÷ is protected

Automatic Construction of Gaussian-Based Edge Detectors 369

division, producing a result of 1 for a 0 divisor; and � is a modified convolution
based on the surround suppression operation, which takes two arguments. The
second argument f(x, y) of � will be inhibited as in the formulae (5) and (6),
where f(x, y) is an output from a Gaussian filter or a temporary output from
a subtree. The first argument of � will be convolved with s(h(f(x, y))), pro-
ducing an output with the first argument’s size, e.g., the first argument could
be ∇g(x, y). The transformation h(f(x, y)) removes the negative values from
neighbours, and the transformation s(h(f(x, y))) will perform normalisation so
that the output of � has the same range as the first argument of �. The output
of � is an inhibited term. For further details about this operation, see [13]. An
existing surround suppression technique can be expressed by the GP system as
∇g(x, y)−C1 ∗∇g(x, y)�DoGσ1,σ2(x, y)−C2, where C1 and C2 are constants.

h(f(x, y)) = max{f(x, y), 0} (5)

s(h(f(x, y))) =
h(f(x, y))

‖ h(f(x, y)) ‖ (6)

3.3 Fitness Function

Figure of Merit (FOM) has been investigated as a fitness function to evaluate
edge detection performance based on both localisation and accuracy [9]. FOM
can be used as a fitness function in GP to evolve low-level edge detectors. We
choose FOM based on each training image (not the overall pixels) as the fitness
function in the GP system. FOM is defined in Equation (7), where M is the
number of training images, Ni,T is the number of true edge points in image
i, Ni,P is the number of predicted edge points in image i, Seti,P is the set
of all predicted edge points for image i, α is a weighting factor for detection
localisation, and d(j) is the distance from a predicted edge point j to the nearest
true edge point in a ground truth edge map. Considering the overlap of a 3× 3
window, α is usually set 1

9 .

FOM =
1

M

M∑
i=1

⎛⎝ 1

max{Ni,T , Ni,P }
∑

j∈Seti,P

1

1 + αd2(j)

⎞⎠ (7)

4 Experiment Design

The Berkeley Segmentation Dataset (BSD) [19] consists of natural images (of size
481×321 pixels) with ground truth provided. All images are independent and are
taken from throughout the world. The training dataset contains 200 images and
the test dataset has 100 images. For fairness of judgement of edges, the ground
truth are combined from five to ten persons as graylevel images. Since there are
redundancies existing in the training data and the computational cost is high
for GP, we only select 20 images with rich edge contents as the training data.
Since a candidate including Gaussian filters is expected to have some ability to

370 W. Fu, M. Johnston, and M. Zhang

23080.jpg 41004.jpg 61060.jpg 106020.jpg 207056.jpg 216053.jpg

Fig. 1. Six example training images from BSD dataset and their ground truth

detect images, it is possible to find which candidates from a set of candidates
generated by the GP system are good at edge detection based on the small set
of images. Figure 1 shows six example training images (from the 20 images) and
their ground truth. The pixels with graylevel 0 (dark) in the ground truth are
non-edge points, and the others are edge points.

The parameter values for GP are: population size 200; maximum generations
200; maximum depth (of a program) 7; and probabilities for mutation 0.15,
crossover 0.80 and elitism (reproduction) 0.05. These values are chosen based on
common settings and initial experiments. We perform 30 independent runs for
the experiment.

The test performance evaluation is directly based on the binary outputs of GP
edge detectors using the fixed threshold 0 (positive values for edge points, oth-
erwise for non-edge points), without non-maximum suppression post-processing.
To measure the performance of GP edge detectors, the popular F -measure is used
in the testing phase [6,19] based on an optimal matching between predicted edge
points and ground truth after thinning predicted edges. The F -measure (used
in [19,6] as F = 2recall∗precision

recall+precision) is the combination of recall (the number of pixels
on the edges correctly detected as a proportion of the total number of pixels on
the edges) and precision (the number of pixels on the edges correctly detected
as a proportion of the total number of pixels detected as edges).

5 Results and Discussion

5.1 Overall Results

Table 1 gives the mean and standard deviation of the F values on the 100 BSD
test images, and the averages of recall and precision from 30 evolved Gaussian-
based edge detectors. Also, the detected results from the Sobel edge detector,
the Gaussian gradient (GG), and (rotation invariant) surround suppression (SS)
are given in the table for comparison purposes. Since how many filters from each
terminal (with different parameters) should be chosen to combine as a compos-
ite filter is not clear, the combination technique only selects SS to compare with
the evolved results. We also perform a statistical comparison among these edge

Automatic Construction of Gaussian-Based Edge Detectors 371

Table 1. F values and means of recall and precision of GP Gaussian-based edge
detectors, the Sobel detector, the Gaussian Gradient (GG), and Surround Suppression
(SS) on the BSD test image dataset (100 images)

Training F recall precision

GP 0.5628 ± 0.0131 0.6681 0.4893
Sobel 0.4833 0.6035 0.4030
GG 0.5153 0.6221 0.4399
SS 0.5381 0.6747 0.4475

0.54

0.55

0.56

0.57

0.58

0.59

1

F

Fig. 2. Boxplot of 30 GP edge detectors’ performances on the BSD test image dataset

detector performances based on F values. The evolved edge detectors are sig-
nificantly better than the Sobel edge detector, the Gaussian gradient, and the
invariant surround suppression method to detect edges on the BSD test images
(based on one sample t -tests with significance level 0.05). Also, the average pre-
cision from the GP edge detectors is the highest among these edge detectors,
and the average recall is only slightly lower than that from surround suppres-
sion. Therefore, the GP Gaussian-based edge detectors have good performances
on recall and precision.

From the boxplot in Figure 2, we can see that the F value of the best Gaussian-
based edge detector from these evolved edge detectors is close to 0.59, and the F
value of the worst is higher than 0.54. All 30 edge detectors evolved by GP have
a higher F than the other three edge detectors in Table 1. Also, more than 75% of
these evolved edge detectors haveF values higher than 0.55.Therefore, the evolved
edge detectors have reliable detection performance on the BSD test images even
though we only select 20 images from the original 200 training images.

In summary, the evolved edge detectors have high performance (the mean
of F values) and reliability (the worst evolved edge detector has a higher F
than the other three edge detectors in Table 1). A potential reason for this
good performance is that any generated candidate including different scales of
Gaussian filters has some ability to detect edges. The training data (20 images)
can be used to find the candidates with good scales that GP can automatically
choose and good structures that GP can automatically combine.

5.2 Detected Images

To visually compare the detected images, Figure 3 shows five example images
from the BSD test image dataset, and the relevant detected (binary) results

372 W. Fu, M. Johnston, and M. Zhang

Image

GT

GP

Sobel

GG

SS
3096.jpg 175032.jpg 197017.jpg 296059.jpg 385039.jpg

Fig. 3. Detected images by the best GP edge detector, the Sobel edge detector, the
Gaussian gradient (GG) and surround suppression (SS). Note that GT is ground truth.

by the best GP edge detector, the Sobel edge detector, GG and SS. Note that
the soft edge maps from the existing edge detectors are normalised in the range
between 0 to 1. The binary edge maps from the soft edge maps are obtained after
using the best thresholds (from k

52 , k = 0, 1, 2, ..., 51, based on the maximum F
on the 100 images). The best thresholds for the Sobel edge detector, GG and SS
are 0.2651, 0.2793 and 0.0392, respectively.

Considering images 3096 and 296059, the Sobel edge detector and Gaussian
gradient miss some true edges in both images, such as the middle of the plane
(top side) in image 3096, and two lines in the middle right of image 296059. Note
that both edge detectors can detect the middle of the plane, but the relevant
threshold is lower than the best threshold on the 100 BSD test images. Surround
suppression detects almost all of the middle part of the plane, and the GP edge
detector fully detects the middle part of the plane. In image 296059, the GP edge
detector finds most of true edge points, and it is very weakly affected by noise, but
the other three edge detectors miss some information from the background, and
they are affected by noise. Also, the GP edge detector presents good detection
performance on image 197017. Therefore, the GP evolved edge detector has good
detection performance on the BSD test images with few textures.

Automatic Construction of Gaussian-Based Edge Detectors 373

Comparing the detection results from images with complex textures, such as
image 175032 including irregular sticks, and image 385039 including a strong wall
texture, the GP edge detector suppresses most of these textures (few responses
on irregular sticks and wall textures), but the other detectors are affected by
these textures. Therefore, the evolved edge detector shows good performance to
suppress strong responses on textures.

However, the detected edges from GP are thicker than the others based on
the detected images in Figure 3. A potential reason is that large scale Gaussian
filters exist in the GP edge detectors. Non-maximum suppression could be used
to thin the detected results. Another reason is that the fitness function FOM
allows overlap in detected edges. Also, the training time for each run (for 20
images) is around four and half days on a single machine with CPU 3.1GHz
(using C++), so this is a time-consuming process, but this can be sped up by
using a computational grid. All GP evolved edge detectors take less than half
a second to detect a BSD image. Simplification on these evolved detectors can
make this detection time even shorter, which will be investigated in the future.

6 Conclusions

The goal of this paper was to investigate using GP to automatically construct ro-
tation invariant Gaussian-based edge detectors. Based on a proposed GP system
using Gaussian filters (with variant scale) as terminals and a modified convolu-
tion as a function, the goal was successfully achieved by evolving Gaussian-based
edge detectors on a benchmark image dataset. The evolved Gaussian-based edge
detectors significantly outperformed the Sobel edge detector, the Gaussian gra-
dient, and invariant surround suppression. The visual results also show that the
evolved edge detector has good ability to reject noise and suppress textures.

For future work, a dynamic threshold technique will be introduced in the GP
system so that edge detectors with good combinations (but not good detection
when using threshold 0) will be found. Also, the system has very high computa-
tional training cost, so we will investigate ways to reduce computational cost for
the system, while maintaining good performance. In additional, we will analyse
the complexity for the evolved edge detectors.

References

1. Basu, M.: Gaussian-based edge-detection methods: a survey. IEEE Transactions on
Systems, Man, and Cybernetics, Part C: Applications and Reviews 32(3), 252–260
(2002)

2. Bennamoun, M., Boashash, B., Koo, J.: Optimal parameters for edge detection.
In: Proc. of IEEE Int. Conference on Systems, Man and Cybernetics, vol. 2,
pp. 1482–1488 (1995)

3. Bergholm, F.: Edge focusing. IEEE Transactions on Image Processing 9, 726–741
(1987)

374 W. Fu, M. Johnston, and M. Zhang

4. Bolis, E., Zerbi, C., Collet, P., Louchet, J., Lutton, E.: A GP Artificial Ant for
Image Processing: Preliminary Experiments with EASEA. In: Miller, J., Tomassini,
M., Lanzi, P.L., Ryan, C., Tetamanzi, A.G.B., Langdon, W.B. (eds.) EuroGP 2001.
LNCS, vol. 2038, pp. 246–255. Springer, Heidelberg (2001)

5. Canny, J.: A computational approach to edge detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence 8(6), 679–698 (1986)

6. Dollar, P., Tu, Z., Belongie, S.: Supervised learning of edges and object boundaries.
In: Proc. of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, vol. 2, pp. 1964–1971 (2006)

7. Ebner, M.: On the edge detectors for robot vision using genetic programming.
In: Proc. of Horst-Michael Groβ, Workshop SOAVE 1997 - Selbstorganisation von
Adaptivem Verhalten, pp. 127–134 (1997)

8. Fu, W., Johnston, M., Zhang, M.: Genetic programming for edge detection: a global
approach (2011)

9. Fu, W., Johnston, M., Zhang, M.: Genetic programming for edge detection based
on figure of merit. In: Proc. of Genetic and Evolutionary Computation Conference,
pp. 1483–1484 (2012)

10. Ganesan, L., Bhattacharyya, P.: Edge detection in untextured and textured images:
a common computational framework. IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics 27(5), 823–834 (1997)

11. Golonek, T., Grzechca, D., Rutkowski, J.: Application of genetic programming to
edge detector design. In: Proc. of the Int. Symposium on Circuits and Systems,
pp. 4683–4686 (2006)

12. Grigorescu, C., Petkov, N., Westenberg, M.: Contour detection based on non-
classical receptive field inhibition. IEEE Transactions on Image Processing 12(7),
729–739 (2003)

13. Grigorescu, C., Petkov, N., Westenberg, M.A.: Contour and boundary detection
improved by surround suppression of texture edges. Image and Vision Comput-
ing 22(8), 609–622 (2004)

14. Harris, C., Buxton, B.: Evolving edge detectors with genetic programming. In:
Proc. of the First Annual Conference on Genetic Programming, pp. 309–314 (1996)

15. Hollingworth, G., Smith, S., Tyrrell, A.: Design of highly parallel edge detection
nodes using evolutionary techniques. In: Proc. of the Seventh Euromicro Workshop
on Parallel and Distributed Processing, pp. 35–42 (1999)

16. Kadar, I., Ben-Shahar, O., Sipper,M.: Evolution of a local boundary detector for nat-
ural images via genetic programming and texture cues. In: Proc. of the 11th Annual
Conference on Genetic and Evolutionary Computation, pp. 1887–1888 (2009)

17. Lacroix, V.: The primary raster: a multiresolution image description. In: Proc. of
the 10th Int. Conference on Pattern Recognition, vol. I, pp. 903–907 (1990)

18. Marr, D., Hildreth, E.: Theory of edge detection. Proc. of the Royal Society of
London, Series B, Biological Sciences. 207, 187–217 (1980)

19. Martin, D., Fowlkes, C., Malik, J.: Learning to detect natural image boundaries
using local brightness, color, and texture cues. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 26(5), 530–549 (2004)

20. Papari, G., Petkov, N.: Edge and line oriented contour detection: state of the art.
Image and Vision Computing 29, 79–103 (2011)

21. Poli, R.: Genetic programming for image analysis. In: Proc. of the First Annual
Conference on Genetic Programming, pp. 363–368 (1996)

22. Quintana, M.I., Poli, R., Claridge, E.: Morphological algorithm design for bi-
nary images using genetic programming. Genetic Programming and Evolvable Ma-
chines 7, 81–102 (2006)

Automatic Construction of Gaussian-Based Edge Detectors 375

23. Schunck, B.: Edge detection with Gaussian filters at multiple scales. In: IEEE
Workshop on Computer Vision, Representation and Control, pp. 208–210 (1987)

24. Song, D.M., Li, B.: Derivative computation by multiscale filters. Image and Vision
Computing 16(1), 43–53 (1998)

25. Wang, J., Tan, Y.: A novel genetic programming based morphological image analy-
sis algorithm. In: Proc. of the 12th Annual Conference on Genetic and Evolutionary
Computation, pp. 979–980 (2010)

26. Zhang, Y., Rockett, P.I.: Evolving optimal feature extraction using multi-objective
genetic programming: a methodology and preliminary study on edge detection. In:
Proc. of the Conference on Genetic and Evolutionary Computation, pp. 795–802
(2005)

Implicit Fitness Sharing for Evolutionary
Synthesis of License Plate Detectors

Krzysztof Krawiec and Mateusz Nawrocki

Institute of Computing Science, Poznan University of Technology,
Piotrowo 2, 60965 Poznań, Poland

Abstract. A genetic programming algorithm for synthesis of object de-
tection systems is proposed and applied to the task of license plate recog-
nition in uncontrolled lighting conditions. The method evolves solutions
represented as data flows of high-level parametric image operators. In an
extended variant, the algorithm employs implicit fitness sharing, which
allows identifying the particularly difficult training examples and focus-
ing the training process on them. The experiment, involving heteroge-
neous video sequences acquired in diverse conditions, demonstrates that
implicit fitness sharing substantially improves the predictive performance
of evolved detection systems, providing maximum recognition accuracy
achievable for the considered setup and training data.

Keywords: Genetic programming, pattern recognition, image analysis,
implicit fitness sharing, license plate recognition.

1 Introduction

Manual design of image analysis systems is a time-consuming task that requires
a lot of expertise. Even for a skilled expert, the final outcome of a chain of image
processing algorithms is hard to predict, so usually many designs have to be
laboriously tested to come up with a well performing image analysis system.

In this study we automate this search process using genetic programming [7],
allowing the search algorithm to compose complete image analysis programs.
The programs maintained in the population are composed of instructions that
implement image processing algorithms known from literature. The instructions
are allowed to have parameters, which also undergo evolutionary tuning, so over-
all the method performs search in a joint space of structures (data flows) and
parameters of image analysis programs.

The major contribution of this paper are the experimental outcomes that as-
sess the method with respect to its ability to model the dependencies observable
in data (training set performance) and capability of generalization (testing set
performance). In particular, we propose to extend the basic approach with im-
plicit fitness sharing, which entices the individuals in population to pay more
attention to the particularly difficult examples.

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 376–386, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Implicit Fitness Sharing for Evolutionary Synthesis 377

2 Related Work

License plate recognition is one of the best established applications and a com-
mon benchmark for pattern recognition and computer vision systems. Former
research on this topic engaged various paradigms of computational intelligence,
including artificial neural networks, fuzzy logic, and evolutionary computation
(see review in [10]). For instance, in [18], a fuzzy logic approach has been applied
to this task. In [17], the authors use immune and genetic algorithms to acquire
the parameters for the initial step of plate recognition. [15] uses genetic algorithm
to optimize weights of neural network that performs the recognition task. In [6],
genetic algorithm is used to determine the location of license plate in an image.
Other examples of plate recognition systems involving techniques characteristic
to computational intelligence can be found in, among others, [1,5,16].

Many of license plate recognition systems successfully implemented in real-
world environments assume that vehicles are close to the camera, do not move
(or are close to still), and the lighting is at least partially controlled (e.g., in-
frared emitters or flash light is involved). This is characteristic for deployments
like authorization of entry for parking lots and gated blocks-of-flats. However,
plate recognition task becomes much more challenging when performed in uncon-
trolled conditions, which is the case in this study, where the operating conditions
resemble more CCTV (closed-circuit television) monitoring in urban areas. Most
importantly, the camera used in the experimental part of this paper observes the
moving vehicles from a relatively long distance. As a consequence, the observed
projected dimensions of the plates are much smaller, and the images can be
distorted by motion blur and perspective projection. Also, nothing is assumed
about the lighting conditions. We allow also for the presence of multiple vehicles
in the field of view.

3 The Approach

We divide the entire task of license plate recognition into four separate stages:
motion segmentation, plate detection, character segmentation, and character
recognition. Except for motion segmentation, each video frame is processed in-
dependently. The stage that undergoes evolutionary learning described in fol-
lowing is plate detection; the remaining stages have been designed manually
and remain fixed during evolution. In particular, character recognition is carried
out using a support vector machine (SVM, [3,13]), previously trained on a large
collection of human-segmented characters belonging to 36 classes (26 uppercase
Latin alphabet letters plus 10 digits). For the detailed description of the motion
segmentation, character segmentation, and character recognition phases, see [8].

The task of plate detection stage is to determine, in a single frame (image),
the locations of license plates, called plate candidates in following. To this aim,
we employ tree-based genetic programming, with each individual (program) rep-
resenting a complete license plate detector. Each program is a tree composed of
instructions (nodes) implementing various image analysis algorithms that pass

378 K. Krawiec and M. Nawrocki

Table 1. Image processing instructions employed by the method

Operator Arguments Description

thr image i , float t Thresholds i using threshold t
gamma image i , float γ Gamma correction of i

inv image i Inversion of i
exp image i Pixel-wise exponentiation of i
log image i Pixel-wise logarithm of i

+, −, ∗, / image i , image j Pixel-wise image arithmetic

the processed images to each other. An input image is fed into programs using
the terminal nodes (leaves). The image produced at the root node is interpreted
as the output of a program, where pixel brightness is assumed to represent pro-
gram’s confidence in the presence of license plate at a particular location. This
image is postprocessed using a fixed (i.e., non-evolving) procedure, which in-
volves thresholding and scanning for connected components. Every connected
component found is replaced by a corresponding minimal bounding rectangle
(MBR). If an MBR fulfills certain size and aspect ratio constraints, the im-
age fragment enclosed by it is passed to the character segmentation stage (and,
subsequently, character recognition stage).

Table 1 presents the set of instructions used to form the evolving programs.
The full set of instructions embraces also terminal nodes, which include: R, G, B
(red/green/blue channel of the input image), and H , S, I (hue/saturation/intensity
channels). Finally, the So terminal provides the input image converted to grayscale
and processed using the Sobel filter, while F terminal is the output of simple hand-
crafted plate detector, which we obtained using evolutionary tuning in our previous
study [8].

The algorithm evolves a population of programs encoded in the way described
above. In each generation, a new population of programs is bred using selection,
mutation, and crossover operators. Selection is driven by the fitness values as-
signed to programs. In the standard variant, the fitness of an individual program
s (candidate solution) is defined as the performance of the complete recognition
system that uses s (i.e., composed of: plate detection implemented by s, charac-
ter segmentation, and character recognition using the trained SVM), averaged
over the training set of images T . Formally,

fstd(s) = 1
|T |

∑

t∈T

f(s, t) (1)

where f(s, t) ∈ [0, 1] is the performance of s on example (image) t, based on the
agreement of the character sequence recognized at the plate location indicated
in t by s, and the true character sequence present in the license plate in frame
t (see experimental part). Alternatively, we employ another fitness assessment
method detailed in the next section.

Implicit Fitness Sharing for Evolutionary Synthesis 379

4 Implicit Fitness Sharing

To learn an image analysis algorithm that robustly detects license plates, the
training set should be diversified, embracing images of different cars, taken in
various lighting conditions, from different aspects, at various visibility, etc. In
such a diversified sample, some plates can be expected to be easier to detect
and recognize than others. The ability to solve (recognize) the harder examples
(plates) should be particularly appreciated during the learning process. An in-
dividual that acquires such capability at some stage of evolution should have
greater odds for survival, even if it happens to fail on some easier examples.
Unfortunately, the standard definition of fitness values all examples equally. As
a result, the individuals that exhibit such unique skills may have problems to
pass the selection stage.

Implicit fitness sharing (IFS), introduced by Smith et al. [14] and further
explored for genetic programming by McKay [11,12], is a technique designed to
overcome this deficiency. It weighs the reward granted for solving each example
according to its difficulty, which is assessed based on how hard it appears to the
individuals in the current population. Formally, the fitness fifs of an individual
(candidate solution) s is defined as:

fifs(s) = 1
|T |

∑

t∈T (s)

1
n(t)

(2)

where T (s) ⊆ T is the set of examples solved by s, and n(t) is the number of
individuals that solve t. Thus, the total amount of reward that any example
t can pass onto individuals in population amounts to 1.0, and that amount is
shared equally between the individuals that solve it. When all individuals in
population P solve t, n(t) = |P |, and they all receive the same, minimal reward.
If, on the other hand, t is solved by only one individual in P , n(t) = 1 and such
an individual (and only it) will be granted the maximal reward of 1.0.

The fitness function defined by IFS entices individuals in population to solve
examples that appear particularly difficult for the current state of the search
process. Individuals that exhibit such unique capabilities are highly rewarded,
which increases their odds for survival, and makes propagation of their traits
to next generations more likely. In this respect, IFS may be seen as a diversity
maintenance technique. Notably, it is also a rudimentary form of coevolution,
as the fitness granted to an individual depends on the performance of the other
individuals in the population.

Standard IFS assumes that an individual either solves an example or not.
In the license plate recognition task, the performance on a single example (im-
age) may vary gradually, depending on the number of correctly recognized plate
characters, and is reflected by the function f(s, t) ∈ [0, 1] (cf. standard fitness
definition in Eq. (1)). To take this into account, we redefine the IFS fitness in
the following way:

fifs(s) =
∑

t∈T

f(s, t)∑
s′∈P f(s′, t)

(3)

380 K. Krawiec and M. Nawrocki

Contrary to the standard IFS (Eq. 2), in this formula the expression in de-
nominator calculates the total performance of all individuals in population P
(including s) on example t (rather than counting the number of individuals that
solve t). Nevertheless, the effect is analogous: performing well on an example
that is hard to recognize/classify is more beneficial than doing so for an example
that is deemed easy by the individuals in population.

5 The Experiment

The primary objective of the experiment was to assess the performance of the
proposed approach and verify the usefulness of implicit fitness sharing. Thus, the
following configurations have been considered: conventional genetic program-
ming (GP) with standard fitness function (Eq. 1) and genetic programming
driven by IFS (GP-IFS, Eq. 3).

The Data. The image data is a part of collection of 1233 frames of 160 different
vehicles (mostly passenger cars) described in our former study [8]. The training and
testing sets are disjoint and comprise, respectively, 97 and 98 images randomly se-
lected from that database. Each frame has been manually inspected and the actual
(true) license number has been assigned to it. Frames have been acquired using a
stationary camera working with resolution 1280 × 960 pixels, located at 15-20 me-
ters from the passing-by cars. The motion segmentation phase typically crops the
frames to dimensions comparable to VGA standard, in which vehicles occupy on
average 75% of the frame area. Most frames feature cars in frontal view. The plates
to be recognized have typically dimensions of 150 × 30 pixels, however, they are
often far from rectangular due to perspective projection and vehicle’s tilt and yaw.
The dataset has been acquired in realistic conditions and is highly heterogeneous:
it comprises various lighting conditions (different time of the day, including back-
light as well as plates directly exposed to sunlight), different whether conditions
(both sunny and cloudy days), and with license plates subject to dirt and mounted
at different heights relative to road level.

The Setup. For both GP and GP-IFS, we run generational evolution algo-
rithm with a population of 100 individuals for 100 generations. Other parameters
are set as follows: tournament selection with tournament size 7, tree-swapping
mutation applied with probability 0.9, subtree-replacing mutation applied with
probability 0.1. Evolutionary runs are repeated 10 times to lower the variance
of performance. For the remaining parameters, we use the defaults of the ECJ
package [9] that the evolutionary part of our framework is based on. The image
analysis component employs the OpenCV library [2] written in C++. Commu-
nication between modules is facilitated via exchange of XML files.

The performance of individual s on example t has been defined as:

f(s, t) = dmax − min{dmax, d(s(t), act(t))}
dmax

(4)

where s(t) is the character string representing the plate number as read by s,
act(t) is the actual plate number present in t, and d is the Levenshtein distance

Implicit Fitness Sharing for Evolutionary Synthesis 381

Table 2. Fitness (fstd) of the best-of-run individuals. Averages and medians over 10
evolutionary runs. Best-on-training is the test-set performance of the best of best-of-run
individuals.

Training set Testing set

Setup Average Median Average Median Best-on-training

GP 0.890±0.033 0.897 0.572±0.210 0.681 0.745
GP-IFS 0.914±0.006 0.917 0.682±0.131 0.713 0.767

metric, i.e., the minimal number of insertions, deletions, and substitutions re-
quired to transform one character sequence into another. For the set of plates
considered here, we set dmax = 5, so the maximal distance that positively con-
tributes to fitness is 4 (most plate numbers used here had 7 characters). If
d(s(t), act(t)) ≥ 5, an individual scores 0 for the frame. For instance, this is the
case when no plate candidate has been detected in a frame. For conventional fit-
ness function (GP), individual’s fitness is a normalized sum of f(s, t) (see Eq.(1))
over all training examples. For GP-IFS, the fitness is Eq. (3).

In our previous study, we found out that discrimination of characters ‘0’ (zero)
and ‘O’ is extremely difficult for the SVM classifier. In the typeface used in the
considered license plates, these characters differ only in aspect ratio, which can
be easily distorted by perspective projection. Because good discrimination of
these decision classes is impossible without, e.g., syntactic rules, we fuse them
and treat these characters exchangeably.

The Results. In Table 2 we present the fitness of the best-of-run individuals for
each setup, and their performance on a test set. Because fstd and fifs cannot be
compared directly, the best-of-run individuals have been assessed using standard
fitness fstd. GP-IFS clearly outperforms standard GP, particularly on the test
set, which suggests that the use of implicit fitness sharing lowers the risk of
overfitting. We verified this additionally by calculating the Pearson correlation
coefficient between the training-set and testing-set performance over the 10 runs.
For GP, no significant correlation was observed (0.03), while for GP-IFS, that
correlation was strong (0.81).

The average is an unbiased estimator of the expected performance of a method,
and as such allows meaningful comparison. However, a pragmatic human de-
signer of a plate recognition system would not care much about these estimates;
rather than that, he would look for the best performing program. To simulate
this attitude, for each method, from the 10 best-of-run individuals, we selected
also the individual that attained the highest fitness, and evaluated it on the
testing set. The last column of Table 2 reports the outcomes of that evaluation.
Also in this case, the IFS-based approach fares better.

The theoretical upper bound of fstd is 1.0. This however does not necessarily
mean that perfect performance can be attained using a specific plate reader,
by which we mean here the character segmentation algorithm and character

382 K. Krawiec and M. Nawrocki

Fig. 1. The output (right) of the best-of-run individual of one of the GP-IFS runs, when
applied to the input image shown in left inset. Pixel brightness reflects individual’s
confidence in the presence of plate. The plate has been obfuscated due to privacy
concerns.

recognizer together. In general, a plate reader cannot be guaranteed to cor-
rectly segment every plate and correctly recognize all segmented characters. In
all recognition systems considered in this experiment, we use the same character
segmentation algorithm and the same recognizer (an SVM classifier trained on
a separate data set of character images). It is then justified to ask: what is the
maximal fitness that can be attained by the entire system equipped with this
plate reader, given a perfect plate detector?

We answer that question by applying the plate reader to actual plate locations
in images, manually determined by a human expert. It turns out that for the
training set, such a system does not work perfectly, attaining fstd = 0.9196. The
data presented in Table 2 shows that GP-IFS is very close to this limit. As a
matter of fact, two out of 10 runs of GP-IFS reach this performance. For the
testing set, the system based on human labeling reaches fstd = 0.8694. This
confrontation proves that the performance of recognition systems produced by
both GP and GP-IFS is much closer to the realistic upper limit that it may
appear when judging from the fitness definition alone.

Figure 1 presents exemplary results of the plate detection process carried
out by the best-of-run individual of one of the IFS runs. Light-colored regions
indicate the locations where the filter’s belief in plate presence is higher. It may
be observed that the detector correctly identifies the location of the plate, and
does not get distracted by regions that have color characteristics similar to license
plates (e.g., the light background behind the car).

Table 3 presents the distributions of Levenshtein distance for the training
and test set for the GP-IFS approach. Most errors consist in single-character
mistakes, which suggests that once the plate is correctly detected, the plate can
be read flawlessly or with a low number of mistakes. For the testing set, the
share of perfect recognitions drops on average to 55.7 percent, from 82.1 for the
training set, but relying on the best of best-of-run individuals (last row of the
table) leads to substantial improvements.

The median size of evolved image programs, measured in the number of tree
nodes (leaves and nonterminal tree nodes) is 136. However, one of the very well
performing best-of-run systems (training fitness 0.9175, testing fitness 0.7122)

Implicit Fitness Sharing for Evolutionary Synthesis 383

Table 3. Distribution of Levenshtein distance d for GP-IFS (percents)

Levenshtein distance d 0 1 2 3 4 5 > 5

Average on training set 82.1 10.2 1.3 0.0 2.1 3.1 1.2
Average on testing set 55.7 11.9 3.2 2.6 1.0 2.1 23.5
Best-on-training on testing set 59.8 14.4 6.2 4.1 1.0 0.0 14.4

comprised mere 76 nodes. Though this number is still quite weighty, we hypoth-
esize that most of the evolved systems can be substantially simplified without
significant impact on fitness. This however, requires a separate investigation.

Analysis of IFS Weights. To verify the impact of example weighing realized
by IFS, we collected additional statistics. In each generation, for each training
image t, we logged

∑
s′∈P f(s′, t), i.e., the sum of individuals’ performances

on t. This quantity, called solvability in following, occurs in the denominator
of Eq. (3), and its reciprocal determines the weight of an example. Thus, the
easier an example appears to the individuals in the current population, the
greater its solvability. In Fig. 2, we plot the average, minimum, and maximum of
solvability, calculated over all 200 generations of an exemplary run, individually
for each training example. The examples have been sorted ascendingly with
respect to average solvability. As there are 100 individuals in population and
the performance on a single example is normalized to [0, 1] interval (Eq. 4),
solvability cannot exceed 100.

Analysis of Fig. 2 allows us to draw several conclusions. It turns out that our
training set contains eight examples, grouping on the left, that have never been
correctly recognized by any individual throughout the run. Apparently, these ex-
amples turned out to be too difficult for the capabilities of learners. It is interesting
to notice that they could have been safely discarded from the training set, as, by re-
maining constantly unsolved, they never contributed to fitness differences between
individuals, so they had virtually no impact on the learning process.

Looking at the right-hand part of the graph, there are no examples that have
been solved by all individuals in all generations, although there are a dozen
or two of them for which this was true in at least one generation (see the max
curve). Roughly speaking, of all 97 examples, around 60 rightmost can be judged
as easy, with the average solvability of 87.0 or more. However, contrary to the left
part of the graph, these examples definitely contributed to the search process,
as in some generations they have been solved by no more than 20 individuals
(see the min curve).

Finally, Fig. 2 suggests that the most valuable part of our training set com-
prises roughly 30 examples, with indices from 9 to about 38. These frames were
moderately challenging to the learners, and probably contributed the most to
fitness variation. Interestingly, these examples may be considered as an analog
to the concept of ideal evaluation set coined in coevolutionary algorithms [4]. It
may be hypothesized that recognition systems trained only on these examples
could attain decent performance.

384 K. Krawiec and M. Nawrocki

Fig. 2. Distribution of average, minimum, and maximum solvability of training exam-
ples, as estimated by IFS

6 Conclusion

The main conclusion of this study is that implicit fitness sharing is a useful
alternative to standard evaluation when solving an object detection task. Because
IFS is a general technique that abstracts from the nature of examples, it is
justified to claim that some gains can be attained when evolving programs for
other types of visual tasks, like image processing or object classification.

The recognition accuracy reported here is substantially greater than the one
we obtained when using evolutionary algorithm to only tune the parameters of
a fixed plate detection system [8]. On one hand, this result was expected, as the
space of all possible image analysis programs is much greater than the space of
parameters of a fixed image analysis program, and better (or at least not worse)
performing programs can be found in such a bigger space. On the other hand,
more expressive representation of solutions (complete programs vs. vectors of
parameters) makes overfitting more likely, so running the above experiments
was necessary to verify the test-set performance of plate recognition systems.

Typically, a passing-by car is captured in a few consecutive frames. By apply-
ing the approach reported above to multiple frames and aggregating the results,
additional boost in recognition accuracy can be obtained. This is one of exten-
sions that we intend to investigate in the follow-up of this study.

Acknowledgment. M. Nawrocki acknowledges support from European Com-
munity’s Seventh Framework Programme (FP7/2007-2013) under grant agree-
ment n◦218086. K. Krawiec acknowledges support from National Science Center
grant DEC-2011/01/B/ST6/07318.

Implicit Fitness Sharing for Evolutionary Synthesis 385

References

1. Abdullah, S., Khalid, M., Yusof, R., Omar, K.: License plate recognition using
multi-cluster and multilayer neural networks 1, 1818–1823 (2006)

2. Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000)
3. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2001),

software, http://www.csie.ntu.edu.tw/~cjlin/libsvm
4. de Jong, E.D., Pollack, J.B.: Ideal Evaluation from Coevolution. Evolutionary

Computation 12(2), 159–192 (2004)
5. For, W.K., Leman, K., Eng, H.L., Chew, B.F., Wan, K.W.: A multi-camera col-

laboration framework for real-time vehicle detection and license plate recognition
on highways, 192–197 (June 2008)

6. Ji-yin, Z., Rui-rui, Z., Min, L., Yin, L.: License plate recognition based on genetic
algorithm. In: 2008 International Conference on Computer Science and Software
Engineering, vol. 1, pp. 965–968 (2008)

7. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge (1992)

8. Krawiec, K., Nawrocki, M.: Evolutionary Tuning of Compound Image Analysis
Systems for Effective License Plate Recognition. In: Jędrzejowicz, P., Nguyen, N.T.,
Hoang, K. (eds.) ICCCI 2011, Part I. LNCS, vol. 6922, pp. 203–212. Springer,
Heidelberg (2011)

9. Luke, S.: ECJ evolutionary computation system (2002),
http://cs.gmu.edu/~eclab/projects/ecj/

10. Martinsky, O.: Algorithmic and mathematical principles of automatic number plate
recognition systems (2007)

11. McKay, R.I.B.: Committee learning of partial functions in fitness-shared genetic
programming. In: 26th Annual Conference of the IEEE Third Asia-Pacific Con-
ference on Simulated Evolution and Learning 2000, Industrial Electronics Society,
IECON 2000, October 22-28, vol. 4, pp. 2861–2866. IEEE Press, Nagoya (2000),
http://sc.snu.ac.kr/PAPERS/committee.pdf

12. McKay, R.I.B.: Fitness sharing in genetic programming. In: Whitley, D., Goldberg,
D., Cantu-Paz, E., Spector, L., Parmee, I., Beyer, H.G. (eds.) Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO 2000), July 10-12,
pp. 435–442. Morgan Kaufmann, Las Vegas (2000),
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2000/GP256.pdf

13. Platt, J.: Fast training of support vector machines using sequential minimal op-
timization. In: Schölkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel
Methods – Support Vector Learning, MIT Press, Cambridge (1998)

14. Smith, R., Forrest, S., Perelson, A.: Searching for diverse, cooperative populations
with genetic algorithms. Evolutionary Computation 1(2) (1993)

15. Sun, G., Zhang, C., Zou, W., Yu, G.: A new recognition method of vehicle li-
cense plate based on genetic neural network. In: 2010 the 5th IEEE Conference on
Industrial Electronics and Applications (ICIEA), pp. 1662–1666 (2010)

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://cs.gmu.edu/~eclab/projects/ecj/
http://sc.snu.ac.kr/PAPERS/committee.pdf
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2000/GP256.pdf

386 K. Krawiec and M. Nawrocki

16. Tseng, P.C., Shiung, J.K., Huang, C.T., Guo, S.M., Hwang, W.S.: Adaptive car
plate recognition in qos-aware security network. In: SSIRI 2008: Proceedings of the
2008 Second International Conference on Secure System Integration and Reliability
Improvement, pp. 120–127. IEEE Computer Society, Washington, DC (2008)

17. Wang, F., Zhang, D., Man, L.: Comparison of immune and genetic algorithms for
parameter optimization of plate color recognition. In: 2010 IEEE International Con-
ference on Progress in Informatics and Computing (PIC), vol. 1, pp. 94–98 (2010)

18. Zimic, N., Ficzko, J., Mraz, M., Virant, J.: The fuzzy logic approach to the car
number plate locating problem. In: IASTED International Conference on Intelli-
gent Information Systems, p. 227 (1997)

Feedback-Based Image Retrieval Using

Probabilistic Hypergraph Ranking Augmented
by Ant Colony Algorithm

Ling-Yan Pan and Yu-Bin Yang

State Key Laboratory for Novel Software Technology, Nanjing University
Nanjing 210023, China
yangyubin@nju.edu.cn

Abstract. One fundamental issue in image retrieval is its lack of ability
to take advantage of relationships among images and relevance feedback
information. In this paper, we propose a novel feedback-based image re-
trieval technique using probabilistic hypergraph ranking augmented by
ant colony algorithm, which aims at enhancing affinity between the re-
lated images by incorporating both semantic pheromone and low-level
feature similarities. It can effectively integrate the high-order informa-
tion of hypergraph and the feedback mechanism of ant colony algorithm.
Extensive performance evaluations on two public datasets show that our
new method significantly outperforms the traditional probabilistic hy-
pergraph ranking on image retrieval tasks.

Keywords: Image retrieval, ant colony algorithm, semantic pheromone,
hypergraph, feedback.

1 Introduction

With the explosive growth of digital images and other multimedia libraries, im-
age retrieval has been actively studied in recent years [3,4,8,15]. Although image
retrieval progressed rapidly with the current content-based indexing techniques,
it has not yet succeeded in bridging the “semantic gap” between human concepts
and low-level visual features [3].

A parallel line of research on this issue has highlighted several crucial points.
The first problem is how to extract powerful descriptors to represent an im-
age, e.g., bag-of-words image representation has shown effectiveness for image
retrieval [14]. The second one is, how to explore the relationships among images
and take advantage of the correlation information. Recent research literatures
have remarkably focused on constructing vocabulary tree [15], integrating at-
tributes [10], hierarchical indexing model [4], and simple graph-based learning.
One common point of those methods is either using auxiliary textual information
or considering merely pairwise relation.

Nevertheless, hypergraph [6,8,18] takes into account the relations among
three or more vertices, which allows us to exploit the high-order information.

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 387–396, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

yangyubin@nju.edu.cn

388 L.-Y. Pan and Y.-B. Yang

Bu et al. [2] used hypergraph to model the various objects and relations, and
considered music recommendation as a ranking problem on this hypergraph. Gao
et al. [6] presented the Hypergraph Laplacian Sparse coding (HLSc) and applied
it to semi-auto image tagging problem. Following the algorithm in [18], Huang et
al. [8] proposed a hypergraph based transductive algorithm for image retrieval.
It tended to assign the same label to vertices that share many incidental hyper-
edges by assuming that predicted labels of feedback images should be similar
to their initial labels. However, the incidence matrix of the above hypergraph is
always simply assigned with binary values or relatively defined on the basis of
the similarity between vertices, which is further applied to feedback-based image
retrieval. Unfortunately, the similarity calculation is significantly sensitive to the
distance measurements [13]. Besides, the incidence matrix further affects several
parameters in the hypergraph. Thereby, an unreliable measure method induces
a poor incidence matrix, which further influences hypergraph ranking results of
image retrieval. Aiming at this problem, Li et al. [13] proposed a new affinity
matrix generation method by using neighbor relation propagation principle.

In addition, combining relevance feedback information effectively to refine
the search is still a considerably challenging problem. Fortunately, swarm intel-
ligence (SI) [1], including ant colony optimization (ACO) [5] and particle swam
optimization (PSO) [9] etc., is such a search strategy that exploits feedback
mechanism with the help of insects. It is widely investigated in the last decades
and can be used to solve a diversity of feedback-based learning tasks. Xue et
al. [17] applied PSO to Feature Selection (FS) so that irrelative and redundant
features are removed from a large feature space. Dorigo cooperated ant colony
system to traveling salesman problem (TSP) [5]. Moreover, ants will mark favor-
able paths while foraging, which is similar to the way that users select positive
images in retrieval. Specifically, for a query image, the first round of retrieval
is carried without any extra information. Next, users will mark images that
are more related and closer to the query one from the current related images,
and then this feedback will benefits the next round. As can be seen, both of
the marked paths and images are probably what the actors expect. In this pa-
per, a novel feedback-based image indexing technique with probabilistic hyper-
graph ranking augmented by ant colony algorithm is proposed. It combines the

Fig. 1. The bolder line indicates denser pheromone concentration, and more related to
the query image. (a) The real ants. (b) The artificial ants. (c) The ants’ movement in
image retrieval.

Image Retrieval Using Ant Colony Algorithm 389

low-level features and semantic information to re-compute and enhance the affin-
ity of the most related images, as well as increase their probability to be re-
trieved. It can effectively integrate the high-order information of hypergraph
and the feedback mechanism of ant colony algorithm. Experiments show that
the proposed method significantly improves the precision for image retrieval.

The rest of the paper is organized as follows. The related work is briefly in-
troduced in Section 2. Section 3 describes the new approach that re-computing
affinity matrix based on ant colony algorithm for feedback. In Section 4, we eval-
uate our algorithm on two standard datasets and demonstrate its effectiveness.
Finally, conclusions and future work are provided in Section 5.

2 The Approach

2.1 Probabilistic Hypergraph

Denote V as the finite vertex set and E as the hyperedge set corresponding
to a hypergraph of G(V,E,w), where each hyperedge e∈E is assigned with a
positive weight w(e) [18]. Let A∈R|V |×|V | represent the affinity matrix obtained
with some measurement, where aij∈A is normalized into [0, 1], indicating the
similarity between vertex vi and vertex vj . Then an incidence matrix can be
defined based on matrix A:

h(vi, ej) =

{
aij , if vi ∈ ej

0, otherwise
(1)

Each element h(vi, ej) in H indicates the probability of vi existing in hyperedge
ej . Following [8], we can further compute the hyperedge weight w(e), vertex
degree δ(v) and hyperedge degree δ(e) based on the incidence matrix. Image
retrieval on hypergraph can be considered as a ranking problem to minimize the
sum of a normalization cost term Ω(f) and a regularization term [8,18]:

arg min
f∈R|V|

{Ω(f) + μ‖f − y‖2} (2)

where the vector f is the image labels to be learned, y is initial labels and μ is
the regularization parameter.

The above derivation shows that almost all of the parameters in the hyper-
graph learning task, including H , w(e), δ(v) and δ(e), are obtained based on the
affinity matrix A. However, the affinity evaluation significantly depends on the
distance metrics. To address this problem, we introduce a powerful measurement
and augment the relevance feedback process by ant colony algorithm, which can
effectively search the most related images and enhance their affinity ability.

2.2 Similarity Measurement

In our paper, we adopt histogram intersection which measures the overlap be-
tween the images within histogram space to construct similarity matrix [16].

390 L.-Y. Pan and Y.-B. Yang

Experiments prove that histogram intersection is more effective than other simi-
larity measures, e.g., chi-square distance used in [8], L1 distance, or L2 distance.

We utilize the bag-of-words model to represent images. First, SIFT feature
descriptors [7] of 16× 16 pixel patches computed over a grid with spacing of 6
pixels are densely extracted. Secondly, we create a 1024-bin codebook with k-
means. Then, each image can be represented by a histogram with soft-assignment
coding method [7] (any other available coding is possible). In order to capture
location-related features of an object, three levels of spatial pyramids are also
adopted. The similarity matrix can be finally computed as:

sij =
L∑

l=0

zl
Dl∑
k=1

min(Hi(k), Hj(k)) (3)

where Hi(k) and Hj(k) are two histogram features at the k-th bin, L is the
level of spatial pyramids, zl and Dl are the weighting parameter and the total
dimensions at level l, respectively.

2.3 Hypergraph Ranking Augmented by Ant Colony Algorithm

Some ant species will deposit pheromone on the path while foraging to attract
more ants. When they come to some obstacles, they are going to choose their
paths marked by strong pheromone in probability. Due to the capability of per-
ceiving pheromone, the ants tend to follow paths where pheromone concentration
is higher after some time. In image retrieval, when pseudo-feedback information
is introduced, the images which are labeled as positive images by users (from the
whole retrieved result) should be assigned higher affinity and get higher proba-
bility to return as the top ranked retrieval results. Fig. 1 shows an example of
real ants’ foraging and artificial ant’s movement in image retrieval.

Motivated by the above assumption, we expand ant colony algorithm to image
retrieval. Before probabilistic hypergraph ranking, we improve the quality of the
affinity matrix through applying the semantic pheromone to re-compute the prob-
ability that a vertex belongs to some hyperedge with ant colony algorithm. Let
T ∈ R|V |×|V | represent the pheromone matrix, where |V | indicates the number
of vertices (images) in a hypergraphG(V,E,w). Firstly, we initial the pheromone
concentration of any two vertices vi and vj as τ tij = 0, where the superscript t
indicates the current feedback round and before a new search t = 0. In order to
take into account pseudo-feedback, and ensure positive images get strong seman-
tic pheromone, we update the pheromone matrix T in the t + 1 round as follows:

τ t+1
ij =

{
(1− ρ)τ tij + 1/|Pi|, if vj ∈ Pi

0, otherwise.
(4)

where ρ ∈ (0, 1] is an evaporation rate, Pi means the positive set of vertex vi.
Actually, Eq. (4) consists of two procedures: 1) Pheromone evaporation. It will
firstly evaporate with a rate ρ before accumulating new pheromone, so the item
(1− ρ)τ tij computes the remaining pheromone. 2) Pheromone accumulation. We

Image Retrieval Using Ant Colony Algorithm 391

take the reciprocal of the number of positive images as the new pheromone.
The initial affinity matrix A computed by some measurement directly reflects
the distances of low-level visual features among images. Here we handle it as
heuristic information. Then the probability of an affinity between vertex vi and
vertex vj which is chosen to be enhanced is

pij =
[τij]

α[aij]
β∑

vl∈Pi
[τil]α[ail]β

(5)

α and β in Eq. (5) are two parameters used to control the relative importance
of the semantic pheromone and the heuristic information, i.e., the similarity of
low-level features. If α = 0, it just depends on the low-level features, which
indicates that the most similar low-level features will be returned. This is a case
of stochastic greedy mechanism. β = 0 is another extreme situation in which
only the amplification factor of semantic pheromone plays a role. That is, the
process merely adopts pheromone, rather than any bias taken from heuristic
information. We will discuss this in Section 4.

By incorporating the initial affinity and the probabilistic choosing factor to
enhance affinity of images, we reconstruct the affinity matrix as Â in Eq. (6).

âij = aij +�ij ∗ pij (6)

where �ij denotes the weight to be enhanced of the affinity that vi belongs to
ej . Therefore the affinity aij is enhanced by weight �ij with a probability of
pij . Finally, we normalize the new affinity matrix into [0, 1] by subtracting the
maximum. Specifically,

ˆ̂
A = exp(Â−max(Â)) (7)

Empirically, the weights that is too samll in Eq. (6), e.g., �ij ∝ 0, will make our
algorithm not work because the right item of the plus symbol is so small that
it will be omitted. Conversely, if �ij � aij , the reconstructed affinity matrix of
Eq. (6) will contain few elements with considerable values, which further results
in a new sparse affinity matrix with Eq. (7) because most of âij is far less than
the max(âij). To address this problem, we propose an approach to determine
the weight to be enhanced, which treats the weight of each affinity equally and
computes the average of the factor [τil]

α[ail]
β of the positive set. Specifically, it

uses the following criteria:

� =

∑
vi∈V

∑
vl∈Pi

[τil]
α[ail]

β∑
vi∈V |Pi| (8)

Additionally, we add a constraint b = �/Ā ≤ �u to prevent from fluctuation,
where �u is the upper bound and Ā indicates the average of the original affinity
matrix. b significantly represents how much the weight is away from Ā. If the
constraint does not hold, we decrease it by a ratio of 0.1 recursively. We will
further discuss it in Section 4. The procedure of re-computing the affinity matrix
with ant colony approach is listed in Algorithm 1.

392 L.-Y. Pan and Y.-B. Yang

Algorithm 1. Re-computing the affinity matrix with ant colony approach

1: Compute similarity matrix S based on histogram intersection in Equation (3) and
then normalize to generate affinity matrix A;

2: Update semantic pheromone concentration matrix T with Equation (4);
3: Compute the probability of an affinity chosen to be enhanced with Equation (5);
4: Determine the weight to be enhanced;

compute the initial weight in Equation (8);
while b > u

 ← (1− 0.1) ∗; b = /Ā;
end
 ← (

∑
vi∈V |Pi|/|V |) ∗;

5: Construct the new similarity matrix
ˆ̂
A through Equation (6) and (7).

3 Experiments

3.1 Experimental Settings

In this part we demonstrate the effectiveness and efficiency of our proposed
algorithm by conducting substantial experiments on two standard datasets: 15
class scene dataset [12] and Caltech-101 [11].

For the parameters α and β in Eq. (5), we compare and analyze the precisions
and the recalls of different sets. The spatial pyramids factors are similar to the
set in [8] as 1×1, 2×2, 1×3; and zl = 1

3 for l = 0, 1, 2. The optimal hyperedge size
is computed from experimental data. Each query process employs the first round
of pseudo-feedback which randomly marked 5 positive images (the query image
is included) and 5 negative images. Actually, we handle this with several lines
of codes which allow computers instead of users to select positive and negative
images randomly and automatically. Then retrieve the expected results from the
remaining images. Every experiment is repeated for 30 runs and the average
precision and recall is finally reported.

3.2 Experiments on 15 Class Scene Dataset

The 15 class scene dataset consists of 4,485 scene images falling into 15 categories,
including “forest”, “mountain”, “office”, etc. The number of images associated
with each class ranges from 200 to 400. We firstly conduct an in-depth analysis
on this dataset.

Comparison under Different Similarity Measurements. In this experi-
ment, we do not adopt ant colony algorithm for the fair comparison with Ref.
[8]. We also implement the method in literature [8] by ourselves, but our work
get optimal values at a hyperedge size of 120 rather than 40 in [8]. The detailed
comparison results are shown in Fig. 2. As shown in Fig. 2, although we only
employ dense SIFT descriptors, histogram intersection remarkably improves the

Image Retrieval Using Ant Colony Algorithm 393

Fig. 2. The precision-recall curve for Scene dataset under different similarity measure-
ments. HI : histogram intersection; L2 : Euclidean distance; Chi : result implemented by
ourselves with chi-square distance; Chi[8] : result in [8] with chi-square distance

performance by 2%∼13%. Hence, a powerful similarity measurement is of great
importance in the probabilistic hypergraph ranking, which helps our work im-
prove the quality of the similarity matrix.

Precision and Recall through Different Algorithms. As represented in
Fig. 3(a), our method (green line) reconstructs the affinity matrix with ant colony
algorithm and outperforms both the PHR in [8] (blue line) and the implemen-
tation by ourselves with histogram intersection (red line). APHR1 increases the
precision from 84.49% of PHR-HI to 86.82% when recall is 0.1, and increases
by approximately 7% from 50.48% to 57.29% when recall is 0.8. Therefore, our
algorithm not only works well in low recall, but also available when recall goes
higher. It is worth noting that the different sets of α and β according to APHR1
and APHR2. The case of α = 1, β = 1 takes equal importance factor for sim-
ilarity of low-level features and semantic pheromone. One extreme situation is
α = 1, β = 0 in APHR2 where only the semantic pheromone is in consideration
when computing the enhancement of the affinity. Here we take the first feedback
round for simple analysis. Then the reconstructed affinity matrix can be simpli-
fied as Â = A +� ∗ T. T is always sparse with the elements corresponding to
positive images are non-zero, herewith, only few values of A will be influenced
by �. If �ij � aij , the similarity of low-level descriptors is meaningless and has
no influence for the retrieval. The corresponding affinity matrix is analogously
computed by Â = �∗T. As the positive images are assigned with the same label
as the query one, A is converted to be a blocked diagonal matrix ordered by class
label. Therefore Â = diag(Â1, Â2, . . . , Â15), where Âi = is a |Vi| × |Vi| sparse
matrix with only some elements are non-zero. |Vi| is the total number of images
labeled with the i-th class. The blocked diagonal matrix Â makes the retrieval
stuck within class and always gets rather higher but incredible precision, even
100%. We will discuss other sets of α and β in the following paragraphs.

394 L.-Y. Pan and Y.-B. Yang

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Recall

P
re

ci
si

o
n

15Scene Dataset

PHR[8]
PHR−HI
APHR1
APHR2

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Recall

P
re

ci
si

o
n

Caltech101 DataSet

PHR[8]
PHR−HI
APHR1
APHR2

(b)

Fig. 3. Precision-recall results on different datasets. PHR[8] : Probabilistic Hypergraph
Ranking in [8]; PHR-HI : our implementation of PHR which adopts the histogram
intersection and only dense SIFT features; APHR1 : PHR-HI with ant colony algorithm
(α = 1, β = 1); APHR2 : PHR-HI with ant colony algorithm (α = 1, β = 0)

Discussion. Parameter � takes a significant place in our algorithm which is
greatly influenced by α and β. Fig 4 shows the precisions with different sets of α
when fixed β to be 1. As shown in the left sub-figure which computes the weight
without constraint, when α raises from 0.2 to 4.0, the precision falls down from
87.16% to 84.59% for recall of 0.1. As both of the pheromone and the affinity
are in [0, 1], thus a large value of α will decrease the weight � and further
less improving the affinity matrix. Once α > 0.2, � is so small that it almost
degenerates to traditional hypergraph ranking. However, the trend of growing
is interrupted on α = 0, because only the original affinity is in consideration in
this case. It is worth noting that the precisions decrease to less than 30% for all
recall when α < −0.5, which is attributed to the large weight of �. Specifically, if
�ij � aij and β = 1, the corresponding affinity matrix is analogously computed

by Â ≈ �∗P . The diagonal elements of P always have larger values than others,
so a large enough � will further results in a new affinity matrix with merely
diagonal elements are 1 through normalization, which makes the performance
rather poor. Therefore, a modification of � is essential which leads to robust
result as illustrated in right sub-figure of Fig. 4.

3.3 Experiments on Caltech-101 Dataset

Caltech-101 holds 9,144 images containing 101 object classes with high shape
variability and a background class. The number of images per category varies
from 31 to 800. Each class shares the same kind of object, but from change-
able perspectives. The optimal hyperedge size is 40. The precision-recall curves
are shown in Fig. 3(b). It illustrates that our implementation also outperforms
the traditional hypergraph ranking which adopts chi-square distance metric by

Image Retrieval Using Ant Colony Algorithm 395

Fig. 4. The precisions under different α when β = 1, r indicates the recall. Left: no
constraint on the weight ; Right: have modified the weight.

2%-12%. The least improvement happens in the condition where recall is 1, while
the precision raises from 57.8% to 77.2% when recall is 0.1. The performance
is further advanced when taking an appropriated semantic pheromone with ant
colony algorithm. However, a more impressive precision without any heuristic
information is of less worth because of its local search.

4 Conclusion

In this paper, we propose a novel feedback-based image retrieval technique us-
ing probabilistic hypergraph augmented by ant colony algorithm, which aims
at enhancing affinity between related images by incorporating both semantic
pheromone and low-level features’ similarity. It first constructs the similarity
matrix based on low-level features with histogram intersection. Then it evalu-
ates the probability of enhancing affinity with ant colony algorithm. Thus, the
affinity matrix is re-computed to be applied to hypergraph learning task. Exten-
sive experiments on two public datasets show that our new method significantly
outperforms the traditional probabilistic hypergraph ranking.

However, currently the proposed method still has much room to be further
investigated and improved. For example, we only take the first round feedback in
our experiments, evaluation that a second or more rounds will further improve
the performance is meaningful. We are also considering to apply ant colony
algorithm to feature selection process as investigated by several literatures.

Acknowledgements. This work is supported by the Program for New Cen-
tury Excellent Talents of MOE China (Grant No. NCET-11-0213), National 973
Program of China (Grant No. 2010CB327903), the Natural Science Foundation
of China (Grant Nos. 61273257, 61021062, 61035003), and the Natural Science
Foundation of Jiangsu, China (Grant No. BK2011005).

396 L.-Y. Pan and Y.-B. Yang

References

1. Bonabeau, E., Theraulaz, G., Dorigo, M.: Swarm Intelligence: From Natural to
Artificial Systems, 1st edn. Oxford University Press, New York (1999)

2. Bu, J., Tan, S., Chen, C., Wang, C., Wu, H., Zhang, L., He, X.: Music recommen-
dation by unified hypergraph: combining social media information and music con-
tent. In: Bimbo, A.D., Chang, S.F., Smeulders, A.W.M. (eds.) ACM Multimedia,
pp. 391–400. ACM, Firenze (2010)

3. Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image retrieval: Ideas, influences, and
trends of the new age. ACM Comput. Surv. 40(2), 1–60 (2008)

4. Deng, J., Berg, A.C., Li, F.F.: Hierarchical semantic indexing for large scale image
retrieval. In: CVPR, pp. 785–792. IEEE, CO., USA (2011)

5. Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning ap-
proach to the traveling salesman problem. IEEE Trans. Evolutionary Computa-
tion 1(1), 53–66 (1997)

6. Gao, S., Tsang, I., Chia, L.: Laplacian sparse coding, hypergraph laplacian sparse
coding, and applications. IEEE Trans. Pattern Anal. Mach. Intell. (2012)

7. van Gemert, J., Veenman, C.J., Smeulders, A.W.M., Geusebroek, J.M.: Visual
word ambiguity. IEEE Trans. Pattern Anal. Mach. Intell. 32(7), 1271–1283 (2010)

8. Huang, Y., Liu, Q., Zhang, S., Metaxas, D.N.: Image retrieval via probabilistic
hypergraph ranking. In: CVPR, pp. 3376–3383. IEEE, San Francisco (2010)

9. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International
Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE, Perth (1995)

10. Lampert, C.H., Nickisch, H., Harmeling, S.: Learning to detect unseen object
classes by between-class attribute transfer. In: CVPR, pp. 951–958. IEEE, Miami
(2009)

11. Li, F.F., Fergus, R., Perona, P.: Learning generative visual models from few train-
ing examples: An incremental bayesian approach tested on 101 object categories.
Computer Vision and Image Understanding 106(1), 59–70 (2007)

12. Li, F.F., Perona, P.: A bayesian hierarchical model for learning natural scene cat-
egories. In: CVPR (2), pp. 524–531. IEEE Computer Society Press, San Diego
(2005)

13. Li, X.Y., Jie Guo, L.: Constructing affinity matrix in spectral clustering based on
neighbor propagation. Neurocomputing 97, 125–130 (2012)

14. Sivic, J., Zisserman, A.: Video google: A text retrieval approach to object matching
in videos. In: ICCV, pp. 1470–1477. IEEE Computer Society, Nice (2003)

15. Wang, X., Yang, M., Cour, T., Zhu, S., Yu, K., Han, T.X.: Contextual weighting
for vocabulary tree based image retrieval. In: Metaxas, D.N., Quan, L., Sanfeliu,
A., Gool, L.J.V. (eds.) ICCV, pp. 209–216. IEEE, Barcelona (2011)

16. Wu, J., Rehg, J.M.: Beyond the euclidean distance: Creating effective visual code-
books using the histogram intersection kernel. In: ICCV, pp. 630–637. IEEE, Kyoto
(2009)

17. Xue, B., Zhang, M., Browne, W.N.: Multi-objective particle swarm optimisation
(pso) for feature selection. In: Soule, T., Moore, J.H. (eds.) GECCO, pp. 81–88.
ACM, Philadelphia (2012)

18. Zhou, D., Huang, J., Schölkopf, B.: Learning with hypergraphs: Clustering, classi-
fication, and embedding. In: Schölkopf, B., Platt, J.C., Hoffman, T. (eds.) NIPS,
pp. 1601–1608. MIT Press, Vancouver (2006)

An Evolutionary Approach for Automatic

Seedpoint Setting in Brain Fiber Tracking

Tobias Pilic and Hendrik Richter

HTWK Leipzig University of Applied Sciences,
Faculty of Electrical Engineering and Information Technology,

Postfach 30 11 66, 04251 Leipzig, Germany
tobias.pilic@stud.htwk-leipzig.de, richter@eit.htwk-leipzig.de

Abstract. In this paper we present an evolutionary approach for opti-
mising the seedpoint setting in brain fiber tracking. Our aim is to use
Diffusion Tensor Imaging (DTI) data and Diffusion Magnetic Resonance
Imaging (dMRI) data for feeding an automatic fiber tracking approach.
Our work focusses on customising an evolutionary algorithm to find nerve
fibers within diffusion data and allocate an appropriate number of seed-
points to them. This is necessary for the subsequent fiber reconstruction
algorithms to work. The algorithm considerably enhances the speed and
quality of the reconstruction and proves to be promising in leading to an
automatic fiber tracking procedure used in medical imaging.

1 Introduction

Diffusion Tensor Imaging (DTI) or Diffusion Magnetic Resonance Imaging
(dMRI) is an imaging method applied to measure the displacement of water
molecules in human brain tissue [1][7]. Hence, it does not measure a geometrical
structure but a physical process. This diffusion process is directly related to the
tissue structure, which can be used to reconstruct nerve fiber structures within
the brain. The scope of the work presented encompasses the implementation of
an evolutionary approach for optimising fiber tracking in medical images of the
human brain.

The result of DTI is a data set representing a three-dimensional picture in
which every voxel contains a tensor. This diffusion tensor represents vector in-
formation for the evaluation of the main direction and strength of the diffusion
process. The generation of this data is very time consuming. Therefore, it is
desirable that a reconstruction process applied to the data is as fast as possible.

The current fiber tracking algorithms either cover the overall picture data or
need an initial data set of seedpoints from which to start. The seedpoints are
uniformly distributed within an area defined prior to image analysis, called room
of interest (ROI). The standard procedure incorporates the manual adjustment
of the seedpoints on the raw DTI data by medical or research staff. Although
the DTI data can be plotted as a greyscale image, it is difficult to interpret
and the ROI can partially miss the desired reconstruction area leading to a poor

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 397–406, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

398 T. Pilic and H. Richter

brain fiber reconstruction [5]. Finding a sufficient ROI for every patient is a time
consuming process as well.

DTI is an important method in neuroradiology and received much interest
in research on physics, clinical applications and computational principles [2][5].
There are two constitutively different works which have used principles of evo-
lutionary computation for fiber tracking. The algorithm GeneTrack [10] globally
optimises fibers between two areas of the brain using a genetic algorithm. The
second work [6] optimises the parameters of a reconstruction algorithm using
global optimisation and tabu search. In this paper, we present an evolutionary
approach which automatically optimises the positioning of the seedpoints within
a given area. Thus, it overcomes the problem of having to manually adjust them
[2][5]. Subsequently, we use FACT as a standard algorithm to perform brain fiber
tracking [8].

First, we will briefly review the basic principles of Diffusion Tensor Imaging.
Afterwards, the developed algorithm will be presented. Then, we will review the
test environment for the algorithm. The final results will be discussed at the end
of this paper.

2 Diffusion Tensor Imaging

2.1 The Physical Process of Diffusion and the Diffusion Tensor

Diffusion is a physical process occurring in liquids. It describes the behaviour
of particles within a volume. Those particles are moving from places of high
concentration to places of lower concentration to achieve a zero concentration
gradient. The dynamic behaviour is described as follows [4]:

J = −D∇C. (1)

Here, J represents the Particle Density (in mol
m2s) as a result of the Concentration

Gradient ∇C. Due to the fact that diffusion is a spatial process affected by geo-
metrical restrictions, the vectorial quantities J and ∇C do not necessarily point
in the same direction. Therefore, the proportionality factor D extends to a 3x3
semidefinite matrix, the Diffusion Tensor. The six scalar factors of this matrix

are called Diffusion Coefficients (in m2

s). They measure the ability of movement
in a certain pair of directions. They can be interpreted as a geometrically related
conductance. Hence, the Diffusion Coefficients are a measure of the underlying
geometric structure.

Diffusion data is acquired by using special MRI sequences based on the spin-
echo principle. A vast number of measurements is necessary for one set of data,
thus, the regression process needed to calculate the Diffusion Coefficients is very
time consuming.

An Evolutionary Approach for Brain Fiber Tracking 399

2.2 Preprocessing and Interpretation of the Data

Prior to applying the diffusion data to the fiber tracking algorithm used in this
paper, it has to be preprocessed.

Diffusion Ellipsoid. The Diffusion Tensor is reduced to three vectors rep-
resenting an orthogonal coordinate system with three eigenvectors and three
eigenvalues calculated from the tensor matrix D (1). An ellipsoid (Fig. 1 (a))
is used as the common form of representation for the resulting vectors as it is
easier to interpret and visualize in DTI images.

Fractional Anisotropy. Anisotropy refers to the variation of diffusion in space
and is especially related to the presence of particular tissues.Fractional Anisotropy
is calculated as scalar value by using the eigenvalues λ1, λ2 and λ3 from the
Diffusion Ellipsoid representation [9]:

FA =

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2

2(λ2
1 + λ2

2 + λ2
3)

. (2)

This is the representation to be used in this paper as part of the fitness evaluation
of our algorithm as it is easy to interpret and to handle. Fractional Anisotropy
values range from 0 for isotropic diffusion to 1 for strong anisotropic diffusion.

Brain Tissue. The brain consists of two different types of brain tissues, the
white and grey brain matter. Diffusion within the white brain tissue is highly
anisotropic because of the extreme bundling of axons. Hence, this tissue consists
of nerve fibers which are specialised on transferring data. Isotropic diffusion
can be found within the grey brain tissue, where the neurons are entangled and
diffusion has no preferred direction. The idea of brain fiber tracking is to identify
areas of white brain tissue within the data and to use this data to calculate
nerve tracts with the help of reconstruction algorithms. Therefore, the algorithm
proposed in this paper will have to search for this type of tissue within the data.
Places of white brain tissue characteristically have a Fractional Anisotropy value
above 0.7 - 0.8. Thereby values ranging between 0 and 0.4 usually indicate grey
matter or brain water.

Diffusion Dataset Utilised in This Work. A combination of the Diffusion
Ellipsoid and Fractional Anisotropy reduced to a 2-D cross section of the original
picture data is used in this work. This has shown to have no impact in terms of a
different algorithmic behaviour while decreasing computation time. The vectors
of the ellipsoid are projected to the cross sectional area and weighted with the
voxel related value of the Fractional Anisotropy. This new form of data is shown
in Fig. 1 (b).

2.3 Brain Fiber Tracking

There are two types of fiber tracking algorithms, the most commonly known
ones are Streamline algorithms.

400 T. Pilic and H. Richter

FACT Algorithm. One derivative of those Streamline algorithms reconstructs
the fibers by simply following the main diffusion directions from a given seed-
point. It is called a FACT algorithm (Fiber Assignment by Continuous Tracking
[8]). An example of such a reconstruction is shown in Fig. 1 (b), where the FACT
is basically following the vectors from one voxel boundary to the next. Between
every two consecutive voxels, the algorithm checks several termination criteria
derived from clinical validations. The FACT method is the second step in eval-
uating the fitness within the algorithm developed in this paper because it is one
of the simplest approaches for reconstructing brain fibers.

Fig. 1. Diffusion Ellipsoid and FACT Reconstruction. In Fig. 1 (a) the Diffu-
sion Ellipsoid positioned within the laboratory grid of the MRI system can be seen.
Notice that every voxel has a coordinate system different from this grid, which further
complicates the handling of data. Therefore, the ellipsoid representation was chosen as
a trade-off between easy handling and interpretability. Fig. 1 (b) shows a DTI picture
with several pixels containing vectors (marked blue). They represent the 2-D reduction
of the data used in this paper. The FACT reconstruction (marked red) starts at the
seedpoint (SP) and follows the main diffusion directions given by the vectors.

Optimisation Problem. Our algorithm must position a set of seedpoints
within a continuous search space. The optimisation problem is to find nerve
fibers in this search space and to position the seedpoints in a manner that the
fiber can be fully reconstructed by using Streamline algorithms.

The underlying idea of the algorithm is to find typical places of a high Frac-
tional Anisotropy for nerve fibers and then evaluating the length of the fibers in
those places to assess the quality of the position.

3 Evolutionary Approach

The individuals as members of the population are the seedpoints for the brain
fiber reconstruction. Ideally, they should search the picture for fibers and position
themselves at those fibers. It is intended that the overall cross-section of the fiber

An Evolutionary Approach for Brain Fiber Tracking 401

Fig. 2. Flow Chart of the Evolutionary Algorithm. The structure shown is typ-
ical for an evolutionary approach, except for the second loop, which was added to
particularly assign the algorithm to the application. Thus, the process of dense seeding
can be skipped, resulting in two possible and fundamentally different algorithms.

is sampled and longer fibers are favoured over shorter ones. A simple program
flow is presented in Fig. 2. We iteratively added additional mechanisms and
modified a simple Evolutionary Algorithm to solve our optimisation problem.

Initialisation. The individuals are initialised and uniformly distributed across
the picture. The total number of the initial population is calculated by the
number of pixels multiplied by a parameter, which is then handed over to the
function (Table 1). Therefore it is adapting itself to the picture size.

It is unlikely that no individual immediately hits a fiber after initialisation. If
this rare case comes into effect, the individuals, driven by mutation, are randomly
moving around searching for fibers within the picture. If one or more individuals
are getting fixed, other mechanisms such as recombination start to affect the
movement of the individuals.

Fixation of Individuals. The individuals in a generic Evolutionary Algorithm
applied to the diffusion data would keep on moving throughout the picture most
of the time. But the individuals leading to a good reconstruction are intended
to be kept and presented at the end of the algorithm. This process is called
fixation. The fixed individuals do not undergo selection and recombination but
still can be subject to mutation for maintaining the dynamic and probabilistic
behaviour of the algorithm. Furthermore, fixed individuals have a better fitness
if they enable a long fiber reconstruction and are passed onto the dense seeding
function if available.

Fitness Evaluation. The Fractional Anisotropy FA (2) is assigned to the indi-
viduals as fitness value at the beginning of each iteration by searching the pixel
in which the respective individual I is positioned. At a certain point during each

402 T. Pilic and H. Richter

iteration of the main loop, the fixed individuals are separated and treated differ-
ently. The FACT algorithm is applied to them based on their current position.
The fiber reconstruction resulting from the FACT algorithm is saved as a poly-
gon FACT (I). The length L(...) of the polygon is used to update the fitness.

fit = FA+ L(FACT (I)). (3)

Individuals are rewarded for yielding to a very long fiber reconstruction. The
fixed individuals are supposed to be moving on the fiber without loosing it.
Because the mutation is fitness weighted, the resulting movement for the indi-
viduals is restricted to a quarter of a pixel. The reconstructed fibers are kept as
recombination reference. It should be mentioned that the FACT parameters are
fixed, therefore, they are not affected by the developed algorithm.

Selection, Recombination and Mutation. We have chosen the simple ap-
proach of tournament selection for our algorithm.

Further on, every non-fixed individual is recombined with the next shortest
point to a reconstructed fiber. The recombination is done by positioning the
individual in the middle of the line between both points. This method was chosen
as it had produced the best results. Consequently, every non-fixed individual is
forced to move in every iteration to constantly scan the picture. Notice that the
individuals do not move to the next fixed seedpoint, which would result in a good
fiber, but move the shortest way towards the fiber itself. One reason for choosing
this method is the need to position the seedpoints along the cross-section of the
fiber, which does not necessarily mean positioning them close to each other. The
individuals are still able to cover the different parts of the picture while searching
for fibers on their way. It is even more likely for them to find unknown branches
of fiber or even new fibers.

A certain percentage of the randomly chosen population size is subject to
Gaussian mutation with a characteristic variance and zero mean (in order to
fit various picture sizes). Both the percentage of the population size and the
variance are parameters adjusted offline (Table 1) The movement driven by
maximum mutation is inversely related to the fitness.

Dense Seeding. In DTI, dense seeding refers to the fact that it is often neces-
sary to place more than one seedpoint within each voxel to reach all branches of
the fiber without loosing it at the edge. The lower the resolution of the picture,
the more difficult it is to reach everything from a remote seedpoint area (ROI).
An example of this problem is shown in Fig. 3 using 2-D test data.

To achieve dense seeding, the rooting of the individual with the highest fitness
has to be permitted. A new number of individuals is normally distributed around
it, depending on that fitness value. This dependency is called the growth of the
seed. Immediately afterwards, the new seeds are checked for whether they meet
the fixation criteria. If this is not the case, they are discarded, just as real seeds
would die on infertile ground. The rest is kept and considered a direct result of
the algorithm.

An Evolutionary Approach for Brain Fiber Tracking 403

Fig. 3. Dense Seeding. The figure shows a small clipping of brain fiber including a
branch. The position of the seedpoint across the fiber can be observed to have a severe
impact on the resulting reconstruction. Only one seedpoint is able to reach the small
branch and four other seedpoints are totally losing the fiber at the edge.

4 Experiments and Results

4.1 Test Environment

The first step prior to conducting the experiments was to find a test environment
for the algorithm. Itwas chosen by doing research on normally occurring nerve fiber
structures within the brain. Several sets of test data were designed with a size of
20x20 pixel, containing examples of common geometrical structures with different
complexities. This includes simple straight fibers, different widths, branches, in-
tersections and singularities to test the proper termination behaviour of the fiber
tracking algorithms. The white brain matter receives reasonable diffusion direc-
tions and Fractional Anisotropy values between 0.8 and 1. The gray brain matter
consists of randomly generated directions with FA values between 0 and 0.4.

4.2 Parameter Optimisation and Results

Prior to development it was required to find an algorithm adapting itself to
the various image sizes and types without being manually adjusted. Therefore,
we started searching for a set of parameters to make the algorithm versatile
while maintaining a high level of robustness. The total number of parameters was
limited as much as possible to simplify the adjustment. Five different parameters
appeared to be the best trade-off between adjustability and reduction (Table 1).

The algorithm was tested separately with and without the dense seeding func-
tionality. In lack of an automatic evaluation procedure, the results were plotted,
reviewed and assessed visually. The first step was to find a feasible range of values
for the parameters. After that, the parameters were varied within those ranges,
generating more than five thousand results. The next step was to scale down the
range of values. The results were backed up by running a second simulation to
eliminate uncertainties caused by the non-deterministic nature of the algorithm.

404 T. Pilic and H. Richter

Table 1. Parameter Values

Parameters Without DS With DS

population size = fraction of image size 0.3 0.075

fixation value 0.3 0.3

mutation variance 1.5 1.5

mutation probability = percentage of population 0.45 0.45

termination value = percentage of fixed individuals 0.5 0.5

number of generations 2...10 2...5

Fig. 4. Algorithm Results. The figures show the results of applying both algorithms
to a relatively wide picture of low resolution with one fiber inheriting a small branch.
The red marks and lines refer to the final result, the green to the starting population
and the blue marks show the movement of the individuals during each iteration. Fig.
(a) is the result of using the EA without dense seeding. The fiber can be discerned to
have been fully touched. The small random fibers within the background of the picture
were found as well. Fig. (b) refers to the EA with the dense seeding functionality. The
fiber is fully reconstructed, concurrently using less iterations and individuals.

After several optimisation repetitions we found the parameters shown in Table
1. The results produced by the algorithm are presented in Fig. 4.

Algorithm Applied to Brain Slice. A final set of experiments was done with
brain slices extracted from an example DTI data set [3]. The picture is bigger in
size (125x125 pixel) in order to test the capability of the algorithm to work on
different resolutions and a high number of small fibers. The results are presented
in Fig. 5 showing both algorithms to be working well with this type of image.

4.3 Discussion

The results obtained with the parameters from Table 1 have been useful in
solving the problems of the test environments described in section 4.1. The algo-
rithm reaches all branches of nerve fibers (Fig. 4) because of the fiber weighted

An Evolutionary Approach for Brain Fiber Tracking 405

Fig. 5. Brain Slice Reconstruction. Fig. (a) shows the reference DTI data [3]. The
second Fig. (b) is the result produced by the algorithm without dense seeding; Fig. (c)
shows the algorithm with dense seeding.

recombination procedure. The procedure is encouraging individuals to find alter-
native ways to reach the fiber. The total number of individuals located in fibers
is proportional to their length and width causing an appropriate distribution of
the population across the image.

The evolutionary approach also works for images inheriting several fibers (Fig.
5) and adapts itself to images with varying characteristics and sizes. The mean
number of generations is very small. Thus, computation time is decreased consid-
erably by reducing the number of fitness evaluations. Essentially, the reason for
this lies in the algorithm usually catching the first fibers immediately after ini-
tialisation. The search space is sufficiently covered by the individuals. Hence, no
fibers were missed during test. Furthermore, the algorithm works autonomously,
which could be developed into an automatic seedpoint setting procedure. The
quality of the reconstruction was increased considerably when compared to a
reconstruction where the seedpoints are uniformly distributed across the image.

There are big advantages in using the algorithm with the dense seeding func-
tion. The mean number of generations as well as the number of individuals are
considerably smaller than they would be without DS (Table 1). On average,
computation time is cut by half and the amount of data handled is further re-
duced. This means that the individuals are using less DTI data within the search
space, which can be observed by comparing the blue traces within Fig. 4. There
are also disadvantages to this method. The distribution of the individuals is
not as smooth as it were without DS. Sometimes, the number of seedpoints is
higher than necessary, in which case the parameters would have to be readjusted.
Therefore, the algorithm with DS is most useful for fast seedpoint setting or as a
primitive fiber reconstruction method. Without DS, the algorithm is perfect for
a more robust seedpoint setting optimisation or for general nerve fiber detection.

5 Conclusion and Future Works

We have shown the prospect of using an evolutionary approach for automati-
cally and optimally allocating seedpoints for brain fiber tracking in a ROI. The

406 T. Pilic and H. Richter

seedpoints are positioning themselves and form the foundation of an automatic
seedpoint setting procedure.

