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Abstract. Various multi-objective evolutionary algorithms (MOEAs)
have been developed to help a decision maker (DM) search for his/her
preferred solutions to multi-objective problems. However, none of these
approaches has catered simultaneously for the two fundamental ways
that DM can specify his/her preferences: weights and aspiration levels.
In this paper, we propose an approach named iPICEA-g that allows the
DM to specify his preference in either format. iPICEA-g is based on the
preference-inspired co-evolutionary algorithm (PICEA-g). Solutions are
guided toward regions of interest (ROIs) to the DM by co-evolving sets of
goal vectors exclusively generated in the ROIs. Moreover, a friendly deci-
sion making technique is developed for interaction with the optimization
process: the DM specifies his preferences easily by interactively brushing
his preferred regions in the objective space. No direct elicitation of num-
bers is required, reducing the cognitive burden on DM. The performance
of iPICEA-g is tested on a set of benchmark problems and is shown to
be good.
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1 Introduction

Multi-objective optimization problems (MOPs) arise in many real-world appli-
cations, where multiple conflicting objectives must be simultaneously satisfied.
Over the last two decades, multi-objective evolutionary algorithms (MOEAs)
have become increasingly popular for solving MOPs since: (1) their population
based nature is particularly useful for approximating trade-off surfaces in a single
run; and (2) they tend to be robust to underlying cost function characteristics [1].

The fundamental goal of solving MOPs is to help a DM to consider the mul-
tiple objectives simultaneously and to identify one final Pareto optimal solution
that pleases him/her the most [2]. Most of the proposed MOEAs aim to ob-
tain a good approximation of the whole Pareto optimal front and subsequently
let the DM choose a preferred one, i.e. a posteriori decision making [2]. Such a
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process is effective on small-scale problems. However, it has difficulties on large-
size problems (e.g. MOPs with many objectives), because approximation of the
whole Pareto optimal front is computationally difficult and DM is usually only
interested in some regions of the Pareto front.

To facilitate the process of decision making, a better choice is to consider DM
preferences in an a priori (preferences are specified before the start of the search)
or an interactive (preferences are articulated during the search) way [2]. In these
cases, the search can be guided by the preferences toward the ROIs of the Pareto
front and away from exploring non-interesting solutions. Since the final decision
making process is based on a set of preferred solutions the burden to DM can
be reduced significantly.

In the multi-criteria decision making (MCDM) community, various ways have
been proposed to represent the preferences of a DM e.g. aspiration levels (goals),
weights (search directions), local trade-off, utility function, outranking, fuzzy
logic, etc. [2]. the The most frequently used ways are weights (or search direction)
and aspiration levels (or goals) [3]. By using weights [4,5] it is easy to articulate
DM’s bias toward some objectives yet difficult to obtain a precise ROI. By using
aspiration levels [6] it is easy to obtain a precise ROI yet difficult to incorporate
the DM’s bias. Moreover, in some cases it is easier for the DM to express the
preferences by weights and in some cases by aspiration levels. The most flexible
approach would be to develop a unified approach which enables the DM to
articulate both types of the preferences.

In this paper, we describe such a unified approach. Three parameters: refer-
ence point (R), weight (W ) and search range (θ) are introduced. Then a new
interactive evolutionary multi-bjective optimization and decision-making algo-
rithm, iPICEA-g, is proposed that incorporates the unified approach within the
existing algorithm PICEA-g [7,8]. Similar to PICEA-g, in iPICEA-g candidate
solutions are co-evolved with goal vectors and so guided toward the Pareto front.
However, in iPICEA-g the co-evolved goal vectors are exclusively generated in
the ROIs that are defined by the three parameters. Moreover, a very friendly
interactive technique is developed with which the DM need not use any nu-
meric values to specify his preferences; rather he describes his preferences by
interactively brushing his preferred regions in objective space. iPICEA-g auto-
matically configures the required parameters according to the brushed regions
and therefore guides the solutions toward the ROIs.

The reminder of the paper is organized as follows: in Section 2 a brief review
of preference based MOEAs is presented. This is followed, in Section 3, by an
elaboration of the proposed approach iPICEA-g. Section 4 introduces the sim-
ulation results of using iPICEA-g to solve different problems in an a priori way
or an interactive way. Section 5 concludes and discusses the future research.

