

A. Fred et al. (Eds.): IC3K 2011, CCIS 348, pp. 109–125, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Learning Attack Features from Static and Dynamic
Analysis of Malware

Ravinder R. Ravula, Kathy J. Liszka, and Chien-Chung Chan

Department of Computer Science, University of Akron, Akron, OH, U.S.A.
{liszka,chan}@uakron.edu

Abstract. Malware detection is a major challenge in today's software security
profession. Works exist for malware detection based on static analysis such as
function length frequency, printable string information, byte sequences, API calls,
etc. Some works also applied dynamic analysis using features such as function
call arguments, returned values, dynamic API call sequences, etc. In this work, we
applied a reverse engineering process to extract static and behavioral features
from malware based on an assumption that behavior of a malware can be revealed
by executing it and observing its effects on the operating environment. We cap-
tured all the activities including registry activity, file system activity, network ac-
tivity, API Calls made, and DLLs accessed for each executable by running them
in an isolated environment. Using the extracted features from the reverse engi-
neering process and static analysis features, we prepared two datasets and applied
data mining algorithms to generate classification rules. Essential features are iden-
tified by applying Weka’s J48 decision tree classifier to 1103 software samples,
582 malware and 521 benign, collected from the Internet. The performance of all
classifiers are evaluated by 5-fold cross validation with 80-20 splits of training
sets. Experimental results show that Naïve Bayes classifier has better performance
on the smaller data set with 15 reversed features, while J48 has better performance
on the data set created from the API Call data set with 141 features. In addition,
we applied a rough set based tool BLEM2 to generate and evaluate the identifica-
tion of reverse engineered features in contrast to decision trees. Preliminary
results indicate that BLEM2 rules may provide interesting insights for essential
feature identification.

Keywords: Malware, Reverse Engineering, Data Mining, Decision Trees,
Rough Sets.

1 Introduction

Malware, short for malicious software, is a sequence of instructions that perform ma-
licious activity on a computer. The history of malicious programs started with “Com-
puter Virus”, a term first introduced by [6]. It is a piece of code that replicates by
attaching itself to the other executables in the system. Today, malware includes virus-
es, worms, Trojans, root kits, backdoors, bots, spyware, adware, scareware and any
other programs that exhibit malicious behaviour.

Malware is a fast growing threat to the modern computing world. The production
of malware has become a multi-billion dollar industry. The growth of the Internet, the

110 R.R. Ravula, K.J. Liszka, and C.-C. Chan

advent of social networks and rapid multiplication of botnets has caused an exponen-
tial increase in the amount of malware. In 2010, there was a large increase in the
amount of malware spread through spam emails sent from machines that were part of
botnets [12]. McAfee Labs have reported 6 million new botnet infections in each
month of 2010. They also detected roughly 60,000 new malware for each day of 2010
[13]. Symantec discovered a daily average of 2,751 websites hosting malware in Jan-
uary 2011 [14]. Antivirus software, such as Norton, McAfee, Sophos, Kaspersky and
Clam Antivirus, is the most common defense against malware. The vendors of these
antivirus programs apply new technologies to their products frequently in an attempt
to keep up with the massive assault. These programs use a signature database as the
primary tool for detecting malware. Although signature based detection is very effec-
tive against previously discovered malware, it proves to be ineffective against new
and previously unknown malware. Malware programmers bypass the known signa-
tures with techniques like obfuscation, code displacement, compression and encryp-
tion. This is a very effective way to evade signature based detection. Antivirus
companies are trying hard to develop more robust antivirus software. Some of the
techniques include heuristics, integrity verification and sandboxing. However, in
practice, they are not really very effective in detecting new malware. We are virtually
unprotected until the signature of each new threat is extracted and deployed.

Signature detection is mostly accomplished using manual methods of reverse engi-
neering. This is timely and work intensive. With the staggering number of malware
generated each day, it is clear that automated analysis will be imperative in order to
keep up. Hence, we cannot depend solely on traditional antivirus programs to combat
malware. We need an alternative mechanism to detect unidentified threats.

In an effort to solve the problem of detecting new and unknown malware, we have
proposed an approach in the present study. The proposed approach uses reverse engi-
neering and data mining techniques to classify new malware. We have collected 582
malicious software samples and 521 benign software samples and reverse engineered
each executable using both static and dynamic analysis techniques. By applying data
mining techniques to the data obtained from the reverse engineering process, we have
generated a classification model that would classify a new instance with the same set
of features either as malware or a benign program.

The rest of the paper is organized as follows. Section 2 discusses previous work
based on detection of malware using data mining techniques. Section 3 presents the
reverse engineering techniques used in our work. Section 4 explains the data mining
process and the machine learning tools we used for the experiments. Here we present
and discuss the results and finally, section 5 concludes the study and suggests possible
future work.

2 Literature Review

Significant research has been done in the field of computer security for the detection
of known and unknown malware using different machine learning and data mining
approaches.

A method for automated classification of malware using static feature selection was
proposed by [8]. The authors used two static features extracted from malware and be-
nign software, Function Length Frequency (FLF) [7] and Printable String Information

 Learning Attack Features from Static and Dynamic Analysis of Malware 111

(PSI) [23]. This work was based on the hypothesis that “though function calls and
strings are independent of each other they reinforce each other in classifying malware”.
Disassembly of all the samples was done using IDA Pro and FLF, PSI features were
extracted using Ida2DB.

