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Abstract. Many real-life data sets, such as social, biological and communica-
tion networks are naturally and easily modeled as large labeled graphs. Finding
patterns of interest in these graphs is an important task, but due to the nature
of the data not all of the patterns need to be taken into account. Intuitively, if
a pattern has high connectivity, it implies that there is a strong connection be-
tween data items. In this paper, we present a novel algorithm for finding frequent
graph patterns with prescribed connectivity in large single-graph data sets. We
also show how this algorithm can be adapted to a dynamic environment where
the data changes over time. We prove that the suggested algorithm generates no
more candidate graphs than any other algorithm whose graph extension procedure
we employ.
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1 Introduction

Representing large complex naturally occurring data structures as labeled graphs has
gained popularity in the last decade due to the simplicity of the translation process and
because such a representation is intuitive to users. The graph is now a standard format
for representing social and biological networks, biochemical and genetic data, and Web
and document structure. Frequent subgraphs that represent substructures of the dataset,
which are characteristic to that dataset, are considered important and useful indicator
of the nature of the dataset. Frequent subgraphs are used to build indices for graph
datasets [16] that improve search efficiency, to facilitate classification or clustering for
machine learning tasks [14], and to determine normal and abnormal structures within
the data [7].

Not all of the frequent subgraphs are usually of interest to the user performing a
specific search task, both because of the subgraph meaning in the particular database
and because of the high complexity of the graph mining problem. This obstacle becomes
especially disturbing when the dataset in question is represented by a single very large
labeled graph, such as a Web or a DNA sequence. In this paper, we concentrate on the
problem of finding frequent subgraphs that satisfy a user-defined constraint of minimum
edge connectivity, that determines how many edges should be removed from a graph in
order to separate in into two parts. A minimal edge connectivity requirement allows us
to discard frequent graphs that do not characterize strong relations between data items
in the native dataset. Moreover, the edge connectivity of a graph can be verified fairly
easily (in polynomial time and space), unlike some of the other constraints, such as
symmetry, maximum clique size etc.
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While there is a number of algorithms for the task of general frequent subgraph min-
ing exist (see, for instance [11]), the issue of finding frequent graphs that are subject to
connectivity constraints has rarely been addressed in the literature. In [15], the authors
address the issue of mining all closed frequent graphs with predefined edge connectiv-
ity and propose two algorithms that handle this problem. The algorithms do not address
the issue of frequent patterns that have high connectivity but are not closed.

The authors of [13] have proposed the ‘CODENSE’ algorithm that finds coherent
dense subgraphs – all edges in a coherent subgraph exhibit correlated occurrences in
the whole graph set; these graphs naturally have high connectivity.

In this paper, we propose a novel graph mining algorithm that finds frequent sub-
graphs with a user-specified constraint on edge connectivity. Our algorithm uses the
minimum cut structure of a graph in order to perform the task efficiently; this structure
can be computed in low polynomial time (even linear, if one uses the randomized algo-
rithm of [9]), which makes our algorithm especially suitable for databases consisting of
a single large graph. The mincut structure of a graph also allows us to increase frequent
patterns by more than just a node or an edge at a time than the standard approach. We
also prove the optimality of this algorithm by showing that every frequent subgraph
produced by our algorithm (even if it is only used as a building block for a supergraph
satisfying edge connectivity constraints) has to be produced by a competing algorithm.

We present two extensions of our algorithm: the first one focuses on weaker connec-
tivity constraint where frequent subgraphs with at least the required connectivity need to
be found. This process can be performed effectively using a simple optimization of the
CactusMiningAlgorithm and it is proven to be optimal as well. The second extension
allows incremental maintenance of frequent subgraphs with prescribed connectivity in
dynamic datasets where edge deletions may happen. Our approach eliminates the need
repetitive mining and focuses on candidate subgraph structure instead, saving precious
computational time.

This paper is organized as follows. Section 2 contains the basic definitions and graph
theoretic facts required for our approach. Section 3 describes the algorithm and contains
proofs of the algorithm’s correctness. Section 4 contains the proof of algorithm’s opti-
mality. Section 5 describes the algorithm for weaker connectivity constraint and Section
6 describes the algorithm for incremental frequent subgraph maintenance.