The first step in future works should be to expand the algorithm to 3-D,
making it suitable for clinical applications. This would also enable the more
substantiated comparison with state of the art algorithms and applications. At
this stage, the evolutionary approach should also be combined with the various
other types of fiber tracking algorithms [2] to evaluate the possibility of further
enhancing it. It is also desirable to test the algorithm in combination with pattern
recognition mechanisms to create a fully automatic ROI setting procedure. This
procedure should be capable of navigating through DTI data and identifying its
different regions. Embedding the procedure into the generic process of acquiring
DTI data could considerably increase the clinical use of DTI images while cutting
the high cost of MRI time.

The results of this paper alongside the results of previous works [6][10] are
emphasising the beneftis of evolutionary approaches within DTI and in general
medical imaging. They are useful replacements for generic mechanisms causing
the original application to be faster, more efficient and robust.

References

1. Basser, P., Mattiello, J., LeBihan, D.: MR Diffusion Tensor Spectroscopy and Imag-
ing. Biophys. J. V. 66 (1994)

2. Chung, H.-W., Chou, M.-C., Chen, C.-Y.: Principles and Limitations of Compu-
tational Algorithms in Clinical Diffusion Tensor MR Tractography. J. Neurora-
diol. 32, 3–13 (2011)

3. Kroon, D.-J.: DTI and Fiber Tracking, http://www.mathworks.com/
matlabcentral/fileexchange/21130-dti-and-fiber-tracking

4. Giancoli, D.C.: Physics for Scientists and Engineers, ch. 18. Prentice Hall (2000)
5. Hattlingen, E., Rathert, J., Jurcoane, A., Weidauer, S., Szelenyi, A., Ogrezeanu,

G., Seifert, V., Zanella, F.E., Gasser, T.: A standardised evaluation of pre-surgical
imaging of the corticospinal tract: where to place the seed ROI. Neurosurg. 32,
445–456 (2009)

6. Jose-Revuelta, L.M.S.: A Hybrid GA-TS Technique with Dynamic Operators and
its Application to Channel Equalization and Fiber Tracking. In: Jaziri, W. (ed.)
Tabu Search. InTech (2008)

7. LeBihan, D., Mangin, J.-F., Poupon, C., Clark, C., Pappata, S., Molko, N.,
Chabriat, H.: Diffusion Tensor Imaging: Concepts and Applications. J. of M.R.I. 13,
534–546 (2001)

8. Mori, S., Van Zijl, P.C.M.: Fiber Tracking: Principles and Strategies. NMR
Biomed. 15, 468–480 (2002)

9. Mukherjee, P., Berman, J.I., Chung, S.W., Hess, C.P., Henry, R.G.: Diffusion Ten-
sor MR Imaging and Fiber Tractography: Theoretic Underpinnings. AJNR 29,
632–641 (2008)

10. Wu, X., Xu, Q., Xu, L., Zhou, J., Anderson, A.W., Ding, Z.: Genetic White Matter
Fiber Tractography with Global Optimization. J. Neurosci. Meth. 184, 375–379
(2009)

http://www.mathworks.com/matlabcentral/fileexchange/21130-dti-and-fiber-tracking
http://www.mathworks.com/matlabcentral/fileexchange/21130-dti-and-fiber-tracking

Prediction of Forest Aboveground Biomass:

An Exercise on Avoiding Overfitting

Sara Silva1,2, Vijay Ingalalli1, Susana Vinga1,3, João M.B. Carreiras4

Joana B. Melo4, Mauro Castelli1,5, Leonardo Vanneschi5,1, Ivo Gonçalves2,
and José Caldas1

1 INESC-ID, IST, Universidade Técnica de Lisboa, 1000-029 Lisboa, Portugal
2 CISUC, Universidade de Coimbra, 3030-290 Coimbra, Portugal
3 FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal

4 Instituto de Investigação Cient́ıfica Tropical, 1300-344 Lisboa, Portugal
5 ISEGI, Universidade Nova de Lisboa, 1070-312 Lisboa, Portugal

sara@kdbio.inesc-id.pt

Abstract. Mapping and understanding the spatial distribution of for-
est aboveground biomass (AGB) is an important and challenging task.
This paper describes an exercise of predicting the forest AGB of Guinea-
Bissau, West Africa, using synthetic aperture radar data and measure-
ments of tree size collected in field campaigns. Several methods were
attempted, from linear regression to different variants and techniques
of Genetic Programming (GP), including the cutting edge geometric se-
mantic GP approach. The results were compared between each other in
terms of root mean square error and correlation between predicted and
expected values of AGB. None of the methods was able to produce a
model that generalizes well to unseen data or significantly outperforms
the model obtained by the state-of-the-art methodology, and the latter
was also not better than a simple linear model. We conclude that the
AGB prediction is a difficult problem, aggravated by the small size of
the available data set.

1 Introduction

The importance of accurately estimating forest aboveground biomass (AGB)
has been recognized in the literature (e.g. [13]). Forest AGB is a key component
when assessing the carbon stocks of a given ecosystem, and mapping its distribu-
tion is paramount to monitor forests and capture deforestation processes, forest
degradation, and the effects of conservation actions, sustainable management
and enhancement of carbon stocks. Furthermore, it is a requirement of inter-
national conventions (e.g., United Nations Framework Convention on Climate
Change, UNFCCC), especially on the basis of reporting mechanisms developed
under the UNFCCC post-Kyoto Protocol and particularly the initiative focusing
on Reducing Emissions from Deforestation and forest Degradation in developing
countries (e.g. [1]). Remote sensing data acquired by sensors onboard orbital
platforms provide the only means to assess and monitor the status and change

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 407–417, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

408 S. Silva et al.

of biophysical characteristics of tropical forests in a global and systematic way.
Numerous studies have demonstrated that a relationship exists between forest
AGB and low frequency (L- and P-band) Synthetic Aperture Radar (SAR) data
(e.g. [10]), though a high level of uncertainty still remains.

Genetic Programming (GP) is the automated learning of computer programs,
using Darwinian selection and Mendelian genetics as sources of inspiration [15].
It is now a mature technique that routinely produces human-competitive results.
However, a few open issues remain, overfitting being one of them. For a review
of the state-of-the-art in avoiding overfitting in GP the reader is referred to [5].
The problem of AGB prediction has recently been used as a test case to assess
the performance of an overfitting control technique, the RST [5]. The results
showed a clear improvement when compared to the results of standard GP, but
their quality was not assessed from the point of view of the application.

In this paper we tackle the AGB prediction problem using a much larger variety
of methods. From classical regressionmethods, including recent improvements, to
different variants and techniques of GP, including bagging and boosting, two GP
techniques aimed at avoiding overfitting, and the cutting edge geometric seman-
tic GP approach, they were all used in the context of a private “contest” that was
launched with the goal of obtaining goodmodels that can generalize well to unseen
data. The next section describes the data and the terms of the contest. Section 3
describes the long list of methods used, while Section 4 reports and discusses the
results. Finally, Section 5 draws some conclusions from this study.

2 Data

The dataset is composed of a combination of 112 forest AGB estimates and cor-
responding Advanced Land Observing Satellite (ALOS) Phased Array L-band
Synthetic Aperture Radar (PALSAR) data covering the forested areas of Guinea-
Bissau (West Africa). Forest AGB was estimated in two field campaigns that took
place in 2007 (43 observations) and 2008 (69 observations). It was based on a
stratified sampling methodology using an available land cover map of 2007. In-
dividual trees were measured following a three-nest sampling plot methodology
(4, 14, and 20m concentric sub-plots) and used in combination with allometric
equations to obtain forest AGB estimates. ALOS PALSAR data was acquired
in 2008 in fine beam dual (FBD) mode (i.e., HH and HV polarizations). After
image processing, several metrics were extracted for the same locations (112
plots) that were measured in the two field campaigns. Those metrics were the
minimum, maximum, mean, and standard deviation of the HH and HV polar-
izations, expressed in decibel (dB) units. Therefore we have eight features, that
we designate as x1, ..., x8, where some are highly correlated, such as x2−x3−x4
and x6 − x7 − x8. More information about the data set can be found in [2].

For the contest, only 75 of the 112 samples were given to the participants,
and the remaining 37 samples were held as the unseen data where to measure
the quality of each proposed model. With the 75 samples the participants were
free to do as they wished.

Prediction of Forest Aboveground Biomass 409

The extended data used in method 8 below (EXT-REAL) was obtained by
randomly selecting 65536 samples from the study area (pixels from the image),
with the only constraint that the distance between any two points cannot be
lower than 200 meters. The synthetic extended data used in method 9 below
(EXT-SYNT) was obtained by attributing to each of the eight features four
different values (48 = 65536), equidistant from each other and inside the ranges
given by the minimum and maximum values of each feature in the 75 samples.

3 Methods

A large part of the methods used and described next are based on GP, namely
methods 5–13. All of these used 30 random partitions of the data (the 75 samples)
as training (50 samples) and validation data1 (25 samples). These partitions
were the same for methods 5–11. The partitions were used as cross-validation to
calculate the expected error, and in some cases to tune the parameters of the
method.

Method 1 (LIN). The first method to be tested is multiple linear regression,
using a stepwise selection algorithm, iterating forward selection and backward
elimination steps based on the statistical significance of the regression coeffi-
cients. This procedure aims at having the simplest model. The model obtained
uses only one feature: y = 154.0373+8.7676x6. From now on it will be designated
as LIN (linear).

Method 2 (LIN-NO). The second method is basically the same as LIN, but
the model is fitted without the three detected severe outliers which have high
Cook’s distances. The model obtained is y = 174.6253+ 9.8750x6 and it will be
designated as LIN-NO (linear with no outliers).

Method 3 (EXP). Due to the asymmetry of variable V9, which has an expo-
nential distribution with parameter 64.8839, and the non-normality of the errors
obtained with the LIN and LIN-NO models, the logarithm transformation is
tested. This resulted in the model y = exp(8.1390 + 0.2680x8), designated as
EXP (exponential).

Method 4 (REG). The fourth method is standard linear regression with elastic
net regularization [20]. The elastic net penalty is a linear combination of L1
and L2 regularization terms that aims at obtaining sparse weight parameters
and assign similar weights to correlated predictors. The model obtained was
y = 191.6389−1.8963x1+0.5056x2−1.0050x3+0.2156x4+3.6368x6+3.9242x7+
3.4831x8 and it will be designated as REG (regularization).

Method 5 (STD-GP). The fifth method is a common implementation of tree-
based GP, using Dynamic Limits [17] for bloat control and a fixed maximum
depth of 10. A population of 500 individuals, initialized with the Ramped Half-
and-Half procedure [8], was allowed to evolve for 50 generations with standard

1 In GP the validation data is often called test data. We call “unseen data” to the 37
samples that were not given to the participants, to avoid name confusion.

410 S. Silva et al.

crossover and mutation (probabilities 0.9 and 0.1, respectively) and a replication
rate of 0.1. The function set was composed of the four binary operators +, -, ×,
and /, protected as in [8] and the terminal set included ephemeral random con-
stants. Selection for reproduction was made with lexicographic tournament [11]
of size 5. Elitism guaranteed the survival of the best individual into the next
generation.

The resulting model (not shown) is, after simplification, a 67-node tree where
features x2, x4 and x7 do not appear, and it will be designated as STD-GP
(standard GP).

Method 6 (WTD). The sixth method is similar to STD-GP, but it uses a
weighted fitness function. The weighted fitness function is defined in terms of
the Root Mean Square Error (RMSE):

f∗ =

√√√√ 1

N

N∑
i=1

(Wi · (Ei − Pi))2 (1)

where N is the number training samples, W is the weight vector, E is the ex-
pected values for the training data, and P is the predicted values for the training
data. The weights are updated on every generation G with Algorithm 1. Fitness
is given by f = f∗.

In the above algorithm, when η = 1, the values for P1 are already available.
That is, the prediction values for generation η = 1 have already been calculated
with W = 1, so that we can update the weights for the next generation fitness
function.

We update the weights depending on whether there has been any improve-
ment in the prediction values over the generations. The magnitude of increase or
decrease in the prediction values is reflected in the error value ε. The choice of
error function ε is so that the updated weights do not reach saturation values for

a small error differences. In other words, the error function ε = 1− (εη + 1)−1/2

is a slowly growing function in terms of differences between the expected and
predicted values. If it were not the case (e.g., using exponential functions), then,
even for a small deviation of predicted values from the expected values, we would
have ε ≈ 1, which should be avoided.

This approach of weighing is different form the usual weighing procedures
(e.g. [14]), where each sample is re-weighed with respect to other samples in the

Algorithm 1. Update Weights

1 Define: εη = |Pη − E| and εη−1 = |Pη−1 − E| for any η ∈ 1 . . .G
2 ε = 1 − (εη + 1)−1/2

3 Initialization: P0 = ∞ and W0 = 1
4 for η ∈ 1 . . .G do

5 Wη
i = Wη−1

i ∗ εi ; if εηi < εη−1
i , for all i ∈ 1 . . . N

6 Wη
i = Wη−1

i + (1 − Wη−1
i) ∗ εi ; if εηi > εη−1

i , for all i ∈ 1 . . . N

7 Wη
i = Wη−1

i ; otherwise, for all i ∈ 1 . . . N Return:
W = Wη;

Prediction of Forest Aboveground Biomass 411

training data. In this approach, re-weighing of a sample solely depends on the
magnitude of change in error values and is not reflected upon by the magnitude
of change of values of other samples.

The model that resulted from this method is, after simplification, a 17-node
tree, which is very short for GP standards. We represent it with the expression
y = 2x2 − x3 + 3x5 + x6 + 73.078x5/x6 and designate it as WTD (weighted).

Method 7 (WTD-17). The seventh method is basically the same as WTD,
but uses the Dynamic Limits [17] with a fixed maximum depth of 17. The model
that resulted from this method (not shown) is, after simplification, a 54-node
tree where all features except x2 appear, and it will be designated as WTD-17
(weighted with maximum depth 17).

Method 8 (EXT-REAL). This method is inspired by the work of Robilliard
and Fonlupt [16]. Since their validation set was very small, they gathered thou-
sands of additional samples from which the expected output was unknown, only
knowing what reasonable bounds they should have. With this extended data set
a new validation criterion was used: the lowest number of samples out of bounds,
the better the model.

In this method we use real extended data as described in Section 2. When
using the extended data Dext of size Next, we make slight modifications to Equa-
tion (1). Let UB = max(E) be the maximum expected value in the training data,
LB = min(E) the minimum expected value in the training data, and Pext the
prediction values for the extended data. We now define a “confidence” parameter

as c = Pbnd ∗ 100/Next, where Pbnd = {P i
ext ∈ [LB,UB]}Next

i=1 . The confidence
parameter c quantifies the proportion of our predictions that are in the range of
expected values. We modify the fitness function as f = f∗/c.

The model that resulted from this method (not shown) is, after simplification,
a 83-node tree where features x2 and x8 do not appear, and it will be designated
as EXT-REAL (extended real data).

Method 9 (EXT-SYNT). This method is similar to EXT-REAL, but the
extended data Dext is synthetic data as described in Section 2. The model that
resulted from this method (not shown) is, after simplification, a 93-node tree
where all the features appear, and it will be designated as EXT-SYNT (extended
synthetic data).

Method 10 (BAG). This method is a bagging of GP models. Instead of taking
the training data and obtaining one model from it, we perform τ trials to obtain
τ models. Each trial uses a training set that is formed by randomly drawing, with
replacement, the same number of samples as the original training set (n=75).
Then the output of the model is the median of the τ outputs for each instance.
We used the median instead of the mean because of frequent surges observed in
the prediction values. τ was set to 10.

By construction, the model that results from this method (not shown) is an
ensemble of models, hence complex and difficult to interpret. We will designate
it as BAG (bagging).

412 S. Silva et al.

Method 11 (BOOST). In the normal weighted approach (WTD) we update
the weights on every generation for a given instance of training data. In this
method we perform τ trials for the training data and update a weighted distri-
bution D for each trial. Under this method, each trial τ uses the same set of
training samples, which are drawn at random without replacement at the be-
ginning of trial 1. We adopt the commonly used Ada − Boost (e.g. [7,14]) to
update our distribution. Let us define Pt−1 to be the best prediction values for
the previous trial. Since D is updated at the end of each trial, we have Wη

updates available from Algorithm 1. For each trial we use fitness f = f∗.
The boosting approach usually employs evaluating a final hypothesis / func-

tion based on τ functions, evaluated for each trial [14]. We follow a naive ap-
proach of selecting a function whose RMSE is the best among the τ evaluated
functions. It has also been observed that such a best hypothesis is obtained
from the tth trial, where t > τ/2. This confirms that there is a good chance
of improvement by re-weighing over the trials, than just re-weighing over the
generations, as followed in WTD and WTD-17 approaches. τ was set to 10.

By construction, the model that results from this method (not shown) is an
ensemble of models, hence complex and difficult to interpret. We will designate
it as BOOST (boosting).

Method 12 (RST). This method is the Random Sampling Technique (RST).
The RST was originally used to improve the speed of a GP run [4], however in [9]
it was used to reduce overfitting in a classification task in the context of software
quality assessment. With the RST the training set is never used as a whole in
the search process. Instead, at each generation, a random subset of the training
data is chosen and evolution is performed taking into account the fitness of the
solutions in this subset. This implies that only individuals that perform well on
various different subsets will remain in the population. Recently, Gonçalves et
al. [5] have proposed a more flexible approach to the RST, where the size of the
random subset and how often it is changed are parameters of the algorithm. The
authors tested their technique on real-life datasets and found the best results by
using only one random sample in each generation. They also showed that the
RST with these settings produces parsimonious models.

Algorithm 2. Boosting

1 Initialization: D1 = 1/N
2 for t ∈ 2 . . . τ do

3 Dt
i = (Dt−1

i)1−Li , for all i ∈ 1 . . . N
4 where

Li =
P t−1

i − Ei

max Pt−1 − E

5 Update: Wη from Algorithm 1

6 Normalize: Dt

7 Return: W = Dt ∗ Wη;

Prediction of Forest Aboveground Biomass 413

We used RST with these settings. As for the regular GP parameters, the
settings were similar to STD-GP except for these differences: the population
was allowed to run for 100 generations, the tournament size was 2% of the
population size, no random constants were in the function set, elitism guaranteed
the survival of the best individual into the next generation, and no bloat control
was used except for the fixed depth limit of 17. The model that resulted from
this method is, after simplification, a 29-node tree represented by the expression
x2−3x1+x4−4x5+8x6+x7−3x8−x4/(x2−x1+x7), from now on designated
as RST (Random Sampling Technique).

Method 13 (GS-GP). This method is a GP system that uses the geometric
semantic genetic operators recently created by Moraglio et al. [12]. By semantics
it is meant the behavior of a program once it is executed on a set of data or,
more specifically, the set of outputs a program produces on the training data.
The geometric semantic operators directly search the semantic space, and they
have a number of theoretical advantages compared to the ones of standard GP
systems. In particular, as proven in [12], they induce a unimodal fitness landscape
on any problem consisting in finding the match between a set of input data and
a set of known outputs (like for instance classification or regression). This should
facilitate evolvability [6], making these problems potentially easier to solve for
GP. The geometric semantic operators also have a major drawback: they always
create offspring that are larger than their parents, causing an exponential growth
of the individuals. However, with the development of a novel implementation [19]
we were able to use them efficiently. This new GP system evolves the semantics of
the individuals without explicitly building their syntax, freeing us from dealing
with exponentially growing trees during the evolution. Only the best individual
found must be explicitly built. For more details see [19].

A population of 200 individuals was allowed to evolve until 10000 fitness
evaluations were completed, using similar settings to the RST method with a
few differences: the tournament was regular (not lexicographic) and absolutely
no bloat control was used. Both semantic operators were used, with a higher than
normal mutation rate (0.5) since it was recognized that the geometric semantic
mutation requires a higher rate for good exploration of the search space [19].
The mutation step of the geometric semantic mutation was 0.001 as in [12]. The
model that results from this method (not shown) is a very large individual that
we have not attempted to simplify. We will designate it as GS-GP (geometric
semantic GP).

Method14(BAG-SGB). StochasticGradientBoosting (SGB) [3] typically uses
a base learner (in our case, decision trees) and constructs additive regressionmod-
els by sequentially fitting the chosen base learner to current “pseudo”-residuals
by least squares at each iteration [3]. At these iterations, a simple base learner is
built using a randomsub-sample of the training data (without replacement), which
has been shown to substantially improve the prediction accuracy and execution
speed, andmakes the approach resilient to overfitting [3]. The finalmodel is a linear
combination of each simple base learner, which can be seen as a regression model
whereby each term is a tree. Furthermore, Suen et al. [18] have demonstrated that

414 S. Silva et al.

building and combining (by averaging in the case of regression) several SGB mod-
els on bootstrap samples of the training data set performs significantly better than
an unique SGBmodel, and concluded that it was accomplished by variance reduc-
tion. Therefore, instead of building a single SGBmodel, several SGBmodels fitted
to bootstrap samples (with replacement) of the original training set (n=75) were
built (BagSGB). In this study 25 bootstrap replicateswere used to build aBagSGB
model. For more details see [2].

By construction, the model that results from this method (not shown) is an
ensemble of models, hence complex and difficult to interpret. We will designate
it as BAG-SGB (bagging of stochastic gradient boosting).

4 Results and Discussion

Table 1 shows the results obtained by each method. We report the results in
terms of root mean square error (RMSE) and correlation (CORR) between pre-
dicted and expected outputs. For the methods that used some kind of cross-
validation, e.g. all the GP methods (that did 30 runs, each one with a different
data partition - see Section 3), the expected error was calculated as the mean
or median RMSE and CORR obtained in the 30 runs. We have decided to re-
port both mean and median because the variability between runs was very high,
and hence the median becomes a better estimate of the error. We report the
error obtained on the unseen data, and when available we also report the error
obtained in the training data.

None of the methods was able to produce a model that generalizes well on
the unseen data. All RMSEs are high and accompanied by low (negative for all
GP models) CORRs. The model with lowest RMSE and highest CORR is the
one produced by the best state-of-the-art method, BAG-SGB, matched by the
first two linear models, LIN and LIN-NO, and followed by REG. The non-linear
models behaved much worse. Among the GP models, STD-GP and WTD-17
were the ones with higher RMSE on the unseen data, surprisingly followed by
RST. None of the GP models was able to accurately estimate the error, with
exceedingly high values in the mean expected RMSE, median expected RMSE
always too optimistic, and expected CORR showing similar values between mean
and median but completely failing to guess the negative values obtained on the
unseen data. The only models providing similar values for the mean and median
expected RMSE were BOOST and GS-GP, GS-GP being the less optimistic one.
GS-GP is also the one achieving, by far, lower RMSE and higher CORR on the
training data. With such results on the training data we could expect GS-GP
to generalize worse, but in fact it is also the best GP model on the unseen data.
This is explained by the geometric properties of its operators [19]. However, if
we take into consideration also the simplicity and interpretability of the models,
GS-GP cannot be considered the best of the GP models; among all the models
BAG-SGB also cannot be considered the best. That award goes to the most
simple linear model, LIN. It is noteworthy that BAG-SGB is reported to achieve
RMSE 26.62 and CORR 0.95 when using the entire original data set of 112
samples [2], and with the 75 samples it is not better than a linear model.

Prediction of Forest Aboveground Biomass 415

Table 1. Results of the different models. Best of each column is marked in bold.

Expected RMSE Expected CORR Training Data Unseen Data

Mean Median Mean Median (Median Values) RMSE CORR
Techniques RMSE CORR

LIN n/a n/a n/a n/a 54.27 0.47 74.50 0.11
LIN-NO n/a n/a n/a n/a 55.00 0.47 75.88 0.11
EXP n/a n/a n/a n/a 58.07 0.46 87.03 0.03
REG n/a n/a n/a n/a 53.62 0.49 76.17 0.05

STD-GP 225.04 74.14 0.16 0.15 52.69 0.53 1253 -0.20
WTD 313.28 68.81 0.09 0.06 54.94 0.51 81.42 -0.02
WTD-17 8853 68.57 0.14 0.15 50.36 0.53 115.02 -0.10
EXT-REAL 505.03 68.97 0.00 0.08 56.57 0.45 82.30 -0.02
EXT-SYNT 86537 64.64 0.08 0.10 57.16 0.47 82.02 -0.28
BAG 94.46 62.09 0.24 0.25 52.51 0.61 81.24 -0.21
BOOST 59.41 57.98 0.22 0.22 61.92 0.33 80.91 -0.14
RST 86.25 66.23 0.03 0.07 51.55 0.58 88.55 -0.30
GS-GP 67.09 64.48 0.15 0.15 44.12 0.74 79.56 -0.03

BAG-SGB n/a n/a n/a n/a n/a n/a 75.07 0.14

5 Conclusions

We have performed an exercise on predicting the forest AGB of Guinea-Bissau,
West Africa. In the context of a privately launched “contest”, 14 methods were
used but none was able to produce a model that generalizes well to unseen data.
Even the best state-of-the-art method was not better than a simple linear model,
despite the literature reporting much better results when using a larger data set.
We conclude that the AGB prediction is a difficult problem, aggravated by the
small size of our data set.

Acknowledgments. The presented work was partially supported by national
funds through FCT under contract Pest-OE/EEI/LA0021/2011 and projects
PTDC/EIA-CCO/103363/2008 and PTDC/EEI-CTP/2975/2012,Portugal. The
Secretaria de Estado para o Ambiente e Desenvolvimento Durável (SEAD) of
Guinea-Bissau and the Ministry of the Environment of Portugal funded and
logistically supported the development of the Carboveg-GB project. This re-
search was conducted under the agreement of the Japan Aerospace Exploration
Agency’s (JAXA) Kyoto and Carbon (K&C) Initiative. JAXA is particularly
thanked for their provision of the ALOS PALSAR data.

416 S. Silva et al.

References

1. Campbell, B.: Beyond Copenhagen: Redd plus, agriculture, adaptation strategies
and poverty. Global Environmental Change-Human and Policy Dimensions 19(4),
397–399 (2009)

2. Carreiras, J., Vasconcelos, M., Lucas, R.: Understanding the relationship between
aboveground biomass and ALOS PALSAR data in the forests of Guinea-Bissau
(West Africa). Remote Sensing of Environment 121, 426–442 (2012)

3. Friedman, J.: Stochastic gradient boosting. Computational Statistics & Data Anal-
ysis 38(4), 367–378 (2002)

4. Gathercole, C., Ross, P.: Dynamic Training Subset Selection for Supervised Learn-
ing in Genetic Programming. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.)
PPSN 1994. LNCS, vol. 866, pp. 312–321. Springer, Heidelberg (1994)

5. Gonçalves, I., Silva, S., Melo, J.B., Carreiras, J.M.B.: Random Sampling Tech-
nique for Overfitting Control in Genetic Programming. In: Moraglio, A., Silva,
S., Krawiec, K., Machado, P., Cotta, C. (eds.) EuroGP 2012. LNCS, vol. 7244,
pp. 218–229. Springer, Heidelberg (2012)

6. Gustafson, S., Vanneschi, L.: Crossover-based tree distance in genetic program-
ming. IEEE Transactions on Evolutionary Computation 12(4), 506–524 (2008)

7. Iba, H.: Bagging, boosting, and bloating in genetic programming. In: Proceedings
of GECCO 1999, vol. 2, pp. 1053–1060 (1999)

8. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge (1992)

9. Liu, Y., Khoshgoftaar, T.: Reducing overfitting in genetic programming models for
software quality classification. In: Proceedings of the Eighth IEEE Symposium on
International High Assurance Systems Engineering, Tampa, Florida, USA, March
25-26, pp. 56–65 (2004)

10. Lucas, R., Armston, J., Fairfax, R., Fensham, R., Accad, A., Carreiras, J., Kelly,
J., Bunting, P., Clewley, D., Bray, S., Metcalfe, D., Dwyer, J., Bowen, M., Eyre, T.,
Laidlaw, M.: An evaluation of the alos palsar l-band backscatter – above ground
biomass relationship over Queensland, Australia. IEEE Journal of Selected Topics
in Applied Earth Observations and Remote Sensing 3(4), 576–593 (2010)

11. Luke, S., Panait, L.: Lexicographic parsimony pressure. In: Proceedings of GECCO
2002, pp. 829–836. Morgan Kaufmann (2002)

12. Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric Semantic Genetic Program-
ming. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M.
(eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 21–31. Springer, Heidelberg (2012)

13. Pan, Y., Birdsey, R., Fang, J., Houghton, R., Kauppi, P., Kurz, W., Phillips, O.,
Shvidenko, A., Lewis, S., Canadell, J., Ciais, P., Jackson, R., Pacala, S., McGuire,
A., Piao, S., Rautiainen, A., Sitch, S., Hayes, D.: A large and persistent carbon
sink in the world’s forests. Science 333(6045), 988–993 (2011)

14. Paris, G., Robilliard, D., Fonlupt, C.: Applying Boosting Techniques to Genetic
Programming. In: Collet, P., Fonlupt, C., Hao, J.-K., Lutton, E., Schoenauer, M.
(eds.) EA 2001. LNCS, vol. 2310, pp. 267–918. Springer, Heidelberg (2002)

15. Poli, R., Langdon, W.B., Mcphee, N.F.: A field guide to genetic programming
(March 2008), http://www.gp-field-guide.org.uk

16. Robilliard, D., Fonlupt, C.: Backwarding: An Overfitting Control for Genetic Pro-
gramming in a Remote Sensing Application. In: Collet, P., Fonlupt, C., Hao, J.-K.,
Lutton, E., Schoenauer, M. (eds.) EA 2001. LNCS, vol. 2310, pp. 245–254. Springer,
Heidelberg (2002)

http://www.gp-field-guide.org.uk

Prediction of Forest Aboveground Biomass 417

17. Silva, S., Costa, E.: Dynamic limits for bloat control in genetic programming and
a review of past and current bloat theories. Genetic Programming and Evolvable
Machines 10(2), 141–179 (2009)

18. Suen, Y.L., Melville, P., Mooney, R.J.: Combining Bias and Variance Reduction
Techniques for Regression Trees. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge,
A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720, pp. 741–749. Springer,
Heidelberg (2005)

19. Vanneschi, L., Castelli, M., Manzoni, L., Silva, S.: A new implementation of geomet-
ric semantic GP applied to predicting pharmacokinetic parameters. In: Proceedings
of EuroGP 2013, Springer (to appear, 2013)

20. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal
of the Royal Statistical Society, Series B 67, 301–320 (2005)

Human Action Recognition from Multi-Sensor

Stream Data by Genetic Programming

Feng Xie, Andy Song, and Vic Ciesielski

RMIT University, Melbourne, VIC 3001, Australia
{feng.xie,andy.song,vic.ciesielski}@rmit.edu.au

http://www.rmit.edu.au/compsci

Abstract. This paper presents an approach to recognition of human ac-
tions such as sitting, standing, walking or running by analysing the data
produced by the sensors of a smart phone. The data comes as streams of
parallel time series from 21 sensors. We have used genetic programming
to evolve detectors for a number of actions and compared the detection
accuracy of the evolved detectors with detectors built from the classical
machine learning methods including Decision Trees, Näıve Bayes, Near-
est Neighbour and Support Vector Machines. The evolved detectors were
considerably more accurate. We conclude that the proposed GP method
can capture complex interaction of variables in parallel time series with-
out using predefined features.

1 Introduction

The widespread penetration of smart phones with various sensors onboard has
opened up opportunities for applications of human action recognition. Even a
consumer phone can be easily turned into a sensor platform which can both
constantly transmit and process sensor input about the person who carries the
phone. Accurate recognition of the person’s actions can enable a wide range of
applications such as timing an activity, creating a sport profile and assisting
living and healthcare [15].

The data stream produced by the sensors can be viewed as time series as each
sensor generates a sequence of observations at regular intervals. Furthermore
data are received from multiple channels such as accelerometer readings in x, y
and z axes. Patterns of human locomotion such as walking and running, likely
exist in these multi-channel time series. Since one sensor is not sufficient to
make sense of a person’s action, the ability of handling multiple data streams
is crucial in this domain. Another difficulty in human action recognition is the
lack of prior knowledge on the correlation between certain data patterns and
human actions. As a result, manually constructing suitable models or features
for different actions is not very feasible.

We present a Genetic Programming (GP) based method to address the afore-
mentioned issues. More specially, our research questions are:

1. How can a suitable GP based methodology be established to evolve human
action recognition programs which can handle raw input from multiple body
sensors?

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 418–427, 2013.
© Springer-Verlag Berlin Heidelberg 2013

http://www.rmit.edu.au/compsci

Human Action Recognition from Multi-Sensor Stream Data by GP 419

2. How can this method handle multi-class of human actions?
3. How does the GP method compare to conventional classification algorithms?

Action detection problems can be formulated in two different ways: (1) As bi-
nary problems, for example, is the person running or not, or (2) As multi-class
problems, for example, is the person the person running, or walking or standing,
or none of these. Binary problems are easier to formulate and accuracies are
higher, however, multi-class problems are more important in practice. In this
paper we address both formulations.

2 Related Work

There is a massive body of literature on time series analysis. Most of the work is
focused on the prediction of future values. However, there has been some work
on other aspects such as detecting shapes and patterns in time series [6]. Most
of the work on time series has been on a single time series, there has been very
limited work on multi-channel time series.

There are existing studies using GP in time series analysis. Most of these are
for forecasting. Kaboudan [4], for example, used GP for housing price prediction.
The researcher found that the results produced by GP were more reliable and log-
ically acceptable than those from neural networks. Wagner and Michalewicz [14]
proposed GP with adaptive windowing for forecasting in a dynamic environ-
ment. Song and Pinto [13] applied GP to a sequence of video frames for motion
detection problems. Hetland et al. [2] combined a pattern matching chip and GP
to discover temporal rules useful for prediction. Xie et al. [16] used a GP-based
framework to detect events of interest in a time series with background noise.
Although these works have a different goal to ours, they do show the potential
of GP to find rules in time series data without much human intervention.

Our work is similar to time series classification problem [12]. However, they
are eventually different. The data mining algorithms usually require time series
stream to be segmented into non-overlapped, fixed-size vectors as inputs. The
proposed method is capable to deal with overlaps and detect action patterns
with any length within a maximum search window size.

GP is most naturally used for binary classification, a negative output de-
noting one class and a positive output the other. There have been a number
of proposals for extending GP to multiple classes. Kishore et al. [7] models an
n-class classification problem as n binary classification problems. One Genetic
Programming Classifier Expression(GPCE) is trained for each class which can
recognise its own class. A strength of association is calculated for each GPCE
to address conflicts where one instance is claimed by two or more GPCEs. Muni
et al. [9] reported a novel approach in which one GP tree consists of n subtrees,
each representing one of the n classes. Loveard et al. [8] proposed five ways of
multi-class classification in GP: Binary Decomposition, Static Range Selection,
Dynamic Range Selection (DRS), Class Enumeration and Evidence Accumula-
tion. Of these methods, DRS is proved to be the best, and this is the method

420 F. Xie, A. Song, and V. Ciesielski

used in our work. In this approach each evolved individual carries with it a map-
ping of the output values to classes and the mapping is generated as part of the
evolutionary process.

3 GP Representations

We use tree based genetic programming. The function set is shown in Table 1
which lists the parameters and return types for each function. In addition to the
four basic arithmetic functions, there are three extra functions for multi-channel
time series. Two of these, Window and Multi-Channel, take the special terminals
such as Operation and Temporal Index, listed in the terminal set (Table 2).
Others take double types as input. These are from the sensor streams or returned
values of other functions. In Table 2, each Channel m terminal denotes one value
from a channel. These functions and terminals are explained below.

Table 1. Function Set

Functions Parameters Return Type

{ +, −, ∗, / } 1. Double, 2. Double Double

Window 1. Double, 2. Temporal Index, 3. Operation Double

Temporal Diff 1. Double Double

Multi-Channel 1. Channel Index, 2. Multivariable Operation Double

Table 2. Terminal Set

Terminal Value Return Type For Function

Channel m Current value at Channel m Double Any
Operation AVG,STD,DIF,SKEWNESS Integer Window
Temporal Index [1, 2window size − 1] Integer Window

Channel Index [1, 2num of channels − 1] Integer Multi-Channel
Multivariable Operation MED,AVG,STD,RANGE Integer Multi-Channel

Function Window. This function is responsible for taking a selection of points
from a time series. It has three parameters. The first one is the input in dou-
ble. The value changes as data is continuously fed in. To “remember” past val-
ues, this function has a memory list which keeps the most recent S readings
as t0, t1, ..., tS−1, from the earliest to current. S is set to 12 in this study. The
second parameter selects data points from the memory list. It reads the return
value from terminal Temporal Index which randomly generates an integer in the
range 1 to 212 − 1. The binary equivalent of this number is then used to deter-
mine which data points in the memory list will be selected. For example, a value
of 11 of “temporal index” will be converted to binary giving 000000001011.
Points t8, t10 and t11 are selected as the eighth, the tenth and the eleventh bits
are true. A value of 4095 would result in all 12 points in the memory list be-
ing selected. This mapping mechanism enables flexible point selection inside a

Human Action Recognition from Multi-Sensor Stream Data by GP 421

window and consequently helps find the duration of an action.The third param-
eter randomly selects one of four operations: AVG, STD, DIF and SKEWNESS on
the points selected by the second parameter Temporal Index. These operations
correspond to the calculation of average, standard deviation, sum of absolute
differences and skewness of the selected points respectively.

Function Temporal Diff. Function Temporal Diff captures temporal differ-
ences. It takes one value from the stream input as its parameter and returns
the difference between the current value and the previous one. It is effectively
a window of size 2 so it can be considered as a special case of function Window

which applies the subtraction operation on the last two points in memory list.

Function Multiple-Channel. Functions Window and Temporal Diff handle
only one sequence of values, namely readings from one channel. They can not cap-
ture patterns occurring across multiple channels. Hence function Multi-Channel

is introduced which has two parameters: Channel Index and Multivariable

Operation. The first parameter works in a similar fashion to Temporal Index

in function Window. The range of index is in [1,2M−1] (M is the total number of
channels). The second parameter randomly selects one of four multiple-variable
operations: MED, AVG, STD and RANGE which operate on the current val-
ues of the selected variables and return the median, the average, the standard
derivation and the distance between the maximum and minimum of these values.

4 Multi-class Classification

In this work we have used two ways to implement multi-class classification: (1) A
single multi-class classifier. (2) An ensemble classifier based on binary classifiers.
Given a classification problem with a set of classes C = {c1, c2, ..., cn}, for each
class a classifier Classifierj is evolved to classify class cj (positive) against
all other classes (negative). In total, n − 1 classifiers are generated. When one
instance is claimed by multiple classifiers as positive, the classifier with higher
accuracy in training will win.

5 Experiments

The GP runtime settings in experiments for this study are fairly standard. The
population size is 1000. The maximum and minimum tree sizes are 8 and 2
respectively. The crossover, mutation and elitism rates are 85%, 10% and 5%.
The evolution stops at a maximum of 50 generations. Each run is repeated 10
times and best individual is used for testing.

422 F. Xie, A. Song, and V. Ciesielski

Table 3. Number of Instances in the Three Data Sets

Data Set Class Training Test

Synthetic Data 1
Positive 200 103
Negative 199 96

Synthetic Data 2
Positive 193 110
Negative 206 89

Human Action Data

Sitting 1697 311
Standing 1074 1345
Walking 950 892
Running 819 549
Others 85 51

5.1 Data Sets

Three sets of multi-channel streams were used for evaluation. The first two are
synthetic, containing two and five channels of input respectively. They are to
validate the aforementioned methodology. The third is human action data, con-
taining input from 21 channels. Table 3 shows the number of instances in each
class. They have been split into training set and test set.

Synthetic Data. Both of the two synthetic data sets are designed for binary
classification purposes. In Synthetic Data 1, there are two variables of stream-
ing data input. A positive is defined as the presence of significant simultaneous
changes(> 0.5) in both variables. To generate this data, each variable was ini-
tialised randomly. The value at each time interval was also random. The proba-
bility of a noticeable change in one variable occurring is 0.7.

Synthetic Data 2 is more complex as it has five variables. If any two of five
channels simultaneously changed by more than 5 over two consecutive time in-
tervals, then that is a positive. Similarly to the first data set, for each channel
the next point is randomly generated with a probability of change 0.3. As we
understand the data sets, the suitable features for them would be the differences
between two adjacent points on each channel.

Human Action Data. This real world data set was collected from the built-in
accelerometer, gyro, and magnetometer sensors of an iPhone4. An application
was developed to read triaxial physical movement measurements from inertial
units at a frequency of 30Hz. In total, there are 21 measurements (channels)
available for recording. This data set involved one subject and no cross-subject
validation was included in this research. The subject was asked to put the iPhone
4 in the waist pocket and to perform four actions in an order, Sitting, Standing,
Walking and Running. The duration of each action was arbitrary.

To label the ground truth, the subject go “GO” to mark the end point of
the previous action and the starting point of a new one. The voice recording is
synchronised with the sensor data recording. The “GO” command also occurred
at the same time as the subject changed action. The class labels of the recorded
data are relatively accurate.

Human Action Recognition from Multi-Sensor Stream Data by GP 423

Data for Comparisons. Using the above data sets, the proposed GP method
was compared with four conventional classification methods: J48 (Decision Trees)
[11],Näıve Bayes [3] , IB5 (Nearest Neighbours) [1] and SVM (Support Vector
Machine) [5, 10]. However, these methods can not directly work on time series
data as they have no built-in sliding window mechanism, so we manually seg-
mented the three data sets. For each channel, a window of fixed-length of Ws is
used to build an instance. The value Ws is set to 2 for the two synthetic data
sets and 12 for action data. This is to ensure that these non-GP methods will
receive the same amount of information as GP.

These methods treat one instance as one row of values. However in multi-
channel streams, there are multiple rows in one instance, so we flattened them
into one row just like representing a matrix in a one-dimensional array. These
are the raw stream inputs. In addition, two feature sets Set A and Set B are
constructed for conventional classifiers. Set A calculates the temporal difference,
that is the difference between two consecutive points. Therefore, (Ws−1) features
are extracted for one channel. Set B contains the averages and the standard
deviations of points of each channel at one window position . The number of
attributes in the data for conventional methods are shown in Table 4. Set B is
only used on human action data.

Table 4. Data Converted for Conventional Methods

Data Set Window size
No. of Attributes

(Raw Input)
No. of Attributes

(Features)

Synthetic Data 1 2 4 2× (2− 1) = 2

Synthetic Data 2 2 10 5× (2− 1) = 5

Human Action Data 12 252
Set A = 21× (12− 1) = 231

Set B = 21× 2 = 42

5.2 Results

All the methods for comparison use default parameters from the WEKA package.
IB5 was used because we found 5 nearest neighbour often gave the best results on
these data sets. The other algorithms has been tuned to achieve their best results.

Binary Classification. Table 5 presents the average accuracies, true positive
rates (TP) and true negative rates (TN) on each test data by various methods.
Each experiment is a binary classification, so there are 6 rows of results as there are
4 actions in the human action data. When manually constructed features are not
available, the performance of the conventional classifiers is very poor. In the case of
sitting, J48 andNäıve Bayes appear to have a good accuracy of 90.12%. However,
this is deceptive as their true positive rates are zero. Effectively they recognized
nothing. The high accuracy is merely due to the dominance of negative cases in the
data set. Most of the other results are not much better. The only good result from
non-GP methods is obtained by IB5 on running and SMO on sitting.

424 F. Xie, A. Song, and V. Ciesielski

Table 5. Test Results - Conventional Methods vs. GP- both on Raw Input (%)

Data Set J48 Näıve Bayes IB5 SVM GP

Synthetic Data 1
51.8

TP : 100.0
TN : 0

49.8
TP : 27.2
TN : 74.0

51.8
TP : 58.3
TN : 44.8

48.2
TP : 0

TN : 100.0

100.0
TP : 100.0
TN : 100.0

Synthetic Data 2
55.3

TP : 0
TN : 100.0

57.3
TP : 10.1
TN : 95.5

50.3
TP : 48.3
TN : 51.8

44.7
TP : 100.0
TN : 0

100.0
TP : 100.0
TN : 100.0

3. Sitting
90.1

TP : 0
TN : 100.0

90.1
TP : 0

TN : 100.0

40.2
TP : 0

TN : 44.6

99.6
TP : 100
TN : 99.5

99.7
TP : 100.0
TN : 99.7

4. Standing
57.0

TP : 0
TN : 99.6

57.3
TP : 0

TN : 100.0

57.3
TP : 0

TN : 100.0

57.0
TP : 0

TN : 99.6

96.6
TP : 92.1
TN : 99.9

5. Walking
76.3

TP : 21.7
TN : 97.9

74.4
TP : 9.9

TN : 100.0

85.7
TP : 52.9
TN : 98.6

81.2
TP : 52.6
TN : 92.5

A:97.7
TP : 97.1
TN : 98.0

6. Running
34.2

TP : 88.5
TN : 22.7

68.2
TP : 100.0
TN : 61.4

96.4
TP : 94.4
TN : 96.8

20.8
TP : 84.9
TN : 7.3

99.5
TP : 98.0
TN : 99.9

Table 6. Test Results - Conventional Methods on Features vs. GP on Raw Input (%)

Data Set J48 Näıve Bayes IB5 SVM GP

Synthetic Data 1
100.0

TP : 100.0
TN : 100.0

100.0
TP : 100.0
TN : 100.0

100.0
TP : 100.0
TN : 100.0

100.0
TP : 100.0
TN : 100.0

100.0
TP : 100.0
TN : 100.0

Synthetic Data 2
98.0

TP : 97.8
TN : 98.2

87.9
TP : 100.0
TN : 78.2

100.0
TP : 100.0
TN : 100.0

100.0
TP :100.0
TN : 100.0

100.0
TP : 100.0
TN : 100.0

3. Sitting
76.9

TP : 25.4
TN : 82.6

60.8
TP : 100.0
TN : 56.3

63.1
TP : 89.4
TN : 60.2

90.1
TP : 0

TN : 100.0

99.7
TP : 100.0
TN : 99.7

4. Standing
72.9

TP : 54
TN : 87.0

85.2
TP : 89.3
TN : 82.1

64.4
TP : 21.1
TN : 96.6

57.3
TP : 0

TN : 100.0

96.6
TP : 92.1
TN : 99.9

5. Walking
90.4

TP : 74.3
TN : 96.8

40.5
TP : 78.6
TN : 25.4

93.8
TP : 84.8
TN : 97.4

71.7
TP : 0

TN : 100.0

A:97.7
TP : 97.1
TN : 98.0

6. Running
96.1

TP : 96.0
TN : 96.1

77.4
TP : 100.0
TN : 72.6

97.9
TP : 88.0
TN : 100.0

82.6
TP : 0

TN : 100.0

99.5
TP : 98.0
TN : 99.9

Human Action Recognition from Multi-Sensor Stream Data by GP 425

Table 6 presents the results from these conventional methods on Set A features,
comparing with GP. This is a somewhat unfair comparison between conventional
methods using temporal features and GP using raw data. The rightmost column
in the table is for GP, which is consistently the best performer in every task. Al-
though the conventional methods operate on temporal differences, they still can
only achieve comparable results toGP on the synthetic data. In particular, the true
positives of these methods are rather poor, for example SVM on all four actions,
J48 on sitting and standing and IB5 on standing. Their performance on four human
action recognition tasks is much worse than GP. It should be noted that by using
Set A features SMO result in worse performance than rawdata. Set B features help
SMOto achieve better accuracy on running(98.6%)andonwalking(85.3%). In case
of sitting detection, the result is slightly worse than using raw data but is still rea-
sonablewith an accuracyof 98.7%.However, it still failed to recognise any standing
action. This feature set B did not bring any benefit to other non-GPmethods. The
details are not presented due to the space constraints.

Multi-class Classification. Table 7 shows a comparison of these methods
treating human action data a multi-class problem instead of a set of binary
problems. For the conventional methods, we can see that the use of features is
effective and different methods react to features differently. J48, Näıve Bayes
and IB5, achieved better results on Set A features, while SVM benefits from Set
B features. Nevertheless, their performance is much worse than that of GP on
raw data which is 93.7%, almost 14% higher than the best from these non-GP
methods (80%).

Table 7. Test Accuracies from Multi-class Classification(%)

J48 Näıve Bayes IB5 SVM GP

Raw Input 20.7 29.0 33.1 35.6
93.7Set A: Temporal Diff 63.9 80.0 58.1 20.6

Set B: AVG and STD 28.3 62.5 40.1 50.2

Table 8. Ensemble of Conventional Classifiers

Sitting Standing Walking Running Accuracy

Raw Input SVM IB5 IB5 IB5 42.5%
Set A: Temporal Diff J48 Näıve Bayes IB5 IB5 78.7%
Set B: AVG and STD SVM Näıve Bayes IB5 IB5 47.9%

Ensemble Approach for Multi-class Classification. From the above exper-
iments, we selected the best binary classifiers generated by conventional methods
on each action, either using features, or on raw inputs. They are listed in Table
8. All classifiers in one row are combined together to form an ensemble. The
process is described in Section 4. When an instance is classified as positive by

426 F. Xie, A. Song, and V. Ciesielski

multiple classifiers e.g. Sitting and Standing. The most accurate classifier will
label the instance. If none of the classifiers recognize the instance, then it is
marked as Others. The accuracy of each ensemble is presented on the rightmost
cell on that row.

For GP, the best classifiers trained for each action (as shown in rightmost
column in Tables 5 and 6) can also work together as an ensemble to perform
multi-class classification. The accuracy was improved slightly to 94.5% compared
to 93.7% achieved by a single GP classifier. Compared to the best result of each
row in Table 7, we can see that the ensemble approach did not bring benefits to
conventional methods, but marginally helped GP to be more accurate.

Table 9. Confusion Matrix for GP Classifier Ensemble: (Accuracy:94.5%)

Sitting Standing Walking Running Other

Sitting 311 0 0 0 0

Standing 0 1238 15 0 92

Walking 0 0 862 4 26

Running 0 0 11 538 0

Other 9 0 16 0 26

Table 9 shows the confusion matrix of using an ensemble of the best evolved
binary classifiers for the five-class problem. A major advantage of this ensemble
is that an outcome of “None of the above” (Other in Table 9) is possible. While
this is an error for the current task, it would be a perfectly good outcome if the
person was lying down. In the current task we think that most of these errors
come from transitions between states.

6 Conclusions and Future Work

The results of the above investigation have clearly demonstrated the advantages
of the GP approach to human action recognition from multi-channel data stream.
We conclude that with a proper function set and terminal set, GP can evolve
multivariable time series pattern recognition programs to differentiate various
human actions based on a collection of body sensor input. The methodology does
not require manually designed time series features and can handle raw input, so
it can be applied to scenarios where domain knowledge about the actions is not
available. This method can handle multi-class human actions either by a direct
multi-class approach or by an ensemble of binary classification programs. In
comparison with conventional methods, the high accuracies of our GP method
are evident. It outperforms these methods even when they operate on temporal
features rather than on raw input.

In our future work, we will analyse evolved individuals to gain some insight
into the evolved rules. Another future adaptation of this work is to take transi-
tions between different actions into account.

Human Action Recognition from Multi-Sensor Stream Data by GP 427

References

1. Aha, D., Kibler, D., Albert, M.: Instance-based learning algorithms. Machine
Learning 6(1), 37–66 (1991)

2. Hetland, M.L., Sætrom, P.: Temporal rule discovery using genetic programming
and specialized hardware. In: Proc. of the 4th Int. Conf. on Recent Advances in
Soft Computing, pp. 182–188 (2002)

3. John, G.H., Langley, P.: Estimating continuous distributions in bayesian classifiers.
In: Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence,
UAI 1995, pp. 338–345. Morgan Kaufmann Publishers Inc., San Francisco (1995)

4. Kaboudan, M.: Spatiotemporal forecasting of housing prices by use of genetic pro-
gramming. In: The 16th Annual Meeting of the Association of Global Business
(2004)

5. Keerthi, S.S., Shevade, S.K., Bhattacharyya, C., Murthy, K.R.K.: Improvements
to platt’s smo algorithm for svm classifier design. Neural Comput. 13(3), 637–649
(2001)

6. Keogh, E., Lin, J., Fu, A.: Hot sax: Efficiently finding the most unusual time series
subsequence. In: Proceedings of the Fifth IEEE International Conference on Data
Mining, ICDM 2005, pp. 226–233. IEEE Computer Society, Washington, DC (2005)

7. Kishore, J.K., Patnaik, L.M., Mani, V., Agrawal, V.K.: Application of genetic
programming for multicategory pattern classification. Trans. Evol. Comp. 4(3),
242–258 (2000)

8. Loveard, T., Ciesielski, V.: Representing classification problems in genetic pro-
gramming. In: Proceedings of the 2001 Congress on Evolutionary Computation,
vol. 2, pp. 1070–1077. IEEE (2001)

9. Muni, D.P., Pal, N.R., Das, J.: A novel approach to design classifiers using genetic
programming. Trans. Evol. Comp. 8(2), 183–196 (2004)

10. Platt, J.C.: Fast training of support vector machines using sequential minimal
optimization. In: Advances in Kernel Methods, pp. 185–208. MIT Press, Cambridge
(1999)

11. Quinlan, J.R.: C4.5: programs for machine learning. Morgan Kaufmann Publishers
Inc., San Francisco (1993)

12. Ratanamahatana, C., Lin, J., Gunopulos, D., Keogh, E., Vlachos, M., Das, G.:
Mining time series data. In: Data Mining and Knowledge Discovery Handbook,
pp. 1049–1077 (2010)

13. Song, A., Pinto, B.: Study of gp representations for motion detection with unsta-
ble background. In: 2010 IEEE Congress on Evolutionary Computation (CEC),
pp. 1–8. IEEE (2010)

14. Wagner, N., Michalewicz, Z.: An analysis of adaptive windowing for time series
forecasting in dynamic environments: further tests of the dyfor gp model. In: Pro-
ceedings of the 10th Annual Conference on Genetic and Evolutionary Computation,
GECCO 2008, pp. 1657–1664. ACM, New York (2008)

15. Wang, L., Gu, T., Tao, X., Chen, H., Lu, J.: Recognizing multi-user activities using
wearable sensors in a smart home. Pervasive Mob. Comput. 7(3), 287–298 (2011)

16. Xie, F., Song, A., Ciesielski, V.: Event detection in time series by genetic pro-
gramming. In: 2012 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8
(June 2012)

Novel Initialisation and Updating Mechanisms

in PSO for Feature Selection in Classification

Bing Xue, Mengjie Zhang, and Will N. Browne

School of Engineering and Computer Science
Victoria University of Wellington, Wellington, New Zealand
{Bing.Xue,Mengjie.Zhang,Will.Browne}@ecs.vuw.ac.nz

Abstract. In classification, feature selection is an important, but dif-
ficult problem. Particle swarm optimisation (PSO) is an efficient evolu-
tionary computation technique. However, the traditional personal best
and global best updating mechanism in PSO limits its performance for
feature selection and the potential of PSO for feature selection has not
been fully investigated. This paper proposes a new initialisation strategy
and a new personal best and global best updating mechanism in PSO
to develop a novel feature selection algorithm with the goals of minimis-
ing the number of features, maximising the classification performance
and simultaneously reducing the computational time. The proposed al-
gorithm is compared with two traditional feature selection methods, a
PSO based method with the goal of only maximising the classification
performance, and a PSO based two-stage algorithm considering both the
number of features and the classification performance. Experiments on
eight benchmark datasets show that the proposed algorithm can auto-
matically evolve a feature subset with a smaller number of features and
higher classification performance than using all features. The proposed
algorithm achieves significantly better classification performance than
the two traditional methods. The proposed algorithm also outperforms
the two PSO based feature selection algorithms in terms of the classifi-
cation performance, the number of features and the computational cost.

Keywords: Particle Swarm Optimisation, Feature Selection, Classifica-
tion.

1 Introduction

Classification problems usually have a large number of features, including rele-
vant, irrelevant and redundant features. However, irrelevant and redundant fea-
tures may reduce the classification performance due to the large search space,
known as “the curse of dimensionality” [3,6]. Feature selection is to select a sub-
set of relevant features for classification, which could shorten the training time,
simplify the learned classifiers, and/or improve the classification accuracy [6].

Feature selection is a difficult problem due mainly to the large search space,
which increases exponentially with respect to the number of available features
[6]. Therefore, an exhaustive search is practically impossible in most situations.

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 428–438, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Novel Initialisation and Updating Mechanisms in PSO 429

Different heuristic search techniques have been applied to feature selection, such
as greedy search [3]. However, most of the existing algorithms still suffer from
the problems of stagnation in local optima or being computationally expensive
[3,6]. In order to better address feature selection problems, an efficient global
search technique is needed.

Evolutionary computation (EC) techniques are well-known for their global
search ability. They have been applied to feature selection problems, such as
genetic algorithms (GAs) [1], genetic programming (GP) [13], and particle swarm
optimisation (PSO) [15]. PSO [14] is a relatively recent EC technique, which is
computationally less expensive than some other EC algorithms. In PSO [14], a
population of candidate solutions are encoded as particles in the search space.
PSO starts with the random initialisation of a population of particles. Based on
the best experience of one particle (pbest) and its neighbouring particles (gbest),
PSO searches for the optimal solution by updating the velocity and the position
of each particle according to the following equations:

xt+1
id = xt

id + vt+1
id (1)

vt+1
id = w ∗ vtid + c1 ∗ r1i ∗ (pid − xt

id) + c2 ∗ r2i ∗ (pgd − xt
id) (2)

where x and v represent the position and the velocity. t denotes the tth it-
eration in the evolutionary process. d ∈ D denotes the dth dimension in the
D-dimensional search space. w is inertia weight. c1 and c2 are acceleration con-
stants. r1i and r2i are random values uniformly distributed in [0, 1]. pid and pgd
represent the elements of pbest and gbest in the dth dimension.

Many studies have shown that PSO is an efficient search technique for fea-
ture selection [2,8,15]. However, there are some limitations about current PSO
for feature selection. Firstly, PSO has not been tuned to the feature selection
task. Many initialisation strategies have been proposed in PSO to improve its
performance [16]. However, no existing initialisation strategies are specifically
proposed for feature selection. Secondly, the traditional pbest and gbest updat-
ing mechanism may cause missing good feature subsets with high classification
performance and a small number of features (Discussions in Section 2.2). There-
fore, the potential of PSO for feature selection has not been fully investigated.

1.1 Goals

The overall goal of this paper is to propose a new PSO based feature selection
approach to selecting a smaller number of features and achieving similar or even
better classification performance than using all features and traditional/existing
feature selection methods. To achieve this goal, we propose a new initialisation
strategy and a new mechanism for updating pbest and gbest in PSO to reduce
the number of features without reducing (or even increasing) the classification
performance. Specifically, we will:

– propose a new initialisation strategy in PSO to reduce the number of features
without decreasing the classification performance of the evolved subset,

430 B. Xue, M. Zhang, and W.N. Browne

– develop a new updating mechanism to lead PSO to search for the feature
subsets with high classification performance and small numbers of features,

– develop a new PSO based wrapper feature selection algorithm using the
proposed initialisation strategy and updating mechanism, and

– investigate whether the proposed feature selection algorithm can outperform
two traditional feature selection methods, a PSO based algorithm with the
goal of only maximising the classification performance, and a PSO based
two-stage algorithm considering both of the two main objectives.

2 Proposed Approach

Feature selection has the two main objectives of maximising the classification
performance and minimising the number of features. However, most existing
methods only aim to maximise the classification performance [2]. Some works
combine these two objectives into a single fitness function [8,18], but they need a
predefined parameter to balance these two components, which is usually problem-
dependent and hard to determine a priori. To solve this problem, we only include
the classification error rate in the fitness function (Equation 3) because it is more
important than the number of features. Meanwhile, we propose an initialisation
strategy and a new pbest and gbest updating mechanism to reduce the number
of features without decreasing or even increasing the classification performance,
which also reduces the computational cost.

Fitness1 = ErrorRate (3)

2.1 New Initialisation Strategy

The new initialisation strategy is motivated by the two traditional methods,
forward selection [17] and backward selection [12]. Forward selection starts with
an empty set of features and it usually selects a smaller number of features, but it
may miss the optimal feature subset with a large number of features. Backward
selection starts with the full set of features. It usually selects a large number of
features and the computational time is longer than forward selection.

Hence, we propose a new initialisation strategy to take the advantages of for-
ward and backward selection and avoid their disadvantages. In this new strategy,
particles are initialised using a small number of features. Therefore, the algorithm
will start with searching the solution space with small feature subsets. This will
also reduce the computational cost because the evaluation of a small feature sub-
set in wrapper approaches takes less time than a large feature subset. However,
if all the particles are initialised with small subsets, PSO may miss the medium
or large feature subsets that can achieve the best classification performance.
Therefore, in the proposed initialisation strategy, most particles are initialised
using a small number of features (simulating forward selection) and other par-
ticles are initialised using large feature subsets (simulating backward selection).
Meanwhile, through social interaction (updating pbest and gbest), PSO is ex-
pected to be able to reach and search the solution space with medium feature
subsets if these feature subsets can achieve better classification performance.

Novel Initialisation and Updating Mechanisms in PSO 431

2.2 New pbest and gbest Updating Mechanism

In PSO, particles share information through pbest and gbest, which can influence
the behaviour of the swarm during the evolutionary process. Traditionally, the
pbest and gbest are updated solely based on the fitness value of the particles
(i.e., classification performance in feature selection problems). pbest of a particle
is updated only when the fitness of the new position of the particle is better
than the current pbest. In feature selection, the traditional updating mechanism
has a potential limitation. If the classification performance of the particle’s new
position is the same as the current pbest, but the number of features is smaller,
the particle’s new position corresponds to a better feature subset. However,
according to the traditional updating mechanism, the pbest will not be updated
because their classification performance is the same.

To overcome this limitation, we propose a new pbest and gbest updating mech-
anism. In the new mechanism, the classification performance of the feature subset
is used as the fitness function, which means the classification performance is still
the first priority, but the number of features is also considered. pbest and gbest
are updated in two situations. The first situation is that if the classification per-
formance of the particle’s new position is better than pbest, pbest will be updated
and replaced by the new position. In this case, the number of features selected
will be ignored. The second situation is that if the classification performance
of the new position is the same as pbest and the number of features is smaller,
the current pbest will be replaced by the particle’s new position. After updating
pbest, gbest of each particle is updated in the same way by comparing gbest with
the pbest of the particle and its neighbours.

By adding the second situation, the proposed updating mechanism is expected
to avoid the limitation of traditional updating mechanism. Where available, it
will always select a better feature subset to be the pbest or gbest, which either
has better classification performance or the same classification performance with
a smaller number of features. This can help the algorithm filter out redundant
features and make the feature subset with good classification performance and
a small number of features to be the leader (pbest or gbest) of each particle and
the whole swarm.

Note that in GP, each individual can be represented as a tree. The size of the
trees can be considered in the selection process, known as parsimony pressure
[11]. The parsimony pressure seems similar to the proposed pbest and gbest
updating mechanism. However, they are different ideas in two aspects. Firstly,
the parsimony pressure in GP changes the size of the trees while the proposed
pbest and gbest updating mechanism does not change the size of the particles that
is always the total number of features in the dataset. Secondly, the parsimony
pressure is to control the size of the trees in GP, which can be used in any
problem domain, but the number of features considered in the proposed pbest
and gbest updating mechanism is particularly for feature selection problems to
optimise one of the two main objectives, i.e., minimising the number of features.

432 B. Xue, M. Zhang, and W.N. Browne

Algorithm 1. The pseudo-code of the proposed algorithm (IniPG)

begin
initialise most of the particle using small feature subsets and the others
particles using relatively large feature subsets;
initialise the velocity of each particle;
while Maximum Iterations or the stopping criterion is not met do

evaluate the fitness of each particle on the Training set;
for i=1 to Population Size do

if fitness of particle i (xi) is better than that of pbest then
pbest = xi ; // Update the pbest of particle i

else if fitness of xi is the same as pbest and |xi| < |pbest| then
pbest = xi ; // Update the pbest of particle i

if fitness of pbest of any neighbour is better than that of gbest then
gbest = pbest ; // Update the gbest of particle i

else if fitness of pbest of any neighbour is the same as gbest and
|pbest| < |gbest| then

gbest = pbest ; // Update the gbest of particle i

for i=1 to Population Size do
update the velocity and the position of particle i

calculate the classification accuracy of the selected features on the Test set;
return the position of gbest (the selected feature subset);
return the training and test classification accuracies;

Based on the new initialisation strategy and updating mechanism, a new
feature selection algorithm is proposed named IniPG. The pseudo-code of IniPG
can be seen in Algorithm 1. PSO has two versions, which are continuous PSO [14]
and binary PSO [9], but binary PSO has potential limitations [10]. Therefore,
we will use continuous PSO to propose a novel feature selection algorithm. The
representation of a particle is a “n” bits string, where “n” is the total number of
features. The position value in each dimension (xid) is in [0,1]. A threshold θ is
needed to compare with the value of xid. If xid > θ, the dth feature is selected.
Otherwise, the dth feature is not selected.

3 Design of Experiments

3.1 Benchmark Techniques

To examine the performance of the proposed algorithm (IniPG), two traditional
wrapper feature selection methods and two PSO based algorithms (ErRt and
2Stage) as benchmark techniques in the experiments.

The two traditional methods are linear forward selection (LFS) [5] and greedy
stepwise backward selection (GSBS), which were derived from SFS and SBS,
respectively. More details about LFS can be seen in the literature [5] and GSBS
starts with all available features and stops when the deletion of any remaining

Novel Initialisation and Updating Mechanisms in PSO 433

Table 1. Datasets

Dataset #Features #Classes #Instances Dataset #Features #Classes #Instances
Wine 13 3 178 Zoo 17 7 101

Wisconsin Breast Cancer Vehicle 18 4 846
(Diagnostic) (WBCD) 30 2 569

Ionosphere 34 2 351 Lung 56 3 32
Hillvalley 100 2 606 Madelon 500 2 4400

feature results in a decrease in classification performance. ErRt only uses the
classification error rate as the fitness function. 2Stage [18] employs a two-stage
fitness function to optimise the classification in the first stage and take the
number of features into account in the second stage [18]. Binary PSO was used
in [18], but continuous PSO is employed in this paper to keep consistent with
ErRt and IniPG for fair comparisons.

3.2 Datasets and Parameter Settings

Eight datasets (Table 1) are chosen from the UCI machine learning repository
[4], which have different numbers of features, classes and instances. For each
dataset, the instances are randomly divided into two sets: 70% as the training
set and 30% as the test set.

K-nearest neighbour (KNN) was used in the experiment and K=5 (5NN).
Weka [7] is used to run the experiments of using LFS and GSBS. All the settings
in LFS and GSBS are kept to the defaults except that backward search is chosen
in GSBS. The parameters of PSO in ErRt, 2Stage and IniPG are set as follows:
w = 0.7298, c1 = c2 = 1.49618, vmax = 6.0, population size is 30, and the
maximum iteration is 100. The fully connected topology is used. These values
are chosen based on the common settings in [14]. According to our previous
experiments, the threshold θ is set as 0.6 in the three PSO based algorithms. In
IniPG, a major part of the swarm (2/3) is initialised using around 10% of the
total number of features. The other minor part of the swarm (1/3) is initialised
using more than half of the total number of features, where a random number
(e.g. m, where m is between half and the total number of features) is firstly
generated and m features is randomly selected to initialise this particle.

For each dataset, each experimental test has been conducted for 40 inde-
pendent runs. A statistical significance test, T-test, is performed between their
classification performances and the significance level was selected as 0.05.

4 Experimantal Results and Discussions

Table 2 shows the experimental results of the proposed algorithm and the bench-
mark techniques. “All” means that all features are used for classification. “NO.”
represents the average number of features selected. “Ave”, “Best” and “StdDev”
indicate the average, the best and the standard deviation of the 40 test accu-
racies in ErRt, 2Stage or IniPG. “T-test” shows the result of the T-test, where
“+” (“-”) means that the classification performance of a benchmark technique is
significantly better (worse) than that of IniPG. “=” indicates they are similar.

434 B. Xue, M. Zhang, and W.N. Browne

Table 2. Experimantal Results

Dataset MethodNO. Ave(Best) StdDevT-testDataset MethodNO. Ave(Best) StdDevT-test

Wine

All 13 76.54 -

Zoo

All 17 80.95 -
LFS 7 74.07 - LFS 7 74.07 -
GSBS 8 85.19 - GSBS 8 85.19 -
ErRt 8 95.96 (100) 1.83E-2 = ErRt 9.18 95.5 (97.14) 90.3E-4 =
2Stage 8 95.96 (100) 1.83E-2 = 2Stage 9.18 95.5 (97.14) 90.3E-4 =
IniPG 6.78 95.12 (98.77)1.87E-2 IniPG 6.58 95.52 (97.14)71.3E-4

WBCD

All 30 92.98 -

Vehicle

All 18 83.86 -
LFS 10 88.89 - LFS 9 83.07 -
GSBS 25 83.63 - GSBS 16 75.79 -
ErRt 13.4293.39 (94.74)55.8E-4 - ErRt 9.52 85 (87.01) 79E-4 =
2Stage 5 93.54 (94.74)75.1E-4 - 2Stage 8.65 84.95 (87.01)77.9E-4 =
IniPG 3.45 94.09 (94.74)82.5E-4 IniPG 10.28 85.31 (87.01)95.5E-4

Ionosphere

All 34 83.81 -

Lung

All 56 70 -
LFS 4 86.67 - LFS 6 90 +
GSBS 30 78.1 - GSBS 33 90 +
ErRt 12.5888.4 (93.33) 2.14E-2 + ErRt 27.35 72 (80) 6E-2 -
2Stage 12.0588.14 (91.43)1.89E-2 + 2Stage 27.38 72.25 (90) 6.89E-2 -
IniPG 3.2 87.14 (91.43)1.88E-2 IniPG 6.22 78.75 (90) 6.4E-2

Hillvalley

All 100 56.59 -

Madelon

All 500 70.9 -
LFS 8 57.69 = LFS 7 64.62 -
GSBS 90 49.45 - GSBS 489 51.28 -
ErRt 47.3257.54 (61.81)1.52E-2 = ErRt 258.1 76.55 (79.49)1.22E-2 -
2Stage 47.0557.57 (61.81)1.55E-2 = 2Stage 256.4876.52 (79.36)1.26E-2 -
IniPG 12.7257.95 (60.71)1.48E-2 Initia 216.4 78.49 (84.23)3.23E-2

4.1 Results of Benckmark Techniques

Results of LFS and GSBS: according to Table 2, LFS selected a smaller number
of features and achieved a similar or higher classification accuracy than using
all features in most cases. GSBS could reduce the number of features, but only
achieved better classification performance on a few datasets. In most cases, LFS
outperformed GSBS in terms of both the number of features and the classifica-
tion performance. The results indicate that LFS as a forward selection algorithm
is more likely to obtain good feature subsets with a small number of features
than GSBS (backward selection) because of different starting points. Feature
subsets selected by GSBS may still have redundancy. This also suggests that
utilising the advantages of both forward selection and backward selection can
improve the performance of a feature selection algorithm, which motivates the
proposal of the new initialisation strategy in this work.

Results of ErFs: according to Table 2, in almost all datasets, ErRt achieved sim-
ilar or better classification performance than using all features, and the evolved
feature subsets only included around half of the available features. This sug-
gests that PSO as an evolutionary search technique can be successfully used for
feature selection problems.

Results of 2Stage: according to Table 2, 2Stage evolved feature subsets with
around half (or less) of the available features and achieved better classification
performance than using all features in almost all cases. 2Stage outperformed
ErRt in almost all cases. However, 2Stage attempted to find a trade-off between

Novel Initialisation and Updating Mechanisms in PSO 435

the classification performance and the number of features, which means the re-
duction of the number of features might decrease the classification performance.

4.2 Results of IniPG

According to Table 2, in all datasets, IniPG evolved feature subsets that selected
less than half (or even close to than 10% in four datasets) of the available fea-
tures, but achieved significantly better classification performance than using all
features.

Comparisons Between IniPG and Two Traditional Methods (LFS and GSBS):
in almost all datasets, IniPG achieved significantly better or similar classifica-
tion performance to LFS, although the number of features is slightly larger in
some cases. Comparing IniPG with GSBS, the number of features in IniPG is
smaller than GSBS in all datasets and the classification performance of IniPG is
significantly better than GSBS in 7 of the 8 datasets. This suggest that IniPG as
a PSO based algorithm can search the solution space more effectively than both
LFS and GSB. The initialisation strategy movitated by both forward selection
and backward selection can help IniPG take the advantages of both forward se-
lection and backward selection to obtain feature subsets with a smaller number
of features and better classification performance than both LFS and GSB.

Comparisons Between IniPG and ErRt: according to Table 2, IniPG selected
feature subsets including smaller numbers of features and achieved significantly
better or similar classification performance than ErRt in almost all datasets (ex-
cept for the Ionosphere dataset, where the number of features in IniPG is around
one fourth of that in ErRt). This suggests that although ErRt and IniPG shared
the same fitness function (Equation 3), the proposed initialisation strategy and
pbest and gbest updating mechanism can help IniPG to effectively eliminate
the redundant and irrelevant features to obtain a smaller feature subset with
significantly better classification performance than ErRt.

Comparisons Between IniPG and 2Stage: according to Table 2, in almost all
datasets, the classification performance of IniPG is significantly better or sim-
ilar to that of 2Stage and the number of features is smaller. The reason might
be that the fitness function in the second stage in 2Stage aims to find a balance
between the classification performance and the number of features. Therefore,
the reduction of the number of features will also decrease the classification per-
formance. In IniPG, the fitness function only includes the classification perfor-
mance during the whole evolutionary process. This ensures that the reduction of
the number of features in IniPG will not reduce the classification performance.
Meanwhile, the proposed initialisation strategy and pbest and gbest updating
mechanism can help IniPG further remove the irrelevant or redundant features
to reduce the number of features, which in turn could increase the classification

436 B. Xue, M. Zhang, and W.N. Browne

performance. In addition, compared with 2Stage, another advantage of IniPG is
that it does not need a predefined parameter to balance the relative importance
of the classification performance and the number of features.

Note that simply increasing the number of iterations cannot help ErRt and
2Stage achieve the same performance obtained by IniPG. The main reason is
that ErRt does not consider the number of features in the fitness function and
2Stage takes a trade-off between the classification performance and the number
of features. IniPG simulates both forward and backward selection to duplicate
their advantages, which helps IniPG pay more attention to small feature subsets,
but does not miss the large feature subsets with high classification performance.
Meanwhile, because of the new updating mechanism, for two feature subsets
with the same classification performance, IniPG will select the smaller one as
the new pbest or gbest. ErRt and 2Stage using traditional updating mechanism
will not do this during the evolutionary training process. Therefore, ErRt and
2Stage can not achieve as good performance as IniPG in almost all situations.

4.3 Analysis on Computational Time

All the five methods used in the experiments are wrapper based feature selection
approaches. Therefore, most of their computational time is spent on the fitness
evaluation, which regards the training and testing classification processes.

LFS usually used less time than the other four methods because the forward
selection strategy starts with a small number of features and the evaluation of
a small feature subset takes less time than a large feature subset. GSBS cost
less time than other three PSO based algorithms (ErRt, 2Stage and IniPG) on
the datasets with a small number of features, but more time on the datasets
with a large number of features, such as the Madelon datasets. The reason is
that GSBS starts with the full set of features, which needs much longer time for
each evaluation. The number of evaluations in GSBS substantially increases in
such large datasets while the number of evaluations in PSO based algorithms is
still the same. Generally, 2Stage cost less time than ErRt because the size of the
feature subsets evolved by 2Stage is smaller than ErRt during the evolutionary
training process. For the same reason, the computational time of IniPG is less
than both of ErRt and 2Stage.

5 Conclusions

This paper proposes a new PSO algorithm for feature selection problems (IniPG).
In IniPG, a new initialisation strategy was proposed based on the ideas of two
traditional feature selection methods (forward selection and backward selection)
to utilise the advantages of these two methods. Meanwhile, a new pbest and
gbest updating mechanism was proposed to overcome the limitation of the tradi-
tional updating mechanism in order to ensure the feature subset with the highest
classification performance and the smallest number of features become the new
pbest or gbest. IniPG was examined and compared with two traditional feature

Novel Initialisation and Updating Mechanisms in PSO 437

selection algorithms (LFS and GSBS), a PSO based algorithm with only the clas-
sification error rate as the fitness function (ErRt) and a PSO based two-stage
algorithm (2Stage). Experimental results show that in almost all datasets, IniPG
achieved significantly better classification performance than LFS and GSBS, al-
though the number of features is larger than LFS in some cases. In almost all
cases, IniPG outperformed ErRt and 2Stage in terms of the number of features
and the classification performance, and used less computational time.

In the future, we will further tune the PSO algorithm for feature selection
problems. We intend to work on multi-objective PSO for feature selection in
classification problems. We will also investigate whether using a given learning
algorithm in a wrapper feature selection approach can select a good or near-
optimal feature subset for other learning algorithms.

References

1. Banerjee, M., Mitra, S., Banka, H.: Evolutionary rough feature selection in gene
expression data. IEEE Transactions on Systems, Man, and Cybernetics, Part C:
Applications and Reviews 37(4), 622–632 (2007)

2. Chuang, L.Y., Chang, H.W., Tu, C.J., Yang, C.H.: Improved binary PSO for feature
selection using gene expression data. Computational Biology and Chemistry 32(29),
29–38 (2008)

3. Dash, M., Liu, H.: Feature selection for classification. Intelligent Data Analy-
sis 1(4), 131–156 (1997)

4. Frank, A., Asuncion, A.: UCI machine learning repository (2010)
5. Gutlein, M., Frank, E., Hall, M., Karwath, A.: Large-scale attribute selection using

wrappers. In: IEEE Symposium on Computational Intelligence and Data Mining
(CIDM 2009), pp. 332–339 (2009)

6. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. The
Journal of Machine Learning Research 3, 1157–1182 (2003)

7. Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning: data
mining, inference and prediction. The Mathematical Intelligencer 27, 83–85 (2005)

8. Huang, C.L., Dun, J.F.: A distributed PSO-SVM hybrid system with feature se-
lection and parameter optimization. Application on Soft Computing 8, 1381–1391
(2008)

9. Kennedy, J., Eberhart, R.: A discrete binary version of the particle swarm al-
gorithm. In: IEEE International Conference on Systems, Man, and Cybernetics,
Computational Cybernetics and Simulation, vol. 5, pp. 4104–4108 (1997)

10. Khanesar, M., Teshnehlab, M., Shoorehdeli, M.: A novel binary particle swarm
optimization. In: Mediterranean Conference on Control Automation, pp. 1–6 (2007)

11. Luke, S., Panait, L.: Lexicographic parsimony pressure. In: Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO 2002), pp. 829–836
(2002)

12. Marill, T., Green, D.: On the effectiveness of receptors in recognition systems.
IEEE Transactions on Information Theory 9(1), 11–17 (1963)

13. Neshatian, K., Zhang, M.: Using genetic programming for context-sensitive feature
scoring in classification problems. Connection Science 23(3), 183–207 (2011)

14. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: IEEE International
Conference on Evolutionary Computation (CEC 1998), pp. 69–73 (1998)

438 B. Xue, M. Zhang, and W.N. Browne

15. Unler, A., Murat, A.: A discrete particle swarm optimization method for feature
selection in binary classification problems. European Journal of Operational Re-
search 206(3), 528–539 (2010)

16. Wang, H., Li, H., Liu, Y., Li, C., Zeng, S.: Opposition-based particle swarm al-
gorithm with cauchy mutation. In: IEEE Congress on Evolutionary Computation
(CEC 2007), pp. 4750–4756 (2007)

17. Whitney, A.: A direct method of nonparametric measurement selection. IEEE
Transactions on Computers C-20(9), 1100–1103 (1971)

18. Xue, B., Zhang, M., Browne, W.N.: New fitness functions in binary particle swarm
optimisation for feature selection. In: IEEE Congress on Evolutionary Computation
(CEC 2012), pp. 2145–2152 (2012)

CodeMonkey; a GUI Driven Platform for Swift

Synthesis of Evolutionary Algorithms in Java

Reza Etemadi, Nawwaf Kharma, and Peter Grogono

Electrical and Computer Engineering Department, Concordia University, Montreal
(QC), Canada H3G 1M8

{r_etemad@encs,kharma@ece,grogono@cse}.concordia.ca

Abstract. CodeMonkey is a GUI driven software development platform
that allows non-experts and experts alike to turn an evolutionary al-
gorithm design into a working Java program, with a minimal amount
of manual code entry. This paper describes the concepts behind Code-
Monkey, its internal architecture and manner of use. It concludes with
a simple application that exhibits its utilization for multi-dimensional
function optimization. CodeMonkey is provided free of charge, for non-
commercial users, as a plug-in for the Eclipse platform.

