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Preface

EMO is a bi-annual international conference series, dedicated to advances in the
theory and practice of evolutionary multi-criterion optimization.

The first EMO was organised in Zürich (Switzerland) in 2001, with later con-
ferences taking place in Faro (Portugal) in 2003, Guanajuato (Mexico) in 2005,
Matsushima-Sendai (Japan) in 2007, Nantes (France) in 2009, and Ouro Preto
(Brazil) in 2011. Proceedings of every EMO conference have been published as a
volume in Lecture Notes in Computer Science (LNCS); this history is available
in volumes 1993, 2632, 3410, 4403, 5467, and 6576.

The 7th International Conference on Evolutionary Multi-Criterion Optimiza-
tion took place in Sheffield, UK, during March 19–22, 2013. The event was or-
ganized by the Department of Automatic Control and Systems Engineering,
University of Sheffield, which was home to some of the earliest work in the EMO
field and retains a strong EMO research theme.

In addition to the core content on EMO methods, EMO 2013 aimed to build
on the success of the 2011 meeting in Ouro Preto by providing a special track
to stimulate cross-fertilization between EMO research and and the wider theory
and practice of multiple criteria decision making (MCDM). The conference also
promoted a special track on real-world applications (RWA) to provide a new fo-
cus on the application of EMO and MCDM research to help real decision-makers
solve real problems in government, business, industry and interdisciplinary sci-
ences.

In response to the call for papers, 98 full-length papers were submitted. The
papers were subject to a rigorous single-blind peer-review process, with a min-
imum of three referees per paper. To encourage cross-fertilization, submissions
to the MCDM track were reviewed by an International Program Committee
member with EMO expertise, and almost all main track and RWA submissions
were reviewed by a Committee member with MCDM expertise. Papers where a
potential conflict of interest existed with the organizers were handled separately
by one of the General Chairs of EMO 2011, Ricardo Takahashi (UFMG, Brazil).
Following peer review, 57 papers were accepted for presentation at the confer-
ence and publication in this volume of LNCS: 35 main track, six MCDM track,
and 16 RWA track. Of the accepted RWA papers, seven included at least one
author from an organization outside of the academy.

The conference heard from four outstanding plenary speakers, on themes crit-
ical to the success of EMO methods in supporting real decision-makers: Jürgen
Branke (University of Warwick, UK) spoke on the incorporation of decision-
maker preferences; Kalyanmoy Deb (Indian Institute of Technology Kanpur,
India) discussed the discovery of innovative solution principles; Patrick Reed
(Pennsylvania State University, USA) spoke on solution visualization methods;
and Theodor Stewart (University of Cape Town, South Africa and University of
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Manchester, UK) discussed the integration of problem exploration with decision-
making processes.

Since its inception, the EMO conference series has led on key developments in
the field. EMO 2013 continued methodological advancement of the increasingly
popular indicator-based and decomposition-based concepts. Promising novel con-
cepts were introduced that explicitly recognized the dynamics of an optimiza-
tion problem, in terms of both delays to objective function evaluations during
the optimization process and also fundamental issues in the optimization of
time-varying systems. The MCDM track witnessed new blendings of EMO with
MCDM, including the integration of hypervolume into MCDM methods, and
integration of problem exploration into EMO search. The RWA track elicited
tangible examples of EMO and MCDM practice, including software tools used
to support real decisions, from the design of spacecraft planetary landing sys-
tems to maintenance planning in electrical power distribution systems. It is our
hope that the new RWA track has both stimulated the uptake of EMO methods
by practitioners, and also provoked a renewed consideration of practical decision
support as a central tenet of EMO methodology.

We would like to express our appreciation to the plenary speakers for ac-
cepting our invitations, all authors who submitted their work to EMO 2013,
and to the members of the International Program Committee for their thorough
and timely reviews. We would like to acknowledge the support of our sponsors:
the University of Sheffield, the International Society on Multiple Criteria Deci-
sion Making, the Institute for Operations Research and Management Sciences,
the EURO Working Group for Multi-Criteria Decision Aiding, and the Marie
Curie International Research Staff Exchange Scheme within the Seventh Euro-
pean Community Framework Programme. We would also like to thank Alfred
Hofmann, Frank Holzwarth, and Elke Werner at Springer for their assistance in
publishing these proceedings in the Lecture Notes in Computer Science series.

March 2013 Robin C. Purshouse
Peter J. Fleming

Carlos M. Fonseca
Salvatore Greco

Jane Shaw
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Antonio López, Carlos A. Coello Coello, Akira Oyama, and
Kozo Fujii

An Improved Adaptive Approach for Elitist Nondominated Sorting
Genetic Algorithm for Many-Objective Optimization . . . . . . . . . . . . . . . . . 307

Himanshu Jain and Kalyanmoy Deb

Adaptive ε-Sampling and ε-Hood for Evolutionary Many-Objective
Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

Hernán Aguirre, Akira Oyama, and Kiyoshi Tanaka

VI Hybrid MCDA

“Whatever Works Best for You”- A New Method for a Priori and
Progressive Multi-objective Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

Rui Wang, Robin C. Purshouse, and Peter J. Fleming

Hypervolume-Based Multi-Objective Reinforcement Learning . . . . . . . . . . 352
Kristof Van Moffaert, Madalina M. Drugan, and Ann Nowé
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Juan Carlos Leyva López, Diego Alonso Gastélum Chavira, and
Margarita Uŕıas Ruiz
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Abstract. Over the past decade our research group has worked to operationlize 
our “many-objective visual analytics” (MOVA) framework for the design and 
management of complex engineered systems. Successful applications include 
urban water portfolio planning, satellite constellation design, airline scheduling, 
and product family design. The MOVA framework has four core components: 
(1) elicited problem conception and formulation, (2) many-objective search, (3) 
interactive visualization, and (4) negotiated design selection. Problem 
conception and formulation is the process of abstracting a practical design 
problem into a mathematical representation. We build on the emerging work in 
visual analytics to exploit interactive visualization of both the design space and 
the objective space in multiple heterogeneous linked views that permit 
exploration and discovery. Many-objective search produces a Pareto-
approximate set of solutions from problem formulations that consider up to ten 
objectives based on current computational search capabilities. Negotiated 
design selection uses interactive visualization, reformulation, and optimization 
to discover desirable designs for implementation. Each of the activities in the 
framework is subject to feedback, both within the activity itself and from the 
other activities in the framework. These feedback processes transition formerly 
marginalized activities of reformulating the problem, refining the conceptual 
model of the problem, and refining the optimization, to represent the most 
critical process for innovating real world systems (i.e., learning how to frame 
the problems themselves). This study demonstrates insights gained by evolving 
the formulation of a General Aviation Aircraft (GAA) product family design 
problem. This problem’s considerable complexity and difficulty, along with a 
history encompassing several formulations, make it well-suited to demonstrate 
the MOVA framework. Our MOVA framework results compare a single 
objective, a two objective, and a ten objective formulation for optimizing the 
GAA product family. Highly interactive visual analytics are exploited to 
demonstrate how decision biases can arise for lower dimensional, highly 
aggregated problem formulations. As part of our efforts to operationlize the 
MOVA framework, we have also created rigorous search diagnostics to 
distinguish the efficiency, controllability, reliability, and effectiveness of 
multiobjective evolutionary algorithms (MOEAs). These diagnostics have 
distinguished the auto-adaptive behavior of our recently introduced Borg 
MOEA relative to a broad sampling of traditional MOEAs when addressing the 
GAA product family design problem. 
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Abstract. This talk will look at various aspects of uncertainty and how
they can be addressed by evolutionary multiobjective optimization.

If there is uncertainty about the user preferences, evolutionary multi-
objective optimization is traditionally used to generate a representative
set of Pareto-optimal solutions that caters for all potential user prefer-
ences. However, it is also possible to take into account a distribution
over possible utility functions to obtain a distribution of Pareto optimal
solutions that better reflects the decision maker’s likely preferences. And
furthermore, it may be possible to elicit and learn the decision maker’s
preferences by interacting with the decision maker during the optimiza-
tion process.

If there is a trade-off between a solution’s quality and associated risk
or reliability, evolutionary multiobjective optimization can simply regard
the problem as a two-objective problem and provide a set of alternatives
with different quality/risk trade-offs.

If the objective functions of the multi-objective problem are noisy and
an accurate evaluation is not possible, for example because the evaluation
is done by means of a stochastic simulation, it is no longer possible to
decide with certainty whether one solution dominates another. One might
calculate the probability of one solution dominating the other, and use
this for selection. Still, this is based on noisy observations, and does not
allow to make a confident decision about which solutions to keep in an
elitist algorithm, because the solution observed as better may only have
been lucky in the evaluation process. In order to improve the accuracy
of the fitness estimates, it is usually possible to average fitness values
over a number of evaluations. However, this is time consuming, and so
it raises the question how often each solution should be evaluated such
that the algorithm can progress, but at the same time computational
effort is minimized. Finally, if the goal is to optimize a quantile or even
the worst case, it is not obvious how to even define such a concept in a
multi-objective setting.
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Abstract. There are two key features to any MCDA intervention,
namely the problem structuring and preference modelling to ensure that
the analysis is directed at solving the right problem (effectiveness of
the intervention), and the provision of computationally efficient deci-
sion support algorithms (efficiency of the intervention). There are, of
course problems where either the computational aspects are unchalleng-
ing so that only effectiveness requires the analyst’s attention; or where
the problem is in principle well-defined but computationally complex, so
that efficiency concerns dominate.

Contexts do arise in which structuring and preference modelling (e.g.
identifying criteria, assessing performance in terms of these criteria and
aggregation of preferences across criteria) require careful attention, es-
pecially when the numbers of criteria are large, and the resulting models
are computationally complex. In such contexts the two components of
decision support need to work together. On the one hand, the problem
structuring and selection of preference models should balance the need
to represent decision maker preferences faithfully with the need for a
model implementation which is sufficiently responsive and computation-
ally effective to ensure that the decision maker derives useful support.
On the other hand, computational methods and approaches must rec-
ognize the cognitive limitations of the decision maker in such complex
settings. For example, unaided or undirected search across the Pareto
set is unlikely to be cognitively meaningful for larger numbers of criteria
even with inventive use of graphics.

This paper will focus primarily on reference point methods both for
problem structuring and representation, and as a guide to computational
identification and exploration of the Pareto frontier. Some comments will,
however, be made on the role of other methods of MCDA in this context.
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Quest for knowledge has always fascinated man. However, the knowledge associ-
ated with scientific problem solving tasks comes in different shades and colors and
is largely dependent on the specific problem being solved. Moreover, the method-
ologies for harvesting knowledge is one of the least standardized domains in the
scientific and technological endeavors. An optimization task thrives at finding
special solutions (the ‘optimal’ solutions) in the search space which cannot be
bettered by any other solution. Since the optimal solutions are unique in the
gamut of all possible feasible solutions for a problem, a two-step standardized
knowledge discovery procedure can be derived by using optimization as a vehicle
for knowledge discovery:

Task 1: Find a set of Pareto-optimal solutions corresponding to two or more
conflicting goals of solving the problem, and

Task 2: Analyze Pareto-optimal solutions to unveil common properties shared
by them as valuable knowledge.

Task 1 can be achieved by first identifying two conflicting goals (cost and quality,
for example) and solving the resulting problem using a classical generative or an
EMO algorithm to find a set of high-performing trade-off solutions (S). Task 2
takes dataset S consisting of optimized variables x, corresponding objectives f ,
and constraint values g, as input and performs an intelligent data-mining task
to identify hidden relationships in the x-f -g dataset.
A manual regression analysis for the innovization task has led to the discovery

of useful relationships in many problems in the past [2]. Our recent automated
innovization procedure [1] based on solving a clustering optimization problem is
able to find single and multiple relationships on some of the problems for which
the manual innovization procedure was used. Further investigations revealed
that basic innovization procedure can be extended to achieve (i) higher-level in-
novization by which common principles between multiple parameterized trade-
off fronts can be obtained, (ii) lower-level innovization by which relationships
local to a part of the trade-off front (and not common to the rest of the front)
can be obtained, and (iii) temporal innovization by which relative importance
of different relationships can be achieved. All these activities elevate the act of
optimization to a useful level than simply finding one or more optimal solutions.
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Abstract. We consider a multiobjective optimization scenario in which
one or more objective functions may be subject to delays (or longer evalu-
ation durations) relative to the other functions. We motivate this scenario
from the viewpoint of experimental optimization problems, and derive
several simple strategies for dealing with population and/or archive up-
dates under these conditions. These are embedded in a ranking-based
EMO algorithm and tested on the WFG test problems augmented with
delayed objective(s). Results indicate that good performance can be
achieved when the most recently generated solutions are submitted for
evaluation on the delayed objective functions, and missing objective val-
ues are approximated using a fitness inheritance-based approach. Also,
in general one should wait for all evaluations to complete before resum-
ing search if the delay is short, while a non-waiting strategy should be
preferred for longer delays.

1 Introduction

Evolutionary approaches to multiobjective optimization continue to find new
applications in a diverse range of scientific and problem-solving contexts, even
in areas where existing techniques have considerable history and traction. One
area of potential exploitation of EMO methods that is beginning to take off is in
applications where the optimization loop involves an experimental (rather than
a simulation) step, examples being [13,19,18]. Motivated primarily by this area,
this paper considers the problem of optimizing several objectives simultaneously
in the case where at least one of them requires a relatively longer time to evaluate
than the ‘cheaper’ or ‘cheapest’ of the objective functions.1 This kind of problem
comes about when one objective, for example, involves a lengthy experimental
process such as growth, fermentation or such, or perhaps the involvement of
human expert(s) input. We consider here that the objective functions can be
evaluated in batches, as is often the case in experimental settings, but that there

1 Ian Stott and Jane Shaw, of Unilever, raised this issue in a recent scientific meeting
at University of Manchester [21].
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is not a possibility of speed-up on the expensive objective(s) in terms of the
(relative) time taken to evaluate the batch of solutions.
Given this setting, we investigate what strategies one might employ in an

EMO algorithm (EMOA) to deal with the delayed objective(s). We simulate the
use of surrogate models, which may be appropriate in some contexts, but our
main focus is on strategies that do not rely on estimating missing or delayed
objective values. In the following section, we note some EA and EMO papers
that have looked at similar or perhaps related problems, from which we can
and do draw some inspiration. Section 3 defines our problem and reviews some
basic properties of dominance relationships in the case of unknown objective
values, and this prepares the way for some of the strategies that we go on to
detail in Section 4. Experimental results on modified WFG functions are given
in Section 5, and Section 6 is a discussion and conclusion.

2 Background and Related Work

All general-purpose approaches to optimization involve a “generate-and-test”
loop that must be repeatedly applied in order to discover optimal or high-
performing solutions. The iteration of the main loop means that the cost and
feasibility of optimization, in any given context, will depend critically on how fast
and cheaply solutions can be accurately evaluated. Often, in real applications,
it is expensive or time-consuming to evaluate solutions accurately, so that there
is much interest in the optimization community in topics around the subject
of how to save function evaluations (i.e., designing better optimizers), and also
around how to build or use surrogate models of the real evaluation function that
are sufficiently accurate to allow optimization to occur but at reduced temporal
or financial cost.
Here, we are concerned, in the context of expensive objective functions, with

multiobjective optimization: in particular, finding a representative approxima-
tion of the entire true Pareto Front. Surrogate modeling is a viable and appropri-
ate approach to tackling many expensive objective functions even in the context
of multiple objectives (see [11,8,24]), but is a complicated area with many choices
to consider for a proper study. Here, our focus is more on the basic design choices
of the multiobjective optimizer.
Given this, the key questions are: how should fitness assignment, and popula-

tion update occur to account for the fact that one or more objective functions are
delayed, i.e. that the fitness estimates of some solutions, at any given time, may
only be partial? Should we devise or employ selection and update techniques that
can deal with partial fitness information, or should we just use a more standard
EMOA, and simply wait for all evaluations to complete, no matter the delay,
before going on to the next generation? A look at the literature provides useful
clues and ideas to try out.
Some papers have considered the idea of finding ‘minimal sets of objective

functions’ [5], such that the subset does not conflict with the full set, and is not
redundant. The context of this work is generally different to ours — mostly the
concern has been with reducing the number of objective functions down (on-
line or prior to search) in the context of ‘many-objective’ optimization [15], to
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facilitate the optimization process. Nevertheless, clearly the effect of objective
function removal is closely related to the effect of objective function delay, where
at least some solutions that we wish to rank, or to assign reproductive opportu-
nities, might have a reduced number of objective values (at least temporarily).
The difference is that our aim is not to identify which objectives we can neglect,
but rather to estimate the effects of neglecting a specific expensive objective in
order to determine whether it is worthwhile to use the objective.

Asynchronous evaluation in optimization in the context of grid computing was
considered in [12,16]. The problem overlaps but is distinct from ours in that the
cloud computing resource is assumed to be heterogeneous and/or unreliable, and
the asynchrony happens across the population rather than across objectives. (In
contrast, we assume for the moment a rather reliable and homogeneous process
for evaluating a whole population en masse, and are concerned only with the fact
that some objectives can be evaluated faster than others.) Although the context
is a bit different, we think that as Lewis et al.[12] found, a strategy based on
a moderate amount of waiting for slower evaluations may be competitive in
some settings, and we also consider the effect of diversity maintenance might be
important (see below).
If we think of using algorithms that have solutions staying in a memory (i.e.,

an archive or secondary population) to allow that they can be waiting for their
expensive objective function values to be computed, and that these solutions
are potentially part of the present or future breeding pool, then we may have
solutions from some number of generations in the past needing to take part in
reproduction. In this context, the use of age-layered populations [9] may be a
neat way to handle population update and selection matters. We consider an
adaptation of this architecture in our work here.
We have learnt through the development of EMO over the last years that

diversity preservation, or methods for ensuring objective space spread are very
important to obtain good approximation sets (e.g., if we are considering sensible
measures of performance such as hypervolume or epsilon-dominance, at least for
external evaluation). But the diversity of solutions in the objective space is going
to be difficult to estimate when many solutions are missing one or more objective
values; in fact this problem may be more severe than the adaptations necessary
to deal with Pareto ranking of solutions. Given this issue, it may be sensible to
revert to the use of decision space diversity [17,22] in place of objective space,
as we assume that decision space information is quick and cheap to use.
Although we do not wish to cloud our initial studies by complex considerations

concerning the use of surrogate modeling techniques, it does seem that one of the
most direct approaches to handling delayed objective values is to use estimated
objective values in their place (at least until true values become available). In this
regard, we consider a few simple methods of estimating objective values, inspired
in part by work on fitness inheritance [20,14]. Simple methods of missing value
imputation from machine learning might also be used (see [23]).
Finally, we note that the problem of delayed objective function values has

some relationship to our recent work on ephemeral resource constraints (ERCs)
in single-objective optimization [2,3,1,4]. ERCs are temporary limitations in the
capacity to evaluate certain otherwise feasible solutions during the optimization
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process. ERCs arise in experimental optimization settings due to external factors
such as machine breakdowns, limited availability of certain reagents or chemicals
under test, or human experts with limited availabilities, and usually they only
affect part of the feasible search region at any given time (often also as a func-
tion of previous actions). Delayed objectives, by contrast, prevent (immediate)
evaluation of all the solutions of a batch, but in only some objectives. A key
finding from our work with ERCs is that waiting for objective values is quite
often the best thing to do, but it can depend on several other factors about the
ERCs, such as how long they will last, how much of the search space is affected,
and so on. We expect that also in the case of delayed objectives in EMO, simply
applying a standard algorithm and waiting for objective functions to return may
be the best thing to do in many cases. But we would like to discover the situa-
tions where this is not the case, and what other strategies may be sensible. As
we found with ERCs, significant savings may sometimes be possible even with a
minimal need for information about the problem [2].

3 Problem Formulation and Pareto Dominance
Considerations

We augment the notion of delayed objective functions onto a multiobjective
optimization problem as follows:

minimize (f1(x), ..., fm(x))
T (1)

subject to x ∈ X,

where x = (x1, ..., xl) is a solution vector and X a feasible search space. The
static objective functions fi, i = 1, ...,m are to be minimized and each function
is associated with some evaluation delay of Δti ≥ 0 time steps (e.g. hours or
days) relative to the objective(s) that is (are) quickest to evaluate. That is,
Δti = 0 means that function i is quickest to evaluate and thus has no delay,
while Δti > 0 means that function i needs Δti time steps longer to be evaluated
than the quickest objective function. There is at least one function with delay,
i.e. ∃i ∈ {1, ...,m} : Δti > 0.
In this study, each function fi is evaluated in a batch of ki > 0 solutions, and

it takes one time step to evaluate this batch. If not otherwise stated, we assume
an optimization scenario with exactly one delayed objective function; this will be
always function fm having a delay of Δtm > 0, and we set Δti = 0, i = 1, ...,m−
1 for the other functions. In this setup the following two Pareto dominance
relations hold, which we will incorporate later in some of our strategies for dealing
with delayed objective functions.

Lemma 1. Let S be a set of points for which m − 1 objective values are all
known, and the mth objective values are all unknown. Then if all solutions in S
are non-dominated with respect to the m−1 objectives, it follows that all solutions
in S are non-dominated to each other irrespective of their mth objective values.
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Algorithm 1. Ranking-based EMOA for optimizing subject to delayed objective
functions
Require: f1, ..., fm,Δtm > 0, (Δt1 = 0, ..., Δtm−1 = 0), μ = λ, T (time limit)
1: t = 0 (time counter), Pop = ∅

// Initialize Population:
2: Pop = random generate n solutions(n = μ)
3: evaluate pop(Pop, f1, . . . fm−1), assign pseudovalues to expobjective(Pop, fm),

t = t + 1 // evaluation of non-delayed objectives only, and assignment of
pseudovalues to the delayed objective fm

4: endtime = evaluate pop expensive(Pop, fm, currenttime = t) // spawns parallel
thread to evaluate Pop on delayed objective; immediately returns the projected
end time for spawned process; sets Pop’s mth objective value to ‘pending’
// Main Loop:

5: while t < T do
6: rank(Pop, ranking method) // ranking method must account for missing (de-

layed) objective values of some solutions
7: ParentPop = parental selection(Pop)
8: OffPop = crossover and mutation(ParentPop)
9: evaluate pop(OffPop, f1, . . . fm−1), t = t+ 1 // evaluation of non-delayed ob-

jectives only
10: Pop = Pop ∪OffPop
11: assign pseudovalues to expobjective(Pop, fm) // (re)assignment of pseudoval-

ues to delayed objective fm
12: if (t = endtime) then
13: pending objective values are now updated
14: EvalPop = selection for expevaluation(Pop) // decides which μ solutions

from Pop to evaluate on the delayed objective fm; only selects from solutions
that have no value for fm

15: endtime = evaluate pop expensive(EvalPop, fm, currenttime = t)
16: return (Pop)

Lemma 2. Let S be a set of points for which m − 1 objective values are all
known, and the mth objective values are all unknown. Then (a) the minimum
number of different non-dominated sorting (NDS) ranks in S is 1, and (b) the
maximum number of different ranks is the number of NDS ranks existing amongst
the solutions in S in the m− 1 known objectives plus the number of points that
are equal with respect to the known objectives.

4 Strategies for Dealing with Optimizations Problems
Featuring Delayed Objective Functions

As the basis for our strategies we use a ranking-based EMOA as shown by
Algorithm 1. Unlike standard EMOAs, the size of the population Pop in this
EA is not fixed. This way we allow solutions with missing objective function
values to influence the search direction and be evaluated at any point in time
during the optimization. Assuming that the objective functions are evaluated
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in a batch of ki = μ, i = 1, ...,m solutions, the EA begins the optimization by
generating a set of μ solutions at random, evaluating them on the non-delayed
objectives only and assigning pseudovalues to the delayed objective (Line 3).
At t = 0, all solutions are submitted for evaluation on the delayed objective
function fm, and their mth objective values are set to ‘pending’ (Line 4). The
projected end time endtime of the delayed objective represents the time step at
which the pending objective values are updated (i.e. revealed) (Line 13), and a
set of new μ solutions for evaluation on the delayed objective selected (Line 14).
Each generation, the population is first ranked (Line 6), and then λ offspring
generated by a process of selection, crossover and mutation (Line 7 and 8), and
evaluated on the non-delayed objective functions (Line 9). Following this, all
offspring are added to Pop and pseudovalues are (re)assigned to all solutions
in Pop that have not been evaluated on fm (Line 11); reassigning pseudovalues
to solutions reduces the risk that these solutions take over the population and
potentially misguide the search. Our EMOA ensures that the population Pop
does not contain duplicate solutions, i.e. offspring are generated until we have a
set that has not been evaluated yet.
In the following we describe various modifications to the EMOA we are going

to investigate in the presence of delayed objective functions. In particular, we
look at different methods for the assignment of pseudovalues to the delayed
objective (Line 3 and 11), ranking (Line 6), parental selection (Line 7) and the
selection of solutions for evaluation on the delayed objective function (Line 14).

Assignment of Pseudovalues to Delayed Objectives. We investigate
three assignment strategies. The first strategy, random pseudovalue assignment,
assigns to each solution with a missing objective value a pseudovalue drawn at
random from the interval [min

Pop
fm,max

Pop
fm], where min

Pop
fm and max

Pop
fm is the

minimum and maximum value of objective fm of all solutions in Pop that have
actually been evaluated on objective fm. The second strategy, noise-based pseu-
dovalue assignment, draws for each solution with a missing objective value a
random solution from Pop that has been evaluated on all objectives (including
the delayed objective), and adds a small amount of (Gaussian distributed) noise
N (0, σ2) to the value of the delayed objective; the resulting value is used as the
pseudovalue for the delayed objective. The third strategy, fitness inheritance-
based pseudovalue assignment, selects for each solution with a missing objective
value a solution from Pop that is both closest to it in the decision space (in terms
of normalized Euclidean distance) and has been evaluated on all objectives, and
then simply takes over the delayed objective value of this solution.

Ranking of Solutions. We investigate two ranking schemes. The first scheme,
performance ranking, sorts all solutions in Pop according to their non-dominated
sorting (NDS) ranks only. In contrast, the second ranking scheme, performance+
age ranking, considers both the NDS rank and the time stamp at which a solution
has been generated. More precisely, first the NDS ranks of all solutions in Pop are
obtained (these ranks are used later as quality criterion in parental selection), and
then the population is sorted based on the age of solutions whereby more recently
generated solutions are favoured (this sorting affects the truncation selection only).
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Determining a Parent Population ParentPop. Once the population Pop
has been ranked we need to decide which solutions should be eligible for parental
selection (as our population is not limited in size). In a standard EA setup with
a fixed population size, this design choice would correspond to the reproduction
scheme (or environmental selection mode). We investigate two schemes: parental
selection among (i) the top ranked μ solutions in Pop (generational reproduction
scheme) (denoted in future by GGA) and (ii) the top ranked μ × 2 solutions
((μ+ λ)-ES reproduction scheme) (denoted in future by (μ+ λ)-ES).

Selecting Solutions for Evaluation on the Delayed Objective
Function.We investigate two strategies to decide which μ solutions from Pop
to evaluate on fm. The first strategy, sweep selection, selects always the most re-
cently generated μ solutions for evaluation on fm. The second strategy, priority-
based selection, assigns to each solution without a value for fm, a score rep-
resenting the solution’s priority of being evaluated. We compute this score by
first obtaining the NDS ranks, considering the objectives f1, ..., fm−1 only, of
all completely evaluated solutions in Pop. Then, the priority score of a solution
is estimated based on Lemma 1 and 2 (see Section 3), and also on the idea of
counting the total amount the ranking of all (completely evaluated) solutions
could be changed: If a solution with no value for fm is dominating all solutions,
then potentially it could demote all of these solutions by one rank after revealing
the value of objective fm (i.e. we have a priority score equal to the number of
completely evaluated solutions in Pop). If a solution with no value for fm is
dominated by all solutions, then it cannot possibly dominate any solution (al-
though it might be non-dominated if the value of fm is very small) (i.e. we a
have a priority score of zero). In all other cases, a solution with no value for fm
can potentially dominate some solutions in Pop; here we assign the solution a
priority equal to the number of solutions having a lower rank.
The modifications described above enable an EMOA to deal with partial fit-

ness information. We will investigate also an EMOA that waits for all evaluations
to complete and thus prevents having to deal with solutions with missing objec-
tive values; hence for this algorithm it makes sense to look only at modifications
related to the ranking of solutions (Line 6) and the determination of the parent
population ParentPop (Line 7).

5 Experimental Study

This section describes the test functions and the parameter settings as used in
the subsequent experimental analysis, which investigates the performance of the
strategies described above when applied to problems with delayed objectives.

5.1 Experimental Setup

Our aim in this study is to understand the effect of delayed objective functions
on EA performance. To cover a wide range of problem characteristics, we use
the Walking Fish Group (WFG) toolkit [10]. We use the toolkit with 4 distance
parameters and 2 position parameters within the standard WFG1-WFG9 test
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Table 1. EA parameter settings

Parameter Setting

Parent population size μ (= ki, i = 1, ..., m) 50
Offspring population size λ 50

Per-variable mutation probability pm 1/l
Crossover probability pc 0.9

Distribution index (mutation and crossover) 20
Time limit T 40

problems; i.e. we have l = 4+2 = 6 continuous decision variables. If not otherwise
stated we use the WFG problems with m = 3 objectives, with f3 being the
objective function delayed by Δt3 = 3 time steps. We set ki = μ, i = 1, ...,m.
We augment the strategies described in Section 4 on a ranking-based EMOA

(see Algorithm 1) that uses binary tournament selection (with replacement)
for parental selection, simulated binary crossover (SBX) [6], and polynomial
mutation [7]. The parameter settings of the EMOA are given in Table 1.
For the noise-based pseudovalue assignment strategy we use a noise level of

σ =
√
(max
Pop

fm −min
Pop

fm) ∗ 0.05, where, as in the case of the random pseu-

dovalue assignment method, max
Pop

fm and min
Pop

fm is the maximum and minimum

value of objective fm of all solutions in Pop that have actually been evaluated
on objective fm so far. To reduce the risk of any search bias, the parameters
max
Pop

fm and min
Pop

fm are set initially to large positive and negative numbers, here

1000 and -1000, respectively. We set the time limit to T = 40 time steps.
Any results shown are average results across 20 independent algorithm runs.

We use paired comparison by employing a different seed for the random number
generator for each EA run but the same seeds for all strategies described above.

5.2 Experimental Results

Table 2 gives us an initial overview of the performance (hypervolume measure-
ments) of some of the algorithm modifications on all WFG test problems.2 Re-
sults were obtained using an EMOA with random pseudovalue assignment and
sweep selection. We can make several observations from the table: (i) optimizing
subject to delayed objective function affects the performance negatively on all
problems except WFG1; (ii) a generational reproduction scheme without elitism
(GGA) tends to perform best in the presence of delayed objectives (when wait-
ing is applied), while there is no clear winner between GGA and (μ+ λ)-ES in

2 The hypervolume measurements were obtained by normalizing the non-dominated
front found by an EA at the end of an optimization run, and then taking the average
of the hypervolume measurements across 20 runs. The normalization was done based
on the extremal values of the estimated True Front, which is available online at
http://jmetal.sourceforge.net/problems.html , and the reference point was set
to the minimum and maximum values of the normalized front.

http://jmetal.sourceforge.net/problems.html
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Table 2. Average hypervolume values obtained in an environment with and with-
out (in parenthesis) delayed objective functions for different algorithm setups on the
WFG test problems using m = 3 objectives. All EAs optimizing subject to delayed
objective functions employed random pseudovalue assignment and sweep selection. For
each problem instance and optimization environment (with delay vs without delay),
we highlighted all algorithm setups in bold face that are not significantly worse than
any other setup. A Friedman test revealed a significant difference between the search
algorithm setups in general, but differences among the individual setups were tested
for in a post-hoc analysis using (paired) Wilcoxon tests (significance level of 5%) with
Bonferroni correction.

GGA (μ+ λ)-ES

waiting
no

waiting
waiting

no
waiting

WFG1

Performance 0.1015 0.1976 0.0940 0.1682
ranking (0.1939) (0.1916)

Performance+age 0.0885 0.1077 0.0875 0.0992
ranking (0.0982) (0.1016)

WFG2

Performance 0.6901 0.6748 0.6474 0.6655
ranking (0.8527) (0.8616)

Performance+age 0.6028 0.5603 0.6068 0.5819
ranking (0.6822) (0.6958)

WFG3

Performance 0.4292 0.4030 0.4214 0.3915
ranking (0.4639) (0.4624)

Performance+age 0.4129 0.3970 0.4260 0.4000
ranking (0.4270) (0.4396)

WFG4

Performance 0.3434 0.2701 0.3362 0.2503
ranking (0.4172) (0.4199)

Performance+age 0.2935 0.2468 0.3015 0.2561
ranking (0.3728) (0.3598)

WFG5

Performance 0.3430 0.2676 0.3353 0.2925
ranking (0.4020) (0.4012)

Performance+age 0.3284 0.2888 0.3290 0.2996
ranking (0.3633) (0.3667)

WFG6

Performance 0.3457 0.2356 0.3240 0.2646
ranking (0.3943) (0.3918)

Performance+age 0.3214 0.2701 0.3252 0.2888
ranking (0.3410) (0.3464)

WFG7

Performance 0.3447 0.2760 0.3408 0.3004
ranking (0.4096) (0.4163)

Performance+age 0.3298 0.2862 0.3346 0.2975
ranking (0.3787) (0.3722)

WFG8

Performance 0.3129 0.2497 0.3021 0.2550
ranking (0.3721) (0.3687)

Performance+age 0.2900 0.2492 0.3047 0.2556
ranking (0.3134) (0.3172)

WFG9

Performance 0.3743 0.3260 0.3596 0.3402
ranking (0.4330) (0.4224)

Performance+age 0.3242 0.2865 0.3332 0.2912
ranking (0.3727) (0.3858)
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Fig. 1. Plots showing the true Pareto Front, and median attainment surface (across 20
runs) obtained on WFG1 (left) and WFG3 (right) with m = 2 objectives in an environ-
ment with delayed objective functions (function f2 was subject to a delay of Δt2 = 3
and ki = μ, i = 1, 2) and without. The EMOA was equipped with a generational repro-
duction scheme (GGA), sweep selection, random pseudovalue assignment, performance
ranking, and waited for all evaluations to complete before resuming search.

an environment without delays; (iii) waiting for all evaluations to complete per-
forms best on all problems except WFG1 and WFG2; (iv) performance ranking
generally performs better in an environment with and without delays.
When optimizing subject to delayed objective functions, the convergence

speed seems to be reduced and a more diverse population maintained; these
properties tend to be amplified as the delay Δtm becomes larger, ultimately
causing the performance to reduce (as will be seen later from Fig. 4). For WFG1,
however, the presence of a delayed objective can yield better results than obtain-
able in an unconstrained environment (observation (i)). In general, we observed
that the experimental results obtained on WFG1 are different than on the other
WFG problems, which may be due to the structure of this problem (WFG1 is
separable, uni-modal and has a dissimilar weight structure [10]). For WFG2-
WFG9, assigning pseudovalues to the delayed objective that are too far away
from the true objective values can lead to misguidance when performing ranking
and parental selection. The risk of misguidance can be reduced when employing
an EMOA with a waiting strategy and a generational reproduction scheme (ob-
servation (ii) and (iii)). Observation (iv) implies that parental selection should
not be limited to a subset (the most recently generated solutions) of the popu-
lation.
Fig. 1 and 2 show visually the performance impact of delayed objective func-

tions on WFG1 and WFG3 using m = 2 and 3 objectives, respectively. Plots
are showing the median attainment surface across 20 runs obtained by the best
performing EMOA from Table 2. The plots indicate that the impact of a delayed
objective function on the performance of an optimizer depends on (i) the char-
acteristics of the fitness landscape of a problem and (ii) the number of objectives
to be optimized, an observation we will make again later.
Fig. 3 investigates the effect of different delay lengths Δtm on the performance

of our strategies for WFG1 (top plots) and WFG2 (bottom plots); note that the
setting Δtm = 0 means there is no delay and thus refers to an unconstrained
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Fig. 2. Plots showing the true Pareto Front, and the median attainment surface (across
20 runs) obtained on WFG1 (left) and WFG3 (right) with m = 3 objectives in an
environment with and without delayed objective functions. The EMOA was equipped
with a generational reproduction scheme (GGA), sweep selection, random pseudovalue
assignment, performance ranking, and waited for all evaluations to complete before
resuming search.

optimization scenario. The left and right plots show the performance impact
for EMOAs employing sweep selection and priority-based selection, respectively.
All results were obtained using a generational reproduction scheme (GGA), and
performance ranking; this setup yielded best results as shown previously. We
make the following observations from the figure.

• Generally, an increase in the delay length Δtm affects search negatively, and
algorithm choice is important. Interestingly, a performance improvement,
when compared to an unconstrained optimization scenario, may be obtained
for short delays (see range 0 < Δtm < 7 in the top left plot). It seems to be
the case that this is due to an increase in the population diversity, although
other factors may be responsible.

• Sweep selection clearly outperforms priority-based selection on both test
problems (and the other WFG problems for which the results are not shown
here) and for all values of Δtm > 0. The reason is that priority-based selec-
tion ignores completely the values of the delayed objective fm when selecting
solutions for evaluation on the delayed objective. This may lead to misguid-
ance in the selection and stagnation in the search.

• With respect to the delay length Δtm, we observe for WFG2 and sweep se-
lection (bottom left plot) that there is a value (Δtm = 5) at which one should
switch from a waiting strategy to a non-waiting one (when using sweep se-
lection and a random or noise-based pseudovalue assignment; this pattern
was apparent for all WFG problems except WFG1). The larger Δtm the
slower is the search progress when employing a waiting strategy. The length
of the delay Δtm at which the switch from a waiting to a non-waiting strat-
egy should be performed depends on the difficulty of the problem at hand,
and the optimization time available. For WFG1 and sweep selection (top
left plot) a non-waiting strategy should be employed for all values of Δtm.
When using priority-based selection, a waiting strategy should be preferred
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Fig. 3. Plots showing the average hypervolume (and its standard error, indicated by
the error bars) obtained on WFG1 (top plots) and WFG2 (bottom plots) with m = 3
objectives using EA setups employing sweep selection (left plots) and priority-based
selection (right plots). All results were obtained using an EMOA equipped with a
generational reproduction scheme (GGA) and performance ranking.

over a non-waiting one because it removes the risk of getting the priority
scores wrong and thus submitting non-promising solutions for evaluation on
the delayed objective.

• Fitness-inheritance based pseudovalue assignment combined with sweep se-
lection, and no waiting yields best performance on WFG2 (and all the other
WFG problems except WFG1). The reason is that the fitness inheritance-
based method is able to approximate the value of the delayed objective fm
better than the other two pseudovalue assignment strategies, reducing the
risk of misguidance in the search.

Finally, Fig. 4 shows some initial results on how the search performance is af-
fected on WFG2 by the number of objectives m to be optimized (left) and the
number of delayed objective functions (right) as a function of the delay length
Δtm. From the left plot we observe that whilst the performance is affected in a
similar way for m = 2 and 3 objectives, there is a smaller performance gap be-
tween different strategies form = 2. This pattern was also apparent for the other
WFG problems (results not shown) and may indicate that lower-dimensional
problems are easier to deal with in the presence of delayed objectives.
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Fig. 4. Plots showing the average hypervolume (and its standard error, indicated by
the error bars) obtained by different EA setups on WFG2 with m = 2 and 3 objectives
(using 1 delayed objective function) (left) and m = 3 objectives using 1 and 2 delayed
objective functions (in case of 2 delayed objective functions, a delay was on f2 and
f3 with k2 = k3 = μ). All results were obtained using an EMOA equipped with a
generational reproduction scheme (GGA), sweep selection, and performance ranking.

From the right plot in Fig. 4 we observe that having two instead of one
delayed objective function (i.e. being more uncertain about the quality of a solu-
tion) improves the performance of strategies that approximate missing objective
values poorly (random pseudovalue assignment) but degrades the performance
of otherwise accurate approximation techniques (fitness inheritance-based pseu-
dovalue assignment). This pattern was apparent for all WFG problems except
WFG1, and may indicate that there is a trade-off between increasing the risk
of misguidance (leading to reduction in the performance when using an accu-
rate approximator) and increasing the probability that truly poor solutions are
approximated poorly and thus not considered for evaluation on the delayed ob-
jective function (improvement in performance when using a poor approximator).

6 Summary and Conclusion

In this paper we have considered a multiobjective optimization scenario in which
at least one objective function may be subject to delays relative to the other func-
tions. In other words, some objective functions take longer to be evaluated than
others. This kind of problem can be encountered, for example, when the evalu-
ation of an objective function involves a lengthy experimental process, such as
growth or fermentation, or the involvement of human expert(s) input. We have
proposed several strategies to deal with this kind of optimization scenario —
concerning the pseudovalue assignment to delayed objectives, population rank-
ing, reproduction scheme, and the selection of solutions for evaluation on the
delayed objective functions — and assessed them on the (continuous) WFG test
problems.
The experimental study revealed that delayed objective functions affect the

search performance of an EA — in general, the longer the delay the poorer is
the search performance — but that a well-tuned optimizer can damp the perfor-
mance impact significantly. In particular, when optimizing subject to delays, we
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can tentatively conclude that one should: (i) employ a fitness inheritance-based
pseudovalue assignment (i.e. fill missing objective values of a solution with the
objective values of the genetically closest and fully evaluated solution), (ii) select
parents for reproduction from a population that is sorted based on the solutions’
non-dominated sorting ranks (without accounting for the time stamps at which
solutions have been created), (iii) use a generational reproduction scheme (with-
out elitism), and (iv) submit the most recently generated solutions for eval-
uation on the delayed objectives. Furthermore, we found that, in general, for
short delays one should wait for all evaluations to complete before continuing
with the next generation. When the delay is long, however, waiting slows down
the search and should be avoided. Finally, we have seen that our observations
hold for problems with two and three objectives, and that varying the number
of delayed objective functions has interesting implications on the performance
depending on the algorithm setup employed.
Our study has shown that EA performance crucially depends on the way

pseudovalues are assigned and solutions for evaluation on the delayed objective
functions selected. We believe there are still some performance improvements to
gain by tuning these two aspects, which usually do not need to be considered
in the design of an EA. Investigating the effect of delayed objective functions
on many-objective optimization problems where several objectives are subject
to delays of different durations is another important avenue to be pursued.

Acknowledgments. Thanks to Ian Stott and Jane Shaw of Unilever for inspir-
ing this work on delayed objectives.
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Abstract. Dynamic optimization problems require constant tracking of
the optimum. A solution for such a problem has to be adjustable in order
to remain optimal as the optimum changes. The manner of changing de-
sign parameters to predefined values is dealt with in the field of control.
Common control approaches do not consider the optimality of the design,
in terms of the objective function, while adjusting to the new solution.
This study highlights the issue of the optimality of adaptation, and de-
fines a new optimization problem – ”Optimization of Adaptation”. It is
a multiobjective problem that considers the cost of the adaptation and
the optimality while the adaptation takes place. An evolutionary algo-
rithm is proposed in order to solve this problem, and it is demonstrated,
first, with an academic example, and then with a real life application of
a robotic arm control.

Keywords: dynamic optimization, adaptation, optimal control.

1 Introduction

The competency of living creatures to adapt to a changing environment is a
crucial virtue. Adaptation is the evolutionary process that allows species to
survive. The properties of a species gradually changes to meet the demands
of the changing environment. It is a slow mechanism, and it may take hundreds
of generations for a trait to establish among the population [1]. Adaptation is
also related to the ability of a specimen to change some of its physical properties
during its lifetime. These changes are not genetic changes, and they are not
passed on to any offspring. Nevertheless, the ability to adapt is inherent within
the species’ genotype. Examples of fast adaptation are the changing colours of
a chameleon [2], the expansion and contraction of the pupil as light changes [3],
and the increasing number of red blood cells as a reaction to low percentage of
oxygen in the air in high altitude [4].
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The necessity for adaptation may be also related to engineering (e.g., a prod-
uct should be adapted to changes in market demands), companies (e.g., change
of personnel or facilities, as costs change), politics, and many other fields of in-
terest. In engineering design, adaptation may be ensured by including tunable
parameters that can be altered when changes are required.
In the context of single objective optimization, an initial design might lose its

optimality as time passes due to changes that influence the objective function,
or it might become infeasible with the changing of constraints. A tunable design
may be able to adapt in order to maintain satisfactory performance, or to remain
feasible, when such changes occur. This virtue avoids the need for producing a
totally new design whenever an environmental change occurs, and it enables
prolonging the lifetime of a product.
These kinds of optimization problems, where the optimal solution changes

with time, are known as dynamic optimization problems (DOPs). Mathemati-
cally, a dynamic single objective optimization problem is formulated as follows:

Definition 1. Dynamic single objective optimization problem:

max
x∈Q

f (x, t)

s.t. gi (x, t) ≥ 0 , (i = 1, . . . , I)

hj (x, t) = 0 , (j = 1, . . . , J)

where Q ⊂ RM is the search domain, f is the objective function, and g and
h are the inequality and equality constraints, respectively. Since the objective
function and the constraints are time dependent, the optimal solution x̃ also
changes with time: x̃⇒ x̃(t).
Many methods, including evolutionary algorithms, have been developed in

order to solve DOPs, and to determine what changes should be performed in
order to achieve optimal or satisfactory performance over time [5]. In many cases,
the required changes in design over time are continuous and relatively small. In
other cases, the optimum might ”jump” to a different region of the design space.
This can happen when a totally different solution becomes the optimum, or when
the current optimal solution becomes infeasible. The former case is illustrated in
Figure 1. The dynamic function f(x, t) = 2sin(x+ 2t) + tsin(3x− t) + cos(3xt)
is presented at several time instants. In Figure 1(a) the optimal solution changes
slightly between t = 0.04 and t = 0.12. On the other hand, in Figure 1(b), a
new optimal solution is developed in the region of x = 7, and a ”jump” of the
optimum occurs between the time instants t = 0.54 and t = 0.58. Since the
required changes in design at times of an optimum ”jump” are significant, some
issues regarding the manner of performing these changes should be considered.
When the required change is a mechanical change (as opposed to tuning an

electric signal, for example, which is rapid), the adaptation time might be non-
negligible. During that time, the function value of the system changes according
to the change in design. Considering the example of Figure 1(b), the function val-
ues between the old optimum and the new one are much lower than the optimal
value. If the change is continuous (i.e., x goes through all the values in between
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Fig. 1. A dynamic function at four time instants. The optimum changes from the grey
square to the black star.

the old and the new solutions), the function values during the adaptation are
not optimal.
Although existing research has addressed finding efficient ways to track the

moving optimum, no research known to the authors has addressed the optimality
during the change itself. This study comes to shed some light on this issue. The
aim here is not to suggest a new method for solving DOPs, but to optimize the
adaptation of a solution when it requires significant changes. It is assumed here
that the DOP is already solved, and the new location of the optimum is known.
The aim is at designing a trajectory in phase plane (high level control design),
according to its related performances in objective space. This is in contrast to
the common approach in control theory, where the optimization is based on the
trajectories in phase plane (e.g., minimizing the states’ deviation from the new
set-point).
Figure 2 depicts two possible trajectories to trace the moving optimum of a

single objective DOP with two design variables. Different trajectories in design
space are possible in the example, since it consists of two variables. The values
of the objective function are illustrated by contour lines. The location of the old
optimum x0 is marked with a square, and the location of the new optimum xf is
marked with a star. In this example, Trajectory 1 (marked with triangles) is along
a straight line and passes through a region with very low function values, while
Trajectory 2 (marked with diamonds) bypasses this region, and passes through
regions with high function values. The trajectories of the objective function over
time, for the same example, are shown in Figure 3. Note that the function values
along Trajectory 1 are lower than those along Trajectory 2. Therefore, assuming
the function is static during the traverse, it can be stated that the optimality
of Trajectory 2 is better than the optimality of Trajectory 1 in terms of the
function values.
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In many cases, changing a system’s design has a cost, in terms of money,
energy or other resources. The way parameters are changed, especially when
more than one parameter is to be adjusted, may affect the cost of the change. The
possible conflict between the optimality of the performance during the change,
and the cost of the adaptation defines a new optimization problem which is
termed here as- Optimization of Adaptation. It is a multi-objective optimization
problem (MOP) by its nature, since the function value during the adaptation
process, and the cost of the change are to be optimized at the same time.
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Fig. 2. Two possible trajectories to adapt from x0 to xf . Brighter contour lines repre-
sent higher function values.
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Fig. 3. The trajectories f(t) for the two trajectories of Figure 2. Figure 3(a) refers to
trajectory 1, and Figure 3(b) refers to trajectory 2.

The remainder of this paper is organized as follows. In Section 2 the Opti-
mization of Adaptation Problem is defined, and a method to assess the objective
functions is suggested. In Section 3 an evolutionary algorithm is suggested to
solve the problem. In section 4, an academic example and a real-world appli-
cation for the proposed optimization method are presented. Finally, the paper
ends with a discussion in Section 5.
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2 Methodology

2.1 Problem Definition

In order to optimize the adaptation of a system at a time instant tjump, when a
significant change in design is required, the following assumptions are made:

1. The change takes place over a time interval [t0, tf ] which is significantly
shorter than the time constant of the DOP. Hence, the function value and
the constraints can be considered as static for the duration of the change:
f(x, tjump) = f(x)
gi(x, tjump) = gi(x)
hj(x, tjump) = hj(x)

2. The state of the design parameters prior to the change is x(t0) = x0.
3. The state of the design parameters at the end of the change is the new op-
timal solution of the DOP: x(tf ) = xf , f (xf ) = max f (x) (assuming
maximization).

4. The system is at a steady state at the beginning and at the end of the
adaptation.

Considering the above assumptions, the new optimization problem is defined as
follows:

Definition 2. Optimal adaptation problem (OAP):

min
x(t)∈Q

{Error (x(t)) , Cost (x(t))} , t ∈ [t0, tf ] (1)

s.t. x(t0) = x0 , x(tf ) = xf (2)

dx

dt

∣∣∣∣
t0

=
dx

dt

∣∣∣∣
tf

= 0 (3)

gi (x(t)) ≥ 0 , (i = 1, . . . , I) (4)

hj (x(t)) = 0 , (j = 1, . . . , J) (5)

where x(t) is a trajectory in the design space for the entire time interval,
Error(x(t)) is the difference between the function value at time t and the optimal
function value f(xf ): Error(x(t)) = f(xf )− f(x(t)), and Cost(x(t)) represents
the invested resources for changing x from x0 to xf . The constraints of the
original DOP (Eq. (4) and (5)) must be met at all times.
Note that in spite of the fact that the original DOP is a single objective

problem, the new proposed OAP is inherently a MOP. In order to maintain high
function values along the trajectory, one might need to invest more energy to
the adaptation process. For that reason, the two objectives of the OAP may be
conflicting, and the solution of the OAP might be a set of optimal trajectories
known as the Pareto optimal set (POS).
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2.2 Assessment of the Objective Functions

Each solution for the proposed problem is a trajectory, and its resulting perfor-
mances in the objective space (Error, Cost), as defined previously, are trajec-
tories as well. Some research exists on the optimization of trajectories (e.g. [6]),
but the common approach is to represent each trajectory by an auxiliary func-
tion (e.g. [7],[8]). In this paper we adopt this approach, and assess the objective
functions by using a common concept from optimal control theory:

– The error function Error (x(t)) is represented by its integral absolute (IAE),
which is a well known measure of optimality in control theory:

IAE =

tf∫
t0

|f(xf )− f (x(t))| dt

Recalling the trajectories in Figure 3, the IAE of each trajectory is equal to
the area in between the function value and the optimal value marked with
the dashed line. It is clear that the IAE of the trajectory in Figure 3(b) is
smaller than the IAE of the trajectory in Figure 3(a).

– The cost function Cost (x(t)) is represented by the overall cost of the control
forces required to follow the trajectory x(t). It is assumed here that the

design variables are controlled by a vector of control forces u = [u1, . . . , up]
T
,

where each design variable is controlled by one or more control variables.
Every control force has its cost, and the total cost C is calculated as follows:

C =

tf∫
t0

∣∣wTu(t)
∣∣ dt

where w is a cost vector with wi represents the cost of ui. Each control force
variable ui has its related saturation values, which define the domain of the
control forces.

The OAP may now be reformulated by changing the objectives at Eq. 1 in
Definition 2, and by considering the saturation values as additional constraints.
Because the objective functions are evaluated based on utility functions, the
reformulated problem is presented here as:

Definition 3. Utility based Optimal Adaptation Problem (UOAP):

min
x(t)∈Q

{IAE,C} , t ∈ [t0, tf ] (6)

s.t. x(t0) = x0 , x(tf ) = xf (7)

dx

dt

∣∣∣∣
t0

=
dx

dt

∣∣∣∣
tf

= 0 (8)

umin ≤ u(t) ≤ umax (9)

gi (x(t)) ≥ 0 , (i = 1, . . . , I) (10)

hj (x(t)) = 0 , (j = 1, . . . , J) (11)

where x(t) = f(u(t)).



Optimization of Adaptation - A Multi-objective Approach 27

As is common in control, IAE and C are in conflict with one another. There-
fore, the optimal solution for the UOAP, as is the case with the OAP, is expected
to be a set rather than a single solution. Note that other reformulations for the
OAP are possible.

3 Solving the Problem with an Evolutionary Algorithm

In this section, an evolutionary algorithm (EA) is presented for solving the
UOAP, defined in Definition 3.

3.1 The Genotype

For a better visualisation of the problem, the value of the design variables are
considered here as their positions. The first and second derivatives in time of the
variables are considered as their velocity v(t) and acceleration a(t), respectively.
Although the solution of the UOAP is the trajectory x(t), it is coded by a(t).
The time interval is defined at K time instants- t = [t1, . . . , tk, . . . , tK ], where

t1 = t0 and tK = tf . Each solution is defined by a matrix A of size M × K of
real coded variables. Amk represents the acceleration of the m

th design variable
at the kth time sample.
Considering the constraints in Eq. (7) and (8), the speed vm(t) and position

xm(t) can be derived as follows:

vm(t) =

t∫
t0

am(t) dt (12)

xm(t) = x0m +

t∫
t0

vm(t) dt (13)

Of course, the integrals are evaluated by a discrete approximation method such
as the trapezoidal rule, for example.

3.2 Constraint Satisfaction: Repair Method

In order to satisfy the constraints regarding tf in Eq. (7) and (8), two modifica-
tions of the acceleration trajectory are made. The first results in an intermediate
acceleration trajectory a(t)∗∗ which satisfies Eq. (8), and the second results in
the repaired acceleration trajectory a(t) which satisfies Eq. (7) as well.
Let a pre-repair acceleration trajectory be a∗(t). It is clear from Eq. (12)

that in order to force the final speed vm(tf ) = 0, the mean acceleration has to
be zero. This can be realized by subtracting from a∗(t) its mean value ā∗. The
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resulting intermediate acceleration trajectory is a∗∗(t) = a∗(t) − ā∗. The in-
termediate velocity trajectory v∗∗(t), using Eq. (12), satisfies the constraint of
Eq. (8). Then the intermediate final position of the trajectory x∗∗(tf ) according
to Eq. (13) is:

x∗∗(tf ) = x0 +

tf∫
t0

v∗∗(t) dt

At the second stage, in order to satisfy Eq. (7), a∗∗(t) is scaled by a scaling
vector l:

l = [l1, . . . , lm, . . . , lM ]
T
, lm =

xfm − x0m
x∗∗m (tf )− x0m

The repaired final acceleration variable that satisfies both constraints is a(t) =
a∗∗(t) · l.
Although the suggested gene manipulation may result in violation of the con-

straint in Eq. (9), it speeds up the evolutionary process since it eliminates the
two equality constraints in Eq. (7) and (8).

3.3 The Evolutionary Algorithm

All of the problems of Section 4 are solved using NSGA-II with constraint domi-
nation [9]. The genetic operators used are the simulated binary crossover (SBX)
operator and polynomial mutation [10], with distribution indexes of ηc = 15 and
ηm = 20 respectively. A cross-over probability of pc = 1 and a mutation proba-
bility of pm = 1/MK are used. The stopping criterion is a maximal number of
generations. A schema of the EA is presented in Algorithm 1.

Algorithm 1. The evolutionary algorithm for solving the UOAP

1: R∗
1 ← generate a random set of solutions of size 2N

2: R1 ← modify R∗
1 according to the procedure in Section 3.2

3: g ← 1
4: while g ≤ number of generations do
5: evaluate Rg

6: Pg+1 ← select N solutions from Rg

7: Q∗
g+1 ← evolve from Pg+1 (cross-over and mutation)

8: Qg+1 ← modify Q∗
g+1 according to the procedure in Section 3.2

9: Rg+1 ← Pg+1 ∪Qg+1

10: g ← g + 1
11: end while
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4 Test Cases

4.1 Academic Example

Consider the following unconstrained DOP:

max
x
f (x, t) =

sin (x1 + x2 + t/20)

x22 + 1
−
cos
(
x1 − x2 + (t/10000)2 + 4

)
x22 + 1

+
x1

2

80

xi ∈ [−2π, 2π] , i = {1, 2} .

When t = 98, the optimum ”jumps” from x = x0 = [3.24,−0.16]T to x = xf =
[−3.24,−0.12]T . The contour of the function at t = 98, and the old and new
optima were previously depicted in Figure 2. The UOAP for the adaptation in
that time instant is solved by the EA described in Algorithm 1. The adaptation’s
time interval is set to 0.1, and it is defined for K = 30 time instants. The
population consists of 250 members, and it is evolved over 300 generations.
For this example, the design variables are considered as simple mechanical

components that react to the control force according to Newton’s 2nd law:
um(t) = imam(t), where im is a constant number representing the inertia of
the mth design variable. Here i1 = 20 and i2 = 10.
The set of non-dominated solutions in the final population is shown in Fig-

ure 4. In Figure 4(a), the trajectories of all the non-dominated solutions are
illustrated with gray lines. Three different trajectories from this set are marked
with diamonds, triangles and circles. The trajectory marked with diamonds does
not require investment of much control force, since it is aimed at the new op-
timum with minimal changes possible. As a result, its cost is the lowest from
all solutions. Since it runs through a region with very low function values, its
ISE is very high. The trajectory marked with circles passes along the highest
function values on the way to the new optimum. As a result, it has a low ISE
value. In order to pass through these local optima, a significant force is required
to be applied. Therefore, this solution has a high C value. The trajectory marked
with diamonds is a compromise between the two objectives. Its path is shorter
than the one of the circles, but it passes through only one local optimum. These
insights can be depicted from the Pareto front shown in Figure 4(b). All of
the non-dominated solutions are marked with gray dots, and the above three
solutions are marked with black markers.
The control forces, positions and function values over time of these three

solutions are shown in Figure 5. As mentioned in Section 2.2, the area under the
control force function indicates the cost of the adaptation, and the area between
the function value in time and the optimal function value indicates the ISE.
The trade-off between optimality over time and the cost of the adaptation can
be seen here. A larger area of the control force is associated with a smaller area
of the error, and vice versa.
In order to evaluate the consistency of the algorithm in finding similar ap-

proximated sets, the UOAP was simulated for 100 times using the above genetic
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settings. For three of the 100 simulations the algorithm failed to find the tra-
jectories with the lowest ISE values, such as the triangle associated solution in
Figure 4. The lowest ISE value in these cases was 0.04.

x
1

x
2

 

 

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6 f
x

0
x

f

(a)

0.04 0.06 0.08 0.1

3

3.5

4

4.5

5

5.5

6

ISE

C

(b)

Fig. 4.The final approximated set of the UOAP. Three different trajectories are marked
in Figure 4(a), and their associated objective values are marked in Figure 4(b).

4.2 Real World Example

To demonstrate the scope of the proposed optimization approach, the following
engineering problem is introduced. A planar robot with three rotating links of
equal lengths has to carry a load of mass M over a specific route. The angles
of the joints are controlled by the user with servo motors that are free to rotate
at any angle. The mass of each motor is m. The robot and related parameters
are depicted in Figure 6. The desired location of the load, i.e., the end of the
robot’s third link, is progressing very slowly. Since it has three degrees of freedom,
the robot can keep the load at the desired location with an infinite number of
configurations. The optimization goal is to follow the path while minimizing the
robot’s dimensions, i.e., keeping it as folded into itself as possible. This dynamic
optimization problem can be formulated as follows:

min
θ(t)∈R3

φ (θ(t)) (14)

s.t. re = P(t) (15)

where φ is the stretch of the robot: φ = d1 + d2 + d3, θ = [θ1, θ2, θ3]
T
, re is the

location of the manipulator’s end, and P(t) is the desired location of the load
at time t. The constraint in Eq. (15) has to be satisfied at all times, other than
short periods when the robot has to change a configuration for the reason below.
At some time instants there is a single optimal configuration, while at oth-

ers, the minimal value of φ can be achieved by two different configurations.
Figure 7 depicts the solution of the above DOP. The required path of the load
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(a) First solution – a high error and low cost.
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(b) Second solution – a low error and high cost.
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(c) Third solution – a compromise between error and cost.

Fig. 5. The control forces, positions and function values over time for the solutions
highlighted in Figure 4

Fig. 6. The robotic manipulator and related parameters
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P(t) is marked with arrows, and the optimal configuration is shown for five
time instants. When the robot’s end is located far from the base, such as in
Figures 7(a) and 7(b), the configuration with minimal dimensions has a ”Z”
shape. When it is closer to the base, such as in Figures 7(c) and 7(d), the
optimal configuration has an ”N” shape. For the example given, when t = 1000s
the robot has to change its configuration from ”Z” to ”N”. The duration of the
change is 4 seconds. The question of how to perform that change is considered
as the following utility optimal adaptation problem. The UOAP follows the main
optimization goal, i.e. minimizing the dimensions of the robot, and it also seeks
to minimize the power applied to the motors:

min
θ(t)∈R3

{E,C} , t ∈ [t0, tf ]

s.t. θ(t0) = θ0 , θ(tf ) = θf

dθ

dt

∣∣∣∣
t0

=
dθ

dt

∣∣∣∣
tf

= 0

− τ sat ≤ τ (t) ≤ τ sat

where τ (t) = [τ1(t), τ2(t), τ3(t)]
T
is a vector with the required torques in the

joints to follow the trajectory θ(t), τ sat are the saturation values of the motors,
E is the integral of φ(t), and C is the total applied torque over time:

E =

tf∫
t0

φ(t) dt , C =

tf∫
t0

(∑3
i=1 |τi(t)|

)
dt.

θ0 and θf are the configurations at Figure 7(b) and 7(c), respectively. u(t) is
calculated by the iterative Newton-Euler dynamic formulation (for more infor-
mation, see [11]).
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Fig. 7. The configurations with minimal dimensions for five positions of the load. The
manipulator’s base is marked with a square, and the load is marked with a triangle. The
initial configuration of the OAP is the one at Figure 7(b), and the the final configuration
is the one at Figure 7(c).

The solutions of the above UOAP are the trajectories of the links and the
torques applied by the motors. A controller can be synthesized to follow these
trajectories. Note that the above UOAP is different from the common approach
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arising from using optimal control theory for designing optimal controllers. A
controller designed according to optimal control theory considers the final state
θf as an optimization goal, and tries to minimize the control force and the error
from θf . In contrast, here, the optimization goal is the original goal of the DOP,
i.e., minimizing the dimensions of the robot.
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Fig. 8. The approximated set of Pareto optimal solutions for the UOAP, found by the
EA.
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(a) One alternative – small dimensions and high cost. Note that the final θ1 is 2π larger
than the desired final value. That means the manipulator performs a full turn around
its base.

0 2 4

0.5

1

1.5

t

Φ

0 2 4

2

4

6

8

t

θ
1

0 2 4
−40

−20

0

20

t

M
1

0 2 4

2.5

3

3.5

4

t

θ
2

0 2 4
−15

−10

−5

0

5

t

M
2

0 2 4

2.5

3

3.5

4

t

θ
3

0 2 4

−20

−10

0

10

t

M
3

(b) Second alternative – larger dimensions and smaller cost.

Fig. 9. Trajectories of the joint torques and angles and the extent of the robot in time.

The UOAP was solved by the EA described in Algorithm 1, using the same
configuration parameters as in the academic example from the previous section.
The final approximated set is depicted in Figure 8. The two extreme solutions,
marked with a larger circle and diamond, are shown in Figures 9 and 10. The
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trajectories of the torques, the joint angles and the extent are shown in Figure 9,
and the dynamic behavior of the robot is shown in Figure 10. Note that in
order to fold more quickly, under the limits of the saturation torque values,
the solution marked with a circle rotates around its base. The solution marked
with a diamond balances vertically until it needs to stretch again in the other
configuration.
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Fig. 10. Positions of two Pareto optimal solutions at different time samples. The lighter
configuration is 0.4s prior to the black one.

5 Conclusions and Future Work

In this paper, a new optimization problem was introduced:Optimization of Adap-
tation Problem. The problem deals with situations when a change in design is
required in order to remain optimal in a changing environment. The required
change is found by solving a DOP prior to the formulation of the OAP. The is-
sues of optimality during the adaptation process and the cost of the adaptation
were discussed, and the OAP was defined as a MOP for minimizing the cost and
maximizing the function value during the adaptation. A relaxed version of the
OAP was defined as a Utility based Optimization of Adaptation Problem, and an
EA was proposed in order to solve it. The EA was tested on two examples: a
theoretic mathematical function and a problem of robotic arm control. For both
examples, the EA was able to find a set of trade off solutions that enable the de-
cision maker to choose whether to adapt in a minimum cost manner or to invest
more resources in order to maintain high function values along the adaptation.
As future work, the new approach should be integrated and tested on more

real life applications. This paper dealt with a single objective DOPs. The issue
of optimal adaptation for multiobjective DOPs should be studied as well. The
method should be also extended to deal with cases where the future function
values and costs are subject to uncertainties.
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Abstract. All standard Artifical Intelligence (AI) planners to-date can
only handle a single objective, and the only way for them to take into
account multiple objectives is by aggregation of the objectives. Further-
more, and in deep contrast with the single objective case, there exists no
benchmark problems on which to test the algorithms for multi-objective
planning.

Divide-and-Evolve (DaE) is an evolutionary planner that won the
(single-objective) deterministic temporal satisficing track in the last In-
ternational Planning Competition. Even though it uses intensively the
classical (and hence single-objective) planner YAHSP (Yet Another
Heuristic Search Planner), it is possible to turn DaEYAHSP into a multi-
objective evolutionary planner.

A tunable benchmark suite for multi-objective planning is first pro-
posed, and the performances of several variants of multi-objective
DaEYAHSP are compared on different instances of this benchmark, hope-
fully paving the road to further multi-objective competitions in AI
planning.

1 Introduction

An AI Planning problem (see e.g. [1]) is defined by a set of predicates, a set
of actions, an initial state and a goal state. A state is a set of non-exclusive
instantiated predicates, or (Boolean) atoms. An action is defined by a set of
pre-conditions and a set of effects: the action can be executed only if all pre-
conditions are true in the current state, and after an action has been executed,
the effects of the action modify the state: the system enters a new state. A plan
in AI Planning is a sequence of actions that transforms the initial state into
the goal state. The goal of AI Planning is to find a plan that minimizes some
quantity related to the actions: number of actions, or sum of action costs in case
actions have different costs, or makespan in the case of temporal planning, when
actions have a duration and can eventually be executed in parallel. All these
problems are P-SPACE.
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A simple planning problem in the domain of logistics is given in Figure 1: the
problem involves cities, passengers, and planes. Passengers can be transported
from one city to another, following the links on the figure. One plane can only
carry one passenger at a time from one city to another, and the flight duration
(number on the link) is the same whether or not the plane carries a passenger
(this defines the domain of the problem). In the simplest non-trivial instance
of such domain, there are 3 passengers and 2 planes. In the initial state, all
passengers and planes are in city 0, and in the goal state, all passengers must
be in city 4. The not-so-obvious optimal solution has a total makespan of 8
and is left as a teaser for the reader.
AI Planning is a very active field of research, as witnessed by the success of

the ICAPS conferences (http://icaps-conferences.org), and its Intenational
Planning Comptetition (IPC), where the best planners in the world compete on
a set of problems. This competition has lead the researchers to design a common
language to describe planning problems, PDDL (Planning Domain Definition
Language). Two main categories of planners can be distinguished: exact planners
are guaranteed to find the optimal solution . . . if given enough time; satisficing
planners give the best possible solution, but with no optimality guarantee. A
complete description of the state-of-the-art planners is far beyond the scope of
this paper.
However, to the best of our knowledge, all existing planners are single objec-

tive (i.e. optimize one criterion, the number of actions, the cost, or makespan,
depending on the type of problem), whereas most real-world problems are in
fact multi-objective and involve several contradictory objectives that need to
be optimized simultaneously. For instance, in logistics, the decision maker must
generally find a trade-off between duration and cost (or/and risk).
An obvious solution is to aggregate the different objectives into a single ob-

jective, generally a fixed linear combination of all objectives. Early work in that
area used some twist in PDDL 2.0 [2,3,4]. PDDL 3.0, on the other hand, explic-
itly offered hooks for several objectives x, and a new track of IPC was dedicated
to aggregated multiple objectives: the “net-benefit” track took place in 2006
[5] and 2008 [6], . . . but was canceled in 2011 because of the small number of
entries. In any case, no truly multi-objective approach to multi-objective plan-
ning has been proposed since the very preliminary proof-of-concept in the first
Divide-and-Evolve paper [7].
One goal of this paper is to build on this preliminary work, and to dis-

cuss various issues related to the challenge of solving multi-objective prob-
lems with an evolutionary algorithm that is heavily based on a single-objective
planner (YAHSP [8]) – and in particular to compare different state-of-the-art
multi-objective evolutionary schemes when used within DaEYAHSP. However,
experimental comparison requires benchmark problems. Whereas the IPC have
validated a large set of benchmark domains, with several instances of increasing
complexity in each domain, nothing yet exists for multi-objective planning. The
other goal of this paper is to propose a tunable set of benchmark instances, based
on a simplified model of the IPC logistics domain Zeno illustrated in Fig. 1. One

http://icaps-conferences.org
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advantage of this multi-objective benchmark is that the exact Pareto Front is
known, at least for its simplest instances.
The paper is organized as follows: Section 2 rapidly introduces Divide-and-

Evolve, more precisely the representation and variation operators that have been
used in the single-objective version of DaEYAHSP that won the temporal deter-
ministic satisficing track at the last IPC in 2011. Section 4 details the proposed
benchmark, calledMultiZeno, and gives hints about how to generate instances
of different complexities within this framework. Section 3.2 rapidly introduces
the 4 variants of multi-objective schemes that will be experimentally compared
on some of the simplest instances of the MultiZeno benchmark and results of
different series of experiments are discussed in Section 6. Section 7 concludes the
paper, giving hints about further research directions.

2 Divide-and-Evolve

Let PD(I,G) denote the planning problem defined on domain D (the predicates,
the objects, and the actions), with initial state I and goal state G. In STRIPS
representation model [9], a state is a list of Boolean atoms defined using the
predicates of the domain, instantiated with the domain objects.
In order to solve PD(I,G), the basic idea of DaEX is to find a sequence of

states S1, . . . , Sn, and to use some embedded planner X to solve the series of
planning problems PD(Sk, Sk+1), for k ∈ [0, n] (with the convention that S0 = I
and Sn+1 = G). The generation and optimization of the sequence of states
(Si)i∈[1,n] is driven by an evolutionary algorithm. After each of the sub-problems
PD(Sk, Sk+1) has been solved by the embedded planner, the concatenation of
the corresponding plans (possibly compressed to take into account possible par-
allelism in the case of temporal planning) is a solution of the initial problem. In
case one sub-problem cannot be solved by the embedded solver, the individual is
said unfeasible and its fitness is highly penalized in order to ensure that feasible
individuals always have a better fitness than unfeasible ones, and are selected
only when there are not enough feasible individual. A thorough description of
DaEX can be found in [10]. The following rest of this section will focus on the
evolutionary parts of DaEX.

2.1 Representation and Initialization

An individual in DaEX is hence a variable-length list of states of the given
domain. However, the size of the space of lists of complete states rapidly becomes
untractable when the number of objects increases. Moreover, goals of planning
problems need only to be defined as partial states, involving a subset of the
objects, and the aim is to find a state such that all atoms of the goal state are
true. An individual in DaEX is thus a variable-length list of partial states, and
a partial state is a variable-length list of atoms.
Previous work with DaEX on different domains of planning problems from

the IPC benchmark series have demonstrated the need for a very careful choice
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of the atoms that are used to build the partial states [11]. The method that is
used today to build the partial states is based on a heuristic estimation, for each
atom, of the earliest time from which it can become true [12]. These earliest start
times are then used in order to restrict the candidate atoms for each partial state:
the number of states is uniformly drawn between 1 and the number of estimated
start times; For every chosen time, the number of atoms per state is uniformly
chosen between 1 and the number of atoms of the corresponding restriction.
Atoms are then added one by one: an atom is uniformly drawn in the allowed
set of atoms (based on earliest possible start time), and added to the individual
if it is not mutually exclusive (in short, mutex) with any other atom that is
already there. Note that only an approximation of the complete mutex relation
between atoms is known from the description of the problem, and the remaining
mutexes will simply be gradually eliminated by selection, because they make the
resulting individual unfeasible.
To summarize, an individual inDaEX is represented by a variable-length time-

consistent sequence of partial states, and each partial state is a variable-length
list of atoms that are not pairwise mutex.

2.2 Variation Operators

Crossover and mutation operators are defined on the DaEX representation in
a straightforward manner - though constrained by the heuristic chronology and
the partial mutex relation between atoms.
A simple one-point crossover is used, adapted to variable-length representa-

tion: both crossover points are independently chosen, uniformly in both par-
ents. However, only one offspring is kept, the one that respects the approximate
chronological constraint on the successive states. The crossover operator is ap-
plied with a population-level crossover probability.
Four different mutation operators are included: first, a population-level muta-

tion probability is used; one an individual has been designated for mutation, the
choice between the four mutation operators is made according to user-defined
relative weights. The four possible mutations operate either at the individual
level, by adding (addState) or removing (delState) a state, or at the state level
by adding (addAtom) or removing (delAtom) some atoms in a uniformly chose
state.
All mutation operators maintain the approximate chronology between the

intermediate states (i.e., when adding a state, or an atom in a state), and the
local consistency within all states (i.e. avoid pairwise mutexes).

2.3 Hybridization

DaEX uses an external embedded planner to solve the sequence of sub-problems
defined by the ordered list of partial states. Any existing planner can in theory
be used. However, there is no need for an optimality guarantee when solving the
intermediate problems in order for DaEX to obtain good quality results [10].
Hence, and because several calls to this embedded planner are necessary for a
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single fitness evaluation, a sub-optimal but fast planner is used: YAHSP [8] is
a lookahead strategy planning system for sub-optimal planning which uses the
actions in the relaxed plan to compute reachable states in order to speed up the
search process.
For any given k, if the chosen embedded planner succeeds in solving PD(Sk,

Sk+1), the final complete state is computed by executing the solution plan from
Sk, and becomes the initial state of the next problem. If all the sub-problems
are solved by the embedded planner, the individual is called feasible, and the
concatenation of the plans for all sub-problems is a global solution plan for
PD(S0 = I, Sn+1 = G). However, this plan can in general be further optimized by
rescheduling some of its actions, in a step called compression. The computation
of all objective values is done from the compressed plan of the given individual.
Finally, because the rationale forDaEX is that all sub-problems should hopefully
be easier than the initial global problem, and for computational performance
reason, the search capabilities of the embedded planner YAHSP are limited by
setting a maximal number of nodes that it is allowed to expand to solve any of
the sub-problems (see again [10] for more details).

3 Multi-objective Divide-and-Evolve

In some sense, the multi-objectivization of DaEX is straightforward – as it is
for most evolutionary algorithms. The “only” parts of the algorithm that re-
quire some modification are the selection parts, be it the parental selection, that
chooses which individual from the population are allowed to breed, and the en-
vironmental selection (aka replacement), that decides which individuals among
parents and offspring will survive to the next generation. Several schemes have
been proposed in the EMOA literature (see e.g. Section 3.2), and the end of this
Section will briefly introduce the ones that have been used in this work. However,
a prerequisite is that all objectives are evaluated for all potential solutions, and
the challenge here is that the embedded planner YAHSP performs its search
based on only one objective.

3.1 Multi-objectivization Strategies

Even though YAHSP (like all known planners to-date) only solves planning
problems based on one objective. However, it is possible since PDDL 3.0 to add
some other quantities (aka Soft Constraints or Preferences [13]) that are simply
computed throughout the execution of the final plan, without interfering with
the search.
The very first proof-of-concept of multi-objective DaEX [7], though using an

exact planner in lieu of the satisficing planner YAHSP, implemented the sim-
plest idea with respect to the second objective: ignore it (though computing
its value for all individuals) at the level of the embedded planner, and let the
evolutionary multi-objective take care of it. However, though YAHSP can only
handle one objective at a time, it can handle either one in turn, provided they
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are both defined in the PDDL domain definition file. Hence a whole bunch of
smarter strategies become possible, depending on which objective YAHSP is
asked to optimize every time it runs on a sub-problem. Beyond the fixed strate-
gies, in which YAHSP always uses the same objective throughout DaEYAHSP

runs, a simple dynamic randomized strategy has been used in this work: Once
the planner is called for a given individual, the choice of which strategy to ap-
ply is made according to roulette-wheel selection based on user-defined relative
weights; In the end, it will return the values of both objectives. It is hoped that
the evolutionary algorithm will find a sequential partitioning of the problem that
will nevertheless allow the global minimization of both objectives. Section 6.2
will experimentally compare the fixed strategies and the dynamic randomized
strategy where the objective that YAHSP uses is chosen with equal probability
among both objectives.
Other possible strategies include adaptive strategies, where each individual,

or even each intermediate state in every individual, would carry a strategy pa-
rameter telling YAHSP which strategy to use – and this strategy parameter
would be subject to mutation, too. This is left for further work.

3.2 Evolutionary Multi-objective Schemes

Several Multi-Objective EAs (MOEAs) have been proposed in the recent years,
and this work is concerned with comparing some of the most popular ones when
used within the multi-objective version of DaEYAHSP. More precisely, the fol-
lowing selection/reproduction schemescan be applied to any representation, and
will be experimented with here: NSGA-II [14], SPEA2 [15], and IBEA [16]. They
will now be quickly introduced in turn.
The Non-dominated Sorting Genetic Algorithm (NSGA-II) has been

proposed by Deb et al. [14]. At each generation, the solutions contained in the
current population are ranked into successive Pareto fronts in the objective space.
Individuals mapping to vectors from the first front all belong to the best efficient
set; individuals mapping to vectors from the second front all belong to the second
best efficient set; and so on. Two values are then assigned for every solution of
the population. The first one corresponds to the rank of the Pareto front the
corresponding solution belongs to, and represents the quality of the solution
in terms of convergence. The second one, the crowding distance, consists in
estimating the density of solutions surrounding a particular point in the objective
space, and represents the quality of the solution in terms of diversity. A solution
is said to be better than another solution if it has a better rank value, or in case
of equality, if it has a larger crowding distance.
The Strength Pareto Evolutionary Algorithm (SPEA) [17], introduces

an improved fitness assignment strategy. It intrinsically handles an internal fixed-
size archive that is used during the selection step to create offspring solutions.
At a given iteration of the algorithm, each population and archive member x
is assigned a strength value S(x) representing the number of solutions it domi-
nates. Then, the fitness value F (x) of solution x is calculated by summing the
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Fig. 1. A schematic view of MultiZeno, a simple benchmark transportation problem:
Durations of available flights are attached to the corresponding edges, costs/risks are
attached to landing in the central cities (in grey circles).

strength values of all individuals that x currently dominates. Additionally, a
diversity preservation strategy is used, based on a nearest neighbor technique.
The selection step consists of a binary tournament with replacement applied on
the internal archive only. Last, given that the SPEA2 archive has a fixed size
storage capacity, a pruning mechanism based on fitness and diversity information
is used when the non-dominated set is too large.
The Indicator-Based Evolutionary Algorithm (IBEA) [16] introduces a

total order between solutions by means of a binary quality indicator. The fitness
assignment scheme of this evolutionary algorithm is based on a pairwise com-
parison of solutions contained in the current population with respect to a binary
quality indicator I. Each individual x is assigned a fitness value F (x) measuring
the “loss in quality” that would result from removing x from the current popu-
lation. Different indicators can be used. The most two popular, that will be used
in this work, are the additive ε-indicator (Iε+ ) and the hypervolume difference
indicator (IH− ) as defined in [16]. Each indicator I(x, x′) gives the minimum
value by which a solution x ∈ X can be translated in the objective space to
weakly dominate another solution x′ ∈ X . An archive stores solutions mapping
to potentially non-dominated points in order to prevent their loss during the
stochastic search process.

4 A Benchmark Suite for Multi-objective Temporal
Planning

This section details the proposed benchmark test suite for multi-objective tem-
poral planning, based on the simple domain that is schematically described in
Figure 1. The reader will have by now solved the little puzzle set in the Intro-
duction, and found the solution with makespan 8 (flying 2 passengers to city 1,
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one plane continues with its passenger to city 4 while the other plane flies
back empty to city 0, the plane in city city 4 returns empty to city 1 while
the other plane brings the last passenger there, and the goal is reached after
both planes bring both remaining passengers to city 4). The rationale for this
solution is that no plane ever stays idle.
In order to turn this problem into a not-too-unrealistic logistics multi-objective

problem, some costs or some risks are added to all 3 central cities (1 to 3). This
leads to two types of problems: In the MultiZenoCost, the second objective is
an additive objective: each plane has to pay the corresponding tax every time
it lands in that city; In the MultiZenoRisk, the second objective is similar to
a risk, and the maximal value encountered during the complete execution of a
plan is to be minimized.
In both cases, there are 3 obvious points that belong to the Pareto Front:

the solution with minimal makespan described above, and the similar solutions
that use respectively city 2 and city 3 in lieu of city 1. The values of the
makespans are respectively 8, 16 and 24, and the values of the costs are, for each
solution, 4 times the value of the single landing tax, and exactly the value of
the involved risk. For the risk case, there is no other point on the Pareto Front,
as a single landing on a high-risk city sets the risk of the whole plan to a high
risk. For the cost model however, there are other points on the Pareto Front,
as different cities can be used for the different passengers. For instance, in the
case of Figure 1, this leads to a Pareto Front made of 5 points, (8,12), (16,8),
and (24,4) (going only through city 1, 2 and 3 respectively), plus (12,10) and
(20,6). Only the first 3 are the Pareto Front in the risk case.

4.1 Tuning the Complexity

There are several ways to make this first simple instance more or less complex.
A first possibility is to add passengers. In this work, only bunches of 3 passen-
gers have been considered, in order to be able to easily derive some obvious
Pareto-optimal solutions, using several times the little trick to avoid leaving any
plane idle. For instance, it is easy to derive all the Pareto solutions for 6 and
9 passengers – and in the following, the corresponding instances will be termed
MultiZeno3, MultiZeno6, and MultiZeno9 respectively (sub-scripted with
the type of second objective – cost or risk).
Of course, the number of planes could also be increased, though the number

of passengers needs to remain larger than the number of planes to allow for non-
trivial Pareto front. However, departing from the 3 passengers to 2 planes ratio
would make the Pareto front not easy to identify any more.
Another possibility is to increase the number of central cities: this creates

more points on the Pareto front, using either plans in which a single city is used
for all passengers, or plans that use several different cities for different passengers
(while nevertheless using the same trick to ensure no plane stays idle). In such
configuration too the exact Pareto front remains easy to identify: further work
will investigate this line of complexification.
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Fig. 2. The exact Pareto Fronts for the MultiZeno6 problem for different values of
the cost α of city2 (those of city1 and city3 being 3 and 1 respectively)

4.2 Modifying the Shape of the Pareto Front

Another way to change the difficulty of the problem without increasing its com-
plexity is to tune the different values of the flight times and the cost/risk at each
city. Such changes does not modify the number of points on the Pareto Front,
but does change its shape in the objective space. For instance, simply modifying
the cost α of city2, the central city in Figure 1, between 1 and 3 (the costs
of respectively city1 and city3), the Pareto Front, which is linear for α = 2
becomes strictly convex for α < 2 and strictly concave for α > 2, as can be seen
for two extreme cases (α = 1.1 and α = 2.9) on Figure 2. Further work will
address the identification of the correct domain parameters in order to reach a
given shape of the Pareto front.

5 Experimental Conditions

Implementation: All proposed multi-objective approaches (see Section 3.2) have
been implemented within the ParadisEO-MOEO framework [18]. All exper-
iments were performed on the MultiZeno3, MultiZeno6, and MultiZeno9
instances. The first objective is the makespan, and the second objective either
the (additive) cost or the (maximal) risk, as discussed in Section 4. The values
of the different flight durations and cost/risks are those given on Figure 1 except
otherwise stated.

Parameter Tuning: All user-defined parameters have been tuned using the frame-
work ParamILS [19]. ParamILS handles any parameterized algorithm whose
parameters can be discretized. Based on Iterated Local Search (ILS), ParamILS
searches through the space of possible parameter configurations, evaluating con-
figurations by running the algorithm to be optimized on a set of benchmark
instances, searching for the configuration that yields overall best performance
across the benchmark problems. Here, both the parameters of the multi-objective
algorithms (including the internal parameters of the variation operators – see
[20]) and YAHSP specific parameters (including the relative weights of the pos-
sible strategies (see Section 3.1) have been subject to ParamILS optimization.
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For the purpose of this work, parameters were tuned anew for each instance (see
[20] for a discussion about the generality of such parameter tuning, that falls
beyond the scope of this paper).

Performance Metric: The quality measure used by ParamILS to optimize
DaEYAHSP is the unary hypervolume IH− [16] of the set of non-dominated points
output by the algorithm with respect to the complete true Pareto front (only
instances where the true Pareto front is fully known have been experimented
with). The lower the better (a value of 0 indicates that the exact Pareto front
has been reached).
However, and because the true front is known exactly, and is made of a few

scattered points (at most 17 forMultiZeno9 in this paper), it is also possible to
visually monitor when each point of the front is discovered by the algorithm. This
allows some deeper comparison between algorithms even when none has found
the whole front. Such attainment plots will be used in the following, together
with more classical plots of hypervolume vs time.
For all experiments, 30 independent runs were performed. Note that all the

performance assessment procedures, including the hypervolume calculations,
have been achieved using the PISA performance assessment tool suite [21].

Stopping Criterion: Because different fitness evaluations involve different num-
ber calls to YAHSP – and because YAHSP runs can have different computa-
tional costs too, depending on the difficulty of the sub-problem being solved –
the stopping criterion was a fixed amount of CPU time rather than the usual
number of fitness evaluation. These absolute limits were set to 300, 600, and 900
seconds respectively for MultiZeno3, MultiZeno6, and MultiZeno9.

6 Experimental Results

6.1 Comparing Multi-objective Schemes

The first series of experiments presented here are concerned with the comparison
of the different multi-objective schemes briefly introduced in Section 3.2. Figure
3 displays a summary of experiments of all 4 variants for MultiZeno instances
for both the Cost and Risk problems.
Some clear conclusions can be drawn from these results, that are confirmed by

the statistical analyses presented in Table 1 using Wilcoxon signed rank test with
95% confidence level. First, looking at the minimal values of the hypervolume
reached by the different algorithms shows that, as expected, the difficulty of the
problems increases with the number of passengers, and for a given complexity,
the Risk problems are more difficult to solve than the Cost ones. Second, from
the plots and the statistical tests, it can be seen that NSGA-II is outperformed
by all other variants on all problems, SPEA2 by both indicator-based variants
on most instances, and IBEAH− is a clear winner over IBEAε+ except on
MultiZeno6risk.
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More precisely, Figure 4 show the cumulated final populations of all 30 runs
in the objective space together with the true Pareto front for MultiZeno6-
9cost problems: the situation is not as bad as it seemed from Figure 3-(e) for
MultiZeno9cost, as most solutions that are returned by IBEAH− are close
to the Pareto front (this is even more true on MultiZeno6cost problem). A
dynamic view of the attainment plots is given in Figure 6-(c): two points of
the Pareto front are more difficult to reach than the others, namely (48,16) and
(56,12).
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Fig. 3. Evolution of the Hypervolume indicator IH− (averaged over 30 runs) on
MultiZeno instances (see Table 1 for statistical significances)

6.2 Influence of YAHSP Strategy

Next series of experiments aimed at identifying the influence of the chosen strat-
egy forYAHSP (see Section 3.1). Figure 6-(a) (resp. 6-(b)) shows the attainment
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Fig. 4. Pareto fronts of IBEAH− on MultiZeno instances
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Fig. 5. Attainment plots for IBEAH− on MultiZeno6 instances

plots for the strategy in whichYAHSP always optimizes the makespan (resp. the
cost) on problem MultiZeno6cost. Both extreme strategies lead to much worse
results than the mixed strategy of Figure 5-(a), as no run discovers the whole
front (last line, that never leaves the x-axis). Furthermore, and as could be ex-
pected, the makespan-only strategy discovers very rapidly the extreme points of
the Pareto front that have a small makespan (points (20,30), (24,28) and (28,26))
and hardly discovers the other end of the Pareto front (points with makespan
greater than 48), while it is exactly the opposite for the cost-only strategy. This
confirms the need for a strategy that incorporates both approaches. best possible
choice.
Note that similar conclusion could have been drawn from ParamILS results

on parameter tuning (see Section 5): the choice of YAHSP strategy was one of
the parameters tuned by ParamILS . . . and the tuned values for the weights of
both strategies were always more or less equal.

6.3 Shape of the Pareto Front

Figure 7 displays the attainment plots of IBEAH− for both extreme Pareto fronts
shown on Figure 2 – while the corresponding plot for the linear case α = 2 is
that of Figure 5-(a). Whereas the concave front is fully identified in 40% of
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Table 1. Wilcoxon signed rank tests at 95% confidence level (IH− metric)

Instances Algorithms
Algorithms

NSGAII IBEAε+ IBEAH− SPEA2

Zeno3cost

NSGAII – ≡ ≡ ≡
IBEAε+ ≡ – ≡ ≡
IBEAH− ≡ ≡ – ≡
SPEA2 ≡ ≡ ≡ –

Zeno3risk

NSGAII – ≡ ≡ ≡
IBEAε+ ≡ – ≡ �
IBEAH− ≡ ≡ – �
SPEA2 ≡ ≺ ≺ –

Zeno6cost

NSGAII – ≺ ≺ ≺
IBEAε+ � – ≡ ≡
IBEAH− � ≡ – ≡
SPEA2 � ≡ ≡ –

Zeno6risk

NSGAII – ≺ ≺ ≡
IBEAε+ � – � �
IBEAH− � ≺ – �
SPEA2 ≡ ≺ ≺ –

Zeno9cost

NSGAII – ≺ ≺ ≺
IBEAε+ � – ≺ ≡
IBEAH− � � – ≡
SPEA2 � ≡ ≡ –

Zeno9risk

NSGAII – ≺ ≺ ≺
IBEAε+ � – ≺ ≡
IBEAH− � � – ≡
SPEA2 � ≡ ≡ –
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(a) YAHSP optimizes makespan
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Fig. 6. Attainment plots for two search strategies on MultiZeno6cost

the runs (right), the complete front for the strictly convex case (left) is never
reached: in the latter case, the 4 most extreme points are found by 90% of the
runs in less than 200 seconds, while the central points are hardly ever found.
We hypothesize that the handling of YAHSP strategy regarding which objective
to optimize (see Section 3.1) has a greater influence in the case of this strictly
convex front than when the front is linear (α = 2) or almost linear, even if strictly
concave (α = 2.9). In any case, no aggregation technique could ever solve the
latter case, whereas it is here solved in 40% of the runs by DaEYAHSP.
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Fig. 7. Attainment plots for different Pareto fronts for MultiZeno6cost

7 Conclusion and Perspectives

The contributions of this paper are twofold. Firstly, MultiZeno, an original
benchmark test suite for multi-objective temporal planning, has been detailed,
and several levers identified that allow to generate more or less complex in-
stances, that have been confirmed experimentally: increasing the number of
passengers obviously makes the problem more difficult; modifying the cost of
reaching the cities and the duration of the flights is another way to make the
problem harder, though deeper work is required to identify the consequences of
each modification. Secondly, several multi-objectivization of DaEX, an efficient
evolutionary planner in the single-objective case, have been proposed.
However, even though the hypervolume-based IBEAH− clearly emerged as

the best choice, the experimental comparison of those variants on the Multi-

Zeno benchmark raises more questions than it brings answers. The sparseness
of the Pareto Front has been identified as a possible source for the rather poor
performance of all variants for moderately large instances, particularly for the
risk type of instances. Some smoothening of the objectives could be beneficial
to tackle this issue (e.g., counting for the number of times each risk level is hit
rather than simply accounting for the maximal value reached). Another direction
of research is to combat the non-symmetry of the results, due to the fact that
the embedded planner only optimizes one objective. Further work will investi-
gate a self-adaptive approach to the choice of which objective to give YAHSP

to optimize. Finally, the validation of the proposed multi-objective DaEYAHSP

can only be complete after a thorough comparison with the existing aggregation
approaches – though it is clear that aggregation approaches will not be able to
identify the whole Pareto front in case it has some concave parts, whereas the
results reported here show that DaEYAHSP can reasonably do it.
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Abstract. Topic Modeling (TM) is a rapidly-growing area at the inter-
faces of text mining, artificial intelligence and statistical modeling, that
is being increasingly deployed to address the ‘information overload’ as-
sociated with extensive text repositories. The goal in TM is typically to
infer a rich yet intuitive summary model of a large document collection,
indicating a specific collection of topics that characterizes the collection
– each topic being a probability distribution over words – along with the
degrees to which each individual document is concerned with each topic.
The model then supports segmentation, clustering, profiling, browsing,
and many other tasks. Current approaches to TM, dominated by Latent
Dirichlet Allocation (LDA), assume a topic-driven document generation
process and find a model that maximizes the likelihood of the data with
respect to this process. This is clearly sensitive to any mismatch between
the ‘true’ generating process and statistical model, while it is also clear
that the quality of a topic model is multi-faceted and complex. Individ-
ual topics should be intuitively meaningful, sensibly distinct, and free of
noise. Here we investigate multi-objective approaches to TM, which at-
tempt to infer coherent topic models by navigating the trade-offs between
objectives that are oriented towards coherence as well as coverage of the
corpus at hand. Comparisons with LDA show that adoption of MOEA
approaches enables significantly more coherent topics than LDA, conse-
quently enhancing the use and interpretability of these models in a range
of applications, without significant degradation in generalization ability.