2 Statement of the Problem

2.1 Basic Definitions

In this paper, we deal with undirected labeled graphs. In a graph G = (V,E), V denotes
the node set, E ⊆ V × V denotes the edge set, and each node v ∈ V has a label l(v).
A graph G′ = (V ′, E′) is called a subgraph of G, denoted by G′ ⊆ G, if V ′ ⊆ V ,
E′ ⊆ E and every edge in E′ has both ends in V ′. G′ is an induced subgraph of G if it
is a subgraph of G and for every pair of nodes v, u ∈ V ′ such that (u, v) is an edge of
G, (u, v) is also an edge of G′.

A graph G = (V,E) is disconnected if there exists a partition V1, V2 of V so that
no edge in E has one end in V1 and another in V2. If no such partition exists, G is
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called connected. G is called k-edge-connected, k ∈ N, if G is connected and one has
to remove at least k edges from E to make G disconnected.

A partition of edge set E into X ⊂ E and X := E \X is called a cut. Removing all
edges having one end in X and another in X (called (X,X)-edges) from G disconnects
the graph. The size of a cut (X,X) is the number of (X,X)-edges, denoted |(X,X)|.
The (X,X)-edges whose removal disconnects the graph are often also called a cut. A
cut of minimum size is called a minimum cut or a mincut. The least size of a cut in a
graph is the edge connectivity of a graph. In general, for two foreign subsets X,Y ⊂ V
we denote by |(X,Y )| the number of edges in G with one end in X and another in Y .

We study the problem of graph mining in the following setting: our database is a
single large undirected labeled graph G. We are given a user-supplied support threshold
S ∈ N and a connectivity constraint k and we are looking for all k-edge-connected
subgraphs of G with a count of at least S (these subgraphs are called frequent). The
count of a graph in a database is determined by a function count() that satisfies the
downward closure property: for all subgraphs g1, g2 of any database graph D such that
g1 ⊆ g2 we always have count(g1, D) ≥ count(g2, D). The main idea of our approach
is to employ the special structure of mincuts in the database graph in order to make the
search for frequent k-edge-connected subgraphs faster.

2.2 The Cactus Structure of Mincuts

An unweighted undirected multigraph is called a cactus if each edge is contained in
exactly one cycle (i.e., any pair of cycles has at most one node in common). Dinitz,
Karzanov and Lomonosov showed in [3] that all minimum cuts in a given graph with
n vertices can be represented as a cactus of size 0(n). This cactus representation plays
an important role in solving many connectivity problems, and we use it here for the
efficient mining of graphs with connectivity constraints.

Formally, let G = (V,E) be an undirected multigraph and let {V1, ..., Vn} be a
partition of V . We denote the set of all minimum cuts of G by Cuts(G) . Let R =
(VR, ER) be a multigraph with node set VR := {V1, ..., Vn} and edge set ER :=
{(Vi, Vj) | (vi, vj) ∈ E, vi ∈ Vi, vj ∈ Vj}.

Definition 1. R is a cactus representation of Cuts(G) if there exists a one-to-one cor-
respondence ρ : Cuts(G) → Cuts(R) such that for every mincut (X,X) ∈ Cuts(G)
holds ρ((X,X)) ∈ Cuts(R) and for every mincut (X,X) ∈ Cuts(R) ρ−1((X,X)) ∈
Cuts(G).

Dinitz, Karzanov and Lomonosov [3] have proved that for any undirected multigraph,
there exists a cactus representation (in fact, they showed that this is always true for any
weighted multigraph). A dual graph to any cactus representation, if the cactus cycles
are taken as nodes, is a tree. The size of a cactus tree is linear in the number of vertices
in the original graph, and any cut can be retrieved from the cactus representation in time
linearly proportional to the size of the cut. In addition, the cactus displays explicitly all
nesting and intersection relations among minimum cuts. Note that a graph can have at
most

(
n
2

)
mincuts, where n is the size of graph’s node set. The following definition and

a fundamental lemma entirely describe the structure of a cactus representation.
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(a) Graph G with mincut size = 2 (b) A corresponding cactus structure of G.