Keywords: Evolutionary Algorithm, Java Language, Eclipse Platform,
GUI Application.

1 Introduction

CodeMonkey is a GUI-driven software platform that allows non-expert users to
generate an executable Java implementation of a custom-designed Evolutionary
Algorithm, meant for a particular optimization or design application.

1.1 Review

There are many types of Evolutionary Algorithms (EA) including Genetic Al-
gorithms (GA), Genetic Programming (GP), Evolutionary Strategies (ES) and
Evolutionary Programming (EP). Software platforms differ in: scope (some are
more generic while others are specialized to certain domains); performance and
scalability (based on the language or platform they employ); usability (whether
it is just a library, framework, application or platform). A few widely-used EA
development aides follow.

GEATbx [1] (Genetic and Evolutionary Algorithm Toolbox) is a Matlab tool,
and one of the few packages that cover the four main flavors of EA. It allows
users to define homogeneous genotypical representations (i.e., lists of one type
of variable); it has limited support for heterogeneous genotypes (with different
types in the same structure) [2]. It offers a GUI for novice users. It has a limited
selection of genetic variation operations. It is a proprietary package and is not
extendable by third parties.

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 439–449, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

440 R. Etemadi, N. Kharma, and P. Grogono

Evolving Objects (EO) [3] is a template-based C++ open-source framework
for writing stochastic optimization programs. It supports homogeneous genotyp-
ical representations (but not integers). It does not offer readily usable hetero-
geneous genotypes. Many selection mechanisms are provided. It does not allow
GUI based customization. It is open-source and free to use under GPLv2. It is
extendable by third-parties.

DREAM (Distributed Resource Evolutionary Algorithms Machine) [4][5] soft-
ware framework (called Java Evolving Object) defines many genotypes together
with matching variation operations. It does not provide heterogeneous geno-
types. It has a GUI for non-programmers for both I/O interaction and problem
definition. It is open-source and is offered under a GPL license. The platform
has a distributed architecture, and the framework has an API that facilitates
distributed implementations.

Watchmaker Framework for Evolutionary Computation [6] is a framework for
implementing evolutionary algorithms in Java. It is used in the Apache Mahout
Project, and some specialized frameworks, such as GEP4J. It does not provide
predefined genotypes. There is a GUI for monitoring progress, but it does not
offer a GUI for non-experts to generate code. There are a limited number of vari-
ation operators. It is open-source and available under Apache software license,
and it is easily extendable.

Table 1. Camparative Summary of Common EA Platforms

Name GEATbx Evolving
Objects

DREAM Watchmaker JGAP

Programming
Language

Matlab C++ EASEA
/Java

Java Java

Type Library Framework Platform Framework Framework

Homogeneous
Genotypes

Real, Integer,
Binary,
Permutation

Real, Binary,
Permutation

Real,
Integer,
Binary, Tree

None Real, Integer,
Binary,
String & more

Heterogeneous
Genotypes

None None None None None

Selection
Types

4 9 (more
pluggable)

11 (more
pluggable)

6 (more
pluggable)

4 (more
pluggable)

GUI for
Novice users

Yes No Yes No No

Open Source No Yes Yes Yes Yes

Extendable No Yes Limited Yes Yes

Licencing
/Pricing

Multi-tier
/Not-free [8]

GPLv2
/Free

GPL
/Free

Apache v2.0
/Free

LGPL;Mozilla
/Free

JGAP (Java Genetic Algorithms Package) [7] is a GA and GP component
provided as a Java framework. It provides basic genetic mechanisms that can be
used to apply evolutionary principles to problem solutions. It has many ready-to-
use genotypes defined, but does not offer heterogeneous genotypes. It also does

CodeMonkey; a GUI Driven Platform for Synthesis of EA 441

not provide a GUI for end-users to generate code; only expert users, who must
learn the framework and have prior knowledge of GA or GP, can make use of
JGAP. It is, however, an open-source resource, free and extendable under LGPL
and Mozilla licenses. Table 1 provides a brief comparison of the EA platforms
outlined in this section.

The comparison table demonstrates that only GEATbx and DREAM offer
a customization GUI for non-expert users. None of them attempts to provide
support for heterogeneous genotypes. In contrast, we provide an easy-to-learn
and use GUI-driven platform for the generation of EAs of different flavors and for
many target application. It supports both homo- and heterogeneous genotypes
with appropriately defined variation operators. It also offers a great degree of
flexibility in both offspring generation and survivor selection; a full description
of its internal design and manners of use follows. The paper concludes with a
simple use example.

2 Design and Implementation

CodeMonkey (CM) is a project that takes advantage of modern features of the
Java language, such as Generics and Annotation, and combines that with the
power and ease of use of the Eclipse platform, to provide both a framework
for expert users and an Eclipse plug-in application for non-expert developers of
Evolutionary Algorithms.

The framework aspect of CM is not unique, but Eclipse integration and its
step by step GUI wizard allow users with little knowledge of programming to
generate serious EA programs that are readily executable.

2.1 Concept

This section offers a description of CMs main configuration steps. This is inter-
leaved with explanations of the main conceptual innovations that were employed
in order to make CM as generic as it is.

Genotype Representation: CM divides genotype representations into two cate-
gories: homogeneous and heterogeneous. A homogeneous genotype is a collection
of genes with identical types (e.g., Boolean, integer or real) while a heterogeneous
genotype is a collection of homogeneous genes of different types. CMsupports basic
homogeneous genotypes and allows easy definition of heterogeneous genotypes.

Termination Criteria: CM places the termination conditions which can be com-
bined under three categories: (a) theGoalAchieved category,whichmeans that an
acceptable level of fitness has been attained by at least one individual in the pop-
ulation; (b) the Stagnation Reached category, which means that the improvement
in fitness over a preset number of generations is too low to justify continuation; (c)
the Resources Exhausted category, which means that a preset limit on a computa-
tional resource, such as processing time, has been reached or breached.

Parent Selection: there is a wide spectrum of algorithms for parent selection
[9], from fully deterministic (such as Truncation) to fully probabilistic (such as

442 R. Etemadi, N. Kharma, and P. Grogono

Random), which are typically applied to two individuals. Prior to the actual
application of any selection method, the raw fitness of an individual can be
transformed (e.g., via ranking) into a different value: it is this new value that
is used by the selection method. Regarding selection methods, a unique contri-
bution of CM is the way it unifies many different parent selection mechanisms
into one window-based selection generic algorithm. This algorithm employs a
selection window, which can be as large as the population size or as small as two
individuals. Within a window of a certain size, the picking of an individual from
the population can occur on a deterministic or probabilistic basis. The result is a
parent, which is deposited into the parent pool. For example, binary tournament
selection can be viewed as deterministic selection of the fittest individual from
a window of size two. While proportional selection can be seen as probabilistic
selection from a window that includes the whole population.

Variation Operations: there are crossover and mutation operations suited to
different genetic representations. In CM, different operations are defined for dif-
ferent homogeneous and heterogeneous genotypes. Another contribution of CM
is that any number of variation operations can be used with different probabili-
ties and in different sequences along one or more paths linking the parent pool
to the offspring pool. This allows users of CM to define a GA-like single sequence
of variation operations of say crossover followed by mutation, or alternatively
define a GP-style tree of variation operations, with crossover working in parallel
with mutation to generate offspring.

Survivor Selection: it allows the generation of the next population using indi-
viduals from the current population and/or offspring pool. In CM, all selection
mechanisms used for parent selection are available to survivor selection. The
difference is that we can apply the selection window to any one or both of the
current population and the offspring pool. In addition, CM allows the use of
elitism and injection.

2.2 The Framework

To explore CodeMonkeys framework, we start by describing its architecture and
data model. The class diagram in figure 1 presents the core package of the
framework, which includes the main classes described below.

Class Phenotype represents an individual solution. In the core package this is
an abstract class that has two other elements, Genotype and Fitness (mapped
through generics). In any implementation, a subclass of this class will be needed
for representing individuals.

Class Genotype is the class that represents the genetic encoding of Phenotype.
It is a Java interface that extends Java Collection interface. For Boolean, integer
and real types, the framework provides implementation. Several variation oper-
ators are available in the framework for each genotype implementation. These
classes are also used for building homogeneous and heterogeneous genotypes in
the CM application.

Class Fitness represents the suitability of the phenotype as a solution in com-
parison to other phenotypes. This is also defined as a Java interface in the

CodeMonkey; a GUI Driven Platform for Synthesis of EA 443

Fig. 1. CodeMonkeys Class Diagram

framework that extends Java Comparable interface. This interface uses Java
generics to accept any subclasses of the Java Number class that implements the
Comparable interface.

Class Population represents a collection of Phenotypes. This class (or its sub-
types) can be registered to represent the initial population, the parent pool, the
offspring pool as well as the next generation. This class has many utility methods
for random selection and sorting as well as calculating various statistics of the
population (based on fitness and other attributes).

Class TerminationStrategy is an abstract class that represents the termination
criteria in the framework. All possible criteria that are used in the CM application
are provided in this class. Any concrete subclass can be registered in an implemen-
tation. It is invokedperiodically to see if the evolutionary process should terminate.

Class ParentSelectionStrategy is the class that realizes the unitary parent
selection approach described above. There are three subclasses of this class: one
for Truncation selection, one for Proportional selection and a third for Random
selection. Any concrete subclass of ParentSelectionStrategy that is registered
will be invoked to create the parent pool.

Class VariationStrategy is the abstract class of all variation operations in
the framework. Any concrete subclass will invoke the variation method that is
implemented in the Genotype with the desired probability and sequence. The
class must be registered before it can be invoked to create the offspring pool
from the parent pool.

444 R. Etemadi, N. Kharma, and P. Grogono

Class SurvivalSelectionStrategy is the abstract class for the survivor selection
process in the framework. It internally relies on the ParentSelectionStrategy. A
concrete subclass will need to define what percentage of the next population
comes from what available population and based on which selection mechanism.
The subclass must be registered before it is invoked to create the next generation
from the current population and/or the offspring pool.

Finally, class Evolution is the orchestrator of the evolutionary process: the
general logic of evolution is implemented here. Any implementation based on the
framework will create a concrete subclass of this class and include a main method,
so it can be called as a Java application. All above-mentioned registrations of
data types, strategies and pool sizes need to be defined in the concrete subclass.
Once all necessary elements are registered, the class can be executed to launch
the evolutionary process.

2.3 Plug-in Application

The CodeMonkey application is built on top of the Eclipse platform. It uses
Eclipses plug-in architecture [10] to create a GUI-based application. The user of
CM employs a GUI to provide customizing inputs reflecting a specific EA flavor
and target application. Hence, the CM application uses the Eclipse JDT (Java
Development Tools) API to create the necessary code, which in turn completes
the CM framework. The user can then launch the generated Java program in
Eclipse.

Two types of users can use CM to customize and generate an EA in Java:
novice and expert. Expert users can directly work with the framework by us-
ing existing functionalities or extending them and adding new implementations.
Novice users are asked to provide the CM with customizing inputs, which al-
lows CM to generate a Java program that implements a specific EA flavor for
a specific EA application. The only part of CM that necessitates the provision
of either (1) actual code or (2) a link to an external program or function is the
fitness function.

As shown, once the CM plug-in application is launched, the first step is defining
the genotype, followed by configuring initialization. Hence, the user defines how
fitness will be calculated. This is the only step that necessitates manual code entry
or external communications.Thenext step is defining the termination criteria.This
is followed by customizing parent selection. The remaining two steps are defining
how variation operations are applied and how the next generation is created. Once
those steps are completed, the generated code is compiled and can be run.

Fig. 2. Activity Diagram of CM Plug-in Application

CodeMonkey; a GUI Driven Platform for Synthesis of EA 445

2.4 Program Execution

Whether the code is generated by the CM application or directly entered into the
generated program, the execution of the resulting program follows the process
exhibited in figure 3.

Fig. 3. Activity Diagram of Code Execution

First comes initialization of the first generation, followed by fitness calcula-
tion. Hence, the termination criteria are evaluated. As long as the termination
criteria are not satisfied the process goes through parent selection, application of
variation operations (to generate offspring), evaluating the fitness of the offspring
and hence, generating the next population.

3 Example

In this section, we demonstrate how an end-user can use CM to implement an
EA solution to a specific multi-dimensional optimization problem.

The Ackley problem [11] is a n-dimensional minimization problem. The goal
is to find x = [x1, x2, ..., xn] within xi ∈ {−32.768, 32.768} that minimizes the
function:

F (x) = −20. exp
⎛⎝−0.2

√√√√1

n

n∑
i=1

x2i

⎞⎠− exp

(
1

n
.

n∑
i=1

cos(2π.xi)

)
+ 20 + e (1)

3.1 Solution

To outline the solution we start by defining the genotype. In this case it will
be a list of real-valued numbers, one per dimension. The dimensions can be
initialized randomly to values from a limited range. The fitness function is the
formula itself. The termination criteria are a combination of goal achieved, evo-
lutionary stagnation and resource exhaustion. For parent selection and survivor
selection many types of deterministic and probabilistic selection methods can be
selected. To generate offspring, a number of crossover and mutation operators
can be used. We configured CM three different ways, with details of the first
(reference) configuration presented in Table 2; the difference between the other
configurations and the reference is described as well.

446 R. Etemadi, N. Kharma, and P. Grogono

3.2 Implementation

The following table presents a comprehensive summary of the parameters and
their selected settings for CMs reference configuration C1.

Table 2. List of Parameters and Their Values for the First Configuration (C1) of CM

Genotype
Definition

Length 10

Type Real
Lower Bound Value -32.0 (the same for all genes)
Upper Bound Value 32.0 (the same for all genes)
Selected Variation
Operators

(Discrete Recombination, Continuous
Recombination, Convex Recombination,
Local Crossover, One-Position Muta-
tion, Creep Mutation)

Population
Initialization

Population Size 300

Random Generator Uniform

Fitness Calculation Mechanism Internal (formula entered manually)
Type Minimization
Target Fitness 0.0

Termination Criteria Goal Achieved Stops if Target Fitness is reached
Stagnation Reached Stops if no progress over 1000 generation
Resource Exhausted Stops if generation reached 3000

Parent Selection Window Input Size 20
Window Output Size 15
Type of Selection Proportional (w. replacement)
Fitness Transformation Ranking
Parent Pool Size 150

Variation Operations Offspring Pool Size 150

Survivor Selection Selection Type Proportional (w.o. replacement)
Elitism (%) 5%
Re-initialization (%) 5%

C2 alters population size to 100 and offspring pool size to 50; C3 makes parent
selection deterministic instead of the original probabilistic mode in C1.

3.3 Results

The best result (owing to configurations C1 and C2) was a fitness value of 8.88×
10−16, which is practically zero. The genotype of the best individual is {4.9 ×
10−324, 4.9× 10−324, 4.9× 10−324, 4.9× 10−324, 4.9× 10−324, 4.9× 10−324, 4.9×
10−324, 4.9×10−324, 4.9×10−324, 4.9×10−324}, which is vector 0. This individual
was found at generation 511 (in case of C1) and at generation 4421 (in case
of C2). Configuration C3 failed to return an optimal solution even after 7000
generations (which was set as a stop condition). A time course for the evolution
of best fitness for the three configurations is presented in figure 4.

CodeMonkey; a GUI Driven Platform for Synthesis of EA 447

Fig. 4. The History of Evolution of Best Fitness Over 530 Generations

The flexibility of the framework allows the user to go back to any of the steps
and change the settings for that particular part of the evolutionary process. A re-
run of the code will incorporate the changes and affect the results. The following
table shows the results of the three different configurations: C1, C2 and C3.

Table 3. Results for Different Configurations

C1 C2 C3

Best Fitness @ Gen. 500 1.3860 2.4721 1.6011

Best Achieved Fitness
(& When)

8.88 × 10−16

(@ Gen. 511)
8.88 × 10−16

(@ Gen. 4421)
2.79 × 10−1

(@ Gen.7000)

The first row presents the best fitness achieved by a particular configuration
at generation 500. The second row contains the best fitness achieved after 7000
generations or less- that is if the optimal solution is found early.

The second column has the results of reference configuration C1. The results
of C2 as shown in the third column of Table 3 demonstrate that a reduction of
both the population size and offspring pool by 2/3 lead to an 8 fold increase,
compared to C1, of the time necessary to reach the optimal solution. The final
configuration (C3) has the same population size and offspring pool size as C1,
but it employs deterministic instead of C1s probabilistic parent selection. As a
result, C3 achieves a higher best fitness than C2 does initially, but eventually
returns a worse best fitness value than both C1 and C2.

In all cases, the manner in which evolution progressed over time was typi-
cal and the way in which the results differed was explainable (e.g., a strictly
deterministic selection method performing badly on highly multi-modal fitness
landscapes).

448 R. Etemadi, N. Kharma, and P. Grogono

4 Conclusion

CodeMonkey provides a flexible and easy way to customize and complete (with
a fitness function) a generic evolutionary algorithm, to generate a customized
Evolutionary Algorithm that reflects the users target application as well as his
preferred EA style and configuration. The combination of feature-rich Java and
Eclipses popularity make CodeMonkey a handy tool for both expert and non-
expert developers of EA applications.

References

1. Genetic and Evolutionary Algorithm Toolbox for Matlab, http://www.geatbx.com
2. Geatbx Parameter Optimization, http://www.geatbx.com/docu/

algindex-09.html#P1058 123869

3. Evolving Objects (EO), http://eodev.sourceforge.net
4. Back, T., Schoenauer, M., Sebag, M., Eiben, A., Merelo, J., Fogarty, T.: A Dis-

tributed Resource Evolutionary Algorithm Machine (DREAM). IEEE Transaction
on Evolutionary Computation 2, 951–958 (2000)

5. DREAM, http://www.soc.napier.ac.uk/~benp/dream/dream.htm
6. Watchmaker Framework, http://watchmaker.uncommons.org
7. Java Genetic Algorithm Package, http://jgap.sourceforge.net
8. Geatbx Pricing, http://www.geatbx.com/prices.html
9. Dumitrescu, D., Lazzerini, B., Jain, L., Dumitrescu, A.: Evolutionary Computa-

tion, ch. 3–5 (2000)
10. Notes on the Eclipse Plug-in Architecture, http://www.eclipse.org/articles/

Article-Plug-in-architecture/plugin architecture.html

11. Bäck, T.: Ackley’s Function, in Evolutionary algorithms in theory and practice,
pp. 142–143. Oxford University Press (1996)

http://www.geatbx.com
http://www.geatbx.com/docu/algindex-09.html#P1058_123869
http://www.geatbx.com/docu/algindex-09.html#P1058_123869
http://eodev.sourceforge.net
http://www.soc.napier.ac.uk/~benp/dream/dream.htm
http://watchmaker.uncommons.org
http://jgap.sourceforge.net
http://www.geatbx.com/prices.html
http://www.eclipse.org/articles/Article-Plug-in-architecture/plugin_architecture.html
http://www.eclipse.org/articles/Article-Plug-in-architecture/plugin_architecture.html

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 449–458, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Multi-Objective Optimizations of Structural Parameter
Determination for Serpentine Channel Heat Sink

Xuekang Li1, Xiaohong Hao1, Yi Chen1,2, Muhao Zhang1, and Bei Peng1,*

1 School of Mechanical, Electronic and Industrial Engineering, University of Electronic Science
& Technology of China, 2006 Xiyuan Ave, Chengdu, SC 611731, P.R. China.

2 School of Engineering & Built Environment, Glasgow Caledonian University,
Glasgow G4 0BA Scotland, UK.
beipeng@uestc.edu.cn

Abstract. This paper presents an approach for modeling and optimization of the
channel geometry of a serpentine channel heat sink using multi-objective genet-
ic algorithm. A simple thermal resistance network model was developed to in-
vestigate the overall thermal performance of the serpentine channel heat sink.
Based on a number of simulations, bend loss coefficient correlation for
1000<Re<2200 was obtained which was function of the aspect ratio (a), ratio of
fins width to channel width (b). In this study, two objectives minimization of
overall thermal resistance and pressure drop are carried out using multi-
objective genetic algorithms. The channel width, fin width, channel height and
inlet velocity are variables to be optimized subject to constraints of fixed length
and width of heat sink. The study indicates that reduction in both thermal resis-
tance and pressure drop can be achieved by optimizing the channel configura-
tion and the inlet velocity.

Keywords: heat sink, serpentine channel, bend loss coefficient, multi-objective
optimizations.

1 Introduction

Heat sinks are used to remove heat from various devices and transfer it to the ambient
effectively. The geometry design of heat sink is to dissipate as much heat as possible
under limitations such as pumping power and weight of its own. With the growing
demand for high heat flux dissipation, liquid-cooled heat sink is used increasingly
widely. Therefore a large number of researches have been done to optimize parame-
ters of heat sink under various design conditions.

In the earlier study, Tuckerman and Pease [1] designed a micro-channel heat sink.
After this landmark paper, lots of optimization works have been carried out concern-
ing micro-channel heat sink. Knight [2] presented a dimensionless form of governing
equations for fluid dynamic and heat transfer for both laminar and turbulent flow and
used it to determine the geometry of micro-channel heat sink. The optimized results

* Corresponding author.

450 X. Li et al.

improved the thermal resistance of heat sinks reported by previous investigators rang-
ing from 10 to 35% in values. Perret [3] and Biswal [4] used analytic model to optim-
ize the single-phase liquid cooled micro-channel heat sink and realized the cooling
devices.

In recent years, genetic algorithms (GAs) are frequently used in the design of
thermal systems [5-10]. In this paper, serpentine channel heat sink is optimized to
reduce the overall thermal resistance and the pressure drop with the constraint of its
physical parameters. NSGA-II [11] is applied to obtain the Pareto-optimal solutions.
The variables are channel width, fin width, channel height and inlet velocity. The
thermal resistance model and pressure drop model of serpentine heat sink are thus
established. Lastly numerical method is used to confirm the solutions.

Fig. 1. (a) Flow field of the serpentine channel heat sink; (b) Cross-section of heat sink sepa-
rated into 10 units; (c) Three dimensional domain of the heat sink

2 The Methodology

The structure of a serpentine channel heat sink is shown in Fig. 1. It consists of a uni-
form heat flux from the base plate. The structure has n channels and (n-1) fins. The
top plate is used solely for containing the coolant flow which is assumed to be insu-
lated. The heat is taken away by the coolant. The two factors being considered to
present performance of the heat sink are the total thermal resistance and pressure drop
of the serpentine channel. It is imperative to determine optimum geometrical parame-
ters of the heat sink that would result in desired thermal resistance and pressure drop
for cost effective and efficient thermal solutions.

 Multi-Objective Optimizations of Structural Parameter Determination 451

2.1 Thermal Resistance

The serpentine channel heat sink is different from parallel channel heat sink for there
are several sharp bends. Ignoring the effect of heat transfer coefficient at bends, the
total thermal resistance of the heat sink is given by

 max in
tot con cov fluid

-
= = + +

T T
R R R R

Q
 (1)

Equation (1) does not take into consideration the spreading thermal resistance caused
by different temperature between outlet and inlet or the interface thermal resistance
between the device and the heat sink. The conductive thermal resistance is defined by

con
hs hs

t
R

k A
= (2)

The total convection thermal resistance is formulated as

cov

1

s

R
hA

=

(3)

While the surface area available for heat transfer, As, is written as:

(2) 2 (2)s c c c c cA nw W bw n aw W bw cwη= − + − −

(4)

where

c

H
a

w
= , f

c

w
b

w
= , s

c

l
c

w
= ,

()tanh mH

mH
η =

(5)

The term, m, in eq. (5) is defined by its approximate equality [2]

hs c

h
m

k bw
≈

(6)

The heat transfer coefficient, h, is obtained from the average Nusselt number

m f

h

Nu k
h

D
=

(7)

Serpentine channel has several bends which interrupt the hydrodynamic boundary
layers. So the thermal profiles must also develop from the bends downstream and the
entrance downstream. In this paper, the average Nusselt number is used to take this
situation into account. The average Nusselt number for laminar flow is calculated by
[12]

()
1 330.33

2.22mNu x Nu
−∗ = +

(8)

452 X. Li et al.

where

/ Re Prhx x D∗ = , 8.31 0.02Nu G= − , Re hVD

ν
=

(9)

2 ch
h

ch

W H
D

W H
=

+
 ,

2 2

1 1ch chW W
G

H H

 = + +

(10)

The capacitive thermal resistance is defined by

1 1
fluid

p f ch p

R
mc W HVcρ

= =

(11)

where m is the mass flow rate of the coolant. This thermal resistance presents the
temperature rise from inlet to outlet in bulk fluid.

2.2 Pressure Drop

Pressure drop is another factor used to characterize performance of heat sink. In this
structure of channels, pressure drop consists of two components, namely pressure
drop due to straight channel friction and that due to the bends. Thus, the total pressure
drop is given by:

2

1

1
4

2

n
t

app i
ih

L
P V f

D
ρ ξ

=

Δ = +

 (12)

where fapp is the friction loss coefficient in straight section, and the second term is the
sum of loss coefficients for n U-bends in the serpentine channels. The serial bends
interrupt hydrodynamic boundary periodically, the effect of laminar flow develop-
ment and re-development is considered [13, 14]. Like the average Nusselt number, the
average friction factor in straight pipe is given by[12]:

() ()
1 220.57 2

3.2 Re Reappf x f
−+ = +

 (13)

where

/ Re hx x D+ = (14)

and f is the friction factor of a fully developed laminar flow is calculated using corre-
lation[2]

4.70 19.64

Re

G
f

+= (15)

The bend loss coefficient, iξ , could be calculated by correlations proposed by Maha-

rudrayya [15]. It is developed as a function of the Reynolds number, aspect ratio,
curvature and the width of fins. The three-regime correlations are valid for the range
of some parameters, i) 1 6 1cha H W< = < , ii) 1 30f hw D< < . However, the

 Multi-Objective Optimizations of Structural Parameter Determination 453

structure being considered in this paper may be out of range for these parameters. The
depth of channel may be larger than width, namely a>1, and width of fin may be
smaller than that of channel, namely f chb w W= <1. The effect of these geometric

parameters on the pressure loss is investigated below.

3 Calculation the Bend Loss Coefficient

The geometry studied to calculate the bend loss coefficient was sharp 180° bend(s) in
a channel of rectangular cross-section. Each bend was provided with a 30Dh long
upstream and a same length downstream for flow development. The CFD software
was used to simulate the flow condition with three-dimensional domain. The fluid
properties corresponded to those of air at atmospheric conditions. The computational
domain of the geometry was discretized by at least 500,000 cells. The mesh was re-
fined at the bend, since the velocity gradients near the bend was higher and a better
resolution is needed. The Reynolds number based on velocity and the hydraulic di-
ameter was varied between 1000 and 2300.

In this work, only sharp bend is considered without the curvature ratio. The Rey-
nolds number ranges from 1000 to 2200, for which the loss coefficient is independent
of Re [15]. Therefore, in this case only three parameters have effect on the loss factor.

A number of configurations with different a, b and c were studied using the me-
thodology mentioned above. The bend loss coefficient can be estimated using eq.
(12). The method was used before and has a good agreement with the experimental
data[15]. The influences of geometric parameters on the bend loss coefficient are
discussed below.

3.1 Effect of Aspect Ratio

The effect of aspect ratio on loss coefficient on the condition of a<1 was studied be-
fore [15]. In this work the aspect ratio within the range from 1 to 6 was investigated.
The present calculations for a=1 are in good agreement with that work. However, a
higher aspect ratio channel is often used in heat sink. In the optimized result of Knight
[2], the aspect ratio was larger than 1. With a number of repeat calculations, it was
found that when aspect ratio increases the loss coefficient decreases, but when aspect
ratio is larger than 5, the loss coefficient increases.

3.2 Effect of Width of Fins

The effect of width of fins has also been investigated for 1 to 30 times hydraulic di-
ameters [15]. However the ratio of fin width to channel width (b) less than 1 appeared
in heat sink design [2], therefore this range need to be studied. In this work, b ranges
from 0.25 to 1.5. When b increases from 0.25 to 1, the loss coefficient decreases ra-
pidly; when b approaches 1, minimum value of loss factor appears; when b continual-
ly increases from 1, loss coefficient increases.

454 X. Li et al.

3.3 Effect of Turn Clearance

The turn clearance also has effect on pressure drop, which was demonstrated by expe-
riments data [16]. Narrow turn clearance causes high speed of the flow passing
through the bend, larger turn clearance incurs a deceleration. Here, the ratio of turn
clearance to channel width (c) was used to show the effect on loss coefficient. In this
work, c ranges from 0.5 to 6. Fig.(2) shows that when c increases to about 2, the loss
coefficient decreases rapidly; when c continues increases from 2 to 6, it changes little.
These results have the same trend with experimental results [16, 17]. For serpentine
channel heat sink design in this work, the c=2 was fixed for its lower loss factor and
little change to heat transfer.

Fig. 2. Bend loss coefficient for different c

3.4 Correlation for the Bend Loss Coefficient

Based on a number of simulations, a correlation is developed for bend loss coefficient
as a function of a, b and c for 1000<Re<2300. The proposed correlation is as follow:

() ()2 2=8.09 1-0.3439 +0.042 1-0.3315 +0.1042a a b bξ (16)

The correlation given by eq. (16) is valid for the following range of parameters:

1000<Re<2300; 1<a<6; 0.25<b<1.5

4 Optimization with Multi-objective Genetic Algorithms

4.1 Objective Function, Design Parameters and Constraints

The goal of this study is to find the optimal geometric parameters that simultaneously
minimize thermal resistance and pressure drop in serpentine channel heat sink. The

 Multi-Objective Optimizations of Structural Parameter Determination 455

length (L) and width (W) of heat sink and the height of base (tb) are fixed. The objec-
tives are written as following:

1= totf R , 2 =f PΔ

(17)

where totR and PΔ are determined by the number of channels (N), width of channel

(wc), height of channel (H) and the velocity of inlet (v). Since the width of heat sink is
constant, the sum of width of channels and fins is constant, namely, the equation be-
low should be satisfied:

()+ +1 =c fNw N w W (18)

The constraint is also introduced to insure that the flow should be in laminar regime,
namely Re<2300. To obtain the Pareto optimal solutions, a multi-objective genetic
algorithm is used based on NSGA-II.

4.2 Results of NSGA-II

To minimize the thermal resistance and the pressure loss of the serpentine channel
heat sink, four design parameters including the number of channels (N), width of
channel (wc), height of channel (H) and the velocity of inlet (v) are involved. Design
parameters and the range of their variations are listed in Table 1. The parameters of
heat sink are shown in Table 2. The optimization was performed to find the optimal
solution for the heat sink. The Pareto optimal solutions were obtained by a real-coded
NSGA-II with 150 generations and population size of 200 individuals. The Pareto-
optimal solutions are shown in Fig. 3, which clearly reveal that these two objectives
are conflicting with each other. Any design parameters change that decreases the
thermal resistance leads to an increase in the pressure drop and vice versa. Designers
can pick up any optimal solution on the Pareto-optimal curve in accordance with the
available pressure drop to drive the coolant.

Table 1. The design parameters and the range of their variations

Variables From To

Number of channels (-) 4 20
Width of channel (mm) 1 4
Height of channel (mm) 2 5
Velocity of inlet (m/s) 0 2

Table 2. Parameters of heat sink

Length of heat sink (mm) 32 Thermal conductivity of heat
sink (W/m-1K-1)

160

Width of heat sink (mm) 32 Density of water (kg/m3) 1000
Thickness of base plate
(mm)

1 Water kinematic viscosity
(m2/s)

1e-6

Ambient temperature (K) 293.15 Water Prandtl coefficient (-) 7
Thermal conductivity of
water (W/m-1K-1)

0.595 Water heat capacity (Jkg-1K-1) 4.183e3

456 X. Li et al.

4.3 Verification by Numerical Simulation

In the present study, the optimized solutions were verified by numerical simulations.
The calculation domain including the flow field and heat sink is same as Fig. 1(c).
CFD software was used to calculate the temperature distribution of heat sink and
pressure loss in flow field. The flow field was meshed the same way as described in
section 3. The solid part of heat sink was also meshed appropriately which was re-
fined at the bends and fins. The boundary conditions for simulation were presented in
section 3 with the difference of energy equation concerned. The temperature of am-
bient and inlet coolant is 293.15K. Uniform heat flux loading on the bottom plate is
6000W/m2. The top plate of heat is consumed to be insulation. After convergence, the
maximum temperature of heat sink can be obtained, and the total thermal resistance
can be calculated by the left part of eq. (1). The pressure differences between the inlet
and outlet averaged values were also computed.

Fig. 3. Pareto-optimal solutions of optimization

The Five representative solutions (with lower values of thermal resistance and
pressure drop) on the Pareto front are selected to validate by CFD. The values of ob-
jective functions and the corresponding design variables and numerical simulations at
these five representative solutions are reported in Table 3.

 Multi-Objective Optimizations of Structural Parameter Determination 457

Table 3. Numerically predicted values

Designs Variables Objective function values
 Model Numerial analysis %Error
 N wc H v Rtot P Rtot P Rtot P
A 12 2 5 0.7858 0.0976 14894.5 0.1042 15099.3 6.3% 1.3%
B 11 2.2 5 0.6742 0.1079 9678.6 0.1107 10375.2 2.5% 6.7%
C 10 2.6 5 0.4967 0.1279 5026.4 0.1239 5407.9 3.2% 7.1%
D 10 2.8 5 0.3885 0.1457 2869.5 0.1396 3260.8 4.4% 12%
E 9 2.8 5 0.3022 0.1654 1758.0 0.1569 1725.1 5.4% 1.9%

It is clearly shown in Table 3 that the values of variables of selected solutions are

reasonable to design a heat sink. The differences between analytical model and nu-
merically simulation are very small for two objective functions, thermal resistance
and pressure drop. The error of pressure drop of design D is relatively big than others,
because in design D the ratio of width of fin and width of channel is about 0.13,
which is out of the range of bend loss coefficient correlation obtained in section 3.
The deviation of bend loss coefficient causes the big error of pressure drop.

5 Conclusions

Thermal resistance and pressure drop of serpentine channel heat sink were obtained
by using the analysis model. A correlation of pressure loss coefficient for 180 sharp
bend has proposed for 1<a<6 and 0.25<b<2 with a number of CFD simulations. Next
thermal resistance and pressure drop of the heat sink are minimized by multi-
objective GAs with fixed length and width of heat sink and the thickness of base plate
with four variables viz., the number of channels, channel width, channel height and
the inlet velocity. Based on the above analyses, the following conclusions are drawn.

The thermal resistance and pressure drop analysis model have good agreement
with the results of numerically calculation.

The bend loss coefficient correlation was obtained by CFD simulations, which was
function of the aspect ratio (a), ratio of fins width to channel width (b). The ranges of
the two variables a and b were expended.

The thermal resistance and pressure drop of serpentine heat sink are conflicting
with each other. Thus, it is import to take into account the pressure drop to design
serpentine channel, and designers should pick up the optimal solution along the Pareto
front in accordance with available pumping power to drive the coolant.

Acknowledgments. The authors would like to acknowledge the partial supports pro-
vided by the National Natural Science Foundation of China (No. 91123023, 61106107
and 51105061), the Fundamental Research Funds for the Central Universities No.
E022050205, and the New Century Excellent Talents Program No. NCET-09-0264.

458 X. Li et al.

References

[1] Tuckerman, D.B., Pease, R.F.W.: High-Performance Heat Sinking for VLSI. IEEE Elec-
tron Device Letters 2, 126–129 (1981)

[2] Knight, R.W., Hall, D.J., Goodling, J.S., Jaeger, R.C.: Heat sink optimization with appli-
cation to microchannels. IEEE Transactions on Components, Hybrids, and Manufacturing
Technology 15, 832–842 (1992)

[3] Perret, C., Boussey, J., Schaeffer, C., Coyaud, M.: Analytic modeling, optimization, and
realization of cooling devices in silicon technology. IEEE Trans. Compon. Packag. Tech-
nol. 23, 665–672 (2000)

[4] Biswal, L., Chakraborty, S., Som, S.K.: Design and Optimization of Single-Phase Liquid
Cooled Microchannel Heat Sink. IEEE Trans. Compon. Packag. Technol. 32, 876–886
(2009)

[5] Gosselin, L., Tye-Gingras, M., Mathieu-Potvin, F.: Review of utilization of genetic
algorithms in heat transfer problems. Int. J. Heat Mass Transfer 52, 2169–2188 (2009)

[6] Husain, A., Kim, K.-Y.: Enhanced multi-objective optimization of a microchannel heat
sink through evolutionary algorithm coupled with multiple surrogate models. Appl.
Therm. Eng. 30, 1683–1691 (2010)

[7] Jeevan, K., Quadir, G.A., Seetharamu, K.N., Azid, I.A., Zainal, Z.A.: Optimization of
thermal resistance of stacked micro-channel using genetic algorithms. International Jour-
nal of Numerical Methods for Heat & Fluid Flow 15, 27–42 (2005)

[8] Manivannan, S., Devi, S.P., Arumugam, R.: Optimization of flat plate heat sink using ge-
netic algorithm. In: 2011 1st International Conference on Electrical Energy Systems
(ICEES), pp. 78–81 (2011)

[9] Peng, C.H., Wu, M.C., Horng, J.T., Lee, C.Y., Fang, C.J., Hung, Y.H.: An optimal ap-
proach with genetic algorithm for thermal performance of heat sink/TEC assembly. In:
The Tenth Intersociety Conference on Thermal and Thermomechanical Phenomena in
Electronics Systems, ITHERM 2006, pp. 458–463 (2006)

[10] Sanaye, S., Hajabdollahi, H.: Thermal-economic multi-objective optimization of plate fin
heat exchanger using genetic algorithm. Appl. Energy 87, 1893–1902 (2010)

[11] Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)

[12] Copeland, D.: Optimization of parallel plate heatsinks for forced convection. In: Six-
teenth Annual IEEE Semiconductor Thermal Measurement and Management Sympo-
sium, pp. 266–272 (2000)

[13] Pharoah, J.G.: An Efficient Method for Estimating Flow in the Serpentine Channels and
Electrodes of PEM Fuel Cells. In: ASME Conference Proceedings, ASME, pp. 547–554
(2006)

[14] Pharoah, J.G.: On the permeability of gas diffusion media used in PEM fuel cells. J. Pow-
er Sources 144, 77–82 (2005)

[15] Maharudrayya, S., Jayanti, S., Deshpande, A.P.: Pressure losses in laminar flow through
serpentine channels in fuel cell stacks. J. Power Sources 138, 1–13 (2004)

[16] Hirota, M., Fujita, H., Syuhada, A., Araki, S., Yoshida, T., Tanaka, T.: Heat/mass transfer
characteristics in two-pass smooth channels with a sharp 180-deg turn. Int. J. Heat Mass
Transfer 42, 3757–3770 (1999)

[17] Syuhada, A., Hirota, M., Fujita, H., Araki, S., Yanagida, M., Tanaka, T.: Heat (mass)
transfer in serpentine flow passage with rectangular cross-section. Energy Convers. Man-
age. 42, 1867–1885 (2001)

Towards Non-linear Constraint Estimation

for Expensive Optimization

Fabian Gieseke and Oliver Kramer

Department of Computer Science
University of Oldenburg

26111 Oldenburg, Germany

Abstract. Constraints can render a numerical optimization problem
much more difficult to address. In many real-world optimization appli-
cations, however, such constraints are not explicitly given. Instead, one
has access to some kind of a “black-box” that represents the (unknown)
constraint function. Recently, we proposed a fast linear constraint esti-
mator that was based on binary search. This paper extends these results
by (a) providing an alternative scheme that resorts to the effective use
of support vector machines and by (b) addressing the more general task
of non-linear decision boundaries. In particular, we make use of active
learning strategies from the field of machine learning to select reasonable
training points for the recurrent application of the classifier. We compare
both constraint estimation schemes on linear and non-linear constraint
functions, and depict opportunities and pitfalls concerning the effective
integration of such models into a global optimization process.

1 Introduction

Many engineering problems are subject to linear or non-linear constraints. In
numerical optimization scenarios, such constraints can make a problem consid-
erably harder to address compared to the standard unconstrained case. Since
the evaluation of a constraint function might be very expensive, meta-modeling
strategies have already been employed to reduce the number of constraint func-
tion calls, similar to objective function meta-modeling that has been widely
considered in the past. However, estimating such constraints depicts a challeng-
ing task, even if one considers one of the simplest cases like the estimation of a
linear (but unknown) hyperplane. Further, the more general (and more complex)
case of non-linear constraints has not yet gained much attention up to now.

Recently, we proposed a linear constraint boundary estimator (LCBE) [8],
which was based on an effective binary search framework. The purpose of this
work is to provide a simple yet surprisingly effective constraint estimation model
that makes use of state-of-the-art tools from the machine learning field. In par-
ticular, we consider an active learning [12] strategy that is adapted to the specific
needs of support vector machines [11,13,15] to iteratively select reasonable points
for estimating the desired constraint function within a pre-defined region of in-
terest. The new approach is surprisingly effective and can, in contrast to LCBE,
also be applied to non-linear constraints.

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 459–468, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

460 F. Gieseke and O. Kramer

Related work on meta-modeling of (non-linear) constraints, but also on gen-
eral constraint handling for the covariance matrix adaptation evolution strat-
egy (CMA-ES) [2,5], is quite rare. One of the first papers on meta-modeling of
constraints for evolutionary optimization is the work of Runarsson [10], who em-
ploys nearest neighbor regression [6] as surrogate model. Recently, Arnold and
Jansen [1] introduced a constraint handling method for the (1 + 1)-CMA-ES.
The idea is based on approximating “the directions of the local normal vectors
of the constraint boundaries by accumulating steps that violate the respective
constraints, and to then reduce variances of the mutation distribution in those
directions” [1]. Hence, this approach iteratively makes use of the information
provided by the (evaluated) constraint function to avoid sampling unnecessarily
in infeasible regions of the search space. However, no explicit meta-model is
obtained via this approach. Due to lack of space, we refer to Jin [7] for a com-
prehensive overview of further work on constraint handling and meta-modeling.

Interestingly, estimating or “learning” a, e.g., linear decision hyperplane in the
Euclidean space Rd can be formalized as active learning [12] problem: Freund et
al. [4] show that an appropriate selective sampling strategy yields an approxima-
tion with error less than ε > 0 by spending O(log(1/ε)) hyperplane constraint
function calls. Surprisingly, the more general case of estimating a particular class
of non-linear decision functions has not yet gained much attention.

This paper is structured as follows: In Section 2, we briefly review the approach
for estimating an arbitrary linear constraint hyperplane. This forms the basis
for our active learning variant, which is described in Section 3. In Section 4,
we compare both approaches on a set of linear constraint hyperplanes, and also
show how our extension deals with non-linear problem instances. Conclusions
and future research directions are provided in Section 5.

2 Linear Constraint Estimation Revisited

The key idea of the previously proposed linear constraint boundary estima-
tor (LCBE) [8] is based on a simple yet effective binary search scheme that
yields d cutting points, which lie on or close to the target hyperplane h ⊂ Rd

(where h ≥ 0 corresponds to the feasible region and h < 0 to the infeasible one).
The overall algorithmic framework is depicted in Algorithm 1: Starting with a
set of one feasible and d infeasible points (or vice versa), the algorithm performs
d binary search steps to identify the desired cutting points. In each step, one
considers a pair of a feasible point xF and an infeasible point xI , and iteratively
tests the mean of them for validness, see Steps 4–11 of Algorithm 1. The result-
ing d cutting points form the basis for the computation of the approximation ĥ
in Rd in Step 13 (assuming that all cutting points are linearly independent [8]).
The identification of the initial set of points can be performed in various kinds
of ways. One of them is to sample points from a user-defined probability distri-
bution P until the computed set of points fulfills the desired properties (we will
resort to this strategy in the experimental comparison depicted below).

Towards Non-linear Constraint Estimation for Expensive Optimization 461

Input: A linear constraint function h and the number Bs ∈ N of allowed binary search
steps per cutting point.
Output: An estimation ĥ for h.

1: Initialize set F = {x̄} (feasible point) and set I = {x′
1, . . . ,x

′
d} (d infeasible points).

2: S = {}
3: for i = 1 to d do
4: xF := x̄ and xI := x′

i

5: k = 0
6: while k < Bs do
7: z = (xF +xI)

2

8: if 〈w, z〉+ b ≥ 0 then xF = z else xI = z
9: k = k + 1
10: end while
11: S = S ∪ { (xF +xI)

2
}

12: end for
13: Compute approximation ĥ based on the set S (see text).
14: return

Algorithm 1. Linear constraint boundary estimator (LCBE) [8]

3 An Active Large Margin Constraint Estimator

We will now develop a more general constraint estimation model that is based on
support vector machines in combination with adapted active sampling strategies.

3.1 Support Vector Machines

The idea of a support vector machine is to learn a decision boundary that al-
lows to separate the members of two classes. The optimal linear hyperplane
maintains a large distance of the closest patterns, which is also known as mar-
gin [11,15]. The two classes are represented via a labeled training set T =
{(x1, y1), . . . , (xn, yn)} ⊂ Rd × {−1,+1}. Given the separable case (i. e., both
classes can be separated by a linear hyperplane), one obtains the following op-
timization task to be solved for hard-margin support vector machines [11,13]:

minimize
w∈Rd, b∈R

1

2
‖w‖2 (1)

s.t. yi(〈w,xi〉+ b) ≥ 1

Here, the objective corresponds to maximizing the margin to the given patterns.
The concept of hard-margin support vector machines is based on the assumption
that the training set is linearly separable. To cope with non-separable training
sets, one usually relaxes the constraints by allowing patterns to lie within the
margin (or even on the wrong side of the hyperplane). More precisely, so-called
slack variables ξ1, . . . , ξn ∈ R are introduced to impose

yi(〈w,xi〉+ b) ≥ 1− ξi, ξi ≥ 0 (2)

462 F. Gieseke and O. Kramer

(a) C = 0.001 (b) C = 1 (c) C = 1, 000

Fig. 1. The blue triangles depict negative and the red squares positive training in-
stances. The decision hyperplane and the margin are indicated by black lines.

for i = 1, . . . , n. This leads to the following optimization task [11,13]:

minimize
w∈Rd, b∈R, ξ∈Rn

1

2
‖w‖2 + C

n∑
i=1

ξi (3)

s.t. yi(〈w,xi〉+ b) ≥ 1− ξi, ξi ≥ 0

The first term of the objective corresponds to maximizing the margin and the
second one captures the violation of the (previously) strict constraints. The
parameter C ∈ R+ determines the trade-off between both aims, see Figure 1
for an illustration. Non-linear decision functions are obtained via the use of
so-called kernel functions k : Rd × Rd → R [11,13]. Well-known candidates
are, for instance, the linear kernel with k(xi,xj) = 〈xi,xj〉 and the radial basis
function (RBF) kernel with k(xi,xj) = exp(−γ‖xi−xj‖2) and associated kernel
width γ ∈ R+. Such a kernel function gives rise to a kernel matrix K ∈ Rm×m

with entries [K]i,j = k(xi,xj); a defining property of a kernel function is the
assumption that this matrix must be positive semidefinite.

An artificial toy example of a support vector machine model that is based on
an RBF kernel is given in Figure 2. Note that, from an optimization point of
view, one obtains a quadratic programming [3] problem of the form

maximize
β∈[0,C]n

n∑
i=1

βi − 1

2

n∑
i=1

n∑
j=1

βiβjyiyjk(xi,xj) (4)

s.t.

n∑
i=1

βiyi = 0

which can be solved efficiently in O(n3) time [11,13].

3.2 An Iterative Selection Strategy for Constraint Estimation

Support vector machines depict powerful tools for various learning tasks given
a fixed training set. However, for the meta-modeling purposes depicted above,
one has to generate appropriate training samples that reflect the (unknown)
constraint boundary. A natural approach is to select these instances uniformly

Towards Non-linear Constraint Estimation for Expensive Optimization 463

(a) γ = 4.0 (b) γ = 1.0 (c) γ = 0.25

Fig. 2. The kernel width γ ∈ R+ of the RBF kernel is decreased from left to right.
Blue triangles depict negative and red squares positive training instances.

at random. It is well known, however, that this approach requires a large amount
of sample points to achieve a satisfying accuracy.

A more sophisticated one is to iteratively sample these instances, as we will
show next. Note that, from a machine learning point of view, the estimation of
constraints can be seen as active learning [12] scenario, where a huge amount of
unlabeled instances is given and where the labeled instances can be obtained via
an evaluation of the constraint function. In the literature, several approaches
have been proposed [14]; due to lack of space, we refer to Settles [12] for a
comprehensive overview. Our setting is related to such active learning scenarios.
However, there are two important differences one can take advantage of:

1. First, assuming a noiseless constraint function, the patterns are separable
(i. e., we do not have overlapping classes) by some non-linear mapping (at
least, by the constraint function itself).

2. Second, one can sample an arbitrary number of unlabeled patterns that are
close to the current hyperplane model (without any additional cost with
respect to the evaluation of the true constraint function).

Thus, aiming at the effective use of support vector machines, we can restrict
our models to the hard-margin case, assuming that one employs a sufficiently
rich kernel function that can reflect the shape of the constraint function g. The
algorithmic framework for estimating constraints is shown in Algorithm 2: The
goal is to estimate the true constraint function g in a sampling region induced
by an input distribution P . Starting with an initial labeled training set of size
m that contains both feasible and infeasible points, the approach iteratively
(1) computes a hard-margin support vector machine model, (2) generates u
unlabeled points according to P , and (3) labels the point that is closest to the
current decision surface of the support vector machine model. This process is
repeated until a pre-defined budget of constraint calls is exhausted.

Note that the training of the model in each iteration is based on all points
generated so far, and that the non-fixed parameters are tuned via leave-one-out
cross validation [6]. This ensures that one takes advantage of the rare labeled
points as well as possible. The overall scheme is driven by the user-defined input
probability distribution P that defines the “region of interest”. Without any
such assumption, arbitrary non-linear constraint surfaces cannot be handled.

464 F. Gieseke and O. Kramer

Input: Constraint function g : Rd → {−1,+1}, parameters m,u,B ∈ N, and a proba-
bility distribution P .
Output: An approximation ĝ of g in the sampling region induced by P .

1: Select and label an appropriate initial training set T of size m that contains both
feasible and infeasible training samples (see text).

2: i = 0
3: repeat
4: Compute hard-margin support vector machine model h(·) = 〈w, ·〉+ b based on

T (using leave-one-out cross validation for tuning involved kernel parameters).
5: Generate a set Tu = {z1, . . . , zu} ⊂ Rd of u unlabeled points that are sampled

according to P .
6: Let zκ ∈ Tu be the point that minimizes d(zj , h) for j = 1, . . . , u.
7: T = T ∪ {(zκ, g(zκ))}
8: i = i+ 1
9: until m+ i > B

Algorithm 2. Active Hard-Margin Constraint Estimation (AHMCE)

4 Experimental Evaluation

In the following, we will analyze the above meta-models given both linear and
non-linear settings, and will sketch an exemplary use of such models for global
optimization frameworks. Our implementations are based on Python 2.6 includ-
ing the scikit-learn package. For the support vector machine implementation,
we fix C to 10, 000 to enforce hard-margin models.1

4.1 Constraint Estimation Analysis

We start by comparing the LCBE method with our new AHMCE framework on
a simple hyperplane constraint in Rd, followed by non-linear scenarios.

Linear Constraints. To compare both schemes for linear settings, we define
g1(x) = sgn(〈w,x〉 + b) with w = (1, . . . , 1)T ∈ Rd, b = 0, and sgn(x) = 1 for
x ≥ 0 and sgn(x) = −1 otherwise, and fix P = N (0, I). For LCBE, we limit the
number Bs of binary search steps per cutting point to 5, and set B for AHMCE
to the number of constraint calls used by LCBE. Further, we fix m = 4 and
u = 1, 000 for AHMCE. Estimating this constraint function gets more and more
difficult with increasing dimension of the search space. To illustrate this issue
and to compare the accuracy of both models, we vary the dimension d from 2
to 15. The approximations obtained via both schemes are shown Figures 4 (a)
and (b) for d = 2; the test errors2 for the remaining dimensions are shown in

1 Since the induced task is separable via a non-linear function, hard-margin support
vector machines depict appropriate candidates to represent the constraint function.

2 Which are obtained on an independent test set of 100, 000 points.

Towards Non-linear Constraint Estimation for Expensive Optimization 465

(a) i = 0 (b) i = 1 (c) i = 2

(d) i = 5 (e) i = 10 (f) i = 15

Fig. 3. Algorithm 2 with P = N (0, I): The small points indicate the underlying distri-
bution P ; larger red squares and blue triangles depict the points that have already been
labeled. Starting with an initial set of both feasible and infeasible solutions (i = 0), the
approach iteratively labels a pattern that is close to the approximation (dashed line)
of the true constraint function g (solid line).

Figure 4 (c). It can be seen that both approaches can effectively estimate the
constraint hyperplane for d = 2. For higher dimensions, however, the AHMCE
model is clearly superior. Two issues should be pointed out: First, the approxi-
mation quality of LCBE can naturally be improved by increasing the number of
allowed binary search steps. Second, since the hard-margin support vector model
is based on quadratic programming, one would need to increase the accuracy for
the intermediate models in case a higher overall accuarcy is desired.

Non-linear Constraints. The new constraint estimator can also, in contrast
to LCBE, deal with non-linear settings due to the concept of kernel functions.
To illustrate these capabilities, we consider two non-linear constraint functions
for d = 2, namely a “sinus example” defined via g2(x) = sgn(sin(2x0) − x1)
and a “XOR example” denoted by g3. The approximations computed by the
AHMCE approach (with m = 25, B = 100, and an RBF kernel with γ ∈
{2−10, . . . , 210}) for these two examples are shown in Figure 5, given two different
input distributions. Naturally, and in contrast to the linear setting, one has to
make a compromise between (a) diversity and (b) accuracy of the model. In our
setting, both the number m of initial (random) starting points as well as the
input distribution P determine this compromise. While P = N (0, I) induces a
more detailed model around the origin, P = N (0, 2I) enforces more diversity
and, hence, can better capture the global structure of the functions.

466 F. Gieseke and O. Kramer

(a) LCBE (b) AHMCE

0

10

20

30

40

50

2 4 6 8 10 12 14
0

50

100

E
rr
or

(%
)

C
on

st
ra
in
t
C
al
ls

Dimension d

LBCE

AHMCE

g(x)

(c)

Fig. 4. Estimation of a linear hyperplane: Figures (a) and (b) show the outcome for
the two-dimensional case. Figure (c) depicts the average test errors over 25 runs for
varying dimensions d = 2, . . . , 15. LCBE and AHMCE resort to the same amount of
constraint function calls (green curve). Clearly, AHMCE yields much better models
(with smaller errors) as LCBE spending the same amount of constraint function calls.

4.2 Application: Meta-modeling in Optimization

The meta-models described above can be employed for various applications. One
of them is constrained optimization, and we briefly sketch the opportunities
and pitfalls for such scenarios. For the sake of demonstration, and to facilitate
the setup, we make use of a standard CMA-ES [2,5] optimization process for
the fitness function f(x) = xTx subject to the constraints defined above (with
d = 2). The CMA-ES is initialized with standard parameters using xs = (10, 0),
xs = (1, 1), and xs = (1, 1) as initial candidate solutions for g1, g2, and g3,
respectively, initial step size σ = 0.5, population size λ = 4 + 3 log(d) = 7, and
target fitness ft = 0.001. To integrate the meta-models, we follow our previous
work [8] and train them off-line, beforehand; the CMA-ES then resorts to this
surrogate instead of the constraint function. Both meta-models are compared
with a standard death penalty enhanced CMA-ES framework.3

The results are shown in Table 1. For the linear constraint, both models
can successfully be employed to significantly reduce the amount of needed con-
straint functions calls (from 334 to less than 100). However, for the non-linear
constraints, the LCBE does not always yield the optimal solution (average er-
rors of 0.06 and 0.01, respectively). Further, the convergence behavior is worse
compared to its competitors (more than 300 fitness evaluations), which stems
from bad search directions induced by inappropriate approximations. In con-
trast, AHMCE can successfully detect the non-linear structures and yields ap-
proximation accuracies that are sufficient for a successful replacement of the
true constraint functions (about 100 constraint function calls are saved for both
problem instances). Still, in case of a bad approximation, the convergence be-
havior can also become worse, as it is the case for the g3 constraint (the amount
of fitness evaluations is doubled compared to death penalty).

3 Death penalty resorts to the true constraint function and samples, in each generation,
new candidate solutions again and again until sufficient valid candidates are found.

Towards Non-linear Constraint Estimation for Expensive Optimization 467

(a) P = N (0, I) (b) P = N (0, 2I) (c) P = N (0, I) (d) P = N (0, 2I)

Fig. 5. Two non-linear constraint examples with two input distributions each. The
AHMCE scheme can successfully capture the structure of these constraints in the
sample region induced by P .

Table 1. Use of the different meta-models for a simple CMA-ES based optimization
process induced by the two-dimensional sphere function f(x) = xTx subject to a linear
constraint g1(x) ≤ 0 (hyperplane) and two non-linear constraints g2(x) ≤ 0 (sinus) and
g3(x) ≤ 0 (xor). Mean and one standard deviation for the best reached fitness value
(best), the number of needed fitness function calls (f-calls), and the number of needed
constraint function calls (c-calls) are reported.

Death Penalty LCBE AHMCE

best f-calls c-calls best f-calls c-calls best f-calls c-calls
g1(x) 0.00± 0.00 225± 42 334 ± 55 0.00 ± 0.00 255± 22 98± 6 0.00 ± 0.00 248± 26 95± 7
g2(x) 0.00± 0.00 140± 31 221 ± 43 0.06 ± 0.13 338± 377 138 ± 67 0.00 ± 0.00 141± 22 144 ± 7
g3(x) 0.00± 0.00 125± 20 230 ± 27 0.01 ± 0.03 409± 406 142 ± 66 0.00 ± 0.00 215± 230 148 ± 39

5 Conclusions and Future Work

The approximation of constraint functions is a difficult task. This work extends
our previous work [8] on linear constraint estimation. Our approach is based
on active learning strategies for hard-margin support vector machines, and we
successfully make use of the specific properties of the task at hand to reduce
the amount of needed constraint function calls. The new approach achieves a
better approximation accuracy compared to LCBE for linear constraint settings,
given the same budget of constraint function calls. Further, it can be easily be
extended to the non-linear case via the use of kernel functions. As shown in the
experimental evaluation, linear constraints can successfully be approximated;
non-linear ones, however, depict challenging tasks, even for the two-dimensional
case. However, depending on the particular problem instance, constraint function
calls can be saved in the context of expensive optimization settings.

We plan to extend these results in future. First, estimating non-linear con-
straints is very challenging and the question arises if meaningful sampling strate-
gies for arbitrary non-linear constraint settings can be derived at all. Here, a
promising research direction is the extension of recently developed locally linear
support vector machines [9] to the active learning settings considered in this
work; such models could still capture constraint functions induced by multiple

468 F. Gieseke and O. Kramer

linear constraints, while taking advantage of the fact that (partially) linear con-
straints can be much better detected compared to arbitrary non-linear ones.
Second, the integration of such models into global optimization frameworks re-
quires sophisticated meta-model managing systems that, e.g., keep track of the
meta-model quality and that invoke retraining phases in case the quality is bad
(again, estimating the quality is challenging due to the lack of labeled data).

Acknowledgements. The authors would like to thank the anonymous review-
ers for their useful comments and suggestions. This work has been supported by
funds of the Deutsche Forschungsgemeinschaft (grant KR 3695/2-1).

References

1. Arnold, D.V., Hansen, N.: A (1+1)-CMA-ES for constrained optimisation. In:
GECCO, pp. 297–304 (2012)

2. Auger, A., Hansen, N.: A restart CMA evolution strategy with increasing popula-
tion size. In: Proceedings of the IEEE Congress on Evolutionary Computation –
CEC 2005, vol. 2, pp. 1769–1776 (2005)

3. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge Uni. Press (2004)
4. Freund, Y., Seung, H., Shamir, E., Tishby, N.: Selective sampling using the query

by committee algorithm. Machine Learning 28(2-3), 133–168 (1997)
5. Hansen, N.: The CMA evolution strategy: a comparing review. In: Towards a New

Evolutionary Computation. Advances on Estimation of Distribution Algorithms,
pp. 75–102. Springer (2006)

6. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, 2nd
edn. Springer (2009)

7. Jin, Y.: Surrogate-assisted evolutionary computation: Recent advances and future
challenges. Swarm and Evolutionary Computation 1(2), 61–70 (2011)

8. Kramer, O., Barthelmes, A., Rudolph, G.: Surrogate Constraint Functions for CMA
Evolution Strategies. In: Mertsching, B., Hund, M., Aziz, Z. (eds.) KI 2009. LNCS,
vol. 5803, pp. 169–176. Springer, Heidelberg (2009)

9. Ladický, L., Torr, P.H.S.: Locally linear support vector machines. In: Proceedings
of the 28th International Conference on Machine Learning, pp. 985–992 (2011)

10. Runarsson, T.P.: Constrained Evolutionary Optimization by Approximate Ranking
and Surrogate Models. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-
Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P.
(eds.) PPSN 2004. LNCS, vol. 3242, pp. 401–410. Springer, Heidelberg (2004)

11. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Reg-
ularization, Optimization, and Beyond. MIT Press (2001)

12. Settles, B.: Active Learning. Synthesis Lectures on Artificial Intelligence and Ma-
chine Learning. Morgan & Claypool Publishers (2012)

13. Steinwart, I., Christmann, A.: Support Vector Machines. Springer, New York
(2008)

14. Tong, S., Koller, D.: Support vector machine active learning with applications to
text classification. Journal of Machine Learning Research 2, 45–66 (2002)

15. Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)

Repair Methods for Box Constraints Revisited

Simon Wessing

Fakultät für Informatik, Technische Universität Dortmund, Germany
simon.wessing@tu-dortmund.de

Abstract. Box constraints are possibly the simplest kind of constraints
one could think of in real-valued optimization, because it is trivial to de-
tect and repair any violation of them.But so far, the topic has only received
marginal attention in the literature compared to the more general formu-
lations, although it is a frequent use case. It is experimentally shown here
that different repair methods can have a huge impact on the optimizer’s
performance when using the covariance matrix self-adaptation evolution
strategy (CMSA-ES). Also, two novel repair methods, specially designed
for this algorithm, sometimes outperform the traditional ones.

Keywords: box constraints, repair method, Baldwin, Lamarck.

1 Introduction

In this paper we will deal with single-objective optimization problems given as
f : F ⊂ Rn → R. A solution x = (x1, . . . , xn)

T ∈ F is assigned an objective
value f(x), which is to be minimized. The feasible region is simply defined here
as F = [, u]n, meaning that for each xi, there is a lower and upper limit 	, u, so
that 	 ≤ xi ≤ u. These limits are a special case of linear constraints, where the
hyperplanes defining them are axis-aligned. F , the intersection of all the feasible
half spaces, is a hypercuboid, hence the name box constraint.

Apparently, box constraints or even linear constraints are usually not treated
specially in the literature concerning constraint handling in evolutionary algo-
rithms (EA). Penalty and resampling methods seem to be most common (see
Coello Coello [1] for an overview). To the author’s best knowledge, the only
detailed analysis on repair functions for box constraints was done by Arabas et
al. [2]. They also experiment with several other constraint handling methods and
apply them to differential evolution on the CEC 2005 benchmark set [3].

Let us depict repair functions as mappings T : Rn → F . There are at least
three candidates for T that can be decomposed into n one-dimensional repair
functions T1(x1), . . . , Tn(xn), where Ti : R → [, u]. Projection is probably the
simplest one, because any variable that violates a constraint is just set to the
value of this constraint:

Ti(xi) =

⎧⎪⎨⎪⎩
xi 	 ≤ xi ≤ u ,

u xi > u ,

	 xi < 	 .

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 469–478, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

470 S. Wessing

100 0 100

100

0

100

Projection

100 0 100

100

0

100

Reflection

100 0 100

100

0

100

Wrapping

0

8000

16000

24000

32000

40000

48000

56000

64000

100 0 100

100

0

100

Projection

100 0 100

100

0

100

Reflection

100 0 100

100

0

100

Wrapping

0

2000

4000

6000

8000

10000

12000

14000

16000

Fig. 1. The two unimodal problems F2 (top) and F5 (bottom). The boundaries are
marked by white lines. Depending on the repair method, there are different looking
“virtual” landscapes outside the boundaries.

This approach, which is promising when the optimum lies on a constraint, seems
to be frequently used [4–6]. The other two can be defined recursively. The re-
flection approach is given by

Ti(xi) =

⎧⎪⎨⎪⎩
xi 	 ≤ xi ≤ u ,

Ti(u+ (u− xi)) xi > u ,

Ti(+ (− xi)) xi < 	 ,

while Purchla et al. [7] also mention the possibility of treating the search space
as a torus. They call this approach wrapping:

Ti(xi) =

⎧⎪⎨⎪⎩
xi 	 ≤ xi ≤ u ,

Ti(xi − (u−)) xi > u ,

Ti(xi + (u−)) xi < 	 .

Projection and reflection are more versatile than wrapping, because they are
also defined when either 	 = −∞ or u = ∞. On the other hand, projection
introduces a bias towards the boundary, which wrapping and reflection do not.
These three alone already seem quite diverse, but later we will see that there are
even more aspects to repair methods.

Figure 1 shows on two unimodal problems, how these mappings de facto shape
a landscape outside the feasible region. The figure was created by sampling the
infeasible regions, repairing the solutions with the respective method, and then
evaluating the repaired solution. Both problems are taken from the CEC 2005

Repair Methods for Box Constraints Revisited 471

500 0 500

500

0

500

Projection

500 0 500

500

0

500

Reflection

500 0 500

500

0

500

Wrapping

240

480

720

960

1200

1440

6 4 2 0 2 4 6
6

4

2

0

2

4

6
Projection

6 4 2 0 2 4 6
6

4

2

0

2

4

6
Reflection

6 4 2 0 2 4 6
6

4

2

0

2

4

6
Wrapping

0

7500

15000

22500

30000

37500

45000

Fig. 2. The two multimodal problems Schwefel (top) and F12 (bottom)

special session on real-parameter optimization [3]. F2 is a shifted double sum
problem. Its optimum lies near, but not directly on the boundary. F5, on the
other hand, has its optimum lying in a corner for n = 2, while for higher di-
mensions it is on the edge of the feasible space. Figure 2 shows two multimodal
problems. The first one is the generalization of Schwefel’s problem 2.26 [8] to n

dimensions, f(x) =
∑n

i=1−xi · sin
(√|xi|) . This problem is highly multimodal.

The boundaries are set to 	 = −(7π)2 and u = (7π)2 to make it wrap around,
i. e. the tiled, unconstrained landscape of the problem has no cliffs. It is also
deceptive, because large local optima are located far away from each other and
the global one. F12 is the instance of Fletcher and Powell’s problem [9] that also
appears in the CEC 2005 competition [3]. It, too, has the special property of
wrapping around.

This work focuses on a smaller set of problems and only a subset of the
constraint handling methods in [2], but instead adds the question to the inves-
tigation, if repairs should be passed on to the offspring. In biology, this concept
is known as Lamarckian inheritance and describes the belief that an individual
can pass on characteristics that it acquired during its lifetime to its offspring.
The alternative theory, which is in accordance with Darwin’s theory of natural
selection, is the theory of Baldwinian evolution.

In the optimization context, repair functions can be seen as a special case of
a local search component added to the EA [10, p. 214]. The repaired solution
can either replace the original one (Lamarck), or only the repaired version’s
fitness is assigned to the original solution (Baldwin). The latter approach is
used for example by Hansen et al. [6]. In the software, this corresponds to either
implementing the repair as part of the individual (Lamarck) or the problem
(Baldwin). Figure 3 shows where the repaired solutions would be located in

472 S. Wessing

a

b c d e

f

g

Fig. 3. Illustration of the different possible repair methods. From the feasible solution
(a) an infeasible one (b) is created by variation. This solution can be repaired by
projection (c), reflection (d), wrapping (e), projection onto the point of intersection
(f), or reflection along the variation direction (g).

an example situation. In the case of Baldwinian inheritance, the constraints
would be hidden (to the individual) and point b would always seem feasible,
but the objective value nonetheless depend on the repaired version. Otherwise,
the mapping also influences the following search steps. Imagine, for example,
that solution e survives the selection step in the case of Lamarckian inheritance.
Assuming intermediate recombination, the search would be dragged away from
the boundary, because the next offspring would be created around the center
of the then widespread population. This is probably an undesired behavior that
should be avoided.

We also want to test two new repair functions (f and g in Fig. 3) that take
the mutation direction into account. The approach is similar to Michalewicz’
GENOCOP III [11] in that it needs a feasible reference point a and aims to find
the intersection of the boundary with the line defined by a and the infeasible
point b. For a reasonable integration into the variation operator, a should be
chosen as the intermediate solution that results from recombination. I. e., for the
covariance matrix self-adaptation evolution strategy (CMSA-ES) by Beyer and
Sendhoff [12], a would be the population center. This requires that recombination
produces a feasible solution, which is guaranteed e. g. for convex F and operators
that generate solutions in the convex hull of the parents.

In the case of box constraints, computing the intersection analytically is easy.
Let xi = c be the hyperplane of the violated constraint and h : x = b +
s(a − b) the mentioned line. Equating the two yields the scale factor s = (c −
bi)/(ai − bi), whose substitution back into h yields the intersection point. If
more than one constraint is violated, there exists (in the non-degenerate case)
exactly one feasible intersection between a and b. Optionally, instead of using
the intersection as the repaired version (IP), it is also possible to combine the
approach with reflection (IR) or wrapping along h (only the former is tried here).

Repair Methods for Box Constraints Revisited 473

500 0 500

500

0

500

Intersection, Projection

500 0 500

500

0

500

Intersection, Reflection

240

480

720

960

1200

1440

Fig. 4. The two new repair methods on Schwefel’s function. The landscape is heavily
dependent on the reference point (white dot).

The approach cannot be plotted as easy as the three simple ones, because of its
dependency on the reference point a. So, the landscape changes every generation.
Figure 4 shows an example situation on Schwefel’s function. Also, as the reference
point has to be feasible, it is not obvious how to combine the mapping with
Baldwinian inheritance. Therefore, it is only tested with Lamarckian inheritance
in Sec. 2.

2 Experiments

Research Question:Which combination of mapping and inheritance yields the
best results? Is there a benefit in using the reference point dependent methods?

Pre-experimental Planning: The CMSA-ES seems to be an appropriate
choice for this basic research, because it represents a reasonable compromise
between performance and simplicity. There are also two arguments for IP and
IR to be tested especially with this algorithm: Firstly, as the reference point a
changes every generation, it seems advisable to use an EA with comma selec-
tion to not compare individuals that have been repaired differently. Secondly,
CMSA-ES uses self-adaptation to adjust the mutation strength σ. This means
that a separate σi is stored for each individual i, which makes it possible to
also scale down the σi after an individual is repaired. This is done by setting
σi := σi(‖f − a‖)/(‖b− a‖) in the case of IP and σi := σi(‖g − a‖)/(‖b− a‖)
for IR. As it is guaranteed by construction that f and g lie closer to a than b,
this scaling can only decrease σi. In preliminary runs, IP and IR without the
scaling could not compete with the other repair methods because of diverging
step sizes.

Task: The task is to compare the repair methods regarding their performance.
As performance measure, the expected running time [13]

ERT = RTS +
1− p̂s
p̂s

·RTUS ,

474 S. Wessing

F2, n = 2
lo

g
2

(E
R

T
)

10.5

11.0

11.5

12.0

12.5

13.0

Baldwin Lamarck

IP

Baldwin Lamarck

IR

Baldwin Lamarck

Projection

Baldwin Lamarck

Reflection

Baldwin Lamarck

Wrapping

F2, n = 10

lo
g

2
(E

R
T

)

14

15

16

Baldwin Lamarck

IP

Baldwin Lamarck

IR

Baldwin Lamarck

Projection

Baldwin Lamarck

Reflection

Baldwin Lamarck

Wrapping

Fig. 5. ERT results on F2 in two (top) and ten dimensions (bottom)

F5, n = 2

lo
g

2
(E

R
T

)

6

8

10

12

Baldwin Lamarck

IP

Baldwin Lamarck

IR

Baldwin Lamarck

Projection

Baldwin Lamarck

Reflection

Baldwin Lamarck

Wrapping

F5, n = 10

lo
g

2
(E

R
T

)

14

16

18

20

22

24

Baldwin Lamarck

IP

Baldwin Lamarck

IR

Baldwin Lamarck

Projection

Baldwin Lamarck

Reflection

Baldwin Lamarck

Wrapping

∞ ∞ ∞ ∞

Fig. 6. ERT results on F5. The ∞ symbols mark configurations with p̂s = 0.

will be used. RTS and RTUS are the average number of function evaluations for
successful and unsuccessful runs, while p̂s is the estimated success probability
of finding the global optimum. In case of p̂s = 0 we define ERT = ∞. For the
multimodal problems, figures will focus on p̂s itself for better visualization. A
run is considered successful when it finds an objective value within 10−6 of the
global optimum.

Repair Methods for Box Constraints Revisited 475

F12, n = 2

log2(Initial Sigma)

F
ra

c
ti
o
n

0.0

0.2

0.4

0.6

0.8

1.0

−6 −5 −4 −3 −2 −1

IP

Baldwin

IR

Baldwin

−6 −5 −4 −3 −2 −1

Projection

Baldwin

Reflection

Baldwin

−6 −5 −4 −3 −2 −1

Wrapping

Baldwin

IP

Lamarck

−6 −5 −4 −3 −2 −1

IR

Lamarck

Projection

Lamarck

−6 −5 −4 −3 −2 −1

Reflection

Lamarck

0.0

0.2

0.4

0.6

0.8

1.0

Wrapping

Lamarck

F12, n = 10

log2(Initial Sigma)

F
ra

c
ti
o
n

0.0

0.2

0.4

0.6

0.8

1.0

−6 −5 −4 −3 −2 −1

IP

Baldwin

IR

Baldwin

−6 −5 −4 −3 −2 −1

Projection

Baldwin

Reflection

Baldwin

−6 −5 −4 −3 −2 −1

Wrapping

Baldwin

IP

Lamarck

−6 −5 −4 −3 −2 −1

IR

Lamarck

Projection

Lamarck

−6 −5 −4 −3 −2 −1

Reflection

Lamarck

0.0

0.2

0.4

0.6

0.8

1.0

Wrapping

Lamarck

Fig. 7. The success rate p̂s (blue), the fraction of repaired offspring (pink), and the
repaired offspring that also survived the selection step (green). For Baldwinian inheri-
tance, the latter two measures and IP and IR are not applicable.

Setup: The experiment is carried out on the mentioned problems for n = 2 and
n = 10. A (15 , 60)-CMSA-ES is applied to each problem. Besides the repair
methods described in Sec. 1, the initial mutation strength σinit is introduced as
a factor and the tested levels are (u−)/k, k ∈ {2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64}.
Each configuration is repeated 125 times with the start point drawn uniformly
from the feasible region. The maximal number of function evaluations for each
run is set to n · 104. The EA can abort earlier, if a stopping criterion triggers.
This is the case when all objective values of the population are less than 10−12

away from each other or when all σi > 3(u−).

Results: Figure 5 shows the ERT results on the problem F2. On this problem,
all the outliers with bad performance are due to the highest step sizes. This

476 S. Wessing

Schwefel, n = 2

log2(Initial Sigma)

F
ra

c
ti
o
n

0.0

0.2

0.4

0.6

0.8

1.0

−6 −5 −4 −3 −2 −1

IP

Baldwin

IR

Baldwin

−6 −5 −4 −3 −2 −1

Projection

Baldwin

Reflection

Baldwin

−6 −5 −4 −3 −2 −1

Wrapping

Baldwin

IP

Lamarck

−6 −5 −4 −3 −2 −1

IR

Lamarck

Projection

Lamarck

−6 −5 −4 −3 −2 −1

Reflection

Lamarck

0.0

0.2

0.4

0.6

0.8

1.0

Wrapping

Lamarck

Schwefel, n = 10

log2(Initial Sigma)

F
ra

c
ti
o
n

0.0

0.2

0.4

0.6

0.8

1.0

−6 −5 −4 −3 −2 −1

IP

Baldwin

IR

Baldwin

−6 −5 −4 −3 −2 −1

Projection

Baldwin

Reflection

Baldwin

−6 −5 −4 −3 −2 −1

Wrapping

Baldwin

IP

Lamarck

−6 −5 −4 −3 −2 −1

IR

Lamarck

Projection

Lamarck

−6 −5 −4 −3 −2 −1

Reflection

Lamarck

0.0

0.2

0.4

0.6

0.8

1.0

Wrapping

Lamarck

Fig. 8. The success rate p̂s (blue), the fraction of repaired offspring (pink), and the
repaired offspring that also survived the selection step (green)

also holds for F5 in two dimensions (see Figure 6), but not in ten dimensions
(where the situation is reversed). Of course, there is a clear advantage for pro-
jection in two dimensions, because the optimum lies in a corner. In Figs. 7 and
8, p̂s is displayed together with the fraction of repaired offspring and the frac-
tion of repaired offspring that survived the selection step. All three are plotted
against σinit. The error bars shown there are 95% confidence intervals computed
with exact binomial tests. For the fractions of repaired offspring, the error bars
are hardly visible, because the number of trials corresponds to the number of
function evaluations (while for p̂s it is only the number of repeats).

Discussion: The number of repaired offspring that survive selection seems to
be roughly proportional to the number of repaired offspring. This may be due
to comma selection, which enforces the replacement of all parents, regardless of

Repair Methods for Box Constraints Revisited 477

the offsprings’ objective values. On F2 and F5, the fraction of repaired offspring
is always increasing with σinit (not shown here). However, from Figs. 7 and 8 we
see that it does not work as an indicator of success in general.

IR and IP seem to have a slight tendency to work better on the lower dimen-
sional problems. They perform best on F2. It is a bit disappointing that they, as
well as wrapping, completely fail on F5 in ten dimensions. They also have the
interesting property of working well with very high σinit values, most likely due
to the downscaling of σ that is used in combination with them. Alternatively, it
would also be possible to combine IP and IR with a penalty for the amount of
constraint violation, as in [6]. However, that approach is very complicated and
it is unclear if all this effort is necessary to obtain decent results.

Wrapping is the most successful repair function on F12. On all problems, it
achieves it’s top performance with rather low σinit. This is plausible, because
with wrapping the maximal possible distance to the global optimum is only half
of that with projection or reflection. So, especially if the problem is multimodal,
(Baldwinian) wrapping may be beneficial through a higher exploratory power.
However, the number of problems in this experiment is too small to verify this
assumption. If the optimum lies on the edge of the feasible region, wrapping
is problematic because it introduces cliffs. Langdon and Poli [5] show that this
property causes problems to be difficult. Projection and reflection naturally avoid
this difficulty by setting the decision variable to the respective value (projection)
or creating an artificial basin that can guide the EA to the optimum from both
sides (reflection).

3 Conclusions and Outlook

This work is the first systematic investigation on the interaction of repair func-
tions for box constraints and inheritance models. The problem, dimension n, and
step size σinit also have a surprisingly strong influence, making final conclusions
difficult. Further experiments would have to single out which problem charac-
teristics are responsible for the observed effects. So far, it seems safe to draw the
following conclusions regarding performance: If the global optimum lies on the
edge or in a corner of the feasible space, projection would be the ideal choice.
However, with its ability to complement the basin of attraction, reflection is a
good alternative with acceptable performance throughout all problems. As the
best approach will seldom be known beforehand and σinit has a strong influence,
it would be appealing to have an adaptive one that applies online learning.

