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Abstract. Rarely occurring genetic variants are hypothesized to influence human 
diseases, but statistically associating these rare variants to disease is challenging 
due to a lack of statistical power in most feasibly sized datasets.  Several statis-
tical tests have been developed to either collapse multiple rare variants from a 
genomic region into a single variable (presence/absence) or to tally the number 
of rare alleles within a region, relating the burden of rare alleles to disease risk.  
Both these approaches, however, rely on user-specification of a genomic region 
to generate these collapsed or burden variables, usually an entire gene.  Recent 
studies indicate that most risk variants for common diseases are found within 
regulatory regions, not genes.  To capture the effect of rare alleles within non-
genic regulatory regions for burden tests, we contrast a simple sliding window 
approach with a knowledge-guided k-medoids clustering method to group rare 
variants into statistically powerful, biologically meaningful windows.  We apply 
these methods to detect genomic regions that alter expression of nearby genes.   

1 Introduction 

Numerous studies have been published illustrating the association of commonly oc-
curring genetic variants to traits of interest in humans [1], and to changes in gene 
expression [2].  Recent technological advances in sequencing technology have 
enabled the study of rare variation – single base-pair changes in DNA that occur at 
less than 5% frequency in a population [3].  Typical genetic association studies rely 
on linear or logistic regression models to contrast the phenotype of interest across 
genotype categories based on a single variant (i.e. AA [25%], Aa [50%], and aa 
[25%]).  Statistical power for these studies is directly related to the frequencies of 
these genotype categories, and lower frequency variants often have extremely low 
power to detect associations using these methods because most individuals in the 
study do not have the rare variant (i.e. AA [98%], Aa [1.8%], and aa [0.2%]).   

Multiple methods have been proposed to address the issues of statistical power [4], 
all of which rely on grouping rare variants together either by biological function or 
physical proximity in the genome.  The vast majority of these statistical methods pro-
vide users with the flexibility to specify the genomic region they wish to use for 
grouping variants together.  In practice, variants are typically collapsed within gene 
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regions under the hypothesis that a variants influence disease by changing coding 
DNA that impacts protein function in some way.  However, recent publications by the 
ENCODE project have shown that the vast majority of previously identified genetic 
associations are non-coding and regulatory in nature[5].   

Currently, non-genic approaches to group rare variants include a simple sliding 
window approach [6] or collapsing variants within regions defined by experimental 
data, such as the ENCODE annotations. Sliding window approaches require millions 
of statistical tests which are highly correlated. The large number of tests makes  
determining the false positive or false discovery rate of the analysis challenging.  
Collapsing variants within putative regulatory regions may produce windows that are 
too small to capture variants to provide a powerful test. This approach also assumes 
that the genomic locations of regulatory regions are well-defined – an unlikely as-
sumption for many Chromatin Immuno-Precipiation (ChIP) experiments [7].  There-
fore, new methods for defining non-genic windows for statistical analysis are needed.   

In this work, we apply k-medoids clustering to leverage both physical proximity 
and biological function with the goal of defining groups of rare variants for statistical 
analysis.  We use a single source of putative biological function – a prediction of 
genome function based on chromatin state – and refine groupings using physical 
proximity in the genome.  We apply this clustering method to generate rare variant 
groupings and evaluate the impact of these grouped variants on gene expression traits.  
Results from our clustering-based approach are compared with a traditional sliding 
window approach.     

2 Methods 

2.1 Data 

Publically available datasets with phased haplotype information and whole-genome 
gene expression data on 1000 Genomes samples were used [3].  There were 149 inde-
pendent, multi-ethnic individuals, consisting of 32 CEPH (CEU) and 37 Yoruba 
(YRI) parental samples, and 41 Chinese (CHB) and 39 Japanese (JPT) unrelated indi-
viduals. Phased haplotype data was obtained from the imputation reference panels for 
MaCH software (1000G Phase 1 version 3 MaCH panels) and was based upon 1000 
Genomes Phase 1 integrated genotype calls and included singleton variants [8].  For 
gene expression data, we accessed normalized gene expression data from [2] (availa-
ble online: http://eqtnminer.sourceforge.net/), which was generated using Illumina 
human whole-genome expression arrays (WG-6 version 1) on lymphoblastoid cell 
lines from each of the 149 individuals. Expression data was first normalized by  
quantile normalization within replicates, and then was median normalized across in-
dividuals. Additionally, we applied Gaussian quantile normalization for the test genes 
within each population, in order to account for population differences in gene expres-
sion.  This normalization was congruent with the original normalization performed in 
[2].  For each of the selected genes, we extracted genotypes in the cis-regulatory re-
gion (500KB upstream of the transcriptional start site and 500KB downstream of the 
transcriptional end site).   
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2.2 Domain Knowledge 

We used classification results from a published study of chromatin marks [9] to guide our 
cluster analysis.  This study used ChIP data to identify methylation and acetylation mod-
ifications to histone proteins throughout the genome for nine cell lines.  These patterns 
form the histone code [10], and were classified using a multivariate Hidden Markov 
Model into 15 states, which we loosely grouped into promoter, enhancer, insulator, and 
transcribed regions.  Because our analysis was focused exclusively on gene expression in 
lymphoblastoid cell lines, we used chromatin state classifications generated for the 
GM12878 lymphoblastoid cell line.  This data is available via the ENCODE project web-
site through the UCSC genome browser (http://genome.ucsc.edu/ENCODE/). By guiding 
our cluster analysis with this data, we hypothesize that genetic variation within similar 
chromatin states should be grouped together.    