The authors used five classifiers; Naive Bayes, SVM, Random Forest, IB1 and De-
cision Table. The best results were obtained by AdaBoostM1 with Decision Table
yielding an accuracy rate of 98.86%. It was also observed that the results obtained by
combining both features were more satisfactory than using each kind of features indi-
vidually.

[19] used different data mining techniques to detect unknown malware. They used
three approaches for static analysis and feature identification; binary profiling, strings
and byte sequences. Binary profiling was only applied to PE files. Other approaches
were used for all programs.

Binary profiling was used to extract three types of features; 1) list of Dynamic Link
Libraries (DLL) used by the PE, 2) function calls made from each DLL and 3) unique
function calls in each DLL. The “GNU Strings” program was used to extract printa-
ble strings. Each string was used as a feature in the dataset. In the third method for
features extraction, the hexdump [15] utility identified byte sequences, which were
used as features.

The authors applied the rule based learning algorithm RIPPER [7] to the 3 datasets
with binary profiling features, Naïve Bayes classifier to data with string and byte
sequence features and finally six different Naïve Bayes classifiers to the data with
byte sequence features. To compare the results from these approaches with traditional
signature based method, the authors designed an automatic signature generator.

With RIPPER they achieved accuracies of 83.62%, 89.36%, and 89.07% respec-
tively for datasets with features DLLs used, DLL function calls and Unique Calls in
DLLs. The accuracies obtained with Naïve Bayes and Multi-Naïve Bayes were
97.11% and 96.88%. With the Signature method they achieved 49.28% accuracy.
Multi-Naïve Bayes produced better results compared to the other methods.

In [23], the information in PE headers was used for the detection of malware, based
on the assumption that there would be a difference in the characteristics of PE headers
for malware and benign software as they were developed for different purposes.
Every header (MS DOS header, file header, optional header and section headers) in
the PE was considered as a potential attribute. For each malware and benign program,
position and entry values of each attribute were calculated. In parallel, attribute selec-
tion was performed using Support Vector Machines. The dataset was tested with an
SVM classifier using five-fold cross validation. Accuracies of 98.19%, 93.96%,
84.11% and 89.54% were obtained for virus, email worm, Trojans and backdoors
respectively. Detection rates of viruses and email worms were high compared to the
detection rates of Trojans and backdoors.

In [10], multiple byte sequences from the executables were extracted from PE files
and combined to produce n-grams. Five hundred relevant features were selected by
calculating the information gain for each feature. Several data mining techniques like
IBk, TFIDF, Naïve Bayes, Support Vector Machine (SVM) and decision trees applied
to generate rules for classifying malware. The authors also used “boosted” Naïve
Bayes, SVM and decision tree learners. The boosted classifiers, SVM and IBk pro-
duced good results compared to the other methods. The performance of classifiers

112 R.R. Ravula, K.J. Liszka, and C.-C. Chan

was improved by boosting and the overall performance of all the classifiers was better
with the large dataset compared with the small dataset.

Komashinskiy and Kotenko [11] used position dependent features in the Original
Entry Point (OEP) of a file for detecting unknown malware. Decision Table, C4.5,
Random Forest, and Naïve Bayes were applied on the prepared dataset. Three as-
sumptions were made for this work. 1) Studying the entry point of the program known
as Original Entry Point (OEP) reveals more accurate information. 2) The location of
the byte value of OEP address was set to zero. The offsets for all bytes in OEP were
considered to be in the range [-127,127]. 3) Only a single byte can be read for each
position value. The dataset contained three features; Feature ID, position and byte in
position.

Feature selection was performed to extract more significant features. The resulting
data was tested against all classifiers and the results were compared based on ROC-
area. Random Forest outperformed all the other classifiers.

A specification language was derived in [5] based on the system calls made by the
malware. These specifications are intended to describe the behaviour of malware. The
authors also developed an algorithm called MINIMAL that mines the specifications of
malicious behaviour from the dependency graphs. They applied this algorithm to the
email worm Bagle.J, a variant of Bagle malware.

Clean and malicious files were executed in a controlled environment. Traces of
system calls were extracted for each sample during execution. The dependencies be-
tween the system call arguments were obtained by observing the arguments and their
type in sequence of calls. A dependency graph was constructed using system calls and
their argument dependencies. A sub graph was then extracted by contrasting it with
the benign software dependence graph such that it uniquely specifies the malware
behaviour. A new file with these specifications would be classified as malware.

The Virus Prevention Model (VPM) to detect unknown malware using DLLs was
implemented by [22]. Malicious and benign files were parsed by a program “depen-
dency walker” which shows all the DLLs used in a tree structure. The list of APIs
used by main program directly, the DLLs invoked by other DLLs other than main
program and the relationships among DLLs which consists of dependency paths down
the tree were collected. In total, 93,116 total attributes were obtained. After pre-
processing there were 1,398 attributes. Of these, 429 important attributes were se-
lected and tested. The detection rate with RBF-SVM classifier was 99.00% with True
Positive rate of 98.35% and False Positive rate of 0.68%.

A similarity measure approach for the detection of malware was proposed by [21],
based on the hypothesis that variants of a malware have the same core signature,
which is a combination of features of the variants of malware. To generate variants
for different strains of malware, traditional obfuscation techniques were used. The
source code of each PE was parsed to produce an API calling sequence which was
considered to be a signature for that file. The resulting sequence was compared with
the original malware sequence to generate a similarity measure. Generated variants
were tested against eight different antivirus products. The detection rate of SAVE was
far better than antivirus scanners.