2 Review of a Selection of Preference Based MOEAs

A variety of MOEAs that have integrated MCDM methods for preference artic-
ulation have been proposed in literature. In this section, we briefly review some
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representative preference based MOEAs. Two comprehensive survey papers can
be found in [9,3].

MOGA [10,6] proposed by Fonscea and Fleming includes probably the ear-
liest attempt to incorporate DM preferences. In their studies, preferences are
expressed with goals and priorities. The incorporation of the preferences can be
in either a priori or interactive manner. Candidate solutions are ranked based
on the Pareto dominance relation together with the specified preferences and
therefore the search space of interest gradually becomes smaller during the evo-
lution. MOGA has been successfully used in a variety of applications, including
the low-pressure spool speed governor of a Pegasus gas turbine engine [11,12].
The main disadvantage of this approach is that it cannot explore multiple ROIs
at the same time. However, exploring multiple ROIs simultaneously is useful
when the DM cannot decide which particular region to explore to be explored
at the beginning, also for group decision making (different DMs can search for
their preferred solutions and select the final solution at the end).

Molina et al. [13] suggested a dominance relation called g-dominance. Solu-
tions satisfying all aspiration levels and solutions fulfilling none of the aspiration
levels are preferred over solutions satisfying some aspiration levels. In [13] an ap-
proach that couples g-dominance and NSGA-II is proposed to search for ROIs.
This algorithm works regardless of whether the specified goal vector is feasi-
ble or infeasible and also it is also easy to extended in an interactive manner.
However, the g-dominance relation does not preserve a Pareto based ordering.
Also, the performance of the algorithm is degraded as the number of objectives
increases [14].

Branke et al [15] proposed a guided MOEA (G-MOEA). In the algorithm, con-
sidering DM preferences are expressed by modifying the definition of dominance
using specified trade-offs between objectives: that is, how much improvement in
one or more objective(s) is comparable to a unit degradation in another objec-
tive. G-MOEA works well for two objectives; however, providing all pair-wise
information in a problem with many objectives is cognitively intensive.

In addition to the above Pareto related approaches, a large body of works are
based on the use of reference point, reference direction and light beam search [2].
Two representative reference point based MOEAs are R-NSGA-II [16] and PBEA
[17]. R-NSGA-II hybridized reference point with NSGA-II. Reference point is not
applied in a classical way, i.e. together with an achievement scalarizing function
[18], but rather to establish a biased crowding scheme. Specifically, solutions
near reference points are emphasized by the selection mechanisms. The extent
and the distribution of the solutions is maintained by an additional parameter
ε. PBEA is hybridization of reference point method and the indicator based
evolutionary algorithm (IBEA [19]). The preference is incorporated by a binary
quality indicator (the ε-indicator) which is also Pareto dominance preserving.
However, since the spread range of the obtained solutions are controled by an
additional fitness scaling factor, it is difficult to control the range of the obtained
solutions.
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Deb et al. [4] combined the reference direction method with NSGA-II. Pref-
erences are modelled by the reference direction (weights) encoded by a staring
point and a reference point. This approach is able to find Pareto optimal solu-
tions corresponding to reference points along the reference direction. Multiple
ROIs can be obtained by using multiple reference directions. Deb et al. [5] also
hybridized NSGA-II with the light beam search method, which enables search-
ing part(s) of the Pareto optimal regions illuminated by the light beam emanat-
ing from the starting point to the reference point with a span controlled by a
threshold.

Researchers from the MCDM community also developed some interactive
MCDM approaches based on MOEAs. For example, Kaliszewski et al [20] pro-
posed to incorporate the DM preference (expressed by search directions) with a
Chebyshef scalarizing function and to execute the optimization search from both
below (lower bounds) and above (upper bounds). The bounds are approximated
based on the objective values of the solutions which are of interest to the DM.

All the above approaches have merit and are able to find Pareto optimal
solutions in a ROI. However, none of the above approaches can simultaneously
deal with preferences in the form of weights or in the form of aspiration levels.
Moreover, among these approaches, some cannot explore multiple ROIs, e.g.
MOGA; some do not perform well on many-objective problems [21,22,14], e.g.
g-dominance based MOEA; some cannot search for a precise ROI, e.g. R-NSGA-
II and PBEA.

