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Abstract. Decomposition based evolutionary approaches such as MOEA/D and
its variants have been quite successful in solving various classes of two and three
objective optimization problems. While there have been some attempts to mod-
ify the dominance based approaches such as NSGA-II and SPEA2 to deal with
many-objective optimization, there are few attempts to extend the capability of
decomposition based approaches. The performance of a decomposition based ap-
proach is dependent on (a) the mechanism of reference points generation i.e. one
which needs to be scalable and computationally efficient (b) the method to si-
multaneously deal with conflicting requirements of convergence and diversity
and finally (c) the means to use the information of neighboring subproblems ef-
ficiently. In this paper, we introduce a decomposition based evolutionary algo-
rithm, wherein the reference points are generated via systematic sampling and
an adaptive epsilon scheme is used to manage the balance between convergence
and diversity. To deal with constraints efficiently, an adaptive epsilon formula-
tion is adopted. The performance of the algorithm is highlighted using standard
benchmark problems i.e. DTLZ1 and DTLZ2 for 3, 5, 8, 10 and 15 objectives,
the car side impact problem, the water resource management problem and the
constrained ten-objective general aviation aircraft (GAA) design problem. The
study clearly highlights that the proposed algorithm is better or at par with recent
reference direction based approaches.

Keywords: many-objective optimization, generation of reference points, adap-
tive epsilon comparison, constraint-handling.

1 Introduction

Many objective optimization typically refers to problems with the number of objectives
greater than four [1]. There is significant amount of literature discussing the challenges
involved in solving them and interested readers may refer to [1] for further details.
The commonly used dominance based methods for multi-objective optimization, such
as NSGA-II, SPEA2 etc. are known to be inefficient for many-objective optimization
as non-dominance does not provide adequate selection pressure to drive the population
towards convergence. There has been a number of attempts to modify the underlying
selection pressure through the use of substitute distance measures [2][3], average rank
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domination [4], fuzzy dominance [5], ε-dominance [6][7], adaptive ε-ranking [8] etc.
without great success. In all the above approaches, while the diversity and the conver-
gence of the population improved during the course of evolution, there is no guarantee
that the final non-dominated set spans the entire Pareto surface uniformly.

There are also radically different approaches to deal with many objective optimiza-
tion, such as attempts to identify the reduced set of objectives [9] or corners of the
Pareto front [10] and subsequently solving the problem using these reduced set of ob-
jectives. Other attempts include interactive use of decision makers preferences [11], use
of reference points [12][13] or solution of the problem as a hypervolume maximization
problem [14]. While some progress has been made along these lines, the limiting factors
include the inability to obtain solutions close to Pareto set for an accurate identification
of redundant objectives, decision making burden associated with preference elicitation
and the computational complexity of hypervolume computation.

Decomposition based evolutionary algorithms are yet another class of algorithms
originally introduced as MOEA/D [15], wherein the multiobjective optimization prob-
lem is decomposed into a series of scalar optimization problems. In a decomposition
based approach, one need to generate uniformly distributed reference directions and
adopt a method of scalarization. In the context of many objective optimization, the first
issue relates to the design of a computationally efficient scheme to generate W uniform
reference directions for a M objective optimization problem, where M is typically more
than four and W is of the same order as the population size. The second issue relates
to scalarization, which essentially assigns the f ittest individual to each reference direc-
tion. The notion of f ittest is essentially derived using a tradeoff between convergence
and diversity measured with respect to any given reference direction. One of the early
attempts to generate uniformly distributed reference directions appear in the works of
Hughes [13] . The method was not computationally efficient for problems with more
than six objectives and often resulted in a large number of reference directions that in
turn required a huge population size. More recently, computationally efficient and scal-
able sampling schemes have been used in the context of many-objective optimization.
A systematic sampling [16] scheme has been used in M-NSGA-II [17] while an uni-
form sampling scheme has been used within MOEA/D [18] to deal with many objective
optimization problems.

