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Abstract. Malware detection is a major challenge in today's software security 
profession. Works exist for malware detection based on static analysis such as 
function length frequency, printable string information, byte sequences, API calls, 
etc. Some works also applied dynamic analysis using features such as function 
call arguments, returned values, dynamic API call sequences, etc. In this work, we 
applied a reverse engineering process to extract static and behavioral features 
from malware based on an assumption that behavior of a malware can be revealed 
by executing it and observing its effects on the operating environment. We cap-
tured all the activities including registry activity, file system activity, network ac-
tivity, API Calls made, and DLLs accessed for each executable by running them 
in an isolated environment. Using the extracted features from the reverse engi-
neering process and static analysis features, we prepared two datasets and applied 
data mining algorithms to generate classification rules. Essential features are iden-
tified by applying Weka’s J48 decision tree classifier to 1103 software samples, 
582 malware and 521 benign, collected from the Internet. The performance of all 
classifiers are evaluated by 5-fold cross validation with 80-20 splits of training 
sets. Experimental results show that Naïve Bayes classifier has better performance 
on the smaller data set with 15 reversed features, while J48 has better performance 
on the data set created from the API Call data set with 141 features. In addition, 
we applied a rough set based tool BLEM2 to generate and evaluate the identifica-
tion of reverse engineered features in contrast to decision trees. Preliminary  
results indicate that BLEM2 rules may provide interesting insights for essential 
feature identification. 

Keywords: Malware, Reverse Engineering, Data Mining, Decision Trees, 
Rough Sets. 

1 Introduction 

Malware, short for malicious software, is a sequence of instructions that perform ma-
licious activity on a computer. The history of malicious programs started with “Com-
puter Virus”, a term first introduced by [6]. It is a piece of code that replicates by 
attaching itself to the other executables in the system. Today, malware includes virus-
es, worms, Trojans, root kits, backdoors, bots, spyware, adware, scareware and any 
other programs that exhibit malicious behaviour. 

Malware is a fast growing threat to the modern computing world. The production 
of malware has become a multi-billion dollar industry. The growth of the Internet, the 
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advent of social networks and rapid multiplication of botnets has caused an exponen-
tial increase in the amount of malware. In 2010, there was a large increase in the 
amount of malware spread through spam emails sent from machines that were part of 
botnets [12]. McAfee Labs have reported 6 million new botnet infections in each 
month of 2010. They also detected roughly 60,000 new malware for each day of 2010 
[13]. Symantec discovered a daily average of 2,751 websites hosting malware in Jan-
uary 2011 [14]. Antivirus software, such as Norton, McAfee, Sophos, Kaspersky and 
Clam Antivirus, is the most common defense against malware. The vendors of these 
antivirus programs apply new technologies to their products frequently in an attempt 
to keep up with the massive assault. These programs use a signature database as the 
primary tool for detecting malware. Although signature based detection is very effec-
tive against previously discovered malware, it proves to be ineffective against new 
and previously unknown malware. Malware programmers bypass the known signa-
tures with techniques like obfuscation, code displacement, compression and encryp-
tion. This is a very effective way to evade signature based detection. Antivirus  
companies are trying hard to develop more robust antivirus software. Some of the 
techniques include heuristics, integrity verification and sandboxing. However, in 
practice, they are not really very effective in detecting new malware. We are virtually 
unprotected until the signature of each new threat is extracted and deployed. 

Signature detection is mostly accomplished using manual methods of reverse engi-
neering. This is timely and work intensive. With the staggering number of malware 
generated each day, it is clear that automated analysis will be imperative in order to 
keep up. Hence, we cannot depend solely on traditional antivirus programs to combat 
malware. We need an alternative mechanism to detect unidentified threats.  

In an effort to solve the problem of detecting new and unknown malware, we have 
proposed an approach in the present study. The proposed approach uses reverse engi-
neering and data mining techniques to classify new malware. We have collected 582 
malicious software samples and 521 benign software samples and reverse engineered 
each executable using both static and dynamic analysis techniques. By applying data 
mining techniques to the data obtained from the reverse engineering process, we have 
generated a classification model that would classify a new instance with the same set 
of features either as malware or a benign program.  

The rest of the paper is organized as follows. Section 2 discusses previous work 
based on detection of malware using data mining techniques. Section 3 presents the 
reverse engineering techniques used in our work. Section 4 explains the data mining 
process and the machine learning tools we used for the experiments. Here we present 
and discuss the results and finally, section 5 concludes the study and suggests possible 
future work. 

2 Literature Review 

Significant research has been done in the field of computer security for the detection 
of known and unknown malware using different machine learning and data mining 
approaches. 