3 A Unified New Approach for Articulating Decision
Maker’s Preference

In this section we introduce in detail the iPICEA-g algorithm. Since the iPICEA-
g is based on PICEA-g [7,8], we firstly give a short introduction to PICEA-g.

3.1 Preference-Inspired Co-evolutionary Algorithms Using Goal
Vectors

Preference-inspired co-evolutionary algorithms (PICEAs) represent a new class
of MOEAs that were proposed by Purshouse et al. [7]. In PICEAs, incorporating
concepts from Lohn et al [23], a population of candidate solutions are co-evolved
with a set of preferences during the optimization process. Note that the co-
evolved preference are not the real decision-maker preferences but are used as a
means of comparing solutions for the purposes of a posteriori decision making.

Co-evolution of goal vectors (PICEA-g) is one realization of a PICEA [8]. In
PICEA-g, a family of goal vectors and a population of candidate solutions are
co-evolved as the search progresses. Candidate solutions gain fitness by meeting
(weakly dominating [1]) a particular set of goal vectors in objective-space, but
the fitness contribution is shared between other solutions that also satisfy those
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goals. Goal vectors only gain fitness by being satisfied by a candidate solution,
but the fitness is reduced the more times the goals are met by other solutions
in the population. The overall aim is for the goal vectors to adaptively guide
the candidate solutions towards the Pareto optimal front. That is, the candidate
solution population and the goal vectors co-evolve towards the Pareto optimal
front. For more details readers are referred to [7,8].

3.2 Interactive Preference-Inspired Co-evolutionary Algorithms
Using Goal Vectors

As argued earlier, in some cases it is easier for the DM to specify his preferences
in the form of weights (reference/search direction) while other times it is more
convenient for the DM to specify an aspiration level (goal). To meet the needs
of both types of DM, a unified approach is proposed in this section.

The Unified Approach. Three parameters are defined for the unified ap-
proach: a reference point in objective space (R), a search direction (W ) and a
search range (θ). R is to describe the aspiration levels; W is to introduce the

DM’s bias toward some objectives where
∑M

i=1 wi = 1, ∀i, wi ≥ 0. M is the
number of objectives; θ is to control the range of the ROI. An example in the
bi-objective case is shown in Figure 1. Note that R can also be unattainable;
this will be described later.

Fig. 1. Illustration of the parameters R, W and θ

Using the three parameters, DM preferences can be expressed either by weights
or aspiration levels. If the DM specifies weights then R is set to the ideal point
(or the coordinate origin, O), W represents specified weights and θ could be any
value within the range [0,π2 ] radians. If the DM specifies aspirations then R is

set as the aspiration levels, wi = 1/M, i = 1, · · · ,M , θ = arccos(
√
M−1√
M

), e.g.,

when M = 2, w1 = w2 = 0.5 and θ = π
4 .
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The Proposed Algorithm: iPICEA-g. Using the concepts from PICEA-g,
it is easy to imagine that if the goal vectors are exclusively generated in a region
then candidate solutions inside this region will be encouraged in the evolution.
The reason is that these candidate solutions can meet (weakly dominate) more
goal vectors and so result in higher fitness, while candidate solutions outside
this region can only meet(weakly dominate) few goal vectors and so have a
lower fitness. Therefore, over the generations more and more candidate solutions
will be guided toward the specified region. For example, in Figure 2, goal vectors
are generated in regions G1 and G2. The objective vector f(s1) of solution s1
is inside the region G1 while f(s1) of s2 is outside the G1. Compared to f(s2),
f(s1) can meet more goal vectors. That is, f(s1) would obtain a higher fitness
than f(s2), thereby, f(s1) is more likely to be retained in the search process
while f(s2) is likely to be disregarded.

Fig. 2. Illustration of iPICEA-g

Inspired by this thinking, in iPICEA-g goal vectors are not generated in the
whole objective space but somewhere which is related to the given ROIs (see
the shaded regions in Figure 2). By co-evolving candidate solutions with these
specially generated goal vectors, candidate solutions would be guided toward
the ROIs. In details, goal vectors are generated in both the shaded regions (G1
and G2) that are determined by R, W , θ, O′ and O′′. The region extends both
toward and away from the coordinate origin in order to handle the case where
the supplied R is unattainable. O′ and O′′ are the lower and upper bounds of
the regions that are to generate goal vectors. O and O′ are estimated based
on f(S∗) (where S∗ represents the current non-dominated solutions) and the
specified reference point, R: see equation 1:

