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Abstract. Many-objective problems are becoming common in several
real-world application domains and there is a growing interest to de-
velop evolutionary many-objective optimizers that can solve them effec-
tively. Studies on selection for many-objective optimization and most
recently studies on the characteristics of many-objective landscapes, the
effectiveness of operators of variation, and the effects of large popula-
tions have proved successful to advance our understanding of evolution-
ary many-objective optimization. This work proposes an evolutionary
many-objective optimization algorithm that uses adaptive ε-dominance
principles to select survivors and also to create neighborhoods to bias
mating, so that solutions will recombine with other solutions located
close by in objective space. We investigate the performance of the pro-
posed algorithm on DTLZ continuous problems, using a short number
of generations to evolve the population, varying population size from
100 to 20000 individuals. Results show that the application of adaptive
ε-dominance principles for survival selection as well as for mating selec-
tion improves considerably the performance of the optimizer.

1 Introduction

Many-objective problems are becoming common in several real-world application
domains and there is a growing interest to develop evolutionary many-objective
optimizers (EMyOs) that can solve them effectively. One such application do-
mains is multi-objective design exploration for real-world design optimization.
Here, a large number of Pareto optimal solutions that give a good representa-
tion of the true Pareto front in terms of convergence, spread, and distribution of
solutions along the front are essential to extract relevant knowledge about the
problem. This knowledge, rather than a particular precise solution, is valuable
to establish trade-offs and hotspots regions for objectives and design variables
in order to provide useful guidelines to designers during the selection of alterna-
tive designs, and to facilitate the implementation of the finally chosen design. In
these applications it is also common that the evaluation of solutions is computa-
tionally expensive and takes a long time to calculate it, which prohibits running
the evolutionary algorithm for a large number of generations. Thus, in real-world

R.C. Purshouse et al. (Eds.): EMO 2013, LNCS 7811, pp. 322–336, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Adaptive ε-Sampling and ε-Hood 323

applications of many-objective optimization we have to face the difficulties im-
posed by the increased complexities of large-dimensional spaces and are often
constrained by time.

It is well known that conventional evolutionary multi-objective optimizers
(EMOs) [1, 2] scale up poorly with the number of objectives of the problem,
which is often attributed to the large number of non-dominated solutions and
the lack of effective selection and diversity estimation operators to discriminate
appropriately among them, particularly in dominance-based algorithms. Selec-
tion, indeed, is a fundamental part of the algorithm and has been the subject
of several studies, leading to improve the performance of conventional EMOs
on many-objective problems. However, finding trade-off solutions that satisfy
simultaneously the three properties of convergence, spread, and distribution is
especially difficult on many-objective problems. In fact, most EMOs with im-
proved selection strategies for many-objective optimization proposed recently
compromise one in favor of other [3]. In addition to selection, recent studies on
the characteristics of many-objective landscapes, the effectiveness of operators
of variation, and the effects of large populations [4–7] have proved successful to
advance our understanding of evolutionary many-objective optimization.

In previous work, we have studied the behavior of Adaptive ε-Box with Neigh-
borhood Recombination [6], an algorithm built under the framework of NSGA-II
[8]. The algorithm uses ε-box non-dominated sorting with a logarithmic func-
tion that maps solutions to a grid [9] and selects for survival just one solution
per non-dominated ε-box. It also keeps a list of neighbors for each solution to
restrict mating. This algorithm improves considerably the performance of NSGA-
II. However, the logarithmic function originally proposed in [9] introduces a too
strong bias towards the edges of objective space. In addition, though nearby
individuals recombine, in this approach the search effort is not evenly balanced
towards all regions of objective space. Moreover, it uses crowding distance as
secondary ranking, which does not scale up well in high dimensional spaces.