A method for automated classification of malware using static feature selection was 
proposed by [8]. The authors used two static features extracted from malware and be-
nign software, Function Length Frequency (FLF) [7] and Printable String Information 
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(PSI) [23]. This work was based on the hypothesis that “though function calls and 
strings are independent of each other they reinforce each other in classifying malware”. 
Disassembly of all the samples was done using IDA Pro and FLF, PSI features were 
extracted using Ida2DB. 

The authors used five classifiers; Naive Bayes, SVM, Random Forest, IB1 and De-
cision Table. The best results were obtained by AdaBoostM1 with Decision Table 
yielding an accuracy rate of 98.86%. It was also observed that the results obtained by 
combining both features were more satisfactory than using each kind of features indi-
vidually. 

[19] used different data mining techniques to detect unknown malware. They used 
three approaches for static analysis and feature identification; binary profiling, strings 
and byte sequences. Binary profiling was only applied to PE files. Other approaches 
were used for all programs. 

Binary profiling was used to extract three types of features; 1) list of Dynamic Link 
Libraries (DLL) used by the PE, 2) function calls made from each DLL and 3) unique 
function calls in each DLL.  The “GNU Strings” program was used to extract printa-
ble strings. Each string was used as a feature in the dataset. In the third method for 
features extraction, the hexdump [15] utility identified byte sequences, which were 
used as features. 

The authors applied the rule based learning algorithm RIPPER [7] to the 3 datasets 
with binary profiling features, Naïve Bayes classifier to data with string and byte 
sequence features and finally six different Naïve Bayes classifiers to the data with 
byte sequence features. To compare the results from these approaches with traditional 
signature based method, the authors designed an automatic signature generator. 

With RIPPER they achieved accuracies of 83.62%, 89.36%, and 89.07% respec-
tively for datasets with features DLLs used, DLL function calls and Unique Calls in 
DLLs. The accuracies obtained with Naïve Bayes and Multi-Naïve Bayes were 
97.11% and 96.88%. With the Signature method they achieved 49.28% accuracy. 
Multi-Naïve Bayes produced better results compared to the other methods. 

In [23], the information in PE headers was used for the detection of malware, based 
on the assumption that there would be a difference in the characteristics of PE headers 
for malware and benign software as they were developed for different purposes. 
Every header (MS DOS header, file header, optional header and section headers) in 
the PE was considered as a potential attribute. For each malware and benign program, 
position and entry values of each attribute were calculated. In parallel, attribute selec-
tion was performed using Support Vector Machines. The dataset was tested with an 
SVM classifier using five-fold cross validation. Accuracies of 98.19%, 93.96%, 
84.11% and 89.54% were obtained for virus, email worm, Trojans and backdoors 
respectively. Detection rates of viruses and email worms were high compared to the 
detection rates of Trojans and backdoors. 

In [10], multiple byte sequences from the executables were extracted from PE files 
and combined to produce n-grams. Five hundred relevant features were selected by 
calculating the information gain for each feature. Several data mining techniques like 
IBk, TFIDF, Naïve Bayes, Support Vector Machine (SVM) and decision trees applied 
to generate rules for classifying malware.  The authors also used “boosted” Naïve 
Bayes, SVM and decision tree learners. The boosted classifiers, SVM and IBk pro-
duced good results compared to the other methods. The performance of classifiers 
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was improved by boosting and the overall performance of all the classifiers was better 
with the large dataset compared with the small dataset. 

Komashinskiy and Kotenko [11] used position dependent features in the Original 
Entry Point (OEP) of a file for detecting unknown malware. Decision Table, C4.5, 
Random Forest, and Naïve Bayes were applied on the prepared dataset. Three as-
sumptions were made for this work. 1) Studying the entry point of the program known 
as Original Entry Point (OEP) reveals more accurate information. 2) The location of 
the byte value of OEP address was set to zero. The offsets for all bytes in OEP were 
considered to be in the range [-127,127]. 3) Only a single byte can be read for each 
position value. The dataset contained three features; Feature ID, position and byte in 
position. 

Feature selection was performed to extract more significant features. The resulting 
data was tested against all classifiers and the results were compared based on ROC-
area. Random Forest outperformed all the other classifiers. 

A specification language was derived in [5] based on the system calls made by the 
malware. These specifications are intended to describe the behaviour of malware. The 
authors also developed an algorithm called MINIMAL that mines the specifications of 
malicious behaviour from the dependency graphs. They applied this algorithm to the 
email worm Bagle.J, a variant of Bagle malware. 

Clean and malicious files were executed in a controlled environment. Traces of 
system calls were extracted for each sample during execution. The dependencies be-
tween the system call arguments were obtained by observing the arguments and their 
type in sequence of calls. A dependency graph was constructed using system calls and 
their argument dependencies. A sub graph was then extracted by contrasting it with 
the benign software dependence graph such that it uniquely specifies the malware 
behaviour.  A new file with these specifications would be classified as malware. 