The second issue related to scalarization has been addressed via two fundamental
means i.e. through a systematic association and niche preservation mechanism as in
M-NSGA-II [17] or through the use of a penalty function(i.e. an aggregation of the pro-
jected distance along a reference direction and the perpendicular distance from a point
to a given reference direction) within the framework of MOEA/D. The performance
of the penalty function based approach is dependent on the penalty parameter, while
the association and the niche preservation process require a careful implementation to
address a number of possibilities.

In this paper, we introduce a decomposition based evolutionary algorithm for many-
objective optimization. The reference directions are generated using systematic sam-
pling, wherein the points are systematically generated on a hyperplane with unit in-
tercepts in each objective axis. The process of reference point generation is the same
as adopted in M-NSGA-II [17]. The fine balance between convergence and diversity
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along a reference direction is managed using an adaptive epsilon model eliminating
the need for the penalty parameter. While M-NSGA-II [17] is a generational model,
our proposed algorithm is a steady state form. Furthermore, to deal with constraints,
an adaptive epsilon level based scheme is introduced which has been demonstrated to
be more effective over feasibility first schemes in the context of constrained optimiza-
tion [19].

The details of the proposed algorithm are presented in Section 2. The performance
of the proposed algorithm on benchmark problems (DTLZ1 and DTLZ2 for 3, 5, 8, 10
and 15 objectives) is presented and compared with MOEA/D-PBI and M-NSGA-II in
Section 3. In addition to the above set of mathematical benchmarks, the performance
of the algorithm is also compared using a number of engineering design problems (car
side impact, water resource management and the constrained ten-objective general avi-
ation aircraft (GAA) design). The final section summarizes the contributions and future
directions for further improvement.

2 Proposed Algorithm

A many-objective optimization problem can be defined as follows:

min. [ f1(x), f2(x), f3(x), ..... fM(x)],x ∈ Ω
S.t. g j(x)≤ 0, j = 1,2, .......p (1)

hk(x) = 0,k = 1,2, .......q

where f1(x), f2(x), f3(x), ...... fM(x) are the M objective functions, p is the number of
inequalities and q is the number of equalities.

The pseudocode of the algorithm is presented below and the subsequent components
are discussed in the following subsections.

Algorithm 1. DBEA-Eps
Input: Genmax maximum number of generations, W the number of reference points

1: Generate the reference points and assign their neighborhood
2: Initialize the population P; |P| = W
3: Evaluate the initial population and compute the ideal point z̄ j = ( f min

1 , f min
2 , ....., f min

M ) and intercepts ai’s for i = 1 to M
4: Scale the individuals of the population
5: while (gen ≤ Genmax) do
6: for i=1:W do
7: Assign the base parent as Pi

8: I=Select a mating partner for (Pi)
9: Create a child via recombination as Ci
10: Evaluate Ci and compute the distances (d1 and d2) using all reference directions
11: Replace the parent Pk with Ci using single-first encounter, where k denotes the index of the first parent satisfying

the condition of replacement
12: Update the ideal point (z̄), the intercepts and re-scale the population
13: end for
14: end while

The algorithm consists of four major components i.e. (a) generation of reference
directions and assignment of neighborhood (b) computation of distances along and per-
pendicular to each reference direction (c) method of recombination using information
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from neighboring subproblems and finally (d) adaptive epsilon comparison to manage
the balance between convergence and diversity.

2.1 Generation of Reference Points and Assignment of Neighborhood

A structured set of reference points (β ) is generated spanning a hyperplane with unit
intercepts in each objective axis using the algorithm outlined in [16]. The approach
generates W points on the hyperplane with a uniform spacing of δ = 1/p for any num-
ber of objectives M. The process of generation of the reference points is illustrated for
a 3-objective optimization problem i.e. (M=3) and with an assumed spacing of δ = 0.2
i.e (p = 5) in Figure 1. The process results in the generation of 21 reference points.

W = (M+p−1)Cp (2)

(a) (b)

Fig. 1. (a) the reference points are generated computing β s recursively (b) the table shows the
combination of all β s in each column
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p = 5

The distribution of the reference points are presented in Figure 2. The reference
directions are formed by constructing a straight line from the origin to each of these
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reference points. The population size of the algorithm is set to the number of reference
points. For every reference point, its neighborhood consists of T closest reference points
computed based on a Euclidean distance amongst them. The initial population consists
of W individuals generated randomly within the variable bounds. Such solutions are
thereafter assigned randomly to a reference direction during the phase of initialization.