Fig. 1. A cactus structure of a graph

Definition 2. Let λ be the size of a mincut in graph G = (V,E). A circular partition
is a partition of V into k ≥ 3 disjoint subsets {V1, ..., Vk} such that

1. |(Vi, Vj)| = λ/2 when j − i = 1 mod k.
2. |(Vi, Vj)| = 0 when j − i �= 1 mod k.
3. For 1 ≤ a < b ≤ k, ∪b−1

i=aVi is a mincut. Moreover, if any mincut (X,X) is not of
this form, then either X or X is contained in some Vi.

Lemma 1. [3,1] If X1 andX2 are crossing cuts in G (have a non-trivial intersection as
sets), then G has a circular partition {V1, ..., Vk} such that each of X1 ∩X2, X1 ∪X2,
X1 \X2 and X2 \X1 equal ∪b−1

i=aVi for appropriate choices of a and b.

Corollary 1. [3] Every graph has a cactus representation.

Corollary 2. [5] Every graph on n vertices has a cactus representation with no more
than 2n− 2 vertices.

Figure 1 shows a 2-edge-connected multigraph and its cactus representing all three
mincuts that exist in the graph. In this example, there is a one-to-one correspondence
between the cycles of the cactus and the circular partitions of G.

2.3 Cactus Construction Algorithms

The earliest well-defined algorithm for finding all minimum cuts in a graph uses maxi-
mum flows to compute mincuts for all pairs of vertices (see [6]). Karzanov and
Timofeev [10] outlined the first algorithm to build a cactus for an unweighted graph.
A randomized algorithm by Karger [8] finds all minimum cuts in O(n2 logn) time.
Fleischer in [5] describes an algorithm that arranges the minimum cuts into an order
suitable for a cactus algorithm which runs in O(nm + n2 logn) time. Finally, Karger
and Panigrahi proposed a near-linear time randomized algorithm in [9].

3 Finding Frequent k-connected Graphs

In this section, we present the CactusMining algorithm for finding all frequent k-con-
nected graphs in a graph database. For simplicity, we assume here that the database
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is a single large graph; when a database consists of two or more disconnected graphs,
graph decomposition and support counting should be performed once for each transac-
tion. The CactusMining algorithm searches for all frequent k-connected subgraphs in a
bottom-up fashion and relies on the search space reduction that is implied by the cactus
structure of the database.

3.1 Computing the Cactus Structure of a Graph

To compute the cactus structure for a given graph G and a connectivity bound k, we
employ a cactus-constructing algorithm, denoted as BuildCactus() (for instance, the
one described in [5]).

3.2 Basic Properties

In this section, we describe several useful properties of a cactus mincut structure.

Property 1. Let g be a (k + 1)-connected subgraph of G. Then g is entirely contained
in some Vi, 1 ≤ i ≤ k. The converse is not true, i.e. non-k-edge-connected subgraphs
of Vi may exist. ��
Property 2. Let g be a k-edge-connected subgraph of G. Let C be a minimal subcac-
tus of G with circular partition {V1, ..., Vk} containing g as a subgraph. Then either g
contains all the (Vi, Vj)-edges or it contains no such edges.

Proof: This property is trivial since removing a (Vi, Vj)-edge decreases the edge con-
nectivity of a subcactus C containing g.

Corollary 3. In Property 2, subgraph g ∩ Vi contains all the nodes incident to the
(Vi, Vj)-edges of a circular partition.

Proof: Follows from the fact that g contains all (Vi, Vj)-edges.

3.3 Growing Subgraphs

In this section, we describe how an instance of a candidate subgraph can be grown from
an existing frequent subgraph instance without violating connectivity constraints.

The intuition behind our subgraph extension approach relies on properties of its lo-
cation within the cactus structure. Let T = (VT , ET ) be a dual cactus structure of
(k + 1)-cuts in database D with nodes VT being the cactus cycles and the adjacency
relation ET determining whether two cactus cycles share a node. Each cactus cycle
C ∈ VT is a graph, denoted by C = (VC , EC), with the structure of a simple cycle.
In C, the nodes of VC are the basic (k + 1)-connected components of D, i.e. the com-
ponents that contain no edge of a k-cut in D. Two such components c1, c2 ∈ VC are
adjacent if there exist edges of D that belong to a k-cut and are incident to nodes in
c1 and c2 (there are precisely k

2� such edges). To simplify the notation, we say that
(c1, c2) denotes the set of these edges.