Keywords: Multi-objective optimization, Topic Modeling, Latent
Dirichlet Allocation, MOEA/D, Pointwise Mutual Information,
Perplexity.

1 Introduction

Topic Modeling (TM) is a relatively recent and rapidly-growing area at the
interfaces of text mining, artificial intelligence and statistical modeling; it is
being increasingly deployed to address the ‘information overload’ associated with
extensive text collections. The growing interest in TM can be associated with the
fact that text comprises about 85% of data worldwide [1]. Modern approaches to
TM are based on a variety of theoretical frameworks that tend to consider any
individual document to be a weighted mixture of topics, where each individual
topic is a multinomial distribution over words. An inferred topic model comprises
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a specific collection of topics, along with an assignment of one of these topics
to each word in each document in the corpus at hand. Such a topic model can
provide an efficient representation of the corpus and is effective at supporting a
wide range of browsing and retrieval strategies (for example, delivering suitable
documents in response to queries involving a weighted mixture of topics)[2].
Current TM approaches such as Correlated Topic Models (CTM) [4] and La-

tent Dirichlet Allocation (LDA), rely on finding a set of topics that maximizes
the likelihood that the data were generated by a specific model of document
generation. Though commonly returning interpretable results, the inferred mod-
els are ultimately aligned to a much-simplified abstraction of the real document
generation process, and leave much room for improvement in the intuitive ‘real-
world coherence’ of the resulting models. In current approaches, it is therefore
common to evaluate the inferred models via their performance in a specific task
such as classification of unseen documents. Such strategies do not represent a
fully-rounded evaluation of a topic model, and do not address the question of
how more coherent topic models might be inferred in the first place.
A high quality topic model is one that can be expected to score well on

a collection of different criteria, concerned with, for example, the coherence of
individual topics, the coherence of the collection of topics as a whole, and the ex-
tent to which the inferred topics cover the entire collection, as well as the extent
to which individual documents are explained by the topics (for example, a poor
topic model in the latter respect may leave large portions of many documents un-
allocated to topics). However, each of these objectives is difficult to evaluate and
can only be approximated – meanwhile, the familiar LDA likelihood criterion is a
proven successful objective that, similarly, provides an appropriate and alterna-
tive approximate measure of quality. Exploiting the multi-criteria nature of topic
models, in this article we begin to explore the use of multi-objective evolutionary
algorithms (MOEAs) in topic modeling, and we investigate whether MOEA or
MOEA/LDA hybrid approaches can be designed that yield better topic models
than current approaches, and consequently provide enhanced effectiveness and
user experiences in the many applications of TM technologies.
The remainder is organized as follows: in Section 2 we introduce concepts

related to the most prominent topic modeling method, LDA, and we describe
the evaluation techniques that are generally used. Our MOEA approaches to TM
are described in Section 3, and in Section 4 we describe a series of experiments
that compare MOEA-TM approaches with LDA on three text corpora. Summary
and final reflections are made in Section 5. Meanwhile at http://is.gd/MOEATM
we provide source code, corpora and associated instructions that are sufficient
to replicate our experiments and support further investigations.

2 Topic Modeling

Topic modeling is an approach to analyzing large amounts of unclassified text
data [3]. It exploits the statistical regularities that occur in natural language doc-
uments in order to match queries to documents in a way that, though
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entirely statistical, carries strong semantic resonance. Good topic models should
connect words with similar meanings (i.e. these words will typically co-occur
within topics) and be able to distinguish between multiple meanings of a word
depending on context (e.g. the word ‘set’ will appear with high probability in
both a ‘tennis’ topic, and a ‘discrete mathematics’ topic).

2.1 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) is among the most prominent of current topic
modeling techniques; it considers corpus documents to be underpinned by a
mixture of latent topics, where each topic is characterized by a multinomial
distribution over words [5]. LDA makes use of Dirichlet distribution which is a
continuous multivariate distribution parameterized by a vector of positive reals.
In the special case when all this vector’s components are the same number,
the distribution is called symmetric Dirichlet. A quick summary of LDA using
LDA generative process is as follows. Let K be a predefined number of topics,
k ∈ [1..K] a number representing the topic, α a positiveK-component vector, η a
scalar, Dir(α) a K-dimensional Dirichlet distribution, V the corpus size, Dir(η)
a V -dimensional symmetric Dirichlet distribution, βk a topic k distribution over
corpus words, θd the topics proportion for one document, d a document from
the corpus, w a word from the corpus, wd,n the n

th word in the document d,
and zd,n ∈ [1..K] the topic assignment for the nth word in document d.

for each topic k
Choose a distribution over words βk ∼ Dir(η)

for each document d
Draw a topic proportion θd ∼ Dir(α)
for each word w in the document d

Draw a topic assignment zd,n ∼Multinomial(θd), zd,n ∈ 1..K
Draw a word wd,n ∼Multinomial(βzd,n)

 

  ,  ,    

  
 

Fig. 1. LDA model graphical representation of generative process

The graphical representation of LDA in Figure. 1 illustrates the relationship
between latent and observed variables. The LDA generative process defines a
joint probability distribution over these as follows [6]:
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P (β, θ, z, w) =

K∏
k=1

P (βk)

D∏
d=1

P (θd)

(
N∏

n=1

P (zd,n|θd)P (wd,n|β, zd,n)
)

(1)

where, D is the number of documents, N the number of words inside one docu-
ment, β is all topics distributions over corpus words, θ is the topics proportions
for all documents, and z the topic assignments for all corpus words.
The main computational problem of LDA is to compute the posterior distribu-

tion – i.e., the conditional distribution of the latent variables given the observed
variables. The posterior is given by the following formula:

P (β, θ, z|w) = P (β, θ, z, w)

P (w)
. (2)

Unfortunately, the exact posterior calculation is not feasible due to the denom-
inator P (w), calculation of which would involve summing the joint distribution
over every possible combination of topic structures. However, there are vari-
ous methods for approximating this posterior, such as Mean Field Variational
Inference, Collapsed Variational Inference, Expectation Propagation and Gibbs
Sampling [7]. LDA approaches that use Gibbs sampling are among the most
popular methods in the current literature.

2.2 Evaluating Topic Models

The unsupervised nature of topic modeling methods makes choosing one topic
model over another a difficult task. Topic model quality tends to be evaluated
by performance in a specific application. However, other ways of evaluation are
also used in the literature. Topic models can be evaluated based on perplexity [8]
as a quantitative method; meanwhile, a ‘human-evaluation’ oriented evaluation
method was introduced in [9] by creating a task where humans judge topics in
terms of the frequency of apparently irrelevant words.
Perplexity is becoming a standard quality measure for topic models; it mea-

sures the topic model’s ability to generalize to unseen documents after estimating
the model using training documents. Lower perplexity means better generaliza-
tion ability. Perplexity is calculated for a test corpus Dtest by calculating the
natural exponent of the mean log-likelihood of the corpus words [10] as follows:

Perplexity (Dtest|M) = e

−
∑

d∈Dtest
logP (wd|M)∑

d∈Dtest
Nd (3)

where wd represents the words of test document d, M is the topic model, Nd

is the number of words in document d. Thus, to evaluate two topic models
estimated from the same training data, perplexity on test data is calculated,
and the model with the lower perplexity value is preferred since it seems to
provide a better characterization of the unseen data. However, perplexity does
not reflect the topics’ semantic coherence [11].
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On the other hand, Pointwise Mutual Information (PMI) is an ideal measure
of semantic coherence, based on word association in the context of information
theory [12,13]. PMI compares the probability of seeing two words together with
the probability of observing the words independently. PMI for two words can be
given using the following formula:

Pmi(wi, wj) = log
P (wi, wj)

P (wi)P (wj)
. (4)

The joint probability P (wi, wj) can be measured by counting the number of
observations of words wi and wj together in the corpus normalized by the corpus
size. PMI-based evaluations correlate very well with human judgment of topic
coherence or topic semantics [11,14], especially when Wikipedia is used as a
meta-documents to calculate the words co-occurrences within a suitably sized
sliding window.
PMI values fall in the range ]−∞,− logP (wi, wj)], hence the higher the PMI

value the more coherent the topic it represents. PMI values can be normalized
to fall in the range [−1, 1] as shown in [15] using the following formula:

nPmi(wi, wj) =

{
−1 if P (wi, wj) = 0
log P (wi)+logP (wj)

logP (wi,wj)
− 1 otherwise

. (5)

The approach used to evaluate one topic is to calculate the mean of PMI for
each possible word pair in the topic T . Consequently, the normalized PMI value
for one topic T is given using the following formula:

nPmiT =

∑
wi,wj∈T nPmi(wi, wj)(

Tlength
2

) . (6)

where, Tlength represents the number of words inside topic T .

3 MOEA Approaches to Topic Modeling

Multi-objective optimization aims to find a set of solutions that represent
optimal trade-offs between the objectives. This is the set of Pareto Optimal
solutions [16]. There are a wide variety of approaches to multi-objective prob-
lems, however, many of these may fail when the Pareto front (the geometric
structure of the Pareto set in objective space) is concave or disconnected [17].
Multi-objective Evolutionary Algorithms (MOEAs) tend to avoid these draw-
backs [17,18], among others, and are currently prominent among state of the art
approaches to multi-objective optimization.
Topic models have many applications beyond unstructured text processing

and text tagging. They can be used in analyzing genetic data [19], computer
vision [20], audio and speech engineering [21], emotion modeling and social af-
fective text mining [22], and financial analysis [23]. Current approaches such as
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LDA focus on producing topic models which score well on perplexity as mea-
sured over a test set. However, other applications, such as text tagging which
is used in digital libraries, require highly coherent topics [11]. Considering the
varied requirements of other applications, along with arguments made in Section
1, it is well-worth considering MOEAs in attempt to produce high quality topic
models in general, and also in contexts relating to specific applications.
Our first approach (‘standalone’ MOEA-TM) is to optimize two objectives:

PMI and coverage (described in section 3.3). PMI encourages coherent topics,
whilst coverage encourages a large proportion of the corpus words to appear in
the inferred topics. In ‘standalone’ MOEA-TM we limit the number of words
per topic. This arguably leads to more intuitive topics, and significantly reduces
computational load, but means that we cannot use perplexity as an objective,
since the perplexity calculation requires all corpus words to be assigned to a
topic. Experiments with standalone MOEA-TM are described in section 4.1. In
section 4.2, we introduce an alternative approach in which MOEA-TM is used
to improve topic models pre-generated by LDA. Here we trade-off the compu-
tational load of an unlimited number of words per topic against the optimized
starting point, and are able to add perplexity as an additional objective. In each
case, MOEA-TM builds on the current prominent ‘Multi-objective Evolutionary
Algorithm Based on Decomposition (MOEA/D)’ [24], and adapts it to this task.

3.1 Encoding and Generation of Initial Population

Each chromosome is a vector of topic variables T1, T2.., TK where K is the num-
ber of topics. Each topic variable contains a number of weighted words. Thus,
each gene comprises two parts: the word index and a numerical value represent-
ing the word’s participation in the topic. Chromosome structure is illustrated
in Fig. 2. In the standalone case, the population is initialized randomly as each
topic variable is initialized on the basis of a randomly chosen document. Topic
genes are initialized based on the most frequent words in the chosen document,
with random weights. However, when the algorithm is used to enhance an exist-
ing model, the population echoes the model itself. Each topic variable is based on
its corresponding model’s topic, where the genes represent the highest weighted
words in that topic.

Fig. 2. Chromosome Structure
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3.2 Genetic Operators

Crossover in our current approach generates two offspring from two parents.
Each child comprises as many topic variables as its parents has, via uniform
crossover of the parents’ corresponding topic variable genes, ensuring that words
and their associated weights are copied together. However, when a word exists
in both parents’ topic variables, the children have the average word weight. A
simple two topics crossover example is illustrated in Fig. 3.

Fig. 3. A simple two topics crossover example

Mutation is applied to a single randomly chosen gene, changing the weight to
a new random number, and changing the word to another word from the corpus,
ensuing that the newly introduced word occurs together in a document in the
corpus with another randomly selected word from the topic variable.

3.3 Objectives

Coverage Score. This objective encourages topic models to represent the whole
corpus. For each document, topics are evaluated by calculating the Euclidean
distance between the weighted topics and the document itself. This is done by
multiplying each topic’s word-weight by the document’s related topic weight,
then calculating the distance between the resulting distribution and the docu-
ment’s word frequencies. Document-related topic weights are calculated using:

Propd(T ) =

∑
w∈T tfd(w)

Tlength − countw∈T,d(w)
(7)

where, tfd(w) gives the frequency of the word w in the document d and
countw∈T,d(w) gives the number of words that exist in the topic and document
at the same time. Consequently, the coverage score for one document d can be
given by:

Coveraged =

√√√√∑
w∈d

(
tfd(w) −

K∑
i=1

Ti(w)Propd(Ti)

)2

(8)
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where Ti(w) gives the word’s weight if it is present in topic Ti, and zero otherwise.
The coverage score can be normalized by its maximum value as follows:

nCoveraged =

√√√√√∑w∈d

(
tfd(w) −

∑K
i=1 Ti(w)Propd(Ti)

)2
∑

w∈d tfd(w)
2

. (9)

This process is repeated for all corpus documents in order to calculate a coverage
score for the corpus. Eventually, there will be a vector of values that need to
be minimized. The overall score for corpus D is calculated by measuring the
distance between the resulting vector and the center of the representing space
using:

CovObj =

√∑
d∈D

nCoverage2d. (10)

The objective CovObj needs to be minimized in MOEA-TM algorithm.

Pointwise Mutual Information Score. This objective measures the intuitive
quality of a topic, in terms of how often words that co-occur in a topic tend to
co-occur in general. PMI is calculated for each topic using (6). The higher the
PMI value, the more ‘coherent’ is the topic. For convenience, however, we use
1 − nPmiT as the objective, so that all objectives in MOEA-TM are to be
minimized. The overall score for a topic model topics is calculated by measuring
the distance between the vector of PMI scores for each topic, and the center of
the representing space using:

PmiObj =

√√√√ K∑
i=1

(1 − nPmiTi)
2. (11)

Perplexity Score. This objective is related to the model’s ability to general-
ize to unseen data. Strictly, the perplexity score requires a topic model which
assigns a topic to every word in the entire corpus, so we cannot calculate it for
a topics comprising only a subset of corpus words, which is our approach in the
‘standalone’ MOEA-TM. Consequently, this objective is only investigated when
MOEA-TM is used to enhance a pre-calculated topic model, which is the case
with our ‘LDA-Initialized’ MOEA-TM. The Perplexity score is calculated using
the following formula:

PerpObj =
−
∑

d∈Dtest
logP (wd|M)∑

d∈Dtest
Nd

(12)

where,M is the pre-calculated LDA topic model,Dtest is a small test corpus, d is
a document in the test corpus, wd is the words of test document d, and Nd num-
ber of words in document d. PerpObj objective is calculated using Left to Right



Multi-objective Topic Modeling 59

method from [8] then normalized dynamically using other calculated values. The
minimized negative log-likelihood mean leads to minimized perplexity.

3.4 Best Solution

Our primary aim is to contrast MOEA approaches to topic modeling with the
standard single-objective approach, and hence we draw a single solution from
each MOEA-TM run. We choose a compromise solution from the (approximated)
Pareto front by sorting the Pareto set according to a score representing the
Euclidean distance between the objective vector −→v = (v1, v2 · · · vn) and the
center of the objective space as follows:

score(−→v ) =

√√√√ n∑
i=1

v2i . (13)

4 Experimental Evaluation

A number of experiments were performed to compare MOEA-TM with LDA,
arguably the state-of-art in topic modeling. We used the LDA implementation
with Gibbs Sampling which is provided by the MALLET package [25]. MOEA
implementations utilized the MOEA Framework version 1.11 [26] run by JDK
version 1.6 and CentOS release 5.8. Our evaluation uses three corpora: the first is
a very small corpus with five documents created from Wikipedia and containing
four rather distinct topics (Love, Music, Sport and Government). The second
corpus is made from about 15000 documents taken from news articles covering
mainly four topics: Music, Economy, Fuel and Brain Surgery. The Third corpus
comprises about 800 documents that are summaries of projects in Information
and Communication Technology (ICT) funded by the Engineering and Physical
Sciences Research Council (EPSRC). Full details of each corpus are available
from http://is.gd/MOEATM.

4.1 Standalone MOEA Topic Modeling

Standalone MOEA-TM was run ten times independently on each corpus, using
only normalized coverage and normalized PMI objectives. LDA was also run ten
times on each corpus. These experiments were done twice, once with number of
topics set to 4, and once with number of topics set to 10.
Figure. 4, Figure. 5 and Figure. 6 show all MOEA-TM solutions resulting from

ten runs. An averaged MOEA-TM Pareto Front is shown. The ‘best’ MOEA-TM
solution (identified using (13)), is displayed. LDA solutions and their means are
also shown. It can be seen that LDA is able to find relatively good solutions
with an optimized coverage score; however the PMI (coherence) scores are poor
in comparison to those found by MOEA-TM.
Figure. 4 and Figure. 5 show that best MOEA-TM solution optimizes both

PmiObj and CovObj scores for the corpora Wiki and EPSRC respectively. On
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Fig. 4. Wiki Corpus test: MOEA-TM Pareto Front and LDA solutions for ten runs
(average is taken), 4 topics left and 10 topics right

Fig. 5. EPSRC Corpus test: MOEA-TM Pareto Front and LDA solutions for ten runs
(average is taken), 4 topics left and 10 topics right

Fig. 6. News Corpus test: MOEA-TM Pareto Front and LDA solutions for ten runs
(average is taken), 4 topics left and 10 topics right
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the other hand, Figure. 6 shows that for the News corpus MOEA-TM Best
Solution was able to optimize the PmiObj but not the CovObj objective. This
means that for this corpus LDA was able to find a higher representing topics
but with poor PMI.

Evaluation: Table. 1 and Table. 2 show the mean and sample standard devia-
tions of original PMI metrics from the best MOEA-TM solutions and from LDA
for 4 and 10 topic runs respectively. In these tables the higher PMI value is the
better as the displayed values are the mean original normalized PMI values for
solutions’ topics after applying (6) over each topic.

Table 1. PMI for standalone MOEA-TM and LDA, for three corpora / four topics

MOEA TM LDA
Mean PMI St. Deviation Mean PMI St. Deviation

Wiki Corpus 0.3490 0.0128 0.2460 0.0194

EPSRC Corpus 0.4119 0.0091 0.3457 0.0102

News Corpus 0.3987 0.0178 0.2933 0.0082

Table 2. PMI for standalone MOEA-TM and LDA for, for three corpora / ten topics

MOEA TM LDA
Mean PMI St. Deviation Mean PMI St. Deviation

Wiki Corpus 0.3483 0.0078 0.2158 0.0163

EPSRC Corpus 0.4264 0.0080 0.3371 0.0106

News Corpus 0.3913 0.0077 0.2448 0.0216

It can be seen that MOEA-TM outperforms LDA in terms of the PMI met-
ric. This means that topic models resulting from MOEA-TM are significantly
more coherent than topics resulting from LDA. As suggested by the standard
deviations, all MOEA-TM/LDA comparisons are significant with p < 0.01. The
fact that MOEA-TM outperforms LDA in this respect is of course not very sur-
prising given that LDA does not directly optimize PMI, however it is arguably
surprising and interesting that the MOEA-TM approach can show such a marked
improvement in topic coherence beyond that which seems achievable by LDA.

4.2 LDA-Initialized MOEA Topic Modeling

In this experiment, similar experiments were run but in this case MOEA-TM is
used to enhance a pre-calculated LDA topic model by optimizing three objectives
CovObj, PmiObj, and PerpObj. The negative log-likelihood mean of an unseen
test corpus words using the updated model is compared with the negative log-
likelihood-mean of the same unseen test corpus words using the original LDA
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model. The model that has lower negative log-likelihood mean (or higher log-
likelihood mean) is better as it leads to lower perplexity. LDA-initialized MOEA-
TM was run ten times, and compared with (again) the results of ten unenhanced
LDA topic models.

Fig. 7. Wiki Corpus test: LDA-Initialized MOEA-TM Pareto Front and Pure LDA
solutions for ten runs (average is taken), 4 topics left and 10 topics right

Fig. 8. EPSRC Corpus test: LDA-Initialized MOEA-TM Pareto Front and Pure LDA
solutions for ten runs (average is taken), 4 topics left and 10 topics right

Figure. 7, Figure. 8 and Figure. 9 show the average MOEA-TM Pareto Front
which is calculated by interpolating each of MOEA-TM Pareto Fronts using Mi-
crosphere Projection (the multivariate interpolation method) [27] and then cal-
culating the average surface. The average surface is calculated by substituting
each drawing point in each Pareto Front interpolation function then calculating
the drawing point average value. Furthermore, best MOEA-TM solution, which
is identified using (13), and LDA mean solutions are displayed in the figures. The
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Fig. 9. News Corpus test: LDA-Initialized MOEA-TM Pareto Front and Pure LDA
solutions for ten runs (average is taken), 4 topics left and 10 topics right

MOEA-TM solutions and LDA solutions are not displayed for clarity. It can
be seen that MOEA-TM was able to find better solution in terms of Coverage
(CovObj) and PMI (PmiObj) for all corpora. In terms of perplexity (PerpObj)
Figure. 8 shows that LDA was able to find better solutions for EPSRC corpus.
Whereas MOEA-TM best solutions have better perplexity for Wiki and News
corpora as shown in Figure. 7 and Figure. 9.

Evaluation: Table. 3 and Table. 4 present the original normalized PMI and non-
normalized negative Log-Likelihood (−LL) metrics for LDA-Initialized MOEA-
TM and LDA topic models with four and ten topics, respectively. It can be seen
that LDA-Initialized MOEA-TM shows an improvement in terms of PMI values
of 39%, 14% and 25% over pure LDA in the corpora Wiki, EPSRC and News,
respectively when four topics are learned. When ten topics are learned the PMI
improvement is 54%, 14% and 40% in the corpora Wiki, EPSRC and News,
respectively. In all cases, a t-test again finds that the MOEA-TM improvement
in PMI is significant with p < 0.01, while there is in contrast no significance in
the difference in log-Likelihood values, suggestion that the improved coherence
comes without any significant difference in the perplexity of the enhanced model.

Table 3. PMI scores for LDA-Initialized MOEA TM and Pure LDA for the three
corpora with four topics

MOEA TM LDA
PMI St. Dev -LL st. Dev PMI St. Dev -LL st. Dev

Wiki Corpus 0.3443 0.1129 8.1417 0.0477 0.2476 0.1932 8.1488 0.0514

EPSRC Corpus 0.3933 0.0107 15.301 0.1128 0.3429 0.0094 15.293 0.1133

News Corpus 0.3653 0.0069 52.680 0.6756 0.2903 0.0142 52.835 0.7976
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Table 4. PMI scores for LDA-Initialized MOEA TM and Pure LDA for the three
corpora with ten topics

MOEA TM LDA
PMI St. Dev -LL st. Dev PMI St. Dev -LL st. Dev

Wiki Corpus 0.3105 0.0135 8.0716 0.0294 0.2013 0.0194 8.0822 0.0262

EPSRC Corpus 0.3889 0.0085 15.034 0.1005 0.3404 0.0101 15.096 0.0960

News Corpus 0.3428 0.0159 51.990 0.5377 0.2445 0.0208 53.261 0.6977

5 Conclusion

To sum up, MOEA-TM shows promising performance in topic modeling. MOEA-
TM initialized from LDA models is able to enhance the coherence of the topic
models significantly for each of the corpora tested here. A more coherent topic
model is one in which the words that tend to appear together in a topic make
more sense together to a human being. This can be very useful in many topic
modeling applications, such as text tagging in digital libraries, where topic co-
herence is particularly important [11], while in general we would expect user
confidence in inferred topic models, whatever the application, to be boosted
when topics are coherent. In general, multi-objective approaches may contribute
significantly to topic modeling, providing the ability to specify arbitrary ob-
jectives that may be relevant in a given application, and then providing the
decision maker with a diverse collection of optimal models from which the most
appropriate can be selected.
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Abstract. Various real world problems, especially in financial applica-
tions, medical engineering, and game theory, involve solving a multi-
objective optimization problem with a variable ordering structure. This
means that the ordering relation at a point in the (multi-)objective space
depends on the point. This is a striking difference from usual multi-
objective optimization problems, where the ordering is induced by the
Pareto-cone and remains constant throughout the objective space. In
addition to variability, in many applications (like portfolio optimization)
the ordering is induced by a non-convex set instead of a cone. The main
purpose of this paper is to provide theoretical and algorithmic advances
for general set-based variable orderings. A hypervolume based indicator
measure is also proposed for the first time for such optimization tasks.
Theoretical results are derived and properties of this indicator are stud-
ied. Moreover, the theory is also used to develop three indicator based
algorithms for approximating the set of optimal solutions. Computa-
tional results show the niche of population based algorithms for solving
multi-objective problems with variable orderings.

Keywords: variable ordering, hypervolume indicator, approximation,
evolutionary algorithms.

1 Introduction

Many complex optimization problems in engineering and mathematical applica-
tions involve minimizing a vector-valued objective function f := (f1, . . . , fm) :
Rn → Rm. The objective can be wealth, time, cost, safety or performance among
others. Such problems are commonly known as multi-objective / vector/ multi-
criteria optimization problems. Solving a multi-objective optimization problem
(MOP in short) requires specifying an ordering relation in the space Rm (which
lacks a canonical total order). This relation could come from the preferences
of a decision maker (DM) interested in solving such a problem. One preference
model of a DM characterizes the set of preferred directions in the feasible sub-
set of Rm. Another preference model consist of specifying domination and/ or
preference cones and/ or additional axioms (like impartiality, equitability) that
need to be satisfied. Pareto-ordering, induced by the nonnegative orthant cone
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Rm
+ := {y ∈ Rm|yi ≥ 0, ∀i = 1, 2, . . . ,m}, is a classical way to compare two vec-
tor valued objectives. Many times, polyhedral cone orderings are used to include
desirable trade-off among the objectives [1].
Yu in his seminal work [2] was the first to propose variable orderings in pref-

erence modeling. In this, the ordering relation at a point in the multi-objective
space depends on the point itself. In a practical context, this says that prefer-
ence depends upon the current point in the objective space (so called decisional
wealth in [3]). Figure 1 shows an example of a variable ordering in the bi-objective
space. We can see that the domination cones at u,v and w are different and w
dominates a portion of the efficient front corresponding to Pareto-ordering. This
is a striking difference from usual multi-objective optimization problems, where
the ordering is induced by the Rm

+ or a polyhedral cone that remains constant
in the entire objective space.

 

A 
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Fig. 1. Schematic of a variable order-
ing relation. u and w are optimal
points, while v is not optimal.

 

 

 

 

Fig. 2. Schematic of the equitable or-
dering relation. The shaded area D(u)
is a non-convex set and is not a cone.

Variable domination cones are found to be useful in various applications. For
example, they have found a recent place in medical engineering where the aim is
to merge different medical images obtained by different methods (say computer
tomography, ultrasound, positron emission tomography among others). In the
problem of medical image registration, one searches for a best transformation
map. Variable orderings also arise in a variety of financial applications, gen-
eral resource allocation models and location theory [4], and in multi-objective
n-person cooperative as well as noncooperative games [5]. Equitability [6, 7],
for example, is a refinement of Pareto efficiency, where one is interested in the
distribution of the outcomes of various objectives rather than their ordering.
Figure 2 illustrates equitable variable ordering in the bi-objective space. We can
see that the dominated region D(u) is a non-convex set, and is not a cone.
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Problems with a variable domination structure give rise to two types of opti-
mality: minimal optimality and nondominated optimality and these are defined
in the next section. These concepts should not be confused with the standard
terminology of Pareto-optimal/ nondominated/ efficient (set/ front/ points) [8].
In classical literature [9, 10], we do find some scalarization techniques to find one
minimal/ nondominated point and some other recent approaches [11, 12] aimed
at getting an approximation of minimal/ nondominated solutions. However, all
of these assume cone orderings and hence cannot be directly used for set based
variable orderings (like equitability). There is a lack of theory for such orderings.
This paper aims to provide theoretical and algorithmic advances for general,

non-convex, nonconical, set-based variable orderings. Theoretical results are pro-
vided for the most general settings and these results can be used to reduce the
pairwise comparisons needed for sorting of a discrete set for optimal points.
Assumptions that are needed for the results to hold are also discussed. A hy-
pervolume based indicator measure is also proposed for the first time for such
multi-objective optimization with a variable ordering structure. Theoretical re-
sults are derived and properties of this indicator are studied. In particular we
analyze the compatibility and completeness of the new indicator for variable or-
derings. Moreover, theoretical results are used to develop three indicator based
algorithms for approximating the set of optimal solutions. Computational results
on a number of test problems show the niche of population based algorithms for
solving multi-objective problems with variable orderings.
This paper is divided into six sections of which this is the first. Section 2

presents variable ordering relations and theoretical results for these. The third
section presents a new hypervolume based indicator and analyzes its theoretical
properties. Section 4 presents three new indicator based algorithms for variable
orderings while Section 5 presents numerical results. Finally, conclusions and
extensions of this study are presented at the end of this contribution.

2 Variable Orderings and Their Theoretical Properties

In this section, we first present some formal definitions and concepts and use
them later to derive theoretical results.
A nonempty set C ⊆ Rm is called a cone if c ∈ C ⇒ λc ∈ C for all λ ≥ 0.

A cone C is convex if C + C ⊂ C. A cone C is called pointed if it satisfies
that C ∩ (−C) = {0} where 0 is the zero vector in Rm. Hence, the non-negative
orthant of Rm, Rm

+ is a closed, convex and pointed cone, and is commonly known
as the Pareto-cone.
Using the Pareto-cone, we can define a Pareto-ordering on the objective space.

This allows us to compare vectors in the objective space as follows. We say that
a vector u Pareto-dominates a vector v iff v−u ∈ Rm

+ \{0}. If neither u Pareto-
dominates v nor v Pareto-dominates u, we call u and v Pareto-nondominated
to each other. Moreover, we call the Pareto-ordering as the standard ordering as
it is the most-widely used in multi-objective optimization problems (see [1, 8]).



Indicator Based Search in Variable Orderings: Theory and Algorithms 69

Yu [13] proposed to use a constant cone to model decision makers’ preferences.
Using a cone C ⊆ Rm, he defined a different domination structure as follows:
the vector u C-dominates the vector v, if v − u ∈ C \ {0}. The cone C can be
non-convex as well and is discussed in [14, 15, 13].
A multi-objective optimization problem involves m ≥ 2 objectives that need

to ne minimized over a constraint set. Formally, let X ⊆ Rn be a set of feasible
alternatives and f : X→ Rm be a vector valued objective function. The spacesX
and f (X) := {f(x) : x ∈ X} are also called the decision space and the objective
space, respectively.
Minimization in Rm requires a way to compare two points in Rm and this is

given by an ordering relation. An ordering relation, more general than Pareto is
based on orderings induced by sets [16] and is defined next. For this, let Leb(S)
denote the Lebesgue measure of a set S⊆Rm and int(S) be the interior of S [17].

Definition 1. Let a set D ⊂ Rm be an ordering set such that D ∩ (−D) = {0}
and let Leb(D) > 0. Moreover, let u and v be two vectors in Rm. Then,

1. u ≤D v (u weakly D-dominates v) ⇐⇒ v − u ∈ D
2. u <D v (u D-dominates v) ⇐⇒ v − u ∈ D \ {0}.
3. u�D v (u strictly D-dominates v) ⇐⇒ v − u ∈ int(D).

Note that Leb(D) = 0 is not desired in Definition 1 as then almost all the
elements of Rm are non-dominated.

Definition 2. A point x̂ ∈ X is called D-optimal if no other point in X D-
dominates it. Equivalently, a point x̂ ∈ X is D-optimal if and only if

({f(x̂)} −D) ∩ f(X) = {f(x̂)}.

Let XD and ED := f(XD) denote the set of D-optimal points and the set of
D-efficient points, respectively.

Definition 2 is a solution concept of a multi-objective optimization problem with
a constant ordering set D. As a special case, any Rm

+ -optimal point is called as
a Pareto-optimal point. Hence, a point x̂ ∈ X is Pareto-optimal if and only if(
{f(x̂)} − Rm

+

)
∩ f(X) = {f(x̂)}.

In [3], it is noticed that the importance of objective functions may change
during the decision making process depending upon the current objective func-
tion value. Some examples of this are also given in [18]. A constant cone is not
adequate to compare objectives in such cases. Due to this, several attempts have
been made in the classical literature to extend dominance ideas using variable
cones and ordering sets and two domination relations are defined as follows.

Definition 3. Let a (set-valued) variable ordering map D : Rm ⇒ Rm be such
that D(w)∩(−D(w)) = {0} and Leb(D(w)) > 0 hold for all w ∈ Rm. Moreover,
let u and v be two vectors in Rm. Then,

1. u ≺m
D v ⇐⇒ v ∈ {u}+D(v) (minimality),

2. u ≺n
D v ⇐⇒ v ∈ {u}+D(u) (nondomination).
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The binary relations ≺m
D and ≺n

D are reflexive (as 0 ∈ D(w) for all w) but in
general not transitive. These relations (and the ones in Definition 1) can also be
extended to approximation sets. For example, A ≺m

D B for two sets A,B ⊂ Rm

if and only if ∀b ∈ B : ∃a ∈ A such that a ≺m
D b. From Figure 1, we see that

w ≺n
D v but w ⊀m

D v. These variable ordering relations defined in Definition 3
lead to the following two optimality notions.

Definition 4. A point û ∈ f (X) is called a D-minimal point of f(X) if

({û} − D(û)) ∩ f (X) = {û},

or equivalently, if there is no v ∈ f(X) such that v ∈ {û}−D(û) \ {0}. The set
of all D-minimal points is called the D-minimal set and is denoted by Em

D .

Definition 5. A point û ∈ f(X) is called a D-nondominated point of f (X) if
there is no v ∈ (X) such that

û ∈ {v}+D(v) \ {0}.

The set of all D-nondominated elements is called the D-nondominated-set and
is denoted by En

D.

Let Xm
D and Xn

D denote the pre-images (the points in the decision space) of the
D-minimal and the D-nondominated sets respectively. This means that Em

D =
f(Xm

D ) and En
D = f(Xn

D). Note that in Definitions 4 and 5 we could also take
an arbitrary set S ⊂ Rm and define D-minimal and D-nondominated sets in a
similar way (replacing f(X) by S). For this scenario, let the set of all D-minimal
(nondominated) elements be called as the D-minimal-(nondominated)set of S
and be denoted by Em

D (S) (En
D(S)).

The concept of minimal elements is described in [19, 9]. The concept of non-
dominated elements is based on [19, 13, 20, 9]. The nondominated-set and the
minimal-set are in general different. It is easy to verify that both of these sets
are equal if a constant ordering set is used, i.e. if D(y) := D. Definitions 4 and
5 (and the above concepts of variable orderings) have (mathematical and) real-
world applications (see Section 1). For example, recall that the equitable relation,
which has many (real-world) applications in allocation problems, is based on a
non-convex set (not a cone) based variable ordering. We assume the following
throughout this paper.

Blanket Assumption: The set-valued variable ordering map D is such that⋂
w∈f (X)D(w) ⊇ K, where K is a closed, convex, nonempty, and pointed cone.

Moreover, the set f(X) is compact.

The next two lemma relates variable optimality to optimality with respect to a
constant cone.

Lemma 1. Xm
D ⊆ XK, Xn

D ⊆ XK, Em
D ⊆ EK, and En

D ⊆ EK.
Proof: As we assumed that all the variable sets contain K (from the Blanket
Assumption), the result follows easily from [12, Lemma 3.1]. ��
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Lemma 2. û ∈ Xm
D if and only if û ∈ Xm

D(û).

Proof: The proof easily follows from the definitions of Xm
D and Xm

D(û). ��

Remark 1. Note that although K in
⋂
w∈f (X)D(w) ⊇ K is assumed to be a

cone in Blanket Assumption, this does not mean that the sets D(w) itself are
cones. For example, From Figure 2 (and from [6]) we see that Rm

+ can be used
as choice for K. Hence, Lemma 1 shows that an equitably optimal point is a
Pareto-optimal point (another proof of this can be found in [6]).

The next two theorems are motivated by practical considerations to reduce the
computation effort of a population based multi-objective algorithm for finding
D-minimal and D-nondominated points.

Theorem 1. Let D(w) +K ⊆ D(w) be satisfied for all w ∈ f(X) and let f (X)
be a compact set. Then, û ∈ f(X) is a D-minimal point of f(X) if and only if
û ∈ EK and û is a D-minimal point of EK, i.e., Em

D = Em
D (EK).

Proof: (⇒) Let û ∈ Em
D . Hence, û ∈ f(X) is a minimal point of f(X) and,

(û−D(û))∩ f(X) = {û}. EK ⊆ f(X) together with Lemma 1 (as the conditions
for Lemma 1 are satisfied) gives that û ∈ EK and moreover

({û} − D(û)) ∩ EK = {û}.

This means that there is no v ∈ EK such that v ∈ {û} − D(û) \ {0} and hence,
from Definition 4 (replacing f (X) by EK), we obtain that û ∈ EK is a minimal
point of EK. This means that û ∈ Em

D (EK) and hence, Em
D ⊆ Em

D (EK).
(⇐) Let û ∈ Em

D (EK). Hence, û ∈ EK ⊆ f (X) is a minimal point of EK. Thus,
there is no v ∈ EK such that v ∈ {û}−D(û)\{0}. In order to show that û is also
a minimal point of f(X), we take an arbitrary but fixed element w ∈ f(X) \ EK
and assume that

w ∈ {û} − D(û) \ {0}. (1)

Now, as w /∈ EK and as the set f (X) is assumed to be compact, we get the
existence of a ŵ ∈ EK which K-dominates it, i.e., ŵ ∈ {w} − K \ {0}. This,
together with (1) and that D(û) +K ⊆ D(û) (from the assumption), gives that

ŵ ∈ {û} − D(û) \ {0} − K \ {0} ⊆ {û} − D(û) \ {0}.

Using the last inclusion and that ŵ ∈ EK, we arrive at a contradiction to the
D-minimality of û in EK. Hence Em

D ⊇ Em
D (EK) and the theorem follows. ��

Theorem 2. Let D(w) + K ⊆ D(w) be satisfied for all w ∈ f(X), let f (X) be
a compact set, and let

v − u ∈ K ⇒ D(v) ⊆ D(u), for all v,u ∈ f(X). (2)

Then, û ∈ f(X) is a D-nondominated point of f(X) if and only if û ∈ EK and û
is a D-nondominated point of EK, i.e., En

D = En
D(EK).
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Proof: (⇒) Let û ∈ En
D. Hence, û ∈ f(X) is a nondominated point of f(X) and

Definition 5 gives that there is no v ∈ f(X) such that

û ∈ {v}+D(v) \ {0}. (3)

This obviously means that there is no v ∈ EK such that û ∈ {v} + D(v) \ {0}
and hence, from Definition 5 (replacing f(X) by EK) we obtain that û ∈ EK is a
nondominated point of EK. Hence, En

D ⊆ En
D(EK).

(⇐) Let û ∈ En
D(EK). Hence, û ∈ f(X) is a nondominated point of EK and

there is no v ∈ EK such that û ∈ {v}+D(v) \ {0}. This happens if and only if

û /∈ {v}+D(v) \ {0} for all v ∈ EK. (4)

We will show that the set EK in (4) can be replaced by f(X). Taking an arbitrary
but fixed element w ∈ f(X)\EK and assuming that w ≺n

D û we get the following:

û ∈ {w}+D(w) \ {0}. (5)

Now, as w /∈ EK and as f(X) is assumed to be compact we get the existence of
a ŵ ∈ EK which K-dominates w, i.e., w ∈ {ŵ}+K\{0}. This together with (5)
and that D(û) +K ⊆ D(û) (from the assumption) gives

û ∈ {w}+D(w) \ {0} ⊆ {ŵ}+K \ {0}+D(w) \ {0}
⊆ {ŵ}+D(w) \ {0}.

Now, as ŵ K-dominates w, from (2) we obtain that D(w) ⊆ D(ŵ). This shows
that û ∈ {ŵ}+D(ŵ) \ {0} for ŵ ∈ EK, and we arrive at a contradiction. Hence
En
D ⊇ En

D(EK) and the theorem follows. ��

Remark 2. Theorems 1 and 2 show that in order to check if a point is minimal
or nondominated, it is sufficient to check the variable set conditions w.r.t. K-
nondominated elements only. For any algorithm, this would drastically reduce the
computational effort. Finding a fast algorithm (extensions of efficient divide and
conquer based approaches [21, 22]) for sorting based on D domination structures
is a relevant open question.

Theorems 1 and 2 generalize results from [12, 11] to general variable orderings.
It is possible to prove Theorems 1 and 2 under the weaker external stability
condition [23] rather than compactness of f(X). For discrete problems, the sets
involved are always compact.
The assumptions in the above two theorems seem reasonable. They are shown

to be satisfied for equitable cones for example. Moreover, Condition (2) seems
reasonable as a larger cone dominates a larger region and if u Pareto-dominates
v, then the dominated region by the point u should intuitively be larger (D(v) ⊆
D(u)). This assumption is in line with the Pareto dominance compliant mecha-
nism (see the discussion in [24]).
Transitivity, antisymmetry, and other properties of the ≺m

D and ≺n
D set based

binary relations are not yet investigated in detail although there are promising
results for cone based variable ordering [12] and constant cone orderings [25].
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3 New Indicators and Their Theoretical Properties

In this section, we present new hypervolume based indicators for multi-objective
problems with a variable ordering structure. These indicator can be used to com-
pare algorithms and can also be used in the selection mechanism of a population
based algorithm (discussed in the next section). For brevity, all the results in
this section are presented for D-minimal points but similar results can also be
shown for D-nondominated points.

Definition 6. Let K ⊇ Rm
+ , let S ⊂ Rm, and let r ∈ Rm indicate the reference

point. The preferred minimal-hypervolume is defined by

Hm(S, r) := Leb
({

w ∈ Rm|∃v ∈ Em
D (S) : v ≤Rm

+
w ≤Rm

+
r
})
. (6)

In a similar way, the minimal-hypervolumew.r.t. S and the minimal-hypervolume
contribution of a set A ⊆ S are defined by

Hm(A,S, r) := Leb
({

w ∈ Rm|∃v ∈ Em
D (S) ∩ Em

D (A) : v ≤Rm
+
w ≤Rm

+
r
})
, and

Hm(A,S, r) := Hm(S, r)−Hm(S \ A,S, r),

respectively.Preferrednondominated-hypervolume (Hn(S, r)), nondominated hy-
pervolume contribution w.r.t. S (Hn(A,S, r)), and nondominated-hypervolume
contribution (Hn(A,S, r)) are defined analogously for D-nondominated elements.
For empty sets all the above hypervolumes are defined to be zero.

Definition 6 can be used for finite, countable and uncountable sets, although due
to finite size of population based algorithms, we assume that S is a finite set. The
above hypervolume concepts for variable domination structures calculates the
Lebesgue measure (the Rm

+ hypervolume- see the excellent reference [26]) using
points from the D-minimal set only. In this way, the dominated points w.r.t.
the ≺m

D ordering, contribute zero to Hm(S, r). This is an extended hypervolume
definition that can be used for any arbitrary binary relation � by computing the
usual hypervolume for only points that are not dominated w.r.t. to �. The next
lemma characterizes points with a positive minimal-hypervolume contribution.

Lemma 3. Let K ⊇ Rm
+ and let S ⊂ Rm be a finite set. Then, ∀v ∈ S and

∀r ∈ Rm it holds that:

Hm({v},S, r) > 0 ⇐⇒ v ∈ Em
D (S) and v�Rm

+
r ⇐⇒ Hm({v},S, r) > 0.

Proof: Obviously, all the points w /∈ Em
D (S) contribute zero to the minimal-

hypervolume contribution. Moreover, from Definition 6 we obtain that the con-
tribution of a point is (strictly) positive if and only if v strictly Rm

+ -dominates
v and v ∈ Em

D (S). The second part follows from the definition of Hm({v},S, r)
(note that v ∈ Em

D ({v})). ��
The next theorem shows that many properties of the usual hypervolume indica-
tor [26] are preserved in the variable ordering based hypervolume indicator. Let
for arbitrary sets A,B ⊂ Rm, A� B mean that A �= B and A ≺m

D B.



74 P.K. Shukla and M.A. Braun

Theorem 3. Let K ⊇ Rm
+ and let nad(S) denote the nadir point of a set S ⊂ Rm

and • be a (fixed) relation out of {≤,≥,=}. Then, for all finite sets A,B ⊂ Rm,
and r ∈ Rm holds:

1. ∀a,b ∈ Rm : (nad(a,b)�Rm
+
r) : Hm({a}, {a,b}, r)•Hm({b}, {a,b}, r)⇐⇒

Hm({a}, {a,b}, r) • Hm({b}, {a,b}, r)
2. A = B ⇒ Hm(A, r) = Hm(B, r) = Hm(A,A ∪ B, r) = Hm(A,A ∪ B, r)
3. A ≺m

D B ⇒ Hm(A,A ∪ B, r) ≥ Hm(B,A∪ B, r)
4. (�-compatibility) B ⊀m

D A ⇐ ∃r ∈ Rm:Hm(A,A∪B, r) > Hm(B,A∪B, r)
5. (�-completeness) A ≺m

D B and B ⊀m
D A ⇒ ∀r : (nad(A ∪ B) �Rm

+
r) :

Hm(A,A ∪ B, r) > Hm(B,A∪ B, r)
Proof: 1.: The statement holds trivially if a = b (Hm({a}, {a,b}, r) = 0). If
a ≺m

D b and a �= b, then {•} = {>}, Em
D ({a,b}) = {a}, Hm({b}, {a,b}, r) =

Hm({b}, {a,b}, r) = 0 and the other terms are strictly positive (analogously if a
and b are interchanged). If a ⊀m

D b, b ⊀m
D a and a �= b, then both the elements

are also incomparable according to Rm
+ cone (as

⋂
w∈Rm D(w) ⊇ K ⊆ Rm

+ ) and
the proof follows from [26, Case (iii) Lemma 2.5].
2.: A = B means that the sets Em

D (A) and Em
D (B) are equal and hence 2. follows

by Definition 6.
3.: Recall that A ≺m

D B means that ∀b ∈ B : ∃a ∈ A such that a ≺m
D b. It is easy

to show that would also imply that Em
D (A ∪ B) ∩ Em

D (B) ⊆ Em
D (A ∪ B) ∩ Em

D (A)
implying that 3. holds.
4.: If B ≺m

D A then from 2. we obtain Hm(B,A∪B, r) ≥ Hm(A,A∪B, r) which is
the negation of the right hand side of 4. Hence,Hm(A,A∪B, r) > Hm(B,A∪B, r)
must hold for at least one r ∈ Rm.
5.: From 2., A ≺m

D B implies that Hm(A,A∪B, r) ≥ Hm(B,A∪B, r). Moreover,
A ≺m

D B and B ⊀m
D A means Em

D (A∪B)∩Em
D (B) ⊂ Em

D (A∪B)∩Em
D (A). Hence,

there is a v ∈ Em
D (A ∪ B) ∩ Em

D (A) which contributes (strictly) positive to the
minimal hypervolume and hence the result follows. ��
There has been lot of work on the compatibility, completeness and other proper-
ties of the usual hypervolume indicator [26, 24]. Theorem 3 assumes significance
as it shows that these also hold in the variable ordering based hypervolume
indicator. This is due to the use of D-minimal sets in Definition 6.
The final result in this section relates the complexity of computing variable

ordering based hypervolumes. For this, let C(m,n) denote the complexity of
computing the usual hypervolume (using D := Rm

+ ) of a set of n points.

Theorem 4. Computing the preferred minimal-hypervolume of a set S ⊂ Rm

of n points can be done in O(max{n2, C(m,n)}) time.

Proof: From Definition 6 we infer that the computation overhead is to determine
the D-minimal set Em

D (S). This takes O(n2) time as the binary relation might
not be transitive and fast divide-and-conquer techniques might not work (see
Remark 2 and [12, Lemma 2.1]). Once we obtain Em

D (S) the rest is computing
the usual hypervolume (as ≤Rm

+
binary relation is used in Definition 6), which

can be done in C(m,n) time (which is Θ(n lnn) for m = 2 and m = 3, O(n2) for
m = 4 [27], and O(nm−1

2 lnn) in the general case [28]). ��
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4 Algorithms

In this section, we introduce three SMS-EMOA [26] based algorithms for find-
ing a set of solutions that maximize the preferred minimal/ nondominated-
hypervolume (from Definition 6). For simplicity, we discuss only the minimal
case (the algorithm for the nondominated case uses En

D(S) instead of Em
D (S)).

SMS-EMOA is a steady state evolutionary algorithm, which combines
approaches introduced by other multi-objective evolutionary algorithms. It is
particularly designed to maximize the (usual) hypervolume of a population.SMS-
EMOA starts each iteration with generating a single new solution by selecting
parents from the current operation, combining them, and mutating the offspring
solution. The population is then aggregated using non-dominated sorting (used
in NSGA-II). Afterwards, SMS-EMOA eliminates the point of the worst ranked
front contributing least to the hypervolume of this particular front.
We assume a population size of N and a reference point r ∈ Rm. At any

generation t, let Pt and qt denote the parent population and the generated
offspring, respectively. Let Rt be the combined population, i.e., Rt = Pt ∪ {qt}.
Next, we need to discard one individual from Rt to create Pt+1, and this can be
done in three different ways as described next.

Last Front SMS-EMOA (����������	)
L1: Perform a non-dominated sorting to Rt and identify different fronts: Fi,

i = 1, 2, . . . , k for some k ∈ N.
L2: Let Fk+1 := Fk \ Em

D (Fk) and Fk := Em
D (Fk).

L3: Let v = argminu∈Fk+1
Hm({u},Fk+1, r) and let = Pt+1 := Rt \ {v}.

First Front SMS-EMOA (
���������	)
F1: Perform a non-dominated sorting to Rt and identify different fronts: Fi,

i = 1, 2, . . . , k for some k ∈ N.
F2: Let Fk+1:=Fk,Fk:=Fk−1, . . . ,F2:=F1, F1:=Em

D (F2)&F2:=F2 \ F1.
F3: Let v = argminu∈Fk+1

Hm({u},Fk+1, r) and let = Pt+1 := Rt \ {v}.

Complete Front SMS-EMOA (����������	)
C1: Let F1 := Em

D (Rt). Let Fi := Em
D (Rt \ ∪i−1

j=1Fj) for all i = 2, . . . , k until

Rt \ ∪k
j=1Fj �= ∅, for some k ∈ N.

C2: Let v = argminu∈Fk
Hm({u},Fk, r) and let = Pt+1 := Rt \ {v}.

The above three algorithms are based on Definition 6 which calculates the hyper-
volumes only for the set Em

D (S), where S is the last front (the minimal ordering
is additionally used to split the first front in Ff-Sms-Emoa see [29]). Such ap-
proaches require finding Em

D for a smaller set (F1 or Fk, see Theorems 1 and
2) and use Pareto-domination to sort the combined population. The algorithm
(Cf-Sms-Emoa) on the other hand, sorts the combined population using min-
imal ordering, which is more sorting effort (in light of Remark 2) but still has
the advantage of using minimal ordering directly (instead of using it in addition
to Pareto ordering).
The next result shows a desirable property of the algorithms, that the minimal-

hypervolume w.r.t. the combined population cannot decrease.
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Lemma 4. Let r be independent of t. Then, for all t ≥ 1 Hm(Pt+1, Rt, r) ≥
Hm(Pt, Rt, r) holds for all the above three algorithms.

Proof: The proof follows by noting that only points from Em
D (Rt) have a positive

contribution to minimal-hypervolume and they are never replaced by a point not
belonging to Em

D (Rt). In fact, arguing in a similar way it can be shown that

Hm

(
Pt+1,

t⋃
τ=1

Rτ , r

)
≥ Hm(Pt, Rt, r)

holds, which is a stronger result as Rt ⊆
⋃t

τ=1Rτ . ��

5 Experimental Study

Engau [10] proposed a family of so-called Bishop-Phelps cones (that have many
applications in nonlinear analysis and multi-objective applications) for variable
preference modeling and we use these cones in this study. These cones are convex
and satisfy several decision-making requirements like monotonicity, local prefer-
ences and ideal-symmetry. There are two parameters that fully describe the cone:
a scalar γ which controls the angle of the cone (in Rm) and a vector p ∈ Rm.
Based on these parameters, the variable domination cone C(u) is defined by

C(u) := {d|〈d,u− p〉 ≥ γ · ‖d‖ · [u− p]min} , (7)

where [u − p]min denotes the minimal component of the vector u − p. The
reference point p is usually taken as the ideal vector, i.e., the vector having the
ith component as inf{vi|v ∈ f(X)}. Although C(u) is defined for arbitrary γ ∈ R
and any point p ∈ Rm instead of the ideal point, the above conditions guarantee
that C(u) is closed, convex and pointed. The parameter γ ∈ (0, 1] ensures that
the Pareto cone Rm

+ ⊆ C(u). This makes the theory and algorithms that are
defined in the preceding sections applicable, as K ⊇ Rm

+ is assumed in Theorems
in Section 3. It is also easy to see that the Blanket Assumption holds for the
family of Bishop-Phelps cones.
We tested Lf-Sms-Emoa, Ff-Sms-Emoa, and Cf-Sms-Emoa on 22 test

problem instances (11 test problems for both minimal and nondominated domi-
nation structures). The test problems chosen are of varying complexity and are
include two problems from the CTP suite (bi-objective CTP1, CTP7), one from
the DTLZ suite (DTLZ8, 3 objectives), one from the CEC-2007 competition (bi-
objective SZDT1), four from the WFG suite (WFG1, WFG2, with both 2 and 3

objectives) and three from the ZDT suite (ZDT3, ZDT4, ZDT6). For all the prob-
lems, we use the zero as the p vector and use γ = 0.5. For all problems, we
compute a well-distributed approximation of D-minimal and D-nondominated
set as follows. Corresponding to a problem, we first generate 5,000 well-diverse
points on the Pareto-efficient front. From these points, we calculate the minimal
and nondominated points (applying Theorems 1 and 2).
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In order to evaluate the results, we use the Hölder or power mean based in-
verted generational distance (IGDp) [30] (w.r.t. the obtained reference set) and
the H hypervolume metric (minimal and nondominated) metrics. For statistical
evaluation, we run each algorithm for 51 times and present summary statistics.
For all problems solved, we use a population of size 100 and set the maximum
number of function evaluations as 20,000. We use a standard real-parameter
SBX and polynomial mutation operator with ηc = 15 and ηm = 20, respectively
[1]. Lf-Sms-Emoa, Ff-Sms-Emoa, and Cf-Sms-Emoa are written using the
jMetal framework and their source codes are available on request. The mini-
mal optimality based algorithms are prefixed with M- while the nondominated
ones are with N-. Hence,M-Lf-Sms-Emoa means the Lf-Sms-Emoa algorithm
searching for minimal solutions.
Tables 1 and 2 present the results for the Bishop-Phelps cone based variable

ordering using minimal optimality notion and nondominated optimality notion,
respectively. IGDp and Hm

D (and Hn
D) metrics are able to measure both con-

vergence and diversity, albeit in different ways. IGDp is a set based, curvature
independent measure, in that (power mean based) distances to a reference set are
computed. Hypervolumes on the other hand, are curvature dependent measures
in that knee points contribute more to the hypervolume.
Based on IGDp values we see that M-Lf-Sms-Emoa and M-Ff-Sms-Emoa

algorithms perform better thanM-Cf-Sms-Emoa and the opposite is seen w.r.t.
Hm

D metric. This might be due to a global change in domination that is em-
ployed inM-Cf-Sms-Emoa that favors more knee points thereby increasing the
minimal-hypervolume. However, the advantage of M-Lf-Sms-Emoa andM-Ff-

Sms-Emoa algorithms is that the Pareto-ordering is primarily used for sorting
and hence, well-distributed points are not easily replaced by the knee points.
Eventually, if we run the algorithms for a long time, then all the three algo-
rithms become the same and achieve the same distribution of points (this is seen
from further experiments).
A closer look at the nondominated study brings out additional insights about

the two optimality notions. The results from Table 2 reveal a hierarchy among the
three algorithms, with N-Cf-Sms-Emoa being the best and N-Lf-Sms-Emoa

the worst. This might be explained as follows. Checking whether a point lies in
En
D or not requires comparisons using the binary relation ≺n

D (see Definitions 3
and 5). This might be more difficult to satisfy as then the variable cones at all
the other points need to be tested (or taking into account Theorem 2 variable
cones at all the Pareto-nondominated points). Hence, unless we have a good
approximation, we could infer falsely that a point is nondominated (in the sense
of Definition 5). There might be points in a worse Pareto front, that are still
Pareto-nondominated to the point under consideration, and these worse points
might be useful in deciding where the nondomination condition in Definition 3
holds or not. In algorithms N-Lf-Sms-Emoa and N-Ff-Sms-Emoa, Pareto-
domination based sorting is used, which might not give a good approximation
of D-nondominated points. A similar problem occurs when transitivity does not
hold and this is discussed in a recent classical technique [12].
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Table 1.Minimal study: Median and interquartile range of Hölder mean based inverted
generational distance (IGDp) and minimal-hypervolume (Hm

D ) metrics

IGDp metric
M-Lf-Sms-Emoa M-Ff-Sms-Emoa M-Cf-Sms-Emoa

CTP1 3.08e− 022.3e−02 3.21e− 022.5e−02 2.66e − 021.8e−02

CTP7 1.34e− 032.9e−05 1.34e− 033.5e−05 1.34e − 032.2e−05

DTLZ8 6.63e− 021.0e−02 7.18e− 021.3e−02 7.30e − 021.4e−02

SZDT1 2.96e− 015.3e−01 2.94e− 015.3e−01 3.01e − 015.4e−01

ZDT3 5.69e− 022.2e−02 4.31e− 021.8e−02 5.31e − 021.5e−02

ZDT4 2.75e− 024.0e−02 3.78e− 027.8e−02 2.89e − 023.3e−02

ZDT6 2.91e− 025.7e−03 3.30e− 026.1e−03 1.35e − 022.0e−03

WFG1 2D 2.84e+ 002.3e+00 2.90e+ 002.5e+00 3.49e + 002.1e+00

WFG1 3D 2.87e+ 002.5e+00 3.01e+ 004.1e+00 7.70e + 003.3e+00

WFG2 2D 5.32e− 012.7e−03 5.33e− 012.4e−03 5.33e − 011.8e−03

WFG2 3D 5.98e+ 007.7e−02 5.97e+ 003.2e−02 5.97e + 004.5e−02

Hm metric
M-Lf-Sms-Emoa M-Ff-Sms-Emoa M-Cf-Sms-Emoa

CTP1 5.05e− 017.3e−03 5.06e− 011.3e−02 5.07e − 016.5e−03

CTP7 2.80e− 016.8e−05 2.80e− 019.6e−05 2.80e − 017.4e−05

DTLZ8 4.57e− 013.3e−03 4.57e− 015.4e−03 4.59e − 015.4e−03

SZDT1 6.94e− 013.6e−01 6.89e− 013.7e−01 6.88e − 013.7e−01

ZDT3 5.69e− 011.9e−02 5.55e− 011.4e−02 5.94e − 015.5e−03

ZDT4 4.83e− 013.7e−02 4.65e− 011.1e−01 4.80e − 013.2e−02

ZDT6 4.28e− 018.1e−03 4.22e− 018.9e−03 4.51e − 013.1e−03

WFG1 2D 0.00e+ 000.0e+00 0.00e+ 000.0e+00 0.00e + 000.0e+00

WFG1 3D 0.00e+ 000.0e+00 0.00e+ 000.0e+00 0.00e + 000.0e+00

WFG2 2D 6.02e− 014.3e−03 6.03e− 012.9e−03 6.03e − 013.4e−03

WFG2 3D 4.51e− 011.3e−01 4.79e− 015.3e−02 4.75e − 017.8e−02

Table 2. Nondominated study: Median and interquartile range of Hölder mean based
inverted generational distance (IGDp) and nondominated-hypervolume (Hn

D) metrics

IGD metric
N-Lf-Sms-Emoa N-Ff-Sms-Emoa N-Cf-Sms-Emoa

CTP1 3.61e− 021.9e−02 2.88e− 022.3e−02 2.30e − 023.4e−02

CTP7 1.34e− 032.7e−05 1.33e− 031.7e−05 1.34e − 032.7e−05

DTLZ8 1.02e− 012.5e−02 9.97e− 021.4e−02 9.57e − 021.4e−02

SZDT1 1.85e− 013.1e−01 1.85e− 013.1e−01 1.87e − 013.1e−01

ZDT3 8.30e− 011.6e−03 8.31e− 011.8e−03 8.30e − 016.6e−04

ZDT4 4.08e− 023.0e−02 4.46e− 023.6e−02 3.67e − 022.3e−02

ZDT6 8.32e− 026.8e−03 8.21e− 025.5e−03 7.90e − 022.7e−03

WFG1 2D 5.45e− 012.1e−01 5.88e− 012.1e−01 6.49e − 012.9e−01

WFG1 3D 2.54e+ 001.8e+00 1.63e+ 002.1e+00 3.51e + 002.6e+00

WFG2 2D 5.18e− 012.7e−03 5.18e− 011.7e−03 5.18e − 012.3e−03

WFG2 3D 4.90e+ 002.6e−02 4.90e+ 003.8e−02 4.91e + 004.6e−02

Hn metric
N-Lf-Sms-Emoa N-Ff-Sms-Emoa N-Cf-Sms-Emoa

CTP1 5.03e− 019.8e−03 5.06e− 019.3e−03 5.09e − 011.8e−02

CTP7 2.81e− 011.0e−04 2.81e− 014.3e−05 2.81e − 011.3e−04

DTLZ8 4.50e− 016.9e−03 4.52e− 016.4e−03 4.54e − 015.0e−03

SZDT1 5.31e− 014.0e−02 5.31e− 013.5e−02 5.37e − 013.2e−02

ZDT3 4.01e− 021.2e−03 3.98e− 021.3e−03 4.09e − 024.2e−04

ZDT4 4.68e− 014.7e−02 4.57e− 015.1e−02 4.73e − 013.5e−02

ZDT6 3.92e− 014.3e−03 3.90e− 017.0e−03 4.04e − 012.1e−03

WFG1 2D 1.26e− 011.8e−01 9.12e− 021.8e−01 5.41e − 028.7e−02

WFG1 3D 0.00e+ 000.0e+00 0.00e+ 000.0e+00 0.00e + 000.0e+00

WFG2 2D 5.82e− 012.9e−03 5.83e− 012.4e−03 5.83e − 013.3e−03

WFG2 3D 4.76e− 014.4e−02 4.78e− 013.6e−02 4.50e − 018.5e−02
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6 Conclusions

This paper is among the very few works that tackle multi-objective problems de-
fined by a general nonconvex, nonconical, and set-based variable ordering. The
classical approach to such problems is to solve these problems using a scalar-
ization approach and get one solution. Even for smooth functions, the variable
ordering introduces additional difficulties- like convexity is not preserved, non-
smoothness and discontinuities are additionally introduced (as highlighted in
a recent study [12]). The advantages of using population based algorithms are
many: getting multiple solutions, tackling non-transitivity of the binary relation,
not requiring convexity and smoothness among others.
We studied different optimality notions and presented new theoretical results

for problems with a variable ordering structure. Among others, we presented
sufficient conditions for a point to be minimal/ nondominated based on pair-
wise comparisons. Moreover, we proposed new definitions of hypervolume based
indicators for such problems. Theoretical results w.r.t. compatibility and com-
pleteness of the new indicator were also presented.
In addition to getting a better understanding, the theoretical results on vari-

able orderings and indicators were also of an algorithmic value. We used them
and developed three indicator based algorithms for approximating the set of
appropriate optimal solutions. Computational results on a number of test prob-
lems showed the niche of population based algorithms for solving multi-objective
problems with variable orderings. Future works will concentrate on solving real-
world financial application problems and other applications where these order-
ings arise. For such problems, a detailed comparison with a classical [12] and an
evolutionary approach [11] will also be carried out.

References

[1] Deb, K.: Multi-objective optimization using evolutionary algorithms. Wiley (2001)
[2] Yu, P.L.: A class of solutions for group decision problems. Management Science 19,

936–946 (1973)
[3] Karasakal, E.K., Michalowski, W.: Incorporating wealth information into a mul-

tiple criteria decision making model. European J. Oper. Res. 150, 204–219 (2003)
[4] Ogryczak, W.: Inequality measures and equitable approaches to location problems.

European Journal of Operational Research 122, 374–391 (2000)
[5] Bergstresser, K., Yu, P.L.: Domination structures and multicriteria problems in

n-person games. Theoy and Decision 8, 5–48 (1977)
[6] Ogryczak, W., Wierzbicki, A.: On multi-criteria approaches to bandwidth alloca-

tion. Control Cybernet 33, 427–448 (2004)
[7] Shukla, P.K., Hirsch, C., Schmeck, H.: In Search of Equitable Solutions Using

Multi-objective Evolutionary Algorithms. In: Schaefer, R., Cotta, C., Kolodziej, J.,
Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 687–696. Springer, Heidelberg
(2010)

[8] Ehrgott, M.: Multicriteria optimization, 2nd edn. Springer, Berlin (2005)
[9] Eichfelder, G.: Variable Ordering Structures in Vector Optimization. In: Ansari,

Q.H., Yao, J.-C., Jahn, J. (eds.) Recent Developments in Vector Optimization.
Vector Optimization, vol. 1, pp. 95–126. Springer, Heidelberg (2012)



80 P.K. Shukla and M.A. Braun

[10] Engau, A.: Variable preference modeling with ideal-symmetric convex cones. J.
Global Optim. 42, 295–311 (2008)

[11] Hirsch, C., Shukla, P.K., Schmeck, H.: Variable Preference Modeling Using Multi-
Objective Evolutionary Algorithms. In: Takahashi, R.H.C., Deb, K., Wanner, E.F.,
Greco, S. (eds.) EMO2011.LNCS, vol. 6576, pp. 91–105. Springer,Heidelberg (2011)

[12] Eichfelder, G.: Numerical procedures in multiobjective optimization with variable
ordering structures. Technical report, Preprint-Series of the Institute of Mathe-
matics, Ilmenau University of Technology, Germany (2012)

[13] Yu, P.L.: Multiple-criteria decision making. Mathematical Concepts and Methods
in Science and Engineering, vol. 30. Plenum Press, New York (1985)

[14] Huang, N.J., Rubinov, A.M., Yang, X.Q.: Vector optimization problems with non-
convex preferences. J. Global Optim. 40, 765–777 (2008)

[15] Rubinov, A.M., Gasimov, R.N.: Scalarization and nonlinear scalar duality for vec-
tor optimization with preferences that are not necessarily a pre-order relation. J.
Global Optim. 29, 455–477 (2004)

[16] Bergstresser, K., Charnes, A., Yu, P.L.: Generalization of domination structures
and nondominated solutions in multicriteria decision making. Journal of Opti-
mization Theory and Applications 18, 3–13 (1976), doi:10.1007/BF00933790

[17] Rudin, W.: Real and complex analysis. McGraw-Hill, New York (1987)
[18] Wiecek, M.M.: Advances in cone-based preference modeling for decision making

with multiple criteria. Decis. Mak. Manuf. Serv. 1, 153–173 (2007)
[19] Huang, N.J., Yang, X.Q., Chan, W.K.: Vector complementarity problems with a

variable ordering relation. European J. Oper. Res. 176, 15–26 (2007)
[20] Sawaragi, Y., Nakayama, H., Tanino, T.: Theory of multiobjective optimization.

Mathematics in Science and Engineering (1985)
[21] Kung, H.T., Luccio, F., Preparata, F.P.: On finding the maxima of a set of vectors.

J. ACM 22, 469–476 (1975)
[22] Jensen, M.: Reducing the run-time complexity of multiobjective eas: The NSGA-II

and other algorithms. IEEE Transactions on Evolutionary Computation 7, 503–
515 (2003)

[23] Luc, D.T.: Theory of vector optimization. Lecture Notes in Economics and Math-
ematical Systems, vol. 319. Springer, Berlin (1989)

[24] Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Perfor-
mance Assessment of Multiobjective Optimizers: An Analysis and Review. IEEE
Transactions on Evolutionary Computation 7, 117–132 (2003)

[25] Noghin, V.D.: Relative importance of criteria: a quantitative approach. Journal of
Multi-Criteria Decision Analysis 6, 355–363 (1997)

[26] Beume, N.: Hypervolume based metaheuristics for multiobjective optimization.
PhD thesis, Dortmund, Techn. Univ., Diss (2011)

[27] Guerreiro, A.P., Fonseca, C.M., Emmerich, M.T.M.: A fast dimension-sweep algo-
rithm for the hypervolume indicator in four dimensions. In: Proceedings of 24th
Canadian Conference on Computational Geometry (2012) (in press)

[28] Yildiz, H., Suri, S.: On klee’s measure problem for grounded boxes. In: Proceedings
of the 2012 Symposuim on Computational Geometry, SoCG 2012, pp. 111–120.
ACM, New York (2012)

[29] Shukla, P.K., Hirsch, C., Schmeck, H.: A Framework for Incorporating Trade-
Off Information Using Multi-Objective Evolutionary Algorithms. In: Schaefer, R.,
Cotta, C., Ko�lodziej, J., Rudolph, G. (eds.) PPSN XI, Part II. LNCS, vol. 6239,
pp. 131–140. Springer, Heidelberg (2010)

[30] Schütze, O., Esquivel, X., Lara, A., Coello, C.: Using the averaged hausdorff dis-
tance as a performance measure in evolutionary multiobjective optimization. IEEE
Transactions on Evolutionary Computation 16, 504–522 (2012)



Preference Articulation by Means of the R2 Indicator

Tobias Wagner1, Heike Trautmann2, and Dimo Brockhoff3

1 Institute of Machining Technology (ISF), TU Dortmund University, Germany
wagner@isf.de

2 Statistics Department, TU Dortmund University, Germany
trautmann@statistik.tu-dortmund.de

3 DOLPHIN Team, INRIA Lille - Nord Europe, Villeneuve d’Ascq, France
dimo.brockhoff@inria.fr

Abstract. In multi-objective optimization, set-based performance indicators
have become the state of the art for assessing the quality of Pareto front ap-
proximations. As a consequence, they are also more and more used within the
design of multi-objective optimization algorithms. The R2 and the Hypervolume
(HV) indicator represent two popular examples. In order to understand the be-
havior and the approximations preferred by these indicators and algorithms, a
comprehensive knowledge of the indicator’s properties is required. Whereas this
knowledge is available for the HV, we presented a first approach in this direction
for the R2 indicator just recently. In this paper, we build upon this knowledge and
enhance the considerations with respect to the integration of preferences into the
R2 indicator. More specifically, we analyze the effect of the reference point, the
domain of the weights, and the distribution of weight vectors on the optimization
of μ solutions with respect to the R2 indicator. By means of theoretical findings
and empirical evidence, we show the potentials of these three possibilities using
the optimal distribution of μ solutions for exemplary setups.

1 Introduction

Evolutionary multi-objective algorithms usually approximate the complete Pareto front
of a problem in a single run. This is in contrast to classical MCDM approaches, which
often apply sequential or hierarchical optimization runs to accomplish this task. In the
beginnings of multi-objective optimization, three requirements for the set approximat-
ing the true Pareto front were defined: minimization of the distance (convergence), cov-
erage of the extremes (spread), and a good representation of the actual shape (distribu-
tion) of the Pareto front [18]. In order to evaluate one or more of these requirements,
several performance indicators were introduced [20, 22]. In particular, the Hypervol-
ume (HV) [21] and the R2 indicator [11] are two recommended approaches which
simultaneously evaluate all these desired aspects. Whereas the HV is a set-based qual-
ity indicator by definition, the R indicator family allows Pareto front approximations to
be assessed based on a set of utility functions. Thereby, it is possible to find out which
of the sets is better for specific preferences encoded in the weight vectors of the utility
functions. A unary set-based quality indicator utilizing the mean utility over the weight
vectors was proposed just recently [8]. In this paper, the former ideas of assessing re-
gions of specific preferences are thus transferred to the unary variant of the indicator.

R.C. Purshouse et al. (Eds.): EMO 2013, LNCS 7811, pp. 81–95, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Many popular optimization algorithms are based on set-based quality indicators [5,
14,17]. In order to learn about the outcome expected from these algorithms, the prefer-
ences and bias introduced by the choice of the indicator have to be understood. For the
HV indicator, empirical studies [6] and theoretical results [1, 2] do already exist. With
respect to the R2 indicator, we showed that the indicator tends to place the points more
concentrated in the central region of the Pareto front than the HV and that the optimal
placement of a point according to the R2 indicator only depends on its two neighbors
and a subset of the weight vectors in the bi-objective case [8]. Here, we use these in-
sights in order to define and analyze the preferences that can be introduced by a targeted
choice of the reference point and the set of weight vectors. For the latter, particularly
the influence of the covered domain and the density of the weight vectors on the optimal
distributions of μ solutions are assessed. Thereby, we show that it is possible to restrict
the search to a subregion and to adjust the focus of the distribution on the center or on
the extremes of the Pareto front.

The terms and concepts required for understanding the methodological contributions
are provided in the following section 2. Based on these auxiliary means, methods for
integrating preferences into the R2 indicator are presented in section 3. The conceptual
thoughts behind the methods are validated using empirical evidence. This is done in
section 4. In the final section 5, the results are summarized and an outlook on further
potentials for research on the R2 indicator is provided.

2 Foundations

Throughout the paper, we consider, without loss of generality, the simultaneous min-
imization of k objective functions fj : Rn → R (1 ≤ j ≤ k) with respect to the
Pareto-dominance relation. Since we are interested in optimal distributions of objective
vectors, we will further neglect the corresponding decision variables in Rn. Hence, we
will use the terms solutions and objective vectors interchangeably in the following. We
say a solution x ∈ Rk dominates a solution y ∈ Rk if ∀j : xj ≤ yj and ∃j : xj < yj .
The solutions that are non-dominated by any other feasible solution are called Pareto-
optimal, and we call the entire set of Pareto-optimal solutions Pareto front.

We can formulate the search for a Pareto-optimal solution as a single-objective prob-
lem, for example, by means of the achievement scalarizing function (ASF, [16])

uw(y) = max
j
wj(yj − rj)

where r = (r1, . . . , rk) is a reference point 1 and w = (w1, . . . , wk) a weight vector.
Each Pareto-optimal solution a is associated with a weight vector wa = ( β

a1−i1
, . . . ,

β
ak−ik

) such that the minimization of the ASF with weight wa yields the solution a,
with β > 0 being a normalization factor such that

∑
j wj = 1. In case that the reference

point is dominating a or dominated by a, the weight vector will be strictly positive. For
a proof of this case, see for example [16, Theorem 2.3.4] or [8, Lemma 2].

1 Often, the ideal or a utopian point, is used as reference point, i.e., an objective vector typically
better than all feasible solutions.
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Fig. 1. Left: Illustration of the target direction (dotted line) through the reference point (cross)
corresponding to the target vector t (black arrow) as well as some lines of equal function value
uwt (x) = const. Lighter colors in the background indicate a smaller value of the achievement
scalarizing function. The optimal solution (tip of dash-dotted arrow) lies at the intersection of
the target direction with the Pareto front (dashed line). Right: Illustration of a target cone (gray
area), given by a set of four weight/target vectors (black arrows). The reference point is denoted
again as a cross and the attainable part of the Pareto front is depicted as the solid black part of the
gray dashed Pareto front.

This result about the ASF can be interpreted also graphically. Given a so-called target
direction r + mt through the reference point r in direction of the target vector t =
(t1, . . . , tk), the minimization of the ASF uwt(y) = maxj w

t
j(yj−rj)with the weights

wt = (β/t1, . . . , β/tk) with β = 1/(
∑

j 1/tj) results in the indifference contours
shown in the lefthand plot of Fig. 1 and finally in the optimal solution that is lying at the
intersection between the target direction and the Pareto front. In the example of Fig. 1,
the target vector is t = (2, 1) with a slope of t2/t1 = 1/2 while the corresponding
normalized weight vector is w = 1

1/t1+1/t2
· (1/t1, 1/t2) = (1/3, 2/3).

Definition 1. Given a target vector t = (t1, . . . , tk) or its associated weight vector
w = (β/t1, . . . , β/tk) with β = 1/(

∑
j 1/tj), we call a feasible solution mapped

to the minimal value of the ASF maxj wj(yj − rj) an optimal solution for the target
vector t.

Note that we will, in the following, use interchangeably either the weight vector w =
(w1, . . . , wk) or the target direction t = (1/w1, . . . , 1/wk) to define an ASF problem.
In the case of bi-objective problems, we also allow weight vectors of the form (0, 1) and
(1, 0) for which the corresponding target directions are (1, 0) and (0, 1) respectively.
Furthermore, to make the text more readable, we will also denote any vector pointing
in the target direction as target vector, cf. again Fig. 1.

Definition 2. Given a target direction r + mt through the reference point r, we call
any vector mt mutually different from the null vector (i.e. m > 0) a target vector for
the corresponding target direction.

In case we are interested in finding more than one Pareto-optimal solution, we have to
either perform several independent optimization runs for different weight or target vec-
tors or we can optimize the achievement scalarizing function for several weight/target
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vectors simultaneously. TheR2 indicator [8,11] is based exactly on this concept2. In the
following, we consider the unary R2 indicator of [8] where the weighted Tchebycheff
function is replaced by the more general ASF—later results on the optimal distribution
of μ solutions also hold for the indicator investigated in [8].

Definition 3. Given a set of N weight vectors W = {w1, . . . ,wN} ⊂ Rk and a
reference point r ∈ Rk, the unary R2 indicator assigns the following value to a set
S ⊂ Rk of solutions

R2(S,W, r) =
1

N

∑
w∈W

min
s∈S

max
j
wj(sj − rj) . (1)

Note that a smallerR2 value corresponds to a better solution set and that, following [8],
we only consider the unary R2 indicator, which does not require a reference set, here.
This indicator is popular in multi-objective optimization due to its runtime inO(Nk|S|)
which is linear in the number of weights, the objective dimension, and the number of
solutions in the set S. In this context, however, it is still unclear how many weight
vectors are required for sufficiently covering the weight space. First suggestions for
bi-objective problems can be found in [8], but the scaling with number of objectives
k is still an open issue. As the volume of the space increases exponentially with k, it
would be plausible that the same holds for N , making the indicator as expensive as
the hypervolume. In the case of the R2 indicator, and more generally, if more than
one target direction is involved in the optimization, we generalize the idea of the target
direction to target cones, see also the righthand illustration in Fig. 1.

Definition 4. The minimum cone including the target directions ti ∈ T related to all
weight vectors wi ∈W is denoted as target cone.

The target cone therefore defines the region of interest defined by the reference point r
and the set of weight vectors W (or the corresponding set of target vectors T). For
bi-objective problems, we can prove that the solution set which is optimal with respect
to the R2 indicator lies within the target cone for a suitable set of weight vectors. In
order to simplify the proof and to clarify what suitable means, we define what we call a
free target vector and prove a small technical lemma beforehand.

Definition 5. Given the R2 indicator with reference point r ∈ Rk and weight vectors
W ⊂ Rk, we call a target vector t corresponding to a weight vector wt ∈ W free
with respect to a solution set S ⊆ Rk iff S does not contain an optimal solution for t.

Lemma 1. If a solution s ∈ S of a solution set S lies outside the target cone and has
a positive contribution to the bi-objective R2 indicator defined by the reference point
r ∈ R2 and a set of weight vectors W ⊂ R2, i.e., ifR2(S,W, r) > R2(S\{s},W, r),
then s has also a positive contribution to the closest extreme target vector.

2 Originally, the indicator was introduced as a binary indicator and for no specific utility func-
tion, see [11] for details.
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Proof. Let us assume without loss of generality that s is lying to the upper left of the
target cone and denote by t′ the leftmost target vector, defined by wt′ ∈W.

Since s lies on the top left of any target vector t defined by a weight vector wt =
(wt

1, w
t
2) ∈ W, we have that wt

1(s1 − r1) < wt
2(s2 − r2) (I). Moreover, we know that

wt′
1 ≥ wt

1 and wt′
2 ≤ wt

2 holds for any weight vector wt = (wt
1, w

t
2) ∈ W because t′

is the leftmost target vector (II).
We prove the lemma by contradiction. Assume that s has a positive contribution to

a target vector t associated with wt = (wt
1, w

t
2) �= (wt′

1 , w
t′
2 ), i.e., max{wt

1(s1 −
r1), w

t
2(s2 − r2)} < max{wt

1(x1 − r1), wt
2(x2 − r2)} for any other solution x ∈

S. On the other hand, assume also that s has no positive contribution to the leftmost
target vector t′, i.e., that there exists a solution a ∈ S \ {s} such that max{wt′

1 (a1 −
r1), w

t′
2 (a2 − r2)} < max{wt′

1 (s1− r1), wt′
2 (s2− r2)}. Then with (I) and (II), we can

show a contradiction to the above assumption that s has a positive contribution to the
target vector associated with the weight vector wt = (wt

1, w
t
2):

max{wt′
1 (a1 − r1), wt′

2 (a2 − r2)} < max{wt′
1 (s1 − r1), wt′

2 (s2 − r2)}
(I)
=⇒ max{wt′

1 (a1 − r1), wt′
2 (a2 − r2)} < wt′

2 (s2 − r2)
=⇒ wt′

1 (a1 − r1) < wt′
2 (s2 − r2) and wt′

2 (a2 − r2) < wt′
2 (s2 − r2)

(II)
=⇒ wt

1(a1 − r1) < wt
2(s2 − r2) and wt

2(a2 − r2) < wt
2(s2 − r2)

=⇒ max{wt
1(a1 − r1), wt

2(a2 − r2)} < wt
2(s2 − r2)

(I)
=⇒ max{wt

1(a1 − r1), wt
2(a2 − r2)}

!
< max{wt

1(s1 − r1), wt
2(s2 − r2)}

��

Now, we are finally able to prove that in the bi-objective case, the optimal solution set
of size μ that minimizes the R2 indicator fully lies within the target cone.

Theorem 1. Given a bi-objective optimization problem and a set of weight vectors
W ⊂ R2 for the achievement scalarization functions within the R2 indicator with
reference point r ∈ R2. Then, all objective vectors of a solution set S ⊆ Rk with
|S| = μ solutions that minimizes the R2 indicator lie within the target cone defined
by W if μ ≤ |W| and if at least μ target vectors defined by the weight vectors in W
intersect with the Pareto front.

Proof. For the case μ = |W|, we refer to the proof of Theorem 1 in [8] and prove the
case μ < |W| by contradiction. To this end, let us assume that the solution set S ⊆ Rk

minimizes the R2 indicator with respect to W and r and that the solution s ∈ S is
lying outside the target cone. We distinguish two cases: Either s has no contribution to
the R2 indicator, i.e., R2(S,W, r) = R2(S \ {s},W, r) (case 1) or s has a positive
contribution to the R2 indicator, i.e., R2(S,W, r) > R2(S \ {s},W, r) (case 2).

Case 1: If s itself has no contribution to the R2 indicator, we can replace s by an
optimal solution s∗ of a free target vector t∗ which exists due to the pigeonhole principle
(we presupposed at least as many intersections of target vectors with the Pareto front as
there are solutions in S). Then, the R2 indicator for (S \ {s}) ∪ {s∗} is larger than for
S which is a contradiction to the assumed optimality of S.
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Case 2: Let us now assume that solution s, which lies outside of the target cone, has
a positive contribution to the R2 indicator. Then, we know from Lemma 1 that s has
also a positive contribution to the closest extreme target vector t′ of the R2 indicator.
Hence, t′ must be a free target vector and we can replace s by the optimal solution
s′ with respect to t′ and improve the overall R2 indicator value which contradicts the
assumed optimality of S. ��

Note that in case the number of points in the set S is larger than the number of target
vectors, the optimal solution sets of size μ can contain solutions outside the target cone
due to solutions with no contribution to the R2 indicator [8]. As the above theoretical
investigations do only show qualitative results, but do not allow concrete solution sets to
be proven to correspond to an optimal R2 indicator value, we investigate those optimal
solution sets of size μ, also called optimal μ-distributions [2], in the following by means
of numerical approximations while changing the location of the reference point, the
target cone, and the distribution of the target directions within the cone.

3 Integrating Preferences into the R2 Indicator

In this section, the concept of the target cone (Definition 4) is further elaborated. We will
discuss how the target cone is modified by changing the position of the reference point
and by restricting the weight space covered by the weight vectors in W. In addition, the
effect of the density of the weight vectors in W on the distribution of target directions
within the target cone is discussed to allow the preferences to be further refined.

3.1 Position of the Reference Point

In the previous section, the special role of the reference vector r as intersection of
all target directions became obvious. By moving the reference point, the target cones
are moved accordingly. This is shown in Figure 2. By changing the position of the
reference point from r = (0, 0)T (left) to r = (0.2, 0.1)T (right), the focused region on
the exemplary Pareto front f2 = 0.5− f1 (DTLZ1, [10]) is narrowed significantly.
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Fig. 2. Moving the target cone (gray area) by changing the position of the reference point from
r = (0, 0)T (left) to r = (0.2, 0.1)T (right). The dashed lines correspond to the target directions
and the Pareto front of DTLZ1 is indicated by the thick black line.
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3.2 Restriction of the Weight Space

The target cone is defined as the envelope of the target directions (cf. Definition 4).
As a consequence, it can be narrowed by restricting the components of the normalized
weight vectors w ∈W to subintervals of [0, 1]. This is shown in Figure 3.
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Fig. 3. Narrowing the target cone (gray area) by restricting the first component of the normalized
weight vectors from w1 ∈ [0.1, 0.9] (left) to w1 ∈ [0.2, 0.5] (right). The dashed lines correspond
to the target directions and the Pareto front of DTLZ1 is indicated by the thick black line.

3.3 Density of the Weight Vector Distribution

So far, the standard approach is to distribute the weight vectors uniformly within [0, 1],
i.e., w1 = 0, 0.01, . . . , 0.99, 1 and w2 = 1 − w1 for 101 weight vectors, see e. g. [15].
However, the weight vector distribution influences the optimal distribution of solution
sets regarding R2. In order to obtain additional flexibility, we propose Algorithm 1 as
an exemplary method to generate weight vector distributions which express increased
preferences regarding the extremes of the front. These kinds of weight vector distri-
butions might be desired due to the fact that the optimal distributions of μ solutions
regarding R2 result in more centered point distributions than the HV indicator if the
weights are chosen uniformly in the weight space [8]. To accomplish this shifted fo-
cus, a power transformation with exponent γ is implemented. With increasing γ > 1,
the initial uniform distribution is more and more skewed. To stick with a symmetric
distribution, this skewing is only performed on weights w ≤ 0.5 which are then mir-
rored along w = 0.5 to obtain the weight components w > 0.5. This approach on the
one hand increases the effect of the transformation, but on the other hand requires a
rescaling for still covering the whole domain of weight vectors. The entire rescaling
is provided in Algorithm 1. Fig. 4 shows the weight vector distributions resulting for
exemplary values of the skewing factor γ.

4 Results

In the remainder of this paper, we investigate experimentally how the previously de-
scribed ways to incorporate preferences into the R2 indicator change its bias. More
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Algorithm 1. Generate Weight Vectors
function GENERATEWEIGHTVECTORS(γ,n)

� γ: skew factor, n: number of vectors, must be odd
weights.x ← sequence(0, 0.5,stepsize= 1/(n− 1)) � distribute uniformly
weights.x ← 0.5−γ+1(weights.x)γ � skew and rescale weights
diffs ← 1− reverse(weights.x[1, . . . , (n− 1)/2]) � Mirroring differences along w = 0.5
weights.x ← concatenate(weights.x, diffs) � Build symmetric distribution
return weights.x

end function

concretely, we approximate the solution sets of μ points that minimize the R2 indica-
tor among all sets of μ points, the so-called optimal μ-distributions, see [2, 8]. Results
are obtained by means of standard numerical optimization algorithms for several well-
known bi-objective test functions. As we know from theoretical investigations [8], the
optimal μ-distributions of the R2 indicator lie on the Pareto front if at least μ target
vectors of the indicator intersect with the Pareto front. Hence, we are interested in find-
ing the positions of μ points (yi1, y

i
2) (1 ≤ i ≤ μ) on the Pareto front such that the R2

indicator of these points is minimal. It is easy to see that this optimization problem is
only of dimension μ due to the fact that the points (yi1, y

i
2) have to lie on the Pareto

front and are therefore dependent variables [2], for instance yi2 = 0.5− yi1 for DTLZ1.

4.1 Position of the Reference Point

For the validation of the analytical thoughts of subsection 3.1, a simple experiment
was performed. Using the experimental setup of a former study [8], the position of
the reference point was changed and a corresponding optimal μ-distribution for the R2
indicator was empirically determined by optimizing the above mentioned yi1 values with
the CMA-ES [3]. Thereby, the standard setup of the recent MATLAB implementation
was used [13]. The results of the best of ten replications on the DTLZ1 test function
featuring the linear Pareto front yi2 = 0.5 − yi1 are shown in Fig. 5 for solution sets of
size μ = 10 andN = 10 target directions. As the findings with respect to the movement
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Fig. 4. Different weight vector distributions for eleven weight vectors: Uniform (γ = 1, left),
γ = 2 (middle) and γ = 3. The dashed lines correspond to the corresponding target directions.
The Pareto front of DTLZ1 is indicated by the solid black line.
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Fig. 5. Experimental results for moving the target cone (gray area) defined by 10 uni-
formly distributed weight vectors by changing the position of the reference point. Shown are
r = (−0.5,−0.5)T (upper left), r = (−0.25,−0.25)T (upper right), r = (−0.1,−0.1)T

(bottom left), and r = (0.1, 0.1)T (bottom right). The dashed lines correspond to the target
directions. The best result of the CMA-ES optimization for μ = 10 solutions is depicted using
black dots. The Pareto front of DTLZ1 is indicated by the thick black line.

of the target cone and the distribution of the individuals are general, the choice of the
linear front does not represent a restriction. For other fronts with more complex shapes,
qualitatively the same results can be expected.