The Virus Prevention Model (VPM) to detect unknown malware using DLLs was 
implemented by [22]. Malicious and benign files were parsed by a program “depen-
dency walker” which shows all the DLLs used in a tree structure. The list of APIs 
used by main program directly, the DLLs invoked by other DLLs other than main 
program and the relationships among DLLs which consists of dependency paths down 
the tree were collected. In total, 93,116 total attributes were obtained. After pre-
processing there were 1,398 attributes. Of these, 429 important attributes were se-
lected and tested. The detection rate with RBF-SVM classifier was 99.00% with True 
Positive rate of 98.35% and False Positive rate of 0.68%. 

A similarity measure approach for the detection of malware was proposed by [21], 
based on the hypothesis that variants of a malware have the same core signature, 
which is a combination of features of the variants of malware. To generate variants 
for different strains of malware, traditional obfuscation techniques were used. The 
source code of each PE was parsed to produce an API calling sequence which was 
considered to be a signature for that file. The resulting sequence was compared with 
the original malware sequence to generate a similarity measure. Generated variants 
were tested against eight different antivirus products. The detection rate of SAVE was 
far better than antivirus scanners. 

In [2], a strain of the Nugache worm was reverse engineered in order to study  
its underlying design, behaviour and to understand attacker’s approach for finding 
vulnerabilities in a system. The authors also reverse engineered 49 other malware 
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executables in an isolated environment. They created a dataset using features such as 
the MD5 hash, printable strings, number of API calls made, DLLs accessed and URL 
referenced. Due to the multi-dimensional nature of the dataset, a machine learning 
tool, BLEM2 [3], based on rough set theory was used to generate dynamic patterns 
which would help in classifying an unknown malware. As the size of the dataset was 
small, a very few number of decision rules were generated and the results were gener-
ally not satisfactory. 

In another work by Ahmed et al. [1] based on dynamic analysis, spatio-temporal 
information in API calls was used to detect unknown malware. The proposed tech-
nique consists of two modules; an offline module that develops a training model using 
available data and an online module that generates a testing set by extracting spatio-
temporal information during run time and compares them with the training model to 
classify run time process as either benign or malicious. In the dynamic analysis, spa-
tial information was obtained from function call arguments, return values and were 
divided into seven subsets socket, memory management, processes and threads, file, 
DLLs, registry and network management based on their functionality. Temporal in-
formation was obtained from the sequence of calls. The authors observed that some 
sequences were present only in malware and were missing in benign programs. 

Three datasets were created by combining benign program API traces with each 
malware type. The three datasets were combinations of benign-Trojan, benign-virus 
and benign-worm. They conducted two experiments. The first one studied the com-
bined performance of spatio-temporal features compared to standalone spatial or tem-
poral features. The second experiment was conducted to extract a minimal subset of 
API categories that gives same accuracy as from the first experiment. For this, the 
authors combined API call categories in all possible ways to find the minimal subset 
of categories that would give same classification rate as obtained in first experiment. 
For the first experiment, the authors obtained 98% accuracy with naive Bayes and 
94.7% accuracy with J48 decision tree. They obtained better results with combined 
features as compared standalone features. The detection rate of Trojans was less com-
pared to viruses and worms. 

In the second experiment, combination of API calls related to memory manage-
ment and file I/O produced best results with an accuracy of 96.6%. 

In some of the above mentioned works, only static features such as byte sequences, 
printable strings and API call sequences were used. Though effective in detecting 
known malware, they would be ineffective if the attackers use obfuscation techniques 
to write malware. To solve this problem, some other works [1, 2] used dynamic detec-
tion methods. The work done in [1] used only dynamic API call sequences. Using only 
API calls may not be effective in detecting malware. In the work, malwares were re-
versed to find their behaviour and applied data mining techniques to the data obtained 
from reversing process. A very small number of rules were generated and the results 
were not effective as the experiments were conducted on very few numbers of samples.  

Our work is different from all the above works as we combined static and beha-
vioral features of all malware and benign software. It is an extension of the work done 
in [1] but it differs significantly, as we performed rigorous reverse engineering of 
each executable to find their inner workings in detail. We also used a large number 
(582 malicious and 521 benign) of samples which would facilitate determining more 
accurate behaviour of malicious executables. 
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3 Reverse Engineering 

Reverse engineering malware can be defined as an analysis of a program in order to 
understand its design, components and its behavior to inflict damage on a computer 
system. The benefit of reverse engineering is that it allows us to see the hidden beha-
vior of the file under consideration, which we can’t see by merely executing it [18]. 

In the reverse engineering process we used both static and dynamic analysis tech-
niques. There are many different tools available for each technique. All the tools used 
for our work are open source. In total, we reverse engineered 1103 PE (Portable Ex-
ecutable) files of which 582 were malicious executables and 521 were benign execu-
tables. All malicious executables were downloaded from Offensivecomputing.net and 
all benign executables were downloaded from Sourceforge.net and Brothersoft.com. 