Our goal is to extend instances of frequent graphs gradually, while complying with
the following rule:
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– do not produce an extension whose cactus structure in C does not ensure k-con-
nectivity.

In order to achieve the objective, our extension procedure depends strongly of the loca-
tion of an instance within the database cactus structure. Moreover, our approach allows
to extend an instance by more than one node.

Let f ⊂ D be a frequent subgraph instance that we are currently extending. We
introduce several additional parameters of f that are updated by our mining algorithm:

1. f.type can assume the values node, cycle and tree,
2. f.cycle denotes the node t ∈ VT containing f as a subgraph (if one exists),
3. f.tree denotes the subtree of T containing f as a subgraph; |f.tree| denotes the

number of nodes in the said subtree.

For each value of f.type, we propose a separate extension procedure. The first two
procedures extend the subgraph instance within its own type; they can fail to extend
either because no extension is possible at all or because the type of extension needs
to be changed. For f.type = cycle and f.type = tree, additional precaution needs
to be taken in order to ensure a better search space reduction. In this case, a subgraph
of such an instance contained within a (k + 1)-connected component of the database
graph may cause a cut of size less than k to appear in the extended instance. We apply
the Contraction() procedure (see Section 3.3) that determines exactly if these subgraphs
produce a smaller than required edge cut or not.

The Contraction Procedure. The Contraction() procedure, described in Algorithm 1,
receives as an input a subgraph g contained in a (k + 1)-connectivity component of a
cactus structure T , and contracts all the parts of T that are not adjacent or incident to g
into single nodes. For each subtree t ∈ T adjacent to g, t\g is turned into a single node.
In fact, every such subtree is turned into a two-node cycle with t and t \ g as nodes, and
the cycle edges incident to g as edges.

Algorithm 1. Contraction()
Input: subgraph g,

subcactus T containing g.
Output: contraction of g
1: K := a node of T containing g;
2: for all subtrees t ∈ T incident to K do
3: replace t \ {g, cycle edges incident to g}

with a single node;
4: end for
5: return T ;

Figure 2 gives two examples of applying the Contraction() procedure. The following
claim ensures correctness of the procedure.

Claim. Let T = (VT , ET ) be a cactus structure of k-cuts in a graph G and let a sub-
graph f ⊂ G span the (k + 1)-connectivity components of T and contain all the cycle
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Fig. 2. Contracting subgraphs in (k + 1)-connected components

edges of the cactus structure. Then there exists a (k + 1)-connectivity component K of
G such that Contraction(f∩K,T ) is not k-connected if and only if f is not k-connected.

Proof: The “only if” direction is trivial since the contraction described in Algorithm 1
does not reduce the connectivity of f .

For the “if” direction, let us assume an f that is not k-connected. Then there exists
a partition V1, V2 of its node set so that |(V1, V2)| < k. Since the number m of cactus
components C1, ..., Cm in T is at least 2, there exists i ∈ [1,m] s.t. |(V1, V2)∩Ci <

k
2 .

Thus, we have a partition U1, U2 of a node set of f ∩ Ci so that |(U1, U2)| < k
2 .

Let us denote by f ′ :=Contraction(f∩Ci, T ). Since there are at most k cactus edges
incident to f ∩Ci, w.l.o.g. there are at most k

2 cactus edges incident to U1 in f ′, which
we denote by E′. Then (V1, V2) ∪ E′ is an edge cut of f ′ of size less than k, and f ′ is
not k-connected.

Algorithm 2. ExtendNodeType()

Input: Cactus T = (VT , ET ) of (k + 1)-cuts in D,
frequent subgraph f .