The optimal solutions are located at the intersections between the target directions
and the Pareto front. Although the positions of μ − N solutions are not uniquely de-
termined from a theoretical point of view in the case when less than μ target direc-
tions intersect with the Pareto front [8], the used initialization of the CMA-ES result
in clusters of solutions at the extremes. As a consequence, one can only distinguish as
many different points in the optimal μ-distributions of Fig. 5 as there are intersections
between target directions and the Pareto front. Hence, the number of inner mutual so-
lutions decreases with increasing distance to the reference point. If the reference point,
however, is moved inside the interval of component values within the front, a focus on
the respective region can be realized (bottom right plot of Fig. 5).

The fact that not all μ solutions are uniquely defined in the above examples with
N = μ = 10 target vectors, i.e., that they potentially are even dominated in the optimal
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Fig. 6. Experimental results for moving the target cone (gray area) defined by 1000 uni-
formly distributed weight vectors by changing the position of the reference point. Shown are
r = (−0.5,−0.5)T (upper left), r = (−0.25,−0.25)T (upper right), r = (−0.1,−0.1)T

(bottom left), and r = (0.1, 0.1)T (bottom right). The best result of the CMA-ES optimization
for μ = 10 solutions is depicted using black dots. The Pareto front of DTLZ1 is indicated by the
thick black line.

μ-distributions, is usually not desired, as in these cases, not all solutions provide ad-
ditional information about the shape of the Pareto front. In particular, if the true ideal
point of the front is not known a priori, it is hard to specify an appropriate reference
point allowing the whole front to be covered. A simple solution to this problem is to in-
crease the number of weight vectors. In this case, there are enough intersecting points to
locate all individuals on different locations of the Pareto front. This is shown in Figure 6
which only differs from Figure 5 by an increase of the number of weight vectors from
N = 10 to N = 1000. The three cases where the reference point is outside the interval
of component values within the front are now resulting in almost the same distribution
of individuals.

4.2 Density of the Weight Vector Distribution

Further experiments were conducted in order to experimentally check how the optimal
μ-distributions regarding R2 are influenced by varying the underlying weight vector
distribution. More specifically, it is probable that by shifting the density of the weight
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vectors away from the center of the Pareto front, the optimal μ-distributions for the R2
indicator become more similar to the respective ones for the HV indicator based on
former results presented in [8]. Algorithm 1 forms the basis for generating the required
weight vector distributions using γ ∈ {1, 1.5, 2, . . . , 4.5, 5}.

The size μ of the focused solution set is chosen as 10 to be in line with preced-
ing studies and to ensure a meaningful visualization of the results. The number of
weight vectors is set to 501 as former experiments in [8] indicated this as a threshold for
generating sufficiently robust optimization results. Three different test functions repre-
senting different kinds of Pareto front shapes are addressed, i.e., ZDT1 (convex, [19]),
DTLZ1 (linear, [10]) and DTLZ2 (concave, [10]). The definitions of the Pareto fronts
are yi2 = 1−

√
yi1 (ZDT1), yi2 = 0.5− yi1 (DTLZ1), and yi2 =

√
1− (yi2)2 (DTLZ2).

On each of these test problems, we approximated the optimal μ-distributions using the
reference point (0, 0)T . To accomplish this, ten CMA-ES runs with a population size
of five and an offspring size of 10 as recommended in [12] enhanced by one L-BFGS-
B [9] run were conducted. As starting population, the optimal μ-distributions regarding
R2 based on uniformly distributed weight vectors [8] were used.

The experimental results are presented in Fig. 7. In order to allow for a visual com-
parison, the optimal μ-distribution for the hypervolume indicator [1] for μ = 10 solu-
tions is depicted at the top of each figure. It can be clearly seen that the optimal positions
of the resulting solutions follow the shifts induced to the weight vectors by increasing
γ. For a coarser density of weight vectors at the center of the front, the positions of the
optimized solutions indicate movements towards the extremes of the front. Even distri-
butions similar to the HV-optimal ones result which is in line with our expectations. The
perturbations in the trends for increasing γ are due to the high problem difficulty for the
solvers which sporadically produce slightly suboptimal results, especially for DTLZ2.

4.3 Restriction of the Weight Space

Additionally, experiments were carried out to visualize the effect indicated by Theo-
rem 1 that all solutions of the optimal μ-distributions regardingR2 lie within the target
cone defined by weight vectors wi ∈ W. By restricting the weight space to prede-
fined intervals (see Sec. 3.2), the solutions yi are located in between the intersections
of the outmost weight vectors with the front. However, as general theoretical results for
more than one separate interval in weight space were not yet derived—the optimal μ-
distributions depend on the proximity of these intervals—we experimentally analyzed
this situation.

The experimental setup coincides with the respective settings of the previous section
with respect to the test functions and optimization algorithms considered. However, in
the current setup, the 501 weight vectors are uniformly distributed within predefined
intervals. Specifically, the situation of two separate intervals is addressed. Thereby, the
number of weight vectors is split equally to both intervals. Regardless of this, the ini-
tial populations of the CMA-ES are filled by 10 uniformly spaced points on the y1-
axis within the interval defined by the two outmost weight vectors over all considered
intervals.

Figure 8 presents the corresponding experimental results. In line with Theorem 1,
the optimal μ-distributions regarding R2 are located within the intervals defined by
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Fig. 7. Experimental results for weight vector distributions with varying density. The best result of
the 11 optimization runs is depicted using black dots. The parameter γ of the underlying weight
vector distributions is given on the y-axes of the figures. At the top line, the corresponding optimal
μ-distribution for the HV is shown for reference. The respective weight vector distributions for
different parameter levels γ are visualized using histograms in the lower right plot.

the target cones resulting from the restriction of the weight space. Additionally, as the
two separate intervals considered are not close to each other, solutions are concentrated
within the two individual target cones in a defined way. Although the points, especially
for DTLZ2 and ZDT1, appear to be distributed quite skewed towards the edges of the
displayed intervals, the corresponding Euclidean distances in two-dimensional space
are much more homogeneous. This is due to the curvature characteristics of the respec-
tive fronts with either very small or very high gradients towards the extremes in each
dimension and the fact that the plots, as shown here, present only the projections of the
solutions onto the y1-axis of the first objective function.
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Fig. 8. Experimental results for restricted weight spaces. The best approximation regarding R2
out of 11 runs is visualized by black dots. 501 weight vectors are uniformly distributed in the
region(s) given on the y-axis of the plot. In case two intervals are considered, the number of
weight vectors is split equally to both intervals. The resulting interval(s) on the x-axis bounded
by the intersections of the outmost weight vectors with the Pareto front are visualized in orange.

5 Conclusions

In this paper, three variants for integrating preferences into the R2 indicator were in-
troduced. These variants exploit that the optimal μ-distributions for the R2-indicator
are affected by moving the reference point, by restricting the weight space, as well as
by skewing the weight vector distribution. In addition, a sound theoretical background
for the first two variants was provided by proving a theorem which relates the loca-
tion of the optimal μ distribution to the target cone of the weight vectors of the R2
indicator. Moreover, experiments were conducted to visually illustrate that the choice
and the target cone of the weight vector distribution heavily influences the optimal



94 T. Wagner, H. Trautmann, and D. Brockhoff

μ-distribution for the R2 indicator. This is of particular interest, as the standard ap-
proach is still to uniformly distribute the weight vectors over their complete domain
without being aware of the resulting implications. While the results on the one hand
demand for a cautious choice of the weight vector distribution, it thereby becomes pos-
sible to take into account preferences regarding the distribution of the points on the
Pareto front approximation.

The reference point, as a parameter of R2, was found to have an influence which is
not negligible. Especially, in case it is chosen too close to the Pareto front, i.e., in case it
does not dominate the whole Pareto front, the optimal μ-distributions regardingR2 will
never cover the whole extent of the Pareto front, independent from the number of weight
vectors. On the other hand, the number of weight vectors which intersect the Pareto
front decreases with increasing distance to the front. Thus, the recommendation is to
apply a very conservative reference point (far better than the approximated Pareto front)
and to use more weight vectors the higher the uncertainty of the location of the actual
ideal point. This increases the probability that a sufficiently high number of weight
vectors intersects the complete Pareto front.

Regarding future work, several research directions are worth to be explored. In addi-
tion to further quantitative theoretical analyses of concrete optimal μ-distributions for
the R2 indicator in the bi-objective case, it will be important to investigate the opti-
mal distributions also for problems with more than two objective functions or other
related indicator such as the one in [7]. Furthermore, the question arises how the opti-
mal μ-distributions for the (preference-based)R2 indicator can be actually obtained in
practice. A simple R2-indicator-based selection within an evolutionary multi-objective
optimization algorithm similar to known HV-indicator-based algorithms, such as [4,5],
would be a first step towards this goal.
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Abstract. Decreases in dominated hypervolume w.r.t a fixed reference
point for the (μ + 1)-SMS-EMOA are able to appear. We examine the
impact of these decreases and different reference point handling tech-
niques by providing four different algorithmic variants for selection. In
addition, we show that yet further decreases can occur due to numerical
instabilities that were previously not being expected. Fortunately, our
findings do indicate that all detected decreases do not have a negative
effect on the overall performance.

Keywords: EMO, hypervolume decreases, reference point handling, nu-
merical instabilities.

1 Introduction

The dominated hypervolume has become the standard performance indicator in
evolutionary multi-objective optimisation (EMO) in recent years, cf. Deb [4] or
Coello Coello [3] for details on EMO related definitions and vocabulary. The
dominated hypervolume was defined by Zitzler and Thiele as the the size of the
space covered by a Pareto front with respect to a given reference point [11].
Special properties of this indicator have been proven [12], especially its property
of being Pareto compliant, i.e. whenever a Pareto front approximation dominates
another approximation, the hypervolume of the former will be greater than the
hypervolume of the latter.
Next to becoming the standard performance indicator, the dominated hy-

pervolume has been incorporated for environmental selection in a number of
EMO algorithms (EMOA) in the past half decade. Prominent examples are SMS-
EMOA [2], MO-CMAES [6], as well as HypE [1]. In all these algorithms as well
as publications, the course of the hypervolume was expected to be monotonically
decreasing over the number of fitness function evaluations.
It was long thought that decreases in hypervolume could not be experienced

over the course of an optimisation process performed for instance with the SMS-
EMOA, as individuals would be selected based primarily on their hypervolume
contributions, and thus offspring causing a decrease in hypervolume could never
be selected.

R.C. Purshouse et al. (Eds.): EMO 2013, LNCS 7811, pp. 96–110, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Recent results however show that unsuspected decreases in the hypervolume
progression during an optimisation run are possible [7]. Even more complex,
different reasons for the 2-dimensional and the 3-dimensional case have been
identified. We will explain four different strategies for selection and reference
point handling to compare the standard selection scheme to more precise ones
that were not expected to be influenced by the reasons mentioned above. To this
end, we compared SMS-EMOA with decreases and reference point adaptation
(the standard case) to the algorithm not accepting decreases. Moreover we test
the algorithm with a fixed reference. Thus, we end up with four combinations
with respect to decrease acception and reference point usage (cf. Sec. 2.2). From
the reasons for hypervolume decreases provided by Judt et al. [7], we do not
expect hypervolume decreases within the course of the optimisation runs for a
subset of the cases above. Consequently, we expect some algorithmic setting to
provide identical results.
Surprisingly, hypervolume decreases could be observed for all algorithmic set-

tings in the 3-dimensional case. Taking a deeper look at generated points, calcu-
lated hypervolume values, and the consequences of selection, it was found that
numerical issues (highly) influence the selection procedure. We continued our
investigation focusing on the effect of such issues.
The goal of this paper is to make researchers a bit more sensible for the nu-

merical issues that may arise in complex calculation like for (higher dimensional)
hypervolume values and to examine if omitting hypervolume decreases or using
dissimilar reference points for the selection scheme is beneficial or not.
Nevertheless, for the considered cases here, we can give the all-clear. Although

different paths through the parameter space are considered, the overall results
do not vary significantly. We regard this as a very positive result indicating the
robustness of the hypervolume selection approaches.
The following section provides basic elements when talking about hypervol-

ume decreases and summarizes the findings on hypervolume decreases during
optimisation runs from prior publications. Moreover, it presents a more detailled
description of the four algorithmic settings considered. Sec. 3 provides the ex-
perimental setup for our experiments and Sec. 4 summarizes our findings for the
2-dimensional test cases. Moreover, surprising effects are reported here, that are
reasoned in a special subsection.
Sec. 5 summarizes all results obtained for the 3-dimensional cases and provides

relief that the dominated hypervolume is an adequate selection criterion for
indicator based EMOA. The last section summarizes all findings and provides
and outlook for further research.

2 Decreases in Hypervolume Progressions

The progression of the hypervolume in a 1-greedy hypervolume selection based
EMOA was thought to never decrease in the course of an optimization run.
This belief arose from the design of the algorithms, where the individual with
the least hypervolume contribution is discarded in every generation. However,
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Judt et al. [7] showed that this intuition is wrong for SMS-EMOA featuring an
adaptive reference point in the 3-dimensional case and due to a special treatment
of boundary solutions in the 2-dimensional case.

2.1 Prior Findings

More precisely, boundary solutions, i.e. solutions with the least fitness function
value in one objective, are always kept for the succeeding generation in SMS-
EMOA for 2-dimensional objective functions. This was implemented to not lose
such solutions with extreme fitness function values. However, these solutions
might only supply a minimal hypervolume contribution due to lying very close
to another solution on the Pareto front. Since this minimal contribution is kept,
a more significant contribution might be lost eliminating an alternative solution
in the (μ+1) selection scheme. This leads to the decrease in hypervolume of the
whole Pareto front. For more details we refer to Judt et al. [7].
For 3-dimensional and higher-dimensional objective spaces, comparable de-

creases are observed, however, the reason for these is different. In higher dimen-
sional objective spaces, boundary solutions are not automatically kept for the
succeeding generation since this would fill the whole population within a short
period of time. This is also due to employing a different definition for boundary
solutions. Here, these solutions are solutions lying next to the boundary of the
Pareto front, e.g. the curves where the 1-hypersphere being the Pareto front of
DTLZ2, touch the plains spanned by the positive coordinate axes.
An adaptive reference point is used for hypervolume calculations in the 3-

dimensional case. This reference point is determined by the solutions contribut-
ing the worst (highest) objective function values w.r.t to one objective. These
worst values are complemented to a vector and a fixed value of one is added
in each direction. This defines the adaptive reference point. As a result, there
might be a different reference point within each generation. This is effectively in-
corporated to calculate the hypervolume contributions of Pareto non-dominated
solutions. Thus, this might lead to a decrease in hypervolume of the whole Pareto
front observed from the perspective of a reference point fixed for the whole op-
timisation process.

2.2 Selection Strategies under Investigation

To fairly test the influence of hypervolume decreases on the overall performance
of the hypervolume based selection strategies, different strategies have to be
considered.

1. The standard implementation, where hypervolume contributions are calcu-
lated w.r.t. the adaptive reference point. For our experiments we recalculated
all contributions w.r.t. a fixed reference point to identify decreases. However,
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the optimisation proceeded accepting the hypervolume regression. For refer-
encing this procedure later on, we abbreviate it adaptive/with indication
that an adaptive reference point is used and regressions are considered.

2. The repairing implementation, where hypervolume contributions are again
calculated w.r.t. an adaptive reference point. However, if the recalculation
of the hypervolume yields a hypervolume decrease, the proposed selection
step in not accomplished. No selection is performed, the following generation
equals the prior one. This procedure is abbreviated adaptive/without.

3. The assured implementation, where hypervolume decreases are always calcu-
lated w.r.t. the fixed reference point. This way, no decreases in hypervolume
are possible for 3-dimensional and higher-dimensional objective spaces. This
implementation differs from the repairing one, in such that contributions are
not calculated w.r.t different reference points, thus, leading to the selection
of different solutions. Just in case and beyond expectation: If hypervolume
decreases are discovered, these will not be accomplished. Here, the assured
implementation complies with the repairing one. This implementation is ab-
breviated fixed/without.

4. The impossible implementation, where hypervolume decreases calculated to
a fixed reference point are accepted during the optimisation process. These
decreases are beyond expectation, while this case is called the impossible
case, and abbreviated fixed/with.

For the third strategy described above, the assured implementation, it is im-
portant if a 2-dim test function is considered or a higher-dimensional one. For
the latter, using a fixed reference point must not lead not any hypervolume de-
creases. In such cases, decreases are expected to only show up due to the different
reference points considered internally (adaptive reference point) and externally,
when comparing hypervolume values from different generations (fixed reference
point). This is different for 2-dim. test cases. In this case, decreases are possible
even though a fixed reference point is in use. This leads to the question whether
decreases should be allowed or not on a different level. For further results we
decided to allow decreases in such situations.
The fourth case described above was added to complement all possible combi-

nations. The results received for the third case (fixed/without) and the fourth
case (fixed/with) were expected to be identical for 3- or higher-dimensional
test functions. All strategies have been implemented to the SMS-EMOA from
the R package emoa [9].

3 Experimental Setup

For the paper, a total of 1 600 reproducible runs of the SMS-EMOA were con-
ducted on 2-dimensional, 3-dimensional, and 4-dimensional test cases. More
specifically, 800 runs were performed on the four 2-dimensional test functions
ZDT1 – ZDT4 (cf. [10]) with 30 decision variables each, 600 runs were con-
ducted with the three 3-dimensional test functions DTLZ1 – DTLZ3 (cf. [5])
with the number of decision variables being reduced to 7 and 12 as suggested
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by Deb et al. [5] and 200 runs were performed with a 4-dimensional version of
DTLZ2 with 13 decision variables.
In addition, as parameters for the Simulated Binary Crossover (SBX, [4]) and

the Polynomial Mutation (PM,[4]) operator the combination sbx n = 10, sbx p

= 0.5, pm n = 20 and pm p = 0.1 was considered. All runs consisted of 100 000
fitness function evaluations with a population size μ of 100 individuals.
The fixed global reference points chosen are provided in Tab. 1.

Table 1. Global fixed reference points considered

ZDT1 – ZDT3: [11, 11] DTLZ1: [1000, 1000, 1000]

ZDT4: [1000, 1000] DTLZ2: [11, 11, 11]

4-dim. DTLZ2: [11, 11, 11, 11] DTLZ3: [2000, 2000, 2000]

Such remote choices at times were necessary in order that all generated in-
dividuals, including those in the starting populations, would be dominated by
these reference points.
Furthermore, the four strategies outlined in Sec. 2 were implemented for these

runs. For adaptive/with and adaptive/without, the evaluated hypervolume
contributions are based upon an adaptive reference point, whereas the fixed refer-
ence point provided above is used for the fixed/with and fixed/without strate-
gies. Moreover, selections that lead to a decrease in hypervolume w.r.t. the fixed
reference point are discarded under the adaptive/without and fixed/without
strategies, in contrast to being kept under the adaptive/with and fixed/with

strategies.
For each combination of strategy, test function, and population size 50 inde-

pendent runs were conducted. The hypervolume w.r.t. a fixed reference point for
each generation was calculated and stored. More details on exact parameteriza-
tions and reference points are provided in the supplementary material1

4 Results I: 2-dimensional and Surprising 3-dimensional

All results are presented as histograms of the hypervolume distributions. Each
entire figure is composed of of several graphics as subfigures that represent his-
tograms of a specific setting. To this end, figure 1 consists of 16 graphics, sub-
divided into four graphics in each row and column.
The following figures are separated according to the test function considered,

the number of fitness function evaluations performed and/or the implemented
selection criterion standard, repairing, assured, and impossible (cf. Sec. 2).
Firstly, attention will be paid to the 2-dimensional case, secondly to the 3-

dimensional case. For each case, we will first focus on the progression of the
hypervolume values during one optimisation run and later on comparing the
results received on the different test functions considered.
1 Supplementary Material is available at http://ptr.p-value.net/emo13.

http://ptr.p-value.net/emo13
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4.1 Progression of the Hypervolume in 2-dimensional Test Cases

Figure 1 presents the histograms described above after 500, 10 000, 30 000, and
100000 fitness function evaluations for test function ZDT2 from left to right.
The different rows present to four different algorithmic variants for selection.
All histograms in each single picture were generated of all optimization runs

featuring all mentioned parameterisations, the corresponding test function, al-
gorithm combination, and the addressed way of reference point handling after
the given number of fitness function evaluations.
This holds for different points during the progression of the optimization runs

as well as for all test cases. ZDT2 was used as a representative example for all
other test functions.
Obviously, the results for the schemes adaptive/with and fixed/with as

well as adaptive/without and fixed/without are identical. As a result, the
performance here is solely depending on the handling of the reference point.
This is in line with our observations on the reasons for possible hypervolume
regressions as described in [7].
With respect to the hypervolume progression, all different variants gain more

and more hypervolume with more fitness function evaluations. Even more, the
final values after 100 000 fitness function evaluations look more or less identical
with a high peak in the left of the graphics and some outliers on the right.
However, there is no clear evidence, which is the best variant. A detailled look
for different test cases after 30 000 fitness function evaluations is provided in the
following section.

4.2 Comparison for Different 2-dimensional Test Functions

The following figure depicts the situation from above after 30 000 fitness function
evaluations for all 2-dimensional test function considered. Again, the compliance
of the schemes adaptive/with and fixed/with as well as adaptive/without
and fixed/without can be observed. Since 30 000 fitness function evaluations
are the recommended number of fitness function evaluations for these test func-
tions, we decided to judge upon the final performance based on this data.
Comparing different schemes again, no clear winner can be determined. All

schemes preform more or less comparably for all different 2-dimensional test
cases. Moreover, even differences concerning variances of the distributions are
hard to detect either for the different strategies as well as for the different test
functions.
As a result, we conclude that no deviating recommendation can be made as an

advisable strategy other than the standard implementation adaptive/with for
calculating the hypervolume contributions in theSMS-EMOA for 2-dimensional
functions.

4.3 Progression of the Hypervolume in 3-dimensional Test Cases

In parallel to Figure 1, Figure 3 depicts histograms portraying the obtained
hypervolume after 500, 10 000, 30 000, and 100 000 fitness function evaluations
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Fig. 1. Histograms of received hypervolume values for ZDT2 within the progression
of the optimisation runs, i.e. after 500, 10 000, 30 000, and 100 000 fitness function
evaluations (left to right). Within one column, the four different strategies are depicted.

for test function DTLZ2. The four proposed algorithmic variants are aligned in
columns again.
DTLZ2 was chosen to represent the 3-dimensional test cases due to the fixed

reference point for calculating the hypervolume being comparatively close to the
Pareto front. This results in a much lower scale for the achieved hypervolume
throughout the optimization process, which in return appears to be more suitable
for comparing the different strategies. Nevertheless, similar assessments to the
following can be made for the other 3-dimensional test functions, part of which
will be shown in Sec. 5.
Most striking, the distribution of the obtained hypervolume for the runs per-

formed under the fixed/without selection variant does in fact differ from the
distribution achieved with the fixed/with variant. This already occurs after
500 fitness function evaluations, hence right at the beginning of the
optimization process.
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Fig. 2. Histograms of received hypervolume values for the 2-dimensional test functions
after 30 000 fitness function evaluations (left to right). Within one column, the four
different strategies are depicted. For visualization purposes a hypervolume value of
990 000 is subtracted from the actual hypervolume value for ZDT4 in order to have
suitable values for the x-axis.

This is in direct contradiction to our expectations, as 3-dimensional (and
higher-dimensional) runs conducted with a selection scheme that uses a fixed ref-
erence point should not experience decreases in hypervolume w.r.t. a fixed refer-
ence point, thus repairing should not be necessary in practice for fixed/without.
It therefore was expected that the fixed/with and fixed/without strategies
would lead to identical hypervolume distributions. This issue will be discussed
in more detail in the following section.
On a different note, looking at the progression of hypervolume, all four strate-

gies result in a gradual increase of hypervolume with more fitness function eval-
uations. No significant difference in hypervolume distributions between the dif-
ferent variants in each column can be seen in this figure. While using a version
with an adaptive reference point might appear to achieve slightly better results
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right at the beginning of the runs, they in turn seem to attain a barely inferior
hypervolume distribution after 100 000 fitness function evaluations. However,
these differences are minimal and therefore no ultimate recommendation can be
made on which strategy results in significantly better performances. In Sec. 5,
results of runs from other 3-dimensional test functions after 30 000 are used as
further reference for comparing the different strategies.
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Fig. 3. Histograms of received hypervolume values for 3-dimensional DTLZ2 within the
progression of the optimisation runs, i.e. after 500, 10 000, 30 000, and 100 000 fitness
function evaluations (left to right). Within one column, the four different strategies are
depicted.

4.4 Numerical Issues Involved

During our experiments we observed many numerically identical hypervolume
values. In previous work [8] we conjectured that this was likely due to numerical
limits of the underlying C code used to calculate hypervolume values. When
we started to investigate the current results we noticed another, even stranger,
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issue. Sometimes the hypervolume of successive Pareto front approximations
would sink even though the latter front differed from the former only in a single
point and this point dominates another point in the former front. More formally,
we found sets of points {y1, . . . ,yn+1} such that

ĥypr({y1, . . . ,yn}) < ĥypr({y1, . . . ,yn−1,yn+1})

even though yn dominates yn+1. Here ĥypr denotes the numerical approximation
of the hypervolume w.r.t. the reference point r. Clearly, this is in violation of
the strong Pareto compliance of the hypervolume.
The observed differences are quite small, usually in the 15th or 16th signif-

icant digit. Since all calculations are performed using double precision floating
point numbers, these differences are not larger than what one expects. What is
surprising is that this reversal happens with such high probability (cf. Tab. 2
for details). Even worse, it is likely that there are even more such undetected
anomalies because the only reliable way to detect them currently is when the
two points yn and yn+1 are ordered. If they are incomparable, we do not have
a criterion by which to decide if the numerical approximation of the dominated
hypervolume is correct. Given that in the final stages of an optimization run,
many changes in hypervolume are of the same order as our observed errors in the
numerical approximation. We conjecture that there are also quite a few miniscule
decreases in hypervolume that we cannot detect.
The above could have consequences for all indicator based algorithms which

use the hypervolume as an indicator - although, as we will see later, there
is no strong evidence to suggest that it has a clear detrimental effect. In fu-
ture, we would like to see further work that studies the numerical proper-
ties of the hypervolume indicator and some of the other commonly employed
indicators.

Table 2. Mean number of occurred decreases with fixed/with strategy after 500,
10 000, 30 000, and 100 000 fitness function evaluations (fe, left to right). Within one
column, the four 3-dimensional and one 4-dimensional test functions are depicted. Note
that the numbers shown represent an average of the 50 runs for each of these settings.

after 500 fe after 10 000 fe after 30 000 fe after 100 000 fe

DTLZ1 7 34 166 1274

DTLZ2 3 4 4 5

DTLZ3 10 44 200 551

4dim. - DTLZ2 3 3 3 3
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5 Results II: Relief for the 3-dimensional Cases

5.1 Comparison for Different 3-dimensional Test Functions

After putting the blame for the surprising results received above to numerics, we
continue to investigate whether the different algorithmic variant and, thus, also
the numerical instabilities really influence the overall performance of the algo-
rithms. To do so in the 3-dimensional case we follow the route already driven for
the 2-dimensional case. To this end, we investigate the performance for differ-
ent 3-dimensional test functions and all four variants after a specific number of
fitness function evaluations, i.e. 30 000 again like in the the 2-dimensional case.
This number of fitness function evaluations was chosen to be comparable to the
2-dimensional case and because it is the amount of evaluations that is mostly
spend on these function in other investigations.
Figure 4, like Fig. 2 before, details these results introduced above. Again, the

graphics for one test function are provided in one column while the graphics
belonging to one algorithmic variant are presented in one line with fixed/with

at the top and adaptive/without at the bottom.
The difference in performance of the four algorithmic variants can again be

observed in the results presented here. This in particular holds for the results for
DTLZ2 and DTLZ3, while the results for DTLZ1 look identical for three of the
four types. Only the adaptive/with variant provides a distribution of results
over the presented x-range with some outliers right in the left corner of the
graphic. Due to these outliers, the scaling of the x-axis was adapted accordingly,
what made, in turn, the other results look like not being distributed at all, i.e.
all offering the same results.
A phenomenon a bit similar can be observed for the DTLZ3 test function,

where the results for fixed/without are much more distributed over the pre-
sented range making the other results appear more narrowed around a specific
value. However, differences in the histograms for all four algorithmic variants
can clearly be observed here.
Note, that the remarkable difference in the presented x-range is due to the

choice of different reference points for the test functions under investigation.
This as well as the partly different shapes of the Pareto front result in incom-
parable amounts of hypervolume that can be achieved by the different algo-
rithms/selection variants. Moreover, due to the huge of amount of achievable
hypervolume and the desire to have suitable axis labels, amounts of hypervol-
ume were subtracted for DTLZ1 and DTLZ3. These amounts are provided in
the caption.
Trying to answer whether a fixed or an adaptive reference point or the ac-

ceptance of decreases or not really pays of is not easy. No significant differences
can be detected comparing the four variants over all three test functions. Of
course, the already mentioned two variants adaptive/with and fixed/without
perform worse on one of the test functions, but adaptive/without seems to be
a bit below the other performances for DTLZ2 and DTLZ3. As a result, only the
fixed/with variant seems to perform best in comparison, which is a bit strange,
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since this exactly is the impossible implementation that differs to the other fixed
variant only due to the mentioned numerical instabilities. Therefore, and due to
all differences not being really significant, we do not provide a recommendation
for one of the variants and will, additionally, take a look at one 4-dimensional
instance.
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Fig. 4. Histograms of received hypervolume values for the 3-dimensional test func-
tions after 30 000 fitness function evaluations (left to right). Within one column, the
four different strategies are depicted. For visualization purposes a hypervolume value
of 999 999 900 is subtracted from the actual hypervolume value for DTLZ1 and a hy-
pervolume value of 7 999 900 000 for DTLZ3 in order to have suitable values for the
x-axis.
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5.2 Comparison for One Higher-Dimensional Test Function

To verity our findings for higher-dimensional objective space we performed ex-
periments corresponding to these in the 2-dimensional and 3-dimensional cases
for the 4-dimensional DTLZ2 test function. Of course, only based on these re-
sults, we cannot claim portability for other test functions and higher-dimensional
spaces. However, these might provide a first hint whether the results are consis-
tent or not.
The results for the 4-dimensional DTLZ2 case are provided in Fig. 5 and this is

set up like the corresponding figures for the 2-dimensional and the 3-dimensional
cases, i.e. Fig. 2 and 4. Again we have the results after a certain amount of fitness
function evaluations in one column and the four different algorithmic variants
aligned in one row.
Obviously, and as a main result, there is no consistency w.r.t. the algorithmic

variants again. Like in the 3-dimensional case, all variants perform differently.
Once more, differences are not significant and there cannot be a decision for
a final best variant again. Consequently, we conclude that the 4-dimensional
results are in line with the 3-dimensional results achieved and reason that such
results hold for other test cases and higher dimensional objective spaces as well.
It can be pointed out, that not accepting decreases in hypervolume is not a

solution. This can be reasoned from the performance of the variants yielding
an adaptive reference point. In particular for the situation discussed here, the
version without accepting decreases performs worse in comparison to its coun-
terpart accepting such decreases. This at least holds for the results at the end
of a possible optimisation run, i.e. after 30 000 fitness function evaluations and,
more significantly, after 100 000 fitness function evaluations.

6 Summary and Outlook

Decreases in hypervolume during an optimisation run featuring 1-greedy hyper-
volume selection have not been noticed for a long time. Moreover, they have
even been considered impossible. Since they have been detected for the first
time, the main question was whether these hinder the overall performance of the
algorithm. This was what we aimed to answer by the contribution at hand.
To this end, we proposed four different strategies that have been implemented

in a well-known hypervolume based selection EMOA. These variants consider
decreases as well as neglect them in combination with using a fixed and an
adaptive reference point respectively. All these variants of SMS-EMOA have been
tested on 2-dimensional and 3-dimensional mathematical test cases. Moreover,
to gain evidence for higher dimensional test cases, we added one 4-dimensional
test case to the collection.
As a result, it turned out that decreases in hypervolume do not hinder the

overall performance of the algorithm. At least, no significant results have been
found that would somehow underpin the claim that they do.
Surprisingly, we stumbled into some other issue: the role of numerical insta-

bilities. We found situations, where apparently better Pareto fronts receive less
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Fig. 5. Histograms of received hypervolume values for 4-dimensional DTLZ2 within the
progression of the optimisation runs, i.e. after 500, 10 000, 30 000, and 100 000 fitness
function evaluations (left to right). Within one column, the four different strategies are
depicted. For visualization purposes a hypervolume value of 14 000 is subtracted from
the actual hypervolume in order to have suitable values for the x-axis.

hypervolume values due to issues in precision of the underlying algorithms. The
very important role of such numerical issues has been neglected in the EMOA
and possibly even in the EA community. It turned out to be a new aim of
this contribution to remind researchers of the existence of such issues, the con-
sequences, and possibly to encourage them to address these issues with their
research.
A still open question is whether these issues also influence other algorith-

mic variants like alternative precise hypervolume calculation algorithms and,
even more interestingly, the influence on hypervolume approximation techniques,
which became famous during the last years. Although these topics are open,
we have evidence to believe that even small mistakes in hypervolume values
caused by approximation techniques will not worsen the overall performance
of the algorithms. The situation is somehow comparable to not having the
property of Pareto compliance active for small hypervolume changes like we
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found in the current research. Hypervolume selection turned out to be a very
robust and reliable selection procedure, which is very good and encouraging
news.
A possible new research direction, next to investigating the numerical issues

in more detail, could be the development of new reference point adaption tech-
niques, which prevent the corresponding hypervolume values to be this large in
comparison to the received difference in hypervolume. This could possibly pre-
vent numerical issues. Moreover, we would like to verify our findings on more
mathematical and, in particular, on industrial test cases. These test cases seem
to be a lot more challenging.
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Abstract. In this paper we discuss cone-based hypervolume indicators
(CHI) that generalize the classical hypervolume indicator (HI) in Pareto
optimization. A family of polyhedral cones with scalable opening angle
γ is studied. These γ-cones can be efficiently constructed and have a
number of favorable properties. It is shown that for γ-cones dominance
can be checked efficiently and the CHI computation can be reduced to
the computation of the HI in linear time with respect to the number
of points μ in an approximation set. Besides, individual contributions
to these can be computed using a similar transformation to the case of
Pareto dominance cones.

Furthermore, we present first results on theoretical properties of
optimal μ-distributions of this indicator. It is shown that in two di-
mensions and for linear Pareto fronts the optimal μ-distribution has
uniform gap. For general Pareto curves and γ approaching zero, it is
proven that the optimal μ-distribution becomes equidistant in the Man-
hattan distance. An important implication of this theoretical result is
that by replacing the classical hypervolume indicator by CHI with γ-
cones in hypervolume-based algorithms, such as the SMS-EMOA, the
distribution can be shifted from a distribution that is focussed more on
the knee point region to a distribution that is uniformly distributed. This
is illustrated by numerical examples in 2-D. Moreover, in 3-D a similar
dependency on γ is observed.

Keywords: Hypervolume Indicator, Cone-based Hypervolume Indica-
tor, Optimal μ-distribution, Complexity, Cone-orders, SMS-EMOA.

1 Introduction

The context in which this work is situated is multiobjective optimization with m
objective functions f1 : X → R, f2 : X → R, . . . , fm : X → R. Without loss
of generality, minimization is assumed to be the goal. A finite approximation to a
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continuous Pareto front is searched for, which is assumed to be of dimensionm−1.
To approximate it, a set indicator is maximized over all sets P ⊂ Rm of size μ such
that P ⊆ Y = f(X) (i.e., P is a (finite) subset of the image set f(X)).
The hypervolume indicator (HI), or S-Metric [21], is a common set indicator

for measuring the quality of Pareto front approximations and it is often used as
a criterion for guiding search algorithms towards Pareto fronts, e.g., [2,7]. For a
finite set P ⊂ Rm it is defined as

HI(P ) = λ(∪p∈P [p, r]), (1)

where λ denotes the Lebesgue measure and r is a reference point that is usually
fixed by the user. Recall that for two vectors x,y in some Rm, x � y if and
only if ∀i ∈ {1, · · · s}, xi ≤ yi. An equivalent definition is Definition 5 in case the
standard cone (i.e., the positive orthant) is taken. This binary relation is known
as the weak Pareto order. The reference point should obey ∀p ∈ P : p � r, for
all approximation sets P considered in the optimization.
The optimal μ-distribution of the HI is defined as (cf. [1]):

P ∗
μ ∈ arg max

P⊆Y,|P |≤μ
(HI(P )). (2)

For innumerably large Pareto fronts, the optimal μ-distribution is a subset of
the Pareto front. For continuous 2-D Pareto curves it is known that in the limit
(for large μ) the density of optimal μ-distribution is highest in regions where
the slope is close to −45◦ [1]. Earlier work on cone-based dominance suggests
that density of Pareto front approximations can be controlled by using cones of
different shapes [3,17]. However, previous work does not yet address the HI for
cone-based orders and it seems promising to define the HI also for cones that are
different from the Pareto cone. It is hypothesized that optimal μ-distributions
with respect to these different cone-based HIs have different densities. It will be
interesting to study how this density relates to local trade-offs.
The attention of this paper is mainly focused on a singly parametrized family

of symmetrical, polyhedral cones. For these cones we show how to

1. construct the base vectors of a member given its angle-parameter
2. check cone dominance efficiently and compute the cone non-dominated sub-
set of a finite set

3. compute the cone based hypervolume efficiently.

Furthermore we study the influence of the cone angle on the optimal μ-
distribution when using non-rectangular cone based hypervolume indicators. In
particular we point out cases where the optimal μ-distribution is evenly spaced.
In this paper we take the view of studying the (standard) Pareto front by

means of cone-based orders, noting that cone-based orders also occur naturally
in other contexts, in which the cone-based hypervolume would measure the size
of the dominated subspace.
We believe non-rectangular cones to be useful for controlling trade-off sensi-

tivity and spacing (of points in the approximation sets) in search methods guided
by hypervolume indicators.
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2 Preliminaries

In this section we recall some notions which are used in this paper. We define
cones, convex cones, pointed cones, and cone orders according to Ehrgott [6]
which in turn builds on the work of Noghin [15]:

Definition 1. A subset C ⊆ Rm is called a cone, iff αp ∈ C for all p ∈ C and
for all α ∈ R, α > 0.

Definition 2. A cone C in Rm is convex, iff αp(1) + (1 − α)p(2) ∈ C for all
p(1) ∈ C and p(2) ∈ C and for all 0 ≤ α ≤ 1.

Definition 3. A cone C in Rm is pointed, iff for p ∈ C, p �= 0, −p �∈ C, i. e.,
C ∩ −C ⊆ {0}.

For notational convenience let us also introduce the Minkowski sum:

Definition 4. Let A and B denote sets in Rm. Then

A⊕B = {a+ b | a ∈ A and b ∈ B}. (3)

and
A�B = {a− b | a ∈ A and b ∈ B}. (4)

Definition 5. [Cone order] Let C denote a pointed convex cone, then we de-
fine (see also Ehrgott [6])

p �C q⇔ q ∈ {p} ⊕ C ∪ {0}. (5)

This order is a generalization of the Pareto order. The special case of the Pareto
order and hypervolume indicator is obtained by choosing the cone

CPareto = (R≥0)
m \ {0}. (6)

By introducing cone orders as in Equation 5, Noghin [15], proves that an order
which is irreflexive, transitive, and compatible with addition and scalar multi-
plication, is cone order derived from cone C if and only if C is a pointed convex
cone that does not contain 0. Moreover, the following relationships between the
Pareto order and cone orders can be observed:

1. For pointed convex cones C with C ⊃ CPareto, minima of the cone order
are also Pareto optima, but some Pareto optima may not be minima of the
cone order.

2. For pointed convex cones C with C ⊂ CPareto, Pareto optima are also
minima of the cone order, but some minima of the cone order may not be
Pareto optima.

As a consequence, by finding the minima of the cone order, we either compute
a subset of the Pareto front (Case 1) or a superset of the Pareto front (Case 2).
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Fig. 1. Cone-based hypervolume example for two objectives

We now propose a definition of the CHI :

Definition 6. [Cone-based hypervolume] We denote the Lebesgue measure by λ.
The cone-based hypervolume for a finite set P ∈ Rm and a reference point r with
∀p ∈ P : p �C r is defined as

CHI(P ) = λ((P ⊕ C) ∩ ({r} � C)). (7)

An equivalent definition is based on the definition of cone orders:

CHI(P ) = λ({q ∈ Rm|∃p ∈ P : p �C q ∧ q �C r}). (8)

An example for the cone-based hypervolume indicator for m = 2 and a set of 5
points is given in Figure 1.
In the following we restrict our attention to a particular class of polyhedral

cones, that will be introduced in Section 3 as γ-cones and its related hypervolume
indicator CHIγ . We will study the following aspects of it:

1. How can γ-cones be defined concisely and constructively (in any dimension)
based on the angle γ? (Section 3)

2. How can dominance be checked? How can we obtain non-dominated subsets
efficiently? (Section 4)

3. How can the CHIγ be efficiently computed for these cone-orders and how
can individual contributions to the CHIγ be computed? (Section 5)

4. How does γ influence the optimal μ-distribution?(Section 6)
5. How can the influence of γ be used in hypervolume-based multiobjective
optimization algorithm design? (Section 7)

3 Definition and Construction of γ-cones

Informally the γ-cones that we introduce next can be described as symmetrical
and polyhedral cones that are spanned by m base vectors, where m denotes the
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Fig. 2. Left: a two-dimensional γ-cone. Right: a three-dimensional γ-cone.

number of objective functions and the shape of it can be controlled by a single
parameter – the opening angle γ. For these types of cones (in addition to the
above properties) the hypervolume can be computed as efficiently as the standard
hypervolume – a very useful property as for its computation asymptotically
efficient algorithms for m = 2, 3 are known [12] and also for higher dimensions
fast algorithms were proposed [10,13,19,20].
Next, a precise, formal definition of γ-cones is given:

Definition 7 (diagonal line). The line through the origin of Rm and the point
1 = (1, · · · , 1)T is called the diagonal line of Rm. For R2 this is also called the
bisectrix.

Definition 8 (γ-cone). A cone spanned by m base vectors, c(1), . . . , c(m) is
called a γ-cone, iff

1. the angle between the diagonal line and each of the base vectors c(i) is γ,
and

2. for all i ∈ {1, . . . ,m} the ith base vector c(i) is a unit vector in the plane
spanned by 1 and e(i), where {e(1), e(2), . . . , e(m)} denotes the standard or-
thonormal basis of Rm. Moreover 0 < γ < π and the angle γ is measured
from c(i) counterclockwise towards 1.

Examples of a two-dimensional and three-dimensional γ-cone are provided in
Figure 2.

3.1 Construction of the Base Vectors of γ-cones in Arbitrary
Dimension m

For the m-dimensional case, as we show below, the ith base vector c(i) =

(c
(i)
1 , . . . , c

(i)
m )T has elements

c
(i)
j =

{
(1/

√
m− 1) sin(α) i �= j

cos(α) i = j
(9)
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,where α denotes the angle from e(i) to c(i) and θ the angle from e(i) to a = 1√
m
1

(thus θ = arccos(1/
√
m). With this notation the opening angle is γ = θ − α.

To compute the vectors that span the dominance cone for any number of
dimensions, geometric algebra offers an elegant coordinate-free calculus.
In geometric algebra a rotation in Rm (m ∈ N) determined by a normalized

bivector B over an angle α of a vector x is given by the formula:

x′ = exp(−Bα/2)x exp(Bα/2) (10)

where

exp(Bα/2) = cos(α/2) +B sin(α/2), and x′ is the rotated vector. (11)

We can specialize this to our situation where we want to rotate e(i) in the plane

determined by the normalized bivector B = (e
(i) ∧ a)/ sin(θ) over an angle α to

get c(i):

c(i) = exp(−α
2

e(i) ∧ a

sin(θ)
) e(i) exp(

α

2

e(i) ∧ a

sin(θ)
). (12)

For this particular situation (e(i) lies in the plane determined by e(i) and a), we

can write for c(i), e(i) cos(α) + sin(α)
sin(θ) (a − cos(θ)e(i)). So far we did not bother

about the coordinates. Next we can compute the coordinates of c(i):

c(i) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0

cos(α)
0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+
sin(α)

sin(θ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos(θ)
...

cos(θ)
0

cos(θ)
...

cos(θ)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sin(α)
tan(θ)

...
sin(α)
tan(θ)

cos(α)
sin(α)
tan(θ)

...
sin(α)
tan(θ)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (13)

or in terms of the dimension m:

c(i) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0

cos(α)
0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+
sin(α)√

m−1
m

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/
√
m
...

1/
√
m
0

1/
√
m
...

1/
√
m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sin(α)√
m−1
...

sin(α)√
m−1

cos(α)
sin(α)√
m−1
...

sin(α)√
m−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (14)

In summary the above stated Equation 9 obtains.



Cone-Based Hypervolume Indicators 117

4 Dominance Test and Minimal Subset

Let q ∈ Rm denote a point for which it needs to be determined whether or not
it is dominated by a point p ∈ Rm with respect to the cone order defined by a
γ-cone C. In other words it needs to be determined, whether or not q is inside
the cone p⊕ C ∪ {0} with base C = (c(1), . . . , c(m)). This can be tested by the
following well-known lemma:

Lemma 1. A point p weakly γ-cone-dominates a point q (p �C q) with respect
to a γ-cone C (with base C = (c(1), . . . , c(m))), if and only if ∃λ1 ≥ 0, . . . ,
λm ≥ 0, such that

p+ λ1c
(1) + · · ·+ λmc(m) = q. (15)

Lemma 1 can be rephrased into the following lemma.

Lemma 2. Let C be as in Lemma 1. A point p weakly dominates a point q with
respect to C, if and only if 0 ≤ C−1(q− p) (componentwise).

In order to determine the non-dominated subset of a set of size μ with respect
to the cone order based on a γ-cone, it suffices to compute the inverse of C,
only once, and for each dominance test to multiply the vector difference with
the inverse. By using a coordinate transformation we can reduce the problem of
determining the non-dominated subset with respect to C in linear time O(m2μ)
(for constant dimension) to the problem of computing the maximal set for the
Pareto order. This way, the algorithms by Kung, Luccio, and Preparata [14] can
be used to determine non-dominated sets with time complexity in in O(m3 +
m2μ+μ log(μ)) for m = 2, 3 which is asymptotically optimal in μ and in O(m3+
m2μ + μ(log(μ))m−2), for m > 3. The following lemma summarizes the theory
for this transformation:

Lemma 3. Let P = {p(1), . . . ,p(μ)} denote a set of μ points in Rm, C denote
the matrix of base vectors for a γ-cone C, and

q(i) = C−1p(i). (16)

Then, for subsets of indices {i1, . . . , ik} ⊆ {1, . . . , μ}, p(i1), . . ., p(ik) is a non-
dominated subset of P in the cone order �C, if and only if q(i1), . . ., q(ik) is a
minimal subset of Q with respect to the weak Pareto order (�Pareto).

Proof. The proof follows immediately from Lemma 2. In this lemma the condi-
tion 0 ≤ C−1(p(1) − p(2)) can be rewritten as 0 ≤ C−1p(1) −C−1p(2) which is
equivalent to the condition C−1p(1) ≤ C−1p(2). See also [16] for a similar result.

5 Efficient Computation

Two ways of computing the cone-based hypervolume can be distinguished:

1. Using Cartesian coordinates and computing first the corner points of the
m-dimensional trellis and then the volume of the parallelepipeds spanned by
these.
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Fig. 3. Computation of CHIγ(P ) for a set of non-dominated points P

2. Transforming the coordinate system in order to obtain an axis-parallel trellis
in the transformed coordinate system (for the Pareto cone). Thereafter, com-
pute the hypervolume indicator in this system and correct for the volume
change due to the affine transformations.

The computation of the cone-based hypervolume indicator in two dimensions for
a non-dominated set P of size μ and reference point r can be accomplished by
processing the slanted staircase trellis. The algorithm is outlined in Figure 4 and
illustrated by Figure 3. For the generalm-dimensional case, we can transform the
coordinate system to an axis-parallel trellis, compute the hypervolume indicator
in this system, and correct for the volume change due to the affine transforma-
tions. The algorithm shown in Figure 5 describes this procedure. Here we make
use of a result on volume change due to affine transformation ([4], Theorem
12.2):

Lemma 4. We denote the Lebesgue measure by λ. Let F (x) = Tx+ x0 denote
an non-singular affine transformation, then λ(FA) = det(T)λ(A).

The computations for the operations required for the computation of the coor-
dinate transformation scales with O(μm3). Therefore, the overall complexity of
the hypervolume computation algorithms is preserved and hence the cone-based
hypervolume can be computed in asymptotically optimal time Θ(μ log μ) for
m = 2 and m = 3 using the algorithm described in Beume et al. [12] and in time
O(μ(m−1)/2 log μ) using the algorithm by Yıldız and Suri[20].

5.1 Computation of the Contributions to the Cone-Based
Hypervolume

Many algorithms require the computation of hypervolume contributions, e.g.,
SMS-EMOA [7]. The computation of contributions or more precisely
individual contributions to the γ-cone-based hypervolume defined by
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Algorithm: Two-dimensional cone-based hypervolume computation

Input: Cone base C, non-dominated points P ⊂ R2, reference point r

Output: Cone-based hypervolume indicator CHIg(P )

1. Sort P such that (p(1), . . . ,p(μ)), denotes the sequence of points that is sorted in
ascending order by the first coordinate of the transformation C−1p(i), i = 1, . . . , μ.

2. For all i = 1, . . . , μ, let r(i) denote the intersection point of the ray {r− t1c
(1) | t1 ∈

[0,∞)} and {p(i) + t2c
(2) | t2 ∈ [0,∞)}.

3. Let r(0) = r and let h(0) denote the intersection point of the ray {p(1)+t1c
(1) | t1 ∈

[0,∞)} and {r− t2c
(2) | t2 ∈ [0,∞)}.

4. For all i = 1, . . . , μ, let h(i) denote the intersection point of the ray {h(i−1) −
t1c

(1) | t1 ∈ [0,∞)} and {p(i) + t2c
(2) | t2 ∈ [0,∞)}.

5. For all i = 1, . . . , μ, compute the area of the parallelogram with corners p(i), r(i),
r(i−1), and h(i−1) that form the steps or stripes of the slanted staircase, i.e.,

Ai = det

(
r
(i)
1 − p

(i)
1 h

(i−1)
1 − p

(i)
1

r
(i)
2 − p

(i)
2 h

(i−1)
1 − p

(i)
2

)
.

6. Return CHIg(P ) =
∑μ

i=1Ai.

Fig. 4. Computing the two-dimensional γ-cone-based hypervolume computation

Algorithm: m-dimensional cone-based hypervolume computation

Input: Cone base C, non-dominated points P ⊂ Rm, reference point r

Output: Cone-based hypervolume indicator CHIg(P )

1. Let r′ = C−1r.
2. For all i = 1, . . . , μ, let Q = {q(1), . . . ,q(μ)}, with q(i) = C−1p(i).
3. Compute the standard hypervolume HI(Q, r′).
4. Return CHIg(P ) = (1/ detC−1) ·HI(Q, r′).

Fig. 5. Computing the m-dimensional cone-based hypervolume computation

ΔCHIγ(p, P ) := CHIγ(P )−CHIγ(P \ {p}) with p ∈ P requires, given the
above, only little modifications. For the two-dimensional case using the Carte-
sian coordinates approach, we can modify the algorithm of Figure 4 by com-
puting for each point p the area of the parallelogram with corners p(i), h(i),

(h
(i)
1 + (h

(i−1)
1 − p(i)1 ), h

(i−1)
2 + (h

(i)
2 − p(i)2 ))

T, and h(i−1) that form the steps or
stripes of the slanted staircase, i.e.,

Ai = det

(
h
(i+1)
1 − p(i)1 h

(i+1)
2 − p(i)2

h
(i)
1 − p(i)1 h

(i)
2 − p(i)2

)
.

This follows immediately from the relation between determinant and the paral-
lelogram area (e.g. [11], page 168).
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Likewise, for general dimension m using the same coordinate transformation
as in Figure 5, the individual contributions of points to the γ-cone-based hyper-
volume, ΔCHIγ(p, P ), can be computed, yielding asymptotically optimal algo-
rithms with running time Θ(μ log μ) for m = 2 and m = 3 for computing all
contributions using the algorithm described in [9]. For fast algorithms for m > 3
see [5].

5.2 Choosing the Reference Point

As with the standard hypervolume indicator, also for the cone-based hypervol-
ume indicator, the issue of choosing an appropriate reference point remains. Two
observations:

– When using acute cones (i.e, γ < π/4), the reference point should be located
farther away than for the standard hypervolume indicator in order to assure
that the whole Pareto front is contained in the cone.

– When using obtuse cones (i.e, γ > π/4), the reference point can move closer
to the Pareto front.

How to construct algorithmically a proper reference point for a given γ is still
an open question.

6 Optimal μ-distribution

This section states first theoretical results on the optimal μ-distribution for CHIγ
(see Equation 2). In particular it is studied which point sets maximize CHIγ
subject to the constraint that all points need to be nondominated in the Pareto
order.

6.1 Linear Case

The following statement summarizes a result for the 2-D linear case:

Lemma 5. Let us consider a fixed value of γ with 0 < γ < π/2 and a Pareto
front that is given by some straight line segment with a as a lower right and b
as a upper left end point. Moreover assume that all points on the line segment
dominate the reference point in the γ-cone order. Let P ∗ denote the optimal
μ-distribution for CHIγ. Then P

∗ ∪ {a,b} is evenly spaced.

Proof. We show the contrapositive is false. Assume one inner point, that is a
point in P ∗, has not the same distance to its two direct neighbors. Then its
individual contribution can be improved by moving it to the middle, while the
remaining part of the dominated hypervolume remains unchanged.
To show, that its contribution can be improved we look at the geometrical

situation depicted in Figure 6. Let l, p, and r denote three consecutive points in
P+ = P∪{a,b} in ascending x-coordinate. Assume l and r are fixed, and we want
to determine the position of p such that the value of ΔCHIγ(p, P

+) is maximal.
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Fig. 6. Geometrical situation for linear Pareto front

This corresponds to finding the maximally sized inscribed parallelogram of an
triangle in Figure 6. We use the symbols from Figure 6 and obtain: 1/t = a2/x
and x = ta2 (intercept theorem). Moreover h = cos(α)(1 − t)a3. We need to
maximize xh (size of inscribed parallelogram); xh = Ct(t − 1) for the positive
constant C = cos(α)a2a3, yielding t

∗ = 0.5 as the sole maximum. Hence, by
setting p = 1

2 (r + l) its contribution can be improved. See also Auger et al [1],
Beume et al [12] for the analogous statement on the standard hypervolume.

6.2 Evenly Spaced Distribution for Small Angles

The lemma discussed in this subsection explains that for small angles of γ,
the distribution tends to become a more evenly spaced distribution. In this
subsection we assume m = 2. To state the theorem in a compact form, some
definitions need to be made first:

Definition 9. Let Below(x) denote the set of points which lie below the line
through x in the direction of the symmetry axis of the cone (i. e., for γ cones the
direction of the separatrix). Similarly, define Above(x) the set of points which lie
above this line.

Definition 10. Let Incomparable(x, γ) denote the set of incomparable points
with respect to x and a γ-cone.

Definition 11. Let PF denote a Pareto front and u, l ∈ R2. Then the point
m(u, l,PF) is the point on PF that has the same Manhattan distance to u and
l, provided it exists.

Remark 1. The point m(u, l,PF) is unique and can be constructed as follows:
First the midpoint on the line segment between u and l is determined. Then a



122 M. Emmerich et al.

Fig. 7. Determination of ΔHIγ(q, {u, l}): Before (left) and after rotation (right)

line that is parallel to the bisectrix is constructed through this point. All points
on this line share the same Manhattan distance to u and l. Where the line
intersects with the Pareto front this holds, too. The intersection point, provided
it exists, is unique, as for any two points on the line, the point with the lower
y-coordinate dominates for any γ > 0) the point with the higher y-coordinate.

Let X be equipped with a weak Pareto order (denoted by �) (see also Page
2) and let A ⊆ X . Then we say that A weakly Pareto dominates (or simply
dominates) an element x ∈ X if and only if ∃a ∈ A such that a � x

Lemma 6. Let Dom denote the set of points weakly Pareto dominated by a
compact and connected Pareto front. Moreover let u = (ux, uy)

T ∈ Dom and
l = (lx, ly)

T ∈ Below(u) ∩Dom. Let

Q = Incomparable(u) ∩ Below(u) ∩ Above(l) ∩ Incomparable(l).

(Q is the parallelogram spanned by u and l and the two directions of the cone (see
Fig. 7 (left)). It is clear that Q depends on the opening angle γ.) We assume,
that for any γ a sufficiently far away reference point, which is dominated by all
points in Q, is chosen. Then

lim
γ↓0

arg max
q∈Q∩Dom

ΔCHIγ(q, {u, l}) =m(u, l,PF). (17)

Proof. First, an expression for ΔCHIγ(q, {u, l}) will be derived. Without loss of
generality, we look at the congruent parallelogram after a rotation (see Figure
7). The area of this parallelogram can be determined as

ΔCHIγ(q
′, {u′, l′}) = det(λ2n ◦ λ1p) (18)

with p = (1, ε)T and n = (1,−ε)T for some ε > 0 denoting the vectors that span
the cones and λ1p is the vector from q′ to b1, where b1 is the intersection of the
straight lines �1 = q′ + tp, t ∈ R and �2 = u′ + sn, s ∈ R. In a similar way, we
get λ2n: it is the vector from q′ to b2 (again b2 is the intersection of the lines
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�3 = q′ + tn, t ∈ R and �4 = l′+ sp, s ∈ R). Written as two equation systems we
get the following.

q′ + λ1p = u′ + λ3n (19)

q′ + λ2n = l′ + λ4p. (20)

The solutions of these equation systems (19 and 20) give rise to λ2n and λ1p and
in turn these can be used to determine the sought after area of the parallelogram
( = det(λ2n ◦ λ1p (18)). After some manipulation we obtain the formula for
the area (times 2ε: 2 · ε ·ΔCHIγ(q′, {u′, l′}) = ε2(−l′1q′1 + (q′1)2 + l′1u′1 − q′1u′1) +
ε1(l′2q

′
1 − l′1q′2 − l2u′1 + q′2u′1 + l′1u′2 − q′1u′2) + ε0(l′2q′2 − (q′2)2 − l′2u′2 + q′2u′2) For

bounded Pareto fronts we get that the coefficient of ε2 in the above expression is
bounded from below. As q′1 is bounded from below and the bound is independent
of ε and we can assume that q′1 is bounded from above with a bound that does
not depend on ε, for instance, such a bound would be u′1. The coefficient of
ε1 is also bounded. Both q′1 and q

′
2 can be assumed bounded from below and

above. For q′1 we already gave a reason and l′2 < q′2 < u′2. So for small ε the
coefficient of ε0 determines the maximum. In view of this we get after some
algebraic manipulations:

lim
ε↓0
2εΔCHIγ(q

′, {u′, l′}) = (q′2 − u′2)(q′2 − l′2) (21)

and, hence,

(q∗1 , q
∗
2) = arg max

q′∈Q′
lim
ε↓0
2εΔCHIγ(q

′, {u′, l′}) = ( , 1
2
(u′2 + l

′
2)). (22)

This means, that the optimal solution lies on the horizontal line between u′ and
l′ which after rotation becomes the line through the midpoint between u and l
that is parallel to the bisectrix. We have used that ε = sin(γ) and when γ ↓ 0
also ε ↓ 0 and vice versa (i.e., limγ→0

sin(γ)
γ = 1).

7 Numerical Studies

The following results are based on the RODEOlib implementation which can be
found on the sourceforge net (http://sourceforge.net/projects/rodeolib/) with
time stamp 2012-01-19 under the GNU open source license. With Cone-based
SMS-EMOA algorithm we denote a generalization of the SMS-EMOA that uses
the CHIγ-Metric as a performance indicator. Apart from using the cone-order
and the cone- based hypervolume, it works in the same way as the SMS-EMOA
introduced in [7] and uses non-dominated sorting based on the Pareto order. It
will be studied for some basic problems with a variety of Pareto front shapes,
what kind of distributions are achieved after a large number of iterations (50000)
for different dominance cones (represented by different values of γ). For 2-D
problems we evolve a population of 30 and for 3-D problems a population of 50
points.
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Fig. 8. The approximation sets of the Pareto front for the GSP problem of three
instances of the cone-based SMS-EMOA. Left: an obtuse cone, γ = π/3. Center: a
Pareto cone, γ = π/4. Right: an acute cone γ = π/8.

The generalized Schaffer test problems (GSP) were introduced in [8] as basic
problems for analysis:

f1(x) =
1

dp
(

d∑
i=1

x2i )
p → min, f2(x) =

1

dp
(

d∑
i=1

(xi − 1)2)p → min, x ∈ Rm
+ . (23)

Their curvature can be scaled by means of p. For different values of p the shape of
the Pareto front equals the arc of a 2-D Lamé supercircle that lies in the positive
quadrant. Similarly, in 3-D the following supersphere problems are equipped with
a shape parameter p:

g =

√√√√ n∑
i=3

x2i ,

f1 = ((cos(x1))
2)p(1 + g(x))

f2 = ((sin(x1) cos(x2))
2)p(1 + g(x)) and

f3 = ((sin(x1) sin(x2))
2)p(1 + g(x))

and p = 0.4 (convex), p = 0.6 (convex), p = 1 (linear), and p = 2 (concave).
Figure 8 and 9 show results of the runs of three instances of the Cone-based

SMS-EMOA, using different cones: a closed cone, γ = π/8, a normal cone,
γ = π/4, an open cone γ = π/3 and figure 9 shows results on the supersphere
problems for different γ-values. As reference point we took 5 · 1 and the input
dimension is 5. The sampling pattern is very regular and points are located on
the true Pareto fronts, indicating that the algorithm converged to a near optimal
solution. In the concave and convex case distributions on the three fronts differ
strongly for the three shapes. While for obtuse cones (big γ) the distribution is
more concentrated on the knee point and on the boundary, for acute cones (small
γ) it tends to be more evenly distributed. In the linear case points are distributed
evenly across the true Pareto front, which can be explained by the theoretical
result of Section 6.1. Also, evenly spaced distributions are observed for small
angle, conforming with theoretical results of Section 6.2.



Cone-Based Hypervolume Indicators 125

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

f
1f

f 3

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

f
1f

f 3

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

f
1f

f 3

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

f
1f

f 3

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

f
1f

f 3

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

f
1f

f 3

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

f
1f

f 3

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

f
1f

f 3

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

f
1f

f 3

Fig. 9. Approximations of μ-maximal sets (obtained with SMS-EMOA) and Pareto
fronts for the supersphere problem of three instances of the cone-based SMS-EMOA.
Left: an obtuse cone, γ = π/3. Center: a Pareto cone, γ = π/4. Right: an acute cone
γ = π/8. The top row shows results for the convex mirrored supershere problem, the
middle row for a linear supersphere problem, and the bottom row for the concave
problem.

Another effect that can be observed is that convergence towards the Pareto
front seems to slow down in case of acute cones. This might be explained by the
positive contribution of points in dominated parts of the boundary.

8 Conclusion and Outlook

The CHI extends the HI to cone orders. With the γ-cones a family of cones
spanned by m coordinate vectors that is symmetric to the diagonal line of Rm

was introduced. A construction of the base vectors of these cones was described
for m dimensions and an algorithm for the computation of its nondominated
set. The CHIγ and its contributions can be efficiently computed by means of a
transformation reducing the problem to computations of the standard HI. The-
oretical results (in 2-D), and empirical results (in 2-D and 3-D) with a modified



126 M. Emmerich et al.

SMS-EMOA indicate that γ is useful for controlling the knee-point focus of the
distribution of points on the Pareto front. While small values of γ give rise to
more evenly spaced optimal μ-distributions, higher values of γ yield distribu-
tions with a higher concentration of points near the knee-point, and for 3-D,
also a higher concentration at the boundary. Interesting future work will include
a more detailed study of optimal μ-distributions and the influence of the refer-
ence point. Moreover, a generalization to more general families of cones, as well
as the study of monotonicity properties and indicator-based algorithm designs
using cone-based hypervolume indicators will be of interest.
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12. Beume, N., Fonseca, C.M., López-Ibáñez, M., Paquete, L., Vahrenhold, J.: On the

complexity of computing the hypervolume indicator. Transaction IEEE Evolution-
ary Computation 13(5), 1075–1082 (2009)

13. Beume, N.: S-Metric Calculation by Considering Dominated Hypervolume as Klee’s
Measure Problem. Evolutionary Computation 17(4), 477–492 (2009)

14. Kung, H.T., Luccio, F., Preparata, F.P.: On finding the maxima of a set of vectors.
J. ACM 22(4), 469–476 (1975)

15. Noghin, V.D.: Relative importance of criteria: a quantitative approach. Journal of
Multi-Criteria Decision Analysis 6(6), 355–363 (1997)



Cone-Based Hypervolume Indicators 127

16. Sawaragi, Y., Nakayama, H., Tanino, T.: Theory of multiobjective optimization.
Academic Press Inc. (1985)

17. Shukla, P.K., Hirsch, C., Schmeck, H.: Towards a Deeper Understanding of Trade-
offs Using Multi-objective Evolutionary Algorithms. In: Di Chio, C., Agapitos, A.,
Cagnoni, S., Cotta, C., de Vega, F.F., Di Caro, G.A., Drechsler, R., Ekárt, A.,
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Abstract. Optimization of problems spanning more than three objectives, called 
many-objective optimization, is often hard to achieve using modern algorithm 
design and currently available computational resources. In this paper a multi-
objective evolutionary algorithm, called the Surface Evolutionary Algorithm, is 
extended into many-objective optimization by utilizing, for the first time, the 
taxi-cab metric in the optimizer. The Surface Evolutionary Algorithm offers an 
alternative to multi-objective optimizers that rely on the principles of 
domination, hypervolume and so forth. The taxi-cab metric, or Manhattan 
distance, is introduced as the selection criterion and the basis for calculating 
attraction points in the Surface Evolutionary Algorithm. This allows for fast and 
efficient many-objective optimization previously not attainable using this 
method. The Taxi-Cab Surface Evolutionary Algorithm is evaluated on a set of 
well-known many-objective benchmark test problems. In problems of up to 20 
dimensions, this new algorithm of low complexity is tested against several 
modern multi-objective evolutionary algorithms. The results reveal the Taxi-
Cab Surface Evolutionary Algorithm as a conceptually simple, yet highly 
efficient many-objective optimizer. 

Keywords: Multi-objective optimization, multi-objective evolutionary 
algorithms, many-objective optimization. 

1 Intoduction 

Many real-world optimization problems are naturally cast as multi-objective 
optimization problems [1-4]. In these problems one tries to find the optimal trade-off 
solutions between different objectives, known as the search for the optimal Pareto 
front [1]. Evolutionary algorithms like Genetic Algorithms [5], [6], Genetic 
Programming [7] and Particle Swarm Optimization [8] are especially suited for 
optimizing multi-objective problems. This is due to their population based approach 
[1] seeking to spread their solutions uniformly onto the entire optimal Pareto front. 
An analytical expression of the true optimal Pareto front is often difficult to obtain in 
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a multi-objective optimization problem. In a multi-objective evolutionary algorithm 
one seeks to distribute the population of solutions in objective space as close as 
possible to the true optimal Pareto front. The Pareto optimal set of solutions is an 
approximation of the optimal Pareto front. The non-dominated set of the entire search 
space is the global Pareto optimal set. Ideally, the global Pareto optimal set 
approximating the true optimal Pareto front should be on the true optimal Pareto front 
and have a uniform distribution of samples on the entire true optimal Pareto front. 
Also, the global Pareto optimal set should be found in the shortest time possible. 
However, optimizing problems of more than three objectives has proven to be a 
challenging task, even for modern multi-objective evolutionary algorithms [1], [2],  
[9-12]. 

Today, there are several approaches to multi-objective evolutionary optimization. 
One of them is the dominance-based approach, relying on the principle of Pareto 
optimality. Multi-objective solvers like PAES [13], SPEA2 [14] and NSGA-II [15] 
are good examples of modern dominance-based optimizers that perform well on many 
multi-objective problems. In particular, NSGA-II is arguably the most successful and 
widely applied multi-objective solver in use today. Due to its success, NSGA-II is the 
de facto benchmark in the field of multi-objective optimization and is thus used in 
numerous comparative optimization studies. Even though optimizers relying on the 
principle of dominance perform well on many low-dimensional problems, they suffer 
from loss of selection pressure when solving many-objective problems. This is mainly 
due to the fact that as dimensionality increases, the fraction of non-dominated 
solutions in the population increases. And, by the principle of Pareto optimality, all 
non-dominated solutions are indistinguishable in terms of fitness selection. 
Insufficient selection pressure may result in stagnation of the algorithm when 
optimizing many-objective problems. 

The SMS-EMOA [16] and MO-CMA-ES [17] algorithms are good examples of 
hypervolume based optimizers relying on the calculation of the hypervolume 
indicator to rank non-dominated solutions in a population. These optimizers, currently 
attracting a lot of research attention, are highly efficient in solving low-dimensional 
multi-objective problems but suffer from time-consuming computations when 
optimizing many-dimensional problems. In most cases, given the current level of 
computational resources available, the high complexity of the hypervolume metric 
calculations [18] will render them impractical as general many-objective optimizers. 

Other multi-objective evolutionary algorithms rely on more direct search methods 
to drive the solutions towards the true optimal Pareto front. For instance, MODELS 
[19] uses local gradient information in combination with evolutionary methods. 
Furthermore, methods like MSOPS [20] and MSOPS-II [21] rely on performing many 
parallel searches of multiple conventional target vector based optimizations. These 
methods can be used to generate the Pareto set and analyze problems with large 
numbers of objectives. The MSOPS algorithm is regarded as the first true many-
objective evolutionary optimizer [21]. The MSOPS-II algorithm provides two 
important extensions to MSOPS. These extensions allow MSOPS to work as a 
general-purpose multi-objective evolutionary algorithm. The first extension is the 
inclusion of an automatic target vector generator, removing the need for designer 
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intervention. The second extension improves the fitness assignment for simplified 
analysis and better constraint handling. 

The Surface Evolutionary Algorithm (SEA) [22], on the other hand, relies on a 
somewhat different method than MSOPS and MSOPS-II for converging towards the 
optimal Pareto front. The main idea behind SEA is to calculate a set of evenly 
distributed attraction points and use these attraction points for driving the solutions in 
the population towards the true optimal Pareto front. The attraction points are usually 
calculated in every generation using some kind of suitable interpolation surface 
located somewhere between the solution set and the optimization target. After the 
attraction point calculation, each solution in the population is associated with the 
nearest attraction point. Then, all similarly associated solutions compete locally for a 
way out to the next generation by using some kind of single value metric evaluation. 
By selecting the best solutions from each attraction point group the population should 
converge towards the true optimal Pareto front and diversity should be maintained 
throughout evolution.  

 

Fig. 1. Illustration of the general SEA principle in a bi-objective minimization problem 

In Fig. 1 the general SEA principle is illustrated. For visualization purposes a bi-
objective minimization problem is assumed. In this example 8 solution points (black) 
are associated with 4 attraction points (red) evenly distributed on a suitable bounding 
interpolation surface (dashed black line) somewhere between the solution set and the 
optimization target (e.g. the origin). Solution points are grouped into attraction point 
cohorts represented by the different shaded regions in the figure. Solutions are 
selected for the next generation based on local competition among the grouped 
solutions.  

The main issue in the SEA is how to proceed in order to obtain a suitable set of 
attraction points that are computable in a reasonable amount of time, even when 
optimizing many-dimensional problems. Also, the choice of single value metric for 
solution selection must be computable in reasonable time when optimizing many-
dimensional problems. If done properly, the SEA should be able to guide a multi-
objective population towards the true optimal Pareto front, both in terms of 
convergence and in terms of diversity. 
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In [22] the SEA principle is used to span the entire true optimal Pareto front of a 
bi-objective real-world radar problem. In this problem the SEA is applied using the 
convex hull of the solution set as the interpolation surface and the selection is 
evaluated using several different single value metrics of varying complexity. 
Nevertheless, extending this bi-objective SEA procedure directly into many-objective 
optimization problems could prove difficult. First, computing the convex hull of a 
many-dimensional solution set is of high computational complexity, rendering many-
objective optimization impractical with currently available resources. Secondly, 
interpolating evenly distributed attraction points on a convex hull is not a trivial task 
for problems of more than 2 dimensions. The constantly changing convex hull of the 
population, in terms of surface size and location during evolution, might introduce 
attraction point instabilities possibly disrupting optimization efforts. Consequently, 
interpolating attraction points on the convex hull of the solution set seems like a poor 
strategy for optimizing many-dimensional problems using the SEA method. 

In this paper, the Taxi-Cab (TC) metric, or Manhattan distance as it is also called, 
is introduced in the SEA method as a suitable metric for many-dimensional 
optimization. The novel optimizer is called the Taxi-Cab Surface Evolutionary 
Algorithm (TC-SEA). The TC metric is very fast to calculate, being the sum of all 
absolute values of a vector, i.e. a solution point. The TC metric is introduced both as 
the basis for generating the interpolation surface, and hence the attraction points in the 
TC-SEA method, and as the single value metric for selecting solutions for the next 
generation. A TC interpolation surface, based on the TC values of the solution points, 
is easy to calculate and construct. It is also easy to produce a good distribution of 
attraction points on this surface, even for high-dimensional problems. Furthermore, 
intra cohort competition among solutions, for selection into the next generation, can 
be efficiently done by evaluating the TC value of the grouped solutions. Thus, it will 
be demonstrated how the introduction of the simple and efficient TC metric in the 
TC-SEA method can improve performance when optimizing several well-known 
many-objective benchmark test functions.  

The outline of the paper is as follows. In section 2, the TC-SEA procedure is 
described. In section 3, the TC-SEA is benchmarked on a set of well-known multi-
objective test problems of up to 20 dimensions, proving its efficiency against several 
established multi-objective methods. Finally, in section 4, conclusions are drawn. 

2 Taxi-Cab Surface Evolutionary Algorithm 

In this paper, the single value metric and bounding interpolation surface in the SEA is 
based on the simplest single value metric obtainable; namely the taxi-cab metric. 

2.1 Taxi-Cab Metric 

The taxi-cab metric can formally be defined as 
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where Pi,d is the d’th objective value of a vector from origin to solution point Pi∈N 
population vectors. In short, TC is just the sum of all D objective values of a solution, 
taken as absolute values. Its calculation is linear in complexity, both in terms of 
population size and in terms of number of objectives, making it extremely fast to 
calculate. Furthermore, a value of TC defines a plane bounded by the coordinate 
planes in objective space. A TC plane is an equilateral triangle making it easy to 
interpolate evenly distributed attraction points by using the triangular number as the 
distribution measure. The triangular number is the number of objects that can form an 
equilateral triangle. 

 

Fig. 2. A set of 15 triangular interpolation points on a TC plane  

In Fig. 2 a TC plane with 15 triangular interpolation points having 5 points on each 
triangular side is depicted. The generalized hypertriangular number is given by the 
following equation 
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where T is the hypertriangular number, n is the number of points on the triangular 
sides and D’=D-1 is the dimension of the triangular hyperplane. 

2.2 The TC-SEA Procedure 

The TC-SEA procedure presented here is primarily based on two important concepts: 
First, the TC metric is used as a suitable single value metric for converging towards 
the true optimal Pareto front. Secondly, the interpolation surface generating attraction 
points is based on the fixed TC value of the best solution in the population. Assuming 
non-negative objective values and minimization of all objectives, this would be the 
lowest TC metric value in the population. The triangular attraction points are 
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considered to be stable in the sense that they are stationary from the perspective of the 
origin. This is important for avoiding disruptive fluctuations in the population during 
evolution. 

 

Fig. 3. The TC-SEA generation-to-generation procedure. TC1 are the best solutions from each 
index cohort sorted by TC value. TC2 are the second best solutions from each cohort sorted by 
TC value and so forth. 

In Fig. 3 the TC-SEA generation-to-generation procedure is illustrated. Initially, 
the TC-SEA creates a random parent population Pt of size N. This population is then 
sorted according to its TC values and scaled by fitness rank. A stochastic uniform 
selection operator is used to select a population Qt from the parent population, also of 
size N. Qt is then crossed and mutated upon. The merger of parent and children 
population Rt=Pt+Qt ensures elite preservation in the algorithm. This merger 
resembles the fast and efficient recombination operator found in NSGA-II [15]. The 
population Rt of size 2N is formed as a selection pool for the next generation Pt+1 of N 
individuals again. The selection procedure is as follows. First, the TC value of all 
individuals in Rt is calculated. Then, each solution is indexed according to its nearest 
attraction point or index point on the interpolated hypertriangular surface using 
Euclidian distance. These index points I* are calculated using the triangular number 
of equation (2) and spread out on the TC plane constructed using the lowest TC value 
of the Rt population. Additional attraction points on the coordinate planes could be 
included when optimizing special problems like asymptotic convex functions. 
Furthermore, all objective values could be scaled if required. Now, by sorting the 
population Rt according to the best TC value from each index cohort and then the 
second best TC value from each index cohort and so forth, the N best solutions can be 
put into the next generation Pt+1, finalizing the process of producing a new generation. 

The complexity of the TC-SEA is dominated by the computation of the distance to 
the nearest attraction point, having a complexity of O(DN2) if |I*|=|N|, where N is the 
population size and D is the number of objective dimensions. The complexity of 
sorting Rt according to cohort number and TC value is approximately O(Nlog(N)). 
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3 Benchmark Problems 

In multi-objective evolutionary algorithm design and evaluation, several multi-
objective benchmark test problems with known true optimal Pareto front have been 
proposed and tested. Deb et al.’s [23] DTLZ multi-objective test problems are popular 
references in a great number of comparison studies [24-26] and are also used in this 
paper. 

3.1 Benchmark Problem Formulations 

The DTLZ test suite has been specifically developed for evaluating the ability of 
different multi-objective evolutionary algorithms to solve optimization problems with 
three or more objectives. The test functions have been designed with special emphasis 
on simplicity of construction, scalability of number of decision variables and 
objectives, and knowledge of exact shape and location of the true optimal Pareto front 
[23]. Thus, by using suitable multi-objective performance metrics, it should be 
possible to evaluate the ability of an algorithm to converge to the true optimal Pareto 
front and to maintain a uniformly distributed set of solutions during evolution. The 
DTLZ2, DTLZ3 and DTLZ4 benchmark test problems have been selected and used 
for evaluating the performance of the multi-objective algorithms tested. 

The DTLZ2 test problem is used to investigate the ability of an algorithm to scale 
up its performance in large number of objectives. This problem has a spherical Pareto 
front of radius 1. The DTLZ3 introduces many locally optimal Pareto fronts which 
could trap a multi-objective algorithm during evolution. Consequently, this problem is 
used for evaluating an algorithm’s ability to converge to the globally optimal Pareto 
front. This problem has the same optimal Pareto front as the DTLZ2 but is much 
harder to solve requiring more optimization time in order to reach the true optimal 
Pareto front. The DTLZ4 is designed to investigate an algorithm’s ability to maintain 
a good distribution of solutions. The optimal Pareto front of this problem is the same 
as the DTLZ2 but due to its increased difficulty, the DTZL4 requires more 
optimization time to reach the true optimal Pareto front. 

NSGA-II, MSOPS-II and random search have been selected for benchmarking the 
TC-SEA optimization method. The NSGA-II has been included since it is the 
standard method of comparison in multi-objective studies. The MSOPS-II has been 
included as the state-of-the-art method for many-objective optimization. The MSOPS-
II code employed here is based on the code found at [27] but altered to include the 
same genetic operators as in the other methods tested. The number of target vectors in 
the MSOPS-II algorithm is always set equal to the population size. Random search is 
included as the natural baseline optimizer. The TC-SEA has been run using the same 
number of interpolation points as population size and a rank fitness scaling of 
1/(rank)1/2 is employed. All algorithms have been tested on 3, 6, 10 and 20 
dimensional versions of the DTLZ problems using the same real-coded genetic 
operators. The polynomial mutation operator [28] of mutation rate pm=1/chromosome 
length and ηm=5 together with a simulated binary crossover operator [29] of 
parameters ηc=5 and varying pic=[0.5 0.1 0.05 0.01] for 3D, 6D, 10D and 20D 
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objective size respectively, have been employed in accordance with [26] and 
determined by extensive parameter studies too lengthy to be included here. The 
NSGA-II tests on DTLZ2 have been conducted using the same optimal parameter 
values as in [26] ηm=20 and ηc=15. 

The algorithms tested have been run using similar population sizes for all 
dimensions. The appropriate triangular numbers are; T3D(20,2)=210, T6D(6,5)=252, 
T10D(4,9)=220 and T20D(3,19)=210. This ensures that the scalability of the algorithms 
is properly tested. The DTLZ2 tests are run for 500 generations and the more difficult 
problems DTLZ3 and DTZL4 are run for 1000 generations. All results reported are 
the average performances of 35 parallel runs on a Matlab Distributed Computing 
Server [30] of HP x8600 and z800 multi-core workstation clients. 

3.2 Performance Metrics 

The different search goals of a multi-objective evolutionary algorithm are difficult to 
express using one single performance measure [1]. Hence, independent performance 
metrics for each of the multi-objective optimization criteria identified have to be 
employed. Moreover, the multi-objective performance metrics should have 
sufficiently low complexity in order to be able to compute in a reasonable time, 
especially when dealing with many-objective problems of high dimensionality. In the 
following, two such independent multi-objective performance metrics are reviewed. 

The Convergence Metric  
The generational distance [15], [31], [32] is used as the convergence measure in these 
tests. The generational distance has been used in numerous multi-objective 
optimization studies [1], [25] including several analyses of many-objective 
optimization problems [26], [33]. The generational distance characterizes the search 
efficiency towards the optimal Pareto front when the true optimal Pareto front is 
known in advance. In these tests the generational distance expresses the average 
distance from the Pareto optimal set of solutions to the true optimal Pareto front, 
known as the γ convergence measure. It is computed in the following manner 
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where i is the index of a Pareto optimal solution Pi∈PO in the Pareto set PO of size 
|PO| and the convergence measure γ is the mean error of the distances li, which is the 
norm of the vector to point Pi minus the vector in the same direction but to the true 
Pareto front. 

The Distribution Metric  
It is often difficult to construct a good measure of the distribution quality of the 
solutions found in a many-dimensional optimization problem [26], [33]. Several 
metrics [34-36] have been proposed to assess the density distribution of the Pareto 
optimal set and have been tested on bi- and tri-objective problems with varying 
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degree of success. Most importantly, the distribution metric should be able to 
discriminate between Pareto optimal solution sets that are grouped into clusters and 
sets that are sparsely populated over the rest of the Pareto front. Good solution sets 
should be characterized by being uniformly distributed over the entire accessible state 
space of the Pareto front. 

An entropy based metric [33] is employed here for measuring the distribution 
quality of the benchmark test results. This metric has its roots in Shannon’s entropy 
metric [37] measuring the flatness of a statistical distribution. This entropy metric 
relies on the quantification of all accessible states bounded by a projected image of 
the Pareto front solutions. The image resolution is determined by the indifference 
region. This is the region where a decision maker is indifferent to the choice between 
two projected solutions. By using an appropriate indifference function for each 
solution projected, the density of each image cell can be computed. The entropy H of 
the entire image is then computed as 

 ( )
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where pk is the density of cell k in an image of K cells. Maximal entropy Hmax=log(K) 
is given when pk=1/K for all k, assuming a normalized image density of ∑pk=1. A 
solution point located at the centre of a resolution cell is often assumed to have a 
Gaussian influence function that vanishes at the boundaries of the cell as given by 
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where r is the Euclidian distance from the solution point Pi projected onto the image, 
σ is the standard deviation and D’=D-1 is the dimension of the projected image. The 
image coordinates are often normalized in the sense of having image sides of length 1. 

The entropy metric is calculated by camera projecting the Pareto set solutions onto 
an image bounded by the coordinate planes. This is possible since all objective values 
are non-negative for the DTLZ problems. The image is then a hypertriangle of size 
K=N image cells distributed according to the appropriate triangle number. This 
ensures a constant size indifference region throughout evolution. The influence 
function (5) is assumed to vanish over the indifference region having σ 
=0.5×tan(30º)/3n, where n is the number of points on the triangular sides. The entropy 
image density is thus fast to compute due to the limited number of image cells, even 
for high-dimensional problems. 

3.3 Benchmark Results 

In Figs. 4 to 6 the test results from the different multi-objective algorithms are given, 
consecutively representing DTLZ2 test results to DTLZ4 test results. 
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Fig. 4. DTLZ2 test results. Thick solid lines are TC-SEA results, thin dotted lines are NSGA-II, 
thin solid lines are MSOPS-II and thin dashed lines are random search results.  
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Fig. 5. DTLZ3 test results. Thick solid lines are TC-SEA results, thin dotted lines are NSGA-II, 
thin solid lines are MSOPS-II and thin dashed lines are random search results. 
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Fig. 6. DTLZ4 test results. Thick solid lines are TC-SEA results, thin dotted lines are NSGA-II, 
thin solid lines are MSOPS-II and thin dashed lines are random search results. 
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In all plots the results obtained using the TC-SEA method are drawn using thick solid 
lines, NSGA-II test results are drawn using thin dotted lines, MSOPS-II test results 
are drawn using thin solid lines and random search test results are drawn using thin 
dashed lines. In Figs. 4 to 6 all convergence results are given in the first column and 
the performance of the normalized entropy distribution metric is given in the second 
column. The number in parenthesis, next to the problem name, is the dimension of the 
benchmark problem tested.  

As a first remark, it is evident from all the plots that the DTLZ test problems are 
generally hard to optimize using random search. It is also evident that it is harder to 
achieve a good distribution of solutions as dimensionality increases. The DTLZ3-4 
require more optimization time than DTLZ2 to reach the true optimal Pareto front. 

In Fig. 4 the DTLZ2 test results are shown. Only the TC-SEA and the MSOPS-II 
optimize the problem for all the dimensions tested. The NSGA-II only optimizes well 
on the 3D version of the problem, but seems to have some convergence pressure left 
in the 6D problem, as indicated in Fig. 4c. The TC-SEA is able to approximate the 
true optimal Pareto front on all dimensions tested. The MSOPS-II reaches the same 
level of convergence on the 3D problem only. The TC-SEA performs well in terms of 
distribution performance in all dimensions. The MSOPS-II performs on the same 
level as random search in terms of the distribution characteristics. The NSGA-II keeps 
an approximately constant level of distribution performance regardless of 
dimensionality.  

DTLZ3 results are shown in Fig. 5. Once again, the TC-SEA and MSOPS-II 
optimize for all dimensions tested, but only the TC-SEA approximates the true 
optimal Pareto front for the 3D and 6D problems, requiring more than 1000 
generations to do the same for 10D and 20D problems. The NSGA-II almost reaches 
the true optimal Pareto front on the 3D problem and to some extent optimizes the 6D 
version of the problem. The NSGA-II performs similarly to a random search on 
higher dimensional problems. In DTLZ3 all the algorithms take longer time, 
compared to DTLZ2, to outperform the random search distribution performance. The 
random search distribution level is only consistently outperformed by the TC-SEA 
when testing on all dimensions of the problem. The MSOPS-II performs similarly to a 
random search and, also here, the NSGA-II performs at a fixed level in terms of 
distribution performance. 

The DTLZ4 results are given in Fig. 6. The TC-SEA approximates the true optimal 
Pareto front in all dimensions tested. The MSOPS-II approximates the true optimal 
Pareto front in the 3D and 6D cases of the problem. The NSGA-II performs well in 
3D, and to some degree in 6D, but behaves like a random search in higher 
dimensional versions of the problem. The distribution characteristics of all methods 
tested outperform random search for all dimensions. This indicates that all methods 
employ good diversity operators for many-objective optimization. 

In summary, the DTLZ test results reveal how the TC-SEA method efficiently 
optimizes and approximates the true optimal Pareto front in almost all the many-
objective problems tested. The advantageous convergence results of the TC-SEA are 
also obtained with very good distribution characteristics. This indicates that the TC-
SEA is a well performing many-objective optimizer when compared to the other 
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algorithms tested. The MSOPS-II also optimizes all the many-objective problems but at 
a slower rate than the TC-SEA. Furthermore, the MSOPS-II is not able to achieve the 
same level of distribution performance as the TC-SEA. NSGA-II performs well on the 
3D problems but loses much of its convergence pressure as dimensionality increases. 

4 Conclusions 

The introduction of the TC metric as the basis of the SEA method is here demonstrated 
to transform the optimizer into an efficient many-objective evolutionary algorithm. The 
excellent scaling capabilities of the new TC-SEA procedure are evident in the good 
convergence and distribution results obtained when testing on a set of well-known 
DTLZ multi-object benchmark test problems. The new TC surface employed in the TC-
SEA method is found to produce the stable attraction points necessary for efficient 
many-objective optimization. Furthermore, the low complexity of the TC metric enables 
fast multi-objective optimization, even for high dimensional problems. 
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Abstract. The Pareto envelope-based selection algorithm II (PESA-II)
is a classic evolutionary multiobjective optimization (EMO) algorithm
that has been widely applied in many fields. One attractive characteristic
of PESA-II is its grid-based fitness assignment strategy in environmen-
tal selection. In this paper, we propose an improved version of PESA-II,
called IPESA-II. By introducing three improvements in environmental
selection, the proposed algorithm attempts to enhance PESA-II in three
aspects regarding the performance: convergence, uniformity, and exten-
sity. From a series of experiments on two sets of well-known test prob-
lems, IPESA-II is found to significantly outperform PESA-II, and also
be very competitive against five other representative EMO algorithms.

Keywords: Evolutionary multiobjective optimization, PESA-II algo-
rithm, convergence, uniformity, extensity.

