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Abstract. This paper deals with the computation of the forward and inverse kine-
matic model of a 3-RRR spherical parallel mechanism (SPM) for a teleoperation
solution. The context of real time application is aimed; thus, the determination of
the desired solution out of several possibilities, is crucial to guarantee motion conti-
nuity. The SPM structure kinematics is then detailed and a strategy, based on New-
ton Raphson method, is proposed to solve these models. Experimental results are
presented to validate the proposed approach.
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1 Introduction

The spherical parallel architecture represents an interesting alternative for applica-
tions with a fixed center of motion. The platform of the mechanism is moving over
a spherical surface which center coincides with the base reference origin; Different
varieties of this mechanism have been studied before. These studies covered a wide
range of characteristics such as workspace (Bulca et al., 1999), kinematic analysis
(Gosselin and Lavoie, 1993), design parameters optimization (Chaker et al., 2012),
singularity (Wang and Gosselin, 2004) and dexterity (Merlet, 2006). However, be-
ing a parallel structure, the forward displacement, which calls for the position and
orientation of the platform when the actives joints are given, is a difficult problem
for which no general procedure has been determined yet. Bai et al. (2009) presented
a strategy based on the input-output equation of spherical four bar linkages which
yields the eight solutions of SPM model. This method makes possible the identi-
fication of all the solution when the mechanism is in a fixed position. In the same
context, Bombin et al. (2001) took advantage of the subdivision and convex hull
properties of polynomials in Bernstein form to propose a procedure to solve the for-
ward kinematics of the SPM. But this method is not reliable since it depends on the
intuition of the researcher when simplifying equations. The presented strategies do
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not consider real time constraints such as the resolution time and the determination
of the exact one of the eight solutions in order to guarantee the continuity of the
platform movement. In fact, such constraints are very important when passing from
theoritical study to practical realisation. In this paper, the problem of the SPM is
revisited with the aim of finding a robust method that takes in consideration real
time and teleoperation applications constraints . The method is applicable for both
forward and inverse displacement of the mechanism. The solution is based on the
Newton Raphson method (NRM) that solves the model with consideration of the
initial position of the platform. Thus we can guarantee a continuous solution when
platform is moving and a reduced time of computation.

2 Teleoperation Context

The context of this work is a teleoperation system for minimally invasive surgery.
The expert site is compose by an experimented operator and a haptic device based on
a spherical parallel architecture that controls a slave robots operating on the patient.
Fig. 1 describes the principle of teleportation. The main constraint of this system
is the real time exchange of information related to the position and orientation of
every mechanism. Thus, computing these parameters have to be very accurate and
respects time conditions.

Fig. 1 Teleoperation system

The parallel structure of the haptic device (Fig. 6) presents a complicated kine-
matic models. In the case of the forward one, one has to solve a nonlinear sys-
tem. The respect of a predifined time period of 10ms is imposed by the real time
constraint. The inverse kinematics presents also the risk of losing the continuity of
motion when the problem admits multiple solutions.

3 Kinematics of the SPM

Figure 2.a presents the 3-RRR architecture of the proposed SPM. Three identical
legs A, B and C relate the base to the platform. Each leg of the SPM is made out of
two links and three revolute joints.The three actuated revolute joints with the base
have orthogonal axes Z1k (k= A,B and C). All the axes of the joints are intersecting
in point O, the center of motion of the platform ZE .
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Each link is characterized by a constant angle between the axes of its two joints
that represents its dimension. Figure 2.b shows the geometric parameters of one leg.
The angles α,β, γ are respectively between the first two joint axes, the second and
the third one , and between the third joint axis and platform axis .

(a) SPM architucture (b) One leg parameters

Fig. 2 Architecture and parameters of the SPM

The three legs of the SPM are identical and the actuated joint axes are located
along the base frame axes X, Yand Z, respectively. The workspace of the platform
is then the intersection of the workspaces of three legs considered each as a spherical
serial kinematic chain.

