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Abstract. Detecting genetic interactions without running an exhaus-
tive search is a difficult problem. We present a new heuristic, multi-
SURF*, which can detect these interactions with high accuracy and in
time linear in the number of genes. Our algorithm is an improvement
over the SURF* algorithm, which detects genetic signals by comparing
individuals close to, and far from, one another and noticing whether dif-
ferences correlate with different disease statuses. Our improvement con-
sistently outperforms SURF* while providing a large runtime decrease
by examining only individuals very near and very far from one another.
Additionally we perform an analysis on real data and show that our
method provides new information. We conclude that multiSURF* is a
better alternative to SURF* in both power and runtime.

Keywords: Relief, Genetics, Interaction, Epistasis, Heuristic, Weight-
ing, Real Data.

1 Introduction

A perpetual problem in modern genomics is dealing with massive quantities of
data. Many geneticists are trying to develop phenotype prediction algorithms
for use in clinical practice. However, few such tests have been successfully found.
The inherent problem is that most Genome Wide Association Studies (GWAS)
so far have focused on linear genotype-to-phenotype association. Whereas there
are some phenotypes with strong associations to single gene main effects, the vast
majority of possible associations are between multiple genes and one phenotype.
Given a phenotype there are only n possible main effects, one for each gene;
there are, however, 2n − n possible higher-order signals that are comprised of a
set of genes non-linearly correlated with the phenotype. There is an increasing
amount of evidence that most genetic associations are in fact high-order and
non-additive. [8,1,7].

Given that we would like to find these associations, it then seems that we
must venture into combinatorial space. One common way to search for interact-
ing genes is to use the exhaustive search known as Multifactor Dimensionality
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Reduction (MDR) [6]. Multifactor Dimensionality Reduction works by exhaus-
tively analyzing all possible models of up to n attributes – commonly Single
Nucleotide Polymorphisms (SNPs).1 Searching for two-way or pair-wise inter-
actions takes at least O(a2n) time in a dataset with a attribute SNPs and n
individuals. This is completely unfeasible on a realistically sized genetic dataset
with a >> 105, given modern computing technology and pace of development.
Therefore any polynomial-time heuristic that can help find gene interactions is
very valuable. One standard approach for finding interacting genes is known as
’two-pass’ and involves filtering the dataset by eliminating genes that are consid-
ered unimportant by a heuristic. Once the filtering has occurred, the second pass
does an exhaustive all-subsets analysis on the much smaller and more manage-
able new dataset [10]. One of the most successful filters is the SURF* algorithm,
developed by Greene et al. in 2010 [2]. We introduce a new improvement, Multi-
ple Threshold SURF (multiSURF*) that further increases the power and vastly
decreases the runtime. This will be very valuable for genetics studies, as our
new algorithm can process much more data and find more interesting genes in
the same time as would be previous necessary for SURF*. This best of both
worlds improvement is highly desirable in computer science; SURF* improved
upon SURF, but takes much more time. Often amplification algorithms can be
used to provide better results given more time, but we provide better results in
less time.

1.1 Related Work

In 1994, Kononenko developed ReliefF [5]. Based on previous work by Kira et
al. [4], ReliefF proved a novel way of approaching signal detection in binary out-
come datasets. The principle underlying the ReliefF algorithm is simple, pick
individuals similar to one another and then check if the disease status changes.
If it does, reward the attributes that are different and if not reward the ones
that are the same. Greene et al. improved upon ReliefF with Spatially Uniform
ReliefF (SURF) in 2009 and then again with SURF* in 2010 [3,2]. SURF dif-
fers from ReliefF by using all neighbors below a threshold and SURF* uses all
neighbors, but splits them into near and far. The attraction of SURF* is that it
detects higher-order genetic interactions with no main effects much more often
than SURF, even in large datasets. SURF* also takes only O(an2) time. These
two properties combined enable the filtering of huge genetic datasets into ones
small enough for an exhaustive search. [2]. We introduce an algorithm that can
outperform even SURF*’s power, and also slashes SURF*’s running time. This
enhances SURF*’s two attractive properties and makes our alternative better
suited for use as a filter in two-pass genetic studies.

1 SNPs are single letter differences in DNA, each version – or mutation – being called
an allele. Since there are two alleles, the original, and the polymorphism with one
nucleotide different, there are 4 possible combinations in diploid DNA. Two of these
combinations are identical as order is unimportant and we are left with three possi-
bilities for any SNP measurement.
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2 Methods

2.1 Simulated Data

Our data were identical to those used to benchmark SURF* and SURF; hence
we were able to provide a fair comparison [2].