1 Introduction

Many real-world problems involve multiple competing objectives that should be
considered simultaneously. Because of the conflicting nature of the objectives,
in these multiobjective optimization problems (MOPs) there is usually no single
optimal solution but rather a set of Pareto optimal solutions (or called Pareto
front in the objective space). Evolutionary algorithms (EAs), which use natural
selection as their search engine, have been recognized to be well suitable for
MOPs due to their population-based property of achieving an approximation of
the Pareto front in a single run. Over the past two decades, a number of state-of-
the-art evolutionary multiobjective optimization (EMO) algorithms have been
proposed [6], [2]. Generally speaking, these algorithms share three common
goals—minimizing the distance from the resulting solutions to the Pareto front
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(i.e., convergence), maintaining the uniform distribution of the solutions
(i.e., uniformity), and maximizing the distribution range of the solutions along
the Pareto front (i.e., extensity).
The Pareto Envelope-based Selection Algorithm II (PESA-II) [3] and its pre-

decessor PESA [5], proposed by Corne et al. at the turn of the century, are a kind
of classic EMO algorithms [2], which have been widely applied in many fields
[25], [15]. The most attractive characteristic of them is their grid-based fitness
assignment mechanisms that maintain diversity in both environmental selection
and mating selection. From some comparative studies, they have been found to
be competitive on some artificial test functions [3], [12] and real-world prob-
lems [10]; additionally, for problems with a high number of objectives, they have
been shown to significantly outperform their contemporary competitors (e.g.,
nondominated sorting genetic algorithm II (NSGA-II) [9] and strength Pareto
evolutionary algorithm 2 (SPEA2) [31]) regarding the ability of searching to-
wards the Pareto front [17].
Despite the obvious usefulness of PESA-II and its predecessor, there is some

room for improvement in this kind of algorithms. The first issue is concerned
with the distribution uniformity. Since the grid environment of the archive set
may need to be adjusted after the entry of each individual into the archive,
the uniformity of the final population may be negatively affected to some ex-
tent (a detailed explanation will be given in Section 3.1). The second issue
is related to the distribution extensity. Unlike some other classic EMO algo-
rithms, such as NSGA-II and SPEA2, which explicitly or implicitly assign bound-
ary solutions better fitness than internal solutions, PESA-II and its predeces-
sor have no boundary solution preservation mechanism, which largely reduces
the distribution range of their final solution set [31], [20]. The last issue is
about the convergence. Although, compared with their contemporary algorithms,
PESA-II and its predecessor appear to be competitive, they are beaten by
some recent state-of-the-art algorithms, such as indicator-based evolutionary
algorithm (IBEA) [30], ε-dominance [19] based multiobjective evolutionary al-
gorithm (ε-MOEA) [7], S metric selection evolutionary multiobjective optimiza-
tion algorithm (SMS-EMOA) [1], decomposition-based multiobjective evolution-
ary algorithm (MOEA/D) [28], and territory defining evolutionary algorithm
(TDEA) [16].
In this paper, an improved PESA-II is presented, called IPESA-II. IPESA-II

attempts to address the above issues by introducing three simple but effective
improvements. The remainder of this paper is organized as follows. Section 2
reviews the original PESA-II. Section 3 contains the detailed description of our
proposed improvements. The experimental results and discussions are given in
Section 4. Finally, Section 5 indicates our conclusions and notes for further work.

2 PESA-II

PESA-II follows the standard principles of an EA, maintaining two populations:
an internal population of fixed size, and an external population (i.e., archive set)
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of non-fixed but limited size. The internal population stores the new solutions
generated from the archive set by variation operations, and the archive set only
contains the nondominated solutions discovered during the search. A grid divi-
sion of the objective space is introduced to maintain diversity in the algorithm.
The number of solutions within a hyperbox is referred to as the density of the
hyperbox, and is used to distinguish solutions in two crucial processes of an
EMO algorithm: mating selection and environmental selection.
Unlike most EMO algorithms (including its predecessor PESA), the mating

selection process of PESA-II is implemented in a region-based manner rather
than in an individual-based manner. That is, a hyperbox is first selected and
then the resulting individual for genetic operations is randomly chosen from
the selected hyperbox—thus highly crowded hyperboxes do not contribute more
individuals than less crowded ones.
In the environmental selection process, the candidate individuals in the in-

ternal population are inserted into the archive set one by one, thus the grid
environment updated step by step. A candidate may enter the archive if it is
nondominated within the internal population, and is not dominated by any cur-
rent member of the archive. Once a candidate has entered the archive, corre-
sponding adjustment of the archive and grid environment will be implemented.
Firstly, the members in the archive which the candidate dominates are removed
to ensure that only nondominated individuals exist in the archive. Secondly, the
grid environment is checked to see whether its boundaries have changed with
the addition or removal of individuals in the archive1. Finally, if the addition
of a candidate renders the archive overfull, an arbitrary individual in the most
crowded hyperbox will be removed.

3 IPESA-II

IPESA-II is proposed as an enhanced version of PESA-II that introduces three
simple but effective improvements in the algorithm’s environmental selection:

– Maintaining the archive after all individuals in the internal population have
entered it, instead of doing step by step.

– Extending the distribution range of the solution set by keeping the boundary
individuals.

– Improving the convergence of the solution set by removing the
worst-performed individual in the most crowded hyperbox.

These three improvements, which focus on the performance of the solution set
in terms of uniformity, extensity, and convergence respectively, are explained in
the following sections.

1 In PESA-II, the setting of grid environment is adaptive according to the archive set
so that it can just envelop all the individuals in the archive set [5].
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(a) (b)

(c) (d)

Fig. 1. An example of environmental selection in PESA-II, where individuals A–E
are the current members in the archive set (the size of the archive set is five), and
individuals X–Z are the candidates to be archived. (b)–(d) show the archiving process
of the candidates in the order of Z, Y, and X. Black points correspond to the current
individuals in the archive, hollow points stand for the candidates, and gray points
denote the individuals removed from the archive.

3.1 Uniformity Improvement

As stated in the previous section, for the environmental selection process PESA-
II adopts an incremental update mode. Once a candidate has entered the archive,
the grid environment will need to be checked to see if it has changed. Any
excess of the grid boundary or the upper limit of the archive size will lead
to the adjustment (or even reconstruction) of the grid environment. This not
only causes extra time consumption, but also affects the uniformity of the final
archive set since different sequences that the candidates enter the archive result
in different distributions. Figure 1 gives an example to illustrate this issue.
Supposing that individuals A–E are the current members in the archive

set, and individuals X–Z are the candidates to be archived (cf. Fig. 1(a)).
Figures 1(b)–(d) show the entry of the candidates into the archive in the or-
der of Z, Y, and X. Here the archive size is set to five. Firstly, the candidate
Z enters the archive and the grid environment is re-constructed. Accordingly,
either B or C will be deleted since they reside in the most crowded hyperbox.
Figure 1(b) shows the archiving result, assuming that individual C is removed.
Then, individuals E and A will be eliminated in turn since they are dominated
by Y and Z respectively (cf. Figs. 1(c) and (d)). The final archive set is formed
by X, B, D, Y, and Z.
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Note that the archive obtained above is not an ideal distribution result. A
better archive is that individual C is preserved and either D or Y is removed,
which, in fact, is the result of the entry of the candidates into the archive in the
order of X, Y, and Z. In addition, if the enter order is Y, Z, and X, both the
above results may occur with equal probability.
The above case clearly indicates that different entry orders of individuals

into the archive may lead to different distribution results. In fact, it may be
unreasonable to adjust the grid environment to maintain diversity whenever one
candidate has entered the archive because the locations of the later candidates
are unknown. Here, we make a simple improvement by only adjusting the grid
environment after all candidates have entered the archive. Specifically, we first
put all candidates into the archive, then delete the dominated individuals in the
archive and construct the grid environment according to all individuals in the
archive, and finally remove the individuals located in the current most crowded
hyperbox one by one until the upper limit of the archive size is achieved. Let’s
revisit the example of Fig. 1 using the improved approach. Firstly, the archive
set contains all eight individuals. Then, A and E are eliminated, and the grid
environment is constructed by the rest individuals. Finally, either D or Y is
removed, considering that they are located in the most crowded hyperbox.

3.2 Extensity Improvement

Extreme solutions (or boundary solutions) of a solution set refer to those so-
lutions that have a maximum or minimum value on at least one objective for
an MOP. Extreme solutions of a nondominated solution set are very important
since they determine its distribution range. Many EMO algorithms preserve ex-
treme solutions by explicitly or implicitly assigning them better fitness than
internal solutions. However, in PESA-II, extreme solutions do not get special
treatment—they could be eliminated with the same probability as other solu-
tions, which leads the solution set of PESA-II to have a poorer distribution range
than that of other algorithms [21].
In this paper, we preserve the extreme solutions of the archive set in the

environmental selection. To be specific, extreme solutions will not be removed
unless they are the only solution (or solutions) in the selected hyperbox. In
other words, if a hyperbox has both extreme and internal solutions, the extreme
solutions will always be eliminated after the internal ones.

3.3 Convergence Improvement

In environmental selection of PESA-II, when the archive set is overfull, a non-
dominated solution will be randomly eliminated in the most crowded hyperbox.
Although this elimination strategy seems to be reasonable, it still has room for
improvement in the context of convergence. The Pareto dominance relation is
a qualitative metric of distinguishing individuals, which fails to give a quanti-
tative difference of objective values among individuals. That is, two individuals
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are incomparable even if the former is largely superior to the latter in most of
the objectives but only slightly inferior to the latter in one or a few objectives.
Inspired by ε-MOEA [7], we adopt a distance-based elimination strategy in

IPESA-II, instead of the random elimination strategy in PESA-II. For the most
crowded hyperbox, the proposed strategy removes the individual that is farthest
away from the utopia point of the hyperbox (i.e., the best corner of the hyperbox)
among all the individuals in the hyperbox. For example, consider individuals D
and Y in Fig. 1. If one individual needs to be eliminated in the hyperbox where
they are located, D will be removed since it is farther from the lower left corner
of the hyperbox.
It deserves to be pointed out that the calculation of the distance is based

on the normalized difference of objective values between individuals and the
corresponding utopia point according to the size of a hyperbox, which is con-
sistent with the adaptive grid environment. This means that the distance-based
comparison strategy is unaffected by the range difference of different objective
functions.

4 Experimental Results

This section validates the performance of IPESA-II by comparing it with PESA-
II and five other well-known EMO algorithms: NSGA-II [9], SPEA2 [31], IBEA
[30], ε-MOEA [7], and TDEA [16]. First, we briefly introduce the performance
metrics and test problems used in the experiments. Second, the general experi-
mental setting is assigned for the seven algorithms. Then, a comparative study
between IPESA-II and PESA-II is presented, in terms of convergence, unifor-
mity, and extensity. Finally, we further compare the comprehensive performance
between IPESA-II and the other five algorithms.

4.1 Performance Metrics and Test Problems

This paper considers four performance metrics to examine the proposed algo-
rithm. They are Generational Distance (GD) [26], Spacing (SP) [24], Maximum
Spread (MS) [11], and Hypervolume (HV) [32]. The first three metrics are used
to assess the convergence, uniformity, and spread of a solution set, respectively.
The last one involves the comprehensive performance of the above three aspects.
The convergence metric GD calculates the average distance of the obtained

solutions set away from the Pareto front, and a lower value is better. The unifor-
mity metric SP measures the standard deviation of distance from each solution to
its closest neighbor in the obtained set, and also a lower value is preferable. The
spread metric MS is an improved version of the original Maximum Spread [32]
and considers the distribution range of the Pareto front. The original MS, which
measures the length of the diagonal of the hypercube formed by the extreme
objective values in the obtained set, may be influenced heavily by convergence
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Table 1. div setting in PESA-II and IPESA-II, and ε and τ settings in ε-MOEA and
TDEA, respectively

ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 DTLZ1
div 50 50 70 50 50 9
ε 0.0076 0.0076 0.0030 0.0075 0.0065 0.0340
τ 0.0090 0.0090 0.0070 0.0075 0.0060 0.0600

DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7
div 8 8 7 50 9 10
ε 0.0630 0.0630 0.0150 0.0050 0.0300 0.0500
τ 0.1050 0.0200 0.0400 0.0110 0.0250 0.0600

of an algorithm. For easing this effect, the new MS introduces the comparison
between the the extreme values of the obtained solutions and the boundaries
of the Pareto front. It takes the value between zero and one, and a larger value
means a broader range of the set. The HV metric is a very popular quality metric
due to its good properties, one of which is that it can assess the comprehensive
performance on convergence, uniformity, and extensity. HV calculates the volume
of the objective space between the obtained set and a given reference point. A
larger HV value is preferable. More details of these metrics can be referred to in
their original papers.
To benchmark the performance of the seven algorithms, two commonly used

test problem suites, the ZDT problem family [29] and DTLZ problem family [8],
are invoked. The former, including ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6, is
used to test the algorithms on bi-objective problems, and the latter, including
DTLZ1 to DTLZ7, is employed to test the algorithms on tri-objective problems.
All the test problems have been configured as in the original paper where they
are described.

4.2 General Experimental Setting

All compared algorithms are given real-valued decision variables. A crossover
probability pc = 1.0 and a mutation probability pm = 1/l (where l is the num-
ber of decision variables) are used. The operators for crossover and mutation
are simulated binary crossover (SBX) and polynomial mutation with the both
distribution indexes 20 [6].
We independently run each algorithm 30 times for each test problem. The

termination criterion of the algorithms is a predefined number of evaluations. For
biobjective problems, the evaluation number is set to 25,000, and for problems
with three objectives, the evaluation number is 30,000. The population size, for
the generational algorithms IPESA-II, PESA-II, NSGA-II, SPEA2, and IBEA,
is set to 100, and the archive is also maintained with the same size if existing.
For the steady-state algorithms ε-MOEA and TDEA, the regular population size
is set to 100.
In the calculation of HV, similar to [18], we select the integer point slightly

larger than the worst value of each objective on the Pareto front of a problem
as its reference point. As a consequence, the reference points for the ZDT and
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Table 2. Comparison results between PESA-II and IPESA-II regarding GD, SP, and
MS, where the top and bottom values in each cell correspond to PESA-II and IPESA-II,
respectively, and the better mean is highlighted in boldface

Problem GD SP MS

ZDT1
2.048e–4(1.4e–4)

† 6.771e–3(5.7e–4)
† 9.762e–1(1.9e–2)

†

4.930e–5(3.3e–5) 4.468e–3(5.2e–4) 9.997e–1(4.7e–4)

ZDT2
2.040e–4(8.1e–5)

† 6.793e–3(6.2e–4)
† 9.779e–1(1.5e–2)

†

4.733e–5(2.7e–5) 4.268e–3(5.3e–4) 9.994e–1(3.0e–4)

ZDT3
1.216e–4(4.5e–5)

† 8.181e–3(1.1e–3) 9.817e–1(1.0e–2)
†

5.120e–5(1.9e–5) 8.415e–3(7.7e–4) 9.995e–1(5.7e–4)

ZDT4
4.628e–2(8.7e–2)

† 3.669e–1(7.5e–1)
† 9.726e–1(3.6e–2)

†

2.805e–4(1.5e–4) 6.202e–3(7.0e–4) 9.964e–1(1.2e–3)

ZDT6
1.014e–2(9.5e–3)

† 7.236e–2(8.0e–2)
† 9.930e–1(3.8e–3)

†

3.472e–4(7.7e–4) 5.112e–3(7.3e–3) 9.978e–1(2.9e–4)

DTLZ1
6.746e–2(1.0e–1)

† 1.463e–1(2.0e–1)
† 9.862e–1(2.3e–2)

†

2.293e–2(3.5e–2) 5.997e–2(6.4e–2) 9.963e–1(6.4e–3)

DTLZ2
1.500e–3(2.0e–4)

† 3.674e–2(3.4e–3)
† 9.901e–1(5.4e–3)

†

8.186e–4(2.3e–4) 2.905e–2(4.6e–3) 9.998e–1(4.9e–4)

DTLZ3
1.039e+0(8.0e–1)

† 3.065e+0(5.0e+0) 9.999e–1(1.8e–4)
†

5.153e–1(6.2e–1) 1.172e+0(2.6e+0) 1.000e+0(0.0e+0)

DTLZ4
1.209e–3(5.7e–4)

† 3.460e–2(1.6e–2) 8.313e–1(3.7e–1)
7.622e–4(2.7e–4) 3.489e–2(1.6e–2) 9.031e–1(2.0e–1)

DTLZ5
5.703e–4(4.4e–5)

† 7.385e–3(9.3e–4)
† 9.894e–1(1.1e–2)

†

4.577e–4(3.5e–5) 6.232e–3(6.2e–4) 9.989e–1(1.8e–3)

DTLZ6
7.980e–2(1.9e–2)

† 8.172e–2(4.5e–2)
† 9.889e–1(3.0e–2)

†

4.961e–2(1.1e–2) 5.577e–2(3.1e–2) 1.000e+0(1.5e–6)

DTLZ7
3.315e–3(1.1e–3)

† 4.206e–2(1.4e–2) 8.688e–1(1.4e–1)
†

2.077e–3(6.8e–4) 4.643e–2(7.5e–3) 9.979e–1(2.4e–3)

“†” indicates that the p-value of 58 degrees of freedom is significant at a 0.05 level of
significance by a two-tailed t-test.

DTLZ problems are (2, 2) and (2, 2, 2) respectively, except (1, 1, 1) for DTLZ1
and (2, 2, 7) for DTLZ7.
PESA-II and IPESA-II require the user to set a grid division parameter (call

div here). Base on some trail-and-error experiments, both algorithms can work
well under the settings in Table 1. In addition, the algorithms ε-MOEA and
TDEA require the user to set the size of a hyperbox in grid (i.e., ε and τ). In
order to guarantee a fair comparison, we set them so that the archive of the
two algorithms is approximately of the same size as that of the other algorithms
(also given in Table 1).
For each problem, we have executed 30 independent runs. The values included

in the tables of results are mean and standard deviation. By the central limit
theorem, we assume that the sample means are normally distributed. Then, we
test the following hypothesis at a 95% significance level to check whether there
exists a statistically significant difference between the performances of IPESA-II
(denoted as I) and its competitors (denoted as C).

H0 : μ
I = μC (1)

H1 : μ
I �= μC (2)
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Fig. 2. The final solution set of PESA-II and IPESA-II on ZDT6

In the tables, the symbols “†” indicates that the p value of 58 degrees of freedom
is significant at a 0.05 level of significance by a two-tailed t-test.

4.3 Comparison with PESA-II

Table 2 shows the comparison results between IPESA-II and PESA-II in terms
of convergence, uniformity, and extensity. The values in the table correspond to
mean and standard deviation. It is clear that IPESA-II performs significantly
better than PESA-II on all the considered metrics. For the convergence metric
GD, IPESA-II always achieves lower value with statistical significance on all the
test problems, and especially on the problems ZDT4 and ZDT6, the result is im-
proved by around two orders of magnitude. Figure 2 shows a typical distribution
of the final solution set of the two algorithms on ZDT6. Clearly, of the solutions
obtained by PESA-II, a boundary solution fails to approximate the Pareto front.
Concerning the uniformity metric SP, IPESA-II performs better for 9 out of

the 12 problems. PESA-II has a better SP value on ZDT3, DTLZ4, and DTLZ7.
Also, the difference on most of the test problems where IPESA-II performs better
than PESA-II has statistical significance (8 out of the 9 problems), whereas
for all problems where PESA-II outperforms IPESA-II, the difference has not
statistical significance. In fact, for the problems DTLZ4 and DTLZ7, the solution
set obtained by IPESA-II has better uniformity than that obtained by PESA-II
(the typical distribution of the final solutions of the two algorithms on DTLZ7
is shown in Fig. 3). The misleading results on SP are due to the influence of
the extensity of a solution set on this uniformity metric: a solution set with less
distribution range may reach a lower SP value than another solution set even if
the former performs worse in terms of uniformity [23]. Therefore, the solution
set obtained by PESA-II, which fails to cover the whole Pareto front (cf. the MS
results of PESA-II on DTLZ4 and DTLZ7 in the table), may result in better SP
values.
Regarding the extensity of solution sets, IPESA-II also performs significantly

better PESA-II, and with statistical significance for all the problems except one
problem (DTLZ4). The MS results of IPESA-II in Table 2 very approximate the
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(a) PESA-II (b) IPESA-II

Fig. 3. The final solution set of PESA-II and IPESA-II on DTLZ7

ideal value (i.e., MS = 1) on most of the tested problems. This means that the
proposed algorithm can effectively extend the distribution range of a solution
set.

4.4 Comparison with other EMO Algorithms

Table 3 shows the HV comparison results between IPESA-II and the other five
algorithms, NSGA-II, SPEA2, IBEA, ε-MOEA, and TDEA. Apparently, IPESA-
II is a very competitive algorithm, and achieves the best result in 6 out of the
12 problems. TDEA, IBEA, ε-MOEA, and SPEA2 perform the best in 2, 2, 1,
and 1 out of the 12 problems, respectively. Concerning the statistical significance
of results between IPESA-II and the other five algorithms, the number of the
problems where the proposed algorithm outperforms NSGA-II, SPEA2, IBEA, ε-
MOEA, and TDEA with statistical significance is 8, 7, 9, 8, and 7, respectively;
the number of the problems where IPESA-II performs worse with statistical
significance is 1, 2, 3, 3, and 1, respectively. This means that IPESA-II can
provide a good tradeoff among convergence, uniformity, and extensity on most
of the problems.
Considering the test problems with different numbers of objectives, IPESA-II

performs significantly better than the other algorithms on biobjective problems.
Its HV value achieves the best on all the problems except on ZDT6 where IBEA
performs the best and IPESA-II takes the second place. For tri-objective prob-
lems, the advantage of IPESA-II over the other algorithms is not as clear as that
for biobjective problems. The proposed algorithm obtains the best values in 2
out of the 7 problems. On some difficult problems, such as DTLZ3 and DTLZ6,
the algorithm IBEA and ε-MOEA perform clearly better than IPESA-II. One of
the reasons is that in contrast to the Pareto dominance relation, the hypervol-
ume indicator used in IBEA and the ε dominance relation used in ε-MOEA can
provide more selection pressure searching towards the Pareto front.
In addition, it is worth to point out that IPESA-II is capable of dealing

with MOPs with many objectives. Although most grid-based EMO algorithms
encounter difficulties (e.g., exponential increase of the computational cost) when
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Table 3. HV comparison of the six EMO algorithms. The best mean for each problem
is highlighted in boldface.

Problem NSGA-II SPEA2 IBEA ε-MOEA TDEA IPESA-II

ZDT1
3.659e+0† 3.659e+0† 3.659e+0† 3.648e+0† 3.657e+0† 3.661e+0
(4.1e–4) (4.7e–4) (8.0e–4) (1.7e–3) (1.8e–3) (2.5e–4)

ZDT2
3.325e+0† 3.325e+0† 3.324e+0† 3.323e+0† 3.319e+0† 3.327e+0
(5.8e–4) (8.9e–4) (2.8e–4) (1.6e–3) (3.1e–3) (5.6e–4)

ZDT3
4.812e+0† 4.812e+0† 4.806e+0† 4.809e+0† 4.804e+0† 4.813e+0
(4.7e–4) (5.1e–4) (2.1e–4) (1.1e–3) (3.6e–3) (6.6e–4)

ZDT4
3.651e+0 3.650e+0 2.482e+0† 3.635e+0† 3.631e+0† 3.652e+0
(7.8e–3) (8.6e–3) (2.1e–1) (2.1e–2) (4.1e–2) (9.9e–3)

ZDT6
3.022e+0† 3.023e+0† 3.037e+0† 3.028e+0† 3.024e+0† 3.035e+0
(2.7e–3) (2.1e–3) (5.7e–4) (2.2e–3) (2.7e–3) (8.4e–4)

DTLZ1
9.673e–1† 9.721e–1† 8.977e–1† 9.561e–1† 9.707e–1 9.695e–1
(5.3e–4) (1.0e–3) (1.0e–2) (1.2e–2) (5.1e–4) (2.8e–3)

DTLZ2
7.351e+0† 7.391e+0† 5.702e+0† 7.389e+0† 7.401e+0 7.398e+0
(1.9e–2) (6.9e–3) (2.9e+0) (9.0e–3) (1.2e–2) (1.0e–2)

DTLZ3
6.919e–1 6.369e–1 6.228e+0† 6.326e+0† 9.825e–01 1.668e+00
(2.3e+0) (1.7e+0) (2.1e+0) (2.0e+0) (2.2e+0) (2.6e+0)

DTLZ4
6.888e+0 6.912e+0 6.411e+0† 7.013e+0 6.942e+0 7.128e+0
(5.9e–1) (5.5e–1) (1.2e+0) (4.0e–1) (4.5e–1) (6.3e–1)

DTLZ5
6.099e+0† 6.100e+0† 6.088e+0† 6.100e+0† 6.101e+0† 6.097e+0
(6.8e–4) (7.2e–4) (1.1e–3) (2.1e–3) (1.2e–3) (6.4e–3)

DTLZ6
4.098e+0† 4.044e+0† 5.974e+0† 5.292e+0† 5.255e+0† 5.101e+0
(2.6e–1) (2.6e–1) (9.7e–2) (1.2e–1) (1.1e–1) (1.3e–1)

DTLZ7
1.326e+1† 1.333e+1† 1.026e+1† 1.312e+1† 1.328e+1† 1.340e+1
(5.7e–2) (2.0e–1) (2.7e+0) (2.0e–2) (4.8e–2) (5.0e-2)

“†” indicates that the p-value of 58 degrees of freedom is significant at a 0.05 level of
significance by a two-tailed t-test.

the number of objectives scales up [4], some effective measures can be adopted
[22], [27]. Interested readers are referred to the three measures in [27] which
make grid-based algorithms suitable in many-objective optimization.

5 Conclusion

In this paper, an enhanced version of PESA-II, called IPESA-II, is presented.
IPESA-II introduces three operations to improve the performance of PESA-II in
terms of convergence, uniformity, and extensity, respectively. Simulation exper-
iments have been carried out by providing a detailed comparison with PESA-II
and five well-known EMO algorithms, NSGA-II, SPEA2, IBEA, ε-MOEA and
TDEA. The results reveal that IPESA-II has a clear advantage over PESA-II
in finding a near-optimal, uniformly-distributed, and well-extended solution set.
Additionally, IPESA-II is also found to be very competitive with the other five
algorithms, considering the fact that it performs better than them on the ma-
jority of the tested problems.
Future work includes the investigation of IPESA-II on more test problems,

e.g., on some MOPs with a high number of objectives [14], [13]. Moreover, a
deeper understanding of the algorithm behavior may be obtained. In this context,
the setting of the grid division parameter div and the separate contributions of
the three simple improvements will be first investigated.
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Abstract. Amulti-objective optimization problem involves multiple and
conflicting objectives. These conflicting objectives give rise to a set of
Pareto-optimal solutions. However, not all the members of the Pareto-
optimal set have equally nice properties. The classical concept of proper
Pareto-optimality is a way of characterizing good Pareto-optimal solu-
tions. In this paper, we metrize this concept to induce an ordering on the
Pareto-optimal set. The use of this metric allows us to define a proper
knee region, which contains solutions below a user-specified threshold
metric. We theoretically analyze past definitions of knee points, and in
particular, reformulate a commonly used nonlinear program, to achieve
convergence results. Additionally, mathematical properties of the proper
knee region are investigated. We also develop two multi-objective evolu-
tionary algorithms towards finding proper knees and present simulation
results on a number of test problems.

Keywords: knee regions, proper Pareto-optimality, ordering relations,
evolutionary algorithms.

1 Introduction

Many industrial, engineering, and economic problems involve multiple and con-
flicting objectives. Due to a lack of a total order in two and higher dimensional
real coordinate spaces, there are multiple solution concepts for these problems.
The classical Pareto ordering [1] plays a central role in multi-objective optimiza-
tion. This ordering is used to define a Pareto-optimal set and, the image of this
set in the objective space is known as the efficient front. However, not all the
members of the Pareto-optimal set (or of the efficient front) have equally nice
properties. The trade-off (used to express preferences), for example, is dictated
by the curvature of the efficient front and varies over the front. Starting with the
classical work of Kuhn and Tucker [2], the concept of proper Pareto-optimality, is
a way of characterizing good Pareto-optimal solutions. There are many notions of
proper Pareto-optimality [3], depending on the nice property desired: trade-offs,
geometrical properties, stability of the efficient front are a few of these.
In this paper, we metrize a well known trade-off based concept of proper

Pareto-optimality by Geoffrion [4], and use it to induce an ordering relation
on the Pareto-optimal set. This is a point-to-set relation instead of the usual
point-to-point binary relation induced by the Pareto order. The motivation is
to have a procedure to facilitate comparisons within the proper Pareto-optimal

R.C. Purshouse et al. (Eds.): EMO 2013, LNCS 7811, pp. 156–170, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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set, rather than just answer the question of whether a Pareto-optimal solution is
good (proper) or not. The use of the metric also allows us to define a proper knee
region, which contains solutions below a user-defined threshold metric. Mathe-
matical properties of the proper knee region are investigated and special results
for bi-objective problems are derived. We theoretically analyze past definitions
of knees and relate them to the proper knee region. In particular, we reformu-
late a commonly used nonlinear program used in a direction based approach to
find knees. This reformulation removes additional (hard) non-convex and non-
linear equality constraints that are inherent in the existing approach, thereby
guaranteeing convergence to knees and making the formulation amenable to evo-
lutionary algorithms.
Multi-objective evolutionary algorithms have an inherent population based

advantage in obtaining a well diverse set of Pareto-optimal solutions [5]. In
recent years, these approaches have also shown their applicability in finding
a well-diverse set of user preferred regions. The point-to-set ordering relation
is difficult to deal with classical methodologies. However, this can be efficiently
integrated into the search mechanism of a population based algorithm. With
this idea in mind, we develop two NSGA-II based multi-objective evolutionary
algorithms towards finding proper knees. One of them uses an ordering to give the
best proper knee point while the other uses a user defined threshold, together
with a customized non-dominated sorting, to concentrate on the proper knee
region. Simulation results are also presented on a number of test problems.
The paper is structured as follows. The next section presents various existing

notions of knee solutions. The concept of proper knee region is described and
theoretically evaluated in Section 3. Section 4 presents the two new algorithms
and the fifth section presents extensive simulation results. Finally, conclusions
as well as extensions which emanated from this study are presented at the end
of this contribution.

2 Preliminaries and Existing Knee Notions

Let f(x) : Rn → Rm and X ⊆ Rn be given. The multi-objective optimization
problem (MOP ) and the definition of Pareto-optimality are as follows:

min
x

f(x) := (f1(x), f2(x), . . . , fm(x)) s.t. x ∈ X.

Definition 1. A point x∗ ∈ X is called Pareto-optimal if no x ∈ X exists so
that fi(x) ≤ fi(x∗) for all i = 1, . . . ,m with strict inequality for at least one i.

Usually, there is no point in X that maps to the ideal point f∗ (that simul-
taneously minimizes all the objectives). Let Xp and E := f (Xp) denote the
set of Pareto-optimal and efficient solutions, respectively. A criticism of Pareto-
optimality is that it allows unbounded trade-offs among the objectives. Hence,
starting with the classical works of Kuhn and Tucker [2], and Geoffrion [4],
various stronger optimality notions have been defined.
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Definition 2. A point x∗ ∈ X is Geoffrion proper Pareto-optimal if there exists
a number M > 0 such that for each (x, i) ∈ X ×{1, 2, . . . ,m} satisfying fi(x) <
fi(x

∗), there exists an index j with fj(x
∗) < fj(x) and (fi(x∗)−fi(x))/(fj(x)−

fj(x
∗)) ≤M.

Proper Pareto-optimality is a way to reduce the set of Pareto-optimal solutions,
by removing solutions having an unbounded trade-off between objective values.
For a continuous problem, the set of Geoffrion proper Pareto-optimal solutions
is known to be dense in the set of Pareto-optimal solutions [3]. This means that
any Pareto-optimal point is either proper or is the limit of proper Pareto-optimal
points. This only removes countably finite points from the Pareto-optimal set,
and hence, Definition 2 is more a mathematical construct. One practical defini-
tion, using a general bound rather than just the existence of it, is defined in [6].
However we see that anM bound does exist in Definition 2, and we can use this
to metrize the concept of proper Pareto-optimality in that smaller M values are
better than larger ones. Formal definitions will be provided in the next section
while here we look at a related concept of a knee solution.
Knees have been investigated for real world decision problems since a long

time, although more for bi-objective problems [7,8,9]. Generally, a knee is a
preferred solution, as moving away from these offers small gain in an objective
but a large sacrifice in another objective. For bi-objective problems, the knee
(if present) is visible in the plot of the efficient front (a curve), and various
characterizations exist for higher dimensional problems [9,10,11,12,13,14,15].
A linear marginal utility function is used in [12] to search for a utility knee

solution. For bi-objective problems, the same study also proposed a reflex angle
knee, where the angle is calculated for a Pareto-optimal point and two of its
neighbors. An extended notion of bend angle knee, using a left and right Pareto-
optimal point, and an edge-knee is discussed in [9]. A trade-off knee, using a
cone [9] is motivated from practical trade-off concepts for bi-objective problems.
All of the above notions except the utility knee have been investigated for

bi-objective problems although these could be extended to higher dimensions.
A bulge knee using the normal boundary intersection technique [16] is proposed
by Das [13] to characterize knees in arbitrary dimensions. This uses a normal to
the convex hull of individual objective function minimum (CHIM) as the search
direction. Starting from an arbitrary point u on the CHIM hyperplane, a search
is performed along the normal direction n̂, to find a boundary point B(u) and
is illustrated in Figure 1. The aim is to find a boundary point having a maximal
distance to its corresponding point on CHIM. We see that the point B(u∗) is the
bulge-knee point corresponding to the point u∗. The following nonlinear program
(assuming f to be nonlinear) is used for the search of the bulge knee point.

max
x,t,u

t subject to u+ tn̂ = f(x)− f∗, x ∈ X ,u lies on CHIM , t ∈ R. (1)

The bulge knee depends on the curvature of the efficient front and has been
discussed by many researches (see the citations of [13]). Although the nonlin-
ear program (1) can be used to find the bulge knee point, the formulation (1) is
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neither theoretically sound (as no optimality can be guaranteed) nor a computa-
tionally favorable one. The reason is as follows. Let us assume that f is nonlinear
and convex. Then, the equality constraint u + tn̂ = f(x) − f∗ is nonlinear and
nonconvex (as only linear equality constraints are convex). Hence, one has to
solve a nonconvex problem to find the knee point, even if the original objectives
are convex and convergence cannot be guaranteed using KKT solving based
techniques (like Newton methods). The use of a nonlinear equality constraint is
also a concern when using evolutionary algorithms. A simple way to get rid of
the equality constraint is to use the following reformulation.

max
x,t,u

t subject to u+ tn̂ ≥ f(x)− f∗, x ∈ X ,u lies on CHIM , t ∈ R. (2)

Theorem 1. If f is convex, then the nonlinear program (2) is convex. Moreover,
any KKT point (t̄, x̄) of (2) is such that f(x̄) is the bulge knee.

Proof: The convex feasible region of (2) is illustrated in Figure 2 for m = 2, and
the proof is based on the results from [13, Sections 4 and 7.2] and [17]. ��
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3 Proper Knee Region and a Theoretical Investigation

There is a parameter involved in many of the existing knee notions and these can
be used to quantify the knee notion. There are some works [9,18] which focus on
this. Quantization permits a theoretical investigation and has also algorithmic
implications (discussed in the next section).
Following the ideas in [6], we could use the M in Definition 2 to reduce the

set of Pareto-optimal points. Smaller M values lead to a greater reduction. For
every Pareto-optimal point we could find a threshold value M̄ , such that the
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point is not a proper Pareto-optimal solution if M < M̄ is chosen. In this spirit,
we go on to propose the notion of proper utility of a point in a set and the notion
of a proper-knee. For this, let the index set I, and, for any two vectors u,v ∈ Rm,
the index sets I<(u,v), and I>(u,v) be defined by

I := {1, 2, . . . ,m},
I<(u,v) := {i ∈ I|ui < vi},
I>(u,v) := {i ∈ I|ui > vi}.

Moreover, let Rm
+ denote the non-negative orthant in Rm.

Definition 3. Let S ⊆ f(X) be an arbitrary but fixed set. The proper-utility
μ(u, S) of a point u ∈ S is defined by

μ(u, S) := sup
v∈S

sup
i∈I>(u,v)

inf
j∈I<(u,v)

ui − vi
vj − uj

. (3)

A point w∗ ∈ E is said to be a proper-knee if it is the solution of

inf μ(u,E) subject to u ∈ E. (4)

The set of all points satisfying μ(u, S) ≤ ε, corresponding to a threshold ε > 0,
is termed as the ε proper-knee region.

Proper utility defined above can be used to quantify the goodness of a Geoffrion
proper Pareto-optimal solution. Points with smaller utility values are preferred
as for these the maximal of the trade-off term appearing in Definition 2 is small.
Hence, if the classical Geoffrion notion is considered then the proper knee is
the best solution. The proper knee region on the other hand consists of all
points having an utility value less than a threshold (similar to the M bound in
Definition 2). The ε threshold here can also be related to approximate minimizers
of (4) and it can be used in situations where the knee is not visible (no bulge).
As optimization over open sets are involved in Definition 3, supremum and

infimum are used. Hence, calculating exact proper utilities can be quite difficult
using nonlinear optimization algorithms (both classical or nature-inspired ones,
like evolutionary algorithms). Computing the set of approximate minima on
the other hand is simpler, and one can use this to approximate the proper knee
region. Application of population based algorithmic paradigms, like evolutionary
algorithms make more sense for such tasks.
Definition 3 can be used for any type of problems, linear or nonlinear, discrete

or continuous. In general, (3) involves solving a fractional program. For continu-
ous problems, the proper utility μ(u, S) is not defined if u ∈ int(S), where int(S)
is the interior of the set S. This is not a concern as the efficient front lies on the
boundary of the feasible subset of Rm. In the discrete case, minimization and
maximization are involved. This is also the case if one uses (finite) population
based algorithms for solving continuous problems. The next result show that the
proper utility of a point in set S ⊂ Rm is the same as its utility in an appropriate
subset of S. For this, let N(S) be the nondominated set of S (i.e., the efficient
front of a problem consisting of S as the feasible set).
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Theorem 2. Let Xd denote a discrete subset of the set X (which itself can be
continuous or discrete) and let u ∈ Xd. Then, it holds that

μ(u, Xd) = μ
(
u,N

(
Xd \

((
{u} − Rm

+ \ {0}
)
∪
(
{u}+ Rm

+ \ {0}
))))

. (5)

Proof: A rigorous mathematical proof is beyond the scope of this paper and we
provide here a sketch of the proof. The sets {u}−Rm

+ \{0} and {u}+Rm
+ \{0} are

the sets consisting of points that dominate and are dominated by the point u,

respectively. Hence, the set X
d
:= Xd \

((
{u} − Rm

+ \ {0}
)
∪
(
{u}+ Rm

+ \ {0}
))

consists exactly of those points that are nondominated w.r.t. u. This is the set

that appears in problem (3). Note that u ∈ Xd
and hence μ(u, X

d
) is defined.

Studying the feasibility and infeasibility of an appropriate system of inequalities
(based on [6, Lemma 1] and the results from [19, Chapter 4] and [20]), we can
show that the set of minimizers of μ(u, Xd) (as Xd is a discrete set) is a subset

of the set of nondominated points of the set X
d
. ��

Remark 1. Theorem 2 says that in order to calculate the proper utility of a
point u, we need to consider only the nondominated set of the set of solutions
that are nondominated with u. This is of algorithmic importance and is used
later in the ranking mechanisms of the algorithms .

Remark 2. We conjecture that Theorem 2 can also be extended for the case
when Xd contains an uncountably infinite number of points. Apart from pure the-
oretical reasons this might be of importance to investigate convergence behavior
of algorithms or archiving schemes that allow the size to grow with generations.

Theorem 3. Proper utility is a point-to-set order relation and is not Pareto-
compliant. In other words, if v − u ∈ Rm

+ \ {0} (i.e., if u Pareto dominates v),
then it does not necessarily hold that μ(u, S) ≤ μ(v, S), for a given set S.

Proof: We can easily find a contradiction by considering the following situation.
Let S be the set consisting of the following points: v = (0, 0),u = (− 1

2 ,−
1
2 ),v

1 =
(− 1

2 , 4),v
2 = (4,− 1

2 ),u
1 = (− 3

4 ,−
1
4 ), and u2 = (− 1

4 ,−
3
4 ). We see that u Pareto

dominates v but μ(u, S) = 1 > μ(v, S) = 1
8 ��

Remark 3. Theorem 3 shows an unfavorable property of the proper utility rela-
tion in that it is not compliant with the Pareto order. Algorithmically, this means
that we have to impose the Pareto order on top of the proper utility order.

The proper utility of a point u depends on the set of points that are non-
dominated wrt. u and hence can be only used to differentiate between a set of
nondominated points rather than all the points.
In general, the notion of a proper knee is not equivalent to any of the existing

knee notions. In contrast to utility knee there is no linear marginal utility func-
tion that can be used to characterize a proper knee. The bi-objective notions
of the reflex, bend angle, and trade-off based knees on the other hand could be
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related to the proper knee, under some conditions (like bend angle being cal-
culated from all the neighbors instead of just two). Similarly, the bulge knee is
equivalent to the proper knee for bi-objective convex problems under appropriate
conditions. Some of these characterizations are discussed next.

Theorem 4. If m ≥ 3, then the proper knee is not equivalent to the utility knee,
any cone angle based extension of the reflex knee, or any polyhedral or convex
cone based extension of the bi-objective trade-off knee.

Proof: The main idea of the proof (a rigorous mathematical proof is beyond the
scope) is as follows. Any polyhedral cone uses a fixed trade-off on all or some
pairs of the objectives. Assuming any polyhedral cone based extension of the
notion of trade-off knee, we can construct counterexamples showing the difference
between a proper knee. The essential element comes here from Definition 2,
where the existence of one j is sufficient to bound the trade-off. In the case of
a general convex cone C, we can construct an inner and outer polyhedral cone
based approximation of C and use these to come up with counterexamples. ��
Theorem 5. Let f ∈ R2 and let E be considered as an implicit function of
f1 and f2. Moreover, let uL, uR, u be the leftmost, rightmost, and an arbitrary
efficient points. If f is differentiable and convex then

μ(u,E) = max

{
dE

df1

∣∣∣∣
u
,
dE

df2

∣∣∣∣
u

}
(6)

holds. If f is concave, then μ(u,E) = max

{
u1 − uL1
uL2 − u2

,
u2 − uR2
uR1 − u1

}
Proof: For a convex bi-objective problem the efficient front E is a convex curve.
Let the convex function g, denote the efficient front in an explicit form, i.e.,
let f2 = g(f1) be the efficient front curve. For convex functions of one variable

it is known that the function r(t1, t2) =
g(t1)− g(t2)
t1 − t2 is monotonically non-

decreasing in t1, for a fixed t2 and vice versa [21]. Using this we can show that,
the maximum of the ratio in (3) is the maximum of the slope of the efficient
curve at u and its inverse. Hence, (6) follows. If f is concave, the results follows
by a similar argument (and the maximum occurs at one of the end points). ��
Even if we assume that f is nonsmooth, we can use subdifferential techniques
from [22] and get a result similar to that in Theorem 5.

Corollary 1. If f ∈ R2 is differentiable, convex, and normalized (so that the
nadir point is (1, 1)�), then, the bulge knee point is also the proper knee point.

Proof: The conditions imply that Theorem 5 holds, and if the functions are
additionally normalized, then the slope of the efficient front curve at the proper
knee point is −1. The rest of the proof follows by elementary convex analysis
techniques and by noting that the bulge knee also has the same slope. ��
For two dimensional problems, Corollary 1 show the equivalence of the bulge knee
to the proper knee. However, the relations are not clear in higher dimensions.
We note that Theorem 5 and Corollary 1 also hold for a convex efficient curve
(instead of f being convex, which is a stronger condition).
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4 Algorithms

Using the theoretical results of the last section we develop two algorithms for
finding proper knee regions. The algorithms use the algorithmic framework of
the nondominated sorting based genetic algorithm NSGA-II [23]. Non-dominated
sorting is an elite ranking scheme, the use of which can result in optimal solutions
even when a random tournament selection (we call this as nRandom algorithm)
is used. Figure 3 shows the sample run of the nRandom algorithm on ZDT1.
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Fig. 3. Simulation results of nRan-
dom algorithm on ZDT1

Pt 

Qt 

Rt 

Non-dominated 
+ utility based 

sorting 
F1      μ ↓ 

F2      μ ↓ 

F3      μ ↓ 

F4 

F5 

Crowding distance  
+ utility based  

sorting 

Rejected 

Pt+1 

δ(N-F1 -F2) 

Fig. 4. Schematic showing creation of
new parent population in Pkea

4.1 Proper Knee Based Evolutionary Algorithm (����)

The (Pkea) algorithm uses two parameters to find the proper knee region. The
first of them is a lower bound on the utility value, this is analogous to ε in Defi-
nition 3 and is called asM instead (similar to Definition 2). A second parameter
δ ∈ [0, 1] is employed to ensure diversity in the population.
We assume a population size of N . At any generation t, let Pt and Qt denote

the parent and the offspring populations, respectively. Let Rt be the combined
population, i.e., Rt = Pt ∪ Qt. The ranking of the solutions in the set Rt and
creation of Pt+1 is defined next.

���� Ranking

Step 1: Perform a non-dominated sorting to Rt and identify different fronts:
Fi, i = 1, 2, . . . , etc.

Step 2: For an arbitrary solution u ∈ Rt, such that u ∈ Fk for some k ∈ N (Fk

is the k-th non-dominated front in which u lies), let μ(u) > 0 be defined by

μ(u) = max

{
max
v∈Fk

max
i∈I>(u,v)

min
j∈I<(u,v)

ui − vi
vj − uj

,M

}
. (7)
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The normalized utility μ̄(u) is defined by

μ̄(u) :=
μ(u)

maxw∈Fk
μ(w) + 1

. (8)

Step 3: The rank of u is k + μ̄(u).

Steps 1-3 are used to rank the entire combined population Rt. The normalized
utility (8) is used here to make sure that the ranks are Pareto-compatible. Guided
by Theorems 2 and 3, the utility of a point is computed based on the non-
dominated front in which it lies.

Creation of New Parent Population Using ����

Step a: Set new population Pt+1 = ∅. Set a counter i=1. While |Pt+1| + Fi <
N , perform Pt+1 = Pt+1 ∪ Fi and i = i + 1. Now, we need to include
N − |Pt+1| solutions more into Pt+1 from Fl (hence, the l-th front cannot be
fully accommodated).

Step b: Sort the solutions of Fl into increasing order of their ranks (or equiv-
alently, increasing order of their μ values as k is the same). Take the first
N̄ := $δ(N − |Pt+1|)% solutions into Pt+1 from the sorted list.

Step c: The N−|Pt+1|−N̄ remaining solutions are taken considering the crowd-
ing distance values (in Fl).

Figure 4 shows the schematic of creating the new parent population. The non-
dominated sorting gives five fronts, and each of the fronts are additionally sorted
based on (normalized) utility values. The third front cannot be fully accommo-
dated and here, both the utility and the crowding distance values are used.
The next offspring population is created from Pt+1 using a lexicographic (rank,
crowding distance) tournament selection, crossover and mutation operators.

4.2 Proper Utility Based NSGA-II (�����	

)

This algorithm changes the domination definition from Pareto-domination to a
utility based domination in the following way.

Definition 1. A solution u ∈ Rm U-dominates a solution v ∈ Rm if either u
Pareto-dominates v, or if u and v are nondominated and additionally

max
i∈I>(u,v)

min
j∈I<(u,v)

ui − vi
vj − uj

< max
i∈I>(v,u)

min
j∈I<(v,u)

vi − ui
uj − vj

(9)

holds.

The U-domination is used in Unsga-ii instead of the usual Pareto-domination
and the rest of the algorithm is the same as the usual NSGA-II. This domination
has a global effect and can be seen as the utility based definition (3) if the
population consists of only two solutions u and v (hence inf and sup are replaced
by min and max, respectively).
U-domination is a binary relation and its axiomatic properties (like total

order, transitivity and antisymmetry) are currently being investigated. Hence,
checking of U-domination can be done for every pair of points.
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5 Simulation Results

Both the algorithms described in the last section were tested on various artifi-
cial test problems. The test problems include problems from various test suits
proposed over the last years. Specifically, we included problems from the ZDT
suite [24], the DTLZ family (three dimensional) [25], and from the Knee suite
(DEB2DK and DEB3DK test problems) [12]. For all problems solved, we use
a population of size 100 and set the maximum number of function evaluations
as 20,000 (i.e., 200 generations). Moreover, we use a standard real-parameter
SBX and polynomial mutation operator with ηc = 15 and ηm = 20, respectively
[24]. Both Pkea and Unsga-ii are written using the jMetal framework [26] and
their source codes are available on request. We ran the algorithms on all the test
problems for 51 times, (Pkea was run for all M and δ combinations discussed
in this paper). The proper utilities of the efficient points are calculated either
numerically from the efficient front or analytically.
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(top) and its proper utility (bottom)
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Figure 5 show the efficient front and its proper utilities plotted against f1, for
ZDT1. The efficient front of ZDT1 is given by the curve f2 = 1−

√
f1 and from

the proof of Corollary 1, we obtain that proper knee point occurs where the slope
−1

2
√
f1
= −1. Hence, the proper knee is the point (14 ,

1
2 ). ZDT1 is a well studied

problem but it has no apparent bend knees. A bend knee is characterized by a
maxima of the second derivative (see [9, Definition 6.1]), which occurs at f1 = 0,
in this case. However, this point is the worst point based on proper utility. This
is an interesting difference between existing knee notions. The sample run of the
algorithms in Figure 6 shows that Unsga-ii is able to find this knee, while Pkea
founds the proper knee region corresponding to different thresholds.
It is to be noted that the aims of Pkea and Unsga-ii are not the same and

hence a comparison between them is not justified. Unsga-ii searches for the
proper knee point while Pkea is designed to find a well-distributed proper knee
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Fig. 7. Concave efficient front of ZDT2
(top) and its proper utility (bottom)
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on ZDT2

region. A value of δ < 1 in Pkea ensures that solutions lying in a less crowded
region are also carried over to the next generation. There is no explicit diversity
mechanism in Unsga-ii (although one could think of such a technique) as the
idea was to investigate the effect of using the proper utility based domination in
a global sense. This lead (successfully), to a faster and accurate convergence to
the proper knee point.
Figure 7 show the concave efficient front and its proper utilities plotted

against f1, for ZDT2. Using Theorem 5 we can easily obtain that μ(u) =

max
(

1
u1
, 1 + u1

)
for all u1 ∈ (0, 1), and that μ(0, 1) = μ(1, 0) = 1. Hence,

the end points are the proper knees and moreover, the point
(√

5−1
2 ,

√
5−1
2

)
is

a local minimum of the proper utility. These results are in accordance with the
simulation results shown in Figure 8 where Pkea founds a biased distribution
of points and Unsga-ii finds the proper knee.
Next, we consider various knee problems from [12]. These problems are tunable

in the number of knees. Figure 9 shows the convex efficient front and its proper
utilities plotted against f1, for the DO2DK problem with k = 1 and s = 0. We
see one knee where the utility is minimal (equals 1 from Corollary 1). However,
as soon as we increase the number of knees by changing the parameters to k = 4
and s = 1, we see from Figure 10, that the proper utilities has multiple local
minima. These correspond to the (visible) knees in Figure 10 (top) with the
global minimum corresponding to the knee lying between f1 = 1.5 and f1 = 2.0.
The concept of proper utilities defines the strength of a knee and the global

minimum of the proper utility function is the strongest knee. Additional robust-
ness measures on the proper utility function could also be defined, similar to
ones in [27]. Doing this focusses the search on robust proper knees, as we might
expect that the proper knee in Figure 10 is less robust than the local minimum
close to f1 = 1.0. From the sample runs of the algorithms in Figures 11 and 12
show that all the algorithms are able to find the proper knee.
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Fig. 9. Efficient front of DO2DK (k =
1, s = 0) (top) and its proper utility
(bottom)
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Fig. 10. Efficient front of DO2DK (k =
4, s = 1) (top) and its proper utility (bot-
tom)

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

f
1

f 2

 

 

PKEA (M=1.5, δ=0.8)
PKEA (M=0.0, δ=0.8)
PKEA (M=0.0, δ=1.0)
UNSGA−II
Efficient front

Fig. 11. Sample run of the algorithms
on DO2DK (k = 1, s = 0)
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Next, we present simulation results on a couple of three dimensional problems.
As discussed earlier, for three and higher dimensional problems, we do not know
the theoretical relationships with the bulge knee and analytical calculation of
the proper knee is cumbersome. Let us first consider the test problem DEB3DK
with k = 2. The efficient front of this problem looks like a butterfly and there are
three bulges that can be seen if we plot and rotate in three dimensions. The set
of all points having a utility value less than 4 are plotted in Figure 13 and these
correspond to the three bulges. Figure 14 shows the simulation run of Pkea
(with M = 4 and δ = 0.8) and we can see that a diverse set of the three bulge
regions are found.
Finally, we consider another three dimensional problem DTLZ7. The efficient

front of this problems consist of four disconnected surfaces (see Figure 15). Each
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Fig. 13. Efficient front of DEB3DK
with k = 2. The points in blue are
the ones have utilities less than 4.
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Fig. 14. Sample run of Pkea on DEB3DK
with k = 2
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Fig. 16. Sample run of Pkea on DTLZ7

of these have different curvature (a simple look reveals different angles of the
four (almost linear) surfaces, with the f3 = 0 plane. Figure 15 also shows the
set of all points (in blue) having a utility value less than 4. More blue points
can be seen in the patch having the largest angle with f3 = 0 plane as in the
other surfaces the gain to loss trade-offs are higher. It might be interesting to
relate this to the maximum bulge corresponding to the CHIM plane (used in
formulation (2)). Figure 16 shows the simulation run of Pkea (with M = 4 and
δ = 0.8) and we can see that a diverse set of solutions (with square markers)
are found in all the four patches. During out simulations, we also found that a
larger δ results in more solutions having a better (smaller) utility value.
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6 Conclusions and Future Works

This study presented a way to compare and characterize good Pareto-optimal
solutions. For this, we took the classical concept of proper Pareto-optimality and
defined an ordering relation. This lead to a point-to-set binary relation and to
the notion of proper utility. This notion was used to define a proper knee region.
Moreover, we reviewed various knee definitions and reformulated a nonlinear
program used to find a bulge-knee. For convex problems, this changed a non-
convex equality constraint to a favorable convex equality constraint.
A theoretical result for computing proper utilities was presented. It was also

shown that the point-to-set relation is not Pareto compatible. Additional theo-
retical results related existing knee definitions to that based on proper Pareto-
optimality. A characterization of proper knee for bi-objective convex and concave
problems were also presented. We used proper utilities to develop two popula-
tion based algorithms. This first one used a threshold to integrate a diversity
measure, which was not inherent in proper utility. The second algorithm used a
new domination definition to sort the entire population. This leads to a faster
convergence towards the proper knee. Theoretical results were used to justify
the ranking schemes of both the algorithms. Towards the end, we presented
simulation results on a number of two and three dimensional test problems.
Many new theoretical and algorithmic avenues are opened by this study. Prop-

erties of the point-to-set ordering relations could be explored (not only in the
context of proper knee). Transitivity, antisymmetry and other axiomatic prop-
erties of the utility based domination needs to be studied. Lack of transitivity
would prohibit any fast non-domination based sorting scheme, like the ones pre-
sented in [24,28]. Relationships between proper and bulge-knees, and also the
extended notions from [9]) is worthwhile for higher dimensional problems. It
would be also interesting to investigate other proper knee notions e.g., based on
stability properties of the efficient front [3].
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Abstract. Vector evaluated particle swarm optimization (VEPSO) is
a multi-swarm variant of the traditional particle swarm optimization
(PSO) algorithm applied to multi-objective problems (MOPs). Each sub-
objective is allocated a single sub-swarm and knowledge transfer strate-
gies (KTSs) are used to pass information between swarms. The original
VEPSO used a ring KTS, and while VEPSO has shown to be successful
in solving MOPs, other algorithms have been shown to produce better
results. One reason for VEPSO to perform worse than other algorithms
may be due to the inefficiency of the KTS used in the original VEPSO.
This paper investigates new KTSs for VEPSO in order to improve its
performance. The results indicated that a hybrid strategy using parent-
centric crossover (PCX) on global best solutions generally lead to a higher
hypervolume while using PCX on archive solutions generally lead to a
better distributed set of solutions.

Keywords: Vector evaluated particle swarm optimization (VEPSO),
multi-swarm particle swarm optimization, multi-objective optimization
(MOO), knowledge transfer strategy (KTS), global guide selection.

1 Introduction

Optimization problems occur frequently in everyday real-world situations, many
of which require simultaneous optimization of two or more conflicting sub-
objectives. Problems of this nature are referred to as multi-objective problems
(MOPs) and occur in a wide variety of fields including computer engineering [1],
aerodynamic design [2], power system performance [3], and scheduling [4].
Vector evaluated particle swarm optimization (VEPSO) was introduced by

Parsopoulos et al. [5,6] as one of the first applications of particle swarm op-
timization (PSO) [7] for MOPs. VEPSO, being a multi-swarm variant of the
original PSO, dedicates a single sub-swarm to each objective and effectively op-
timizes each sub-objective separately. However, to retain the integrity of the
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MOP as a whole, information is shared between sub-swarms. The way in which
information is shared is dictated by a knowledge transfer strategy (KTS).
The original VEPSO algorithm made use of a ring KTS, whereby the swarms

passed information to their immediate neighbor according to a directed ring
topology. Recently [4], a random global best KTS was developed and shown to
improve VEPSO performance, as each sub-swarm now conveys information to
any other sub-swarm rather than just its immediate neighbor, as seen with the
ring KTS. With the ring KTS, information from a sub-objective may take many
iterations to propagate to other sub-swarms. However, with the random global
best KTS, this information can be shared with any other sub-swarm immediately.
This paper proposes new KTSs for VEPSO, and empirically analyzes perfor-

mance under these KTSs. Four random-based approaches, inspired by the success
of the random global best KTS, as well as hybrid strategies borrowing crossover
operators from genetic algorithms are presented. Proposed KTSs are shown to
outperform the existing strategies with respect to both the hypervolume [8] and
distribution [9] measures on a number of MOPs.
The remainder of the paper is organized as follows: Section 2 provides an

overview of multi-objective optimization. The PSO algorithm and the VEPSO
variant are discussed in Sect. 3. Section 4 contains a discussion of the proposed
KTSs. Section 5 describes the experiments carried out to evaluate the perfor-
mance of VEPSO with the proposed KTSs. The experimental results and a
discussion of the results are given in Sect. 6. Finally, conclusions and areas of
future work are presented in Sect. 7.

2 Multi-objective Optimization

This section provides an overview of multi-objective optimization problems and
the set of solutions to such problems, known as the Pareto front.
Multi-objective optimization problems are quite intuitively harder than single

objective problems as they have a number of conflicting objectives. MOPs can
have a potentially infinite number of solutions, representing tradeoffs among the
sub-objectives. These tradeoffs represent solutions which cannot improve further
in any sub-objective without worsening in another sub-objective. The goal of
multi-objective optimization is to find a well distributed set of such tradeoff
solutions, referred to as non-dominated or Pareto optimal solutions.
A dominance relation1, ≺, is defined such that for objective vectors f∗ and

f , f∗ ≺ f indicates that f∗ is no worse in all objectives than f and is strictly
better in at least one objective [10]. In this case, f∗ is said to (strictly) dominate
f . The Pareto front is then defined as the set of all vectors in objective space
which are not dominated by any other vector. The corresponding set of vectors
in decision space is referred to as the Pareto set.

1 Without loss of generality, minimization is assumed for this section. An analogous
definition, �, exists for maximization problems.
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More formally [1], if f has no objectives then:

f∗ ≺ f := ∀k : f∗k ≤ fk ∧ ∃k : f∗k < fk where k ∈ {1, 2, ..., no}. (1)

The Pareto front, PF ∗, is then defined as:

PF ∗ = {f∗ ∈ S|�f ∈ S : f ≺ f∗} (2)

where S denotes the objective space corresponding to feasible solutions [1].

3 Vector Evaluated Particle Swarm Optimization

Kennedy and Eberhart [7] developed the PSO algorithm in 1995, inspired by
a simple bird flocking model. PSO is a stochastic, population based algorithm
influenced by social dynamics. The basis of the algorithm is that there is a
collection of particles, called a swarm, which each move based on two very simple
behaviors: move towards the best particle in a neighborhood and move back
towards its own best position. From this emerges a more complex behavior in
that particles converge on a single solution.
The original PSO algorithms were developed to solve continuous, real-valued,

single-objective optimization problems. However, various multi-objective formu-
lations of PSO exist [11,12]. VEPSO [5,6] is one such multi-objective variant of
PSO inspired by the vector evaluated genetic algorithm (VEGA) [13].
In VEPSO, each sub-objective is assigned its own sub-swarm with a primary

goal of optimizing this single objective. A mechanism, the KTS, is needed to
exchange information regarding the different sub-objectives among the differ-
ent sub-swarms. This is needed in order to find the tradeoffs among the sub-
objectives.
The original VEPSO made use of a ring KTS [5,6] where the sub-swarms

are organized in a ring structure such that each sub-swarm has one arbitrarily
assigned neighboring sub-swarm. When the velocity of particles is updated, the
global best position is selected as the global best of the neighboring sub-swarm.
The ring KTS information flow is visualized in Fig. 1. While the ring KTS has
shown to solve MOPs [4,5,6,14], it suffers from the following problems:

– Each sub-swarm shares information with only one other sub-swarm. There-
fore, particles within a sub-swarm are updated with respect to two sub-
objectives.

– If there are more than two sub-objectives, i.e. more than two sub-swarms,
information about the different sub-objectives is slowly transferred among
all of the sub-swarms, with each sub-swarm’s search behavior heavily biased
with respect to only two of the sub-objectives.

Recently, Grobler [4] proposed the random global best KTS where a random
sub-swarm is selected (which may include the current sub-swarm) and the global
guide is taken as the global best position of the selected sub-swarm. The random
global best KTS allows each sub-swarm to exchange information with all other
sub-swarms, eliminating some of the drawbacks of the ring KTS.
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Swarm 1

Swarm 2

Swarm 3

Swarm n

Fig. 1. Ring KTS information flow used by the original VEPSO [5,6]

4 Knowledge Transfer Strategies

This section proposes new strategies to handle knowledge transfer for VEPSO.
Sect. 4.1 proposes random and probabilistic approaches to selecting the global
guide while Sect. 4.2 presents hybrid approaches to computing a global guide.

4.1 Random and Probabilistic Strategies

This section discusses the four proposed random and probabilistic strategies.
Note that for the roulette, tournament, and rank-based strategies, the selection
is done with respect to the randomly selected sub-swarm’s sub-objective.

1. Random Personal Best KTS–The global guide for a sub-swarm is a ran-
domly selected personal best position from a randomly selected sub-swarm.
This selection technique still focuses on best solutions, however, it improves
exploration.

2. Roulette Wheel Personal Best KTS–The global guide for a sub-swarm
is a personal best position from a random sub-swarm using roulette wheel
selection. The probability of selecting a given individual is given as its pro-
portion of the overall fitness. This allows increased exploration while putting
more selection pressure on better solutions.

3. Tournament Personal Best KTS–The global guide for a sub-swarm is a
personal best solution from a random sub-swarm using tournament selection.
The tournament size is set to 10% of the sub-swarm size. This strategy
attempts to balance the tradeoffs between exploration and exploitation by
allowing increased exploration while still selecting the best solution of the
chosen group.

4. Rank-Based Personal Best KTS–The global guide for a sub-swarm is a
personal best solution from a random sub-swarm using rank-based selection.
The selection technique is given as follows: the particles are each assigned a
ranking based on their fitness. A uniform random number, k ∈ {1, 2, .., n}
where n is the number of particles in the chosen sub-swarm, is selected
and the best k particles are chosen. From these k particles, one is selected
at random. This strategy prevents selection pressure from becoming overly
large, as seen in roulette wheel selection.
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4.2 Hybrid Strategies

This section discusses the two proposed hybrid strategies, which make use of a
PCX operator [15] to compute a global guide.

1. PCX Archive KTS–The global guide for a sub-swarm is computed as
the offspring of PCX applied to three randomly selected non-dominated so-
lutions from the archive. This strategy works under the assumption that
areas in decision space surrounding non-dominated solutions are also worth
exploring.

2. PCX GBest KTS–The global guide for a sub-swarm is computed as the
offspring of PCX applied to the global best position of three randomly se-
lected sub-swarms. This strategy focuses on the best solutions found so far,
but assumes that solutions near the global bests are of high quality.

For both PCX-based approaches, the guide is updated if and only if the offspring
had a better fitness with respect to the sub-objective of the current sub-swarm,
otherwise the process is repeated up to a maximum of 10 times. If there are less
than three valid parent choices available, a random personal best solution from
a randomly selected sub-swarm is used. The three parents are guaranteed to be
unique. The offspring calculation phase of PCX uses two zero-mean, normally-
distributed random variables with standard deviations of σ1 and σ2, respectively.
The effects of these sigma values are examined later in this study.

5 Experimental Setup

This section describes the experiments which were carried out in order to evalu-
ate the performance of the proposed KTSs in comparison with the existing ring
and random global best KTSs. The test functions and performance measures
which were used to assess performance are presented and the statistical analysis
procedure used to rank strategies is described.
Each experiment consisted of 30 independent runs using the Computational

Intelligence library (CIlib)[16]. Each sub-swarm was initialized with 100 particles
and ran for 250 iterations. PSO parameters shown to lead to convergence [17]
are used, namely ω = 0.729844 and c1 = c2 = 1.496180. Particles use a clamping
boundary strategy preventing them from exiting the feasible region. Personal
best positions are updated without using Pareto dominance. That is, a new
personal best position is not required to dominate the previous personal best
position, it is only required to be better with respect to the current sub-swarm’s
sub-objective. An archive of size 500 was maintained and where necessary, the
solution with the smallest nearest-neighbor distance was replaced in an attempt
to increase distribution of solutions along the discovered front.

5.1 Benchmark Functions

This section discusses the benchmark functions used in this paper. Huband et al.
[18] proposed the Walking Fish Group (WFG) toolkit which defines functions in
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terms of a vector of parameters derived from a series of transition vectors. These
transition vectors add complexity in various forms, such as multi-modality and
non-separability. There are several shape functions, which allow control over the
geometry of the Pareto front, and several transformation functions, which allow
control over the transitions.
This toolkit consists of nine minimization problems, each of which are used

in this paper. For all problems, M = 3, k = 4, and l = 20, where M is the
number of objectives and k + l is the number of decision variables, with the
first k being position-related and the last l being distance-related. All problems
have a decision space with 24 dimensions and an objective space of dimension 3.
Properties of the WFG functions are summarized in Table 1. Note that the first
M − 1 objective functions are unimodal for WFG 2 and the last is multimodal.
For WFG 3, a degenerate geometry is one in which the dimension of the Pareto
front is less than the dimension of the objective space.

Table 1. Properties of WFG Functions

Function Separability Modality Pareto Front Geometry

WFG1 separable uni convex, mixed
WFG2 non-separable uni/multi convex, disconnected
WFG3 non-separable uni linear, degenerate
WFG4 separable multi concave
WFG5 separable multi concave
WFG6 non-separable uni concave
WFG7 separable uni concave
WFG8 non-separable uni concave
WFG9 non-separable multi, deceptive concave

5.2 Performance Measures

The goal of the performance measures in this paper is to provide a fair assessment
of performance without assuming a known Pareto front, as real world scenarios
will generally not provide this information. Each of the measures used are based
purely on the obtained approximation front with no external information. A
good front is defined as one which is close to the true front and has a large
number of solutions with good distribution. The measures used in this study
address these constraints as described below.
Zitzler and Thiele [19] defined the hypervolume indicator, IH , as a measure

of space covered by a set. Fleischer [20] proved that this metric is maximized
if and only if the approximation front contains only maximally diverse Pareto
optimal solutions. To understand the importance of this measure, a relation,
�, is defined such that for approximation fronts A and B, A � B denotes that
every objective vector f b ∈ B is weakly dominated by at least one objective
vector fa ∈ A,A �= B [10]. Furthermore, if A �B, then IH(A) > IH(B). Thus if
IH(A) < IH(B), it can be said that A cannot be better than B.
The distribution measure [9], D, gives an indication of the distribution of the

solutions along the discovered front and is calculated as:
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D =
1

ns

√√√√ 1

ns

ns∑
i=1

(di − d)2, d =
1

ns

ns∑
j=1

dj (3)

where ns is the number of non-dominated solutions and di is the Euclidean
distance between non-dominated solution i and its nearest neighbor in objective
space. It is noteworthy that equidistant points and a larger number of solutions
are both contributing factors to a better distribution score.

5.3 Statistical Analysis

This section describes the statistical analysis which was performed on the ob-
tained results. Pairwise Mann-Whitney U tests [21] were performed between
obtained measures for KTSs in order to determine if a significant difference in
performance existed. All tests were performed at the 95% confidence level. The
null hypothesis for the Mann-Whitney tests was that there existed no significant
difference between the performance of the KTSs, with respect to the current
metric. The alternative hypothesis was that there was a significant difference in
performance, favoring the first KTS. For each comparison, if the Mann-Whitney
test indicated a significant difference existed, a win was recorded for the bet-
ter KTS and a loss for the other. The term “difference” is used to denote the
subtractive difference between the number of pairwise wins and losses.

6 Experimental Results and Discussion

This section presents the results of the experiments described in Sect. 5. Exper-
iments were carried out in four phases as discussed in Sects. 6.1–6.4.

6.1 Comparison of Proposed Random-Based Knowledge Transfer
Strategies with Existing Strategies

This section discusses the results of the pairwise Mann-Whitney tests between
proposed random-based KTSs and the existing ring and random global best
KTSs, as summarized in Table 2.
The first observation is that the existing random global best KTS performed

consistently well with respect to the hypervolume, with the exception of WFG 9
where it was outperformed by all other compared KTSs for both measures. For
WFG 1 to 4, 7, and 8, the random global best KTS had a pairwise difference,
as described in Sect. 5.3, of +5 with reference to the hypervolume measure,
indicating the random global best KTS significantly outperformed all the other
strategies for this measure.
The most interesting results for hypervolume shown in Table 2 were seen in

the functions where the global best strategy was not dominant, namely WFG 5,
6, and 9. For these functions, the top performing strategy was the existing ring
KTS. It is noted that for all three of these functions, the ring KTS also performed
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Table 2. Mann-Whitney Wins and Losses for Proposed Random-Based Knowledge
Transfer Strategies vs. Existing Strategies

WFG Function
Knowledge Transfer Strategy Metric Result 1 2 3 4 5 6 7 8 9

Ring KTS Hypervolume Wins 1 0 0 1 4 5 0 0 4
Losses 1 5 5 2 0 0 5 5 0
Difference 0 -5 -5 -1 +4 +5 -5 -5 +4
Rank 3 6 6 3 1 1 6 6 1

Distribution Wins 1 1 2 0 1 5 0 3 5
Losses 0 0 1 0 0 0 0 0 0
Difference +1 +1 +1 0 +1 +5 0 +3 +5
Rank 1 1 2 1 1 1 1 1 1

Random Global Best KTS Hypervolume Wins 5 5 5 5 3 3 5 5 0
Losses 0 0 0 0 0 2 0 0 5
Difference +5 +5 +5 +5 +3 +1 +5 +5 -5
Rank 1 1 1 1 2 3 1 1 6

Distribution Wins 0 1 5 0 0 3 0 0 0
Losses 5 0 0 0 5 2 0 1 5
Difference -5 +1 +5 0 -5 +1 0 -1 -5
Rank 6 1 1 1 6 3 1 4 6

Random Personal Best KTS Hypervolume Wins 0 1 2 0 0 0 1 1 1
Losses 3 2 2 5 3 4 3 2 2
Difference -3 -1 0 -5 -3 -4 -2 -1 -1
Rank 6 4 3 6 4 5 5 3 3

Distribution Wins 1 1 0 0 1 0 0 0 3
Losses 0 0 2 0 0 3 0 1 1
Difference +1 +1 -2 0 +1 -3 0 -1 +2
Rank 1 1 4 1 1 5 1 4 2

Tournament Personal Best KTS Hypervolume Wins 2 3 3 4 3 4 4 4 4
Losses 1 1 1 1 1 1 1 1 0
Difference +1 +2 +2 +3 +2 +3 +3 +3 +4
Rank 2 2 2 2 3 2 2 2 1

Distribution Wins 1 1 0 0 1 4 0 0 1
Losses 0 0 1 0 0 1 0 3 2
Difference +1 +1 -1 0 +1 +3 0 -3 -1
Rank 1 1 3 1 1 2 1 6 4

Roulette Wheel Personal Best KTS Hypervolume Wins 0 1 1 1 0 0 1 1 1
Losses 2 1 3 2 3 4 2 2 2
Difference -2 0 -2 -1 -3 -4 -1 -1 -1
Rank 5 3 5 3 4 5 4 3 3

Distribution Wins 1 0 0 0 1 0 0 1 1
Losses 0 0 1 0 0 4 0 0 1
Difference +1 0 -1 0 +1 -4 0 +1 0
Rank 1 5 3 1 1 6 1 2 3

Rank-Based Personal Best KTS Hypervolume Wins 0 1 1 1 0 2 2 1 1
Losses 1 2 1 2 3 3 2 2 2
Difference -1 -1 0 -1 -3 -1 0 -1 -1
Rank 4 4 3 3 4 4 3 3 3

Distribution Wins 1 0 0 0 1 1 0 1 1
Losses 0 4 2 0 0 3 0 0 2
Difference +1 -4 -2 0 +1 -2 0 +1 -1
Rank 1 6 4 1 1 4 1 2 4

the best in terms of the distribution metric. WFG 5 is a deceptive problem, WFG
6 contains a non-separable reduction, and WFG 9 is both deceptive and contains
a non-separable reduction. It was hypothesized that these types of problems
respond well to the ring KTS when the hypervolume is being measured as the
information propagation is much slower, allowing the deception to have a lesser
effect. Also, the ring KTS attained the most distributed approximation fronts in
seven of the nine functions, and the second best in the remaining two functions.
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Furthermore, in only one pairwise test, on WFG 3, was any KTS found to be
significantly better than the ring KTS in terms of distribution.
It was noted that tournament personal best KTS consistently ranked well in

terms of hypervolume, being the second best KTS for seven of the nine test
functions. It was outranked by only one other KTS on functions WFG 1 to 8,
and ranked highest on WFG 9. When looking at the distribution measure the
tournament personal best KTS also performed very well, being the top KTS for
five of the nine functions. Overall, the proposed random-based KTSs did not
outperform existing KTSs.

6.2 Comparison of PCX GBest Knowledge Transfer Strategy
Parameters

This section discusses the results of a study on the effects of the sigma param-
eters for the PCX GBest KTS. The results are summarized in Table 3. The
key observation made from Table 3 is that, with respect to the hypervolume,
the PCX GBest KTS favored lower sigma values of 0.01 and 0.05, whereas the
distribution was generally better with slightly higher sigma values of 0.05 and
0.10.
The first observed behavior in Table 3 is that the lowest tested sigma value,

0.01, lead to the highest hypervolume for six of the nine functions, where in
four the sigma values of 0.01 outperformed all other sigma value settings. There
were only four recorded instances of a sigma value combination attaining a sig-
nificantly higher hypervolume value than with the sigma values set at 0.01.
Similarly, the highest sigma value of 1.00 lead to the worst hypervolume ranking
for eight of the nine functions, being significantly outperformed by all other val-
ues for seven of the functions. Note that the rankings for hypervolume degraded
linearly with increases in sigma values.
Far less consistent results are observed for the distribution measure than with

the hypervolume, but observations are that the middle range of sigma values,
0.10 and 0.20, were the most consistent in terms of ranking and were the only
two sigma value settings with nearly all pairwise differences greater than or
equal to zero. The distribution ranking peeked when sigma values were set to
0.20, degrading at both higher and lower values. Again, when sigma was set
to 1.00, the distribution measure was the worst in general, being significantly
outperformed by all other sigma settings in four of the nine functions, and being
the worst overall in seven functions.

6.3 Comparison of PCX Archive Knowledge Transfer Strategy
Parameters

This section discusses the results of a study on the effects of the sigma parameters
for the PCX archive KTS. The observations are summarized in Table 4. With
this strategy, far less pronounced trends are observed. Nevertheless, some key
observations were still made.



180 K.R. Harrison, B. Ombuki-Berman, and A.P. Engelbrecht

Table 3. Mann-Whitney Wins and Losses for PCX GBest KTS with Various Sigma
Values

WFG Function
Sigma Values (σ1 = σ2) Metric Result 1 2 3 4 5 6 7 8 9

0.01 Hypervolume Wins 5 4 1 5 4 1 5 5 4
Losses 0 0 2 0 0 1 0 0 1
Difference +5 +4 -1 +5 +4 0 +5 +5 +3
Rank 1 1 3 1 1 2 1 1 2

Distribution Wins 0 4 0 1 1 1 1 4 3
Losses 5 0 3 3 2 0 1 0 0
Difference -5 +4 -3 -2 -1 +1 0 +4 +3
Rank 6 1 4 5 3 1 3 1 1

0.05 Hypervolume Wins 2 4 4 4 4 1 3 3 1
Losses 1 0 0 1 0 1 1 1 2
Difference +1 +4 +4 +3 +4 0 +2 +2 -1
Rank 2 1 1 2 1 2 2 2 3

Distribution Wins 1 1 3 4 1 1 4 2 3
Losses 4 1 0 0 2 0 0 1 0
Difference -3 0 +3 +4 -1 +1 +4 +1 +3
Rank 5 3 1 1 3 1 1 3 1

0.10 Hypervolume Wins 2 3 1 3 3 1 2 3 5
Losses 1 2 2 2 2 1 1 1 0
Difference +1 +1 -1 +1 +1 0 +1 +2 +5
Rank 2 3 3 3 3 2 3 2 1

Distribution Wins 2 1 3 3 4 1 1 2 0
Losses 1 0 0 0 1 0 0 0 4
Difference +1 +1 +3 +3 +3 +1 +1 +2 -4
Rank 4 2 1 2 2 1 2 2 5

0.20 Hypervolume Wins 2 1 4 2 2 1 2 2 1
Losses 1 3 0 3 3 1 2 3 2
Difference +1 -2 +4 -1 -1 0 0 -1 -1
Rank 2 4 1 4 4 2 4 4 4

Distribution Wins 2 1 3 2 5 1 1 2 2
Losses 0 1 0 1 0 0 1 1 0
Difference +2 0 +3 +1 +5 +1 0 +1 +2
Rank 2 3 1 3 1 2 3 3 3

0.50 Hypervolume Wins 1 1 1 1 0 0 1 1 1
Losses 4 3 2 4 4 5 4 4 2
Difference -3 -2 -1 -3 -4 -5 -3 -3 -1
Rank 5 4 3 5 5 6 5 5 4

Distribution Wins 3 0 0 1 1 0 1 1 2
Losses 0 1 3 2 2 5 1 4 2
Difference +3 -1 -3 -1 -1 -5 0 -3 0
Rank 1 5 4 4 3 6 3 5 4

1.00 Hypervolume Wins 0 0 0 0 0 5 0 0 0
Losses 5 5 5 5 4 0 5 5 5
Difference -5 -5 -5 -5 -4 +5 -5 -5 -5
Rank 6 6 6 6 5 1 6 6 6

Distribution Wins 2 0 0 0 0 1 0 0 0
Losses 0 4 3 5 5 0 5 5 4
Difference +2 -4 -3 -5 -5 +1 -5 -5 -4
Rank 2 6 4 6 6 1 6 6 5

With respect to both measures, setting sigma values to 1.00 lead to overall
poor performance. For the distribution measure the pairwise difference was less
than or equal to 0 for all functions, and less than or equal to 0 for six functions
with respect to the hypervolume. For five of the nine functions, sigma values of
1.00 were recorded as the overall worst sigma value settings for both measures.
For the distribution measure, setting sigmas to 1.00 tied for worst ranking on an
additional two functions. However, for the hypervolume, setting sigma to 1.00
ranked the highest on three of the functions, namely WFG 1, 5, and 6.
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Table 4. Mann-Whitney Wins and Losses for PCX Archive KTS with Various Sigma
Values

WFG Function
Sigma Values (σ1 = σ2) Metric Result 1 2 3 4 5 6 7 8 9

0.01 Hypervolume Wins 0 2 1 2 0 0 1 3 1
Losses 0 0 0 0 1 1 0 0 1
Difference 0 +2 +1 +2 -1 -1 +1 +3 0
Rank 1 1 1 2 5 2 1 1 4

Distribution Wins 2 2 1 1 0 0 0 0 2
Losses 0 1 0 0 0 0 0 0 0
Difference +2 +1 +1 +1 0 0 0 0 +2
Rank 1 3 1 1 2 2 2 2 1

0.05 Hypervolume Wins 0 2 0 1 0 0 1 1 0
Losses 0 0 0 1 2 1 0 0 2
Difference 0 +2 0 0 -2 -1 +1 +1 -2
Rank 1 1 5 4 6 2 1 2 5

Distribution Wins 0 2 1 1 0 0 1 0 2
Losses 0 0 0 0 1 0 0 0 0
Difference 0 +2 +1 +1 -1 0 +1 0 +2
Rank 2 2 1 1 6 2 1 2 1

0.10 Hypervolume Wins 0 2 1 2 0 0 1 1 0
Losses 0 0 0 0 0 1 0 0 4
Difference 0 +2 +1 +2 0 -1 +1 +1 -4
Rank 1 1 1 2 3 2 1 2 6

Distribution Wins 0 4 1 1 0 0 0 0 2
Losses 1 0 0 0 0 0 0 0 0
Difference -1 +4 +1 +1 0 0 0 0 +2
Rank 5 1 1 1 2 2 2 2 1

0.20 Hypervolume Wins 0 2 1 3 1 0 1 1 3
Losses 0 0 0 0 0 1 0 1 0
Difference 0 +2 +1 +3 +1 -1 +1 0 +3
Rank 1 1 1 1 2 2 1 4 1

Distribution Wins 0 2 1 1 0 1 0 1 2
Losses 0 1 0 0 1 0 0 0 0
Difference 0 +1 +1 +1 -1 +1 0 +1 +2
Rank 2 3 1 1 4 1 2 1 1

0.50 Hypervolume Wins 0 1 1 1 0 0 1 1 1
Losses 0 4 0 3 0 1 0 1 0
Difference 0 -3 +1 -2 0 -1 +1 0 +1
Rank 1 5 1 5 3 2 1 4 3

Distribution Wins 0 0 1 1 3 0 0 0 1
Losses 0 4 0 0 0 1 0 0 4
Difference 0 -4 +1 +1 +3 -1 0 0 -3
Rank 2 5 1 1 1 6 2 2 5

1.00 Hypervolume Wins 0 0 0 0 2 5 0 0 2
Losses 0 5 4 5 0 0 5 5 0
Difference 0 -5 -4 -5 +2 +5 -5 -5 +2
Rank 1 6 6 6 1 1 6 6 2

Distribution Wins 0 0 0 0 0 0 0 0 0
Losses 1 4 5 5 1 0 1 1 5
Difference -1 -4 -5 -5 -1 0 -1 -1 -5
Rank 5 5 6 6 4 2 6 6 6

Although not very well pronounced, there was a correlation between mid-range
sigma settings and higher rankings for both measures. Sigma values of 0.20 were
the highest ranked in general and showed the highest ranking in six of the nine
functions for the hypervolume, and five of the nine functions for the distribution
measure. Note that, for the distribution measure, the lower sigma values of 0.01,
0.05, and 0.10 all recorded only one pairwise loss for the distribution measure,
whereas 0.20 recorded two losses, and for the hypervolume, 0.20 recorded only
two losses, being the lowest overall.
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6.4 Comparison of Proposed Hybrid Knowledge Transfer Strategies
with Existing Strategies

This section discusses the results of a comparison between the proposed hybrid
KTSs and the existing KTSs. Table 5 provides the results of a pairwise compar-
ison of four strategies, ring KTS, random global best KTS, PCX GBest KTS,
and PCX archive KTS. The purpose of this comparison is to determine if the
proposed hybrid KTSs outperform the existing KTSs.
For each of the functions, the highest ranked sigma value configurations for the

PCX KTSs were selected for the comparison. In the event of ties for one measure,
the second measure was used to break the tie. If a tie was observed for the second
measure, equivalence was assumed and one was sigma value combination was
selected at random to be used for the pairwise comparison.
With respect to the hypervolume, Table 5 shows that the PCX GBest KTS

was the highest ranking KTS for seven of the nine functions. An interesting
result, which is contrary to previously observed results for dynamic environments
[22], was that for the two functions where PCX GBest KTS was not the highest
ranking KTS, namely WFG 5 and 6, the ring KTS was the highest ranking KTS.

Table 5. Mann-Whitney Wins and Losses for Proposed Hybrid Knowledge Transfer
Strategies vs. Existing Strategies

WFG Function
Knowledge Transfer Strategy Metric Result 1 2 3 4 5 6 7 8 9

Ring KTS Hypervolume Wins 0 0 1 0 1 3 0 0 1
Losses 3 3 2 3 0 0 3 3 1
Difference -3 -3 -1 -3 +1 +3 -3 -3 0
Rank 4 4 4 4 1 1 4 4 2

Distribution Wins 2 0 1 0 3 2 0 2 1
Losses 1 1 1 2 0 1 2 0 1
Difference +1 -1 0 -2 +3 +1 -2 +2 0
Rank 2 3 2 3 1 2 4 1 2

Random Global Best KTS Hypervolume Wins 1 1 2 1 1 0 1 1 0
Losses 2 2 1 1 0 2 1 1 3
Difference -1 -1 +1 0 +1 -2 0 0 -3
Rank 3 3 2 2 1 4 2 2 4

Distribution Wins 1 0 3 0 0 1 0 1 0
Losses 2 2 0 2 3 2 1 2 3
Difference -1 -2 +3 -2 -3 -1 -1 -1 -3
Rank 3 4 1 3 4 3 3 3 4

PCX GBest KTS Hypervolume Wins 3 3 3 3 0 0 3 3 3
Losses 0 0 0 0 3 1 0 0 0
Difference +3 +3 +3 +3 -3 -1 +3 +3 +3
Rank 1 1 1 1 4 3 1 1 1

Distribution Wins 0 1 0 2 1 0 1 0 1
Losses 3 1 1 0 1 3 0 3 1
Difference -3 0 -1 +2 0 -3 +1 -3 0
Rank 4 2 3 1 2 4 2 4 2

PCX Archive KTS Hypervolume Wins 2 2 1 1 1 1 1 1 1
Losses 1 1 1 1 0 1 1 1 1
Difference +1 +1 0 0 +1 0 0 0 0
Rank 2 2 3 2 1 2 2 2 2

Distribution Wins 3 3 0 2 1 3 2 2 3
Losses 0 0 2 0 1 0 0 0 0
Difference +3 +3 -2 +2 0 +3 +2 +2 +3
Rank 1 1 4 1 2 1 1 1 1
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Another observation was that in all instances where the PCX GBest KTS was
ranked highest, the sigma values were 0.10 or lower, whereas the two functions
on which it was ranked the worst had larger values of 0.20 and 1.00, respectively.
In terms of the distribution measure, we see that PCX archive KTS was the

highest ranking strategy for seven of the nine functions. Overall, the ring, random
global best, and PCX GBest KTSs were not overly different in terms of ranking
when the distribution measure was examined.

7 Conclusion

This paper proposed six new knowledge transfer strategies for vector evalu-
ated particle swarm optimization. Four of these strategies select a global guide
from existing particles using random and probabilistic selection mechanisms,
while two hybrid strategies compute the global guide based on a parent centric
crossover (PCX) operator. The results showed that the hybrid approaches out-
performed the existing ring and random global best KTSs using two well-known
performance measures.
The results showed that the tournament personal best KTS was the best

proposed random-based KTSs, but does not outperform the existing random
global best KTS. A comparison of the hybrid strategies with the existing ring
and random global best KTSs determined the PCX GBest KTS as the best KTS
with respect to the hypervolume. When the distribution measure was compared,
the PCX archive KTS was determined as the best performing KTS.
Future work involves determining which function properties were responsible

for the observed behavior and comparing VEPSO using the proposed strategies
against other well-known MOO algorithms. Lastly, this paper focused on func-
tions with three objectives. An immediate further investigation is to evaluate
the performance of the proposed strategies with greater than three objectives.
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Abstract. This paper presents a hypervolume-based multi-objective path relink-
ing algorithm for approximating the Pareto optimal set of multi-objective combi-
natorial optimization problems. We focus on integrating path relinking techniques
within a multi-objective local search as an initialization function. Then, we carry
out a range of experiments on bi-objective flow shop problem and bi-objective
quadratic assignment problem. Experimental results and a statistical comparison
are reported in the paper. In comparison with the other algorithms, one version of
our proposed algorithm is very competitive. Some directions for future research
are highlighted.

Keywords: multi-objective optimization, hypervolume contribution, path relink-
ing, local search, flow shop problem, quadratic assignment problem.

1 Introduction

Local search is an effective search strategy for both single objective optimization and
multi-objective optimization. Particularly, local search requires a method to generate
initial solutions. However, how to set the initialization methods still remains an open
question in many cases, especially in multi-objective optimization. In this paper, we
investigate path relinking [8] as an initialization method for hypervolume-based multi-
objective local search (HBMOLS) [3].

The HBMOLS algorithm aims to generate a Pareto approximation set by improving
an initial population. In this work, we use path relinking to construct paths and then
select from each path a set of solutions to initialize a new population for HBMOLS.
In order to evaluate the effectiveness of our proposed method, we show experimental
results on the bi-objective flow shop problem and bi-objective quadratic assignment
problem, and we compare them with the HBMOLS algorithm which initializes a new
population using random mutations or crossover operator.

The remainder of this paper is organized as follows. In Section 2, we present some
basic notations and definitions related to multi-objective optimization. Then, in Sec-
tion 3, we briefly review the literature using the path relinking techniques to solve multi-
objective optimization problems. Afterwards, in Section 4, we describe the hypervolume-
based multi-objective path relinking algorithm. Section 5 reports the computational re-
sults and analyzes the behavior of the proposed algorithm. Finally, the conclusions and
perspectives are given in the last section.
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2 Multi-Objective Optimization

In this section, we recall some useful notations and definitions of multi-objective opti-
mization. Let X denote the search space of the optimization problem under consider-
ation and Z the corresponding objective space. Without loss of generality, we assume
that Z = &n and all n objectives are to be minimized. Each x ∈ X is assigned exactly
one objective vector z ∈ Z on the basis of a vector function f : X → Z with z = f(x).
The mapping f defines the evaluation of a solution x ∈ X , and often one is interested
in those solutions that are Pareto optimal with respect to f . The relation x1 ' x2 means
that the solution x1 is preferable to x2. The dominance relation between two solutions
x1 and x2 is usually defined as follows:

Definition 1. A decision vector x1 is said to dominate another decision vector x2 (writ-
ten as x1 ' x2), if fi(x1) ≤ fi(x2) for all i ∈ {1, . . . , n} and fj(x1) < fj(x2) for at
least one j ∈ {1, . . . , n}.

Definition 2. x ∈ S (S ⊂ X) is said to be non-dominated if and only if there does not
exist another solution x

′ ∈ S such that x
′

dominates x. When S ≡ X , x is said to be
Pareto optimal.

Definition 3. S is said to be a non-dominated set if and only if S is composed of non-
dominated solutions. When S is composed of all the Pareto optimal solutions, S is said
to be a Pareto optimal set.

In multi-objective optimization, there usually does not exist one optimal but a set of
Pareto optimal solutions, which keeps the best compromise among all the objectives.
Nevertheless, in most cases, it is not possible to compute the Pareto optimal set in a
reasonable time. Then, we are interested in computing a non-dominated set, which is
as close to the Pareto optimal set as possible. Therefore, the goal is often to identify a
good Pareto approximation set.

3 Related Works

Path Relinking (PR) was initially proposed by Glover [8] as an effective search strat-
egy, which has proved its efficiency in single objective optimization [8]. Its objective
is to explore the search space by creating paths within a given set of high-quality solu-
tions. In the following paragraphs, we focus on the studies dealing with multi-objective
optimization problems.

Basseur et al. [2] propose a multi-objective approach to integrate PR techniques into
an adaptive genetic algorithm, which is dedicated to obtaining a first well diversified
Pareto approximation set. Based on this set, two solutions are randomly selected to
generate a path. According to the distance measure defined in [2], there are many in-
termediate solutions which can be generated at each step of the PR procedure. Then,
the authors apply a random aggregation of the objectives to determine which solution is
selected from the possible eligible solutions. After linking these two solutions, a Pareto
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local search is applied in order to improve the quality of the non-dominated set gener-
ated by the PR algorithm. Experimental results on bi-objective flow shop problem show
that this PR approach is very promising and efficient.

In [13], Pasia et al. present three PR approaches for solving a bi-objective flow shop
problem. By using a straightforward implementation of the ant colony system, they
first generate two pools of initial solutions, where one pool contains solutions that are
good with respect to the makespan and the other one contains solutions that are good
with respect to the total tardiness. Based on random insertion, all the solutions in both
pools are improved by local search in order to obtain a non-dominated set. Then, the
authors randomly select two solutions from this non-dominated set to construct a path.
Along the path, some of the solutions are submitted for improvements. The authors
propose three different strategies to define the heuristic bounds. Each strategy allows the
solutions to undergo local search under the conditions based on the local nadir points.
Computational results demonstrate that their proposed approaches are competitive.