3.1 Controlled Environment 

For static analysis of executables, we do not require a controlled environment. In this 
case, we do not run the executable to collect features. In the case of dynamic analysis, 
the code to run is malicious and dangerous. The environment for the reversing process 
must be isolated from the other hosts on the network. We apply the industry common 
standard, a virtual machine. Due to a strong isolation between the guest operating 
system in VM and host operating systems, even if the virtual machine is infected with 
a malware, there will be no effect of it on the host operating system. 

For the analysis of malware we needed virtualization software that would allow 
quick backtrack to the previous system state after it has been infected by the malware. 
Each time a malware is executed in dynamic analysis process, it would infect the 
system. Analysis of subsequent malware had to be performed in a clean system. We 
chose VMware Workstation as virtualization software for our work.  

3.2 Static Analysis 

In general, it is a good idea to start analysis of any given program by observing the 
properties associated with it and predicting the behavior from visible features without 
actually executing it. This kind is known as static analysis. The advantage with static 
analysis is that it gives us an approximate idea of how it will affect the environment 
upon execution without actually being executed. However, most of the time, it is not 
possible to predict the absolute behavior of a program with just static analysis. 

There are many different tools available that aid in static analysis of executables 
for example, decompilers, disassemblers, Source code analyzers and some other tools 
that help in extracting useful features from executables. The tools we used were Mal-
code Analyst Pack from idefense.com, PEiD from peid.has.it and IDA Pro Disas-
sembler hex-rays.com. 

3.2.1   Cryptographic Hash Function 
A unique cryptographic hash value is associated with each executable file. This value 
differentiates each file from others. We started our reverse engineering process of 
each executable by calculating its hash value. 
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The reason for calculating the hash value is twofold. First, there is no unique stan-
dard for naming malware. There may be multiple names for a single piece of malware 
so by calculating hash value of each sample we know that all of them are indeed the 
same. This results in eliminating ambiguity in the reverse engineering process. The 
second reason is that if an executable is modified, its hash value will also be changed. 
That way we can identify that changes were made to the executable and thereby ana-
lyzing it to detect the changes made. 

MD5, SHA1 and SHA256 are the widely used hash functions. We used Malcode 
Analyst Pack (MAP) tool to compute the MD5 (Message Digest 5) hash value of each 
PE file that we analysed. 

3.2.2 Packer Detection 
Malware authors employ various techniques to obfuscate the content of the malware 
they have written and making it unable to be reversed. Using packers is one of them. 
A packer is a program that helps in compressing another executable program, thereby 
hiding the content. Packers help malware authors hide actual program logic of the 
malware so that a reverse engineer cannot analyze it using static analysis techniques 
alone. Packers also help evade detection of the malware from antivirus programs. 

In order to execute, a packed malware must unpack its code into memory. For this 
reason, the authors of the malware include an unpacker routine in the program itself. 
The unpacker routine is invoked at the time of execution of the malware and converts 
the packed code into original executable form. Sometimes they use multiple levels of 
packing to make the malware more sophisticated [9].  

Detection of a packer with which a malware is packed is very important for the 
analysis of the malware. If we know the packer, we can unpack the code and then 
analyze the malware. We used the PEiD tool which is a free tool for the detection of 
packers. It has over 600 different signatures for the detection of different packers, 
cryptors and compilers. It displays the packer with which the malware is packed by 
simply opening the malware using PEiD. If the signature of the packer or compiler 
with which the malware is packed is not present in the PEiD database it will report 
that it didn’t find any packers.  

3.2.3   Code Analysis 
The next step for better understanding the nature of malware is to analyze its source 
code. Although there are many decompilers that help in decompiling executables into 
high level languages, analyzing the malware by keeping the source code in low level 
language reveals more information. IDA Pro disassembler from DataRescue is a pop-
ular choice for the disassembly of executable program into Assembly Language. 

We used the IDA Pro Disassembler for the code analysis of malware. In this step, 
we have gone through the assembly code of each PE file to find useful information 
and to understand the behavior of it. Following is the list of features that we were able 
to extract from the assembly code of PE files. 

 
• Type of file from the PE header. If it was not a PE file, we discarded it. 
• List of strings embedded in the code that would be useful for predicting the beha-

vior of the PE. 
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• The programming language with which the PE was written. 
• Compile date and time. 

3.3 Dynamic Analysis 

In static analysis of executables, we only analyze the static code of the executable and 
approximately predict its properties and behavior. We know that the authors of mal-
ware use techniques such as binary obfuscation and packing to evade static analysis 
techniques. To thoroughly understand the nature of the malware we cannot rely on 
static analysis techniques alone. If a program has to be run, the whole code must be 
unpacked and loaded into primary memory. Every detail of the executable program is 
revealed at run time regardless of how obfuscated the code is and what packer the 
executable is packed with [20]. In dynamic analysis, we observe the full functionality 
of the malware and its effect on the environment as it executes. 

