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Abstract. Spectral clustering algorithms recently gained much interest in re-
search community. This surge in interest is mainly due to their ease of use, their
applicability to a variety of data types and domains as well as the fact that they
very often outperform traditional clustering algorithms. These algorithms con-
sider the pair-wise similarity between data objects and construct a similarity ma-
trix to group data into natural subsets, so that the objects located in the same
cluster share many common characteristics. Objects are then allocated into clus-
ters by employing a proximity measure, which is used to compute the similarity
or distance between the data objects in the matrix. As such, an early and funda-
mental step in spectral cluster analysis is the selection of a proximity measure.
This choice also has the highest impact on the quality and usability of the end
result. However, this crucial aspect is frequently overlooked. For instance, most
prior studies use the Euclidean distance measure without explicitly stating the
consequences of selecting such measure. To address this issue, we perform a com-
parative and explorative study on the performance of various existing proximity
measures when applied to spectral clustering algorithm. Our results indicate that
the commonly used Euclidean distance measure is not always suitable, specifi-
cally in domains where the data is highly imbalanced and the correct clustering
of boundary objects are critical. Moreover, we also noticed that for numeric data
type, the relative distance measures outperformed the absolute distance measures
and therefore, may boost the performance of a clustering algorithm if used. As for
the datasets with mixed variables, the selection of distance measure for numeric
variable again has the highest impact on the end result.

Keywords: Spectral clustering, Proximity measures, Similarity measures,
Boundary detection.

1 Introduction

In cluster analysis, objects that share similar characteristics are placed into the same
cluster, whereas, the objects that are very different from one another are located in two
different clusters. Therefore, the main objective of a clustering algorithm is to max-
imize the within cluster similarity and minimize the between cluster similarity. The
difference between the objects is often measured by a proximity measure, such as, sim-
ilarity, dissimilarity or distance measure. There have been many clustering algorithms

A. Fred et al. (Eds.): IC3K 2011, CCIS 348, pp. 60–78, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Spectral Clustering: An Explorative Study of Proximity Measures 61

proposed in the literature. One such family of algorithms, collectively known as the
spectral clustering algorithms, recently gained much interest in the research commu-
nity. This popularity is due to, amongst other, their ease of use, the fact that it can be
solved efficiently by standard linear algebra software and that these algorithms very
often outperforms traditional clustering algorithms such as the k-means algorithm. The
algorithms from this family have been successfully deployed across numerous domains,
ranging from image segmentation to clustering protein sequences. Spectral clustering
algorithms have been successfully applied in a wide range of domains, ranging from oil
spill detection [17] to speech separation [3].

One of the main strengths of the spectral clustering algorithm is that the algorithm
may be applied to a wide range of data types (i.e. numeric, categorical, binary, and
mixed) as they are not sensitive to any particular data type. These algorithms consider
the pair-wise similarity between the data objects to construct a similarity matrix. Some
of the other alternative names are proximity, affinity, or weight matrix. The eigenvectors
and eigenvalues of this similarity matrix or the Laplacian matrix (a matix manipulated
and constructed from the similarity matrix) are then used to find the clusters ([1], [2],
[5]). The various algorithms from this family mainly differ with respect to how the sim-
ilarity matrix is manipulated and/or which eigenvalue(s) and eigenvector(s) are used
to partition the objects into disjoint clusters. Significant theoretical progress has been
made regarding the improvement of the spectral clustering algorithms as well as the
proposal of new methods, or the application in various domains. However, little re-
search has been performed on the selection of proximity measures, which is a crucial
step in constructing the similarity matrix. In this paper, we evaluate the performance of
a number of such proximity measures and perform an explorative study on their behav-
ior when applied to the spectral clustering algorithms.

Proximity measures, i.e. similarity, dissimilarity and distance measures, often play a
fundamental role in cluster analysis [7]. Early steps of the majority of cluster analysis
algorithms often require the selection of a proximity measure and the construction of a
similarity matrix (if necessary). Most of the time, the similarity matrix is constructed
from an existing similarity or distance measure, or by introducing a new measure specif-
ically suitable for a particular domain or task. It follows that the selection of such mea-
sures, particularly when existing measures are applied, requires careful consideration
as the success of these algorithms relies heavily on the choice of the proximity function
([1], [8], [9]).

Most of the previous studies on the spectral clustering algorithm use the Euclidean
distance measure, a distance measure based on linear differences, to construct the
similarity matrix for numeric feature type ([2], [5], [6]) without explicitly stating the
consequences of selecting the distance measure. However, there are several different
proximity measures available for numeric variable types. Each of them has their own
strengths and weaknesses. To our knowledge, no in-depth evaluation of the performance
of these proximity measures on spectral clustering algorithms, specifically showing that
the Euclidean distance measure outperforms, has been carried out. As such, an evalu-
ation and an exploratory study that compares and analyzes the performance of various
proximity measures may potentially provide important guideline for researchers when
selecting a proximity measure for future studies in this area. This paper endeavors to
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Fig. 1. Comparison of results from spectral clustering and the K-means algorithm. (a) Results
from the spectral clustering algorithm, (b) Results from the K-means algorithm.

evaluate and compare the performance of these measures and to imply the conditions
under which these measures may be expected to perform well.

This paper is organized as follows. In Section 2, we discuss the two spectral clus-
tering algorithms that we used in our experiment. Section 3 presents an overview of
several proximity measures for numeric, and mixed variable types. This is followed by
Section 4, where we present our experimental approach and evaluate and analyze the
results obtained from our experiments. We conclude the paper in Section 5.