In addition, two different versions of iterated Pareto local search (IPLS) algorithms,
which are path-guided IPLS (pIPLS) and a combination of IPLS and pIPLS named
rIPLS, are presented in [6]. The authors propose a path-guided mutation that generates
solutions on the path linking two local optimal individuals. This mutation generates in-
dividuals at a certain distance from the initial solution to the guiding solution. Then,
Pareto local search is restarted from the individual generated on the path. Experiments
on bi-objective quadratic assignment problem show that pIPLS and rIPLS both outper-
form the multi-restart Pareto local search algorithm.

4 Hypervolume-Based Multi-Objective Path Relinking Algorithm

This section describes the hypervolume-based multi-objective path relinking algorithm,
which is a combination of the Hypervolume-Based Multi-Objective Local Search al-
gorithm (HBMOLS) and the Multi-Objective Path Relinking algorithm (MOPR). The
outline of the proposed algorithm is illustrated in Algorithm 1 and depicted in Fig. 1.

In this algorithm, all the solutions in an initial population are randomly generated.
Then, each solution in the population is optimized by the HBMOLS algorithm [3],
which is based on the Hypervolume Contribution Selection illustrated in Algorithm 2.
The HBMOLS algorithm achieves the fitness assignment by using the hypervolume
contribution indicator HC(x, P ) defined in [3]. Afterwards, we randomly choose two
solutions (an initial solution and a guiding solution) from the Pareto approximation
set generated by HBMOLS, and we define a distance between these two solutions to
construct a path. At each step, we generate only one new solution and make sure the
distance between the new solution and the guiding solution decreases by 1.

After the path generation, a subset of solutions in the path are selected and used to
initialize a new population P for HBMOLS. These solutions are potentially inserted
into P , according to their corresponding hypervolume contribution. Actually, we pro-
pose four mechanisms to select a set of solutions from the generated path. These mech-
anisms are illustrated in Fig. 2 and described in detail below.

All: All the solutions in the path are selected to be inserted into the population P
(solutions represented both in circle and in square in Fig. 2).
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Algorithm 1. Hypervolume-Based Multi-Objective Path Relinking Algorithm
Input: N (Population size)
Output: A (Pareto approximation set)
Initialization: P ← N randomly generated solutions

A ← Non dominated solutions of P
while Running time is not reached do

Local Search (HBMOLS):
1) Fitness Assignment: Calculate a fitness value for each x ∈ P , i.e., Fit(x) = HC(x,P )
2) For each x ∈ P do:

repeat
a) x∗ ← one randomly chosen unexplored neighbors of x
b) Progress ← Hypervolume Contribution Selection (P, x∗)

until all neighbors are explored or Progress = True
3) A ← Non dominated solutions of A

⋃
P . If A does change, back to step 2

Path Relinking (MOPR):
1) P

′ ← N randomly generated solutions
2) randomly choose an initial solution xi and a guiding solution xj from A
3) compute the distance dij between xi and xj

4) generate a set of solutions: T = {t1, t2, · · · , tdij−1} along a path linking xi to xj

5) select npr solutions: T
′
= {y1, y2, · · · , ynpr} from the set T

6) for i ← 1, . . . , npr do
Hypervolume Contribution Selection (P

′
, yi)

end for
end while
Return A

Best: The solutions in the path are divided into two sets, according to their Pareto
dominance relations. The solutions belonging to the non-dominated set are selected.
In Fig. 2, the solutions represented in square are selected, since they belong to the
non-dominated set.

Middle: The solutions located at the beginning or at the end of the path are similar
to the initial solution or the guiding solution. These solutions could not be very
useful, since HBMOLS will search the explored areas alike. One way to avoid this
problem is to select a single solution, which is located in the middle of the path
(solution represented in black circle in Fig. 2). In fact, this mechanism can be seen
as a kind of crossover operator.

K-Middle: Here, we also aim to avoid the problem of proximity of intermediate so-
lutions to the initial solution and the guiding solution. Then, we propose to select
a set of solutions located in the middle of the path. The numberNKM of these so-
lutions is defined according to the length of generated path. We define this number
by using the formula NKM =

√
NAll, where NAll being the number of the solu-

tions in the path, and NKM is the greatest integer that is not bigger than
√
NAll

(solutions located in the dashed circle in Fig. 2).
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Algorithm 2. Hypervolume Contribution Selection
Step:

1) P ← P
⋃

x∗

2) compute x∗ fitness: HC(x∗, P ), then update all z ∈ P fitness values:
Fit(z) = HC(z, P )

3) w ← worst individual in P
4) P ← P\{w}, then update all z ∈ P fitness values: Fit(z) = HC(z, P\{w})
5) if w �= x∗, return True

  (Random
population)

(Pareto set approximation)

(Selected solutions from the path)

    Random
Initialization

HBMOLS ( P ) MOPR ( A )

P

A

P

Fig. 1. A random population is initialized and provided as an entry to to HBMOLS, which gen-
erates a Pareto approximation set by improving the initial population. Then, MOPR generates a
path between two solutions belonging to the Pareto approximation set provided by HBMOLS. A
subset of solutions in the path is selected to initiate a new HBMOLS execution.

5 Computational Results

In order to evaluate the efficiency of our proposed algorithms, we carry out experiments
on the bi-objective flow shop problem and bi-objective quadratic assignment problem.
We compare four versions of hypervolume-based multi-objective path relinking algo-
rithm (named PR A, PR B, PR M and PR KM) with two versions of HBMOLS (named
RM and CO), which use random mutation and crossover operator as the initialization
functions [1]. All the algorithms are programmed in C and compiled using Dev-C++ on
a PC running Windows XP with Pentium 2.61 GHz CPU and 2 GB RAM.

5.1 Performance Assessment Protocol

We evaluate the effectiveness of multi-objective optimization algorithms by using a test
procedure that has been undertaken with the performance assessment package provided
by Zitzler et al.1

The quality assessment protocol works as follows: we first create a set of 20 runs
with different initial populations for each algorithm and each benchmark instance. Af-
terwards, we calculate the set PO∗ in order to determine the quality of k different sets

1 http://www.tik.ee.ethz.ch/pisa/assessment.html
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Fig. 2. The mechanisms of subset selection

A0 . . . Ak−1 of non-dominated solutions (The set PO∗ is generated by removing the
dominated solutions from the union of k different sets, more details can be found in
[19]). Furthermore, we define a reference point z = [w1, w2], where w1 and w2 repre-
sent the worst values for each objective function inA0∪· · ·∪Ak−1. Then, the evaluation
of a set Ai of solutions can be determined by finding the hypervolume difference be-
tween Ai and PO∗ [19], which has to be as close to zero as possible.

For each algorithm, we compute 20 hypervolume differences corresponding to 20
runs, and perform the Mann-Whitney statistical test on the sets of hypervolume differ-
ence. In our experiments, we say that an algorithmA outperforms an algorithm B if the
Mann-Whitney test provides a confidence level greater than 95%. The computational re-
sults are summarized in Tables 2and 4 respectively. In these two tables, each line contains
at least a value in grey for each instance, which corresponds to the best average hyper-
volume difference obtained by the corresponding algorithm. The values both in italic
and bold mean that the corresponding algorithms are not statistically outperformed by
the algorithm which obtains the best result (with a confidence level greater than 95%).

5.2 Application to Bi-objective Flow Shop Problem

The Flow Shop Problem (FSP) is one of the most thoroughly studied machine schedul-
ing problems, which schedules a set of jobs on a set of machines according to a specific
order. In this paper, we focus on optimizing two objectives: total completion time and
total tardiness.

5.2.1 Bi-objective Flow Shop Problem
Generally, the FSP deals with n jobs {J1, J2, ..., Jn} and m machines
{M1,M2, ..., Mm}, where each job has to be processed on all the machines in the
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same machine sequence. Each machine could only process one job at a time, and the
machines can not be interrupted once they start processing a job. As soon as the opera-
tion is finished, the machines become available.

Specifically, each job Ji is composed ofm consecutive tasks {ti1, ti2, ..., tim}, where
tij represents the jth task of the job Ji requiring the machine mj . Each task tij is as-
sociated with a processing time pij , which is scheduled at the time sij and should be
achieved before the due date dj . Actually, we aim to minimize two objective func-
tions: total completion time Cmax and total tardiness T , which are formally defined as
follows:

f1 = Cmax = max
i∈[1...n]

{sim + pim} (1)

f2 = T =

n∑
i=1

[max(0, sim + pim − di)] (2)

Both of them have been proven to be NP -hard [9,7]. In addition, all the FSP instances
used in this paper are taken from Taillard benchmark instances and extended into bi-
objective case [17]2.

5.2.2 Path Generation
A candidate solution to FSP can be encoded as a permutation P composed of
{0, . . . , n −1} values, such that P(i) denotes the job to be executed at the ith position.
As proved in [15], the insertion operator, which inserts a selected job to a designated
position, is more effective than other operators in solving FSP. Moreover, the authors in
[4] show the insertion operator is also very efficient in solving multi-objective FSPs.

Therefore, we decide to define our distance measure directly related to the insertion
operator. This property allows us to to compute the minimum number of moves, which
have to be applied on an initial solution to reach a guiding solution. As suggested in [2],
we use the Longest Common Subsequence (LCS) between two solutions as a distance
measure for path generation. The LCS can be calculated in O(n2) by a dynamic pro-
gramming algorithm, which is similar to the well known Needleman-Wunsch algorithm
[5,14]. Then, the distance between two solutions is defined as the length of permutation
minus the length of LCS.

After the distance computation, we generate a path in a random way. In this method,
we randomly select a candidate job, and insert this job into a randomly selected position.
In fact, this method consists of four main steps:

Step 1: We randomly select a candidate job from an initial solution. For example, in
Fig. 3, the longest common subsequence between an initial solution and a guiding
solution is colored in black, the remaining jobs are candidate jobs. In this example,
the candidate job 15 is randomly selected.

2 Benchmarks available at
http://www.lifl.fr/ liefooga/benchmarks/index.html
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Fig. 3. Path generation for flow shop problem

Step 2: We find the position of the selected candidate job in the LCS of the guiding
solution. In Fig. 3, the candidate job 15 is located between two jobs 9 and 10.

Step 3: We find the insertion position for the selected candidate job in the LCS of the
initial solution. As shown in Fig. 3, there are two possible insertion positions for
the job 15: (9 13) and (13 10).

Step 4: We insert the selected candidate job into a randomly selected insertion posi-
tion to generate a new solution in the path. As illustrated in Fig. 3, we insert the job
15 into the randomly selected insertion position (9 13) to obtain a new solution.
We continue the process in this manner until the distance between the new solution
and the guiding solution equals to 0.

5.2.3 Parameters Settings
The proposed algorithms require to set a few parameters, we mainly discuss two impor-
tant ones: running time and population size.

Running time: The running time T is a key parameter in the experiments. We define
the time T for each instance by Equation 3, in whichNJob andNMac represent the
number of jobs and the number of machines of one instance, NObj represents the
number of objectives (see Table 1).

T =
NJob

2 ×NMac ×NObj

100
sec (3)

T is defined according to the ”difficulty” of instance. Indeed,NJob defines the size
of search space, which is NJob!. Moreover, the roughness of landscape is strongly
related with NMac. Then, we use this formula to obtain a good balance between
the problem difficulty and the time allowed.

Population size: According to the results obtained in [1], the experiments realized
previously on the IBMOLS algorithm showed that the best results are achieved with
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a small population size N . We set this size from 10 to 40 individuals by Equation
4, relative to the size of tested instance (see Table 1).

|N | =

⎧⎪⎪⎨⎪⎪⎩
10 : 0 < |NJob ×NMac| < 500
20 : 500 ≤ |NJob ×NMac| < 1000
30 : 1000 ≤ |NJob ×NMac| < 2000
40 : 2000 ≤ |NJob ×NMac| < 3000

(4)

Table 1. Parameter values used for bi-objective FSP instances (i j k represents the kth bi-
objective FSP instance with i jobs and j machines): population size (N ) and running time (T )

Instance Dim N T Instance Dim N T

20 05 01 ta001 20 × 5 10 40” 50 15 01 50 × 15 20 12’30”

20 10 01 ta011 20 × 10 10 80” 50 20 01 ta051 50 × 20 30 16’40”

20 15 01 20 × 15 10 2’ 70 05 01 70 × 5 10 8’10”

20 20 01 ta021 20 × 20 10 2’40” 70 10 01 70 × 10 20 16’20”

30 05 01 30 × 5 10 1’30” 70 15 01 70 × 15 30 24’30”

30 10 01 30 × 10 10 3’ 70 20 01 70 × 20 30 32’40”

30 15 01 30 × 15 10 4’30” 100 05 01 ta061 100 × 5 20 16’40”

30 20 01 30 × 20 20 6’ 100 10 01 ta071 100 × 10 30 33’20”

50 05 01 ta031 50 × 5 10 4’10” 100 15 01 100 × 15 30 50’

50 10 01 ta041 50 × 10 20 8’20” 100 20 01 ta081 100 × 20 40 66’40”

5.2.4 Experimental Results
The computational results are summarized in Table 2. In this table, we observe that RM
has a good performance on the first eight instances from 20 5 01 to 30 20 01. It ob-
tains the best average hypervolume differences on these instances. On the other hand,
PR KM outperforms the other algorithms on the remaining instances from 50 5 01 to
100 20 01, where almost all the best results are obtained by this algorithm. Addition-
ally, CO is less effective in comparison with RM and PR KM.

From Table 2, we can see the path relinking techniques have a limited contribution
on the small instances from 20 5 01 to 30 20 01. We suppose that, when the instance
size is small, the length of the path is so short that it is difficult to find a set of solutions
far enough from the initial and guiding solutions to initialize a new population. In this
case, it is more useful to perform random moves in the search space as done in RM.
When we consider the instances with more than 30 jobs, the length of the path is longer,
which means we have more possibilities to explore new high quality areas in the search
space. Therefore, PR KM has a good performance on the large instances from 50 5 01
to 100 20 01.



194 R.-Q. Zeng, M. Basseur, and J.-K. Hao

Table 2. Comparison of four versions of hypervolume-based multi-objective path relinking al-
gorithm (PR A, PR B, PR M and PR KM) with two versions of HBMOLS (RM and CO) on
20 bi-objective FSP instances from 20 5 01 to 100 20 01. Each value in the table represents an
average hypervolume difference.

AlgorithmInstance
PR A PR B PR M PR KM RM CO

20 05 01 ta001 0.050496 0.076627 0.093801 0.067028 0.000260 0.005152
20 10 01 ta011 0.023355 0.055498 0.048349 0.034595 0.000739 0.027353

20 15 01 0.032433 0.073174 0.070448 0.037654 0.002330 0.037131
20 20 01 ta021 0.009737 0.034508 0.024761 0.010079 0.000077 0.044826

30 05 01 0.049260 0.081154 0.099705 0.040607 0.011844 0.062030
30 10 01 0.100098 0.200979 0.176367 0.088794 0.041814 0.116553
30 15 01 0.052479 0.096203 0.105293 0.048227 0.028186 0.054050
30 20 01 0.048423 0.064844 0.071167 0.040580 0.035835 0.051028

50 05 01 ta031 0.031220 0.083466 0.090345 0.022628 0.041017 0.056559
50 10 01 ta041 0.103891 0.149919 0.132192 0.079505 0.089703 0.116051

50 15 01 0.131563 0.173639 0.156972 0.091552 0.114880 0.131505
50 20 01 ta051 0.129671 0.176523 0.146388 0.093540 0.117150 0.141695

70 05 01 0.110650 0.191452 0.152058 0.096111 0.084047 0.146741
70 10 01 0.131195 0.177933 0.157369 0.119054 0.146445 0.172327
70 15 01 0.149831 0.174514 0.164179 0.134607 0.156965 0.178769
70 20 01 0.139377 0.183869 0.147617 0.102067 0.135491 0.137697

100 05 01 ta061 0.199309 0.359023 0.236139 0.157834 0.169815 0.175162
100 10 01 ta071 0.093883 0.121682 0.104086 0.071063 0.080287 0.086577

100 15 01 0.187296 0.205879 0.175943 0.128876 0.163312 0.174849
100 20 01 ta081 0.205930 0.220908 0.187275 0.131843 0.137246 0.180406

Compared with other versions of hypervolume-based multi-objective path relinking
algorithms, the advantages of PR KM are very clear. As NKM is smaller than NAll, in
most cases, PR KM saves a lot of time during the initializing process, then it performs
more effectively than PR A, especially on the large instances. Considering PR B, we
select a set of non-dominated solutions from the path. However, these solutions are often
close to the initial solution and the guiding solution. The similar search areas have little
contribution in initializing a new population, which decreases the global effectiveness of
PR B. For PR M, only one intermediate solution is selected from the path at each step,
which means this algorithm spends a little time in the initializing process. Then, it is not
very helpful to reinforce the population’s diversity. For this reason, the effectiveness of
PR M is affected.

5.3 Application to Bi-objective Quadratic Assignment Problem

The quadratic assignment problem (QAP) is a classical combinatorial optimization
problem both in theory and in practice. As one of the most difficult problems in the
NP -hard class, it models many real-life problems in many areas such as the facility
location, parallel and distribute computing, and combinatorial data analysis [11]. In our
case, we concentrate on bi-objective quadratic assignment problem.
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5.3.1 Bi-objective Quadratic Assignment Problem
The quadratic assignment problem can be described as the problem of assigning a set of
facilities to a set of locations with given distances between the locations and given flows
between the facilities [12]. Given n facilities and n locations, three n×nmatricesD, F1

and F2, where dij is the distance between location i and j, and f1rs and f2rs are two flows
between two facilities r and s. The goal is to minimize the sum of the product between
flows and distances. The objective of the QAP can then be formulated as follows:

min
φ∈Φ

n∑
i=1

n∑
j=1

dijf
k
φiφj

, k ∈ {1, 2} (5)

where Φ is the set of all permutations of {1, . . . , n}, and φi gives the location of item i
in a solution φ ∈ Φ.

In this paper, all the tested instances of QAP are provided by R. E. Burkard et al.3 In
our case, a bi-objective QAP instance is generated by keeping the distance matrix of the
first instance and using two different flow matrices. Moreover, we denote a bi-objective
instance as N i ab (N represents the name of instance such as ”esc”) with a matrix of
size i respectively. For example, esc 32 ab denotes a bi-objective instance named ”esc”,
which is generated by two single-objective instances esc 32 a and esc 32 b.

5.3.2 Path Generation
A candidate solution to QAP can be encoded as a permutation P composed of {1, . . . ,
n} values, such that P(i) denotes the facility to be assigned at the ith location. As
proved in [16], the swap operator, which exchanges two facilities in a permutation, is
very effective for solving QAP. Then, we define the distance between two solutions
directly related to the swap operator.

For QAP, we use the permutation distance and the cycle distance [18,14] as the dis-
tance measure. Actually, the distance between two solutions is defined as the permu-
tation distance minus the cycle distance. Afterwards, we construct a path by randomly
selecting an element from one cycle in a permutation and applying the swap operator to
this element to obtain a new solution.

An example of path generation for QAP is illustrated in Fig. 4. In this example,
there is one integer element (11) located at the same position in an initial solution and a
guiding solution, then the permutation distance is 10. On the other hand, there are three
cycles ({3, 1, 2, 7, 8}, {4, 5, 6} and {10, 9}) between these two permutations, so the
cycle distance is 3. Therefore, the distance between the initial solution and the guiding
solution is equal to 7.

Furthermore, there are 7 steps starting from the initial solution Px to the guiding
solution Py , which allows us to generate 6 solutions on the path. For instance, we first
randomly select a facility 2 from one cycle {3, 1, 2, 7, 8} in Px, and we can observe the
facility 2 is located at the second position in Py . Then, we apply the swap operator to

3 Benchmarks available at http://www.seas.upenn.edu/qaplib/inst.html
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Fig. 4. Path generation for quadratic assignment problem

two facilities 1 and 2 in Px in order to generate a new solution. We continue this process
until the distance between the new solution Pi and the guiding solution Py is equal to 0.

5.3.3 Parameters Settings
Similar to the parameter settings in FSP, we consider two important parameters: running
time and population size.

– Running time: We define the running time T for each instance by Equation 6,
in which NDis, NFlow and NObj represent respectively the size of the distance
matrix, the size of the flow matrix and the number of objectives in an instance (see
Table 3).

T = NDis ×NFlow ×NObj sec (6)

– Population size: Here, we set this size from 10 to 30 individuals according to
Equation 7, relatively to the size of the tested instance (see table 3).

|N | =

⎧⎪⎪⎨⎪⎪⎩
10 : 0 < |NDis ×NFlow| < 500
20 : 500 ≤ |NDis ×NFlow| < 1000
30 : 1000 ≤ |NDis ×NFlow| < 2000
40 : 2000 ≤ |NDis ×NFlow| < 3000

(7)
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Table 3. The instances of bi-objective quadratic assignment problem (Parameters: population size
N , running time T )

Inst 1 Inst 2 Dim N T

chr 12 a chr 12 b 12 × 12 10 4’48”

chr 15 a chr 15 b 15 × 15 10 7’30”

chr 20 a chr 20 b 20 × 20 10 13’20”

esc 16 a esc 16 b 16 × 16 10 8’32”

esc 32 a esc 32 b 32 × 32 30 16’20”

Lipa 30 a Lipa 30 b 30 × 30 20 15’

Ste 36 a Ste 36 b 36 × 36 30 21’36”

tai 40 a tai 40 b 40 × 40 30 26’40”

tai 50 a tai 50 b 50 × 50 40 41’40”

5.3.4 Experimental Results
The computational results for the bi-objective QAP are presented in Table 4. From this
table, we can see RM has a good performance almost on all the instances. Particu-
larly, it obtains the best average hypervolume differences on five instances. Moreover,
PR KM also obtains very competitive results on all the instances, especially on the large
instances, such as Lipa 30 ab, tai 40 ab and tai 50 ab. However, CO is statistically out-
performed by RM and PR KM on most of the instances.

Table 4. Comparison of four versions of hypervolume-based multi-objective path relinking al-
gorithm (PR A, PR B, PR M and PR KM) with two versions of HBMOLS (RM and CO) on 9
bi-objective QAP instances. Each value in the table represents an average hypervolume differ-
ence.

AlgorithmInstance
PR A PR B PR M PR KM RM CO

chr 12 ab 0.000000 0.000000 0.000000 0.000000 0.000000 0.013407
chr 15 ab 0.002988 0.010994 0.000000 0.002271 0.000000 0.026494
chr 20 ab 0.014042 0.025258 0.004827 0.005560 0.001899 0.017890
esc 16 ab 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
esc 32 ab 0.006312 0.008839 0.002594 0.003003 0.002433 0.007948

Lipa 30 ab 0.001956 0.002159 0.001369 0.001347 0.001433 0.003047
Ste 36 ab 0.304087 0.356747 0.669592 0.364021 0.215314 0.203776
tai 40 ab 0.037541 0.041880 0.031969 0.027092 0.046076 0.080534
tai 50 ab 0.038647 0.030516 0.040565 0.027077 0.048410 0.046201

According to the experimental results in table 4, RM has a better performance than
PR KM on the first four instances. Since these instances are small and relatively easy
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to solve, the PR KM and RM algorithms achieve the best results on three instances
(chr 12 ab, chr 15 ab and esc 16 ab), where the average hypervolume differences are
equal to 0. Furthermore, on these small instances, it is not easy for PR KM to construct
a long path to find enough diversified solutions for initializing a new population. Then
it is better to perform random moves in the search space or to select only one solution
from the generated path as done in PR M. When the size of instance becomes larger, we
can construct a longer path and select more useful solutions from the path, which means
we have more chances to explore high quality areas in the objective space. Therefore,
PR KM obtains the best value on the large instances such as tai 50 ab and a competitive
value on the instance esc 32 ab. However, the instance Ste 36 ab is an exception, CO
obtains the best value on this instance. In fact, only several non-dominated solutions are
found in the population. We suppose that the search procedure is often trapped in some
local optimums, then using crossover operator is a better way to be out of these traps.

6 Conclusions and Perspectives

In this paper, we present a hypervolume-based multi-objective path relinking algorithm,
which is applied to the bi-objective flow shop problem and bi-objective quadratic as-
signment problem. This algorithm integrates the path relinking techniques into hypervol
-umebased multi-objective local search as an initialization function, in order to find a
Pareto approximation set. Actually, we provide a general scheme of path relinking al-
gorithm, which can be used to deal with other multi-objective optimization problems.

Experimental results indicate one version of our proposed algorithms is very com-
petitive in comparison with other algorithms. The performance analysis gives us a few
directions for future research. The first possibility is to generate more intermediate so-
lutions at each step, then one can construct several different paths simultaneously. Es-
pecially, for each path, it could give birth to another path in reverse direction. Second, it
is worth proposing other mechanisms of subset selection. The new mechanisms could
have the potential to obtain a better Pareto approximation set.

On the other hand, it should be very interesting to integrate MOPR into other meta-
heuristics such as tabu search, in order to evaluate its overall effectiveness. The cooper-
ation of MOPR with exact methods can be also a promising search area. For instance,
MOPR could be used to link Pareto optimal solutions found by an exact approach.
Several approaches between MOPR and exact approaches could be defined, as those
described in the taxonomy of Jourdan et al. [10].
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Abstract. In this work we deal with a multiobjective biclustering prob-
lem applied to microarray data. MOBInsga [21] is one of the multiobjec-
tive metaheuristics that have been proposed to solve a new multiobjective
formulation of the biclustering problem. Using MOBInsga, biclusters of
good quality can be extracted. However, the generated front approxima-
tion contains a lot of gaps. Using path relinking strategies, our aim is to
improve the generated front’s quality by filling the gaps with new solu-
tions. Therefore, we propose a general scheme PR-MOBInsga of differ-
ent possible hybridization of MOBInsga with path relinking strategies.
A comparison of different PR-MOBInsga hybridizations is performed.
Experimental results on reel data sets show that PR-MOBInsga allows
to extract new interesting solutions and to improve the Pareto front
approximation generated by MOBInsga.

1 Introduction

Biclustering (also called co-clustering, or two-mode clustering) is a well-known
data mining task. It has been widely applied in a broad range of domain such
as marketing, psychology and bioinformatics. Within the field of bioinformatics,
important applications have appeared with regard to the study of microarrays
data analysis. Microarray technologies allow studying thousands of genes behav-
ior under several conditions. These studies result in a large amount of data that
is usually presented in 2D matrices, where rows represent genes and columns
represent experimental conditions. Given a matrix data, biclustering performs
simultaneously the selection of rows and columns of a data matrix leading to the
discovery of biclusters. The first biclustering algorithm applied to the analysis
of microarray data was proposed by Cheng and Church[5].
Extracting biclusters from a microarray data can be formulated as a combi-

natorial optimization problem, where two objectives are to be maximized: the
similarity (coherence) between the bicluster’s elements and its size. As dissimi-
larity measure for microarray data, Mean Squared Residue (MSR) [5] is widely
used.
Furthermore, in microarray data analysis, biologists are usually interested in

extracting biclusters that present some fluctuations in the rows (non-flat biclus-
ters). Hence, mean rows variances can be considered as a third objective.

R.C. Purshouse et al. (Eds.): EMO 2013, LNCS 7811, pp. 200–214, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Since these criteria (size, coherence and mean rows variances) are usually
conflicting, some multiobjective models have been proposed to formulate the
biclustering problem [11,14,15,16,17,20].
For real-life or classical optimization, combining metaheuristics with other

methods such as complementary metaheuristics and exact methods, provides
very powerful search algorithms [22]. One of the methods that can be combined
to metaheuristics is Path Relinking (PR) strategy. Given two solutions s and t,
PR consists in creating a path of solutions that links them.
MOBInsga [21] is a hybrid MOEA (Multi Objective Evolutionary Algorithm)

for solving biclustering problem in the case of microarray data.MOBInsga allows
to extract biclusters of good quality. However, the generated front approxima-
tion is discontinuous i.e. several gaps exits along the entire front. In this work we
aim to improve the front’s quality by filling the gaps by new solutions generated
using PR strategies. For that, we proposed a general scheme (PR-MOBInsga)
of metaheuristics composed ofMOBInsga in conjunction with different PR vari-
ants. Moreover, we evaluate the effectiveness of PR-MOBInsga variants and
perform a comparison between them.
This paper is organized as follows: section 2 gives some details about the

problem modeling and MOBInsga algorithm. Then, definitions related to the
multiobjective path relinking and its different variants are given. Experimental
results and a comparative analysis are discussed in section 3. The last section
concludes the paper and gives some perspectives.

2 Multiobjective Path Relinking for Gene Expression
Data

In this section, we present our multiobjective model for the biclustering of mi-
croarray data, and give some details about MOBInsga. After that, PR strategy
is presented and the different ways of integrating it in a multiobjective meta-
heuristic are detailed. Finally we give the general scheme of PR-MOBInsga
algorithms.

2.1 Multiobjective Biclustering

Let X = (C,G) be a microarray data matrix, where C = {C1, C2, ...CN} repre-
sents a set of N conditions and G = {G1, ..., GM} a set of M genes, and aij ∈ A
(i ∈ X, i ∈ Y ) represents the expression level of gene i under condition j. A
bicluster B is a submatrix of X defined by a subset of conditions I ⊂ C and a
subset of genes J ⊂ G: (B = (I, J)). The MSR value of a bicluster B=(I,J) is
defined by:

MSR(I, J) = 1
|I|×|J| ×

∑
i∈I,j∈J (aij − aiJ − aIj + aIJ)2

where aiJ represents the mean of the i-th row of B, aIj represents the mean of
the j-th column of B and aIJ the mean of all the elements in B.
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In order to optimize the three conflicting criteria (size, coherence and mean
rows variances) we consider respectively three objective functions f1, f2 and f3,
where:

f1(I, J) =
1
2 ×

|I|
|X| +

1
2 ×

|J|
|Y |

f2(I, J) =

{
MSR(I,J)

δ ifMSR(I, J) � δ
0 else

f3(I, J) =
1

Rvar(I,J)+1 (Rvar(I,J): mean of rows variances)

The objectives f1 and f2 are to be maximized whereas f3 has to be minimized.
δ is user-threshold that represents the maximum dissimilarity allowed within
the bicluster. As the size and similarity criterion are conflicting, we allow the
function f2 to be maximized as long as the residue does not exceed the threshold
δ, while f1 (size) is always maximized and f3 is always minimized. More details
about the proposed model are given in [21].
In order to solve this model, we have proposed a multiobjective evolution-

ary algorithm called MOBInsga based on NSGA-II and hybridized with a local
search inspired from Cheng and Church’s heuristic. All details aboutMOBInsga
are given in [21].

2.2 Solutions Encoding

In our approach, each solutions represents a bicluster. We choose to represent
a bicluster as a list compound of four parts: the first part is an ordered rows
indexes, the second part is an ordered columns indexes, the third part is the
rows number and the fourth part is the columns number. By this representa-
tion we aim to reduce time and memory space especially for local search based
metaheuristics.
Given the data matrix presented in Figure 1, the string {1 3 2 3 2 2} represents

the bicluster compound of the rows (1 and 3) and the columns (2 and 3). The
last numbers (2 and 2) indicate that the bicluster contains 2 rows and 2 columns.

6 3 9
5 17 2
1 0 4

Data matrix with
a biclsuter’s

elements (in bold)

3 9
0 4

1 3 2 3 2 2

The corresponding bicluster
and its encoding

Fig. 1. Example of a solution encoding
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In literature, a solution (bicluster) is usually represented by a fixed size binary
string, with a bit string for genes appended by another bit string for conditions. A
bit is set to one if the corresponding gene/condition is present in the bicluster,
and set to zero otherwise. Other representation is considered in [19], where a
solution represents a set of biclusters. A solution is compound of two parts: one
for clustering the genes, and another for clustering the conditions. The first M
positions represent the M gene cluster centers, and the remaining N positions
represent the N condition cluster centers.

2.3 Multiobjective Path Relinking

Path Relinking (PR) approach was originally proposed by Glover et al. [9]
within the framework of scatter search. It allows exploring paths connecting
elite solutions found by scatter search. However, this strategy may be gener-
alized and applied to any population-based metaheuristic generating a pool of
”good” solutions such as evolutionary algorithms, greedy adaptive search proce-
dure (GRASP), ant colony, and iterative local search. A general scheme is given
in Figure 2.3.
Starting from a solution s, PR approach generates and explores the trajectory

in the neighborhood space that leads to a target solution t. A sequence of neigh-
boring solutions in the decision space is generated from the starting solution to
the target solution. The best found solution in the sequence is returned. Adding
some (good) solutions contained in the trajectory allow integrating intensifica-
tion and diversifications strategies.

Path Relinking

(s,t) selection

intermediate operation

Metaheuristic

(s,t)

{s, x1, x2, ..., t}

�
�
�

�
�
�

x0 = s

dist(xi, t)
=
0

find S(xi) = xi+1/xi ∈ N(x)and

dist(xi+1, t) < dist(xi, t)

choose xi+1 ∈ S(xi) according to

move selection criterion

no

yes

return

{s, x1, ..., t}

Fig. 2. Path Relinking strategy within a metaheuristic framework
{x1, ..., xn} is a set of solutions that links s and t

Some studies used PR in the multiobjective context [2,3,18]. In [3], [2] and [18]
the PR is used in order to improve the Pareto approximation found by using re-
spectively a Genetic Algorithm, Iterative Local Search and GRASP algorithm.
In fact, applying PR strategy on solutions chosen from the Pareto front ap-
proximation may improve its diversification and convergence toward the Pareto
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Optimal Front. On the other hand, if there is a gap of solutions along the Pareto
front, the path exploration feature would search for non-dominated solutions
between solutions at either side of the gap.

2.4 PR-MOBInsga Algorithms

In our work, we integrate PR strategy in order to improve the results given by
MOBInsga. In PR-MOBInsga the PR strategy is applied over some solutions
selected from the Pareto front approximation generated by MOBInsga.
Before integrating path relinking, multiple strategies in the different PR steps

have to be fixed, mainly:

– pre-PR: Before starting the application of PR, two solutions (starting and
target solutions) have to be selected. This selection is done according to a cri-
terion that defines the goal of integrating the PR strategy, i.e intensification,
diversification, etc.

– During PR: in order to generate the path that links starting and target
solutions, a neighborhood operator has to be defined. On the other hand, a
distance operator is required to be able to measure the progress while gener-
ating the path. Once the neighborhood and distance operators are defined,
we need to define a move selection criterion.

– Post-PR: Some of the obtained solutions may be considered to undergo an
intermediate operation in order to improve their quality. Usually a local
search is involved.

In the following we detail the different strategies to be fixed in combining a
population-based multiobjective metaheuristic with path relinking.

Selection of Linked Solutions

The choice of the linked solutions is very important in designing the PR as dif-
ferent choices lead most of the times to different results. In mono-objective op-
timization, generally good solutions are chosen to be linked, which corresponds,
in the multiobjective case, to non-dominated solutions.
In the case where the distances in the objective and decision space are corre-

lated, favoring distant solutions may favor the exploration of the search space,
while favoring adjacent solutions may favor intensification of the search process.
However, if the distances are not correlated we cannot predict the position of
the new solutions generated by PR relative to the linked solutions in the objec-
tive space. As a result, it is useless to favor particular way in selecting linked
solutions.
As distance measure, we have considered Euclidean distance in the objective

space and Edit distance in the decision space. The Edit distance is defined by
the minimal cost to transform one string into the other via a sequence of edit
operations (usually insertions, deletions and replacements), where insertions and
deletions have equal cost and replacements have twice the cost of an insertion [8].
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For our case, studying the correlation between the two distances in the two
spaces revealed that they are not correlated. Hence, we deduce that the distance
cannot be used as a selection criterion of the starting and the target solutions.
Consequently, a random selection of the solutions seems to be the best strategy
of selection.

Neighborhood and Distance Operators

The neighborhood operator has a high influence on the quality of the algorithm.
In order to perform the operation of ’linking’ the initial and the target solutions,
it is necessary to be able to generate all (or at least a part of) the neighbors to get
closer to the target solution. Iterating the getting closer mechanism allows the
construction of one, several, or all the paths linking the two solutions. Besides
the neighborhood operator it is necessary to define a distance operator in order
to guarantee that at each step of the path construction, the distance to the target
solution decreases.
Given two solutions s and t. Let Inds−t be the set of rows and columns indexes

in s and not present in t and symmetrically, let Indt−s be the set of rows and
columns indexes in t and not present in s. The trajectory between s and t can be
defined by adding (and removing) sequentially the elements of: Indt−s (Inds−t).
Figure 3 gives an example of possible moves.

s 2 3 4 1 2 3 2

t 1 2 3 2 3 3 2

1 2 3 4 1 2 4 2 Add row 1

2 3 4 1 2 3 3 3 Add col 1

2 3 1 2 2 2 remove row 4

2 3 4 2 3 1 remove col 3

First possible move from s toward t

Fig. 3. Example of the possible moves that can be applied to s to get closer to t

As distance operator between the solutions, we choose the Edit distance.
Hence, the number of moves (distance) that have to be applied to join t starting
form s is defined by the sum of Inds−t and Indt−s cardinalities.

dist(s, t) = editDistance(s, t) = card(Inds−t) + card(Inds−t)

Let xi and xi+1 be two successive solutions of the path that links s to t. Thus,
xi+1 is obtained by adding (or removing) an element j of the Indt−s (or Inds−t)
set.

xi+1 = xi ∪ {j}, where j ∈ Indt−s or xi+1 = xi − {j}, where j ∈ Inds−t

Therefore, dist(xi+1) = dist(xi)− 1, i.e. each move applied allows to reduce the
distance to the target solution.
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Move Selection

Using the neighborhood operator, we can generate several paths that link so-
lutions s and t. As the number of explored solutions grows exponentially with
the distance between the two considered solutions, it is time consuming task to
generate all the paths. Thus, at each step in path construction (to obtain xi+1

form the current solution xi), we have to decide which move to apply (which
j ∈ (Indt−s ∪ Inds−t) will be added or removed). Different strategies may be
considered, such as:

1. Random selection: where each move in the path construction is randomly
chosen from the all the possible moves.

2. Single objective selection: at each move of the path construction, we choose
the one producing the best solution optimizing one objective function.

3. Multiobjective selection:
– Pareto based selection: we evaluate all the possibilities for j ∈ Inds−t to
be removed and j ∈ Indt−s to be added and extract the non-dominated
set of solutions in the neighborhood space. Once the non-dominated
set is found, another strategy is considered to reduce the size of the
exploration. Basseur et al. [3] have considered a random aggregation of
the objectives to select only one solution in the set of non-dominated
solutions.

– Aggregation selection: the selection of a solution is done be evaluating
all the possibilities and choosing the one that optimizes the weighted
objective function: f(x) =

∑
i∈n wifi(x).

– Sequential selection: the selection of a solution is done by alternating
the objective function used. In this way, if fk is used to select xi, then
fk+1 mod n is used to select xi+1, with n is the number of objectives.

4. Hybrid selection: for some problems, it may be important to guide the se-
lection by a combination of several strategies.

Intermediate Operation

After the generation of all the intermediate solutions in the path, we select a
set of solutions from this path to integrate the Pareto front approximation. The
solutions generated using PR may not be as good as the solutions generated by
MOBInsga. In other words, they may be dominated by them. Hence, integrating
the new solutions to MOBInsga’s Pareto front approximation may not be pos-
sible. However, an intermediate operation can be applied over the selected path
solutions in order to improve their convergence toward the Pareto front. Different
strategies could be considered in choosing solutions from the path. In [23], Zeng
proposed four different criteria: all solutions, non-dominated solutions, middle
solution and k-middle solutions. By choosing middle (and k-middle) solutions,
the author aim to avoid the problem of proximity of intermediate solutions to
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initial and guiding solutions. In fact, the solutions located at the beginning or
at the end of the path are similar to the initial solution or the guiding solution
respectively and they could be not very useful. In our case, we consider all
solutions with non-null values in the second objective function, i.e. solutions
with MSR value below the threshold. In fact, the objective function f2 of the
model is set to 0 when the MSR value of the relevant solution is above a threshold
δ, which means that this solution is not interesting.
As an intermediate operation, we use a Dominance-based Multiobjective Local

Search DMLS [13] algorithm which consists in iteratively improving and up-
dating an archive of non-dominated solutions. At each iteration, one or more
non-visited solutions are selected (solutions with non-explored neighborhood)
from the archive. Then, the neighborhood of the selected solutions is explored
looking for new dominating solutions. Several DMLS variants exist depending in
the selection and exploration strategies. In our case, we use DMLS(1,*) which
corresponds to the well-known PLS-1 algorithm [7]. At each generation, PLS-1
selects one non-visited solution and the whole neighborhood.

MOBInsga

Intermediate Operation

Initial population

Approximation of the
Pareto Front

Path Relinking

Move Selection

Single objective

Random

(s,t) selection
w

hile
elapsed

tim
e

<
m

ax
tim

e

Distance

Dominance Aggregation Sequential

Solutions Selection

(s,t)

xi, xj , ... All

Middel k-middel

PLS-1

Random

Best

Fig. 4. General scheme of PR-MOBInsga algorithms. The different options related to
the chosen variants RPR, APR and PPR are written in bold.

General Scheme
In our work, we compare different PR strategy variants with different move
selection strategies. Figure 4 presents the general scheme of the PR-MOBInsga
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algorithms. Starting by a random initial population, MOBInsga generates a
first approximation of the Pareto Front. After that, according to a selection
(s,t) criterion, a starting and a target solution are selected from the Pareto
approximation. Then, a PR is applied over the selected solutions based on amove
selection criterion. Some of the solutions that comprise the path are selected to
serve as initials solutions for the PLS-1. In our case, we chose only solutions with
MSR value below the threshold δ. The process: (s,t) selection, PR, PLS-1, is
repeated while a maximum time is not reached.

3 Experiments and Results

In this study, we will compare the performance of the different PR variants
when combined withMOBInsga. We have chosen to study the different variants
related to the different multiobjective move selection, mainly: Pareto based se-
lection and aggregation selection. Moreover, we consider the random selection.
The different resulting algorithms are PPR-MOBInsga, APR-MOBInsga and
RPR-MOBInsga respectively. All the implementation have been done thanks
ParadisEO framework1 and in particular with ParadisEO-MOEO [12]. Further-
more, we will determine the biological relevance of some biclusters that have
been found through PR for the Yeast cell-cycle data.

3.1 Data and Parameters

In our experiments we use the well-known Yeast Cell Cycle data [6] (2884 genes
and 17 conditions), Human B-cell expression data [6] (4026 genes and 96 condi-
tions) and Colon data [1] (2000 genes and 62 conditions).
The mechanism of missing data replacement is explained in [21]. For each

dataset, we ran 20 times each algorithm and set the population size to 200. The
crossover and mutation probabilities are set to: 0.5 and 0.4 respectively. These
parameters have been set experimentally. For each data set, the runs are realized
with a specific time limit (700 s for Yeast data, 2000 s for Colon data and 3000
s for Human data). For the combined approach, we chose to run MOBInsga for
10% then 90 % of the total run time. A maximum number of generations is used
as a stopping criterion for PLS-1. The number of generations of PLS-1 is set to 5
when the rate of time granted to PR is 10% of total time, and 45 when it is 90%.

3.2 Performance Assessment

In order to evaluate the quality of the non-dominated front approximations ob-
tained for a specific test instance, we follow the protocol given by Knowles et
al. [10]. For that, we consider the hypervolume difference indicator (I−H) and
the additive ε-indicator (I−ε+) in order to assess the performance of the different
algorithms. To this end, for each data set, we compute 20 hypervolume differ-
ences and 20 epsilon measures, corresponding to the 20 runs, per algorithm. As

1 http://paradiseo.gforge.inria.fr
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suggested by Knowles et al.[10] , once all these values are computed, we perform
a statistical analysis on pairs of optimization methods for a comparison on a
specific test instance. For this purpose, we use the Fisher-Matched statistical
test.
Note that all the performance assessment procedures have been achieved using

the performance assessment tool suite provided in PISA [4].

3.3 Results and Discussion

Tables 1 and 2 (3 and 4) give a comparison of MOBInsga and different PR-
MOBInsga algorithms with regard to the hypervolume indicator (I

−
H) and the

epsilon indicator (Iε+) respectively where the time accorded to MOBInsga in
the combined algorithms represents 90% (10%) of the total run time. According
to the metric under consideration, either the results of the algorithm located at
a specific row are significantly better than those of the algorithm located at a
specific column ('), either they are worse (≺) or there is no significant difference
between both (≡).
For the three studied data sets, Tables 1 and 2 show that almost all com-

bined metaheurstics PR-MOBInsga outperform MOBInsga with regard to the
hypervolume and epsilon indicators. We can see that MOBInsga do not outper-
form any PR-MOBInsga algorithm. In the case of Human data set, MOBInsga
is equivalent to APR-MOBInsga and PPR-MOBInsga and for colon data set,
MOBInsga is equivalent to PPR-MOBInsga.

Table 1. Comparison of the different metaheuristics for the I−H metrics by using Fisher-
Matched statistical test with a p-value of 10%. For the combined metaheuristics, the
time allocated to PR is 10% and to MOBInsga is 90% of the execution time respec-
tively.

MOBInsga APR-MOBInsga PPR-MOBInsga RPR-MOBInsga

Human

MOBInsga - ≡ ≡ ≺
APR-MOBInsga ≡ - � ≡
PPR-MOBInsga ≡ ≺ - ≺
RPRMOBInsga � ≡ � -

Yeast

MOBInsga - ≺ ≺ ≺
APR-MOBInsga � - � ≺
PPR-MOBInsga � ≺ - ≺
RPR-MOBInsga � � � -

Colon

MOBInsga - ≺ ≡ ≺
APR-MOBInsga � - � ≡
PPR-MOBInsga ≡ ≺ - ≺
RPR-MOBInsga � ≡ � -
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Table 2. Comparison of the different metaheuristics for the Iε metrics by using Fisher-
Matched statistical test with a p-value of 10%. For the combined metaheuristics, the
time allocated to PR is 10% and to MOBInsga is 90% of the execution time respec-
tively.

MOBInsga APR-MOBInsga PPR-MOBInsga RPR-MOBInsga

Human

MOBInsga - ≡ ≡ ≺
APR-MOBInsga ≡ - � ≡
PPR-MOBInsga ≡ ≺ - ≺
RPR-MOBInsga � ≡ � -

Yeast

MOBInsga - ≺ ≺ ≺
APR-MOBInsga � - ≺ ≺
PPR-MOBInsga � � - �
RPR-MOBInsga � � ≺ -

Colon

MOBInsga - ≺ ≡ ≺
APR-MOBInsga � - � ≺
PPR-MOBInsga ≡ ≺ - ≡
RPR-MOBInsga � ≡ � -

Table 3. Comparison of the different metaheuristics for the I−H metrics by using Fisher-
Matched statistical test with a p-value of 10%. For the combined metaheuristics, the
time allocated to PR is 90% and to MOBInsga is10% of the execution time.

MOBInsga APR-MOBInsga PPR-MOBInsga RPR-MOBInsga

Human

MOBInsga - ≡ � �
APR-MOBInsga ≡ - ≡ ≡
PPR-MOBInsga ≺ ≡ - ≡
RPR-MOBInsga ≺ ≡ ≡ -

Yeast

MOBInsga - ≡ ≡ ≺
APR-MOBInsga ≡ - � ≡
PPR-MOBInsga ≡ ≺ - ≡
RPR-MOBInsga � ≡ ≡ -

Colon

MOBInsga - ≡ ≡ ≡
APR-MOBInsga ≡ - ≡ ≡
PPR-MOBInsga ≡ ≡ - ≡
RPR-MOBInsga ≡ ≡ ≡ -

Table 1 shows that RPR-MOBInsga is not outperformed by any algorithm
with regard to the hypervolume indicator. In the case of Human and Colon
data sets, RPR-MOBInsga is equivalent to APR-MOBInsga. Concerning epsilon
indicator, Table 2 shows that RPR-MOBInsga is equivalent to PPR-MOBInsga
in the case of Colon data and outperformed by it in the case of Yeast data.
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Table 4. Comparison of the different metaheuristics for the Iε metrics by using Fisher-
Matched statistical test with a p-value of 10%. For the combined metaheuristics, the
time allocated to PR is 90% and to MOBInsga is 10% of the execution time.

MOBInsga APR-MOBInsga PPR-MOBInsga RPR-MOBInsga

Human

MOBInsga - ≡ � �
APR-MOBInsga ≡ - ≡ ≡
PPR-MOBInsga ≺ ≡ - ≡
RPR-MOBInsga ≺ ≡ ≡ -

Yeast

MOBInsga - ≡ ≡ ≺
APR-MOBInsga ≡ - � ≡
PPR-MOBInsga ≡ ≺ - ≡
RPR-MOBInsga � ≡ ≡ -

Colon

MOBInsga - ≡ ≡ ≡
APR-MOBInsga ≡ - ≡ ≡
PPR-MOBInsga ≡ ≡ - ≡
RPR-MOBInsga ≡ ≡ ≡ -

From that, we can conclude that according 10% of time to PR strategy af-
ter MOBInsga improves the quality of the extracted Pareto Front approxima-
tion with regard to the hypervolume and epsilon indicators. Furthermore, RPR-
MOBInsga gives the best results compared to the other strategies. This can be
explained by the importance of applying several times randomly PR instead of
spending time to choose the best path, either using Pareto selection or aggre-
gation selection. Tables 3 and 4 show that providing less time to MOBInsga
(10%) in the combined metaheuristics reduces the quality of the extracted Front
approximation.
These results show the interest of combiningMOBInsga with PR, and specif-

ically with the Random move selection Path Relikning. In the other hand, giving
the role of MOBInsga in converging toward the optimal Pareto front is of a
significant importance.

3.4 Biological Relevance

In this section, we are interested in showing the biological value of biclusters ex-
tracted using PR strategy. We determined the biological relevance of relatively
small biclusters for the Yeast cell-cycle data, with δ = 150. The idea is to deter-
mine whether the set of genes discovered by PR strategy during R-MOBInsga
algorithm show significant enrichment with respect to a specific Gene Ontology
(GO) annotation. For that, we use the web-tool Gene Ontology Term Finder 2.
In fact, GO Term Finder searches for significant shared GO terms, or parents of

2 http://db.yeastgenome.org/cgi-bin/GO/goTermFinder
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those GO terms, used to describe the genes of a given bicluster to help us dis-
covering what the genes may have in common. Here genes are assigned to three
structured, controlled vocabularies (ontologies) that describe gene products in
terms of associated biological processes, components and molecular functions in
a species-independent manner Table 5 shows the significant shared GO terms
(or parent of GO terms) used to describe the set of genes (154 and 228) in
the biclusters, for the process, function and component ontologies. The values
within parentheses after each GO term in Table 5, such as (46; 6.09e-05) in the
first bicluster, indicate that out of 154 genes in the first bicluster 46 belong to
this process, and the statistical significance is provided by a p-value of 6.09e-05
(highly significant). Note that the genes in the biclusters share other GO terms
also, but with a lower significance (i.e., have higher p-value).

Table 5. Significant shared GO Terms of two selected biclusters using RPR-MOBInsga

for yeast data

Bicluster’s size Process Function Component

14x154 cellular componen DNA-directed RNA macromolecular

biogenesis polymerase activity complex

(46; 6.09e-05) (5;0.03119) (86,5.89e-11)

cellular process intracellular part

(132; 0.00061) (136,9.31e-05)

11x228 nucleic acid DNA-directed RNA intracellular part

metabolic process polymerase activity (200; 9.19e-07)

(85; 7.70e-06) (6; 0.02735)

cellular macromolecule membrane-bounded

(metabolic process organelle

(122,0.00214) (159,4.14e-05)

4 Conclusion

In this work, we have studied the hybridization of multiobjective metaheuristics
with path relinking techniques. As an application, we choose MOBInsga algo-
rithm: a multiobjective metaheuristic for biclustering problem applied to the
analysis of microarray data. By integrating Path Relinking technique, we aim to
improve the quality of the front generated byMOBInsga. Several path relinking
variants can be defined depending on the solution selection and move selection
strategies.
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In our work, we studied three path relinking variants namely RPR, APR and
PPR which correspond to random move selection, aggregation-based move se-
lection and Pareto-based move selection. The results showed that combining PR
technique allow improving the front quality in terms of hypervolume and epsilon
indicators. In the other hand, the results showed the importance of MOBInsga
in the convergence of the algorithms PR-MOBInsga. In terms of move selection
strategy, experiments showed that random selection outperforms the advanced
strategies such that: Pareto based and Aggregation based strategies. This can be
explained by the low time consuming of random strategy which allows applying
PR more times compared to the advanced strategies.
In future works, other hybridization schemes between MOBInsga and PR

strategy will be considered. Especially, integrating PR within MOBInsga by
applying it in each generation over the updated archive.
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Abstract. We analyze here some properties of the maximin fitness func-
tion, which has been used by several researchers, as an alternative to
Pareto optimality, for solving multi-objective optimization problems. As
part of this analysis, we identify some disadvantages of the maximin fit-
ness function and then propose mechanisms to overcome them. This leads
to several selection operators for multi-objective evolutionary algorithms
which are further analyzed. We incorporate them into an evolutionary al-
gorithm, giving rise to the so-called Maximin-Clustering Multi-Objective
Evolutionary Algorithm (MC-MOEA) approach. Our proposed approach
is validated using standard test problems taken from the specialized lit-
erature, having from two to eight objectives. Our preliminary results
indicate that our proposed approach is a good alternative to solve multi-
objective optimization problems having both low dimensionality (two or
three) and high dimensionality (more than three) in objective function
space.

1 Introduction

The use of evolutionary algorithms for solving multi-objective optimization prob-
lems (MOPs) has become very popular in the last few years [7]. When designing
multi-objective evolutionary algorithms (MOEAs), there are two main types of
approaches that are normally used as selection mechanism: (i) those that incor-
porate the concept of Pareto optimality, and (ii) those that do not use Pareto
dominance to select individuals.
In this work, we are interested in the maximin fitness function [2] (belonging

to the type (ii)). This technique assigns a fitness to each individual in the pop-
ulation. Such fitness value encompasses Pareto dominance (we can know which
individuals are non-dominated), distance to the non-dominated individuals, and
clustering between individuals (it penalizes individuals that are too close from
each other). This scheme has the advantage of requiring very simple operations
to calculate the fitness and is, thus, computationally efficient (its complexity is
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linear with respect to the number of objectives). A preliminary study allowed us
to design some selection operators based on the maximin fitness function which
are incorporated into a MOEA that uses a simulated binary crossover (SBX) and
a polynomial mutation operator (PM), giving rise to the main proposal of this
paper, which is called: Maximin-Clustering Multi-Objective Evolutionary Algo-
rithm (MC-MOEA). The proposed approach is validated with several standard
test problems using the hypervolume and the additive epsilon-indicator. Our pro-
posed MC-MOEA approach is compared with respect to the NSGA-II (which is
a very competitive Pareto-based MOEA), with respect to SMS-EMOA (which
is a hypervolume-based MOEA), and with respect to a version of SMS-EMOA
that uses Monte Carlo simulation to approximate the exact hypervolume (we
called it APP-SMS-EMOA) 1. Our preliminary results indicate that our pro-
posed approach is a viable alternative, particularly when dealing with a high
number of objectives, since it produces results that are similar in quality to
those obtained with SMS-EMOA (low dimensionality) and APP-SMS-EMOA
(high dimensionality), but at a very low computational cost.
The remainder of this paper is organized as follows. The maximin fitness

function is described and studied in Section 2. Section 3 presents the proposed
mechanisms to improve the maximin fitness function and describes in detail
three selection operators based on it. In Section 4, we present a full description
of our proposed MC-MOEA approach. Our experiments and the results obtained
are shown in Section 5. Finally, we provide our conclusions and future work in
Section 6.

2 Maximin Fitness Function

The maximin fitness function was proposed by Richard Balling and Scott Wilson
in [2],[4] and, it works as follows. Let’s consider a MOP with K objectives and
an evolutionary algorithm whose population size is P . Let f ik be the normalized
value of the kth objective for the ith individual in a particular generation. Assum-
ing minimization problems, we have that the jth individual weakly dominates
the ith individual if:

mink(f
i
k − f

j
k) ≥ 0 (1)

The ith individual, in a particular generation, will be weakly dominated by an-
other individual, in the generation, if:

maxj �=i(mink(f
i
k − f

j
k)) ≥ 0 (2)

Then, the maximin fitness function of individual i is defined as:

fitnessi = maxj �=i(mink(f
i
k − f

j
k)) (3)

where the min is taken over all the objectives from 1 to K, and the max is
taken over all the individuals in the population from 1 to P , except for the same
individual i. From eq. (3), we can say the following:

1 We approximate the hypervolume using the approach proposed in HyPE [1].
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1. Any individual whose maximin fitness is greater than zero is a dominated
individual,

2. Any individual whose maximin fitness is less than zero is a non-dominated
individual.

3. Finally, any individual whose maximin fitness is equal to zero is a weakly-
dominated individual.

2.1 Reviewing the Properties of the Maximin Fitness Function

Let’s review the properties of the maximin fitness function as presented in [3]:

1. The maximin fitness function penalizes clustering of non-dominated individ-
uals. In the limit, the maximin fitness of duplicate non-dominated individuals
is zero. See Figure 1.

2. The maximin fitness function rewards individuals at the middle of convex
non-dominated fronts, see Figure 2. Also, it rewards individuals at the ex-
tremes of concave non-dominated fronts, see Figure 3. The maximin fitness
function is a continuous function of objective values.

3. The maximin fitness of dominated individuals is a metric of the distance to
the non-dominated front. See Figure 4.

4. The max function in the maximin fitness of a dominated individual is always
controlled by a non-dominated individual and is indifferent to clustering. The
max function in the maximin fitness of a non-dominated individual may be
controlled by a dominated or a non-dominated individual. See Figure 4.

1 2

1

2 A(−1)

B(−0.5)

C(−0.5)

f1

f2

D(−0.5)

Fig. 1. We can see that the maximin fitness function penalizes individuals B, C and D
because they are close from each other. It also rewards individual A, because it is far
away from the other individuals.

Analyzing Property 1, we can see that although the maximin fitness function
penalizes the clustering between individuals, it has the following disadvantage.
In Figure 1, we can observe that individuals B, C and D have the same maximin
fitness. Then, if we use the maximin fitness function, we can not know which of
the three is the best individual to form part of the next generation.
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f1 f1 f1
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A(0)
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(a) (b) (c)

A(0)

B(−0.5)

C(−1)

E(0.5)

C(−0.5) C(0) D(−0.5)

Fig. 2. In all cases, we can see that the maximin fitness function rewards individuals at
the middle of convex non-dominated fronts. In (c), individual A has a maximin fitness
equal to zero because it is a weakly dominated solution, and individual E has a positive
maximin fitness equal to 0.5 because it is a dominated solution.
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1
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f1

f2

A(−1.5)

B(−0.5)

C(−1.5)

A(−2) B(0)

C(−2)

E(0.5)

C(−0.5)

D(−1.5)

B(−0.5)

(a) (b) (c)

A(0)

Fig. 3. In all cases, we can see that the maximin fitness function rewards individuals
at the extremes of concave non-dominated fronts. In (c), individual A has a maximin
fitness equal to zero because it is a weakly dominated solution, and individual E has a
positive maximin fitness equal to 0.5 because it is a dominated solution.

To review Property 4, let’s see Figure 4. In this case, we can see that the
fitness of the non-dominated individual B is affected by the dominated individ-
ual D. Then, the maximin fitness function penalizes non-dominated individuals
if they are close to another individual (no matter whether or not it is a domi-
nated solution). The author of the maximin fitness function proposed in [4] the
following modified maximin fitness function:

fitnessi = maxj �=i,j∈P (mink(f
i
k − f

j
k)) (4)

where P is the set of non-dominated individuals. Using eq. (4) to assign the
fitness of each individual, we guarantee that the fitness of a non-dominated
individual is controlled only by non-dominated individuals and then we only
penalize clustering between non-dominated individuals.
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Fig. 4. In (b), we can see that the fitness of individuals D, E and F is controlled by the
non-dominated individual B, and the value of their fitness is a metric of the distance
to the individual B. Also, we can see that the fitness of B is affected by the dominated
individual D.
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Fig. 5. In all cases, we use an evolutionary algorithm based on Differential Evolution
coupled to any of the 3 selection mechanisms proposed here. In (a), we use only the
maximin fitness to select individuals. In case (b), we use the maximin fitness and the
constraint that prevents us from selecting similar individuals (in objective function
space). Finally, in (c) we use the full selection operator proposed in this work.
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On the other hand, it is important to analyze if it is better to prefer weakly
dominated individuals than dominated individuals. In the study that we will
include next, we show that it is not good to prefer weakly dominated individuals
or individuals which are close to being weakly dominated (even if they are weakly
dominated by any dominated individual). For example, in Figure 2 (c), solution
A is a weakly dominated individual and solution E is a dominated individual.
To guarantee convergence to the Pareto optimal set, we must choose individual
E. Otherwise, it is possible that the evolutionary algorithm converges to a weak
Pareto optimal solution. Problem ZDT2 is an example of this:

f1(x) = x1

f2(x) = g(x)
(
1− (x1/g(x))2

)
g(x) = 1 +

9

n− 1

n∑
i=2

xi) (5)

where xi ∈ [0, 1], and the problem has 30 decision variables. If we set the fitness
of each individual with the maximin fitness function, into an evolutionary algo-
rithm, and after sorting the individuals with respect to their fitness, we perform
selection. Then, at the end of the generations, we obtain only weakly Pareto
points, see Figure 5 (a). This happens because f1 is easier to optimize than f2
and then, we quickly obtain weakly dominated solutions in this extreme of the
Pareto front.

3 Selection Operators Based on the Maximin Fitness
Function

Considering the properties of the maximin fitness function and its disadvantages,
we propose here three possibles selection operators.

3.1 Operator I

In order to deal with the problem of the weakly dominated individuals, we
proposed in [10] the following constraint: Any individual that we want to select
must not be similar (in objective space) to another (selected) individual. The
process to verify similarity between individuals is shown in Algorithm 1 and the
full selection process is shown in Algorithm 2. So, we avoid selecting solutions
that are weakly dominated by non-dominated solutions (see individual A in
Figure 2 (c)) or solutions which are weakly dominated by dominated solutions
(see individual F in Figure 4 (b)). In Figure 5 (b), we can observe that by
imposing this constraint, we can find the true Pareto front of the ZDT2 function.
In order to deal with the disadvantage of Property 1, we proposed in [10] a

technique based on maximin fitness and clustering. Such a technique works as
follows. If we want to select S individuals from a population of size P , then,
we choose the best S individuals with respect to their maximin fitness, and use
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Input : min dif (Minimum difference), x (individual), Y (population), P (population
size), K (number of objectives).

Output: Returns 1, if the individual x is similar to any individual in the population Y ;
otherwise, returns 0.

for i ← 1 to P do
for k ← 1 to K do

if |x.f [k]− Y [i].f [k]| < min dif then
return 1;

end

end

end
return 0;

Algorithm 1. IsSimilarToAny

them as centers of their clusters. Then, we proceed to place each individual in
the nearest cluster. Finally, for each of the resulting clusters, we recompute the
center, and choose the individual closest to it. It is important to note that we
don’t iterate many times to improve the distribution of the centers, we only
execute one time the correction. This procedure is shown in Algorithm 3.

Input : X (Population), P (population size), K (number of objectives), S (the number of
individuals to choose) and min dif (minimum difference between objectives).

Output: Y (Selected individuals).
s ← 1, i ← 1;
/*Sorting with respect the maximin fitness of each individual */
Xsorted ← Sort(X);
/*Fill up the new population with the best copies according to maximin fitness,

verifying that there is not a similar one */
while s ≤ S AND i ≤ P do

while IsSimilarToAny(min dif , Xsorted[i], Y , s, K) = 1 AND i ≤ P do
i ← i+ 1;

end
if i ≤ P then

Y [s] ← Xsorted[i];
s ← s + 1;

end

end
/*Fill up the new population with the best copies according to maximin fitness */
i ← 1;
while s ≤ S do

if Xsorted[i] has not been selected then
Y [s] ← Xsorted[i];
s ← s + 1;

end
i ← i+ 1;

end
return Y ;

Algorithm 2. Maximin-Selection

With the maximin-clustering technique, if we return to Figure 1 and assume
that we want to choose two individuals, we can see that regardless of the indi-
vidual (B, C or D) that we choose as an initial center of the cluster, we always
obtain two clusters: one of them contains individual A, and the other one con-
tains individuals B, C and D. After applying this procedure, we always choose
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Input : X (Population), NonDom (number of non-dominated individuals), K (number of
objectives) and S (number of individuals to choose).

Output: Y (individuals selected).
/*Choose the best S individuals, according to maximin fitness, as centers of the

clusters C */
Xsorted ← Sort(X), Cj = {Xsorted[j]};
/*Do one iteration of clustering */
for i ← S + 1 to NonDom do

if Xsorted[i] is closer to Cj then
Cj ← Cj ∪ Xsorted[i];

end

end
/*Obtain the new centers of the clusters */
for j ← 1 to S do

μj ← 1
|Cj |

∑
X[i]∈Cj

X[i];

end
/*Select to individuals who are closest to the centers of the clusters */
for j ← 1 to S do

if X[i] | X[i] ∈ Cj is the nearest to the center μj then
Y [j] ← X[i];

end

end
Returns Y ;

Algorithm 3. Maximin-Clustering Selection

individuals A and C. It is important to note that the above technique, which
is used to improve the distribution of the selected individuals, is only effective
in cases when all individuals are non-dominated. For example, if we analyze
Figure 4 (b), and we want to select three individuals, our technique selects in-
dividuals A, D and C, penalizing individual B. This is clearly not good because
individual B dominates individual D. In Figure 5 (c), we can see that if we use
the maximin-clustering technique, we obtain a better distribution of solutions.
In Algorithm 4, we describe the full selection operator.

Input : X (Current population), P (population size), K (number of objectives) and S
(number of individuals to choose).

Output: Y (individuals selected).
MaximinFitnessFunction(X, P, K);
if The number of nondominated individuals is greater to S then

Y ← Maximin-Clustering Selection(Xsorted, P , K, S);
else

Y ← MaximinSelection(Xsorted, P , K, S);
end
Returns Y ;

Algorithm 4. Operator I

3.2 Operator II

The clustering technique, that we propose to address the disadvantage of Prop-
erty 1, makes the correction of the centers only once. Then, if we choose more
efficiently the initial centers, we hope to obtain a better distribution of solutions
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along the Pareto front. Considering Property 4, we believe that it is a good idea
to use the maximin fitness function at the beginning of the search and use the
modified fitness function when we have many non-dominated individuals 2 be-
cause in this part of the search process, we are interested in obtaining a better
distribution between non-dominated individuals and, the modified maximin fit-
ness guarantees to penalize clustering only between non-dominated individuals.
We show the full selection operator in Algorithm 5.

Input : X (Current population), P (population size), K (number of objectives) and S
(number of individuals to choose).

Output: Y (individuals selected).
if The number of nondominated individuals is greater to S then

ModifiedMaximinFitnessFunction(X, P, K);
Y ← Maximin-Clustering Selection(Xsorted, P , K, S);

else
MaximinFitnessFunction(X, P, K);
Y ← MaximinSelection(Xsorted, P , K, S);

end
Returns Y ;

Algorithm 5. Operator II

3.3 Operator III

For the last operator, we decided to apply the modified maximin fitness function
only when we use our clustering technique, because at the beginning of the
search process we need to penalize the clustering between individuals regardless
of their dominance. This is because we want to explore all the search space
and, therefore, we decided to use the original maximin fitness function at the
beginning of the evolutionary process. However, in the third operator, we propose
to use the modified maximin fitness function since the beginning of the search in
order to analyze the behavior of the operator when we use the modified maximin
fitness all the time. The third operator is described in Algorithm 6.

4 Maximin-Clustering Multi-Objective Evolutionary
Algorithm

In order to compare the three operators based on the maximin fitness function,
we designed a multi-objective evolutionary algorithm using a simulated binary
crossover (SBX) and a polynomial mutation operator (PM) to create new indi-
viduals combined with the previously described selection operators as follows: If
the size of the population is P , then we create P new individuals. The parents
are selected as follows: We use a binary tournament. At each tournament, two
individuals are randomly selected and the one with the higher fitness value is

2 Considering a (μ+ μ) selection scheme, we say that we have many non-dominated
individuasl if more than μ individuals are non-dominated.
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chosen. After that, we combine the population of parents and offspring to obtain
a population of size 2P . Then, we use one of the selection operators to choose
the P individuals that will take part of the following generation.

Input : X (Current population), P (population size), K (number of objectives) and S
(number of individuals to choose).

Output: Y (individuals selected).
ModifiedMaximinFitnessFunction(X, P, K);
if The number of nondominated individuals is greater to S then

Y ← Maximin-Clustering Selection(Xsorted, P , K, S);
else

Y ← MaximinSelection(Xsorted, P , K, S);
end
Returns Y ;

Algorithm 6. Operator III

5 Experimental Results

Aiming to validate the selection mechanism of our proposed approach with re-
spect to other types of mechanisms, we chose the following MOEAs: NSGA-II [8]
(based on Pareto dominance) and (SMS-EMOA) [5] (based on the hypervolume
performance measure [12] combined with the non-dominated sorting procedure
adopted in NSGA-II). Due to the high computational cost required to calcu-
late the hypervolume, we decided to use also an approximate calculation of the
hypervolume. For this sake, we used the source code of HyPE available in the
public domain [1] adopting 103 as our number of samples.

5.1 Experiments

For all our experiments, we used the two following sets of problems: The first con-
sists of five bi-objective test problems taken from the Zitzler-Deb-Thiele (ZDT)
test suite [13]. The second consisted of seven problems having three or more
objectives, taken from the Deb-Thiele-Laumanns-Zitzler (DTLZ) suite [9]. For
the DTLZ test problems, we used k = 5 for DTLZ1 and DTLZ6 and k = 10 for
the remaining test problems and, three, four, five, six, seven and eight objetive
functions (i.e., M = 3, 4, 5, 6, 7 and 8). For each test problem, we performed
30 independent runs. For all algorithms, we adopted the parameters suggested
by the authors of NSGA-II: crossover probability pc = 0.9, mutation probability
pm = 1/n, where n is the number of decision variables. Both for the crossover
and mutation operators, we adopted ηc = 15 and ηm = 20, respectively. For
our proposed selection operators we used min dif = 0.0001 in all cases. All ap-
proaches performed the same number of objective function evaluations. For the
ZDT test problems, we performed 20,000 evaluations (we used a population of
100 individuals and we iterated for 200 generations). For the DTLZ test prob-
lems we performed 125,000 evaluations (we used a population of 250 individuals
and we iterated for 500 generations). In the case of SMS-EMOA, we adopted
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five hours as our maximum computation time (SMS-EMOA requires more than
five hours when dealing with 4 or more objectives).
In order to assess performance, we adopted the hypervolume indicator (ϕ).3

and the additive ε-indicator 4 because these two indicators are Pareto compliant
and SMS-EMOA is based in ϕ and our MC-MOEA approach is based on the
maximin fitness function, which can be considered as the binary ε-indicator of a
solution with respect to a reference set defined by the remaining non-dominated
solutions of the population. To compute ϕ, we used the following reference points:
For the ZDT test problems, we used yref = [1.1, 1.1]. For DTLZ1, we used yref =
[y1, . . . , yM ] | yi = 0.7. For DTLZ(2-6), we used yref = [y1, . . . , yM ] | yi = 1.1.
For DTLZ7, we used yref = [y1, . . . , yM ] yM = 6.1 and yi�=M = 1.1.

5.2 Results

In Table 1, we present the results with respect to the hypervolume indicator and
we can see that our MC-MOEAs obtained competitive results with respect to
SMS-EMOA and APP-SMS-EMOA. One important thing is that our proposed
MC-MOEAs presented a consistent behavior when we increased the number
of objectives unlike NSGA-II. To validate the results in our experiments, we
performed a statistical analysis using Wilcoxon’s rank sum on our MC-MOEAs
with respect to SMS-EMOA and APP-SMS-EMOA and, we obtained that only
in the problems DTLZ3 (with 3, 5, 6, and 7 objectives) and DTLZ6 (with 4
and 5 objectives) the null hypothesis (“medians are equal”) can be rejected at
the 5% level. If we check these problems in Table 1, we can see that our MC-
MOEAs obtained better results than SMS-EMOA and APP-SMS-EMOA. This
means that in these problems our MC-MOEAs significantly outperformed both
SMS-EMOA and APP-SMS-EMOA. Note, however, that we could not include
the table with the results of the Wilcoxon’s rank sum due to space limitations.
Table 3 shows the results with respect to the additive epsilon indicator. In

this case, we only compared our MC-MOEAs with respect to APP-SMS-EMOA
because, as noted in Table 1, NSGA-II did not have a consistent behavior when
we increased the number of objectives and SMS-EMOA required a very large
computational time, making the comparison unfair. The results show that our
MC-MOEAs outperformed APP-SMS-EMOA in most cases. For these experi-
ments, we also performed a statistical analysis and we obtained that in the test
problems in which APP-SMS-EMOA outperformed our MC-MOEAs, we can
not reject the null hypothesis (“medians are equal”) and, in many cases, when
our MC-MOEAs outperformed APP-SMS-EMOA, the null hypothesis can be
rejected at the 5% level. An important advantage of our MC-MOEAs is that

3 The hypervolume was originally proposed by Zitzler and Thiele in [14], and it’s de-
fined as the size of the space covered by the Pareto optimal solutions. ϕ rewards
convergence towards the Pareto front as well as the maximum spread of the solu-
tions obtained. The disadvantage of this indicator is its high computational cost (the
running time for calculating ϕ is exponential in the number of objectives).

4 Given two approximate sets, A and B, the ε-indicator measures the smallest amount,
ε, that must be used to translate the set, A, so that every point in B is covered [7].
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Table 1. Results obtained with respect to the hypervolume indicator. The value in
parentheses in the first column indicates the number of objectives. We show average
values over 30 independent runs. The values in parentheses of the other columns cor-
respond to the standard deviations.
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Table 2. Running time required per run, s = seconds. All algorithms were implemented
in the C programming language and they were executed on PCs with the same hardware
and software platform.

Set of problems Objectives NSGA-II SMS-EMOA APP-SMS-EMOA MC-MOEAs

ZDT 2 � 1s 5s − 10s 5s − 10s � 1s

DTLZ 3 2s − 4s 4568s − 8468s 231s − 307s 3s − 9s

DTLZ 4 3s − 4s 14448s − 14650s 378s − 423s 5s − 12s

DTLZ 5 4s − 5s 15423s − 18000s 472s − 499s 9s − 14s

DTLZ 6 5s − 6s - 531s − 584s 8s − 16s

DTLZ 7 5 − 6s - 536s − 583s 9 − 18s

DTLZ 8 5s − 7s - 525s − 583 9s − 16s

computing the maximin fitness function is an inexpensive process, since their
complexities are linear with respect to the number of objectives. In Table 2, we
can see that our MC-MOEAs require much less time than SMS-EMOA and even
much less time than APP-SMS-EMOA. Thus, we argue that our MC-MOEAs
can be a good alternative for dealing with many objective optimization problems.

6 Conclusions and Future Work

In this work, we have studied the maximin fitness function and its properties with
the aim of identifying its advantages and disadvantages. Then, we proposed some
mechanisms to improve it. Our study encompassed three selection operators (one
of them was proposed in [10] and the other two were proposed here). These op-
erators were incorporated into a MOEA that uses simulated binary crossover
(SBX) and parameter-based mutation (PM), giving rise to the main proposal
of this paper, which is called: Maximin-Clustering Multi-Objective Evolutionary
Algorithm (MC-MOEA). We compared our proposed MC-MOEA with respect
to a Pareto-based MOEA (NSGA-II) and with respect to two hypervolume-
based MOEAs (SMS-EMOA and APP-SMS-EMOA). Our results showed that
our MC-MOEA outperformed NSGA-II in most cases and that it was compet-
itive with respect to SMS-EMOA and APP-SMS-EMOA with respect to the
hypervolume indicator, but at a much lower computational cost. Also, it was
better than APP-SMS-EMOA in most cases with respect to additive epsilon in-
dicator. Thus, we believe that our proposed selection operators can be a viable
alternative for dealing (at an affordable computational cost) with many-objective
optimization problems. As part of our future work, we plan to study the behav-
ior of our selection operators if we allow that the clustering technique iterates
for a longer time. We also plan to incorporate our selection operator into a dif-
ferent approach (e.g., particle swarm optimization) in order to assess the impact
of the search engine in the results. Finally, we plan to compare our approach
with respect to AGE, which is based on Maximin fitness [6], and with respect to
MOEA/D, which is based on decomposition and is known to be very
competitive [11].
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Table 3. Results obtained with respect to the additive epsilon indicator. The value
in parentheses in the first column indicates the number of objectives. We show aver-
age values over 30 independent runs. The values in parentheses of the other columns
correspond to the standard deviations.
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Abstract. Objective functions are discrete in combinatorial optimization. In 
general, the number of possible values of a discrete objective is totally different 
from problem to problem. That is, discrete objectives have totally different 
granularities in different problems (In this paper, “granularity” means the width 
of discretization intervals). In combinatorial multiobjective optimization, a 
single problem has multiple discrete objectives with different granularities. 
Some objectives may have fine granularities with many possible values while 
others may have very coarse granularities with only a few possible values. 
Handling of such a combinatorial multiobjective problem has not been actively 
discussed in the EMO community. In our former study, we showed that discrete 
objectives with coarse granularities slowed down the search by NSGA-II, 
SPEA2, MOEA/D and SMS-EMOA on two-objective problems. In this paper, 
we first discuss why such a discrete objective deteriorates the search ability of 
those EMO algorithms. Next we propose the use of strong Pareto dominance in 
NSGA-II to improve its search ability. Then we examine the effect of discrete 
objectives on the performance of the four EMO algorithms on many-objective 
problems. An interesting observation is that discrete objectives with coarse 
granularities improve the search ability of NSGA-II and SPEA2 on many-
objective problems whereas they deteriorate their search ability on two-
objective problems. The performance of MOEA/D and SMS-EMOA is always 
deteriorated by discrete objectives with coarse granularities. These observations 
are discussed from the following two viewpoints: One is the difficulty of many-
objective problems for Pareto dominance-based EMO algorithms, and the other 
is the relation between discrete objectives and the concept of ε-dominance. 

Keywords: Evolutionary multiobjective optimization, many-objective 
problems, discrete objectives, ε-dominance, combinatorial multiobjective 
optimization.  

1 Introduction 

Evolutionary multiobjective optimization (EMO) has been a hot research area in the 
field of evolutionary computation for the last two decades [2], [3], [24]. Whereas a 
large number of various EMO algorithms were proposed, Pareto dominance-based 
algorithms such as NSGA-II [5], SPEA [29] and SPEA2 [28] have always been the 
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main stream in the EMO community since Goldberg’s suggestion [7]. However, the 
use of scalarizing function-based algorithms (e.g., MOEA/D [27]) and indicator-based 
algorithms (e.g., SMS-EMOA [1]) have also been actively examined in recent studies,  
especially for difficult multiobjective problems with complicated Pareto fronts [20] 
and many-objective problems [25]. 

In multiobjective optimization, the ranges of values of each objective can be totally 
different. Those objective values are often normalized in the application of EMO 
algorithms to multiobjective problems so that the range of values of each objective 
becomes the same over all objectives. For example, a normalization mechanism was 
included in the crowding distance calculation of NSGA-II [5]. The importance of the 
normalization of objective values is widely recognized in the EMO community. This 
is because almost all elements of EMO algorithms except for Pareto dominance (e.g., 
crowding mechanisms, hypervolume calculations and scalarizing functions) depend 
on the magnitude of objective values of each objective.  

Objective values are discrete in combinatorial multiobjective optimization due to 
the combinatorial nature of decision variables. The number of possible values of each 
objective is totally different. For example, in pattern and feature selection for nearest 
neighbor classifier design [11], the number of patterns usually has more possible 
values than the number of features. This is because classification problems usually 
have more patterns than features (e.g., a magic data set in the UCI Machine Learning 
Repository has 19,020 patterns with 20 features). In multiobjective genetics-based 
machine learning [12], the total number of antecedent conditions has more possible 
values than the number of rules. This is because each rule has a different number of 
antecedent conditions. In multiobjective flowshop scheduling [16], the maximum 
flow time has more possible values than the maximum tardiness. This is because a 
large number of different schedules have the same value of the maximum tardiness 
even when they have different values of the maximum flow time. 

As these examples show, each discrete objective has a different number of possible 
values (i.e., different granularity). Some discrete objectives have fine granularities 
with many possible values while others have coarse granularities with only a small 
number of possible values. We have various examples of multiobjective problems 
where discrete objectives have totally different granularities. The handling of discrete 
objectives with different granularities, however, has not been actively studied for 
EMO algorithms. In our former work [15], we examined the effect of discrete 
objectives with different granularities on the search behavior of EMO algorithms 
through computational experiments on two-objective problems. For example, when 
two objectives had coarse granularities, the search by EMO algorithms was severely 
slowed down in comparison with the case of two objectives with fine granularities. 
When two objectives had different granularities, the search was biased towards one 
objective with a finer granularity. That is, a population was biased towards the edge 
of the Pareto front with the best value of that objective. The search along the other 
objective with a coarser granularity was severely slowed down. Whereas we clearly 
reported those interesting observations in our former work [15], we could not explain 
why the search by EMO algorithms was affected in such an interesting manner. The 
main aim of this paper is to explain the reasons for the above-mentioned observations. 

This paper is organized as follows. In Section 2, we briefly show the above-
mentioned interesting observations in our former work [15]. In Section 3, we clearly 
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explain why those interesting observations were obtained. Based on the explanations 
in Section 3, we suggest the modification of NSGA-II by the use of strong Pareto 
dominance in Section 4. It is shown that the suggested modification improves the 
search ability of NSGA-II on two-objective problems with coarse granularities. In 
Section 5, we examine the performance of EMO algorithms on many-objective 
problems with discrete objectives. Experimental results show that discrete objectives 
with coarse granularities improve the performance of NSGA-II and SPEA2 on many-
objective problems while they severely deteriorated the performance on two-objective 
problems. We also discuss why discrete objectives with coarse granularities have such 
a positive effect on many-objective optimization from the following two viewpoints: 
One is the difficulty of many-objective problems for Pareto dominance-based EMO 
algorithms, and the other is the relation between discrete objectives and the concept of 
ε-dominance [19]. In Section 6, we conclude this paper. 

2 Effect of Discrete Objectives on Two-Objective Optimization 

In our former work [15], we examined the effect of discrete objectives with different 
granularities on the search behavior of NSGA-II [5], SPEA2 [28], MOEA/D [27] and 
SMS-EMOA [1] on the following four types of two-objective problems: 

(i) Two-objective 500-item knapsack problem in Zitzler and Thiele [29], 
(ii) 500-bit one-max and zero-max problem, 
(iii) Modified 500-bit one-max and zero-max problem with a convex Pareto front, 
(iv) Modified 500-bit one-max and zero-max problem with a concave Pareto front. 

Similar effects of discrete objectives were observed on the search behavior of the four 
EMO algorithms on the three types of two-objective problems in our former work. 
Here we only show experimental results of NSGA-II on the two-objective 500-item 
knapsack problem in Zitzler and Thiele [29]. 

The two-objective 500-item knapsack problem with two constraint conditions in 
Zitzler and Thiele [29] is written as follows:  

Maximize 
=

=
n

j
jiji xpf

1
)(x ,  ,2,1=i  (1) 

subject to 
=

≤
n

j
ijij cxw

1
,  ,2,1=i  (2) 

=jx 0 or 1, ....,,2,1 nj =  (3) 

In (1)-(3), n is the number of items (i.e., n = 500 in this paper), x is a 500-bit binary 
string, pij is the profit of item j according to knapsack i, wij is the weight of item j 
according to knapsack i, and ci is the capacity of knapsack i. The value of each profit 
pij in (1) was randomly specified as an integer in the interval [10, 100]. As a result, 
each objective has integer objective values. We use exactly the same two-objective 
500-item knapsack problem as in Zitzler and Thiele [29]. 
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In Fig. 1, we show randomly generated 200 solutions of this two-objective 500-
item knapsack problem together with its Pareto front. In Fig. 1, we used a greedy 
repair method based on the maximum profit/weight ratio in Zitzler and Thiele [29] 
when randomly generated solutions were infeasible. The greedy repair method in [29] 
was always used in our computational experiments in this paper. As shown in Fig. 1, 
randomly generated solutions are not close to the Pareto front. Thus a high selection 
pressure towards the Pareto front is needed to efficiently search for Pareto optimal or 
near Pareto optimal solutions. At the same time, a strong diversity improvement 
mechanism is also needed to find a wide variety of solutions along the entire Pareto 
front. That is, EMO algorithms for the knapsack problem in Fig. 1 need strong 
convergence and diversification properties. Multiobjective knapsack problems have 
been frequently used to evaluate the performance of EMO algorithms in the literature 
(e.g., Jaszkiewicz [17] and Sato et al. [22]). 
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Fig. 1. Pareto front and randomly generated 200 solutions [15] 

In our former work [15], NSGA-II, SPEA2, MOEA/D and SMS-EMOA with the 
following parameter specifications were applied to the knapsack problem in Fig. 1: 

Coding: Binary string of length 500 (i.e., 500-bit string), 
Population size: 200, 
Termination condition: 2000 generations (400000 solution evaluations in MOEA/D),  
Parent selection:  Random selection from the population (SMS-EMOA), 
              Random selection from the neighborhood (MOEA/D), 
              Binary tournament selection with replacement (NSGA-II and 
SPEA2), 
Crossover: Uniform crossover (Probability: 0.8), 
Mutation: Bit-flip mutation (Probability: 1/500), 
Number of runs for each test problem: 100 runs. 

The origin (0, 0) of the two-dimensional objective space was used as a reference point 
for hypervolume calculation in SMS-EMOA. In MOEA/D, the weighted Tchebycheff 
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function was used in the same manner as in Zhang and Li [27]. The neighborhood 
size in MOEA/D was specified as 10. 

The four EMO algorithms were also applied to discretized problems with the 
discretization interval of width 100. For example, objective values in [20001, 20100] 
and [20101, 20200] were rounded up to 20100 and 20200, respectively. It should be 
noted that the width of the discretization interval for each objective in the original 
knapsack problem in Fig. 1 is 1. This is because each profit pij in the two objective 
functions was randomly specified as an integer in the interval [10, 100]. We denote 
discretized problems using the width of the discretization interval for each objective 
such as G100-G1 and G100-G100. In the G100-G100 problem, both objectives were 
discretized by the discretization interval of width 100. The original knapsack problem 
is denoted as G1-G1. Only the first objective of G100-G1 (only the second objective 
of G1-G100) was discretized by the discretization interval of width 100.  

In Fig. 2, we show experimental results by NSGA-II on the four knapsack 
problems (i.e., G1-G1, G1-G100, G100-G1 and G100-G100). In each plot of Fig. 2, 
all solutions at the final generation of a single run of NSGA-II are shown together 
with the 50% attainment surface [6] over its 100 runs.  
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Fig. 2. Experimental results by NSGA-II on four variants of the knapsack problem 
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3 Discussions on the Search Behavior of EMO Algorithms 

From each plot in Fig. 2, we can see that the following results were obtained about the 
search behavior of NSGA-II on each problem: 

(i) G1-G1: NSGA-II found many solutions around the center of the Pareto front.  
(ii) G1-G100: The search was biased towards the bottom-right part of the Pareto front. 
(iii) G100-G1: The search was biased towards the top-left part of the Pareto front.  
(iv) G100-G100: The performance of NSGA-II was severely deteriorated.  

Let us discuss why these results were obtained. First we address the search behavior 
of NSGA-II on the G100-G100 problem. In the bottom-right plot of Fig. 2, only four 
solutions of the G100-G100 problem were obtained by a single run of NSGA-II. We 
checked all the 200 solutions in the final population. Then we found that they were 
overlapping on the four solutions in the discretized objective space. We also found 
that the number of different strings in the final population was eleven. All of them had 
different objective vectors in the original objective space (i.e., the objective space of 
the G1-G1 problem). The four solutions in the discretized objective space and the 
eleven solutions in the original objective space are shown in an enlarged view in the 
left plot of Fig. 3.  
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    (a) Actually obtained solutions.          (b) Solutions for illustration purposes. 

Fig. 3. Obtained Solutions by a single run of NSGA-II on the G100-G100 problem 

Using the right plot of Fig. 3, we explain why the search ability of NSGA-II on the 
G100-G100 problem was severely deteriorated. Let us assume that new solutions “a” 
and “b” are generated by crossover and mutation. Whereas those solutions increase 
the diversity, they are not likely to survive because they are dominated solutions in 
the discretized objective space (i.e., because solutions “A” and “B” are dominated 
solutions). This explains why the diversity of obtained solutions for the G100-G100 
problem was very small in Fig. 2. Let us also assume that a new solution “c” is 
generated by crossover and mutation. Whereas this solution is better than the two 
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solutions in the same box, all of them are discretized to the same solution “C” in the 
discretized objective space. Thus the difference between the new solution “c” and the 
existing two solutions in the same box disappears by the discretization. This explains 
why the search of NSGA-II towards the Pareto front of the G100-G100 problem was 
slow in Fig. 2. Further we assume that a new solution “d” in the right plot of Fig. 3 is 
generated by crossover and mutation. This solution is not likely to survive because its 
discretized solution “D” is a dominated solution. The situation of the new solution “d” 
also explains the deterioration in the search ability of NSGA-II.  

Next, let us address the search behavior of NSGA-II on the G100-G1 problem. The 
first objective of this problem has a very coarse granularity (i.e., G100) while its 
second objective is a fine granularity (i.e., G1). The objective space of the G100-G1 
problem is illustrated in Fig. 4. Ten solutions in Fig. 4 are non-dominated with each 
other in the objective space of the original G1-G1 problem. However, six of them are 
dominated solutions in the objective space of the G100-G1 problem. For example, let 
us consider the four solutions “e”, “f”, “g” and “h” in the objective space of the 
original G1-G1 problem in Fig. 4. They are discretized to the solutions “E”, “F”, “G” 
and “H” in the objective space of the G100-G1 problem, respectively. Whereas “e”, 
“f”, “g” and “h” are non-dominated with each other, “F”, “G” and “H” are dominated 
by “E”. In the fitness evaluation of NSGA-II, the ranks of these solutions are as 
follows: E: Rank 1, F: Rank 2, G: Rank 3, H: Rank 4. Thus the solutions G and H are 
likely to be removed in the generation update phase of NSGA-II. This explains why 
the multiobjective search of NSGA-II on the G100-G1 problem was biased towards 
the top-left part of the Pareto front in Fig. 2. In the same manner, we can explain why 
the multiobjective search of NSGA-II on the G1-G100 problem was biased towards 
the bottom-right part of the Pareto front in Fig. 2. 
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Fig. 4. Explanations of the search behavior by NSGA-II on the G100-G1 problem 

4 Use of Strong Pareto Dominance in NSGA-II  

As explained in Section 3, many non-dominated solutions of the original G1-G1 
problem become dominated solutions by the use of the coarse granularity G100. For 
example, the non-dominated solutions “f”, “g” and “h” in Fig. 4 were discretized to 
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the dominated solutions “F”, “G” and “H” by the use of G100 for the first objective. 
In the right plot in Fig. 3, the non-dominated solutions “a”, “b” and “d” were 
discretized to the dominated solutions “A”, “B” and “D”. Such a solution status 
change seems to have a lot of negative effects on the search ability of NSGA-II. In 
other words, the handling of those dominated solutions as non-dominated ones may 
prevent the deterioration in the performance of NSGA-II. 

Motivated by these discussions, let us examine the modification of NSGA-II by 
using the following strong Pareto dominance in the fitness evaluation of NSGA-II: 

Strong Pareto Dominance 
For multiobjective maximization, an objective vector f(x) = (f1(x), f2(x), ..., fn(x)) is 
defined as being strongly dominated by another objective vector f(y) = (f1(y), f2(y), ..., 
fn(y)) if and only if fi(x) < fi(y) holds for all i = 1, 2, ..., n. 