In this work, we propose an EMyO that uses adaptive ε-dominance principles
to select survivors and also to create neighborhoods to bias mating for recom-
bination. The method used for survival selection is based on ε-sampling that
selects solutions randomly from the set of non-dominated solutions, eliminating
solutions that are ε-dominated by the sampled solutions. The motivation to use
ε-sampling is that surviving solutions are spaced following the distribution im-
plicit in the mapping function used for ε-dominance and the search effort could
be balanced according to such distribution. In this work we use an additive map-
ping function that induces a uniform distribution of solutions, aiming to cover all
regions of objective space. The method to create neighborhoods is also based on
ε-dominance. Here, a randomly sampled solution from the surviving population
and its ε-dominated solutions determine the neighborhood, so that recombina-
tion can take place between individuals located nearby in objective space. The
motivation to restrict mating is to enhance the effectiveness of recombination in
many-objective problems, where the difference in variable space between individ-
uals in the population is expected to be larger than in multi-objective problems
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and therefore more disruptive for recombination. In addition, the method gives
more reproductive opportunities to individuals located in under-represented re-
gions to balance the search effort towards all regions.

We investigate the performance of the proposed algorithm on DTLZ contin-
uous problems, varying population size from very small to large -from 100 to
20000 individuals. We assume scenarios in which computational time to calcu-
late fitness could be very large and thus use a very short number of generations
to evolve the population. We also assume that all individuals in the population
can be evaluated simultaneously in parallel. As a reference for comparison, we
include results by Adaptive ε-Box with Neighborhood Recombination showing
that the proposed algorithm performs significantly better in terms of convergence
and distribution of solutions.

2 Proposed Method

2.1 Concept

In many-objective landscapes the number of solutions in the Pareto optimal set
increases almost exponentially [10, 11] with the number of objectives. Keeping
fixed the size of the variable space, an increase in the number of objectives also
implies that these large number of Pareto optimal solutions become spread over
broader regions in variable space [4]. Analysis of many-objective landscapes show
that this is the case not only for the global Pareto set containing optimal so-
lutions, but also for local Pareto sets containing suboptimal solutions [10, 11].
These characteristics of many-objective landscapes are reflected on the dynamics
of the optimizer and are directly correlated to the effectiveness of the operators
of selection and variation. For example, the large number of non-dominated so-
lutions makes dominance-based selection random and their spread on variable
space causes recombination to recombine distant solutions making it too dis-
ruptive and ineffective. Hence, the characteristics of many-objective landscapes
must be carefully considered when we design our algorithms.

The proposed method aims to perform an effective search on many-objective
landscapes by using dominance and ε-sampling for survival selection to get a
well distributed subset of non-dominated solutions, and ε-hood creation and ε-
mating for parent selection to enhance the effectiveness of recombination. In
multi-objective optimization, dominance is used for survival selection and to
rank solutions in the elite surviving population, so that mating selection can
give more reproductive opportunities to dominant individuals. However, this is
impractical in many-objective optimization. In the proposed method, dominance
acts as a mean to eliminate dominated solutions during survival selection and
leave the non-dominated ones for further processing, but it has no role ranking
the surviving population. For most part of the evolution, survival selection is
achieved by ε-sampling, which samples randomly from the large set of non-
dominated solutions and eliminates solutions ε-dominated by the samples. The
aim is to get a set of surviving solutions spaced according to the distribution
implicit in the mapping function f(x) �→ε f

′
(x) used for ε-dominance. Only
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during the few initial generations, where the number of non-dominated solutions
is smaller than the size of the surviving population, ε-sampling plays no role
during survival.

After survival selection, in the proposed method there is not an explicit rank-
ing that could be used to bias mating. Rather, we use a procedure called ε-hood
creation to cluster solutions in objective space. This method is also based on
ε-dominance and is adaptive too. Here, a randomly sampled solution from the
surviving population and its ε-dominated solutions determine the neighborhood,
so that recombination can take place between individuals located nearby in ob-
jective space. The motivation to restrict mating is to enhance the effectiveness
of recombination in many-objective problems, where the difference in variable
space between individuals in the population is expected to be larger than in
multi-objective problems and therefore more disruptive for recombination. In
addition, to balance the search effort towards all regions, individuals located in
under-represented regions are given more reproductive opportunities.

Summarizing, dominance acts as a mean to eliminate inferior solutions, ε-
sampling gets a set of well distributed solutions from the large set of non-
dominated solutions so that search effort could be uniformly distributed, ε-hood
creation clusters elite solutions in objective space, ε-mating pairs nearby solu-
tions to enhance the effectiveness of recombination, and reproduction gives more
reproductive opportunities to individuals in under-represented regions.