2.2 Computation of Distances along and Perpendicular to Each Reference
Direction

Since in a generic many objective optimization problem, the objectives may assume
negative values or values in varying orders of magnitude, it is important to scale them
appropriately. The ideal point of a population is denoted by z̄ j = ( f min

1 , f min
2 , ....., f min

M )
and the extreme point is denoted by z j

e = ( f max
1 , f max

2 , ....., f max
M ). A hyperplane is cre-

ated using the solutions that have led to the coordinates of the extreme point. The in-
tercepts of the hyperplane along the objective axes are denoted by a1,a2, ....,aM . The
generic equation of a plane through these points can be represented using the following
equation

A f1 +B f2 + .....+C fM = 1 (3)

where, A, B,....,C are the unit normal of the plane. The intercepts of the plane with the
axis are given by a1 = 1/A, a2 = 1/B,....., and aM = 1/C.

In the event, the number of such solutions are less than M or any of the ai’s are
negative, ai’s are set to f max

i . Every solution in the population is subsequently scaled as
follows:

f
′
j(x) =

f j(x)− z̄ j

a j − z̄ j
,∀ j = 1,2, ...M (4)

For any given reference direction, the performance of a solution can be judged using
two measures d1 and d2 as depicted in Equation 8. The first measure d1 is the Euclidean
distance between origin and the foot of the normal drawn from the solution to the refer-
ence direction, while the second measure d2 is the length of the normal. Mathematically,
d1 and d2 are computed as follows:

d1 = wT f
′
j(x) (5)

d2 = || f ′j(x)−wT f
′
j(x)w|| (6)

where w is a unit vector along any given reference direction. It is clear that a value of
d2 = 0 ensures the solutions are perfectly aligned along the required reference direction
ensuring perfect diversity, while a smaller value of d1 indicates superior convergence.
These two measures are subsequently used to control diversity and convergence of the
algorithm via an adaptive epsilon scheme.
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2.3 Mating Partner Selection

The information and similarity of neighboring subproblems are exploited via the pro-
cess of parter selection. The mating partner for Pi (where i is the index of the current
individual in a population) is selected using of the following rules i.e. rule 1: select a
parent from the neighborhood with a probability of τ and rule 2: select a random parent
from the population with a probability of (1− τ).

2.4 Method of Recombination

In the recombination process, two child solutions are generated using simulated binary
crossover (SBX) operator [20] and polynomial mutation. The first child is considered
as an individual attempting to replace any parent in the population.

2.5 Adaptive Epsilon Comparison to Manage the Balance between Convergence
and Diversity

Since every solution is assigned to a reference direction, the average deviation εCD for
the population of solutions is computed using Equation 7, where d2i denotes the d2

measure of the ith individual in the population.

εCD =
∑W

i=1 d2i

W
(7)

whenever a child solution is created, its d2 measure is computed along all reference
directions and the child solution replaces a single parent based on the following rule
Equation 8.

(d1,d2)<εCD(d1,d2)⇔
⎧
⎨

⎩

d1<d2, if d2,d2 < εCD

d1<d2, if d2 = d2

d2<d2, otherwise
(8)

It is also worth noting that this process is a single-first encounter replacement scheme
whereby, the child solution can only replace a single parent and the first encountered
parent meeting the condition is replaced. Whenever a replacement is successful, a check
is performed to identify if there is a need to re-compute the ideal point or the intercepts.
The population needs to be re-scaled in the event the ideal point or the intercepts have
changed.