2 Spectral Clustering

Spectral clustering algorithms originated from the area of graph partitioning and manip-
ulate the eigenvalue(s) and eigenvector(s) of the similarity matrix to find the clusters.
There are several advantages, when compared to other cluster analysis methods, to ap-
plying the spectral clustering algorithms ([1], [5], [25], [26]). Firstly, the algorithms
do not make assumption on the shape of the clusters. As such, while spectral clustering
algorithms may be able to find meaningful clusters with strongly coherent objects, algo-
rithms such as K-means or K-medians may fail to do so. One such example is depicted
in Figure 1 [25]. Figure 1(a) shows the ring clusters obtained from the spectral clus-
tering algorithm and Figure 1(b) depicts the results from the K-means algorithm when
applied on the same sample dataset [25]. Secondly, the algorithms do not suffer from
local minima. Therefore, it may not be necessary to restart the algorithm with various
initialization options. Thirdly, the algorithms are also more stable than some algorithms
in terms of initializing the user-specific parameters (i.e. the number of clusters). As
such, the user-specific parameters may often be estimated accurately with the help of
theories related to the algorithms. Prior studies also show that the algorithms from this
group thus often outperform traditional clustering algorithms, such as, K-means and
Single Linkage [1]. Importantly, the algorithms from the spectral family are able to
handle different types of data (i.e. numeric, nominal, binary, or mixed) and one only
needs to convert the dataset into a similarity matrix to be able to apply this algorithm
on a given dataset [1].

The spectral clustering algorithms are divided into two types, namely recursive al-
gorithms and multi-way algorithms [6]. The algorithms in the first group, as the name
suggest, recursively bi-partition the data at each step until a stopping criterion is satis-
fied. The most representative algorithm from this group is, the Normalized Cut Spectral
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Clustering by [2]. In contrast, multi-way spectral clustering algorithms directly parti-
tion the data into k number of groups. The best-known algorithms from this group are
the Ng, Jordan and Weiss algorithm [5] and the Meila - Shi algorithm [11].

In this paper, we consider two algorithms, one from each group. From the first group,
we select the normalized cut spectral clustering algorithm as this algorithm proved to
have had several practical successes in a variety of fields [2]. We refer to this algorithm
as SM (NCut) in the remainder of the paper. The Ng, Jordan and Weiss algorithm is an
improvement to the algorithm proposed by Meila and Shi[11] and therefore, we select
this algorithm (refer to as NJW(K-means)) from the second group. In the following
section we present several algorithm-specific notations before we discuss the algorithms
themselves.

2.1 Notations

Similarity Matrix or Weight Matrix,W : Let W be anN×N symmetric, non-negative
matrix where N is the number of objects in a given dataset. Let i and j be any two ob-
jects in a given dataset, located at row i and row j, respectively. If the similarity (i.e.
calculated from a proximity measure) between these two objects is wi,j , then it will be
located at the cell at row i and column j in the weight matrix.

Degree Matrix, D: Let d be an N×1 matrix with di =
∑n

j=1 wi,j as the entries which
denote the total similarity value from object i to the rest of the objects. Therefore, the
degree matrix D is an N ×N diagonal matrix which contains the elements of d on its
main diagonal.

Laplacian Matrix, L: The Laplacian matrix is constructed from the weight matrix W
and the degree matrix D. The main diagonal of this matrix is always non-negative.
In graph theory, the eigenvector(s) and eigenvalue(s) of this matrix contain important
information about the underlying partitions present in the graph. The spectral clustering
algorithms also use the same properties to find the clusters from a given dataset.

2.2 The SM (NCut) Algorithm

The SM (NCut) spectral clustering algorithm [2], as depicted in Figure 2, is one of the
most widely used recursive spectral clustering algorithm ([1], [6]). The main intuition
behind this algorithm is the optimization of an objective function called the Normalized
Cut, or NCut. Minimizing the NCut function is the same as finding a cut such that the to-
tal connection in between two groups is weak, whereas the total connection within each
group is strong. The algorithm uses the eigenvector associated with the second smallest
eigenvalue of the generalized eigenvalue system which is considered as the real valued
solution to the Normalized Cut problem. The partitions are obtained by thresholding this
eigenvector. There are a number of ways this grouping may be performed. One may use
a particular point (i.e. zero, mean, median) as the splitting criteria or use an existing
algorithm such as the K-means or K-medians algorithms for this purpose. Components
with similar values usually reside in the same cluster. Since, this algorithm bi-partition
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Fig. 2. The algorithm for SM (NCut) spectral clustering algorithm

Fig. 3. The algorithm for NJW(K-means) spectral clustering algorithm

the data, we get two disjoint clusters. To find more clusters we need to re-partition the
segments by recursively applying the algorithm on each of the partitions.

2.3 The NJW (K-means) Algorithm

In contrast to the SM (NCut) algorithm that minimizes the NCut objective function
and recursively bi-partitions the data, this algorithm directly partitions the data into k
groups. The algorithm manipulates the normalized Laplacian matrix (as given in Figure
3 ) to find the clusters. The algorithm as shown in Figure 3, relates various theories from
the Random Walk Problem and Matrix Perturbation Theory to theoretically motivate the
partitioning solution ([1], [5], [11]). Once the eigensystem is solved and the k largest
eigenvectors are normalized, the algorithm uses the K-means algorithm to find the k
partitions.