Tools that help in dynamic analysis of executables include debuggers, registry 
monitors, file system monitors, network sniffers and API call tracers. The tools we 
used in this step were Filemon, Regshot and Maltrap. 

3.3.1 File System Monitor 
When a program is executed it makes changes to the file system. The file system ac-
tivity made by the program helps partly in determining its behavior. We used File 
Monitor (Filemon) from Microsoft Sysinternals to monitor file system activity of all 
the processes running on a windows system. It installs a device driver which keeps 
track of all the file system activity in the system. However, we only need the informa-
tion related to a particular process under consideration, therefore, we can use a filter 
which lets us select a particular process for which we want to monitor file system 
activity by removing all the other processes from the list. Each file system activity 
made by the PE on the file system produces one line of output in the Filemon GUI 
window. 

3.3.2 Registry Monitor 
Windows Registry is a huge database hosting configuration details of the operating 
system and the programs installed on it. Registry entries are divided into hives and 
represented in a tree structure on Windows systems. Most applications use two hives 
frequently; HKLM and HKCU. HKLM stands for Hive Key Local Machine and con-
tains settings of the operating system. HKCU stands for Hive Key Current User and 
contains configuration details for the user currently logged into the system. 

Malware authors frequently use registries to infect systems. One usual technique 
employed is to insert an entry at the location 
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\RU
N so that each time system boots up the malware is executed. There is an extensive 
list of such keys in the Windows registry and they are used by attackers for their ma-
licious purposes. 

Regshot is a product of Microsoft Sysinternals that helps in the reverse engineering 
process by monitoring the Windows Registry. It lists the changes made in the  
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windows registry upon installation of software. We used this tool to record the 
changes in the windows registry made by malware and benign software in the Win-
dows Registry. 

3.3.3 Api Call Tracer 
Windows API (Application Program Interface) also known as Win API, is a long list 
of functions that provide system level services to the user programs. Every Windows 
application is implemented using the Win API functions. 

Keeping track of the sequence of API Calls made by an application helps in the re-
verse engineering process. It allows us to go through each call and thereby predicting 
the behavior of that software. Maltrap is a software that lists the sequence of calls 
made by the software while execution.  

4 Malware Detection Mining 

In this section, we explain our implementation of the data mining process to find pat-
terns that would help in classifying malware from benign software.  

4.1 Feature Extraction 

From static analysis of each sample in the reverse engineering process we have the 
MD5 hash of the file, file size in bytes, the packer used (if any, a determination of 
whether it contains unique strings, a time stamp and the programming language used 
to write the file. 

From the dynamic analysis, for each file, we stored a log of file system activity, re-
gistry activity and the sequence of API calls made by the sample while running.  

From the file system activity log we were able to extract three important features; 
the decisions of whether the sample under consideration attempted to write to another 
file, if the sample accessed another directory and all unique DLLs accessed during 
execution.  

From the registry activity we extracted three features; registry keys added, registry 
keys deleted and registry values modified. The log contains all the registry keys mod-
ified by executables with their modified values. We removed the key values and rec-
orded only the keys.  

From the API call log we extracted the unique API calls made by each sample. We 
combined all the unique API calls made by each file and removed duplicates. Over 
the entire sample space, we identified 141 unique API calls which will be used as 
features to create a data set. We also noted if a sample contained any URL references 
or attempted to access the Internet, making. With this step we completed processing 
of raw data for feature selection. 

4.2 Data Sets 

We prepared two datasets: the first dataset with 15 features, 1103 instances (582 ma-
licious and 521 benign) and the second dataset with 141 features, 1103 instances. We 
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named the first dataset DRF (Dataset with Reversed Features) and the second dataset 
DAF (Dataset with API Call Features). Table 1 shows the list of 15 attributes and 
decision label in DRF. All the 141 attributes in DAF are of type binary except the 
decision label which is Boolean. The first three attributes File Name, File Size, and 
MD5 Hash do not provide useful information for classification purpose. We collected 
this information and retain it for tracking and other research purposes, however, they 
are removed from data sets used in the following experiments.  

Table 1. Attributes in DRF 

S.NO Attribute Name Type 

1 FILE NAME NOMINAL 

2 FILE SIZE NOMINAL 

3 MD5 HASH NOMINAL 

4 PACKER NOMINAL 

5 FILE ACCESS BINARY 

6 DIRECTORY ACCESS BINARY 

7 DLLs NOMINAL 

8 API CALLS NOMINAL 

9 INTERNET ACCESS BINARY 

10 URL REFERENCES BINARY 

11 REGISTRY KEYS ADDED NOMINAL 

12 REGSITRY KEYS DELETED NOMINAL 

13 
REGISTRY VALUES 

MODIFIED 
NOMINAL 

14 UNIQUE STRINGS BINARY 

15 PROGRAMMING LANGUAGE NOMINAL 

16 DECISION LABEL BOOLEAN 

 
In addition, values of attributes Registry Keys Added, Registry Keys Deleted, Re-

gistry Keys Modified, API CALLs and DLLs varies widely from very small to very 
large. They were discretized by using tools available in Weka. The ranges we ob-
tained for each attribute after transforming the dataset are shown in Table 2. 