The possible epsilon comparison scenarios are presented in Fig. 7 as Case 1, Case 2
and Case 3. Let us assume the parent solution is denoted by (s1) and the child solution
is denoted by (s2)). Case 1: Both the solutions have their d2 values less than εCD. One
with the smaller d1 is selected i.e.(s1). Case 2: Both the d2 values are more than εCD.
One with the lower d2 value is selected i.e.(s2). Case 3: One solution has its d2 value
more than εCD and the other has its d2 value less than εCD. One with the smaller d2

value is selected i.e. (s1).
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Fig. 3. (a) Case 1 (b) Case 2 (c) Case 3

2.6 Constraint Handling

The constraint handling approach used in this work is based on epsilon level comparison
and has been reported earlier in [21]. The feasibility ratio (FR) of a population refers to
the ratio of the number of feasible solutions in the population to the number of solutions
(W ). The allowable violation is calculated as follows:

CV =
p

∑
i=1

max(gi,0)+
q

∑
i=1

max(|hi − ε|,0) (9)

CVmean =
1

W

W

∑
j=1

(CVj) (10)

Allowable violation(εCV ) =CVmean ∗FR (11)

An epsilon level comparison using this allowable violation measure is used to compare
two solutions. If two solutions have their constraint violation value less than this epsilon
level, the solutions are compared based on their objective values i.e. via d1 and d2 mea-
sures. Such a constraint handling scheme has been demonstrated to be more efficient
than feasibility first schemes.

3 Experimental Results

In this section, we present the results of proposed decomposition based evolutionary
algorithm (DBEA-Eps) and compare its performance with M-NSGA-II and MOEA/D-
PBI [22] for DTLZ1 and DTLZ2 problems with 3,5,8,10 and 15 objectives.

The population sizes used in this study are the same as those adopted in [22]. In our
proposed algorithm, the probability of crossover is set to 1 and the probability of muta-
tion is set to pm = 1/D, where D is the dimensionality of the problem. The distribution
index of crossover is set to ηc=30 and the distribution index of mutation is set to ηm=20
as in [22]. The probability of selecting parent from its neighborhood (τ) is set to 0.9
and the neighborhood size is set to 20.

To assess the performance, we have selected IGD [23][15] as a performance metric.
The IGD metric in our simulation results is calculated by normalizing the approximated
set with the theoretical ideal and nadir points for the DTLZ problems.
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3.1 Performance on Unconstrained DTLZ Problems

In this comparison, we have reported the best, median and worst IGD results obtained
using 20 independent runs for DTLZ1 and DTLZ2. The results are compared against
M-NSGA-II and MOEA/D-PBI in Table 3. In Fig 4 and Fig 5, the final Pareto front is
shown for three-objective problems of DTLZ1 and DTLZ2.

Table 1. IGD statistics for problems DTLZ1 and DTLZ2 using 20 independent runs

Test Problem Obj. MaxGen Strategy Best Median Worst

DTLZ1 3 400
DBEA-Eps 8.771e-5 9.521e-3 5.854e-1
M-NSGA-II 4.880e-4 1.308e-3 4.880e-3

MOEA/D-PBI 4.095e-4 1.495e-3 4.743e-3

DTLZ1 5 600
DBEA-Eps 1.771e-5 2.183e-4 3.782e-1
M-NSGA-II 5.116e-4 9.799e-4 1.979e-3

MOEA/D-PBI 3.179e-4 6.372e-4 1.635e-3

DTLZ1 8 750
DBEA-Eps 4.387e-5 3.581e-4 1.981e-3
M-NSGA-II 2.044e-3 3.979e-3 8.721e-3

MOEA/D-PBI 3.914e-3 6.106e-3 8.537e-3

DTLZ1 10 1000
DBEA-Eps 7.691e-4 1.504e-3 2.700e-3
M-NSGA-II 2.215e-3 3.462e-3 6.869e-3

MOEA/D-PBI 3.872e-3 5.073e-3 6.130e-3

DTLZ1 15 1500
DBEA-Eps 1.696e-3 2.606e-3 2.686e-3
M-NSGA-II 2.649e-3 5.063e-3 1.123e-2

MOEA/D-PBI 1.236e-2 1.431e-2 1.692e-2

DTLZ2 3 250
DBEA-Eps 2.040e-2 4.138e-2 6.417e-2
M-NSGA-II 1.262e-3 1.357e-3 2.114e-3

MOEA/D-PBI 5.432e-4 6.406e-4 8.006e-4

DTLZ2 5 350
DBEA-Eps 1.199e-3 3.024e-3 2.272e-2
M-NSGA-II 4.254e-3 4.982e-3 5.862e-3