3 Proximity Measures

Proximity measures quantify the distance or closeness between two data objects. They
may be sub-categorized into three types of measures, namely similarity, dissimilarity,
and distance.
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Table 1. Proximity measures for numeric variables

Name Function Discussion

Euclidean Dis-
tance (EUC)

dxi,xj =
√∑n

k=1(xik − xjk)2 Works well for compact or isolated clusters; Discovers
clusters of spherical shape; Any two objects may not be
influenced by the addition of a new object (i.e. outliers);
Very sensitive to the scales of the variables; Not suitable
for clusters of different shapes; The variables with the
largest values may always dominate the distance.

Manhattan Dis-
tance (MAN)

dxi,xj =
∑n

k=1 |xik − xjk| Computationally cheaper than the Euclidean distance;
Scale dependent.

Minkowski
Distance
(MIN)

dxi,xj =
(∑n

k=1 |xik − xjk|λ
) 1

λ One may control the amount of emphasis given on the
larger differences; The Minkowski distance may cost
more than the Euclidean and Manhattan distance when
λ > 2.

Chebyshev
Distance
(CHEB)

dxi,xj = maxk|xik − xjk| Suitable for situations where the computation time is
very crucial; Very sensitive to the scale of the variables.

Canberra Dis-
tance (CAN)

dxi,xj =
∑n

k=1

|xik−xjk|
|xik+xjk|

Not scale sensitive; Suitable for non-negative values;
Very sensitive to the changes near the origin; Undefined
when both the coordinates are 0.

Mahalanobis
Distance
(MAH)

d(x, y) =
√

(x− y)C−1(x− y)T Considers the correlation between the variables; Not
scale dependent; Favors the clusters of hyper ellipsoidal
shape; Computational cost is high; May not be suitable
for high-dimensional datasets.

Angular Dis-
tance (COS)

dxi,xj = 1−
∑n

k=1 xik·xjk
(∑n

k=1
x2
ik

·∑n
k=1

x2
jk

) 1
2

Calculates the relative distance between the objects
from the origin; Suitable for semi-structured datasets
(i.e. Widely applied in Text Document cluster analysis
where data is highly dimensional); Does not depend on
the vector length; Scale invariant; Absolute distance be-
tween the data objects is not captured.

Pearson Corre-
lation Distance
(COR)

dij = 1−
∑n

k=1(xik−x̄i)·(xjk−x̄j)

(
∑

n
k=1

(xik−x̄i)
2·∑n

k=1
(xjk−x̄j)

2)
1
2

Scale invariant; Considers the correlation between the
variables; Calculates the relative distance between the
objects from the mean of the data; Suitable for semi-
structured data analysis (i.e. applied in microarray anal-
ysis, document cluster analysis); Outliers may affect the
results.

Similarity is a numerical measure that represents the similarity (i.e. how alike the
objects are) between two objects. This measure usually returns a non-negative value that
falls in between 0 and 1. However, in some cases similarity may also range from −1
to +1. When the similarity takes a value 0, it means that there is no similarity between
the objects and the objects are very different from one another. In contrast, 1 denotes
complete similarity, emphasizing that the objects are identical and possess the same
attribute values.

The dissimilarity measure is also a numerical measure, which represents the dis-
crepancy or the difference between a pair of objects [12]. If two objects are very similar
then the dissimilarity measure will have a lower value, and visa versa. Therefore, this
measure is reversely related to the similarity measure. The dissimilarity value also usu-
ally fall into the interval [0, 1], but it may also take values ranging from −1 to +1.
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The term distance, which is also commonly used as a synonym for the dissimilarity
measure, computes the distance between two data points in a multi-dimensional space.
Let d(x, y) be the distance between objects x and y. Then, the following four properties
hold for a distance measure ([13], [14]):

1. d(x, y) = d(y, x), for all points x and y.
2. d(x, y) = 0, if x = y.
3. d(x, y) ≥ 0, for all points x and y.
4. d(x, y) ≤ d(x, z) + d(z, y), for all points x, y and z. This implies that introducing

a third point may never shorten the distance between two other points.

There are many different proximity measures available in the literature. One of the
reasons for this variety is that these measures differ on the data type of the objects in a
given dataset. Next we present the proximity measures that are used in this paper.

3.1 Proximity Measures for Numeric Variables

Table 1 presents the measures for numeric, real-valued or continuous variables used in
our paper ([12], [27]). These measures may be categorized into three groups. The first
group contains the functions that measure the absolute distance between the objects
and are scale dependent. This list includes the Euclidean (EUC), Manhattan (MAN),
Minkowski (MIN), and Chebyshev (CHEB) distances. The second group contains only
the Canberra distance (CAN) which also calculates the absolute distance, however, the
measure is not scale dependent. In the third group we have three distance measures,
namely the Angular or Cosine (COS), Pearson Correlation (COR), and Mahalanobis
(MAH) distances. These measures consider the correlation between the variables into
account and are scale invariant.

3.2 Proximity Measures for Mixed Variables

In the previous section, we concentrated our discussion on datasets with numeric values.
Nevertheless, in practical applications, it is often possible to have more than one type of
attribute in the same dataset. It follows that, in such cases, the conventional proximity
measures for those data types may not work well. A more practical approach is to process
all the variables of different types together and then perform a single cluster analysis [10].
The Gower’s General Coefficient and Laflin’s General Coefficient are two such functions
that incorporate information from various data types into a single similarity coefficient.
Table 2 provides the equations and additional information about these two coefficients.