We used simulated data with each dataset containing one two-way epistatic
model and 998 random noise SNPs [11]. Our datasets were balanced and each
individual had 1000 SNP measurements with only two as part of a non-linear
association with the binary disease status. There was no association between
either model SNP and the disease status, but instead a non-linear association
involving both SNPs together. Each SNP had a minor and major allele with
occurrence frequencies of 0.6 and 0.4, respectively. To generate a dataset we need
a penetrance function to determine genotype phenotype relationship. We used 30
penetrance functions that met the requirements of having no main effects and the
proper minor allele frequencies2. Each dataset also had a heritability. This is the
probability that a genetic effect will carry through to a phenotype. A heritability
of 1.0 means a perfect association between genotype and phenotype, whereas 0.0
is no association. Our datasets were generated with heritabilities of 0.025, 0.05,
0.1, 0.2, 0.3, and 0.4; we used 5 penetrance functions for each. For each of these
30 models we used 100 random variants of the dataset generated using the same
penetrance function and heritability. Finally, datasets with duplicate genetic
models were generated with 800, 1600, and 3200 individuals.

2.2 Real Data

This study population consists of nationally available genetic data from 2,286
men of European-descent (488 non-aggressive and 687 aggressive cases, 1,111
controls) collected through the Prostate, Lung, Colon, and Ovarian (PLCO)
Cancer Screening Trial., a randomized, well-designed, multi-center investigation
sponsored and coordinated by the National Cancer Institute (NCI) and their
Cancer Genetic Markers of Susceptibility (CGEMS) program. We focused here
on prostate cancer aggressiveness as the endpoint. Between 1993 and 2001, the
PLCO Trial recruited men ages 55-74 years to evaluate the effect of screening
on disease specific mortality, relative to standard care. All participants signed
informed consent documents approved by both the NCI and local institutional
review boards. Access to clinical and background data collected through ex-
aminations and questionnaires was approved for use by the PLCO. Men were
included in the current analysis if they had a baseline PSA measurement be-
fore October 1, 2003, completed a baseline questionnaire, returned at least one
Annual Study Update (ASU), and had available SNP profile data through the
CGEMS data portal (http://cgems.cancer.gov/). We used a biological filter
to reduce the set of genes to just those involved in apoptosis (programmed cell

2 This and the experimental design section are synopses of our experiment, which was
identical to that from both the SURF and SURF* papers. For another description
of the experiment and further explanation of the design, please see references [3,2].

http://cgems.cancer.gov/
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death), DNA repair and antioxidation/carcinogen metabolism. These biological
processes are hypothesized to play an important role in prostate cancer. A total
of 219 SNPs in these genes were studied here.

2.3 multiSURF* Implementation

Notation. We denote the ith individual from the dataset as Ii; d(Ii, Ij) refers to
the hamming distance between two individuals Ii and Ij . The hamming distance
is calculated by counting the number of unequal SNP measurements between the
two individuals. For instance, an individual with measurements 01001 will have
a hamming distance of 2 from an individual with 01010. s[i] refers to the disease
status – case or control – of individual Ii. We denote the number of individuals
with n and the number of SNPs – or attributes – with a. We denote the standard
deviation of a set/vector X as σX .

Algorithm. The SURF* algorithm functions by making comparisons between
individuals.We first define a weight for each SNPwhich is initialized to 0. The type
of comparison depends on whether an individual is near or far from another. We
start by computing the mean of all distances, which we call the threshold, T . Then
for each possible non-ordered pairing of individuals Ii, Ij we check if d(Ii, Ij) < T .
If so we treat individual Ij as near to Ii, and in the opposite case, d(Ii, Ij) > T ,
we treat it as far from Ii. If the two individuals are near to one another we check
all SNPs that have different values across both individuals. For each of these we
increment the weight if the status is different and decrement if the status is the
same. If the two individuals are far from one another we check all SNPs that have
the same value across both individuals. For each of these we increment the weight
if the status is different and decrement if the status is the same.

The authors note that the original SURF* paper described the algorithm as
examining SNPs that were different across far individuals. We implement the
algorithm by examining SNPs that are the same and reversing the signs on
increment and decrement. This does not affect the monotonicity of the final
scores of the SNPs, and is slightly faster.

We change the SURF* algorithm in two distinct ways. First of all we give each
individual its own threshold rather than having one global threshold. Second we
more strictly define near and far. For more reference to the original SURF*
algorithm please see the corresponding paper [2].