MOEA/D-PBI 1.219e-3 1.437e-3 1.727e-3

DTLZ2 8 500
DBEA-Eps 1.172e-3 2.899e-3 6.915e-3
M-NSGA-II 1.371e-2 1.571e-2 1.811e-2

MOEA/D-PBI 3.097e-3 3.763e-3 5.198e-3

DTLZ2 10 750
DBEA-Eps 3.656e-3 3.657e-3 3.657e-3
M-NSGA-II 1.350e-2 1.528e-2 1.697e-2

MOEA/D-PBI 2.474e-3 2.778e-3 3.235e-3

DTLZ2 15 1000
DBEA-Eps 5.160e-3 5.960e-3 5.960e-3
M-NSGA-II 1.360e-2 1.726e-3 2.114e-2

MOEA/D-PBI 5.254e-3 6.005e-3 9.409e-3

One can observe that our algorithm obtained the best IGD values in 8 instances out
of 10. In terms of the median performance, our algorithm was the best in 6 instances
thereby indicating competitive performance with recently proposed forms.
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Fig. 4. Obtained solutions by (a) M-NSGA-II (b) MOEA/D-PBI (c) DBEA-Eps for DTLZ1

Fig. 5. Obtained solutions by (a) M-NSGA-II (b) MOEA/D-PBI (c) DBEA-Eps for DTLZ2

In order to observe the process of evolution, we computed the average performance
of the population i.e. average of the d1 and d2 values for the individuals for DTLZ1 (3
objectives). One can observe from Figure 6, that the average d2 converges to near zero
(i.e. near perfect alignment to the reference directions) while the average d1 measure
stabilizes at around 0.5 indicating convergence to the Pareto front.
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Fig. 6. (a) the initial population of DTLZ1 test problem for number of objectives 3 (b) the final
Pareto-front of DTLZ1 test problem for number of objectives 3 (c) the convergence of distance
measure over the generations

The association mechanism (i.e. solutions to each reference direction) for a 3-
objective DTLZ1 problem is presented in Figure 7. The figure shows the associations in
generation 1, 200 and 400 using 15 reference points. One can observe that although ini-
tially the association is random, the solutions automatically get associated to the closest
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reference directions during the course of evolution via the pressure induced by d2. This
alleviates the need of an extensive niching and association operation as encountered in
M-NSGA-II [17].

(a) (b) (c)

Fig. 7. (a) the initial population of DTLZ1 test problem for number of objectives 3 with 15 refer-
ence points (b) at generation 200 (c) at final generation 400

4 Constrained Engineering Design Problems

Since the performance of the proposed algorithm was competitive on unconstrained
test problems, we investigated its performance on three constrained engineering de-
sign optimization problems i.e. the three-objective car-side-impact problem [24] with
ten inequality constraints, five-objective water resource management problem [25] with
seven inequality constraints and finally the ten objective general aviation aircraft (GAA)
design problem [7] having a single inequality constraint.

4.1 Car Side Impact Problem

The problem aims to minimize the weight of a car, the pubic force experienced by a
passenger and the average velocity of the V-Pillar responsible for bearing the impact
load subject to the constraints involving limiting values of abdomen load, pubic force,
velocity of V-Pillar, rib deflection etc [24].

The problem is solved using DBEA-Eps and MOEA/D-PBI. The algorithms are run
for 500 generations and the final non-dominated front is shown in Fig 8.It is important
to note that the results of MOEA/D-PBI is derived without scaling which could be a
reason among others for poor performance.

4.2 Water Resource Management Problem

This is a five objective problem having seven constraints taken from the literature [25].
The parallel coordinate plot generate using our proposed algorithm (DBEA-Eps) is pre-
sented in Fig 9. The best IGD value across 20 runs is 3.29e−2 and the IGD is computed
using the reference set of 2429 solutions [26]. A population of 210 solutions has been
used and evolved over 1000 generations.