Output: extensions of f .
1: Ext(f) :=basic-extend(g);
2: for all h ∈ Ext(f) do
3: if h ∩ f.cycle �= f.cycle then
4: Ext(f) := Ext(f) \ {h};
5: else
6: h.type = node;
7: h.cycle = f.cycle;
8: end if
9: end for

10: return Ext(f);

Extension Procedures. The procedure for f.type = node is described in Algorithm 2.
This procedure simply adds a node or an edge to an existing subgraph instance within a
(k + 1)-connectivity component of D. It uses a basic pre-existing extension procedure
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Fig. 3. Extending frequent subgraphs of type node

basic-extend(), for instance such as the one in FSG [11]. An example of ExtendNode-
Type() procedure is given in Figure 3 (extended subgraphs in bold).

The procedure for f.type = cycle is described in Algorithm 3. It extends an instance
f of a frequent graph within a single cycle C = (VC , EC) that forms a node of the
cactus dual tree structure. The main concern is to extend a subgraph so as not to create
a not-k-connected instance, and for this purpose the edges EC must be present in an
extension. Therefore, a frequent graph instance that is a subgraph of VC must be added
to f . An example of joining subgraphs of type node into subgraphs of type cycle is
given in Figure 4 (extended subgraphs in bold).

Algorithm 3. ExtendCycleType
Input: frequent subgraph instances F

of type node, frequent subgraph f .
Output: extensions of f .
1: let C = ({c1, ..., cn}, EC) := f.cycle;
2: let f ⊆ cj ;
3: Ext(f) := ∅;
4: E =: ∪i,j{(ci, cj) ∈ EC} (as edge sets);
5: Fgood := F ∩ C; {frequent subgraphs in C}
6: for all f ∈ Fgood do
7: f ′ := Contraction(f, C);
8: if f ′ is not k-connected then
9: Fgood := Fgood \ {f ′};

10: end if
11: end for
12: for all fi ∈ Fgood ∩ ci,

1 ≤ i ≤ n, i �= j do
13: h := ∪1≤i≤n, i�=jfi ∪E;
14: if h is a graph then
15: Ext(f) := Ext(f) ∪ {h};
16: h.type = cycle; h.cycle = f.cycle;
17: h.tree = h.cycle;
18: end if
19: end for
20: return Ext(f);
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The final procedure for f.type = tree is described in Algorithm 4. In this case, f is
contained in a subtree of the dual cactus tree structure and it is extended by an instance
of a frequent subgraph of type cycle. In order not to generate the same instance twice,
we assume that the tree T is a directed out-tree and that extending a subtree of T by a
node is possible only in the direction of T ’s edges. An example of joining two subgraphs

Algorithm 4. ExtendTreeType
Input: database cactus structure

T = (VT , ET ),
frequent subgraph instances F
of type cycle, frequent subgraph f .

Output: extensions of f .
1: T ′ = (VT ′ , ET ′) := f.tree;
2: Ext(f) := ∅;
3: for all C ∈ VT and C′ ∈ VT ′) do
4: if (C′, C) ∈ ET then
5: for all g ∈ F such that g ∩ C = f ∩ C do
6: T ′′ := T ′ ∪ C;
7: g′ := Contraction(g ∩ C, T ′′);
8: if g′ is k-connected then
9: h := f ∪ g;

10: Ext(f) := Ext(f) ∪ {h};
11: h.type = tree;
12: h.tree = (VT ′ ∪ {C}, ET ′ ∪ {(C′, C)});
13: end if
14: end for
15: end if
16: end for
17: return Ext(f);
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Fig. 4. Constructing frequent subgraphs of type cycle

of type cycle into a subgraph of type tree is given in Figure 5 (extended subgraphs in
bold).
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3.4 The CactusMining Algorithm

The CactusMining algorithm extends each frequent graph until it spans beyond con-
nectivity component of the database, at which point the extension must include a non-
trivial subcactus. If such an extension is not possible, the frequent subgraph must be
abandoned. The existence of a counting procedure for subgraphs, denoted count(), is
assumed.

3.5 Proof of Correctness

The aim of this section is to show that every maximal frequent k-edge-connected sub-
graph g of G is generated by the above algorithm at some point (completeness), and no
subgraph that is not k-edge-connected is added to a candidate set (soundness).

Claim. The CactusMining algorithm is sound.