O′ =α×min (Ri � fi(S
∗)), i = 1, 2, · · · ,M, 0 < β < 1

O′′ =β ×max (Ri � fi(S
∗)), i = 1, 2, · · · ,M, β > 1

(1)

where α and β are two scaling parameters, here, we use α = 0.5 and β = 1.5.
Note O′ and O′′ can be set equal to ideal and nadir point, if they are known.
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Amodified Pareto dominance relation namedPareto cone-dominance is applied
in iPICEA-g. A goal vector, gi is said to be satisfied (Pareto cone-dominated) by

a candidate solution, f(si) if and only if the angle between the vector
−−−−→
f(si)gi and

the vector
−−−−→
Of(si) is not larger than the specified search range, θ. For example, in

Figure 2, g1 is satisfied (Pareto cone-dominated ) by candidate solution f(s1) while
g2 is not.

Apart from the benefit that iPICEA-g can handle the DM preference either as
weights or aspiration levels, another major benefit of iPICEA-g is that multiple
ROIs can be explored by simultaneously generating goal vectors for all the ROIs.
Besides, we anticipate that iPICEA-g performs well on many-objective problems
because PICEA-g has a good performance on MOPs with many objectives [7,8].

4 Experiments

In this section, we illustrate the performance of iPICEA-g on different bench-
marks from the ZDT [24] and DTLZ [25] test suites. In all the experiments
the population size of candidate solutions and goal vectors of iPICEA-g are set
as N = 100 and Ngoal = 100, respectively. Simulated binary crossover (SBX,
pc = 1,ηc = 15) and polynomial mutation (PM, pm = 1

nvar per decision variable
and ηm = 20, where nvar is the number of decision variables) [26] are applied as
genetic variation operators. Firstly, we show the effects of R, W and θ. Secondly,
we show the performance of iPICEA-g on searching for ROIs in an a priori and
progressive way. Note that all the results are illustrative rather than statistically
robust.

4.1 Demonstrations of the Effects of R, W and θ

The bi-objective 20-variable DTLZ2, which has a concave Pareto optimal front
is selected as test problem to study the effect of the three parameters.

The Effect of R. Assuming the DM would like to have solutions around a
point then we set R as the specified point. For example, the DM specify (1)
one infeasible (0.6,0.6) reference point; (2) one feasible (0.8,0.8) reference point;
and (3) two reference points (0.7,0.9) and (0.8,0.3). Figure 3 shows the obtained
results after performing iPICEA-g for 200 generations. During the simulation
the search direction is set as W = [0.5, 0.5] which means there is no bias for any
objective and the search range θ = π

4 radians shows a range that is close to 50:50
emphasize. From Figure 3, we observe that in all cases iPICEA-g can find a set of
well converged solutions. It illustrates that iPICEA-g is able to handle both the
feasible and infeasible aspiration level, moreover, it can explore multiple ROIs
simultaneously.

The Effect of W . Assuming that DM would like to specify a preference for
one objective over another we use W . For example, the DM specifies that (1)
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Fig. 3. The solutions obtained by iPICEA-g with different reference points

both the objectives are equally important then W = [0.5, 0.5] or (2) objective
f1 is twice as important as f2 then W = [0.67, 0.33] or (3) objective f1 is half as
important as f2 then W = [0.33, 0.67]. Figure 4 shows the obtained results after
performing iPICEA-g for 200 generations with W = [0.5, 0.5], W = [0.33, 0.67]
and W = [0.67, 0.33], respectively. During the simulation, R = (0.5, 0.5) and
θ = π

6 radians. From the Figure, we observe that the obtained solutions are
along the given search direction, W . In other words, the obtained solutions are
biased with different W . For example, in the case of W = [0.67, 0.33] f1 is more
optimized.

Fig. 4. Solutions obtained by iPICEA-g with different search directions

The Effect of θ. If the DM would like to obtain a large spread range of solutions
then θ could be a large value e.g. having θ = π

2 radians, the whole Pareto front
can be obtained. If the DM would like to obtain some solutions that are exactly
along the specified W then θ is set to π

180 radians. Figure 5 show the obtained
results after performing iPICEA-g for 200 generations with θ = π

2 ,
π
4 and π

180 ,
radians, respectively. During the simulation, R = (0.3, 0.3) and W = [0.5, 0.5].
Clearly, the range of the obtained solutions decreases as θ decreases.
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Fig. 5. The distribution of solutions obtained by iPICEA-g with different θ values

4.2 Results for a Priori Preference Expression

Search With Weights. Here we consider the case where the DM states the
relative importance of each objective. Bi-objective ZDT2 and 4-objective DTLZ2
are used in the simulation and. iPICEA-g is run for 200 generations on each
problem.