2.2 Adaptive ε-Sampling and ε-Hood Evolutionary Many-Objective
Optimizer (AεsεhEMyO)

In this section we explain the general flow of the proposed algorithmAεsεhEMyO
illustrated in Procedure 1 and in the next sections we explain in detail its dis-
tinctive features. The proposed method uses ε-dominance principles to truncate
the population by sampling from the set of non-dominated solutions and also
to create neighborhoods to bias mating for recombination, using parameters εs
and εh, respectively. The εs parameter for sampling during truncation is dy-
namically adapted to keep the number of sampled solutions NS close to the
population size Psize. Similarly, the εh parameter for neighborhood creation is
dynamically adapted to keep the number of neighborhoods NH close to a user
specified number NRef

H . In addition to εs and εh, their steps of adaptation are
also adapted to properly follow the dynamics of the search. Thus, before its main
loop, the algorithm sets the reference number of neighborhoods NRef

H , initial
values for εs and its step of adaptation Δs, and initial values for εh and its
step of adaptation Δh. Next, it creates randomly the initial population. Then
it iterates the main evolutionary loop.

The main loop starts by evaluating the offspring populationQ. After offspring
Q is evaluated, non-dominated sorting is performed on the population that re-
sults from joining the current population P and its offspring Q. The population
of size 2Psize sorted in non-dominated fronts F is then truncated to obtain the
surviving population P of size Psize using a ε-sampling truncation procedure
set with parameter εs.
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Procedure 1. AεsεhEMyO

Require: Population size Psize, reference neighborhood size HRef
size

Ensure: F1, set of Pareto non-dominated solutions

1: NRef
H ← Psize/H

Ref
size // set reference number of neighborhoods

2: εs ← 0, Δs ← Δ0 // set εs-dominance factor and its step of adaptation
3: εh ← 0, Δh ← Δ0 // set εh-dominance factor and its step of adaptation
4: P ← ∅, Q ← random // initial populations P and Q, |Q| = Psize

5: repeat
6: evaluation( Q )
7: F ← non-dominated sorting( P ∪Q ) // F = {Fi}, i = 1, 2, · · · ,NF

8: {P, NS} ← ε-sampling truncation( F , εs, Psize ) // |P| = |Q| = Psize

9: {εs,Δs} ← adapt ( εs, Δs, Psize, NS )
10: {H, NH} ← ε-hood creation ( P, εh ) // H = {Hj}, j = 1, 2, · · · ,NH

11: {εh,Δh} ← adapt ( εh, Δh, N
Ref
H , NH )

12: P′ ← ε-hood mating( H, Psize )

13: Q ← recombination and mutation( P′
)

14: until termination criterion is met
15: return F1

The number of sampled solutions NS and the population size Psize are used
as reference to adapt εs and its step of adaptation Δs. Next, neighborhoods
are created from the surviving population using a ε-hood creation procedure
set with parameter εh. Similar to εs, εh and its step of adaptation Δh are
adapted so that the number of created neighborhoods NH would be close to
a user specified reference number NRef

H . After the neighborhoods have been

created, ε-hood mating creates a pool of mates P ′
by selecting solutions within

the neighborhoods, so that a solution would recombine only with a solution that
is close by in objective space. Next, the already defined mates are recombined
and mutated to create the offspring population Q and the algorithm continues
with the next generation until a termination criterion has been met.

2.3 ε-Sampling Truncation

Survival selection is implemented by the ε-sampling truncation method, illus-
trated in Procedure 2. This method receives the sets of solutions F created by
non-dominated sorting and selects exactly Psize surviving solutions from them.
In case the number of non-dominated solutions |F1| > Psize, it calls ε-sampling
with parameter εs to get from F1 its extreme solutions E, a subset of randomly
sampled solutions S and their εs-dominated solutions Dεs , as illustrated in
Procedure 3.

