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Abstract. The performance of motion estimation is of great importance
for H.264 advanced video coding. It is estimated that motion estimation
consumes about 70% of the encoding time. Lots of motion estimation
algorithms are proposed to improve the encoding speed. Unlike the as-
sumption of most motion estimation algorithms, the horizontal motion
vectors are much larger than the vertical in most cases. With the un-
symmetrical characteristic, this paper presents a new diamond search
based motion estimation algorithm to improve the efficiency. The un-
symmetrical diamond search shorten the vertical step to lower down the
computation complexity. The search points of the big template and the
small template are reduced to 5 and 3 respectively. The simulation re-
sults show that, the unsymmetrical diamond search can achieve much
more significant speedup ratio than other motion estimation algorithms
with relatively high probability.
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1 Introduction

H.264/MPEG4 Part 10 Advanced Video Coding (AVC) is one of the most pop-
ular international standards for video coding, which is developed by the joint
video team of the Video Coding Experts Group (VCEG) of the International
Telecommunication Union Telecommunication Standardization Sector (ITU-T)
and the Moving Picture Experts Group (MPEG) of International Organization
for Standardization/International Electrotechnical Commission (ISO/IEC) [1-3].
This standard is designed for a broad application range that covers video confer-
encing, network streaming video, digital storage media, digital communication,
television broadcasting, et al.

Compared with previous standards, H.264 can provide better video quality
at substantially half or less of bitrates. The decrease in bitrates requires more
accurate motion estimation, such that the computation complexity increases. It
is estimated that motion estimation constitutes roughly 70% of the encoding
time for an H.264 encoder. Thus, it is important and necessary to reduce the
computation complexity of motion estimation.

In this paper, we propose an unsymmetrical diamond search (UDS) algorithm
for motion estimation. The objective of the algorithm is to achieve faster motion
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estimation with good quality. UDS uses unsymmetrical diamond search patterns
which are derived from diamond search patterns. With unsymmetrical diamond
search patterns, search points can be greatly reduced. The main contributions of
this paper are: (1) incorporate unsymmetricity into diamond search to improve
the performance; (2) reduce the computation complexity to speed up motion
estimation.

The remainder of this paper is organized as follows. Section 2 reviews the
principle of motion estimation for video coding. Block distortion measure and
fast search algorithms are presented in details. Section 3 introduces the classic
diamond search algorithm and its variants, while the unsymmetrical diamond
search algorithm is discussed in section 4. Therefore, we compare the perfor-
mance of UDS with the existing mainstream algorithms in section 5, which is
followed by some concluding remarks in section 6. Finally, some acknowledge-
ments are listed in section 7.

2 Motion Estimation

In the H.264/AVC standard, motion estimation is based on block matching al-
gorithms (BMA). BMA divides a frame into small macroblocks, of which the
partition sizes may be 4 x 4, 4 x 8, 8 x 8, 8 x 4, 8 x 16, 16 x 8 or 16 x 16. To
do motion estimation for a macroblock of the current frame, BMA searches the
minimum block distortion measure (BDM) macroblock in the search window of
the reference frame. Therefore, the minimum BDM reference macroblock is used
to predict the current macroblock, and the displacement of the two macroblocks
is motion vector (MV). After motion estimation, the residual macroblock, the
difference of the two macroblocks, contains far less information. It is obvious that
more accurate motion estimation will produce less residual and lower bitrates.
Motion estimation mainly composes of BDM and BMA.

2.1 Block Distortion Measure

In theory, mean square error (MSE) has been the most widely used BDM to
describe the similarity for low computational complexity. MSE is based on Gauss
probability distribution assumption. However, MSE is not the best criterion for
motion estimation because the images of the video do not obey Gauss probability
distribution assumption in most of cases. For simplicity, MSE is employed for
motion estimation approximately. In mathematics, V(Az, Ay) € SR, MSE can
be represented by

| MoIN-1 9
MSE = min MN Z Z [f(x,y)fr(erAx,erAy) ) (1)

=0 y=0

where f is the current frame, r is the reference frame, x and y are the co-ordinates
of a frame, M and N are the width and the height of a frame respectively, SR
is the search range, and (Az, Ay) is the motion vector (MV).
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However, to remove division and square in the BDM, H.264 uses sum of ab-
solute differences (SAD) instead of MSE. SAD is represented by