4 Experiments

This section discusses our experimental methodology and the results obtained for each
of the data types. In order to compare the performance of the proximity measures for a
particular data type, we performed ten-fold cross validation [15] and classes to clusters
evaluation on each of the datasets. In this paper, we consider the external cluster eval-
uation measures to measure the goodness or the quality of the clusters obtained from
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Table 2. Proximity measures for mixed variables

Name Function Discussion

Gower’s General Coeffi-
cient (GOWER) d(i, j) =

∑p
f=1

δ
(f)
ij d

(f)
ij

∑p
f=1

δ
(f)
ij

For this coefficient δ(f)ij = 0, if one of the values is missing or
the variable is of type asymmetric binary variable. Otherwise,
δ
(f)
ij = 1. For numeric variables distance is calculated using the

formula: d(f)ij =
|xif−xjf |

maxhxhf−minhxhf
. For binary and nominal

variables the dissimilarity is the number of un matched pairs.
This measure may be extended to incorporate other attribute
types (e.g. ordinal, ratio-scaled) [14].

Laflin’s General Similar-
ity Coefficient (LAFLIN)

s(i, j) = N1.s1+N2.s2+...+Nn.sn
N1+N2+...+Nn

In this function, N1...Nn represent the total number of at-
tributes of each of the variable type, whereas, s1...sn represent
the total similarity measure calculated for each of the attribute
type. The function uses existing similarity measures to calculate
the similarity scores s1...sn.

spectral clustering algorithms, as the external class labels for each of the datasets used
were available to us. Moreover, this allows us to perform a fair comparison against the
known true clusters for all the proximity measures. We used two such measures namely,
F-measure ([4], [16]) and G-means [17]. These measures have been previously used in
numerous studies regarding cluster analysis and have proved to be successful in repre-
senting the quality of clusters numerically. In addition, we used the Friedman Test [19]
to test the statistical significance of our results. The test is best suited for situations, like
ours, where multiple comparisons are performed against multiple datasets. It returns the
p-value that helps us to determine whether to accept or reject the null hypothesis. For us
the null hypothesis was “the performance of all the proximity measure is equivalent”.
For example, a p-value less than 0.05 signify that the result is only 5% likely to be
extraordinary ([19], [28]).

4.1 Implementation and Settings

For all the experiments in this paper, the data preprocessing (e.g. replacing missing
values, standardization) was performed using WEKA [18], an open-source Java-based
machine learning software, developed at the University of Waikato in New Zealand.
The spectral cluster analysis algorithms are implemented in MATLAB R©. Since these
algorithms manipulate the similarity matrix of a dataset, computation of eigenvalues
and eigenvectors of the similarity matrix may be inefficient for a large matrix. However,
MATLAB efficiently solves the eigensystem of large matrices. The cluster evaluation
measures have been implemented in Java.

4.2 Datasets

Six datasets are used for each of the data types. All the datasets varied in size and are
based on real-world problems representing various domains and areas. As for numeric
data type, several proximity measures are scale-dependent. As such, we standardized
[14] the attribute values to ensure the accuracy of our results. In addition, we used
Equation 1 to convert the distance measure into a similarity measure in order to create
the similarity or weight matrix W [2]. It is also important to note that the selection of
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Table 3. Dataset Information

Numeric Datasets
Dataset No. of No. of True No. of

Tuples Clusters Attributes
Body 507 2 21
Iris 150 3 4
Wine 178 3 13
Glass 214 6 8
Ecoli 336 5 7
SPECT 267 2 44

Mixed Datasets
Dataset No. of No. of True No. of

Tuples Clusters Attributes
Automobile 205 6 25
CRX 690 2 15
Dermatology 366 6 33
Hepatitis 155 2 19
Post-Operative 90 3 8
Soybean 290 15 35

sigma is very crucial to the success of spectral clustering algorithm and the value of
sigma varies depending on the proximity measure and the dataset used. We adopted
the method proposed by Shi and Malik in [2] to select the sigma value. The sigma
returned through this method was used as a starting point. Each of our experiments
were performed on a range of values surrounding that sigma value and the result for
which we achieved the best scores are included in this paper.

s(x, y) = exp(
−d(x, y)2

2× σ2
) (1)

Five of our datasets are from UCI repository [21] and one of them (Body dataset) is from
an external source [20]. In Table 3, we provide a summary of the numeric datasets. The
six datasets used for the mixed variable type are also obtained from the UCI repository.
A summary of the mixed datasets is presented in Table 3.

4.3 Experimental Results for Numeric Datasets

In Table 4 and Table 5 we present the F-measure and G-means scores obtained for
the datasets with numeric variables when SM (NCut) algorithm is used. Our results
show that the COR distance and the COS distance measure often scored higher than
the rest of the distance measures (Figure 4). These two distance measures performed
well in four out of six datasets. The datasets are Body, Iris, Wine, and Glass. We also
notice that most of the time, these two coefficients achieved similar values for both the
evaluation measures. The overall average difference for these two distance measures
is 0.02, irrespective of the dataset or the splitting method used. In contrast, the MAH
distance measure performed poorly in four out of six datasets. The datasets for which
this distance measure scored the lowest are Body, Iris, Wine, and Glass. The MAN dis-
tance performed well for the Ecoli dataset and the CAN distance performed best for
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Fig. 4. F-measure scores for the numeric dataset when tested on the SM (NCut) algorithm

Table 4. F-measure scores for Numeric datasets. Algorithm: SM (NCut), Splitting points: Zero
and Mean value respectively.