In the future, a comparison to the more general constraint handling ap-
proaches [2] would be necessary to find out if repairing solutions is really worth
the effort. Another interesting aspect would be the behavior under elitist selec-
tion, because there we should expect a much lower fraction of surviving repaired
offspring. The homomorphous mapping between an arbitrary feasible region and
a hypercube by Koziel and Michalewicz [14] could be used to transfer the pro-
posed repair methods to a broader application area than box constraints. Also,
note that it is always possible to convert a box constrained problem into an

478 S. Wessing

unconstrained one by incorporating the repair function into the problem evalu-
ation. This may be especially appealing to practitioners that need to get going
quickly with an optimizer that is not well suited for constraints. Also, a specific
theoretical treatment as by Lewis and Torczon [4] is unnecessary.

References

1. Coello Coello, C.A.: Theoretical and numerical constraint-handling techniques used
with evolutionary algorithms: a survey of the state of the art. Computer Methods
in Applied Mechanics and Engineering 191(11-12), 1245–1287 (2002)

2. Arabas, J., Szczepankiewicz, A.,Wroniak, T.: Experimental Comparison ofMethods
toHandleBoundaryConstraints inDifferentialEvolution. In: Schaefer,R.,Cotta,C.,
Ko�lodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6239, pp. 411–420. Springer,
Heidelberg (2010)

3. Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.P., Auger, A., Tiwari,
S.: Problem definitions and evaluation criteria for the CEC 2005 special session on
real-parameter optimization. Technical report, Nanyang Technological University,
Singapore (May 2005), http://www.ntu.edu.sg/home/EPNSugan

4. Lewis, R.M., Torczon, V.: Pattern search algorithms for bound constrained mini-
mization. SIAM Journal on Optimization 9(4), 1082–1099 (1999)

5. Langdon, W.B., Poli, R.: Evolving problems to learn about particle swarm opti-
mizers and other search algorithms. IEEE Transactions on Evolutionary Compu-
tation 11(5), 561–578 (2007)

6. Hansen, N., Niederberger, A.S., Guzzella, L., Koumoutsakos, P.: A method for
handling uncertainty in evolutionary optimization with an application to feedback
control of combustion. IEEE Transactions on Evolutionary Computation 13(1),
180–197 (2009)

7. Purchla, M., Malanowski, M., Terlecki, P., Arabas, J.: Experimental comparison of
repair methods for box constraints. In: Proceedings of the 7th National Conference
on Evolutionary Computation and Global Optimization. Warsaw University of
Technology Publishing House (2004)

8. Schwefel, H.P.: Evolution and Optimum Seeking. Wiley, New York (1995)
9. Fletcher, R., Powell, M.J.D.: A rapidly convergent descent method for minimiza-

tion. The Computer Journal 6(2), 163–168 (1963)
10. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer (2003)
11. Michalewicz, Z., Nazhiyath, G.: Genocop III: a co-evolutionary algorithm for nu-

merical optimization problems with nonlinear constraints. In: IEEE International
Conference on Evolutionary Computation, pp. 647–651 (1995)

12. Beyer, H.-G., Sendhoff, B.: Covariance Matrix Adaptation Revisited – The CMSA
Evolution Strategy –. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume,
N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 123–132. Springer, Heidelberg (2008)

13. Hansen, N., Auger, A., Finck, S., Ros, R.: Real-parameter black-box optimiza-
tion benchmarking 2010: Experimental setup. Technical Report RR-7215, INRIA
(March 2010)

14. Koziel, S., Michalewicz, Z.: Evolutionary algorithms, homomorphous mappings,
and constrained parameter optimization. Evolutionary Computation 7(1), 19–44
(1999)

http://www.ntu.edu.sg/home/EPNSugan

Scalability of Population-Based Search Heuristics
for Many-Objective Optimization

Ramprasad Joshi# and Bharat Deshpande

BITS, Pilani - K K Birla Goa Campus, Zuarinagar, Goa India 403726
{rsj,bmd}@goa.bits-pilani.ac.in

Abstract. Beginning with Talagrand [16]’s seminal work, isoperimetric inequal-
ities have been used extensively in analysing randomized algorithms. We develop
similar inequalities and apply them to analysing population-based randomized
search heuristics for multiobjective optimization in Rn space. We demonstrate
the utility of the framework in explaining an empirical observation so far not ex-
plained analytically: the curse of dimensionality, for many-objective problems.
The framework makes use of the black-box model now popular in EC research.

Keywords: Multiobjective optimization, MOEA, Probability Measure Theory,
Talagrand-type Inequalities.

1 Introduction

Evolutionary algorithms are complicated and show an extremely wide variety of behav-
iors. Multiobjective optimization by evolutionary algorithms (MOEAs) is an even more
complex field of investigation. Hardness of problems for EAs has been the subject of
intense and extensive research in more than a decade, and yet there has been no general
framework for anaysis to which researchers adhere. Droste, Jansen, and Wegener [10]
showed a very generalized framework for analysing randomized optimization heuristics
which do not make use of any information about the function to be optimized. Their
work [10,11], extended and enriched by Lehre and Witt [13] and Doerr and Winzen
[8,9], has been successful in providing insight in the hardness of problems for random-
ized heuristics based on a black-box (oracular) use of the function to be optimized,
or the efficiency of the latter. The aforementioned work is confined to single-objective
optimization. The present work seeks to extend these ideas to the most general, mul-
tiobjective optimization, in continuous space. In order to analyse the performance of
algorithms that essentially compute discrete sequences that are sampled from continu-
ous random variables, relevant notions from measure theory are brought into use. The
extended framework is demonstrated to be useful in explaining why most of the tra-
ditional mutation-crossover-based MOEAs fail miserably on many-objective problems
when the number of objectives grows to 6 and beyond. To the authors’ knowledge, this
is the first attempt to apply Talagrand-type inequalities to population-based heuristic
algorithms. For an introduction to probabilistic inequalities applied in analysis of algo-
rithms, a recent book by Dubhashi and Panconesi [12] provides valuable and accessible
material. For Talagrand’s original work, see [16].

The first author is partially supported by BITSAA, DST-GoI, and IIL, Pune, India.

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 479–488, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

480 R. Joshi and B. Deshpande

1.1 Preliminary Notation

First we describe some preliminary notation. We consider multiobjective optimization
problems as defined below.

Definition 1. A multiobjective optimization problem (MOP) is a black-box algo-
rithm that, given an input x ∈ Rn, decides whether it belongs to X � Rn, a set con-
strained (decided) by a set of conditions gi(x) ≥ 0, i = 1,2, . . . ,nc and if it does, com-
putes a mapping f : Rn → Rm. The problem is to minimize f (more precisely, fi, i =
1,2, . . . ,m) subject to conditions g.

Here we are concerned only with the existence of a black-box algorithm (an oracle),
so that, without regard to the cost of computing g or f , we can analyse the hardness of
optimizing f . We call X the search or design space, and f (X) the objective space. We
assume that each of X and f (X) are measurable and contained in compact sets (thus
have finite Lebesgue measure). This is reasonable as practical engineering optimization
problems as well as computable functions over reals (see [2]) will naturally satisfy these
conditions.

Since there may not be any point x∗∈Rn such that fi(x∗)≤ fi(x)∀x∈X, i= 1,2, . . . ,m
simultaneously in general, the notion of Pareto-optimality is used in practice to compare
various points in the search space. This notion is based on domination relationships. We
define these notions before we turn to the class of algorithms to be considered in the next
section.

Definition 2. ∀x(1),x(2) ∈ X,x(1) � x(2) ⇔ fi(x(1)) ≤ fi(x(2)), i = 1,2, . . . ,m We say
x(1) weakly dominates x(2).
∀x(1),x(2) ∈ X,x(1) � x(2)⇔ fi(x(1))≤ fi(x(2)), i = 1,2, . . . ,m; and
∃i ∈ {1, . . . ,m} : fi(x(1))< fi(x(2)) We say x(1) dominates x(2).
∀x(1),x(2) ∈ X,x(1) ≺ x(2)⇔ fi(x(1))< fi(x(2)), i = 1,2, . . . ,m We say x(1) strictly dom-
inates x(2).

Definition 3. A set O f ⊆ X such that ∀x∗ ∈ O f , � ∃x ∈ X,x � x∗ is called the Pareto-
optimal or nondominated set of f in X. f (O f) is its Pareto-optimal front. Both the
notions can be restricted to subsets of X as well.

2 Population-Based Randomized Search Heuristics for
Multiobjective Optimization

Heuristic algorithms, especially randomized and bio-inspired algorithms, allow such a
wide variation in their design and behaviors that seeking a general model is fraught with
many potential limitations. Instead, here an attempt is made to model population-based
heuristics that explicitly or implicitly make use of a probabilistic model of the function
to be optimized built incrementally from samples of function values, obtained from
a given auxiliary algorithm to compute them, at different points in the search space.
Here a model black-box algorithm (Algorithm 1), adapted from Droste et al. [10], to
represent the general case of multiobjective optimization in Rn space, is presented.

Algorithm 1 works in iterations called “generations” in evolutionary computation
(EC) parlance. The set of search points It in each iteration t is called a “population”.

Scalability for Many Objectives 481

Algorithm 1. Black-box (μ + μ)-Real MOEA
Require: f : Rn �X→ Rm,m,n≥ 1
Require: f (X)�Rm;∀x ∈ X, | f (x)|< ∞
Require: F , a σ -algebra on X

Require: P0 : F → [0,1] an initial pdf
1: t ← 0;X0 ← Sample(P0,X,μ); I0 ← (X0, f (X0))
2: while Stopping criteria are not met do
3: Pt+1 ←ComputeDistribution(Pt , It)
4: Xt+1 ← Sample(Pt+1,X,μ)
5: It+1 ←U pdate(It ,(Xt+1, f (Xt+1)),μ)
6: t ← t +1
7: end while
8: return It

The ComputeDistribution step in Line 3 can represent many pre-variation selection
schemes, including, inter alia, parental selection like tournaments. The sampling and
updation steps in lines 4 and 5 can (sometimes overlappingly) represent a fair variety
of variation and survival selection schemes, including mutation, crossover, and Pareto-
ranking-selection of the EC tradition. From the very large amount of literature available,
refer to the comprehensive book by De Jong [5] for a broad outline. For the multitude
of heuristics for multiobjective optimization, along with [3], two books [4] and [7]
cover a lot of ground. At the end, note that Algorithm 1 directly models estimation
of distribution algorithms (EDAs); for an introduction to EDAs, see [14,15]. We have
not developed or used the concepts of black-box complexity or restrictions of Droste
et al. [10,11], Lehre and Witt [13], and Doerr and Winzen [8,9] because our work is
restricted to showing the applications of isoperimetric inequalities to the analysis of
problems in the black-box model. We now seek to model the behaviors of algorithms on
typical problems, i.e to model what De Jong [6] calls a “GAFO” or “Genetic Algorithm
Function Optimization” situation.

3 Quantifying Exploration and Exploitation

In EC research, as well as in research on other randomized search heuristics, two
themes, exploration and exploitation recur prominently. For comprehensive discussion
on these themes, see Blum and Roli [1], and Deb [7, p.321]. Here we only note that in
the beginning, a heuristic should try to expand the search in all directions in order to
explore as much as possible, but after locating the nondominated set, it should confine
search to the more promising areas, exploiting the knowledge gained during the earlier
search. We develop these ideas in formal, precise ways in this section.

3.1 Search Spaces and Search Processes

The performance of Algorithm 1 on continuous functions can be analysed using a prob-
abilistic model of the search process. For this, we map statements about domination in
Rn and Rm space to bitstrings in {0,1}m space.

482 R. Joshi and B. Deshpande

For any x ∈ X, we define a family of functions gx : X→ {0,1}m as follows.

gx(y)i =

{
0 if f (y)i < f (x)i

1 if f (y)i ≥ f (x)i
, i = 1, . . . ,m

Next we define a function h to capture the notion that all but a limited few co-ordinates
of a member z of {0,1}m are covered by subsets A1,A2, . . . ,Aq ⊆ {0,1}m, for some
q > 1, as follows:

h(A1, . . . ,Aq,z) = min
[∣∣{i : i≤ m,zi �∈ {w1

i , . . . ,w
q
i }}

∣∣ ,wj ∈ A j, j = 1, . . . ,q
]
,

where the modulus |.| stands for the cardinality of the set. The function h captures
a certain sense of Hamming “distance” of z from the sets A j. Since many variation
operators in population-based randomized search heuristics explore neighbourhoods in
terms of Hamming distance, this is relevant to analysing such heuristics.

Now we have the required machinery to bring into use one of the many concentration
of measure bounds established by Talagrand [16]. Our main result is based on Talagrand
[16]’s Theorem 3.1.1 that is discretized in the current context. Our proof is an adaptation
of Talagrand [16, pp.113-115]’s proof. We use simpler ideas that become sufficient in
the simplified discrete case. Note that our result is just a special case of Talagrand’s
result, whereas the original result is much more powerful and general. We close the
section with a discussion of implications. In essence, the result gives us the likelihood
of finding a point very much “different” in quality from some significant portion of the
search space, telling us whether exploration is still due or exploitation can begin.

Theorem 1. Let h be as defined above and P[.] be any probability distribution over
{0,1}m. Then

∑
z∈{0,1}m

qh(A1,...,Aq,z)P[{z}]≤ 1

∏q
i=1P[Ai]

.

Proof. Induction on the dimension m.
Basis. For m = 1,

∑
z∈{0,1}

qh(A1,...,Aq,z)P[{z}] = qh0 p0 + qh1 p1,

where p0 = P[{0}] = 1− p1 = 1−P[{1}], and hz is shorthand for h(A1, . . . ,Aq,z). In
the two-point space, Ai can be one of φ ,{0},{1},{0,1}, with probabilities 0, p0, p1,1
respectively. Straightforward computation shows that for any sequence of Ai, the result
holds for any p0.
Induction Hypothesis. Assume the result for m = k ≥ 1:

∑
z∈{0,1}k

qh(A1,...,Aq,z)P[{z}]≤ 1

∏q
i=1P[Ai]

.

Step. For m = k+ 1: Sets Ai are subsets of {0,1}k+1. For w ∈ {0,1} let

Ai(w) = {(z1, . . . ,zk) : (z1, . . . ,zk,zk+1) ∈ Ai}
and projections

Scalability for Many Objectives 483

Bi = {z ∈ {0,1}k : ∃w ∈ {0,1}, (z,w) ∈ Ai}
of Ai on {0,1}k. We denote (z1, . . . ,zk,zk+1) by (z,w) where w = zk+1.

Observe that (z,w) ∈ Ai(w) can differ with the same co-ordinates of a member of Ai

as of Ai(w). Therefore, h(A1, . . . ,Aq,(z,w)) ≤ h(A1(w), . . . ,Aq(w),z), and by induction
hypothesis,

∑
z∈{0,1}k

qh(A1,...,Aq,(z,w))P[{z}]≤ 1

∏q
i=1P[Ai(w)]

.

Similarly, h(A1, . . . ,Aq,(z,w)) ≤ 1+ h(B1, . . . ,Bq,z), and by induction hypothesis,

∑
z∈{0,1}k

qh(A1,...,Aq,(z,w))P[{z}]≤ q

∏q
i=1P[Bi]

.

Thus, for j = 1, . . . ,q, if Ci�= j, j = Bi and Cj, j = A j(w) then

h(A1, . . . ,Aq,(z,w)) ≤ h(C1, j . . . ,Cq, j,z),

and hence by induction hypothesis, for j = 1, . . . ,q,

∑
z∈{0,1}k

qh(A1,...,Aq,(z,w))P[{z}]≤ 1

∏q
i=1P[Ci, j]

.

Summing the three inequalities over {0,1} and combining, we get

∑
z∈{0,1}k+1

qh(A1,...,Aq,(z,w))P[{(z,w)}]≤

∑
w∈{0,1}

[
min

j=1,...,q

(
1

∏q
i=1P[Ai(w)]

,
q

∏q
i=1P[Bi]

,
1

∏q
i=1P[Ci, j]

)]
P[{w}]

where the last term in the min stands for q terms for j = 1, . . . ,q. Looking at the indexed
sets A,B,C, we can see that |Ai| ≤ 2|Ai(w)|, |Ai| ≤ 2|Bi|, and hence in {0,1}k+1 space,
too, P[Ai]≤ P[Ai(w)] and P[Ai]≤ P[Bi]. Hence,

min
j=1,...,q

(
1

∏q
i=1P[Ai(w)]

,
q

∏q
i=1P[Bi]

,
1

∏q
i=1P[Ci, j]

)
≤ 1

∏i≤qP[Ai]
, thus,

∑
z∈{0,1}k+1

qh(A1,...,Aq,(z,w))P[{(z,w)}]≤ 1

∏i≤qP[Ai]
.

Since w plays no role in P[Ai] the weighted (by probabilities) sum over {0,1} on the
RHS becomes the whole summand itself. That completes the induction. 	

484 R. Joshi and B. Deshpande

Corollary 1. ∀k ≥ 0, P[{z ∈ {0,1}m : h(A1, . . . ,Aq,z)≥ k}]≤ 1
qk ∏i≤qP[Ai]

.

Proof. By Theorem 1,

E[qh(A1,...,Aq,z)]≤ 1

∏q
i=1P[Ai]

.

Now P[{z : h(.,z)≥ k}] = P[{z : qh(.,z)≥ qk}]≤ E[qh(.,z)]

qk , the last inequality by Markov’s
inequality. 	

Remark 1. – The bound developed above belongs to what are called isoperimetric
inequalities. In abstraction (See [12, pp.126-127]), in a measure space Ω equipped
with both a probability measure P[.] and a metric d, we have a t-fattening notion
for a subset A ⊆ Ω : At := {x ∈ Ω : d(x,A) ≤ t}. Then an abstract isoperimetric
inequality asserts that

there is a “special” family of subsets B such that for any A⊆Ω , ∀B ∈
B,

P[B] = P[A]⇒ P[At]≤ P[Bt].

– Here we are concerned with the “distance” (in terms of a quantitative measure of
how many steps may be needed to reach them) of better search points from the
regions that are explored so far or are worse than the current population.

– Since probabilities are fractional, the upscaling effect of the factor of ∏i≤qP[Ai]
in the denominator of the bound obtained above must be gauged carefully for the

bound to be of any significance. Simple computation shows that even if q−
k
q ≤

P[Ai]≤ 2q−
k
q , the bound is significant.

– Take k = q
2 . For h(.,z) to take values above k, the subsets Ai must have more than

2k points each. Thus, for large m only the bound becomes more significant.
– For q disjoint subsets Ai, P[Ai] ≤ 1

q . Thus 1
qk ∏i≤qP[Ai]

≥ qq−k. Since P[h ≥ m] =

P[h = m]≤ 1−∑i≤qP[Ai], the bound is useless, for it is greater than 1 for q compa-
rable to m. For disjoint sets, there are sharper bounds available via other techniques
based on Chernoff-Hoeffding bounds and martingales, e.g. see [12].

– Let us take a concrete case. Let m = 8 and let all Ai be the same A, such that
P[A] = 1

2 for i ≤ 32 = q. What we are seeking here to estimate is the probability
that a random point z differs from all populations of 32 points drawn from A in
at least k co-ordinates. But the large size of the population makes the bound less
useful: P[h≥ k]≤ 232−5k wherein the RHS will be above 1 unless k≥ m− 1. Take
q = 8 and we get P[h≥ k]≤ 28−3k and the bound is significant even for k≥ 3.

We discuss the applications of this result relevant to our task at hand subsequently.

3.2 Dividing up the Search Space

We need some more spare parts. Since f is considered to be continuous and bounded,
probability measures ΛX ,Λ f on X and f (X) respectively are well-defined as restrictions
of the suitably normalized Lebesgue measures onRn andRm respectively. We also define
two families of probability distributions Px

X (.) and P
y
f (.) on {0,1}m induced by gx as

follows.

Scalability for Many Objectives 485

∀A⊆ {0,1}m, Px
X (A) = ΛX({y ∈ X : gx(y) ∈ A})

P
y
f (A) = Λ f ({z ∈ f (X) : ∀x ∈ f−1(y), gx(z) ∈ A})

It is obvious that Px
X(A) = P

y
f (A) whenever y = f (x).

We first consider the probability that, given a point x ∈ X that dominates a signifi-
cant portion A of X, a point generated from x using some randomized variation oper-
ator dominates x. The significance of A is of course measured by ΛX (A) ≥ p. Then,
let A = {1m} be a singleton set. It represents A ∪ {x}. If we generate y ∈ X by the
uniform distribution then the corresponding z ∈ {0,1}m is distributed by Px

X(.). Thus
hz = h(A,A, . . . ,A,z) = m represents the event that y � x for arbitrary repetitions of A.
When A is repeated q times, P[{hz = m}] ≤ 1

qm pq . Minimizing over q, we get the tight
bound at q =−k/ log(p),

P[{z ∈ {0,1}m : hz = m}] = P[{y ∈ X : y � x}]≤
(
− log(p)

mplog(p)

)m

when x is such that ΛX ({w ∈ X : x � w}) = p.
To understand the implications, let us again take a concrete case. For a point that

dominates half the search space X, the probability that a uniformly generated new point
dominates it is bound above by (1.8842/m)m. Thus the bound diminishes exponentially
with the dimension m of the objective space.

The behavior of the bounds with change in p for each dimension m is shown in
Figure 1.

Discussion. The bounds obtained in Theorem 1 are not useful unless we interpret them
in the right context and seek probabilistic answers to practical questions of algorithm
efficiency and problem hardness. First of all, let us take the simple case of a point x ∈
X dominating half of X. We consider a purely randomized search algorithm and any

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Pr
{h

z ≥
m}

→

p->

m=2

p --->

m=3
m=4
5
6
7
8
9

10
11

m= 11
10

9
8 7 6 5 4 3 m=2

m=2

Fig. 1. The variation of the bound on P[{z ∈ {0,1}m : hz = m}] with p for various dimensions m

486 R. Joshi and B. Deshpande

other, more intelligent algorithm. The first always keeps the distribution Pt in Algorithm
1 unchanged, at the uniform distribution, while the second one attempts to improve upon
this by adapting Pt to the problem at hand based on the information obtained by all the
search performed up to the given point. We call the first one RS and the alternative IRS.
At low dimensions, 2 or 3, even when RS has sampled such a point, the ability to find
without added intelligence a new better point is not severely restricted by our theorem but
at even moderate dimensions of 5 and more, this ability is severely restricted. Whether
really the probability is significant (i.e. the bound is a tight infimum) at low dimensions
is not important here. The only conclusion we could draw from the bound at this point is
that at dimensions 5 and more, purely randomized search will be grossly inefficient. But
how much more efficient can be a more intelligent search? What conditions are necessary
for that intelligence to work to more efficiency? The next section tries to answer these
questions.

4 Bounding Algorithm Efficiency

Suppose it is desired that an IRS heuristic in Algorithm 1 works as follows. Beginning
with a uniform random initial population, in each subsequent iteration t > 0 the heuristic
computes the distribution Pt in Line 3 such that at a fixed minimum γ% of the times it
does variation sampling (in Line 4), it samples a point that is better than all the points

in It . That means, if x(i)t represents a point in It , then

|{1≤ i≤ μ : ∀1≤ j ≤ μ , x(i)t+1 � x(j)
t }| ≥

μγ
100

.

Now for It , let y ∈Rm be such that

∀ j ≤ μ ,∀i≤ m,yi ≥ fi(x
(j)
t)

and
∀i≤ m,∃ j ≤ μ ,yi = fi(x

(j)
t).

Let us call y the nadir point of population It . Note that in general, it is not necessary
that y ∈ f (X). However, we can talk meaningfully (and measurably) of the portion of
f (X) that is strictly dominated by y; let its measure in the distribution Pt+1 computed in
Line 3 be p. Then ∀i≤ μ

ΛX({x ∈X : x(i)t � x})≥ p.

Now we can bound the potential efficiency of a pure RS heuristic in Algorithm 1: the
probability that a uniformly randomly generated point dominates all the μ points in It is

P[{h(A,A, . . . ,A,z)≥ 1}]≤ 1
qpq ,

where A = {(1,1, . . . ,1)}. Minimizing over q, we get

P[{h(A,A, . . . ,A,z)≥ 1}]≤−p
1

log p log p.

Scalability for Many Objectives 487

The quantity on the RHS in this inequality actually represents an upper bound on the
measure of points dominating a given current population, dependent only on the mea-
sure of points dominated by the current population. What happens when we consider
points strictly dominating the current population as better, instead of just dominating
points as better? Then we need to take the so-called utopia point u defined as:

∀ j ≤ μ ,∀i≤ m,ui ≤ fi(x
(j)
t)

and
∀i≤ m,∃ j ≤ μ ,ui = fi(x

(j)
t).

Of course, it is not necessary that u ∈ f (X), and the part of f (X) strictly dominated by
u has measure say p′ in Pt+1. Then, the bound obtained in the previous section is

P[{h(A,A, . . . ,A,z) = m}]≤
(
− log(p′)

mp′ log(p′)

)m

. (1)

Thus, for our IRS heuristic, presumably more intelligent than pure RS, to succeed in γ
variation operations out of μ , if we define the notion of success as simple domination
to strict domination, then the distribution Pt+1 computed in Line 3 must be such that for
any population It , then the measure of the space dominated by It must be p≤ 0.6922γ .
But we change the notion of success to strict domination, and then the variation success
rate γ is bounded by the bounds given in the table below, obtained by maximizing over
p′ the bound in (1).

m γ ≤
2 4.5949%
3 0.29184%
4 0.013196%
5 0.00046343%
6 0.000013308%
7 0.00000032321%
8 0.0000000068017%

This clearly shows the negative exponential dependence of the maximum success rate,
that can be achieved by any intelligent heuristic on the general class of bounded mea-
surable functions, on the objective dimension.

5 Conclusion

We have successfully shown the applications of isoperimetric inequalities of the Tala-
grand kind in the analysis of population-based randomized search heuristics for multi-
objective optimization. We have explained the curse of dimensionality that cannot be
avoided if the heuristic is ambitious enough to cover all bounded measurable functions.
This work can be extended in many directions, especially to analyse the behavior of
heuristics or to analyse hardness of problems restricted to narrower classes of func-
tions, restricted by special isoperimetric inequalities. Such an analysis can even lead to
refined heuristics for the restricted classes, especially of the EDA kind.

488 R. Joshi and B. Deshpande

Acknowledgements. The authors are grateful to the anonymous reviewers and track
chairs for helpful criticism. The first author acknowledges the help from BITS Alumni
Affairs Division, from the Department of Science and Technology, Govt. of India, and
from Innoventive Industries Ltd., Pune, India. The authors are grateful to Prof. Mad-
husudan V. Deshpande for his constant guidance.

References

1. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: Overview and conceptual
comparison. ACM Computing Surveys 35(3), 268–308 (2003)

2. Brattka, V., Hertling, P., Weihrauch, K.: A tutorial on computable analysis. In: Cooper, S.B.,
Löwe, B., Sorbi, A. (eds.) New Computational Paradigms: Changing Conceptions of what is
Computable. Springer (2008)

3. Coello Coello, C.A.: An updated survey of ga-based multiobjective optimization techniques.
ACM Computing Surveys 32(2), 109–143 (2000)

4. Coello Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for
Solving Multi-Objective Problems. Kluwer Academic Publishers, New York (2002) ISBN
0-3064-6762-3

5. De Jong, K.A.: Evolutionary Computaton: A Unified Approach. MIT Press, Cambridge
(2006)

6. De Jong, K.A., Spears, W.M., Gordon, D.F.: Using Markov chains to analyze GAFOs. In:
Whitley, L.D., Vose, M.D. (eds.) Proceedings of the Third Workshop on Foundations of
Genetic Algorithms, pp. 115–137. Morgan Kaufmann, Estes Park (1994)

7. Deb, K.: Multi-objective Optimization using Evolutionary Algorithms. Wiley Student Edi-
tion. John Wiley and Sons Ltd., Singapore (2003)

8. Doerr, B., Winzen, C.: Memory-restricted black-box complexity. Electronic Colloquium on
Computational Complexity 2011(Report No. 92) (2011)

9. Doerr, B., Winzen, C.: Towards a Complexity Theory of Randomized Search Heuristics:
Ranking-Based Black-Box Complexity. In: Kulikov, A., Vereshchagin, N. (eds.) CSR 2011.
LNCS, vol. 6651, pp. 15–28. Springer, Heidelberg (2011)

10. Droste, S., Jansen, T., Wegener, I.: Upper and lower bounds for randomized search heuris-
tics in black-box optimization. Electronic Colloquium on Computational Complexity 2003
(Report No. 48) (2003)

11. Droste, S., Jansen, T., Wegener, I.: Upper and lower bounds for randomized search heuristics
in black-box optimization. Theory of Computing Systems 39, 525–544 (2006)

12. Dubhashi, D.P., Panconesi, A.: Concentration of Measure for the Analysis of Randomized
Algorithms, Cambridge, NY (2009)

13. Lehre, P.K., Witt, C.: Black-box search by unbiased variation. Electronic Colloquium on
Computational Complexity 2010 (Report No. 102) (2010)

14. Santana, R.: Estimation of distribution algorithms: from available implementations to po-
tential developments. In: Proceedings of the 13th Annual Conference Companion on Ge-
netic and Evolutionary Computation, GECCO 2011, pp. 679–686. ACM, New York (2011),
http://doi.acm.org/10.1145/2001858.2002067

15. Sastry, K., Goldberg, D., Pelikan, M.: Limits of scalability of multiobjective estimation of
distribution algorithms. In: The 2005 IEEE Congress on Evolutionary Computation, vol. 3,
pp. 2217–2224 (2005), doi:10.1109/CEC.2005.1554970

16. Talagrand, M.: Concentration of measure and isoperimetric inequalities in product spaces.
Publ. Math. I.H.E.S. (81), 73–203 (1995)

http://doi.acm.org/10.1145/2001858.2002067

On GPU Based Fitness Evaluation

with Decoupled Training Partition Cardinality

Jazz Alyxzander Turner-Baggs and Malcolm I. Heywood

Faculty of Computer Science,
Dalhousie University, Halifax, Canada

{jazz,mheywood}@cs.dal.ca

Abstract. GPU acceleration of increasingly complex variants of evo-
lutionary frameworks typically assume that all the training data used
during evolution resides on the GPU. Such an assumption places limits
on the style of application to which evolutionary computation can be ap-
plied. Conversely, several coevolutionary frameworks explicitly decouple
fitness evaluation from the size of the training partition. Thus, a subset
of training exemplars is coevolved with the population of evolved individ-
uals. In this work we articulate the design decisions necessary to support
Pareto archiving for Genetic Programming under a commodity GPU
platform. Benchmarking of corresponding CPU and GPU implementa-
tions demonstrates that the GPU platform is still capable of providing
a times ten reduction in computation time.

1 Introduction

The GPU approach to speed-ups for evolutionary computation (EC) as applied
to supervised learning tasks such as classification or regression (function approxi-
mation) is approaching the point where increasingly sophisticated EC algorithms
are being targeted e.g., [15,14,8,7]. However, one common underlying theme is
the assumption that there is sufficient memory capacity on the target GPU de-
vice to support retention of all the training data. This tends to result in the
wide-spread adoption of high end GPU cards (e.g., the nVidia Tesla series) that
typically cost multiples of the host machine on which they reside (≈ $3, 000 per
card). Thus, benchmarking can be performed on training data sets with mil-
lions of exemplars. However, at some point the training partition and / or the
population of evolved individuals will need partitioning. Thus, swapping will be
necessary between host CPU memory and GPU (a technique widely referred
to as ‘blocking’ [9,11]); albeit with the caveat that such a transfer involve two
different busses (host memory bus and PCI bus). Under such conditions, the
speed-ups provided by the GPU are more difficult to achieve; at the very least
the memory interface of multi-core CPUs has a lower handshaking overhead and
greater throughput than that for the PCI bus. More generally, in order for GPUs
to scale with data sets of arbitrary size – say, as in the case of data streams – an
approach will need adopting that more directly embraces the need to decouple
fitness evaluation from the size of the training partition.

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 489–498, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

490 J.A. Turner-Baggs and M.I. Heywood

In this work we propose an approach based on Pareto archiving [6,4]. Specif-
ically, Pareto archiving provides a mechanism for formulating a dual learning
task, or identification of a subset of informative training exemplars that support
the identification / development of a corresponding subset of learners. Such a
process is explicitly coevolutionary, with both learners and subset of training
instances (hereafter ‘points’) being represented as fixed size populations; thus
Pareto archiving has the potential to decouple fitness evaluation from the cardi-
nality of the training data.

The envisaged mode of operation is therefore for blocks of training data to be
transferred to the GPU. Evolution will then take place relative to the current
block content. The host makes decisions regarding size of blocks and retains the
overall repository of training data. Periodically, the host will update the block
content. In the meantime, the GPU concentrates on coevolving the point and
learner populations. A breeder style of interaction will be assumed for controlling
the turn over of point and learner content i.e., Pgap and Hgap points and GP
individuals are replaced per generation. Thus, when block content changes, the
point population will undergo a gradual change of content as more of the material
from the new block is introduced and / or different point / GP individuals are
identified as non-dominated.

A port of the above Pareto archiving methodology to will be undertaken using
the CUDA computing platform and evaluated against the corresponding CPU
implementation. Specifically an Nvidia GTX 660Ti graphics card(≈ $350) is
used. This Midrange card (based upon the Kepler architecture) is configured with
1355 cores at 1032 MHz and 2GB’s of GDDR5 RAM. In particular, we target
genetic programming for the learner representation and Symbolic Bid-based GP
specifically (SBB) [13,5]. The SBB framework has been widely demonstrated
under multiple data mining contexts, including large attribute spaces [5] and
classification under streaming data constraints [1]. Moreover, SBB is already
available in a code distribution with Pareto archiving directly supported and
issues such as multi-class classification and task decomposition are addressed
from the outset [13]. Thus, the essential question we attempt to answer is whether
a GPU style acceleration of evaluation is still able to contribute a meaningful
speed-up when both CPU and GPU implementations explicitly decouple fitness
evaluation from training partition cardinality.

2 Overview to Symbiotic Bid Based GP

SBB assumes a three population model: points, teams and symbionts [13,5].
That is to say, the learners are represented by a team–symbiont partnership in
which symbionts denote programs and teams declare ‘teams’ of programs. Thus
the team population conducts a combinatorial search for good sets of programs
whereas symbionts define the available population of programs. In addition, the
specific form assumed for programs is that of bid based GP [12]. Thus, each
symbiont consists of a linear GP program [2] and scalar action which, in this
context, corresponds to a class label. Symbiont programs (hereinafter referred to

On GPU Based Fitness Evaluation 491

as ‘programs’) may only ever assume a single class label. A team must therefore
consist of at least two programs with different class labels to avoid degenerate
behaviour. Ideally, teams will learn to index a program with actions from each
class. However, this is not formally enforced in order to let the team population
gradually evolve the relevant content i.e., under multi-class contexts enforcing
such a constraint might represent too complex a starting point (for experimental
verification of this effect, see [1]). The variable length representation of teams
therefore supports their incremental ‘complexification’. A team is evaluated by
executing all programs identified by the team and identifying the program with
largest bid as the ‘winner’. Such a program has won the right to suggest its
action (class label) and evaluation proceeds with comparison against the known
class label.

The point population is the subset of training exemplars over which fitness
evaluation is performed. Each team is evaluated over all points at each genera-
tion. A fixed number of teams (Hgap) and points (Pgap) are added and removed
at each generation as in a breeder approach to selection–replacement. Moreover,
at each generation any program not receiving a team index is deleted, and new
programs can be introduced by the search operator.

In the case of the team–point population interaction, the outcome of applying
two teams to a common set of training exemplars (points) can be defined in
terms of a pair of vectors, v1 and v2. Vector v1 is said to dominate vector v2

if the following relation holds,

dom(v1,v2)⇔ ∀q : v1[q] ≥ v2[q] ∧ ∃q : v1[q] > v [q] (1)

where q indexes members of the point population. Individuals with a dominance
vector satisfying the above condition are said to be part of the Pareto front or the
non-dominated set.Members of the front have the property that favouring one indi-
vidual over another requires a tradeoff, implying that some training exemplars are
more important than others. It is this property that facilitates the decoupling of the
point population from the cardinality of the training partition as a whole. Pareto-
coevolution therefore searches for candidate solutions that achieve high outcomes
andpoints that serve as informative evaluators. For further details ofPareto archiv-
ing see [6,4] or for the specific case of the fitness sharing scheme used to maintain
finite point and team populations in SBB see [13,5].

3 Architecture of gSBB

The GPU port for SBB – hereafter gSBB – assumes the basic control flow of the
current SBB distribution1 as summarized by Figure 1. Note that evolution and
post training selection of a single ‘champion’ individual need not assume the
same performance metric. Specifically, during ‘EvaluatePrograms’ the Pareto
archiving methodology is assumed (Section 2), whereas any post training evalu-
ation is performed relative to a single champion individual. For the purposes of

1 http://www.cs.dal.ca/~mheywood/Code/SBB

http://www.cs.dal.ca/~mheywood/Code/SBB

492 J.A. Turner-Baggs and M.I. Heywood

this work we concentrate on the ‘EvaluatePrograms’ step as, without a speed-up
here, any acceleration of the post training step remains a moot point.

Previously, the evaluation step entailed finding the highest bidding program
for every point in the point population. If a new program was encountered in
the team it was invoked against the point and the bid for that program–point
pair recorded. In the end the action for the highest bidder was chosen and the
system moved to (team) selection once every team was evaluated.

Fig. 1. SBB control flow and basic CPU–GPU partitioning of tasks

Under gSBB the process of program evaluation and team evaluation has been
divided into two separate subtasks. That is to say, there the process of program
execution can be separated from team membership. Thus, once the learners are
evaluated the bids are returned to the CPU where the winning bids per team
and corresponding action suggestion is resolved.

A significant source of deviation between gSBB and SBB is the data structur-
ing used to store the populations. The SBB framework took an object oriented
approach using nested classes to store data where it made most sense logically.
That is a TeamObject contained a vector of program members (as well as its
supplemental data such as ID and timestamp). While this made for clean code,
it meant that data for each population was fragmented across memory, thus pre-
cluding efficient transfers to the GPU. To mitigate this overhead, the original
SBB code was rewritten to use large allocated blocks of memory for each popu-
lation so that all members of the point and team–program populations resided
contiguously in memory. Not only does this reduce the overhead of mapping
address space between the device and machine; it also allows for more advanced
memory tuning such as page locked direct memory access (DMA), and coalescing
data access without unneeded reformatting.

In the following we discuss specific GPU design issues associated with memory
and thread management.

On GPU Based Fitness Evaluation 493

3.1 Problem Decomposition (Tiling)

Due to register usage and shared memory allocations, tasks are decomposed into
16× 16 blocks of computation. This corresponds to 16 programs and 16 points,
which produce a 2-d matrix of 256 bid values where each row is a single program
applied over 16 points and each column is a point applied to each program. The
size of these blocks has not been studied in depth but has been found to produce
a high occupancy rate (usage of streaming multiprocessors) and matches the size
of global memory reads. Global Memory accesses are performed in 64 byte reads.
This reduces the number of reads to global memory, which is a costly operation.

3.2 Managing Global Memory Latency

To reduce the frequency of high latency global memory reads, the following
approaches are assumed:

– As each instruction in the symbiont program is accessed multiple times dur-
ing evaluation, learners are read into shared memory. This significantly re-
duces the number of global memory reads. Each read from global memory
requires 400-600 cycles on the GPU, whereas 64 bits of shared memory is
readable in a single clock cycle.

– On a load all 256 threads are used to preemptively load programs into shared
memory given that each instruction is guaranteed to be accessed. While
this could be performed for the point population as well, this becomes an
expensive operation. Over-subscription of shared memory may reduce the
overall parallelism, and given that all attributes of a point are not guaranteed
to be accessed, this represents a reduction to the overall efficiency.

– To reduce the number of overall global memory reads, the point population
was reorganized in memory based upon observed access patterns. Evaluating
the instructions of a program requires a feature/attribute of the point to be
read in from memory. As the programs are evaluated in parallel, multiple
threads attempt to read from global memory at the same time. Each read
from memory is of a fixed block size, and will satisfy as many requests
possible for data in that block. As each thread requires the ith attribute
of their corresponding point these reads are too far apart to be grouped
together. This is analogous to being able to read a row of a matrix, but
needing a column. To improve this the point matrix is re-organized such
that the ith attributes are placed together for a block of points, effectively
taking a transpose of a subset of points.

The hardware being used performs 64 byte global memory reads, which
means that it is possible to coalesce(group) sixteen 4-byte floating point
numbers into a single memory read. This corresponds nicely as there are
16 points being evaluated in parallel for every program. To make this work,
every group of 16 points is stored attribute-major order(attributes first), so
that memory boundaries are aligned.

494 J.A. Turner-Baggs and M.I. Heywood

4 Results

A comparative study is performed between the Object Orientated implementa-
tion of SBB (hereafter cSBB) and the current development of gSBB(as summa-
rized above.) In particular, this means that cSBB benefits from properties such as
more efficient data structures for CPU as opposed to GPU memory management
and, more significantly, cSBB caches the performance of team–point outcomes
which do not change at each generation. At present, the gSBB exhaustively
evaluates all programs on all points at each generation. This is potentially a
significant advantage for cSBB as only Pgap and Hgap points and teams change
per generation (where Pgap < Psize/2;Hgap < Hsize/2). In short, in line with
recent recommendations [10], SBB implementations associated with CPU and
GPU follow from code bases optimized for their respective platforms.

Two data sets from the UCI repository will be employed: KDD99(Full) and
Shuttle, with properties summarized by Table 3. The parameters for symbiont
programs are outlined in Table 1 and the baseline configuration is outlined in
2. A total of four experimental variables will then considered: point population
size, team population size, point population gap size, team population gapsize .

Table 1. Symbiont program configuration. These values are static and do not change
during experimentation Parameters.

Parameter Value

Maximum instructions per program 48
Register Count 8

Opcodes
+,−,×,÷, log,
mod, exp, cos

Table 2. Base Experiment Configuration. Gap sizes are set at a quarter the respective
population size. Configuration.

Parameter Value

Point Population Size (Psize) 256
Point Gap Size (Pgap) 64

Team Population Size (Hsize) 400
Team Gap Size (Hgap) 100

The study focuses on runtime performance of each implementation. As both
implementations follow from the same approach, there is no statistically signifi-
cant difference in measured classification performance. Figures 2 and 3 summa-
rize the performance of cSBB and gSBB in terms of average time per generation
to complete training (milliseconds) for each data set. It can be seen in experi-
ments in which only the population gap sizes were varied (subplots (b) and (d)
respectively), no significant impact was observed in the case of gSBB. This is

On GPU Based Fitness Evaluation 495

Table 3. Benchmarking Data sets. Number of training and test exemplars; Number
of attributes (|A|); Number of classes (|C|).

Dataset #Train #Test |A| |C|
KDD99 4 409 194 489 237 41 5

Shuttle 43 500 14 500 9 7

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 100 200 300 400 500 600 700 800

R
u
n
 T

im
e

(m
ill

is
ec

o
n
d
s)

Team Population Size

CPU
GPU

(a) Teams experiment

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350

R
u
n
 T

im
e

(m
ill

is
ec

o
n
d
s)

Team Gap Size

CPU
GPU

(b) Team Gap experiment

 0

 20

 40

 60

 80

 100

 120

 140

 50 100 150 200 250 300 350 400 450 500 550

R
u
n
 T

im
e

(m
ill

is
ec

o
n
d
s)

Point Population Size

CPU
GPU

(c) Points experiment

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300

R
u
n
 T

im
e

(m
ill

is
ec

o
n
d
s)

Point Gap Size

CPU
GPU

(d) Point Gap experiment

Fig. 2. KDD99 data set

due the fact that gSBB does not cache outcomes from previous generations. To
this effect the evaluation time remains constant as the workload is unchanged.
The one caveat here is that an increase in team gap size causes a slight taper-
ing of evaluation time. While the addition and deletion of programs from the
population is a probabilistic event, which should maintain a linear correlation to
the number of teams, the deterministic selection of the worst Hgap teams could
cause a decrease in diversity in the program population. A higher team gap size
(Hgap) forces teams to focus on successful programs early on in the evolution-
ary process, which in turn means more programs are being removed as they are
no longer referenced. A smaller program population of course means less work
needs to be performed and thus lowers evaluation time. Variation of all other
parameters introduces an increased workload and subsequently causes a linear
increase (albeit at different rates).

496 J.A. Turner-Baggs and M.I. Heywood

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 100 200 300 400 500 600 700 800

R
u
n
 T

im
e

(m
ill

is
ec

o
n
d
s)

Team Population Size

CPU
GPU

(a) Learners experiment

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350 400

R
u
n
 T

im
e

(m
ill

is
ec

o
n
d
s)

Team Gap Size

CPU
GPU

(b) Team Gap experiment

 0

 20

 40

 60

 80

 100

 120

 140

 160

 50 100 150 200 250 300 350 400 450 500 550

R
u
n
 T

im
e

(m
ill

is
ec

o
n
d
s)

Point Population Size

CPU
GPU

(c) Points experiment

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300

R
u
n
 T

im
e

(m
ill

is
ec

o
n
d
s)

Point Gap Size

CPU
GPU

(d) Point Gap experiment

Fig. 3. Shuttle data set

For example, increasing the number of individuals in the point population
by 1 increases the total work by a factor proportional the the number of new
programs per generation in the case of cSBB and by a factor proportional to the
size of the program population in gSBB. While cSBB only needs to evaluate the
new individuals in the population, it does see an increased evaluation time for
increased population sizes even with a fixed sized population gap. This is due
to the fact that SBB is a coevolutionary process and each new individual in one
population must be evaluated against every individual in the other. This still
manifests itself as a linear growth in evaluation time, however at a reduced rate.

In the cases where the number of features per point varies (i.e., through the
use of different datasets), no significant change is observed. However, this is likely
just a function of the relatively low attribute counts associated with KDD and
Shuttle. Later research might include data sets with attribute counts measured
in the thousands, in which case a significant impact would be expected [5]. As
the control flow (or opcode selection) of the evaluation process is never depen-
dant upon a computed value, the dataset has no direct effect on the amount of
computation required. It does nevertheless require more data to be transferred
between devices. Once again the use of Pareto archiving means the number of
points is static and, in the case of Shuttle and KDD99 any overhead caused by

On GPU Based Fitness Evaluation 497

an increase in feature count is masked by asynchronous memory transfers and
latency hiding. The caveat to this is that the size of the dataset has a significant
impact upon the testing phase.

Considering all experiments performed, gSBB is an average×10.83 faster in the
evaluation step compared to the CPU variant (cSBB). As a more useful metric,
gSBB is capable on average of 7623.16Program–Pointpair evaluations per second.

5 Conclusion

Pareto archiving provides a mechanism for formally identifying a minimum sub-
set of training exemplars for supporting a corresponding non-dominated set of
GP individuals at each generation. Such a mechanism is potentially useful under
a GPU context for continuing to scale GPU platforms to applications involv-
ing very large data sets or even an explicitly streaming data mining context.
Specifically, the speed of evaluation associated with GPU platforms needs to be
balanced against the overhead of PCI transfers. Current research either assumes
that fitness evaluation on a CPU would be performed against the entire training
partition or that the GPU has sufficient memory to retain the entire training par-
tition. Conversely, coevolutionary mechanisms such as the host–parasite model
(e.g., [3]) or Pareto archiving (as used here) demonstrate that fitness evaluation
can be decoupled from the cardinality of the training partition. In this work
benchmarking is performed to illustrate that meaningful speed-ups can still be
attained when such a decoupling is employed on both GPU and CPU implemen-
tations of the SBB algorithm. This implies that commodity GPU cards can still
represent an effective platform for accelerating GP fitness evaluation as more
space will become available for retaining programs and data.

Future work will continue to develop the gSBB model. In particular having all
of the SBB algorithm reside within the GPU and only require the CPU to peri-
odically provide new blocks of data. In reaching this point gSBB would provide
additional speedups, in particular with respect to the construction of the ma-
trix of outcomes informing the definition for dominated versus non-dominated
individuals. Specifically, the basic cost of performing the comparison central to
Pareto archiving is n2, as a matrix of outcomes needs first identifying (points)
then all programs need comparing to identify the Pareto non-dominated teams
and points. As the respective population size(s) increase the cost of evaluation
also increases. However, the comparison operation itself is ‘embarrassingly paral-
lel’, thus potentially open to GPU style speedups. Moreover, the direct memory
cost of such an operation is still significantly lower than that of the training
partition i.e., n is a function of learner–point population size not the training
partition.

Acknowledgements. Authors gratefully acknowledge the support of the MI-
TACS Internship and NSERC CRD programs.

498 J.A. Turner-Baggs and M.I. Heywood

References

1. Atwater, A., Heywood, M.I., Zincir-Heywood, N.A.: GP under streaming data con-
straints: A case for Pareto archiving? In: Proceedings of the ACM Genetic and
Evolutionary Computation Conference, pp. 703–710 (2012)

2. Brameier, M., Banzhaf, W.: Linear Genetic Programming. Springer (2007)
3. Cartlidge, J., Bullock, S.: Combating coevolutionary disengagement by reducing

parasite virulence. Evolutionary Computation 12(2), 159–192 (2004)
4. de Jong, E.D.: A monotonic archive for Pareto-coevolution. Evolutionary Compu-

tation 15(1), 61–93 (2007)
5. Doucette, J.A., McIntyre, A.R., Lichodzijewski, P., Heywood, M.I.: Symbiotic co-

evolutionary genetic programming: A benchmarking study under large attribute
spaces. Genetic Programming and Evolvable Machines 13(1), 71–101 (2012)

6. Ficici, S.G., Melnik, O., Pollack, J.B.: A game-theoretic and dynamical-systems
analysis of selection methods in coevolution. IEEE Transactions on Evolutionary
Computation 9(6), 580–602 (2005)

7. Franco, M.A., Krasnogor, N., Bacardit, J.: Speeding up the evaluation of evolu-
tionary learning systems using GPGPUs. In: Proceedings of the ACM Genetic and
Evolutionary Computation Conference, pp. 1039–1046 (2010)

8. Harding, S., Banzhaf, W.: Implementing Cartesian Genetic Programming Classi-
fiers on graphics processing units using GPU.NET. In: ACM GECCO Computa-
tional Intelligence on Consumer Games and Graphics Hardware Workshop, pp.
463–470 (2011)

9. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A quantitative approach,
2nd edn. Morgan Kaufmann (1996)

10. Jaros, J., Pospichal, P.: A Fair Comparison of Modern CPUs and GPUs Running
the Genetic Algorithm under the Knapsack Benchmark. In: Di Chio, C., Agapitos,
A., Cagnoni, S., Cotta, C., de Vega, F.F., Di Caro, G.A., Drechsler, R., Ekárt, A.,
Esparcia-Alcázar, A.I., Farooq, M., Langdon, W.B., Merelo-Guervós, J.J., Preuss,
M., Richter, H., Silva, S., Simões, A., Squillero, G., Tarantino, E., Tettamanzi,
A.G.B., Togelius, J., Urquhart, N., Uyar, A.Ş., Yannakakis, G.N. (eds.) EvoAppli-
cations 2012. LNCS, vol. 7248, pp. 426–435. Springer, Heidelberg (2012)

11. Langdon, W.B., Harrison, A.P.: GP on SPMD parallel graphics hardware for mega
bioinformatics data mining. Soft Computing 12(12), 1169–1183 (2008)

12. Lichodzijewski, P., Heywood, M.I.: Pareto-coevolutionary genetic programming for
problem decomposition in multi-class classification. In: Proceedings of the ACM
Genetic and Evolutionary Computation Conference, pp. 464–471 (2007)

13. Lichodzijewski, P., Heywood, M.I.: Managing team-based problem solving with
Symbiotic Bid-based Genetic Programming. In: Proceedings of the ACM Genetic
and Evolutionary Computation Conference, pp. 363–370 (2008)

14. Pospichal, P., Murphy, E., O’Neill, M., Schwarz, J., Jaros, J.: Acceleration of Gram-
matical Evolution using graphics processing units. In: ACM GECCO Computa-
tional Intelligence on Consumer Games and Graphics Hardware Workshop, pp.
431–438 (2011)

15. Shao, S., Liu, X., Zhou, M., Zhan, J., Liu, X., Chu, Y., Chen, H.: A gpu-based im-
plementation of an enhanced GEP algorithm. In: Proceedings of the ACM Genetic
and Evolutionary Computation Conference, pp. 999–1006 (2012)

EvoSpace: A Distributed Evolutionary Platform

Based on the Tuple Space Model

Mario Garćıa-Valdez1, Leonardo Trujillo1, Francisco Fernández de Vega2,
Juan J. Merelo Guervós3, and Gustavo Olague4

1 Instituto Tecnológico de Tijuana, Tijuana BC, Mexico
2 Grupo de Evolución Artificial, Universidad de Extremadura, Mérida, Spain

3 Universidad de Granada, Granada, Spain
4 Centro de Investigación Cient́ıfica y de Educación Superior de Ensenada,

Ensenada BC, Mexico
{mario,leonardo.trujillo}@tectijuana.edu.mx,

fcofdez@unex.es, jmerelo@geneura.ugr.es, olague@cicese.mx

Abstract. This paper presents EvoSpace, a Cloud service for the de-
velopment of distributed evolutionary algorithms. EvoSpace is based
on the tuple space model, an associatively addressed memory space
shared by several processes. Remote clients, called EvoWorkers, connect
to EvoSpace and periodically take a subset of individuals from the global
population, perform evolutionary operations on them, and return a set of
new individuals. Several EvoWorkers carry out the evolutionary search
in parallel and asynchronously, interacting with each other through the
central repository. EvoSpace is designed to be domain independent and
flexible, in the sense that in can be used with different types of evolu-
tionary algorithms and applications. In this paper, a genetic algorithm
is tested on the EvoSpace platform using a well-known benchmark prob-
lem, achieving promising results compared to a standard evolutionary
system.

Keywords: Distributed Evolutionary Algorithms, Tuple Space, Cloud
Computing.

1 Introduction

Currently, computational resources are offered as different types of services
within the Cloud computing model (CCM) [1]. For example, infrastructure as a
service (IaaS) such as Amazon’s EC2, or Platform as a Service (PaaS) such as
Google’s App Engine. However, within Evolutionary Computation (EC), most
algorithms have not been ported to the CCM. The standard are local, serial
and synchronized algorithms, instead of distributed, parallel and asynchronous
systems. Therefore, new proposals that exploit the CCM would be an important
contribution within the field, since it lends itself to models of evolution that can
encourage population dynamics not present in standard algorithms.

This paper presents EvoSpace, a population store for the development of evo-
lutionary algorithms (EA) that are intended to run on the Cloud. Within the

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 499–508, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

500 M. Garćıa-Valdez et al.

Client-Side
Computing
Resources

Infrastructure
as a
Service

Software
as a
Service

Platform as a
Service

EC
Application
Developers

Network of
End Users

Interactive
Evolutionary
Applications

Evolutionary
Computation
Applications

Evolutionary
Computation
Frameworks

EvoSpace
Population

Store
Redis

Web
Applications
Framework

Virtual Machines
Datacenters

TabletsPhonesDesktop

Fig. 1. Conceptual diagram of the CCM and of how EvoSpace can fit within, using it
as a PaaS or possible using it to develop a SaaS

CCM, EvoSpace is conceived as a Platform as a Service (PaaS) component, where
users can create populations of individuals on demand without the need to install
software or invest in additional hardware. EvoSpace is designed to be versatile,
since the system that manages the population is decoupled from any particular
EA. Client processes, called EvoWorkers, dynamically and asynchronously in-
teract with the EvoSpace store and perform the required evolutionary routines.
EvoWorkers can reside on remote clients or on the platform server. Software as a
Service (SaaS) applications could also be developed using EvoSpace, where users
could run entire experiments on the Cloud or implement interactive applications
that are completely hosted by the service (see [5]). EvoSpace is well suited for
this kind of environment, since it can be accessed by any web enabled device and
is robust to lost connections with remote clients. Figure 1 presents a conceptual
diagram of how EvoSpace fits within the CCM.

This work presents a proof of concept implementation of EvoSpace. EvoSpace
is tested on standard benchmark problems for genetic algorithms, analyzing
performance, efficiency and diversity. The remainder of the paper proceeds as

EvoSpace 501

follows. Section 2 reviews related work. Afterwards, Section 3 describes the
EvoSpace platform and implementation details. The experimental work is pre-
sented in Section 4. Finally, conclusions are given in Section 5.

2 Related Work

The present work builds on several proposals of distributed and interactive EAs.
Langdon [8] proposed a distributed EA of artificial agents expressed as fractal
structures. That work employs a global population residing on a central web
server that distributes portions of the population using Javascript. Similar pool-
based approaches can be traced back to the A-Teams system [15], which is not
restricted to EAs. Another proposal is made by G. Roy et al. [13], who devel-
oped a multi-threaded system with a shared memory architecture that is exe-
cuted within a distributed environment. On the other hand, Bollini and Piastra
[2] emphasize persistence over performance, proposing a system that decouples
population storage from the evolutionary operations. A similar model is proposed
by Merelo et al. [11], who use a web-server to access a population stored on a
database. Klein and Spector [7], and Merelo at al. [11], also propose a Javascript
implementations for EAs. The goal of these papers is to distribute fitness eval-
uations over the web. More recently, Cotillon et al. [4] extended browser-based
EAs to the Android OS. The work by Langdon [8] is also an interactive EA,
where the goal is to evolve virtual creatures. Similarly, Secretan et al. [14] and
Clune and Lipson [3], use web-based interactive EAs to evolve artistic artifacts.
In both cases, user (connected client) collaboration is encouraged. The most re-
cent comparable work with EvoSpace is the SofEA system of Merelo et al. [9,10].
SofEA is an EA mapped to a central CouchDB object store. It provides an asyn-
chronous and distributed search process, where the evolutionary operators are
decoupled from the population. An important difference is that in SofEA all the
information regarding the evolutionary progress is continuously updated on the
central repository, while in EvoSpace the population container does not store
knowledge regarding the search.

3 EvoSpace

EvoSpace consists of two main components. First, the EvoSpace container that
stores the evolving population. The second component consists of the remote
clients called EvoWorkers, which execute the actual evolutionary process, while
EvoSpace is only a population repository. In a basic configuration, EvoWorkers
extract a small subset of the population, and use it as the initial population for
a local EA executed on the client machine. Afterwards, the evolved population
from each EvoWorker is returned to the EvoSpace container. The server-side
ReInsertionManager process is used to alleviate possible problems that might
occur during the search; for instance, when the EvoSpace container starves or
connections are lost. This can be done because a copy of each sample is stored in a
priority queue used by ReInsertionManager to re-insert the sample to the central

502 M. Garćıa-Valdez et al.

Remote
Clients

EvoWorker

EA
Loop

Evolution
Operators

ReInsertion
Manager

EvoSpace
Random
population
sample

Newly
Evolved
IndividualsCopy

Stored in
ReInsertion
Queue

ReInsert
Sample

Server

Fig. 2. Main components and dataflow within EvoSpace

population; similar to games where characters are respawned after a certain time.
Figure 2 illustrates the main components and dataflow within EvoSpace.

The EvoSpace container. EvoSpace is based on the tuple space model, an as-
sociatively addressed memory space shared by several processes. A tuple space
can be described as a distributed shared memory (DSM) abstraction, organized
as a bag of tuples. A tuple t is the basic tuple space element, composed by one
or more fields and corresponding values. In this model, the basic operations that
a process can perform is to insert or withdraw tuples from the tuple space.

EvoSpace is composed by a set of objects ES and a set of interface methods
provided by a central server. For an EA system, objects correspond to individ-
uals and all their corresponding features and related information. Objects can
be withdrawn, processed and replaced into ES using a specified set of methods.
However, EvoSpace is different from other tuple space implementations in the
sense that retrieving and reading objects from ES are random operations. Indi-
vidual objects are not of high interest when accessing ES. Therefore, EvoSpace
offers the following interface methods.

Read(n): This method returns a random set A of objects from ES, with |A| = n
and A ⊂ ES, if n < |ES|, the method returns ES otherwise.

Take(n): Returns a randomsetA, following the similar logic used forRead().How-
ever, in this case the sequence of Take() operations provide a temporal dimension
to the dynamics of setES.We can defineESi as the set at the moment of the i− th
Take() operation and Ai as the output. The contents of EvoSapce are then given
by ESi+1 = ESi \ Ai; i.e., the objets taken are effectively removed from ES. The
objects taken are also copied to a new set Si of sampled objects and stored within a
temporary collection S on the server, implemented as a priority queue. Sets Si ∈ S
can then be reinserted to ES if necessary.

EvoSpace 503

ReInsert(i): This method is used to reinsert the subset of elements removed by
the i− th Take() operation, such that the contents of EvoSpace are now ES∪Si

if Si ∈ S and ES is left unchanged otherwise.

Insert(A): This method represents the union operation ES ∪ A.

Replace(A,i): Similar to Add(), however set A should be understood as a re-
placement for some Si ∈ S, hence |A| = |Si|, but the objects in A can be different
(evolved) objects from those in Si. Moreover, if Si exists it is removed from S.
However, if Si does not exist this means that a ReInsert(i) operation preceded
it, this increases the size of ES.

Remove(A): This method removes all of the objects in A that are also in ES,
in such a way that the contents of EvoSpace are now set to ES ∪ (A ∩ ES).

Individuals. As stated above, objects in ES represent individuals in an EA. Ex-
plicitly, the objects in ES are stored as dictionaries, an abstract data type that
represents a collection of unique keys and values with a one to one association.
In this case, keys represent specific properties of each object and the values can
be of different types, such as numbers, strings, lists, tuples or other dictionaries.
In the current implementation, the objects in ES are described by the following
basic fields. An id string that represents a unique identifier for each object. A
chromosome string, which depends on the EA and the representation used.
The fitness dictionary for each individual; allowing the system to store multiple
fitness values for multi-objective or dynamic scenarios. A parents dictionary
with identifiers of the individual(s) from which it was produced. Finally, a Ge-
neticOperator string that specifies the operator that produced it.

The EvoSpace Server Processes. On the server side, a process called EvoSpace-
Server is executed, which creates and activates a new EvoSpace container object
and waits for requests to execute interface methods. Additionally, on the server
three more processes are executed, these are: InitializePopulation, ReIn-
sertionManager and EvolutionManager. InitializePopulation is executed
once, its goal is obvious, initialize the population by adding popsize random indi-
viduals. The function that creates new individuals depends on the problem and
representation used.ReInsertionManager is used as a failsafe process that pe-
riodically checks (every wt seconds) if the size of the population in ES falls below
a certain threshold or if the time after the last ReInsert() is greater than nextr.
If any of these conditions are satisfied, then rn subsets Si ∈ S are reinserted into
ES using the ReInsert() method. Moreover, the ReInsertionManager makes
a ReInsert(i) call when EvoWorkeri (see below) looses a connection with the
server, thus recovering the population sample. Finally, EvolutionManager pe-
riodically checks if a termination condition is satisfied, which is checked by the
isOver() method. This method can be implemented according to the needs of
the evolutionary search. For instance, isOver() can check if an optimal solution
is found or if a maximum number of function evaluations have been performed.

504 M. Garćıa-Valdez et al.

The EvoSpace Clients: EvoWorkers. The second component of the proposed
model are the processes executed on client machines, referred to as EvoWork-
ers. Each client loads a process that executes the main code of the EA. The
EvoWorker process is straightforward, it requests a set of objects Ai from the
ES container. Afterwards, the Evolve() function is called where the actual evo-
lutionary cycle is performed. In this scenario,Ai can be seen as a local population
on which evolution is carried out for g generations. The result of this evolution
is then returned and reinserted into ES, then the EvoWorker can request a new
set from ES and repeat the process. Otherwise, each EvoWorker could specialize
on a particular part of the evolutionary process, such as selection, evaluation or
genetic variation; an approach not taken in the present work.

Implementation. Individuals are stored in-memory, using the Redis key-value
database. Redis was chosen over a SQL-based management system, or other
non-SQL alternatives, because it provides a hash based implementation of sets
and queues which are natural data structures for the EvoSpace model. For ex-
ample, selecting a random key from a set has a complexity of O(1). The logic of
EvoSpace is implemented as a python module exposed as a Web Service using
cherrypy and django http frameworks. The EvoSpace web service can interact
with any language supporting json-rpc or ajax requests. The EvoSpace modules
and workers in JavaScript, JQuery and python are available with a Simplified
BSD License from https://github.com/evoWeb/EvoSpace.

4 Experiments and Results

The goal of the experimental setup is to analyze the performance of EvoSpace on
a binary GA. To do so, we use a common benchmark problem from evolutionary
computation literature, the K-trap function [16]. This problem presents multiple
local-maxima and a deceptive fitness landscape. Table 1 summarizes the different
experimental configurations tested in this work, based on the K value, number
of EvoWorkers, the sample size taken by each worker and the chromosome length
used in each case. The number of individuals in the EvoSpace repository is set
to 1024 for 4-trap experiments and 4096 for 5-trap. Moreover, Table 2 summa-
rizes the shared parameters and algorithmic configuration; with common values
for a GA search. The maximum number of samples that each EvoWorker can
take from EvoSpace is 1000. For comparison, a standard GA is also used for
each benchmark problem. For the 4-trap problem, the maximum number of gen-
erations is 4000, for the 5-trap problem it is 1000, this bounds the number of
function evaluations based on the maximum number of samples taken from all
of the EvoSpace runs. The remaining GA parameters are set with the values of
Table 2. In total, 50 runs were performed of each experimental configuration.

First, to visualize how fitness evolves over all of the samples taken from
EvoSpace see Figure 3a. This figure shows the evolution of best-fitness for a
single run of experiment K; the analysis focuses on a single run instead of the
mean of all runs in order to emphasize the local dynamics of the evolutionary

EvoSpace 505

0
20

40
60

80
100

0

20

40

60

80

100
0

5

10

15

20

Samples
Generations

F
it

n
es

s

(a) Evolution of Fitness

0 100 200 300 400 500 600 700 800
0

10

20

30

40

50

60

70

80

90

100

%
 o

f
In

d
iv

id
u

al
s

N
o

t
E

va
lu

at
ed

Samples

(b) Evaluated

(c) Experiment K (d) Standard GA

Fig. 3. (a) Evolution of fitness for a run of experiment K; the plot shows how fitness
evolves for each sample taken by the EvoWorkers. (b) Scatter plot, considering all runs,
of the percentage of non-evaluated individuals from experiment K. (c) Evolution of
diversity for the basic GA on the 5-trap problem. (d) Evolution of diversity in EvoSpace
for experiment K. Plots c-d are double y-axis plots, showing the mean diversity over
all runs (dark line) and the number of runs N used to compute the mean.

process. The plot shows how fitness evolved on each EvoWorker that partici-
pated in the search. Evolution of fitness is organized based on the two temporal
axis of the horizontal plane. With respect to the sample number, independent
of which EvoWorker took the sample, and with respect to the generations of the
evolutionary process executed on the corresponding EvoWorker. In other words,
these plots provide a collective view of the evolutionary process from the per-
spective of all EvoWorkers. Since the global optimum is a fitness value of 10, we
can see that the evolution on the last sample taken from EvoSpace reaches the
global optimum. The overall performance of EvoSpace is summarized in Table 3,
which shows the total number of runs, out of 50, that found the global optima.
EvoSpace outperforms the standard GA on both functions, with a substantial
increase in the number of optima found.

Besides the performance with regards to fitness, some other questions are perti-
nent to ask of the entire EvoSpace population. In this case, different measures can

506 M. Garćıa-Valdez et al.

Table 1. Different experimental configurations used to test the performance of
EvoSpace

Experiment A B C D E F G H I J K L M N O

K-trap 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5
EvoWorkers 1 1 4 4 8 8 16 16 32 1 4 8 16 32 40
Sample size 32 64 32 64 32 64 32 64 32 64 64 64 64 64 64
Chromosome length 40 40 40 40 40 40 40 40 40 50 50 50 50 50 50

Table 2. Parameters and algorithm configurations for all experiments

Maximum Function Generations per
Parameter Evaluations Crossover (Prob.) Mutation (Prob.) EvoWorker

Value 100 Gens per worker Single point (1) Point (0.06) 100

Table 3. Different experimental configurations used to test the performance of
EvoSpace. GA-K are the baseline GA results for the 4-trap and 5-trap functions re-
spectively.

Experiment A B C D E F G H I J K L M N O GA-4 GA-5

Optima found 48 50 50 49 49 50 48 50 50 50 50 50 50 50 50 34 29

be tracked during evolution, however the progression of each performance mea-
sure must be taken with respect to the number of samples taken from EvoSpace or
the number of fitness function calls. For instance, since every EvoWorker takes a
random sample of individuals, one concern might be that some individuals in the
initial population might not be chosen and evaluated, and valuable genetic mate-
rial wasted. However, as shown in Figure 3b, the percentage of individuals within
EvoSpace that have not been evaluated quickly decreases with respect to the num-
ber of samples. Another interesting question regards diversity, how does it evolve
within EvoSpace. Here, diversity is given by the sum of the pairwise Hamming dis-
tances of all individuals within the population [12]. Figure 3c shows how diversity
evolves for experiment K. For comparison, Figure 3d presents the evolution of di-
versity for the basic GA1 These plots show how the standard GA has a problem
converging towards the optimum, progress seems to halt after the initial genera-
tions; this explains the poor performance achieved on this problem. On the other
hand, EvoSpace continuously converges towards the global optimum, as evidenced
by the high number of runs that ended with the global optimum.

A comparison of the amount of computational effort required in each experi-
ment is given in Figure 4, which shows boxplots of all runs in each experiment.
Figure 4a plots the total number of individuals evaluated in each run, which is
similar in all experiments. Finally, Figure 4b compares the total run time shown

1 The time scale is given by the number of evaluated individuals, in increments that
correspond to the number of individuals evaluated in 10 samples from experiment I.

EvoSpace 507

0

1

2

3

4

5

6

7

8

9

x 10
6

A B C D E F G H I J K L M N O
EXPERIMENT

IN
D

IV
ID

U
A

L
S

 E
V

A
L

U
A

T
E

D

(a) Evaluated Individuals

0

500

1000

1500

2000

2500

3000

A B C D E F G H I J K L M N O
EXPERIMENT

R
U

N
 T

IM
E

(b) Run-time

Fig. 4. (a) Number of evaluated individuals. (b) Total run-time.

in seconds. Run-time is reduced significantly by the number of EvoWorkers that
participate in the search, as expected.

5 Conclusions

EvoSpace proposes a PaaS system for Cloud-based EAs, where the search is
carried out as a distributed and asynchronous process. EvoSpace is tested on
a standard GA benchmark. While the search conducted by an EvoSpace-based
EA is fundamentally different from a standard sequential EA, the search is able
to produce competitive results with regards to solution quality. Moreover, recent
work has also shown that EvoSpace can acomodarte a less common type of EA,
an interactive system for artistic design [5]. While initial results are encouraging,
future work must evaluate fault tolerance and the effects of different algorithm
parameters and settings. Also, other features will be incorporated to Evospace,
such as multiple populations management, authentication, quotas and throt-
tling. Finally, to contextualize the main strengths and weaknesses of EvoSpace
a comprehensive empirical evaluation must be performed with other benchmark
tests, compared with other distributed and web-based EAs.

Acknowledgments. Research supported by DEGEST-ProIFOPEP (Mexico)
ResearchProject 4616.12-P;CONACYT (Mexico)Basic ScienceResearchProject
No.178323;RegionalGovernmentJuntadeExtremadura,ConsejeŕıadeEconomı́a-
Comercio e Innovación and FEDER, projectGRU09105; projects TIN2011-28627-
C04-02 and -03 (ANYSELF), awardedby the SpanishMinistry ofScience and Inno-
vation; and project P08-TIC-03903 awarded by the Andalusian Regional
Government.

References

1. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee,
G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing.
Commun. ACM 53(4), 50–58 (2010)

508 M. Garćıa-Valdez et al.

2. Bollini, A., Piastra, M.: Distributed and persistent evolutionary algorithms: A
design pattern. In: Proceedings of the Second European Workshop on Genetic
Programming, pp. 173–183. Springer, London (1999)

3. Clune, J., Lipson, H.: Evolving three-dimensional objects with a generative encod-
ing inspired by developmental biology. In: Proceedings of the European Conference
on Artificial Life, pp. 144–148 (2011)

4. Cotillon, A., Valencia, P., Jurdak, R.: Android Genetic Programming Framework.
In: Moraglio, A., Silva, S., Krawiec, K., Machado, P., Cotta, C. (eds.) EuroGP
2012. LNCS, vol. 7244, pp. 13–24. Springer, Heidelberg (2012)

5. Garcia, M., Trujillo, L., Fernández-de-Vega, F., Merelo-Guervós, J.J., Olague,
G.: EvoSpace-Interactive: A Framework to Develop Distributed Collaborative-
Interactive Evolutionary Algorithms for Artistic Design. In. In: Proceedings of
the 2nd International Conference on Evolutionary and Biologically Inspired Mu-
sic, Sound, Art and Design, EvoMUSART (2013)

6. Gelernter, D.: Generative communication in linda. ACM Trans. Program. Lang.
Syst. 7(1), 80–112 (1985)

7. Klein, J., Spector, L.: Unwitting distributed genetic programming via asynchronous
javascript and xml. In: Proceedings of the 9th Annual Conference on Genetic and
Evolutionary Computation, GECCO 2007, pp. 1628–1635. ACM, New York (2007)

8. Langdon, W.B.: Global Distributed Evolution of L-Systems Fractals. In: Keijzer,
M., O’Reilly, U.-M., Lucas, S., Costa, E., Soule, T. (eds.) EuroGP 2004. LNCS,
vol. 3003, pp. 349–358. Springer, Heidelberg (2004)

9. Merelo-Guervós, J.-J., Mora, A., Cruz, J.A., Esparcia, A.I.: Pool-Based Distributed
Evolutionary Algorithms Using an Object Database. In: Di Chio, C., Agapitos, A.,
Cagnoni, S., Cotta, C., de Vega, F.F., Di Caro, G.A., Drechsler, R., Ekárt, A.,
Esparcia-Alcázar, A.I., Farooq, M., Langdon, W.B., Merelo-Guervós, J.J., Preuss,
M., Richter, H., Silva, S., Simões, A., Squillero, G., Tarantino, E., Tettamanzi,
A.G.B., Togelius, J., Urquhart, N., Uyar, A.Ş., Yannakakis, G.N. (eds.) EvoAppli-
cations 2012. LNCS, vol. 7248, pp. 446–455. Springer, Heidelberg (2012)

10. Merelo-Guervos, J.J.,Mora,A.,Cruz, J.A.,Esparcia-Alcazar,A.I.,Cotta, C.: Scaling
in distributed evolutionary algorithmswith persistent population. In: IEEECongress
on Evolutionary Computation, pp. 1–8. IEEE Computer Society (June 2012)

11. Merelo Guervos, J.J., Valdivieso, P.A.C., Laredo, J.L.J., Garca, A.M., Prieto, A.:
Asynchronous distributed genetic algorithms with javascript and json. In: IEEE
Congress on Evolutionary Computation, pp. 1372–1379. IEEE (2008)

12. Morrison, R.W., De Jong, K.A.: Measurement of Population Diversity. In: Collet,
P., Fonlupt, C., Hao, J.-K., Lutton, E., Schoenauer, M. (eds.) EA 2001. LNCS,
vol. 2310, pp. 31–41. Springer, Heidelberg (2002)

13. Roy, G., Lee, H., Welch, J.L., Zhao, Y., Pandey, V., Thurston, D.: A distributed
pool architecture for genetic algorithms. In: Proceedings of the Eleventh Conference
on Congress on Evolutionary Computation, CEC 2009, pp. 1177–1184. IEEE Press,
Piscataway (2009)

14. Secretan, J., Beato, N., D’Ambrosio, D.B., Rodriguez, A., Campbell, A., Folsom-
Kovarik, J.T., Stanley, K.O.: Picbreeder: A case study in collaborative evolutionary
exploration of design space. Evol. Comput. 19(3), 373–403 (2011)

15. Talukdar, S., Baerentzen, L., Gove, A., De Souza, P.: Asynchronous teams: Coop-
eration schemes for autonomous agents. Journal of Heuristics 4(4), 295–321 (1998)

16. Thierens, D.: Scalability problems of simple genetic algorithms. Evolutionary Com-
putation 7, 331–352 (1999)

Cloud Driven Design of a Distributed
Genetic Programming Platform

Owen Derby, Kalyan Veeramachaneni, and Una May O’Reilly

Massachusetts Institute of Technology, USA.
{ocderby,kalyan,unamay}@csail.mit.edu

Abstract. We describe how we design FlexGP, a distributed genetic program-
ming (GP) system to efficiently run on the cloud. The system has a decentralized,
fault-tolerant, cascading startup where nodes start to compute while more nodes
are launched. It has a peer-to-peer neighbor discovery protocol which constructs
a robust communication network across the nodes. Concurrent with neighbor dis-
covery, each node launches a GP run differing in parameterization and training
data from its neighbors. This factoring of parameters across learners produces
many diverse models for use in ensemble learning.

Keywords: cloud computing, machine learning, genetic programming,
distributed evolutionary computation.

1 Introduction

Recent availability of on-demand massive compute resources, i.e. clouds, has encour-
aged research into massive parallelization of machine learning (ML) systems (see Ma-
hout and GraphLab [7,8]). Because clouds are different from other distributed resources
like clusters or grids, they impose new requirements on how we parallelize ML, but also
offer new opportunities1. In a cloud, the time to acquire many nodes is often quite long.
To efficiently use a cloud, ML needs to start as soon as the first instance is acquired
and not wait for the final instance’s acquisition. When learning for an extended period
of time, it needs to be designed as an online system where best interim results can be
obtained at any time. It needs to expand or contract by taking advantage of cloud’s
elasticity to respond to varying resource costs and handle node failures.

These requirements drive innovation in both cloud-scale evolutionary computation
(EC) and any machine learning enabled by EC. In this contribution we present FlexGP
which is an elastic, cloud-scale, distributed platform using Genetic Programming for
ML (GPML). FlexGP is a new version of previous work in [9]; we will refer to the
old version as FlexGP-ECJ to distinguish between the two. We focus on GPML here,
but any EA could be used with FlexGP. GPML is not well-suited for use with any of
the existing cloud parallelization frameworks. Some of these frameworks, like MapRe-
duce, were designed for completing large, single-run computations and do not readily

1 These include the ability to learn many heterogeneous models very cheaply and the ability to
learn for an extended period of time.

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 509–518, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

510 O. Derby, K. Veeramachaneni, and U.M. O’Reilly

accommodate the iterative nature of GPML. Others were retrofitted from grid or clus-
ter architectures and thus do not fully realize the potential of the cloud. An example
is FlexGP-ECJ which retrofitted grid-based EC software for use on the cloud. Instead,
FlexGP has been intended, from its outset, to run on the cloud, and has been designed
to take full advantage of the cloud.

We focus on the cloud-oriented design aspects of FlexGP. It is designed with an un-
derstanding that the cloud supplies sufficient computational resources upon request, yet
expects these resources might fail or be delivered with unknown latency. It is conceived
as a long-running computational learner, evolutionarily adapting and continuously im-
proving its model, whilst allowing for drastic changes in supplied cloud resources and
topology. It is implemented as a collaboration of many heterogeneous FlexGP instances,
independently learning a model and observing the topology of the network. Cloud-
GPML is implemented on a private cloud running OpenStack, a free and open source
software suite providing Infrastructure as a Service (IaaS) for clouds. To integrate times-
tamps across nodes, we rely on Network Time Protocol (NTP), standard on Ubuntu
12.04, to provide accurate time synchronization of the nodes. This is sufficient for our
purposes, as FlexGP operates on the scale of many seconds to minutes, and is not af-
fected by microsecond variations.