In [2], a strain of the Nugache worm was reverse engineered in order to study
its underlying design, behaviour and to understand attacker’s approach for finding
vulnerabilities in a system. The authors also reverse engineered 49 other malware

 Learning Attack Features from Static and Dynamic Analysis of Malware 113

executables in an isolated environment. They created a dataset using features such as
the MD5 hash, printable strings, number of API calls made, DLLs accessed and URL
referenced. Due to the multi-dimensional nature of the dataset, a machine learning
tool, BLEM2 [3], based on rough set theory was used to generate dynamic patterns
which would help in classifying an unknown malware. As the size of the dataset was
small, a very few number of decision rules were generated and the results were gener-
ally not satisfactory.

In another work by Ahmed et al. [1] based on dynamic analysis, spatio-temporal
information in API calls was used to detect unknown malware. The proposed tech-
nique consists of two modules; an offline module that develops a training model using
available data and an online module that generates a testing set by extracting spatio-
temporal information during run time and compares them with the training model to
classify run time process as either benign or malicious. In the dynamic analysis, spa-
tial information was obtained from function call arguments, return values and were
divided into seven subsets socket, memory management, processes and threads, file,
DLLs, registry and network management based on their functionality. Temporal in-
formation was obtained from the sequence of calls. The authors observed that some
sequences were present only in malware and were missing in benign programs.

Three datasets were created by combining benign program API traces with each
malware type. The three datasets were combinations of benign-Trojan, benign-virus
and benign-worm. They conducted two experiments. The first one studied the com-
bined performance of spatio-temporal features compared to standalone spatial or tem-
poral features. The second experiment was conducted to extract a minimal subset of
API categories that gives same accuracy as from the first experiment. For this, the
authors combined API call categories in all possible ways to find the minimal subset
of categories that would give same classification rate as obtained in first experiment.
For the first experiment, the authors obtained 98% accuracy with naive Bayes and
94.7% accuracy with J48 decision tree. They obtained better results with combined
features as compared standalone features. The detection rate of Trojans was less com-
pared to viruses and worms.

In the second experiment, combination of API calls related to memory manage-
ment and file I/O produced best results with an accuracy of 96.6%.

In some of the above mentioned works, only static features such as byte sequences,
printable strings and API call sequences were used. Though effective in detecting
known malware, they would be ineffective if the attackers use obfuscation techniques
to write malware. To solve this problem, some other works [1, 2] used dynamic detec-
tion methods. The work done in [1] used only dynamic API call sequences. Using only
API calls may not be effective in detecting malware. In the work, malwares were re-
versed to find their behaviour and applied data mining techniques to the data obtained
from reversing process. A very small number of rules were generated and the results
were not effective as the experiments were conducted on very few numbers of samples.

Our work is different from all the above works as we combined static and beha-
vioral features of all malware and benign software. It is an extension of the work done
in [1] but it differs significantly, as we performed rigorous reverse engineering of
each executable to find their inner workings in detail. We also used a large number
(582 malicious and 521 benign) of samples which would facilitate determining more
accurate behaviour of malicious executables.

114 R.R. Ravula, K.J. Liszka, and C.-C. Chan

3 Reverse Engineering

Reverse engineering malware can be defined as an analysis of a program in order to
understand its design, components and its behavior to inflict damage on a computer
system. The benefit of reverse engineering is that it allows us to see the hidden beha-
vior of the file under consideration, which we can’t see by merely executing it [18].

In the reverse engineering process we used both static and dynamic analysis tech-
niques. There are many different tools available for each technique. All the tools used
for our work are open source. In total, we reverse engineered 1103 PE (Portable Ex-
ecutable) files of which 582 were malicious executables and 521 were benign execu-
tables. All malicious executables were downloaded from Offensivecomputing.net and
all benign executables were downloaded from Sourceforge.net and Brothersoft.com.

3.1 Controlled Environment

For static analysis of executables, we do not require a controlled environment. In this
case, we do not run the executable to collect features. In the case of dynamic analysis,
the code to run is malicious and dangerous. The environment for the reversing process
must be isolated from the other hosts on the network. We apply the industry common
standard, a virtual machine. Due to a strong isolation between the guest operating
system in VM and host operating systems, even if the virtual machine is infected with
a malware, there will be no effect of it on the host operating system.

For the analysis of malware we needed virtualization software that would allow
quick backtrack to the previous system state after it has been infected by the malware.
Each time a malware is executed in dynamic analysis process, it would infect the
system. Analysis of subsequent malware had to be performed in a clean system. We
chose VMware Workstation as virtualization software for our work.

3.2 Static Analysis

In general, it is a good idea to start analysis of any given program by observing the
properties associated with it and predicting the behavior from visible features without
actually executing it. This kind is known as static analysis. The advantage with static
analysis is that it gives us an approximate idea of how it will affect the environment
upon execution without actually being executed. However, most of the time, it is not
possible to predict the absolute behavior of a program with just static analysis.

There are many different tools available that aid in static analysis of executables
for example, decompilers, disassemblers, Source code analyzers and some other tools
that help in extracting useful features from executables. The tools we used were Mal-
code Analyst Pack from idefense.com, PEiD from peid.has.it and IDA Pro Disas-
sembler hex-rays.com.

3.2.1 Cryptographic Hash Function
A unique cryptographic hash value is associated with each executable file. This value
differentiates each file from others. We started our reverse engineering process of
each executable by calculating its hash value.