M—-1N-1
SAD = min Z Z ’f(a:, y) —r(z + Az, y + Ay)| V(Az,Ay) € SR. (2)
=0 y=0

2.2 Fast Search Algorithm

BMA is an important part for motion estimation. Regardless of computation
complexity, exhaustive search (ES) or full search (FS) is considered to be the
best BMA. ES searches every point in the search window, and is sure to find the
minimum BDM macroblock. However, the computation complexity is too high
to allow realtime implementations. Huang, et al. [4] estimated the computation
of ES. Realtime motion estimation for a CIF (352 x 288) 30 fps video with
search range [—16, 15] requires 9.3 giga-operations per second (GOPS) while 127
GOPS is required for a D1 (704 x 576) 30 fps video with search range [—32, 31].
Therefore, many faster BMAs have been proposed to improve the performance
of motion estimation. As opposed to ES, these BMAs are called Fast Search
Algorithms (FSA).

Sequentially, three step search (TSS) [5], cross search (CS) [6], new three
step search (NTSS) [7], four step search (FSS) [8], diamond search (DS) [9],
hexagon-based search (HEXBS) [10], cross-diamond search (CDS) [11], hybrid
unsymmetrical-cross multi-hexagon-grid Search (UMHexagonS) [12], directional
diamond search (DDS) [13], prediction-based directional asymmetric search (PB-
DAS) [14], directional gradient descent search (DGDS) [15], et al. have been
proposed in the past years. Among these FSAs, DS is one of the most excellent
for the balance between speed and accuracy. In the next section, we will give a
brief introduction about DS and its variants.

3 Traditional Diamond Search

As illustrated in Fig.1, DS uses two types of search patterns: large diamond
search pattern (LDSP) and small diamond search pattern (SDSP). DS repeatedly
use LDSP to search the minimum BDM in the nine points until the minimum
BDM point is at the center of LDSP. Then SDSP is used to find the more
accurate position. The details of DS are summarized as follows.

Step 1. The initial LDSP is centered at the origin of the search window.
Compare the SADs of the nine points of LDSP. If the point with minimum
BDM is at the center of LDSP, go to Step 3. Otherwise, go to Step 2.

Step 2. The previous minimum BDM point is considered as the center of
new LDSP. When out of search range, go to Step 3. Compute the SADs. If the
minimum BDM point is at the center, go to Step 3. Otherwise, repeat Step 2.

Step 3. Replace LDSP with SDSP. Locate the center of SDSP at the minimum
BDM point in the previous search. Compute the SADs of the five points of SDSP.
The minimum BDM point is the final solution.
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Fig. 1. LDSP and SDSP used by DS

A variant of DS is cross-diamond search (CDS) algorithm. As illustrated in
Fig.2, CDS combines DS with CS. Firstly, it searches the minimum BDM point
with CSP. When the minimum BDM point is at the center of CSP, search termi-
nates. Otherwise, start half-diamond search by repositioning the center of LDSP
at the previous minimum BDM point. If the new minimum BDM point is at the
center of LDSP, stop the current search. Otherwise, begin diamond search till
termination.
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Fig. 2. Search patterns used by CDS

Another variant of DS is directional diamond search (DDS) algorithm. As
illustrated in Fig.3, DDS uses a horizontal diamond search pattern (HDSP) and a
vertical diamond search pattern (VDSP). Each pattern have five checking points,
an origin and four vertices. The two points near the origin are called near points
(NPT) while the other two points are called far points (FPT). Similarly with
DS, DDS uses HDSP at the beginning of the search. If the minimum BDM point
is at the center of HDSP, search with VSDSP and stop the search. Otherwise, if
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Fig. 3. Search patterns used by DDS

the minimum BDM point is an FPT, continue search with HDSP. additionally,
if the minimum BDM point is an NPT, change the current search pattern to the
other search pattern. Repeat the above steps till termination.

Other DS variants are also very excellent, but are omitted here due to the
limitation of paper length. The above three algorithms are typical DS algorithm
or its variants. To investigate the following algorithm, the three algorithms are
picked as the reference.

4 Unsymmetrical Diamond Search

The search patterns of many FSAs are symmetrical. That is, they search the
minimum BDM point both in horizontal and vertical with the same scale. How-
ever, in most of cases, the horizontal motion vector (MV) is much larger than
the vertical. Thus, the horizontal motion and the vertical motion are said to
be unsymmetrical. With the unsymmetrical characteristic, the horizontal search
should be much rougher than the vertical search to speed up the motion es-
timation. In the above section, DS and CDS search in horizontal and vertical
symmetrically. Hence, there is something to be improved. Additionally, DDS uses
two unsymmetrical patterns, and switches the current pattern to the other when
the minimum BDM point is an NPT. However, there are two evidences to prove
that the VDSP of DDS is not reasonable. Firstly, as discussed above, the vertical
motion is often very slightly despite of some irregular cases. Secondly, all FSAs
is based on the assumption that MVs are always monotonically distributed in
the adjacent area of the search window center. Therefore, the minimum BDM
point is much more likely to be an NPT than an FPT. In this case, the HDSP
should be used but the VDSP.