Proof: This claim is trivial since step 39 of Algorithm 5 filters out all not-k-connected
graphs. ��

g
1

g
3

g
2

g
2

g
1

g
1

g
2

     of type=cycle.
(b) subgraph    (a) subgraph    g3(a) subgraph    

     of type=cycle.      of type=tree ersulting
     from join of      and      .

Fig. 5. Constructing a frequent subgraph of type tree

Claim. The CactusMining algorithm is complete.

Proof: Let G be a frequent k-connected subgraph of D, where D has the k-connectivity
cactus structure T . Then every instance of G is contained in a k-connectivity component
of D. Let us assume that G is not generated by the Algorithm 5 and let G be minimal
in the number of nodes and vertices. We show that every instance g of G is generated
by one of the procedures ExtendNodeType, ExtendCycleType() or ExtendTreeType().

If g.type = node, it is generated by the ExtendNodeType() procedure that filters out
nothing. Otherwise, g.type ∈ {cycle, tree} and by Claim 3.3 g is not generated only if
g is not-k-connected - a contradiction. ��
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Algorithm 5. CactusMining()
Input: graph database D, support S,

connectivity bound k.
Output: frequent k-edge-connected graphs.
1: F1 := frequent nodes of D;
2: D := D \ {non-frequent nodes};
3: BuildCactus(D, k − 1);
4: D ← k-connectivity components of D;
5: T := BuildCactus(D, k);
6: F1 := frequent nodes; {type=node}
7: i := 1;
8: while Fi �= ∅ do
9: Ci+1 := ∅;

10: for all f ∈ Fi do
11: Ci+1 := Ci+1∪ ExtendNodeType(T, f );
12: end for
13: i := i+ 1;
14: Fi := frequent graphs from Ci;
15: end while
16: FI := ∪i−1

j=1Fj ;
17: F1 := FI; {type=cycle}
18: i := 1;
19: while Fi �= ∅ do
20: Ci+1 := ∅;
21: for all f ∈ Fi do
22: Ci+1 := Ci+1∪ ExtendCycleType(FI, f );
23: end for
24: i := i+ 1;
25: Fi := frequent graphs from Ci;
26: end while
27: FII := ∪i−1

j=1Fj ;
28: F1 := FII; {type=tree}
29: i := 1;
30: while Fi �= ∅ do
31: Ci+1 := ∅;
32: for all f ∈ Fi do
33: Ci+1 := Ci+1∪ ExtendTreeType(T, FII, f );
34: end for
35: i := i+ 1;
36: Fi := frequent graphs from Ci;
37: end while
38: FIII := ∪i−1

j=1Fj ;
39: remove < k-connected graphs from FI ∪ FII ∪ FIII;
40: return FI ∪ FII ∪ FIII

4 Candidate Graphs Generated by the Algorithm

In this section, we prove that the CactusMining algorithm is optimal w.r.t. the set of
candidate subgraphs generated by it. We show that any algorithm based on pattern
extension must produce a superset of candidate subgraphs generated by the Cactus-
Mining algorithm.



40 N. Vanetik

Theorem 1. Let AnyAlgorithm be a graph mining algorithm based on pattern exten-
sion. Then CactusMining algorithm produces no more candidates than
AnyAlgorithm.

Proof: We show that any frequent candidate subgraph g produced by the CactusMining
algorithm has to be produced by AnyAlgorithm. We denote the database graph by D
and its cactus tree structure by T = (VT , ET ). We denote the (k+1)-connectivity of the
cactus structure by C1, ..., Cn. Let us assume that g is produced by the CactusMining
algorithm but not by AnyAlgorithm as a candidate subgraph.

If g ⊆ g′, where g′ is a k-connected frequent graph in D, then g is produced by
AnyAlgorithm (we can assign labels to g′’s nodes so that g is the lexicographically
minimal extension of g) – a contradiction. Therefore, g is neither k-connected nor is it
a subgraph of a frequent k-connected graph in D. Let therefore V1, V2 be a partition of
g’s nodes so that |(V1, V2)| < k (i.e. an edge cut of size < k separates V1 and V2). We
assume first that g has a non-empty intersection with cactus nodes C1, ..., Cm, where
m > 1. Then g contains all the cactus edges connecting C1, ..., Cm, for otherwise it is
not produced by the CactusMining algorithm (as g.type = cycle or g.type = node).
We denote the edge set (V1, V2) separating g by E1,2. Since m > 1 and |E1,2| < k,
there exists i s.t. |Ci ∩ E1,2| < k