Dataset COS COR CAN EUC MIN MAN CHEB MAH
Body 0.97 0.96 0.90 0.87 0.87 0.87 0.85 0.68

0.97 0.96 0.90 0.84 0.87 0.87 0.85 0.68
Iris 0.97 0.96 0.94 0.90 0.88 0.86 0.88 0.79

0.97 0.96 0.94 0.89 0.88 0.86 0.89 0.78
Wine 0.91 0.95 0.84 0.81 0.84 0.90 0.87 0.79

0.88 0.90 0.85 0.89 0.85 0.89 0.89 0.64
Glass 0.62 0.61 0.61 0.61 0.60 0.61 0.59 0.60

0.64 0.63 0.64 0.61 0.59 0.61 0.57 0.57
Ecoli 0.81 0.79 0.83 0.82 0.83 0.85 0.82 0.81

0.81 0.80 0.80 0.86 0.85 0.86 0.85 0.82
SPECT 0.80 0.77 0.81 0.80 0.80 0.81 0.80 0.80

0.79 0.77 0.82 0.81 0.79 0.81 0.81 0.80

the SPECT dataset. We also notice that the performances of EUC, MIN, MAN, CAN
and CHEB distances are very similar, and that they often scored moderately, in com-
parison to the highest and the lowest scores. For example, based on the scores obtained
for the Body dataset, the distance measures may be grouped into three groups: 1) the
COS distance and COR distance measure in one group where the scores fall in the
range [0.96 − 0.97], 2) the CAN, EUC, MIN, MAN and CHEB distance measures in
the second group where the range is [0.85 − 0.90], and 3) the MAH distance measure
which scores the lowest (0.68). As observed from the results, the EUC distance mea-
sure, which is often used in the spectral cluster analysis algorithms, may not always be
a suitable choice.

We observe that, if the COS distance or the COR distance measure is used instead
of the EUC distance, on average the performance improved by 7.42% (F-measure) and
8.17% (G-means), respectively, for our datasets. In Table 6 and Table 7, we provide
the evaluation scores from the NJW (K-means) algorithm. In this case also, the results
showed almost the same trend as the results from the SM (NCut) algorithm. For both the
evaluation measures, the results indicate that the MAH distance measure often scored
the lowest scores over a range of datasets. Among the six datasets, in five of the cases
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Table 5. G-means scores for Numeric datasets. Algorithm: SM (NCut), Splitting points: Zero and
Mean value respectively.

Dataset COS COR CAN EUC MIN MAN CHEB MAH
Body 0.97 0.96 0.90 0.87 0.87 0.87 0.85 0.71

0.97 0.97 0.90 0.83 0.84 0.87 0.85 0.71
Iris 0.97 0.96 0.94 0.90 0.88 0.87 0.88 0.80

0.97 0.96 0.94 0.90 0.89 0.87 0.89 0.80
Wine 0.92 0.95 0.86 0.83 0.86 0.91 0.87 0.80

0.89 0.91 0.86 0.90 0.86 0.90 0.89 0.67
Glass 0.65 0.64 0.65 0.66 0.64 0.64 0.64 0.62

0.66 0.65 0.67 0.64 0.62 0.64 0.61 0.60
Ecoli 0.82 0.80 0.83 0.82 0.83 0.86 0.83 0.81

0.81 0.81 0.81 0.86 0.86 0.86 0.85 0.82
SPECT 0.81 0.80 0.82 0.82 0.81 0.81 0.80 0.82

0.81 0.80 0.83 0.82 0.82 0.82 0.81 0.81

Table 6. F-measure scores of the NJW (K-means) algorithm (tested on numeric dataset)

Dataset COS COR CAN EUC MIN MAN CHEB MAH
Body 0.88 0.88 0.83 0.79 0.79 0.80 0.78 0.64
Iris 0.81 0.82 0.79 0.78 0.80 0.78 0.79 0.69
Wine 0.94 0.96 0.97 0.85 0.97 0.86 0.83 0.50
Glass 0.54 0.54 0.53 0.55 0.56 0.58 0.54 0.50
Ecoli 0.65 0.72 0.63 0.74 0.73 0.75 0.65 0.48
SPECT 0.77 0.77 0.77 0.77 0.77 0.77 0.76 0.77

Table 7. G-means scores of the NJW (K-means) algorithm (tested on numeric dataset)

Dataset COS COR CAN EUC MIN MAN CHEB MAH
Body 0.88 0.88 0.83 0.79 0.79 0.80 0.78 0.67
Iris 0.81 0.83 0.79 0.79 0.80 0.79 0.79 0.69
Wine 0.94 0.96 0.97 0.86 0.97 0.87 0.84 0.57
Glass 0.56 0.55 0.56 0.58 0.58 0.62 0.56 0.55
Ecoli 0.69 0.74 0.68 0.75 0.75 0.77 0.68 0.52
SPECT 0.80 0.80 0.80 0.80 0.80 0.80 0.79 0.80

the MAH distance scored the lowest scores. These datasets are: Body, Iris, Wine, Glass,
and Ecoli. Furthermore, in none of the cases, the EUC distance measure scored the
highest score. For two datasets (i.e. Body and Iris), the COR distance and the COS dis-
tance performed well, and for the Wine and Glass datasets, the scores were very close to
the highest scores achieved. The MAN distance performed well for the Ecoli and Glass
datasets.