Table 2. Discretized values 

 ATTRIBUTE NAME DISCRETIZED VALUES 
1 KEYS ADDED (-INF-1] (1-INF) 

2 REGISTRY VALUES MODIFIED (-INF-12.5] (12.5-INF) 

3 API CALLS (-INF -5.5] (5.5-22.5] (22.5-41.5] (41.5- INF) 
4 DLLs (-INF -16.5] (16.5- INF) 

 
We prepared second dataset from DRF by replacing the discrete values with  

the discretized values shown in Table 2. We call it DDF (Dataset with Discretized 
Features). 
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4.3 Experimental Results 

We conducted experiments on the datasets derived from reversed features: DRF and 
DDF, and data set derived from API call features: DAF. The J48 decision tree and 
Naïve Bayes algorithms in WEKA [24] were used to generate classifiers. We applied 
5-fold cross validation with 80-20 splits for training and testing.  

 

 

Fig. 1. J48 decision tree for DRF 

Figure 1 shows that the number of API Calls made by a PE was selected as the root 
node of the decision tree. API Calls, Unique Strings, URL References, Internet 
Access, Packer, Registry Keys Deleted, Directory Access and Registry Keys Mod-
ified were the most used attributes in the classification model although we note that it 
used all the other attributes in the dataset. 

The decision tree in Figure 2 shows that 9 attributes, API Calls, Unique Strings, 
URL References, Packer, Registry Keys Deleted, Registry Keys Modified, Directory 
Access, Registry Keys added and Internet Access were used in the classification mo-
del. In this case, the attributes DLLs and File Access were not used in the decision 
rules for classification. 

Decision tree classifiers such as J48 are top-down learners that select an attribute to 
split a tree node in each step of the decision tree building process. In contrast, the 
machine learning algorithm BLEM2 [3] is a learner for generating if-then decision 
rules from bottom-up. In each step, an attribute-value pair is selected to form the con-
dition part of a decision rule. Each rule learned by BLEM2 is minimal, and the entire 
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set of rules learned is also minimal. It is a revision of the LEM2 algorithm [4], which 
is based on rough set theory introduced by Pawlak [16]. The major difference is that 
rules learned by BLEM2 are associated with four factors: support, certainty, strength, 
and coverage. These factors can be interpreted as Bayesian probabilities derived from 
the training data which was first introduced in [17]. We say that an instance is cov-
ered by a rule if it matches the condition of the rule. The support of a rule is the num-
ber of training instances covered by the rule. Certainty of a rule is the conditional 
probability that an instance covered by the rule will have the same decision label as 
the rule. The strength of a rule is the probability of an instance covered by the rule. 
The coverage of a rule is the inverse probability that an instance of the same decision 
label as the rule will be covered by the rule. 

 

Fig. 2. J48 decision tree for DDF 

In our experiment, we applied BLEM2 to generate decision rules from the DDF 
dataset. Rules with a minimum support of 7 were selected for analysis. There are 11 
attributes selected by BLEM2 to form decision rules. Tables 3 shows the attributes 
selected by BLEM2 together with the frequencies of attribute-value pairs appeared in 
the rules. Table 4 shows the 21 decision rules generated by BLEM2 for the decision 
label “YES”, and Table 5 shows the 13 decision rules for the decision label “NO”. 

From Table 3, API CALLS and REGISTRY KEYS ADDED are identified as the 
most relevant attributes by BLEM2. In contrast, API CALLS is selected as the root of 
the decision tree in Figure 2. It is also clear that URL REFERENCES is not relevant 
in classifying benign software. It seems that both FILE ACCESS and URL 
REFERENCES may not be essential due to their low frequency; however, they cannot 
be ignored, since they have high support and certainty factors according to rules 
shown in Table 4 and 5. In general, we will need to consider the Bayesian factors of 
BLEM2 rules to derive a threshold for identifying essential attributes. This will be 
part of our future works. 
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Table 3. Attribute-value pair frequencies in BLEM2 rules with minimum support = 7 

Attribute Attribute Name Freq. of YES 
(21 rules total) 