FlexGP-ECJ used a centralized master to coordinate starting GPML on nodes and es-
tablishing a network topology. This caused severe bottlenecks in starting the system and
introduced vulnerabilities to node failures. In FlexGP, there is no single controller co-
ordinating the system. It launches via a unique parallel asynchronous startup protocol.
Integrated within this protocol is a stochastic factorization of the GPML parameters,
creating a heterogeneous network of diverse learners. FlexGP runs a completely decen-
tralized gossip neighbor discovery protocol at its IP layer. The protocol establishes the
network simultaneously with the cascaded launch and integrates new instances into the
network. It is resilient to instance failure and allows communication to continue even
when instances disappear. Finally, it also enables interim results collection.

We proceed in the following manner: Sect. 2 describes the asynchronous launch pro-
cedure of FlexGP. Sect. 3 describes how each GPML learner is started with different
data and parameters, ensuring a diverse set of models to support ensemble learning.
Sect. 4 describes its IP discovery protocol. Recognizing that it is easier to compare
FlexGP to other approaches after it has been described, a discussion of related work is
deferred to Sect. 5. Sect. 6 concludes.

2 Parallel Asynchronous Startup

Applications typically request instances from a cloud in batches. The cloud possibly
queues these batch requests and may decompose them; interleaving them with requests
from other users. This might depend on batch size or the cloud’s use of an internal fine-
grained queue and a scheduler. Regardless of what a particular cloud does, the instance
scheduler implementation should be treated as opaque by application designers.

In designing FlexGP’s launch protocol, we started by studying the severity of latency
in acquiring cloud instances. We assume that the time elapsed between requesting an
instance and when that instance has booted and begins running our code, the latency,

Cloud Driven Design of a Distributed GP Platform 511

0 500 1000
0

0.2

0.4

0.6

Time (sec)

Empirical
Fitted PDF

(a) Times to acquire 1 node.

0 300 600 900 1200
0

0.2

0.4

0.6

Time (sec)

Empirical
Fitted PDF
Expected PDF

(b) Times to acquire 5 nodes.

0 300 600 900 1200
0

0.2

0.4

0.6

Time (sec)

Empirical
Fitted PDF
Expected PDF

(c) Times to acquire 50 nodes.

0 300 600 900 1200
0

0.2

0.4

0.6

Time (sec)

Empirical
Fitted PDF
Expected PDF

(d) Times to acquire 100 nodes.

Fig. 1. Probability distribution functions (PDF) of times to acquire nodes

is modeled by some distribution P(u). We first estimated P(u) by acquiring a single
instance 1,000 times and measuring the latency, u, of each request. The data and its
distribution are reported in Fig. 1a. If we optimistically assume a batch request of n
instances is served in parallel as n independent requests by the scheduler, then the total
latency, vn, of the request ought to be the maximum of n independent samples drawn
from P(u). We estimated P(vn) for n∈ [5,50,100] from 500 samples and then fit a non-
parametric distribution to the data. We report the observed data and fitted distributions
alongside the predicted distributions (based on our measured P(u)) in Fig. 1. While the
predicted and empirical distributions for P(v5) are close, the actual latency distributions
for P(v50) and P(v100) are significantly larger than predicted.

This discrepancy indicates that smaller batch requests achieve closer to optimal la-
tency than larger requests, and so our system ought to emphasize small batch requests
over large ones. Futher, because acquiring many (50 or 100) instances may take signif-
icantly longer than acquiring the first 10 instances, we should start running GPML on
an instance immediately after it boots, long before the entire set of nodes is acquired.
Another concern when computing using the cloud is failing nodes. Requested nodes
may never be acquired and running nodes may fail. This necessitates an architecture
which is resilient to failures.

FlexGP implements a decentralized, peer-to-peer (P2P) startup algorithm in light
of these observations. Every FlexGP instance is capable of launching other FlexGP
instances. Immediately after booting, every FlexGP instance retrieves parameters from
the node which started it. The parameters Ψ.k and Ψ.p indicate the number of nodes to
start and the target IP list size (see Sect. 4), respectively. The GPML meta-parameters,
Π, are used to determine the parameterization of each GPML learner (see Sect. 3). These
steps are detailed in the NODESTART function in Algorithm 1.

Figure 2 left illustrates how FlexGP would launch 7 instances when Ψ.k = 2. Node
A is launched and runs NODESTART(7, []), where [] indicates an empty list. A then

512 O. Derby, K. Veeramachaneni, and U.M. O’Reilly

Algorithm 1. NODESTART(n, R)

n: nodes to launch, R: list of ancestor IP addresses
Ψ: launch parameters, Π: GPML meta-parameters
ip← LAST(R)
RETRIEVE(ip, Ψ, Π)
R← CAT(R, MYIP())
n← n−1
if n≤Ψ.k and n≥ 1 then

for i = 1 to n do
ci ← BOOTNODE(1, R)

else
for i = 1 to Ψ.k do

k← & n
Ψ.k−i+1 '

ci ← BOOTNODE(k, R)
n← n−k

IPDISCOVERY(R)
GPMLCOMPUTE()

XB

A

C ZD Y

GPMLComputeNodeStart(7, [])
NodeA IPDiscovery([IPA])

NodeStart(3,[IPA])
NodeB

uA uB
GlobalTime

Fig. 2. A view of the launch of FlexGP for 7 nodes. Left: An initial node is launched and it brings
up 2 more, which in turn bring up 2 more each, in a cascading fashion. Right: Timeline of booting
and launching of instances. After starting more nodes, node A begins computation.

boots nodes B and X, each of which will run NODESTART(3, [IPA]), and will go on to
boot 2 more nodes each. Figure 2 right details the timeline of two nodes during startup,
illustrating the concurrency present in the FlexGP startup. As soon as node A finishes
executing NODESTART and started nodes B and X, it starts a new thread to begin run-
ning GPML computation and then continues into the IPDISCOVERY algorithm, as de-
scribed in Sect. 4. This enables us to run GP concurrent with IP discovery and network
discovery.

Figure 3 reports results from our experiments; demonstrating the advantages of the
concurrent nature of FlexGP. The plot on the left shows the total progress of GPML as
measured by individuals evaluated as global time progresses on the 150 nodes. The fig-
ure on the right examines the distribution of completed GP generations across all started
nodes as the last node starts (around the 1800th second). The cumulative effect of this
is that by the time the last node starts, some nodes have completed as many as 30 gener-
ations and some 2.2 million individuals have been evaluated across the FlexGP system.

Cloud Driven Design of a Distributed GP Platform 513

0 500 1000 1500
0

1

2

3 x 10
6

Time (sec)

T
o

t.
 E

va
lu

at
io

n
s

0 10 20 30
0

5

10

15

20

Generation

Fig. 3. Progress of GP on each node as distributed startup and IP discovery progress. Left: Cumu-
lative fitness evaluations completed by all FlexGP nodes as launch proceeds. Right: Histogram of
number of generations finished before the time of last launch (marked as red line on left figure).

Since each evaluation requires a pass through the training cases, this corresponds to at
least 2.2 million passes through the problem dataset.

In Fig. 4 we compare how long it takes to start up 50 nodes for Ψ.k ∈ [2,4,8,16].
As expected, the time decreases as Ψ.k increases, until Ψ.k = 8. Then the time gets
worse for a value of 16. This is likely due to the wider variation in latencies for larger
batch request sizes, as seen in Fig. 1. Note that the specific tradeoff point at Ψ.k = 8
is largely dependent on the properties of our cloud and the load it is under at the time
of measurement and we expect this point would change over time or if measured on a
different cloud.

0 500 1000 1500
0

10

20

30

40

50

Time (sec)

N
o

d
es

 B
o

o
te

d

Ψ.k=2
Ψ.k=4
Ψ.k=8
Ψ.k=16

Fig. 4. Time to acquire 150 node as we change Ψ.k. Values reported are averages taken over 30
trials at each value.

The protocol is tolerant of node failures: the failure of one node interrupts the acqui-
sition of further instances by that node, but does not hinder launches by other running
nodes. For example, in Fig. 2, if node X failed to launch properly, nodes Y and Z will
never be requested, but there is no affect on the acquisition of nodes B, C or D. In gen-
eral, while the actual number of acquired nodes may not meet the requested N, GPML
(and IP discovery) can execute on all nodes that have been acquired. We have taken the
view that N will usually be large enough and failure will be sufficiently infrequent that
we do not need to be concerned about any reporting, tracking and explicit recovery of
node failures.

514 O. Derby, K. Veeramachaneni, and U.M. O’Reilly

There may still be cases where the launch did not acquire a sufficient proportion
of N instances. This may occur in the unlikely event that a node crashes very early
on in the launch or in the face of intermittent cloud service interruptions. If such a
scenario arises, we can simply tap an existing node and have it run the startup with
new parameters which will try to populate the network with more resources. This same
strategy can also be used to increase the number of running instances after startup. We
might want to do this at night, when cloud instances become cheaper to run.

3 Factored Learners

The availability of massive on-demand expandable compute resources in the cloud en-
ables us to learn many models in parallel. Bagging, boosting or simple parameter search
are now feasible at a scale never seen before. FlexGP generates a large set of diverse
models for ensemble learning. This is achieved by varying the parameters each GPML
learner starts with. This leads to a set of factored learners, working in parallel to learn a
diverse set of models.

We define the parameters for a GPML learner as {L,O,D,F}. L is the operator set
provided to GP. O is the objective function used for normalizing fitness evaluations in
GP. D is the set of training cases presented to the learner and F is the set of data features
used in each training case in D. Note that while L and O are specific to GP, D and F
are generic parameters of the data. Different options are available for these parameters,
which are summarized in Table 1.

Table 1. GPML parameters and their possible values and definitions

Parameter Value Definition

Operator Set (L)

W {+,−,/,∗}
X {exp, ln}
Y {sqrt,x2,x3,x4}
Z {sin,cos}

Objective Function (O)
Norm Mean absolute error
Norm-2 Mean squared error
Norm-inf Max error

Training Cases (D) n Subset of training cases, of size n
Feature Set (F) m Subset of features, of size m

We take Π, the set of meta-parameters retrieved from the parent (see Sect. 2), to de-
fine distributions over these options, guiding how FlexGP selects the values for each
parameter. We will use the notation p(O) to represent the distribution over the op-
tions for O. p(L) gives probabilities for each of the 8 possible values of L.2 p(O)
gives probabilities for each of the 3 Norms defined. L and O are each chosen as a

2 These values being W , W ∪X , W ∪Y , W ∪Z, W ∪X ∪Y , W ∪X ∪Z, W ∪Y ∪Z, and W ∪X ∪
Y ∪Z.

Cloud Driven Design of a Distributed GP Platform 515

single sample from p(L) and p(O), respectively. p(D) defines probabilities of select-
ing each training case (for the set of all training cases). D is constructed by sampling
without replacement n times from p(D). The distribution for F is split into two parts.
p1(F) gives probabilities for the number m of features to use. p2(F) defines the prob-
abilities of using each feature. F is constructed by sampling m from p1(F) and then
drawing m samples from p2(F) without replacement. For example, one learner could
use the parameters {W,Norm2,{x1,x2},{d1...3000}}, while another learner might use
{{W ∪X},Norm2,{x1,x4},{d1...3000}}.

In our current implementation, we set all distributions in Π to be static, uniform
distributions, for simplicity. However, since Π is retrieved from the parent node, the
distributions over parameters may change dynamically as new nodes are launched. For
example, a node could modify p(D) to decrease the chance their children (the nodes it
started) will select the same training cases it did. Or if new nodes are to be brought up
after the system has been running, p(D) could be modified to weight difficult training
cases more and p(F) could be modified to weight features with little apparent informa-
tive power less. We hope to explore such possibilities in the future.

4 Distributed IP Discovery

A key requirement of any cloud-based ML application is the support for communi-
cations between learners. Further, cloud-scale systems need an established network to
robustly extract information and results from the system. For GPML, such communica-
tions might include the migration of individuals (models) or data-dependent summaries.
Our work focuses on the establishment of such a network, but not on how the GPML
learners use it.

The commonplace centralized architecture for network establishment (the so-called
“master-slave” model) is not sufficient to meet the requirements of a cloud-based com-
pute system [9]. In such an architecture, the nodes cannot begin computing until they
receive parameters and IP lists from the master. This allows for the creation of arbitrary
network topologies by the master. However, on a cloud the master cannot know the IP
addresses until all instances are acquired. As we observed in Sect. 2, the latency for a
many-node acquisition is quite large. Further, some of the requested nodes might fail
before reporting to the master, complicating matters further.

To avoid this latency while still achieving the networking requirements of FlexGP,
we design a distributed IP discovery protocol. Note, we focus here on the initial boot-
strapping of the network - the “IP discovery” problem. This is separate from the prob-
lem of creating particular topologies in P2P networks [4]. Recall that as part of startup
a parent node shares its IP list with all its children. A node at level i therefore has i IP
addresses at startup. We then use a gossip protocol to populate the neighbor list at each
node. First, we set a lower limit, Ψ.p, for the number of IP addresses a node needs to ac-
quire. It generally is a function of the total number of nodes. We then follow an address
passing protocol per Algorithm 2. In this protocol’s active phase, each node selfishly
tries to increase its IP addresses up to its limit by requesting more IP addresses from its
neighbors while it shares with its neighbors its IP addresses in exchange. After it meets
or exceeds the limit, in its passive phase, it serves any request it receives in exchange
for their IP addresses.

516 O. Derby, K. Veeramachaneni, and U.M. O’Reilly

Algorithm 2 IPDISCOVERY(R)
Λ← R
loop

λ← set of new messages received
for m in λ do

if m.type is REQUESTIPLIST then
Λ← MERGE(Λ, m.Λ)
RESPONDIPLIST(m.ip, Λ)

else if m.type is RESPONDIPLIST then
Λ← MERGE(Λ, m.Λ)

if LEN(Λ)< Ψ.p then
ε← RANDOM(Λ)
REQUESTIPLIST(ε)

4.1 Empirical Study

We ran launch and IP discovery experiments with N = 150, and Ψ.p = 25. The plots of
Fig. 5 show global time progressing along the x-axis. In Fig. 5 left, the y-axis denotes
the number of IP addresses each node acquires. Each plotline is a node and, for clarity,
we only show a subset of N. We observe that all nodes eventually acquire IP addresses
of a significant number (> N

2) of nodes and in some cases almost all other nodes. A
plotline changes from solid to dashed when a node switches from active to passive
phase. It is interesting that the latter nodes acquire addresses of a very large number of
nodes by gossiping with just one or two nodes arbitrarily. Interestingly, the last node
acquires as many as 150 addresses. This ensures connectivity if we add more nodes
later. Finally, note that all nodes have at least Ψ.p nodes before the last one is booted.

0 500 1000 1500
0

50

100

150

Time (sec)

S
iz

e
o

f
N

ei
g

h
b

o
r

L
is

0 10 20 30 40
0

20

40

60

Time (sec)

Pre 26
Node 26
Post 26

Fig. 5. IP discovery through gossip. Left: Progress of IP discovery as a function of global system
time. Each line represents the number of IP addresses a node accumulates as time progresses.
Right: Time it took for each node to acquire Ψ.p IP addresses.

Figure 5 middle shows the distribution of delays for nodes to enter the passive phase
of IP discovery. This delay for the ith node is calculated as follows. Let Si be the time
at which the ith node started and let Ti be the time at which the ith node discovered its
25th IP address. Then the latency for node i is given as Ti−max(Si,S26). We notice that
almost 130 nodes take less than 25 seconds to enter the passive phase.

Cloud Driven Design of a Distributed GP Platform 517

5 Related Work

There is a large body of distributed EC research which focuses exclusively on the design
of distributed, algorithmic models, like island-based GP, instead of designs which take
advantage of a particular resource type or communication layer. Much of this work is
only tangentially related to FlexGP, as we are focused on writing an EC platform which
takes advantage of the cloud platform. The systems in [1, 3, 10–12] rely upon MapRe-
duce for parallelization. MapReduce is a powerful platform for distributed computation,
but its dependence upon a separate distributed file system, single point of failure in the
master and synchronization bottlenecks are not a good match with the cloud.

FlexGP’s IP discovery is like other EC peer-to-peer systems. For example, the EvAg
system [5, 6] also relies upon gossiping for node discovery. Little information is avail-
able on its startup method. It is not specialized to run on particular resource types
whereas it is designed to investigate topology and a fine grained distribution model.
EvAg and FlexGP differ in how they introduce evolutionary diversity: EvAg employs
different operators across randomized neighbourhood whereas FlexGP factors each is-
land with differentiation of data, GP objective function, operator set and input variables.
Folino introduced peer to peer based design for building classifier ensembles [2].

6 Conclusions and Future Work

In this paper we have described the development of FlexGP, a large-scale, distributed
system using GP for machine learning on the cloud. Our goal was to establish a large
network of independent GPML leaners on the cloud with an eye towards minimizing
latencies and bottlenecks while maximizing resource utilization. FlexGP is an improve-
ment over its precursor FlexGP-ECJ, avoiding its bottlenecks in starting up and estab-
lishing a network topology. For a modest sized experiment of 150 nodes attempting to
solve a small scale regression problem using FlexGP we showed the efficiency gains by
introducing parallelization schemes and concurrency at multiple levels.

We plan to continue development on FlexGP, refining our platform and adding new
features. The elegant design of this framework allows seamless expansion of the com-
putation as needed. We intend to use this feature in several ways. If more resources be-
come available, we would like to bias the distributions in Π for the new nodes based on
insights from the running computation. We would also like to introduce multiple levels
of parallelism to solve big data problems. Each FlexGP node can start a FlexGP system
of its own, running an island-based GP with migration in a fully connected network.
Additionally, we will develop shared memory, multicore parallelization at each GPML
learner. This will allow us to run bigger population sizes and solve larger problems.

Acknowledgements. This work was supported by the GE Global Research center.
Any opinions, findings, and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of General Electric
Company.

518 O. Derby, K. Veeramachaneni, and U.M. O’Reilly

References

1. Fazenda, P., McDermott, J., O’Reilly, U.-M.: A Library to Run Evolutionary Algorithms in
the Cloud Using MapReduce. In: Di Chio, C., Agapitos, A., Cagnoni, S., Cotta, C., de Vega,
F.F., Di Caro, G.A., Drechsler, R., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Langdon,
W.B., Merelo-Guervós, J.J., Preuss, M., Richter, H., Silva, S., Simões, A., Squillero, G.,
Tarantino, E., Tettamanzi, A.G.B., Togelius, J., Urquhart, N., Uyar, A.Ş., Yannakakis, G.N.
(eds.) EvoApplications 2012. LNCS, vol. 7248, pp. 416–425. Springer, Heidelberg (2012)

2. Folino, G., Forestiero, A., Spezzano, G.: A jxta based asynchronous peer-to-peer implemen-
tation of genetic programming. Journal of Software 1(2), 12–23 (2006)

3. Huang, D.W., Lin, J.: Scaling populations of a genetic algorithm for job shop scheduling
problems using MapReduce. In: 2010 IEEE Second International Conference on Cloud Com-
puting Technology and Science (CloudCom), pp. 780–785 (December 2010)

4. Jelasity, M., Montresor, A., Babaoglu, O.: T-Man: Gossip-based fast overlay topology con-
struction. Computer Networks 53(13), 2321–2339 (2009); Gossiping in Distributed Systems

5. Jiménez Laredo, J.L., Lombraña González, D., Fernández de Vega, F., Garcı́a Arenas, M.,
Merelo Guervós, J.J.: A Peer-to-Peer Approach to Genetic Programming. In: Silva, S., Fos-
ter, J.A., Nicolau, M., Machado, P., Giacobini, M. (eds.) EuroGP 2011. LNCS, vol. 6621,
pp. 108–117. Springer, Heidelberg (2011)

6. Laredo, J., Eiben, A., Steen, M., Merelo, J.: Evag: a scalable peer-to-peer evolutionary algo-
rithm. Genetic Programming and Evolvable Machines 11, 227–246 (2010)

7. Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A., Hellerstein, J.M.: Distributed
GraphLab: A framework for machine learning and data mining in the cloud. Proc. VLDB
Endow. 5(8), 716–727 (2012)

8. Owen, S., Anil, R., Dunning, T., Friedman, E.: Mahout in Action. Manning Publications Co.
(2011)

9. Sherry, D., Veeramachaneni, K., McDermott, J., O’Reilly, U.-M.: Flex-GP: Genetic Pro-
gramming on the Cloud. In: Di Chio, C., Agapitos, A., Cagnoni, S., Cotta, C., de Vega,
F.F., Di Caro, G.A., Drechsler, R., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Langdon,
W.B., Merelo-Guervós, J.J., Preuss, M., Richter, H., Silva, S., Simões, A., Squillero, G.,
Tarantino, E., Tettamanzi, A.G.B., Togelius, J., Urquhart, N., Uyar, A.Ş., Yannakakis, G.N.
(eds.) EvoApplications 2012. LNCS, vol. 7248, pp. 477–486. Springer, Heidelberg (2012)

10. Verma, A., Llora, X., Goldberg, D., Campbell, R.: Scaling genetic algorithms using mapre-
duce. In: Ninth International Conference on Intelligent Systems Design and Applications,
ISDA 2009, pp. 13–18 (December 2009)

11. Verma, A., Llora, X., Venkataraman, S., Goldberg, D., Campbell, R.: Scaling eCGA model
building via data-intensive computing. In: 2010 IEEE Congress on Evolutionary Computa-
tion (CEC), pp. 1–8 (July 2010)

12. Wang, S., Gao, B.J., Wang, K., Lauw, H.W.: Parallel learning to rank for information re-
trieval. In: Proceedings of the 34th International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR 2011, pp. 1083–1084. ACM, New York (2011)

Cloud Scale Distributed Evolutionary Strategies

for High Dimensional Problems

Dennis Wilson, Kalyan Veeramachaneni, and Una May O’Reilly

Massachusetts Institute of Technology, USA
{dennisw,kalyan,unamay}@csail.mit.edu

Abstract. We develop and evaluate a cloud scale distributed covariance
matrix adaptation based evolutionary strategy for problems with dimen-
sions as high as 400. We adopt an island based distribution model and
rely on a peer-to-peer communication protocol. We identify a variety of
parameters in a distributed island model that could be randomized lead-
ing to a new dynamic migration protocol that can prove advantageous
when computing on the cloud. Our approach enables efficient and high
quality distributed sampling while mitigating the latencies and failure
risks associated with running on a cloud. We evaluate performance on a
real world problem from the domain of wind energy: wind farm turbine
layout optimization.

1 Introduction

Our goal is to design Estimation of Distribution Algorithms, or EDAs, for high
dimensional problems via large scale cloud computing resources: hundreds or
even thousands of cores made available via virtualization of commodity hard-
ware. Cloud-scaling helps us achieve the much needed higher sampling rates for
high dimensional problems. While the cloud provides us access to large num-
ber of resources on demand, resource sharing through virtualization implies that
some nodes could be slower than others. Hence algorithms designed based on
synchronous computation/communication and shared, distributed memory ar-
chitectures could incur latencies. We are investigating whether a certain type
of distribution model for EDAs is more amenable to these on-demand resources
and what distribution protocol and software infrastructure we should build to
support them.

An example model is a master-slave fitness distributed model with a very
large sample population. However, in this model a bottleneck arises when the
distribution is re-estimated since the entire population needs to be evaluated
before a sub-sample is selected to re-estimate the distribution. Recognizing this,
as well as due to success of island based models in classical evolutionary algo-
rithms, we are exploring an island based model where multiple instances of an
EDA, one per island, optimize locally while periodically communicating progress
information to neighbors.

The asynchronous execution and communication between islands allows for
desired higher sampling rates, but requires a distribution methodology. We map

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 519–528, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

520 D. Wilson, K. Veeramachaneni, and U.M. O’Reilly

each island to an independent node (with either single or multiple cores) and
build a socket level communication layer across the network of nodes. In this
submission we present a cloud EDA algorithm we have named CASINO– Cloud
Assets for StochastIc Numerical Optimization. CASINO is a communication
framework for EDA development that is used here to distribute the Covariance
Matrix Adaptation based Evolutionary Strategy, CMA-ES [1].

In designing a distributed CMA-ES, we focus on the communication proto-
col for the migration of progress information. We examine whether randomized
migration protocols are effective when compared to static and centralized pro-
tocols, as well as the type of information exchanged by the independent EDAs.
Conventionally island models communicate current best solutions. In this paper
we experiment with CMA-ES passing either the best solutions or the island’s
covariance matrix.

Our evaluation perspective is practical; we focus on a real world wind farm
turbine layout optimization. We proceed as follows: Section 2 briefly considers
related work. In Section 3 we briefly review the CMA-ES algorithm. Section 4
describes CASINO. In Section 5 we describe different randomized protocols for
sending information between islands. Section 6 describes the layout optimization
problem we use CASINO for. Section 7 compares different strategies based on
their performance on our exemplar problem. Section 8 concludes with future
work.

2 Related Work

There is a large body of literature on methods of distributing Evolutionary Al-
gorithms, EAs, for which [2–5] serve well as overviews. In some circumstances,
simple parallelization models such as independent, parallel runs or master-slave
fitness evaluation suffice. There are examples of continuously valued, distributed
EAs for numerical optimization which commonly use Particle Swarm Optimiza-
tion, Evolutionary Strategies, or Genetic Algorithms [6–11]. A few of these ap-
proaches focused on adapting MapReduce to scale algorithms to compute re-
sources on the cloud [10].

A closely related work appears in [7] where authors have used a Message Pass-
ing Interface, or MPI, over a distributed file system. They developed this system
for compute grids and achieved efficiencies via MPI over distributed, shared and
hybrid memory systems. In our current work we do not use or require such a
file system since we believe that it can cause latencies and is not particularly
required for an island based model which has asynchronous and infrequent com-
munications. Additionally, on the cloud we cannot assume the multiple cores of
our virtual machines reside on the same physical machines, which algorithms
based on shared memory systems assume.

3 Distributed CMA-ES Strategy

CMA-ES self-adapts the covariance matrix of a multivariate normal distribution.
This normal distribution is then sampled to draw the variables of a candidate

Cloud Scale Distributed Evolutionary Strategies 521

solution in the multidimensional search space. The covariance matrix guides the
search by adaptively biasing sampling toward historically profitable correlations
between the variables. This makes the evolutionary search powerful.

Consider a representation xk for the kth solution to the optimization problem
that attempts to minimize the objective function f(x). In each iteration, t, the
algorithm samples λ number of solutions from a multivariate normal distribution
given by

x
(t+1)
k ∼ N (m(t), σ2(t),C(t))∀k. (1)

After evaluating these solutions against the fitness function a subset μ are se-
lected for updating the mean and covariance of the multivariate distribution.
The mean is updated by

m(t+1) =

μ∑
i=1

ωix
(t+1)
i , such that

μ∑
i=1

wi = 1andwi > 0 (2)

The covariance matrix could be simply updated by:

C(t+1)
μ =

μ∑
i=1

wi

(
x
(t+1)
i −m(t)

σ(t)

)(
x
(t+1)
i −m(t)

σ(t)

)T

(3)

The CMA-ES algorithm also incorporates additional information based on tra-
jectory of the mean and the covariance matrix as iterations progress. For further
information we refer readers to [1].

4 CASINO Setup

One of the main goals in CASINO’s design was a simplistic communication pro-
tocol and the ease of its setup. The network layout and migration protocols
can be easily manipulated by changing neighbor selection methods, informa-
tion passed, and communication frequency without disturbing the underlying
architecture. The Instrument Control Toolbox in MATLAB is used to facili-
tate information passing over TCP-IP, and system-level ssh calls are used for
notification. CASINO’s setup has the following configuration steps:

Step 1: Infrastructure: A central server node requests a batch of nodes from
the cloud. The server collects, and then broadcasts, the nodes’ IP addresses as
list R. A node i establishes a connection with another node j from its IP list Ri

by creating an exclusive mailbox with a unique id. The mailbox configuration is
determined by the user; while we have explored different migration topologies,
every node has the capacity to engage in various topologies given Ri. Each node
also creates a notification mailbox which a sender uses to inform it that a message
has arrived at the sender’s exclusive mailbox.

Step 2: Information Communicated: Currently, we allow each CMA-ES
node to send either a subset of its individuals or its covariance matrix. In the

522 D. Wilson, K. Veeramachaneni, and U.M. O’Reilly

Fig. 1. An example of a 5-node network. The server node (not shown) is connected to
port 5000 on each worker node. These nodes are fully connected to each other using the
ports numbered higher than 5000. They also all use port 22 as a notification mailbox.

case of former, the best μ individuals are chosen, though the entire set could be
communicated. The fitness of the individuals is sent as well to avoid reevaluation.
Similarly, covariance matrices are reduced to the upper triangle of the matrix
before passing and the best individual’s fitness is included to combat redundancy.
We are also interested in communicating parts of a larger, centralized covariance
matrix, but have not yet explored this option.

Step 3: Migration Protocol: The details of the migration protocols will be
fully discussed in Section 5. Our ability to experiment with different migration
protocols comes from the infrastructure configured in Step 1 as well the nature
of CMA-ES algorithm where information received can be integrated in any of its
iteration. We experiment with a variety of pre-determined migration protocols
and a set of randomized strategies.

Step 4: Message Information Integration: During a run, a node integrates
the information it receives from its neighbors. When the information unit is its
neighbor’s best μ solutions, it simply merges these into its population before
making a selection of best μ from which the next covariance matrix is estimated
and subsequently updated.

When the unit is the entire covariance matrix, we modify the CMA-ES algo-
rithm include the covariance matrix from the neighbor:

α(1 − ccov)C
(t) + (1− α)(1 − ccov)Cn

(t) (4)

where α is the relative weight. We call this neighbor-update. When covariance
matrices arrive from multiple nodes, we rank the covariance matrices based on
their associated fitness, that of the best population on their island, and choose
the best one to integrate.

5 Randomized Migration Protocols

Next we attempt to overlay different migration protocols on our infrastructure.
A migration protocol is defined by three aspects: topology chosen, topology

Cloud Scale Distributed Evolutionary Strategies 523

parameters, and type of information. Below we describe different ways one can
make choices in these.

Topology Selection:With regards to topology one can overlay a fixed topology
like Ring, Broadcast , or even No communication which we call a static topol-
ogy. An alternative is to choose a topology at random every generation. This is
possible because each node in our network has the IP addresses of all the other
nodes. This we call a dynamic strategy.

Parameter Selection: There are two parameters that are specified in a mi-
gration protocol. They are: q, number of neighbors, and γ, migration frequency.
Selection of these parameters can have significant influence on the network use
and possibly latencies. These parameters are chosen randomly as per a proba-
bility distribution; in our case γ ∼ U [5, 10] and q ∼ N (k, k2) where k ∈ [n, n2].
Our current framework allows the user to choose these parameters in the follow-
ing ways: the choice can be made centrally and every island is passed the same
parameters at initialization (homogeneous) or each island can choose its own
parameters based on the distribution (heterogeneous). Additionally, we allow
for further protocols by introducing randomization during run time (RR). Each
nice can change its parameter q during run time and decide whether or not send
randomly by flipping a biased coin.

A user of our framework can select any configuration in terms of topology
and parameters. We experimented with a few and the table below presents the
names we use for these protocols and the choices that are made for topology and
parameters in each of them.

Table 1. Different protocols tested. HO implies homogeneous, HE implies heteroge-
neous, and RR implies randomized during run time

Protocol Topology Parameters
q γ

Static Static HO HO

Static-Random Frequency Static HO HE

Dynamic Dynamic HE HE

Dynamic-Random Frequency Dynamic RR HE

Dynamic-REG Dynamic RR RR

6 An Exemplar High Dimensional Problem

Toanalyze theperformance of the algorithmunder a variety of choices,we selecteda
real world high dimensional problem.We chose a wind energy layout problem that
has been studied by a number of researchers who have applied either centralized
version (with multithreading for parallelizing fitness evaluation) of the CMA-ES
algorithm. The goal is to identify a turbine layout, given by the x, y co-ordinates
for the turbines, that maximizes the energy capture from a given farm

arg max
(X,Y)

η(X,Y, v, β(v)) (5)

524 D. Wilson, K. Veeramachaneni, and U.M. O’Reilly

where v is the wind speed, and the function β(v), known as a power curve, gives
the power generated by a specific turbine for a given wind speed. Wind speed
v however is a random variable with a Weibull distribution, pv(v, c, k), which is
estimated from wind resource data. This distribution also changes as a function
of direction, θ which varies from 00 − 3600, yielding a probability density func-
tion for different θ given by pθv(v, c, k). Additionally, wind flows from a certain
direction with some probability P (θ). These different pieces of information are
inputs to the algorithm. Due to the random nature of wind velocity, the objec-
tive function evaluates the expected value of the energy capture for a given wind
resource and turbine positions. For a single turbine, this value can be calculated
using

Ei[η] =

∫
θ

P (θ)

∫
v

pθv(v, ci, k,i xi, yi, X, Y)βi(v). (6)

Equation 6 evaluates the overall average energy over all wind speeds for a given
wind direction, and then averages this energy over all the wind directions. ci, ki
are turbine specific resource parameters derived for the ith turbine after wake
calculations. For more details, refer to [12].

The goal of the optimization problem is to maximize Equation 6. This prob-
lem has analysis value because of its high dimensionality, non-linear variable
relationships and expensive fitness evaluation.

7 Experiments and Analysis

We use a 200 turbine problem with a 400 dimensional search space for evaluation.
All experiments use 100 cloud nodes with an island on each. The CMA-ES
parameters of each island are μ = 10 and λ = 20. All experiments are run 20
times and the results presented are averages. Each run takes approximately 18
minutes. The fitness evaluation for a 200 turbine problem takes 5 seconds.

0 20 40 60 80 100

1.22

1.24

1.26

1.28

x 10
6

Generation

P
o

w
er

 O
u

tp
u

t

No Communication
Broadcast
Circular
Dynamic
Static−Random Frequency

Fig. 2. Performance of different static topologies vs randomized topologies

Cloud Scale Distributed Evolutionary Strategies 525

Are Dynamic Topologies Harmful?
We first compare Static-Random Frequency and Dynamic which have random
migration rates and random topologies to Static with Ring and Broadcast topolo-
gies. For fair comparison, Static-Random Frequency and Ring both have q = 2
implying they exchange the same amount of information. In Dynamic the num-
ber of neighbors is drawn randomly q ∼ N (k, k

2) at the beginning of the run,
where k = 2. We include an experiment of No communication also.

Per Figure 2, as expected, No communication fares worst. Broadcast was as
poor or statistically the same as No communication likely because there was
too much information exchanged.The randomized strategies work better than
Ring suggesting that a random topology is at least not harmful, and might drive
advantageous population diversity.

0 20 40 60 80 100

1.22

1.24

1.26

1.28

x 10
6

Generation

P
o

w
er

 O
u

tp
u

t

Centralized
Complete Static
Static−Random Frequency
Dynamic
Dynamic Random
Dynamic − REG

(a)

0 500 1000 1500
1.22

1.24

1.26

1.28 x 10
6

Time [s]

P
o

w
er

 O
u

tp
u

t

Static
Static−RF
Dynamic
Dynamic−RF
Dynamic−REG

(b)

Fig. 3. Comparing centralized CMA-ES with 100 times the population to a distributed
CMA-ES with smaller populations and different information sharing protocols. The
time scale is also show as a performance comparison; the centralized CMA-ES runtime
was of a higher order of magnitude and is not shown.

Are Islands Harmful?
As another check, we compare the island model to a CMA-ES where all sam-
ples are centralized, (μ = 1000 and λ = 2000) and each sample directly affects
the covariance matrix update. We observe that the centralized CMA-ES pre-
maturely converges quickly (within 25 generations). Initially, it outperforms the
distributed protocols, but within 100 generations, all of them surpass it. The
initial benefit of centralized CMA-ES is its complete communication and instan-
taneous integration of results. In the island model, full integration hangs on
result migration.

This clearly shows that distributed sampling is not harmful and could, indeed,
be advantageous.We also compare the time taken for different protocols to finish.
Figure 3(b) shows the progression of different approaches in terms of fitness as
time progresses. All values are averaged over 20 trials.

What Is the Best Number of Neighbors? We now evaluate the sensitiv-
ity of each distributed strategies and randomized protocols to q, the number of

526 D. Wilson, K. Veeramachaneni, and U.M. O’Reilly

0 20 40 60 80 100

1.22

1.24

1.26

1.28

x 10
6

Generation

P
o

w
er

 O
u

tp
u

t 2
4
16
32
50

(a) Static

0 20 40 60 80 100

1.22

1.24

1.26

1.28

x 10
6

Generation

P
o

w
er

 O
u

tp
u

t 2
4
16
32
50

(b) Static-Random Frequency

0 20 40 60 80 100

1.22

1.24

1.26

1.28

x 10
6

Generation

P
o

w
er

 O
u

tp
u

t 2
4
16
32
50

(c) Dynamic

0 20 40 60 80 100

1.22

1.24

1.26

1.28

x 10
6

Generation

P
o

w
er

 O
u

tp
u

t 2
4
16
32
50

(d) Dynamic-Random Frequency

0 20 40 60 80 100

1.22

1.24

1.26

1.28

x 10
6

Generation

P
o

w
er

 O
u

tp
u

t 2
4
16
32
50

(e) Dynamic-REG

Fig. 4. Comparison of q for distributed protocols

neighbors or, for dynamic protocols with respect to q, the mean of the distribu-
tion from which the number of neighbors was determined. Figure 4 shows each
protocol with q = 2, 4, 8, 16, 32, 50. The Static protocol is best with a two neigh-
bor topology. The best q for the other randomized protocols is not discernible
statistically, though, in the case of Dynamic q = 4 appears to best the others
by a slim margin. Across the protocols, this makes it infeasible to state whether
the “best” q remains the same or differs.

Static-Random Frequency performs the best overall, but was also the most
costly in computation time, taking 23 minutes per run on average. This is caused
by processing time of incoming and outgoing populations. While each node in
this protocol sends its populations to the number of individuals indicated, 2 for
the best run, a single node may be a receiver more frequently. The overburdened
nodes increase the overall optimization time.

Cloud Scale Distributed Evolutionary Strategies 527

0 20 40 60 80 100
3.15

3.2

3.25

3.3

3.35 x 10
5

Generation
P

o
w

er
 O

u
tp

u
t

Covariance Sending
Population Sending

Fig. 5. Performance comparison of communicating best solutions vs the covariance ma-
trix for a 50 turbine optimization problem using the Static-Random Frequency protocol

Static-Random Frequency and Dynamic both showed increased variability be-
tween values of q. Multiple runs of Dynamic-Random Frequency and Dynamic-
REG outperformed the others but not on average. This is the impact of increased
randomization; a randomized dynamic network may end up having little commu-
nication, or communication may be isolated to a small section of the population.

Information Unit: Individuals vs Covariance Matrix. Time permits us
only to briefly study the difference between communicating the μ best individu-
als as units of information to exchanging the covariancematrix, see Figure 5. Note
there will be a tradeoff point between μ and dimensionality where the message size

of each will cross. A covariance matrix for an n-dimensional problem is of size n2

2 .
For a 200 dimension problem this message size and update time is high, so we com-
pared the two information units on a 50 dimension problem. The best individual
informationoutperformed the covariancematrix approach initially, butby100 gen-
erations both experiments achieve the samemean best fitness. This is likely due to
our decision to only integrate the best covariance matrix received from neighbors
each iteration. This slows the sharing of crucial information.

8 Conclusions and Future Work

In this paper we presented our island based CMA-ES algorithm capable of run-
ning on the cloud. We identified a variety of parameters for an island based
model which can be randomized in order to overcome the latencies introduced
by the cloud due to its virtualization layer and resource sharing. We investigated
the performance of these strategies (on a real world problem) by running on our
private cloud. We also investigated whether or not passing covariance matrix
helps the distributed model in terms of performance. Passing the covariance ma-
trix is extremely expensive and it is not clear from the brief study we performed
if it is beneficial. We did observe that the pattern of convergence is different. As
part of future work we would like to investigate this further.

This paper’s investigation related to dynamic and randomized migration for
a cloud based black box optimization is likely to generally extrapolate to similar
island model versions of EDAs. This is because EDAs do not each individually

528 D. Wilson, K. Veeramachaneni, and U.M. O’Reilly

make special consideration related to topology, e.g. the source and destination
of communicated information in CMA-ES or other such algorithms is not spe-
cific to the algorithm. For our investigation with respect to what information to
exchange: when current best solutions are migrated, results should extrapolate
to other algorithms. However, because the covariance matrix is not common to
all approaches, the findings are restricted to CMA-ES.

Acknowledgements. Dennis Wilson acknowledges the support of MIT En-
ergy Initiative. Una-May and Kalyan acknowledge the support from GE Global
Research center. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect
the views of General Electric Company or MITEI.

References

1. Hansen, N.: The CMA evolution strategy: a comparing review. In: Lozano, J.A.,
Larranaga, P., Inza, I., Bengoetxea, E. (eds.) Towards a New Evolutionary Com-
putation. Advances in Estimation of Distribution Algorithms, pp. 75–102. Springer
(2006)

2. Alba, E.: Parallel metaheuristics: a new class of algorithms, vol. 47. Wiley-
Interscience (2005)

3. Tomassini, M.: Spatially structured evolutionary algorithms. Springer (2005)
4. Nedjah, N., Alba, E., de Macedo Mourelle, L.: Parallel Evolutionary Computations.

Springer (2006)
5. Cantú-Paz, E.: Efficient and accurate parallel genetic algorithms. Springer, Nether-

lands (2000)
6. Zhu, W.: Nonlinear optimization with a massively parallel evolution strategy pat-

tern search algorithm on graphics hardware. Applied Soft Computing 11(2), 1770
(2011)

7. Müller, C.L., Baumgartner, B., Ofenbeck, G., Schrader, B., Sbalzarini, I.: pcmalib:
a parallel fortran 90 library for the evolution strategy with covariance matrix adap-
tation. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary
Computation, pp. 1411–1418. ACM (2009)

8. Rubio-Largo, Á., González-Álvarez, D.L., Vega-Rodŕıguez, M.A., Almeida-Luz,
S.M., Gómez-Pulido, J.A., Sánchez-Pérez, J.M.: A Parallel Cooperative Evolution-
ary Strategy for Solving the Reporting Cells Problem. In: Corchado, E., Novais,
P., Analide, C., Sedano, J. (eds.) SOCO 2010. AISC, vol. 73, pp. 71–78. Springer,
Heidelberg (2010)

9. Rudolph, G.: Global Optimization by Means of Distributed Evolution Strategies.
In: Schwefel, H.-P., Männer, R. (eds.) PPSN 1990. LNCS, vol. 496, pp. 209–213.
Springer, Heidelberg (1991)

10. Gunarathne, T., Wu, T.L., Qiu, J., Fox, G.: Mapreduce in the clouds for science.
In: 2010 IEEE Second International Conference on Cloud Computing Technology
and Science (CloudCom), November 30-December 3, pp. 565–572 (2010)

11. Verma, A., Llora, X., Goldberg, D., Campbell, R.: Scaling genetic algorithms using
mapreduce. In: Ninth International Conference on Intelligent Systems Design and
Applications, ISDA 2009, November 30-December 2, pp. 13–18 (2009)

12. Kusiak, A., Song, Z.: Design of wind farm layout for maximum wind energy capture.
Renewable Energy 35(3), 685–694 (2010)

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 529–539, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Malicious Automatically Generated Domain Name
Detection Using Stateful-SBB

Fariba Haddadi1, H. Gunes Kayacik2, A. Nur Zincir-Heywood1,
and Malcolm I. Heywood1

1 Computer Science, Dalhousie University, Halifax, NS, Canada
{haddadi,zincir,mheywood}@cs.dal.ca

2 Glasgow Caledonian University, Scotland, UK
gunes.kayacik@gcu.ac.uk

Abstract. This work investigates the detection of Botnet Command and Control
(C&C) activity by monitoring Domain Name System (DNS) traffic. Detection
signatures are automatically generated using evolutionary computation
technique based on Stateful-SBB. The evaluation performed shows that the
proposed system can work on raw variable length domain name strings with
very high accuracy.

Keywords: Security, Botnet detection, Evolutionary computation, Data mining.

1 Introduction

In the world of fast growing Internet and online activities which almost everyone has
something to share and benefit from, having a secure infrastructure is the primary
need to protect users’ identity and information. Due to the high reported botnet
infection rate and its wide range of distributed illegal activities, botnets- among
various types of malwares– are one of the main threats against the cyber security [1].

Every year new reports are published indicating that the number of botnet victims
is increasing. In 2010, Damballa Inc. published a paper on the top 10 active botnets
indicating that botnet infection rate is rapidly increasing by the average growth of 8%
per week [2]. McAfee thread reports also confirm that this growth continues into 2012
[3]. These reports also indicate that new powerful botnets enter the Internet realm
every year. Moreover, in response to improvements in detection mechanisms,
botnets update themselves as well. From the security perspective, these observations
indicate that knowing about a botnet mechanism and detecting it would not always be
enough in a condition that the master has the opportunity to upgrade or even change
its mechanism completely. In this situation, the botnet monitoring activity should be
continuous and the botnet detection mechanism should also upgrade itself by the
patterns learned through the monitoring process. In other words, this is an arms race
and therefore, automating the detection mechanisms as much as possible will give
the much needed headway to the defender side. Thus, in this research, we explore
how far we can push to automatically generate signatures based on minimum a
priori information in order to adapt to the changes in the botnet upgrades.

530 F. Haddadi et al.

Monitoring network traffic at DNS level provides a suitable solution to mitigating
botnet attacks because, in addition to its many legitimate uses, DNS can also be used
by botnets to manage their infrastructure. In a typical botnet for example, the infected
computer may locate the C&C server by querying a list of domain names, which are
supplied at the time of infection or after. C&C server will instruct the infected host to
engage in malicious activities, such as data ex-filtration, denial of service attacks or
serving spam, without user’s knowledge. The list of domain names provided to the
victim host is large enough so that it cannot be blacklisted manually or at firewall
level. Thus, to create a long list of domain names, attackers usually generate the list
algorithmically. Generated domains exhibit structural and syntactical anomalies
compared to regular domain names. It is therefore possible to detect botnet C&C
activity by monitoring high volume access to unusually structured domain names.

To detect these anomalies, we employ an evolutionary computation technique
based on SBB [4]. Our proposed system employ a modified version of SBB, hereafter
called Stateful-SBB (Stateful Symbiotic Bid-Based Genetic Programming). Where
most classification algorithms require features to be defined a priori (need behaviour
analysis on botnets conducted by human resources), Stateful-SBB works on the raw
domain name strings (no a priori information) and achieves comparable detection
rates without requiring a predefined feature set. Avoiding such a requirement is the
most important contribution of this paper since this enables the approach to adapt to
the changes in the botnet upgrades. The remainder of the paper is organized as
follows. Section 2 details Botnet topologies, detection methods and related works in
this field. Our methodology and the proposed system are discussed in Section 3.
Results are provided in Section 4 and conclusions are drawn in Section 5.

2 Related Work

In this section we will give an overview of how botnets work and the existing
detection mechanisms in the literature.

2.1 Botnets: How They Work

A bot program is a self-propagating malware that infects vulnerable hosts known as
bots (zombies) and is designed to perform a task after being triggered. The infected
bots network is referred as botnet, which is under the remote control of a master
called botmaster. Usually bots receive commands from the master through a C&C
communication channel and carry out malicious tasks such as Distributed Denial of
Service (DDoS), spamming, phishing and identity theft attacks [1] [5].

Unlike the earlier botnets that had a list of exploits to launch on targets and all the
commands were set at the time of infection, today a typical advanced bot uses
multiple phases to create and maintain a botnet including: initial infection, secondary
injection, connection, malicious C&C, update and finally maintenance [1] [5]. In the
first phase, attacker infects the victim using several exploitation techniques to find its
existing vulnerabilities. Once the target got infected, in the second phase, the shell-
code is executed on the victim machine to fetch the image of the bot binary which
then installs itself on the machine. At this time, the host is completely converted to a

 Malicious Automatically Generated Domain Name Detection Using Stateful-SBB 531

zombie and malicious tasks can run automatically on the host. In the connection
phase, the bot binary establishes the C&C channel to be used by the master to send
the commands to its bot army (botnet). Finally, when the master needs to update the
bots for several reasons such as avoiding an antivirus, changing the C&C server
setting, or adding a new functionality, the update and maintenance phase is entered.

It is believed that until 2003, most of the botnets were using centralized topology,
utilizing IRC Protocol [6] [7]. Since 2003, not only botnets have started to use several
protocols such as HTTP and DNS as well as the decentralized topology, but also they
have started to employ fluxing methods to avoid detection. Fluxing is a technique
used to move the communication between the victims and the C&C server from
domain to domain using the DNS protocol [8]. Therefore, since 2004 DNS is used in
botnets to add mobility and to remove the single point of failure [7].

2.2 Botnet Detection

Mainly, there are two approaches for botnet detection [1]. The first approach is based
on honeynets. Honeynet-based techniques are mostly useful to realize botnets
characteristics and technology but not necessarily detection.

The second approach is based on network traffic monitoring and analysis which are
typically classified as: Anomaly-based, or Signature-based. Anomaly-based methods
rely on finding network anomalies and unusual behaviors such as high volume of
network traffic, which could be the outcome of botnet presence in the network.
However correctly modeling the network normal behavior is challenging. On the
other hand, signature-based methods create signatures to be used for detection
purposes. Necessity of prior knowledge of botnets and their behavior make the
detection systems of this kind vulnerable to unknown (new) botnets.

There are several detection mechanisms of the second approach that specifically
focus on identifying malicious domain names, which are used by DNS-based Botnets.
E. Stalmans et al. developed a system to detect fast-flux domains using DNS queries
[9]. Analyzing the DNS query responses, two groups of features were extracted to
identify legitimate and malicious queries: DNS and Textual features. Given the
extracted features, they employed C5.0 and Bayesian classifiers to identify fast-flux
queries. S. Yadav et al. proposed a system to detect malicious automatically built
domain names [10]. They used several methods and features to group the DNS
queries. Then for each group, metrics such as the Jaccard index were computed to
differentiate the domain names. J. Ma et al. employed supervised learning techniques
(Naive-Bayes, SVM and Logistic Regression) to detect malicious websites from
suspicious URLs [11]. To characterize the URLs, two categories of feature were used:
lexical and host-based features. M. Antonakakis et al. presented a dynamic reputation
system, Notos [12]. Using DNS query data and analyzing zone and network features
of domains, Notos builds models of legitimate and malicious domain names.

In this work, our goal is to explore the application of evolutionary techniques in
order to automatically generate signatures to detect botnets based on monitoring and
analyzing domain names, specifically the ones that are used by botnets for domain
fluxing. To the best of our knowledge, all of the works in the literature employ
specific pre-defined features of domain names, however we aim to avoid this by
only considering the domain names string sequence.

532 F. Haddadi et al.

3 Methodology

Network security administrators proposed different approaches to deal with botnets
that apply domain fluxing techniques. Some have used black lists to filter out the
known C&C servers' domain names or pre-register the probable domains. Others used
anomaly and signature-based detection methods. However, all require some type of
knowledge on the Botnet domains or Domain Generation Algorithms (DGAs) to be
able to generate the exact same domain lists as the botnets. This is a very costly
(resources and time) process and also needs to be repeated each time a new DGA is
injected. To this end, we believe that a light weight malicious domain name detector
can go a long way. Thus, we propose a detection system just based on the automatic
analysis of domain name records without requiring any a priori feature sets.

Indeed, one challenge is that automatically generated domain names are also used
for legitimate background communications such as software updates and load
balancing. Moreover, various well-known websites such as Google and Facebook also
use this type of domains. Therefore, the first step to detect the botnet malicious
domains is to differentiate legitimate automatically generated domain names from
malicious ones. In this case, we propose a new SBB-based classifier system, Stateful-
SBB, which works on domain name record strings using no a priori knowledge. We
compare our proposed system against original SBB, C4.5, AdaBoost and Naive-Bayes
based classifiers, where all require input based on a priori knowledge.

3.1 Learning Algorithms Employed

Naive-Bayes. A Naive-Bayes classifier is a simple probabilistic classifier based on
the Bayes theorem, which assumes that the presence of an attribute in a given class is
independent of other attributes. The classifier uses the method of maximum likelihood
(probability) for parameter estimation. Given a training set (X,Y) where for each
sample (x,y), x is an n-dimensional vector and y is the class label out of k number of
classes, C1, C2 ...Ck , the classifier predicts that the sample belongs to the class Ci
having the highest posteriori, conditioned on x (P(Ci│x) > P(Cj│x) for 1≤ j ≤k, j≠i).
A more detailed explanation of the algorithm can be found in [13].

C4.5. C4.5 is a well-known decision tree-based learning algorithm, which uses the
training data to create a tree structure and then classifies the new samples of the test
data using the trained tree model. It employs a normalized information gain criterion
to select attributes from a given set to determine the splitting point. In this process, the
attribute with the highest information gain value is chosen to be the best point. A
decision node is then generated based on the best point. The training process
recursively continues on the sub-lists obtained until all of the data samples associated
to the leaf nodes are of the same class or the classifier runs out of training samples. A
more detailed explanation of the algorithm can be found in [13].

AdaBoost. Machine learning techniques' goal is to generate a rule that can predict the
new test samples with a high accuracy. Creating a highly accurate rule is a difficult
task but on the other hand, generating a set of rough rules of thumb with moderate

 Malicious Automatically Generated Domain Name Detection Using Stateful-SBB 533

accuracy is not that hard. Based on this observation, boosting method starts with
finding the rules of thumb called weak learner. Given the training set, AdaBoost calls
the weak learning algorithm repeatedly, each time feeding it with a different
distribution over the training data. Each call generates a weak classifier. At the end,
the algorithm combines the classifiers to a single one that is much more accurate than
any of them. A more detailed explanation of the algorithm can be found in [13].

SBB. SBB is a form of genetic programming based learning algorithm. It has a team-
based framework in which a group of learners are employed to solve a problem. The
algorithm consists of three populations: the point population, the team population and
the learner (symbiont) population, Fig. 3. The learner population declares a set of
symbionts whereas the team population declares learner teams and finally the point
population denotes indexes to subsets of exemplars from the training data. Individuals
in the learner population take the form of bid-based genetic programs or a
representation consisting of program and (scalar) action. Thus, when evaluating a
team, each learner program is executed, but only the learner with maximum output
(bid) suggests its action (class label). The process repeats for each exemplar in the
point population, and again for all teams. There are three important characteristics of
learners in case of bidding. First, each learner bids on the point separately but only the
learner action with the highest bid is returned as the team action. Second, using the
data set with a fixed number of features for exemplars, the learners bid on each point
based on the whole feature set. Finally, each learner resets its registers before bidding
on the next point. A more detailed explanation of the algorithm can be found in [4].

Fig. 1. SBB team-based mechanism [4]

Stateful-SBB. As discussed earlier, identifying the correct set of attributes, which
properly represent the domain name characteristics, is challenging especially given
that DGAs are moving targets. Thus, to this end, we explored using the raw domain
names as an option for detection purposes. Thus, we designed and developed the
Stateful- SBB to classify the malicious vs. non-malicious domains by only using
the raw domain names. In other words, we explored how far we can push the
classification performance without any a priori knowledge about the characteristics of
the domain names, i.e. without any lexical features or packet level features.

534 F. Haddadi et al.

Learners in the original SBB classifier bid based on all attributes of points (domain
names) similar to the aforementioned classifiers. However, given a data set of
variable length domains, neither original SBB nor the aforementioned classifiers can
be used. Therefore, we change the SBB interface to bid based on each character of a
domain name. The new model keeps the state information for each exemplar, hence
we call it the Stateful-SBB. Figure 2. summarizes the team-learner interaction
mechanism in the Stateful-SBB. Data set exemplars in the new layout are the variable
length domain names. Features are the ASCII codes of the domain names' characters.
A team receives a complete domain name but it passes the domain name to its team of
learners character by character. Each learner then provides a bid per character as
opposed to per exemplar. The learners' action that outbids the others is assigned as the
team output for that specific character. Domain characters are related to each other
and are not independent. To achieve the correlation of characters reflected in the
bidding process, learners reset their registers only at the beginning of each specific
domain name, not for every bid process on every character in a domain. At the end of
each domain name (when all the learners bid on the entire domain name characters), a
team will have a sequence of the best learners’ actions as the team output sequence.
Finally, the team will decide on its final action for that specific domain name.
Different policies can be used for the final action selection of a team, which is
discussed in the evaluation section.

Fig. 2. Stateful-SBB mechanism

4 Evaluations and Results

In this work, the data set employed is collected from various resources including the
publicly available botnet C&C domain lists such as Amada [14] and ZeuS [15].
Additionally, most frequently requested domains from the Alexa list [16] are used as
the legitimate domain names. These include known C&C activity as well as social
network sites such as Facebook backend and antivirus upload. Thus, the string format
resulting data set goes beyond just the C&C traffic and includes other legitimate
traffic observable at DNS level. Table 1 details the DNS data set employed in this
work. "Class 0" represents normal automatically generated domain names and "class
1" represents the malicious automatically generated ones.

k i d s . e g e x a . c o m

Learner

1 0 1 1 1 0 0 1 0 1 1 1 1 0

Learner

Learner Learner

…

A Team with
multiple learners

Learners’
action with

highest bid is
selected as the
Team action for
each character

Team action sequence

1 Team action for the domain

…

…

Team action selection

 Malicious Automatically Generated Domain Name Detection Using Stateful-SBB 535

Other than the Stateful-SBB classifier, other classifiers require the data set to be
feature-based (a priori knowledge) for training and testing. Thus, we employed a
heuristics-based feature extraction on the components of a given domain name to
compare against our proposed system. Each domain name has three components: (i)
top level domain (TLD), (ii) core domain, and (iii) sub-domain. For example, in
mail.google.com, com is the TLD, google is the core domain, and mail is the sub-
domain. Given that the TLD names are distinctive and fixed, we only use the other
two components (core domain and sub-domain) in feature extraction. Thus, in this
work, for each domain name, a set of 17 features are extracted, Table 2. The first 14
features are based on the sub-domain and the last 3 are based on the core-domain
component. Overall, the features aim to highlight the structural anomalies in the
domain names (as seen in the literature). In other words, domain names that are not
likely to be typed by a person. To detach the top-level domain and to extract the
feature #12, we employ the Mozilla suffix list [17].

Table 1. Summary of the DNS data set employed

Data set

Data set total Num. of Samples 206
"Class 0" total Num. of Samples 123
"Class 1" total Num. of Samples 163

Training Testing
Class0 Class1 Class0 Class1

90 116 33 47

Table 2. Feature set definition

No. Features
1 Domain starts with "www"
2 Total sub-domain length: number of characters in all sub-domains (minus the dots)
3 Number of sub-domains: number of sub-domain blocks.
4 Maximum sub-domain length: the largest sub-domain block length
5 10+ character sub-domain count: number of sub-domains longer than 10 chars

6 1 character sub-domain count: number of sub-domains with one char
7 Contains IP: A Boolean flag. If there exists four sub-domain blocks between 0-255,

following each other.

8 Alphabetic ratio: Num. of alphabetic character in all sub-domains divided by character count

9 Hexadecimal ratio: Num. of hexadecimal digits (A-F,a-f, 0-9) divided by character count

10 Standard deviation of sub-domain lengths

11 Non-alphanumeric ratio: Number of non-alphanumeric characters
12 Contains imbedded TLD, if the sub-domains contain any items in the Mozilla suffix list
13 Contains imbedded file extension
14 Number of alphabetic to non-alphabetic and vs. transitions
15 Core-domain length
16 Core-domain alphabetic character ratio

17 Core-domain alpha to non-alpha and vs. transition count

536 F. Haddadi et al.

We trained each classifier (NB, C4.5, AdaBoost, SBB and Stateful-SBB) on the
training data set to identify maliciously generated domain names from the non-
malicious ones. Then, the trained models are tested on the test data set. To this end,
we divided the dataset into two parts (training and testing) based on: (i) An almost 30-
70% breakdown for test and training, respectively; and (ii) keeping enough samples of
each class in both of the data sets. It should be noted here that default parameters in
WEKA [18] are used for Naive Bayesian, AdaBoost and C4.5 (pruned) classifiers,
whereas parameters given in [19] are used for both the original and the Stateful-SBB.

Table 3 presents the results of these experiments. As the results show, the best
performers are the C4.5 classifier and the Stateful-SBB classifier. These results
show that it is possible to identify the maliciously generated domain names with a
high detection rate and a low false positive rate even without a priori knowledge, i.e.
without a specific feature set extracted from lexical attributes of a domain name.

It should be noted here that we employed exactly the same data set for all the
classifiers. The only difference is for the classifiers other than Stateful-SBB, we
represented each record of the data set using the 17 features given in Table 2.
However, in the case of Stateful-SBB, we represented the data set in its ASCII code to
the classifier. As discussed earlier, the team final action of the Stateful-SBB should be
chosen from its learners' output sequence, which is constructed during the bidding
process using the domain characters. Given that the domain names are a composition
of related characters in a meaningful order, there are some important questions that
need to be answered: Is it necessary to use all the domain name characters in the
learning process to have a relatively good output label? Should the combination of all
actions in the sequence be considered or just the last one? We run several experiments
(7 different approaches to the Stateful-SBB and 20 runs for each approach) and
evaluated the proposed system on different action selection methods to answer these
questions. Because of page limitations, we are not able to present all of these
experiments. However, our experimental results showed that the best performances
were achieved by the “Last-best” and the “Most-freq” team action selection methods.
The "Last-best" method assumes that the class label for the domain name is that
returned at the last character. As the learners would not reset their registers in the
bidding process of a domain, the last action of the sequence is somehow affected by
all the actions in the sequence, where all the domain characters are considered. As the
"Last-best" heuristic team might not always reflect all the best actions of bidding
process, "Most-freq" method chooses the most frequent action of a team action
sequence to be the team final decision. So these versions of the Stateful-SBB are
chosen for the evaluation of the proposed system against the other classifiers. Given
the results of the Stateful-SBB with two proposed settings, it can be concluded that
our proposed Stateful-SBB using the “Last-best” action selection procedure is slightly
better than the others. The Results are shown in Table 3.

However to be more precise, we run a T-Test (between the pruned C4.5 classifier
and the Stateful-SBB) on 20 different experiments of each solution. The T-Test
results indicate that there is not a statistically significant difference between the
pruned C4.5 based classifier, which requires a priori known feature set, and the
Stateful-SBB, which does not require such a priori information. In summary, these
results show that the proposed system employing the new Stateful-SBB has a high

 Malicious Automatically Generated Domain Name Detection Using Stateful-SBB 537

classification rate with zero false negative rate for "class 0" (non-malicious domain
names). Given that misclassifying legitimate domain names as malicious ones (which
ends in a blocking action) can interfere with a genuine website activity, the
performance of Stateful-SBB is very promising and shows that it could be deployed in
real world environments. Moreover, the most critical phase for all the classifiers using
a set of pre-defined features (Naive-Bayes, AdaBoost, C4.5 and SBB) is the feature
extraction. In this phase, identifying a correct set of features (a priori information) that
can properly represent the domain names is crucial. However, even if a valuable
feature set can be identified, since botmasters change their DGAs frequently to evade
the detection systems, a feature set that works before, could be stale when the DGA
changes! On the other hand, the Stateful-SBB can be applied directly to the domain
name strings (using their ASCII codes only) without requiring any feature extraction,
in other words without any a priori knowledge. Having said this, the Stateful-SBB
training time (computation time) is longer than the others. However, because the
training can be performed offline, we believe that the benefits of the proposed system
can be considered as a major improvement in this field.

Table 3. Evaluation results on the test data set

Naive
Bayes

Pruned
C4.5

AdaBoost SBB
"Most-freq"

Stateful-
SBB

"Last-best"
Stateful-SBB

Classification Rate 0.95 0.96 0.95 0.95 0.98 0.99

Class
0

Precision 0.94 0.92 0.91 0.94 1 1

Recall 0.94 1 0.97 0.97 0.94 0.97
F-Measure 0.94 0.96 0.94 0.95 0.94 0.97

Class
1

Precision 0.96 1 0.98 0.97 0.94 0.97
Recall 0.96 0.94 0.97 0.94 1 1

F-Measure 0.96 0.97 0.97 0.95 0.97 0.99
Training Time (sec) 0.01 0.03 0.07 121.59 4336.37 3763.62

Table 4. T-Test results

 SBB “Last-Best” SBB “Most-Frequent”
Pruned C4.5 0.11 0.50

5 Conclusion and Future Work

Legitimate users are not the only ones that use DNS to communicate. Modern botnets
avoid ‘hardcoding’ the address of the C&C server because if the C&C server is
identified, they can be blocked at the firewall level. DNS provides a scalable solution
for botnets since a list of domain names can be passed to the victim host as C&C
server. As long as the victim manages to connect to the server using one of the
domains in the list, it will download the malware and join the botnet. On the other

538 F. Haddadi et al.

hand, all the domains on the list (whether they resolve to an IP address or not) need to
be blacklisted to be able to fully mitigate the attack.

Fortunately for the defenders, DNS traffic of a botnet exhibits abnormal properties
that can be detected. The most important property is the structure of the domains that
are being queried, i.e. long, with many sub-domains and seemingly random set of
characters. Thus, a suitable solution is to monitor the communications at the DNS
level to detect abnormal query patterns, specifically queries that a human would not
possibly be able to type, based on temporal, structural and syntactic properties.

In this work an evolutionary computation based solution is investigated. To this
end, we designed and developed the Stateful-SBB classifier, which is utilized to
support variable length input. In addition to providing a very high accuracy on
classification and automatically generating signatures, Stateful-SBB identifies the set
of attributes to be used in classification automatically without requiring any a priori
knowledge, whereas typical classifiers evaluated requires a fixed set of features
extracted based on a priori knowledge. The results show that Stateful-SBB based
system performs comparable to other classification methods without requiring a
feature set to be determined a priori. Future work will include improvement on the
training time of the Stateful-SBB, evaluating other classifiers such as SVM and
testing the proposed system under other data sets.

Acknowledgments. This research is supported by the Natural Science and
Engineering Research Council of Canada (NSERC) grant, and is conducted as part of
the Dalhousie NIMS Lab at http://projects.cs.dal.ca/projectx/.

References

1. Feily, M., Shahrestani, A.: A Survey of Botnet and Botnet Detection. Emerging Security
Information. In: Emerging Security, Systems and Technologies (2009)

2. Damballa Inc.:Top 10 Botnet Threats (2010), http://www.damballa.com
3. McAfee Labs Thread Reports, http://www.mcafee.com/apps/view-all/

publications.aspx
4. Doucette, J., McIntyre, A.R., Lichodzijewski, P., Heywood, M.I.: Symbiotic Coev-

olutionary Genetic Programming: A Benchmarking Study Under Large Attribute Spaces.
Genetic Programming and Evolvable Machines 13(1), 71–101 (2012)

5. Vuong, S.T., Alam, M.S.: Advanced Methods for Botnet Intrusion Detection Systems. In:
Intrusion Detection Systems. InTech. (2011)

6. Bailey, M., Cooke, E., Jahanian, F., Xu, Y., Karir, M.: A Survey of Botnet Technology and
Defense. In: CATCH 2009 (2009)

7. The Role of DNS in Botnet Command & Control. In: Open DNS Inc., Whitepaper (2012)
8. Zhang, L., Yu, S., Wu, D., Watters, P.: A Survey on Latest Botnet Attack and Defence. In:

TrustCom, pp. 53–60 (2001)
9. Stalmans, E., Irwin, B.: A Framework for DNS Based Detection and Mitigation of

Malware Infections on a Network. In: Information Security South Africa (2011)
10. Yadav, S., Reddy, A.K.K., Reddy, A.L.N., Ranjan, S.: Detecting Algorithmically

Generated Domain-Flux Attacks With DNS Traffic Analysis. IEEE/ACM Transaction on
Networking 20, 1663–1977 (2012)

 Malicious Automatically Generated Domain Name Detection Using Stateful-SBB 539

11. Ma, J., Saul, L.K., Savage, S., Voelker, G.: Beyond blacklists: Learning to detect
malicious Web sites from suspicious URLs. In: ACM KDD (2009)

12. Antonakakakis, M., Perdisci, R., Dagon, D.: Building a Dynamic Reputation System for
DNS. In: USENIX Security 2010 (2010)

13. Alpaydin, E.: Introduction to Machine Learning. MIT Press (2004)
14. Abuse: AMaDA, https://palevotracker.abuse.ch/
15. Abuse: Zeus Tracker, https://zeustracker.abuse.ch/
16. Alexa, http://www.alexa.com/topsites
17. Top Level Domain Names, http://mxr.mozilla.org/mozilla-central/

source/netwerk/dns/effective_tld_names.dat?raw=1
18. WEKA, http://www.cs.waikato.ac.nz/ml/weka/
19. Lichodzikewski, P., Heywood, M.I.: Symbiosis Complexification and Simplicity under

GP. In: GECCO 2010 (2010)

Evolving Gaits for Physical Robots

with the HyperNEAT Generative Encoding:
The Benefits of Simulation

Suchan Lee1, Jason Yosinski1, Kyrre Glette2, Hod Lipson1, and Jeff Clune1,3

1 Cornell University, USA
2 University of Oslo, Norway

3 University of Wyoming, USA
{sl746,jy495,hod.lipson,jeffclune}@cornell.edu, kyrrehg@ifi.uio.no

Abstract. Creating gaits for physical robots is a longstanding and open
challenge. Recently, the HyperNEAT generative encoding was shown to
automatically discover a variety of gait regularities, producing fast, coor-
dinated gaits, but only for simulated robots. A follow-up study found that
HyperNEAT did not produce impressive gaits when they were evolved
directly on a physical robot. A simpler encoding hand-tuned to pro-
duce regular gaits was tried on the same robot, and outperformed Hy-
perNEAT, but these gaits were first evolved in simulation before being
transferred to the robot. In this paper, we tested the hypothesis that
the beneficial properties of HyperNEAT would outperform the simpler
encoding if HyperNEAT gaits are first evolved in simulation before be-
ing transferred to reality. That hypothesis was confirmed, resulting in
the fastest gaits yet observed for this robot, including those produced
by nine different algorithms from three previous papers describing gait-
generating techniques for this robot. This result is important because it
confirms that the early promise shown by generative encodings, specifi-
cally HyperNEAT, are not limited to simulation, but work on challenging
real-world engineering challenges such as evolving gaits for real robots.

1 Introduction

Legged robots can operate in a much wider range of environments than their
wheeled counterparts. However, designing gaits for legged robots is a difficult
and time-consuming process for human engineers [16, 24], and must be repeated
every time a robot is created or modified [11]. Scientists thus investigate how to
automatically produce gaits via machine learning and evolutionary algorithms,
and the result is often a better gait than those created by human engineers [10–
12, 23, 25]. While it has been shown that gaits perform better if they are reg-
ular—i.e., that they have coordinated movements, such as left-right symmetry
or front-back symmetry [4, 6, 7, 23]—experimenters usually have to explicitly
decide and specify these regularities [1, 15, 23, 22]. Such manual intervention is
time consuming, requires expert knowledge, and adds constraints that may hurt
performance.

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 540–549, 2013.
� Springer-Verlag Berlin Heidelberg 2013

Evolving Gaits for Physical Robots 541

Fig. 1. The QuadraTot robot platform on which gaits were evolved. Left: The physical
robot, which is composed of 3-D printable and off-the-shelf components. Right: The
representation of the robot in the simulator.

Previous work has shown that the Hypercube-based NeuroEvolution of Aug-
menting Topologies (HyperNEAT) generative encoding [20] can automatically
generate a variety of regular gaits that outperform gaits evolved with direct en-
codings [4, 7]. However, that work only verified these claims in simulation. Yosin-
ski et al. evolved gaits with HyperNEAT directly in hardware on the QuadraTot
robot platform (Figure 1). They found that HyperNEAT’s gaits outperformed
manually designed, parameterized learning algorithms, but still did not produce
impressive, natural gaits [25].1 A follow-up study built a simulator for Quadra-
Tot to test whether the inclusion of a simulator would improve results and found
that it did: when gaits were evolved in simulation with a simple direct encoding
and then transferred to the QuadraTot robot, the resulting gaits were faster than
the gaits produced by evolving gaits with HyperNEAT directly on the robot [9].
The simulator helped because it afforded much larger population sizes and more
generations than were possible when evolving directly in hardware, resulting in
333 times more evaluations per run (60000 vs. 180) [9, 25].

The work with the simulator [9] evolved gaits with a simple encoding manually
constrained to produce specific regularities. The success of that work raises the
question of whether the performance gains were due to the added benefit of
a simulator or the use of a simple, hand-designed encoding. We hypothesized
that HyperNEAT, which has been previously shown to automatically discover
complex regularities to produce high-performing gaits [7, 25], would outperform
the simpler encoding from Glette et al. if combined with a simulator. Here we
test that hypothesis by evolving gaits with HyperNEAT in the same simulator
from Glette et al. and then transferring those gaits to the QuadraTot robot. Our
experiments confirmed the hypothesis: with the simulator, HyperNEAT evolved
the highest-performing gaits observed to date for the QuadraTot platform.

1 Videos available at http://creativemachines.cornell.edu/
evolved-quadruped-gaits

http://creativemachines.cornell.edu/evolved-quadruped-gaits
http://creativemachines.cornell.edu/evolved-quadruped-gaits

542 S. Lee et al.

2 Methods

Robot Hardware. We performed experiments on the QuadraTot quadrupedal
robot platform (Figure 1-Left) [25]. It has 9 degrees of freedom: two joints per leg
and one joint that rotates along the robot’s midline. The QuadraTot hardware
designs and the software for this project are open source2, and all hardware com-
ponents are either off-the-shelf or 3D-printed. There are results on the platform
for nine different learning algorithms from three previous publications [9, 18, 25].

The joints are powered by Robotis Dynamixel servos; five AX-18A servos
for the inner joints of each leg and the single midline joint, and four AX-12A
servos for the the outer joints of each leg, which require less power and can thus
have less expensive motors. Each servo has a built-in safety mechanism that
shuts itself off to prevent damage if the servo’s current, range, temperature, or
torque is too high. This safety mechanism activated frequently and inconsistently,
adding significant noise to the evaluation process. As pointed out in a previous
study [25], evolved gaits on QuadraTot are highly variable and produce many
shutdowns because they force the servos to exert too much torque. To prevent
collisions between different pieces of the robot’s body, we limited the allowable
range of movement for the inner, outer, and hip joints to [-85◦, +60◦], [-113◦,
+39◦], and [-28◦, +28◦], respectively. We also implemented the Smart Cropping
System from Shen et al. [18], which prevents combinations of joint positions for
the inner and outer joint of each leg that generate extreme amounts of torque. A
final method of reducing torque was to reduce the weight of the robot. Yosinski
et al. had the small Linux computer that performed all computation on the
robot, but we removed it and sent commands from it to the robot via a cable.
We tracked the robot’s position using an infrared LED observed by a Wiimote.

Simulator. Gaits evolved in the simulator from Glette et al.2, which represents
QuadraTot in the Nvidia PhysX physics engine, including the mass and size of
the QuadraTot components and its degrees of freedom (Figure 1-Right). In the
simulator, each individual joint range was limit as described above, but Smart
Cropping was not included because we found that it hindered performance by
limiting the types of gaits evolution could explore in early generations.

HyperNEAT. HyperNEAT is an algorithm for evolving artificial neural net-
works (ANNs) [20]. It has been repeatedly described in detail [7, 8, 20], so here
we provide only a summary. Instead of directly encoding each ANN weight indi-
vidually on the genome, in HyperNEAT the genome is a compositional pattern
producing network (CPPN) [19]. The CPPN specifies the weights in a similar
way to how natural organisms develop. In nature, phenotypic attributes are spec-
ified as a function of their geometric location, and such positional information is
conveyed through chemical morphogen gradients [3]. For example, the concentra-
tion of one chemical could indicate the position along the head-to-tail axis and

2 Aparts list, hardwareCADfiles, software (including the simulator), and gait videos are
available at http://creativemachines.cornell.edu/evolved-quadruped-gaits

http://creativemachines.cornell.edu/evolved-quadruped-gaits

Evolving Gaits for Physical Robots 543

another chemical in bands could indicate if a cell is in an odd- or even-numbered
segment. Based on the relative concentrations of these chemicals, a cell can know
where it is geometrically and, thus, what type of cell to become [3].

With CPPNs this process is abstracted as a network of math functions that
operate in a Cartesian geometric space. The coordinates of phenotypic elements
are provided as inputs to the CPPN and the outputs specify phenotypic traits.
For example, when CPPNs encode 2D pictures, the coordinates of each pixel
are iteratively input into the genome and the output is the grayscale value at
that coordinate [17]. Because a CPPN network is composed of math functions,
these functions can create geometric regularities in the phenotype. For exam-
ple, a Gaussian function of an axis can provide symmetry (e.g. left-right), and
a repeating function (e.g. sine) of an axis could provide repetition (e.g segmen-
tation). Both 2D pictures and 3D objects evolved with CPPNs look like natural
and engineered objects, and contain complex regularities, such as symmetries
and repeated motifs, with and without variation [5, 17].

In HyperNEAT, CPPNs encode the weights of the connections between neu-
rons as a function of the geometric locations of those neurons (Figure 2). The
Cartesian coordinates of the two neurons at the end of each connection are input
into the CPPN, and the output is the weight of that connection. If the output
is smaller than a threshold, the weight is set to zero, functionally removing the
connection. The process is repeated for each possible connection. Just as in 2D
pictures and 3D objects, the CPPN can create complex, regular, geometric pat-
terns (e.g. left-right symmetry or repeated modules), but in this case the patterns
are in the weights of a neural network [7]. The neural regularities produced by
HyperNEAT enable significantly improved performance on problems that are
regular [7, 20], including evolving quadruped gaits in simulation [4, 6, 7].

In HyperNEAT, the CPPN genomes evolve via the NeuroEvolution of Aug-
menting Topologies (NEAT) algorithm [21], which has three major components.
First, NEAT starts with small genomes that encode simple networks and com-
plexifies them via mutations that add nodes and links to the networks. Second,
NEAT has a fitness-sharing system that preserves diversity and allows for new in-
novations to be tuned by evolution before competing them against more adapted
rivals. Third, historical information is recorded that facilitates crossover in a way
that is effective, yet avoids the need for expensive topological analysis. A full
explanation of NEAT can be found in Stanley and Miikkulainen 2002 [21].

In this study, the ANN inputs, outputs, activation functions, and the size
of the hidden layer are the same as in Yosinski et al. [25]. The ANN had a
fixed topology of three 3 × 4 Cartesian grids of nodes for the input, hidden,
and output layers. The inputs to the substrate were the angles requested in the
previous time step for each of the 9 joints of the robot and a sine and cosine
wave to facilitate periodic motion. The outputs of the substrate at each time
step were nine numbers (for each joint) in the range [-1, 1] which were scaled
to the allowable ranges for the servos. As in Yosinski et al. [25], we generated
pseudo-positions at 160Hz and then downsampled over consecutive blocks of four
time steps to obtain the actual commanded positions at 40Hz; this reduced the

544 S. Lee et al.

number of gaits which commanded switches from extreme negative to extreme
positive numbers at 40Hz, which overly taxed the servos.

Fig. 2. A CPPN specifying a neural network. In HyperNEAT, weights are a function
of the Cartesian coordinates of the source and target node for each connection. All
pairwise combinations of source and target node coordinates are iteratively passed into
a CPPN to determine the weight of each ANN link. Figure from Clune et al. [7].

Evolutionary Process and Parameters: Each run had a population size of
200 and lasted 200 generations. We performed 20 HyperNEAT runs that dif-
fered only in the seed provided to the random number generator, which affected
stochastic events such as mutation. To make a statistical comparison to the
encoding from Glette et al., we conducted 19 runs using the original code to
supplement the one run performed for that paper. Each gait was evaluated for
fourteen seconds in reality, with interpolation from and to a stationary position
in the first and last two seconds, respectively, as in Yosinski et al., effectively re-
sulting in 12 seconds of full-speed motion. In simulation gaits were evaluated for
12 seconds. All HyperNEAT parameters were identical to those in Yosinski et al.
except for the frequency of the sine wave input to the ANN, which was lowered
from 4.2Hz to 0.64Hz to reduce servo shutdowns. To further reduce servo shut-
downs, we punished high-frequency gaits during evolution. We calculated the
frequency of a gait as the average number of servo direction changes per leg per
second. If this frequency was higher than the experimentally-selected threshold
of 1.67 Hz, the measure of distance traveled by the center of mass during the gait
was reduced exponentially by multiplying it by a discount factor of e(1.67−freq).
Following Clune et al. [4], the fitness equation was 2distance

2

. After evolving the
gaits in simulation, the champion gait of the last generation of each of the 20
runs was transferred onto the real robot and the distance traveled was measured.