The surviving population P always includes extreme solutions E and it is
complemented with solutions from S and possibly from Dεs . If S overfills P,
solutions in S are randomly eliminated as survivors. Otherwise, if after adding
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S to P there is still room for some solutions, the required number are randomly
chosen from Dεs . On the other hand, is |F1| < Psize, while there is room in P
the sets of solutions Fi are copied iteratively to P. The remaining solutions are
chosen randomly from the set that did not fit completely in P.

Procedure 2. ε-sampling truncation ( F , εs, Psize )

Require: sets of non-dominated solutions F = {Fi}, i = 1, 2, · · · ,NF , ε-
dominance parameter εs and desired population size after truncation Psize

Ensure: Truncated population P obtained from F and number of sampled solu-
tions including the extremes NS

1: P ← ∅, NS ← 0
2: if |F1| > Psize then
3: {E,S,Dεs} ← ε-sampling( F1, εs )
4: NS ← |E|+ |S|
5: if NS > Psize then
6: X ← {xr ∈ S | r = rand( 1, |S| ), |X | = NS − Psize}
7: P ← E ∪ S \ X
8: else
9: X ← {xr ∈ Dεs | r = rand( 1, |Dεs | ), |X | = Psize −NS}
10: P ← E ∪ S ∪ X
11: end if
12: else
13: P ← ⋃k

i=1Fi,
∑ |Fi| < Psize

14: X ← {xr ∈ Fk+1 | r = rand( 1, |Fk+1| ), |X | = Psize−∑k
i=1 |Fi|}

15: P ← P ∪ X
16: end if
17: return P and NS

Procedure 3. ε-sampling (F1, εs )

Require: Non-dominated solutions F1, ε-dominance parameter εs
Ensure: E, S and Dεs , E ∪ S ∪ Dε = F1. E and S contain extreme solutions

and a randomly chosen sample of solutions from F1, respectively, whereas Dεs

contains solutions εs-dominated by those in S. Maximization in all objectives
is assumed

1: E ← {x ∈ F1 | fm(x) = max(fm(·)), m = 1, 2, · · · ,M} // extremes
2: F1 ← F1 \ E
3: Dεs ← ∅
4: while F1 �= ∅ do
5: z ← xr ∈ F1 | r = rand( 1, |F1| )
6: S ← S ∪ {z} // add randomly chosen solution z to sample
7: Y ← {y ∈ F1 | z �εs y, z �= y} // solutions εs-dominated by z
8: Dεs ← Dεs ∪ Y
9: F1 ← F1 \ {{z} ∪ Y}
10: end while
11: return E, S, Dεs
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2.4 ε-Hood Creation and ε-Hood Mating

Neighborhoods are created from the surviving population by the ε-hood creation
procedure, which is also based on ε-dominance as illustrated in Procedure 4.
This procedure randomly selects an individual from the surviving population
and applies ε-dominance with parameter εh. A neighborhood is formed by the
sampled solutions and its εh-dominated solutions. Neighborhood creation is re-
peated until all solutions in the surviving population have been assigned to a
neighborhood.

Procedure 4. ε-hood creation ( P, εh )

Require: Population P, ε-dominance parameter εh for neighborhood creation
Ensure: Neighborhoods H = {Hi}, i = 1, 2, · · · ,NH

1: H ← ∅
2: i← 0
3: while P �= ∅ do
4: z ← xr ∈ P | r = rand( 1, |P| ) // z, a randomly chosen solution
5: Y ← {y ∈ P | z �εh y, z �= y} // solutions εh-dominated by z
6: i← i + 1
7: Hi ← {{z}∪Y} // z and its εh-dominated solutions form the hood
8: H ← H∪Hi

9: P ← P \Hi

10: end while
11: NH ← i
12: return H, NH

Procedure 5. ε-hood mating ( H, Psize )

Require: Neighborhoods H = {Hi}, i = 1, 2, · · · ,NH , and population size
Psize

Ensure: Pool of mated parents P′
, |P′ | = 2Psize

1: P′ ← ∅
2: i← 1
3: j ← 0
4: while j < Psize do
5: {y, z} ← {xr1 , xr2 ∈ Hi | r1 ∧ r2 = rand( 1, |Hi| ), r1 �= r2}
6: P′ ← P′ ∪ {y, z}
7: i← 1 + (i mod NH)
8: j ← j + 1
9: end while
10: return P′