Freq. of NO 
(13 rules total 

C1 PACKER 17 12 

C2 REGISTRY KEYS ADDED 20 13 

C3 REGISTRY KEYS DELETED 9 10 

C4 REGISTRY VALUES MODIFIED 19 12 

C5 API CALLS 20 13 

C6 DLLs 11 4 

C7 FILE ACCESS 2 1 

C8 DIRECTORY ACCESS 8 3 

C9 INTERNET ACCESS 11 13 

C10 URL REFERENCES 2 0 

C11 UNIQUE STRINGS 16 12 

Table 4. BLEM2 rules for DDF for the decision label “YES” with minimum support = 7 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C 11 Supp Cer Stren Cov 

0 (-inf-1] ? (-inf-12.5] (5.5-23.5] (16.5-inf) ? 1 0 ? 0 43 0.811 0.039 0.074 

0 (2.5-inf) 0 (-inf-12.5] (5.5-23.5] (16.5-inf) ? ? ? ? 0 30 0.909 0.027 0.052 

? ? ? ? ? ? 0 ? ? ? ? 26 1 0.024 0.045 

1 (2.5-inf) 0 (12.5-inf) (5.5-23.5] (16.5-inf) ? 1 0 ? ? 21 0.553 0.019 0.036 

0 (-inf-1] ? (12.5-inf) (5.5-23.5] (16.5-inf) ? 1 ? ? 0 20 1 0.018 0.034 

0 (-inf-1] ? (-inf-12.5] (5.5-23.5] ? ? 1 0 ? 1 20 0.769 0.018 0.034 

1 (2.5-inf) 0 (-inf-12.5] (5.5-23.5] (16.5-inf) ? ? 0 ? 0 17 0.654 0.015 0.029 

0 (-inf-1] ? ? (5.5-23.5] ? ? 0 ? ? ? 16 1 0.015 0.028 

1 (-inf-1] 0 (-inf-12.5] (5.5-23.5] (16.5-inf) 1 1 0 ? 0 15 0.455 0.014 0.026 

? (-inf-1] ? (-inf-12.5] (-inf-5.5] (-inf-16.5] ? 1 ? ? 0 14 1 0.013 0.024 

0 (2.5-inf) ? (-inf-12.5] (5.5-23.5] ? ? ? 0 ? 1 13 0.542 0.012 0.022 

1 (2.5-inf) 0 (-inf-12.5] (5.5-23.5] (16.5-inf) ? ? 0 ? 1 13 0.236 0.012 0.022 

0 (2.5-inf) ? (12.5-inf) (5.5-23.5] ? ? ? ? ? 0 12 1 0.011 0.021 

0 (2.5-inf) 0 (12.5-inf) (5.5-23.5] ? ? ? ? ? 1 11 0.917 0.01 0.019 

0 (-inf-1] ? (12.5-inf) (41.5-inf) ? ? ? ? ? ? 10 1 0.009 0.017 

0 (-inf-1] 0 (12.5-inf) (5.5-23.5] (16.5-inf) ? 1 ? ? 1 10 0.769 0.009 0.017 

1 (-inf-1] 0 (-inf-12.5] (5.5-23.5] (16.5-inf) ? ? 0 ? 1 10 0.2 0.009 0.017 

1 (-inf-1] 0 (12.5-inf) (5.5-23.5] (16.5-inf) ? ? 0 ? 0 9 0.9 0.008 0.016 

1 (-inf-1] ? (12.5-inf) (-inf-5.5] ? ? ? ? ? 1 7 1 0.006 0.012 

? (2.5-inf) ? (-inf-12.5] (5.5-23.5] ? ? ? 1 0 0 7 1 0.006 0.012 

? (-inf-1] ? (-inf-12.5] (5.5-23.5] ? ? ? 1 0 ? 7 1 0.006 0.012 
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Table 5. BLEM2 rules for DDF for the decision label “NO” with minimum support = 7 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C 11 Supp Cer Stren Cov 