Evolving Gaits for Physical Robots 545

3 Results and Discussion

The simulator enabled HyperNEAT to evolve fast, natural gaits. In simulation,
HyperNEAT gaits were faster than those from Glette et al. (Figure 3-Top, p <
6.8× 10−8 when comparing the best gaits in the final generation of each run via
Matlab’s Wilcoxon rank sum test). Specifically, HyperNEAT gaits were 52.1%
faster in simulation (25.4 cm/s ± 3.4 SD versus 16.7 cm/s± 1.9 SD). To facilitate
comparisons to earlier works [9, 25] we report mean ± SD, but our qualitative
conclusions are the same when using medians. Plots of servo positions over time
reveal that the evolved HyperNEAT gaits are regular and coordinated (Figure 3-
Left), confirming previous results with HyperNEAT in simulation [4, 7].

On the physical robot, HyperNEAT gaits from this study outperformed gaits
from all previous QuadraTot studies (Table 1) [9, 18, 25], including those of
Glette et al. However, comparing performance in hardware between studies per-
formed in different laboratories is difficult, not only because reality is inherently
noisy, but because even two copies of the same robot are not identical and may
produce different speeds for the same input gait. Gaits for this study and two
previous studies [18, 25] were evaluated on a copy of the QuadraTot robot in the
Cornell Creative Machines Lab (CCML), while the gaits in Glette et al. were
evaluated on a different copy of the same robot in the Robotics and Intelligent
Systems (ROBIN) lab at the University of Oslo. The two robots were evalu-
ated on two different surfaces, and had different material enveloping their feet
to increase friction (compare Figure 1-Left to Figure 2 of Glette et al).

The previous fastest gait on any copy of a QuadraTot was from Glette et al.,
and traveled 17.8 cm/s on the ROBIN QuadraTot. The fastest gait produced
by HyperNEAT with a simulator in the experiments for this paper traveled 14.5
cm/s on the CCML QuadraTot. It was unclear whether this difference in per-
formance was due to the differences in the gaits themselves or dissimilarities
between hardware. To control for this possibility, we ran the fastest gait from
Glette et al. 10 times on CCML and measured a mean speed of only 12.95 cm/s
±0.93 SD (vs. 17.8 cm/s measured on ROBIN) and a maximum of 13.8 cm/s
(Table 1). It thus appears that the CCML version of the robot is slower. More-
over, the HyperNEAT gait (14.5 cm/s) is faster than the best gait of Glette et al.
on the CCML QuadraTot. Unfortunately, it was not possible to test the best Hy-
perNEAT gait on the ROBIN QuadraTot. Because HyperNEAT outperformed
the simple encoding from Glette et al. on the same robotic hardware, we tenta-
tively conclude that HyperNEAT produces faster gaits for the QuadraTot robot.
This conclusion is supported by the fact that HyperNEAT also outperformed
the encoding from Glette et al. in simulation.

We now discuss the differences between the gaits evolved by HyperNEAT
directly on the physical robot [25], and those first evolved in a simulator and then
transferred to the robot (this study). On the physical robot, the gaits produced
by HyperNEAT with a simulator were faster, more natural, and more repeatable
than those evolved directly on the QuadraTot robot [25]. The gaits were also
more regular, as they were in simulation (Figure 3-Left). This result is important
because it confirms that HyperNEAT can produce the important property of

546 S. Lee et al.

0 50 100 150 200
Generations

0

5

10

15

20

25

30

A
v
e
ra
g
e
F
it
n
e
s
s
[c
m
/s
]

Average Fitness vs. Generations

Average Fitness

Standard Deviation

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Time(s)

0

100

200

300

400

500

600

700

800

M
o
to
r
P
o
s
it
io
n

0 50 100 150 200
Generations

0

1

2

3

4

5

6

A
v
e
ra
g
e
F
re
q
u
e
n
c
y
[H

z
]

Average Frequency

Standard deviation

Threshold frequency

Fig. 3. Top: HyperNEAT outperforms a genetic algorithm with a simple encoding [9]
when both algorithms are combined with a simulator. Plotted are means over 20 runs
in simulation (solid lines) ± SD (dashed lines). HyperNEAT gaits are 52.1% faster in
simulation and 5.1% faster in reality than those from a previous study [9] (details in
Table 1). Left: Servo positions over time (for nine servos) for a representative simulated
HyperNEAT gait. HyperNEAT produced smooth and symmetrical gaits that contained
complex regularities. Right: Mean gait frequency averaged over 20 runs. Gaits with
frequencies above a threshold (horizontal line) receive a fitness penalty. HyperNEAT
quickly learned to produce gaits with frequencies low enough to avoid this penalty.

regularity in a challenging, real-world domain, which was not previously observed
when evolving directly on the hardware [25]. Producing regular solutions is a key
to exploiting regularity in difficult engineering problems [7].

The simulator likely improved performance because of the number of evalua-
tions it enabled, both in terms of the population size (200 vs. 9) and the number
of generations (200 vs. 20), leading to a total difference of 40000 vs. 180 per evolu-
tionary run compared to Yosinski et al. [25]. Another potential cause of improved
performance is the lower noise in the simulator, which could have helped Hyper-
NEAT find coordinated, regular, gaits, which perform better. On the physical

Evolving Gaits for Physical Robots 547

Table 1. Velocities of evolved gaits in simulation and on two different copies of the
QuadraTot robot. Subject to availability, data are reported from the experiments for
this paper and three previous studies. Reported are the total number of evaluations per
run, the mean of the fastest gaits produced in each run in simulation, and the single
fastest gait produced on the CCML and ROBIN copies of the QuadraTot robot (see
text for their differences). *Instead of using the single fitness value reported in [9], we
ran 19 additional runs and used the mean fitness of those 20 runs. Velocities are in
cm/s, and bold indicates the best performance. **The median fitness that corresponds
with this mean is 26.9 cm/s, 95% confidence interval [23.8 cm/s, 26.75 cm/s].

Simulated Real Vel. Real Vel.
Evaluations Velocity (CCML) (ROBIN)

Parameterized gaits + optimization [25] 153 – 5.8 –

HyperNEAT in hardware [25] 180 – 9.7 –

RL PoWER Spline [18] 300 – 11.1 –

GA + simulator [9] 60000 *16.7 13.8 17.8

HyperNEAT + simulator [this paper] 40000 **25.4 14.5 –

robot, the noise in the evaluation was substantial, preventing effective learn-
ing [25]. To investigate this hypothesis, we performed 20 runs in simulation with
only 180 fitness evaluations, which was the number used in Yosinski et al. [25].
The simulated gaits performed slightly, but not significantly, better than those
evolved in hardware (p = 0.1571, mean fitness 7.9± 2.14 cm/s). Reduced noise
thus may have had a small affect on performance, but the substantial perfor-
mance gains that resulted from using a simulator likely came from the additional
evaluations the simulator afforded. The encouragement of low-frequency gaits in
this study also may have aided performance, especially since in simulation the
gaits were high-frequency in a few early generations before rapidly settling to a
range below the penalized threshold (Figure 3-Right).

While this study was able to produce the fastest QuadraTot gait to date,
most of the gaits in simulation did not transfer well to reality. Many gaits that
were fast in simulation performed poorly on the real robot, largely due to servos
that were too weak and shut down, or because of differences between simulation
and reality. Repeated attempts to minimize these problems were unsuccessful.
In future studies we will use a robot that has more mechanical advantage and
requires less torque from each servo, such as the Aracna platform [14]. That we
did not model the servos in simulation, especially with their frequent failures,
suggests that even better results could be obtained via a simulator that contained
or learned servo models. In future work we will also incorporate techniques to
minimize the gap between the simulator and reality [2, 13, 26].

4 Conclusion

With a simulator, HyperNEAT evolved the fasted gait yet recorded for the
QuadraTot robot, outperforming nine machine learning algorithms from three

548 S. Lee et al.

previous publications [9, 18, 25], including an improvement of 52.1% in simula-
tion and 5.1% in reality over the previous best QuadraTot gait by Glette et al.
These results provide an important demonstration that the HyperNEAT genera-
tive encoding can evolve state-of-the-art results for challenging engineering prob-
lems, in this case evolving gaits for a legged robot. The results further reaffirm
the benefits of using simulators when solving real-world challenges with evolu-
tionary algorithms. Our results additionally confirm—with a different robot and
simulator—previous work that has shown that HyperNEAT is an effective encod-
ing for automatically evolving coordinated, regular gaits in simulation [4, 7, 25].
That HyperNEAT outperformed the encoding hand-designed by Glette et al.
shows that HyperNEAT can outperform even evolutionary algorithms manually
designed to incorporate human domain knowledge regarding which regularities
are thought to be beneficial for a problem. The results thus demonstrate that
automatically discovering regularities can be a superior approach to specifying
them, even on problems that are relatively well-understood.

References

1. Beer, R., Gallagher, J.: Evolving dynamical neural networks for adaptive behavior.
Adaptive Behavior 1(1), 91–122 (1992)

2. Bongard, J.C.: Synthesizing Physically-Realistic Environmental Models from
Robot Exploration. In: Almeida e Costa, F., Rocha, L.M., Costa, E., Harvey, I.,
Coutinho, A. (eds.) ECAL 2007. LNCS (LNAI), vol. 4648, pp. 806–815. Springer,
Heidelberg (2007)

3. Carroll, S.: Endless Forms Most Beautiful: The New Science of Evo Devo and the
Making of the Animal Kingdom. Norton, New York (2005)

4. Clune, J., Beckmann, B., Ofria, C., Pennock, R.: Evolving coordinated quadruped
gaits with the HyperNEAT generative encoding. In: Proceedings of the IEEE
Congress on Evolutionary Computation, pp. 2764–2771 (2009)

5. Clune, J., Lipson, H.: Evolving three-dimensional objects with a generative encod-
ing inspired by developmental biology. In: Proceedings of the European Conference
on Artificial Life, pp. 144–148 (2011)

6. Clune, J., Ofria, C., Pennock, R.: The sensitivity of HyperNEAT to different
geoemtric representations of a problem. In: Proceedings of the Genetic and Evolu-
tionary Computation Conference (GECCO), pp. 2764–2771 (2009)

7. Clune, J., Stanley, K.O., Pennock, R., Ofria, C.: On the performance of indirect
encoding across the contiuum of regularity. IEEE Transactions on Evolutioanry
Computation 15, 346–367 (2011)

8. Gauci, J., Stanley, K.: Generating large-scale neural networks through discovering
geometric regularities. In: Proceedings of the Genetic and Evolutionary Computa-
tion Conference, pp. 997–1004. ACM (2007)

9. Glette, K., Klaus, G., Zagal, J., Torresen, J.: Evolution of locomotion in a simulated
quadruped robot and transferral to reality. In: Proceedings of the Seventeenth
International Symposium on Artificial Life and Robotics (2012)

10. Hornby, G., Lipson, H., Pollack, J.B.: Generative representations for the automated
design of modular physical robots. IEEE Transactions on Robotics and Automa-
tion 19, 703–719 (2003)

Evolving Gaits for Physical Robots 549

11. Hornby, G., Takamura, S., Tamamoto, T., Fujita, M.: Autonomous evolution of
dynamic gaits with two quadruped robots. IEEE Transactions on Robotics 21(3),
402–410 (2005)

12. Kohl, N., Stone, P.: Machine learning for fast quadrupedal motion. In: The Nine-
teenth National Conference on Articifial Intelligence (AAAI), pp. 611–616 (2004)

13. Koos, S., Mouret, J., Doncieux, S.: The transferability approach: Crossing the
reality gap in evolutionary robotics. IEEE Trans. Evolutionary Computation 1,
1–25 (2012)

14. Lohmann, S., Yosinksi, J., Gold, E., Clune, J., Blum, J., Lipson, H.: Aracna: An
open-source quadruped platform for evolutionary robotics. In: Proceedings of the
13th International Conference on the Synthesis and Simulation of Living Systems,
pp. 387–392 (2012)

15. Raibert, M., Chepponis, M., Brown Jr., H.: Running on four legs as though they
were one. IEEE Journal of Robotics and Automation 2(2), 70–82 (1986)

16. Ridderstrom, C.: Legged locomotion control–a literature survey. In: Tech Report:
Royal Institute of Technology. pp. 1400–1179. No. TRITA-MMK, Stockholm, Swe-
den (1999)

17. Secretan, J., Beato, N., D’Ambrosio, D., Rodriguez, A., Campbell, A., Folsom-
Kovarik, J., Stanley, K.: Picbreeder: A Case Study in Collaborative Evolutionary
Exploration of Design Space. Evolutionary Computation 19(3), 373–403 (2011)

18. Shen, H., Yosinski, J., Kormushev, P., Caldwell, D.G., Lipson, H.: Learning fast
quadruped robot gaits with the RL power spline parameterization. In: AIMSA
Workshop on Advances in Robot Learning and Human-Robot Interaction (2012)

19. Stanley, K.O.: Compositional pattern producing networks: A novel abstraction of
development. Genetic Programming and Evolvable Matter 8(2), 131–152 (2007)

20. Stanley, K.O., D’Ambrosio, D.B., Gauci, J.: A hypercube-based encoding for evolv-
ing large-scale neural networks. Artificial Life 15(2), 185–212 (2009)

21. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting
topologies. Evolutionary Computation 10(2), 99–127 (2002)

22. Téllez, R.A., Angulo, C., Pardo, D.E.: Evolving theWalking Behaviour of a 12 DOF
Quadruped Using a Distributed Neural Architecture. In: Ijspeert, A.J., Masuzawa,
T., Kusumoto, S. (eds.) BioADIT 2006. LNCS, vol. 3853, pp. 5–19. Springer,
Heidelberg (2006)

23. Valsalam, V., Miikkulainen, R.: Modular neuroevolution for multilegged locomo-
tion. In: Proceedings of the Genetic and Evolutionary Computation Conference,
pp. 265–272 (2008)

24. Wettergreen, D., Thorpe, C.: Gait generation for legged robots. In: IEEE Interna-
tional Conference on Intelligent Robots and Systems, pp. 1413–1420 (1992)

25. Yosinski, J., Clune, J., Hidalgo, D., Nguyen, S., Zagal, J., Lipson, H.: Evolving
robot gaits in hardware: the HyperNEAT generative encoding vs. parameter op-
timization. In: Proceedings of the 20th European Conference on Artificial Life,
pp. 11–18 (2011)

26. Zagal, J., Ruiz-del-Solar, J., Vallejos, P.: Back to reality: Crossing the reality gap
in evolutionary robotics. In: Proceedings of IAV 2004, the 5th IFAC Symposium
on Intelligent Autonomous Vehicles (2004)

Co-evolutionary Approach to Design of Robotic

Gait

Jan Černý and Jǐŕı Kubaĺık

Department of Cybernetics, Faculty of Electrical Engineering,
Czech Technical University, Technická 2, 166 27 Prague 6, Czech Republic

cernyj31@fel.cvut.cz, kubalik@labe.fel.cvut.cz

Abstract. Manual design of motion patterns for legged robots is diffi-
cult task often with suboptimal results. To automate this process variety
of approaches have been tried including various evolutionary algorithms.
In this work we present an algorithm capable of generating viable motion
patterns for multi-legged robots. This algorithm consists of two evolu-
tionary algorithms working in co-evolution. The GP is evolving motion
of a single leg while the GA deploys the motion to all legs of the robot.
Proof-of-concept experiments show that the co-evolutionary approach
delivers significantly better results than those evolved for the same robot
with simple genetic programming algorithm alone.

1 Introduction

Walking robots have advantage over wheeled ones when navigating complex
and uneven environments. However, to fully use abilities of a particular legged
robot it is necessary to optimize its gait specifically for its mechanical structure,
dimensions and parameters.

This is a highly challenging task seeking for a coordinated control of many
joints, given multiple (often contradictory) optimization objectives such as the
maximal or some specific speed of locomotion, low-energy operational mode,
stability of the robot, etc. The solution sought must also comply with multiple
constraints. Typically, the state transitions have to be continuous in order to
attain smooth gait patterns. Other constraints can be determined by limited
resources and mechanical parameters that determine inherent capability limits
of the robot [3]. Moreover, the optimization objectives as well as the constraints
are non-linear, in general.

Obviously, manual generation of gaits is very difficult, if feasible at all, due
to the aspects mentioned above. Utilization of standard numerical optimization
methods is limited since the objective functions are not defined analytically
(each candidate gait is evaluated by a real experiment or through a simulation),
hence no information about continuity or differentiability is available. Single-
state heuristic methods that work in point-to-point manner are ineffective as
well since they are very prone to get stuck in some sub-optimal solution when
searching huge space with many local optima.

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 550–559, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Co-evolutionary Approach to Design of Robotic Gait 551

On the contrary, evolutionary algorithms (EAs) are population-based search
and optimization techniques that have been used for solving hard optimization
problems of the black-box type. Unlike the single-state heuristics, the search
direction is adjusted using the information accumulated over all candidate so-
lutions of the population in each generation step of the EA run. Thus, the EAs
are more resistant to getting trapped in a local optimum. They are also resistant
to noise in the evaluation function, which is very important for this particular
optimization domain.

There have been many studies devoted to the evolutionary design of sys-
tems for automated gait generation and gait optimization of biped, quadruped,
and hexapod robots [3]. Several types of gait representation has been used
by evolutionary-based gait generators. Genetic Programming and Grammatical
Evolution evolve directly the functions defining the joint angle trajectories [6].
One example of this approach is in the work of Ivan Tanev who used it to create
controllers for artificial snakes [7]. Another approach to this problem is evolution
of Central Pattern Generators (CPG) [2]. Those are type of neural network with
the ability to generate rhythmic patterns.

The research presented in this paper is based on modular robotic creatures
that are composed of a number of simple cubic-shaped robotic blocks. The
robotic blocks are endowed with a movable arm and several slots that they use
to connect to each other (realizing joint-like connections) to form complex struc-
tures. Joint angles are controlled by functions of a single input, time, that return
desired joint positions at discrete time steps. Thus, the generation of the gait
consists in finding a set of functions (a single function for each joint) that make
the whole robotic creature to move in a desired way. We assume multi-legged
robots that exhibit features of symmetry and module repetition. Particularly, a
quadruped robot was investigated in this work.

In this work we consider just simulations of the robot and its gaits that are
carried out using a simulation platform Sim, based on ODE physics simulator1,
which has been developed within the SYMBRION and REPLICATOR2 projects
[4], focused on an application of evolutionary and swarm techniques in robotics.

The primary goal of our research was to design an effective and efficient
evolutionary-based system for automated generating of robot gaits and experi-
mentally evaluate its performance. To attain the goal, a co-evolutionary system
was proposed that resolves the whole task by decomposing it into:

– The evolution of a single-leg motion pattern, i.e. evolution of functions con-
trolling movement of all joints of a single leg. This part is realized by genetic
programming.

– The evolution of the coordination strategy that optimally deploys the evolved
single-leg motion pattern to all legs of the robotic creature. This part is
realized by genetic algorithm as the coordination strategy is represented by
a linear vector of control parameters that are to be tuned.

1 www.ode.org
2 http://www.symbrion.eu/tiki-index.php

www.ode.org
http://www.symbrion.eu/tiki-index.php

552 J. Černý and J. Kubaĺık

The co-evolutionary aspect of this approach arises from the fact that the single-
leg motion patterns are coupled with coordination strategies for the purpose of
assessing their quality.

Series of proof-of-concept experiments were carried out in order to analyse
capabilities of the proposed approach. Its performance was compared to the
performance of a simple GP approach that simultaneously evolves functions to
all of the joints of the whole creature. Results show that the co-evolutionary
approach delivers significantly better results than the compared GP approach.

This paper is structured as follows. In section 2, characteristics of robots
simulated in the simulation platform Sim are described. Section 3 describes the
proposed co-evolutionary approach for automatic robot gait generation. Section
4 describes the experimental proof-of-concept scenario and presents the achieved
results. Final section concludes the paper and lists further extensions of the
presented approach.

2 Simulation Platform and Experimental Robot

In this work, we use a simulation platform Sim [8], not the real physical robots.
However, the simulation platform, which is based ODE physics simulator, pro-
vides very realistic and accurate experimental environment.

In Sim, robots composed of a number of simple cubic-shaped robotic blocks,
see Fig. 1a), can be investigated. Each block consists of the main body and one
movable arm. This arm has its axle in the center of the body and can be moved
between −π

2 and π
2 . While the main body of the block has wheels which can be

used to move it on the flat ground, those are not used as a means of motion.
Instead, the blocks are endowed with slots (three of them on the main body and
one is on the movable arm) that enable them to connect to each other and form
more complex robots capable of walking motion.

By connecting a slot on the movable arm of one block to the slot on the main
body of another block a joint-like functionality is realized. Motors moving with
arms are controlled by input signals which express a desired angle of the arm.
This means that the motor tries to move the arm to the desired angle, however
it may fail to reach exactly the desired position due to the physical constraints.

In this work we focus on multi-legged robots that exhibit features of symmetry
and module repetition. Particularly, a quadruped robot was investigated, see Fig.
1b). This structure of the robot was fixed for all experiments as the search for
ideal morphology is not part of this work. This robot is assembled from 17 blocks,
five of these blocks form a torso of the robot and remaining twelve blocks are
used for four identical legs. Note that the movable arms do not realize spherical
joints, they can move only in one plane, either the vertical or the horizontal one.
Thus the connection types chosen for individual joints of the robot determine
the character of gait the robot can perform. The robot used in our experiments
is designed to walk sideways just as crabs do.

Co-evolutionary Approach to Design of Robotic Gait 553

Fig. 1. A single robotic block used as a building block of robotic creatures, the complete
robot in starting position (i.e. lying on the floor) and a higher-level abstraction of the
same robot in standing position.

3 Proposed Approach to Automatic Motion Pattern
Design

In this work we assume multi-legged robots that exhibit symmetry and module
repetition properties and propose a gait generation algorithm that makes use of
these properties to decompose the whole task in order to efficiently evolve gaits of
such complex robots. There are two modules, genetic programming module (GP-
module) and genetic algorithm module (GA-module), involved in the algorithm,
each devoted to evolution of a specific trait of the resulting gait:

– The GP-module is responsible for evolution of a single-leg motion pattern,
i.e. evolution of functions controlling movement of individual joints of a single
leg and their coordination. A standard tree-based GP is used to realize this
module.

– The GA-module is responsible for evolution of a coordination strategy that
optimally deploys the single-leg motion pattern, evolved by the GP-module,
to all legs of the robot. This module is realized by genetic algorithm as the
coordination strategy is represented by a linear vector of control parameters
that are to be tuned.

The two modules co-evolve simultaneously in a sense that the single-leg motion
patterns are coupled with coordination strategies for the purpose of assessing
their quality. So, when evaluating one particular individual of GP-module some
individual of the GA-module has to be assigned in order to make a complete
gait, and vice versa. The motivation for this co-evolutionary approach is to let
the system seek for a good single-leg motion pattern that could be re-used, with
certain adjustment for left/right and fore/hind leg, multiple times for all legs
of the complete robot [1]. Clearly, this approach could be used only if all legs
of the robot have the same structure and the motion patterns they perform are
expected to be similar3.

3 Note, the joints connecting the blocks of the robot’s torso are fixed, they are not
included into the evolved gait control strategy.

554 J. Černý and J. Kubaĺık

3.1 Genetic Programming Module

Representation. Given that each leg is composed of k connected blocks, where
each of the k joints is controlled by its own function, the single-leg motion pattern
is then represented by k trees which use the following sets of terminals and non-
terminals:

– non-terminals: +, -, unary -, sin, cos, *, /, max, min
– terminals: input variable time t, π, real-valued constants r = 〈−1, 1〉

Genetic Operators. Standard GP subtree-swapping crossover operator was
implemented. On the other hand, no mutation operator was used. To select
individuals for reproduction, the tournament selection method was chosen.

To reduce the bloat and increase the computational efficiency of the algo-
rithm, a bloat control method called Proportional Tournament [5] was used. In
this method, a proportion of tournaments, given by parameter R, are based on
parsimony and the remaining tournaments, 1 − R, are based on fitness. This
means that either well-fit or small tree wins the tournament.

Evolution Model and Initialization. This algorithm uses generational evo-
lution model. The first generation is initialized by ramped-half-and-half method
with the maximal depth limit of 5.

3.2 Genetic Algorithm Module

Representation. This module evolves coordination strategies that determine
the way a particular single-leg motion pattern is deployed to all legs of the robot.
The coordination strategy is given by the following parameters defined for each
leg:

– Direction, d, specifies whether the single-leg motion will be applied in the
direct or its reverse mode. If the reverse mode is chosen for a particular leg
then the input time parameter passed into its joints functions is negated so
that the leg performs a motion which is a ”mirrored” version of the original
single-leg motion. This is important for the crab like motion as it allows legs
on one side of the robot to pull and legs one the other side to push. The
direction parameter is represented by a single bit for each leg.

– Phase, ϕ, specifies phase shift in legs movement. This makes it possible to
have different legs in different phases of the gait at the same time. This
parameter is represented by a real number from interval 〈0.0, 1.0〉, where
the interval covers all possible shifts within one period of the corresponding
single-leg motion.

The final structure of the chromosome representing a coordination strategy for
n legs is as follows

[d1 . . . dn | ϕ1 . . . ϕn]

where the direction bits are grouped in the head part and the phase real numbers
in the tail part of the chromosome.

Co-evolutionary Approach to Design of Robotic Gait 555

Genetic Operators. The representation described above requires a crossover
operator that operates differently for the two parts of the chromosome.

Standard one-point crossover is used for the binary string of direction bits. For
the real-valued tail part of the chromosome, a variant of the Blend crossover was
implemented. Given two parents p1 and p2, the offspring phase value at position
i, oϕi, is taken at random (with uniform distribution) from the following set of
possible choices

oϕi ∈ {p1ϕi, p2ϕi, (p1ϕi + p2ϕi)/2,min(p1ϕi, p2ϕi)− 0.5 ∗ range,max(p1ϕi,
p2ϕi) + 0.5 ∗ range}

where range = abs(p1ϕi − p2ϕi). Every newly generated value oϕi is further
adjusted to fall into the interval of admissible values 〈0.0, 1.0〉.

For the binary direction parameters, simple bit-flip mutation operator was
used. When a phase parameter is selected for mutation, it is replaced by a new
value randomly generated from 〈0.0, 1.0〉. Tournament selection is used to select
parents for crossover and mutation.

Evolution Model and Initialization. This algorithm uses a steady-state evo-
lution model where the newly generated individual replaces the worst individual
in the population. The first generation is initialized randomly.

3.3 Co-evolution of GP-module and GA-module

As mentioned at the beginning of this section, the co-evolution of GP-module
andGA-module is based on pairwise relationships between individuals from these
two populations. These relationships are necessary for assessing the quality of
the individuals so that when evaluating an individual from GP-module its coun-
terpart from GA-module is used to make up the whole gait strategy, and vice
versa. Below, the fitness function used to assess evolved gait strategies and the
scheme used for maintaining the pairwise relationships are described.

Fitness Function. The same minimization fitness function is used to assess
individuals from GP-module and GA-module. It takes into account two aspects
of the evaluated gait - (i) a distance covered by the robot in desired direction
and (ii) a body posture of the robot during its movement.

The covered distance term is measured as the distance of the central block
of the robot’s torso from desired destination point. The body posture term is
defined as a penalty punishing robots that show tendency to drag its body on
the ground. This is realized so that a minimum height of the central block of
the robot is specified and then certain value is added to the final penalty for
each step of the whole simulation of the robot’s movement4 the robot made in
lower posture. Note, the penalty is in fact very high, hence strongly encouraging
evolution of walking gaits instead of crawling ones.

4 The simulations are carried out in discrete steps, with frequency 125 steps per second.

556 J. Černý and J. Kubaĺık

Pairing off Individuals of GP-module and GA-module. At the beginning
of the run, individuals of the GP-module are randomly paired off with individuals
of theGA-module so that eachGP-module individual has exactly one counterpart
in GA-module. On the other hand, the GA-module individual can have arbitrary
number of links (0 to many) to individuals in GP-module.

Then, the co-evolution proceeds by phases, altering M generations of GP-
module and N generations of GA-module in each phase. When the GP-module
generates a new population, each newly generated individual inherits the rela-
tionship with the GA-module individual from one of its parents. This way it is
ensured that every individual in GP-module has always assigned its counterpart
in the GA-module for evaluation purposes.

When GA-module evolves its population, each newly generated individual is
evaluated with several candidates from GP-module and the best value is set
as its fitness. Moreover, it may happen that some of its individuals has lost its
counterpart in the GP-module (because they were replaced by new individuals in
some of the previous generations of GP-module). In this case, the fitness of such
unpaired GA-module individual is penalized. This way individuals with no link
to GP-module can still compete between each other but will always loose against
those that are linked to someone in GP-module. Also, whenever an individual
from GA-module is deleted it is important to find a new GA-module individual
for all GP-module individuals which were connected to it.

4 Experimental Evaluation

Series of proof-of-concept experiments were carried out in order to analyze
capabilities of the proposed approach. Its performance was compared to the
performance of a simple GP approach that does not make use of the problem
decomposition. Instead, it uses just the GP-module to simultaneously evolve
functions to all of the joints of the whole robot. In particular, the simple GP
approach evolves individuals, each representing twelve functions (4 legs times 3
joints).

4.1 Experimental Scenario

To evaluate performance of implemented method a simple experiment was set up.
Gaits for the robot described in Section 2 were evolved, where the environment
was just a flat surface without any obstacles. When simulating the robot with
a candidate gait, the robot was always placed in the center of the simulation
arena in laying position. First, the robot was given a fixed amount of simulation
steps to start moving, hopefully to stand up, and then it was let to walk as far
as possible for specified amount of time (10 seconds in this case). Finally, the
distance of its final position from the specified target point was measured.

Co-evolutionary Approach to Design of Robotic Gait 557

4.2 Experimental Set-up

Control parameters of the co-evolutionary algorithm were set as follows:

– GP-module: population size 500, generations 200, tournament size 7;
– GA-module: population size 50, tournament size 3;
– synchronization: start-up phase of 20 generations of the GP-module and then

repeatedly carrying out 2 generations of GP-module followed by 30 newly
generated individuals in the GA-module;

Control parameters of the GP-module of the simple GP approach were set as
follows: population size 600, number of generations 250. This configuration en-
sures that the simple GP algorithm should compute at least as many fitness
evaluations (i.e. simulations) as the co-evolutionary one.

4.3 Results

All control functions evolved with both algorithms were able to make the robotic
creature walk or at least move in some way. The resulting paths are shown
in Figure 2 with the compared simple GP algorithm on the left side and the
proposed co-evolutionary approach on the right side. While both approaches led
to some good and some poor solutions, the co-evolutionary approach achieved
significantly better results than the compared approach.

The mean best distance from the final robot’s position to the target point
calculated from solutions of ten independent runs was 35.98 in case of the co-
evolutionary algorithm and 38.67 for the compared one, respectively (note, the
less the better). The Mann-Whitney rank sum test gives significant evidence
(p < 0.05, two-tailed) for the observed difference. The best solution reached by
the co-evolutionary algorithm has value of 33.08 and the best solution reached
by the compared algorithm has value of 35.16.

Second important observation is that the co-evolutionary approach produces
neat gaits in contrary to the ones produced by the simple GP approach. Simply

Fig. 2. Trajectories of robots with control functions evolved by both algorithms. Simple
GP approach on the left, co-evolutionary approach on the right.

558 J. Černý and J. Kubaĺık

Fig. 3. Example of the gait produced by the co-evolutionary approach

Fig. 4. Example of the gait produced by the simple GP approach

said, the co-evolutionary robots walk while the GP robots just get somewhere
somehow in very uncoordinated way, see Figures 3 and 4.

For example it was not uncommon for the simple GP to develop gaits which
only used 3 legs and held the remaining one in the air or dragged it on the ground.
Such gaits even though they are leading to some motion cannot be considered
fast nor efficient gaits.

One of the GP evolved gaits even made the robot walk backwards as can be
seen in Figure 2. This might happen due to the fitness function which strongly
forces the robot to walk with elevated body and not to crawl on the ground
(note that all crawling movements are rewarded less than any movement with
the elevated body). It is evident, that in this case the GP approach was only able
to evolve ”well-rewarded” walking gait that made the robot walk backwards.

5 Discussion and Future Work

In this paper we present a co-evolutionary approach for automatic generation
of robotic gait. It simultaneously evolves single-leg motions and synchronization
schemes that optimally deploy the single-leg motion to all legs of the robot.

Co-evolutionary Approach to Design of Robotic Gait 559

Our results indicate that this method of decomposition of the problem can
generate better motion patterns than simple GP approach. The gaits found by
the co-evolutionary approach outperform the ones found with the simple GP in
terms of the distance walked towards the desired target point as well as in terms
of the orderliness and efficiency of the observed motion patterns.

There are a number of possible further extensions. One of them is evolution
of multiple motion primitives like left and right turn and forward and backward
walking. For example, it is assumed that when given an efficient forward walking
gait the co-evolutionary approach should be able to change the direction of
walking just by evolving new leg-synchronizing strategy in GA-module for the
fixed single-leg motion patterns. Those walking primitives can be further used
to navigate a robot along some desired path.

Another area of interest is evolution of gaits for more challenging environments
such as sloppy surfaces or walking up and down stairs. Since the most time-
and resource-consuming computations are related to the simulations it might
be useful to design the evaluation procedure in a staged manner so that the
candidate gait first undergoes simple and short simulations and only if it passes
them it proceeds to the main simulation that returns the objective value.

Acknowledgment. Jǐŕı Kubaĺık was supported by the research program No.
MSM 6840770038 ”Decision Making and Control for Manufacturing III” of the
CTU in Prague and Jan Černý was supported by the Grant Agency of the CTU
in Prague, grant No. SGS12/145/OHK3/2T/13.

References

1. Cerny, J.: Evolutionary design of robot motion patterns (June 2012),
http://cyber.felk.cvut.cz/research/theses/papers/226.pdf

2. Crespi, A., Ijspeert, A.: Online optimization of swimming and crawling in an am-
phibious snake robot. IEEE Transactions on Robotics 24(1), 75–87 (2008)

3. Gong, D., Yan, J., Zuo, G.: A review of gait optimization based on evolutionary com-
putation. In: Applied Computational Intelligence and Soft Computing 2010 (2010)

4. Kernbach, S., Meister, E., Schlachter, F., Jebens, K., Szymanski, M., Liedke, J.,
Laneri, D., Winkler, L., Schmickl, T., Thenius, R., et al.: Symbiotic robot organ-
isms: Replicator and symbrion projects. In: Proceedings of the 8th Workshop on
Performance Metrics for Intelligent Systems, pp. 62–69. ACM (2008)

5. Panait, L., Luke, S.: Alternative Bloat Control Methods. In: Deb, K., Tari, Z. (eds.)
GECCO 2004. LNCS, vol. 3103, pp. 630–641. Springer, Heidelberg (2004)

6. Seo, K., Hyun, S.: Genetic programming based automatic gait generation for
quadruped robots. In: Proceedings of the 10th Annual Conference on Genetic and
Evolutionary Computation, pp. 293–294. ACM (2008)

7. Tanev, I., Shimohara, K.: Co-evolution of active sensing and locomotion gaits of
simulated snake-like robot. In: Proceedings of the 10th Annual Conference on Ge-
netic and Evolutionary Computation, GECCO 2008, pp. 257–264. ACM, New York
(2008), http://doi.acm.org/10.1145/1389095.1389135

8. Vonasek, V., Fiser, D.: Sim: a general purpose 3d robotic simulator (2012),
http://sim.danfis.cz/

http://cyber.felk.cvut.cz/research/theses/papers/226.pdf
http://doi.acm.org/10.1145/1389095.1389135
http://sim.danfis.cz/

A Comparison between Different Encoding

Strategies for Snake-Like Robot Controllers

Dámaso Pérez-Moneo Suárez and Claudio Rossi

Universidad Politécnica de Madrid,
Centre for Automation and Robotics, Madrid, Spain

damaso.psuarez@alumnos.upm.es, claudio.rossi@upm.es

Abstract. In this paper, we present the results of the tests we have
performed with different encoding strategies for evolving controllers for
a snake-like robot. This study is aimed at finding the best encoding for
on-line learning of basic skills, such as locomotion (both free and di-
rected to an objective) and obstacle avoidance. The snake moves in a
virtual world, which realistically simulates all the physical conditions of
the real world. This is the first step of our research on on-line, embed-
ded and open-ended evolution of robot controllers, where robots have to
learn how to survive during their lifetime, and occasionally mate with
other robots. A simple (1+1) evolutionary strategy has been adopted
for lifetime learning. The results of the tests have shown that the best
results, tested on the locomotion skills, is the ’He1Sig’ controller, that
uses a different set of parameters for each segment of the snake but only
one mutation rate, common to all parameters, that is encoded in the
chromosome and therefore undergoes evolution itself.

Keywords: Evolutionary robotics, embodied evolution.

1 Introduction

The aim of the research presented here is to develop new evolutionary strategies
for generating robot controllers for real, physical robots. The scenario we are
working on is an ecosystem of robots that evolve both their physical structure
(body) and control software (mind). In this ecosystem, like in the real world,
individuals have to learn some basic skill to survive, or improve the abilities
that they have inherited by their parents. They will have to learn to find en-
ergy sources, without which they would eventually starve to death. Occasionally,
they will meet and mate. New offspring will be generated by crossing over their
genetic material. These will be at all effects new individuals: we assume that an
instrument for their physical implementation exist. This shall be an automated
production mechanism that, following their genetic blueprint, would build the
newborn individuals, by assembling basic parts (”organs”) or even by producing
them on-the-fly by 3D printing technology [6].

In this work, we focus on lifetime learning, as a necessary step towards the
kind of system described above. Our purpose is to implement lifetime learning by

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 560–568, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Comparison between Different Encoding Strategies 561

an on-line and embedded (on-board) evolution process of the robots’ controllers.
This has the aim of improving their survival (and hence reproduction) possibili-
ties. Lifetime learning is thus mainly aimed at improving mobility, foraging and
mate finding skills. Clearly, mobility is a key feature for the achieving food and
mates. Therefore, in this work we focus on this fundamental aspect.

The robot ecosystem we work with exists in a virtual world, simulated adopt-
ing realistic 3D simulators, that faithfully reproduce both the real world physics
and the robots’ kinematics and dynamics, as well as the physical interactions
with the world’s objects.

By doing this we obviously aim at reducing the reality gap. But more im-
portantly, there is a growing feeling in the research community that ”matter
matters”[11]. That is, the body, its shape, and its physical interaction with the
environment have an impact on the way the mind is shaped. Therefore, we in-
clude realistic physics in our simulated ecosystem.

Given the realistic physical simulations, the computational cost of the experi-
ments is very high1. For this reason, we have adopted a simple structure such as
a chain of modules, obtaining a snake-like robot, which is the simplest structure
conceivable. Each segment of the snake’s body is connected to the others with
an actuated rotational joint that allows undulatory movements of the snake
in the horizontal plane. Each actuator moves with a sinusoidal function (see
below). Thus, each actuator is controlled by three parameters: rotation speed,
rotation amplitude and rotation phase with respect to the head. By including
an additional degree of freedom at the joints, a wide variety of movements in
3 dimensions could be generated, also for more complex morphologies (e.g. in
form of H, that would resemble a four-legged robot).

Related Work

There is a considerable body of work on controllers for snake-like robots con-
trollers. Undulatory motion can be generated e.g. by central pattern generators
[9], Neural Networks [7,4,12,2], or modulated architectures [1,14,10].

Central pattern generators and neural networks are both powerful techniques,
but have the drawback of needing too much information (think, e.g., at the
number of connection weights that the have to be evolved).

It must be pointed out that the most usual configuration for evolving robot
controllers is off-line and off-board: an evolutionary algorithm is run in an ex-
ternal computer, and controllers are then deployed into the robots (either real
or simulated) to be evaluated. This is the case e.g. of the one of the most known
evolutionary robotics works, the evolving virtual creatures of C. Sims [12] and
J. Bongard [2].

Recently, on-line learning has also been proposed in the literature (see e.g.
[13], where virtual agents are evolved in continuous time, but without on-line
learning). In particular, Eiben et al. [5] used a embodied on-line and on-board
distributed evolution. Each robot have a controller population that evolve inside

1 With 6 robots in the arena, simulation time was t = 0.06× w.r.t. real time.

562 D. Pérez-Moneo Suárez and C. Rossi

it, and at given times robots exchange controllers with others. This strategy is
called island method. Here, we adopt a similar strategy, in an minimal configura-
tion, where each island has just one robot controller, an approach similar to the
one proposed in [3], where a (1+1)-online Evolutionary Algorithm is proposed.

The main differences with this work lays in the genotypes (robot controllers)
representation (Neural Networks vs. periodic functions) and in that in this work
we focus at comparing different encodings for the proposed genotype.

Snake Motion

We model the snakes movement using the known ”serpenoid” functions described
by Hirose (see e.g. [8]):

φi(t) = 2α sin(ωt+ (i− 1)β) (1)

The term φi(t) is a sinusoidal function that determines the position of joint
i between two body segments, and n is the number of body segments of the
snake. The parameters ω, α and β determine the shape of the serpentine curve
realized by the snake-like robot, defining respectively angular speed, amplitude
and phase of the oscillation of the joints.

Using this ’a priori’ knowledge of the snake’s motion, we can achieve a quicker
evolution, since the dimension of the search space is considerably reduced w.r.t.
other approaches.

The question we address here is which is the best encoding for the serpenoid
curve parameters, as far as locomotion efficiency obtained is concerned. This is
a key factor that affects learning time and thus the survival possibilities of the
robots. Choosing a good chromosome encoding is a key question, since it affects
both the quality of the solutions found and the evolution time.

The rest of this paper is structured as follows. Section 2 describes in details
our evolution strategy, and Section 3 illustrates the results of the simulations
carried out. Finally, Section 4 discusses the results obtained and future work.

2 Controllers Encoding

Equation 1 can be represented in two ways. In the first way, each joint has inde-
pendent parameters (Eq. 2). In the second way, joints parameters are expressed
as a (constant) difference w.r.t. the previous joint (Eq. 3).

φi(t) = Ai sin(ωi · t− ϕi), i = 1 .. n− 1 (2)

φi(t) = (A0 − i ·ΔA) · sin((ω0 + i ·Δω) · t− i ·Δϕ), i = 1 .. n− 1 (3)

We call equation (2) ’heterogeneous’, because in this case each module has its
own value for the amplitude, phase and frequency. This will need a longer chro-
mosome, of 3 · (n−1) genes, n being the number of body segments. Equation (3)
implies that some regularities must exist between the movements of the joints,

A Comparison between Different Encoding Strategies 563

and is called homogeneous because it is assumed that there is a regular difference
between the amplitude, phase and frequency between the modules. Therefore it
will need just three values, the difference in amplitude, phase and frequency be-
tween each module ΔA,Δω,Δϕ. In Eq. (3) the base values corresponding to the
first module adopted are A0 = 1 and ω0 = 0.

The two equations proposed above represent the two extremes of a wider
range of choices, where groups of modules can share the same parameters.

In either case, the chromosome is complemented with mutation rate informa-
tion. We considered different ways to express the mutation rate:

– constant mutation rate for all genes [WSig]
– one mutation rate for all genes, encoded into the chromosome [1Sig]
– one mutation rate for each gene, encoded into the chromosome [NSig]

Hence, we tested six different configurations, summarized in Table 1.

Table 1. Parameters used in the experiments. Mutation rates μ and μi are encoded
in the chromosome, (i = 1 . . . n− 1, n = 5).

Experiments parameters

Parameter He1Sig HeNSig HeWSig Ho1Sig HoNSig HoWSig

Representation Heterogeneous Homogeneous

Population size 1 1 1 1 1 1

Generations 500 500 500 500 500 500

Mutation rate μ μi 0.1 μ μi 0.1

3 Experiments

The virtual world has been created using the well known 3D simulation software
’Webots’. A snakelike modular robot (see Figure 1) composed of five segments
modules has been used to test the different configurations described above.

The simulation arena was divided into six smaller areas, were a snake for each
configuration has been tested (Fig. 2). Snakes can move freely in the arena, and
each controller is tested for 10 seconds.

To avoid biasing form the initial position, each 10 seconds, when the snakes
change the controller, they are relocated in the initial position.

Before running the simulations, an ’ideal’ snake adopting Eq. 1 was tested
in order to measure the distance that it could travel. By ideal, we mean with
optimal values for the functions’ parameters. This can be done precisely because
we have an indication of the optimal motion for the given structure [8], an
information that it would not be easy to obtain for other structures.

This data, corresponding to the term 11.62, was introduced in the fitness
defined by Equation 4 to normalize its values.

In order to test locomotion, the fitness function that was used is:

Fitness =
Distaccum

11.62
∗ diststraight

distaccum
=

diststraight
11.62

(4)

564 D. Pérez-Moneo Suárez and C. Rossi

Fig. 1. The snake-like robot architecture employed it is composed of 5 identical body
segments

Fig. 2. Arena with 6 Snakes in Webots

Table 2. Experiments results of each chromosome

Controller
He1Sig HeNSig HeWSig Ho1Sig HoNSig HoWSig

Best 0.899 0.849 0.847 0.626 0.533 0.513

Average 0.767 0.675 0.690 0.225 0.275 0.282

Std. dev. 0.163 0.163 0.178 0.116 0.068 0.090

A Comparison between Different Encoding Strategies 565

Fig. 3. Average Best Fitness of the different encodings

Fig. 4. Best fitness obtained for the different configurations

where distaccum is the straight motion in relation to the initial position of the
snake, and diststraight is the motion in relation to the orientation of the snake
(longitudinal). The ratio diststraight/distaccum expresses how much of the dis-
tance travelled was actually due to serpentine locomotion, since the snake could
roll over itself and thus travel considerable distances. Thus, fitness is normalized
in such a way that a value of 1 means ideal motion2.

2 Clearly, in Eq. 4 it is assumed that the serpentine motion is the best one. Other
kind of motions could in principle have a fitness greater that 1, although this case
has never happened in the simulations.

566 D. Pérez-Moneo Suárez and C. Rossi

Fig. 5. Mean Fitness and Mean Mutation of ’He1Sig’ chromosome

For each different encoding, 20 different runs were performed. Each snake was
allowed to evolve for 500 generations.

Figure 3 shows a comparison of the evolution of the best fitness of the different
encodings, while Figure 4 and Table 2 summarise the numerical results for all
the experiments. As it can be noticed, the overall best results have been obtained
with the the ’He1Sig’ encoding (a different set of parameters for each joint, i.e.
3(n− 1) genes, with a common mutation rate encoded into the chromosome for
all the genes). However, all three heterogeneous controllers perform significantly
better than the homogeneous encodings.

It is also interesting to see the relationship between the fitness and the mu-
tation rate in the controller ’He1Sig’. In Figure 5, the average fitness and mean
mutation rate of the ’He1Sig’ controller are shown. It is easy to see how the
mutation rate is bigger at the beginning of the run. As the controller evolves
and gets better fitness values, the mutation rate gets smaller.

4 Discussion and Conclusions

The performance of the best configuration has been satisfactory, as it could reach
values very close to the ideal value of 1.

However, the numerical results obtained from the experiments, are somehow
unexpected. In fact, the Hirose serpenoid curve (Eq. 1) defines the ideal move-
ment, where the oscillations of the joints are synchronised in such a way to obtain
a smooth undulatory motion of the whole body, resulting in the best advancing
motion. This has only three parameters that are the same for all links. Here, it
appears that the ’Heterogeneous’ representations obtain the best results. These,
having an individual set of parameters for each joint, were expected to perform
worst, since the search space is much bigger, and the oscillation of each joint
should orchestrate with all the other ones in order to obtain a smooth oscillation
of the whole snake body. In other words, the task to learn is more difficult.

A Comparison between Different Encoding Strategies 567

Note also that the encodings that which has mutation rate encoded in the
chromosome perform better, with the added advantage of not needing parameter
tuning.

In conclusion, we have verified that in a relatively short lifespan the individuals
encoded with the heterogeneous system are capable of learning the locomotion
task. This is a very good result since, as stated earlier, locomotion is the basis for
foraging and mate finding, which will be the next tasks that we plan to include
in the lifetime learning tests of the robot snakes.

Note also that the heterogeneous encoding is more suited for more complex
robot morphologies, and hence it can be claimed that the results obtained will
be generalizable to other shapes.

As a next steps of our work, when the robots will be able to learn to effec-
tively learn all the basic skills, the mating will be implemented, obtaining the
final ecosystem, where individuals will be generated by asynchronous mating.
Time will not be discrete, in form of ”generations”, as it is common in evolutio-
nary algorithms, but continuous real time. New individuals will enter the world
and will survive and reproduce according to their skills, part of which will be
inherited, and part developed trough learning. The life span of the individuals
will only be determined by their ability to find food, although both ageing mech-
anisms and grace period for newborn individuals shall be devised. Population
size will thus be variable, only limited by the amount of resources available in
the world. but continuous real time. The major future challenge of this work
will be extending the proposed life cycle including evolvable morphologies for
the individuals.

References

1. Becerra, J.A., Bellas, F., Duro, R.J., Lope, J.D.: Snake-like behaviors using
macroevolutionary algorithms and modulation based architectures

2. Bongard, J.: Morphological change in machines accelerates the evolution of ro-
bust behavior. Proceedings of the National Academy of Sciences 108(4), 1234–1239
(2011)

3. Bredeche, N., Haasdijk, E., Eiben, A.: On-Line, On-Board Evolution of Robot
Controllers. In: Collet, P., Monmarché, N., Legrand, P., Schoenauer, M., Lutton,
E. (eds.) EA 2009. LNCS, vol. 5975, pp. 110–121. Springer, Heidelberg (2010)

4. Clune, J., Beckmann, B.E., Ofria, C., Pennock, R.T.: Evolving coordinated
quadruped gaits with the hyperNEAT generative encoding. In: Congress on Evo-
lutionary Comutation (CEC) (May 2009)

5. Eiben, A., Haasdijk, E., Bredeche, N.: Embodied, On-line, On-board Evolution for
Autonomous Robotics. In: Levi, P., Kernbach, S. (eds.) Symbiotic Multi-Robot
Organisms: Reliability, Adaptability, Evolution.. Cognitive Systems Monographs,
vol. 7, pp. 361–382. Springer (2010)

6. Eiben, A., Kernbach, S., Haasdijk, E.: Embodied artificial evolution. Evolutionary
Intelligence 5, 261–272 (2012)

7. Haasdijk, E., Rusu, A.A., Eiben, A.E.: HyperNEAT for Locomotion Control in
Modular Robots. In: Tempesti, G., Tyrrell, A.M., Miller, J.F. (eds.) ICES 2010.
LNCS, vol. 6274, pp. 169–180. Springer, Heidelberg (2010)

568 D. Pérez-Moneo Suárez and C. Rossi

8. Hirose, S., Morishima, A.: Design and control of a mobile robot with an articulated
body. Int. J. Robot. Res. 9, 99–114 (1990)

9. Ijspeert, A.: Central pattern generators for locomotion control in animals and
robots:a review. Preprint of Neural Networks 21/4, 642–653 (2008)

10. Lal, S., Yamada, K., Endo, S.: Evolving motion control for a modular robot. In:
Ellis, R., Allen, T., Petridis, M. (eds.) Applications and Innovations in Intelligent
Systems XV, pp. 245–258. Springer, London (2008)

11. Pfeifer, R., Bongard, J.C.: How the Body Shapes the Way We Think. A New View
of Intelligence. MIT Press (2007)

12. Sims, K.: Evolving virtual creatures. In: Annual Conference Series, pp. 15–22 (July
1994)

13. Stanley, K., Bryant, B., Miikkulainen, R.: Real-time neuroevolution in the nero
video game. IEEE Transactions on Evolutionary Computation 9(6), 653–668 (2005)

14. Weel, B., Haasdijk, E., Eiben, A.E.: The Emergence of Multi-cellular Robot Or-
ganisms through On-Line On-Board Evolution. In: Di Chio, C., Agapitos, A.,
Cagnoni, S., Cotta, C., de Vega, F.F., Di Caro, G.A., Drechsler, R., Ekárt, A.,
Esparcia-Alcázar, A.I., Farooq, M., Langdon, W.B., Merelo-Guervós, J.J., Preuss,
M., Richter, H., Silva, S., Simões, A., Squillero, G., Tarantino, E., Tettamanzi,
A.G.B., Togelius, J., Urquhart, N., Uyar, A.Ş., Yannakakis, G.N. (eds.) EvoAppli-
cations 2012. LNCS, vol. 7248, pp. 124–134. Springer, Heidelberg (2012)

MONEE: Using Parental Investment to Combine

Open-Ended and Task-Driven Evolution

Nikita Noskov, Evert Haasdijk, Berend Weel, and A.E. Eiben

Vrije Universiteit Amsterdam, The Netherlands
n.k.noskov@gmail.com, {e.haasdijk,b.weel,a.e.eiben}@vu.nl

Abstract. This paper is inspired by a vision of self-sufficient robot col-
lectives that adapt autonomously to deal with their environment and to
perform user-defined tasks at the same time. We introduce the monee
algorithm as a method of combining open-ended (to deal with the envir-
onment) and task-driven (to satisfy user demands) adaptation of robot
controllers through evolution. A number of experiments with simulated
e-pucks serve as proof of concept and show that with monee, the robots
adapt to cope with the environment and to perform multiple tasks. Our
experiments indicate that monee distributes the tasks evenly over the
robot collective without undue emphasis on easy tasks.

1 Introduction

The work presented in this paper is inspired by a vision of autonomous, self-
sufficient robot collectives that can cope with situations unforeseen by their
designers. An essential capability of such robots is the ability to adapt their
controllers in the face of challenges they encounter in a hands-free manner, “the
ability to learn control without human supervision,” as [14] put it.

One approach to solve this issue uses evolution as a force for adaptation,
rather than as “just” an algorithm for optimisation. This dichotomy has been
noticed early in the history of evolutionary computing, [4]. Since then, these two
attitudes have became dominant in different areas. Optimisation is the primary
goal in Evolutionary Computing [6], while evolution as a driver of adaptation is
typical in Artificial Life (ALife) [23]. In a common ALife setting, agents, pos-
sibly (simulated) robots, populate a world and the one that can cope with its
environmental challenges will survive and reproduce. In systems like this, there
need not be any objective function to be optimised, nor a centrally orchestrated
evolutionary selection–reproduction loop. Instead, evolution is driven by a de-
centralised, asynchronous process of mate selection and reproduction and purely
environmental selection that gives a reproductive advantage to well-adapted in-
dividuals. Such open-ended approaches are slowly finding their way into evolu-
tionary robotics, e.g. the medea algorithm[2] and Bianco and Nolfi’s work [1].

Of course, an adapting robot collective must also serve the purpose of its
designers: it must satisfy human preferences and tackle particular tasks. Evolu-
tionary robotics has traditionally focussed exclusively on this latter aspect, em-
ploying evolution as a force for optimisation. Robots are set some specific task,

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 569–578, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

570 N. Noskov et al.

their performance is measured through some objective function and a, typically
centralised, evolutionary algorithm optimises robot behaviour accordingly.

In our vision, evolution serves two purposes: on the one hand to allow robots
to adapt to the environment and to behave so that they can operate at all. On the
other hand, evolution is a force to promote task-performance, where we interpret
‘task’ in a broad sense: it is any user-defined preference with a measurable level
of compliance. It can be a direct task, like collecting rubbish (measured by
the amount of rubbish cleared), but also more indirect, like energy efficiency
(measured by battery lifetime). Combining these two (seemingly) contradictory
roles of evolution is a generic, fundamental challenge that to our knowledge has
to date not been tackled successfully.

As Jones and Mataŕıc note [7], collectively tackling tasks also entails a division
of work: if, for instance, the swarm has two (sub-)tasks, it may be possible that
all robots perform both tasks or that part of the swarm focusses on one task and
the other robots tackle the second task. Therefore, an algorithm that enables
our vision of an adaptive collective of robots should combine the adaptive and
optimising facets of evolution as well as promote a good division of labour.

This paper introduces the monee (Multi-Objective aNd open-Ended Evo-
lution) algorithm that combines the open-ended and task-driven aspects of evol-
ution. It is inspired by the open-ended algorithms described in [2] and [19].

Monee allows the robot collective to optimise their behaviour to suit mul-
tiple tasks while distributing the tasks over that collective. It extends the open-
ended approach as found in medea [2] with a currency-based system where an
individual can earn as well as spend credits. Please note that our idea of open-
endedness in this case entails the lack of an explicit fitness function, whether our
system adheres to the more general sense of open-endedness where evolution does
not converge has not yet been tested. The main idea is that earnings are based
on task-performance, while spendings are related to reproduction. Individuals
accumulate credits through task performance - the better a robot performs a
task, the more credits it earns for that task. When an individual puts its gen-
ome forward as a potential parent, it also passes information on its earnings for
each defined task as a parental investment. Section 3 provides more detail on
our implementation of the monee algorithm.

This paper provides a proof-of-concept for the monee algorithm. We simulate
a collective of e-puck robots that are set multiple tasks to ascertain:

– if the robots adapt their behaviour to suit the tasks;
– if all tasks are performed equally well;
– how the system reacts to changing tasks.

2 Related Work

Open-ended and task-related evolutionary robotics Evolutionary Robotics has
been widely studied since the early 1990s [15]. Initially, research focussed on
individual robots, but since then substantial effort has been directed at evolution
in larger numbers of interacting autonomous robots in swarms [20], research

MONEE: Using Parental Investment 571

projects include for instance the Swarmanoid project [5]) or modular robots (e.g.
M-tran[8]). In all these cases, evolution is used to achieve some fixed user-defined
objective such as locomotion or explicit coordination.

Open-ended or objective-free evolution as well as self-replication have been
studied in Artificial Life since Rasmussen’s (1990) [16] and Ray’s (1991) [17]
work. Such research primarily investigates evolutionary dynamics in the absence
of tasks, but as a result of implicit or environmental criteria that impact the
ability to spread genomes through the population. This open-ended approach has
gained interest from the evolutionary robotics community, for instance in Bianco
and Nolfi’s experiments with self-assembling organisms [1] and more recently in
the medea algorithm [2].

Open-ended approaches have been considered as a strategy to promote behavi-
oural diversity in multi-objective settings by, for instance, Mouret and Doncieux
[13]. Lehman and Stanley’s novelty search [9] also embraces open-endedness to
tackle elusive problems where a straightforward objective function leads to sub-
optimal behaviour. These recent advances do define objective functions, though:
the definition of novelty for Lehman and Stanley and the secondary objective
for Mouret and Doncieux are ad-hoc, task-specific definitions of behavioural
diversity that amount to tangential and creative redefinitions of the orginal ob-
jective function. Thus, such methods are not the completely objective-free ap-
proaches where survival and rate of procreation determine fitness rather than
the other way around.

Parental Investment. When animals reproduce they invariably invest time and
energy in their offspring, for which Trivers coined the phrase parental investment
[21]: ”Parental investment covers any cost that a parent incurs in looking after
an offspring, be it in gamete production, gestation or care after birth”. Parental
investment has been investigated in biology, and theories have been proposed on
the evolutionary origins of the differentiation between sexes. These theories have
also been verified in ALife settings, including experiments with robots [10,22,19].
In artificial life parental investment is often used to give the offspring a starting
value of (virtual) energy [11,12,3,18] and a parent’s energy level is often linked
to task performance (e.g., agents tasked with eating grass to gather energy [3]).
While these approaches benefit the offspring of good individuals, none of these
approaches use parental investment as a method for parent selection. Distributed
on-line evolutionary systems such as Watson et al’s embodied evolution [24]
sometimes employ (virtual) energy as a currency to determine parent selection
[24,25].

3 MONEE: Multi-Objective and Open-Ended Evolution

At its core, monee is an adaptation of the medea algorithm described by
Bredèche et al. [2] and Schwarzer’s artificial sexuality algorithm [19].

The robot lifecycle in monee consists of two phases: life and rebirth. The ro-
bots have a limited, fixed, lifetime during which they perform their actions; mov-
ing about, foraging, et cetera. When their lifetime ends, they enter the rebirth

572 N. Noskov et al.

phase and become ‘eggs’: stationary receptacles for genomes that are transmit-
ted by passing live robots. This rebirth phase also lasts a fixed amount of time,
at the end of which the egg selects parents from the received genomes to create a
new controller. The robot then reverts to the ‘life’ role with this new controller.
Thus, robots (or rather, their controllers) can procreate by transmitting their
genome to eggs, and the more eggs a robot inseminates, the more chances it
has for procreation. Because the transmission of genomes is continuous and at
close range (e.g. through infrared), the more a robot moves about the arena,
the better its chances of producing offspring. This aspect of monee is clearly
open-ended: there is no calculated performance measure that defines the chances
of being selected as parent, there is no task. Only the environment dictates what
robots may or may not become parents.

To add task-driven parent selection to this basic evolutionary process, we use
parental investments. During their lifetime, robots amass credits by performing
tasks. For instance, a robot could get one credit for every piece of ore it collects,
one for successfully solving some puzzle, and so on. If multiple tasks are defined,
the robots maintain separate counts for the credits awarded for each task, for
instance one counter for the pieces of ore collected and another one for the
number of puzzles solved. When a robot inseminates an egg, it passes these
numbers along with the genome and the egg uses that information to select
parents when it revives.

When a robot’s egg phase finishes, it compares the parental investment for
each genome it has received. To enable this comparison across task, the egg
calculates an exchange rate between tasks. This ensures that genomes that invest
in tasks for which few credits are found overall (presumably hard tasks) are not
eclipsed by genomes that favour easier tasks. The pseudo-code in algorithm 1
details this auction scheme.1

The parental investments relate task performance to reproductive success:
besides the open-ended goal of ‘merely’ transmitting genomes to eggs, robots
must also become proficient at the defined tasks for these genomes to be selected.
The more proficient a robot is at a task, the higher its chances of procreating.
The comparison of investments across multiple tasks introduces an exchange rate
between the earnings per task: the more common credits are for a particular task,
the less their worth and vice versa. Thus, parent selection becomes a marketplace
for skills and features that the user requires. Users can influence this economy
to prioritise tasks, for instance by setting a premium on investments related
to a particular task that the user deems more urgent than others. This system
naturally caters for multi-objective approaches and allows the user to prioritise
tasks in a straightforward manner.

1 Note, that our implementation uses roulette wheel selection and only mutation only,
so a single parent is selected. These are incidental design choices: monee does not
preclude the use of other selection schemes and/or recombination operators.

MONEE: Using Parental Investment 573

Algorithm 1. Selecting a parent based on parental investments

for every defined task do // total credits

for every received genome do
creditstask ← creditstask + genome.creditstask;

end for
creditsoverall ← creditsoverall + creditstask;

end for

for every defined task do // exchange rate per task

ratetask ← creditsoverall+numtasks
creditstask+1

;

end for

for every received genome do // parental investment per genome

for every defined task do
genome.rating ← genome.rating + (genome.creditstask · ratetask);

end for

end for

parent ← roulettewheel selection(received genomes) // select and mutate

child ← mutate(parent);
reactivate (child) // revive

4 Experiments

To investigate the monee algorithm, we implement it in a scenario with simu-
lated e-pucks in a simple 2D simulator.2 This scenario places 100 robots in an
arena roughly 330 robots wide, with a number of obstacles (depicted in the lower
right of Fig. 1) and defines seven concurrent foraging tasks. Concurrent foraging
is a variation of regular foraging where the arena is populated by multiple types
of objects to be collected [7], rather than just a single resource. In our case, just
as in [7], these objects are pucks of different colours, and the collection of each
different colour is a different task.

Fig. 1. Distribution of pucks of various colors and
obstacles present in the arena

We use seven differently
coloured pucks, defining seven
similar but different tasks.
The colours are SteelBlue,
OrangeRed, LimeGreen, In-
digo, SeaGreen, SandyBrown
and Siena. The pucks are
spread in the environment
according to a number of
gaussian distributions as in-
dicated in Fig. 1. As can
be seen from the distribu-
tions, some colours (like In-
digo and SandyBrown) are

2 RoboRobo, https://code.google.com/p/roborobo/

https://code.google.com/p/roborobo/

574 N. Noskov et al.

placed very compactly at the corners of the arena, which makes gathering those
a more specialist proposal than for instance SteelBlue pucks, which can be found
scattered across the entire arena. The number of pucks per colour varies between
25 and 150, also indicated in Fig. 1. When placing pucks we make sure that they
do not overlap with existing pucks, robots or other obstacles.

Robots gather these pucks simply by driving over them, and as soon as a
robot has gathered a puck it is immediately removed: the robots do not have
to transport the puck to a particular region. A replacement puck of the same
colour is then randomly placed in the arena, taking the appropriate distribution
into account, to allow the experiment and evolution adequate time.

Each robot is controlled by a single-layer feed forward neural network which
controls its left and right wheels. The inputs for the neural network are the
robot’s sensors: a robot has 8 sensors for each type of puck, as well as 8 sensors
to detect environmental obstacles and other robots. The layout of these sensors
is that of a standard e-puck’s infrared sensors: four face forward, two to the sides
and two face backwards. Because the robots have separate sensors for each type
of puck and the network only has direct connections from input to output, the
task of collecting each type of puck –although very similar– needs to be learned
completely separately.

The robot’s genome directly encodes the neural network’s weights (8 types of
sensor × 8 sensors × 2 outputs plus 2 bias connections plus 4 feedback (current
speed and current rotation to either output) = 134 weights) as an array of reals.

As specified by the monee algorithm, the robots alternate between periods of
explorative block gathering and motionless genome reception. To prevent syn-
chronised cycles among the robots, we add a small random number to each
robot’s fixed lifetime. This forces desynchronised switching between life and re-
birth even though our runs start with all robots perfectly in sync at the first
time-step of their lifetime.

At the end of the egg phase offspring was created by selecting a parent from
the received genomes according to the parental investment and mutating it using
gaussian perturbation with a single, fixed mutation step size σ = 1.

To investigate the response of this system to dynamically changing tasks, we
radically change the distribution of pucks during the runs: halfway through the
run, at 1 million iterations, all distributions generate pucks of a single colour
only: only SteelBlue in half the runs, only Indigo in the others (i.e., either a
common or a rare task remains).

Due to time constraints, we were only able to conduct a limited number of
runs. Therefore, it is not feasible to provide meaningful statistics on the exact
level of performance. The data does suffice, however, to indicate the potential
of the monee approach and to analyse some of the dynamics of a population of
robots that use monee to adapt their behaviour.

5 Results and Analysis

Irrespective of the foraging tasks, the robots must cope with their environment
to be able to procreate: they must at the very least develop controllers that drive

MONEE: Using Parental Investment 575

around the arena to inseminate eggs. Thus, the environment implies that the ro-
bots should move around. The robots should also avoid obstacles, even though
this is not specified as an explicit task. If they do not, the time they spend
trying to drive through an obstacle cannot be spent spreading their genome,
limiting their chances of creating offspring. Therefore, we measure the number
of collisions between robots and obstacles to gauge the level of adaptation to
the environment. Figure 2 shows the total number of collisions for the whole
collective over time. The number of collisions is aggregated over 1000 time steps.
The number of collisions decreases with time. Even though the decrease is not
spectacularly steep, it is a clear indication that controllers do adapt to the en-
vironment without any specifically set goal.

Fig. 2. Number of collisions over time. The
grey lines denote individual runs, the black
line shows the average over the four runs.

Of course, we did specify the for-
aging tasks for the robots. Figure 3
shows the number of pucks harves-
ted against time, here too the number
of pucks gathered is aggregated over
1000 time steps. Clearly, the robots
do evolve effective foraging behaviour:
the number of collected pucks per
time unit steadily increases through-
out the runs. Changing the environ-
ment so that only pucks of a single
colour are generated in most cases actually leads to a slight increase in the total
number of pucks gathered. This seems to indicate that the robots in those runs
do not specialise in a particular task. Possibly, when only a single colour remains,
they are not distracted by pucks of a different colour and they therefore forage
more effectively.

Fig. 3. Number of pucks gathered over time. The grey lines denote individual runs, the
black line shows the average over the four runs. The vertical line indicates the moment
where the task changes and all pucks become a single colour.

To asses the efficacy of monee’s currency scheme to distribute tasks, we also
ran our experiments with the exchange rate mechanism turned off. In this case,
a genome’s chance of selection is related purely to the number of pucks that
it collected without any consideration for their colour. Therefore, genomes that
encode harvesting behaviour for rare colours are at a disadvantage. Figure 4
compares the fraction of SteelBlue, OrangeRed and LimeGreen pucks out of

576 N. Noskov et al.

all gathered pucks with and without the exchange rate mechanism. The plots
only show the first million time-steps because after that only a single colour
remains as described above. With the exchange rate mechanism turned on (Figs.
4(a) and 4(b)). In both cases, the fraction of pucks gathered tends towards the
actual fraction of pucks available: the trend in Fig. 4(a) decreases to the natural
ratio of 0.375, indicating that the easiest task of collecting ubiquitous pucks is
balanced with the harder task of collecting rarer pucks. Similarly, the fractions
of OrangeRed and LimeGreen pucks in Fig. 4(b) slowly seem to increase to level
off at the natural ratio of 0.1875. Figures 4(c) and 4(d) show a different picture.
Without the exchange rate mechanism, the simple task is increasingly favoured
as shown by the continuing rise of the SteelBlue fraction. This is at the expense
of collecting rare colours, as indicated by the decreasing trend in Fig. 4(d).

(a) SteelBlue fractions with auction (b) OrangeRed, LimeGreen fractions
with auction

(c) SteelBlue fractions without auction (d) OrangeRed, LimeGreen fractions
without auction

Fig. 4. Fraction of gathered pucks that are SteelBlue and LimeGreen for runs with and
without the exchange rate auction mechanism turned on. Light grey plots for individual
runs, black lines show the average over the runs. Horizontal black lines indicate the
fraction of all pucks for the respective colours (0.375 and 0.1875).

Fig. 5. Market fraction for verification runs.
Grey lines indicate standard deviation.

To verify the decrease in collecting
rare pucks, we ran a more extensive
experiment. To isolate this claim more
purely we used only 2 colours, red and
blue, in a 1:3 ratio, i.e. 50 blue pucks
and 150 red pucks. This amounts to a
natural collection ratio of 0.25 for blue
pucks. All other experimental para-
meters were kept the same as the pre-
vious experiments, except that we ran
64 repeats.

Figure 5 shows the market fraction
of blue pucks gathered, with and without market. As you can see the ratio for
blue pucks gathered with market trends towards the natural ratio of 0.25, while
the ratio for blue pucks gathered without market steadily drops over the course

MONEE: Using Parental Investment 577

of a run. The difference in ratios between experiments with and without market
is significant (Kolmogorov-Smirnov: p = 3.4867× 10−8, D = 0.5156).

6 Conclusions and Further Research

We have introduced the monee algorithm as a tool to combine the open-ended
and task-driven facets of evolutionary robotics. As a proof of concept, we ran
experiments where robots have to move about an obstacle-strewn arena while
concurrently foraging seven types of puck. The robot controllers were laid out
so that this amounts to having to learn seven distinct tasks.

Monee allows the robots to learn to cope with their environment as shown by
the decreasing frequency of collisions. It also drives task-driven adaptation: the
robots become increasingly proficient at the gathering tasks and a momentous
change where six of the tasks disappear has no ill effect on the collective task
performance. The exchange rate mechanism allows effective division of the tasks
over the collective without favouring easier tasks at the cost of harder ones.

We emphasise once again that these results are based on a very limitednumber of
runs. Nonetheless, they provide a good indication of algorithm behaviour, enough
at least to show that the monee algorithm opens a promising avenue of further
research.We are of course planning to conduct further experiments to provide solid
statistical foundations for the indications we show in this paper. Moreover, we are
keenly interested in researching the intricacies of the economy that results from the
exchange ratemechanism in the face of more dynamic changes in task composition
as well as the results of enforcing some level of task specialisation.

Acknowledgements. This work is supported by: EU-IST-FET project ‘sym-
brion’, no. 216342. The authors would like to thank Nicolas Bredeche and our
partners in the symbrion consortium for many inspirational discussions on the
topics presented here.

References

1. Bianco, R., Nolfi, S.: Toward open-ended evolutionary robotics: evolving element-
ary robotic units able to self-assemble and self-reproduce. Connection Science 4,
227–248 (2004)

2. Bredeche,N.,Montanier, J.-M., Liu,W.,Winfield,A.F.:Environment-driven distrib-
uted evolutionary adaptation in a population of autonomous robotic agents. Math-
ematical and Computer Modelling of Dynamical Systems 18(1), 101–129 (2012)

3. Burtsev, M., Red’ko, V., Gusarev, R.: Model of Evolutionary Emergence of Pur-
poseful Adaptive Behavior. The Role of Motivation. In: Kelemen, J., Sośık, P. (eds.)
ECAL 2001. LNCS (LNAI), vol. 2159, pp. 413–416. Springer, Heidelberg (2001)

4. DeJong, K.: Are genetic algorithms function optimizers? In: Männer, R., Mander-
ick, B. (eds.) Proceedings of the 2nd Conference on Parallel Problem Solving from
Nature, pp. 3–13. North-Holland, Amsterdam (1992)

5. Dorigo, M., et al.: Swarmanoid: a novel concept for the study of heterogeneous
robotic swarms. IEEE Robotics & Automation Magazine (2012) (in Press)

6. Eiben, A.E., Smith, J.: Introduction to Evolutionary Computing. Springer,
Heidelberg (2003)

578 N. Noskov et al.

7. Jones, C., Mataric, M.: Adaptive division of labor in large-scale minimalist multi-
robot systems. In: Proceedings. 2003 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS 2003), vol. 2, pp. 1969–1974 (October 2003)

8. Kurokawa, H., Yoshida, E., Tomita, K., Kamimura, A., Murata, S., Kokaji, S.: Self-
reconfigurable m-tran structures and walker generation. Robotics and Autonomous
Systems 54(2), 142–149 (2006)

9. Lehman, J., Stanley, K.: Abandoning objectives: Evolution through the search for
novelty alone. Evolutionary computation 19(2), 189–223 (2011)

10. Mascaro, S., Korb, K., Nicholson, A.: An alife investigation on the origins of di-
morphic parental investments. In: Abbass, H.A., Bossomaier, T., Wiles, J. (eds.)
Advances in Natural Computation, vol. 3, pp. 171–185 (2005)

11. Menczer, F., Belew, R.: Latent energy environments. In: Santa Fe Institute Studies
In The Sciences of Complexity-Proceedings, vol. 26, pp. 191–210 (1996)

12. Menczer, F., Willuhn, W., Belew, R.: An endogenous fitness paradigm for adapt-
ive information agents. In: CIKM Workshop on Intelligent Information Agents,
Citeseer (1994)

13. Mouret, J.-B., Doncieux, S.: Encouraging behavioral diversity in evolutionary ro-
botics: an empirical study. Evolutionary Computation 20(1), 91–133 (2012)

14. Nelson, A.L., Barlow, G.J., Doitsidis, L.: Fitness functions in evolutionary robotics:
A survey and analysis. Robotics and Autonomous Systems 57(4), 345–370 (2009)

15. Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Tech-
nology of Self-Organizing Machines. MIT Press, Cambridge (2000)

16. Rasmussen, S., Knudsen, C., Feldberg, R., Hindsholm, M.: The coreworld: Emer-
gence and evolution of cooperative structures in a computational chemistry. Phys-
ica D: Nonlinear Phenomena 42(1), 111–134 (1990)

17. Ray, T.S.: Is it alive or is it GA? In: Belew, R., Booker, L. (eds.) Proceedings
of the 4th International Conference on Genetic Algorithms, pp. 527–534. Morgan
Kaufmann, San Francisco (1991)

18. Scheutz, M., Schermerhorn, P.: Predicting population dynamics and evolutionary
trajectories based on performance evaluations in alife simulations. In: Beyer, H.-G.,
O’Reilly, U.-M. (eds.) Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-2005), pp. 35–42. ACM (2005)

19. Schwarzer, C., Hösler, C., Michiels, N.: Artificial sexuality and reproduction of ro-
bot organisms. In: Levi, P., Kernbach, S. (eds.) Symbiotic Multi-Robot Organisms:
Reliability, Adaptability, Evolution, pp. 384–403. Springer, Heidelberg (2010)

20. Trianni, V.: Evolutionary swarm robotics: evolving self-organising behaviours in
groups of autonomous robots, vol. 108. Springer (2008)

21. Trivers, R.: Parental investment and sexual selection. In: Campbell, B.G. (ed.)
Sexual Selection and the Descent of Man. ch.7, pp. 136–179. Biological Laborator-
ies, Harvard University (1972)

22. Ventrella, J.: Genepool: Exploring the interaction between natural selection and
sexual selection. In: Artificial Life Models in Software, pp. 81–96 (2005)

23. Ward, M.: Virtual Organisms: The Startling World of Artificial Intelligence. Pan
Books (2010)

24. Watson, R.A., Ficici, S.G., Pollack, J.B.: Embodied evolution: Distributing an
evolutionary algorithm in a population of robots. Robotics and Autonomous Sys-
tems 39(1), 1–18 (2002)

25. Wischmann, S., Stamm, K., Wörgötter, F.: Embodied Evolution and Learning:
The Neglected Timing of Maturation. In: Almeida e Costa, F., Rocha, L.M., Costa,
E., Harvey, I., Coutinho, A. (eds.) ECAL 2007. LNCS (LNAI), vol. 4648, pp. 284–
293. Springer, Heidelberg (2007)

Virtual Spatiality in Agent Controllers:

Encoding Compartmentalization

Jürgen Stradner1, Heiko Hamann1,2, Christopher S.F. Schwarzer3,
Nico K. Michiels3, and Thomas Schmickl1

1 Artificial Life Laboratory of the Department of Zoology, Karl-Franzens University
Graz, Universitätsplatz 2, A-8010 Graz, Austria

2 Department of Computer Science, University of Paderborn, Zukunftsmeile 1,
33102 Paderborn, Germany

3 Institute for Evolution and Ecology, University of Tübingen, Auf der
Morgenstelle 28, 72076 Tübingen, Germany

Abstract. Applying methods of artificial evolution to synthesize robot
controllers for complex tasks is still a challenging endeavor. We report
an approach which might have the potential to improve the performance
of evolutionary algorithms in the context of evolutionary robotics. We
apply a controller concept that is inspired by signaling networks found
in nature. The implementation of spatial features is based on Voronoi di-
agrams that describe a compartmentalization of the agent’s inner body.
These compartments establish a virtual embodiment, including sensors
and actuators, and influence the dynamics of virtual hormones. We re-
port results for an exploring task and an object discrimination task.
These results indicate that the controller, that determines the principle
hormone dynamics, can successfully be evolved in parallel with the com-
partmentalizations, that determine the spatial features of the sensors,
actuators, and hormones.

1 Introduction

In order to control a robot or a virtual agent some device capable of process-
ing sensor input and generating actuator output is necessary. Besides the clas-
sical way of implementing agent controllers by means of software engineering
or control theory, there is research pursuing an automatic synthesis of agent
controllers. Examples are the fields of evolutionary robotics [11] and adaptive
agents [4]. However, the (semi-) automatic synthesis of agent controllers is still
challenging, especially in complex tasks, which is partially documented by the
absence of complex benchmark tasks in the literature [10].

The standard approach for controller synthesis is based on loosely biologically
inspired methods, such as Artificial Neural Networks (ANN) [11]. Additionally,
also the vast variety of naturally evolved control systems is often reduced to the
central nervous system of vertebrates. However, the relevance of different control
systems in nature is, for example, constituted in unicellular organisms that often
show non-trivial behavior (without a single nerve cell), such as Paramecium [5].

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 579–588, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

580 J. Stradner et al.

One key feature in such chemical driven information processing system is spa-
tiality. Nature can be said to operate on spatiality beginning with the emergence
of compartments in single cells. Biological systems evolved complex membranes
to establish spatiality through compartments [1] which enable eucaryotic cells
to perform multiple functions that would be mutually exclusive without local
separations. These functions are implemented by chemical reactions which rely
on compartmentalization [8]. Additionally, conditions are established which in-
crease the efficiency of specific tasks. This results in a strong connection between
spatiality and functionality.

