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Abstract. Multifactor Dimensionality Reduction (MDR) is a widely-
used data-mining method for detecting and interpreting epistatic effects
that do not display significant main effects. MDR produces a reduced-
dimensionality representation of a dataset which classifies multi-locus
genotypes into either high- or low-risk groups. The weighted fraction
of cases and controls correctly labelled by this classification, the bal-
anced accuracy, is typically used as a metric to select the best or most-fit
model. We propose two new metrics for MDR to use in evaluating models,
Variance and Fisher, and compare those metrics to two previously-used
MDR metrics, Balanced Accuracy and Normalized Mutual Information.
We find that the proposed metrics consistently outperform the existing
metrics across a variety of scenarios.

Keywords: Multifactor Dimensionality Reduction; Fisher’s exact test.

1 Introduction

Epistasis, or gene-gene interaction, is fundamental in gene expression, and fig-
ures prominently in the genetics of complex traits such as susceptibility to dis-
ease (e.g., [3,13]). Epistasis introduces complexity in the relationship between
genotype and phenotype, making patterns in that relationship more difficult to
detect. We therefore need tools that enable us to detect epistasis and search for
the patterns that might be hidden behind it [20,8,9,19,21,13,15]. In particular,
our tools should make use of all of the information available in each dataset.

Multifactor Dimensionality Reduction (MDR) is a non-parametric data-
mining tool that can detect epistatic models of gene expression that do not
show significant main effects, widely used in the study of genetic traits with
or without a component of environmental causation [18,17,6,5,7,10,11,24]. MDR
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uses a constructive-induction algorithm to label each genotype combination as
high-risk or low-risk based on a discrete endpoint such as case–control status,
constructing a new variable with two risk levels which pools all high-risk geno-
types into one group and all low-risk genotypes into another group[11,10]. That
new variable can then be analyzed with a classification method such as näıve
Bayes or logistic regression.

For any desired order of interaction N (typically between 2 and 4), MDR
iterates over all sets of N loci and constructs a model for each of them. Each in-
dividual in the dataset is classified according to which allele it has at each locus
of the model, and a case-control table is constructed which counts how many
individuals of each allelic combination are cases and how many are controls (Fig.
1B). That case-control table encapsulates the model for that set of loci. MDR
then chooses, from all of the models, the case-control table that scores highest by
whatever metric (i.e., measure of model fitness) it uses. Finally, MDR constructs
a new variable from that case-control table, labeling each combination of geno-
type values as low-risk if the corresponding cell in the case-control table has a
ratio of cases to controls below a pre-chosen threshold, and high-risk otherwise.

In standard MDR, the metric used is balanced accuracy [24], defined as the
mean of sensitivity and specificity:

TP/(TP + FN) + TN/(TN + FP )

2
, (1)

where TP is the number of true positives, TN the number of true negatives,
FP the number of false positives, and FN the number of false negatives. The
threshold typically used is the ratio of cases to controls in the dataset as a whole,
as recommended by Velez et al [24]. Various alternative metrics to balanced
accuracy have been investigated, but they have typically focused on evaluating
each possible model simply in terms of the contingency table of the number of
true positives, true negatives, false negatives, and false positives that the model
produces on the given dataset [1].

We propose to improve the metric used by MDR by making full use of the in-
formation available in the dataset – looking at the full case-control table of status
versus genotype, instead of the summary table of risk-level versus status. Specif-
ically, we propose two new metrics, one based on a Fisher’s exact test applied
to the case-control table, and one based on the variance of case-control ratios in
the table. We evaluate the metrics for their ability to pick out a known signal
from noise in simulated datasets across a wide variety of scenarios, and compare
their performance to that of standard metrics. We show that the new metrics
display equal or greater detection ability across all of the scenarios investigated,
with significantly improved ability to detect weaker signals.

2 Methods

2.1 Use of Metrics

The function of MDR is to construct a new attribute by selecting the model which,
for a given dataset, best predicts the phenotype from the genotypic information.
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Fig. 1. MDR attribute construction. (A) illustrates the distribution of cases (left bars)
and controls (right bars) for each of the three genotypes of SNP1 and SNP2 in an
example dataset. The shading of the cells indicates the labeling that has been assigned
(using a threshold of T = 1): dark shading indicates “high-risk” and light shading “low
risk”. (B) illustrates the distribution of cases and controls when the two functional
SNPs are considered jointly. A new single attribute is constructed by pooling the high-
risk genotype combinations into one group, G1, and the low-risk into another group,
G0. Reprinted from Velez et al [24].