 Learning Attack Features from Static and Dynamic Analysis of Malware 115

The reason for calculating the hash value is twofold. First, there is no unique stan-
dard for naming malware. There may be multiple names for a single piece of malware
so by calculating hash value of each sample we know that all of them are indeed the
same. This results in eliminating ambiguity in the reverse engineering process. The
second reason is that if an executable is modified, its hash value will also be changed.
That way we can identify that changes were made to the executable and thereby ana-
lyzing it to detect the changes made.

MD5, SHA1 and SHA256 are the widely used hash functions. We used Malcode
Analyst Pack (MAP) tool to compute the MD5 (Message Digest 5) hash value of each
PE file that we analysed.

3.2.2 Packer Detection
Malware authors employ various techniques to obfuscate the content of the malware
they have written and making it unable to be reversed. Using packers is one of them.
A packer is a program that helps in compressing another executable program, thereby
hiding the content. Packers help malware authors hide actual program logic of the
malware so that a reverse engineer cannot analyze it using static analysis techniques
alone. Packers also help evade detection of the malware from antivirus programs.

In order to execute, a packed malware must unpack its code into memory. For this
reason, the authors of the malware include an unpacker routine in the program itself.
The unpacker routine is invoked at the time of execution of the malware and converts
the packed code into original executable form. Sometimes they use multiple levels of
packing to make the malware more sophisticated [9].

Detection of a packer with which a malware is packed is very important for the
analysis of the malware. If we know the packer, we can unpack the code and then
analyze the malware. We used the PEiD tool which is a free tool for the detection of
packers. It has over 600 different signatures for the detection of different packers,
cryptors and compilers. It displays the packer with which the malware is packed by
simply opening the malware using PEiD. If the signature of the packer or compiler
with which the malware is packed is not present in the PEiD database it will report
that it didn’t find any packers.

3.2.3 Code Analysis
The next step for better understanding the nature of malware is to analyze its source
code. Although there are many decompilers that help in decompiling executables into
high level languages, analyzing the malware by keeping the source code in low level
language reveals more information. IDA Pro disassembler from DataRescue is a pop-
ular choice for the disassembly of executable program into Assembly Language.

We used the IDA Pro Disassembler for the code analysis of malware. In this step,
we have gone through the assembly code of each PE file to find useful information
and to understand the behavior of it. Following is the list of features that we were able
to extract from the assembly code of PE files.

• Type of file from the PE header. If it was not a PE file, we discarded it.
• List of strings embedded in the code that would be useful for predicting the beha-

vior of the PE.

116 R.R. Ravula, K.J. Liszka, and C.-C. Chan

• The programming language with which the PE was written.
• Compile date and time.

3.3 Dynamic Analysis

In static analysis of executables, we only analyze the static code of the executable and
approximately predict its properties and behavior. We know that the authors of mal-
ware use techniques such as binary obfuscation and packing to evade static analysis
techniques. To thoroughly understand the nature of the malware we cannot rely on
static analysis techniques alone. If a program has to be run, the whole code must be
unpacked and loaded into primary memory. Every detail of the executable program is
revealed at run time regardless of how obfuscated the code is and what packer the
executable is packed with [20]. In dynamic analysis, we observe the full functionality
of the malware and its effect on the environment as it executes.

Tools that help in dynamic analysis of executables include debuggers, registry
monitors, file system monitors, network sniffers and API call tracers. The tools we
used in this step were Filemon, Regshot and Maltrap.

3.3.1 File System Monitor
When a program is executed it makes changes to the file system. The file system ac-
tivity made by the program helps partly in determining its behavior. We used File
Monitor (Filemon) from Microsoft Sysinternals to monitor file system activity of all
the processes running on a windows system. It installs a device driver which keeps
track of all the file system activity in the system. However, we only need the informa-
tion related to a particular process under consideration, therefore, we can use a filter
which lets us select a particular process for which we want to monitor file system
activity by removing all the other processes from the list. Each file system activity
made by the PE on the file system produces one line of output in the Filemon GUI
window.

3.3.2 Registry Monitor
Windows Registry is a huge database hosting configuration details of the operating
system and the programs installed on it. Registry entries are divided into hives and
represented in a tree structure on Windows systems. Most applications use two hives
frequently; HKLM and HKCU. HKLM stands for Hive Key Local Machine and con-
tains settings of the operating system. HKCU stands for Hive Key Current User and
contains configuration details for the user currently logged into the system.

Malware authors frequently use registries to infect systems. One usual technique
employed is to insert an entry at the location
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\RU
N so that each time system boots up the malware is executed. There is an extensive
list of such keys in the Windows registry and they are used by attackers for their ma-
licious purposes.

Regshot is a product of Microsoft Sysinternals that helps in the reverse engineering
process by monitoring the Windows Registry. It lists the changes made in the

 Learning Attack Features from Static and Dynamic Analysis of Malware 117

windows registry upon installation of software. We used this tool to record the
changes in the windows registry made by malware and benign software in the Win-
dows Registry.

3.3.3 Api Call Tracer
Windows API (Application Program Interface) also known as Win API, is a long list
of functions that provide system level services to the user programs. Every Windows
application is implemented using the Win API functions.

Keeping track of the sequence of API Calls made by an application helps in the re-
verse engineering process. It allows us to go through each call and thereby predicting
the behavior of that software. Maltrap is a software that lists the sequence of calls
made by the software while execution.

4 Malware Detection Mining

In this section, we explain our implementation of the data mining process to find pat-
terns that would help in classifying malware from benign software.