1 (2.5-inf) 0 (-inf-12.5] (23.5-41.5] ? ? 1 0 ? 1 94 0.99 0.085 0.18 

1 (1-2.5] 0 (-inf-12.5] (23.5-41.5] ? ? ? 0 ? 1 52 0.981 0.047 0.1 

1 (2.5-inf) 0 (-inf-12.5] (5.5-23.5] (16.5-inf) ? ? 0 ? 1 42 0.764 0.038 0.081 

1 (-inf-1] 0 (-inf-12.5] (5.5-23.5] (16.5-inf) ? ? 0 ? 1 40 0.8 0.036 0.077 

? (-inf-1] 0 (-inf-12.5] (5.5-23.5] (16.5-inf) 1 1 0 ? 0 28 0.326 0.025 0.054 

1 (2.5-inf) 0 (12.5-inf) (23.5-41.5] ? ? ? 0 ? 1 27 0.9 0.025 0.052 

1 (2.5-inf) 0 ? (23.5-41.5] ? ? 1 0 ? 0 27 0.9 0.025 0.052 

1 (2.5-inf) 0 (12.5-inf) (5.5-23.5] ? ? 1 0 ? 1 14 0.667 0.013 0.027 

0 (2.5-inf) ? (-inf-12.5] (5.5-23.5] ? ? ? 0 ? 1 11 0.458 0.01 0.021 

1 (-inf-1] ? (-inf-12.5] (23.5-41.5] ? ? ? 0 ? ? 9 1 0.008 0.017 

1 (2.5-inf) 0 (-inf-12.5] (5.5-23.5] (16.5-inf) ? ? 0 ? 0 9 0.346 0.008 0.017 

1 (1-2.5] 0 (-inf-12.5] (23.5-41.5] ? ? ? 0 ? 0 7 1 0.006 0.013 

0 (2.5-inf) ? (-inf-12.5] (23.5-41.5] ? ? ? 0 ? 1 7 1 0.006 0.013 

 
In the experiment with the DAF data set, out of 141 attributes, 31 attributes were 

selected by J48 in the decision tree. The API Call “IsDebuggerPresent” is used as the 
root node in the tree. The most used attributes in the classification model are IsDe-
buggerPresent, WriteProcessMemory, RegSetValuesExW, GetVolumeInformationW, 
bind, CreateProcessW and Connect. While IsDebuggerPresent may seem surprising, it 
is actually very revealing. Malware writers often include code to check for the pres-
ence of a debugger during execution in order to detect reverse engineering attempts 
on their software. At that point they terminate the program in order to make analysis 
of their code more difficult.  

The performance of the decision tree classifiers is shown in Table 6 where TP, TN, 
FP, FN denote True Positive, True Negative, False Positive, and False Negative rates 
respectively. 

Table 6. Performance of J48 decision trees 

Data TP TN FP FN ROC Area Overall Accuracy 

DRF 0.793 0.809 0.191 0.207 0.843 80.09% 

DDF 0.847 0.782 0.218 0.153 0.815 81.45% 

DAF 0.832 0.947 0.053 0.168 0.917 89.14% 

 
The Naïve Bayes algorithm of WEKA was applied to the same data, and the per-

formance is shown in Table 7. 

Table 7. Performance of Naïve Bayes 

Data TP TN FP FN ROC Area Overall Accuracy 

DRF 0.856 0.773 0.227 0.144 0.889 81.45% 

DDF 0.865 0.836 0.164 0.135 0.912 85.07% 

DAF 0.701 0.947 0.053 0.299 0.921 82.81% 
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From Table 6 and 7, it shows that Naïve Bayes performs slightly better than J48 
tree classifier in experiments with DRF and DDF data sets, which has 15 attributes. In 
experiments with the DAF data, which has 141 attributes, the feature selection algo-
rithm used in J48 provides an advantage. From our results, it is clear that discretiza-
tion will improve performance for reverse engineered features as shown in both J48 
and NB. In addition, feature reduction is essential in API CALLS data as indicated by 
the better performance of J48 over NB. 

We did not evaluate the performance of BLEM2 rules in current experiments. Cur-
rently, an inference engine based on BLEM2 is under development. It will be interest-
ing to see how the feature reduction of BLEM2 with Bayesian factors compares to 
J48 and NB. 

5 Conclusions 

In this work, the problem of detecting new and unknown malware is addressed. 
Present day technologies and our approach for the detection of malware are discussed. 
An isolated environment was set up for the process of reverse engineering and each 
executable was reversed rigorously to find its properties and behavior. On the data 
extracted from the reversing process, different data mining techniques were used to 
procure patterns of malicious executables and thereby classification models were 
generated. To test the models, new executables were supplied from the wild with the 
same set of features. The results thus obtained proved to be satisfactory. BLEM2 rules 
seem to provide insightful information for essential features identification and for 
developing inference engines based on Bayesian factors associated with the rules. 
One of our future works is to apply rough set feature reduction tools and BLEM2 
inference engines to evaluate their performance in malware detection. 

From analyzing the experimental results, we can conclude that finding static and 
behavioral features of each malware through reverse engineering and applying data 
mining techniques to the data helps in detecting new generation malware. Considering 
the rapidly increasing amount of malware appearing each day, this method of detec-
tion can be used along with current practice detection techniques. 

We have reversed each strain of malware and benign executables to extract all the 
features we could with the help of the tools used by the computer security profession. 
However, we were not able to analyze the process address space of the executables in 
the physical memory as the memory analysis tools were released after we completed 
the reversing step. Analyzing the address space would reveal more interesting infor-
mation about the processes and thereby analyzing their behavior more accurately. 

Reversing each malware manually is a time consuming process and requires much 
effort with the thousands of new malware being generated. One way to cope up with 
this problem is to automate the whole reverse engineering process. Although there are 
some tools for automated reverse engineering, they do not record the full details of 
malware. A more specific tool that does rigorous reversing would help in combating 
large amounts of malware. We consider these two tasks as the future work that aid in 
detecting new malware more efficiently. 
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