Eachmodel is based on a small number of interacting loci, typically between 1 and
4, and yields the case-control table of status versus genotype for those loci over
the dataset. MDR works in two phases, first selecting a model within each level of
interaction, and then choosing a model from among the levels.Within a given level
of interaction, MDR uses a metric to score each case-control table produced from
the dataset and then selects the case-control table with the highest score assigned
by the metric. We concentrate here on evaluating the metrics used to compare
models within a single level of interaction.

The value of each metric on a model is calculated by first constructing the
case-control table of the model over the dataset and then applying some formula
to the table; the exact nature of the formula is what defines the metric.

2.2 Definitions of Metrics

We propose two new metrics for MDR, Variance and Fisher; we evaluate them
by comparing them to two metrics that have been used previously in MDR:
Balanced Accuracy [24], which is the standard metric used in MDR, and Nor-
malized Mutual Information, which has been recommended by Bush et al [1]. In
each evaluation-run we test the detection ability of each metric, the ability to
identify the set of loci that constitute the known signal.
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The Variance metric is motivated by the concept of the variance of the case-
fractions in a case-control table: for a table with N cells, the Variance metric is
defined as the total variance of case-fractions in the table,

N∑

i=1

pi(ki − k)2 , (2)

where N is the number of cells in the table, pi is the fraction of the individuals
that lie in the ith cell (which is the sample approximation to the probability
that an individual chosen at random lies in the ith cell), ki is the fraction of
individuals in the ith cell that have the condition or trait (i.e., the case-fraction
in the cell), and k is the fraction of individuals that have the condition or trait
in the dataset as a whole. If the the ith cell cell is empty, we define the ith term
of the sum to be 0.

The Fisher metric uses a Fisher’s exact test to measure how unusual each cell
of a case-control table is, by looking at the numbers of cases and controls in each
cell and calculating the probability of getting case-control values which are at
least as skewed as the observed case-control values; the per-cell probabilities are
combined to give an approximate log-probability of a given table. Intuitively, the
lower the probability of a given case-control table arising by chance, the more
likely it is to represent an underlying biological phenomenon. Given a dataset
with a total of A cases and B controls, if cell i of a case-control table has a cases
and b controls, we set Ti equal to the value of Fisher’s exact test applied to

(
a A− a
b B − b

)
. (3)

Thus Ti is then the two-tailed p-value for selecting a cases and b controls by
chance from a total of A cases and B controls. Note that if the ith cell is empty
then a and b are 0 and Ti is 1. Then, using Fisher’s method [4] to combine the
probabilities, the Fisher metric over the whole table is defined as

N∑

i=1

−2 log(Ti) , (4)

where N is the number of cells in the table. Note that, because the cells of
a case-control table are not independent, the value of the Fisher metric for
a table will not correspond to an exact probability; however, calculating an
exact probability would be prohibitively expensive, and we hypothesize that the
approximate probability used in the Fisher metric will be an effective method of
scoring case-control tables.

For our comparison of metrics, we implemented Balanced Accuracy and Nor-
malized Mutual Information, both of which are based on the risk-vs-status con-
tingency table of true positives (TN), false negatives (FN), true negatives (TN),
and false positives (FP). Balanced Accuracy, as described by Velez et al [24],
is the mean of sensitivity and specificity, as shown in Eqn. 1 above, and the
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corresponding metric selects the model with the highest balanced accuracy. In
Normalized Mutual Information, as described by Bush et al [1], three entropies
are calculated from the risk-vs-status contingency table: the row entropy, the
column entropy, and a conditional entropy:

H(x) = −
∑

i

pilog2 pi , (5)

H(y) = −
∑

j

pj log2 pj , (6)

H(y|x) = −
∑

i

pi
∑

i

pij
pj

log2
pij
pj

. (7)

The quantity pj is the empirical probabilities of being a case, pi is the empirical
probability of being high-risk, and pij is their joint probability. Using these
entropy values, Normalized Mutual Information (NMI) is defined as:

NMI(y) =
H(y)−H(y|x)

H(y)
. (8)

The Normalized Mutual Information metric selects the model with the highest
value.

2.3 Numerical Analysis

We evaluated each of the four metrics over numerous different scenarios, and
compared the abilities of the four metrics to distinguish a specified signal from
noise (defined as a given metric assigning a higher score to the signal model than
to each of the other models in the iteration). We did this by running MDR on
two collections of simulated datasets: the datasets used by Velez et al [24], and
a new, more comprehensive, collection of datasets generated by the GAMETES
software [23,22].