2.3 Gene Selection 

To compare the two methods across a variety of different regulatory architectures, 
four genes were selected from a group of genes previously identified as having collec-
tions of rare variants functioning as cis-eQTLs, based upon a genome-wide collapsing 
analysis (unpublished data).  Each gene selected represents a potentially unique regu-
latory architecture, based upon the functional annotation of rare variants which were 
within the significant regions.  Rare variants within significant regions could be iden-
tified as disrupting a transcription factor binding site (ORMDL1), being present in a 
ChIP peak (NUDT22), or having no functional annotation whatsoever (FAM154B). A 
potential confounder to this study is the presence of common eQTLs in significant 
regions.  A compilation of known common eQTLs was used to determine that none of 
the above genes had a common eQTL in the previously identified significant regions. 
To interrogate the effects of common eQTLs on the analysis, DYPSL4 was also se-
lected, which contained three common eQTLs in the previously identified significant 
region in addition to rare variants affecting transcription factor binding sites. 

2.4 Cluster-Based Analysis 

Constrained Partitioning (COP) is a method by which partial knowledge can be intro-
duced into a clustering algorithm, making it a semi-supervised method. Constraints 
allow for otherwise uninformed clustering methods to include background knowledge 
of a particular domain. Typically, COP is provided with a list of must-link constraints 
and cannot-link constraints, which dictate which observations must and cannot be 
placed in the same cluster.  

In our implementation, we allow for an initial classification of chromatin state 
SNPs surrounding a gene. This classification acts as a must-link constraint for all 
observations in a class, and a cannot-link constraint for all observations of differing 
classes. We then apply Partitioning Around Medoids (PAM) to subdivide these SNPs  
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according to their base position. PAM divides the data into k clusters, where k is spe-
cified a priori [11]. To choose an optimal k, we ran PAM multiple times with increas-
ing k and select k such that it maximizes with average silhouette width of the resultant 
clusters. The choice of k is made for each initial classification and the original classes 
do not need to be partitioned into the same number of clusters.  

With our rare variants clustered, we then performed a rare variant burden test, 
which collapses the data into a single variable, indicating the number of rare variants 
within that cluster. For each cluster, linear regression was used to determine the signi-
ficance of association between the clustered rare variants and gene expression. This 
implementation was done entirely in R. 

2.5 Sliding Window Analysis 

A rare variant burden test with sliding windows was performed on the test genes.  For 
each gene, the region tested consisted of 500KB both up and downstream, in addition 
to the gene itself.  In this region, a 5KB sliding window was used, such that each SNP 
served as the start point for a window. All rare variants in this 5KB region were used 
to determine the burden of rare variants.  Only windows with at least one rare variant 
detected were included in analysis. For each window, a linear regression was per-
formed between the number of rare variants present within a region for each individu-
al and the gene expression level.  This is slightly different from the analysis used to 
select the genes, in which individuals were placed into a binary category of either 
having a rare variant or not – a collapsing test [12]. 

2.6 Determination of Significance 

The best practice for the statistical analysis of sliding windows is a current topic of 
debate. To place these results in the context of standard genetic analysis guidelines, 
both a Bonferroni correction and a False Discovery Rate (FDR) analysis were per-
formed [13].  Each gene was analyzed independently in both the Bonferroni and FDR 
(FDR = 0.05) analyses.  In the Bonferroni correction analysis, the number of clusters 
present in each gene is used to set the gene-specific significance threshold for cluster 
data.  For the sliding window analysis, the number of windows set the gene-specific 
significance threshold. After being identified as significant, all overlapping windows 
were merged to form a significant ‘signal’ in the sliding window analysis. 

2.7 Visualization 

We visualized the results from both the sliding window and cluster analyses in a sin-
gle plot using the R package ggplot2 [14].  For the sliding window analysis, the mid-
point chromosome position of each 5KB window is plotted relative to the –log10 of 
the regression p-value to generate a Manhattan plot.  We used loess to fit a smooth 
curve to these data points using the stat_smooth function with a span parameter of  
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0.2.  Results from the cluster analysis are shown as horizontal bars (to illustrate the 
span of the cluster) plotted relative to the –log10 of the regression p-value, color coded 
by chromatin state.  Note that some clusters are too small to be seen on these plots. 