Multiple Thresholds. In the SURF* algorithm one global distance threshold
T is initially computed. Any individual Ij closer than T to individual Ii is then
classified as near and any individual Ij further than T from individual Ii is
classified as far. Instead of this global threshold, T , we compute one threshold,
Ti, for each individual Ii. In SURF*, T is computed as the mean distance between
all (n2 − n)/2 individual pairings Ii, Ij . In multiSURF* we compute each Ti to
be the mean of all distances d(Ii, Ij) between the fixed individual Ii and all other
individuals Ij . Formally:

Ti =

∑

j

d(Ii, Ij)

n− 1
.
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Near and Far. In the SURF* algorithm each individual Ij is treated as being
either near to, or far from, another individual Ii. This is determined by whether
d(Ii, Ij) < T . This means that a comparison is made between every pair of
individuals. In multiSURF* we have stricter definitions of near and far and
therefore make fewer comparisons.While computing Ti we compute the distances
between Ii and every other individual and save this as a vector, V . We take the
standard deviation of these distances, σV and set a new dead-band variable
Di equal to σV /2. We then say that an individual Ij is near to Ii if and only if
d(Ii, Ij) < Ti−Di. Similarly, an individual is far if and only if d(Ii, Ij) > Ti+Di.
If we assume a normal distribution of distances this means that Φ(σ/2) ≈ 31%
of individuals Ij will be classified as near and likewise for far. This reduces
the runtime by a large factor, as multiSURF* makes approximately 62% of the
comparisons that SURF* does.

Pseudo-code. A pseudo-code description of the algorithm can be found in
Algorithm 1. We implemented the algorithm in Java. For full source code, please
contact the authors at the given email.

Running Time. SURF* first computes all distances, this takes c1n
2a time

for some system-dependent c1. The next round of computation to update the
weights runs over all pairs of instances and takes c2n

2a time for another system-
dependent constant. SURF therefore takes a total of (c1 + c2)n

2a time. mul-
tiSURF* computes all distances, so again we take c1n

2a time. In addition we
compute a Di for each individual Ii. The required variance computation is linear
and takes c3n

2 in total. Next we perform an instance comparison if and only if
the distance between the two satisfies our dead-band requirement. We assume a
normal distribution of distances between a given instance Ii and all others. To
find the number of instances that will be near or far is the same as computing a
two-tailed p-value. Using the cumulative distribution function we compute

2(1− 1√
2π

∫ 1/2

−∞
e

−x2

2 dx) ≈ 0.62

Therefore we will perform about 0.62n2 comparisons, each taking the same time
c2a. This yields a total runtime of

c1n
2a+ c3n

2 + 0.62c2n
2a =

(c1a+ 0.62c2a+ c3)n
2 =

For large values of a we can obtain the very good approximation

(c1a+ 0.62c2a+ c3)n
2 < (c1a+ 0.62c2(a+ c4))n

2 ≈
(c1a+ 0.62c2a)n

2

Compared to SURF*’s
(c1a+ c2a)n

2
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Data: Input dataset data
Result: Array of weights w
set d[i][j] = d(Ii, Ij) for all i and all j;
for each i do

compute all distances between Ii and every other indiviudal;
set Ti to be the mean of all these distances;
set σ to be the standard deviation of the distances;
set Di to be σ/2;

end
for each i do

for each j do
if d(Ii, Ij) < TI −Di then

for each a do
if Ii[a]! = Ij [a] then

if s[i] == s[j] then
w[a]−−;

else
w[a] + +;

end

end

end

end
if d(Ii, Ij) > TI +Di then

for each a do
if Ii[a] == Ij [a] then

if s[i] == s[j] then
w[a]−−;

else
w[a] + +;

end

end

end

end

end
return w;

end

Algorithm 1. multiSURF*

Therefore multiSURF* will outperform SURF* by some system dependent con-
stant for large values of a. To test how the two performed on a modern computer
we ran multiSURF* on a sampling of the previously defined datasets. The ma-
chine was an Intel Core 2 Duo P8600 2.4GHz with 4GB of RAM. We arbitrarily
selected 10 datasets with 1600 instances and a heritability of 0.05 and ran 10
times on each dataset for a total of 100 runs. The average runtime and standard
deviation for each method is detailed in Table 1.



multiSURF* 7

2.4 Experimental Design

To measure success we examined the rankings returned by multiSURF* and
SURF* for each dataset. For each ranking we chose the minimum score of the
two model SNPs and found the percentage of SNPs ranked higher. We then
counted the number of times that the model SNPs were ranked in the top x%
over the 30 genetic models

6 heritabilities × 100 variants = 500 datasets for each heritability and
number of individuals. These results are displayed in Figure 1.

To test if the observed differences were significant we counted the number of
times that multiSURF* ranked the model SNPs higher than 95% of all other
SNPs over all 9000 datasets. Doing the same for SURF* gave us a contingency
table. We used a Fisher’s exact test on these counts to obtain a probability that
the observed difference was due to chance; the p-value can be found in the results
section along with a discussion of the graphical results [9].