When we use this definition, solutions “A”, “B”, “D”, “F”, “G” and “H” in Fig. 3 
and Fig. 4 are handled as non-dominated solutions. We applied NSGA-II with this 
definition to the G1-G1, G1-G100, G100-G1 and G100-G100 problems in the same 
manner as in Section 2. Experimental results are shown in Fig. 5. 
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Fig. 5. Experimental results by NSGA-II with strong Pareto dominance 
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From the comparison between Fig. 2 and Fig. 5, we can obtain the following 
observations about the search ability of NSGA-II: 

(i) The use of strong Pareto dominance had almost no effect on the search ability of 
NSGA-II on the G1-G1 problem (see the top-left plot of each figure). This is 
because the difference between the standard and modified NSGA-II algorithms is 
very small when the granularity is fine (i.e., because fi(x) = fi(y) is not likely to hold 
for many pairs of different solutions x and y when the granularity is fine). 

(ii) The search ability of NSGA-II on the G100-G100 problem was clearly improved 
by the use of strong Pareto dominance with respect to both the convergence and the 
diversity (see the bottom-right plot of each figure). That is, the intended positive 
effect of strong Pareto dominance was observed for the G100-G100 problem. 

(iii) The search ability of NSGA-II on the G1-G100 and G100-G1 problems was also 
clearly improved by the use of strong Pareto dominance with respect to the 
diversity of obtained solutions. The bias of the search of NSGA-II toward a part of 
the Pareto front was somewhat remedied by the use of strong Pareto dominance. 
That is, the intended positive effect of strong Pareto dominance was also observed 
for the G1-G100 and G100-G1 problems. 

5 Computational Experiments on Many-Objective Problems 

We have already examined the effect of discrete objectives with different granularities 
on the search behavior of NSGA-II on the four two-objective knapsack problems. We 
have also demonstrated that the use of strong Pareto dominance improved the 
performance of NSGA-II on the three two-objective knapsack problems with the 
coarse granularity. In this section, we examine the performance of NSGA-II, SPEA2, 
MOEA/D and SMS-EMOA on many-objective knapsack problems with fine and 
coarse granularities using the hypervolume measure. 

Many-objective optimization with four or more objectives is usually very difficult 
for Pareto dominance-based EMO algorithms [10], [18], [21]. This is because almost 
all solutions in a population quickly become non-dominated within a small number of 
generations in evolutionary multiobjective search for many-objective problems. As a 
result, Pareto dominance-based selection pressure quickly becomes very weak. 
Various approaches have been proposed to improve the search ability of Pareto 
dominance-based EMO algorithms on many-objective problems [13], [14]. Recently 
it has also been shown that many-objective problems are not necessarily difficult for 
Pareto dominance-based EMO algorithms in the literature [23].  

As test problems, we generated multiobjective 500-item knapsack problems with 
up to eight objectives by adding randomly generated objectives fi(x), i = 3, 4, ..., 8 to 
the original two-objective 500-item knapsack problems in the previous sections:  


=

=
500

1
)(

j
jiji xpf x ,  i = 3, 4, ..., 8, (4) 

where pij is a randomly specified integer in the interval [10, 100]. 
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Using the same parameter specifications as in Section 2, we applied NSGA-II, its 
modified version, SPEA2, MOEA/D and SMS-EMOA to our test problems with two, 
four, six and eight objectives. Only in MOEA/D, the population size was specified as 
220, 252 and 120 for our test problems with four, six and eight objectives, respectively. 
This is due to the combinatorial nature in the number of weight vectors in MOEA/D (for 
details, see [27]). The population size was specified as 200 in all the other cases. We 
used a fast hypervolume calculation method by While et al. [26] in SMS-EMOA. Each 
algorithm was applied to each test problem 100 times to calculate the average 
hypervolume except for SMS-EMOA on the eight-objective problem due to its heavy 
computation load: 30 runs of SMS-EMOA on the eight-objective problem. 

Each test problem was discretized using the discretization intervals of width 10 
(i.e., granularity: G10) and width 100 (i.e., granularity: G100). The granularity of our 
test problems before the discretization was G1 since each profit value in the objective 
functions was randomly specified as an integer in the interval [10, 100]. We used the 
origin of the objective space as a reference point for hypervolume calculation. The 
hypervolume calculation was always performed in the original objective space with 
the granularity G1. That is, discretized objective values with the granularities G10 and 
G100 were restored to their original values with G1 for fair comparison. 

In Tables 1-5, we summarize our experimental results by each EMO algorithm. 
Each table shows the average hypervolume value and the standard deviation by each 
EMO algorithm on each test problem. The best result (i.e., the largest average 
hypervolume) among the three granularity specifications is highlighted by boldface 
for each test problem in each table.  

Now, let us examine experimental results in each table. In Table 1, experimental 
results by NSGA-II are summarized. As we have already demonstrated in Fig. 2 in 
Section 2, the use of the coarse granularity G100 deteriorated the performance of 
NSGA-II on the two-objective problem in Table 1 (i.e., 5.6% decrease in the average 
hypervolume from 3.800 × 108 to 3.588 × 108). However, it improved the performance 
of NSGA-II on the eight-objective problem by 3.0% from 1.100 × 1034 to 1.133 × 1034.  

Let us discuss these observations from the viewpoint of ε-dominance which was 
proposed by Laumanns et al. [19] and used in ε-MOEA [4]. The comparison between 
boxes in the discretized objective space in ε-MOEA [4] is the same as the Pareto 
dominance-based comparison between discretized objective vectors in this paper. 
Horoba and Neumann [8], [9] theoretically explained that the use of ε-dominance 
deteriorates the search ability of their EMO algorithm when many Pareto-optimal 
solutions are included in a single box. This may be related to the performance 
deterioration by the use of G100 for the two-objective problem in Table 1 because a 
large number of Pareto-optimal solutions are included in a single box with G100. 

Table 1. Average hypervolume and standard deviation by NSGA-II  

Problem 
Granularity: G1 Granularity: G10 Granularity: G100 

Average Stand. Dev. Average Stand. Dev. Average Stand. Dev. 
2-Objective 3.800E+08 1.703E+06 3.779E+08 1.416E+06 3.588E+08 1.797E+06 
4-Objective 1.227E+17 0.925E+15 1.235E+17 0.918E+15 1.209E+17 1.306E+15 
6-Objective 3.729E+25 3.885E+23 3.751E+25 4.065E+23 3.813E+25 4.149E+23 
8-Objective 1.100E+34 1.722E+32 1.112E+34 1.452E+32 1.133E+34 1.475E+32 
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Horoba and Neumann [8], [9] also proved that the use of ε-dominance improves 
the search ability of their EMO algorithm when the number of Pareto-optimal 
solutions exponentially increases with the problem size. This may be related to the 
performance improvement by the use of G100 for the six-objective and eight-
objective problems in Table 1. The performance improvement can be also explained 
by the decrease in the number of non-dominated solutions. As we demonstrated in 
Section 3 using Fig. 3, many non-dominated solutions become dominated after the 
discretization of objective values. This means that the number of non-dominated 
solutions is decreased by the discretization. Since the difficulty of many-objective 
problems is caused by the increase in the number of non-dominated solutions, the 
discretization of objective values is likely to work as a countermeasure for improving 
the performance of NSGA-II on many-objective problems. 

Whereas we have explained the effect of discrete objectives using the concept of ε-
dominance, there is a clear difference between the discretization in this paper and the 
use of ε-dominance. In this paper, we assume that each objective has discrete values. 
For example, a discrete objective with the granularity G100 is assumed to be 
measured in multiples of 100. Thus its objective values are always multiples of 100 
such as 500 and 600. However, the objective space discretization by ε-dominance is 
used only for the comparison between boxes. Objective values are not discretized. 
Thus EMO algorithms based on ε-dominance can use the standard Pareto dominance 
between objective vectors as well as ε-dominance between boxes. For example, two 
objective vectors (525, 550) and (531, 566) can be compared even when the objective 
space is discretized by ε-dominance using the discretization interval of width 100. 
This is not the case in this paper because these two objective vectors are always 
handled as the same objective vector (600, 600) in the case of the granularity G100. 
That is, they cannot be compared in this paper when the granularity is G100.  

Table 2 shows experimental results by NSGA-II with strong Pareto dominance. As 
we have already demonstrated in Fig. 5, the use of strong Pareto dominance improved 
the performance of NSGA-II on the two-objective problem with G100 from Table 1 
to Table 2 (i.e., 7.2% increase from 3.588 × 108 in Table 1 to 3.843 × 108 in Table 2). 
However, it deteriorated the performance of NSGA-II on the eight-objective problem 
with G100 by 4.3% from 1.133 × 1034 in Table 1 to 1.084 × 1034 in Table 2. This is 
because the use of strong Pareto dominance increases the number of non-dominated 
solutions, which is the main reason for the difficulty in the handling of many-
objective problems by Pareto dominance-based EMO algorithms. That is, the increase 
in the number of non-dominated solutions by the use of strong Pareto dominance has 
a positive effect on the two-objective problem and a negative effect on the eight-
objective problem. 

Table 2. Average hypervolume and standard deviation by the modified NSGA-II  

Problem 
Granularity: G1 Granularity: G10 Granularity: G100 

Average Stand. Dev. Average Stand. Dev. Average Stand. Dev. 
2-Objective 3.806E+08 1.603E+06 3.819E+08 1.419E+06 3.843E+08 1.925E+06 
4-Objective 1.228E+17 1.016E+15 1.230E+17 0.841E+15 1.290E+17 1.032E+15 
6-Objective 3.728E+25 4.020E+23 3.726E+25 4.078E+23 3.795E+25 4.276E+23 
8-Objective 1.093E+34 1.924E+32 1.097E+34 1.793E+32 1.084E+34 2.046E+32 
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Table 3 shows experimental results by SPEA2. We can obtain similar observations 
from Table 1 (NSGA-II) and Table 3 (SPEA2). That is, the discretization of objective 
values by the granularity G100 deteriorated the performance of SPEA2 on the two-
objective problem and improved its performance on the eight-objective problem in 
Table 3. This is because fitness evaluation in NSGA-II and SPEA2 is based on Pareto 
dominance (i.e., because they are Pareto dominance-based EMO algorithms). 

Table 3. Average hypervolume and standard deviation by SPEA2  

Problem 
Granularity: G1 Granularity: G10 Granularity: G100 

Average Stand. Dev. Average Stand. Dev. Average Stand. Dev. 
2-Objective 3.786E+08 1.162E+06 3.777E+08 1.657E+06 3.623E+08 2.098E+06 
4-Objective 1.218E+17 0.801E+15 1.218E+17 0.889E+15 1.161E+17 1.148E+15 
6-Objective 3.553E+25 4.411E+23 3.558E+25 3.863E+23 3.619E+25 3.600E+23 
8-Objective 1.029E+34 1.362E+32 1.032E+34 1.396E+32 1.068E+34 1.295E+32 

Table 4 shows experimental results by MOEA/D. We can observe totally different 
effects of discrete objectives in Table 4 on MOEA/D from Table 1 on NSGA-II and 
Table 3 on SPEA2. That is, the use of the coarse granularities G10 and G100 
monotonically deteriorated the performance of MOEA/D on all the test problems with 
2-8 objectives in Table 4. This is because the discretization of objective values simply 
makes single-objective optimization of scalarizing functions difficult independent of 
the number of objectives in MOEA/D. 

Table 4. Average hypervolume and standard deviation by MOEA/D  

Problem 
Granularity: G1 Granularity: G10 Granularity: G100 

Average Stand. Dev. Average Stand. Dev. Average Stand. Dev. 
2-Objective 4.009E+08 0.931E+06 3.993E+08 1.034E+06 3.610E+08 4.382E+06 
4-Objective 1.430E+17 0.705E+15 1.421E+17 0.745E+15 1.249E+17 2.114E+15 
6-Objective 4.525E+25 3.778E+23 4.484E+25 3.912E+23 3.763E+25 9.70E+23 
8-Objective 1.355E+34 1.335E+32 1.340E+34 1.563E+32 1.022E+34 2.191E+32 

 
Table 5 shows experimental results by SMS-EMOA. Effects of discrete objectives 

on SMS-EMOA in Table 5 are similar to those on MOEA/D in Table 4 (i.e., the 
discretization of objective values deteriorated the performance of SMS-EMOA). This 
may be because their fitness evaluation is not based on Pareto dominance.  

Table 5. Average hypervolume and standard deviation by SMS-EMOA  

Problem 
Granularity: G1 Granularity: G10 Granularity: G100 

Average Stand. Dev. Average Stand. Dev. Average Stand. Dev. 
2-Objective 3.760E+08 1.734E+06 3.730E+08 2.042E+06 3.571E+08 1.695E+06 
4-Objective 1.285E+17 8.128E+14 1.277E+17 9.275E+14 1.129E+17 2.356E+15 
6-Objective 4.146E+25 3.322E+23 4.141E+25 3.611E+23 3.784E+25 3.845E+23 
8-Objective 1.305E+34 1.227E+32 1.309E+34 1.400E+32 1.205E+34 1.292E+32  
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    (a) 4-objective G1 by NSGA-II.           (b) 8-objective G1 by NSGA-II. 
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     (c) 4-objective G100 by NSGA-II.             (d) 8-objective G100 by NSGA-II. 
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   (e) 4-objective G100 by modified NSGA-II.   (f) 8-objective G100 by modified NSGA-II. 

Fig. 6. Projection of solutions in the final generation of NSGA-II and the modified NSGA-II 

Fig. 6 shows the projection of a final population on the two-dimensional subspace 
with f1(x) and f2(x) in a single run of NSGA-II and its modified version on the four-
objective and eight-objective problem with G1 and G100. Fig. 6 shows the increase in 
the diversity of solutions and the deterioration in their convergence by the use of 
strong Pareto dominance for many-objective problems with G100. 
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6 Conclusions 

In this paper, we first explained why discrete objectives with coarse granularities 
deteriorated the search ability of EMO algorithms on two-objective problems. Next 
we proposed the use of strong Pareto dominance, which improved the performance of 
NSGA-II on discrete two-objective problems with coarse granularities. Then we 
examined the effect of discrete objectives on the performance of EMO algorithms on 
many-objective problems. Finally we discussed why the use of coarse granularities 
improved the performance of NSGA-II and SPEA2 on many-objective problems 
whereas it deteriorated the performance of MOEA/D and SMS-EMOA. The 
performance improvement of NSGA-II and SPEA2 on many-objective problems was 
explained from the difficulty of many-objective problems (i.e., the increase in the 
number of non-dominated solutions). Since the use of coarse granularities decreases 
the number of non-dominated solutions, it remedies the difficulty of many-objective 
problems for Pareto dominance-based EMO algorithms. We also discussed the effect 
of discrete objectives on the performance of EMO algorithms from the viewpoint of 
the concept of ε-dominance. Our observations were compared with some theoretical 
studies [8], [9]. It is an interesting future research topic to examine the performance of 
ε-dominance EMO algorithms on discrete many-objective problems with different 
granularities in comparison with Pareto dominance-based EMO algorithms. 
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Abstract. In this paper, a multi-objective optimal interception problem is 
proposed and solved using a Multi-Objective Evolutionary Algorithm. The 
traditional setting of an interception engagement between pursuer and evader is 
targeted either at minimizing a miss distance for a given interception duration 
or at minimizing an interception time for a given miss distance. Such a setting 
overlooks an important aspect — the purpose of launching the evader in the 
first place. Naturally, the evader seeks to evade the pursuer (by keeping away 
from it), but what about hitting its target?  In contrast with the traditional 
setting, in this paper a multi-objective game is played between a pursuer and an 
evader. The pursuer aims at keeping a minimum final distance between itself 
and the evader, which it attempts to keep away from its target. The evader, on 
the other hand, aims at coming as close as possible to a predefined target while 
keeping as far away as possible from the pursuer. Both players (pursuer and 
evader) utilize neural net controllers that evolve during the proposed 
evolutionary optimization. The game is shown to involve very interesting issues 
related to the decision-making process while the dilemmas of both opponents 
are taken into consideration.   

Keywords: Differential games, evolutionary algorithms, worst-case evolution.  

1 Introduction 

Consider a planar engagement between two objects moving at a constant speed: a 
pursuer and an evader.  The geometry of this engagement, shown in Figure 1, defines 
the variables of the engagement. The following set of nonlinear differential equations 
describes the dynamics of the engagement for these variables. 

 
                                            ),cos()cos( ψθψθ −−−= ppee VVR                                (1) 

                                            ,/)]sin()sin([ RVV ppee ψθψθψ −−−=                               (2) 

The engagement (pursuit-evasion) starts at 0=t  with the following initial conditions: 
  

                                        .)0(,)0( 00 ψψ == RR                                         (3)  
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The directions of the objects' velocity vectors are governed by the dynamic 
controllers: 

                                                ,)0(, 0ppppp u θθθ =Ω=                                     (4) 

                                                ,)0(, 0eeeee u θθθ =Ω=                                          (5) 
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are the maximal admissible turning rates of the pursuer and the evader, respectively; 

pr  and er  are the smallest turning radii of the objects; and )(tu p  and  )(tue  are non-

dimensional controls of the pursuer and the evader, respectively, satisfying the 
constraints:  

                                            ,0,1)( ≥≤ ttu p                                                           (7) 

                                            ,0,1)( ≥≤ ttue                                                           (8)  

 

 

Fig. 1. The pursuer and the evader 

The usually considered differential game associated with dynamics (1)-(6) and control 
constraints (7)-(8) (see e.g. [1] and references therein) is formulated as: 
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This setting is clearly not a multi-objective setting. The main drawback of this setting 
is that the evader does nothing but evade the pursuer. Nevertheless, this seems 
adequate for evaders with low-level control. Yet it only seems reasonable that future 
evaders will be smart attackers rather than sitting ducks and will be designed to evade 
their pursuer and hit their target.  

In this paper, the pursuit-evasion interception game is reformulated and posed as a 
multi-objective game. The setting of this new problem is shown in Figure 2.  

The new setting bears some resemblance to the classical setting (shown in  
Figure 1), with one clear difference, and that is the existence of a target. The distance 
from the evader to the target, L, serves as a base for defining the new problem. The 
problem solved by the pursuer is:  
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Fig. 2. The new multi-objective game 

                                                ),L
1,R(maxmin

ep uu
                                                   (11) 

 
while the evader solves:                                                

 

                                                )1,(minmax LR
pe uu

                                                    (12) 

           
where Dis and T are the boundaries of the game.  

In the current paper we solve these games and highlight the importance of the 
results to the control designers both of the pursuer and of the evader.   

2 Background 

Most existing studies that deal with multi-objective games (MOGs) are associated 
with differential games and deal with definitions of the equilibrium for these games. 
The predominant definition of this equilibrium is the Pareto-Nash equilibrium, e.g., 
[2, 3]. The notion of the Pareto-Nash equilibrium is based upon the concept of 
cooperative games. According to the Pareto-Nash equilibrium, sub-players in the 
same coalitions should optimize their vector functions over a set of strategies. On the 
other hand, this notion also takes into account the concept of non-cooperative games, 
because coalitions interact on a set of situations and are interested in preserving Nash 
equilibrium between coalitions. Linear programming is commonly used for solving 
MOGs, e.g., [4], where a multi-objective zero-sum game is solved. A non-zero-sum 
version of a MOG was solved in [5]. Detailed algorithms for finding strategies related 
to the Pareto-Nash equilibrium can be found in [3]. A detailed mathematical step-by-
step solution of a MOG using the Kuhn-Tucker equation can be found in [6]. 

In all of these algorithms, weights are altered in order to search for one equilibrium 
solution at a time. This means the algorithms must be executed sequentially to reveal 
more equilibrium points. Evolutionary algorithms have been used to search for 
optimal strategies in a single objective game setting e.g., [7]. Evolutionary multi 
objective optimization algorithms have been also utilized for such a purpose e.g., [8] 
however, not in a MOG setting where the objectives of the opponents are 
contradicting, as considered here. Artificial intelligence-based approaches have been 

Target 

L
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applied to MOGs within the framework of fuzzy MOGs. In such studies (e.g., [9]), the 
objectives are aggregated to a surrogate objective in which the weights (describing the 
players' preferences regarding the objectives) are modeled through fuzzy functions. 
Avigad et al. [10] used the worst case evolutionary algorithm proposed in [11] to 
evolve a set of optimal strategies for a discrete MOG. In the worst case analysis, each 
solution is associated with a set of scenarios. These scenarios are evolved in an 
embedded MOEA to find the worst scenario, which in a multi-objective problem 
(MOP) setting may be a set of worst scenarios. These worst scenarios represent the 
solution in an outer set-based evolutionary algorithm in order to find the optimal 
solutions.   

In contrast to discrete games, in differential games the players' moves are found 
simultaneously by solving the related model, which is described by differential 
equations. To the best of our knowledge, the first time a multi-objective differential 
game was solved using an evolutionary multi-objective algorithm is in our recently 
introduced study [12], in which a game between a pursuer and an artificial opponent 
was solved. The pursuer aimed at intercepting an evader having a constant trajectory, 
while simultaneously minimizing the interception distance and time. The artificial 
opponent aimed at maximizing these objectives by maximizing the harmful effect of 
measuring uncertainty. Both opponents utilized neural net controllers, which were 
tuned by the evolutionary algorithm.  

The current study introduces a new multi-objective game between pursuer and 
evader. The game involves objectives that seem reasonable for real life applications. 
Moreover, an evolutionary algorithm is proposed for optimizing the controllers of 
both opponents. The study examines the optimization of the game from the 
perspectives of the pursuer and of the evader, and highlights unique issues involved in 
multi-objective games.       

3 Methodology 

3.1 Problem Formulation   

In this study the controllers of the pursuer and the evader are artificial, single layer, 
neural network controllers having d and e nodes, respectively, such that: 

Tsp
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)( ωωω= . Let U and C be the 

sets of all possible S and M controllers for the pursuer and the evader, respectively, 
such that: 
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eu . Thus, the game between the s-th pursuer and the m-th evader is 

reduced to a game Γ×Ω=Φ∈= ),( )()(
,

m
e

s
pms uug between two players using the 

controls )(s
pu and )(s

eu . The optimization of Equations 11- 12 may be reformulated as: 
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                             For the pursuer:        )(maxmin ,)()( ms
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m

e
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p

,                                (13) 

                             For the evader:         )(minmax ,)()( ms
uu

gF
s

p
m

e

                                  (14) 

where 2
, )1,()( RLRgF ms ⊆Ψ∈= . The value of the function F is in fact the 

result of solving the game's differential equations that utilize the sets of weights of the 
two controls.  

3.2 Problem Solution 

Assessing the R and L associated with the game is based on the players' related 

trajectories attained during the game. The trajectory of a pursuer is given by ),( txTr p , 

where x is the pursuer's position coordinates (two dimensional) and ftt ≤<0  where 

ft  is predefined (estimated time of the game, based on availability of propulsion fuel, 

etc.) In the same manner, ),( txTre is the trajectory of the evader. The distances R and 

L for this game are:  
 

                                ),(),(min txTrtxTrR ep −=  for all .0 ftt ≤<                         (15)  

                               XtxTrL e −= ),(min  for all .0 ftt ≤<                                    (16) 

 
where X are the coordinates of the target. When considering the pursuer problem 
(Equation 13) for the pursuer controller (say the s-th controller), M controls are 
possible for the evader. Therefore, there may be M games in which M is either finite 
or infinite. All such possible games for the s-th pursuer form a set of possible games: 

T
Msmssu

gggG s
p

],...,..[ ,,1,)( =Φ⊆ . The m-th evader aims at maximizing the distance 

R and the inverse of the distance L attained in the game with the s-th pursuer, that is: 
 

                           M…1,=m),(max ,ms
u

gF
m
e

,                                               (17) 

In general, these objectives clearly contradict one another. Hence, a set of evader 
controls exist that may serve as solutions to this problem. These will form a Pareto set 
of evader controls playing against the s-th pursuer controller:  
                                                                                          
    

MmgFgFMmuUuC msms
m

ee
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)( =∀∈′¬∃∈        (18) 

 
Note that the evaders are aiming at maximization and therefore to designate 
maximization form minimization,  is used in (18) instead of  . Mapping these 
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optimal evader controllers to the objective space forms a Pareto front *
)( s

pu
F , where 

}Cu|)g(F{:F *
u

)m(
em,s

*
u )s(

p
)s(

p
∈∈= Ψ  is associated with the s-th pursuer's 

controller. Now we can search for the optimal pursuer control by solving: 
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p
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∈

                                      (19) 

This means that the best pursuer control is searched for while considering the best 
(most problematic from the pursuer's perspective) control used by the evader. This 
optimization results in a set of optimal pursuer controls: 
 

               
'ssallforandmallfor
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Here we take the high reliability for interception one step further by representing each 
cluster by its related ideal point (the utopia point related to the extremes of the 
performances in the objective space). That is, we represent each pursuer control by a 
point in the objective space such that: 
 

                  Ts
p LRuF )]1max(,[max)( )( =
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p
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p ∈                    (21) 

Refer to Section 2.3 for a discussion of the pros and cons of this decision. 
 

Now that the worst performances of each )(s
pu are represented by )( )(s

puF


, the 

solution to Equation (14) may be reformulated as: 
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        (22) 

 
In the same manner, when considering the problem for the evader (Equation 18), the 
following may be attained. For each of the evader controls (say the m-th controller), S 
controls are possible for the pursuer. Therefore, S games are possible in which S is 
either finite or infinite. All such possible games for the m-th evader form a set: 

T
Smsmmu

gggG m
e

],...,..[ ,,1,)( =Φ⊆ . The s-th pursuer aims at minimizing the distance R 

and the inverse of the distance L attained in a game with the m-th evader, that is: 
 
                                       S.…1,=s),g(Fmin m,s

u )s(
p

                                      (23) 

Solving (23) will form a Pareto set of pursuer controls playing against the m-th evader 
controller:  
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Mapping these optimal pursuer controllers to the objective space forms a Pareto front 
*

)(m
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CugFF ∈Ψ∈  is associated with the m-th 

evader controller. Now we can search for the optimal evader control by solving: 
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This means that the best evader control is searched for, while considering the best 
(most problematic from the evader's perspective) control used by the pursuer. This 
optimization results in a set of optimal evader controls: 
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Furthermore  
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Now that the worst performance of each )(m
eu is represented by )( )(m

euF


, the solution 

to Equation (14) may be reformulated as: 
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It is assumed that the pursuer's controller and the evader's controller will be chosen 
from the optimal sets (Equations 22 and 26, respectively). Therefore, the optimal 
games are an outcome of games played between optimal pursuer controllers and 
optimal evader controllers. The performances on these games establish a set of 
optimal game performances within the objective space. This set, termed here as the 
Optimal Games Set (OGS), is defined as: 
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From a non-mathematical perspective, these optimal games are those whose 
performances are dominated (with respect to maximization) by optimal pursuer 
performances and also are dominated (with respect to minimization) by optimal 
evader performances.  
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To elucidate these hereby introduced notions, consider Figure 3, which depicts the 
performances associated with games among four pursuers and three evaders. For the 
sake of this example we assume that all twelve games are possible, that is S=4 and 
M=3. The pursuers' controls are depicted by striped, bold, gray and white circles, 
whereas the evaders' controls are represented by stars, squares and triangles. The 
performances of the different games within an artificial bi-objective space are 
represented by combinations of the above representations (e.g., black circle inside a 
square).  

 
 

Fig. 3. The performances of the twelve games in the bi-objective space 

For the pursuer, the problem is posed as a min-max problem, defined in (13). 
Starting with (17), Figure 4a shows the performances of the Pareto sets for the four 
pursuers. For example, maximizing the performances of the evaders with respect to 
the gray pursuer results in two optimal performances (star and square), while the third 
vanishes (triangle) because it is dominated when maximization is considered. The 
figure also depicts the related ideal points (Equation 21) designated by the pursuers' 
symbols. Now, when minimization is implemented (Equation 23), the resulting 
optimal pursuer is represented by the circle with stripes (indicated by an arrow) as it 
dominates all others in the min sense. The left panel of Figure 5 depicts the area 
dominated by the performances of that game. The implication of this area is that if the 
pursuer were to choose the controller represented by the circle with stripes, the evader 
could not choose any controller that could remove the performances from that area 
(by choosing either a triangle, a square or a star). This can easily be verified by 
observing that all games associated with the circle with stripes are included in that 
area.      

  

Fig. 4. Left panel - min-max fronts, related ideal points and front; Right panel - max-min fronts, 
related ideal points and front 

R R 

1/L 1/L 

1/L

R 
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When the optimization is considered from the evader's perspective (Equation 14) 
by using Equations 24-28, the optimal controller is attained for the evader, 
represented by the star. Figure 4b highlights the domination of the star over the other 
two controllers (when maximization is considered). By choosing the star controller, 
the evader ensures that the pursuer cannot attain performances beyond the gray 
boundary, as shown in the right panel of Figure 5. 

 

Fig. 5. Optimal pursuer and evader fronts and dominated regions, shown in the left and right 
panels, respectively  

In the example shown in Figure 5, choosing the optimal controllers (pursuer would 
choose the circle with stripes and evader would choose the star) would result in a 
single game. This means that solving (17) would yield the same game as solving (18). 
In other words, solving the min-max problem would yield the same result obtained by 
solving the max-min problem. 

This situation, however, is not the usual case. It is easy to construct an example in 
which the result is not a single game but rather a set of games. As an example of this 
case, consider the performances of the 16 games depicted in Figure 6. The games are 
those shown in Figure 3 with the addition of four games. These additional games are 
the result of adding the controllers of another evader, designated by diamonds. 
 
 

 
Fig. 6. Performances for sixteen games 

Following the same procedure results in three optimal pursuer controllers (black, 
white and striped), shown in the left panel of Figure 7 with their dominated region 
(gray area). Clearly, deciding which pursuer controls to use involves multi-objective 
decision making. For example, the black circle controller would be chosen if the 

1/L 

R 

R R 

1/L 1/L 
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interception were aimed at interception at long distances from the target at the 
expense of greater interception distance. 

Solving the problem for the evader side, results in two optimal evader controllers 
(star and diamond). The right panel of Figure 7 shows the domination of these 
controllers and the related domination area.  
 

 

Fig. 7. The min-max fronts, related ideal points and front (left panel). The max-min fronts, 
related ideal points and front (right panel). 

Figure 8 depicts the two regions within the same figure. The overlapping area 
designates the area in which the games will take place if the opponents choose to play 
only with optimal controllers. The games resulting from the opponents using the 
optimal controllers are highlighted with a dotted background.  

 

Fig. 8. The two fronts and related OGS 

This figure highlights the obtained results, namely that the pursuer should not 
choose the gray circle controller and the evader should not choose the square. This is 
because the opponent may drive their performances to unwanted performances. For 
example, if the pursuer chooses the gray circle it puts itself in danger, which would be 
realized if, for example, the evader chooses the star. Nevertheless, the white circle is 
outperformed by the black and striped circles (from the pursuer side). This means that 
solving the min-max problem will not yield the same results as would solving the 
max-min problem.  

3.3 The Evolutionary Search 

In the current paper the optimal controls are searched for by using evolutionary 
algorithms. The following describes the algorithm for optimization of the pursuer's 

OGSS
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control as well of the evader's control (designated in italics). The algorithm includes 
an inner-loop algorithm (designated in gray) in which the representative ideal point 
for each pursuer/evader is found based on the evolved front. The ideal points are then 
used within the outer loop to evolve the related optimal controls.   

 
a. Initialize a population 

tP of size N= |Pt| of pursuer/evader controls up/ ue 

(weights of the NN controllers). Also, set Qt = tP . 

b. Combine parent and offspring populations and create ttt QPR =  

 
d. Initialize a new parent population ∅=+1tP   

e. Compute )( )(s
puF / )( )(s

euF by using (19), (20) on the results of simulations that 

solve (1)-(8).  
f. Assign a non-dominance level and crowding value (NSGA-II) to all  

individuals of Rt by using )( )(s
puF / )( )(s

euF . 

g. Fill in 1+tP  according to their level of non-dominance and crowding measure. 

h. Create an offspring population *
1+tQ from 1+tP by tournament selection. 

i. Perform crossover on *
1+tQ  to obtain **

1+tQ . 

j. Perform mutation to obtain 1+tQ . 

k. If the last generation has not been reached, go-to 'b'. 

3.4 Remarks on Using the Ideal Point as Representative of an Opponent 

In the current paper we chose to represent the Pareto set of each pursuer/evader by the 
related ideal point (see Section 2.2). As mentioned, the initial idea behind this 
decision was that, to be on the safe side, the worst of both objectives is considered. 
Such a representation has pros and cons, as discussed in the following. Apart from 
being on the safe side by considering the worst, using the ideal point reduces 
computational complexity with respect to the complexity of using entire Pareto sets. If 
instead of the ideal point, the Pareto set of each pursuer/evader had been used, the 
complexity would be much greater (see e.g., [11]). Furthermore, considering one 
point as representative of the set makes both the explanations (with relation to  

The Embedded Algorithm (inner-loop) 
c.  For each individual of tR : 

c.1  Initialize a population tG of size tGng =  for the evaders/pursuers' 

controllers ue/ up (weights of NN controllers).  
c.2  Run NSGA-II on the reversed optimization problem to find,  

for each up/ ue of Rt, the corresponding *
)(s

pu
C  / *

)( s
eu

C using )( ,msgF . 

c.3  For each up/ue of Rt use *
)(s

pu
F / *

)(s
eu

F to assign )( )(s
puF / )( )(s

euF . 
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Figures 3-9) and the decision making much easier. Moreover, utilization of the ideal 
point confirms with most of the demands of an evolutionary multi-objective 
algorithm, as elucidated through the panels of Figure 9. The figure shows that based 
on the ideal points, the pursuer's controller represented by the black circle would be 
preferred (minimization) over the one represented by the striped circle in a case where 
the former Pareto front dominates the latter, when it is less spread out and when it is 
less crowded. Nevertheless, considering the ideal point may lead to not preferring the 
black controller in all cases in which it should have been preferred, as shown in 
Figure 10.  

  

 

Fig. 9. Without loss of generality for any minimization problem, using the ideal point allows 
applying pressure towards dominating (left panel), small spread (middle panel) and diverse 
(right panel) sets 

 

Fig. 10. Three examples in which, without loss of generality, the black circle should be 
preferred for any minimization problem, though based on the ideal point it is not  

4 Test Case 

In this test case, the problem is solved using the algorithm in Section 2.2. The 
velocities of the pursuers and the evaders are set to 2 and 1, respectively. The 
controllers are neural net controllers, each having two nodes with two "tansig" 
activation functions. The inputs to the controllers of the pursuers and evaders are 

LR p ,,, θψ and LR e ,,, θψ  respectively. The objective space is set as ),( LR −=Ψ . 

Using –L instead of L1  diffracts the original objective space less. The initial 

population includes 50 decoded evaders (embedded loop) and pursuers (outer loop) 
that are run 100 and 200 hundred generations, respectively. The controllers' weights 
are given by real-valued decision variables. A simulated binary crossover (SBX) 
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The panels of Figure 13 depict two optimal games.  

       

Fig. 13. Two optimal games showing different interception distances. Smaller R with larger L 
(left panel), larger R with smaller L (right panel).  

Please note that the situation in this case, in which the performances of the optimal 
games do not dominate each other, is not compulsory. However, the non-domination 
relation holds among the related ideal points. It should also be noted that attaining the 
two fronts depicted in Figure 12 involved running the algorithm on a Power Edge 
R710 for almost 150 hours!   

5 Conclusions and Future Work 

In this study we have proposed a rational multi-objective game between pursuer and 
evader by adding a trivial but reasonable objective, namely that the evader aims at 
minimizing its distance to a target. This paper has introduced several novelties, 
including: 

• The min-max versus max-min in multi-objective games is considered. While 
this issue has been treated within the context of games, treating it in the 
context of multi-objective games is new.  

• A region of optimal games is defined. This is an outcome of considering 
min-max versus max-min in multi-objective games. It was shown that there 
is a region of optimal games bounded by the fronts of these two problems.   

• A multi-objective differential game is optimized directly, with no 
modifications. This means that linearized fuzzy representation of the 
opponent's actions has not been used, nor have other modifications been 
made in the differential equations.   

• An evolutionary algorithm is implemented for solving both problems (min-
max and max-min).   

 
The drawbacks of the current paper include the high computational cost and the use of 
the ideal points rather than the Pareto fronts of the pursuers/evaders. These two issues 
should be considered before further investigating this type of games. It seems that the 
new insights presented here should open the way for exploring a wide scope of 
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applications, for example in economics. Although most real-world applications would 
be related to discrete games rather than to differential games, we envisage that the 
inherent nature of the results would not change. This means that it is expected that 
solving discrete multi objective games, would also involve e.g., an OGS.  
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Abstract. Many-objective optimization has been gaining increasing at-
tention in the evolutionary multiobjective optimization community, and
various approaches have been developed to solve many-objective prob-
lems in recent years. However, the existing empirically comparative
studies are often restricted to only a few approaches on a handful of test
problems. This paper provides a systematic comparison of eight represen-
tative approaches from the six angles to solve many-objective problems.
The compared approaches are tested on four groups of well-defined con-
tinuous and combinatorial test functions, by three performance metrics
as well as a visual observation in the decision space. We conclude that
none of the approaches has a clear advantage over the others, although
some of them are competitive on most of the problems. In addition,
different search abilities of these approaches on the problems with dif-
ferent characteristics suggest a careful choice of approaches for solving a
many-objective problem in hand.

1 Introduction

Recently, many-objective optimization, which refers to the simultaneous opti-
mization of four or more objectives, has been gaining increasing attention in the
evolutionary multiobjective optimization (EMO) community. An important rea-
son is due to distinctly different behaviors of EMO algorithms in many-objective
optimization against in optimization regarding two or three objectives. Many
current EMO algorithms, which work well on 2- and 3-objective problems, en-
counter difficulties in high-dimensional objective spaces. This brings a big chal-
lenge for researchers and practitioners in the area.
Since the pioneering studies appeared at the beginning of the century [9], a

number of EMO algorithms have been proposed in the literature for address-
ing many-objective optimization problems [4], [15], [17]. Some of them concen-
trate on the investigation or improvement of the existing approaches, such as
Pareto-based, aggregation-based, and indicator-based approaches [24], [23], [13],
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while the others are dedicated to developing new techniques specially for many-
objective optimization problems [19], [22], [25].
It is well known that Pareto-based approaches, such as the nondominated sort-

ing genetic algorithm II (NSGA-II) [5], fail to provide sufficient selection pressure
in the evolutionary process of many-objective optimization, despite belonging to
the most popular class of approaches in the EMO community. However, two
other classes of approaches, aggregation-based and indicator-based approaches,
have been found to be very promising in many-objective optimization. The for-
mer uses the idea of single-objective aggregated optimization and combines the
objectives into a scalar function that is used for fitness calculation. In fitness
calculation, each solution can be evaluated by a unique weight vector (e.g., in
the multiobjective evolutionary algorithm based on decomposition (MOEA/D)
[26]) or by a set of weight vectors (e.g., in the multiple single objective Pareto
sampling (MSOPS) [12]). The latter adopts a single performance indicator to
optimize a desired property of the evolutionary population [28]. The indicator
hypervolume is an effective tool to balance convergence and diversity in both
multi- or many-objective optimization [3], [24]. Despite a large computation re-
quirement regarding the exact calculation of the hypervolume indicator in a
high-dimensional space, algorithms based on approximate estimation of the in-
dicator using Monte Carlo sampling have recently been developed, such as the
hypervolume estimation algorithm (HypE) [2].
On the other hand, a lot of effort of improving Pareto-based approaches for

many-objective problems is being made. According to the angle of dealing with
the issue, these efforts can be divided into two classes. The first class is to mod-
ify or enhance the Pareto dominance relation to increase the selection pressure
towards the Pareto front. Most approaches belong to this class. Among them,
ε-dominance is a representative example [7], although it is not developed par-
ticularly for many-objective optimization. The other class is concerned with im-
proving the diversity maintenance mechanism of Pareto-based EMO algorithms.
As a result of the increase of the objective space in size, the conflict between the
convergence and diversity requirements is gradually aggravated [23]. Apparently,
a viable way for solving this problem is to decrease the diversity requirement in
the evolutionary process. An interesting attempt along this direction has been
made, called the diversity management operator (DMO) [1].
In addition, approaches using some non-Pareto dominance techniques to rank

individuals (e.g., average ranking [4]) have also been shown to provide compet-
itive results. In spite of the risk of leading a solution set to converge into a
sub-area of the Pareto front [17], [21], they provide a new alternative for evolu-
tionary many-objective optimization.
Overall, the above approaches provide a variety of alternatives to handle

many-objective optimization problems. However, a series of questions arise: which
approaches are suited to which sort of problems, what are the strengths and
drawbacks of each approach, and is there an approach clearly outperforming
other approaches in most problems? To date, few comparative studies consider
all the above questions. Early studies on many-objective optimization mainly
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Table 1. List of some existing comparison studies on many-objective optimization

Algorithm Class Test Problem

Khare et al. (2003) [18] C1 DTLZ
Hughes (2005) [13] C1, C2 Custom
Purshouse and Fleming (2007) [23] C1 DTLZ
Corne and Knowles (2007) [4] C4, C6 TSP
Wagner et al. (2007) [24] C1, C2, C3, C4 DTLZ
Ishibuchi et al. (2008) [14] C1, C2, C4, C5, C6 Knapsack
Jaimes and Coello (2009) [17] C1, C4, C6 DTLZ
Hadka and Reed (2012) [10] C1, C2, C3, C4 DTLZ, WFG, UF

C1: Pareto-based approaches; C2: Aggregation-based approaches;

C3: Indicator-based approaches; C4: Improved Pareto dominance-based approaches;

C5: Improved diversity maintenance-based approaches; C6: Non-Pareto-based approaches.

focus on the investigation of ineffectiveness of the Pareto dominance relation.
Recent studies fail to involve all the six classes of the approaches mentioned pre-
viously (i.e., Pareto-based, aggregation-based, indicator-based, improved Pareto
dominance-based, improved diversity maintenance-based, and Non-Pareto-based
approaches), and also are often restricted on only a few test problems. Table 1
lists some existing comparative studies on many-objective optimization, includ-
ing the class of tested algorithms and the considered problems.
In this paper, we provide a systematic comparison of eight representative

EMO algorithms selected from the six classes of approaches of dealing with
many-objective problems. The basis of this empirical study is formed by several
groups of well-defined continuous and combinatorial test functions that allow
an extensive investigation of algorithms on problems of various kinds, such as
having convex, concave, multimodal, disconnected, degenerate, biased, and non-
separable (variable linkage) Pareto fronts. Additionally, the Pareto-Box problem
[19] is also included in order to investigate the algorithms’ ability of maintaining
the diversity of solutions in the decision space.

2 Eight Algorithms Investigated

In this section, we briefly describe the eight EMO algorithms selected from the
six classes of approaches for many-objective problems. Readers seeking more
details on these algorithms should refer to their original works.

– NSGA-II [5]. As a representative algorithm of Pareto-based approaches,
NSGA-II is considered in our comparative study. The main characteristic of
NSGA-II is its nondominated sorting and crowding distance-based density
estimation in fitness assignment and environmental selection.

– MOEA/D [26]. MOEA/D is one of the most popular EMO algorithms
developed recently. Using a predefined set of weight vectors to maintain a
diverse set of solutions, MOEA/D converts a multiobjective problem into
many single-objective problems and tackles them simultaneously. Two ag-
gregation functions, Tchebycheff and penalty-based boundary intersection
(PBI), can be used in the algorithm, and each of them works well on differ-
ent classes of problems. Here, the PBI function is selected since the algorithm
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with PBI has been found to be more competitive when solving problems with
a high-dimensional objective space [6].

– MSOPS [12]. MSOPS, using the idea of single-objective aggregated opti-
mization to search in parallel, also belongs to the class of aggregation-based
approaches. Unlike MOEA/D where an individual corresponds to only one
weight vector, MSOPS specifies an individual with a number of weight vec-
tors. MSOPS is a popular algorithm to deal with many-objective optimiza-
tion problems since it can achieve a good balance between convergence and
diversity [13], [24].

– HypE [2]. HypE is an indicator-based algorithm for many-objective opti-
mization. HypE adopts Monte Carlo simulation to approximate the exact
hypervolume value, significantly reducing the time cost of the HV calcula-
tion and enabling hypervolume-based search to be easily applied on many-
objective optimization, even when the number of objectives reaches 50 [2].

– ε-dominanceMultiobjective Evolutionary Algorithm (ε-MOEA) [7].
ε-MOEA is a steady-state algorithm using ε-dominance to strengthen selec-
tion pressure towards the Pareto front. Dividing the objective space into
many hyperboxes, ε-MOEA assigns each hyperbox at most a single solu-
tion based on ε-dominance and the distance from solutions to the utopia
point in the hyperbox. Although not specifically designed for many-objective
optimization, ε-MOEA has been found to perform well on many-objective
problems [24], [10].

– DMO [1]. DMO is an attempt to manage the use of diversity preserva-
tion operators in dealing with many-objective problems. Based on the basic
framework of NSGA-II, DMO modifies the diversity maintenance operation
by adaptively tuning it according to the requirement of the evolutionary
population. If the diversity result is smaller than 1 by the Maximum Spread
test [27], the diversity promotion mechanism (i.e., crowding distance) is ac-
tivated; otherwise, deactivated.

– Average Ranking (AR) [4]. AR is regarded as a good non-Pareto-based
approach to solve many-objective problems. In contrast to Pareto-based ap-
proaches, AR compares all solutions in each objective and independently
ranks them. The final rank of a solution is obtained by summing its ranks of
all objectives. AR is found to be successful in evolving towards the optimal
direction in many-objective optimization [4], [17], despite the risk of leading
a solution set to converge into a sub-area of the Pareto front due to the lack
of a diversity maintenance scheme [17], [21].

– Average Ranking combined with Grid (AR+Grid) [21]. AR+Grid
is a hybrid method which uses grid to enhance diversity for AR in many-
objective optimization. In AR+Grid, the AR strategy is employed to provide
the selection pressure towards the Pareto front, and the grid is introduced
to prevent solutions from being crowded in the objective space. Since an
adaptive punishment of solutions located in neighboring cells is implemented,
a balance between convergence and diversity can be obtained even when a
large number of objectives are involved in a problem [21].
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Table 2. Properties of test problems and parameter setting in ε-MOEA and AR+Grid.
The settings of ε and div correspond to the different numbers of objectives of a problem.
M and L denote the number of objectives and decision variables, respectively

Problem M L Properties ε div

DTLZ2 5, 10 M+9 Concave 0.158, 0.275 15, 13
DTLZ3 5, 10 M+9 Concave, Multimodal 0.158, 0.8 10, 10
DTLZ5 5, 10 M+9 Concave, Degenerate 0.071, 0.14 25, 27
DTLZ7 5, 10 M+19 Mixed, Disconnected 0.1595, 0.73 10, 5
WFG1 5, 10 2×(M –1)+20 Mixed, Biased 0.092, 0.105 15, 8
WFG8 5, 10 2×(M –1)+20 Concave, Nonseparable 0.8, 2.1492 13, 10
WFG9 5, 10 2×(M –1)+20 Concave, Multimodal, Nonseparable 0.72, 1.761 25, 14
TSP(–0.2) 5, 10 30 Convex, Negative correlation 1.5, 4.3 19, 14
TSP(0) 5, 10 30 Convex, Zero correlation 1.1, 3.15 16, 14
TSP(0.2) 5, 10 30 Convex, Positive correlation 0.75, 2.26 16, 14
Pareto-Box 10 2 Convex 6.085 40

3 Experimental Design

3.1 Test Problems

Eleven test functions selected from the four problem suites DTLZ [8], WFG
[11], multiobjective TSP [4], and Pareto-Box [19] (listed in Table 2) are used
in this study. DTLZ and WFG are two very popular continuous problem suites
and can be scaled to any number of objectives and decision variables. Due to
space limitations, we do not consider all test instances in them; instead, seven
representative problems are selected to challenge different abilities of algorithms.
The multiobjective TSP problem is selected since combinatorial problems

show different behaviors from continuous ones. In multiobjective TSP, a pa-
rameter is used to control the correlation between objectives of the problem,
called TSP correlation parameter (TSPcp ∈ (−1, 1)) [4]. When TSPcp < 0,
TSPcp = 0, or TSPcp > 0, it introduces negative, zero, or positive interobjec-
tive correlations, respectively. In our study, TSPcp is assigned to −0.2, 0, and
0.2 to represent different characteristics of the problem.
The Pareto-Box problem, proposed by Köppen and Yoshida [19] and extended

by Ishibuchi et al. [16], is a simple and interesting many-objective function. The
most important characteristic is that its Pareto optimal set in the decision space
is a (or several) two-dimensional closure(s). Moreover, since the crowding in its
decision space is closely related to the crowding in its objective space, a visual
investigation of the distribution of solutions in the former will facilitate the
understanding of behavior of algorithms in the latter.

3.2 Performance Metrics

Three widely-used performance metrics, convergence measure (CM) [18], in-
verted generational distance (IGD) [26], and hypervolume (HV) [27], are in-
troduced to compare the tested algorithms. CM assesses the convergence of a
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solution set by calculating the average normalized Euclidean distance from the
obtained set to the Pareto front. Both IGD and HV can give a comprehensive
assessment in terms of convergence and diversity [20]. The former two require
a reference set of representing the Pareto front, and are used to evaluate algo-
rithms on DTLZ since their optimal fronts are known. The latter one is used on
WFG and TSP whose Pareto front is unknown or unavailable.
In the calculation of HV, two crucial issues are the scaling of the search space

and choice of the reference point. Since the objectives in the WFG problem
take different ranges of values, we normalize the objective value of the obtained
solutions according to the range of the Pareto front of the problem. Following the
recommendation in [16], the reference point is set to be at 1.1 times the upper
bound of the Pareto front (i.e., r = 1.1M for WFG) to emphasize the balance
between convergence and diversity of the obtained solution set. As to the TSP
problem, since the range of Pareto front is unknown, we regard the point with
22 for each objective (i.e., r = 22M ) as the reference point, considering that
it is slightly larger than the worst value of the mixed nondominated solution
set constructed by all the obtained solution sets. In addition, since the exact
calculation of the hypervolume metric is infeasible for a solution set with 10
objectives, we approximately estimate the hypervolume result of a solution set
by the Monte Carlo sampling method used in [2]. Here, 10,000,000 sampling
points are used to ensure accuracy [2].

3.3 General Experimental Setting

All the results presented in this paper are obtained by executing 30 independent
runs of each algorithm on each problem with the termination criterion of 100,000
evaluations. Following the practice in [16], the population size is set to 200 for
general EMO algorithms, and the archive is also maintained with the same size if
required. Note that the population size, in MOEA/D, is the same as the number
of weight vectors. Here, we use the closest number to 200 among the possible
values as the population size (i.e., 210 and 220 for 5- and 10-objective problems,
respectively). In ε-MOEA, the size of the archive set is determined by the ε
value. In order to guarantee a fair comparison, we set ε so that the archive of ε-
MOEA is approximately of the same size as that of the other algorithms (shown
in Table 2).
Parameters need to be set in some tested algorithms. According to their orig-

inal papers, the neighborhood size and the penalty parameter in MOEA/D are
specified as 10% of the population size and 5 respectively, and the number of
sampling points in HypE is set to 10,000. Since increasing weight vectors with
the number of objectives benefits the performance of the algorithm, 200 weight
vectors in MSOPS are selected according to the experimental results in [24].
In AR+Grid, a grid division parameter (div) is required. The setting of div in
Table 2 can make the algorithm obtain a good balance between convergence and
diversity of solutions on the considered problems.
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A crossover probability pc = 1.0 and a mutation probability pm = 1/L (where
L denotes the number of decision variables) are used. For continuous problems,
the operators for crossover and mutation are simulated binary crossover (SBX)
and polynomial mutation with both distribution indexes 20 [6]. As to the com-
binatorial problem TSP, the order crossover (OX) and inversion operator are
chosen as crossover and mutation operators, respectively.

4 Results and Discussion

4.1 The DTLZ Test Problems

Tables 3 and 4 show the CM and IGD results of the eight EMO algorithms on
DTLZ2, DTLZ3, DTLZ5, and DTLZ7. The values in the tables are the mean
and standard deviation.
First, consider the DTLZ2 problem with a spherical Pareto front satisfying

f21 +f
2
2 + ...+f

2
M = 1 in the range f1, f2, ..., fM ∈ [0, 1]. We observe that even for

this relatively easy test instance, not all the algorithms work well. NSGA-II has
the difficulty in approximating the Pareto front, and obtains poor CM and IGD
results. Although performing the best in terms of convergence, AR struggles
to maintain a diverse set of solutions, resulting in a poor IGD value. In fact,
only three algorithms, MOEA/D, ε-MOEA, and AR+Grid, can achieve a good
balance between convergence and diversity for both 5- and 10-objective cases.
Despite the same optimal front as DTLZ2, DTLZ3 is modified by introducing

a vast number of local optima. This brings a stiff challenge to search towards the
global optimal front, especially when the number of objectives becomes large.
For this problem, the final solution set of all the algorithms except MOEA/D
fails to approach the Pareto front for both 5- and 10-objective cases. ε-MOEA
performs slightly better than MOEA/D on the 5-objective problem but struggles
on the higher-dimensional instance.
DTLZ5 tests the ability of an algorithm to find a lower-dimensional Pareto

front while working with a higher-dimensional objective space. From the conver-
gence results in Tables 3, none of the tested algorithms can reach the Pareto front
for both instances. The two aggregation-based algorithms especially MSOPS ap-
pear to be competitive on this problem. MSOPS significantly outperforms the
other algorithms in terms of the comprehensive performance metric IGD when
the number of objectives reaches 10. Note that MSOPS has a large CM value.
This is because a small part of the algorithm’s solutions are located far away
from the Pareto front, thereby resulting in a poor convergence assessment result,
although the rest of its solutions are distributed widely over the Pareto front.
With many disconnected Pareto optimal regions, DTLZ7 tests an algorithm’s

ability to maintain subpopulations in disconnected portions of the objective
space. Interestingly, the Pareto-based algorithm NSGA-II on this problem out-
performs some algorithms designed specially for many-objective optimization.
Performing slightly worse than DMO, NSGA-II can be in the second place for
the 5-objective instance. On the other hand, the two aggregation-based algo-
rithms struggle on this problem, and MOEA/D even obtains the worst IGD
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Table 3. CM results of the eight algorithms on DTLZ2, DTLZ3, DTLZ5, and DTLZ7

Obj. Alg. DTLZ2 DTLZ3 DTLZ5 DTLZ7

5

NSGA-II 5.718E–1 (9.7E–2) 8.287E+2 (6.0E+1) 1.302E+0 (4.3E–2) 1.589E–1 (1.2E–2)
MOEA/D 3.552E–4 (4.5E–5) 6.607E–2 (2.0E–1) 1.213E–1 (5.5E–3) 3.305E–2 (4.6E–3)
MSOPS 8.696E–2 (1.1E–2) 1.640E+2 (2.4E+1) 8.918E–1 (6.6E–2) 4.890E+0 (2.7E–1)
HypE 2.601E–3 (6.3E–4) 1.890E+1 (6.9E+0) 1.749E–1 (2.9E–2) 1.150E–1 (3.8E–2)
ε-MOEA 2.185E–2 (2.5E–3) 6.350E–2 (2.1E–2) 6.720E–1 (7.4E–2) 3.067E–2 (9.6E–4)
DMO 4.837E–2 (5.5E–3) 1.329E+2 (3.8E+1) 4.729E–1 (7.7E–2) 1.151E–1 (8.1E–3)
AR 7.548E–5 (7.0E–5) 4.653E+0 (7.4E+0) 4.336E–3 (5.8E–4) 4.513E–2 (4.8E–3)
AR+Grid 7.328E–3 (1.5E–3) 8.919E+1 (4.4E+1) 7.216E–1 (6.5E–2) 7.224E–2 (8.3E–3)

10

NSGA-II 2.308E+0 (2.6E–2) 1.858E+3 (4.1E+1) 2.090E+0 (4.9E–2) 1.976E+0 (1.2E–1)
MOEA/D 1.088E–3 (1.4E–4) 2.326E–2 (1.5E–2) 1.510E–3 (4.4E–4) 9.316E–2 (1.8E–2)
MSOPS 5.498E–1 (1.3E–1) 5.966E+2 (1.0E+2) 1.272E+0 (5.1E–2) 5.756E+0 (8.0E–2)
HypE 2.227E–2 (7.0E–3) 3.794E+0 (3.5E+0) 3.628E–1 (5.9E–2) 3.631E–1 (5.0E–2)
ε-MOEA 4.766E–2 (1.1E–2) 4.479E+1 (8.5E+1) 8.176E–1 (2.6E–1) 2.817E–1 (1.3E–2)
DMO 2.549E–1 (3.2E–2) 6.611E+2 (1.0E+2) 5.559E–1 (1.2E–1) 8.374E–1 (8.1E–2)
AR 1.020E–4 (1.3E–4) 3.793E–1 (7.3E–1) 2.383E+0 (2.5E–1) 8.288E–2 (1.2E–2)
AR+Grid 2.516E–2 (5.0E–3) 5.914E+1 (2.3E+2) 1.759E+0 (6.8E–2) 5.142E–1 (1.2E–2)

Table 4. IGD results of the eight algorithms on DTLZ2, DTLZ3, DTLZ5, and DTLZ7

Obj. Alg. DTLZ2 DTLZ3 DTLZ5 DTLZ7

5

NSGA-II 3.101E–1 (2.7E–2) 1.683E+2 (5.4E+1) 5.165E–2 (1.1E–2) 3.367E–1 (1.5E–2)
MOEA/D 1.332E–1 (7.0E–5) 1.785E–1 (1.7E–1) 2.009E–2 (2.7E–5) 3.503E+0 (7.0E–1)
MSOPS 1.960E–1 (8.9E–3) 4.025E+1 (1.3E+1) 1.927E–2 (1.7E–3) 2.828E+0 (8.3E–1)
HypE 2.366E–1 (4.7E–2) 1.404E+0 (1.1E+0) 1.251E–1 (3.8E–2) 4.253E–1 (4.4E–2)
ε-MOEA 1.625E–1 (4.5E–3) 1.753E–1 (1.2E–2) 8.421E–2 (1.0E–2) 4.958E–1 (1.1E–1)
DMO 2.310E–1 (3.0E–2) 2.023E+1 (9.1E+0) 4.049E–1 (8.4E–2) 3.250E–1 (1.8E–2)
AR 6.264E–1 (2.5E–2) 1.522E+0 (1.7E+0) 6.054E–1 (5.1E–2) 1.867E+0 (2.1E–1)
AR+Grid 1.454E–1 (3.4E–3) 7.805E–1 (2.2E–1) 6.268E–2 (1.2E–2) 1.220E+0 (3.3E–1)

10

NSGA-II 2.112E+0 (1.5E–1) 5.928E+2 (1.9E+2) 1.887E–1 (1.0E–0) 2.288E+0 (6.1E–1)
MOEA/D 4.921E–1 (6.9E–5) 4.950E–1 (5.0E–3) 6.495E–2 (2.2E–6) 4.193E+0 (1.2E+0)
MSOPS 6.852E–1 (4.9E–2) 8.303E+1 (1.7E+1) 1.769E–2 (2.0E–3) 2.208E+1 (3.0E+0)
HypE 6.294E–1 (9.4E–2) 2.242E+0 (1.3E+0) 1.472E–1 (3.2E–2) 1.010E+0 (3.3E–2)
ε-MOEA 4.048E–1 (4.9E–3) 1.273E+1 (2.0E+1) 1.714E–1 (1.7E–2) 1.879E+0 (1.8E–1)
DMO 5.280E–1 (1.8E–2) 2.368E+2 (8.2E+1) 4.656E–1 (1.1E–1) 6.561E+0 (2.5E+0)
AR 1.169E+0 (8.1E–3) 1.251E+0 (2.4E–1) 2.582E+0 (4.2E–1) 8.440E+0 (1.5E–1)
AR+Grid 4.835E–1 (5.9E–3) 1.735E+0 (2.9E+0) 8.854E–1 (1.5E–1) 1.381E+0 (1.6E–1)

(a) NSGA-II (b) MOEA/D (c) MSOPS (d) HypE

(e) ε-MOEA (f) DMO (g) AR (h) AR+Grid

Fig. 1. The final solution set of the eight algorithms on the ten-objective DTLZ7,
shown by parallel coordinates
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Table 5. HV results of the eight algorithms on WFG1, WFG8, and WFG9

Obj. Alg. WFG1 WFG8 WFG9

5

NSGA-II 4.984E–1 (1.3E–2) 8.507E–1 (1.5E–2) 8.665E–1 (1.2E–2)
MOEA/D 1.157E+0 (1.8E–1) 8.311E–1 (1.3E–1) 1.012E+0 (2.5E–2)
MSOPS 4.274E–1 (1.2E–2) 8.309E–1 (1.1E–2) 9.310E–1 (9.5E–3)
HypE 5.481E–1 (1.0E–1) 7.615E–1 (1.6E–2) 8.511E–1 (4.9E–2)
ε-MOEA 4.075E–1 (3.0E–2) 9.404E–1 (7.5E–3) 9.440E–1 (1.6E–2)
DMO 5.024E–1 (9.9E–3) 6.748E–1 (1.9E–2) 8.718E–1 (1.7E–2)
AR 3.234E–1 (1.4E–2) 2.380E–1 (2.1E–2) 1.896E–1 (8.8E–2)
AR+Grid 7.220E–1 (3.9E–2) 1.098E+0 (3.1E–3) 1.052E+0 (2.7E–3)

10

NSGA-II 8.409E–1 (1.3E–2) 2.456E+0 (1.4E–2) 2.371E+0 (1.6E–3)
MOEA/D 1.031E+0 (2.8E–2) 7.091E–1 (4.0E–1) 3.661E–1 (1.9E–1)
MSOPS 7.611E–1 (1.8E–2) 2.395E+0 (8.4E–2) 2.373E+0 (6.6E–4)
HypE 1.174E+0 (1.4E–1) 2.587E+0 (2.1E–3) 2.563E+0 (8.3E–3)
ε-MOEA 7.402E–1 (4.3E–2) 4.497E–1 (8.1E–1) 1.122E+0 (6.2E–1)
DMO 8.355E–1 (1.5E–2) 2.226E+0 (5.1E–2) 2.321E+0 (5.4E–3)
AR 7.153E–1 (1.2E–1) 2.525E+0 (4.5E–3) 2.329E+0 (1.7E–4)
AR+Grid 1.132E+0 (7.4E–2) 2.577E+0 (8.2E–4) 2.373E+0 (8.0E–4)

value for the 5-objective DTLZ7. Figure 1 plots the final solutions of the eight
algorithms on the 10-objective DTLZ7. Clearly, the solution set of MOEA/D, ε-
MOEA, AR, and AR+Grid can approximate the Pareto front (the upper bound
of the last objective in the Pareto front of DTLZ7 is equal to 2×M , i.e., f10 ≤ 20
for the 10-objective instance). However, the former three converge into a sub-
area of the optimal front, thus obtaining a worse IGD value than AR+Grid. It is
interesting to note that HypE, with several solutions far away from the Pareto
front, obtains the best IGD value. This occurrence can be attributed to the fact
that most of its solutions have good convergence and diversity, which can be
observed from the scaling plot of the solutions in Figure 1(d) (the lower bound
of the solutions in the last objective of the problem reaches around 5).

4.2 The WFG Test Problems

By a series of transition of introducing complexity (such as flat bias, multimodal-
ity, and nonseparability), the WFG problem suite poses a big challenge for algo-
rithms to obtain a well-converged and well-distributed solution set. Table 5 gives
the HV results of the eight EMO algorithms on WFG1, WFG8, and WFG9 with
5 and 10 objectives. We observe that these algorithms show different behaviors
on different test instances.
Unlike the case on the DTLZ suite, where DMO outperforms NSGA-II for

most of the instance, on the WFG suite they present similar performance. Es-
pecially for the three 10-objective instances, NSGA-II even performs slightly
better than DMO. This means that decreasing the diversity requirement in the
evolutionary process of many-objective optimization may not always improve
the performance of an algorithm.
MOEA/D shows different search abilities on different WFG problems. It ap-

pears to be competitive with the other algorithms on the 5-objective WFG1 and
WFG9 and 10-objective WFG1, but performs poorly on the 10-objective WFG8
and WFG9. In fact, all the tested algorithms have difficulty on the WFG1 prob-
lem which has the characteristic of flat bias. Although clearly superior to the
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Fig. 2. The box plot of the archive size of ε-MOEA on 30 runs for all 10-objective
problems

other algorithms on the 5-objective WFG1, MOEA/D fails to cover the whole re-
gion of the Pareto front—the average value of the final solution set of MOEA/D
is 0.371 by the improved Maximum Spread (MS′) test [21] (MS′ ∈ [0, 1], and
one is the optimal value which indicates the obtained set reaches the all the
boundaries of the Pareto front1).
Although both are aggregation-based approaches, MSOPS shows different be-

havior from MOEA/D. The former is significantly inferior to the latter on the
5- and 10-objective WFG1, but clearly superior on the 10-objective WFG8 and
WFG9. For the rest of the problems, the difference between them is slight.
An interesting result of the HypE algorithm on the WFG problem suite is

observed from the table. HypE performs poorly for the three 5-objective WFG
problems, but achieves the best HV value on the 10-objective instances. This
means that HypE becomes more competitive as the number of objectives in-
creases. In contrast, ε-MOEA works well on the 5-objective WFG8 and WFG9,
but struggles on the higher-dimensional WFG problem. Note that large standard
deviation of HV is obtained by ε-MOEA for the 10-objective cases. This means
an unstable search ability of ε-MOEA on these problems. An important reason
for this occurrence is the instability of the archive size of the algorithm. In fact,
when the number of objectives reaches 10, the size of the final archive set for
each run may be completely different no matter what setting the parameter ε.
Figure 2 gives the archive size of ε-MOEA on 30 runs for all 10-objective prob-
lems by box plot. Clearly, severe instability of the archive size is shown on all the
DTLZ and WFG problems except on DTLZ2. For some runs, the size reaches
over 1600, yet for some other runs, the archive set has only one solution.
Similar to the case on DTLZ, the AR approach, in general, performs the worst

of all on the WFG problems, obtaining the lowest HV value in 4 out of the 6
instances. However, AR+Grid, an improvement of AR by using grid to enhance
diversity, is very competitive with the other algorithms. AR+Grid performs the

1 Here, MS′ is an improved version of the original MS [27] to ease the influence of
convergence of a solution set. It evaluates the spread of a solution set by introduc-
ing the comparison between the extreme values of the solutions in the set and the
boundaries of the Pareto front.
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Table 6. HV results of the eight algorithms on multiobjective TSP with different
correlation parameter (TSPcp) values

Obj. Alg. TSPcp = −0.2 TSPcp = 0 TSPcp = 0.2

5

NSGA-II 3.616E+05 (3.3E+04) 4.406E+05 (3.4E+04) 5.245E+05 (4.3E+04)
MOEA/D 1.226E+06 (2.8E+04) 1.038E+06 (2.4E+04) 9.056E+05 (2.0E+04)
MSOPS 8.511E+05 (4.0E+04) 7.970E+05 (3.3E+04) 7.456E+05 (2.7E+04)
HypE 3.547E+05 (2.5E+04) 3.800E+05 (4.1E+04) 5.070E+05 (8.0E+04)
ε-MOEA 1.092E+06 (3.9E+04) 9.743E+05 (3.8E+04) 8.753E+05 (2.7E+04)
DMO 3.522E+05 (3.3E+04) 4.345E+05 (4.4E+04) 5.271E+05 (5.1E+04)
AR 3.924E+05 (8.9E+04) 3.947E+05 (5.9E+04) 3.812E+05 (5.1E+04)
AR+Grid 1.109E+06 (3.7E+04) 9.558E+05 (2.7E+04) 8.636E+05 (2.8E+04)

10

NSGA-II 1.040E+10 (1.8E+09) 1.801E+10 (2.6E+09) 2.545E+10 (4.5E+09)
MOEA/D 2.572E+11 (1.2E+10) 1.969E+11 (1.3E+10) 1.580E+11 (1.0E+10)
MSOPS 1.980E+11 (1.7E+10) 1.898E+11 (1.1E+10) 1.662E+11 (9.2E+09)
HypE 1.033E+10 (1.2E+09) 1.613E+10 (9.8E+08) 3.536E+10 (7.2E+09)
ε-MOEA 1.337E+11 (1.2E+10) 1.440E+11 (9.3E+09) 1.530E+11 (1.3E+10)
DMO 8.084E+09 (1.6E+09) 1.691E+10 (3.2E+09) 2.504E+10 (5.2E+09)
AR 5.306E+10 (1.2E+10) 7.649E+10 (2.1E+10) 4.946E+10 (9.8E+09)
AR+Grid 3.159E+11 (1.0E+10) 2.496E+11 (7.8E+09) 2.080E+11 (5.9E+09)

best on the 5-objective WFG8 and WFG9, and takes the second place for the
rest of the test instances.

4.3 The TSP Test Problem

One important property of the multiobjective TSP problem is that the con-
flict degree among the objectives can be adjusted according to the parameter
TSPcp ∈ (−1, 1), where a lower value means a greater degree of conflict. Table 6
gives the HV results of the eight EMO algorithms on TSP with different corre-
lation parameter settings and numbers of objectives.
As can be seen from the table, MOEA/D and AR+Grid generally outperform

the other algorithms. More specifically, MOEA/D performs best on the three 5-
objective instances, and AR+Grid keeps a clear advantage for the 10-objective
TSP with different TSPcp values. Among the remaining algorithms, MSOPS and
ε-MOEA are competitive. For the lower-dimensional problems, ε-MOEA obtains
a larger HV value, and MSOPS performs better when the higher-dimensional
TSP instances are considered. The other four algorithms seem not to work well
on the TSP problem suite. But an interesting phenomenon can be observed—AR,
which generally performs the worst in terms of the comprehensive assessment
metrics on DTLZ and WFG, obtains a significant better HV result than HypE
and DMO on the three 10-objective TSP instances.
In addition, note that the tested algorithms show different trends with the

change of the correlation parameter TSPcp. Most of the “good” algorithms
(i.e., MOEA/D, AR+Grid, and MSOPS) have a decreasing HV value with the
increase of TSPcp for both 5- and 10-objective cases; conversely, most of the
“poor” algorithms (i.e., NSGA-II, HypE, and DMO) obtain an increasing result.
This means that the search ability of algorithms on TSP is reflected more clearly
when a greater degree of conflict among objectives of the problem is involved.



272 M. Li et al.

(a) NSGA-II (b) MOEA/D (c) MSOPS (d) HypE

(e) ε-MOEA (f) DMO (g) AR (h) AR+Grid

Fig. 3. The final solution set of the eight algorithms in the decision space on the
ten-objective Pareto-Box problem

4.4 The Pareto-Box Test Problem

With a high-dimensional objective space and a two-dimensional decision space,
the Pareto-Box problem is used to visually investigate the distribution of solu-
tions in the decision space. Due to the corresponding relation of the crowding
between the objective space and decision space of the problem, this can also
facilitate the understanding of the ability for an algorithm to maintain diversity
in the objective space [19]. Figure 3 shows the 10-objective Pareto-Box problem
considered here (the Pareto optimal region is the inside of the regular decagon),
as well as the final solution set of the eight algorithms on the problem.
It is clear from the figure that none of the algorithms works well in terms

of both convergence and diversity, although they show different behavior char-
acteristics. Many solutions of NSGA-II fail to converge into the Pareto optimal
region. The solutions of MOEA/D, AR, and HypE concentrate (or even coincide)
in one (or several) region(s) of the decagon. Specifically, The solutions obtained
by MOEA/D gather around the center of the decagon, and most of the solutions
of AR are located in the central axes of the figure. Although the solutions of
HypE reach each angle of the decagon, there are a lot of vacant places. MSOPS
and DMO perform better than the previous four algorithms, but struggle to
maintain uniformity of their solutions.
ε-MOEA and AR+Grid are the two best algorithms on this problem. However,

they also have their own shortcomings—the former fails to keep the boundary
solutions and the latter has difficulty in making all solutions converge into the
optimal region.

4.5 Summary

Based on the above examination on four groups of test functions, the summary
observation of the eight algorithms can be made:
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– NSGA-II does not always perform the worst on all many-objective problems.
On some problems with relatively low dimensions, such as 5-objective DTLZ7
and WFG8, NSGA-II outperforms some algorithms designed specially for
many-objective optimization.

– The search ability of MOEA/D has sharp contrasts on different problems.
It works very well on DTLZ2, DTLZ3, WFG1, and TSP, but encounters
great difficulties on the DTLZ7, WFG8, and Pareto-Box problems. From
the results on the WFG and TSP suites, MOEA/D appears to be more
competitive in relatively low-dimensional problems.

– Similar to MOEA/D, MSOPS struggles on the problem with the discon-
nected Pareto front (DTLZ7). But MSOPS performs the best on the degen-
erate problem DTLZ5.

– Although favoring the boundary solutions, HypE shows advantages in a
higher-dimensional objective space. This can be obtained from the results of
the DTLZ7 and three WFG test instances.

– ε-MOEA performs well on most of the 5-objective test instances. However,
the instability of the archive size will count against the evolutionary process
of the algorithm as the number of objectives further increases.

– By adaptively controlling the diversity maintenance mechanism, DMO has
a clear advantage over NSGA-II on the DTLZ suite. However for the WFG
and TSP suites, the advantage vanishes, NSGA-II even outperforming DMO
on WFG8 and most of the TSP instances.

– Due to the lack of diversity maintenance, AR is the algorithm with poor com-
prehensive performance on all the test problems, except for the 10-objective
TSP, where AR is clearly superior to HypE and DMO.

– Despite being competitive on most of the test instances, AR+Grid has dif-
ficulty on the problem with many local optima, such as DTLZ3. This is be-
cause the neighbor punishment strategy in AR+Grid may make some “bad”
individuals rank higher than their better competitors.

5 Conclusions

This paper has compared eight state-of-the-art EMO algorithms from the six
classes of approaches of dealing with many-objective problems. The benchmark
has been composed of four groups of continuous and combinatorial test prob-
lems. The behavior of the algorithms has been understood by three performance
metrics, and also with the help of a visual investigation in the decision space.
Our study has revealed that there is not a clear performance gap between

algorithms for all the tested problems. These algorithms have their own strengths
on different test instances. This means that a careful choice of algorithms must
be made when dealing with a many-objective problem in hand.
Despite various adaptability, several algorithms demonstrate their competi-

tiveness on most of the test instances. AR+Grid, MOEA/D, and ε-MOEA are
three such algorithms—AR+Grid works well on DTLZ2, WFG, TSP and Pareto-
Box, MOEA/D on DTLZ2, DTLZ3, WFG1 and TSP, and ε-MOEA on DTLZ,
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Pareto-box and the 5-objective WFG8, WFG9 and TSP instances. Among the
rest, MSOPS and HypE are two more promising approaches. The former is im-
pressive on DTLZ5 and the 10-objective TSP, and the latter on the 10-objective
DTLZ7 and WFG. DMO outperforms NSGA-II for the DTLZ problem suite.
Finally, NSGA-II and AR struggle to make solutions approximate the Pareto
front and to maintain a diverse set of solutions, respectively.
Another observation of our study is that none of the tested algorithms can

produce a well-converged and well-distributed solution set even for some “easy”
problems, such as the Pareto-Box problem. This indicates the infancy of evolu-
tionary many-objective optimization and highlights the need for further devel-
opment in the area.
One area for further investigation is to compare the eight algorithms under

varying parameter settings, including the dimensions of decision space, popu-
lation size, and computational budget. In addition, statistical analysis will be
applied to evaluate the confidence level of the obtained results.
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Abstract. This paper examines the effect of dominance balance in many-
objective optimization. The dominance balance can be defined by the ra-
tio of the dominating space to the objective space. Here, CDAS, which is
one of the most powerful evolutionary many-objective optimization algo-
rithms, is known to be able to change the ratio of the dominating space
by relaxing the definition of Pareto dominance with its user-specified
parameter. However, the dominance balance is too difficult to control
for the parameter in the higher-dimensional objective space. Therefore,
we analyze the performance of CDAS by changing the ratio of the dom-
inating space directly in even steps from the minimum to the maxi-
mum according to the number of objectives. The corresponding user-
specified parameter in CDAS can be obtained from an equation which
we assume in the paper. As benchmark test problems, we use DTLZ1,
DTLZ2, DTLZ3, and DTLZ4 with two to ten objectives. From com-
putational experiments, we can conclude that the optimal ratio of the
dominating space differs depending on the problem at hand. It can be
also said that the performance of CDAS is good especially when the ratio
of the dominating space is small enough but not the minimum. Based
on these observations, we propose a new version of CDAS called CDAS-
D which controls the ratio of the dominating space dynamically during
optimization.

Keywords: Pareto dominance, dominance relation, dominance area,
many-objective optimization, multi-objective optimization.

1 Introduction

Recently many-objective optimization has attracted much attention in evolution-
ary multi-objective optimization (EMO) which is one of the most active research
areas in evolutionary computation [9]. In the past two decades, a lot of EMO
algorithms have been proposed in the hope of working for optimization prob-
lems with an arbitrary number of objectives [2,3]. However, it can be found these
days that they can hardly handle optimization problems with more than three
objectives [9]. For example, NSGA-II, which is one of the most reputable EMO
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algorithms, compares solutions based on their rank values which generate search
pressure in the objective space [4]. In the higher-dimensional objective space,
however, only the first rank may be assigned to every solution as almost all so-
lutions in the population will become non-dominated. Without a variety of rank
values, NSGA-II can not keep the search pressure anymore in many-objective
optimization. Thus, we have to adopt totally different approaches.
There are mainly three approaches to tackle this issue in many-objective op-

timization. One is to use a scalarizing function. The scalarizing function yields
a scalar value from multiple objective values with a weight vector. MOEA/D
is one of representative algorithms that use the scalarizing function with multi-
ple weight vectors in a single run of optimization [17]. Another approach is to
have an indicator for comparing solutions sets. IBEA [20] and SMS-EMOA [1]
are well-known indicator-based algorithms. As the indicator, the hypervolume
is often used. The third approach is to modify the dominance balance. CDAS
[13,14,15], for example, can keep the dominance balance by relaxing the def-
inition of Pareto dominance. Although the performance of CDAS is good for
both benchmark test problems and real-world applications [12], its theoretical
understanding is not enough in the literature.
In the present paper, we examine the effect of the dominance balance on the

performance of CDAS, theoretically and experimentally. The dominance balance
is meant by the ratio of the dominating space to the objective space. CDAS can
change the ratio of the dominating space by relaxing the definition of Pareto
dominance with its parameter S. However, the ratio of the dominating space (i.
e., dominance balance) is too hard to handle for the parameter S in the higher-
dimensional objective space as the ratio is proportional to ad−1, where a =
π/2−S·π, d is the number of objectives. Therefore, we analyze the performance of
CDAS by changing the ratio of the dominating space directly in even steps from
the minimum ((1/2)d) to the maximum (1/2). The corresponding parameter S
in CDAS can be calculated by an equation which we assume in the paper. As
benchmark test problems, we use DTLZ1, DTLZ2, DTLZ3, and DTLZ4 with
two to ten objectives. From computational experiments, we see that the optimal
ratio of the dominating space differs depending on the problem at hand. It can
be also said that the performance of CDAS is improved especially when the
ratio of the dominating space is small enough but not the minimum. Based on
these observations, we propose a new version of CDAS called CDAS-D which
controls the ratio of the dominating space dynamically during optimization. In
computational experiments, we examine the performance of CDAS-D with two
different settings for a range of the ratio of the dominating space.
This paper is organized as follows. We give a detailed description of the dom-

inance balance with a brief introduction to multi-objective optimization and
CDAS in section 2. The relation among the parameter S in CDAS, the ra-
tio of the dominating space, and the number of objectives is also given in the
form of an equation and a figure. In section 3, we examine the performance
of CDAS on benchmark test problems. Based on our observations in section 3,
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we propose CDAS-D in section 4. The paper concludes in section 5 with discus-
sions on results and future works.

2 Dominance Balance

2.1 Multi-objective Optimization

In this paper we consider minimization problems. Generally a d-objective mini-
mization problem is formulated as follows:

Minimize f(x) = (f1(x), f2(x), ..., fd(x)), subject to x ∈ X, (1)

where f(x) is the d-dimensional objective vector, fi(x) is the i-th objective value
to be minimized, x is the decision vector, X is the feasible region. When two
feasible solutions a and b of (1) satisfy the following conditions, we can say that
a dominates b.

∀i : fi(a) ≤ fi(b) and ∃j : fj(a) < fj(b). (2)

If a is not dominated by any other feasible solutions, a is referred to as a Pareto-
optimal solution. The entire set of Pareto-optimal solutions forms the Pareto
front. The task in multi-objective optimization is to find a set of non-dominated
solutions that approximates the whole Pareto front well [4,18].

2.2 Controlling Dominance Area of Solutions (CDAS)

As explained in section 1, CDAS can change the ratio of the dominating space
(i. e., dominance balance) by relaxing the definition of Pareto dominance indi-
rectly with its parameter S [13,14,15]. In order to relax the definition implicitly,
objective values are transformed in CDAS. The transformation equation for the
i-th objective value of f(x) is given with the parameter S as follows:

f ′i(x) = r cos(ωi) + r sin(ωi) ·
cos(ϕ)

sin(ϕ)

=
r sin(ϕ + ωi)

sin(ϕ)
, ϕ = S · π

(1
4
≤ S ≤ 1

2

)
, (3)

where r is the norm of f(x), and ωi is the declination angle between fi(x) and
f(x). The transformation is also illustrated in Fig. 1 for the two-objective case.
Based on transformed objective values by (3), CDAS assigns rank values and
crowding distances to solutions in the same manner as NSGA-II. It should be
noted that the algorithm of CDAS is exactly the same as that of NSGA-II
except that transformed objective values are used to calculate rank values and
crowding distances in CDAS. Although CDAS can handle multiple parameters
Si (i = 1, 2, ..., d), only one parameter S is considered in this paper for the sake
of simplicity.
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Fig. 1. Transformation of objective values in the two-objective space
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Fig. 2. Dominating, non-dominated, dominated spaces after transforming objective
values are shown

2.3 Ratio of Dominating Space

In order to understand the ratio of the dominating space to the objective space,
the dominating space that dominates f(x), the non-dominated space that is non-
dominated in comparison with f(x), and the dominated space that is dominated
by f(x) after the transformation by (3) are illustrated in Fig. 2 with a = π/2−
S · π (0 ≤ a ≤ π/4, see (3) and Fig. 1). Here, we assume a hypersphere to
consider these spaces in the higher-dimensional objective space. From Fig. 2,
we can see that the ratio of the dominating space to the objective space (i.
e., circle) is proportional to the value of a for the case of two objectives. In
the three-dimensional objective space, the ratio of the dominating space to the
objective space (i. e., sphere) is proportional to the value of a to the second power.
Therefore, we can assume that the ratio of the dominating space is proportional
to the value of a to the (d − 1)-th power in the d-dimensional objective space.
It can be also assumed that the minimum and the maximum of the ratio of the
dominating space is (1/2)d and 1/2, respectively. From these assumptions, we
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obtain the following relational expression of the ratio of the dominating space,
the value of a, and the number of objectives d.

Ratio Dominating Space =
{1
2
−
(1
2

)d}
·
( 4
π

)d−1

· ad−1 +
(1
2

)d
(4)

We can also visualize the equation (4) in Fig. 3. From Fig. 3, we can see that
the ratio of the dominating space is nearly zero in the objective space with
more than ten objectives when the value of a is specified as a = 0. In other
words, search pressure will be lost in the higher-dimensional objective space as
the ratio of the non-dominated space is nearly one, thereby almost all solutions
become non-dominated. However, when the value of a is specified as close to
the maximum (i. e., π/4), the ratio of the dominating space is still more than
zero even in the higher-dimensional objective space. It should be noted that the
ratio of the dominating space (i. e., dominance balance) is difficult to specify for
the value of a in the higher-dimensional objective space. In the 30-dimensional
objective space, for example, the ratio of the dominating space is nearly zero
when the value of a is not specified as close to the maximum (i. e., π/4). On
the other hand, if it is close to the maximum, the ratio of the dominating space
changes dramatically according to the value of a in its narrow range. In the next
section, we examine the performance of CDAS by changing the value of a and
the ratio of the dominating space in even steps, respectively.
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3 Effect of Dominance Balance

In the paper, we use DTLZ1, DTLZ2 ,DTLZ3, and DTLZ4 with two to ten
objectives as benchmark test problems [5,6]. They are well-known benchmark
test problems where the number of objectives can be specified by the user.
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We use the relative hypervolume (also called as covered fraction in [7]) to assess
the performance of CDAS on benchmark test problems. The relative hypervol-
ume is calculated as follows. First the hypervolume of non-dominated solutions
in a population is calculated with a reference point. The reference point for calcu-
lating the hypervolume should be specified in advance. In this paper, we use the
reference point p = 0.7d for DTLZ1, p = 1.1d for DTLZ2, DTLZ3, and DTLZ4,
where d is the number of objectives. We can also calculate the hypervolume of
the Pareto front analytically as the Pareto front of each problem is known. Then
the hypervolume of non-dominated solutions divided by the hypervolume of the
Pareto front yields the relative hypervolume. When the relative hypervolume is
one, it means that the Pareto front is obtained completely. On the other hand,
when the relative hypervolume is zero, no solutions which dominate the reference
point are found. It should be noted that the hypervolume and its relative value
give the same conclusion because the hypervolume is just divided by a constant.
Regarding the other settings for our computational experiments like a crossover
probability and a mutation probability and so on, we use the same settings as
[16] except that the number of generations is set to 1000.
First, we show the relative hypervolume of non-dominated solutions obtained

by CDAS for combinations of a = (0, 0.025π, . . . , 0.25π) and d = (2, 3, . . . , 10) in
Fig. 4. The average of the relative hypervolume over 20 trials is given throughout
the paper. We can see from Fig. 4 that the relative hypervolume is larger for each
problem when the number of objectives is smaller and the value of a is a = 0.
It should be noted that results with a = 0 correspond to results of NSGA-II as
objective values do not change when the value of a is specified as a = 0. When
the number of objectives is larger, the performance of CDAS with a = 0 (i. e.,
NSGA-II) easily deteriorates. This is justified by the fact that the performance
of NSGA-II deteriorates with an increase in the number of objectives [9]. From
Fig. 4(a), the relative hypervolume is nearly one in almost all cases for DTLZ1
when the value of a is set to a �= 0. On the other hand, we obtain different
results for DTLZ2, DTLZ3, and DTLZ4 from Fig. 4(b), Fig. 4(c), and Fig. 4(d),
respectively. From these results, when the number of objectives is smaller, the
best performance is achieved with small values of a. However, the best relative
hypervolume is obtained by large values of a excluding the maximum when the
number of objectives is larger. As discussed in Section 2.3 for Fig. 3, the ratio
of the dominating space is still more than zero even in the higher-dimensional
objective space when the value of a is specified as large values in its range.
Therefore, we can say that the ratio of the dominating space is related to the
performance of CDAS.
Although CDAS can change the ratio of the dominating space, it is not

changed in even steps in Fig. 4. Therefore, we measure the performance of CDAS
for combinations of r = (r1, r2, . . . , r11) and d = (2, 3, . . . , 10), where r is the
ratio of the dominating space, d is the number of objectives, respectively. Here,
r1 corresponds to the minimal ratio of the dominating space (i. e., (1/2)d), r11
corresponds to the maximal ratio of the dominating space (i. e., 1/2). The val-
ues of r = r1, r2, . . . , r11 are evenly distributed. It should be noted that the
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(a) DTLZ1 (b) DTLZ2

(c) DTLZ3 (d) DTLZ4

Fig. 4. The relative hypervolume of solutions obtained by CDAS for each benchmark
test problem is shown for the value of a and the number of objectives

corresponding parameter S is calculated from (4), which is needed by CDAS to
transform objective values (see (3)). We summarize the performance of CDAS
on benchmark test problems in Fig. 5. From Fig. 5(a) for DTLZ1, we can say
that the relative hypervolume is nearly one for r = r1, r2, . . . , r10 when the num-
ber of objectives is two. In the three-dimensional objective space, the relative
hypervolume decreases with an increase in the ratio of the dominating space.
When we consider the objective space with more than four objectives, CDAS
with r = r1 (i. e., NSGA-II) does not find any non-dominated solutions which
dominate the reference point. We can also see that the relative hypervolume is
almost one for r = r2, r3, . . . , r11 when the number of objectives is more than
three. On DTLZ2 in Fig. 5(b), when the number of objectives is specified as
two to four, r = r1, r2, r3 gives good results. In the more than four-dimensional
objective space, r = r1 yields the worst performance for each objective. On the
other hand, r = r2, r3, . . . , r10 gives similar nice results. Here, we should notice
that worse results are obtained when the ratio of the dominating space is speci-
fied as the maximum. Regarding the performance of CDAS on DTLZ3, the best
relative hypervolume is obtained by r = r1 in the objective space with two and
three objectives in Fig. 5(c). In the more than three-objective space, r = r1 gives
the worst performance and the optimal ratio of the dominating space is different
depending on the number of objectives. With respect to DTLZ4 from Fig. 5(d),
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(a) DTLZ1 (b) DTLZ2

(c) DTLZ3 (d) DTLZ4

Fig. 5. The relative hypervolume of solutions obtained by CDAS for each benchmark
test problem is shown for the ratio of the dominating space and the number of objectives

surprisingly, r = r3 gives the best performance when the number of objectives
is two. In the three- and four-objective space, r = r1 gives the best relative
hypervolume. The optimal ratio of the dominating space is different depending
on the number of objectives as well as DTLZ3 with more than four objectives. It
should be noted that CDAS with r = r1 (i. e., NSGA-II) does not work anymore
for more than five objectives here too.
From Fig. 4 and Fig. 5, our consideration on the dominance balance is sum-

marized as follows:

– CDAS with a = 0 or r = r1 (i. e., NSGA-II) performs well for a few objectives
whereas it does not work anymore in the higher-dimensional objective space.

– CDAS with a = π/4 or r = r11 (i. e., when the ratio of the dominating space
is 1/2) gives poor results except for DTLZ1.

– In the higher-dimensional objective space, CDAS shows poor results for
smaller values of a and nice results for larger values of a excluding the max-
imum except for DTLZ1.

– In the higher-dimensional objective space, CDAS shows stable and good
results for the ratio of the dominating space r = r2, r3, . . . , r10.

– CDAS with r = r2 often shows good performance.
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4 CDAS-D

4.1 Proposal of CDAS-D

From the previous section, we can see that CDAS with the ratio of the domi-
nating space r = r2, r3, . . . , r10 frequently shows more stable and better perfor-
mance than that with the value of a. However, we do not know the optimal ratio
of the dominating space in advance as it changes depending on the problem and
the number of objectives. Therefore we propose a new version of CDAS with the
dynamic ratio of the dominating space, which we call CDAS-D in this paper. In
CDAS-D, the hypervolume of solutions is calculated at each generation. As long
as the hypervolume is improved (i. e., increased), we do not change the ratio of
the dominating space. Once the hypervolume deteriorates (i. e., decreases), the
ratio of the dominating space is replaced with a random value from a uniform
distribution. The idea behind this is that we do not want the ratio to be fixed
during optimization. As we do not know the optimal ratio, the random value is
tried for the ratio when the hypervolume is decreased. There are two settings
for the range of the random value. One is the wide range from r1 to r11. The
other is the narrow range from r1 to r2. The values of r1, r2, r11 are explained
in the previous section. The flow chart of CDAS-D is shown in Fig. 6.

Parent, r Initialize()

Start

Meet stopping
condition ?

Offspring  Select(Parent)
Offspring  Crossover(Offspring)
Offspring Mutate(Offspring)
Offspring  AssignFitness(Offspring, r)
Temporary  Update(Parent, Offspring)

Output result

End

H(Temporary)
> H(Parent) ?