3 Results 

3.1 Gene Region Results 

Visual comparisons of sliding window and cluster analysis approaches are provided in 
figure 1.  ORMDL1 best illustrates the potential of this method.  A highly significant 
effect is seen from an enhancer cluster which overlaps with the strongest effect from 
the sliding window analysis.  NUDT22 also shows a strong effect of a large enhancer 
cluster which spans the best sliding window effect.  For both these genes the cluster-
ing results correlate well with the loess curves, capturing the ‘shape’ of the regional 
effect.  The cluster analysis shows less utility for DYPSL4, a gene with complex 
common eQTL effects, and FAM154B, a gene with no obvious regulatory mechan-
isms.  For these genes, the method clustered together distant variants within insulator 
elements creating single clusters containing variants at great distances; these clusters 
do not reflect the domain knowledge well.  We plan to refine the algorithm to include 
additional constraints limiting the physical distance separating rare variants within 
potential clusters.    

3.2 Bonferroni Correction 

The summary of significant genomic regions with a Bonferroni corrected analysis is 
presented in Table 1. Similar numbers of significant genomic regions are returned by 
both the sliding window and clustering analysis.  In both methods, DYPSL4 failed to 
result in significant results.  In the case of ORMDL1, both clustering and sliding win-
dow analysis each resulted in one unique significant region which was not overlapping.  
All other significant regions overlapped with a region identified in the other test.  
In NUDT22, all significant signals identified by sliding window analysis overlapped 
with significant clusters.  Cluster analysis additionally resulted in two unique signifi-
cant regions.  None of the significant regions identified in FAM154B overlapped be-
tween the sliding window analysis and the clustering analysis.   

Table 1. Number of significant genomic regions detected using both clustering and sliding 
window analysis with a Bonferroni correction for multiple testing 

GENE 

Bonferroni 
Threshold for 

Cluster Analysis 

Number of 
Significant 

Clusters 

Bonferroni Threshold 
for Sliding Window 

Analysis 

Number of Significant 
Windows from Sliding 

Window Analysis 
ORMDL1 0.001250 6 of 40 3.95476 x 10-6 604 of 12,643 
NUDT22 0.001351 5 of 37 4.64857 x 10-6 26 of 10,756 
DYPSL4 0.001282 0 of 39 3.16476 x 10-6 0 of 15,799 

FAM154B 0.001351 3 of 37 6.38162 x 10-6 32 of 7,835 
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3.3 False Discovery Rate Correction 

The significant genomic regions with a FDR (FDR = 0.05) corrected analysis are 
presented in Table 2. All the regions identified as significant with the Bonferroni 
correction were identified with the FDR correction as well.  One unique cluster was 
identified with FDR analysis in both ORMDL1 and NUDT22. A dramatic increase 
was observed in the number of signals identified as significant in the sliding window 
analysis.  For ORMDL1, NUDT22, and FAM154B, all significant clusters overlapped 
with regions identified as being significant by sliding window analysis. In the case of 
DYPSL4, clustering failed to identify any significant regions, whereas sliding window 
analysis identified two genomic regions as significant. Sliding window analysis 
identified a total of 28 unique genomic regions as significant in these genes.   

Table 2. Number of significant genomic regions detected using both clustering and sliding window 
analysis with an FDR=0.05 correction for multiple testing. *There are no p-values < 0.05, making it 
impossible to calculate the FDR = 0.05 threshold. 

GENE 

Threshold for Clus-
ter Analysis FDR = 

0.05 

Number of 
Significant 

Clusters 

FDR = 0.05 Threshold 
for Sliding Window 

Analysis 

Number of Significant 
Windows from Sliding 

Window Analysis 
ORMDL1 0.001346812 7 of 40 0.007989149 2021 of 12,643 
NUDT22 0.006583255 6 of 37 0.007619227 1126 of 10,756 
DYPSL4 NA* 0 of 39 0.000434797 126 of 15,799 

FAM154B 0.001213077 3 of 37 0.006232502 628of 7,835 

4 Discussion 

Our results indicate that informed clustering of rare variants using regulatory annotations 
can dramatically reduce the number of statistical tests, reducing the multiple testing 
burden for rare variant analysis, thus increasing overall power.  Obviously, this approach 
will perform best when the underlying assumption of the method holds true; that 
influential variants fall within regulatory regions, as illustrated in the ORMDL1 gene.   

A great strength of this approach is that the clustering is independent of statistical 
analysis, and can be coupled with various methods, such as the Sequence Kernel 
Association Test(SKAT) or KBAC [15, 16].  Because the method is unsupervised, there 
are no over-fitting concerns in the association analysis, and standard statistical 
assumptions of these tests are not violated.  The cluster method could also be informed 
by statistical power calculations of the coupled association test (or other testing 
assumptions), allowing clusters of rare variants to be optimized to improve the overall 
power of the analysis.  Finally, in this study we have used chromatin state data to guide 
cluster formation, however numerous other genomic annotations could be applied 
simultaneously to intelligently design functional clusters of rare variants. As ENCODE 
and other projects continue to expand our understanding of gene regulation, methods that 
can leverage this data for analysis will become ever more important.   
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