In the first set of tests, we used the datasets described in Velez et al [24], which
are based on a set of 70 models. Those models are based on two-way epistatic
interactions with no main effect, use two minor-allele frequencies, 0.2 and 0.4, and
range over the heritabilities 0.01, 0.025, 0.05, 0.1, 0.2, 0.3, and 0.4, giving a total of
14 parameter-pairs; for each of those parameter-pairs there are 5 distinct models,
for a total of 70 models. Each of those models was used to generate 100 balanced
datasets of 200, 400, 800, and 1600 total individuals; each dataset has 18 noise loci
in addition to the 2 signal loci, for a total of 20 loci. Thus there are 7,000 datasets
of each of the four sizes, for a total of 28,000 datasets. We ran MDR on each of
those datasets, using each of the four metrics in turn, and evaluated how often
each metric distinguished the signal model from the noise models.

In the second set of tests we tested how the ability of each metric to pick
out the signal model varied with varying heritability, minor-allele frequency, and
prevalence of the signal, and individual-count of the dataset overall. First, we
generated 5,000 datasets for each of the heritabilities 0.01, 0.025, 0.05, 0.1, 0.2,



Alternative MDR Metrics 205

0.3, and 0.4; for each of those datasets, the minor-allele frequency was allowed to
vary stochastically and uniformly between 0.1 and 0.5, the penetrance between
0.2 and 0.5, and the average number of individuals per cell of the case-control
table between 10 and 80. Next, we generated 5,000 datasets for each of the
minor-allele frequencies 0.1, 0.2, 0.3, 0.4, and 0.5; the heritabilities were allowed
to vary between 0.01 and 0.4, and the penetrance and the number of individuals
per cell were varied as before. Next, we generated 5,000 datasets for each of the
penetrances 0.2 and 0.5, with the other parameters varying as before. Finally,
we generated 5,000 datasets for each of the average individual-counts per cell 10,
20, 40, and 80, with the other parameters varying as before. We did all of these
tests with a 2-locus signal, a 3-locus signal, and a 4-locus signal; in each case
sufficient noise SNPs were added to achieve a total of 20 SNPs in each dataset.

The signal tables were generated using the GAMETES software[23,22]; how-
ever, there are limitations on the achievable heritabilities for high locus-counts
and low minor-allele frequencies, manifested in GAMETES. Due to this limita-
tion, for the datasets with a 3-locus signal the heritability was restricted to 0.3
or less and the minor-allele frequency to 0.2 or greater, and for the datasets with
a 4-locus signal the heritability was restricted to 0.1 or less and the minor-allele
frequency to 0.3 or greater.

As described above, we tested a variety of different dataset sizes. In order to
make the results more comparable across different numbers of loci, we specified
the dataset sizes in terms of average number of individuals per table-cell, instead
of in terms of total number of individuals in the dataset, using average individual-
counts per cell of 10, 20, 40, and 80 individuals. Thus, for example, we generated
a 2-locus table (which has 9 cells; see Fig. 1) with a total of 90 individuals, and a
3-locus table (which has 27 cells) with a total of 270 individuals. Both tables then
had an average of 10 individuals per cell. By keeping fixed the average number of
individuals per cell instead of the total number of individuals in the dataset, we
achieved the same degree of sparseness between the 2-locus table and the 3-locus
table. If, instead, we had generated the 3-locus table with a total of just 90 in-
dividuals, its cells would be much sparser than the corresponding 2-locus table.
Since the overall sparseness of individuals per cell can affect the behavior of the
metrics, keeping the average number of individuals per cell constant across locus-
counts makes the behavior of the metrics more comparable. Note that the goal of
this approach is to maintain roughly comparable degrees of sparseness across the
different levels of interaction, and we evaluate the metrics over a range of sparse-
ness values. (With either approach to defining dataset sizes, by average-individual-
count-per-cell or by total dataset size, the results will not be perfectly comparable
across different numbers of interacting loci – but the central focus of this paper is
to compare different metrics on similar scenarios, not across different scenarios.)

We also demonstrated the proposed new metrics by applying them to a
population-based genetic study of tuberculosis (TB) that was previously ana-
lyzed using MDR by Collins et al.[2] The study analyzed 321 pulmonary TB cases
and 347 healthy controls genotyped at The Bandim Health Project
in Guinea Bissau.[14] Each individual was genotyped for 19 single-nucleotide
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polymorphisms (SNPs) from immunological candidate genes VDR, DC-SIGN,
PTX3, TLR2, TLR4, and TLR9. Collins et al imputed missing data using a
frequency-based imputation and then filtered the dataset to six SNPs using Re-
liefF. They then applied MDR, which returned an overall best model consisting
of SNPs rs2305619, rs187084, and rs1145421. In the present study, we applied
all four metrics to the same filtered dataset.