The motion of the SPM is generated by only revolute joints. The kinematics of
the mechanism can be described by the following relation:

Z2k ·Z3k = cos(β) (1)

Where Z2k and Z3k are respectively the axes of the second and the third joint of each
leg and detailed as:

Z2k = Rot(Z1k, θ1k).Rot(X2k,α).Z1k (2)

Z3k = Rot(Z1k,ψ).Rot(X, θ).Rot(ZE ,ϕ).Rot−1(X3k,−γ).Z1k (3)

The ZE platform axis is described by the three ZXZ-Euler angles, ψ, θ and ϕ. θ1k and
θ2k are, respectively, the joint variables of the revolute joint and the cylindrical inter-
mediate joint of leg k (k= A,B and C) .The axes X2k and X3k are given respectively
by X2k = Z1k ×Z2k and X3k = Z2k ×Z3k.

The system of three equations F resulting from applying equation (1) for the
three legs of the mechanism can be exploited for both forward and inverse
displacement.
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3.1 Forward Kinematics

The forward displacement determines the posture of the platform defined by the
Euler angles when knowing the active joints parameters θ1k. The operational vec-
tor of parameters V = [ψ,θ,φ]T , are the three ZXZ-Euler angles of the platform,
representing the orientation of the platform with respect to the base.

Applying the equation 1, the forward kinematics consists on solving the follow-
ing system:

V = f (q)− >
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ψ = f1(θ1A, θ1B, θ1C)
θ = f2(θ1A, θ1B, θ1C)
ϕ = f3(θ1A, θ1B, θ1C)

(4)

As for all parallel mechanisms,this forward kinematics is a non linar system com-
bining polynomial trigonometric parameters. This make very difficult the resolution
of the system and the determination of the platform position. Usual methods are not
efficient in this case even with a powerful computing capacity.

3.2 Inverse Kinematics

The inverse model of the SPM is easier to obtain, it yields the actuators angles on
the base [θ1A, θ1B, θ1C] corresponding to a given platform position.

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

A1cos(θ1A)+B1sin(θ1A)+C1 = 0
A2cos(θ1B)+B2sin(θ1B)+C2 = 0
A3cos(θ1C)+B3sin(θ1C)+C3 = 0

(5)

The inverse kinematics seems to be easier to solve than the forward one. Equations
(6) can also be written by using the trigonometric tan-half identities. Which yields
a polynomial problem that can be computed easily.

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

A′1T 2
1 +B′1T 2

1 +C′1 = 0
A′2T 2

2 +B′2T 2
3 +C′2 = 0

A′3T 2
3 +B′3T 2

3 +C′3 = 0
(6)

where Ti are respectively tan( θ1k
2 ), i = (A,B,C)

However, this system admits eight possible solutions. The difficulty is in identify-
ing the correct configuration that ensures no change in the aspect and the continuity
of movement.

3.3 Jacobian Matrix

The jacobian matrix can be obtained by differentiating Eq. (1) with respect to time.
The obtained equation can be written as:
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Ż2kZ3k +Z2kŻ3k = 0 (7)

with Ż2k = θ1kZ1k×Z2k et Ż3k =ω×Z3k

ω is the angular velocity of the end effector..
For the whole manipulator and in a matrix form, we can write:

ω = Jq̇ = A−1Bq̇ (8)

where J is the jacobian matrix and B a 3×3 diagonal matrix:

B = Diag [Z1A×Z2A ·Z3A,Z1B×Z2B ·Z3A,Z1C ×Z2C ·Z3C] (9)

And

q̇ =
[

θ̇1A, θ̇1B, θ̇1C

]T
(10)

A =
[

(Z3k ×Z2k)T
]

(11)

4 Proposed Algorithm

The proposed algorithm is based on NRM (Galantai, 2000) for solving equations
numerically. It is based on the simple idea of linear approximation. he solution of
the problem is sought in the neighborhood of an initial gess designed by the user.
In the case of SPM kinematics and for our real time teleoperation, this strategy can
ensure a rapid convergence to the desired solution especially for a nonlinear sys-
tem of equations such as the ones obtained for forward displacement problem of
the parallel structure. In fact, the forward displacement will be solve in a limited
number of iterations since the initial guess meets with the last orientation (ψ,θ,φ)
of the platform. In the case of the inverse kinematics, this strategy helps to avoid
the multiple solution problem by choosing the nearest posture to the initial one. The
figure 3 presents the flow chart of the algorithm. Depending on the treated problem
(direct or inverse), the algorithm is initialized with the known parameters. The sys-
tem F describing the kinematics is generated and the Jacobian matrix is computed.
A loop calculation is then launched whith an initial gess vector S0 corresponding to

Fig. 3 Newton raphson flow chart
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the last position of the mechanism. For every ith loop, the initial gess is set to taking
the value of the ith −1 loop solution. The final solution S is retained if a maxima of
iterations N is reached or it satisfies a predifined precision Tol fixed in our case to
10−4 which represents the quadratic error of the solution.