The Friedman Test which was used to measure the statistical significance of our re-
sults, gives p-values of 0.0332 (SM (NCut)) and 0.0097 (NJW (K-means)), respectively.
Since the p-values are less than 0.05, this indicates the results are statistically signifi-
cant. Our results showed that the MAH distance often performed poorly when compared
to the rest of the distance measures according to the cluster evaluation measures. We no-
ticed that, when the MAH distance is used, the spectral clustering algorithms produced
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imbalanced clusters. Here the clusters are imbalanced when one partition contains rel-
atively fewer objects than the other cluster. We also noticed that the objects that are
placed in the smaller cluster are the objects that have the lowest degree. Recall from
Section 2 that the degree is the total similarity value from one object to the rest of the
objects in a dataset. In spectral clustering, the objects are considered as nodes in the
graph, and a partition separates objects where the total within cluster similarity is high
and the between cluster similarity is very low. Therefore, when the degree is low for an
object, compared to the rest of the objects, it indicates that the object is less similar than
most of the objects in the dataset. Now, the equation of the MAH distance defines an
ellipsoid in n-dimensional space ([22], [23]). The distance considers the variance (how
spread out the values are from the mean) of each attribute as well as the covariance
(how much two variables change together) of the attributes in the datasets. It gives less
weight to the dimensions with high variance and more weight to the dimensions with
small variance. The covariance between the attributes allows the ellipsoid to rotate its
axes and increase and decrease its size [23]. Therefore, the distance measure is very
sensitive to the extreme points [24].

Figure 5 illustrates a scenario showing the MAH distance between the objects. In
this figure, the distance between object 1 and 2 will be less than the distance between
object 1 and 3, according to the MAH distance. This is because, object 2 lies very close
to the main axes along with the other objects, whereas the object 3 lies further away
from the main axes. Therefore, in such situations, the MAH distance will be large. For
numeric data, the similarity will be very low when the distance is very large. The func-
tion in Equation 1, which is used to convert a distance value into a similarity value, will
give a value close to zero when the distance is very large. Therefore, the degree from
this object to the remainder of the objects becomes very low and the spectral methods
separate these objects from the rest. This is one of the possible reasons for the MAH
distance performing poorly. It either discovers imbalanced clusters or places similar
objects wrongly into two different clusters. Consequently, one possible way to improve
the performance of the MAH distance measure might be by changing the value of σ to
a larger value. In this way, we may prevent the similarity to have a very small value.

Our results also indicate that the COR and COS distances performed best for four
out of six datasets. Both of the distance measures calculate the relative distance from
a fixed point (mean or zero, respectively). Therefore, two objects with a similar pat-
tern will be more similar even if their sizes are different. The EUC, MAN, MIN, CAN
and CHEB distance measures, however, calculate the absolute distance (i.e. straight
line distance from one point to another). For instance, the Body dataset partitions the
objects into two main clusters, one with larger body dimensions and another cluster
with smaller body dimensions. According to the true cluster information, the larger
body dimensions denote the Male population and the smaller body dimensions denote
the Female population. When compared to the true clusters, we observed that several
individuals, whose body dimensions are comparatively lower than the average body
dimensions of the Male population, are placed with the individuals from the Female
population by the distance measures that calculate the absolute distance. Conversely,
Female individuals with larger body dimensions than the average body dimensions of
the Female population are placed with the individuals from Male population. Therefore,
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Fig. 5. A scenario depicting the Mahalanobis (MAH) distance between three points

Fig. 6. Example of cluster assignments of the Body dataset. The circles are used to point to the
several individual members that are placed differently.

Fig. 7. Example of cluster assignments of the Ecoli dataset. (Left) The clusters obtained by using
the MAN distance measure, (Middle) the clusters obtained by using the COS distance, and (Right)
the original true clusters.

these individuals that fall very close to the boundary of the two true clusters, are placed
differently by the distance measures that calculate the absolute distance (i.e. EUC dis-
tance, MAN distance, and MIN distance) than the distance measures that consider the
relative distance (i.e. COR distance and COS distance). In such cases, the COS distance
and the COR distance correctly identify these individuals. In Figure 6 we plot the first
two attributes of the Body dataset when the EUC distance is used as the distance mea-
sure. The object marked with a smaller circle is an example of a Male individual with
smaller body dimensions. When the EUC distance is used as the distance measure in
the spectral clustering algorithm, this object is placed with the Female population. The
objects marked with the larger circle illustrate the reversed situation, where Female in-
dividuals with larger body size are placed with the individuals from Male population. In
both situations, the COR and COS distances placed the objects within their own groups.
In Figure 7, we provide the clusters from the Ecoli dataset when the MAN (Left) and
the COS (Middle) distances are used. The farthest right figure (with the title Original)
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depicts the true clusters. The objects, according to the true clusters, overlap between
the clusters in a number of situations (e.g. the objects marked with circle 2 and 4, or
the objects marked with circle 3 and 5). This indicates that there are several objects
in the dataset that may be very similar, but are placed in two different true clusters.
When the spectral clustering algorithms are applied to this dataset, both the COS and
MAN distances divide the true cluster marked with circle 1 (in Figure 7) into two dif-
ferent clusters. However, the clusters produced by the COS distance contain members
from true cluster 1 and 3, whereas the clusters produced by the MAN distance contain
the members from true cluster 1. The figure indicates that the shape of the clusters pro-
duced by the COS distance are more elongated toward the origin, which is the reason
why some of the members from true cluster 3 are included.