Mating for recombination is implemented by the procedure ε-hood mating
illustrated in Procedure 5. Neighborhoods are considered to be elements of a
list. To select two mates, first a neighborhood from the list is specified determin-
istically in a round-robin schedule. Then, two individuals are select randomly
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within the specified neighborhood, so that an individual will recombine with
other individual that is located close by in objective space. Due to the round-
robin schedule, the next two mates will be selected from the next neighborhood
in the list. When the end of the neighborhood lists is reached, mating continues
with the first neighborhood in the list. Thus, all individuals have the same prob-
ability of being selected within a specified neighborhood, but due to the round-
robin scheduling individuals belonging to neighborhoods with fewer members
have more recombination opportunities that those belonging to neighborhoods
with more members. Once the pool of all mates P ′

has been established, they
are recombined and mutated according to the order they were selected during
mating.

2.5 Additive Epsilon Mapping f(x) �→ε f
′
(x)

In this work we use an evenly spaced Additive mapping function f(x) �→ε f
′
(x)

[5] for both ε-sampling and ε-hood creation. The Additive function maps f(x)
to f

′
(x) by adding the same value ε to all coordinates fi, independently of

the position of f(x) in objective space. This mapping in ε-sampling induces a
distribution of solutions evenly spaced by ε. The expression for Additive mapping
is as follows

f
′
i(x) = fi(x) + ε, i = 1, · · · ,m (1)

2.6 Adaptation

The number of sampled solutions NS by ε-sampling depends on the value set to
εs (≥ 0). Larger values of εs imply that sampled solutions εs-dominate larger
areas, increasing the likelihood of having more εs-dominated solutions excluded
from the sample. The proposed algorithm adapts εs at each generation so that
NS is close to the population size Psize. The closerNS is to Psize, the larger the
number of surviving solutions that will be spaced according to the distribution
implicit in the mapped function used for ε-dominance.

Similarly, the number of created neighborhoods NH depends on the value
set to εh (≥ 0). Larger values of εh imply that sampled solutions εh-dominate
larger areas, increasing the likelihood of having more εh-dominated solutions
that form its neighborhood, and therefore less created neighborhoods. The pro-
posed algorithm adapts εh at each generation so that NH is close to a user
specified number NRef

H .
The adaptation rule, similar for both processes, is as follows. If N > Ref it

increases the step of adaptation Δ ← min (Δ× 2,Δmax) and ε ← ε + Δ.
Otherwise, if N < Ref it decreases Δ ← max (Δ× 0.5,Δmin) and ε ←
max (ε−Δ, 0.0). In this work we set initial values ε0 = 0.0 and Δ0 = 0.005.
Also, Δmax = 0.05 and Δmin = 0.0001.

In the case of adapting the parameter εs used for truncation, the above rule
is called with ε = εs, Δ = Δs, N = NS , and Ref = Psize. On the other
hand, in the case of the parameter εh used for neighborhood creation, the above
rule is called with ε = εh, Δ = Δh, N = NH , and Ref = NRef

H .
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3 Test Problems, Performance Indicators, and
Experimental Setup

We study the performance of the algorithms in continuous functions DTLZ2,
DTLZ3, and DTLZ4 of the DTLZ test functions family [12]. These functions are
scalable in the number of objectives and variables and thus allow for a many-
objective study. In our experiments, we vary the number of objectives from
m = 4 to 6 and set the total number of variables to n = (m−1)+10. DTLZ2
has a non-convex Pareto-optimal surface that lies inside the first quadrant of
the unit hyper-sphere. DTLZ3 and DTLZ4 are variations of DTLZ2. DTLZ3
introduces a large number of local Pareto-optimal fronts in order to test the
convergence ability of the algorithm. DTLZ4 introduces biases on the density
of solutions to some of the objective-space planes in order to test the ability
of the algorithms to maintain a good distribution of solutions. For a detailed
description of these problems the reader is referred to [12].