In Fig 10, a scatter plot-matrix is presented. The results from the DBEA-Eps are
shown in the top-right plots vis-a-vis the known reference set of 2429 solutions (shown
in bottom-left plots).
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4.3 General Aviation Aircraft (GAA) Design Problem

This problem was first introduced by Simpson et al. [27] and has been recently solved
using an evolutionary algorithm [7]. The problem involves 9 design variables i.e. cruise
speed, aspect ratio, sweep angle, propeller diameter, wing loading, engine activity fac-
tor, seat width, tail length/ diameter ratio and taper ratio and the aim is to minimize
the takeoff noise, empty weight, direct operating cost, ride roughness, fuel weight, pur-
chase price, product family dissimilarity and maximize the flight range, lift/ drag ratio
and cruise speed. Previous studies encountered difficulties in obtaining feasible solu-
tions due to tight constraints [27].

In this example, we have used 100 reference points and the population was allowed
to evolve over 5000 generations. A reference set of 412 non-dominated solutions ob-
tained from ε-MOEA and Borg-MOEA is used to compute the IGD metric. The re-
sults of the proposed algorithm are compared with four other algorithms i.e. ε-MOEA,
Borg-MOEA, MOEA/D and ε-NSGA-II [7]. We have also computed the hypervolume
using the ideal point of (i.e.[73.251, 1881.5, 59.114, 1.7977, 359.92, 41879, -2580.2,
-16.823, -204.02, 0.26847]) and the extreme point of (i.e.[74.036, 2011.5, 79.993, 2,
483.13, 44590, -2000, -14.408, -189.3, 1.9844]) obtained from the reference set. The
performance of the algorithms are compared using the hypervolume in Table 2 and IGD
in Table 3. One can observe that the proposed algorithm performs marginally better than
others for this problem.

Figure 11 shows the parallel coordinate plot. The figure clearly shows that DBEA-
Eps is able to find a widely distributed set of nondominated points for 10-objective
GAA design problem.
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Table 2. Performance metric value of product family design problem using 50 independent runs

Algorithm Function Evaluation
Hypervolume

Best Mean Worst Std
DBEA-Eps

50,000

0.02899 0.01715 0.00689 0.04561
ε-MOEA 0.02032 0.01032 0.00259 0.04125

Borg-MOEA 0.02245 0.01013 0.00424 0.02327
MOEA/D 0.00092 0.00087 0.00045 0.00145

ε-NSGA-II 0.01636 0.01005 0.00236 0.05232

Table 3. Performance metric value of product family design problem using 50 independent runs

Algorithm Function Evaluation
IGD

Best Mean Worst Std
DBEA-Eps

50,000

0.62070 0.80123 0.82430 0.09210
ε-MOEA 0.98312 0.99123 0.99678 0.10312

Borg-MOEA 0.98211 0.99113 0.99337 0.02321
MOEA/D 0.99117 0.99587 0.99723 0.02145

ε-NSGA-II 0.98571 0.98872 0.99131 0.72123
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5 Conclusion

In this paper, a decomposition based evolutionary algorithm with adaptive epsilon com-
parison is introduced to solve unconstrained and constrained many objective optimiza-
tion problems. The approach utilizes reference directions to guide the search, wherein
the reference directions are generated using a systematic sampling scheme as introduced
by Das and Dennis [16]. The algorithm is designed using a steady state form. In an at-
tempt to alleviate the problems associated with scalarization(commonly encountered in
the context of reference direction based methods), the balance between diversity and
convergence is maintained using an adaptive epsilon comparison. Such a process also
eliminates the need for a detailed association and niching operation as employed in M-
NSGA-II. In order to deal with constraints, an epsilon level comparison is used which
is known to be more effective than methods employing feasibility first principles. The
performance of the algorithm is presented using DTLZ1 and DTLZ2 problems with
objectives ranging from 3 to 15. Furthermore, three constrained engineering design op-
timization problems with three to seven constraints (car side impact, water resource
management and a general aviation aircraft design problem) have been solved to il-
lustrate the performance of the proposed algorithm. The preliminary results indicate
that the proposed algorithm is able to deal with unconstrained and constrained many-
objective optimization problems better or at par with existing state of the art algorithms
such as M-NSGA-II and MOEA/D-PBI.
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