To avoid these problems, we propose a new DS variant, unsymmetrical di-
amond search (UDS). As shown in Fig.4, UDS uses two search patterns: large
diamond search pattern (LDSP) and small diamond search pattern (SDSP). Un-
like DS, the LDSP is the same as the HDSP of DDS. There are five points in
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the LDSP: the center point (CPT), the up point (UPT), the down point (DPT),
the left point (LPT) and the right point (RPT). The search scale of LDSP is 2
pixels in horizontal while 1 pixel in vertical. The SDSP have 3 points in hori-
zontal with search scale of 1 pixel. Moreover, UDS refers to another four search
patterns, which are illustrated by Fig.5. There are four half diamond search pat-
tern (HDSP): up half diamond search pattern (UHDSP), down half diamond
search pattern (DHDSP), left half diamond search pattern (LHDSP), right half
diamond search pattern (RHDSP). For the four HDSPs, the centers of the dia-
monds formed by the dashed lines are the CPTs.
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Fig. 4. Large and small search patterns used by UDS

UDS differs from DS in: (1) the search scales in vertical and horizontal are cer-
tain in the current search. (2) four HDSPs are employed to reduce computation.
The procedure of UDS can be summarized as below.
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Fig. 5. Half diamond search patterns used by UDS

Step 1: The initial LDSP is placed at the center of the search window. Com-
pare the SAD of CPT with other four points. If CPT is the minimum BDM
point , stop the current search. Otherwise, go to Step 2.
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Step 2: If the minimum BDM point is UPT in Step 1, switch search pattern
to UHDSP. If DPT, switch search pattern to DHDSP. If LPT, switch search
pattern to LHDSP, while if RPT, switch search pattern to RHDSP. Reposition
the CPT of the chosen HDSP at the previous minimum BDM point. Compute
the SADs of the four points. Go to Step 3 when out of search range or the
minimum BDM point is CPT. Otherwise, repeat this step till termination.

Step 3: Switch LDSP or HDSP to SDSP. Compute the SADs of the three
points. The position of the minimum BDM point is the final solution.

With the procedure above, UDS only checks five points at the start. After
that, it repeatedly search with HDSPs. There are only three points to be com-
puted because the other two points have been computed in the former step.
Consequently, 40% of computation in Step 2 is saved. Finally, UDS only checks
three points while DS checks five points. Fig.6 presents three examples of UDS.

5 Simulation Results

In this section, UDS is implemented by using the GNU Pascal language on a
Pentium E 2160 1.8GHz personal computer running Ubuntu 10.04 operating
system with Linux 2.6.32-44-generic kernel. The capacity of the RAM is 2GB,
and the compiler is GPC 20070904. Several mainstream FSAs, TSS, HEXBS, DS,
CDS and DDS, are implemented to investigate the performance of UDS. Here,
search efficiency is defined to describe the performance of these FSAs. Search
efficency is the comprehensive specification of searching speed and accuracy for
macroblock matching. As the H.264/AVC standard suggests, SAD is considered
to be the BDM.

In addition, three video sequences, flower (CIF, 250 frames), foreman (CIF,
300 frames) and football (CIF, 260 frames), are employed for simulations. flower
is a horizontal-motion sequence, foreman is a vertical-motion sequence while
football is a large-motion sequence mixed with horizontal and vertical motions.

To study the search efficiency, UDS is compared to the other FSAs in four
aspects: (1)the average minimum SADs (MSAD) per pixel; (2) the average num-
ber of search points (NSP) per macroblock; (3) average distance from the true
motion vectors per macroblock; (4) average probability of finding the true mo-
tion vectors per macroblock. The MVs searched by ES are regarded as the true
MVs.

Moreover, the macroblock size is 16 x 16, the search range is [—7,47], and
the reference frame is the last one of the current frame. The seven algorithms
are simulated using the luminance of the three standard video sequences. Table
1-3 present the simulation results for flower, foreman and football respectively.