For ZDT2 assuming that DM specifies f1 is twice as important as f2 then
W = [ 23 ,

1
3 ]; correspondingly, θ is set as π

4 radians in order to obtain a moderate
range of solutions; R is set as the O′. From Figure 6.a we can clearly observe
the obtained solutions are biased to objective f1. Also, the solutions are near
the true Pareto front.

For DTLZ2 we assume the DM specifies that f1 is four times as important
as f4, f2 is three times as important as f4, f3 is twice as important as f4 then
W = [0.4, 0.3, 0.2, 0.1]; correspondingly, θ is set as π

12 radians so as to obtain a
close range of solutions; R is set to the O′. Observed from Figure 6.b (parallel
coordinates plots [12]), a set of solutions are obtained, which are located around
the projected point Q shown as −�−. Q is the projection of the coordinate origin
to the Pareto optimal front along the direction [0.4, 0.3, 0.2, 0.1]. The true Pareto

front of DTLZ2 is the surface of hyper-sphere with radius 1 (
∑M

i=1 f
2
i = 1) in

the first quarter [25]. Having computed
∑4

i=1 f
2
i for all the obtained solutions,

we find all values lies within the range [1.0391,1.0903] which confirm that the
obtained solutions have almost converged to the true Pareto front.

Search With Aspiration Levels. Here we consider the case where the DM
specifies preferences as aspiration levels. Again, the bi-objective ZDT1 and 4-
objective DTLZ2 problems are used in the simulation.

For ZDT1 we assume that DM specifies his aspiration level as [0.7,0.7] and soR
= (0.7,0.7); correspondingly, W is set as [0.5,0.5] and θ is set as π

4 radians. After
running iPICEA-g for 200 generations a set of satisfied solutions are obtained
shown in Figure 7.a. We can see that visually all the obtained solutions are very
close to the true Pareto front.

For DTLZ2, we assume the DM specifies that f1, f2, f3 and f4 should be
better (smaller) than 0.58, 0.7, 0.6 and 0.5, respectively. Therefore, we set
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(a) (b)

Fig. 6. Illustration of searching with weights

R = (0.58,0.7,0.6,0.5). Correspondingly, W is configured as [0.25, 0.25, 0.25,

0.25] and θ is set as arccos(
√
M−1√
M

) = π
6 radians. After running iPICEA-g for 200

generations a set of solutions is found as shown in Figure 7.b. All the solutions
have met the aspiration level. After computing

∑4
i=1 f

2
i for all obtained solu-

tions, the values lie within the range [1.0141,1.0528], therefore indicating that
all solutions have converged close to the true Pareto front.

(a) (b)

Fig. 7. Illustration of searching with aspirations

4.3 Results for a Progressive Preference Expression

Cognitively, DM may find it easier to specify preferences visually by drawing
rather than using numbers. iPICEA-g allows DM to brush existing solutions or
regions of the objective space that are of interest. These preferences would be
automatically converted into R, W and θ parameters. Consider a 2-objective
minimization example, see Figure 8. The brushed region is labelled as A.
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Firstly, we find the extreme points of A, i.e. Pf1 and Pf2. P
′
f1 and P ′

f2 are

the normalized vector of Pf1 and Pf2, respectively, i.e. Pfi =
Pfi

Li
, i = 1, 2, where

Li is the Euclidean distance from O′ to Pfi. |O′P ′
f1| = |O′P ′

f2| = 1. Then the
search direction W is determined by vector O′P , where P is the center of P ′

f1

and P ′
f2. θ is then calculated by arccos(

−−→
O′P · −−−→O′P ′

f1). R is set as the O′ (which
can be obtained by equation 1). The co-evolved goal vectors are then generated
in the shaded region closed by points R, Pf1, Pf2 and O′′.

Fig. 8. Illustration of parameter calculation

To describe the working process, we solve the bi-objective ZDT1 and 4-
objective DTLZ4 problems by simulating an interactive search process.