Discussion. The main conclusion drawn from our results thus indicate that the MAH
distance needs special consideration. This measure tends to create imbalanced clusters
and therefore results in poor performance. In addition, the distance measures based on
the relative distances (i.e. COR and COS distance measure) outperformed the distance
measures based on the absolute distance. We noticed that, in such cases, the objects that
reside in the boundary area are correctly identified by the relative distance measures.
These boundary objects are slightly different from the other members of their own group
and may need special attention. This is due to the fact that the COR and COS measures
consider the underlying patterns in between the objects from a fixed point (i.e. mean or
zero), in contrast to the absolute distance approaches. Therefore, the Euclidian (EUC)
distance which is a commonly used absolute distance measure in clustering domains,
may not always be a good selection for the spectral clustering algorithm, especially in
domains where we are sensitive to outliers and anomalies.

In summary, under certain conditions, the GOWER similarity coefficient and the
LAFLIN coefficient perform similarly. The constraints are as follows: 1) the dataset
does not include asymmetric binary variables, and 2) the distance and similarity mea-
sures for each of the variables are the same. Recall from Section 4.3 that our results for
numeric variables indicate that the Euclidian distance may not be the best choice for
numeric variables. This choice seems to impact the performance of the LAFLIN coef-
ficient, which may be improved by using a different distance measure for the numeric
variables.

4.4 Experimental Results for Mixed Datasets

In Table 8, we present the F-measure and G-means scores for the Mixed datasets, when
tests are applied on the SM (NCut) algorithm. The results from NJW (K-means) algo-
rithm are given in Table 9. Figure 8 presents a graphical representation of our results.
Our results from the external evaluation scores show that, the GOWER coefficient per-
formed well for the Automobile and Dermatology dataset. The LAFLIN’s coefficient
also performed well for two of the datasets. The datasets are CRX and Hepatitis. For
Post Operative and Soybean datasets, both the coefficients scored the same scores. In
contrast, when the tests are applied on the NJW (K-means) algorithm, our results in-
dicate that the GOWER coefficient performed slightly better than the LAFLIN’s. In
four out of six datasets the GOWER scored slightly higher scores than the LAFLIN’s
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Fig. 8. Average F-measure scores for the Mixed Datasets when tested on the SM(NCut) algorithm

Table 8. F-measure and G-means scores for Mixed datasets. Algorithm: SM (NCut), Splitting
points: zero and mean value, respectively.

F-measure G-means
Dataset GOWER LAFLIN Dataset GOWER LAFLIN
Automobile 0.46 0.44 Automobile 0.49 0.48

0.46 0.46 0.50 0.49
CRX 0.76 0.79 CRX 0.76 0.79

0.76 0.79 0.76 0.79
Dermatology 0.85 0.87 Dermatology 0.86 0.87

0.84 0.82 0.85 0.83
Hepatitis 0.71 0.73 Hepatitis 0.74 0.75

0.73 0.75 0.75 0.77
Post Operative 0.56 0.56 Post Operative 0.57 0.57

0.56 0.56 0.58 0.57
Soybean 0.70 0.70 Soybean 0.72 0.72

0.70 0.70 0.72 0.72

Table 9. F-measure and G-means scores from the NJW (K-means) algorithm (tested on mixed
dataset)

F-measure G-means
Dataset GOWER LAFLIN GOWER LAFLIN
Automobile 0.47 0.45 0.48 0.46
CRX 0.76 0.80 0.76 0.80
Dermatology 0.84 0.82 0.86 0.84
Hepatitis 0.71 0.74 0.74 0.76
Post Operative 0.52 0.47 0.53 0.49
Soybean 0.57 0.53 0.61 0.56

coefficient. The datasets are Automobile, Dermatology, Post Operative, and Soybean.
For this case also, the LAFLIN’s coefficient performed best for the same two datasets
(i.e. CRX and Hepatitis) as our previous test on the SM (NCut) algorithm. However, we
also noticed from the scores that the difference between the performances of the two
coefficients is very low. The p-values from the Friedman test are 0.3173 and 0.4142,
respectively. Since, both the values are greater than 0.05, the difference between the
performance of the two coefficients is not statistically significant.



Spectral Clustering: An Explorative Study of Proximity Measures 75

Fig. 9. Comparison of numeric functions on Iris dataset. (From left) the clusters obtained from
the true clusters, the clusters obtained from the numeric function of the GOWER coefficient, and
the clusters obtained from the numeric function of the LAFLIN coefficient.