The relation between function and spatial features is the focus of the work
presented here. In previous works, a bio-inspired approach has been proposed
for controlling robots (‘Artificial Homeostatic Hormone System’) guided by the
examples of signaling networks in unicellular organisms [12]. This paper inves-
tigates spatial effects in those controllers and the potential to boost the perfor-
mance of evolutionary algorithms. We use artificial evolution and spatial parti-
tioning by Voronoi diagrams to investigate the interaction of evolving controllers
and compartments concurrently. The rationale of this approach is that, on the
one hand we create an Euclidean plane of controller features such as sensor or ac-
tuator IDs and on the other hand we also embed the computational process into
this space by the compartment structure and the applied diffusion processes. The
evolutionary algorithm operates within Euclidean space which simplifies, for ex-
ample, the encoding of partitioning sensors into two groups just by adding a line
into the plane. Hence the spatial encoding might offer shortcuts during optimiza-
tion. Operating within continuous space also has the advantage that mutations
typically have small effects which implements an efficient local search.

2 Artificial Homeostatic Hormone Systems

We use controllers based on Artificial Homeostatic Hormone Systems (AHHS)
[13,15]. AHHS are a reaction-diffusion approach. Sensory stimuli are converted
into virtual hormone concentrations that possibly interact with other hormones
and finally control the actuators. Hormone concentrations diffuse through a vir-
tual inner body of the agent, and decay over time. An AHHS controller consists of
descriptions of hormones (production and decay rate, diffusion coefficient) and
of descriptions of rules that define the dependency between sensor input and
the corresponding changes in hormone concentrations, the interactions of hor-
mones, and the mapping of hormone concentrations to actuator control values.
A rule consists of four sub-rules: sensor, linear hormone-to-hormone, nonlinear
hormone-to-hormone, and actuator. The parameters of hormones and rules are
encoded as arrays of floating point numbers which represent the genome. They
are subject to optimization of the controller’s functionality by the evolutionary
algorithm. We use only one hormone and up to 30 rules; for details, see [7].

The main focus here is on spatial properties of AHHS which are defined by
compartments. The compartmentalization structures the virtual inner body of
the controlled agent. Hormone concentrations diffuse from one compartment to
neighboring compartments as described by

Virtual Spatiality in Agent Controllers 581

ΔHc
h

Δt
= Dh∇2Hc

h(t) + C, (1)

for a constant C, that includes all other details described above, whereas the
diffusion process is discrete in the implementation. The main application area
of AHHS is modular robotics [13] where a natural compartmentalization due to
physically connected robot modules exists. Here, we focus on internal compart-
mentalizations within single-module agents.

3 Compartmentalization with Voronoi Diagrams

We propose an approach for evolving spatial features of controllers. This is in ad-
dition to previous works in which only functional features were adapted. We use
Voronoi diagrams to describe compartmentalizations used by AHHS controllers
and apply evolutionary operators similar to [14].

A Voronoi diagram is a decomposition of space, determined by the distances
to a set of given points [16]. The following definition of Voronoi diagrams is
based on Aurenhammer [2]. Let S be a set of points (called sites) in the plane.
For two distinct sites p, q ∈ S the dominance of p over q is defined by:

D(p, q) =
{
x ∈ R2 : |p− x| < |q − x|} . (2)

It is the subset of the plane being at least as close to p as to q. The region of
a site p ∈ S is the portion of the plane of all points dominated by p over the
remaining sites as given by

R(p) =
⋂

q∈S\{p}
D(p, q.) (3)

All regions combined form a polygonal partition called Voronoi diagram. Infor-
mally, a region in a Voronoi diagram is all space that is closer to the site of that
region than to any other sites. The Voronoi edge is the border between regions
and contains points that are equally distant to both regions’ sites.

Here, we use Voronoi diagrams in 2-d space to describe the compartmentaliza-
tion of AHHS. Each Voronoi region corresponds to a compartment of the AHHS
which holds hormone concentrations. The genome for the AHHS is extended by
a Voronoi genome that consists of a set of points in 2-d coordinates which create
the sites of a Voronoi diagram. We directly compute the Delaunay graph of the
Voronoi sites and simulate the hormone diffusion along its connections.

Each sensor and actuator is associated with an anchor point in the plane,
which is its virtual position. Hence, artificial evolution can be applied in two
ways: On the one hand, it is an option to evolve the virtual position of the
sensors and actors of the agent by mutating the anchor points. On the other
hand, the compartment structure can be evolved. Some mutations might be silent
due to their effect being too small for a change in the Delaunay graph. Others,
concerning the compartment structure, are summarized in Fig. 1. Fig. 1(a) shows
the original Voronoi genome to which the following three operators are applied:

582 J. Stradner et al.

1

2

3

4

5

(a) Original Voronoi
diagram.

1

2

3

4

5

(b) A shift, causing
a connection to flip.

1

2

3

4

5

6

(c) Point insertion,
breaking up an ex-
isting connection.

1

2

3

4

(d) Point deletion,
one bridging connec-
tion is created.

Fig. 1. The original Voronoi diagram shown in (a) is mutated by point shifting (b),
point insertion (c), and point deletion (d). Borders of Voronoi regions are solid lines.
Dashed lines are region neighborships, which is the Delaunay graph.

Point Shifting: This mutation translates a site p = (p1, p2) to p′ = (p1 ±
Δ1, p2 ± Δ2) for random variables Δ1 and Δ2. Shifting the point does trigger
a connection flip. For example in Fig. 1(b), instead of the connection between
points 4 and 5, there is now one between 2 and 3.

Point Insertion: When a site p with random coordinates is inserted S′ =
S ∪ {p}, a new compartment is put into the neighborhood of cells. A point
insertion can cause a change to the existing neighborhood connections, as seen
in Fig. 1(c) where the new point 6 breaks up the neighborship between points 4
and 5 by being put in between.

Point Deletion: Removing a site p from the Voronoi genome S′ = S\{p} causes
its region in the Voronoi diagram to disappear and its space being taken over
by its former neighbors. This can lead to new connections as regions that were
separated before might be neighbors now. For example the regions of points 2
and 3 in Fig. 1(d) are neighbors after removing point 5.

We implemented the entire controller approach which is evolvable for func-
tionality and spatiality into agents which had to perform two tasks of different
complexity. In the first task, evolution operates on both Voronoi regions and
the anchor points of sensors and actuators. In the second task, the evolution
of compartmentalizations while keeping anchor points fixed is compared to the
evolution of only space-independent controller features (rules and hormones). In
the following these tasks are described and the results are presented.

4 Exploring Task

In this scenario, the task is to explore a maze consisting of walls, see Fig. 2(a).
The robot depends on its proximity sensors. The arena is divided in patches to
measure the performance of the controller. Fitness is increased by visiting new
patches. The maximally achievable fitness within 5000 time steps is about 5.8.
A simple wall-following behavior is beneficial, but twisting trajectories might

Virtual Spatiality in Agent Controllers 583

(a) trajectory, fixed

0

1

2
3

4

5

6

7

8

9

10

0 1 2

3 4 5 6 7 8 9 10

0 1

(b) Voronoi diagram, fixed

 0.6

 0.8

 1

 3000 3500 4000

H

t

(c) hormone dynamics, fixed

3.
7

3.
9

4.
1

4.
3

Voronoi
fixed

Voronoi
not fixed

fi
tn
es
s
va

lu
e

(d) comparison

01

2

3

4
5

0

1

2

34

5

6

7
8

9

10

0

1

(e) Voronoi diagram, not fixed

 0.4

 0.6

 0.8

 1

 100 200 300 400 500

H

t

(f) horm. dynamics, not fixed

Fig. 2. Analysis of evolved controllers: (a), (b) and (c) fixed sensor/actuator anchor
points, fitness is 4.24; (e), (f) mutated sensor/actuator anchor points. (a) trajectory.
(b), (e) Voronoi diagram, anchor points of actuators (squares), anchor points of sensors
(triangles), Voronoi sites (circles). (c), (f) hormone dynamics for all compartments. (d)
comparison of fixed and not fixed sensor and actuator anchor points.

allow for traversing even more patches. The motivation to investigate this task is
that the connection between the required behavior and the spatial organization of
the controller is evident and we want to test whether our approach discovers this
solution. A proximity has to be created between either the left actuator and the
sensors pointing to the left half or the right actuator and the right-hand sensors
plus an inhibitory effect of high sensor input (i.e., close wall) on the actuator.
We initialize with random rules, mutate, and recombine them. We compare two
variants of evolving spatiality. The first variant is based on predefined anchor
points of sensors and actuators in the Voronoi plane and keeping them fixed
(called ‘fixed’). The second variant is to initialize these anchor points randomly
and then to mutate their positions (called ‘not fixed’). The population size is 200
and the number of generations is 300.

An example of an agent’s behavior controlled by an AHHS with fixed anchor
points presented as a trajectory is shown in Fig. 2(a). The performance compar-
ison due to fitness between controllers using fixed anchor points in the Voronoi
plane and controllers with evolved anchor points is shown in Fig. 2(d). There
is no significant difference. Hence, a predefined setting is not necessary and no
previous knowledge is needed in this task and effective behaviors can be evolved.

In the following, we analyze two evolved controllers: one with fixed anchor
points and one with evolved anchor points. In both approaches effective con-
trollers were evolved. We start with the controller that was evolved with fixed

584 J. Stradner et al.

anchor points. The two anchor points of the actuators were placed in the upper
third of the Voronoi plane, see squares in Fig. 2(b).

The anchor points of the proximity sensors are placed in one line in the lower
third: triangles S3 through S10 (sensors S0, S1, S2 are not in use here). The
evolved compartmentalization shown in Fig. 2(b) is almost symmetric and effec-
tive because it combines the sensors S3, S4, and S5, that perceive the right side,
in compartment 0 which is neighboring compartment 3 which contains the right
actuator A0. The sensors S8, S9, and S10, that perceive the left side, are com-
bined in compartment 6 which is neighboring compartment 2 which contains the
left actuator. Summarizing the functionality of the evolved rules, the proximity
sensors to the left control the left actuator inhibitorily (i.e., left wheel slows
down when approaching a wall) while the right actuator always goes full speed.
The trajectory contains left turns only. The hormone concentration is close to 1
in situations the agent is far from a wall and it is much lower when approaching
a wall. In Fig. 2(c) drops in the hormone concentrations of all compartments are
seen which are associated with approaches to walls.

The main feature of the compartmentalization for the case of evolving the
anchor points as well, see Fig. 2(e), is that proximity sensor S5 (perceiving walls
to the right) and the right actuator A0 are both in compartment 3. They are
separated from the compartment containing the left actuator A1 by one other
compartment. Similarly the proximity sensors at the left side of the agent (S7,
S8, S9), which could disturb the sensor input from S5, are also separated by
at least one other compartment. The evolved rules are inhibitory again. The
actuation of the wheels is maximal and the hormone concentration is 1 when
walls are far, see Fig. 2(f). Once a wall is perceived on sensor S5 the left actuator
is not only slowed down but even turned to backward motion. This allows for a
small turning radius in the right turns (trajectory not shown).

5 Object Discrimination Task

This scenario is an active categorical perception task, or short: object discrimi-
nation task, following [3]. Related works are [6,9]. The robot moves in 1-d (left
and right on an interval [0, 1]) while objects are falling down from top. The ob-
jects are either circles with different diameters or lines with different lengths.
The robot has to move as close to circles’ impact positions as possible while it
has to avoid those of lines. It has seven proximity sensors pointing to the top,
distributed over an angle of π/6. At the beginning of an evaluation the robot is
placed at (0.5, 0). The objects’ initial position is (x, 2) with uniformly randomly
distributed x ∈ [0.1, 0.9] and their lengths/diameters are uniformly randomly
distributed over [0.01, 0.19]. The robot moves only horizontally with a speed up
to ±0.05 units per step. The objects move only vertically with constant speed
of −0.03 units per step. Hence, they touch the ground after 67 steps. We have
a population of 100 and 300 generations. The fitness of one evaluation is the
distance dline between robot and line or 1 − dcircle in the case of a circle. Con-
troller’s total fitness is an average of 60 evaluations. The motivation for this task

Virtual Spatiality in Agent Controllers 585

0.
55

0.
65

0.
75

Voronoi static

fi
tn
es
s
va

lu
e

(a) comparison of best evolved con-
trollers with and without evolving com-
partments based on Voronoi diagrams,
n = 40 samples each

2
4

6
8

0 50 100 150 200 250 299n
u
m
.
co
m
p
a
rt
m
en

ts

(b) number of compartments of the best
evolved controllers, n = 20 samples

Fig. 3. Object discrimination task, comparison of best fitness between evolving com-
partments and not evolving them and increase of compartments for the former case

is that the connection between required behavior and spatial controller features
is not evident because it seems beneficial to consider the input of all sensors
equally. Hence, we want to investigate whether a spatial approach can still be
effective in this kind of tasks. We focus on evolving a) the functional features of
an AHHS controller only (hormone and rule genomes), in comparison to b) ad-
ditionally evolving compartmentalization. Given appropriate parameter settings
of the AHHS, satisfying solutions for this task can be evolved with and without
evolving compartmentalizations. In this work, we are however interested in the
differences between these two approaches. Therefore, we restrict the settings to
minimal AHHS controllers that are barely able to solve the task. That way we
can find substantial differences in these two methods based on the maximally
achieved fitness. We allow only one hormone and four rules for the AHHS con-
trollers and we initialize it with one compartment. In a first set of 40 runs we
allowed the evolution of compartmentalizations, hormones, and rules. In the sec-
ond set of 40 runs we did not evolve compartmentalizations but only hormones
and rules. The results are shown in Fig. 3(a). The ‘Voronoi’ approach turns out
to be significantly better (Wilcoxon rank sum test, p = 0.03947). As stated above
the system is initialized with one compartment. When the compartmentaliza-
tion is allowed to be evolved, new compartments are generated by adding new
Voronoi points (existent points are mutated). This use of increase is shown in
Fig. 3(b). Since there is no explicit cost imposed on the number of compartments
the total number is expected to increase; also because new compartments at the
margins have small effects on the robot behavior.

About 65% of runs return a best controller with several compartments. In
Figs. 4(a and b) we give two typical representatives of these evolved compart-
mentalizations. There seems to be a tendency to include the actuator in a com-
partment with some of the outside sensors. We can only speculate about the
cause, it seems that it is relevant to react especially to objects that are not
directly above the robot. The analysis of the evolved controllers is difficult in
spite of the minimality of the AHHS controllers. In the following we analyze a

586 J. Stradner et al.

0

1

2
3

0

1
2 3 4

5

6

0

(a) standard task

0

1

0

1
2 3 4

5

6

0

(b) standard task

0

1

2 3

4

5

6

7

8

9

10

0

1
2 3 4

5

6

7 80

(c) noisy sensors

2

3
4

5

0

1
2 3 4

5

6

7 80

(d) noisy sensors

Fig. 4. Typical evolved compartments of the best controllers for the standard object
discrimination task and with two additional, disturbing noisy sensors (S7 and S8)

behavior that is not prominent in its performance but in its simplicity of anal-
ysis. This controller is able to catch most of the circles that appear close to the
middle and is good in avoiding lines appearing in the right half of the arena.
Rule 1 mainly generates small positive actuator input for a huge hormone con-
centration interval H > 0.1. Rule 2 reduces hormone intensively for sensor input
S > 0.468 and additionally generates big negative actuator input for H > 0.468.
Rule 3 is mostly ineffective because it only produces small actuator input for
H ≈ 0.5 which occurs only shortly in typical runs of this controller. Finally,
rule 4 is ineffective because its trigger window width is set to 0. The resulting
behavior is seen in Fig. 5. This controller pursues a simple strategy of staying
centered for big sensor input (S > 0.468) and moving to the left end of the
arena if the sensor input was not big enough until t ≈ 35. Due to the extension
in the y-dimension of circles this seems to be a possible strategy which, however,
has a quite high ratio of mismatches. In Fig. 5(b) the hormone dynamics for
two situations, a circle or a line at position 0.45, is given. The horizontal line
gives the threshold of rule 2 (0.468). In case of the circle, sensor input is big
(S > 0.468) before t = 35 and the hormone concentration in both compartments
is reduced to zero which keeps the robot moving very slowly (due to rule 1).
In case of the line, sensor input stays smaller (S < 0.468) before t = 35, the
hormone concentration increases, when H > 0.468 the robot starts to move fast
to the left due to rule 2.

In order to document this system’s capabilities of separating sensors and ac-
tuators from each other by compartmentalizations we have done additional test
runs. For this we have extended the object discrimination task by adding two
more sensors: S7 and S8. We have placed them in the lower third of the Voronoi
diagram to the left and the right of the actuator. These two new sensors, how-
ever, are of no purpose because they only exhibit random uniform noise over
the full interval [0, 1]. When evolving controllers for this configuration we would
expect that it is beneficial to separate sensors S7 and S8 from the actuator by
introducing appropriate compartments. Indeed, this was observed in several of
our test runs, see Figs. 4(c and d). In the case of the example shown in Fig. 4(c)
most of the compartments containing sensors are directly neighboring the actu-
ator’s compartments. Sensor S7 is as close to the actuator as several purposeful
sensors. Still, by combining sensors S2 through S5 in one compartment might

Virtual Spatiality in Agent Controllers 587

 0

 20

 40

 60

 0 0.2 0.4 0.6 0.8 1

agent, avoid line
agent, catch circle

object position

ti
m
e
t

space
(a) agent trajectories

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60

avoid line, c0
avoid line, c1

catch circle, c0
catch circle, c1

h
o
rm

o
n
e
co
n
c.

H

time t
(b) hormone dynamics

Fig. 5. Agent trajectories and hormone dynamics of the analyzed controller for the
two cases (avoid line and catch circle)

help to have a bigger effect on the actuator than sensor S7. Sensor S8 is sepa-
rated effectively with a distance of two compartments. The example shown in
Fig. 4(d) is better in separating the noisy sensors by pooling two purposeful
sensors (S5 and S6) with the actuator in one compartment. In addition, a low
diffusion rate minimizes the disturbance by the noisy sensors.

6 Conclusion

We have presented a concept of artificial spatiality for robot controllers inspired
by compartmentalizations in natural cells. In the first task the performance
of two aspects of spatiality were compared: the topology of the compartments
vs. the virtual positions of the agent’s sensors and actuators. This is indicated
by evolving useful, symmetric compartments in case of fixed sensor/actuator
anchor points, see Fig. 2(b) and especially in the case of evolved sensor/actuator
anchor points where functionally associated actuators and sensors were put close
together and separated from possibly perturbing sensors, see Fig. 2(e).

This is comparable to natural systems that learn while the position of their
actuators change, for example, due to growing processes. In contrast to the opti-
mization process in living systems, in artificial systems the evolutionary change
of the inner morphology (i.e., the controller topology) can serve as a seed to op-
timize functionality. The combined evolution of morphology and function allows
for alternative pathways through search space to desired agent behaviors that
seem to improve the overall performance of the evolutionary approach. For exam-
ple, the separation of sensors into two groups is easily achievable by the Voronoi
approach (e.g., as seen in Fig. 4(b)) while it is more difficult to be evolved in a
more abstract search space based (e.g., on sensor IDs). An additional advantage
of evolving compartmentalizations is the easy visualization and, thus, the possi-
bility of understanding the controller’s mode of operation intuitively compared
to sometimes complex networks of causality in the evolved logic of AHHS rules.

The idea to apply spatial features to information processing is rather new
in artificial agents. Our approach is based on concepts which are known from

588 J. Stradner et al.

nature and well tested by natural evolution. Here we were able to show promising
results based on a spatial approach in autonomous agents. In future work, we
will compare our approach to standard approaches of evolutionary robotics and
investigate the advantage of spatiality in controllers for complex tasks.

Acknowledgments. This work is supported by: EU-IST-FET project ‘SYM-
BRION’, no. 216342; EU-ICT project ‘REPLICATOR’, no. 216240.

References

1. Alberts, B.: Molecular biology of the cell. Garland Pub. (1989)
2. Aurenhammer, F.: Voronoi diagrams — a survey of a fundamental geometric data

structure. ACM Computing Surveys 23(3), 345–405 (1991)
3. Beer, R.D.: The dynamics of active categorical perception in an evolved model

agent. Adaptive Behavior 11(4), 209–243 (2003)
4. Beer, R.D., Gallagher, J.C.: Evolving dynamical neural networks for adaptive be-

havior. Adaptive Behavior 1(1), 91–122 (1992)
5. Bray, D.: Wetware: A Computer in Every Living Cell. Yale University Press (2009)
6. Dale, K., Husbands, P.: The evolution of reaction-diffusion controllers for minimally

cognitive agents. Artificial Life 16(1), 1–19 (2010)
7. Hamann, H., Schmickl, T., Crailsheim, K.: A hormone-based controller

for evaluation-minimal evolution in decentrally controlled systems. Artificial
Life 18(2), 165–198 (2012)

8. Lodish, H., Berk, A., Zipursky, L.S., Matsudaira, P., Baltimore, D., Darnell, J.E.:
Molecular Cell Biology, 5th edn. W.H. Freeman and Company (2003)

9. Moioli, R., Vargas, P.A., Husbands, P.: Exploring the kuramoto model of coupled
oscillators in minimally cognitive evolutionary robotics tasks. In: WCCI 2010 IEEE
World Congress on Computational Intelligence - CEC IEEE, pp. 2483–2490 (2010)

10. Nelson, A.L., Barlow, G.J., Doitsidis, L.: Fitness functions in evolutionary robotics:
A survey and analysis. Robotics and Autonomous Systems 57, 345–370 (2009)

11. Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Tech-
nology of Self-Organizing Machines. MIT Press (2000)

12. Schmickl, T., Hamann, H., Crailsheim, K.: Modelling a hormone-inspired controller
for individual- and multi-modular robotic systems. Mathematical and Computer
Modelling of Dynamical Systems 17(3), 221–242 (2011)

13. Schmickl, T., Hamann, H., Stradner, J., Crailsheim, K.: Hormone-based control
for multi-modular robotics. In: Levi, P., et al. (eds.) Symbiotic Multi-Robot Or-
ganisms: Reliability, Adaptability, Evolution, pp. 240–263. Springer (2010)

14. Schoenauer, M., Kallel, L., Jouve, F.: Mechanical inclusions identification by evo-
lutionary computation (1996)

15. Stradner, J., Hamann, H., Schmickl, T., Crailsheim, K.: Analysis and implemen-
tation of an artificial homeostatic hormone system: A first case study in robotic
hardware. In: The 2009 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS 2009), pp. 595–600. IEEE Press (2009)

16. Voronoi, G.: Nouvelles applications des paramétres continus à la théorie des formes
quadratiques. Journal für Reine und Angewandte Mathematik 133, 97–178 (1907)

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 589–598, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Evolving Counter-Propagation Neuro-controllers
for Multi-objective Robot Navigation

Amiram Moshaiov and Michael Zadok

Faculty of Engineering, Tel-Aviv University, Israel
moshaiov@eng.tau.ac.il, michaelzadok@walla.co.il

Abstract. This study follows a recent investigation on evolutionary training of
counter-propagation neural-networks for multi-objective robot navigation in
various environments. Here, in contrast to the original study, the training of the
counter-propagation networks is done using an improved two-phase algorithm
to achieve tuned weights for both classification of inputs and the control func-
tion. The proposed improvement concerns the crossover operation among the
networks, which requires special attention due to the classification layer. The
numerical simulations, which are reported here, suggest that both the current
and original algorithms are superior to the classical approach of using a feed-
forward network. It is also observed that the current version has better conver-
gence properties as compared with the original one.

1 Introduction

In many Evolutionary Robotics (ER) studies either an Elman or a simple Feed-
Forward Network (FFN) is used (e.g., [2]). Here, following our recent investigation in
[9], we deviate from that trend by using a Counter-Propagation Network (CPN). CPN
includes a self-organizing (instar) network of Kohonen [7] as a first layer and a
Grossberg’s outstar net [3] as the second one. Such an approach differs from the
common methods, as it involves not only training of a mapping from sensed informa-
tion to actions, but also organization of the sensed information into classes based on a
similarity measure. As noted in [9], CPN has not been used previously in ER studies
(to the best of our knowledge). To employ CPN in an evolutionary context we devised
a special training approach [9]. We have postulated, in [9], that the use of a CPN,
backed with multi-objective search, may help reducing the need for a semi-manual
approach. To back up this conviction, reference [9] provides a demonstration that the
proposed CPN approach deals well with an environment, which was adopted from the
study on a semi-manual approach in [4]. It has been concluded in [9] that the trained
CPN-based Neuro-Controllers (NCs) may adapt well to a navigation problem and an
environment, which differ from the trained ones. While presenting the potential of the
use of a CPN approach to ER, our previous study in [9] includes no comparison of the
proposed CPN approach with the classical approach of using feed-forward networks.

This paper follows the approach in [9]. It provides a modified algorithm, which is
based on the observation that crossover among CPNs may have a detrimental effect

590 A. Moshaiov and M. Zadok

on the results. Next, the results obtained by the new algorithm are compared with
those achieved using the algorithm of [9]. Moreover, an additional comparison is
carried out with results obtained using a feed-forward approach. We restrict the cur-
rent comparisons to the trained environment; the reader is referred to the study in [9],
which elaborates on the generality and adaptation qualities of the controllers obtained
by the proposed approach.

The rest of this paper is organized as follows. Section 2 provides some references
and details relevant to the foundations of our approach. It is followed by a methodol-
ogy, in section 3, which describes the details of the current search approach for the
Pareto-optimal CPN-NCs. The results of the numerical simulations are presented in
section 4. Finally, the conclusions from this study are provided in section 5.

2 Background

In the last decade, with the availability of Multi-Objective Evolutionary Algorithms
(MOEAs), e.g. [1], several Multi-Objective ER (MO-ER) studies employed MOEAs
to obtain Pareto-optimal NCs based on contradicting objectives (see a review in [8]).
Pareto-based search deals with finding Pareto-optimal set, or its numerical approxi-
mation, using dominance relation. A Pareto-optimal set includes non-dominated solu-
tions from the feasible search space given no a-priori preferences on a finite set of
objectives which are contradicting. The Pareto-front is the set of performance vectors
in objective space of all solutions of the Pareto-optimal set.

The usefulness of diversity, as obtained by a Pareto-optimality approach, has been
recently demonstrated, in [10] and [6], for the bootstrap problem that is common in
single objective ER. Such studies suggest that reaching diverse behaviors for one
problem may produce useful (initial) solutions for another problem. The motivation to
use a multi-objective approach is two-fold. First, as in [10] and [6], it provides diver-
sity, which may help coping with numerical problems. The second, as in [8] and simi-
lar studies, it provides useful controllers for different scenarios. In particular, similar
to [8], we use the trade-off between safety and target-attraction to produce a diversity
of controllers, with remarkable different behaviors. To obtain diverse solutions we
employ NSGA-II, [1], a well known MOEA, as the evolutionary search mechanism.
Due to the permutation problems the use of a genetic algorithm is not recommended
for the evolution of neural-networks [11]. Hence, as pointed out in [8], NSGA-II may
not be the most optimal search algorithm for NCs, and a modified version, as used in
[8], may be better. Yet NSGA-II proved to be useful for our current demonstration
purposes.

The original idea of mixing Kohonen and Grossberg layers is attributed to Hecht-
Nielsen [5]. While a promising concept, their use is not as common as that of FFNs.
With increasing interest in cognitive robotics, the type of training should shift, from
simple behavior-based mappings of sensors to actuators, to more complex approach-
es. CPNs are one such possibility, which has not been investigated in the context of
ER. The advantage of using CPNs is that, once trained, they provide knowledge about
the environment in the form of input classes. In regular training of CPNs there are two

Evolving Counter-Propagation Neuro-controllers for Multi-objective Robot Navigation 591

phases. The first is to cluster the inputs, and the second is to create a mapping by the
use of a supervised approach. The unsupervised learning, in the Kohonen self orga-
nizing layer, is commonly based on neighborhood functions. This means that weight
adjustments are done not only for the winner neuron but also to its neighboring units
[7]. Due to the lack of a supervisor in ER, and due to the learning by interactions with
the environment, there is a need to re-examine existing CPNs learning algorithms. In
particular, there is a need to investigate various alternatives to evolutionary training of
CPNs, and to compare it with other approaches. In [9], we have suggested one possi-
ble pseudo-code that can be used either with a single objective ER or for MO-ER. As
shown in [9], the obtained solutions support coping with shifts from one environ-
ment/problem to the other. Here we modify the algorithm of [9] to improve the
results.

3 Methodology

3.1 Simulated Robot

To study the possible use of CPN in the context of ER, we followed the simulation
details of the robot kinematics, and multi-objectives, of [8], while using environments
as in [4]. As in [8] and in [9], we concentrate on producing a simulation-based popu-
lation of NCs. Such solutions may be considered as candidates for use, with adapta-
tion, in actual testing, which is likely to be required for coping with un-modeled
aspects of the simulation.

The robot model is based on the miniature 5.5 cm diameter Khepera robot, as in
[2] and in [8], with the following modifications. A total of 16 simulated sensors is
used. Eight simulated IR sensors identify obstacles (walls) and the others identify
targets. The sensors are located, as pairs of an obstacle and a target sensor, at eight
locations as shown in figure 1. All simulated IR sensors have the same characteristics.
The max range of any IR sensor is 5cm and its span angle is 60 (as shown for one of
them).

Fig. 1. Robot and sensors

00

-640

 640
 38.50

 -38.50

 -130

 130

-1670

1670

wheel

motor

592 A. Moshaiov and M. Zadok

The target sensors have a broader span of 300 (shown for the front sensors). The
max range of the target sensor is simulated to be 100cm, which ensures target sensing
anywhere in the maze. The sensors do not have a "blind range," and their output range
is [0, 1]. The zero represents an object found at the max range, and the one is for the
case when the sensed object is at the robot periphery. In the current implementation
no noise is added to the simulated sensors, which is left for future research.

The simulated robot model converts motor commands on rotational speeds of the
robot wheels from the outputs of the NNs into simulated robot motions. The range of
the wheel speeds is scaled into the range [-0.5, 0.5]. The wheels radius is taken as
1cm. The time-step of the simulation is set to 5sec, and the robot moves 2.5cm per
step at maximum speed.

3.2 Trained Environment

The trained environment, which is depicted in figures 2, is based on [4]. According to
[4], the trained environment concerns nine different types of robot situations such as a
wide corridor, a narrow corridor, the need to turn right/left, pass freely without walls,
etc. In contrast to [4], our approach does not use separated simple environments for a
semi-manual training. Rather, we use the complex environment directly for a non-
manual evolutionary training.

We use several targets that the robot should reach. The targets are designed to spe-
cific positions including: (90.0, 6.0), (67.5, 6.0), (60.0, 15.0), (60.0, 42.0), (90.0,
45.0), (70.5, 51.0), (60.0, 19.5), (90.0, 15.0), (75.0, 30.0), (51.0, 15.0), (45.0, 40.5),
(30.0, 55.5), (3.0, 45.0). These are shown, using dots, in figure 2. Spreading the tar-
gets aims to create an evolutionary pressure towards the different regions of the maze.
In addition, we allocated a place in the maze with no targets. This supports simulating
areas that are less desirable to be reached. For training we have used four different
robot start-points located at (95, 5), (95, 45), (15, 5), (15, 45). In the two left points
the robot is facing towards the right and vice versa.

Fig. 2. Trained environment

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

X[cm]

Y
[c

m
]

Evolving Counter-Propagation Neuro-controllers for Multi-objective Robot Navigation 593

3.3 Simulated Neuro-controllers

The simulated NCs maps sensors' information (input) into appropriate motor com-
mands (output). The simulated CPN has two layers: the input layer connects the 16
sensors to a hidden layer. The hidden layer has 9 neurons that connect to two neurons
in the output layer (motor commands). The reason of using a hidden layer of 9 neu-
rons is that we try to compare it with the MNN (Modular-Neural-Network) of [4]. The
9 neurons follow the 9 classifications used in [4]. We use a 163 length vector to de-
fine each NC. This is based on: 16 weight inputs multiply by 9 neurons in the hidden
layer + 9 weight neurons multiply by 2 outputs neurons. An additional weight is used
to determine the slope of the sigmoid for the activation functions. No bias weights are
used. In the current implementation of the CPN it has been observed that there is no
need to adjust the weights of neighboring neurons, hence only the weights of the
winner are adjusted.

3.4 Objective Functions

Two fitness functions are used (marked as F1, F2). The details are similar to [8]. The
first function F1, which is based on [2], aims at fast and straight motions with obstacle
avoidance without any specific destination. F1 is given as follows:

10

10

10

max_

)1()1(
_

1
1

≤≤
≤Δ≤
≤≤−Δ−

=

=

I

v

V

step

IvV

F
jjj

stepact

j

Where:
• V is the absolute value of the sum of the rotational speeds of wheels. V is

high when the robot is moving fast (forward or backward).
• vΔ is the absolute value of the difference between the wheel speeds.

vΔ−1 is high when the robot is moving straight without making any turn
during the step.

• I is the normalized activation value of the sensor with the highest value. I is
high if the sensors perceive an obstacle.

F1 is calculated as an average over the maximum allowable number of steps of the
accumulated score. The accumulation, however, is over the actual number of steps
which are performed over a run of any particular NC. The function can have any val-
ue between 0 and 1, with the aim to be maximal. The second objective, F2, concerns
reaching targets (e.g., food-targets). F2 is defined as follows:

Where:

• d is the distance from our robot to the nearest target among the remaining
targets at the current step.

• H is the score that the robot gets when it reaches a target. Here H is set to 50.

+

==
= else

d

etthitifH
f

step

f
F

stepact

j
1

1

arg
;

max_ 2

_

1

2
2

594 A. Moshaiov and M.

Similar to F1, F2 is based o
number of steps of the pro
reduces scores to non-movi
the robot, it is eliminated
they re-appear. Then the p
does not reach a maximum

3.5 Evolving CPN

As explained in [9], trainin
separated training issues. T
phase evolutionary search
involves the left side and vi

The primary difference

phase the population is div
merged into one population

. Zadok

on averaging of performances over the maximum allowa
ocess, and summing over the actual number of steps. T
ing robots at the training phase. Once a target is touched
(consumed). After the robot finishes touching all targ

process of reaching targets continues as long as the ro
allowable number of steps.

ng a CPN requires special care due to the existence of t
To achieve the required learning we have proposed a tw

(in [9]), as depicted in figure 3, where the 1st ph
ice versa.

Fig. 3. Pseudo-code Description

e between the 1st phase and the 2nd one is that in the
vided into groups, whereas in the 2nd one the groups
n. In the 1st phase each group has a different starting po

able
This
d by
gets,
obot

two
wo-
hase

e 1st
are

oint

Evolving Counter-Propagation Neuro-controllers for Multi-objective Robot Navigation 595

in the environment; this separation supports learning, at an early stage, the various
classes of inputs that the entire environment contains. The proposed procedure can be
used for both single and multi-objective problems.

Referring to figure 3, the main difference from the pseudo-code of [9] is in the
cross-over operation of the 2nd phase, as further described below. At the beginning of
the 1st phase, a random population is initialized with N individuals. Each individual is
a CPN-based NC with a fixed structure, were both weights of the Kohonen layer and
weights of the Grossberg layer are sought. Four groups are used in the current study,
corresponding to the four start-points of the trained environment, as described in the
previous section. During the 1st phase individuals evolve only within the group. In our
study we set N=56 to be divided into four groups of 14 individuals each. A "Termina-
tion Group" criterion is used to terminate the 1st phase of the algorithm after the com-
pletion of the evolution of the four groups. A Termination Criterion #1 is used to
terminate the evolution of each group. In the 1st phase a maximal number of genera-
tions is used (50 generations per group). At each generation each individual performs
two consecutive sequences of interactions with the environment, both starting at the
corresponding start-point of its group. The purpose of the 1st sequence (Interact # 1a)
is to update the weights of the Kohonen layer, whereas the 2nd sequence supports
updating the Grosberg layer. In the 1st sequence the updates are done at each step of
the sequence. The final Kohonen updates form Interact # 1a are used for the 2nd se-
quence, which aims to obtain the performances F1 and F2 of the individuals based on
their updated version of the Kohonen layer. In the 2nd sequence no weight update is
done during the sequence of interactions with the environment. Each robot finishes
the interaction (#1a and #1b) either due to an obstacle or by reaching a pre-defined
number of steps (200 steps in the current implementation). Following the interactions
each of the groups' individuals is evaluated using F1 and F2 based on the accumulated
scoring during Interact # 1b. In the current implementation the search in EA # 1 is for
the Pareto-optimal set and front using NSGA-II based on [1]. The results include
offspring population (of the group) to be evaluated in the next group generation of the
1st phase. During the EA # 1 evolutionary stage, weights of the Grossberg layer are
tuned, whereas the Kohonen layer is kept fixed (no crossover or mutation). For the
recombination in the Grossberg layer we used 100% probability. As typically de-
picted in figure 4, we employed: (Wyd',Wya')=SBX(Wyd,Wya); (Wzd',Wza') =
SBX(Wzd,Wza). The mutation in the Grossberg layer is done with polynomial muta-
tion. Once the 1st phase is terminated, the 2nd one starts with a new counting of the
generation number, and with a new termination criterion. The 2nd phase starts with
uniting the groups into one population. In Interact # 2a updates are done only for the
offspring. Following Interact # 2b, F1 and F2 are calculated for each individual based
on the accumulated scoring. In contrast to the crossover procedure of [9], in EA # 2
we employ a special mating procedure, where crossover is done by comparing classi-
fication neurons (Kohonen neuron weight vectors) in the mating.

596 A. Moshaiov and M. Zadok

Fig. 4. Mating and mutating CPNs

parents to ensure that crossover is done among weights that are connected to Kohonen
neurons that represent the "same" class. First, one neuron of one of the parents is se-
lected, and crossover is performed with the closest neuron in the second parent. Next,
another neuron of the first parent is selected and crossover is performed with the clos-
est neuron that wasn't selected before. This procedure is continued for the rest of the
neurons of the Kohonen layer. In the above, the term crossover between two neurons
means that the Grosberg weights from the neurons are crossed-over using the SBX
approach. The crossover operation is used here with a chance of 50%. No mutation
used in the Kohonen layer. The mutation in the Grossberg layer is done with poly-
nomial mutation. Figure 4 depicts an example of two parents (top) and their two
offspring (bottom). Assume that among neurons D, E and G, neuron D has the closest
weight vector (Kohonen layer) to the weight vector of neuron A. Similarly assumes G
is the closest to B and E is the closest to C. Crossover occurred only for the first two
cases due to the 50% chance for crossover. A "Termination criterion # 2" is used to
terminate the second phase of the algorithm. In our study a maximal number of gener-
ations is used (currently 250).

4 Experimental Study

As discussed in [9], due to a local Pareto phenomenon, different runs are expected to
produce different fronts. To compare the results we use the s-measure for the fronts,
and plot the statistical results as boxplots from 30 different runs per each type of an
algorithm. Figures 5, 6, 7, present the results for the old CPN of [9], for the current
(new) CPN and for FFN, respectively. Comparing the medians it is concluded that
both the old and the new CPN provide better results than FFN. Also, it is clear that the
new version of CPN converges faster than the old one. Figures 8 & 9 show the best

C

Wc1 Wc2 Wc3

A

Wa1 Wa2 Wa3

B

Wb1 Wb2 Wb3

G

Wg1 Wg2 Wg3

D

Wd1 Wd2 Wd3

E

We1 We2 We3

Y Z Y Z

C

Wc1 Wc2 Wc3

D

Wd1 Wd2 Wd3

G

Wg1 Wg2 Wg3

B

Wb1 Wb2 Wb3

A

Wa1 Wa2 Wa3

E

We1 We2 We3

Y

Wyd' Wzd'

Z Y Z

Wya' Wza'

Wya Wza Wyd Wzd

Parent #1 Parent #2

Evolving Counter-Propagation Neuro-controllers for Multi-objective Robot Navigation 597

F2 paths, which are obtained using FFN and CPN respectively. These paths are ob-
tained using 400 allowable steps. The superiority of the CPN controller is clearly
observed when comparing figures 8 &9. From figures 8 & 9, it becomes evident that
the best F2 controller runs the robot into narrow places, on the expense of safety,
while striving to reach all targets. Figure 10 shows a "typical best F1 path", as ob-
tained by both CPN and FFN. When observing figure 10, recall that the concept be-
hind the best F1 controller is to have a safe-straight moving robot. This means that the
robot is expected to be attracted to spacey areas, where it can move straight and far
from obstacles, rather than to the targets. In contrast to figures 8 & 9 the shown path
of figure 10 clearly avoids narrow areas where most of the targets are. The best F1
controller "prefers" using the available steps on the larger, hence safer, yet empty
room.

Fig. 5. Results of old-CPN Fig. 6. Results of new-CPN

Fig. 7. Results of FFN Fig. 8. Best F2 path of FFN

Fig. 9. Best F2 path of CPN Fig. 10. Best F1 typical path CPN/FFN

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

10 X GENERATIONS

S
 m

ea
su

re

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
10 X GENERATIONS

S
 m

ea
su

re

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
10 X GENERATIONS

S
 m

ea
su

re

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

X[cm]

Y
[c

m
]

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

X[cm]

Y
[c

m
]

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

X[cm]

Y
[c

m
]

598 A. Moshaiov and M. Zadok

5 Conclusions

The main conclusion of [9] is that CPNs cope well with evolving controllers for mul-
ti-objective navigation problem and with adaptation to new environment. While in [9]
the primary focus is on the demonstration of the proposed algorithm, here, for the first
time, it is compared with an FFN approach. Based on the medians of the results, both
the CPN version of [9] and the current one appear superior to FFN. In addition, the
current CPN version appears to have a faster convergence when compared with the
older version. Due to the large variances, further runs and tests are needed to statisti-
cally substantiate these conclusions.

The study in [9] and its extension here appear to be the first to employ CPNs for
ER applications. Much work is left on the methodology and on the computational
aspects of evolving CPNs as compared with current approaches. Future studies should
include issues such as: (a) more challenging problems, (b) studying the classification
scheme with increasing complexity, and (c) actual implementation.

References

1. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.A.: A Fast and Elitist Multi Objective
Genetic Algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

2. Floreano, D., Mondada, F.: Evolution of Homing Navigation in a Real Mobile Robot.
Systems, Man and Cybernetics, Part B 26(3), 396–407 (1996)

3. Grossberg, S.: Studies of Mind and Brain: Neural Principles of Learning, Perception,
Development, Cognition, and Motor Control, SERBIULA, Venezuela (1982)

4. Han, S.J., Oh, S.Y.: An Optimized Modular Neural Network Controller Based on Envi-
ronment Classification and Selective Sensor Usage for Mobile Robot Reactive Navigation.
Neural Comput. Appl. 17(2), 161–173 (2008)

5. Hecht-Nielsen, R.: Counterpropagation Networks. Applied Optics 26(23), 4979–4984
(1987)

6. Israel, S., Moshaiov, A.: Bootstrapping Aggregate Fitness Selection with Evolutionary
Multi-objective Optimization. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nico-
sia, G., Pavone, M. (eds.) PPSN 2012, Part II. LNCS, vol. 7492, pp. 52–61. Springer,
Heidelberg (2012)

7. Kohonen, T.: Self-Organizing Feature Maps and Abstractions. In: 3rd Int. Conf. on
Artificial Intelligence and Information-Control Systems of Robots, pp. 39–45 (1984)

8. Moshaiov, A., Ashram-Wittenberg, A.: Multi-objective Evolution of Robot
Neuro-Controllers. In: CEC 2009, Proceedings of the 11th Conference on Congress on
Evolutionary Computation, pp. 1093–1100. IEEE Press, Piscataway (2009)

9. Moshaiov, A., Zadok, M.: Evolution of CPN Controllers for Multi-objective Robot
Navigation in Various Environments. In: Proc. of the Int. Workshop on Evolutionary and
Reinforcement Learning for Autonomous Robot Systems, ERLARS (2012)

10. Mouret, J.B., Doncieux, S.: Overcoming the Bootstrap Problem in Evolutionary Robotics
using Behavioral Diversity. In: CEC 2009, Proceedings of the 11th Conference on
Congress on Evolutionary Computation, pp. 1161–1168. IEEE Press, Piscataway (2009)

11. Yao, X.: Evolving Artificial Neural Networks. Proc. IEEE 87(9), 1423–1447 (1999)

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 599–605, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Toward Automatic Gait Generation for Quadruped
Robots Using Cartesian Genetic Programming

Kisung Seo1 and Soohwan Hyun2

1 Dept. of Electronic Engineering, Seokyeong University, Seoul, Korea
2 Hyundai Heavy Industries Research Institute, Yongin, Korea

Abstract. This paper introduces a new gait generation method for quadruped
robots using CGP (Cartesian Genetic Programming) based on refinement of
regression polynomials for a joint trajectory. CGP uses as genotype a linear string
of integers that are mapped to a directed graph. Therefore, some evolved modules
for regression polynomials in CGP can be shared and reused among multiple
outputs for joint trajectories. To investigate the effectiveness of the proposed
approach, experiments on gaits were executed for a Bioloid quadruped robot in
the Webots environment.

Keywords: Cartesian Genetic Programming, Gait Generation, Sharing
Modules, Quadruped Robots Walking.

1 Introduction

The mobility of a walking robot is distinguished from that of a wheeled robot by its
ability to traverse uneven and unstructured environments [14]. Quadruped robots,
such as the Sony Aibo [5,6], an entertainment pet, and Bigdog [11], a practical field
robot, are more stable than humanoid robots in locomotion. Providing good
locomotion capabilities for robots is very significant for allowing them to carry out
useful tasks in a variety of environments.

Automatic generation of gaits is especially important for walking robots because
different environments and newly developed robots make it necessary to generate a
variety of gaits in a short period of time. Gaits may be optimized for different
properties, including fast velocity and/or high stability, and for specific requirements
such as highest or lowest posture, and for various other traits. Planning gaits for
quadruped robots is a challenging task that requires optimizing the locus of the
robot’s paw, an initial position, and a number of steps, in a highly irregular and
multidimensional space. There is much research that imitates walking of animals such
as dogs and horses [3].

In order to obtain the maximum speed of walking without falling, evolutionary
approaches have been applied. A HyperNEAT approach [15] that generate gaits by
evolving neural networks is introduced. Most of them are GA-based approaches
[1,2,4,6] that seek to optimize a pre-selected set of parameters, such as locus of paw,
initial position. A GP-based approach using a symbolic regression for generating joint
trajoctory has also been introduced to improve on some constraints of GA-based

600 K. Seo and S. Hyun

methods optimizing joint
symbolic regression appro
space, but it may have som
building blocks or modules

CGP [9,10] is a different
represented as a network o
Previous columns of nodes
column. That means some
multiple times. Therefore,
problems which require cer
trajectories of single or mul
GP. Whereas an ADF rep
amorphous type. One of th
is required to facilitate thi
natures of gait inherently th

In this paper, we propos
generation method and inv
gait generations. To invest
performed and analyzed for

2 Cartesian Genet

CGP [9,10] is a different fo
represented as an indexed g

Fig. 1. Rep

trajectories and shown better results [12,13]. Althou
oach using GP is quite useful to generate a gait in jo
me lacks of efficiency for search structually fine tuning
.
t form of Genetic Programming [7,8] in which a program
of nodes. The nodes are combined to express a functi
 may have their outputs connected to a node in the curr
e useful building blocks can be connected to nodes
it can search more efficiently on some particular types
rtain relationships among outputs, such as partially sim
ltiple joints. This concept is slightly different with ADF

presents a complete module, a similar object in CGP
he attractive features of CGP is that no explicit encod
is [9,10]. Thus it is possible to refine building blocks
hrough cascade connections from inputs to outputs.
e a new CGP (Cartesian Genetic Programming)-based g

vestigate a possibility of seeking meaningful modules
tigate the effectiveness of the approach, experiments
r the Bioloid quadruped robot in the Webots environmen

tic Programming

form of Genetic Programming [7,8] in which a program
graph. The graph is encoded in the form of a linear string

resentation of Cartesian Genetic Programming

ugh
oint
g of

m is
ion.
rent
s in
s of

milar
F of
P is
ding
s of

gait
for
are

nt.

m is
g of

 Quadruped Robots Using Cartesian Genetic Programming 601

integers. Each block of a CGP can be represented as 3 strings (inputs 1, 2 and
operator 3) as shown in Figure 1. The blocks are combined to express a function.
Nodes in the same column are not allowed to be connected to each other, and any
node may be either connected or disconnected. Unlike standard GP using tree
expressions, CGP can obtain multiple outputs using a linear string of integers, and
additionally can have features that constitute re-usable modules.

3 CGP Based Gait Control

This section explains how we develop a fast gait for a quadruped robot using
Cartesian genetic programming (CGP) in joint spaces. In Figure 2, the value of the
first input (i0) is X, which expresses time, and the other inputs are random constants.
The output of the evaluation of a CGP genotype corresponds to trajectories of each
joint. The cascade connections from inputs to outputs construct polynomial networks
for representing a set of trajectories of gait.

Fig. 2. CGP Based Gait Generation Method

Node outputs may be widely re-used one can consider it as employing Automatic
Re-used Outputs (AROs) [9]. GP provide a similar concept of Automatically Defined
Functions (ADFs), but they are slightly different from AROs of CGP. Whereas ADFs
represent a complete module, AROs show an amorphous module. That means the
module by ARO is more practical than ADF, because a complete shape of module is
hard to be emerged in real situations. Most of useful building blocks have different
forms in a little bit each other, even if they belong to the same kind. Especially, it
is more natural that the regression polynomials are evolved in a cascaded connection
of Re-used Outputs rather than using Defined Functions for the joint trajectories
of robots.

Another difference is that an ADF should be evolved simultaneously with main
tree in GP, thus search efforts should be distributed to both parts. That requires much
computational costs. However an ARO in CGP is that no explicit encoding is required
to facilitate this [9]. That will be one of the attractive features of CGP based approach
for generation gait of robots considering quite large amount of simulation time.

602 K. Seo and S. Hyun

A representative illustrat
graph with different phases
third row modules in the n-
function in the last column
CGP-based gait generation
and relationships among ou

4 Experiments an

This section describes how
for a quadruped robot using
as shown in Figure 4.

Fig. 4. Simu

The Webots [5] mobile
provides the user with a ra
and simulating mobile rob
perform accurate dynamic p
is defined to obtain the join

Fig. 3. Sharing of modules in CGP

tion of expected advantages of CGP is sharing a traject
s in gait generation. As shown in Figure 3, the second
1th column can be used as common inputs of an arithm
that generates joint trajectories for each leg. Therefore,
method can search more efficiently some useful modu

utputs being evolved for different legs.

d Analysis

we evaluated the proposed approach to develop a fast
g CGP. A simulated model of Bioloid in Webots was us

ulation model and real Bioloid quadruped robot

e robotics simulation software developed by Cyberbo
apid prototyping environment for modeling, programm
bots. Webots relies on ODE (Open Dynamics Engine)
physics simulation. The fitness function of gait generat
nt trajectory set that provides the fastest walking with o

tory
and

metic
the

ules

gait
sed,

otics
ming

) to
tion
only

 Quadruped Robots Using Cartesian Genetic Programming 603

a small sideways diversion. A trot gait is selected, as used in other approaches. The
CGP parameters were as shown below in Table 1.

Table 1. The CGP parameters

CGP Parameters

Terminal set :
Random Constants, X

Function set :
SIN, COS, +, -, *, /

Number of generations : 100

Mutation : 0.5
Number of rows : 4
Number of columns : 200
Levels back : 200
4 number of rows
200 number of columns
200 levels back

The tabular results of velocities for generated gaits are provided in Table 2. Every

run was repeated 10 times for each case. The max velocity value from CGP was 27.03
cm/s, obtained with population size 500 and it is very competitive. The results showed
increased max velocities as population size was increased. In this paper, we have not
attempted to compare the performances to the results of other approaches, rather we
have demonstrated the effectiveness of our methodology.

Table 2. Experimental results of velocities for various population sizes

 Popsize Average
Velocity(cm/s)

Max
Velocity(cm/s)

Cartesian
GP

150 12.67 19.68

250 13.24 23.70

500 17.35 27.03

The motions of obtained gaits for the best evolved solutions of CGP approach are

displayed in Figure 5.

Fig. 5. The best gait movements of CGP method

604 K. Seo and S. Hyun

5 Conclusions

We have developed a new and efficient automatic gait generation method based on CGP
(Cartesian Genetic Programming). The main idea of the method is that CGP can
generate multiple outputs through one genotype expression and can share some
amorphous modules in generation of the trajectory of more than one joint using
Automatic Re-used Outputs (AROs). Therefore, it can search more efficiently on some
particular types of problems which require certain relationships among outputs, such as
partially similar trajectories of single or multiple joints. It is also possible to refine
building blocks of natures of gait through cascade connections from inputs to outputs.

To demonstrate the effectiveness of our proposed approach, experiments on the
automatic gait generation of a quadruped robot were performed. The experimental
results showed the possibilities for re-using and/or sharing of modules in gait evolution.

Acknowledgements. This work was supported by National Research Foundation of
Korea Grant funded by the Korea government (NRF-2011-0009958).

References

1. Akın, H.L., Meriçli, Ç., Meriçli, T., Kaplan, K., Çelik, B.: Cerberus’05 Team Report,
Technical Report, Boğaziçi University (2005)

2. Chen, W.: Odometry Calibration and Gait Optimisation. Technical Report. The University
of New South Wales, School of Computer Science and Engineering (2005)

3. Doan, P., Vo, H., Kim, H., Kim, S.: A New Approach for Development of Quadruped
Robot Based on Biological Concepts. International Journal of Precision Engineering and
Manufacturing 11, 559–568 (2010)

4. Dong, H., Zhao, M., Zhang, J., Shi, Z., Zhang, N.: Gait planning of quadruped robot based
on third-order spline interpolation. In: Proceedings of the 2006 IEEE/RSJ International
Conference on Intelligent Robots and Systems(IROS 2006), pp. 5756–5761. IEEE Press,
China (2006)

5. Hohl, L., Tellez, R., Michel, O., Ijspeert, A.J.: Aibo and Webots: Simulation, wireless
remote control and controller transfer. Robotics and Autonomous Systems 54, 472–485
(2006)

6. Hornby, G.S., Takamura, S., Yamamoto, T., Fujita, M.: Autonomous evolution of dynamic
gaits with two quadruped robots. IEEE Trans. Robotics 21, 402–410 (2005)

7. Koza, J.R.: Genetic Programming: On the Programming of Computers by Natural
Selection. MIT Press, Cambridge (1992)

8. Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs. MIT
Press, Cambridge (1994)

9. Miller, J.F., Thomson, P.: Cartesian Genetic Programming. In: Poli, R., Banzhaf, W.,
Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS,
vol. 1802, pp. 121–132. Springer, Heidelberg (2000)

10. Miller, J.F., Job, D., Vassilev, V.K.: Principles in the Evolutionary Design of Digital
Circuits - Part I. Genetic Programming and Evolvable Machines 1, 8–35 (2000)

11. Raibert, M., Blankespoor, K., Nelson, G., Playter, R.: Bigdog, the rough-terrain quadruped
robot. Technical report, Boston Dynamics (2008)

 Quadruped Robots Using Cartesian Genetic Programming 605

12. Seo, K., Hyun, S.: A Comparative Study between Genetic Algorithm and Genetic
Programming Based Gait Generation Methods for Quadruped Robots. In: Di Chio, C.,
Cagnoni, S., Cotta, C., Ebner, M., Ekárt, A., Esparcia-Alcazar, A.I., Goh, C.-K., Merelo,
J.J., Neri, F., Preuß, M., Togelius, J., Yannakakis, G.N. (eds.) EvoApplicatons 2010, Part I.
LNCS, vol. 6024, pp. 352–360. Springer, Heidelberg (2010)

13. Seo, K., Hyun, S., Goodman, E.: Genetic Programming-Based Automatic Gait Generation
in Joint Space for a Quadruped Robot. Advanced Robotics 24, 2199–2214 (2010)

14. Tenreiro, J.A., Silva, M.F.: An Overview of Legged Robots. In: Proceedings of the
International Symposium on Mathematical Methods in Engineering, pp. 27–29 (2006)

15. Yosinski, J., Clune, J., Hidalgo, D., Nguyen, S., Zagal, C.J., Lipson, H.: Evolving Robot
Gaits in Hardware: the HyperNEAT Generative Encoding Vs. Parameter Optimization,
Advances in Artificial Life. In: Proceedings of the 11th European Conference on the
Synthesis and Simulation of Living Systems, pp. 890–897 (2011)

Adapting the Pheromone Evaporation Rate

in Dynamic Routing Problems

Michalis Mavrovouniotis and Shengxiang Yang

School of Computer Science and Informatics, De Montfort University
The Gateway, Leicester LE1 9BH, United Kingdom
m.mavrovouniotis@hotmail.com, syang@dmu.ac.uk

Abstract. Ant colony optimization (ACO) algorithms have proved to
be able to adapt to dynamic optimization problems (DOPs) when stag-
nation behaviour is avoided. Several approaches have been integrated
with ACO to improve its performance for DOPs. The adaptation capa-
bilities of ACO rely on the pheromone evaporation mechanism, where the
rate is usually fixed. Pheromone evaporation may eliminate pheromone
trails that represent bad solutions from previous environments. In this
paper, an adaptive scheme is proposed to vary the evaporation rate in
different periods of the optimization process. The experimental results
show that ACO with an adaptive pheromone evaporation rate achieves
promising results, when compared with an ACO with a fixed pheromone
evaporation rate, for different DOPs.

1 Introduction

Ant colony optimization (ACO) algorithms have shown good performance when
applied to difficult optimization problems under static environments [2]. How-
ever, in many real-world applications, we have to deal with dynamic environ-
ments, where the optimum changes and needs re-optimization. It is believed that
ACO algorithms can adapt to dynamic changes since they are inspired from na-
ture, which is a continuous adaptation process [7]. In practice, they can adapt by
transferring knowledge from past environments, using the pheromone trails, to
speed up re-optimization. The challenge to such algorithms lies in how quickly
they can react to dynamic changes in order to maintain the high quality of out-
put instead of early stagnation behaviour, where all ants construct the same
solutions and lose their adaptation capabilities.

Developing strategies for ACO algorithms to deal with stagnation behaviour
and address dynamic optimization problems (DOPs) has attracted a lot of at-
tention, which includes local and global restart strategies [6], memory-based
approaches [5], pheromone manipulation schemes to maintain diversity [3], and
immigrants schemes to increase diversity [8].

The adaptation capabilities of ACO rely on the pheromone evaporation where
a constant amount of pheromone is deducted to eliminate pheromone trails that
represent bad solutions that may bias ants to search to the non-promising areas
of the search space. In this paper, the impact of the pheromone evaporation rate

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 606–615, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Adapting the Pheromone Evaporation Rate in Dynamic Routing Problems 607

is examined on DOPs, and an adaptive scheme is designed for ACO. Adaptive
methods have been successfully applied for different parameters of ACO, includ-
ing the evaporation rate [10,12]. However, these methods have been investigated
on static optimization problems.

The rest of the paper is organized as follows. Section 2 describes the generation
of dynamic routing DOPs. Section 3 describes an ACO algorithm and gives
details for its adaptation capabilities in DOPs. Section 4 describes the proposed
scheme where the evaporation rate in ACO is adapted. Section 5 describes the
experiments carried out on a series of different DOPs. Finally, Section 6 concludes
this paper with directions for future work.

2 Generating Dynamic Routing Environments

Routing problems are usually illustrated using weighted graphs. Let G = (V,E)
be a weighted graph where V is a set of n nodes and E is a set of links. Each
node i has a location defined by (x, y) and each link (i, j) is associated with a
non-negative distance dij . Usually, the distance matrix of a problem instance is
defined as D = (dij)n×n.

In order to generate dynamic routing problems, the dynamic benchmark gen-
erator for permutation-encoded problems (DBGP) [9] is used, which converts
any static problem instance to a dynamic environment. In case the optimum of
the static problem instance is known, then it will remain known during the envi-
ronmental changes, because DBGP biases algorithms to search to a new location
in the fitness landscape, instead of modifying the fitness landscape.

Every f iterations a random vector r(T) is generated that contains all the
objects of a problem instance of size n, where T = (t/f) is the index of the
period of change, t is the iteration count of the algorithm, and f determines
the frequency of change. The magnitude m of change depends on the number
of swapped locations of objects. More precisely, m ∈ [0.0, 1.0] defines the degree
of change, in which only the first m × n of r(T) object locations are swapped.
Then a randomly re-ordered vector r′(T) is generated that contains only the first
m× n objects of r(T). Therefore, exactly m× n pairwise swaps are performed
using the two random vectors.

3 ACO in Dynamic Environments

3.1 MAX -MIN Ant System

The ACO metaheuristic consists of a population of μ ants where they construct
solutions and share their information among each other via their pheromone
trails. The first ACO algorithm developed is the Ant System (AS) [1]. Many
variations of the AS have been applied to difficult optimization problems [2].

One of the best performing ACO algorithm is theMAX -MIN AS (MMAS)
[11]. Ants read and write pheromones in order to construct their solutions.

608 M. Mavrovouniotis and S. Yang

Each ant k uses a probabilistic rule to choose the next city to visit. The decision
rule an ant k uses to move from city i to city j is defined as follows:

pkij =
[τij]

α
[ηij]

β∑
l∈Nk

i
[τil]

α
[ηil]

β
, if j ∈ N k

i , (1)

where τij is the existing pheromone trail between cities i and j, ηij = 1/dij is the
heuristic information available a priori, where dij is the distance between cities
i and j. N k

i denotes the neighbourhood of cities for ant k when the current city
is i. α and β are the two parameters which determine the relative influence of
τ and η, respectively. The pheromone trails inMMAS are updated by applying
evaporation as follows:

τij ← (1− ρ) τij , ∀(i, j), (2)

where ρ is the evaporation rate which satisfies 0 < ρ ≤ 1, and τij is the existing
pheromone value. After evaporation the best ant deposits pheromone as follows:

τij ← τij +Δτbestij , ∀(i, j) ∈ T best, (3)

where Δτbestij = 1/Cbest is the amount of pheromone that the best ant deposits

and Cbest defines the solution quality of tour T best. Since only the best ant de-
posits pheromone, the algorithm will quickly converge towards the best solution
of the first iteration. Therefore, pheromone trail limits are imposed in order to
avoid this behaviour.

3.2 Response to Dynamic Changes

ACO algorithms are able to use knowledge from previous environments using
the pheromone trails generated in the previous iterations. For example, when
the changing environments are similar, the pheromone trails of the previous
environment may provide knowledge to speed up the optimization process to
the new environment. However, the algorithm needs to be flexible enough to
accept the knowledge transferred from the pheromone trails, or eliminate the
pheromone trails, in order to adapt well to the new environment.

ACO algorithms can be applied directly to DOPs without any modifications
due to the pheromone evaporation. Lowering the pheromone values enables the
algorithm to forget bad decisions made in previous iterations. When a dynamic
change occurs, evaporation eliminates the pheromone trails of the previous en-
vironment from areas that are not visited frequently and may bias ants not to
adapt well to the new environment.

The adaptation via pheromone evaporation may be a sufficient choice when
the changing environments are similar, otherwise a complete re-initialization of
the pheromone trails after a dynamic change occurs may be a better choice.
However, such action is available only in DOPs where the frequency of change
is available beforehand or in DOPs where the dynamic changes can be detected.
In our case, the dynamic changes can be detect by re-evaluating some stored
solutions, used as detectors, in every iteration [8].

Adapting the Pheromone Evaporation Rate in Dynamic Routing Problems 609

4 ACO with Adaptive Evaporation Rate

4.1 Effect of the Pheromone Evaporation Rate

Although ACO has adaptation capabilities due to the pheromone evaporation,
the time required to adapt to the new environment may depend on the problem
size and the magnitude of change. When the environmental change is severe
then it may take longer to eliminate unused pheromone trails, therefore a high
evaporation rate may be more suitable. More precisely, a high evaporation rate
will eliminate the high intensity of pheromone trails that are usually concen-
trated to the optimum of the previous environment that is caused by stagnation
behaviour. On the other hand, a high pheromone evaporation rate may destroy
information that can be used on further environments, since any bad solution in
the current environment may be good in the next environment.

In traditional ACO algorithms the evaporation rate is usually fixed. A low
evaporation rate corresponds to slow adaptation, whereas a high evaporation
rate corresponds to fast adaptation. However, we believe that a fixed evaporation
rate is not the best choice when addressing DOPs, since at different stages of
the optimization process for different optimization problems and under different
dynamic environments, the most appropriate evaporation rate varies.

4.2 Detect Stagnation Behaviour

In order to adapt the value of the pheromone evaporation during the search pro-
cess, the exploration of the algorithm is measured in order to detect stagnation
behaviour. A direct way that can give an indication of exploration is to measure
the diversity of the solutions. The measurement for routing problems is usually
based on the common edges between the solutions [8]. Such a measure may be
computational expensive since there are O(n2) possible pairs to be compared
and each single comparison has a complexity of O(n).

A more efficient measurement is the λ-branching factor [4], which measures the
distribution of the pheromone trail values. The idea of λ-branching is described
as follows: If for a given object i ∈ V , the concentration of pheromone trails on
almost all the incident arcs becomes very small but is large for a few others, then
the freedom of exploring other paths from object i is very limited. Therefore, if
this situation arises simultaneously for all objects of graph G, the search space
that is searched by ants becomes relatively small.

The average λ̄(t) branching factor at iteration t is defined as follows:

λ̄(t) =
1

2n

n∑
i=1

λi, (4)

where n is the number of objects in the corresponding graph and λi is the
λ-branching factor for object i, which is defined as follows:

λi =
d∑

j=1

Lij (5)

610 M. Mavrovouniotis and S. Yang

where d is the number of available arcs incident to object i and Lij is defined as
follows:

Lij =

{
1, if (τ imin + λ(τ imax − τ imin)) ≤ τij ,

0, otherwise.
(6)

where λ is a constant parameter (λ = 0.05 by default [4]), τ imin and τ imax are the
minimum and maximum pheromone trail values on the arcs incident to object
i, respectively. A value of λ̄(t) close to 1 indicates stagnation behaviour.

4.3 Adapting Pheromone Evaporation Rate

Considering the statements above, if the algorithm reaches stagnation behaviour,
the evaporation rate needs to be increased in order to eliminate the high intensity
of pheromone trails in some areas and increase exploration. However, very high
exploration may disturb the optimization process because of randomization [8].

According to the behaviour of the algorithm in terms of searching, we have
the following pheromone evaporation rate update rule:

ρ(t) =

{
ρ(t− 1)− σ, if λ̄(t) > 1,

ρ(t− 1) + σ, otherwise.
(7)

where λ̄(t) is defined in Eq. (4) and σ is the step size of varying the evaporation
rate ρ at iteration t. A good value of σ was found to be 0.001 because a higher value
may quickly increase ρ to an extreme evaporation rate and destroy information
and a smaller value may not have any effect to the performance of ACO.

5 Experimental Study

5.1 Experimental Setup

In the experiments, we compare a MMAS with a global re-initialization of
the pheromone trails, denoted as MMASR, and a MMAS with the best fixed
evaporation rate, denoted as MMASB against the MMAS with the proposed
adaptive pheromone evaporation, denoted as MMASA. For all algorithms, we
set α = 1, β = 5, q0 = 0.0, and μ = 50, except forMMASR where μ = 50− dT ,
where dT = 6 is the number of detectors. The evaporation rate for MMASR
was set to ρ = 0.4. ForMMASB the best value from ρ ∈ {0.02, 0.2, 0.4, 0.6, 0.8}
was selected, whereas for MMASA ρ was adapted by Eq. (7).

For each algorithm on a DOP, N = 30 independent runs were executed on
the same environmental changes. The algorithms were executed for G = 1000
iterations and the overall offline performance is calculated as follows:

P̄offline =
1

G

G∑
i=1

⎛⎝ 1

N

N∑
j=1

P ∗
ij

⎞⎠ (8)

Adapting the Pheromone Evaporation Rate in Dynamic Routing Problems 611

 22000

 22500

 23000

 23500

 24000

 24500

 25000

 25500

 26000

 26500

0.1 0.25 0.5 0.75

O
ff

lin
e

Pe
rf

or
m

an
ce

m

kroA100, f = 10

ρ=0.02
ρ=0.2
ρ=0.4
ρ=0.6
ρ=0.8 29000

 30000

 31000

 32000

 33000

 34000

0.1 0.25 0.5 0.75

O
ff

lin
e

Pe
rf

or
m

an
ce

m

kroA150, f = 10

ρ=0.02
ρ=0.2
ρ=0.4
ρ=0.6
ρ=0.8 33000

 34000

 35000

 36000

 37000

 38000

0.1 0.25 0.5 0.75

O
ff

lin
e

Pe
rf

or
m

an
ce

m

kroA200, f = 10

ρ=0.02
ρ=0.2
ρ=0.4
ρ=0.6
ρ=0.8

 21500

 22000

 22500

 23000

 23500

0.1 0.25 0.5 0.75

O
ff

lin
e

Pe
rf

or
m

an
ce

m

kroA100, f = 100

ρ=0.02
ρ=0.2
ρ=0.4
ρ=0.6
ρ=0.8

 27000

 27500

 28000

 28500

 29000

 29500

 30000

0.1 0.25 0.5 0.75

O
ff

lin
e

Pe
rf

or
m

an
ce

m

kroA150, f = 100

ρ=0.02
ρ=0.2
ρ=0.4
ρ=0.6
ρ=0.8

 30000

 30500

 31000

 31500

 32000

 32500

 33000

 33500

 34000

0.1 0.25 0.5 0.75

O
ff

lin
e

Pe
rf

or
m

an
ce

m

kroA200, f = 100

ρ=0.02
ρ=0.2
ρ=0.4
ρ=0.6
ρ=0.8

Fig. 1. Impact of the evaporation rate on the offline performance of a conventional
MMAS on different DOPs

where P ∗
ij defines the tour cost of the best ant since the last dynamic change of

iteration i of run j [7].
We took three travelling salesman problem (TSP) instances1 and three vehicle

routing problem (VRP) instnaces2 as the base and used the DBGP described
in Section 2 to generate DOPs. The value of f was set to 10 and 100, which
indicate fast and slowly changing environments, respectively. The value of m
was set to 0.1, 0.25, 0.5, and 0.75, which indicate the degree of environmental
changes from small, to medium, to large, respectively. As a result, eight dynamic
environments, i.e., 2 values of f × 4 values of m, for each problem instance are
generated to systematically analyze the adaptation and searching capability of
algorithms on the DOPs.

5.2 Experimental Results and Analysis

The experimental results regarding the different ρ values for MMASB on dy-
namic TSPs are presented in Fig. 1. Note that the corresponding experimental
results for dynamic VRPs show similar observations and are not presented here.
The offline performance of the different algorithms on dynamic TSPs and dy-
namic VRPs and the corresponding statistical results of Wilcoxon rank-sum test,
at the 0.05 level of significance are presented in Table 1 and Table 2, respectively.
Moreover, the dynamic behaviour of the algorithms is presented in Fig. 2. From
the experimental results, several observations can be made by comparing the
behaviour of the algorithms.

1 http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/.
2 http://neo.lcc.uma.es/vrp/.

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/.
http://neo.lcc.uma.es/vrp/.

612 M. Mavrovouniotis and S. Yang

Table 1. Experimental results of the algorithms regarding the offline performance

Travelling Salesman Problem Instances

f = 10 f = 100

m ⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

Alg. & Inst. kroA100(Optimum=21282)

MMASB 22010 23844 24989 25401 21570 21850 22227 22430
MMASA 22069 23542 24448 24800 21683 21819 22049 22468
MMASR 24576 24580 24583 24588 22244 22252 22224 22212

Alg. & Inst. kroA150(Optimum=26524)

MMASB 28488 31013 32070 32426 27315 27814 28330 28526
MMASA 28690 30507 31444 31778 27299 27726 28140 28262
MMASR 31520 31526 31515 31516 28208 28204 28215 28198

Alg. & Inst. kroA200(Optimum=29368)

MMASB 32454 35300 36394 36711 30071 30796 31644 31863
MMASA 32353 34524 35560 35872 30167 30645 31245 31506
MMASR 35375 35368 35362 35375 31282 31368 31338 31380

Vehicle Routing Problem Instances

f = 10 f = 100

m ⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

Alg. & Inst. F-n45-k4(Optimum=724)

MMASB 800.42 807.56 816.98 823.20 792.79 796.24 796.33 797.65
MMASA 800.55 805.22 814.02 820.39 795.63 797.66 797.22 799.04
MMASR 812.16 812.06 812.34 812.16 799.76 800.46 799.55 799.70

Alg. & Inst. F-n72-k4(Optimum=237)

MMASB 268.69 279.67 285.76 288.36 259.95 263.00 265.82 266.81
MMASA 270.36 281.13 286.47 289.20 261.17 263.76 267.18 267.44
MMASR 291.09 291.14 291.14 291.23 270.64 270.91 271.11 270.61

Alg. & Inst. F-n135-k7(Optimum=1162)

MMASB 1298.71 1339.50 1365.33 1375.41 1255.00 1271.66 1286.62 1291.91
MMASA 1297.46 1335.77 1363.29 1372.89 1255.21 1269.49 1283.98 1288.14
MMASR 1348.90 1348.65 1348.87 1348.85 1281.08 1283.68 1283.35 1282.20

First, when the evaporation rate is set to ρ = 0.02, which is the recommended
value forMMAS on static problems [2, p. 71], has the worst results on DOPs, as
observed from Fig. 1. Furthermore, a high evaporation rate, i.e., ρ ≥ 0.4, often
achieves better performance when f = 10. This is natural because when the
environment changes quickly, a fast adaptation is required. When f = 100, the
evaporation rate depends on the magnitude of change, e.g., when m = 0.1, ρ =
0.2 shows better performance. However, as the magnitude of change increases,
a higher value of ρ achieves better performance. This validates our claim that
the time required for ACO, in which pheromone evaporation is used, to adapt
to the new environment depends on the magnitude of change.

Second,MMASB is outperformed byMMASR on most DOPs with m = 0.5
and m = 0.75, whereas the former outperforms the latter on all DOPs with
m = 0.1 and m = 0.25; see the comparisonsMMASB ⇔MMASR in Table 2.

Adapting the Pheromone Evaporation Rate in Dynamic Routing Problems 613

Table 2. Statistical tests of comparing algorithms regarding the offline performance,
where “+” or “−” means that the first algorithm is significantly better or the second
algorithm is significantly better, respectively, and “∼” means that the algorithms are
not significantly different

Travelling Salesman Problem Instances

Alg. & Inst. kroA100 kroA150 kroA200

f = 10, m ⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

MMASA ⇔ MMASB − + + + − + + + + + + +
MMASA ⇔ MMASR + + + − + + + − + + − −
MMASB ⇔ MMASR + + − − + + − − + + − −
f = 100, m ⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

MMASA ⇔ MMASB − ∼ + ∼ ∼ + + + ∼ + + +
MMASA ⇔ MMASR + + + − + + + ∼ + + + −
MMASB ⇔ MMASR + + ∼ − + + − − + + − −

Vehicle Routing Problem Instances

Alg. & Inst. F-n45-k4 F-n72-k4 F-n135-k7

f = 10, m ⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

MMASA ⇔ MMASB ∼ + + + − − − − ∼ + + +
MMASA ⇔ MMASR + + − − + + + + + + − −
MMASB ⇔ MMASR + + − − + + + + + + − −
f = 100, m ⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

MMASA ⇔ MMASB ∼ ∼ ∼ − − ∼ − ∼ ∼ ∼ ∼ ∼
MMASA ⇔ MMASR + + + ∼ + + + + + + ∼ −
MMASB ⇔ MMASR + + + − + + + + + + ∼ −

This is because when the environments are similar, due to a slight change, the
pheromone trails of the previous environment help to start the optimization pro-
cess from a promising area in the search space, whereas when the environments
are different, due to a severe change, the pheromone trails of the previous envi-
ronment mislead the searching to non-promising areas. This validates our claim
that the adaptation of pheromone evaporation is useful when the environments
are similar and useful knowledge can be transferred.

Finally, the proposed MMASA outperforms MMASB on most TSP DOPs
when m = 0.25, m = 0.5 and m = 0.75, whereas the former is comparable
with the latter when m = 0.1; see the comparisons MMASA ⇔ MMASB
in Table 2. This is probably because when the evaporation is high, it may de-
stroy useful knowledge from the previous environment after a dynamic change.
Therefore, a low evaporation rate sometimes may be a better choice, even when
the dynamic change is severe, for the first iterations after a dynamic change to
obtain knowledge, and a higher evaporation rate may be a better choice later
on to avoid the stagnation behaviour. This can be observed from Fig. 2 where
MMASA converges faster and to a better optimum than MMASB. Fortu-
nately, even ifMMASA does not achieve the best result compared toMMASB ,
e.g., when f = 100 for VRP DOPs, its performance level is still satisfactory
since they are usually not significantly different. This can be expected since the

614 M. Mavrovouniotis and S. Yang

 30000

 32000

 34000

 36000

 38000

 40000

0 100 200 300 400 500

O
ff

lin
e

Pe
rf

or
m

an
ce

Iteration

kroA200, f = 100, m = 0.1

MMASR
MMASB
MMASA

 30000

 32000

 34000

 36000

 38000

 40000

 42000

0 100 200 300 400 500

O
ff

lin
e

Pe
rf

or
m

an
ce

Iteration

kroA200, f = 100, m = 0.75

MMASR
MMASB
MMASA

 1250

 1300

 1350

 1400

0 100 200 300 400 500

O
ff

lin
e

Pe
rf

or
m

an
ce

Iteration

F-n135-k7, f = 100, m = 0.1

MMASR
MMASB
MMASA

 1250

 1300

 1350

 1400

 1450

0 100 200 300 400 500

O
ff

lin
e

Pe
rf

or
m

an
ce

Iteration

F-n135-k7, f = 100, m = 0.75

MMASR
MMASB
MMASA

Fig. 2. Dynamic behaviour of the algorithms with respect to offline performance
against the iterations in slowly changing environments for the first 500 iterations in
different DOPs: 1) kroA200 for TSP; and 2) F-n135-k7 for VRP

results of MMASB are obtained via fine-tuning the evaporation rate. More-
over, MMASA outperforms MMASR in most DOPs, except when m = 0.75,
because of the same reasons discussed for MMASB previously.

6 Conclusions

This paper examines the impact of the pheromone evaporation on the perfor-
mance of ACO algorithms for DOPs. An adaptive evaporation rate is proposed
for ACO to deal with DOPs, which is based on the detection of the stagnation
behaviour. Experimental studies were performed on a series of DOPs to investi-
gate the performance of the proposed approach. From the experimental results,
several conclusions can be drawn. First, pheromone evaporation is important
for ACO to address DOPs. Second, the higher the magnitude of the dynamic
change, the higher the evaporation rate is needed. Third, the adaptation capa-
bilities of pheromone evaporation perform well only when the environments are
similar; otherwise, a re-initialization of the pheromone trails is required. Forth,
the proposed adaptive evaporation rate promotes the performance of ACO in
many routing DOPs but depends on the dynamics and the type of the DOP.

Adapting the Pheromone Evaporation Rate in Dynamic Routing Problems 615

Finally, compared to the tedious work of fine-tuning the pheromone evaporation
rate manually, the proposed adaptive scheme is more convenient and has suffi-
ciently good performance under different conditions. However, the performance
is slightly decreased in some cases, for the sake of this convenience.

For future work, it will be interesting to consider other ways for adapting
the evaporation rate. Moreover, there are evidence that the more parameters
adapted in ACO, the better the performance in optimization problems with
static environment [10]. Therefore, another future work is to adapt more ACO
parameters, e.g., α and β, in parallel for DOPs.

Acknowledgement. This work was supported by the Engineering and Physical
Sciences Research Council (EPSRC) of U.K. under Grant EP/K001310/1.