4.1 Feature Extraction

From static analysis of each sample in the reverse engineering process we have the
MD5 hash of the file, file size in bytes, the packer used (if any, a determination of
whether it contains unique strings, a time stamp and the programming language used
to write the file.

From the dynamic analysis, for each file, we stored a log of file system activity, re-
gistry activity and the sequence of API calls made by the sample while running.

From the file system activity log we were able to extract three important features;
the decisions of whether the sample under consideration attempted to write to another
file, if the sample accessed another directory and all unique DLLs accessed during
execution.

From the registry activity we extracted three features; registry keys added, registry
keys deleted and registry values modified. The log contains all the registry keys mod-
ified by executables with their modified values. We removed the key values and rec-
orded only the keys.

From the API call log we extracted the unique API calls made by each sample. We
combined all the unique API calls made by each file and removed duplicates. Over
the entire sample space, we identified 141 unique API calls which will be used as
features to create a data set. We also noted if a sample contained any URL references
or attempted to access the Internet, making. With this step we completed processing
of raw data for feature selection.

4.2 Data Sets

We prepared two datasets: the first dataset with 15 features, 1103 instances (582 ma-
licious and 521 benign) and the second dataset with 141 features, 1103 instances. We

118 R.R. Ravula, K.J. Liszka, and C.-C. Chan

named the first dataset DRF (Dataset with Reversed Features) and the second dataset
DAF (Dataset with API Call Features). Table 1 shows the list of 15 attributes and
decision label in DRF. All the 141 attributes in DAF are of type binary except the
decision label which is Boolean. The first three attributes File Name, File Size, and
MD5 Hash do not provide useful information for classification purpose. We collected
this information and retain it for tracking and other research purposes, however, they
are removed from data sets used in the following experiments.

Table 1. Attributes in DRF

S.NO Attribute Name Type

1 FILE NAME NOMINAL

2 FILE SIZE NOMINAL

3 MD5 HASH NOMINAL

4 PACKER NOMINAL

5 FILE ACCESS BINARY

6 DIRECTORY ACCESS BINARY

7 DLLs NOMINAL

8 API CALLS NOMINAL

9 INTERNET ACCESS BINARY

10 URL REFERENCES BINARY

11 REGISTRY KEYS ADDED NOMINAL

12 REGSITRY KEYS DELETED NOMINAL

13
REGISTRY VALUES

MODIFIED
NOMINAL

14 UNIQUE STRINGS BINARY

15 PROGRAMMING LANGUAGE NOMINAL

16 DECISION LABEL BOOLEAN

In addition, values of attributes Registry Keys Added, Registry Keys Deleted, Re-

gistry Keys Modified, API CALLs and DLLs varies widely from very small to very
large. They were discretized by using tools available in Weka. The ranges we ob-
tained for each attribute after transforming the dataset are shown in Table 2.

Table 2. Discretized values

 ATTRIBUTE NAME DISCRETIZED VALUES
1 KEYS ADDED (-INF-1] (1-INF)

2 REGISTRY VALUES MODIFIED (-INF-12.5] (12.5-INF)

3 API CALLS (-INF -5.5] (5.5-22.5] (22.5-41.5] (41.5- INF)
4 DLLs (-INF -16.5] (16.5- INF)

We prepared second dataset from DRF by replacing the discrete values with

the discretized values shown in Table 2. We call it DDF (Dataset with Discretized
Features).

 Learning Attack Features from Static and Dynamic Analysis of Malware 119

4.3 Experimental Results

We conducted experiments on the datasets derived from reversed features: DRF and
DDF, and data set derived from API call features: DAF. The J48 decision tree and
Naïve Bayes algorithms in WEKA [24] were used to generate classifiers. We applied
5-fold cross validation with 80-20 splits for training and testing.

Fig. 1. J48 decision tree for DRF

Figure 1 shows that the number of API Calls made by a PE was selected as the root
node of the decision tree. API Calls, Unique Strings, URL References, Internet
Access, Packer, Registry Keys Deleted, Directory Access and Registry Keys Mod-
ified were the most used attributes in the classification model although we note that it
used all the other attributes in the dataset.

The decision tree in Figure 2 shows that 9 attributes, API Calls, Unique Strings,
URL References, Packer, Registry Keys Deleted, Registry Keys Modified, Directory
Access, Registry Keys added and Internet Access were used in the classification mo-
del. In this case, the attributes DLLs and File Access were not used in the decision
rules for classification.

Decision tree classifiers such as J48 are top-down learners that select an attribute to
split a tree node in each step of the decision tree building process. In contrast, the
machine learning algorithm BLEM2 [3] is a learner for generating if-then decision
rules from bottom-up. In each step, an attribute-value pair is selected to form the con-
dition part of a decision rule. Each rule learned by BLEM2 is minimal, and the entire

120 R.R. Ravula, K.J. Liszka, and C.-C. Chan

set of rules learned is also minimal. It is a revision of the LEM2 algorithm [4], which
is based on rough set theory introduced by Pawlak [16]. The major difference is that
rules learned by BLEM2 are associated with four factors: support, certainty, strength,
and coverage. These factors can be interpreted as Bayesian probabilities derived from
the training data which was first introduced in [17]. We say that an instance is cov-
ered by a rule if it matches the condition of the rule. The support of a rule is the num-
ber of training instances covered by the rule. Certainty of a rule is the conditional
probability that an instance covered by the rule will have the same decision label as
the rule. The strength of a rule is the probability of an instance covered by the rule.
The coverage of a rule is the inverse probability that an instance of the same decision
label as the rule will be covered by the rule.