Finally, we ran benchmark tests to evaluate the computation time for each
metric. For each of 2-locus, 3-locus, and 4-locus interactions, we generated
10,000,000 random tables and scored each of the tables by each metric, recording
the time to score each set of tables.

3 Results

3.1 Testing on the Velez Datasets

In the results of running MDR on the Velez et al[24] datasets, we group together
the set of 5 models on each parameter-triple {minor-allele frequency, dataset
size, heritability}, averaging the detection scores of each group. For each metric,
”detection” is defined as the fraction of runs in which that metric assigned
a higher score to the signal model than to each of the other models in the
iteration. In every case the result was that both Variance and Fisher did as well
as or better than both Normalized Mutual Information and Balanced Accuracy,
with one exception: for 200-individual datasets with a minor-allele frequency of
0.2 and heritability of 0.01, Fisher had a detection score of 3.2% and Balanced
Accuracy had a detection score of 3.4%. To get a high-level comparison between
the various metrics, we took the overall average detection score for each metric,
excluding those parameter-triples where all four metrics had detections of 0% or
all four metrics had detections of 100%. By excluding the detection scores of the
scenarios where either all metrics always failed or all metrics always succeeded,
we concentrate on situations where the metrics differ in their effectiveness. As
seen in Table 1, Variance and Fisher did about 4 to 4.5 percentage-points better
than Normalized Mutual Information and Balanced Accuracy by this measure.

In order to quantify the degree to which the Variance and Fisher metrics im-
proved over the Normalized Mutual Information and Balanced Accuracy metrics,
for each parameter-triple {minor-allele frequency, dataset size, heritability} we
calculated the χ2 statistic between: the Variance metric and the Normalized

Table 1. Average detection abilities on the Velez datasets, where detection is not 0%
or 100%

Metric Detection

Variance 73.5%
Fisher 73.0%

Normalized Mutual Information 68.9%
Balanced Accuracy 69.0%
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Fig. 2. Significance of χ2 statistics for the comparisons between the Variance and
Fisher metrics and the Normalized Mutual Information (NMI) and Balanced Accuracy
(B.Acc) metrics, for the signal-heritabilities listed in the legends
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Mutual Information metric; Variance and Balanced Accuracy; Fisher and Nor-
malized Mutual Information; and Fisher and Balanced Accuracy. For example,
for the χ2 statistic between the Variance metric and the Normalized Mutual
Information metric for a given scenario, we constructed a table of the success
and failure counts for each of the metrics under that scenario, and calculated
the R chisq.test function on that table. We then calculated the statistical sig-
nificance of each χ2 statistic. We show selected results as follows; in the results
not shown, differences between the metrics were usually marginally significant
or not significant. As mentioned above, in all scenarios where there was a signif-
icant difference, Variance and Fisher scored better than the Normalized Mutual
Information and Balanced Accuracy metrics.

For 200-individual datasets and a minor-allele frequency of 0.2, the improve-
ment of the Variance metric over the Normalized Mutual Information metric
was significant at the 0.05 level or better for heritabilities of 0.025, 0.05, 0.1, and
0.2 (Fig. 2). The improvement of the Variance metric over the Balanced Accu-
racy metric was very significant for heritabilities of 0.05, and 0.1 and marginally
signficant for heritabilities of 0.025 and 0.2. The comparison between the Fisher
metric and the Normalized Mutual Information and Balanced Accuracy metrics
was mixed, as seen in the figure.

For 400-individual datasets and a minor-allele frequency of 0.2, the improve-
ment of the Variance and Fisher metrics over the NormalizedMutual Information
andBalancedAccuracymetrics was very significant for heritabilities of 0.025, 0.05,
and 0.1, except for the Variance metric in the scenario with heritability of 0.1.

For 800-individual datasets and a minor-allele frequency of 0.2, the improve-
ment of the Variance and Fisher metrics over the Normalized Mutual Informa-
tion and Balanced Accuracy metrics was very significant for heritabilities of 0.01,
0.025, and 0.05.