2.5 Real Data Analysis

To further validate multiSURF* we performed a comparative analysis on the
dataset described in Section 2.2.

We ran several Relief-family methods on the dataset: ReliefF with 350 neigh-
bors, SURF, SURF*, and multiSURF*. We then ranked SNPs by the weight
assigned to them. We wished to determine which genes each algorithm treats as
significantly more important than others, so we performed a Fisher’s exact test.
We found the corresponding gene for each SNP and then counted the number
of times that gene was represented by a SNP ranked in the top 10%. These
counts gave us a p-value for each SNP via the Fisher’s exact test. It should be
noted that the p-value is not corresponding to any actual model for the dataset,
simply whether the genes were being ranked higher by the algorithm by chance.
We then selected all genes that had achieved a significant p-value for any Relief
method and listed them in a table. The table can be found in Table 2 and shows
which genes are being considered ’important’ by which algorithm.

3 Results

3.1 Success Rate

The results are presented in Figure 1. The difference between the two methods
was found to be highly significant (p < 10−15). We found that multiSURF*
outperformed SURF* on all sample sizes and heritabilities. The exceptions are
the cases in which SURF* already achieves a 100% success rate on all percentiles.
The improvements were consistent across all the sample sizes and heritabilities.

3.2 Runtime

The runtimes can be found in Table 1. On average, multiSURF* runs in only
67.8% of the time of SURF*. The code implementation was in Java and not
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Fig. 1. Success rate of multiSURF* vs. SURF*

Table 1. Comparing the runtimes of multiSURF* and SURF*

Mean Runtime (s) Standard Deviation (s)

multiSURF* 8.323 0.369
SURF* 12.276 1.275

optimized, we only wanted to find a comparison between the two methods, im-
plemented identically. A faster implementation using threading could vastly cut
down on execution time for both methods.

3.3 Real Data Results

The analysis results are shown in Table 2. The symbol ∗ indicates statistical
significance (p < 0.05), ∗∗ indicates high statistical significance (p < 0.01). We
note that multiSURF* found the same genes as the other algorithms, with the
exception of BCL2L11, which was found only by SURF*. In addition, multi-
SURF* found a new gene, ATK3. Several of the p-values were identical because
they were based on discrete counts and a Fisher’s Exact test.
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Table 2. The probability that each gene received higher rankings by chance

ReliefF SURF SURF* multiSURF*

NAT2 0.0000106** 0.0005274** 1 0.0000106**
PRKCQ 0.001464** 0.001464** 0.001024** 0.001464**
RAF1 0.0001462** 0.301 1 0.01504*
ATK3 0.106 0.106 1 0.0000196**
BCL2L11 0.2953 0.2953 0.02725* 1

4 Discussion and Conclusions

The increase in power stems largely from the disregarding of the individuals
neither near nor far, which is enabled by the individual thresholds. Since the
distribution of zygosity measurements {0, 1, 2} is likely not uniform for any given
SNP and in our case is highly non-uniform, a given individual Ii may have com-
mon or uncommon values. Take for example the case in which 0 is common for
all SNPs, the individual with measurements 0, 0, . . . , 0 will be much closer, on
average, to any other individual. An individual with complementary measure-
ments such as 2, 2, . . . , 2 will, on the other hand, be much further from other
individuals. Therefore in a large random population there will be individuals for
which a global threshold is ill-fitting; instead of splitting other individuals evenly
with roughly half being classified near and half far, the majority of individuals
will fall into one class or the other. This is effectively a dilution of potentially
useful information contained in near and far individuals. If we assume a normal
distribution of distances from Ii to all other individuals, then having individual
thresholds, Ti, set to the mean of the differences will split the instances evenly
into near and far. With this even split we can then apply the dead-band and
disregard individuals that are neither very near nor very far. By looking only
at the extremes of the distribution we can provide a better result for effectively
the same reasons that SURF* works in the first place. A rigorous mathematical
proof of this has yet to be presented and is a potential topic of future research.
The authors examined several arbitrarily chosen values for the deadband mul-
tiplier, namely the α for α × σ. α = 1/2 worked the best for all tested data,
but an argument could be made for α being a parameter of the algorithm. In
fact, every dataset may have an optimal α for finding important SNPs in that
dataset, but a way to quickly determine the optimal α for a given dataset is not
currently known.

Overall multiSURF* is a desirable alternative to SURF*; it takes less time
to run and will find an underlying genetic model more frequently. This enables
geneticists to filter even larger datasets and search for higher-order models with
both greater power and efficiency.
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