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Abstract. Gene regulatory networks arise in all living cells, allowing
the control of gene expression patterns. The study of their circuitry
has revealed that certain subgraphs of interactions or motifs appear at
anomalously high frequencies. We investigate here whether the overrep-
resentation of these motifs can be explained by the functional capabilities
of these networks. Given a framework for describing regulatory interac-
tions and dynamics, we consider in the space of all regulatory networks
those that have a prescribed function. Markov Chain Monte Carlo sam-
pling is then used to determine how these functional networks lead to
specific motif statistics in the interaction structure. We conclude that
different classes of network motifs are found depending on the func-
tional constraint (multi-stability or oscillatory behaviour) imposed on the
system evolution. The discussed computational framework can also be
used for predicting regulatory interactions, if only the experimental gene
expression pattern is provided.
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General Description

After billions of years of evolution Earth’s life is a very diverse phenomenon,
yet all the living organisms are made of simple building blocks called cells. The
single cell is a device designed to interpret internal or external signals in order
to enhance its survival prospects. One of the key mechanisms responsible for
processing available information are regulatory interactions between genes. For
instance, when a yeast cell finds itself in the environment rich in sugar it starts
to produce enzymes to process this nutrient into energy. If we go down to a
molecular level, the sugar presence or absence can be treated as an input signal
for a cell’s processing unit, i.e. gene regulatory network (GRN). The set of inter-
actions between genes along with the gene expression machinery allows all living
cells to control their gene expression patterns. In the last decade, our knowl-
edge how any given gene can affect another’s expression has been significantly
extended through various experiments. For example, small gene networks have
been constructed to implement simple functions in vivo [3,4], and much larger
sets of interactions have been derived from a number of organisms [6,13,7].
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Therefore it has been possible to show that several subgraphs of interactions
(“motifs”) arise more frequently than might be expected [14,9,8,16]. In a very
recent study [5], the motif statistics were reported for the human regulatory net-
work, indicating overrepresentation of certain structures. Hence, the question of
design principles or conditions under which certain motifs appear in biological
networks is of great interest.

In [2] by Z. Burda, A. Krzywicki, O.C. Martin and myself published in PNAS
108, 17263-17268 (2011) we propose a computational framework within which
gene regulatory networks with a predefined functional capabilities can be sam-
pled in silico. Thus, it is possible to study various statistical properties of net-
works generated with certain constraints imposed. Specifically, the proposed
model incorporates microscopic interactions between genes and transcription
factors through a weight matrix (genotype). Next, the gene’s expression level is
determined by deterministic synchronous dynamics with contribution from both
excitatory and inhibitory interactions. Having defined transcriptional dynamics
and providing initial gene expressions, we can easily obtain gene expression pat-
tern (phenotype) which is interpreted as a function of GRN. By imposing some
arbitrary target gene expression pattern (target phenotype) we would like to
know which genotypes do lead to this predefined target. In practice, we quantify
how well a given genotype is adapted to the imposed pattern by a fitness function
depending on a distance between target phenotype and phenotype produced by
that genotype.

The main computational difficulty lays in a problem: how from the huge space
of all genotypes obtain a sample of genotypes with a high fitness? This goal can
be achieved by Markov Chain Monte Carlo (MCMC) method, which generates
a biased random walk in the space of genotypes, enforcing at each step the ac-
cept/reject Metropolis rule [11]. Note that the MCMC introduces no bias: at
large times the a priori specified distribution is obtained exactly. Hence, we can
understand how phenotypic properties constrain the genotypes, in particular at
the level of the architecture of the genetic interactions. Additionally, we can use
Metropolis rule to determine which of genetic interactions described by geno-
type are essential for its functionality. If the element of the genotype matrix
corresponding to interaction strength between two genes is set to zero, and the
viability of network is lost (the fitness drops and the Metropolis rule rejects
modified genotype), the interaction between these genes is considered essential.
As a result, a set of all essential interactions that constitutes the gene regulatory
network for the underlying genotype is obtained.

A very gratifying point is that obtained GRNs are evolvable and a given target
expression pattern can be realized through different topologies. Particularly, we
consider two classes of constraints which resemble two types of biological pro-
cesses: (i) different stable gene expression patterns can be interpreted as different
types of cells during cell development, (ii) cyclic gene expression is characteristic
for cell cycle, where different genes are excited/inhibited during different stages
of cell division process. In order to reveal significant network motifs we compare
the number of subgraphs of a given type between generated GRNs and their
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randomized versions. The randomization used is that proposed by Maslov and
Sneppen [10]: edges are interchanged so that both the in- and out-degrees of
network nodes remain unchanged.

In the case of multistability the two node motif with genes being mutually in-
hibitory and self-activating (double negative feedback loop with autoregulation)
is found to be of great importance. Typically in the resulting GRNs, there is one
such motif for two fixed points imposed, two for three fixed points imposed and
three in case found four steady states. The randomized networks almost always
do not have any motifs of this type (see [2] for exact frequencies). Interestingly,
this simple network motif is found in various biological gene networks, with a
good example being the genetic switch between lysogeny and lysis of the phage
λ [12]. Clearly such a pair of genes acts as a bistable between situations with
one gene being “on” and the other being “off”. When embedded in the whole
network this type of motif influence other genes in a downstream effect along
the associated tree-like graph structure.

In the case of target phenotypes being periodic in time the bistable switch
is not present, and four node motifs like bifan, diamond and “frustrated” loop
appear and are highly overrepresented compared to randomized networks (see
Fig. 1 for graphical representation). Again, biological gene networks have been
found containing some of these motifs [1] the bifan motif being perhaps the most
prominent. The function of this motifs treated separately can be understood only
for the small network sizes. However, for networks with several genes (as in the
discussed study [2]) it is necessary to consider how these motifs cooperate within
the overall network, just like parts in a larger machine. More importantly, none
of motifs overrepresented for periodic gene expression pattern imposed was found
significant in the multiple fixed point scenario, and vice-versa.

Fig. 1. Network motifs overrepresented in case of time periodic gene expression: inco-
herent diamonds (from the left: 1st and 2nd), frustrated four-node loops (3rd and 4th),
incoherent bifan (5th). The arrows represent activatory (solid) and inhibitory (dashed)
interactions.

Hence, we can conclude that different classes of motifs are observed for differ-
ent types of functional capabilities of GRN. This result is very striking if we real-
ize that no motif structures are incorporated inside the presented framework on
any level. Instead motifs emerge from purely random background due to imposed
functional patterns and selection pressure. Within the proposed computational
framework it is also possible to impose gene expression patterns taken from ex-
perimental works (recently we have applied our model to cell cycle profiles of
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two yeast species and mammals [15]). Specifically, the question of probability
of observing certain interaction between selected genes can be addressed, so the
model can be also used as a tool for network structure prediction.
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