5 Results

The implementation of the NRM to solve both forward and inverse kinematics of
the SPM, made possible the determine precisely and in a continuous way the motion
of the SPM . as an example to validate the algorithm we have chosen an arbitrary
trajectory for every active joint illustrated in the Fig. 4. The aim is to evaluate the
ability of the algorithm to manipulate real time movements and its response time
caracterized by the number of iterations needed touconverge to a solution.

(a) θ1A (b) θ1B

(c) θ1C (d) Trajectory

Fig. 4 Actuator Joints angles injected to the algorithm (a,b,c) and the trajectory generated(d)

Fig. 5 represent the results of the Euler angles describing the platform orientation.
The profile of each is continuous which confirms the performance of the strategy
in preserving the aspect of the movement. Fig. 5.d shows that a maximum of two
iterations was needed to solve the system. This means that the trajectory is followed
instantly while keeping the imposed precision of 10−4 degree for every parameter.
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(a) ψ (b) θ

(c) ϕ (d) Number of iterations

Fig. 5 Resulting Euler angles from the algorithm (a,b,c) and the number of iterations(d)

Fig. 6 First prototype of the SPM

6 Conclusion

An algorithm based on the NRM used to solve kinematics of an SPM is presented.
The strategy is well suited for teleoperation context since it is applicable for both
forward and inverse kinematics with similar performance. This makes intersesting
its implementation for a telesurgery haptic device (Fig. 6. The kinematics of the
SPM was then revisited and a formulation of the strategy was proposed. The results
on an arbitrary trajectory of the manipulator confirmed its capacities to determine
the exact solution over the eight possibilities. The respect of the real time constraint
is garanteed. The performances of this method are also validated on the prototype
of the haptic device realized on lab.



60 A. Chaker et al.

References

Bai, S., Hansen, M.R., Angeles, J.: A robust forward-displacement analysis of spherical par-
allel robots. Mechanism and Machine Theory 44(12), 2204–2216 (2009)

Bombin, C., Ros, L., Thomas, F.: On the computation of the direct kinematics of parallel
spherical mechanisms using bernstein polynomials. In: Proceedings of IEEE International
Conference on Robotics and Automation, ICRA, vol. 4, pp. 3332–3337 (2001)

Bulca, F., Angeles, J., Zsombor-Murray, P.: On the workspace determination of spherical
serial and platform mechanisms. Mechanism and Machine Theory 34(3) (1999)

Chaker, A., Mlika, A., Laribi, M.A., Romdhane, L., Zeghloul, S.: Synthesis of spherical par-
allel manipulator for dexterous medical task. Frontiers of Mechanical Engineering 7(2),
150–162 (2012)

Galantai, A.: The theory of newton’s method. Journal of Computational and Applied Mathe-
matics 124(12), 25–44 (2000)

Gosselin, C.M., Lavoie, E.: On the kinematic design of spherical three-degree-of-freedom
parallel manipulators. The International Journal of Robotics Research 12(4), 394–402
(1993)

Merlet, J.P.: Jacobian, manipulability, condition number, and accuracy of parallel robots.
Journal of Mechanical Design 128(1), 199 (2006)

Wang, J., Gosselin, C.M.: Singularity loci of a special class of spherical 3-DOF parallel mech-
anisms with prismatic actuators. Journal of Mechanical Design 126(2), 319 (2004)


	On the Kinematics of Spherical Parallel Manipulators for Real Time Applications
	Introduction
	Teleoperation Context
	Kinematics of the SPM
	Forward Kinematics
	Inverse Kinematics
	Jacobian Matrix

	Proposed Algorithm
	Results
	Conclusion
	References