References

1. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of co-
operating agents. IEEE Trans. on Syst., Man and Cybern., Part B: Cybern. 26(1),
29–41 (1996)

2. Dorigo, M., Stützle, T.: Ant colony optimization. The MIT Press, London (2004)
3. Eyckelhof, C.J., Snoek, M.: Ant Systems for a Dynamic TSP: Ants Caught in a

Traffic Jam. In: Dorigo, M., Di Caro, G.A., Sampels, M. (eds.) ANTS 2002. LNCS,
vol. 2463, pp. 88–99. Springer, Heidelberg (2002)

4. Gambardella, M.L., Dorigo, M.: Ant-Q: A reinforcement learning approach to the
traveling salesman problem. In: Proc of the 12th Int. Conf. on Machine Learning,
pp. 252–260. Morgan Kaufmann (1995)

5. Guntsch, M., Middendorf, M.: Applying Population Based ACO to Dynamic Opti-
mization Problems. In: Dorigo, M., Di Caro, G.A., Sampels, M. (eds.) ANTS 2002.
LNCS, vol. 2463, pp. 111–122. Springer, Heidelberg (2002)

6. Guntsch, M., Middendorf, M.: Pheromone Modification Strategies for Ant Algo-
rithms Applied to Dynamic TSP. In: Boers, E.J.W., Gottlieb, J., Lanzi, P.L.,
Smith, R.E., Cagnoni, S., Hart, E., Raidl, G.R., Tijink, H. (eds.) EvoWorkshop
2001. LNCS, vol. 2037, pp. 213–222. Springer, Heidelberg (2001)

7. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments - a survey.
IEEE Trans. on Evol. 9(3), 303–317 (2005)

8. Mavrovouniotis, M., Yang, S.: Ant colony optimization with memory-based im-
migrants for the dynamic vehicle routing problem. In: Proc. of the 2012 IEEE
Congress on Evol. Comput., pp. 2645–2652. IEEE Press (2012)

9. Mavrovouniotis, M., Yang, S., Yao, X.: A Benchmark Generator for Dynamic
Permutation-Encoded Problems. In: Coello, C.A.C., Cutello, V., Deb, K., For-
rest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part II. LNCS, vol. 7492,
pp. 508–517. Springer, Heidelberg (2012)

10. Pellegrini, P., Stützle, T., Birattari, M.: A critical analysis of parameter adaptation
in ant colony optimization. Swarm Intelli. 6(1), 23–48 (2012)

11. Stützle, T., Hoos, H.: The MAX -MIN Ant System and local search for the trav-
eling salesman problem. In: Proc. of the 1997 IEEE Int. Conf. on Evol. Comput.,
pp. 309–314. IEEE Press (1997)

12. Stützle, T., López-Ibáñez, M., Pellegrini, P., Maur, M., de Oca, M.M., Birattari,
M., Dorigo, M.: Parameter adaptation in ant colony optimization, pp. 191–215.
Springer, Heidelberg (2012)

Finding Robust Solutions

to Dynamic Optimization Problems

Haobo Fu1, Bernhard Sendhoff2, Ke Tang3, and Xin Yao1

1 CERCIA, School of Computer Science, University of Birmingham, UK
2 Honda Research Institute Europe, Offenbach, DE

3 Joint USTC-Birmingham Research Institute in Intelligent Computation
and Its Applications, School of Computer Science and Technology,

University of Science and Technology of China, CN

Abstract. Most research in evolutionary dynamic optimization is based
on the assumption that the primary goal in solving Dynamic Optimiza-
tion Problems (DOPs) is Tracking Moving Optimum (TMO). Yet, TMO
is impractical in cases where keeping changing solutions in use is im-
possible. To solve DOPs more practically, a new formulation of DOPs
was proposed recently, which is referred to as Robust Optimization Over
Time (ROOT). In ROOT, the aim is to find solutions whose fitnesses
are robust to future environmental changes. In this paper, we point out
the inappropriateness of existing robustness definitions used in ROOT,
and therefore propose two improved versions, namely survival time and
average fitness. Two corresponding metrics are also developed, based on
which survival time and average fitness are optimized respectively using
population-based algorithms. Experimental results on benchmark prob-
lems demonstrate the advantages of our metrics over existing ones on
robustness definitions survival time and average fitness.

Keywords: Evolutionary Dynamic Optimization, Robust Optimization
Over Time, Population-Based Search Algorithms.

1 Introduction

Applying population-based search algorithms to solving Dynamic Optimization
Problems (DOPs) has become very active [6,13] as most real-world optimization
problems are subject to environmental changes.DOPsdeal with optimization prob-
lems whose specifications change over time, and the algorithm for DOPs needs
to react to those changes during the optimization process as time goes by [9]. So
far, most research on DOPs falls into the category of Tracking Moving Optimum
(TMO) [2,8,11,12]. Recently, a more practical way of formulating DOPs, namely
Robust Optimization Over Time (ROOT), has been proposed [5,7,14].

A DOP is usually represented as a dynamic fitness function F (
−→
X,α(t)), where−→

X stands for the design variable and α(t) is the time-dependent problem param-
eters. α(t) can change continuously or discretely, and is often considered to be
deterministic at any time point. In this paper, we investigate the case where

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 616–625, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Finding Robust Solutions to Dynamic Optimization Problems 617

α(t) changes discretely. Hereafter, we use Ft(
−→
X) to represent F (

−→
X,α(t)) for

short. Briefly speaking, the objective in TMO is to optimize the current fitness
function, while in ROOT solution’s current and future fitnesses are both taken

into consideration. To be more specific, if the current fitness function is Ft(
−→
X),

TMO is trying to find a solution maximizing 1 Ft, while ROOT aims at the
solution whose fitness is not only good for Ft but also stays robust against
future environmental changes.

A set of robustness definitions for solutions (A solution is the setting of design

variable
−→
X .) in ROOT have been proposed in [14] and used in [5,7]. Basically,

those definitions consider solution’s fitnesses over a time period. However, those
definitions suffer from the following problems:

– All these robustness definitions are dependent on a fitness threshold param-
eter v, the setting of which requires the information of optimal solution in
terms of current fitness at any time point. This limits the practical use of
those robustness definitions, as most often the optimal solution for any time
point is not known in real-world DOPs.

– A solution is considered ‘robust’ only if its fitness stays above v after an
environmental change without any constraint on solution’s current fitness.
This might be inappropriate as robust solutions can have very bad fitnesses
for current fitness function. This inappropriateness is reflected in the poor
average fitness of robust solution in the experimental results in [7].

– Robustness definitions based on v only measure one aspect of robust solutions
for DOPs. For example, solutions which have good average fitness over a
certain time window could also be considered robust without any constraint
on the fitness at any time point. Besides, it is difficult to incorporate v into
the algorithm mainly because the setting of v requires the information of
optimal solution at any time point. Algorithms have to know what kind
of robust solutions in ROOT they are searching for, just as the distribution
information of disturbances is informed to the algorithm in traditional robust
optimization [1,10].

To the best of our knowledge, the only algorithm available for ROOT in the
literature is from [7]. An algorithm framework which contains an optimizer,
a database, an approximator and a predictor, was proposed in [7]. The basic
idea is to average solution’s fitness over the past and the future. To be more
specific, the optimizer in the framework searches solutions based on a metric
2 which is the average over solution’s previous, current and future fitnesses.
Solution’s previous fitness is approximated using previously evaluated solutions
which are stored in the database, while solution’s future fitness is predicted based
on its previous and current fitnesses using the predictor. The construction of the
framework is intuitively sensible for ROOT. However, the metric suffers from
two main problems. Firstly, the metric does not incorporate the information

1 Without loss of generality, we consider maximization problems in this paper.
2 A metric is a function which assigns a scalar to a solution to differentiate good
solutions from bad ones.

618 H. Fu et al.

of robustness definitions. Therefore, the optimizer does not really know what
kind of robust solutions it is searching for. Secondly, estimated fitnesses (either
previous or future fitnesses) are used in the metric without any consideration of
the accuracy of the estimator (approximator or predictor). This is inappropriate
as reliable estimations should be favoured in the metric. For example, if two
solutions have the same metric value, the one with more reliable estimation
should be considered better than the other.

This paper thus tries to overcome the shortcomings mentioned above re-
garding existing work for ROOT by first developing two robustness definitions,
namely survival time and average fitness, and a corresponding performance
measurement for ROOT. New metrics, based on which survival time and av-
erage fitness are optimized respectively using population-based algorithms, are
also proposed. Specially, our metrics incorporate the information of robustness
definitions and take estimator’s accuracy into consideration. The remainder of
the paper is structured as follows. Section 2 presents the robustness definitions
survival time and average fitness in ROOT. After that, one performance mea-
surement is suggested comparing algorithm’s ability in finding robust solutions
in ROOT. The new metrics are then described in Section 3. Experimental re-
sults are reported in Section 4 with regard to performances of the old metric in
[7] and our metrics on our performance measurement for ROOT. Finally,
conclusions and future work are discussed in Section 5.

2 Robustness Definitions and Performance Measurement

A DOP is different from a static optimization problem only if the DOP is solved
in an on-line manner [6,9], i.e., the algorithm for DOPs has to provide solutions
repeatedly as time goes by. Suppose at time t, the algorithm comes up with a

solution
−→
X t. The robustness of solution

−→
X t can be defined as:

– the survival time F s equal to the maximal time interval starting from time

t during which the fitness of solution
−→
X t stays above a pre-defined fitness

threshold δ:

F s(
−→
X, t, δ) = max{0 ∪ {l|Fi(

−→
X) ≥ δ, ∀i, t ≤ i ≤ t+ l}}, (1)

– or alternatively the average fitness F a over a pre-defined time window T
starting from time t:

F a(
−→
X, t, T) =

1

T

t+T−1∑
i=t

Fi(
−→
X). (2)

Both robustness definitions (survival time F s and average fitness F a) do not
require the information of optimal solution at any time point, and thus are not
restricted to academic studies. For survival time F s, the fitness threshold δ places
a constraint on solution’s current fitness, which is not satisfied in robustness

Finding Robust Solutions to Dynamic Optimization Problems 619

definitions used in [7]. More importantly, our robustness definitions have user-
defined parameters (fitness threshold δ and time window T), which makes it easy
to incorporate them into algorithms.

We would like to make a clear distinction between robustness definitions of
solutions in ROOT and performance measurements for ROOT algorithms. As a
DOP should be solved in an on-line manner and algorithms have to provide solu-
tions repeatedly, algorithms should not be compared just at one time point but
across the whole time period. As we consider discrete-time DOPs in this paper, a
DOP can be represented as a sequence of static fitness functions (F1, F2, ..., FN)
during a considered time interval [t0, tend). Given the robustness definitions in
Equation 1 and 2, we could define ROOT performance measurement for time
interval [t0, tend) as follows:

PerformanceROOT =
1

N

N∑
i=1

E(i), (3)

where E(i) is the robustness (either survival time F s or average fitness F a) of
the solution determined by the algorithm during the time of Fi.

It should be noted that performance measurement for ROOT proposed here
is dependent on parameter settings, being either δ if survival time F s is inves-
tigated or T if average fitness F a is considered. Therefore, in order to compare
algorithms’ ROOT abilities comprehensively, results should be reported under
different settings of δ or T .

3 New Metrics for Finding Robust Solutions in ROOT

A metric for finding robust solutions in ROOT was proposed in [7], which takes

the form
∑t+q

i=t−p Fi(
−→
X) when the current time is t, where p and q are two param-

eters to control how many time steps looking backward and forward respectively.
As discussed in Section 1, the metric does not incorporate the information of ro-
bustness definition, and the estimation accuracy is not taken into consideration.
To address the two problems, we propose new metrics in the following. As our
new metrics take robustness definitions into consideration, we describe the new
metrics in the context of survival time F s and average fitness F a respectively.

3.1 Metric for Robustness Definition: Survival Time

If we restrict that the metric to optimize survival time F s is a function of so-
lution’s current and future fitnesses and user-defined fitness threshold δ, we can
define the metric F̂ s as follows:

F̂ s(
−→
X, t, δ) =

{
Ft(
−→
X) if Ft(

−→
X) < δ,

δ + w ∗ l̂ otherwise,
(4)

where Ft(
−→
X) is the current fitness of solution

−→
X , and l̂ is used to represent

the number of consecutive fitnesses which are no smaller than δ starting from

620 H. Fu et al.

the beginning of the fitness sequence (F̂t+1(
−→
X), ..., F̂t+L(

−→
X)). F̂t+i(

−→
X) is the

predicted fitness of solution
−→
X at time t + i, 1 ≤ i ≤ L. l̂ can be seen as an

explicit estimation of solution’s survival time robustness. As a result, every time
the metric F̂ s is calculated, L number of solution’s future fitnesses are predicted

if Ft(
−→
X) ≥ δ. w is the weight coefficient associated with the accuracy of the

estimator which is used to calculate F̂t+i(
−→
X), 1 ≤ i ≤ L. In this paper, the root

mean square error Rerr is employed as the accuracy measurement, which takes
the form:

Rerr =

√∑nt

i=1 e
2
i

nt
, (5)

where nt is the number of sample data, and ei is the absolute difference between
the estimated value produced by the estimator and the true value for the ith
sample data. In order to make sure that a larger weight is assigned when the
corresponding estimator is considered more accurate, w takes an exponential
function of Rerr:

w = exp(−θ ∗Rerr), (6)

where θ is a control parameter, θ ∈ [0,+∞). The design of metric F̂ s is reason-
able in the sense that it takes the form of current fitness if the current fitness
is below the fitness threshold δ. On the other hand, if the current fitness is no
smaller than δ, F̂ s only depends on w ∗ l̂ which is the product of the weight
coefficient w and solution’s survival time robustness estimation l̂.

3.2 Metric for Robustness Definition: Average Fitness

The design of a metric for optimizing average fitness F a is more straightforward
than that for survival time F s. Basically, in order to estimate average fitness
F a, solution’s future fitnesses are predicted first and then summed together
with solution’s current fitness. Therefore, if the user-defined time window is T
and the current time is t, we have the following metric:

F̂ a(
−→
X, t, T) = Ft(

−→
X) +

T−1∑
i=1

(F̂t+i(
−→
X)− θ ∗Rerr), (7)

where F̂t+i(
−→
X), θ and Rerr take the same meaning as those used for the

metric F̂ s.
With the new metrics developed in Equation 4 and 7, we can have our new

algorithms for ROOT by incorporating them into the generic population-based
algorithm framework developed in [7]. For more details of the framework, readers
can refer to [7].

4 Experimental Study

We conduct two groups of experiments in this section. The objective of the first
group is to demonstrate that it is necessary to incorporate the robustness defini-
tions into the algorithm for ROOT. The metric in [7] (denoted as Jin’s metric)

Finding Robust Solutions to Dynamic Optimization Problems 621

is compared with our metrics, denoted as survival time metric for Equation 4
and average fitness metric for Equation 7. One true previous fitness and four
future predicted fitnesses are used for Jin’s metric, the setting of which is re-
ported to have the best performance in [7]. Five future fitnesses are predicted
(L = 5) for the survival time metric when the robustness definition is survival
time. The control parameter θ is set to be 0 in the first group, which means the
accuracy of the estimator is not considered temporarily. In the second group,
our metrics are investigated with the control parameter θ set to be 0 and 1. The
aim is to demonstrate the advantage of making use of estimator’s accuracy when
calculating the metrics.

4.1 Experimental Setup

Test Problem. All experiments in this paper are conducted on the modified
Moving Peaks Benchmark (mMPB). mMPB is derived from Branke’s Moving
Peaks Benchmark (MPB) [3] by allowing each peak having its own change severi-
ties. The reason to modify MPB that way is to make some parts of the landscape
change more severely than other parts. Basically, mMPB consists of several peak
functions whose height, width and center position change over time. The mMPB
can be described as:

Ft(
−→
X) =

i=m
max
i=1

{Hi
t −W i

t ∗ ||
−→
X −−→C i

t||2}, (8)

where Hi
t , W

i
t and Ci

t denote the height, width and center of the ith peak

function at time t,
−→
X is the design variable, and m is the total number of peaks.

Besides, the timer t adds 1 after a certain period of time Δe which is measured

by the number of fitness evaluations. Hi
t , W

i
t and

−→
C i

t change as follows:

Hi
t+1 = Hi

t + height severityi ∗N(0, 1),

W i
t+1 = W i

t + width severityi ∗N(0, 1),
−→
C i

t+1 =
−→
C i

t +
−→v i

t+1,

−→v i
t+1 =

s ∗ ((1 − λ) ∗ −→r + λ ∗ −→v i
t)

‖ (1− λ) ∗ −→r + λ ∗ −→v i
t ‖

, (9)

where N(0,1) denotes a random number drawn from Gaussian distribution with
zero mean and variance one. Each peak’s height Hi

t and widthW i
t vary according

to its own height severityi and width severityi, which are randomly initialized
within height severity range and width severity range respectively. Hi

t and

W i
t are constrained in the range [30, 70] and [1, 12] respectively. The center

−→
C i

t

is moved by a vector −→v i of length s in a random direction (λ = 0) or a direction
exhibiting a trend (λ > 0). The random vector −→r is created by drawing random
numbers in [−0.5, 0.5] for each dimension and then normalizing its length to s.
The settings of mMPB are summarized in Table 1.

In our experiments, we generate 150 consecutive fitness functions with a fixed
random number generator. All the results presented are based on 30 independent
runs of algorithms with different random seeds.

622 H. Fu et al.

Table 1. Parameter settings of the mMPB benchmark

number of peaks, m 5

change frequency, Δe 2500

number of dimensions, D 2

search range [0, 50]

height range [30, 70]

initial height 50

width range [1, 12]

initial width 6

height severity range [1, 10]

width severity range [0.1, 1]

trend parameter, λ 1

scale parameter, s 1

Parameter Settings. We adopt a simple PSO algorithm as the optimizer in
this paper. The PSO algorithm used in this paper takes the constriction version.
For details of the PSO algorithm, readers are advised to refer to [4]. The swarm
population size is 50. The constants c1 and c2, which are used to bias particle’s
attraction to local best and global best, are both set to be 2.05, and therefore
the constriction factor χ takes a value 0.729844. The velocity of particles are
constricted within the range [−VMAX , VMAX]. The value of VMAX is set to
be the upper bounds of the search range, which is 50 in our case.

We use the Autoregressive (AR) model for the prediction task. An AR model

of order ψ takes the form Yt = ε+
∑ψ

i=1 ηi ∗ Yt−i where ε is the white noise and
Yt is the time series data at time t. We use the least square method to estimate
AR model parameters −→η (−→η = (η1, η2, ...ηψ)). The parameter ψ is set to be 5
and the latest time series of length 15 are used as the training data. If AR model
accuracy is considered, the first 12 time steps are chosen as the training data,
and the latest 3 time steps are used to calculate Rerr. We omit the process of
approximating solution’s previous fitness but use solution’s true previous fitness
for both Jin’s metric and our metrics. The reasons are we would like to exclude
the effects of approximation error but focus on the effects of prediction error
on the metrics, and also it is relatively easy to approximate solution’s previous
fitness given enough historical data, which is usually available in population-
based algorithms.

4.2 Simulation Results

The results of the first group experiment are plotted in Fig. 1. In Fig. 1(a), (b),
(c) and (d), we can see that the results achieved by our metrics with θ = 0
are generally above those achieved by Jin’s metric. This is mainly because our
metrics take the corresponding robustness definitions into consideration, and
therefore are better at capturing user’s preferences of robustness. Our metrics
have similar results with Jin’s in Fig. 1(e) and (f). This is because by setting T

Finding Robust Solutions to Dynamic Optimization Problems 623

0 50 100 150

0

2

4

6

8

10

12

time

su
rv

iv
al

 ti
m

e

Jin‘s metric
survival time metric

(a) Fitness threshold δ = 40

0 50 100 150

0

2

4

6

8

10

12

time

su
rv

iv
al

 ti
m

e

Jin‘s metric
survival time metric

(b) Fitness threshold δ = 45

0 50 100 150

0

2

4

6

8

10

12

time

su
rv

iv
al

 ti
m

e

Jin‘s metric
survival time metric

(c) Fitness threshold δ = 50

0 50 100 150
−80

−60

−40

−20

0

20

40

60

80

100

time

av
er

ag
e

fit
ne

ss

Jin‘s metric
average fitness metric

(d) Time window T = 2

0 50 100 150
−80

−60

−40

−20

0

20

40

60

80

100

time

av
er

ag
e

fit
ne

ss

Jin‘s metric
average fitness metric

(e) Time window T = 4

0 50 100 150
−80

−60

−40

−20

0

20

40

60

80

100

time

av
er

ag
e

fit
ne

ss

Jin‘s metric
average fitness metric

(f) Time window T = 6

Fig. 1. The averaged robustness over 30 runs for each time step, produced by Jin’s
metric and our metrics (θ is set to be 0) under robustness definitions of survival time
F s and average fitness F a with different settings of δ and T respectively

equal to 4 or 6, our metrics happen to have similar forms to Jin’s metric. All
these results are further summarized in Table 2.

The results of the second group experiment are plotted in Fig. 2. The advan-
tage of incorporating estimator’s accuracy into metrics has been confirmed in
results for survival time F s. This may due to the fact that Rerr is in accordance
with the accuracy in calculating survival time estimation l̂. However, we can see
a performance degrade in making use of estimator’s accuracy in the results for
average fitness F a. This means Rerr may not be a good indicator of estima-
tor’s accuracy in predicting solution’s future fitness. All these results are further
summarized in Table 2.

Table 2. Performance measurement in Equation 3 of investigated algorithms (standard
deviation in bracket). Wilcoxon rank sum tests at a 0.05 significance level are conducted
between every two of the three algorithms. Significance is indicated in boldness for
the first and the second, star ∗ for the second and the third and underline for the first
and the third.

Algorithms δ = 40 δ = 45 δ = 50 T = 2 T = 4 T = 6

Jin’s 1.53(0.08) 1.11(0.06) 0.69(0.05) 25.32(1.20) 22.20(1.08) 18.46(1.06)
Ours (θ = 0) 3.02(0.05) 2.39(0.05) 1.69(0.03) 53.48*(0.38)26.99*(1.12)8.82*(1.11)
Ours (θ = 1) 3.01(0.08) 2.49*(0.05) 1.72*(0.04) 50.15(0.64) 4.91(1.81) -5.26(1.98)

624 H. Fu et al.

0 50 100 150
0

2

4

6

8

10

12

time

su
rv

iv
al

 ti
m

e

θ = 0
θ = 1

(a) Fitness threshold δ = 40

0 50 100 150
0

2

4

6

8

10

12

time

su
rv

iv
al

 ti
m

e

θ = 0
θ = 1

(b) Fitness threshold δ = 45

0 50 100 150
0

2

4

6

8

10

12

time

su
rv

iv
al

 ti
m

e

θ = 0
θ = 1

(c) Fitness threshold δ = 50

0 50 100 150
−150

−100

−50

0

50

time

av
er

ag
e

fit
ne

ss

θ = 0
θ = 1

(d) Time window T = 2

0 50 100 150
−150

−100

−50

0

50

time

av
er

ag
e

fit
ne

ss

θ = 0
θ = 1

(e) Time window T = 4

0 50 100 150
−150

−100

−50

0

50

time

av
er

ag
e

fit
ne

ss

θ = 0
θ = 1

(f) Time window T = 6

Fig. 2. The averaged robustness over 30 runs for each time step, produced by our
metrics when θ is set to be 0 and 1 under robustness definitions of survival time F s

and average fitness F a with different settings of δ and T respectively

5 Conclusions and Future Work

In this paper, we pointed out the inappropriateness of existing robustness defini-
tions in ROOT and developed two new definitions survival time F s and average
fitness F a. Moreover, we developed two novel metrics (survival time metric and
average fitness metric) based on which population-based algorithms search for
robust solutions in ROOT. In contrast with the metric in [7], our metrics not only
take robustness definitions into consideration but also make use of estimator’s
accuracy.

From the simulation results, we can arrive that it is necessary to incorporate the
information of robustness definitions into the algorithm forROOT. In other words,
the algorithmhas to knowwhatkindof robust solutions it is searching for. Secondly,
estimator’s accuracy can have a large influence on algorithm’s performance, and it
is important to develop appropriate accuracy measure considering the robustness
to be maximized in ROOT. Also, it is equally important to employ estimator’s ac-
curacy information in guiding the search for robust solutions in ROOT.

For the future work, the variance of solution’s future fitnesses can be con-
sidered as a second objective, and existing multi-objective algorithms can be
adapted for it. Also, in what way estimation models should interact with search
algorithms is still an open question in ROOT, as solution’s future fitnesses are
considered in ROOT and prediction task is inevitable.

Finding Robust Solutions to Dynamic Optimization Problems 625

Acknowledgment. This work was support by Honda Research Institute
Europe, EU FP7 (grant No. 247619), and National Natural Science Foundation
of China (grant Nos. 61028009, U0835002, and 61175065).

References

1. Beyer, H.G., Sendhoff, B.: Robust optimization-a comprehensive survey. Computer
Methods in Applied Mechanics and Engineering 196(33-34), 3190–3218 (2007)

2. Blackwell, T., Branke, J., Li, X.: Particle swarms for dynamic optimization prob-
lems. In: Swarm Intelligence, pp. 193–217 (2008)

3. Branke, J.: Memory enhanced evolutionary algorithms for changing optimization
problems. In: Proceedings of the 1999 Congress on Evolutionary Computation,
CEC 1999, vol. 3, IEEE (1999)

4. Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence
in a multidimensional complex space. IEEE Transactions on Evolutionary Compu-
tation 6(1), 58–73 (2002)

5. Fu, H., Sendhoff, B., Tang, K., Yao, X.: Characterizing environmental changes in
robust optimization over time. In: 2012 IEEE Congress on Evolutionary Compu-
tation (CEC), pp. 1–8. IEEE (2012)

6. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments-a survey.
IEEE Transactions on Evolutionary Computation 9(3), 303–317 (2005)

7. Jin, Y., Tang, K., Yu, X., Sendhoff, B., Yao, X.: A framework for finding robust
optimal solutions over time. In: Memetic Computing, pp. 1–16 (2012)

8. Li, C., Yang, S.: A general framework of multipopulation methods with cluster-
ing in undetectable dynamic environments. IEEE Transactions on Evolutionary
Computation 16(4), 556–577 (2012)

9. Nguyen, T.T., Yang, S., Branke, J.: Evolutionary dynamic optimization: A survey
of the state of the art. Swarm and Evolutionary Computation 6, 1–24 (2012)

10. Paenke, I., Branke, J., Jin, Y.: Efficient search for robust solutions by means of
evolutionary algorithms and fitness approximation. IEEE Transactions on Evolu-
tionary Computation 10(4), 405–420 (2006)

11. Rohlfshagen, P., Yao, X.: Dynamic combinatorial optimisation problems: an anal-
ysis of the subset sum problem. Soft Computing 15(9), 1723–1734 (2011)

12. Simões, A., Costa, E.: Prediction in evolutionary algorithms for dynamic environ-
ments using markov chains and nonlinear regression. In: Proceedings of the 11th
Annual conference on Genetic and Evolutionary Computation, pp. 883–890. ACM
Press, New York (2009)

13. Yang, S., Jin, Y., Ong, Y.S.: Evolutionary Computation in Dynamic and Uncertain
Environments. Springer, Heidelberg (2007)

14. Yu, X., Jin, Y., Tang, K., Yao, X.: Robust optimization over time–A new perspec-
tive on dynamic optimization problems. In: 2010 IEEE Congress on Evolutionary
Computation (CEC), pp. 1–6. IEEE (2010)

An Ant-Based Selection Hyper-heuristic

for Dynamic Environments

Berna Kiraz1, A. Şima Etaner-Uyar2, and Ender Özcan3

1 Institute of Science and Technology, Istanbul Technical University, Turkey
berna.kiraz@marmara.edu.tr

2 Department of Computer Engineering, Istanbul Technical University, Turkey
etaner@itu.edu.tr

3 School of Computer Science, University of Nottingham, UK
ender.ozcan@nottingham.ac.uk

Abstract. Dynamic environment problems require adaptive solution
methodologies which can deal with the changes in the environment dur-
ing the solution process for a given problem. A selection hyper-heuristic
manages a set of low level heuristics (operators) and decides which one
to apply at each iterative step. Recent studies show that selection hyper-
heuristic methodologies are indeed suitable for solving dynamic environ-
ment problems with their ability of tracking the change dynamics in a
given environment. The choice function based selection hyper-heuristic
is reported to be the best hyper-heuristic on a set of benchmark prob-
lems. In this study, we investigate the performance of a new learning
hyper-heuristic and its variants which are inspired from the ant colony
optimization algorithm components. The proposed hyper-heuristic main-
tains a matrix of pheromone intensities (utility values) between all pairs
of low level heuristics. A heuristic is selected based on the utility val-
ues between the previously invoked heuristic and each heuristic from the
set of low level heuristics. The ant-based hyper-heuristic performs better
than the choice function and even its improved version across a vari-
ety of dynamic environments produced by the Moving Peaks Benchmark
generator.

1 Introduction

Many real world constraint optimization problems contain a set of components
which might change in time separately or concurrently. Some of these compo-
nents include the problem instance, the objectives and the constraints. A good
solution method needs to be adaptive and intelligent to be able to deal with the
complexities introduced by such a dynamic environment and track the changes.
Branke [2] categorized these changes based on (i) frequency, (ii) severity, (iii)
predictability of a change, and (iv) cycle length/cycle accuracy which is a prop-
erty defining somewhat periodicity and precision of changes. There is a variety
of approaches dealing with different types of changes in literature. Most of the

A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2013, LNCS 7835, pp. 626–635, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

An Ant-Based Selection Hyper-heuristic for Dynamic Environments 627

approaches handling dynamic environment problems are modified from the exist-
ing approaches designed for solving static problems based on different strategies.
More details on dynamic environments can be found in [2,7,13,19].

Hyper-heuristics are emerging methodologies which explore the space of heuris-
tics to solve hard computational problems [5,3]. In this study, we use selection
hyper-heuristic methodologies which combine two main components, namely
heuristic selection and move acceptance methods for solving dynamic environ-
ment problems [4,15]. A selection hyper-heuristic controls a set of low level
heuristics, choosing the most appropriate one to apply to a solution in hand
and deciding to accept or reject the newly created solution at each step. There
are learning hyper-heuristic methodologies as well as the ones which do not
utilize any learning at all. An online learning selection hyper-heuristic can incor-
porate learning either into the heuristic selection, or move acceptance methods.
These components attempt to improve performance during the search process.
If learning takes place during heuristic selection, frequently, a mechanism is used
to score the performance of each low level heuristic. Then a heuristic is chosen
based on these scores. Nareyek [14] tested Reinforcement Learning (RL) heuris-
tic selection on Orc Quest and modified logistics domain. Initially, scores are
initialised to the same value for all heuristics, e.g., 0. After a chosen heuristic is
applied to a solution, if there is improvement, then its score is increased; other-
wise it is decreased, e.g. by one. A heuristic is chosen using different mechanisms
and the best strategy appears to be selecting the heuristic with maximum score.
Cowling et al. [6] investigated the performance of different heuristic selection
methods on a real world scheduling problem. One of them is a learning method
referred to as Choice Function (CF) which maintains a score for each low level
heuristic taking a weighted average of three values; how well it performs individ-
ually and as a successor of the previously invoked heuristic and the elapsed time
since its last call. Then the heuristic with the maximum score is selected and
applied to the current solution at a given step. Drake and Özcan [9] proposed
a modified version of CF improving its performance (ICF) in which weights dy-
namically change, enforcing the search process to go into diversification faster
than usual, when the successive moves are non-improving.

There is strong empirical evidence that selection hyper-heuristics work for not
only discrete combinatorial problems [3] but also discrete and continuous dy-
namic environment problems [11,12,18,17], being able to respond to the changes
in such an environment rapidly. In this study, we describe a new learning hyper-
heuristic for dynamic environments, which is designed based on the ant colony
optimization algorithm components. The proposed hyper-heuristic maintains a
matrix of pheromone intensities (utility values) between all pairs of low level
heuristics. A heuristic is selected based on the utility values between the previ-
ously invoked heuristic and each heuristic from the set of low level heuristics.
We investigate the performance of the proposed hyper-heuristic controlling a
set of parameterised mutation operators for solving the dynamic environment
problems produced by the Moving Peaks Benchmark (MPB) generator.

628 B. Kiraz, A.Ş. Etaner-Uyar, and E. Özcan

2 Proposed Method

In this study, we propose a selection hyper-heuristic incorporating a novel heuris-
tic selection method, called the Ant based Selection (AbS), which is based on a
simple ant colony optimization (ACO) algorithm [8]. Most of the mechanisms
used in ACO are adapted within AbS. A distinct feature of AbS is that unlike
ACO, AbS is based on a single point based search framework. In most of the
selection hyper-heuristics, there is a heuristic selection step followed by an ac-
ceptance step. After the heuristic selection step using AbS, we employ the generic
Improving-and-Equal acceptance scheme, which accepts a new solution of better
or equal quality as compared to the previous solution.

Similar to the Choice Function and Reinforcement Learning heuristic selection
schemes, AbS also incorporates an online learning mechanism using a matrix of
utility values. In AbS, each heuristic pair is associated with a pheromone trail
value (τhi,hj) which shows the desirability of selecting the jth heuristic after
the application of the ith heuristic. All pheromone trails are initialized with a
small value τ0. AbS selects a random low-level heuristic at the first step. In the
following steps, the most appropriate low-level heuristic is selected and applied
to a solution in hand based on the pheromone trail information.

AbS consists of heuristic selection and pheromone update stages. For the first
stage, we consider two variants of heuristic selection schemes. In both variants,
the heuristic hb with the highest pheromone trail (hb = maxi=1..n τhc,hj) is
selected with a probability of q0 where hc is the previously selected heuristic and
n is the number of low-level heuristics. Otherwise, methods inspired by two of the
mate selection techniques most commonly used in Evolutionary Algorithms [10]
are employed to determine the next heuristic to select. In the first variant, like in
ACO, the next heuristic is determined based on probabilities proportional to the
pheromone levels of each heuristic pair. This is similar to the roulette wheel mate
selection in Evolutionary Algorithms. In this method, AbSrw selects the next
heuristic hs with a probability which is proportional to the pheromone trail value
of τhc,hs . However, in the second variant (AbSts), the choice of the next heuristic
is based on tournament selection. AbSts chooses the next heuristic hs with the
highest pheromone trail (hs = maxi=1..k τhc,hj where k is the tournament size).

After selecting a heuristic, pheromone trails are modified. Firstly, pheromone
values on the pheromone matrix are decreased by a constant factor (evaporation)
for all pairs of heuristics as given in Equation 1.

τhi,hj = (1− ρ)τhi,hj (1)

where 0 < ρ ≤ 1 is the pheromone evaporation rate.
After evaporation, the pheromone value between only hc and hs (τhc,hs) is

increased using Equation 2.

τhc,hs = τhc,hs +Δτ (2)

where hc is the previously selected heuristic and hs is the last selected heuristic.
Δτ is the amount of pheromone added and is defined as in Equation 3.

Δτ = 1/fc (3)

An Ant-Based Selection Hyper-heuristic for Dynamic Environments 629

where fc is the fitness value of the new solution generated by applying the
selected heuristic hs.

3 Experimental Design

In this study, we perform experiments with our new hyper-heuristic for dynamic
environments, combining the Ant-based selection scheme and the Improving-
and-Equal acceptance technique. For comparison, we also experiment with pre-
viously used selection mechanisms which incorporate some form of online learn-
ing and are shown to be successful in dynamic environments [12], namely the
Choice Function (CF) and Reinforcement Learning (RL). In this paper, we also
include an improved version of the Choice Function (ICF) proposed in [9]. These
selection mechanisms are also used together with the Improving-and-Equal ac-
ceptance technique.

In the experiments, we used the Moving Peaks Benchmark (MPB) generator
[1] to generate the various dynamic environments. In MPB, the height, width
and location of the peaks forming the multimodal and multidimensional land-
scape are changed every Δe iterations by adding a normally distributed random
variable to the heights and the widths of the peaks and by shifting their loca-
tions with a vector of fixed length in a random direction. In some applications,
a time-invariant basis function is also included in the generated landscapes.
The height severity, the width severity and vlength parameters determine the
severity of the changes in the heights, the widths and the locations of the peaks
respectively. For the fixed parameters of the MPB in all the experiments, we
used the settings taken from [1,2] as follows: cone peak function, 5 peaks, 5 di-
mensions, range of peak heights ∈ [30, 70], range of peak widths ∈ [0.8, 7.0] and
range of values in each dimension ∈ [0.0, 100.0]. We did not use a basis function
and allowed no correlation between consecutive movements of a peak. For the
Δe, height severity, the width severity and vlength settings we used the ones
given in [12] and labeled as EXPSET2. Based on these settings, Δe is taken
as 6006 fitness evaluations for low frequency (LF), 1001 for medium frequency
(MF) and 126 for high frequency (HF); the height severity, the width severity
and vlength parameters are taken as given in Table 1 which correspond to low
severity (LS), medium severity (MS) and high severity (HS) changes.

Table 1. MPB parameter settings for high, medium and low severity changes

Setting LS MS HS

vlength 1.0 5.0 10.0
height severity 1.0 5.0 10.0
width severity 0.1 0.5 1.0

A real-valued vector corresponds to the coordinates of a point in the search
space generated by the MPB. The fitness of a candidate solution at a given time
t is given by its error, which is calculated as its distance to the optimum in terms

630 B. Kiraz, A.Ş. Etaner-Uyar, and E. Özcan

of the objective function value at time t. Therefore the problem becomes that of
minimising the error values.

The search algorithm searches through the landscape by perturbing these
candidate solutions at each step to obtain a new one using a parameterized
Gaussian mutation, N(0, σ2), where σ denotes the standard deviation. We used
the same settings for the mutation operators as in [12], which are implemented
as seven different standard deviations; {0.5, 2, 7, 15, 20, 25, 30}. These mutation
operators are used as the low-level heuristics in the hyper-heuristic framework.

The parameters of the proposed Ant-based selection scheme are chosen as
follows: ρ is set to 0.1. Each entry in the pheromone matrix is initialized to τ0 =
1/fs where fs is the fitness value of initial solution. For AbSrw, we experiment
with seven q0 values: {0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0}. For AbSts, we consider five
tournament size values: k = {2, 3, 4, 5, 6} as well as the above given seven q0
values. We also included a second version of the approach where Δτ is calculated
in a different way so that pheromone values decrease more gradually. In this case,
Δτ is calculated as Δτ = 0.1 ∗ (1/fc). AbSrw with slow decreasing and AbSts
with slow decreasing are denoted as sAbSrw and sAbSts, respectively.

For the parameter settings of the other heuristic selection methods, their
proposed settings from literature are used. In Reinforcement Learning, the scores
of all heuristics are initialized to 15 with lower and upper bounds as 0 and 30
respectively as given in [16]. At each step, the score of a heuristic that improves
performance is increased by 1 and otherwise it is decreased by 1. In Choice
Function, α, β, and δ are initialized to 0.5 with updates of ±0.01 at each iteration
as given in [9]. In the Improved Choice Function, φ, which refers α and β,
and δ are initialized to 0.5. If the heuristic improves performance, the values
of φ are set to 0.99. Otherwise, the values of φt at time t are calculated as
φt = max{φt−1 − 0.01, 0.01}. In addition, δ is calculated as δt = 1− φt.

We assume that all programs are made aware when a change in the envi-
ronment occurs. For the Reinforcement Learning, Choice Function and the Im-
proved Choice Function selection methods, when a change occurs, the current
solution is re-evaluated. For the proposed Ant-based selection scheme, this is
not required. The parameters of none of the heuristic selection methods are
reset when the environment changes. Due to the nature of the acceptance mech-
anism, Improving-and-Equal, the first solution candidate generated after each
environment change is accepted regardless of its solution quality.

For evaluating the performance of the approaches, we used the offline error
[2] metric. The error of a candidate solution at a given time is calculated as its
distance to the optimum in terms of the objective function value at that time.
The offline error is calculated as a cumulative average of the errors of the best
candidate solutions found so far since the last change. At the end of a run, a
lower overall offline error value is desired indicating a good performance.

Each run is repeated 100 times for each setting where 20 changes occur,
i.e. there are 21 consecutive stationary periods. This means that there are
maxIterations = (NoOfChanges + 1) ∗ ChangePeriod number of iterations
per run. For analysis of statistical significance of the differences obtained

An Ant-Based Selection Hyper-heuristic for Dynamic Environments 631

between the results of various approaches, we performed ANOVA tests together
with Tukey’s HSD at a confidence level of 95%.

4 Results and Discussion

In this section we provide the results of the experiments and their discussions.
Table 2 shows the results of the q0 tests for both AbSrw and sAbSrw. In the table
q0 = 0.0 means that the next heuristic is chosen using only the roulette-wheel
selection. However, q0 = 1.0 means that roulette wheel selection is not used
and always the heuristic with the best score (pheromone value) is chosen to be
applied. The results show that there are no statistically significant differences
between most cases, however, the best values are provided by different q0 values
for different frequency-severity pairs. Therefore, to avoid overtuning, we decided
to choose a setting which provided an acceptable performance in most of the
cases for both approaches.For the rest of the experiments we continued with a
setting of q0 = 0.5 for both AbSrw and sAbSrw.

Table 2. Final offline error results of various q0 settings for AbSrw and sAbSrw under
the tested change frequency-severity pairs

Algorithm q0
LF MF HF

LS MS HS LS MS HS LS MS HS

AbSrw

0.0 3.58 7.66 9.88 4.65 8.86 12.32 9.89 17.03 24.04
0.1 3.46 7.64 10.28 4.38 9.34 11.75 10.14 17.14 25.24
0.3 3.93 8.03 10.24 4.61 8.77 12.35 9.29 16.45 24.61
0.5 3.72 8.11 10.58 4.64 9.60 13.05 9.40 15.46 24.26
0.7 4.19 8.43 10.56 4.98 10.84 13.18 10.43 17.42 25.49
0.9 3.93 10.42 10.85 4.78 10.46 13.65 12.50 19.81 28.94
1.0 3.96 10.37 12.33 5.53 10.85 14.00 15.90 23.06 31.92

sAbSrw

0.0 3.73 7.45 9.73 4.39 8.53 11.94 10.35 17.11 25.59
0.1 3.72 7.09 9.88 4.49 8.51 12.33 9.95 17.18 24.37
0.3 3.98 7.60 10.19 4.39 8.25 12.47 8.88 15.44 24.03
0.5 3.64 7.40 10.99 4.18 8.70 12.42 7.93 14.94 22.90
0.7 3.88 8.58 10.95 4.48 9.49 12.53 8.91 16.00 24.13
0.9 4.28 8.83 11.94 4.40 10.10 13.33 8.69 15.43 23.71
1.00 4.88 9.96 12.56 6.53 12.62 14.80 13.54 19.35 25.19

Then, we performed experiments to set the q0 and tournament size values for
the AbSts and sAbSts variations. The experimental results which are not provided
in here due to space limitation revealed that for these variants of the approach,
the best setting of these two parameters depends highly on the dynamics of the
environment, i.e. the change frequency and severity values. Since we observed
that the settings of these two parameters are sensitive, we decided to develop an
adaptive mechanism as future work. For this study, we chose a simpler approach.
For those cases where tournament selection is to be applied, each time we let

632 B. Kiraz, A.Ş. Etaner-Uyar, and E. Özcan

the tournament size be determined randomly with equal probability from among
the five pre-determined tournament size levels. We performed the q0 analysis for
AbSts and sAbSts based on this scheme. Table 3 shows the final offline error
results for various q0 settings for AbSts and sAbSts when the tournament sizes
are determined randomly. We chose q0 = 0.1 for AbSts and q0 = 0.9 for sAbSts,
since each approach delivers an acceptable performance in most of the cases with
these settings which are used for the rest of the experiments.

Table 3. Final offline error results of various q0 settings for AbSts and sAbSts with
random tournament sizes under the tested change frequency-severity pairs

Algorithm q0
LF MF HF

LS MS HS LS MS HS LS MS HS

AbSts

0.0 3.84 8.52 10.90 5.24 10.23 13.03 13.43 18.36 25.46
0.1 4.06 8.02 10.94 5.07 9.57 12.85 13.49 19.04 25.26
0.3 3.74 8.29 11.11 5.17 9.97 13.19 13.12 19.33 25.33
0.5 3.93 8.09 11.88 5.01 10.20 13.36 12.84 18.35 25.95
0.7 3.92 8.32 11.78 5.15 9.69 13.18 12.87 18.83 26.59
0.9 4.03 8.78 12.01 4.92 11.96 12.96 13.86 21.46 30.14
1.0 3.99 9.98 11.74 5.46 10.79 14.62 14.64 22.26 30.59

sAbSts

0.0 4.15 8.19 10.37 5.05 10.11 13.00 12.24 17.25 24.22
0.1 4.24 8.49 10.72 5.22 10.10 13.05 12.80 18.56 24.72
0.3 3.68 8.37 11.95 4.92 10.45 12.44 11.38 17.89 24.15
0.5 3.91 8.43 11.01 4.66 9.84 13.04 10.10 16.74 24.88
0.7 4.08 8.63 11.51 4.64 10.31 13.19 9.68 16.93 23.91
0.9 4.03 9.00 11.74 4.64 10.03 12.39 9.12 16.76 23.42
1.0 4.75 10.57 12.60 7.70 12.25 14.56 13.40 18.13 24.27

Finally, we compare our approaches with those obtained using the heuristic
selection methods taken from literature, namely RL, CF and ICF. Table 4 shows
the results of these comparisons. The better results are marked in bold in the
table. As can be seen, RL and ICF are worse than the others for all cases and
these differences are statistically significant, with ICF being the worst of all.

ICF aims to emphasize the intensification component of the generic CF by
automatically increasing the weight of relevant components as soon as there is
improvement. Diversification, on the other hand, is introduced at a gradually in-
creasing rate. This property works in solving stationary combinatorial optimiza-
tion problems as shown in [9], but not in dynamic environments. The changes
in the environment mislead ICF and it gets worse than CF in all cases. It was
shown in [11,12] that CF outperforms RL for all tested change dynamics using
the MPB. Therefore, the poor performance of RL in the current experiments is
also to be expected.

The results show that all versions of the proposed heuristic selection scheme
provide better results than CF, except for the LF-LS and MF-LS cases, however,
the results are close. Among the versions of the proposed heuristic selection
scheme, sAbSrw provides the better results in most cases.

An Ant-Based Selection Hyper-heuristic for Dynamic Environments 633

Table 4. Final offline error results for the proposed heuristic selection schemes and
RL, CF and ICF. Here, for both AbSrw and sAbSrw q0 = 0.5, for AbSts q0 = 0.1 and
for sAbSts q0 = 0.9 with random tournament size settings.

Algorithm
LF MF HF

LS MS HS LS MS HS LS MS HS

AbSrw 3.72 8.11 10.58 4.64 9.60 13.05 9.40 15.46 24.26
sAbSrw 3.64 7.40 10.99 4.18 8.70 12.42 7.93 14.94 22.90
AbSts 4.06 8.02 10.94 5.07 9.57 12.85 13.49 19.04 25.26
sAbSts 4.03 9.00 11.74 4.64 10.03 12.39 9.12 16.76 23.42

CF 3.52 9.80 11.88 4.09 10.95 13.60 7.98 15.67 24.39
ICF 10.07 15.29 18.14 11.04 19.69 20.76 19.12 27.29 32.79
RL 4.43 9.05 12.18 5.97 12.44 14.54 10.29 15.69 24.57

Due to lack of space, we cannot provide all the statistical comparison tables.
Table 5 provides a summary. In the table the values under s+ show the total
number of times the corresponding approach was statistically significantly better
than the others and s− counts show the vice versa. ≥ counts show the number of
times the corresponding approach was better than the others based on average
results, however, the differences were not statistically significant. ≤ counts show
the vice versa. The results in the table are ordered in decreasing order of the
s+ counts. The counts in the table show that sAbSrw has the most s+ and ≥
counts with CF following close behind.

Table 5. Summary of statistical significance comparisons, where s+ is the total num-
ber of times the corresponding approach was statistically significantly better than the
others, s− is the vice versa, ≥ is the number of times the corresponding approach was
better than the others based on average results (no statistical significance), and ≤ is
the vice versa.

Algorithm s+ s− ≥ ≤
sAbSrw 15 0 34 5
CF 13 1 18 22
AbSrw 12 0 24 18
RL 11 7 3 33
AbSts 10 9 16 19
sAbSts 10 0 23 21
ICF 0 54 0 0

As can be seen, sAbSrw is better than CF in many cases, but in several oth-
ers, their performance is comparable. However, the most important issue is the
fact that sAbSrw (and also all the other proposed variants) are more suitable to
be used in dynamic environments than RL, CF and ICF because the proposed
heuristic selection schemes do not require any special actions to be performed

634 B. Kiraz, A.Ş. Etaner-Uyar, and E. Özcan

when the environment changes, whereas for the others, right after an environ-
ment change, the last solution candidate in the previous environment needs to
be re-evaluated. This is a drawback for two reasons: it makes change detection
necessary and it also wastes fitness evaluations, especially in environments where
the change frequencies are very high.

5 Conclusion

In this paper, we proposed a new heuristic selection scheme for selection hyper-
heuristics, especially for use in dynamic environments. In previous studies
[11,12,18], existing heuristic selection mechanisms were tested in various types
of dynamic environments and those that incorporated some form of online learn-
ing were shown to be successful. One drawback of these approaches for dynamic
environments is that they require the re-evaluation of the last candidate solution
in the previous environment for score calculation. As well as wasting computing
resources for the re-evaluation, this also means that the algorithm needs to de-
tect when the environment changes. The proposed heuristic selection does not
require any special actions when the environment changes. Moreover, the empir-
ical results show that the proposed heuristic selection scheme provides slightly
better performance than the heuristic selection scheme previously reported to be
the best in dynamic environments. The results are very encouraging and promote
further study.

A drawback of the proposed method is that it has a number of parameters
and the performance of the proposed heuristic selection method is sensitive to
the initial setting of those parameters for some cases. As future work, we plan
to develop adaptive mechanisms to alleviate the need for parameter tuning and
enhance the performance of the proposed approach even further. Additionally,
our future work will focus on the investigation of move acceptance methods
which are more suitable for dynamic environments as selection hyper-heuristic
components.

Acknowledgements. B. Kiraz is supported by TÜBİTAK 2211-National Schol-
arship Program for PhD students. The study is supported in part by EPSRC,
grant EP/F033214/1 (The LANCS Initiative Postdoctoral Training Scheme).

References

1. Branke, J.: Memory enhanced evolutionary algorithms for changing optimiza-
tion problems. In: Congress on Evolutionary Computation, CEC 1999, vol. 3,
pp. 1875–1882. IEEE (1999)

2. Branke, J.: Evolutionary optimization in dynamic environments. Kluwer (2002)

3. Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Rong,
Q.: Hyper-heuristics: A survey of the state of the art. Journal of the Operational
Research Society (to appear)

An Ant-Based Selection Hyper-heuristic for Dynamic Environments 635

4. Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Woodward, J.R.: A
classification of hyper-heuristic approaches. In: Gendreau, M., Potvin, J.Y. (eds.)
Handbook of Metaheuristics, International Series in Operations Research and Man-
agement Science, pp. 449–468. Springer (2010)

5. Chakhlevitch, K., Cowling, P.: Hyperheuristics: Recent developments. In: Cotta,
C., Sevaux, M., Sirensen, K. (eds.) Adaptive and Multilevel Metaheuristics. SCI,
pp. 3–29. Springer, Heidelberg (2008)

6. Cowling, P.I., Kendall, G., Soubeiga, E.: A Hyperheuristic Approach to Scheduling
a Sales Summit. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079,
pp. 176–190. Springer, Heidelberg (2001)

7. Cruz, C., Gonzalez, J., Pelta, D.: Optimization in dynamic environments: a survey
on problems, methods and measures. Soft Computing - A Fusion of Foundations,
Methodologies and Applications 15, 1427–1448 (2011)

8. Dorigo, M., Stützle, T.: Ant Colony Optimizations. MIT Press (2004)
9. Drake, J.H., Özcan, E., Burke, E.K.: An Improved Choice Function Heuristic Se-

lection for Cross Domain Heuristic Search. In: Coello, C.A.C., Cutello, V., Deb, K.,
Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part II. LNCS, vol. 7492,
pp. 307–316. Springer, Heidelberg (2012)

10. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer (2003)
11. Kiraz, B., Uyar, A.Ş., Özcan, E.: An Investigation of Selection Hyper-heuristics in

Dynamic Environments. In: Di Chio, C., Cagnoni, S., Cotta, C., Ebner, M., Ekárt,
A., Esparcia-Alcázar, A.I., Merelo, J.J., Neri, F., Preuss, M., Richter, H., Togelius,
J., Yannakakis, G.N. (eds.) EvoApplications 2011, Part I. LNCS, vol. 6624, pp.
314–323. Springer, Heidelberg (2011)

12. Kiraz, B., Uyar, A.S., Özcan, E.: Selection hyper-heuristics in dynamic environ-
ments. Journal of the Operational Research Society

13. Morrison, R.W.: Designing evolutionary algorithms for dynamic environments.
Springer (2004)

14. Nareyek, A.: Choosing search heuristics by non-stationary reinforcement learning.
In: Metaheuristics: Computer Decision-Making, pp. 523–544. Kluwer Academic
Publishers (2001)

15. Özcan, E., Bilgin, B., Korkmaz, E.E.: A comprehensive analysis of hyper-heuristics.
Intelligent Data Analysis 12, 3–23 (2008)

16. Özcan, E., Misir, M., Ochoa, G., Burke, E.K.: A reinforcement learning - great-
deluge hyper-heuristic for examination timetabling. International Journal of Ap-
plied Metaheuristic Computing 1(1), 39–59 (2010)

17. Özcan, E., Uyar, Ş., Burke, A.,, E.: A greedy hyper-heuristic in dynamic environ-
ments. In: GECCO 2009 Workshop on Automated Heuristic Design: Crossing the
Chasm for Search Methods, pp. 2201–2204 (2009)

18. Uludağ, G., Kiraz, B., Etaner-Uyar, A.Ş., Özcan, E.: A Framework to Hybridize
PBIL and a Hyper-heuristic for Dynamic Environments. In: Coello, C.A.C.,
Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part
II. LNCS, vol. 7492, pp. 358–367. Springer, Heidelberg (2012)

19. Yang, S., Ong, Y.S., Jin, Y. (eds.): Evolutionary Computation in Dynamic and
Uncertain Environments. SCI. Springer (2007)

Author Index

Affenzeller, Michael 152
Amelio, Alessia 314
Antony, Mathis 92
Auinger, Franz 152

Bartz-Beielstein, Thomas 172
Berrocal-Plaza, Vı́ctor 72
Botón-Fernández, Maŕıa 82
Bouvry, Pascal 32
Breaban, Mihaela Elena 324
Browne, Will N. 428
Bucur, Doina 1
Byrski, Aleksander 132

Cabral, Ana 334
Caldas, José 407
Cardoso, Hugo 142
Carreiras, João M.B. 334, 407
Castelli, Mauro 334, 407
Catarino, Lúıs 334
Černý, Jan 550
Chen, Yi 449
Ciesielski, Vic 418
Clune, Jeff 540
Collet, Pierre 162
Colton, Simon 284
Contreras, Iván 244
Cook, Michael 284
Cotta, Carlos 274

Danoy, Grégoire 32
De Falco, Ivanoe 52, 344
Della Cioppa, Antonio 344
Derby, Owen 509
Deshpande, Bharat 479
Di Silvestre, Maria Luisa 22
Dorronsoro, Bernabé 32

Egarter, Dominik 182
Eiben, A.E. 569
Elmenreich, Wilfried 182
Etaner-Uyar, A. Şima 626
Etemadi, Reza 439

Fernández de Vega, Francisco 499
Fernández-Leiva, Antonio J. 274

Ferrari, Gianluigi 42
Filipiak, Patryk 234
Flasch, Oliver 172
Folino, Gianluigi 62
Font, Jose M. 254
Friese, Martina 172
Fu, Haobo 616
Fu, Wenlong 354, 365

Gabrielsson, Patrick 213
Gajda-Zagórska, Ewa 112
Gallea, Roberto 22
Garćıa-Valdez, Mario 499
Gieseke, Fabian 459
Glette, Kyrre 540
Gomes, Álvaro 142
Gómez-Pulido, Juan A. 72
Gonçalves, Ivo 407
Gow, Jeremy 284
Grogono, Peter 439

Haasdijk, Evert 569
Haddadi, Fariba 529
Hamann, Heiko 579
Hao, Xiaohong 449
Henggeler Antunes, Carlos 142
Heywood, Malcolm I. 192, 489, 529
Hidalgo, J. Ignacio 244
Hochreiter, Ronald 223
Hutterer, Stephan 152
Hyeon, Byeongyong 122
Hyun, Soohwan 122, 599

Iacca, Giovanni 1
Ingalalli, Vijay 407

Johansson, Ulf 213
Johnston, Mark 354, 365
Joshi, Ramprasad 479

Kayacik, H. Gunes 529
Kharma, Nawwaf 439
Kiraz, Berna 626
Kisiel-Dorohinicki, Marek 132
König, Rikard 213

638 Author Index

Kramer, Oliver 459
Krawiec, Krzysztof 376
Krottendorfer, Gerald 223
Krüger, Frédéric 162
Kubaĺık, Jǐŕı 550

Lara-Cabrera, Raúl 274
Laskowski, Eryk 52
Lee, Suchan 540
Lee, Younghee 122
Li, Xuekang 449
Liapis, Antonios 264
Lipinski, Piotr 234
Lipson, Hod 540
Loginov, Alexander 192
Lutton, Evelyne 102

Maestro-Montojo, Javier 304
Mahlmann, Tobias 254
Maisto, Domenico 344
Manrique, Daniel 254
Mavrovouniotis, Michalis 606
Mayo, Michael 203
Melo, Joana B. 407
Merelo Guervós, Juan Julián 304, 499
Mersmann, Olaf 172
Michalak, Krzysztof 234
Michiels, Nico K. 579
Monica, Stefania 42
Moshaiov, Amiram 589

Naujoks, Boris 172
Nawrocki, Mateusz 376
Noskov, Nikita 569
Núñez-Letamendia, Laura 244

Olague, Gustavo 499
Olejnik, Richard 52
O’Reilly, Una May 509, 519
Özcan, Ender 626

Pan, Ling-Yan 387
Peng, Bei 449
Pérez-Moneo Suárez, Dámaso 560
Pilic, Tobias 397
Pisani, Francesco Sergio 62
Pisarski, Sebastian 132
Pizzuti, Clara 314
Prieto Castrillo, Francisco 82

Raad, Azalea 284
Richter, Hendrik 397

Riva Sanseverino, Eleonora 22
Rossi, Claudio 560
Rubio-Largo, Álvaro 12
Ruga�la, Adam 132

Salcedo-Sanz, Sancho 304
Sánchez-Pérez, Juan M. 72
Scafuri, Umberto 52, 344
Schleich, Julien 32
Schmickl, Thomas 579
Schwarzer, Christopher S.F. 579
Sendhoff, Bernhard 616
Seo, Kisung 122, 599
Silva, Sara 334, 407
Soares, Ana 142
Sobe, Anita 182
Song, Andy 418
Squillero, Giovanni 1, 102
Stork, Jörg 172
Stradner, Jürgen 579
Szeto, K.Y. 92

Tang, Ke 616
Tarantino, Ernesto 52, 344
Togelius, Julian 254, 264
Tonda, Alberto 1, 102
Trujillo, Leonardo 499
Tudruj, Marek 52
Turner-Baggs, Jazz Alyxzander 489

Vanneschi, Leonardo 334, 407
Vasconcelos, Maria J. 334
Veeramachaneni, Kalyan 509, 519
Vega-Rodŕıguez, Miguel A. 12, 72, 82
Vinga, Susana 407
Vladislavleva, Katya 172

Wagner, Daniel 162
Weel, Berend 569
Wessing, Simon 469
Wilson, Dennis 519
Winder, Ransom K. 294
Wu, Degang 92
Wuillemin, Pierre-Henri 102

Xie, Feng 418
Xue, Bing 428

Yang, Shengxiang 606
Yang, Yu-Bin 387
Yannakakis, Georgios N. 264
Yao, Xin 616
Yosinski, Jason 540

Author Index 639

Zadok, Michael 589
Zaefferer, Martin 172
Zhang, Mengjie 354, 365, 428

Zhang, Muhao 449
Zincir-Heywood, A. Nur 529

	Title
	Preface
	Organization
	Table of Contents
	EvoCOMNET
	An Evolutionary Framework for RoutingProtocol Analysis in Wireless Sensor Networks
	Introduction
	Anomalous WSN Routing and Lifetime
	An Evolutionary Tool for WSN Routing Protocol Analysis
	Individual Description
	Fitness Function
	GP and TOSSIM

	Experimental Results
	Noise Analysis
	Evolutionary Process
	Results: Faulty Topologies

	Conclusions and Future Works
	References

	Routing Low-Speed Traffic Requestsonto High-Speed Lightpathsby Using a Multiobjective Firefly Algorithm
	Introduction
	Traffic Grooming Problem
	Multiobjective Firefly Algorithm (MO-FA)
	Experimental Results
	Conclusions and Future Work
	References

	Pareto-optimal Glowworm Swarms Optimizationfor Smart Grids Management
	Introduction
	Related Works
	Methods: GSO Extension to Pareto Optimization
	A Test Case: Distribution System Management
	Results and Discussion
	Conclusions and Future Work
	References

	An Overlay Approach for OptimisingSmall-World Properties in VANETs
	Introduction
	Related Work
	Problem Description
	Small-World Properties
	Model of the Problem

	NSGAII
	Experimental Setup
	Results
	Conclusions and Future Work
	References

	Impact of the Number of Beaconsin PSO-Based Auto-localizationin UWB Networks
	Introduction
	Scenario Description
	TSML Method
	PI Method
	PSO Algorithm

	Simulation Results
	Conclusion
	References

	Load Balancing in Distributed ApplicationsBased on Extremal Optimization
	Introduction
	Extremal Optimization Algorithm Principles
	Extremal Optimization Applied to Load Balancing
	System and Program Model
	Detection of Load Imbalance
	Load Balancing Procedure
	Deterministic Approach for Load Balancing

	Experimental Assessment of Load Balancing Algorithms
	Conclusions
	References

	A Framework for Modeling AutomaticOffloading of Mobile ApplicationsUsing Genetic Programming
	Introduction
	The Framework for Simulating and Generating Decision Models
	Designing an Efficient GP System for Automatic Mobile Offloading
	A Taxonomy of the Main Properties for the Offloading Process
	Fitness Evaluation

	Related Works
	Conclusions and Future work
	References

	Solving the Location Areas Scheme in Realistic Networksby Using a Multi-objective Algorithm
	Introduction
	Location Areas Scheme
	Stanford University Mobile Activity Traces

	Multi-objective Optimization Paradigm
	Non-dominated Sorting Genetic Algorithm II

	Experimental Results
	Conclusions and Future Work
	References

	EvoCOMPLEX
	The Small-World Phenomenon Appliedto a Self-adaptive Resources Selection Model
	Introduction
	Related Work
	Model Definition
	Basic Grid Concepts
	The Mathematical Formulation to Measure Resources Efficiency
	The Efficient Selection Model: Combining the Mathematical Formulation with the Small-World Phenomenon

	Performance Evaluation
	Conclusions
	References

	Partial Imitation Hinders Emergenceof Cooperation in the Iterated Prisoner’sDilemma with Direct Reciprocity
	Introduction
	Methods
	Memory and Strategies
	Partial Imitation Rule (pIR)
	Simulation

	Results
	All-D Phase
	Time Scale for Emergence of Cooperation

	Conclusion
	References

	A Memetic Approachto Bayesian Network Structure Learning
	Introduction
	Background
	Bayesian Networks
	The Structure Learning Problem
	Memetic Algorithms

	Proposed Approach
	Evolutionary Framework
	Fitness Function

	Experimental Setup
	Experimental Results
	Results Discussion
	Conclusions and Future Works
	References

	Multiobjective Evolutionary Strategyfor Finding Neighbourhoodsof Pareto-optimal Solutions
	Introduction
	Strategy
	Preliminaries
	Hierarchic Genetic Strategy
	Genetic Algorithms with Heuristic
	Clustering

	Example
	Conclusions and Future Research
	References

	Genetic Programming-Based Model Output Statisticsfor Short-Range Temperature Prediction
	Introduction
	Numerical Weather Prediction
	Unified Model and KLAPS
	MOS (Model Output Statistics)

	Genetic Programming Based Compensation Technique
	A Proposed Genetic Programming Approach
	Function and Terminal Sets
	Fitness Function

	Experiments
	GP Parameters
	Experimental Results
	An Example of GP Based Temperature Compensation in
	RMSE Distribution of UM and GP

	Conclusions
	References

	Evolutionary Multi-Agent Systemin Hard Benchmark Continuous Optimisation
	Introduction
	Evolutionary Agent-Based Optimization
	Methodology of Experimental Studies
	Experimental Results
	Conclusions
	References

	EvoENERGY
	Domestic Load Scheduling Using Genetic Algorithms
	Introduction
	Problem Description
	Case Study and Simulation Results
	Conclusion and Future Work
	References

	Evolutionary Algorithm Based Control Policiesfor Flexible Optimal Power Flow over Time
	Introduction
	Non-stationary Optimization
	Optimization over Time in Power Grid Engineering
	Evolution of Flexible Control Policies

	Policy Synthesis
	Construction of Atomic Rules
	Policy Synthesis and Optimization
	Learning: Evolutionary Simulation Optimization

	Experimental Evaluation
	Training: Learning Optimal Policies
	Testing: Evaluating the Learned Policies

	Conclusion
	References

	Using a Genetic Algorithmfor the Determination of Power Load Profiles
	Introduction
	General Setup
	Available Data
	Methodology

	Genetic Algorithm
	Basic Genetic Algorithm
	EASEA
	Fitness Function
	Engine of the Genetic Algorithm

	Results
	Load Profiles
	Load Curve Estimation

	Conclusion
	References

	Comparing Ensemble-Based Forecasting Methodsfor Smart-Metering Data
	Introduction
	Research Goals
	Data and Experiments
	Training- and Test-Datasets
	Prediction Quality Rating

	Methods
	Baseline (GreenPocket)
	Ensemble-Based Methods
	DataModeler

	Results and Discussion
	Conclusions and Outlook
	References

	Evolving Non-Intrusive Load Monitoring
	Introduction
	Evolutionary Appliance Detection
	Evaluation
	Variation of Wanted and Stored Appliances
	Influence of Disturbances

	Conclusion and Future Work
	References

	EvoFIN
	On the Utility of Trading CriteriaBased Retraining in Forex Markets
	Introduction
	Glossary

	Proposed Algorithm
	The FXGP Algorithm Overview
	Training
	Validation
	Trading and Retraining Criteria
	Source Data

	Experimental Setup
	Results
	Conclusion
	References

	Identifying Market Price LevelsUsing Differential Evolution
	Introduction
	Background
	Price Levels in Markets
	Differential Evolution

	Differential Evolution for Price Level Identification
	Individual Representation
	Value Function
	Control Case

	Evaluation
	Datasets
	Method
	Results

	Conclusion
	References

	Evolving Hierarchical Temporal Memory-Based Trading Models
	Introduction
	Background
	Technical Indicators
	Predictive Modeling
	Hierarchical Temporal Memory

	Related Work
	Method
	Data Acquisition and Feature Extraction
	Dataset Partitioning and Cross Validation
	Classification Task and Trading Strategy
	Performance Measure and Fitness Function
	Experiments

	Results
	Conclusion
	References

	Robust Estimation of Vector Autoregression(VAR) Models Using Genetic Algorithms
	Introduction
	Vector Autoregression (VAR) Models
	Asset Selection
	Lag Selection
	Weighting Coefficient Calculation
	Robustness

	A New Approach Using Genetic Algorithms
	Implementation
	Numerical Results
	Measurement of the Estimation Quality
	Settings of the Genetic Algorithm
	Simulation Results

	Conclusion
	References

	Usage Patterns of Trading Rules in StockMarket Trading Strategies Optimizedwith Evolutionary Methods
	Introduction
	Evolutionary Optimization
	Analysis of Trading Rule Sets
	Experiments
	Conclusion
	References

	Combining Technical Analysis and GrammaticalEvolution in a Trading System
	Introduction
	GA Based Trading System
	GE Based Trading System
	Fitness Fuction
	Trading System
	GE Implementation

	Experimental Results
	Data Set
	GA vS GE on Data2012

	Conclusions
	References

	EvoGAMES
	A Card Game Description Language
	Introduction
	Definition of a Search Space for Card Games
	The Card Game Language

	Experimental Results
	Conclusions and Future Work
	References

	Generating Map Sketches for Strategy Games
	Introduction
	Related Work
	Methodology
	Map Design Tool
	Evolutionary Optimization

	Experiments
	Optimizing a Single Fitness Dimension
	Optimizing Multiple Fitness Dimensions

	Conclusion
	References

	A Procedural Balanced Map Generatorwith Self-adaptive Complexity for the Real-TimeStrategy Game Planet Wars
	Introduction
	Game Description
	A Procedural Balanced Map Generator
	Evolutionary Strategy
	Tournament System

	Experiments and Results
	Conclusion and Future Work
	References

	Mechanic Miner: Reflection-DrivenGame Mechanic Discovery and Level Design
	Introduction
	Automatic Generation of Game Mechanics
	Background
	Mechanic Miner

	Mechanic-Led Level Design
	Results and Evaluation
	Mechanic - Gravity Inversion
	Mechanic - `Teleportation'
	Mechanic - `Bounce'
	Pilot Study

	Related Work
	Conclusions and Future Work
	References

	Generating Artificial Neural Networksfor Value Function Approximation in a DomainRequiring a Shifting Strategy
	Introduction
	Background
	TD-Gammon and Variants
	Domain Space – Dominion

	Methods
	Results and Discussion
	Conclusions
	References

	Comparing Evolutionary Algorithms to Solve the Game of MasterMind
	Introduction and State of the Art
	Mastermind: Basic Notation and Definitions
	Compared Algorithms
	Proposed Nested Hierarchical Evolutionary Approach
	Stepwise Evolutionary Approach for Comparison

	Experimental Results
	Conclusions and Future Work
	References

	EvoIASP
	A Genetic Algorithm for Color Image Segmentation
	Introduction
	Graph-Based Segmentation
	Affinity Computation

	Algorithm
	Evaluation Measure: Probabilistic Rand Index
	Experimental Results
	Conclusions
	References

	Multiobjective Projection Pursuitfor Semisupervised Feature Extraction
	Introduction
	Projection Pursuit
	PP Indices for Unsupervised and Supervised Classification
	Multiobjective PP
	Solution Encoding
	Multi-modal Search along Several Objectives
	Variation Operators
	Evaluation
	The Solutions

	Experiments
	Conclusions
	References

	Land Cover/Land Use Multiclass ClassificationUsing GP with Geometric Semantic Operators
	Introduction
	Geometric Semantic Operators
	Experimental Study
	Conclusions and Future Work
	References

	Adding Chaos to Differential Evolutionfor Range Image Registration
	Introduction
	State of the Art
	Chaotic Differential Evolution
	Encoding and Fitness

	Experimental Results
	Statistical Analysis

	Conclusions and Future Works
	References

	Genetic Programming for Automatic Construction of Variant Features in Edge Detection
	Introduction
	Background
	Edge Detection
	Related Work to GP for Edge Detection

	Constructing Variant Features Using GP
	Terminal Set
	Primitive Functions
	Fitness Function

	Experiment Design
	Results and Discussion
	Overall Results
	Comparison among GP, Tgd, Tf and Thd
	Detected Images

	Conclusions
	References

	Automatic Construction of Gaussian-Based EdgeDetectors Using Genetic Programming
	Introduction
	Background
	Gaussian-Based Edge Detection
	Related Work to GP for Edge Detection

	Constructing Invariant Gaussian-Based Edge Detectors Using GP
	Terminals Based on Gaussian Models
	Function Set
	Fitness Function

	Experiment Design
	Results and Discussion
	Overall Results
	Detected Images

	Conclusions
	References

	Implicit Fitness Sharing for EvolutionarySynthesis of License Plate Detectors
	Introduction
	Related Work
	The Approach
	Implicit Fitness Sharing
	The Experiment
	Conclusion
	References

	Feedback-Based Image Retrieval UsingProbabilistic Hypergraph Ranking Augmentedby Ant Colony Algorithm
	Introduction
	The Approach
	Probabilistic Hypergraph
	Similarity Measurement
	Hypergraph Ranking Augmented by Ant Colony Algorithm

	Experiments
	Experimental Settings
	Experiments on 15 Class Scene Dataset
	Experiments on Caltech-101 Dataset

	Conclusion
	References

	An Evolutionary Approach for AutomaticSeedpoint Setting in Brain Fiber Tracking
	Introduction
	Diffusion Tensor Imaging
	The Physical Process of Diffusion and the Diffusion Tensor
	Preprocessing and Interpretation of the Data
	Brain Fiber Tracking

	Evolutionary Approach
	Experiments and Results
	Test Environment
	Parameter Optimisation and Results
	Discussion

	Conclusion and Future Works
	References

	Prediction of Forest Aboveground Biomass:An Exercise on Avoiding Overfitting
	Introduction
	Data
	Methods
	Results and Discussion
	Conclusions
	References

	Human Action Recognition from Multi-SensorStream Data by Genetic Programming
	Introduction
	Related Work
	GP Representations
	Function Window.
	Function Temporal_Diff.
	Function Multiple-Channel.

	Multi-class Classification
	Experiments
	Data Sets
	Synthetic Data.
	Human Action Data.
	Data for Comparisons.

	Results
	Binary Classification.
	Multi-class Classification.
	Ensemble Approach for Multi-class Classification.

	Conclusions and Future Work
	References

	Novel Initialisation and Updating Mechanismsin PSO for Feature Selection in Classification
	Introduction
	Goals

	Proposed Approach
	New Initialisation Strategy
	New pbest and gbest Updating Mechanism

	Design of Experiments
	Benchmark Techniques
	Datasets and Parameter Settings

	Experimantal Results and Discussions
	Results of Benckmark Techniques
	Results of IniPG
	Analysis on Computational Time

	Conclusions
	References

	EvoINDUSTRY
	CodeMonkey; a GUI Driven Platform for SwiftSynthesis of Evolutionary Algorithms in Java
	Introduction
	Review

	Design and Implementation
	Concept
	The Framework
	Plug-in Application
	Program Execution

	Example
	Solution
	Implementation
	Results

	Conclusion
	References

	Multi-Objective Optimizations of Structural ParameterDetermination for Serpentine Channel Heat Sink
	Introduction
	The Methodology
	Thermal Resistance
	Pressure Drop

	Calculation the Bend Loss Coefficient
	Effect of Aspect Ratio
	Effect of Width of Fins
	Effect of Turn Clearance
	Correlation for the Bend Loss Coefficient

	Optimization with Multi-objective Genetic Algorithms
	Objective Function, Design Parameters and Constraints
	Results of NSGA-II
	Verification by Numerical Simulation

	Conclusions
	References

	EvoNUM
	Towards Non-linear Constraint Estimation for Expensive Optimization
	Introduction
	Linear Constraint Estimation Revisited
	An Active Large Margin Constraint Estimator
	Support Vector Machines
	An Iterative Selection Strategy for Constraint Estimation

	Experimental Evaluation
	Constraint Estimation Analysis
	Application: Meta-modeling in Optimization

	Conclusions and Future Work
	References

	Repair Methods for Box Constraints Revisited
	Introduction
	Experiments
	Conclusions and Outlook
	References

	Scalability of Population-Based Search Heuristicsfor Many-Objective Optimization
	Introduction
	Preliminary Notation

	Population-Based Randomized Search Heuristics for Multiobjective Optimization
	Quantifying Exploration and Exploitation
	Search Spaces and Search Processes
	Dividing up the Search Space

	Bounding Algorithm Efficiency
	Conclusion
	References

	EvoPAR
	On GPU Based Fitness Evaluation with Decoupled Training Partition Cardinality
	Introduction
	Overview to Symbiotic Bid Based GP
	Architecture of gSBB
	Problem Decomposition (Tiling)
	Managing Global Memory Latency

	Results
	Conclusion
	References

	EvoSpace: A Distributed Evolutionary Platform Based on the Tuple Space Model
	Introduction
	Related Work
	EvoSpace
	Experiments and Results
	Conclusions
	References

	Cloud Driven Design of a DistributedGenetic Programming Platform
	Introduction
	Parallel Asynchronous Startup
	Factored Learners
	Distributed IP Discovery
	Empirical Study

	Related Work
	Conclusions and Future Work
	References

	Cloud Scale Distributed Evolutionary Strategiesfor High Dimensional Problems
	Introduction
	Related Work
	Distributed CMA-ES Strategy
	CASINO Setup
	Randomized Migration Protocols
	An Exemplar High Dimensional Problem
	Experiments and Analysis
	Conclusions and Future Work
	References

	EvoRISK
	Malicious Automatically Generated Domain NameDetection Using Stateful-SBB
	Introduction
	Related Work
	Botnets: How They Work
	Botnet Detection

	Methodology
	Learning Algorithms Employed

	Evaluations and Results
	Conclusion and Future Work
	References

	EvoROBOT
	Evolving Gaits for Physical Robotswith the HyperNEAT Generative Encoding:The Benefits of Simulation
	Introduction
	Methods
	Results and Discussion
	Conclusion
	References

	Co-evolutionary Approach to Design of RoboticGait
	Introduction
	Simulation Platform and Experimental Robot
	Proposed Approach to Automatic Motion Pattern Design
	Genetic Programming Module
	Genetic Algorithm Module
	Co-evolution of GP-module and GA-module

	Experimental Evaluation
	Experimental Scenario
	Experimental Set-up
	Results

	Discussion and Future Work
	References

	A Comparison between Different EncodingStrategies for Snake-Like Robot Controllers
	Introduction
	Controllers Encoding
	Experiments
	Discussion and Conclusions
	References

	MONEE: Using Parental Investment to CombineOpen-Ended and Task-Driven Evolution
	Introduction
	Related Work
	MONEE: Multi-Objective and Open-Ended Evolution
	Experiments
	Results and Analysis
	Conclusions and Further Research
	References

	Virtual Spatiality in Agent Controllers:Encoding Compartmentalization
	Introduction
	Artificial Homeostatic Hormone Systems
	Compartmentalization with Voronoi Diagrams
	Exploring Task
	Object Discrimination Task
	Conclusion
	References

	Evolving Counter-Propagation Neuro-controllersfor Multi-objective Robot Navigation
	Introduction
	Background
	Methodology
	Simulated Robot
	Trained Environment
	Simulated Neuro-controllers
	Objective Functions
	Evolving CPN

	Experimental Study
	Conclusions
	References

	Toward Automatic Gait Generation for QuadrupedRobots Using Cartesian Genetic Programming
	Introduction
	Cartesian Genetic Programning
	CGP Based Gait Control
	Experiments and Analaysis
	Conclusions
	References

	EvoSTOC
	Adapting the Pheromone Evaporation Ratein Dynamic Routing Problems
	Introduction
	Generating Dynamic Routing Environments
	ACO in Dynamic Environments
	MAX-MIN Ant System
	Response to Dynamic Changes

	ACO with Adaptive Evaporation Rate
	Effect of the Pheromone Evaporation Rate
	Detect Stagnation Behaviour
	Adapting Pheromone Evaporation Rate

	Experimental Study
	Experimental Setup
	Experimental Results and Analysis

	Conclusions
	References

	Finding Robust Solutionsto Dynamic Optimization Problems
	Introduction
	Robustness Definitions and Performance Measurement
	New Metrics for Finding Robust Solutions in ROOT
	Metric for Robustness Definition: Survival Time
	Metric for Robustness Definition: Average Fitness

	Experimental Study
	Experimental Setup
	Test Problem.
	Parameter Settings.

	Simulation Results

	Conclusions and Future Work
	References

	An Ant-Based Selection Hyper-heuristicfor Dynamic Environments
	Introduction
	Proposed Method
	Experimental Design
	Results and Discussion
	Conclusion
	References

	Author Index