To evaluate the Pareto optimal solutions obtained by the algorithms we use
the Generational Distance (GD) [13], which measures the convergence of so-
lutions to the true Pareto front using equation 2, where P denotes the set of
Pareto optimal solutions found by the algorithm and x a solution in the set.
Smaller values of GD indicate that the set P is closer to the Pareto optimal
front. That is, smaller values of GD mean better convergence of solutions.

GD = average
x∈P

⎧
⎨

⎩

[
m∑

i=1

(fi(x))
2

] 1
2

− 1

⎫
⎬

⎭
(2)

To visually assess the distribution of solutions in objective space, we plot solu-
tions projected to a two dimensional plane.

We run the algorithms 30 times and present average results, unless stated
otherwise. We use a different random seed in each run, but all algorithms use
the same seeds. The number of generations is set to 100 generations, and pop-
ulation size varies from to 100 to 20000, |P| = |Q|. As variation operators,
the algorithms use SBX crossover and polynomial mutation, setting their dis-
tribution exponents to ηc = 15 and ηm = 20, respectively. Crossover rate is
pc = 1.0, crossover rate per variable pcv = 0.5, and mutation rate per variable
is pm = 1/n.

For AεsεhEMyO (Aεsεh for short) we set the reference neighborhood size

HRef
size to 20 individuals. On the other hand, for Adaptive ε-Box with Neighbor-

hood Recombination (AεBox-NR), we set the size of the neighborhood to 10%
of the population size, a value that gave the best results in [6].

4 Simulation Results and Discussion

4.1 Convergence

Fig.1 shows GD over population size by Aεsεh and AεBox-NR at generation
T = 100 on problem DTLZ2 for m = 5 and m = 6 objectives. It can be seen
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Fig. 1. GD after 100 generations for various population sizes, DTLZ2
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Fig. 2. GD after 100 generations for various population sizes, DTLZ3

that smaller values of GD are achieved by using larger populations. Note that
GD by the proposed Aεsεh is substantially better than by AεBox-NR for any
population size. A larger performance difference between the two algorithms can
be seen by increasing the number of objectives from 5 to 6.

Similarly, Fig.2 shows results for DTLZ3 problem. Analogous to problem
DTLZ2, the proposed algorithm Aεsεh performs better than AεBox-NR for
any population size. In fact, in DTLZ3 the improvement in performance by
the proposed algorithm is more notorious than in the case of DTLZ2. Note that
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increasing population size does not help much AεBox-NR, whereas GD by Aεsεh
decreases in two orders of magnitude when population size is increased from
|P| = 100 to |P| = 5000. However, it should be noticed that variance is larger
and increases considerably with population size for the DTLZ3 problem. This is
because convergence is harder in this problem and a larger number of genera-
tions are required to facilitate convergence of most individuals of the population
towards the true Pareto front.

Results for DTLZ4 are similar to DTLZ2. Also, results on m = 4 objectives
for all problems follow a similar trend to those observed on m = 5 and m = 6
objectives. Due to space limitations, those results are not included here.

4.2 Distribution

Fig.3 shows the f1-f2 objective values of the obtained non-dominated solutions
by the proposed Aεsεh at generation 100. Results are shown for DTLZ2, m = 6
objectives, running the algorithm with some representative population sizes.
Similarly, Fig.4 shows solutions by AεBox-NR. In DTLZ2 the sum of the squares
of the fitness values of a Pareto optimal solution is one. Thus, on a problem with
more than 2 objectives the f1-f2 values of Pareto optimal solution fall within
the positive quadrant of the circle of radius one. From Fig.3 note that objective
values are close to or within the positive quadrant of the circle of radius one. This
is in accordance with the good convergence values observed for GD discussed
above. Increasing the population size there is a better coverage of the quadrant,
which implies a better distribution of solutions in objective space, and fewer
solutions are located outside the quadrant. On the other hand, from Fig.4 it
can be seen that solutions by AεBox-NR tend to focus on extreme regions of
objective space, where one or more objective values are close to 0, and many
of them are far away from the optimal front. This effect reduces when a large
population size is used, such as |P| = 5000, but still there are many extreme
solutions away from the optimal front and those located within the positive
quadrant are not able to fully cover it.