3.2 Comprehensive Testing on GAMETES Datasets

In the second part of the study we tested the effectiveness of each metric over a
wide range of scenarios; we found that the two new metrics, Variance and Fisher,
always did as well as or better than NormalizedMutual Information and Balanced
Accuracy, with one exception: in the scenario of a 2-way signal with heritability
of 0.4, the Normalized Mutual Information and Balanced Accuracy metrics score
99.98%while the Variancemetric scored 99.96%; in that scenario the Fishermetric
scored 100%. The only scenarios where the two older metrics were close to the two
new metrics were scenarios where all four metrics had scores near 100%, usually
because the heritability of the signal was high, making it easy to detect.Whenever
the metrics scored less than 85%, the two new metrics outscored the two older
metrics by at least two percentage points. Thus we see that when the signal is
relatively easy to find the two new metrics do as well as or better than the older
metrics, and when the signal is harder to detect the new metrics do significantly
better – by ten percentage points or more in five of the scenarios.

These observations are made more precise by using a χ2 analysis. As in
the analysis of the Velez datasets, we calculated the χ2 statistic between: the
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Variance metric and the Normalized Mutual Information metric; Variance and
Balanced Accuracy; Fisher and Normalized Mutual Information; and Fisher and
Balanced Accuracy. We then calculated the statistical significance of each χ2

statistic. In most scenarios, the improvement of the new metrics over the older
ones is highly significant. We found three categories of performance: When all
four metrics detect the signal correctly 99% of the time or more, the χ2 com-
parisons between the metrics showed no significant difference, with p-values of
0.3 or greater. When the metrics had a correct detection level between 85% and
99%, the χ2 comparisons showed the new metrics significantly better than the
older metrics, with p-values between 0.04 and 0.001. And when the signal was
harder to detect, with the metrics finding the correct signal less than 85% of
the time, the improvement of the new metrics over the older ones was highly
significant, with p-values less than 0.001.

In the comprehensive testing using GAMETES datasets there were 5,000
datasets for each scenario, as compared with the 500 datasets per scenario
in the Velez datasets; we see that with the greater resolution afforded by the
larger number of datasets, the improvement inherent in the new metrics becomes
crystal clear.

3.3 Demonstration Data and Benchmarks

We also tested the four metrics on a tuberculosis dataset that had previously
been evaluated using MDR, which found an overall best model consisting of
SNPs rs2305619, rs187084, and rs1145421. In our tests, all four of the metrics
identified that model as best overall.

The computation times for the Variance, Normalized Mutual Information,
and Balanced Accuracy metrics are similar (Tbl. 2). The Fisher metric, being
more computationally intensive, takes considerably longer to run; however, that
run-time could be improved dramatically by caching the probability calculations.

Table 2. Time in seconds to calculate each metric on 10,000,000 tables for 2-locus to
4-locus interactions, running in Java on a 2.26 GHz Intel Xeon with single-threading

Metric 2-locus 3-locus 4-locus

Variance 2.81 6.87 15.84
Fisher 138.99 248.56 593.33

Normalized Mutual Information 5.6 8.08 13.95
Balanced Accuracy 2.33 6.84 21.14

4 Discussion

The ability to discover the connections between genotype and phenotype is cen-
tral to genomics research, but it continues to be challenging. It was over a decade
ago that Risch and Merikangas first seriously proposed the testing of all known
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SNPs in the human genome for disease association either directly or by LD with
other SNPs [16]. Today, it is becoming cost effective to measure a million SNPs
with widely-available human SNP arrays, but the tools used to analyze that data
need to improve as well [12]. Part of that improvement is to ensure that all of
the information contained within each dataset is fully employed.

The reduced-dimensionality high-risk/low-risk contingency table produced by
MDR contains less information than the case-control table for the model it rep-
resents – each cell of the case-control table contains information about the num-
bers of cases and controls in that cell, and that information is omitted when
the cases and controls are summed into the contingency table. Thus, by defining
our metrics, for the purpose of model-selection only, directly on the case-control
tables instead of on the contingency tables, we are able to make better use of
that information in selecting a model. Once selected, the model is reduced to a
high-risk/low-risk contingency table in the usual way.

We find that the Variance and Fisher metrics do as well as or significantly
better than Normalized Mutual Information and Balanced Accuracy in all of
the wide variety scenarios in which they were tested, as measured in terms of
detection ability. The improvement is especially strong when the signal is difficult
to detect, which is exactly the scenario where improvement is most desirable.
The Fisher metric is of particular value because it gives a direct measure of how
unlikely a given model is to have arisen by chance, and therefore of how likely
the model is to reflect an underlying biological phenomenon. However, it takes
substantially more computation time than any of the other metrics tested. Given
that the Variance metric closely parallels the Fisher metric in all regimes tested,
we recommend the Variance metric for use with MDR going forward.
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