Fig. 2. J48 decision tree for DDF

In our experiment, we applied BLEM2 to generate decision rules from the DDF
dataset. Rules with a minimum support of 7 were selected for analysis. There are 11
attributes selected by BLEM2 to form decision rules. Tables 3 shows the attributes
selected by BLEM2 together with the frequencies of attribute-value pairs appeared in
the rules. Table 4 shows the 21 decision rules generated by BLEM2 for the decision
label “YES”, and Table 5 shows the 13 decision rules for the decision label “NO”.

From Table 3, API CALLS and REGISTRY KEYS ADDED are identified as the
most relevant attributes by BLEM2. In contrast, API CALLS is selected as the root of
the decision tree in Figure 2. It is also clear that URL REFERENCES is not relevant
in classifying benign software. It seems that both FILE ACCESS and URL
REFERENCES may not be essential due to their low frequency; however, they cannot
be ignored, since they have high support and certainty factors according to rules
shown in Table 4 and 5. In general, we will need to consider the Bayesian factors of
BLEM2 rules to derive a threshold for identifying essential attributes. This will be
part of our future works.

 Learning Attack Features from Static and Dynamic Analysis of Malware 121

Table 3. Attribute-value pair frequencies in BLEM2 rules with minimum support = 7

Attribute Attribute Name Freq. of YES
(21 rules total)

Freq. of NO
(13 rules total

C1 PACKER 17 12

C2 REGISTRY KEYS ADDED 20 13

C3 REGISTRY KEYS DELETED 9 10

C4 REGISTRY VALUES MODIFIED 19 12

C5 API CALLS 20 13

C6 DLLs 11 4

C7 FILE ACCESS 2 1

C8 DIRECTORY ACCESS 8 3

C9 INTERNET ACCESS 11 13

C10 URL REFERENCES 2 0

C11 UNIQUE STRINGS 16 12

Table 4. BLEM2 rules for DDF for the decision label “YES” with minimum support = 7

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C 11 Supp Cer Stren Cov

0 (-inf-1] ? (-inf-12.5] (5.5-23.5] (16.5-inf) ? 1 0 ? 0 43 0.811 0.039 0.074

0 (2.5-inf) 0 (-inf-12.5] (5.5-23.5] (16.5-inf) ? ? ? ? 0 30 0.909 0.027 0.052

? ? ? ? ? ? 0 ? ? ? ? 26 1 0.024 0.045

1 (2.5-inf) 0 (12.5-inf) (5.5-23.5] (16.5-inf) ? 1 0 ? ? 21 0.553 0.019 0.036

0 (-inf-1] ? (12.5-inf) (5.5-23.5] (16.5-inf) ? 1 ? ? 0 20 1 0.018 0.034

0 (-inf-1] ? (-inf-12.5] (5.5-23.5] ? ? 1 0 ? 1 20 0.769 0.018 0.034

1 (2.5-inf) 0 (-inf-12.5] (5.5-23.5] (16.5-inf) ? ? 0 ? 0 17 0.654 0.015 0.029

0 (-inf-1] ? ? (5.5-23.5] ? ? 0 ? ? ? 16 1 0.015 0.028

1 (-inf-1] 0 (-inf-12.5] (5.5-23.5] (16.5-inf) 1 1 0 ? 0 15 0.455 0.014 0.026

? (-inf-1] ? (-inf-12.5] (-inf-5.5] (-inf-16.5] ? 1 ? ? 0 14 1 0.013 0.024

0 (2.5-inf) ? (-inf-12.5] (5.5-23.5] ? ? ? 0 ? 1 13 0.542 0.012 0.022

1 (2.5-inf) 0 (-inf-12.5] (5.5-23.5] (16.5-inf) ? ? 0 ? 1 13 0.236 0.012 0.022

0 (2.5-inf) ? (12.5-inf) (5.5-23.5] ? ? ? ? ? 0 12 1 0.011 0.021

0 (2.5-inf) 0 (12.5-inf) (5.5-23.5] ? ? ? ? ? 1 11 0.917 0.01 0.019

0 (-inf-1] ? (12.5-inf) (41.5-inf) ? ? ? ? ? ? 10 1 0.009 0.017

0 (-inf-1] 0 (12.5-inf) (5.5-23.5] (16.5-inf) ? 1 ? ? 1 10 0.769 0.009 0.017

1 (-inf-1] 0 (-inf-12.5] (5.5-23.5] (16.5-inf) ? ? 0 ? 1 10 0.2 0.009 0.017

1 (-inf-1] 0 (12.5-inf) (5.5-23.5] (16.5-inf) ? ? 0 ? 0 9 0.9 0.008 0.016

1 (-inf-1] ? (12.5-inf) (-inf-5.5] ? ? ? ? ? 1 7 1 0.006 0.012

? (2.5-inf) ? (-inf-12.5] (5.5-23.5] ? ? ? 1 0 0 7 1 0.006 0.012

? (-inf-1] ? (-inf-12.5] (5.5-23.5] ? ? ? 1 0 ? 7 1 0.006 0.012

122 R.R. Ravula, K.J. Liszka, and C.-C. Chan

Table 5. BLEM2 rules for DDF for the decision label “NO” with minimum support = 7