In this part, we analyze the coefficients to determine the relationship between them.
The equations for the two coefficients are given in Table 2. For the GOWER coefficient,
the term δ

(f)
ij is an indicator variable associated with each of the variables present in the

dataset and the term d
(f)
ij is the distance or dissimilarity calculated for each variable for

objects i and j. We also know from the description given in Table 2 that δ(f)ij = 0 for

the asymmetric binary variables and for all the other types δ(f)ij = 1. In our datasets, all
of the attributes are numeric, nominal, or symmetric binary. Therefore, the denominator
of the GOWER’s equation represents the total number of variables in the dataset. Also,
recall that the GOWER coefficient is a dissimilarity measure, where the dissimilarity
between the two objects, i and j, falls in between 0 and 1. This equation is converted
into a similarity measure by subtracting from 1. Therefore, the equation for the GOWER
similarity coefficient is:

s(i, j) = 1−
∑p

f=1 δ
(f)
ij d

(f)
ij

∑p
f=1 δ

(f)
ij

(2)

Let N =
∑p

f=1 δ
(f)
ij be the total number of attributes and for each attribute δij = 1,

then Equation 2 becomes,

s(i, j) = 1−
∑p

f=1 1 ∗ d(f)ij

N
=

N −∑p
f=1 d

(f)
ij

N
(3)

Notice from the equation of LAFLIN’s coefficient, si is the total similarity value of
attribute type i, andNi is the total number of variables of attribute type i. In our datasets,
the attribute types are numeric (N1 and s1), nominal (N2 and s2), and symmetric binary
(N3 and s3). Therefore, the equation becomes,

s(i, j) =
N1.s1 +N2.s2 +N3.s3

N1 +N2 +N3
(4)
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Notice that in Equation 4, the denominator is the total number of attributes in a given
dataset, which we previously denoted as N . Therefore, Equation 4 is the same as the
following equation:

s(i, j) =
N − (N1 −N1.s1 +N2 −N2.s2 +N3 −N3.s3)

N
(5)

Equation 5 can be re-written as:

s(i, j) =
N − (N1(1− s1) +N2(1− s2) +N3(1− s3))

N
(6)

At this point, the GOWER equation given in Equation 3 and the LAFLIN’s coefficient
given in Equation 6, both have similar patterns. They have the same denominator. How-
ever, they differ only in the terms in numerator. As mentioned previously, dij is the
distance or dissimilarity between the two objects i and j, whereas, (1 − s1) is also a
dissimilarity measure. Both functions handle nominal and binary variables in the same
way. Therefore, this implies that the difference in the equations occurs due to the func-
tions selected for the numeric attributes which are handled differently by the two co-
efficients. This is one of the reasons that the difference between the performances of
both of the coefficients is very low. In our tests, we used the Euclidean distance for
the LAFLIN’s coefficient, whereas, the GOWER coefficient uses the distance measure
given in Equation 7.

d
(f)
ij =

|xif − xjf |
maxhxhf −minhxhf

(7)

We use the two numeric functions with the spectral clustering algorithms and apply
them on the Iris dataset from the UCI repository [3] to evaluate their performances.
Figure 9 illustrates the clusters obtained from the true clusters (left), the clusters ob-
tained from the numeric function of the GOWER coefficient (middle), and the clusters
obtained from the numeric function of the LAFLIN coefficient (right). We notice that
both of the measures correctly cluster the objects from true cluster 1. However, the
difference between them is clear in true cluster 2 and cluster 3. Notice that these two
true clusters have objects that overlap near the boundary of the clusters. The objects
located at the boundary usually have attribute values slightly different from the other
members of their own true clusters. The numeric function for the GOWER coefficient
correctly distinguishes several objects near the boundary. However, the LAFLIN coef-
ficient, which used the Euclidean distance to compute the distance between the objects,
placed the objects which are located near the boundary, in two different clusters. We
notice that the clusters formed from this measure have a shape similar to a sphere. This
may be the reason for this measure performing slightly differently than the function of
the GOWER coefficient.

Discussion. In summary, under certain conditions, the GOWER similarity coefficient
and the LAFLIN coefficient perform similarly. The constraints are as follows: 1) the
dataset does not include asymmetric binary variables, and 2) the distance and similarity
measures for each of the variables are the same. Recall from Section 4.3 that our results
for numeric variables indicate that the Euclidian distance may not be the best choice for
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numeric variables. This choice seems to impact the performance of the LAFLIN coef-
ficient, which may be improved by using a different distance measure for the numeric
variables.

5 Conclusions

The selection of proximity measures is a crucial step that has a significant impact on
the quality and usability of the end results of the cluster analysis algorithms. This fact
is frequently overlooked, leading to a degrading of the potential knowledge being dis-
covered. This paper presented an explorative and comparative study of the performance
of various proximity measures when applied to the spectral clustering algorithms. In
particular, our study address the question when, and where, the choice of proximity
measure becomes crucial in order to succeed. Our results indicate that proximity mea-
sures needs special care in domains where the data is highly imbalanced and where in is
important to correctly cluster the boundary objects. These cases are of special interest
in application areas such as rare disease diagnosis, financial market analysis and fraud
detection.

Our future work will consider a diverse selection of datasets. We aim to evaluate
if our conclusions hold for sparse datasets with noise and many missing values. We
will also extend our research to very large datasets with high dimensionality. For such
datasets, these proximity measures may not perform as per our expectation. That is,
with high dimensions, the data may become sparse and the distance computed from
these measures may not capture similarities properly. In such cases, a different set of
proximity measures may be required to deal with the problem of high dimensionality.

The selection of the most suitable proximity measures when specifically aiming to
detect outliers and anomalies is another topic of future research. In order to reach a con-
clusion with higher generality, we are interested to see whether the conclusions drawn
from our paper persist for other clustering algorithms. The development of additional
measures for mixed data types, especially ones that do not use the Euclidian distance
for numeric data, are also a significant issue which will benefit from being further re-
searched.
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