Parent  Temporary

r AssignRandom(Lower, Upper)

Yes
No Yes

No

Fig. 6. The flow chart of CDAS-D is illustrated. In the chart, H(S) gives the hyper-
volume of S, and AssignRandom(Lower, Upper) returns a random value uniformly
distributed between Lower and Upper
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4.2 Computational Experiments

We apply our CDAS-D to benchmark test problems in the same manner as
the previous section. Computational results are summarized in Fig. 7. It should
be noted that Fig. 7 is obtained by adding the results of CDAS-D to Fig. 5
for comparison. From Fig. 7 we can see that our CDAS-D is comparable to
CDAS with the optimal ratio of the dominating space. It can be also said that
CDAS-D with the narrow range shows better performance than that with the
wide range. It should be noted that we do not have to specify the ratio of the
dominating space in CDAS-D. In order to see a process of optimization, we
show the relative hypervolume during optimization in the case of three, six, and
nine objectives for CDAS with r = r1 (i. e., NSGA-II), r = r2, CDAS-D with
the wide range (dw), and CDAS-D with the narrow range (dn) on DTLZ1 and
DTLZ2 in Fig. 8, on DTLZ3 and DTLZ4 in Fig. 9, respectively. From Figs. 8(a)

(a) DTLZ1 (b) DTLZ2

(c) DTLZ3 (d) DTLZ4

Fig. 7. The relative hypervolume of solutions obtained by CDAS-D for each bench-
mark test problem is shown for the ratio of the dominating space and the number of
objectives. Results of CDAS-D are shown for the wide range (dw) setting by bars with
diagonals, for the narrow range (dn) setting by bars with confetti, respectively. The
results of CDAS (i. e., Fig. 5) are also included by bars in white.
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(a) DTLZ1 with 3 objectives
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(b) DTLZ1 with 6 objectives
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(c) DTLZ1 with 9 objectives
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(d) DTLZ2 with 3 objectives
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(e) DTLZ2 with 6 objectives
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(f) DTLZ2 with 9 objectives

Fig. 8. CDAS-D for DTLZ1 and DTLZ2
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(a) DTLZ3 with 3 objectives
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(b) DTLZ3 with 6 objectives
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(c) DTLZ3 with 9 objectives
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(d) DTLZ4 with 3 objectives
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(e) DTLZ4 with 6 objectives

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation

R
el

at
iv

e 
hy

pe
rv

ol
um

e

 

 

r1
r2
dw
dn

(f) DTLZ4 with 9 objectives

Fig. 9. CDAS-D for DTLZ3 and DTLZ4
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to 8(c), we can see that the convergence speed of CDAS with r = r2 is very
fast for all DTLZ1 problems. On the other hand, CDAS with r = r1, CDAS-D
with the narrow range, and CDAS-D with the wide range is very slow in the
three-, six-, and nine-objective space, respectively. The relative hypervolume at
the last generation (i. e., 1000th generation) is almost one for every CDAS and
CDAS-D. On DTLZ2 in Figs. 8(d) to 8(f), there is no remarkable difference
on the performance among CDAS and CDAS-D in the case of three objectives.
However, CDAS-D with the narrow range outperforms CDAS on DTLZ2 with
six and nine objectives. Regarding DTLZ3 from Figs. 9(a) to 9(c), CDAS with
r = r2 performs quite well. We can also say that the performance of CDAS-
D with the narrow range is good although CDAS-D with the wide range gives
the worst results. From Figs. 9(d) to 9(f) on DTLZ4, CDAS-D with the narrow
range performs the best. It is also interesting to point out that CDAS-D with
the wide range performs the worst. From Figs. 8 and 9 we can see that CDAS
with r = r1 (i. e., NSGA-II) does not work anymore in six- and nine-objective
space. We can also see that the relative hypervolume of CDAS-D (i. e., dw and
dn in Figs. 8 and 9) monotonically increases in all cases.

5 Summary

In this paper we examined the effect of dominance balance on the performance
of CDAS for DTLZ1, DTLZ2, DTLZ3, and DTLZ4 benchmark test problems.
The dominance balance is defined by the ratio of the dominating space to the
objective space. In CDAS, the ratio of the dominating space can be changed by
specifying the parameter S which is used to transform objective values. However,
it is very difficult for the parameter S to control the dominance balance properly
in the higher-dimensional objective space. In order to show this difficulty, we
examined the performance of CDAS by changing the value of a = π/2 − S · π
(0 ≤ a ≤ π/4) in even steps (see Fig. 4). Then we can see that the optimal
value of a that gives the best performance of CDAS increases with an increase
in the number of objectives except for DTLZ1. In DTLZ2 with more than five
objectives, for example, we can also see that the optimal value of a is large enough
but not the maximum in its range (i. e., a = 0.225π) from Fig. 4(b). This is
because the performance of CDAS will be affected by the ratio of the dominating
space directly and it is considered to be proportional to the value of a to the
(d−1)-th power in the d-dimensional objective space. Therefore, next we showed
the performance of CDAS by changing the ratio of the dominating space from the
minimum to the maximum in even steps directly. The corresponding parameter
S is calculated from an equation which we propose in the paper. From our
computational experiments in Fig. 4 and Fig. 5, we can see that CDAS with the
ratio of the dominating space r = r2, r3, . . . , r10 frequently shows more stable
and better performance than that with the value of a in the higher-dimensional
objective space. In this paper, we also proposed a new version of CDAS with
the dynamic ratio of the dominating space, which we call CDAS-D. In CDAS-D,
the hypervolume of solutions is calculated at each generation. As long as the
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hypervolume is increased, we do not change the ratio of the dominating space.
Once the hypervolume is decreased, the ratio of the dominating space is replaced
with a random value from a uniform distribution. The idea behind this is that
we do not want the ratio to be fixed during optimization. As we do not know
the optimal ratio, the random value is tried for the ratio when the hypervolume
is decreased. There are two settings for the range of the random value; the wide
range and the narrow range. From computational experiments, we can see that
our CDAS-D is comparable to CDAS with the optimal ratio of the dominating
space. It can be also said that CDAS-D with the narrow range shows better
performance than that with the wide range. It should be noted that the ratio of
the dominating space in our CDAS-D does not need to be specified by the user
in advance and during optimization although in the original CDAS it needs to
be fixed properly before optimization. In our CDAS-D, when the hypervolume
of solutions is decreased, the ratio of the dominating space is updated with
the random value. However, there may be much smarter ways like adaptive
approaches to specify the ratio. This issue will be left for one of further works.
We should also consider the performance of CDAS-D on real-world applications
in the future.
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Abstract. In this paper, we use an alternative preference relation that
couples an achievement function and the ε-indicator in order to improve
the scalability of a Multi-Objective Evolutionary Algorithm (MOEA) in
many-objective optimization problems. The resulting algorithm was as-
sessed using the Deb-Thiele-Laumanns-Zitzler (DTLZ) and the Walking-
Fish-Group (WFG) test suites. Our experimental results indicate that
our proposed approach has a good performance even when using a high
number of objectives. Regarding the DTLZ test problems, their main dif-
ficulty was found to lie on the presence of dominance resistant solutions.
In contrast, the hardness of WFG problems was not found to be signifi-
cantly increased by adding more objectives.

1 Introduction

Since the first implementation of a Multi-Objective Evolutionary Algorithm
(MOEA) in the mid 1980s, a wide variety of new MOEAs have been proposed,
gradually improving in both their effectiveness and efficiency to solve Multiob-
jective Optimization Problems (MOPs) [1]. However, most of these algorithms
have been evaluated in problems with only two or three objectives, in spite of
the fact that many real-world problems have more than three objectives.
Recently, the Evolutionary Multiobjective Optimization community has de-

voted important efforts to investigate the performance of MOEAs in problems
with a high number of objectives. These MOPs are usually known as Many-
objective Optimization Problems (MOPs). One of the first findings in this
area [2,3] is that MOEAs based on Pareto optimality scale poorly with respect to
the number of objectives. Currently, two main difficulties that make a problem
harder when the number of objectives is increased have been suggested:

– Increase of the proportion of nondominated solutions. Since in MOPs almost
all solutions are equivalent in terms of Pareto optimality, many researchers
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have suggested [4,5,6] that in such problems, the selection of the appropriate
individuals for steering the population towards the Pareto optimal set gets
more difficult. However, as pointed out by Schütze et al. [7], the increase of
the number of nondominated individuals is not a sufficient condition for an
increase of the hardness of a problem. They found that in a class of uni-modal
problems, the difficulty was marginally increased when more objectives are
added.

– Effectiveness of crossover operators. In a combinatorial class of MOPs, Sato
et al. [8] observed that solutions in decision variable space become more
distant1 from each other as more objectives are added. As a result, even if
two parents close to the Pareto front are recombined, the generated offspring
might be far from the Pareto front.

Although not related with the search ability of the MOEA, there are other im-
portant difficulties associated with a MOP. For example, the visualization of the
Pareto front in high dimensional spaces, or the generation of an accurate sample
of the Pareto front, since the required number of points increases exponentially
with the number of objectives.
Although the rise of the proportion of incomparable solutions might not sig-

nificantly determine the difficulty of a MOP per se, it seems that the addition of
objectives aggravates some particular difficulties observed in the context of 2 or 3
objectives. This is the case of the so called dominance resistant solutions (DRSs)
or outliers [9,10,11]. DRSs are non Pareto optimal solutions with a poor value in
at least one of the objectives, but with near optimal values in the others. These
kinds of solutions represent potential difficulty since the number of DRSs grows
as the number of objectives is increased.
In this paper, we propose the use of the recently introduced Chebyshev pref-

erence relation [12] in order to improve the scalability of a MOEA in MOPs. That
new preference relation divides the objective space in two regions. In the region
farther from the ideal point, the solutions are compared using an achievement
scalarizing function, whereas in the region near the ideal point, solutions are
compared using the usual Pareto dominance. The idea behind this proposal is to
increase the selection pressure when the solutions are far from the Pareto front.
This way, we have a discriminative criterion to evaluate nondominated solutions.
Additionally, we introduce the idea of coupling the Chebyshev relation with

two preference relations based on the ε-indicator. These new preference relations
show that a straightforward use of the ε-indicator produces a good approximation
of the Pareto front.
The experiments are concentrated in evaluating the performance of the Che-

byshev preference relation and also in the sources of difficulty when the number
of objectives is increased. For the experiments we employed 5 problems from the
DTLZ test suite, and 2 problems from the WFG test suite.

1 In terms of Hamming distance between binary encoded solutions.
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2 Basic Concepts and Notation

This section briefly presents the concepts and notation used throughout the rest
of the paper.

2.1 Multiobjective Optimization Problems

Definition 1. A MOP is defined as:

Minimize f(x)
x∈X

= [f1(x), f2(x), . . . , fk(x)]. (1)

The vector function f : X → Rk is composed by k ≥ 2 objective functions
fi : X → R (i = 1, . . . , k). The image of the feasible set X ⊆ Rn under the
function f is a subset of the objective function space denoted by Z = f(X ).
The sets Rn and Rk are known as decision variable space and objective function
space, respectively.
In multiobjective optimization, the Pareto dominance relation is usually

adopted to compare vectors in Rk.

Definition 2. A vector z1 ∈ Rk is said to dominate vector z2 ∈ Rk (denoted
z1 ≺par z

2) if and only if: z1i ≤ z2i (i = 1, . . . , k), and z1 �= z2.

Definition 3. A solution x∗ ∈ X is Pareto optimal if there is no solution x ∈ X
such that f(x) ≺par f(x

∗).

Definition 4. The Pareto optimal set, Popt, is composed by all the Pareto op-
timal solutions.

Definition 5. The image of Popt under the vector function f(x) is called the
Pareto optimal front and is denoted by PFopt.

In practice, the goal of a MOEA is finding the best approximation set of the
Pareto optimal front. We denote an approximation set by PFapx. Currently, it
is well accepted that the quality of an approximation set is determined by the
closeness to the Pareto optimal front, and the spread over the entire Pareto
optimal front.
In some cases it is useful to know the lower and upper bounds of the Pareto

front. The ideal point represents the lower bound and is defined by the point
zi = minz∈Z(zi) for all i = 1, . . . , k. In turn, the upper bound is defined by the
nadir point, which is given by znadi = maxz∈PFopt(zi) for all i = 1, . . . , k.

2.2 Achievement Scalarizing Functions

The preference relation adopted in this paper is based on the achievement scalar-
izing function approach proposed by Wierzbicki [13].
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Definition 6. An achievement (scalarizing) function is a parameterized func-
tion s(z|zref) : Rk → R, where zref ∈ Rk is a reference point representing the
desired aspiration levels.

The augmented Chebyshev achievement function [14] is one of the most common
achievement functions.

Definition 7. The augmented Chebyshev achievement function is defined by

s∞(z|zref) = max
i=1,...,k

{λi(zi − zrefi )}+ ρ
k∑

i=1

λi(zi − zrefi ), (2)

where zref is a reference point, λ = [λ1, . . . , λk] is a vector of weights such that
∀i λi ≥ 0 and, for at least one i, λi > 0, and ρ > 0 is a sufficiently small
augmentation coefficient.

3 Related Work

In the current literature, some alternative preference relations have been used to
deal with MOPs. However, the optimal solution set induced by these preference
relations is a subset of PFopt. As a consequence, when one of these prefer-
ence relations is applied, for example, on the current population of a MOEA,
the optimal solutions regarding the alternative preference relation would be-
long to a portion of PFopt. Thus, some parts of the Pareto front will not be
generated.
Among the alternative preference relations that have been proposed we can

find the following. The Average Ranking and Maximum Ranking relations [15]
which have the drawback of favoring extreme solutions. These preference rela-
tions have been used in [16] to deal with MOPs. Drechsler et al. [17] proposed
the favour relation which also emphasizes extreme solutions.
The Preference Order Relation, developed by di Pierro [18], compares two

solutions by discarding objectives until one of them dominates the other. The
disadvantage of this approach is its high computational cost.
Sato et al. [19] proposed a preference relation to control the dominance area of

a solution. This relation emphasizes solutions in the middle region of the Pareto
front.

4 Solving MOPs Using an Alternative Preference Relation

In this section we first present the Chebyshev preference relation introduced
in [12] and we describe how to use this relation to approximate the entire Pareto
front.
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4.1 The Chebyshev Preference Relation

The Chebyshev preference relation combines the Pareto dominance relation
and an achievement function to compare solutions in objective function space.
First, this relation defines a Region of Interest (RoI) with respect to a given
reference point. This region contains all solutions with an achievement value
s∞(z|zref) ≤ smin + δ, where smin = minz∈Z s∞(z|zref), and δ is a threshold
that determines the size of the RoI. Fig. 1 shows the RoI defined by means of
the achievement function. Solutions in this region are compared using the usual
Pareto dominance relation, while solutions outside of the RoI are compared using
their achievement function value.

Fig. 1. Nondominated solutions with respect to the Chebyshev relation

The Chebyshev preference relation is formally defined as follows:

Definition 8. A solution z1 is preferred to solution z2 with respect to the Cheby-
shev relation (z1 ≺ch z2), if and only if:

1. s∞(z1|zref) < s∞(z2|zref) ∧ {z1 /∈ R(zref , δ) ∨ z2 /∈ R(zref , δ)}, or,

2. z1 �par z
2 ∧ {z1, z2 ∈ R(zref , δ)},

where R(zref , δ) = {z : s∞(z|zref) ≤ smin + δ} is the Region of Interest with
respect to a given reference point zref .

As an illustration of the preference relation, consider solutions z1 and z2 pre-
sented in Fig. 1. Since z2 /∈ R(zref, δ) and s∞(z1, zref) < s∞(z2, zref), then
z1 ≺ch z2.
Since, in general, the objective ranges of PFopt might be different, the weight

vector λ (Eq. 2) is used for normalizing each objective function. The weights are
set as λi = 1/(z

nad
i − zi ), for all i = 1, . . . , k. As the ideal and nadir points are

not usually known in advance, these values are approximated using the current
PFapx. In order to approximate these bounding points, the Chebyshev relation
always considers extreme solutions as nondominated in order to keep them in the
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population. This way, the approximation of the bounding points can be improved
during the course of the search. To approximate z, the following set must be
updated at each generation: Φ = {z1, . . . , zk | zi = argminz∈PFapx(zi)}. That is,
the solutions having the best value for each objective. The approximation of the
ideal point is then ż = {zii , . . . , zkk} with zi ∈ Φ. Similarly, to approximate znad,
the following set is computed: Θ = {z1, . . . , zk | zi = argmaxz∈PFapx(zi)}. Thus,
the normalized Chebyshev relation is defined by:

Definition 9. A solution z1 is preferred to z2 with respect to the normalized
Chebyshev preference relation (z1 ≺n-ch z2) if and only if: z1 ≺ch z2, and
z2 /∈ {Φ ∪Θ}.

Additionally, the threshold δ can be normalized using the current range of the
achievement function. Thus, the user can provide a normalized δ′ ∈ [0, 1], and the
actual value used for computing the Chebyshev relation is δ = δ′ · (smax− smin),
where smax = maxz∈PFapx s∞(z|zref) and smin = minz∈PFapx s∞(z|zref).
In order to incorporate the (normalized) Chebyshev relation into a MOEA

we only have to replace the usual Pareto dominance checking procedure by the
procedure that implements the new relation.

4.2 Using the Chebyshev Relation to Approximate the Entire
Pareto Front in Many-Objective Problems

Although the Chebyshev relation was proposed to guide the search towards a
subset of PFopt, in this section we propose the use of this relation to approximate
the entire range of the Pareto front.
As previously mentioned, the Chebyshev relation ranks solutions outside the

region of interest using the achievement function. This way it can help to rank
solutions considered as incomparable by the Pareto dominance relation. In order
to approximate the entire Pareto front we used as reference point the approxi-
mation of the ideal point maintained by the Chebyshev relation. In addition, we
adopted a threshold δ′ = 0.9, comparing this way most of the solutions using
Pareto dominance, while solutions far from the current PFapx will be compared
using their achievement function value. The basic idea is to use a stringent cri-
terion for solutions far from the Pareto front for guiding the solutions towards
the ideal point, and when the solutions are near to the Pareto front, then we use
Pareto dominance to cover the entire Pareto front.
Furthermore, since the Chebyshev relation preserves the vectors that gener-

ate the approximations of z and znad in the current population, the extreme
solutions of the Pareto front will be found.
Additionally, since the relation used inside RoI is not essential for the mecha-

nism of the Chebyshev relation, a different preference relation can be used as the
second criteria. In this paper we investigate the performance of two preference
relations derived from the additive ε-indicator [20]:

Iε(A,B) = inf
ε∈R

{∀z2 ∈ B ∃z1 ∈ A : z1i ≤ ε+ z2i for i = 1, . . . , k},
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where A and B are two nondominated sets. In other words, Iε(A,B) is the mini-
mum ε value such that added to any vector in B, then A � B. As shown in [21],
the ε-indicator is dominance preserving since if z1 ≺par z

2, then Iε({z1}, {z2}) <
Iε({z2}, {z1}).
In order to use the information provided by the ε-indicator we need to de-

fine a function for measuring the performance of a solution z1 ∈ P with re-
spect to the members in the population P . In this paper we have adopted
two functions for this purpose. The first function uses the minimum value of
Iε({z2}, {z1}) among every z2 in the current population. That is, Fmin

ε (z1) =
minz2∈P\{z1} Iε({z2}, {z1}). This function is also known asmaximin fitness func-
tion2 [22].
The second fitness function was proposed by Zitzler and Künzli [21] and it is

defined by F sum
ε (z1) =

∑
z2∈P\{z1}− exp(−Iε({z2}, {z1})/(c·κ), where c is a nor-

malizing factor given by c = maxz1,z2∈P |Iε({z2}, {z1})|, and κ is a scaling factor
that regulates the influence of the dominating solutions over dominated ones. In
our computations we used κ = 0.05 since this value yielded good results in [21].
Using these different fitness functions we can define appropriate preference

relations in order to integrate them into the Chebyshev preference relation.

Definition 10. A solution z1 is preferred to solution z2 with respect to the
Isumε -relation (z1 ≺sum

ε z2), if and only if: F sum
ε (z1) > F sum

ε (z2).

Definition 11. A solution z1 is preferred to solution z2 with respect to the
Imin
ε -relation (z1 ≺min

ε z2), if and only if: Fmin
ε (z1) > Fmin

ε (z2).

5 Experimental Evaluation and Analysis

In this section, we analyze the Chebyshev relation coupled with each preference
relation derived from the ε-indicator, i.e., solutions outside the RoI are compared
using their achievement value, while solutions inside the RoI are compared em-
ploying the relations Imin

ε or Isumε , respectively.

5.1 Algorithms and Parameter Settings

The experiments presented in this section were designed with two goals in mind.
First, to investigate whether the Chebyshev relation is able to improve the scala-
bility of Nondominated Sorting Genetic Algorithm II (NSGA-II) w.r.t. the num-
ber of objectives. Secondly, to analyze the effect of DRSs on the performance of
Pareto-based MOEAs.
For the first goal, we compare the performances of NSGA-II using three dif-

ferent preference relations, namely: usual Pareto dominance, Chebyshev relation
with Isumε , and Chebyshev relation with Imin

ε . We evaluated the cases with 3, 4,
6, 8, 10, 12 and 14 objectives.

2 Since the maximin fitness is to be minimized, the value −Fmin
ε (z1) is used instead.



298 A. López et al.

The Chebyshev relation relies on two key elements: the evaluation of the solu-
tions far from the Pareto front using the achievement function, and the approxi-
mation of the ideal point and the nadir point. Therefore, the selection of the test
problems was made in order to evaluate whether the pressure selection biased
towards solutions near the ideal point might lead to premature convergence in
problems with several local Pareto fronts. Besides, we want to test the quality of
the approximation of the bounding points in problems with disconnected Pareto
fronts and different objective ranges.
We adopted 7 test problems presented in Table 1 taken from the DTLZ [10],

andWFG [11] test suites . The variables of these problems are divided in position-
related and distance-related parameters.
For the second goal of the experiments we kept the same number of distance-

related variables for any number of objectives in order to isolate the effect of
the number of objectives, namely, k − 1 position-related variables and we fixed
the number of distance-related variables to 5 for DTLZ1, and for the other test
problems to 20. Similarly, we carried out the same number of function evalua-
tions in every problem in order to observe variations in performance when more
objectives are added. In Table 2, we can see the standard parameter values used
for NSGA-II. For all the configurations we carried out 30 runs for each MOEA.
The results presented were averaged over the total of this number of runs.

Table 1. Adopted MOPs

Problem Features

DTLZ1, DTLZ3 Multiple local Pareto
fronts.

DTLZ4 Nonuniform solution
density.

DTLZ7, WFG2 Disconnected PFopt.
WFG6 Nonseparable MOP.

Table 2. NSGA-II parameters

Parameter Value

Population size 200
Generations 200
Crossover rate 0.9
Mutation rate 1/n
Crossover index 20
Mutation index 20

Another reason for our selection of MOPs is that the generational distance
(GD) can be computed without the need of having a discrete representation
of the Pareto optimal front. For these problems we took advantage of their
geometrical shape or their known Pareto optimal set.
For computing GD for DTLZ1 we used GD = (‖z‖/|P |)− 0.5 since its Pareto

front is a hyperplane that intersects each axis in 0.5, while for DTLZ2, DTLZ3

and DTLZ4 we used GD = (‖z‖2/|P |) − 1 since its Pareto front is a sphere of
radius 1. In DTLZ7, we used the value of the auxiliary function g(x) ≥ 1 (see [10]
for details). The Pareto optimal front of DTLZ7 is achieved when g(x) = 1. Thus,
we use this function to compute a variant of GD, defined by GDg = g(x) − 1.
Since the optimal solutions ofWFG2 andWFG6 are those for which the distance-
related variables are equal to 0.35, we adopted another variant of GD, denoted
by GDx, which measures distance in decision variable space. For the sake of
clarity, in the following discussion we refer to all these variants just as GD.
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Additionally, to evaluate distribution we employed the inverted generational
distance (IGD). As reference set, we used the nondominated set resulting from
the union of all the PFapx sets generated in the experiments for each problem.
In order to directly compare the performance of the MOEAs we used the

additive ε-indicator previously presented. Roughly speaking, A is better than B
if Iε(A,B) < Iε(B,A).

5.2 Discussion of the Results

From observing the GD values obtained (Table 3 and Fig. 2) we can confirm
that the convergence ability of the original NSGA-II deteriorates as the number
of objectives is increased. In contrast, when the Chebyshev relation is employed
the performance is degraded by some small degree. In particular, the perfor-
mance achieved by using Isumε -relation or Imin

ε -relation is very similar in most
of the test problems. Only on DTLZ1 (Fig. 2) we can see that Imin

ε -relation
achieved a bad GD on some objectives. This suggests that Imin

ε -relation can lead
to get stuck in local Pareto fronts in some runs. The results obtained using the
ε-indicator confirm that the performance of NSGA-II is greatly improved by in-
troducing the Chebyshev relation (see Fig. 5 for problem DTLZ1). Although not
shown here, the results for the other DTLZ problems showed a tendency simi-
lar to that of DTLZ1. Specifically, in all the DTLZ problems we observed that
Iε(nsga2-iε,nsga2) < Iε(nsga2,nsga2-iε).
With respect to the distribution, the results of IGD suggest that the Cheby-

shev relation was able to cover the full range of the Pareto front in all the test
problems considered in this paper. In Table 4 we show a representative selection
of the obtained results.
The results obtained in problems WFG2 and WFG6 deserve a more detailed

analysis since according to the ε-indicator (Fig. 5), the incorporation of the
Chebyshev relation yielded a small improvement for NSGA-II. However, by in-
specting the GD values of the WFG problems (Table 3 and right plot of Fig. 2),
NSGA-II’s performance is not as remarkably deteriorated as we observed in the
DTLZ problems, especially in problem WFG2.
By analyzing some plots and performance indicator results we hinted that the

divergence problems of the Pareto-based MOEAs when the number of objectives
increases was due to the so-called DRSs. Fig. 3 shows an example of DRSs gen-
erated by NSGA-II in problem DTLZ3. Although the pointed DRSs in the figure
have poor values in objective f3, for example, they are nondominated solutions
because they have values close to zero in objectives f1 and f2.
As Figs. 3 and 4 suggest, an important source of the scalability issues observed

in the DTLZ test problems might be due to the generation of DRSs. Other DTLZ

test problems not included in this paper have a similar feasible search space
to that of DTLZ2 or DTLZ3. Therefore, we can expect that other DTLZ test
problems will also have DRSs.
In order to evaluate in a quantitative manner the effect of DRSs in problems

DTLZ and WFG we suggest using the distribution of the maximum tradeoff
of the solutions of PFapx. We define the maximum tradeoff of solution z as
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Fig. 2. GD values for DTLZ1 and WFG6 varying the number of objectives from 3 to 14

Fig. 3. Illustration of dominance resistant
solutions in DTLZ3 using NSGA-II (objs.
values are divided by 20 to observe the
distribution wrt the Pareto front)

Fig. 4. Feasible objective function
space of 2-objective DTLZ2 and
20 000 solutions generated at ran-
dom

Λmax(z) = maxi=1,...,k(zi)/(mini=1,...,k(zi)+1). By using this value, DRSs would
receive a very large Λmax value since they have in at least one objective a small
value and in at least another objective a large value. It is worth noting that
solutions far from the Pareto front but located in the middle region of the ob-
jective space would not obtain a large Λmax, since they have large values in all
the objectives.
For computing this measure, we used the exact z and znad points for nor-

malizing the achieved PFapx by each MOEA. Therefore, for every MOP, we have
that maxz∈PFopt{Λmax(z)} = 1. Any solution with Λmax > 1 is a potential DRS.
In Figs. 6–8 we show the distribution of Λmax for the solutions generated by

NSGA-II and NSGA-II with Isumε -relation. For DTLZ1 (Fig. 6) we can clearly
see that the proportion of DRSs not removed by NSGA-II is very high when
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the number of objectives is large. In contrast, by using the Chebyshev relation
almost all DRSs are eliminated from the population even for 12 objectives. In
the case of DTLZ2 (Fig. 7) the effect of the number of objectives on NSGA-II

is more clear since the number of DRSs drastically increases with the num-
ber of objectives. WFG6 is an interesting test problem (Fig. 8), since in this
case, regardless of the number of objectives, DRSs are not maintained by
NSGA-II.

NSGA-II is specially sensitive to DRSs since they are spread in a very large
space and, therefore, their crowding distance is larger compared to that of solu-
tions nearby the Pareto front. As a consequence, DRSs are preferred over good
solutions to compose the next generation.
On the other hand, when the Chebyshev relation is used, solutions far from the

Pareto front are compared using the achievement function value. Thus, although
DRSs are equally ranked by the Pareto relation, the Chebyshev relation ranks
DRSs worse than other nondominated solutions located nearby the Pareto front.
As a result, as it was shown in the experiments using DTLZ test problems, the
Chebyshev relation can effectively discard dominance resistant solutions. Finally,
the results suggest that WFG2 and WFG6 do not induce the rise of dominance
resistant solutions.

DTLZ1 WFG2

Fig. 5. Results of the ε-indicator for DTLZ1 and WFG2. Each subplot presents the
values for 3 to 14 objectives (ns is the short for NSGA-II). Hint: A is better than B if
Iε(A,B) < Iε(B,A).
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Table 3. Results of GD for 3 to 14 objectives. The first line for each MOEA is the mean
of GD (best values are shown in bold type) and the second line, the standard deviation.

MOP MOEA 3 4 6 8 10 12 14

DTLZ1

NSGA-II
0.0095 5.2103 248.836 359.990 406.337 425.471 436.947
0.0058 3.3177 20.6124 17.4954 16.5937 13.9222 12.5937

NSGA-II-Isum
ε

0.0034 0.0069 0.0106 0.0122 0.0120 0.0266 0.0223
0.0018 0.0028 0.0090 0.0121 0.0107 0.0925 0.0742

NSGA-II-Imin
ε

0.1397 0.0265 0.0249 0.0088 0.0107 0.0444 0.0264
0.4940 0.0897 0.0890 0.0079 0.0087 0.1201 0.0898

DTLZ2

NSGA-II
0.0085 0.0290 0.7404 3.3684 3.9733 4.1150 4.1956
0.0008 0.0030 0.1456 0.2080 0.0965 0.0832 0.0657

NSGA-II-Isum
ε

0.0104 0.0275 0.0500 0.0575 0.0661 0.0735 0.0778
0.0011 0.0026 0.0044 0.0063 0.0067 0.0094 0.0078

NSGA-II-Imin
ε

0.0105 0.0276 0.0482 0.0577 0.0671 0.0722 0.0759
0.0010 0.0027 0.0063 0.0064 0.0061 0.0082 0.0097

DTLZ3

NSGA-II
39.41 193.98 1436.66 2557.56 3058.35 3310.95 3409.70

11.5519 29.1555 117.9495 146.3092 76.1268 68.8680 57.1938

NSGA-II-Isum
ε

10.9479 11.0799 14.5876 17.8609 23.6319 28.3081 29.1092
3.4523 3.8608 4.8746 6.6429 7.9697 8.2998 12.3618

NSGA-II-Imin
ε

55.0847 70.4200 17.1429 19.5645 24.7109 28.4519 28.5141
26.6606 16.3303 4.5782 7.2080 7.9627 8.2112 9.3669

DTLZ4

NSGA-II
0.0063 0.0257 1.4083 3.9525 4.2261 4.3055 4.3426
0.0031 0.0075 0.3612 0.1322 0.0687 0.0717 0.0562

NSGA-II-Isum
ε

0.0041 0.0120 0.0305 0.0337 0.0416 0.0440 0.0491
0.0044 0.0099 0.0086 0.0073 0.0066 0.0058 0.0078

NSGA-II-Imin
ε

0.0060 0.0190 0.0230 0.0309 0.0377 0.0434 0.0464
0.0046 0.0082 0.0112 0.0081 0.0056 0.0077 0.0091

DTLZ7

NSGA-II
0.0145 0.0534 0.2565 0.8974 1.7709 2.3915 2.7311
0.0018 0.0042 0.0297 0.1338 0.1491 0.1747 0.1816

NSGA-II-Isum
ε

0.0094 0.0198 0.0343 0.0428 0.0506 0.0694 0.0718
0.0009 0.0017 0.0034 0.0033 0.0050 0.0062 0.0086

NSGA-II-Imin
ε

0.0099 0.0198 0.0332 0.0433 0.0484 0.0680 0.0748
0.0011 0.0023 0.0032 0.0042 0.0040 0.0078 0.0079

WFG2

NSGA-II
0.0524 0.0722 0.0999 0.1192 0.1351 0.1353 0.1280
0.0307 0.0178 0.0157 0.0128 0.0254 0.0322 0.0278

NSGA-II-Isum
ε

0.0374 0.0564 0.0605 0.0509 0.0490 0.0451 0.0469
0.0065 0.0079 0.0130 0.0124 0.0158 0.0128 0.0135

NSGA-II-Imin
ε

0.0372 0.0578 0.0634 0.0514 0.0448 0.0431 0.0471
0.0066 0.0084 0.0132 0.0101 0.0095 0.0126 0.0118

WFG6

NSGA-II
0.6961 0.7180 0.7265 0.7761 0.7454 0.8848 0.8664
0.1967 0.1534 0.1686 0.1428 0.1921 0.1478 0.1510

NSGA-II-Isum
ε

0.6793 0.6545 0.6939 0.7310 0.7048 0.6851 0.7055
0.1895 0.1457 0.1415 0.1176 0.1094 0.1157 0.1471

NSGA-II-Imin
ε

0.6780 0.6498 0.7085 0.6842 0.6774 0.7183 0.6884
0.1405 0.1318 0.1229 0.1186 0.1331 0.1218 0.1253
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Fig. 6. Maximum tradeoff distribution for NSGA-II and NSGA-II-Isumε in DTLZ1.

Table 4. Results of IGD for 3 to 14 objectives. The first line for each MOEA is the
mean of IGD (best values are shown in bold type) and the second line, the standard
deviation.

MOP MOEA 3 4 6 8 10 12 14

DTLZ2

NSGA-II
0.0151 0.0163 0.0239 0.0380 0.0469 0.0421 0.0443
0.0010 0.0010 0.0030 0.0077 0.0113 0.0111 0.0104

NSGA-II-Isum
ε

0.0079 0.0105 0.0132 0.0148 0.0183 0.0230 0.0331
0.0025 0.0036 0.0047 0.0043 0.0091 0.0112 0.0185

NSGA-II-Imin
ε

0.0087 0.0104 0.0121 0.0159 0.0165 0.0189 0.0220
0.0027 0.0039 0.0028 0.0060 0.0070 0.0071 0.0099

DTLZ7

NSGA-II
0.0896 0.0759 0.3300 2.3732 12.7540 23.0939 38.0094
0.2740 0.0071 0.0830 0.6462 4.8488 7.9811 9.5044

NSGA-II-Isum
ε

0.0138 0.0295 0.2226 1.2982 4.9511 11.3958 9.1685
0.0029 0.0038 0.0083 0.0323 0.3701 0.1847 0.3093

NSGA-II-Imin
ε

0.0150 0.0304 0.2229 1.2806 4.9978 11.4871 9.2333
0.0061 0.0053 0.0073 0.0250 0.2918 0.1453 0.1852

WFG6

NSGA-II
0.0075 0.0081 0.0120 0.0146 0.0187 0.0230 0.0271
0.0034 0.0023 0.0049 0.0047 0.0052 0.0066 0.0071

NSGA-II-Isum
ε

0.0073 0.0075 0.0091 0.0119 0.0141 0.0189 0.0232
0.0024 0.0024 0.0020 0.0051 0.0038 0.0093 0.0240

NSGA-II-Imin
ε

0.0075 0.0079 0.0087 0.0114 0.0132 0.0180 0.0209
0.0015 0.0029 0.0025 0.0051 0.0050 0.0075 0.0085
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Fig. 7. Maximum tradeoff distribution for NSGA-II and NSGA-II-Isumε in DTLZ2
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6 Conclusions and Future Work

In this paper we replaced the Pareto dominance by a new preference relation that
combines a Chebyshev achievement function and an ε-indicator based relation.
The resulting relation, called Chebyshev relation, was initially proposed as a
technique to incorporate preferences. Nonetheless, in this paper we showed that
it is also useful to deal with Many-objective Optimization Problems (MOPs). The
Chebyshev relation improves drastically the convergence of NSGA-II without sac-
rificing distribution. One important finding is that the main source of difficulty
of DTLZ problems is the presence of dominance resistant solutions (DRSs) which
are equally ranked by the Pareto dominance. However, since the Chebyshev rela-
tion compares solutions using either the achievement function or the ε-indicator
value, it was able to eliminate DRSs, preserving this way, the search ability in
MOPs. On the other hand, since WFG problems do not induce DRSs, even the
standard NSGA-II was able to maintain a similar level of performance despite
the number of objectives. Although these problems are hard for other reasons
(e.g., nonseparability, multimodality), it seems that the number of objectives
does not significantly affect their difficulty. We are aware that there are other
sources of difficulty for MOPs. However, since DRSs might be present in other
problems, we suggest that the development of a MOEA integrates mechanisms
to overcome these types of solutions.
In the future we plan to apply the Chebyshev preference relation in real-world

problems in order to investigate if DRSs are also present. Finally, we will compare
the performance of the Chebyshev relation against other optimization techniques
that have shown good scalability in MOPs.
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306 A. López et al.

19. Sato, H., Aguirre, H.E., Tanaka, K.: Controlling Dominance Area of Solutions and
Its Impact on the Performance of MOEAs. In: Obayashi, S., Deb, K., Poloni, C.,
Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 5–20. Springer,
Heidelberg (2007)

20. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Perfor-
mance Assessment of Multiobjective Optimizers: An Analysis and Review. IEEE
Transactions on Evolutionary Computation 7(2), 117–132 (2003)

21. Zitzler, E., Künzli, S.: Indicator-Based Selection in Multiobjective Search. In: Yao,
X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A.,
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Abstract. NSGA-II and its contemporary EMO algorithms were found
to be vulnerable in solving many-objective optimization problems hav-
ing four or more objectives. It is not surprising that EMO researchers
have been concentrating in developing efficient algorithms for many-
objective optimization problems. Recently, authors suggested an exten-
sion of NSGA-II (NSGA-III) which is based on the supply of a set of
reference points and demonstrated its working in three to 15-objective
optimization problems. In this paper, NSGA-III’s reference point alloca-
tion task is made adaptive so that a better distribution of points can be
found. The approach is compared with NSGA-III and a previous adaptive
approach on a number of constrained and unconstrained many-objective
optimization problems. NSGA-III and its adaptive extension proposed
here open up new directions for research and development in the area of
solving many-objective optimization problems.

Keywords: Many-objective optimization, NSGA-II, adaptive optimiza-
tion, evolutionary optimization.

1 Introduction

Over the years, NSGA-II [2] has been applied to various practical problems and
was adopted in various commercial softwares. However, NSGA-II, like other evo-
lutionary multi-objective optimization (EMO) algorithms, suffers from its ability
to handle more then three objectives adequately. When the so-called ’curse of
dimensionality’ thwarted the progress of algorithm development in the EMO
field, researchers took interests in devising new methodologies for solving many-
objective optimization problems, involving four or more objectives [7,11,10,8].
Progressing towards the Pareto-optimal front and simultaneously arriving at a
well-distributed set of trade-off solutions in a high-dimensional space were found
to be too challenging tasks for any algorithm to be computationally tractable.
Earlier in 2012, authors of this paper suggested a new extension of NSGA-
II(MO-NSGA-II) specifically for solving many-objective optimization problems.
MO-NSGA-II [5] starts with a set of automatically or user-defined reference
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points and then focuses its search to emphasize the EMO population members
that are non-dominated in the population and are also “closest” to each of the
reference points, thereby finding a well-distributed and well-converged set of so-
lutions. In later studies [3,4] MO-NSGA-II was further modified and extended
to solve constrained problems, this new algorithm was named as NSGA-III. The
latter study also suggested an adaptive approach (A-NSGA-III) that was capa-
ble of identifying reference points that do not correspond to a well-distributed
set of Pareto-optimal points.
In this paper, we extend the concept of relocation of reference points and

attempt to remove some of the shortcomings of A-NSGA-III algorithm and sug-
gest an efficient adaptive NSGA-III approach (A2-NSGA-III) for this purpose.
In the remainder of this paper, we first provide a brief overview of NSGA-III
and A-NSGA-III approaches. Thereafter, we motivate the reasons for improv-
ing the adaptive approach and suggest our proposed procedure (A2-NSGA-III).
Simulation results are shown on constrained and unconstrained problems us-
ing the proposed procedure and are compared with original NSGA-III and the
A-NSGA-III approaches. Conclusions of this study are then made.

2 Many Objective NSGA-II or NSGA-III

The basic framework of the NSGA-III [3] is similar to the original NSGA-II
algorithm [2]. First, the parent population Pt (of size N) is randomly initialized
in the specified domain, then the binary tournament selection, crossover and
mutation operators are applied to create an offspring population Qt.

Algorithm 1. Generation t of NSGA-III proce-
dure
Input: H reference points Zr, parent population Pt

Output: Pt+1

1: St = ∅, i = 1
2: Qt = Recombination+Mutation(Pt)
3: Rt = Pt ∪ Qt

4: (F1, F2, . . .) = Non-dominated-sort(Rt)
5: repeat
6: St = St ∪ Fi and i = i+ 1
7: until |St| ≥ N
8: Last front to be included: Fl = Fi

9: if |St| = N then
10: Pt+1 = St, break
11: else
12: Pt+1 = ∪l−1

j=1Fj

13: Points to be chosen from Fl: K = N − |Pt+1|
14: Normalize objectives
15: Associate each member s of St with a reference point:

[π(s), d(s)] =Associate(St, Z
r) % π(s): closest ref-

erence point, d: distance between s and π(s)
16: Compute niche count of reference point j ∈ Zr: ρj =∑

s∈St/Fl
((π(s) = j) ? 1 : 0)

17: Choose K members one at a time from Fl to con-
struct Pt+1: Niching(K,ρj , π, d,Z

r , Fl, Pt+1)
18: end if

Thereafter, both popula-
tions are combined and sorted
according to their domina-
tion level and the best N
members are selected from
the combined population to
be the parent population
for the next generation. The
fundamental difference be-
tween NSGA-II and NSGA-
III lies in the way the niche-
preservation operation is per-
formed.
Unlike NSGA-II, NSGA-

III starts with a set of ref-
erence points Zr. After non-
dominated sorting, all accept-
able front members and the
last front Fl which could not
be completely accepted are

saved in a set St. Members in St/Fl are selected right away for the next
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generation, however the remaining members are selected from Fl such that a
desired diversity is maintained in the population. Original NSGA-II used the
crowding distance measure for selecting well-distributed set of points, however
in NSGA-III the supplied reference points (Zr) are used to select these remain-
ing members. To accomplish this, objective values and reference points are first
normalized so that they have an identical range. Thereafter, orthogonal distance
between a member in St and each of the reference lines (joining the ideal point
and a reference point) is calculated. The member is then associated with the
reference point having the smallest orthogonal distance. Next, the niche count
ρ for each reference point, defined as the number of members in St/Fl that are
associated with the reference point, is computed for further processing. The ref-
erence point having the minimum niche count is identified and the member in
front last front Fl that is associated with the identified reference point is in-
cluded in the final population. The niche count of the identified reference point
is increased by one and the procedure is repeated to fill up population Pt+1. The
entire procedure is presented in algorithmic form in 1. In NSGA-III, a different
tournament selection operator is used. If both competing parents are feasible,
then one of them is chosen at random. However, if one is feasible and the other
is infeasible, then the feasible one is selected. Finally, if both are infeasible, then
the one having the least constraint violation is selected. After applying this tour-
nament selection operator, usual crossover and mutation operations are carried
out to create the offspring population and the above-mentioned niching oper-
ation is applied again to the combined population. These steps are continued
until a termination criterion is satisfied.
Some interesting features of NSGA-III are as follows: (i) it does not require

any additional parameter setting, just like its predecessor NSGA-II, (ii) the
population size is almost same as the number of reference points, thereby making
an efficient computational effort, (iii) it can be used to find trade-off points in
the entire Pareto-optimal front or focused in a preferred Pareto-optimal region,
(iv) it is extended easily to solve constrained optimization problems, (v) it can
be used with a small population size (such as a population of size 100 for a 10-
objective optimization problem) and (vi) it can be used for other multi-objective
problem solving tasks, such as in finding the nadir point or other special points.

3 Adaptive NSGA-III

A little thought will reveal the fact that not all reference points may be associ-
ated with a well-dispersed Pareto-optimal set and carrying on with a predefined
set of reference points from start to finish may be a waste of computational ef-
forts. To clarify, let us consider a three-objective optimization problem where the
Pareto-optimal front is shown as the shaded portion in Figure 1 and 91 initial
reference points are marked as open circles. Clearly, only 28 reference points have
a corresponding Pareto-optimal point, while the rest 63 points are then found to
randomly distributed, as shown in small circles in Figure 1. One possible remedy
to this problem is to first identify all those reference points that are not associated
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Fig. 1. Only 28 out of 91 reference points
find a Pareto-optimal solution

Fig. 2. Addition of reference points

with a population member. Then, instead of eliminating these reference points,
they can then be relocated so as to find a better distribution of Pareto-optimal
points. The following addition and deletion strategies were proposed in A-NSGA-
III.

Algorithm 2. Add Reference Points(Zr, ρ, p) proce-
dure
Input: Zr, p, ρ, Flag(Zr)
Output: Zr(updated)
1: nref = |Zr|
2: for j = 1 to nref do
3: if ρj > 1 and Flag(Zr

j ) = 0 then

4: Zr
new = Structured − points(p = 1)

5: Zr
new = Zr

new/p + (Zr
j − 1/(M ∗ P ))

6: for i = 1 to M do
7: if already-exist(Zr

new,i) = FALSE and Zr
new,i lie in first

quadrant then
8: Zr = Zr ∪ Zr

new,i

9: Flag(Zr
new,i) = 0

10: end if
11: end for
12: Flag(Zr

j ) = 1

13: end if
14: end for

Note that, in NSGA-
III, after the niching
operation Pt+1 popu-
lation is created and
the niche count ρj
(the number of pop-
ulation members that
are associated with j-
th reference point) for
each reference point
is updated. As the
number of reference
points (H) is kept al-
most equal to popu-
lation size (N), every
reference point is ex-

pected to be associated with one population member. Thus, if ρj ≥ 2 is observed
for any reference point, this means that some other reference point has a zero
niche count value. Hence a reference point having zero ρ value is relocated close
to the j-th reference point. The relocation procedure is shown in Figure 2. Con-
sider the situation in M = 3 objective case. For adding extra reference points, a
(M − 1)-dimensional simplex having M points at its vertices is added. The side
length of the simplex is equal to the distance between two consecutive reference
points (which is controlled by parameter p) on the original specified hyperplane
and the centroid of the simplex is kept on the j-th reference point. If there are
more than one reference points for which ρj ≥ 2, the above inclusion step is
executed for each of these reference points. Before a new added reference point
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is accepted, two checks are made: (i) if it lies outside the boundary of original
simplex, it is not accepted, and (ii) if it already exists in the set of reference
points, it is also not accepted. This addition procedure is presented in algorith-
mic form in 2. Using this procedure it may happen that after some generations
too many reference points are added and many of them eventually become non-
useful again. To avoid this, deletion of non-useful reference points is also carried
out simultaneously, as described in the following paragraph:
After the inclusion operation is performed, the niche count of all reference points
are updated. Now, if there exist no reference point whose niche count is greater
than one (that is, ρj = 0 or 1 for all reference points), this means that each
and every population member is associated with a single unique reference point.
In this case, the reference points (ρj = 0) that are not associated with any
population members are simply deleted. In this way the inclusion and deletion
operations adaptively relocate reference points based on the niche count values
of the respective reference points. The A-NSGA-III worked well on a number of
problems in the previous study [4], however, the concept deserves more attention.

4 Limitations of A-NSGA-III

Following limitations of adaptive strategy discussed above are observed:

1. In problems where the entire Pareto-optimal front is concentrated in a small
region or in case we start with only few reference points and a sufficiently large
population size, the above addition procedure may not be able to introduce
enough referencepoints so that the entire populationmaybe evenlydistributed.

2. The above followed addition procedure does not allow introduction of extra
reference points around the corner reference points of the hyperplane.

3. Since the addition procedure is carried out right from first generation when
the population is far from the actual Pareto-front we may not have given
enough time for the algorithm to spread the population evenly in various
regions which may lead to premature introduction of extra reference points
in unwanted regions.

4. Since the removal procedure is only carried out when the ρ value for all the
reference points is less than or equal to one, in some cases (specially large-
dimensional problems) it may happen that this condition is never satisfied
and the algorithm keeps on adding extra reference points, thus increasing
the computational cost.

In order to overcome these limitations, we modify the above approach for addi-
tion and deletion of reference points in the following section.

5 Efficiently Adaptive NSGA-III Procedure
(A2-NSGA-III)

Let us suppose that the extra reference points are to be added around the j-
th reference point (marked as P in Figure 3). As done earlier, here also we use an
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Fig. 3. Proposed approach for adding ex-
tra reference points

(M − 1)-dimensional simplex (shown as
ABC) but having a side length equal
to the half of the distance between two
consecutive reference points on the orig-
inal normalized hyperplane. This sim-
plex is called the primary simplex that
will be added to the reference point P .
However, instead of adding the simplex
around the reference point as it was done
in A-NSGA-III, it is now added by keep-
ing the j-th reference point as one of the
corners of the simplex as shown in Fig-
ure 3, thus adding (M −1) new reference points. Since there areM points in the
simplex, there are a total of M such ways of adding the simplex. To implement,
we randomly select one of the corner points and overlay the simplex with the
selected corner point falling on the reference point. For example in Figure 3, if
we choose the corner A of simplex and coincide it with the reference point P
then we get configuration 1 shown in the figure. On the other hand, if we select
corner B then we get configuration 2, and so on. Like before, before accepting a
configuration, all new locations of reference points are checked for the following
two conditions:(i) if any newly located reference point lies outside the original
hyperplane, the configuration is not accepted (for example in Figure 3 if extra
points are to be added around reference point Q then configurations 1 and 3 are

Algorithm 3. Add Reference Points(Zr, ρ, p, λ) procedure for A2-NSGA-III
Input: Zr, p, ρ, Config(Zr), λ { %Config(Zr) contains the configuration number of simplex to

be added to each reference point, if Config(Zr
k) > M it means all configurations are added

around kthref point.}
Output: Zr(updated)
1: nref = |Zr|
2: for j = 1 to nref do
3: Flag = 0
4: if ρj > 1 then
5: while Config(Zr

j ) ≤ M and Flag == 0 do

6: Zr
new = Structured − points(p = 1)

7: Zr
new = Zr

new/(λ ∗ p) + (Zr
j − Zr

new,Config(Zr
j
)/(λ ∗ p))

8: for i = 1 to M do
9: if i �= Config(Zr

j ) and already-exist(Zr
new,i) = FALSE and Zr

new,i lie in first quad-
rant then

10: Zr = Zr ∪ Zr
new,i

11: Config(Zr
new,i) = 1

12: Flag = 1
13: end if
14: end for
15: Config(Zr

j ) = Config(Zr
j ) + 1

16: end while
17: end if
18: end for
19: if ∃ j(=1:nref) s.t ρj > 1 and ∀ j s.t ρj > 1 Config(Zr

j ) > M and no new reference point is
added then

20: λ = λ ∗ 2
21: end if
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not acceptable), and (ii) if a newly located reference point already exists in the
set of reference points, that point is not duplicated. The procedure is continued
with all reference points having ρj > 1. After one simplex is added to such a
reference point, if ρj is still greater than one, other allowable configurations are
continued to be added until all M configurations are added. Thereafter, for fur-
ther ρj > 1 occurrences, simplexes half of its current size are introduced one at
a time, this is controlled by a scaling factor λ whose initial value is kept to be
2 which denotes simplexes having a side length equal to the half of the distance
between two consecutive reference points on the original normalized hyperplane
are to be added. Whenever the above stated condition arrives λ value is increased
by a factor of 2. This process is repeated till none of the reference point has a
niche count greater than one. This improved addition procedure is presented
in algorithmic form in 3. The ability to introduce more and more simplexes
but with reduced size alleviates the first limitation described above with the
previous approach. The above procedure of using simplexes half the size of orig-
inal simplexes enable more concentrated reference points to be introduced near
the vertices of the original hyperplane, thereby alleviating the second limitation
mentioned above. To cater the third limitation, we introduce a condition before
new reference points can be added. The number of reference points having ρ > 1
is monitored and only when the number has settled down to a constant value in
the past τ generations, addition of reference points is allowed. This check will
ensure that enough time has been spent by the algorithm to evenly spread its
population members with the supplied set of reference points before any new
reference points are introduced. In this study, we have used τ = 10 generations.
Now the last limitation is alleviated by putting a cap over the maximum number
of reference points that can ever be handled by the algorithm. Thus, if the total
number of reference points shoots up beyond this value the deletion process (de-
scribed in subsection 3) is carried out, thereby lowering the burden of carrying
forward with a large number of reference points. Here, we have used 10 times the
number of originally supplied reference points as the cap for maximum number
of reference points.

6 Results

We now present the simulation results of both adaptive NSGA-III approaches
on a number of three to eight-objective test problems. The population sizes and

Table 1. Number of ref.
points and population sizes
used

No. of Ref. Pop.
obj. pts. size
(M) (H) (N)

3 91 92
5 210 212
8 156 156

number of reference points are kept as mentioned in
Table 1. Other parameters are kept identical for both
approaches: (i) SBX crossover probability of one, (ii)
polynomial mutation probability of 1/n (where n is
the number of variables), (iii) SBX crossover and
polynomial mutation indices are kept as 30 and 20,
respectively. As a performance metric, we have used
the hypervolume indicator as it captures both con-
vergence and distribution ability of an algorithm. In
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each case, 20 runs are carried out and the best, median and worst hypervolume
values are reported.

6.1 Unconstrained Test Problems

Inverted DTLZ1 and DTLZ2 Problem: First of all we take two problems:
DTLZ1 and DTLZ2 from scalable DTLZ suite[6] and modify them so that there
are certain reference points on normalized hyperplane corresponding to whom
there is no point on Pareto-optimal front. To accomplish this in both problems
the objective functions are calculated using the original formulation, however af-
ter calculating the objective function values, following transformations are made:
for DTLZ1:

fi(x)← 0.5(1 + g(x))− fi(x), for i = 1, . . . ,M

for DTLZ2:

fi(x) ← (1+g(x))−fi(x)
4, for i = 1, . . . ,M −1 and fM (x) ← (1+g(x))−fM (x)2.

where g(x) is calculated as in the original DTLZ1 and DTLZ2 formulation
respectively [6]. This transformation inverts the original Pareto-optimal front
thereby rendering several reference points as non-useful.
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All the approaches are tested against three, five, and eight objective versions
of both problems. Pareto-optimal fronts obtained in the case of three-objective
version are plotted in Figures 4, 5, 6, 7, 8, and 9 (plotted fronts correspond to
median hypervolume values as tabulated in Table 2). As evident from Figure 4
for DTLZ1, in the case of A2-NSGA-III, all 91 points are uniformly distributed,
while with NSGA-III only 28 population members are distributed and with A-
NSGA-III, the number increases to 81 and rest are randomly dispersed over the
entire front. Similar observation is made in case of inverted DTLZ2 problem.
Hypervolume values for three to eight-objective cases are tabulated in Table 2

for both the problems. It is clear that in all cases, the use of proposed adap-
tive method improves the performance of algorithm as compared to the basic
and previously suggested adaptive algorithm. The performance of the proposed
method gets better with an increase in the number of objectives.

Table 2. Best, median and worst hypervolume values on M -objective inverted DTLZ1
and DTLZ2 problems. Best values are maked in bold.

Function M Gen NSGA-III A-NSGA-III A2-NSGA-III

Inv-DTLZ1 6.1115e − 02 6.0945e − 02 6.3738e − 02
3 400 6.2294e − 02 6.5404e − 02 6.5693e − 02

6.3052e − 02 6.5967e − 02 6.6206e − 02
1.5475e − 03 1.9610e − 03 2.6257e − 03

5 600 1.9821e − 03 2.1255e − 03 2.7117e − 03
2.1409e − 03 2.2413e − 03 2.8273e − 03
3.0186e − 06 3.0186e − 06 4.2066e − 06

8 750 3.3864e − 06 3.4220e − 06 4.8353e − 06
3.8361e − 06 3.8361e − 06 5.5693e − 06

Inv-DTLZ2 1.0530e − 01 1.1593e − 01 1.1790e − 01
3 250 1.0951e − 01 1.1951e − 01 1.2342e − 01

1.1197e − 01 1.2137e − 01 1.2550e − 01
1.5083e − 03 1.5365e − 03 2.2707e − 03

5 350 1.9100e − 03 2.0241e − 03 3.0822e − 03
2.0894e − 03 2.2904e − 03 3.1760e − 03
1.2168e − 06 1.2168e − 06 1.2814e − 06

8 500 1.4818e − 06 1.4818e − 06 2.3228e − 06
1.7822e − 06 1.7822e − 06 3.7236e − 06

6.2 Constrained Test Problems

After demonstrating the efficacy of proposed approach on a couple of uncon-
strained test problems, next we consider two constrained problems. These prob-
lems are designed by adding constraints to the original scalable DTLZ1 and
DTLZ2 problems so that some portions of the original Pareto-optimal front
become infeasible.
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C-DTLZ1 and C-DTLZ2 Problem: In case of C-DTLZ1 problem, we add
a hyper-cylinder (with its central axis passing through the origin and equally
inclined to all the objective axes) as a constraint so that the region inside the
hyper-cylinder is feasible. In case of C-DTLZ2 we add a constraint to the orig-
inal DTLZ2 problem, thereby making the entire region of objective space lying
in between 0.1 < fM < 0.9 infeasible. Due to these changes in both problems
, not all reference points initialized on the normalized hyperplane will have an
associated feasible Pareto-optimal point. In such problems, the original NSGA-
III may waste its computations in dealing with such non-productive reference
points and the previously suggested adaptive A-NSGA-III may not be able to
fully relocate all reference points to find a well-distributed set of Pareto-optimal
points. Figures 10, 11, and 12 show the obtained fronts using the three ap-
proaches, respectively for problem C-DTLZ1. As one can see here the distri-
bution of points obtained using the proposed A2-NSGA-III is better than that
obtained using NSGA-III but relocations of reference points in both A-NSGA-III
and A2-NSGA-III are comparable. The current approach allows a greater den-
sity in solutions, but this may not happen uniformly across the entire front, as
evident from the Figure 12 which may lead to very less improvement in hyper-
volume value. Table 3 shows that for three-objective version, the hypervolume
is slightly better for A-NSGA-III, while for larger objective cases, A2-NSGA-III
has better hypervolume values.
For C-DTLZ2, as shown in Figures 13, 14, and 15, we get a better distribution

of points using A2-NSGA-III and the same is reflected in the hypervolume values,
tabulated in Table 3 for three-objective case. In five-objective version, A2-NSGA-
III performs the best, but in eight-objective version of the problem, A-NSGA-III
performs slightly better.
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Fig. 12. A2-NSGA-III solu-
tions for DTLZ1

6.3 A2-NSGA-III with Large Population Size

NSGA-III and its adaptive version A-NSGA-III were developed with the princi-
ple that a population size almost equal to the number of reference points is to be
used. This enabled a direct control of the maximum number of obtained trade-off
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Table 3. Best, median and worst hypervolume values on M -objective constrained
DTLZ1 and DTLZ2 problems

Function M Gen NSGA-III A-NSGA-III A2-NSGA-III

C-DTLZ1-hole 1.7099e − 01 1.7135e − 01 1.7096e − 01
3 400 1.7357e − 01 1.7458e − 01 1.7418e − 01

1.7501e − 01 1.7576e − 01 1.7535e − 01
7.4929e − 02 7.4934e − 02 7.4846e − 02

5 600 7.5151e − 02 7.5128e − 02 7.5141e − 02
7.5224e − 02 7.5246e − 02 7.5310e − 02
1.5683e − 02 1.5724e − 02 1.5878e − 02

8 750 1.5916e − 02 1.5842e − 02 1.6118e − 02
1.6120e − 02 1.6022e − 02 1.6306e − 02

C-DTLZ2 6.2968e − 01 6.2998e − 01 6.3056e − 01
3 250 6.3091e − 01 6.3091e − 01 6.3267e − 01

6.3230e − 01 6.3187e − 01 6.3483e − 01
1.2340e + 00 1.2350e + 00 1.2348e + 00

5 350 1.2375e + 00 1.2377e + 00 1.2400e + 00
1.2398e + 00 1.2405e + 00 1.2422e + 00
1.8209e + 00 1.9114e + 00 1.9151e + 00

8 500 1.8409e + 00 1.9245e + 00 1.9211e + 00
1.8576e + 00 1.9286e + 00 1.9273e + 00
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tions for DTLZ2

points that is expected from the algorithms. If more points are needed, previous
algorithms allowed a larger population to be used, but the obtained points may

Table 4. Number of ref.
points and population sizes
used

No. of Ref. Pop.
obj. pts. size
(M) (H) (N)

3 28 92
5 35 212
8 44 156

not be distributed well. However, with our proposed
A2-NSGA-III modification, reference points now can
be considered as seed points and a much larger set
of trade-off points can be obtained by simply using
a larger population size. To illustrate, we consider
two scalable test problems DTLZ1 and DTLZ2 and
use population sizes larger than number of reference
points as tabulated in Table 4.
We have used three, five, and eight objective ver-

sions of both problems. Figures 16, 17, and 18
show the obtained fronts for three-objective DTLZ1 problem using all three
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Fig. 18. A2-NSGA-III solu-
tions for DTLZ1
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Fig. 19. NSGA-III solu-
tions for DTLZ2
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Fig. 21. A2-NSGA-III solu-
tions for DTLZ2

approaches. Clearly, with A2-NSGA-III we get an excellent distribution having
all 92 population members, despite the initialization of only 28 reference points
on the normalized hyperplane. With A-NSGA-III, the distribution is better than
that obtained using NSGA-III, but due to the limitation of only one configuration
per reference point, the approach cannot utilize the available pool of population
members adequately.
Similarly, for the three-objective DTLZ2, we get the best distribution using

A2-NSGA-III as shown in Figure 21 while with rest of the approaches (Figures 19
and 20) not all the points are well distributed. Table 5 shows the best, median,
and worst hypervolume values for three, five and eight objective versions of both
problems obtained using all three approaches. A2-NSGA-III performs the best
in all cases in both problems with an identical number of function evaluations,
thereby showing the superiority of the proposed adaptive procedure.

6.4 Engineering Optimization Problems

Next, we apply the proposed algorithm on four engineering problems ranging
from three to five objectives.

Crashworthiness Problem: This is a three-objective unconstrained problem
aimed at structural optimization of the frontal structure of vehicle for crashwor-
thiness [9]. Thickness of five reinforced members around the frontal structure
are chosen as design variables, while the mass of vehicle, deceleration during
the full frontal crash (which is proportional to biomechanical injuries caused
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Table 5. Best, median and worst hypervolume for DTLZ1 and DTLZ2 problems

Problem M Gen NSGA-III A-NSGA-III A2-NSGA-III

DTLZ1 1.8569e − 01 1.8810e − 01 1.8671e − 01
3 400 1.8674e − 01 1.8871e − 01 1.8928e − 01

1.8731e − 01 1.8912e − 01 1.8962e − 01
7.6252e − 02 7.6252e − 02 7.6235e − 02

5 600 7.6361e − 02 7.6361e − 02 7.6726e − 02
7.6449e − 02 7.6449e − 02 7.6742e − 02
8.9663e − 03 8.9663e − 03 1.6761e − 02

8 750 1.6753e − 02 1.6753e − 02 1.6766e − 02
1.6760e − 02 1.6760e − 02 1.6770e − 02

DTLZ2 7.0956e − 01 7.2851e − 01 7.4288e − 01
3 250 7.1800e − 01 7.3040e − 01 7.4379e − 01

7.2399e − 01 7.3320e − 01 7.4414e − 01
1.2583e + 00 1.2583e + 00 1.3017e + 00

5 350 1.2660e + 00 1.2660e + 00 1.3039e + 00
1.2780e + 00 1.2780e + 00 1.3049e + 00
3.8935e − 03 3.8935e − 03 6.4729e − 01

8 500 1.6799e − 02 1.6799e − 02 2.1428e + 00
2.0983e + 00 2.0983e + 00 2.1435e + 00
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to the occupants) and the toe board intrusion in the offset-frontal crash (which
accounts for the structural integrity of the vehicle) are taken as objectives. Math-
ematical formulation for the problem can be found elsewhere [3]. We solve this
problem using all three approaches keeping a population size of 92 and the num-
ber of reference points as 91. Rest all parameters are kept the same as before
and each algorithm is run for 500 generations. Figures 22, 23, and 24 show the
obtained front using NSGA-III, A-NSGA-III, and A2-NSGA-III, respectively.
Clearly, the distribution obtained using A2-NSGA-III is the best as compared to
others. This practical problem demonstrates that even in a complicated shape
of non-dominated front, the proposed A2-NSGA-III can be effective.
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Car Side Impact Problem: This is also a three-objective problem but has 10
constraints. The problem aims at minimizing the weight of car, the pubic force
experienced by a passenger, and the average velocity of the V-Pillar responsible
for withstanding the impact load [3]. We choose 91 reference points and use
a population size of 92. We run all the three approaches for 500 generations.
The obtained fronts are shown in Figures 25, 26, and 27. As we can see the
distributions obtained using A-NSGA-III and A2-NSGA-III are similar, but are
considerably better than that obtained using NSGA-III.
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Fig. 25. NSGA-III solu-
tions for car side impact
problem

20

30

40

3.6
3.8

4

10.5

11

11.5

12

12.5

f
1f

2

f
3

Fig. 26. A-NSGA-III solu-
tions for car side impact
problem
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Fig. 27. A2-NSGA-III so-
lutions for car side impact
problem

Table 6. Best, median and worst hy-
pervolume for machining and water
problems

Problem M- AM- A2M-
NSGA-II NSGA-II NSGA-II

Machn. 2.2339 2.2730 2.2925
2.2688 2.2952 2.3052
2.2856 2.3162 2.3188

Water 0.5280 0.5349 0.5402
0.5306 0.5365 0.5429
0.5341 0.5396 0.5455

Machining Problem: This a four-
objective, three-variable constrained
problem aimed at optimizing machining
performance subject to four constraints.
165 reference points are initialized uni-
formly over the normalized hyperplane.
The problem is solved using all three al-
gorithms keeping a population size of 168.
Each algorithm is run for 750 generations
and 20 such runs are made. The best, me-
dian, and worst hypervolume values of the
obtained points are shown in Table 6. A2-
NSGA-III performs much better than the other two approaches, thereby indi-
cating its efficacy.

Water Problem: Finally, we consider a five-objective, three-variable, seven-
constraint problem taken from the literature [1]. 210 reference points and 212
population are used. 20 different runs are made for all three algorithms and the
best, median, and worst hypervolume values are tabulated in Table 6. It is clear
from the table that A2-NSGA-III performs the best.

7 Conclusions

In this paper, we have suggested a new and adaptive relocation strategy for ref-
erence points in the recently proposed many-objective NSGA-II procedure. The
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proposed method attempts to alleviate the limitations of a previously proposed
adaptive strategy. On a number of unconstrained and constrained three to eight-
objective optimization problems, it has been found that the proposed strategy is
able to find a better distribution of trade-off points on the entire Pareto-optimal
frontier. On a set of four engineering many-objective optimization problems, the
proposed A2-NSGA-III procedure is also found to find a better distribution of
points, both visually and in terms of hypervolume measure. The algorithm is also
found to produce better and more dense distribution with a supply of more pop-
ulation size. The suggestion of NSGA-III and results with its current adaptive
version open up new directions for handling many-objective optimization prob-
lems efficiently. Further studies should now be made to make the approaches
more computationally efficient and worthy of their use in practice.
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Abstract. Many-objective problems are becoming common in several
real-world application domains and there is a growing interest to de-
velop evolutionary many-objective optimizers that can solve them effec-
tively. Studies on selection for many-objective optimization and most
recently studies on the characteristics of many-objective landscapes, the
effectiveness of operators of variation, and the effects of large popula-
tions have proved successful to advance our understanding of evolution-
ary many-objective optimization. This work proposes an evolutionary
many-objective optimization algorithm that uses adaptive ε-dominance
principles to select survivors and also to create neighborhoods to bias
mating, so that solutions will recombine with other solutions located
close by in objective space. We investigate the performance of the pro-
posed algorithm on DTLZ continuous problems, using a short number
of generations to evolve the population, varying population size from
100 to 20000 individuals. Results show that the application of adaptive
ε-dominance principles for survival selection as well as for mating selec-
tion improves considerably the performance of the optimizer.

1 Introduction

Many-objective problems are becoming common in several real-world application
domains and there is a growing interest to develop evolutionary many-objective
optimizers (EMyOs) that can solve them effectively. One such application do-
mains is multi-objective design exploration for real-world design optimization.
Here, a large number of Pareto optimal solutions that give a good representa-
tion of the true Pareto front in terms of convergence, spread, and distribution of
solutions along the front are essential to extract relevant knowledge about the
problem. This knowledge, rather than a particular precise solution, is valuable
to establish trade-offs and hotspots regions for objectives and design variables
in order to provide useful guidelines to designers during the selection of alterna-
tive designs, and to facilitate the implementation of the finally chosen design. In
these applications it is also common that the evaluation of solutions is computa-
tionally expensive and takes a long time to calculate it, which prohibits running
the evolutionary algorithm for a large number of generations. Thus, in real-world
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applications of many-objective optimization we have to face the difficulties im-
posed by the increased complexities of large-dimensional spaces and are often
constrained by time.
It is well known that conventional evolutionary multi-objective optimizers

(EMOs) [1, 2] scale up poorly with the number of objectives of the problem,
which is often attributed to the large number of non-dominated solutions and
the lack of effective selection and diversity estimation operators to discriminate
appropriately among them, particularly in dominance-based algorithms. Selec-
tion, indeed, is a fundamental part of the algorithm and has been the subject
of several studies, leading to improve the performance of conventional EMOs
on many-objective problems. However, finding trade-off solutions that satisfy
simultaneously the three properties of convergence, spread, and distribution is
especially difficult on many-objective problems. In fact, most EMOs with im-
proved selection strategies for many-objective optimization proposed recently
compromise one in favor of other [3]. In addition to selection, recent studies on
the characteristics of many-objective landscapes, the effectiveness of operators
of variation, and the effects of large populations [4–7] have proved successful to
advance our understanding of evolutionary many-objective optimization.
In previous work, we have studied the behavior of Adaptive ε-Box with Neigh-

borhood Recombination [6], an algorithm built under the framework of NSGA-II
[8]. The algorithm uses ε-box non-dominated sorting with a logarithmic func-
tion that maps solutions to a grid [9] and selects for survival just one solution
per non-dominated ε-box. It also keeps a list of neighbors for each solution to
restrict mating. This algorithm improves considerably the performance of NSGA-
II. However, the logarithmic function originally proposed in [9] introduces a too
strong bias towards the edges of objective space. In addition, though nearby
individuals recombine, in this approach the search effort is not evenly balanced
towards all regions of objective space. Moreover, it uses crowding distance as
secondary ranking, which does not scale up well in high dimensional spaces.
In this work, we propose an EMyO that uses adaptive ε-dominance principles

to select survivors and also to create neighborhoods to bias mating for recom-
bination. The method used for survival selection is based on ε-sampling that
selects solutions randomly from the set of non-dominated solutions, eliminating
solutions that are ε-dominated by the sampled solutions. The motivation to use
ε-sampling is that surviving solutions are spaced following the distribution im-
plicit in the mapping function used for ε-dominance and the search effort could
be balanced according to such distribution. In this work we use an additive map-
ping function that induces a uniform distribution of solutions, aiming to cover all
regions of objective space. The method to create neighborhoods is also based on
ε-dominance. Here, a randomly sampled solution from the surviving population
and its ε-dominated solutions determine the neighborhood, so that recombina-
tion can take place between individuals located nearby in objective space. The
motivation to restrict mating is to enhance the effectiveness of recombination in
many-objective problems, where the difference in variable space between individ-
uals in the population is expected to be larger than in multi-objective problems



324 H. Aguirre, A. Oyama, and K. Tanaka

and therefore more disruptive for recombination. In addition, the method gives
more reproductive opportunities to individuals located in under-represented re-
gions to balance the search effort towards all regions.
We investigate the performance of the proposed algorithm on DTLZ contin-

uous problems, varying population size from very small to large -from 100 to
20000 individuals. We assume scenarios in which computational time to calcu-
late fitness could be very large and thus use a very short number of generations
to evolve the population. We also assume that all individuals in the population
can be evaluated simultaneously in parallel. As a reference for comparison, we
include results by Adaptive ε-Box with Neighborhood Recombination showing
that the proposed algorithm performs significantly better in terms of convergence
and distribution of solutions.

2 Proposed Method

2.1 Concept

In many-objective landscapes the number of solutions in the Pareto optimal set
increases almost exponentially [10, 11] with the number of objectives. Keeping
fixed the size of the variable space, an increase in the number of objectives also
implies that these large number of Pareto optimal solutions become spread over
broader regions in variable space [4]. Analysis of many-objective landscapes show
that this is the case not only for the global Pareto set containing optimal so-
lutions, but also for local Pareto sets containing suboptimal solutions [10, 11].
These characteristics of many-objective landscapes are reflected on the dynamics
of the optimizer and are directly correlated to the effectiveness of the operators
of selection and variation. For example, the large number of non-dominated so-
lutions makes dominance-based selection random and their spread on variable
space causes recombination to recombine distant solutions making it too dis-
ruptive and ineffective. Hence, the characteristics of many-objective landscapes
must be carefully considered when we design our algorithms.
The proposed method aims to perform an effective search on many-objective

landscapes by using dominance and ε-sampling for survival selection to get a
well distributed subset of non-dominated solutions, and ε-hood creation and ε-
mating for parent selection to enhance the effectiveness of recombination. In
multi-objective optimization, dominance is used for survival selection and to
rank solutions in the elite surviving population, so that mating selection can
give more reproductive opportunities to dominant individuals. However, this is
impractical in many-objective optimization. In the proposed method, dominance
acts as a mean to eliminate dominated solutions during survival selection and
leave the non-dominated ones for further processing, but it has no role ranking
the surviving population. For most part of the evolution, survival selection is
achieved by ε-sampling, which samples randomly from the large set of non-
dominated solutions and eliminates solutions ε-dominated by the samples. The
aim is to get a set of surviving solutions spaced according to the distribution
implicit in the mapping function f(x) +→ε f

′
(x) used for ε-dominance. Only
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during the few initial generations, where the number of non-dominated solutions
is smaller than the size of the surviving population, ε-sampling plays no role
during survival.
After survival selection, in the proposed method there is not an explicit rank-

ing that could be used to bias mating. Rather, we use a procedure called ε-hood
creation to cluster solutions in objective space. This method is also based on
ε-dominance and is adaptive too. Here, a randomly sampled solution from the
surviving population and its ε-dominated solutions determine the neighborhood,
so that recombination can take place between individuals located nearby in ob-
jective space. The motivation to restrict mating is to enhance the effectiveness
of recombination in many-objective problems, where the difference in variable
space between individuals in the population is expected to be larger than in
multi-objective problems and therefore more disruptive for recombination. In
addition, to balance the search effort towards all regions, individuals located in
under-represented regions are given more reproductive opportunities.
Summarizing, dominance acts as a mean to eliminate inferior solutions, ε-

sampling gets a set of well distributed solutions from the large set of non-
dominated solutions so that search effort could be uniformly distributed, ε-hood
creation clusters elite solutions in objective space, ε-mating pairs nearby solu-
tions to enhance the effectiveness of recombination, and reproduction gives more
reproductive opportunities to individuals in under-represented regions.

2.2 Adaptive ε-Sampling and ε-Hood Evolutionary Many-Objective
Optimizer (AεsεhEMyO)

In this section we explain the general flow of the proposed algorithmAεsεhEMyO
illustrated in Procedure 1 and in the next sections we explain in detail its dis-
tinctive features. The proposed method uses ε-dominance principles to truncate
the population by sampling from the set of non-dominated solutions and also
to create neighborhoods to bias mating for recombination, using parameters εs
and εh, respectively. The εs parameter for sampling during truncation is dy-
namically adapted to keep the number of sampled solutions NS close to the
population size Psize. Similarly, the εh parameter for neighborhood creation is
dynamically adapted to keep the number of neighborhoods NH close to a user
specified number NRef

H . In addition to εs and εh, their steps of adaptation are
also adapted to properly follow the dynamics of the search. Thus, before its main
loop, the algorithm sets the reference number of neighborhoods NRef

H , initial
values for εs and its step of adaptation Δs, and initial values for εh and its
step of adaptation Δh. Next, it creates randomly the initial population. Then
it iterates the main evolutionary loop.
The main loop starts by evaluating the offspring populationQ. After offspring
Q is evaluated, non-dominated sorting is performed on the population that re-
sults from joining the current population P and its offspring Q. The population
of size 2Psize sorted in non-dominated fronts F is then truncated to obtain the
surviving population P of size Psize using a ε-sampling truncation procedure
set with parameter εs.
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Procedure 1. AεsεhEMyO

Require: Population size Psize, reference neighborhood size HRef
size

Ensure: F1, set of Pareto non-dominated solutions

1: NRef
H ← Psize/H

Ref
size // set reference number of neighborhoods

2: εs ← 0, Δs ← Δ0 // set εs-dominance factor and its step of adaptation
3: εh ← 0, Δh ← Δ0 // set εh-dominance factor and its step of adaptation
4: P ← ∅, Q ← random // initial populations P and Q, |Q| = Psize

5: repeat
6: evaluation( Q )
7: F ← non-dominated sorting( P ∪Q ) // F = {Fi}, i = 1, 2, · · · ,NF

8: {P, NS} ← ε-sampling truncation( F , εs, Psize ) // |P| = |Q| = Psize

9: {εs,Δs} ← adapt ( εs, Δs, Psize, NS )
10: {H, NH} ← ε-hood creation ( P, εh ) // H = {Hj}, j = 1, 2, · · · ,NH

11: {εh,Δh} ← adapt ( εh, Δh, N
Ref
H , NH )

12: P′ ← ε-hood mating( H, Psize )

13: Q ← recombination and mutation( P′
)

14: until termination criterion is met
15: return F1

The number of sampled solutions NS and the population size Psize are used
as reference to adapt εs and its step of adaptation Δs. Next, neighborhoods
are created from the surviving population using a ε-hood creation procedure
set with parameter εh. Similar to εs, εh and its step of adaptation Δh are
adapted so that the number of created neighborhoods NH would be close to
a user specified reference number NRef

H . After the neighborhoods have been

created, ε-hood mating creates a pool of mates P ′
by selecting solutions within

the neighborhoods, so that a solution would recombine only with a solution that
is close by in objective space. Next, the already defined mates are recombined
and mutated to create the offspring population Q and the algorithm continues
with the next generation until a termination criterion has been met.

2.3 ε-Sampling Truncation

Survival selection is implemented by the ε-sampling truncation method, illus-
trated in Procedure 2. This method receives the sets of solutions F created by
non-dominated sorting and selects exactly Psize surviving solutions from them.
In case the number of non-dominated solutions |F1| > Psize, it calls ε-sampling
with parameter εs to get from F1 its extreme solutions E, a subset of randomly
sampled solutions S and their εs-dominated solutions Dεs , as illustrated in
Procedure 3.
The surviving population P always includes extreme solutions E and it is

complemented with solutions from S and possibly from Dεs . If S overfills P,
solutions in S are randomly eliminated as survivors. Otherwise, if after adding
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S to P there is still room for some solutions, the required number are randomly
chosen from Dεs . On the other hand, is |F1| < Psize, while there is room in P
the sets of solutions Fi are copied iteratively to P. The remaining solutions are
chosen randomly from the set that did not fit completely in P.

Procedure 2. ε-sampling truncation ( F , εs, Psize )

Require: sets of non-dominated solutions F = {Fi}, i = 1, 2, · · · ,NF , ε-
dominance parameter εs and desired population size after truncation Psize

Ensure: Truncated population P obtained from F and number of sampled solu-
tions including the extremes NS

1: P ← ∅, NS ← 0
2: if |F1| > Psize then
3: {E,S,Dεs} ← ε-sampling( F1, εs )
4: NS ← |E|+ |S|
5: if NS > Psize then
6: X ← {xr ∈ S | r = rand( 1, |S| ), |X | = NS − Psize}
7: P ← E ∪ S \ X
8: else
9: X ← {xr ∈ Dεs | r = rand( 1, |Dεs | ), |X | = Psize −NS}
10: P ← E ∪ S ∪ X
11: end if
12: else
13: P ← ⋃k

i=1Fi,
∑ |Fi| < Psize

14: X ← {xr ∈ Fk+1 | r = rand( 1, |Fk+1| ), |X | = Psize−∑k
i=1 |Fi|}

15: P ← P ∪ X
16: end if
17: return P and NS

Procedure 3. ε-sampling (F1, εs )

Require: Non-dominated solutions F1, ε-dominance parameter εs
Ensure: E, S and Dεs , E ∪ S ∪ Dε = F1. E and S contain extreme solutions

and a randomly chosen sample of solutions from F1, respectively, whereas Dεs

contains solutions εs-dominated by those in S. Maximization in all objectives
is assumed

1: E ← {x ∈ F1 | fm(x) = max(fm(·)), m = 1, 2, · · · ,M} // extremes
2: F1 ← F1 \ E
3: Dεs ← ∅
4: while F1 �= ∅ do
5: z ← xr ∈ F1 | r = rand( 1, |F1| )
6: S ← S ∪ {z} // add randomly chosen solution z to sample
7: Y ← {y ∈ F1 | z �εs y, z �= y} // solutions εs-dominated by z
8: Dεs ← Dεs ∪ Y
9: F1 ← F1 \ {{z} ∪ Y}
10: end while
11: return E, S, Dεs
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2.4 ε-Hood Creation and ε-Hood Mating

Neighborhoods are created from the surviving population by the ε-hood creation
procedure, which is also based on ε-dominance as illustrated in Procedure 4.
This procedure randomly selects an individual from the surviving population
and applies ε-dominance with parameter εh. A neighborhood is formed by the
sampled solutions and its εh-dominated solutions. Neighborhood creation is re-
peated until all solutions in the surviving population have been assigned to a
neighborhood.

Procedure 4. ε-hood creation ( P, εh )
Require: Population P, ε-dominance parameter εh for neighborhood creation
Ensure: Neighborhoods H = {Hi}, i = 1, 2, · · · ,NH

1: H ← ∅
2: i← 0
3: while P �= ∅ do
4: z ← xr ∈ P | r = rand( 1, |P| ) // z, a randomly chosen solution
5: Y ← {y ∈ P | z �εh y, z �= y} // solutions εh-dominated by z
6: i← i + 1
7: Hi ← {{z}∪Y} // z and its εh-dominated solutions form the hood
8: H ← H∪Hi

9: P ← P \Hi

10: end while
11: NH ← i
12: return H, NH

Procedure 5. ε-hood mating ( H, Psize )

Require: Neighborhoods H = {Hi}, i = 1, 2, · · · ,NH , and population size
Psize

Ensure: Pool of mated parents P′
, |P′ | = 2Psize

1: P′ ← ∅
2: i← 1
3: j ← 0
4: while j < Psize do
5: {y, z} ← {xr1 , xr2 ∈ Hi | r1 ∧ r2 = rand( 1, |Hi| ), r1 �= r2}
6: P′ ← P′ ∪ {y, z}
7: i← 1 + (i mod NH)
8: j ← j + 1
9: end while
10: return P′

Mating for recombination is implemented by the procedure ε-hood mating
illustrated in Procedure 5. Neighborhoods are considered to be elements of a
list. To select two mates, first a neighborhood from the list is specified determin-
istically in a round-robin schedule. Then, two individuals are select randomly
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within the specified neighborhood, so that an individual will recombine with
other individual that is located close by in objective space. Due to the round-
robin schedule, the next two mates will be selected from the next neighborhood
in the list. When the end of the neighborhood lists is reached, mating continues
with the first neighborhood in the list. Thus, all individuals have the same prob-
ability of being selected within a specified neighborhood, but due to the round-
robin scheduling individuals belonging to neighborhoods with fewer members
have more recombination opportunities that those belonging to neighborhoods
with more members. Once the pool of all mates P ′

has been established, they
are recombined and mutated according to the order they were selected during
mating.

2.5 Additive Epsilon Mapping f(x) �→ε f
′
(x)

In this work we use an evenly spaced Additive mapping function f(x) �→ε f
′
(x)

[5] for both ε-sampling and ε-hood creation. The Additive function maps f(x)
to f

′
(x) by adding the same value ε to all coordinates fi, independently of

the position of f(x) in objective space. This mapping in ε-sampling induces a
distribution of solutions evenly spaced by ε. The expression for Additive mapping
is as follows

f
′
i(x) = fi(x) + ε, i = 1, · · · ,m (1)

2.6 Adaptation

The number of sampled solutionsNS by ε-sampling depends on the value set to
εs (≥ 0). Larger values of εs imply that sampled solutions εs-dominate larger
areas, increasing the likelihood of having more εs-dominated solutions excluded
from the sample. The proposed algorithm adapts εs at each generation so that
NS is close to the population size Psize. The closerNS is to Psize, the larger the
number of surviving solutions that will be spaced according to the distribution
implicit in the mapped function used for ε-dominance.
Similarly, the number of created neighborhoods NH depends on the value

set to εh (≥ 0). Larger values of εh imply that sampled solutions εh-dominate
larger areas, increasing the likelihood of having more εh-dominated solutions
that form its neighborhood, and therefore less created neighborhoods. The pro-
posed algorithm adapts εh at each generation so that NH is close to a user
specified number NRef

H .
The adaptation rule, similar for both processes, is as follows. If N > Ref it

increases the step of adaptation Δ ← min (Δ× 2,Δmax) and ε ← ε + Δ.
Otherwise, if N < Ref it decreases Δ ← max (Δ× 0.5,Δmin) and ε ←
max (ε−Δ, 0.0). In this work we set initial values ε0 = 0.0 andΔ0 = 0.005.
Also, Δmax = 0.05 and Δmin = 0.0001.
In the case of adapting the parameter εs used for truncation, the above rule

is called with ε = εs, Δ = Δs, N = NS , and Ref = Psize. On the other
hand, in the case of the parameter εh used for neighborhood creation, the above
rule is called with ε = εh, Δ = Δh, N = NH , and Ref = NRef

H .
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3 Test Problems, Performance Indicators, and
Experimental Setup

We study the performance of the algorithms in continuous functions DTLZ2,
DTLZ3, and DTLZ4 of the DTLZ test functions family [12]. These functions are
scalable in the number of objectives and variables and thus allow for a many-
objective study. In our experiments, we vary the number of objectives from
m = 4 to 6 and set the total number of variables to n = (m−1)+10. DTLZ2
has a non-convex Pareto-optimal surface that lies inside the first quadrant of
the unit hyper-sphere. DTLZ3 and DTLZ4 are variations of DTLZ2. DTLZ3
introduces a large number of local Pareto-optimal fronts in order to test the
convergence ability of the algorithm. DTLZ4 introduces biases on the density
of solutions to some of the objective-space planes in order to test the ability
of the algorithms to maintain a good distribution of solutions. For a detailed
description of these problems the reader is referred to [12].
To evaluate the Pareto optimal solutions obtained by the algorithms we use

the Generational Distance (GD) [13], which measures the convergence of so-
lutions to the true Pareto front using equation 2, where P denotes the set of
Pareto optimal solutions found by the algorithm and x a solution in the set.
Smaller values of GD indicate that the set P is closer to the Pareto optimal
front. That is, smaller values of GD mean better convergence of solutions.

GD = average
x∈P

⎧⎨⎩
[

m∑
i=1

(fi(x))
2

] 1
2

− 1

⎫⎬⎭ (2)

To visually assess the distribution of solutions in objective space, we plot solu-
tions projected to a two dimensional plane.
We run the algorithms 30 times and present average results, unless stated

otherwise. We use a different random seed in each run, but all algorithms use
the same seeds. The number of generations is set to 100 generations, and pop-
ulation size varies from to 100 to 20000, |P| = |Q|. As variation operators,
the algorithms use SBX crossover and polynomial mutation, setting their dis-
tribution exponents to ηc = 15 and ηm = 20, respectively. Crossover rate is
pc = 1.0, crossover rate per variable pcv = 0.5, and mutation rate per variable
is pm = 1/n.
For AεsεhEMyO (Aεsεh for short) we set the reference neighborhood size

HRef
size to 20 individuals. On the other hand, for Adaptive ε-Box with Neighbor-

hood Recombination (AεBox-NR), we set the size of the neighborhood to 10%
of the population size, a value that gave the best results in [6].

4 Simulation Results and Discussion

4.1 Convergence

Fig.1 shows GD over population size by Aεsεh and AεBox-NR at generation
T = 100 on problem DTLZ2 for m = 5 and m = 6 objectives. It can be seen
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Fig. 1. GD after 100 generations for various population sizes, DTLZ2
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Fig. 2. GD after 100 generations for various population sizes, DTLZ3

that smaller values of GD are achieved by using larger populations. Note that
GD by the proposed Aεsεh is substantially better than by AεBox-NR for any
population size. A larger performance difference between the two algorithms can
be seen by increasing the number of objectives from 5 to 6.
Similarly, Fig.2 shows results for DTLZ3 problem. Analogous to problem

DTLZ2, the proposed algorithm Aεsεh performs better than AεBox-NR for
any population size. In fact, in DTLZ3 the improvement in performance by
the proposed algorithm is more notorious than in the case of DTLZ2. Note that
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increasing population size does not help much AεBox-NR, whereas GD by Aεsεh
decreases in two orders of magnitude when population size is increased from
|P| = 100 to |P| = 5000. However, it should be noticed that variance is larger
and increases considerably with population size for the DTLZ3 problem. This is
because convergence is harder in this problem and a larger number of genera-
tions are required to facilitate convergence of most individuals of the population
towards the true Pareto front.
Results for DTLZ4 are similar to DTLZ2. Also, results on m = 4 objectives

for all problems follow a similar trend to those observed on m = 5 and m = 6
objectives. Due to space limitations, those results are not included here.

4.2 Distribution

Fig.3 shows the f1-f2 objective values of the obtained non-dominated solutions
by the proposed Aεsεh at generation 100. Results are shown for DTLZ2,m = 6
objectives, running the algorithm with some representative population sizes.
Similarly, Fig.4 shows solutions by AεBox-NR. In DTLZ2 the sum of the squares
of the fitness values of a Pareto optimal solution is one. Thus, on a problem with
more than 2 objectives the f1-f2 values of Pareto optimal solution fall within
the positive quadrant of the circle of radius one. From Fig.3 note that objective
values are close to or within the positive quadrant of the circle of radius one. This
is in accordance with the good convergence values observed for GD discussed
above. Increasing the population size there is a better coverage of the quadrant,
which implies a better distribution of solutions in objective space, and fewer
solutions are located outside the quadrant. On the other hand, from Fig.4 it
can be seen that solutions by AεBox-NR tend to focus on extreme regions of
objective space, where one or more objective values are close to 0, and many
of them are far away from the optimal front. This effect reduces when a large
population size is used, such as |P| = 5000, but still there are many extreme
solutions away from the optimal front and those located within the positive
quadrant are not able to fully cover it.