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C 11 Supp Cer Stren Cov

1 (2.5-inf) 0 (-inf-12.5] (23.5-41.5] ? ? 1 0 ? 1 94 0.99 0.085 0.18

1 (1-2.5] 0 (-inf-12.5] (23.5-41.5] ? ? ? 0 ? 1 52 0.981 0.047 0.1

1 (2.5-inf) 0 (-inf-12.5] (5.5-23.5] (16.5-inf) ? ? 0 ? 1 42 0.764 0.038 0.081

1 (-inf-1] 0 (-inf-12.5] (5.5-23.5] (16.5-inf) ? ? 0 ? 1 40 0.8 0.036 0.077

? (-inf-1] 0 (-inf-12.5] (5.5-23.5] (16.5-inf) 1 1 0 ? 0 28 0.326 0.025 0.054

1 (2.5-inf) 0 (12.5-inf) (23.5-41.5] ? ? ? 0 ? 1 27 0.9 0.025 0.052

1 (2.5-inf) 0 ? (23.5-41.5] ? ? 1 0 ? 0 27 0.9 0.025 0.052

1 (2.5-inf) 0 (12.5-inf) (5.5-23.5] ? ? 1 0 ? 1 14 0.667 0.013 0.027

0 (2.5-inf) ? (-inf-12.5] (5.5-23.5] ? ? ? 0 ? 1 11 0.458 0.01 0.021

1 (-inf-1] ? (-inf-12.5] (23.5-41.5] ? ? ? 0 ? ? 9 1 0.008 0.017

1 (2.5-inf) 0 (-inf-12.5] (5.5-23.5] (16.5-inf) ? ? 0 ? 0 9 0.346 0.008 0.017

1 (1-2.5] 0 (-inf-12.5] (23.5-41.5] ? ? ? 0 ? 0 7 1 0.006 0.013

0 (2.5-inf) ? (-inf-12.5] (23.5-41.5] ? ? ? 0 ? 1 7 1 0.006 0.013

In the experiment with the DAF data set, out of 141 attributes, 31 attributes were

selected by J48 in the decision tree. The API Call “IsDebuggerPresent” is used as the
root node in the tree. The most used attributes in the classification model are IsDe-
buggerPresent, WriteProcessMemory, RegSetValuesExW, GetVolumeInformationW,
bind, CreateProcessW and Connect. While IsDebuggerPresent may seem surprising, it
is actually very revealing. Malware writers often include code to check for the pres-
ence of a debugger during execution in order to detect reverse engineering attempts
on their software. At that point they terminate the program in order to make analysis
of their code more difficult.

The performance of the decision tree classifiers is shown in Table 6 where TP, TN,
FP, FN denote True Positive, True Negative, False Positive, and False Negative rates
respectively.

Table 6. Performance of J48 decision trees

Data TP TN FP FN ROC Area Overall Accuracy

DRF 0.793 0.809 0.191 0.207 0.843 80.09%

DDF 0.847 0.782 0.218 0.153 0.815 81.45%

DAF 0.832 0.947 0.053 0.168 0.917 89.14%

The Naïve Bayes algorithm of WEKA was applied to the same data, and the per-

formance is shown in Table 7.

Table 7. Performance of Naïve Bayes

Data TP TN FP FN ROC Area Overall Accuracy

DRF 0.856 0.773 0.227 0.144 0.889 81.45%

DDF 0.865 0.836 0.164 0.135 0.912 85.07%

DAF 0.701 0.947 0.053 0.299 0.921 82.81%

 Learning Attack Features from Static and Dynamic Analysis of Malware 123

From Table 6 and 7, it shows that Naïve Bayes performs slightly better than J48
tree classifier in experiments with DRF and DDF data sets, which has 15 attributes. In
experiments with the DAF data, which has 141 attributes, the feature selection algo-
rithm used in J48 provides an advantage. From our results, it is clear that discretiza-
tion will improve performance for reverse engineered features as shown in both J48
and NB. In addition, feature reduction is essential in API CALLS data as indicated by
the better performance of J48 over NB.

We did not evaluate the performance of BLEM2 rules in current experiments. Cur-
rently, an inference engine based on BLEM2 is under development. It will be interest-
ing to see how the feature reduction of BLEM2 with Bayesian factors compares to
J48 and NB.

5 Conclusions

In this work, the problem of detecting new and unknown malware is addressed.
Present day technologies and our approach for the detection of malware are discussed.
An isolated environment was set up for the process of reverse engineering and each
executable was reversed rigorously to find its properties and behavior. On the data
extracted from the reversing process, different data mining techniques were used to
procure patterns of malicious executables and thereby classification models were
generated. To test the models, new executables were supplied from the wild with the
same set of features. The results thus obtained proved to be satisfactory. BLEM2 rules
seem to provide insightful information for essential features identification and for
developing inference engines based on Bayesian factors associated with the rules.
One of our future works is to apply rough set feature reduction tools and BLEM2
inference engines to evaluate their performance in malware detection.

From analyzing the experimental results, we can conclude that finding static and
behavioral features of each malware through reverse engineering and applying data
mining techniques to the data helps in detecting new generation malware. Considering
the rapidly increasing amount of malware appearing each day, this method of detec-
tion can be used along with current practice detection techniques.

We have reversed each strain of malware and benign executables to extract all the
features we could with the help of the tools used by the computer security profession.
However, we were not able to analyze the process address space of the executables in
the physical memory as the memory analysis tools were released after we completed
the reversing step. Analyzing the address space would reveal more interesting infor-
mation about the processes and thereby analyzing their behavior more accurately.

Reversing each malware manually is a time consuming process and requires much
effort with the thousands of new malware being generated. One way to cope up with
this problem is to automate the whole reverse engineering process. Although there are
some tools for automated reverse engineering, they do not record the full details of
malware. A more specific tool that does rigorous reversing would help in combating
large amounts of malware. We consider these two tasks as the future work that aid in
detecting new malware more efficiently.