2 . Thus, we have a partition U1, U2 of a node set of
g ∩ Ci so that |(U1, U2)| < k

2 . Let g′ :=Contraction(g, Ci). Since there are at most k
cactus edges incident to g ∩ Ci, w.l.o.g. there are at most k

2 cactus edges incident to
U1 in g′, which we denote E′. Then E1,2 ∪ E′ is an edge cut of g′ of size less than k
– in contradiction to step 8 of Algorithm 3 or to step 8 of Algorithm 4. Then g is not
produced by the CactusMining algorithm – a contradiction.

Let us assume now that g ⊆ Ci for some i ∈ [1,m]. Since g is minimal in the
node and edge set, there exists a node or an edge x such that g − x is either a k-
connected frequent graph in D or is a subset of a k-connected frequent graph g′ in D.
We can assume that AnyAlgorithm is locally optimal, and, since Algorithm 2 can use
any function as basic-extend(), that the same function is used. Therefore, g is produced
by both AnyAlgorithm and the CactusMining algorithm – a contradiction. ��

5 Weaker Connectivity Constraints

Sometimes, users of graph mining systems (network analysts or biologists) may not
know the precise connectivity of frequent subgraphs in a large dataset that they look
for. Often, only the minimal requirement of connectivity equal to or bigger than the
specified constraint is known. In his case, the CactusMining algorithm can be eas-
ily modified into an algorithm that finds all such patterns. In fact, if we are given a
connectivity bound k and we are looking for all frequent subgraphs that are at least
k-connected in dataset D, all these subgraphs fall into two categories:

– subgraphs can be (k + 1)-connected and are located inside cactus nodes of k-
connectivity cactus structure of D;
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– subgraphs that are k-connected but not (k+1)-connected that span the cactus edges
of D’s cactus structure. This property follows from the fact that any frequent sub-
graph of type tree or node has a k-cut.

In order to find patterns that are at least (k + 1)-connected we modify the Cactus-
Mining algorithm in order to focus the search process on subgraphs within cactus
nodes of dataset cactus structure. The algorithm ExtendedCactusMining is presented in
Algorithm 6.

The ExtendedCactusMining algorithm, much like CactusMining algorithm, produces
the subset of candidate subgraphs of any other mining algorithm. Indeed, if a subgraph
has connectivity at least (k + 1) that is can only be of type=node for otherwise it con-
tains a k-cut. Inside cactus nodes, both algorithms employ the most efficient extension
procedure than it available. It is necessary to produce all the candidate patterns inside
cactus nodes as such a node can be, for instance, a complete graph of large order. We
obtain the following simple corollary from Theorem 1.

Corollary 4. Let AnyAlgorithm be a graph mining algorithm based on pattern exten-
sion. Then ExtendedCactusMining algorithm produces no more candidates than AnyAl-
gorithm. ��

Algorithm 6. ExtendedCactusMining()
Input: graph database D, support S, connectivity bound k + 1.
Output: frequent graphs that are at least (k + 1)-connected.
1: F1 := frequent nodes of D;
2: D := D \ {non-frequent nodes};
3: T := BuildCactus(D, k);
4: D ← (k + 1)-connectivity components of D;
5: F1 := frequent nodes; {type=node}
6: i := 1;
7: while Fi �= ∅ do
8: Ci+1 := ∅;
9: for all f ∈ Fi do

10: Ci+1 := Ci+1∪ ExtendNodeType(T, f );
11: end for
12: i := i+ 1;
13: Fi := frequent graphs from Ci;
14: end while
15: F =

⋃
i Fi;

16: remove < (k + 1)-connected graphs from F ;
17: return F

6 Connectivity Constraints and Dynamic Datasets

The next issue we address is the fact that many single-graph datasets have dynamic
nature, i.e. edges may appear and disappear over time. Social networks, web and com-
munication/routing networks are natural examples; protein structure also changes over
time while protein folds or moves from one conformation to another. A trivial approach
to handling the task of finding all frequent k-connected subgraphs in a dynamic dataset
would be to run the mining algorithm anew every time a change occurs. This approach,
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however, is computationally infeasible. We suggest an easier solution, keeping in mind
the fact that computing the cut structure of a pattern is an easy polynomial task. Our
approach consists of following steps.