Bi-objective ZDT1. Firstly, iPICEA-g is run for 10 generations without incor-
porating any preferences. The aim is to roughly know the range of the objectives
so as to give better preferences. The obtained solutions are shown in Figure 9.a.

Secondly, the DM brushes his preferred regions, i.e. the shaded regions in
Figure 9.a. The related parameter settings of iPICEA-g are then calculated based
on the brushed region, which are W = [0.25, 0.75], θ = 5π

36 radians and W =
[0.75, 0.25], θ = 5π

36 radians for region A and B, respectively. After running
iPICEA-g for 50 more generations, two sets of improved solutions are found. See
Figure 9.b.

Thirdly, we assume that the DM is not satisfied with either of the two sets of
solutions. However, he/she is interested in exploring a nearby region, C. The re-
lated parameter settings are W = [0.6, 0.4], θ = π

12 radians. By running iPICEA-
g for another 50 generations, a set of solutions are found in C shown in Figure 9.c.

Fourthly, the DM is still dissatisfied. He/She would like to exploit these so-
lutions. The preferred solutions are then brushed (See Figure 9.c) and iPICEA-
g is run for 50 more generations. The related parameters are configured as
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W = [0.5, 0.5], θ = π
18 radians. A set of better solutions are found. The DM is

now happy to choose a single solution from this set. The solution D is selected;
see Figure 9.d.

(a) (b)

(c) (d)

Fig. 9. Interactive scenario on 30-variable ZDT1

4-objective DTLZ2. Similarly, iPICEA-g is run without introducing any pref-
erence for 10 generations. A set of solutions are found as shown in Figure 10.a.

Secondly, DM brushes the preferred solutions for each objective (see Figure
10.a). Parameters W and θ are then calculated as [0.25, 0.25, 0.25, 0.25] and π

6
radians. iPICEA-g is run for 50 more generations. An improved set of solutions
are obtained (see Figure 10.b).

Thirdly, assuming DM is dissatisfied with the obtained solutions. He/She
brushes some solutions that are of interest. Based on the brushed solutions, two
ROIs are identified.The relatedparameters are configuredbyW = [0.3986, 0.3500,
0.1105, 0.1409], θ = π

12 radians andW = [0.1124,0.2249,0.3498,0.3128], θ = 7π
90 ra-

dians. The brushed solutions are shown in Figure 10.c. After running iPICEA-g for
another 50 generations, more solutions are found. See Figure 10.d.

Fourthly, the DM is still not satisfied with the obtained solutions. He/she
decides to explore one set of the obtained solutions. Again, he/she brushes his
preferred solutions which are shown in Figure 10.e and run iPICEA-g for 50 more
generations.W is set as [0.3691,0.2773,0.1383,0.2153], θ is set as π

36 radians. Seen
from Figure 10.f, a set of refined solutions are found in this preferred region. We
compute

∑4
i=1 f

2
i for all the obtained solutions. The value lies within the range
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of [1.0190,1.041] which means the obtained solutions have well converged to the
true Pareto front. The DM is now happy to choose a single solution from this
set. The solution shown as the white dash line is selected; see Figure 10.d.

(a) (b)

(c) (d)

(e) (f)

Fig. 10. Interactive scenario on 4-objective DTLZ2

5 Conclusions

Incorporation of DM preference is an important part of a real-world decision
support system. However, current methods for preference-based multi-objective
optimisation are unable to handle, comprehensively, the range of ways in which
a DM likes to articulate his/her preferences. In this paper, we have presented,
to the best of our knowledge, the first method that is simultaneously able to
handle preferences expressed as weights or as aspirations and that is also able
to support multiple regions of interest. We also enhance the DM-friendiness
by allowing preferences to be expressed either numerically or by interactively



350 R. Wang, R.C. Purshouse, and P.J. Fleming

drawing on cartesian coordinate plots or parallel coordinates plots. Simulation
results have shown the effectiveness of the method.

There are three core directions for future research, firstly, since decision-
making is often a group rather than individual activity, it would be useful to
develop the method in order to support group decision making. Secondly, since
the DM’s preference is often expressed in fuzzy linguistic terms [27], it is impor-
tant to study how to handle fuzzy preferences. Thirdly, the method should be
trialled in a real decision making problem.
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