124 R.R. Ravula, K.J. Liszka, and C.-C. Chan

References

1. Ahmed, F., Hameed, H., Shafiq, M.Z., Farooq, M.: Using spatio-temporal information in
API calls with machine learning algorithms for malware detection. In: AISec 2009: Pro-
ceedings of the 2nd ACM Workshop on Security and Artificial Intelligence, pp. 55–62.
ACM, New York (2009)

2. Burji, S., Liszka, K.J., Chan, C.-C.: Malware Analysis Using Reverse Engineering and Da-
ta Mining Tools. In: The 2010 International Conference on System Science and Engineer-
ing (ICSSE 2010), pp. 619–624 (July 2010)

3. Chan, C.-C., Santhosh, S.: BLEM2: Leaming Bayes’ rules from examples using rough
sets. In: Proc. NAFIPS 2003, 22nd Int. Conf. of the North American Fuzzy Information
Processing Society, Chicago, Illinois, July 24-26, pp. 187–190 (2003)

4. Chan, C.-C., Grzymala-Busse, J.W.: On the two local inductive algorithms: PRISM, and
LEM2. Foundations of Computing and Decision Sciences 19(3), 185–203 (1994)

5. Christodorescu, M., Jha, S., Kruegel, C.: Mining specifications of malicious behaviour. In:
Proc. ESEC/FS 2007, pp. 5–14 (2007)

6. Cohen, F.: Computer Viruses. PhD thesis, University of Southern California (1985)
7. Cohen, W.: Learning Trees and Rules with Set-Valued Features. American Association for

Artificial Intelligence, AMI (1996)
8. Islam, R., Tian, R., Batten, L., Versteeg, S.C.: Classification of Malware Based on String

and Function Feature Selection. In: 2010 Second Cybercrime and Trustworthy Computing
Workshop, Ballarat, Victoria Australia, July 19-July 20 (2010) ISBN: 978-0-7695-4186-0

9. Kang, M.G., Poosankam, P., Yin, H.: Renovo: A hidden code extractor for packed execu-
tables. In: Proc. Fifth ACM Workshop on Recurring Malcode, WORM 2007 (November
2007)

10. Kolter, J., Maloof, M.: Learning to detect malicious executables in the wild. In: Proc. KDD
2004, pp. 470–478 (2004)

11. Komashinskiy, D., Kotenko, I.V.: Malware Detection by Data Mining Techniques Based
on Positionally Dependent Features. In: Proceedings of the 2010 18th Euromicro Confe-
rence on Parallel, Distributed and Network-based Processing, PDP 2010. IEEE Computer
Society, Washington, DC (2010) ISBN: 978-0-7695-3939-3

12. Mcafee.com (2010a), http://www.mcafee.com/us/resources/reports/rp-
quarterly-threat-q3-2010.pdf (retrieved)

13. Mcafee.com (2010b), http://www.mcafee.com/us/resources/reports/rp-
good-decade-for-cybercrime.pdf (retrieved)

14. Messagelabs.com (2011),
http://www.messagelabs.com/mlireport/MLI_2011_01_January_Fin
al_en-us.pdf (retrieved)

15. Miller, P.: Hexdump. Online publication (2000),
http://www.pcug.org.au/millerp/hexdump.html

16. Pawlak, Z.: Rough sets: basic notion. International Journal of Computer and Information
Science 11(15), 344–356 (1982)

17. Pawlak, Z.: Flow graphs and intelligent data analysis. Fundamenta Informaticae 64, 369–
377 (2005)

18. Rozinov, K.: Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus. In: In-
formation Assurance Workshop, IAW 2005. Proceedings from the Sixth Annual IEEE
SMC, June 15-17, pp. 380–387 (2005)

 Learning Attack Features from Static and Dynamic Analysis of Malware 125

19. Schultz, M.G., Eskin, E., Zadok, E., Stolfo, S.J.: Data Mining Methods for Detection of
New Malicious Executables. In: Proceedings of the 2001 IEEE Symposium on Security
and Privacy, pp. 38–49. IEEE Computer Society (2001)

20. Skoudis, E.: Malware: Fighting Malicious Code. Prentice Hall (2004)
21. Sung, A., Xu, J., Chavez, P., Mukkamala, S.: Static analyzer of vicious executables (save).

In: Proc. 20th Annu. Comput. Security Appl. Conf., pp. 326–334 (2004)
22. Wang, T.-Y., Wu, C.-H., Hsieh, C.-C.: A Virus Prevention Model Based on Static Analy-

sis and Data Mining Methods. In: Proceedings of the 2008 IEEE 8th International Confe-
rence on Computer and Information Technology Workshops, CITWORKSHOPS 2008, pp.
288–293 (2008)

23. Wang, T.-Y., Wu, C.-H., Hsieh, C.-C.: Detecting Unknown Malicious Executables Using
Portable Executable Headers. In: Fifth International Joint Conference on INC, IMS and
IDC, pp. 278–284 (2009)

24. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques,
2nd edn. (2005) ISBN: 0-12-088407-0

	Learning Attack Features from Static and Dynamic Analysis of Malware
	Introduction
	Literature Review
	Reverse Engineering
	Controlled Environment
	Static Analysis
	Dynamic Analysis

	Malware Detection Mining
	Feature Extraction
	Data Sets
	Experimental Results

	Conclusions
	References