– We run the CactusMining algorithm once and keep the set of candidate subgraphs
and their instances in the database for future use. One should notice that the in-
stances are usually kept in the system anyway since they are used by data miners
and analysts for insight and verification.

– For each k-connected candidate subgraph we compute its k-connectivity structure
(the cactus).

– When a change occurs in the dataset, we look at the exact place this change hap-
pened and act accordingly. Our algorithm handles edge deletion only, since addition
of an edge may cause subgraphs previously discarded by the mining process to be-
come valid again. In this case, a re-computation may be required.

The DynamicCactusMining algorithm depicted in Algorithm 7 describes a simple pro-
cedure for incremental maintenance of frequent k-connected patterns in case of edge
deletion. The DynamicCactusMining algorithm performs no mining; it uses previously
computed cactus structure of frequent subgraph instances, denoted by f.cactus, in order
to determine whether the change is dangerous or not. In the former case, the instance

needs to be discarded while in the latter case the instance is still k-connected. How-
ever, the subgraph represented by this instance may change. If this happens, the count
of subgraph in question may need to be updated. Thus, even when k-connectivity is
preserved, frequency may change and so can the cactus structure of an instance.

Algorithm 7. DynamicCactusMining()
Input: instances of frequent k-connected subgraphs I,

deleted edge e = (v, u),connectivity bound k, support S.
Output: frequent k-edge-connected graphs.
1: NewI := ∅;
2: for all f ∈ I do
3: C := f.cactus;
4: if u, v ∈ same node of C then
5: f := f \ e;
6: count(f)++;
7: count(f ∪ e)- -;
8: NewI := NewI ∪ {f};
9: f.cactus :=BuildCactus(f, k);

10: end if
11: end for
12: F ′ := ∅.
13: for all f ∈ NewI do
14: if count(f) ≥ S then
15: F ′ := F ′ ∪ {f};
16: end if
17: end for
18: return F ′.
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Claim. DynamicCactusMining algorithm finds all k-connected patterns in the dataset
with edge e removed.

Proof: Let our dataset be denoted D. Each k-connected candidate subgraph in D \ e
is a candidate subgraph in D since edge deletion can only decrease connectivity. The
case where a candidate subgraph f is k-connected but f \ e is not can only happen
when the edge e is a cactus edge. Indeed, if f \ e is not k-connected, then e lies in a
k-cut X , which by definition contains only edges from f.cactus. Moreover, since every
edge g ∈ f.cactus lies in some k-cut X of f , removing e from f creates a cut X \ e
in f \ e of size (k − 1). Therefore, lines 5–9 of the DynamicCactusMining algorithm
keep a subgraph instance if and only if it remains k-connected. Since the graph changes
after edge deletion, instance counts need to be updated as it happens in lines 6–7 of the
algorithm. Finally, due to line 14 only frequent subgraphs are kept in the final set. ��

7 Conclusions

In this paper, we have presented the CactusMining algorithm for mining frequent k-
edge connected subgraphs in a graph database, where k is a user-defined integer con-
stant. The method presented here is defined and described for a single graph database
case, but is adapted trivially to multiple graph databases. Our method relies on the
Dinitz-Karzanov-Lomonosov cactus minimum cut structure theory and on the existence
of efficient polynomial algorithms that compute this structure. Our algorithm employs
the pattern-growth approach, and the cactus structure of mincuts allows us to grow
frequent subgraphs by more than a node or an edge at a time. We have proved that
the CactusMining algorithm is sound and correct, and have also shown that the set of
frequent patterns it produces is the least possible, i.e. a competing graph mining algo-
rithm will produce all the candidate patterns that our algorithm produces. We demon-
strated how our approach can be adapted to the case of weaker connectivity constraints
(ExtendedCactusMining algorithm) and the case of dynamic dataset where edge dele-
tion happen (DynamicCactusMining algorithm).
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