4.3 GD over the Generations and Larger Population Sizes

Fig.5 shows the transition of GD over the generations by Aεsεh on m = 6 ob-
jectives DTLZ2 and DTLZ3 problems, varying population sizes from |P| = 100
to |P| = 20000 individuals. Note that from early generations the algorithm
with a larger population shows better convergence. This is a clear indication
that population size is very important to support appropriately the evolution-
ary search on many-objective problems. On DTLZ2, note that for large popu-
lations initially there is a fast convergence, but after 50 generations or so the
algorithm slows down significantly. On DTLZ3, convergence at the beginning is
slower than on DTLZ2 but after some generations the effect of population size
becomes more evident. Note that after 50 generations convergence speeds up
significantly for populations |P| = 5000 and |P| = 10000 individuals. For
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Fig. 3. Obtained non-dominated solutions after 100 generations by Aεsεh for various
population sizes, DTLZ2. Projection in plane f1-f2.
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Fig. 4. Obtained non-dominated solutions after 100 generations by AεBox-NR for
various population sizes, DTLZ2. Projection in plane f1-f2

|P| = 20000 individuals convergence speeds up earlier, at generation 20. How-
ever, after generation 80 convergence slows down similar to DTLZ2. Although
in both problems, DTLZ2 and DTLZ3, there is still room for converging closer
to the optimal Pareto front the algorithm in final generations seems to stag-
nate. This suggests that the operators of variation themselves might need to be
improved, particularly for the latest stage of the search when the population is
approaching the Pareto optimal front. We would like to look into this in a future
work.

4.4 Adaptation

Fig.6 (a) shows the adaptation of εs for ε-sampling and Fig.6 (b) shows the
number of solutions on the first front F1 after non-dominated sorting together
with the number of sampled solutions NS by the ε-sampling procedure using
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Fig. 5. GD over the generations for various population sizes, m = 6 objectives
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Fig. 6. Adaptation for ε-sampling, DTLZ2, m = 6 objectives

the adapted εs parameter. Results are shown for population sizes |P| = 1000
and |P| = 5000. From Fig.6 (b) note that F1 is larger than P since early
generations and quickly approaches 2|P|. The number of solutions NS obtained
after ε-sampling from F1 is kept around the desired number |P| thanks to the
adaptation of εs, as shown in Fig.6 (a). From Fig.6 (a) note that εs is quickly
adapted from its initial value so that NS approaches the desired value |P|. Also
note that the value that εs takes depends on the population size.
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Fig. 7. Adaptation for neighborhood creation, DTLZ2, m = 6 objectives

Similar to the previous figure, Fig.7 (a) shows the adaptation of εh for neigh-
borhood creation and Fig.7 (b) shows the number created neighborhoods NH

by the ε-hood creation procedure using the adapted εh parameter. From Fig.7
(a) note that εh is quickly adapted from its initial value, it takes values larger
than εs as should be expected, and depends on population size. From Fig.7
(b) note that at the beginning the number of neighborhoods is quite large
but thanks to the quick adaptation of εh the number of created neighborhoods
NH approaches the specified number NRef

H , 50 for |P| = 1000 and 250 for
|P| = 5000.

The above results show that adaption is working properly for both ε-sampling
and ε-hood creation.

5 Conclusions

This work has proposed an evolutionary many-objective optimizer that uses
adaptive ε-sampling to select a subset of well distributed solutions for the sur-
viving population. The method also uses adaptive ε-dominance to create neigh-
borhoods of surviving solutions and performs mating between individuals of the
same neighborhood to enhance the effectiveness of recombination. We verified
the performance of the algorithm using DTLZ problems, observing the effects of
increasing the population size on convergence and distribution of solution. We
showed that for any population size the proposed method achieves substantially
better quality of solutions in terms of convergence and distribution compared
to Aε-Box with Neighborhood Recombination. We also showed that the method
can successfully adapt the ε parameters used for truncation and neighborhood
creation. In the future we would like to look into the operators of variation, aim-
ing to further improve convergence. Also, we should analyze with more detail
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the impact of on performance of neighborhood size. In addition, we would like
to test the proposed method on other classes of problems.
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