In Table 1, with the speedup ratio up to 20.531, UDS can also reach the high
probability of 99.23%. As compared to DS, UDS saves about 6.77 search points
per macroblock. When compared to CDS and DDS, UDS saves about 3.57 and
1.40 search points respectively. For sequence flower, UDS is 68.08% faster than
DS, 35.88% faster than CDS, and 14.05% faster than DDS. The MVs in sequence
flower are mainly horizontal. Unlike other FSAs, UDS can greatly reduce several
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Fig. 6. Examples of UDS: each candidate point is marked with the corresponding step
number. In each step, there is only one minimum BDM point. (a) A search path of two
steps for UDS with MV (41, 0). (b) A search path of three steps with MV (-2, 0). (c)
A search path of eight steps for UDS with MV (-7, 3).

Table 1. Search efficiency comparisons (video sequence: flower)

FSA MSAD
ES 8.907
TSS 8.930
HEXBS 11.699
DS 8.912
CDS 8.917
DDS 10.535

UDS 8.913

NSP

204.148
23.347
10.314
16.713
13.512
11.341

9.943

Speedup

1.000
8.744
19.793
12.215
15.109
18.001
20.531

Distance

0.000
0.641
0.344
0.021
0.033
0.255
0.026

Probability

100.00%
74.48%
72.22%
99.41%
98.73%
75.72%
99.23%
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Table 2. Search efficiency comparisons (video sequence: foreman)

FSA MSAD NSpP Speedup Distance Probability
ES 7.360 204.035 1.000 0.000 100.00%
TSS 7.423 23.280 8.764 0.583 88.95%
HEXBS 7.927 10.331 19.749 0.756 82.21%
DS 7.476 14.844 13.745 0.352 95.05%
CDS 7.703 12.721 16.039 0.540 88.65%
DDS 7.567 8.929 22.850 0.465 88.08%
UDS 7.568 8.475 24.075 0.450 90.89%

search points in vertical direction. In this case, DDS may incorrectly use VDSP
instead of HDSP. Therefore, the probability is very low and the MSAD value is
very large.

In Table 2, UDS reaches the speedup ratio of 24.075 with the high probability
of 90.89%. As compared to DS, CDS and DDS, UDS saves about 6.37, 4.25
and 0.45 search points respectively. For sequence foreman, UDS is 75.15% faster
than DS, 50.10% faster than CDS, and 5.36% faster than DDS. The MVs in
this sequence are mainly vertical. Thus, There is a reduction in probability for
UDS. When searching vertical MVs, DDS achieves relatively high probability
for the use of VDSP. Because of symmetrical characteristics, other FSAs are not
sensitive to the directions of motions.

Table 3. Search efficiency comparisons (video sequence: football)

FSA MSAD NSP Speedup Distance Probability
ES 15.069 204.122 1.000 0.000 100.00%
TSS 15.453 23.407 8.720 2.207 67.63%
HEXBS 16.288 11.086 18.413 2.256 55.81%
DS 15.555 18.933 10.781 1.439 80.18%
CDS 15.970 12.797 15.950 1.877 64.81%
DDS 15.679 11.595 17.604 1.691 67.62%
UDS 15.836 10.048 20.315 1.837 68.43%

In Table 3, UDS reaches the speedup ratio of 20.315, and the probability is
the second highest one, regardless of ES. As compared to DS, CDS and DDS,
UDS saves about 8.89, 2.75 and 1.55 search points respectively. For sequence
football, UDS is 88.43% faster than DS, 27.36% faster than CDS, and 15.39%
faster than DDS. The motions in sequence football is very complex, which test
the comprehensive performance of these FSAs. Additionally, Fig.7-8 present the
average NSPs and the average probability per macroblock for each frame of
sequence football.
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With the simulation results, UDS is much faster than other FSAs with rel-
atively high probability. As well, TSS and HEXBS are widely used for ME.
However, TSS has low speed and low probability for the wide search range. The
speed of HEXBS is fast enough while the probability is very low. The MSAD
value of HEXBS is also much larger than other FSAs. Thus, the comprehensive
performance of TSS and HEXBS is not as good as other FSAs.

6 Conclusion

This paper presents an unsymmetrical diamond search algorithm for H.264/AVC
motion estimation. It incorporates unsymmetricity into traditional diamond
search, and shortens the search step in vertical directions. Therefore, several
search points can be efficiently reduced to speedup the process of motion esti-
mation. Half diamond search patterns are also employed to search no overlapping
points. The simulation results show that UDS reaches great speedup ratio with
relatively high enough probability in various cases.
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