4.3 GD over the Generations and Larger Population Sizes

Fig.5 shows the transition of GD over the generations by Aεsεh on m = 6 ob-
jectives DTLZ2 and DTLZ3 problems, varying population sizes from |P| = 100
to |P| = 20000 individuals. Note that from early generations the algorithm
with a larger population shows better convergence. This is a clear indication
that population size is very important to support appropriately the evolution-
ary search on many-objective problems. On DTLZ2, note that for large popu-
lations initially there is a fast convergence, but after 50 generations or so the
algorithm slows down significantly. On DTLZ3, convergence at the beginning is
slower than on DTLZ2 but after some generations the effect of population size
becomes more evident. Note that after 50 generations convergence speeds up
significantly for populations |P| = 5000 and |P| = 10000 individuals. For
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Fig. 3. Obtained non-dominated solutions after 100 generations by Aεsεh for various
population sizes, DTLZ2. Projection in plane f1-f2.
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Fig. 4. Obtained non-dominated solutions after 100 generations by AεBox-NR for
various population sizes, DTLZ2. Projection in plane f1-f2

|P| = 20000 individuals convergence speeds up earlier, at generation 20. How-
ever, after generation 80 convergence slows down similar to DTLZ2. Although
in both problems, DTLZ2 and DTLZ3, there is still room for converging closer
to the optimal Pareto front the algorithm in final generations seems to stag-
nate. This suggests that the operators of variation themselves might need to be
improved, particularly for the latest stage of the search when the population is
approaching the Pareto optimal front. We would like to look into this in a future
work.

4.4 Adaptation

Fig.6 (a) shows the adaptation of εs for ε-sampling and Fig.6 (b) shows the
number of solutions on the first front F1 after non-dominated sorting together
with the number of sampled solutions NS by the ε-sampling procedure using
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Fig. 6. Adaptation for ε-sampling, DTLZ2, m = 6 objectives

the adapted εs parameter. Results are shown for population sizes |P| = 1000
and |P| = 5000. From Fig.6 (b) note that F1 is larger than P since early
generations and quickly approaches 2|P|. The number of solutionsNS obtained
after ε-sampling from F1 is kept around the desired number |P| thanks to the
adaptation of εs, as shown in Fig.6 (a). From Fig.6 (a) note that εs is quickly
adapted from its initial value so that NS approaches the desired value |P|. Also
note that the value that εs takes depends on the population size.
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Fig. 7. Adaptation for neighborhood creation, DTLZ2, m = 6 objectives

Similar to the previous figure, Fig.7 (a) shows the adaptation of εh for neigh-
borhood creation and Fig.7 (b) shows the number created neighborhoods NH

by the ε-hood creation procedure using the adapted εh parameter. From Fig.7
(a) note that εh is quickly adapted from its initial value, it takes values larger
than εs as should be expected, and depends on population size. From Fig.7
(b) note that at the beginning the number of neighborhoods is quite large
but thanks to the quick adaptation of εh the number of created neighborhoods
NH approaches the specified number NRef

H , 50 for |P| = 1000 and 250 for
|P| = 5000.
The above results show that adaption is working properly for both ε-sampling

and ε-hood creation.

5 Conclusions

This work has proposed an evolutionary many-objective optimizer that uses
adaptive ε-sampling to select a subset of well distributed solutions for the sur-
viving population. The method also uses adaptive ε-dominance to create neigh-
borhoods of surviving solutions and performs mating between individuals of the
same neighborhood to enhance the effectiveness of recombination. We verified
the performance of the algorithm using DTLZ problems, observing the effects of
increasing the population size on convergence and distribution of solution. We
showed that for any population size the proposed method achieves substantially
better quality of solutions in terms of convergence and distribution compared
to Aε-Box with Neighborhood Recombination. We also showed that the method
can successfully adapt the ε parameters used for truncation and neighborhood
creation. In the future we would like to look into the operators of variation, aim-
ing to further improve convergence. Also, we should analyze with more detail
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the impact of on performance of neighborhood size. In addition, we would like
to test the proposed method on other classes of problems.
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Abstract. Various multi-objective evolutionary algorithms (MOEAs)
have been developed to help a decision maker (DM) search for his/her
preferred solutions to multi-objective problems. However, none of these
approaches has catered simultaneously for the two fundamental ways
that DM can specify his/her preferences: weights and aspiration levels.
In this paper, we propose an approach named iPICEA-g that allows the
DM to specify his preference in either format. iPICEA-g is based on the
preference-inspired co-evolutionary algorithm (PICEA-g). Solutions are
guided toward regions of interest (ROIs) to the DM by co-evolving sets of
goal vectors exclusively generated in the ROIs. Moreover, a friendly deci-
sion making technique is developed for interaction with the optimization
process: the DM specifies his preferences easily by interactively brushing
his preferred regions in the objective space. No direct elicitation of num-
bers is required, reducing the cognitive burden on DM. The performance
of iPICEA-g is tested on a set of benchmark problems and is shown to
be good.

Keywords: Preferences, interactive, decision making, co-evolution.

1 Introduction

Multi-objective optimization problems (MOPs) arise in many real-world appli-
cations, where multiple conflicting objectives must be simultaneously satisfied.
Over the last two decades, multi-objective evolutionary algorithms (MOEAs)
have become increasingly popular for solving MOPs since: (1) their population
based nature is particularly useful for approximating trade-off surfaces in a single
run; and (2) they tend to be robust to underlying cost function characteristics [1].
The fundamental goal of solving MOPs is to help a DM to consider the mul-

tiple objectives simultaneously and to identify one final Pareto optimal solution
that pleases him/her the most [2]. Most of the proposed MOEAs aim to ob-
tain a good approximation of the whole Pareto optimal front and subsequently
let the DM choose a preferred one, i.e. a posteriori decision making [2]. Such a
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process is effective on small-scale problems. However, it has difficulties on large-
size problems (e.g. MOPs with many objectives), because approximation of the
whole Pareto optimal front is computationally difficult and DM is usually only
interested in some regions of the Pareto front.
To facilitate the process of decision making, a better choice is to consider DM

preferences in an a priori (preferences are specified before the start of the search)
or an interactive (preferences are articulated during the search) way [2]. In these
cases, the search can be guided by the preferences toward the ROIs of the Pareto
front and away from exploring non-interesting solutions. Since the final decision
making process is based on a set of preferred solutions the burden to DM can
be reduced significantly.
In the multi-criteria decision making (MCDM) community, various ways have

been proposed to represent the preferences of a DM e.g. aspiration levels (goals),
weights (search directions), local trade-off, utility function, outranking, fuzzy
logic, etc. [2]. the The most frequently used ways are weights (or search direction)
and aspiration levels (or goals) [3]. By using weights [4,5] it is easy to articulate
DM’s bias toward some objectives yet difficult to obtain a precise ROI. By using
aspiration levels [6] it is easy to obtain a precise ROI yet difficult to incorporate
the DM’s bias. Moreover, in some cases it is easier for the DM to express the
preferences by weights and in some cases by aspiration levels. The most flexible
approach would be to develop a unified approach which enables the DM to
articulate both types of the preferences.
In this paper, we describe such a unified approach. Three parameters: refer-

ence point (R), weight (W ) and search range (θ) are introduced. Then a new
interactive evolutionary multi-bjective optimization and decision-making algo-
rithm, iPICEA-g, is proposed that incorporates the unified approach within the
existing algorithm PICEA-g [7,8]. Similar to PICEA-g, in iPICEA-g candidate
solutions are co-evolved with goal vectors and so guided toward the Pareto front.
However, in iPICEA-g the co-evolved goal vectors are exclusively generated in
the ROIs that are defined by the three parameters. Moreover, a very friendly
interactive technique is developed with which the DM need not use any nu-
meric values to specify his preferences; rather he describes his preferences by
interactively brushing his preferred regions in objective space. iPICEA-g auto-
matically configures the required parameters according to the brushed regions
and therefore guides the solutions toward the ROIs.
The reminder of the paper is organized as follows: in Section 2 a brief review

of preference based MOEAs is presented. This is followed, in Section 3, by an
elaboration of the proposed approach iPICEA-g. Section 4 introduces the sim-
ulation results of using iPICEA-g to solve different problems in an a priori way
or an interactive way. Section 5 concludes and discusses the future research.

2 Review of a Selection of Preference Based MOEAs

A variety of MOEAs that have integrated MCDM methods for preference artic-
ulation have been proposed in literature. In this section, we briefly review some
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representative preference based MOEAs. Two comprehensive survey papers can
be found in [9,3].
MOGA [10,6] proposed by Fonscea and Fleming includes probably the ear-

liest attempt to incorporate DM preferences. In their studies, preferences are
expressed with goals and priorities. The incorporation of the preferences can be
in either a priori or interactive manner. Candidate solutions are ranked based
on the Pareto dominance relation together with the specified preferences and
therefore the search space of interest gradually becomes smaller during the evo-
lution. MOGA has been successfully used in a variety of applications, including
the low-pressure spool speed governor of a Pegasus gas turbine engine [11,12].
The main disadvantage of this approach is that it cannot explore multiple ROIs
at the same time. However, exploring multiple ROIs simultaneously is useful
when the DM cannot decide which particular region to explore to be explored
at the beginning, also for group decision making (different DMs can search for
their preferred solutions and select the final solution at the end).
Molina et al. [13] suggested a dominance relation called g-dominance. Solu-

tions satisfying all aspiration levels and solutions fulfilling none of the aspiration
levels are preferred over solutions satisfying some aspiration levels. In [13] an ap-
proach that couples g-dominance and NSGA-II is proposed to search for ROIs.
This algorithm works regardless of whether the specified goal vector is feasi-
ble or infeasible and also it is also easy to extended in an interactive manner.
However, the g-dominance relation does not preserve a Pareto based ordering.
Also, the performance of the algorithm is degraded as the number of objectives
increases [14].
Branke et al [15] proposed a guided MOEA (G-MOEA). In the algorithm, con-

sidering DM preferences are expressed by modifying the definition of dominance
using specified trade-offs between objectives: that is, how much improvement in
one or more objective(s) is comparable to a unit degradation in another objec-
tive. G-MOEA works well for two objectives; however, providing all pair-wise
information in a problem with many objectives is cognitively intensive.
In addition to the above Pareto related approaches, a large body of works are

based on the use of reference point, reference direction and light beam search [2].
Two representative reference point based MOEAs are R-NSGA-II [16] and PBEA
[17]. R-NSGA-II hybridized reference point with NSGA-II. Reference point is not
applied in a classical way, i.e. together with an achievement scalarizing function
[18], but rather to establish a biased crowding scheme. Specifically, solutions
near reference points are emphasized by the selection mechanisms. The extent
and the distribution of the solutions is maintained by an additional parameter
ε. PBEA is hybridization of reference point method and the indicator based
evolutionary algorithm (IBEA [19]). The preference is incorporated by a binary
quality indicator (the ε-indicator) which is also Pareto dominance preserving.
However, since the spread range of the obtained solutions are controled by an
additional fitness scaling factor, it is difficult to control the range of the obtained
solutions.
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Deb et al. [4] combined the reference direction method with NSGA-II. Pref-
erences are modelled by the reference direction (weights) encoded by a staring
point and a reference point. This approach is able to find Pareto optimal solu-
tions corresponding to reference points along the reference direction. Multiple
ROIs can be obtained by using multiple reference directions. Deb et al. [5] also
hybridized NSGA-II with the light beam search method, which enables search-
ing part(s) of the Pareto optimal regions illuminated by the light beam emanat-
ing from the starting point to the reference point with a span controlled by a
threshold.
Researchers from the MCDM community also developed some interactive

MCDM approaches based on MOEAs. For example, Kaliszewski et al [20] pro-
posed to incorporate the DM preference (expressed by search directions) with a
Chebyshef scalarizing function and to execute the optimization search from both
below (lower bounds) and above (upper bounds). The bounds are approximated
based on the objective values of the solutions which are of interest to the DM.
All the above approaches have merit and are able to find Pareto optimal

solutions in a ROI. However, none of the above approaches can simultaneously
deal with preferences in the form of weights or in the form of aspiration levels.
Moreover, among these approaches, some cannot explore multiple ROIs, e.g.
MOGA; some do not perform well on many-objective problems [21,22,14], e.g.
g-dominance based MOEA; some cannot search for a precise ROI, e.g. R-NSGA-
II and PBEA.

3 A Unified New Approach for Articulating Decision
Maker’s Preference

In this section we introduce in detail the iPICEA-g algorithm. Since the iPICEA-
g is based on PICEA-g [7,8], we firstly give a short introduction to PICEA-g.

3.1 Preference-Inspired Co-evolutionary Algorithms Using Goal
Vectors

Preference-inspired co-evolutionary algorithms (PICEAs) represent a new class
of MOEAs that were proposed by Purshouse et al. [7]. In PICEAs, incorporating
concepts from Lohn et al [23], a population of candidate solutions are co-evolved
with a set of preferences during the optimization process. Note that the co-
evolved preference are not the real decision-maker preferences but are used as a
means of comparing solutions for the purposes of a posteriori decision making.
Co-evolution of goal vectors (PICEA-g) is one realization of a PICEA [8]. In

PICEA-g, a family of goal vectors and a population of candidate solutions are
co-evolved as the search progresses. Candidate solutions gain fitness by meeting
(weakly dominating [1]) a particular set of goal vectors in objective-space, but
the fitness contribution is shared between other solutions that also satisfy those
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goals. Goal vectors only gain fitness by being satisfied by a candidate solution,
but the fitness is reduced the more times the goals are met by other solutions
in the population. The overall aim is for the goal vectors to adaptively guide
the candidate solutions towards the Pareto optimal front. That is, the candidate
solution population and the goal vectors co-evolve towards the Pareto optimal
front. For more details readers are referred to [7,8].

3.2 Interactive Preference-Inspired Co-evolutionary Algorithms
Using Goal Vectors

As argued earlier, in some cases it is easier for the DM to specify his preferences
in the form of weights (reference/search direction) while other times it is more
convenient for the DM to specify an aspiration level (goal). To meet the needs
of both types of DM, a unified approach is proposed in this section.

The Unified Approach. Three parameters are defined for the unified ap-
proach: a reference point in objective space (R), a search direction (W ) and a
search range (θ). R is to describe the aspiration levels; W is to introduce the

DM’s bias toward some objectives where
∑M

i=1 wi = 1, ∀i, wi ≥ 0. M is the
number of objectives; θ is to control the range of the ROI. An example in the
bi-objective case is shown in Figure 1. Note that R can also be unattainable;
this will be described later.

Fig. 1. Illustration of the parameters R, W and θ

Using the three parameters, DM preferences can be expressed either by weights
or aspiration levels. If the DM specifies weights then R is set to the ideal point
(or the coordinate origin, O), W represents specified weights and θ could be any
value within the range [0,π2 ] radians. If the DM specifies aspirations then R is

set as the aspiration levels, wi = 1/M, i = 1, · · · ,M , θ = arccos(
√
M−1√
M
), e.g.,

when M = 2, w1 = w2 = 0.5 and θ =
π
4 .



342 R. Wang, R.C. Purshouse, and P.J. Fleming

The Proposed Algorithm: iPICEA-g. Using the concepts from PICEA-g,
it is easy to imagine that if the goal vectors are exclusively generated in a region
then candidate solutions inside this region will be encouraged in the evolution.
The reason is that these candidate solutions can meet (weakly dominate) more
goal vectors and so result in higher fitness, while candidate solutions outside
this region can only meet(weakly dominate) few goal vectors and so have a
lower fitness. Therefore, over the generations more and more candidate solutions
will be guided toward the specified region. For example, in Figure 2, goal vectors
are generated in regions G1 and G2. The objective vector f(s1) of solution s1
is inside the region G1 while f(s1) of s2 is outside the G1. Compared to f(s2),
f(s1) can meet more goal vectors. That is, f(s1) would obtain a higher fitness
than f(s2), thereby, f(s1) is more likely to be retained in the search process
while f(s2) is likely to be disregarded.

Fig. 2. Illustration of iPICEA-g

Inspired by this thinking, in iPICEA-g goal vectors are not generated in the
whole objective space but somewhere which is related to the given ROIs (see
the shaded regions in Figure 2). By co-evolving candidate solutions with these
specially generated goal vectors, candidate solutions would be guided toward
the ROIs. In details, goal vectors are generated in both the shaded regions (G1
and G2) that are determined by R, W , θ, O′ and O′′. The region extends both
toward and away from the coordinate origin in order to handle the case where
the supplied R is unattainable. O′ and O′′ are the lower and upper bounds of
the regions that are to generate goal vectors. O and O′ are estimated based
on f(S∗) (where S∗ represents the current non-dominated solutions) and the
specified reference point, R: see equation 1:

O′ =α×min (Ri , fi(S∗)), i = 1, 2, · · · ,M, 0 < β < 1
O′′ =β ×max (Ri , fi(S∗)), i = 1, 2, · · · ,M, β > 1

(1)

where α and β are two scaling parameters, here, we use α = 0.5 and β = 1.5.
Note O′ and O′′ can be set equal to ideal and nadir point, if they are known.
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Amodified Pareto dominance relation namedPareto cone-dominance is applied
in iPICEA-g. A goal vector, gi is said to be satisfied (Pareto cone-dominated) by

a candidate solution, f(si) if and only if the angle between the vector
−−−−→
f(si)gi and

the vector
−−−−→
Of(si) is not larger than the specified search range, θ. For example, in

Figure 2, g1 is satisfied (Pareto cone-dominated ) by candidate solution f(s1) while
g2 is not.
Apart from the benefit that iPICEA-g can handle the DM preference either as

weights or aspiration levels, another major benefit of iPICEA-g is that multiple
ROIs can be explored by simultaneously generating goal vectors for all the ROIs.
Besides, we anticipate that iPICEA-g performs well on many-objective problems
because PICEA-g has a good performance on MOPs with many objectives [7,8].

4 Experiments

In this section, we illustrate the performance of iPICEA-g on different bench-
marks from the ZDT [24] and DTLZ [25] test suites. In all the experiments
the population size of candidate solutions and goal vectors of iPICEA-g are set
as N = 100 and Ngoal = 100, respectively. Simulated binary crossover (SBX,
pc = 1,ηc = 15) and polynomial mutation (PM, pm = 1

nvar per decision variable
and ηm = 20, where nvar is the number of decision variables) [26] are applied as
genetic variation operators. Firstly, we show the effects of R,W and θ. Secondly,
we show the performance of iPICEA-g on searching for ROIs in an a priori and
progressive way. Note that all the results are illustrative rather than statistically
robust.

4.1 Demonstrations of the Effects of R, W and θ

The bi-objective 20-variable DTLZ2, which has a concave Pareto optimal front
is selected as test problem to study the effect of the three parameters.

The Effect of R. Assuming the DM would like to have solutions around a
point then we set R as the specified point. For example, the DM specify (1)
one infeasible (0.6,0.6) reference point; (2) one feasible (0.8,0.8) reference point;
and (3) two reference points (0.7,0.9) and (0.8,0.3). Figure 3 shows the obtained
results after performing iPICEA-g for 200 generations. During the simulation
the search direction is set as W = [0.5, 0.5] which means there is no bias for any
objective and the search range θ = π

4 radians shows a range that is close to 50:50
emphasize. From Figure 3, we observe that in all cases iPICEA-g can find a set of
well converged solutions. It illustrates that iPICEA-g is able to handle both the
feasible and infeasible aspiration level, moreover, it can explore multiple ROIs
simultaneously.

The Effect of W . Assuming that DM would like to specify a preference for
one objective over another we use W . For example, the DM specifies that (1)



344 R. Wang, R.C. Purshouse, and P.J. Fleming

Fig. 3. The solutions obtained by iPICEA-g with different reference points

both the objectives are equally important then W = [0.5, 0.5] or (2) objective
f1 is twice as important as f2 then W = [0.67, 0.33] or (3) objective f1 is half as
important as f2 then W = [0.33, 0.67]. Figure 4 shows the obtained results after
performing iPICEA-g for 200 generations with W = [0.5, 0.5], W = [0.33, 0.67]
and W = [0.67, 0.33], respectively. During the simulation, R = (0.5, 0.5) and
θ = π

6 radians. From the Figure, we observe that the obtained solutions are
along the given search direction, W . In other words, the obtained solutions are
biased with different W . For example, in the case of W = [0.67, 0.33] f1 is more
optimized.

Fig. 4. Solutions obtained by iPICEA-g with different search directions

The Effect of θ. If the DM would like to obtain a large spread range of solutions
then θ could be a large value e.g. having θ = π

2 radians, the whole Pareto front
can be obtained. If the DM would like to obtain some solutions that are exactly
along the specified W then θ is set to π

180 radians. Figure 5 show the obtained
results after performing iPICEA-g for 200 generations with θ = π

2 ,
π
4 and

π
180 ,

radians, respectively. During the simulation, R = (0.3, 0.3) and W = [0.5, 0.5].
Clearly, the range of the obtained solutions decreases as θ decreases.
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Fig. 5. The distribution of solutions obtained by iPICEA-g with different θ values

4.2 Results for a Priori Preference Expression

Search With Weights. Here we consider the case where the DM states the
relative importance of each objective. Bi-objective ZDT2 and 4-objective DTLZ2
are used in the simulation and. iPICEA-g is run for 200 generations on each
problem.
For ZDT2 assuming that DM specifies f1 is twice as important as f2 then

W = [ 23 ,
1
3 ]; correspondingly, θ is set as

π
4 radians in order to obtain a moderate

range of solutions; R is set as the O′. From Figure 6.a we can clearly observe
the obtained solutions are biased to objective f1. Also, the solutions are near
the true Pareto front.
For DTLZ2 we assume the DM specifies that f1 is four times as important

as f4, f2 is three times as important as f4, f3 is twice as important as f4 then
W = [0.4, 0.3, 0.2, 0.1]; correspondingly, θ is set as π

12 radians so as to obtain a
close range of solutions; R is set to the O′. Observed from Figure 6.b (parallel
coordinates plots [12]), a set of solutions are obtained, which are located around
the projected point Q shown as −�−. Q is the projection of the coordinate origin
to the Pareto optimal front along the direction [0.4, 0.3, 0.2, 0.1]. The true Pareto

front of DTLZ2 is the surface of hyper-sphere with radius 1 (
∑M

i=1 f
2
i = 1) in

the first quarter [25]. Having computed
∑4

i=1 f
2
i for all the obtained solutions,

we find all values lies within the range [1.0391,1.0903] which confirm that the
obtained solutions have almost converged to the true Pareto front.

Search With Aspiration Levels. Here we consider the case where the DM
specifies preferences as aspiration levels. Again, the bi-objective ZDT1 and 4-
objective DTLZ2 problems are used in the simulation.
For ZDT1 we assume that DM specifies his aspiration level as [0.7,0.7] and soR

= (0.7,0.7); correspondingly,W is set as [0.5,0.5] and θ is set as π
4 radians. After

running iPICEA-g for 200 generations a set of satisfied solutions are obtained
shown in Figure 7.a. We can see that visually all the obtained solutions are very
close to the true Pareto front.
For DTLZ2, we assume the DM specifies that f1, f2, f3 and f4 should be

better (smaller) than 0.58, 0.7, 0.6 and 0.5, respectively. Therefore, we set
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(a) (b)

Fig. 6. Illustration of searching with weights

R = (0.58,0.7,0.6,0.5). Correspondingly, W is configured as [0.25, 0.25, 0.25,

0.25] and θ is set as arccos(
√
M−1√
M
) = π

6 radians. After running iPICEA-g for 200

generations a set of solutions is found as shown in Figure 7.b. All the solutions
have met the aspiration level. After computing

∑4
i=1 f

2
i for all obtained solu-

tions, the values lie within the range [1.0141,1.0528], therefore indicating that
all solutions have converged close to the true Pareto front.

(a) (b)

Fig. 7. Illustration of searching with aspirations

4.3 Results for a Progressive Preference Expression

Cognitively, DM may find it easier to specify preferences visually by drawing
rather than using numbers. iPICEA-g allows DM to brush existing solutions or
regions of the objective space that are of interest. These preferences would be
automatically converted into R, W and θ parameters. Consider a 2-objective
minimization example, see Figure 8. The brushed region is labelled as A.
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Firstly, we find the extreme points of A, i.e. Pf1 and Pf2. P
′
f1 and P

′
f2 are

the normalized vector of Pf1 and Pf2, respectively, i.e. Pfi =
Pfi

Li
, i = 1, 2, where

Li is the Euclidean distance from O′ to Pfi. |O′P ′
f1| = |O′P ′

f2| = 1. Then the
search direction W is determined by vector O′P , where P is the center of P ′

f1

and P ′
f2. θ is then calculated by arccos(

−−→
O′P ·

−−−→
O′P ′

f1). R is set as the O
′ (which

can be obtained by equation 1). The co-evolved goal vectors are then generated
in the shaded region closed by points R, Pf1, Pf2 and O

′′.

Fig. 8. Illustration of parameter calculation

To describe the working process, we solve the bi-objective ZDT1 and 4-
objective DTLZ4 problems by simulating an interactive search process.

Bi-objective ZDT1. Firstly, iPICEA-g is run for 10 generations without incor-
porating any preferences. The aim is to roughly know the range of the objectives
so as to give better preferences. The obtained solutions are shown in Figure 9.a.
Secondly, the DM brushes his preferred regions, i.e. the shaded regions in

Figure 9.a. The related parameter settings of iPICEA-g are then calculated based
on the brushed region, which are W = [0.25, 0.75], θ = 5π

36 radians and W =
[0.75, 0.25], θ = 5π

36 radians for region A and B, respectively. After running
iPICEA-g for 50 more generations, two sets of improved solutions are found. See
Figure 9.b.
Thirdly, we assume that the DM is not satisfied with either of the two sets of

solutions. However, he/she is interested in exploring a nearby region, C. The re-
lated parameter settings areW = [0.6, 0.4], θ = π

12 radians. By running iPICEA-
g for another 50 generations, a set of solutions are found in C shown in Figure 9.c.
Fourthly, the DM is still dissatisfied. He/She would like to exploit these so-

lutions. The preferred solutions are then brushed (See Figure 9.c) and iPICEA-
g is run for 50 more generations. The related parameters are configured as
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W = [0.5, 0.5], θ = π
18 radians. A set of better solutions are found. The DM is

now happy to choose a single solution from this set. The solution D is selected;
see Figure 9.d.

(a) (b)

(c) (d)

Fig. 9. Interactive scenario on 30-variable ZDT1

4-objective DTLZ2. Similarly, iPICEA-g is run without introducing any pref-
erence for 10 generations. A set of solutions are found as shown in Figure 10.a.
Secondly, DM brushes the preferred solutions for each objective (see Figure

10.a). Parameters W and θ are then calculated as [0.25, 0.25, 0.25, 0.25] and π
6

radians. iPICEA-g is run for 50 more generations. An improved set of solutions
are obtained (see Figure 10.b).
Thirdly, assuming DM is dissatisfied with the obtained solutions. He/She

brushes some solutions that are of interest. Based on the brushed solutions, two
ROIs are identified.The relatedparameters are configuredbyW = [0.3986, 0.3500,
0.1105, 0.1409], θ = π

12 radians andW = [0.1124,0.2249,0.3498,0.3128], θ = 7π
90 ra-

dians. The brushed solutions are shown in Figure 10.c. After running iPICEA-g for
another 50 generations, more solutions are found. See Figure 10.d.
Fourthly, the DM is still not satisfied with the obtained solutions. He/she

decides to explore one set of the obtained solutions. Again, he/she brushes his
preferred solutions which are shown in Figure 10.e and run iPICEA-g for 50 more
generations.W is set as [0.3691,0.2773,0.1383,0.2153], θ is set as π

36 radians. Seen
from Figure 10.f, a set of refined solutions are found in this preferred region. We
compute

∑4
i=1 f

2
i for all the obtained solutions. The value lies within the range
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of [1.0190,1.041] which means the obtained solutions have well converged to the
true Pareto front. The DM is now happy to choose a single solution from this
set. The solution shown as the white dash line is selected; see Figure 10.d.

(a) (b)

(c) (d)

(e) (f)

Fig. 10. Interactive scenario on 4-objective DTLZ2

5 Conclusions

Incorporation of DM preference is an important part of a real-world decision
support system. However, current methods for preference-based multi-objective
optimisation are unable to handle, comprehensively, the range of ways in which
a DM likes to articulate his/her preferences. In this paper, we have presented,
to the best of our knowledge, the first method that is simultaneously able to
handle preferences expressed as weights or as aspirations and that is also able
to support multiple regions of interest. We also enhance the DM-friendiness
by allowing preferences to be expressed either numerically or by interactively
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drawing on cartesian coordinate plots or parallel coordinates plots. Simulation
results have shown the effectiveness of the method.
There are three core directions for future research, firstly, since decision-

making is often a group rather than individual activity, it would be useful to
develop the method in order to support group decision making. Secondly, since
the DM’s preference is often expressed in fuzzy linguistic terms [27], it is impor-
tant to study how to handle fuzzy preferences. Thirdly, the method should be
trialled in a real decision making problem.
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Science Foundation of China (No. 70971132).
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Abstract. Indicator-based evolutionary algorithms are amongst the
best performing methods for solving multi-objective optimization (MOO)
problems. In reinforcement learning (RL), introducing a quality indica-
tor in an algorithm’s decision logic was not attempted before. In this
paper, we propose a novel on-line multi-objective reinforcement learn-
ing (MORL) algorithm that uses the hypervolume indicator as an action
selection strategy. We call this algorithm the hypervolume-based MORL
algorithm or HB-MORL and conduct an empirical study of the perfor-
mance of the algorithm using multiple quality assessment metrics from
multi-objective optimization. We compare the hypervolume-based learn-
ing algorithm on different environments to two multi-objective
algorithms that rely on scalarization techniques, such as the linear scalar-
ization and the weighted Chebyshev function. We conclude that HB-
MORL significantly outperforms the linear scalarization method and
performs similarly to the Chebyshev algorithm without requiring any
user-specified emphasis on particular objectives.

Keywords: multi-objective optimization, hypervolume unary indicator,
reinforcement learning.

1 Introduction

Multi-objective optimization (MOO) is the process of simultaneously optimizing
multiple objectives which can be complementary, conflicting or independent.
MOO is omnipresent in real-life and comprises a large part of the current research
landscape involving optimization techniques.
Most of the research concerning this domain is being focused on evolutionary

algorithms (EAs), such as NSGA-II [1]. A popular approach to solving MOO
problems is to transform the multi-objective problem into a single-objective
problem by employing scalarization functions. These functions provide a sin-
gle figure indicating the quality over a combination of objectives, which allows a
simpler and fast ordering of the candidate solutions. Recently, quality indicators,
such as the hypervolume measure that are usually used for performance assess-
ment, are introduced into the decision making process of these EAs. Searching
the decision space using quality indicators is a fruitful technique in EAs, but in
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c© Springer-Verlag Berlin Heidelberg 2013



Hypervolume-Based Multi-Objective Reinforcement Learning 353

reinforcement learning, this approach remained untouched. This paper fills this
gap by proposing a novel reinforcement learning algorithm based on Q-learning
that uses the hypervolume metric as an action selection strategy.

Contributions. There exist several algorithms that focus on multi-objective re-
inforcement learning (MORL) [2,3,4], but they only take into account the linear
scalarization function. We combine ideas from two machine learning techniques
(i.e. optimization and reinforcement learning) that have different goals in ex-
ploiting the multi-objective environments. We propose a novel multi-objective
reinforcement learning algorithm where the hypervolume unary indicator is used
to evaluate action selection. We call it hypervolume MORL (HB-MORL) and
conceptually compare it two two scalarization-based MORL algorithms on envi-
ronments consisting of two and three objectives. The experimental results show
that HB-MORL outperforms the linear scalarization algorithm and performs
similar to the Chebyshev-based algorithm.

Outline. In Section 2, we provide an overview of background concepts such as
multi-objective optimization and we introduce reinforcement learning in Section
3. Subsequently, in Section 4, we reveal our novel algorithm, HB-MORL and
conduct experiments in Section 5. Finally, we draw conclusions in Section 6.

2 Preliminaries

A multi-objective optimization problem optimizes a vector function whose el-
ements represent the objectives. A maximization multi-objective problem is
maxF(x) = max{f1(x), f2(x), ..., fm(x)}, where m is the number of objectives,
and f i is the value for the i-th objective. A solution x1 is said to dominate an-
other solution x2, F(x2) ≺ F(x1), iff for all objectives j, f

j(x2) ≤ f j(x1), and
there exists a objective i, for which f i(x2) < f

i(x1).

2.1 Scalarization Functions

Scalarization functions transform a multi-objective problem to a single-objective
problem. The scalarization functions often take into consideration weighting co-
efficients which allow the user some control over the chosen policy, by placing
more or less emphasis on each objective. In this paper, we consider two instances
of scalarization functions:

Linear Scalarization Function. In the linear weighted-summethod a weighted
coefficient wi is associated with each objective function. A weighted-sum is per-
formed over all objectives and their corresponding weights. The value of a so-
lution x is

∑m
i=1 wifi(x). The benefit of the linear scalarization functions is its

simplicity and intuitive representation.

Chebyshev Scalarization Function. Also for this scalarization, we have
weights associated to each objective. The Chebyshev metric [5] calculates for
each objective the weighted distance between a reference point, z∗ and a point
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of interest in the multi-objective environment. For maximization problems, it
chooses the greatest of these distances. The scalarized value for a solution x is
maxi=1,...,mwi|fi(x) − z∗i |. The reference point z∗ is a parameter that is con-
stantly being updated with the best value for each objective of solutions in the
current Pareto set plus a small constant, i.e. z∗ is z∗i = f

best
i (x) + ε, where ε is

a small number.

2.2 Indicator-Based Evolutionary Algorithms

Indicator-based evolutionary algorithms or IBEA is the class of algorithms that
rely on a quality indicators in their selection process. Let Ψ ⊆ 2X be the set of
all possible Pareto set approximations. A unary quality indicator is a function
I : Ψ → R, assigning a Pareto set approximations, A1, a real value I(A1). Many
quality indicators exist, but the one that is most interesting for our context is the
hypervolume indicator. This metric calculates the volume of the area between a
reference point and the Pareto set obtained by a specific algorithm.
The hypervolume measure is of particular interest in this context as it is the

only single set quality measure known to be strictly increasing with regard to
Pareto dominance. The drawback of calculating the exact hypervolume remains
its computation time, as it is an NP-hard problem [6]. Over the years, several
hypervolume-based EAs for MOO have been proposed, such as MO-CMA-ES [7]
and SMS-EMOA [8].

3 Multi-Objective Reinforcement Learning

Evolutionary methods optimize an explicit objective function where reinforce-
ment learning (RL) optimizes an implicit objective function. More precisely, RL
involves an agent operating in a certain environment and receiving reward or
punishment for certain behaviour. The focus of this paper is on multi-objective
reinforcement learning (MORL) and how to combine it with the hypervolume
unary indicator. In the following sections, we give a brief overview of exist-
ing multi-objective reinforcement learnings algorithms that utilize scalarization
functions to transform the multi-objective search space of a problem into a single-
objective environment.

Markov Decision Process. The principal structure for RL is a Markov Deci-
sion Process (MDP). An MDP can be described as follows. Let the set
S = {s1, . . . , sN} be the state space of a finite Markov chain {xl}l≥0 and
A = {a1, . . . , ar} the action set available to the agent. Each combination of
starting state si, action choice ai ∈ Ai and next state sj has an associated tran-
sition probability T (sj, si, ai) and and immediate reward R(si, ai). The goal is
to learn a policy π, which maps each state to an action so that the expected
discounted reward is maximized. [9] proposed Q-learning, an algorithm that ex-
presses this goal by using Q-values which explicitly store the expected discounted
reward for every state-action pair. Each entry contains the value for Q̂(s, a) which
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represents the learning agent’s current hypothesis about the actual value of
Q(s, a). The Q̂-values are updated according to the following update rule:

Q̂(s, a)← (1− αt)Q̂(s, a) + αt[r(s, a) + γmax
a′
Q̂(s′, a′)] (1)

where αt is the learning rate at time step t and r(s, a) is the reward received for
performing action a in state s.

Multi-objective MDPs. InMOO,MDPs are replaced bymulti-objectiveMDPs
or MO-MDPs [10]. These extend MDPs by replacing the single reward signal by a

vector of rewards, i.e. �R(si, ai) = (R1(si, ai), . . . Rm(si, ai)), where m represents
the number of objectives. Since the reward vector consists of multiple components,
each representing different objectives, it is very likely that conflicts arise between
them. In such case, trade-offs between these objectives have to be learned, resulting
in a set of different policies compared to a single optimal policy in single-objective
learning. The overall goal of solving MO-MDPs is to find a set of policies that op-
timize different objectives. The set of optimal policies for each objective or a com-
bination of objectives is referred to as the Pareto optimal set.

Multi-objective Reinforcement Learning. There are several MORL frame-
works proposed in literature. For instance, [3] suggests a multi-objective algo-
rithm that uses a lexicographic ordering of the objectives. More precisely, by
placing minimal thresholds on certain objectives, policies are discovered that
take into account these constraints. [4] proposes a batch Convex Hull Value It-
eration algorithm that learns all policies in parallel, defining the convex hull of
the optimal Pareto set. [2] also proposes a batch MORL approach, based on
the linear scalarization function, to identify which actions are favoured in which
parts of the objective space. Notwithstanding their results, they all consists of
off-line algorithms, which involve sweeping over a set of collected data. There-
fore, the aspects of these algorithms on using and adapting their policy during
the learning process (i.e. on-line learning) were not studied.

Scalarization-Based MORL. To the best of our knowledge, all MORL algo-
rithms are currently focusing on the linear scalarization function. Therefore, the
most general MORL algorithm that allows a fair comparison in this paper is an
on-line multi-objectiveQ-learning algorithm (MOQ-learning) employed with the
linear and the Chebyshev scalarization functions, presented in Section 2. These
novel multi-objective reinforcement learning algorithms [11] are an extenstion to
the single-objectiveQ-learning algorithm [9] that can accommodate for any scalar-
ization function. The main change compared to standardQ-learning and the work
in [2] is the fact that scalarization functions are applied onQ-values in contrast to
reward signals. Thus, the standardQ-table, used to store the expected reward for
the combination of state s and action a, is extended to incorporate objectives, i.e.
Q(s, a, o). This has the advantage that non-linear functions, such as the Chebyshev
function, can be utilized in the same framework.
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Algorithm 1. Scalarized ε-greedy action selection, scal-ε-greedy()

1: SQList ← {}
2: for each action ai ∈ A do
3: o ← {Q(s, ai, o1), . . . , Q(s, ai, om)}
4: SQ(s, a) ← scalarize(o) � Scalarize Q-values
5: Append SQ(s, a) to SQList
6: end for
7: return ε-greedy(SQList)

In Algorithm 1, we present the scalarized action selection strategy for MO
Q-learning. At line 4, the scalarize function can be instantiated by any scalar-
ization function to obtain a single indication for the quality of the combination of
state s and action a, SQ(s, a) over the Q-values for each objective. Furthermore,
the standard ε-greedy strategy from RL can be applied after we transform the
multi-objective problem to a single-objective problem and decide the appropriate
action, based on these individual indications in SQList. The new multi-objective
Q-learning algorithm is presented in Algorithm 2. At line 1, the Q-values for each
triple of states, actions and objectives are initialized. Each episode, the agent
starts in state s (line 3) and chooses an action based on the multi-objective
action selection strategy of Algorithm 1 at line 5. Upon taking action a, the
agent is being transitioned into the new state s′ and the environment provides
it with the vector of rewards �r ∈ �R. At line 10, the Q(s, a, o) are updated with
a multi-objective version of Eq. 1. This process is repeated until the Q-values
converge.

Algorithm 2. MO Q-learning algorithm

1: Initialize Q(s, a, o) arbitrarily
2: for each episode T do
3: Initialize state s
4: repeat
5: Choose action a from s using policy derived from Q (e.g. scal-ε-greedy)

6: Take action a and observe state s′ ∈ S, reward vector r ∈ R
7: maxa′ ← Call Scal. greedy action selection � Get best scal. action in s′

8:
9: for each objective o do � Update Q-values for each objective
10: Q(s, a, o) ← Q(s, a, o) + α[r(s, a, o) + γQ(s′,maxa′ , o) −Q(s, a, o)]
11: end for
12:
13: s ← s′ � Proceed to next state
14: until s is terminal
15: end for
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Algorithm 3. Greedy Hypervolume-based Action Selection, HBAS(s, l)

1: volumes ← {} � The list collects hv contributions for each action
2: for each action ai ∈ A of state s do
3: o ← {Q(s, ai, o1), . . . , Q(s, ai, om)}
4: hv ← calculate hv(l + o) � Compute hv contribution of ai to l
5: Append hv to volumes
6: end for
7: return argmaxa volumes � Retrieve the action with the maximal contribution

4 Hypervolume-Based Multi-Objective RL

In this section, we present our novel hypervolume-based MORL algorithm (HB-
MORL) that combines the hypervolume unary indicator as a novel action se-
lection mechanism. This action selection mechanism is similar to the selection
strategy utilized for the MO Q-learning algorithm (Algorithm 1).
The proposed strategy is presented in Algorithm 3, while the entire HB-MORL

algorithm is presented in Algorithm 4. The outline of the HB-MORL algorithm
is similar to the MO Q-learning algorithm in Algorithm 2, but has an additional
parameter, l. Each episode, the agent maintains a list l of Q-values of already
visited states and actions. Initially, this list is empty (Algorithm 4, line 3).
In the action selection strategy, the agent consults this list (Algorithm 3) by

employing the hypervolume metric. For each action ai of state s, the vector
of Q-values is retrieved from the table at line 3, whereafter the contribution
of each action to the list of visited state-action pairs is calculated (line 4) and
stored in the volumes list. In the greedy selection case, the action with the
largest contribution is retrieved from volumes and selected (line 7), while in the
ε-greedy case a random action is selected with a probability of ε (not shown in
Algorithm 3). Subsequently, the Q-values of the selected action are appended to
the list l (line 8, Algorithm 4) and the learning proceeds.

Differences Between MORL Algorithms. The HB-MORL algorithm, pre-
sented in this paper, resembles in quite a few places to the scalarization frame-
work, presented in Algorithm 2. They are both based on Watkins’ Q-learning
algorithm and its update rule. This offers the advantage that we can rely on
the same convergence proof and no exotic or problem-specific algorithm is pro-
posed. On the contrary, their correspondence allows the same generality that
Q-learning has been offering for decades. As presented, the main difference to
the scalarization framework lies in the action selection strategy. The scalariza-
tion framework transforms the vector of Q-values into a single indicator, whereas
the hypervolume-based algorithm performs searches directly into the objective
space. Furthermore, HB-MORL does not rely on weights, defined a priori to
guide the search process, as opposed to the scalarized algorithms. When the
policies obtained by different runs of the algorithm are collected, the user can
still make her/his decision on which policies or trade-offs are preferred, but the
advantage is that emphasis on particular objectives is not required beforehand.
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Algorithm 4. Hypervolume-based Q-learning algorithm

1: Initialize Q(s, a, o) arbitrarily
2: for each episode T do
3: Initialize s, l = {}
4: repeat
5: Choose a from s using policy derived from Q (e.g. ε-greedy HBAS(s, l))

6: Take action a and observe state s′ ∈ S, reward vector r ∈ R
7: o ← {Q(s, a, o1), . . . , Q(s, a, om)}
8: Add o to l � Add Q-values of selected action a to l
9: maxa′ ←greedy HBAS(s′, l) � Get greedy action in s′ based on new l
10:
11: for each objective o do � Update Q-values for each objective
12: Q(s, a, o) ← Q(s, a, o) + α[r(s, a, o) + γQ(s′,maxa′ , o) −Q(s, a, o)]
13: end for
14:
15: s ← s′ � Proceed to next state
16: until s is terminal
17: end for

5 Results

In this section, we experimentally evaluate the performance of theHB-MORLalgo-
rithmon twobenchmark environments for different qualitymeasures.These results
are then compared to two instances of MORL algorithms that use scalarization-
based action selection strategies, i.e. the linear and the Chebyshev Q-learning
algorithm.

5.1 Testing Environments

Recently, [12] proposed empirical evaluation techniques for multi-objective re-
inforcement learning, together with a few benchmark environments. We build
further on this work and perform our experiments on the same worlds, such as
the Deep Sea Treasure and the Multi-Objective Mountain Car environments to
compare the two scalarization functions and the HB-MORL algorithm in detail.
The optimal Pareto sets of each world were provided by the same researchers.

5.2 Parameter Setting

In the experiments, presented below, we relied on identical configurations for
each of the testing environments. We applied an ε-greedy exploration strategy
with ε set to 0.1 and the Q-values were initialized randomly for each objective.
The learning rate α was set to 0.1 and the discount factor γ to 0.9. Results are
collected and averaged over 50 trials of each 500 runs.
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Table 1. The reference points (RP) used to calculate the hypervolume indicator in
the learning algorithm and in the quality assessment for each environment

Deep Sea Treasure MO-Mountain Car

Learning RP (−25.0,−5.0) (−10.0,−10.0,−10.0)

Quality Assessment RP (−25.0, 0.0) (−350.0,−250.0,−500.0)

Each scalarization-based MORL algorithm was tested using different sets of
the weights sets ranging from 0 to 1, with a steps of 0.1 for each objective, i.e.
there are 11 and 64 tuples of weights (and experiments) for the worlds with
two and three objectives, respectively. Each scalarized MORL algorithm using a
particular weight tuple could be regarded as an individual learning agent. As the
hypervolume metric does not require any prior knowledge and to ensure a fair
comparison in the results, we ran the HB-MORL algorithm for exactly the same
number of experiments as the scalarized algorithms. Per iteration, each agent
individually tests its learned policy by greedily selecting actions, whereafter each
agents’ policy is stored in a set. This set is called the Pareto approximation set
for a particular iteration number of the learning phase.
We employed the hypervolume metric also as a quality assessment tool in the

comparisons of the different algorithms. Table 1 presents the reference points
(RP) used for calculating the hypervolume in both the learning phase and the
testing phase for each of the environments. These values were determined em-
pirically by examining the bounds on the reward structure of each testing envi-
ronment in a straightforward way.

5.3 Performance Experiment

In this experiment, we compare the performance of the linear and Chebyshev-
based algorithms to our novel hypervolume-based MORL algorithm. In Table 2
and 3, we relied on the Wilcoxon rank test [13] to indicate a significant difference
on the mean performance between the indicator-based MORL algorithm and
both scalarized methods on each environment. We present the learning curves
for each of the environments in Fig. 1(a) and 1(b) by applying the hypervol-
ume indicator for quality assessment purposes. For the Deep Sea Treasure world
(Fig. 1(a)), the linear scalarization-based MORL is not capable of improving
the hypervolume after 100 runs whereas the Chebyshev-based algorithm slightly
improves its performance until 250 runs. The HB-MORL is gradually improving
its policy and improves the Chebyshev algorithm after 400 runs. It is interesting
to note that the HB-MORL algorithm is increasingly its performance gradually
until the end of the learning phase. In other preliminary tests, not included in
this paper, we ran the experiments for a longer period of time, but no algorithm
was able to further improve its policy after 500 runs.
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Table 2. The Wilcoxon rank test denoted a significant difference on the mean perfor-
mance of the linear scalarized algorithm and HB-MORL on both testing worlds for a
threshold p value of 0.05

Linear scalarization HB-MORL p-value Significant?

Deep Sea Treasure 762 1040.24 7.0338−4 √
MO-Mountain Car 15727946.18 23984880.12 5.9282e−5 √

Table 3. Also for the Chebyshev-based algorithm and HB-MORL, a significant differ-
ence is noted by the Wilcoxon rank test on the two benchmark instances (threshold p
= 5%)

Chebyshev HB-MORL p-value Significant?

Deep Sea Treasure 938.29 1040.24 1.5256e−17 √
MO-Mountain Car 23028392.94 23984880.12 5.0379e−16 √

Finally, we observed the largest difference between the two scalarized algo-
rithms in the complex 3D MO-Mounting Car world (Fig. 1(b)). In this bench-
mark environment, the Chebyshev-based algorithm is stabilized after 100 runs,
whereas the linear scalarization-based MORL algorithm slowly increases until
the last learning steps. Nevertheless, a considerable difference in quality is kept
between the two scalarized MORL methods. The hypervolume-based Q-learning
algorithm is stabilising approximately as fast as the Chebyshev algorithm, but
the gradual improvement phase is also observed in this complex world and a
significant improved performance is achieved.
In Fig. 2(a) and 2(b), we elaborate into more detail the gradual learning

phase achieved by each of the learning methods. We restricted the information
in the learning curves to capture the performance every 100 runs. For each of
the environments, the linear scalarized algorithm is performing the worst and
its performance stagnates after only a few iterations. The Chebyshev method is
able to escape the local maxima in a much better way and is improving until the
end of the learning phase. Finally, the HB-MORL algorithm is able to improve
even further and achieves an enhanced performance in its finals runs.
In Fig. 2(c), we show the frequency probability of the 10 Pareto dominat-

ing goals (i.e. treasures) reached in the Deep Sea world. This plot provides us
with an idea on the spread that each learning method can obtain amonst Pareto
dominating solutions. We note that the linear scalarization-based algorithm only
finds extreme solution, i.e. solutions that maximize only one of the objectives.
More precisely, the two results found are the treasures with value 1 and 124,
i.e. the treasures that minimize the time objective and maximize the treasure
objective, respectively, but no real compromising solutions were obtained. The
Chebyshev algorithm however, obtains a larger spread in the results compared
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(b) MO Mountain Car world

Fig. 1. Learning curves on the Deep Sea Treasure and the MO Mountain Car worlds,
respectively

to the linear case. Out of the 10 possible goals, it found 8 on a regular basis,
with increasing probability near the extreme solutions. Without being initialized
with any prior preferences, the hypervolume-based MORL performed acceptable
and focused on 5 solutions.

5.4 Quality Indicator Comparison

In multi-objective research, quality indicator studies are a popular approach
for conducting algorithm comparisons. The performance indicators applied in
this experimental study are the (inverted) generational distance , the general-
ized spread indicator, the cardinality and the hypervolume distance. The former
three are minimization metrics, while the latter two are to be maximized. In
detail, the generational distance and the inverted generational distance were
both proposed by [14]. The former measures how far the elements in the set
of non-dominated vectors, generated by a learning algorithm, are from those in
the Pareto optimal set. The latter calculates how far each element of the Pareto
optimal set is from the non-dominated vectors in the approximation set. The
spread indicator [1] on the other hand is a diversity metric that measures the
extent of spread achieved among the obtained solutions. The cardinality measure
simply counts the number of elements found in the Pareto set.
The results are presented in Table 4. On the Mountain Car (MC) world, the

HB-MORL obtained overall the best results out of the three algorithms, except
for the fact that the Chebyshev method found one extra solution. The linear
scalarized algorithm obtained the best value for the generalized spread, but as
this metric only uses the members on the boundaries of the Pareto optimal set
(i.e. the extreme solutions) in its calculations, this metric is biased towards the
linear method that exclusively finds these solutions (see Fig. 2(c)).
On the Deep Sea (DS) world, the Chebyshev method found 8 out of 10 distinct

results and obtained the best value for the inverted generational distance. Closely
followed by HB-MORL that without any prior information (i.e. no weights)
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(c) Frequency of goals in the Deep Sea world

Fig. 2. Fig. 2(a) and 2(b) depict the performance of each learning algorithm each 100
runs. In Fig. 2(c), the frequency probabilities of each of the 10 Pareto dominating
goals in the Deep Sea Treasure world are presented. The Chebyshev-based algorithm
obtained the best spread, closely being followed by HB-MORL. The linear scalarized
algorithm only found two (extreme) solutions.

obtained 5 distinct results, but a larger hypervolume was obtained. This means
that HB-MORL was much more consistent in finding good solutions frequently
(i.e. the increased hypervolume), but its results were not as spread around in
the search space as the Chebyshev-based algorithm (i.e. the cardinality). The
linear scalarized algorithm only obtained 2 (extreme) results that are located at
the largest possible distance from each other, resulting in the best generalized
spread value. Each of the results found by any of the algorithms were an element
of the optimal Pareto set, meaning that the generational distance is 0.
To conclude, on each environments, HB-MORL outperformed the linear scalar-

ization algorithm and obtained the best results on the most important quality
indicator, i.e. the hypervolume metric. On the other indicators in the Deep Sea
Treasure world, the HB-MORL algorithm obtained good results but was not
always the best performing algorithm. We can conclude that the HB-MORL al-
gorithm was very consisting in finding solutions that maximize the hypervolume
metric, but could be improved by more spread results.
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Table 4. Five quality indicator for each of the three algorithms on the two benchmark
instances. The first three are to be minimized, while the latter two are maximization
indicators. The best values are depicted in bold face.

Linear Chebyshev HB-MORL

Inverted Generational distance
DS 0.128 0.0342 0.0371
MC 0.012 0.010 0.005

Generalized spread
DS 3.14e−16 0.743 0.226
MC 0.683 0.808 0.701

Generational distance
DS 0 0 0
MC 0.0427 0.013824 0.013817

Hypervolume
DS 762 959.26 1040.2
MC 15727946 23028392 23984880

Cardinality
DS 2 8 5
MC 15 38 37

Weights Vs. Quality Indicator. In the following test, we investigate into more
detail the results of HB-MORL to the results obtained for each weighted tuple for
the scalarization-based algorithms (Table 5). It is important to note that the HB-
MORL algorithm is not set up with any information on how the objectives should
be balanced or weighed. Therefore, in the table, its values remain identical. Note
that the generational distance was omitted because every result obtained was an
element of the Pareto set. We focus on the differences between the Chebyshev
method and the HB-MORL algorithm and notice that there is still a significant
portion of the weighted tuples for which the Chebyshev algorithm achieved better
performance in term of the inverted generational distance than was presumed in
Table 4. Although, there are four cases (weights W6, W8, W9 and W10) where
the HB-MORL algorithm obtained improved performance and 2 tuples (weights
W3 and W4) that perform similarly.
The hypervolume measure indicated that for some weights, the Chebyshev

algorithm obtained a large portion of the Pareto set, but on the larger portion
of the experiments the results are less efficient. Especially when assigning a very
low weight to the treasure objective (e.g. weight W10), a limited hypervolume
is achieved. In those cases, the time objective is being minimized with the re-
sult that treasures with a limited value, located near the starting position to
minimize the time and distance, are favored. The generalized spread indicator
showed that when focusing on the performance of particular tuples of weights,
the values become more clear and the HB-MORL algorithm is performing intrin-
sically better. Note that the Chebyshev algorithm found the two extreme points
in the objective space for weight W9, thus resulting in the best possible value
of 0. The same can be concluded for the cardinality indicator as for particular
weights, very few solution points are obtained.
To conclude, based on the empirical results, for a large portion of weights,

the Chebyshev MORL algorithm is considered a well-performing algorithm by
many quality indicator measures, such as spread and cardinality (see Table 4).
We have seen that for some weights (Table 5), the Chebyshev algorithm obtained
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Table 5. Five quality indicator for each of the 11 weights in the Deep Sea world. The
inverted generational distance (IGD) and spread indicator are to be minimized, while
the other two are maximization indicators. The best values are depicted in bold face.

Weight Linear Chebyshev HB-MORL

IGD

W0 0.3234 0.0227 0.0371
W1 0.3234 0.0253 0.0371
W2 0.3234 0.0296 0.0371
W3 0.3234 0.0365 0.0371
W4 0.3234 0.0360 0.0371
W5 0.32344 0.0260 0.0371
W6 0.32344 0.0451 0.0371
W7 0.2201 0.0260 0.0371
W8 0.2201 0.0616 0.0371
W9 0.2201 0.1279 0.0371
W10 0.2201 0.2201 0.0371

Spread

W0 1 0.5481 0.2257
W1 1 0.4003 0.2257
W2 1 0.3714 0.2257
W3 1 0.6234 0.2257
W4 1 0.6830 0.2257
W5 1 0.4159 0.2257
W6 1 0.1949 0.2257
W7 1 0.4159 0.2257
W8 1 0.7121 0.2257
W9 1 0 0.2257
W10 1 1 0.2257

Weight Linear Chebyshev HB-MORL

HV

W0 744 1145 1130
W1 744 1143 1130
W2 744 1136 1130
W3 744 1094 1130
W4 744 1140 1130
W5 744 1024 1130
W6 744 1082 1130
W7 24 1140 1130
W8 24 1018 1130
W9 24 762 1130
W10 24 24 1130

Cardinality

W0 1 8 5
W1 1 7 5
W2 1 6 5
W3 1 6 5
W4 1 6 5
W5 1 7 5
W6 1 4 5
W7 1 7 5
W8 1 4 5
W9 1 2 5
W10 1 1 5

very good results for many quality indicators, while for other weights the method
operates ineffectively. Thus, the principal drawback of these scalarization-based
algorithm remains the fact that the user has to predefine its preferences by
placing greater or lesser emphasis on each objective. This is a task that should
not be underestimated. The main benefit of scalarization techniques remains
their simplicity, but this does not compensate for the inconvenience of manually
guiding the nature of the policy and the fact that these methods are very biased
to the actual weights used.

5.5 Discussion

By randomly initializing the Q-values, the HB-MORL method obtains an accept-
able notion of spread and found a large portion of Pareto dominating solutions.
Thus, approaching the Chebyshev method for the spread indicator. But more
importantly, HB-MORL improved the hypervolume indicator on every bench-
mark, indicating the method’s robustness as good results are found frequently.
Furthermore, HB-MORL does not require any direct input from the user on its
actual preferences and solves this burden by employing the hypervolume qual-
ity indicator directly in its search process. This makes the main advantage of
the HB-MORL algorithm its simplicity. Also, unlike the Chebyshev method,
no specific reference point z∗ is to be specified and updated in every run of
the algorithm, making it easier for the developer to conduct experiments with
HB-MORL instead of scalarization-based methods.
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On both benchmark instances, the linear scalarization algorithm failed to
achieve decent performance and got stuck in local optima while obtaining only
two extreme solution points. These outcomes are in accordance with previous
findings [12] on the linear scalarization algorithm, stating that the method is
unable of finding solutions near non-convex regions of the optimal Pareto set.
Independent of the running time, the algorithm gets stuck in local optima from
which it can not escape. The Chebyshev-based algorithm and HB-MORL are able
to gradually improve their hypothesis. Especially the latter is able to improve in
final stages of its training phase.
Note that the HB-MORL algorithm is more of a slow starter compared to

the Chebyshev-based algorithm. We believe that this is caused by the lack of
diversity in the Pareto set explored with the hypervolume based indicator. This
is also noticed in other approaches that conduct searches using the hypervol-
ume metric and therefore [15] proposes to include a mechanism to increase the
diversity of the Pareto sets and to encourage exploration. The reason why the
Chebyshev-based method does not have this problem, is because the algorithm
is restarted with different weights forcing the exploration of different regions of
the multi-objective environment.

6 Conclusions

In this paper, we have successfully built a bridge between two machine learning
techniques that rely on different solution approaches given an certain environ-
ment. More precisely, we have included a technique from multi-objective opti-
mization, i.e. the hypervolume unary based indicator, into reinforcement learn-
ing. We have conceptually and experimentally compared our novel hypervolume-
based MORL (HB-MORL) algorithm to two other scalarization-based learning
algorithms, which require weights to be defined beforehand. In contrast, the
HB-MORL algorithm does not contain preference-based parameters to be spec-
ified. For our experiments, we performed performance assessment tests on two
benchmark instances with two and three objectives. We have noted that the
suggested algorithm significantly improved the linear scalarization-based algo-
rithm and performed similarly to the Chebyshev-based algorithm. Especially on
indicators that asses the robustness of an algorithm on finding high-quality so-
lutions frequently, the hypervolume-based algorithm turned out to be the best
performing. We believe that HB-MORL is especially useful in cases where it is
difficult to define user-preferences beforehand or in cases where it is complex to
tune an algorithm specifically for a particular problem instance. In those situ-
ations, HB-MORL would allow to obtain a significant amount of high-quality
solutions without requiring any weights parameters to be defined.
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Abstract. Various notions of preferences exist in multi-objective opti-
mization and the decision making community. On the one hand, prefer-
ences appear as domination relations that are stronger than the classical
Pareto-domination, while on the other hand, they introduce relative im-
portance on the objective functions. In this way, preferences can appear
in both domination relations and objectives. In this paper, we analyze
and put together different preference models and classify them into two
groups. We theoretically analyze many preference models within these
groups. In particular, we are interested in curvature/ slope based mod-
els where the preferred set depend upon the curvature of efficient front.
This amounts to having a direct control on trade-offs among the objective
functions. A related concept of cone-based hypervolume is also theoreti-
cally investigated in this paper. Special emphasis is placed on equitable
efficiency and its applications. Furthermore, we present two algorithms
for finding solutions that are compatible with a given preference model.

Keywords: Preference models, Cone-based hypervolume indicator,
Theoretical analysis, Trade-offs.

1 Introduction

Many real-world, mathematical and economical problems are characterized by
the presence of several conflicting objective functions (see [17,8]). These problems
involve minimization of all the objective functions and are called multi-objective
optimization problems (MOPs). In the absence of further information, Pareto-
ordering is used to compare two vectors u,v ∈ Rm. u := (u1, u2, . . . , um) is
said to Pareto-dominate (and if preferred over) a vector v := (v1, v2, . . . , vm)
if ui ≤ vi for all i = 1, 2, . . . ,m and u �= v. This way to compare two points
can be seen as a preference model in that those points are sought that are not
Pareto-dominated by any other points.
Although the Pareto preference model is central to solving MOPs and satisfies

many basic properties like reflexivity, transitivity and strict monotonicity, many
engineering design approaches use additional requirement like fixing trade-offs.

R.C. Purshouse et al. (Eds.): EMO 2013, LNCS 7811, pp. 367–382, 2013.
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Trade-offs are a basic tool in decision making and we find various notions in
the classical multiple criteria decision making (MCDM) community also (see
[17]). Apart from trade-offs, there exists many kinds of preferences that can be
used to enrich the Pareto preference model. The decision maker (DM) who is
interested in solving the problem might be biased towards certain regions in the
objective (or variable) space, for example. Broadly, we could classify preference
models into two categories. The first of these are direction or region based models
where the user has a basic idea where he want look for solutions. This could be
a region (like intervals for objective values) or direction (like biased weights)
based. The second class is based on slope or curvature based models that have
inherent trade-off information. The solutions based on these models depend upon
the shape of the efficient front (defined as the image of non Pareto-dominated
points), like knees for example [24].
This paper is concerned with curvature based preference models. We find cur-

vature based models more interesting as the curvature of efficient front amounts
to having a direct control on the trade-offs among the objective functions [25].
These models are based on a user specified preference. This preference can either
be based on trade-offs or could come by imposing conditions that require the
Pareto preference model to additionally satisfy some axioms (like impartiality or
principle of transfers [20]). Curvature based preferences appear as domination or
ordering relations that are stronger the classical Pareto ordering. Trade-offs can
be appended to Pareto-ordering and this induces a polyhedral cone ordering.
Curvature based preferences also come when relative importance on the objec-
tive functions in introduced (see Noghin [19] for a formal definition). Hence,
preferences can appear in both domination and objectives.
In this paper, we analyze and put together different curvature based prefer-

ence models and classify them into two groups: smooth and nonsmooth. Smooth
preference models use a closed, convex, and pointed cone to order the space Rm.
In this way, many classical algorithms can be easily applied to find one solution.
Many preference models within these groups, like proper Pareto-optimality and
equitability, are theoretically analyzed and shown to be nonsmooth. Nonsmooth-
ness can be difficult to tackle using classical algorithms (like Newton’s method)
and for these preference models, population based algorithms are more suitable.
The concept of cone-based hypervolume [12] is theoretically investigated in

this paper as this can be used to find control the density of points based on cur-
vature of the efficient front. Furthermore, we present two algorithms for finding
solutions that are compatible with a given preference model.
This paper is divided into five sections of which this is the first. The next

section presents a classification of various curvature based preference models.
We also theoretically analyze them in the same section. Section 3 presents two
indicator based algorithms for finding solutions belonging to the different classes
of preference models. Section 4 presents some numerical results for equitably
efficient points, Finally, conclusions and outlook are presented in the last section.
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2 Classification and Analysis of Preference Models

A multi-objective optimization problem (MOP ) deals with minimizing m > 2,
objective functions F1, . . . , Fm : Rn → R restricted to a constraint set X ⊆ Rn,
and can be written as follows:

minF(x) := (F1(x), F2(x), . . . , Fm(x)) s.t. x ∈ X.

As the space Rm lacks a canonical total ordering among its elements, the no-
tion of Pareto-ordering induced by the nonnegative orthant cone Rm

+ := {y ∈
Rm|yi ≥ 0, ∀i ∈ I := {1, 2, . . . ,m}}, is usually used to compare two points in
Rm. Based on this, various optimality notions are defined. A point x∗ ∈ X is
called Pareto-optimal if no x ∈ X exist so that Fi(x) ≤ Fi(x

∗) for all i ∈ I with
strict inequality for at least one index i. In a similar way, a point x∗ is called
weakly Pareto-optimal if no x ∈ X exists so that Fi(x) < Fi(x

∗) for all i ∈ I. Let
Xp(F, X,Rm

+ ) and Xw(F, X,Rm
+ ) denote the set of Pareto-optimal and weakly

Pareto-optimal points of the above MOP, respectively.
Although the concept of weak Pareto-optimality is needed for many classical

algorithms [17], it is not satisfactory in solving real-world problems as it ignores
the possibility of improvement wrt. some of the objectives. A criticism of Pareto-
optimality is that it allows unbounded trade-offs. To avoid this, starting with
the classical work of Geoffrion [13], various stronger optimality notions, known
as proper Pareto-optimality, have been defined.

Definition 1. A point x∗ ∈ X is Geoffrion proper Pareto-optimal if there exists
a numberM > 0 such that for each (x, i) ∈ X×I satisfying fi(x) < fi(x

∗), there
exists an index j with fj(x

∗) < fj(x) and (fi(x∗)−fi(x))/(fj(x)−fj(x∗)) ≤M.
Let Xpp(F, X,Rm

+ ) denote the set of Geoffrion proper Pareto-optimal points.

The practical idea of properly Pareto-optimal solutions is that to a decision
maker solutions with an unbounded trade-off is essentially a weakly Pareto-
optimal solution. Different classes of properly Pareto-optimal exists [17] and the
notion of trade-off in them is inherent (see [10] for more details).
Pareto optimality is a way to reduce elements from its weak counterpart.

Proper Pareto optimality goes further and reduces the set of Pareto optimal
solutions (by removing unbounded solutions). If we compare the reduction from
weak Pareto to Pareto, multi-objective problem instances can be constructed
such that Xw(F, X,Rm

+ ) is much larger than Xp(F, X,Rm
+ ). For a continuous

problem, if we compare the reduction from Pareto to proper Pareto, it is known
that the set of proper Pareto optimal solutions is dense in the set of Pareto opti-
mal solutions [16]. Hence, any Pareto-optimal point is either proper Pareto opti-
mal or is the limit of proper Pareto optimal points. This only removes countably
finite points from the Pareto-optimal set, and hence, proper Pareto-optimality
is more a mathematical construct. One practical modification is to bound M .
Apart from the above three optimality notions, a closed and nonempty subset

D is sometimes used to define an ordering in the space Rm (see [4,5]). For this,
let λ(S) denote the Lebesgue measure of a set S ⊆ Rm and int(S) be the interior
of S [22].
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Definition 2. Let a set D ⊂ Rm be an set such that D ∩ (−D) = {0} and let
λ(D) > 0. Moreover, let u and v be two vectors in Rm. Then,

1. u ≤D v (u weakly D-dominates v) ⇐⇒ v − u ∈ D
2. u <D v (u D-dominates v) ⇐⇒ v − u ∈ D \ {0}.
3. u�D v (u strictly D-dominates v) ⇐⇒ v − u ∈ int(D).

Note that λ(D) = 0 in not desired in Definition 2 as then almost all the elements
of Rm are non-dominated.

Definition 3. A point x̂ ∈ X is called D-optimal if no other point in F(X)
D-dominates the point F(x̂). Equivalently, a point x̂ ∈ X is D-optimal if and
only if

({F(x̂)} −D) ∩ F(X) = {F(x̂)}.

F(x̂) is known as a D-efficient point. Let Xp(F, X,D) and E(F(X), D) denote
the set of D-optimal and the set of D-efficient points, respectively.

It is common to assume that D is a closed, convex, and pointed cone defined as
follows.

Definition 4. A subset C ⊆ Rm is called a cone, iff αp ∈ C for all p ∈ C and
for all α ∈ R, α > 0. The cone C is closed and convex, iff C is a closed set and
moreover αp + (1 − α)q ∈ C for all p ∈ C and q ∈ C and for all 0 ≤ α ≤ 1.
The cone C in Rm is said to be pointed, iff for p ∈ C, p �= 0, −p �∈ C, i. e.,
C ∩ −C ⊆ {0}.
In many real-world MOPs from engineering design and financial applications, it
is common to impose additional restrictions on the Pareto-optimal set, more than
what proper Pareto-optimality could provide. This can be done by specifying
preferences like trade-offs limits, or additional properties/ axioms (like fairness
or equitability). Consolidating these additional requirements with the axioms
of Pareto-ordering gives a preference model P , a general definition of which is
provided in the following.

Definition 5. A preferred solution set, denoted by XP(F, X), is a proper subset
of Xp(F, X,Rm

+ ) such that XP(F, X) is not dense in Xp(F, X,Rm
+ ). The set

XP(F, X) is said to be induced by a preference model P.
The preference model P can be used in an algorithm to narrow the search to
those Pareto-optimal solutions that satisfy additional requirements coming from
the preference model. The preference model can enrich Pareto-optimality, by
using a stronger ordering relation for example. This can include pairwise trade-
offs among the objectives, marginal rates of substitution among others. These
trade-offs might also vary from point to point (so called decisional wealth in [14]).
Another preference model comes by using the notion of relative importance of
objectives [19]. Although many different preference models have been proposed in
literature a categorization of these is useful, more so as this has an algorithmic
value (see also the discussion in [27]). One way is to classify these into two
different categories and is discussed next.
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2.1 A Theoretical Analysis of Smooth Preference Models

Smooth preference models are algorithmically easy to handle models (analogous
to smooth functions) and are introduced in this section. In additional to this,
we theoretically analyze this class of preference models.

Definition 6. A preference model P will be called as smooth if any one of the
following conditions are true:

1. there exists a closed, convex, and pointed cone C ⊃ Rm
+ such that

XP(F, X) = Xp(F, X, C), or

2. there exists a (Fréchet) differentiable function T : Rm → Rk, for some
k ≥ m, such that

XP(F, X) = Xp(T ◦ F, X,Rm
+ ),

where T ◦ F denotes the composite function (T of F).

From 1. in Definition 6, we see that P is called smooth if the preferred solu-
tion set XP(F, X) can be obtained by changing the ordering cone from Rm

+ to a
closed, convex and pointed cone C. A convex cone has many nice properties. For
example, from [19], we know that for any binary ordering relation R is irreflex-
ive, transitive and invariant with respect to positive linear transformation if and
only if R is induced by a pointed convex cone C (without the origin, see Defini-
tion 2). Hence, many familiar properties (like transitivity, scalar multiplication)
of Pareto-ordering are preserved by such a C cone ordering.
2. in Definition 6 requires the existence of a (Fréchet) differentiable function

T : Rm → Rk, such that XP(F, X) = Xp(T ◦ F, X,Rm
+ ). This means that in

order to find the preferred set induced by P , we need to search for Pareto-
optimal solutions of a transformed problem. The transformation T is assumed
to be smooth (or Fréchet differentiable), as then the composite function T ◦F is
smooth for a smooth F (and no nonsmoothness is additionally introduced). The
next two lemma relates the two conditions in Definition 6.

Lemma 1. If T := A, where A is a m by k (real) matrix, then 1. and 2. in
Definition 6 are equivalent and, C is the polyhedral cone {d ∈ Rm|Ad ≥ 0}. In
general, 1. and 2. do not imply each other.

Proof: The first statement in the lemma can be easily proved using ideas from
[23, Lemma 2.3.4]. Moreover, one could easily come up with counterexamples
assuming that 1. and 2. are equivalent. ��

Lemma 2. Let the objective function F be convex and let X be a closed, convex,
and compact set. Then, for any closed, convex and pointed cone C ⊃ Rm

+ , and

any ε > 0, there exists differentiable functions T i
ε ,T

o
ε satisfying

Xp(T
i
ε ◦ F, X,Rm

+ ) ⊃ XP(F, X) = Xp(F, X, C) ⊃ Xp(T
o
ε ◦ F, X,Rm

+ ), (1)
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and moreover,

dH(Xp(T
i
ε ◦ F, X,Rm

+ ), XP(F, X)) ≤ ε, and
dH(Xp(T

o
ε ◦ F, X,Rm

+ ), XP(F, X)) ≤ ε,

hold, where dH denotes the Hausdorff distance between two sets.

Proof: We sketch the proof idea as a detailed proof is beyond the scope of this
paper. Under the assumptions of this lemma, the set is XP(F, X) is convex and
connected [10]. The idea is to use inner and outer polyhedral approximations of
the convex cone C to a desired accuracy and employ Lemma 1 to define T i

ε and
T o

ε . The sequences can be shown to be convergent using [15]. ��
Lemma 2 shows that it possible to use inner and outer approximations of a convex
cone to generate the set XP(F, X). For an arbitrary convex cone, however, it
might happen that k appearing in Lemma 1 is a very large number, especially
if a small ε is desired.
Many different trade-off notions can be shown to be equivalent to an appro-

priate smooth preference model. Some of these are discussed next.

Definition 7 (Allowable tradeoff [28]). An allowable tradeoff between crite-
ria i and j, with i, j ∈ I denoted by aij , is the largest amount of decay in criterion
i considered allowable to the decision maker to gain one unit of improvement in
criterion j. Also, aij ≥ 0 for all i and j, i �= j.
If aij = 0, then the decision maker’s preference model is based on the classical
Pareto-cone domination structure [17]. A trade-off between two criteria incurred
along a direction d is called directional trade-off.

Definition 8 (Directional trade-off [28]). A directional trade-off between
criteria i and j, i, j = 1, 2, . . . ,m, i �= j, denoted by tij(d), is defined as follows:

tij(d) = 0, if di ≤ 0 and dj ≤ 0

tij(d) =
di
−dj

, if di > 0 and dj < 0

tij(d) =∞, if di ≥ 0 and dj ≥ 0, d �= 0
tij(d) is undefined otherwise.

A direction d ∈ Rm is an attractive direction if tij(d) ≤ aij for every pair of
criteria i, j = 1, 2, . . . ,m, i �= j.
Based on the above definition Wiecek et al. [28] construct a model where they
assume that the decision maker allows one criterion i to decay only if all the
other criteria j �= i improve. The values aij come from the decision maker. It
may be of interest to repeat the process with more than one selection of criteria
and the model includes that. Let Pi, for a given criterion i, be the set of all
attractive directions. All the attractive directions are appended with −Rm

≥ so as
to obtain a set (which is a cone) of attractive directions given by

P :=
⋃
i

Pi ∪ (−Rm
≥ ), (2)
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where, for all i ∈ I, the cone Pi is mathematically defined by

Pi := {d ∈ Rm|di > 0, dj < 0, for all j ∈ I, j �= i and tij(d) ≤ aij for all j �= i} .

The MOP with a domination structure given by the cone P is termed as pref-
erence model 1 in [28] and it has been used in many civil and mechanical en-
gineering applications (like truss design [29]). For an m-dimensional problem,
under certain conditions, P can be represented with the help of an m(m− 1) by
m matrix A defined next [28].

Definition 9. Let A1 be an m(m − 1) by m matrix described by m blocks of
m− 1 rows and m columns, where Aij

1 represents row j ∈ I \ {m} of block i ∈ I
of A1, and (A

ij
1 )k represents the element of Aij

1 in column k ∈ I. The elements
of A1 are defined as follows:

(Aij
1 )i = 1 for all i ∈ I, j ∈ I \ {m}

(Aij
1 )j = aij if j < i, i ∈ I, j ∈ I \ {m}

(Aij
1 )j+1 = ai(j+1) if j ≥ i, i ∈ I, j ∈ I \ {m}
(Aij

1 )i = 0 otherwise, i ∈ I, j ∈ I \ {m}.

As an example, for m = 3, the matrix A1 can be represented as

A1 :=

⎛⎝ 1 1 a21 0 a31 0
a12 0 1 1 0 a32
0 a13 0 a23 1 1

⎞⎠�

, (3)

and the decision maker has to supply six aij ’s.

Lemma 3. If aijaji ≤ 1 for any i �= j and i, j ∈ I and m ≥ 3 then preference
model 1 described above is a smooth preference model.

Proof: Since P is the union of all Pi’s, in general the cone P might be non-
convex. From [28, Corollary 3.1], P is non-convex if aijaji > 1 for any i �= j.
The rest of the proof follows from the discussion in [28, Page 161]. ��
There are other smooth preference models that we find in literature. The notion
of using relative importance of objectives (see Noghin [19]), for example, can
also be shown to be smooth. In this case also A is such that k > m.

2.2 A Theoretical Analysis of Nonsmooth Preference Models

A preference model P will be called as nonsmooth if it is not smooth. In other
words, there exists neither a convex cone C nor a smooth differentiable function
T such that 1. and 2. in Definition 6 holds.
Nosmoothness in a preference model can be introduced in different ways.

For example, it might happen that there is a non-convex cone C, such that
XP(F, X) = Xp(F, X,C) or it also might happen that there exists a nonsmooth
function T : Rm → Rk, for some k ≥ m, such thatXP(F, X) = Xp(T ◦F, X,Rm

+ ).
Both non-convexity and nonsmoothness of T might also occur at the same time.
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This poses additional problems, and convergence results are difficult to obtain,
if one uses standard nonlinear programming techniques.
The next lemma shows that the classical concept of proper Pareto-optimality

is in general nonsmooth.

Lemma 4. Let M in Definition 1 be fixed beforehand. Then, if m ≥ 3, then
Geoffrion proper Pareto optimality is a nonsmooth preference model. However,
if m = 2, then it is a smooth preference model.

Proof: The main idea of the proof (as a rigorous mathematical proof is beyond
the scope) is as follows. Let us assume that Geoffrion proper Pareto-optimality is
smooth. Lemma 2 shows that any smooth preference model can be approximated
to a desired accuracy by inner and outer polyhedral cone approximations of C.
Any polyhedral cone uses a fixed trade-off on all or some pairs of the objectives.
Assuming a polyhedral ordering cone, we can construct counterexamples showing
that the setXpp(F, X,Rm

+ ) cannot be obtained completely. The essential element
comes here from Definition 1, where the existence of one j is sufficient to bound
the trade-off. On other hand, any closed, convex, and pointed, cone in R2 is a
polyhedral cone and hence, the index j �= i is fixed (as there are just two indices).
Hence the lemma follows. ��
The notion of equitability [20] is another example of a nonsmooth preference
model and this is discussed next. Let the map Θ : Rm → Rm be so that Θ(y) =
(θ1(y), θ2(y), . . . , θm(y)), where θ1(y) ≥ θ2(y) ≥ . . . ≥ θm(y) and there exists a
permutation τ of the set I such that θi(y) = yτ(i) for all i ∈ I. Moreover, let
Γ : Rm → Rm and q := (q1, . . . , qm) be so that Γ (q) = (γ1(q), γ2(q), . . . , γm(q)),

where γi(q) =
∑i

j=1 qj for all i ∈ I.
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Fig. 1. Schematic of different polyhe-
dral transformations of the objectives
in equitable efficiency

 

 

 

 

Fig. 2. Schematic of equitable ordering
relation. The shaded area D is a non-
convex set and is not a cone.
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Composition ofΘ and Γ gives us the cumulative ordering map T = (t1, t2, . . . ,
tm) defined as T(y) = Γ (Θ(y)), i.e.,

ti(y) =

i∑
j=1

θj(y) for all i ∈ I. (4)

From [20], we obtain that equitable domination is equivalent to Pareto-
domination on the modified set of objectives. This is used to transform the goal
of finding equitably optimal points of the original problem to that of finding
Pareto-optimal points of the following multi-objective problem (see also [26]):

minT(F(x)) :=
(
θ̄1(x), θ̄2(x), . . . , θ̄m(x)

)
s.t. x ∈ X. (5)

If we look carefully at (5), we see that now all the first m− 1 objective functions
are non-differentiable. This non-differentiability is inherent in the Θ mapping.
Figure 1 shows the nonsmooth transformation (2. in Definition 6 is not satis-

fied) that in inherent in equitable efficiency. T can be represented by a collection
of polyhedral matrices Ai, that depend upon the region (sector) relative to the
line y = x in R2. From Figure 2 we can see that the ordering cone here D is a
non-convex set, and is not even a cone (1. in Definition 6 is not satisfied). The
next lemma summarized this situation.

Lemma 5. Equitable efficiency is a nonsmooth preference model. However, if we
weaken differentiability to local Lipschitzness in Conditions 2. (in Definition 6),
then Condition 2. is satisfied and equitable efficiency is a smooth preference
model.

Proof: The proof easily follows by the definition of T (Eq. 4) and by noting that
T defined in such a way is locally Lipschitz (piecewise polyhedral) [7]. ��
There are many cone based extended notions of equitable efficiency (see Mut
and Wiecek [18]) and it can shown that all of these are nonsmooth.

3 Indicator Based Algorithms for Preference Models

The hypervolume indicator (HI), or S-Metric [31], is a common indicator for
measuring the quality of Pareto front approximations [32] and it is often used
as a criterion for guiding search algorithms towards Pareto fronts [2,1,11]. For a
finite set S ⊂ Rm it is defined as

HI(S) = λ(∪p∈S [p, r]), (6)

where recall that λ denotes the Lebesgue measure, r is a reference point that
is usually fixed by the user, and [p, r] denotes the hypercuboid spanned by p
and r. Recently [12], the classical hypervolume indicator has been extended to
a cone-based hypervolume indicator (CHI). Moreover, a family of polyhedral
cones with scalable opening angle γ were studied to obtain a well-diverse set
of solutions. In this section, we will theoretically analyze CHI in the context of
smooth and nonsmooth preference models. Before this some formal definitions
(of Minkowski sum and CHI) are presented.



376 P.K. Shukla, M. Emmerich, and A. Deutz

Algorithm: Cone-based hypervolume computation using a polyhedral
cone.

Input: An m by k matrix A, points S ⊂ Rm, reference point r

Output: Cone-based hypervolume indicator CHI(S)

1. Let r′ = Ar.
2. For all i = 1, . . . , |S|, let Q = {q(1), . . . ,q|S|}, with q(i) = As(i).
3. Compute the standard hypervolume HI(Q, r′).
4. Return CHI(S) = (1/det(A�A)) · HI(Q, r′).

Fig. 3. Computing CHI for a smooth preference model using a polyhedral cone

Definition 10. Let A and B denote sets in Rm. Then

A⊕B = {a+ b | a ∈ A and b ∈ B}. (7)

and
A�B = {a− b | a ∈ A and b ∈ B}. (8)

Definition 11 (Cone-based hypervolume [12]). The cone-based hypervol-
ume for a finite set S ∈ Rm, a cone C ⊂ Rm, and a reference point r with
∀p ∈ S : p ≤C r is defined as

CHI(S) = λ((S ⊕ C) ∩ ({r} � C)). (9)

or, based on Definition 2, as

CHI(S) = λ({q ∈ Rm|∃p ∈ S : p ≤C q ∧ q ≤C r}). (10)

The quantity H(u, S, C, r) := CHI(S) − CHI(S \ {u}) will be termed as the
cone-based hypervolume contribution of the point u to the set S corresponding
to cone C (and reference point r).
The next theorem is the main result of this section. Recall that E(S, D) de-

notes the D-efficient points of a set S ⊆ Rm.

Theorem 1. Let the ordering cone C be the union of a finite number of closed
and pointed (possibly non-convex) cones, i.e., C =

⋃�
i=1 C� such that C is a

(possibly non-convex) pointed cone. Then, for a finite set S ∈ Rm and a reference
point r with ∀s ∈ S : s ≤C r

λ ((P ⊕ C) ∩ ({r} � C)) = λ ((E(P,C) ⊕ C) ∩ ({r} � C)) (11)

and

λ ((P ⊕ C) ∩ ({r} � C)) = λ
((

�⋂
i=1

E(P,C�)⊕ C
)
∩ ({r} � C)

)
, (12)

hold.
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Proof: Let u ∈ (P ⊕ C) ∩ ({r} � C) be an arbitrary but fixed element. The
CHI hypervolume contribution of u to the set P corresponding to cone C is
(strictly) positive iff u �C r (i.e, the hypercuboid spanned by point u and r is
full dimensional) and �w ∈ P such that w �= u and w ≤C u. On the other hand,
the cone-based hypervolume contribution is zero if there is a v ∈ S, such that
v ≤C u. Hence, exactly points from the set E(P,C) have a positive contributions
and hence (11) holds.
For the second part, let u ∈ E(P,C). Hence,

({u} − C \ {0}) ∩ S = ∅. (13)

We claim that u ∈ E(P,Ci) for all i = 1, 2, . . . , �. If this is not the case then,
there exists an index k ∈ {1, 2, . . . , �} such that u /∈ E(P,Ck). Hence, v ∈ S such
that v ∈ {u} − Ck \ {0} exists. This implies that u − v ∈ Ck \ {0} ⊆ C \ {0}
which is a contradiction to (13). Hence, we obtain that E(P,C) ⊆

⋂�
i=1 E(P,C�).

Next, we show that E(P,C) ⊇
⋂�

i=1 E(P,C�). For this, let u ∈
⋂�

i=1 E(P,C�).
This means that

({u} − Ci \ {0}) ∩ S = ∅ for all i = 1, 2, . . . , �. (14)

In this case, one can easily show that (14) implies (13). Hence E(P,C) =⋂�
i=1 E(P,C�) and the result of the theorem follows. ��

Remark 1. Convexity is not assumed in Theorem 1 and hence it is useful in
cases where the nonsmooth preference model can be written as a union of finite
number of non-convex cones. Only efficient front contributes to the hypervolume
and the above result can be used to find the efficient front as intersections of
different efficient front.

Next, we present an algorithm for computing CHI (and CHI contributions) cor-
responding to a smooth preference model. The aim is to find a subset of at most
μ points such that CHI is maximized. We start with T := A, where A is a
m by k real matrix. In such a case, [23, Lemma 2.3.4] shows that in order to
find XP(F, X) we could search for Pareto-optimal solutions of the transformed
objectives AF. We compute the hypervolume indicator in Rk space and correct
for the volume change due to the affine transformations (see [3]). The algorithm
shown in Figure 3 describes this procedure.
Figure 4 describes an algorithm for computing the individual hypervolume

contributions of a point if the underlying transformation map T : Rm → Rm is
smooth. In this case the determinant of the Jacobian matrix JT(u) gives the local
scaling factor [3] and this is used to find an approximate individual hypervolume
contribution of a point u ∈ S.
The above two algorithms use a volume correction term. However, we note

that the ordering of points w.r.t. there hypervolume contributions does not de-
pend on this correction term if polyhedral cones are used. In the case of nonlinear
transformation, we have to use the Jacobian based correction term since the cor-
rection depends on the point. If the preference model uses a nonlinear and convex
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Algorithm: Approximate hypervolume contribution using a smooth
transformation function T.

Input: Function T, points S ⊂ Rm, reference point r and a point u ∈ S
Output: Cone-based hypervolume contribution of u in S

1. Let r′ = T (r).
2. For all i = 1, . . . , |S|, let Q = {q(1), . . . ,q|S|}, with q(i) = T(s(i)).
3. Compute the standard hypervolume contribution H(u, Q,Rm

+ , r′).
4. Return (1/ det(JT(u)) · H(u, Q,Rm

+ , r′).

Fig. 4. Computing an approximate value for the hypervolume contribution of a point
u using a smooth transformation function T

cone C, then we could still use the algorithm for cone-based hypervolume com-
putation using a polyhedral cone, with inner and outer approximation of C (see
Lemma 2). The mean value of such could be an approximate measure of CHI.
Finally, we note that nonsmooth preference models are the hardest to deal

with. If we know additional properties like piecewise polyhedral (equitability
structure) or Lipschitzness we could resort to objects from the Clarke generalized
Jacobian and use the algorithm described in Figure 4. However, computing the
Clarke generalized Jacobian is difficult and is beyond the scope of this paper.

4 Experimentation

In this section, we present preliminary numerical results. We used an equitable
ordering (see Figure 2) based SMS-EMOA [6] algorithm for finding the set of so-
lutions that maximize CHI. CHI computation is done by the algorithm described
in Figure 3. The only difference it now we have piecewise polyhedral cones that
depend on the position in the objective space (see Figure 1). The source code
of the algorithms is written using the jMetal framework [9] and is available on
request. We ran SMS-EMOA using a population size of 30 for 400 generations.
Although, we tested the algorithm on many two and three dimensional problems,
due to space limitation we only present illustrative result on few test problems.
Figure 5 shows simulation results on the two dimensional ZDT1 test problem.

The equitable front for this problem consists of a part of the original convex
front given by F2 = 1 −

√
F1. In the original objective space, we see a biased

distribution of points, more towards the point (0.38, 0.38)�. This is due to the
equitable nature of the ordering (in that more equal distributions are preferred,
see [20]). In the (transformed) equitable space however, we see uniformly dis-
tributed points (seen in Figure 6). This in interesting, as the use of a cone-based
(or set-based in general) hypervolume indicator can be implemented in differ-
ent spaces depending on where it is desirable. This is also important for inner
and outer approximation based approaches, where k could be much large than
m, if one requires an accurate approximation of a nonlinear and convex cone.
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Fig. 8. Distribution of 30 points in the
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Controlling k is very important as hypervolume computation algorithms are ex-
ponential in k (for n points in Rm, the complexity of computing the hypervolume
is Θ(n logn) for m = 2 and m = 3 [11] and O(nd−1/2) lnn for m > 3 [30]. Also
in many smooth polyhedral cone models k can be larger than m (in Section 2,
for example, k = m(m − 1)). This is one disadvantage of a direct cone based
hypervolume computation. In such cases, Monte Carlo based approaches could
be used (for example, the technique in [2]).
Figure 7 shows simulation results on the non-convex, two dimensional ZDT2

test problem, in the transformed space. One could see that the front is almost
linear and hence the points are equispaced, although one could observe that
the points are slightly more dense near the point (1, 1)�. The reason for this
is the same as in the case of ZDT1. Figure 8 shows results on the non-convex,
disconnected, two dimensional ZDT3 test problem and here also we can see that
the algorithm is able to find a well-diverse set of solutions.
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5 Conclusions

This study is towards a better understanding of various preference models that
are present in the multi-objective community. There has been a lot of work in
preference modeling by the classical MCDM researchers and this has been a
subject of active research since the late sixties. The first contribution of this
work is a classification of preference models. This has algorithmic implications,
especially if one is interested in finding a well-diverse set of preferred solutions.
Evolutionary algorithms have an inherent population based advantage (see [21]
for more on this interesting aspect) and they can be properly tailored to find the
complete preferred area. This is only possible if we know beforehand what kind of
preference models are amenable to evolutionary algorithms and what is needed
to make them fit. The classification makes this possible, in that it shows how
polyhedral cones can be used to model decision makers preferences. This also in-
troduces theoretical challenges, in terms of sorting or hypervolume computation
(if k > m or for a nonpolyhedral cone, for example). The cone based hypervol-
ume is an interesting concept and, it can used to control the density of solutions.
In equitable spaces, we showed that such an indicator based algorithm can be
successfully applied. Future works will emphasize efficient computation schemes
more and on finding distribution of points that yield maximal hypervolume, for
general cone orders.
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Abstract. In order to approximate the set of Pareto optimal solutions, several
evolutionary multi-objective optimization (EMO) algorithms transfer the multi-
objective problem into several independent single-objective ones by means of
scalarizing functions. The choice of the scalarizing functions’ underlying search
directions, however, is typically problem-dependent and therefore difficult if no
information about the problem characteristics are known before the search pro-
cess. The goal of this paper is to present new ideas of how these search directions
can be computed adaptively during the search process in a cooperative manner.
Based on the idea of Newton’s law of universal gravitation, solutions attract and
repel each other in the objective space. Several force-based EMO algorithms are
proposed and compared experimentally on general bi-objective ρMNK landscapes
with different objective correlations. It turns out that the new approach is easy to
implement, fast, and competitive with respect to a (μ+ λ)-SMS-EMOA variant,
in particular if the objectives show strong positive or negative correlations.

1 Introduction

Besides established Pareto-based EMO algorithms, such as NSGA-II, SPEA2, or ε-
MOEA, and the recently proposed indicator-based algorithms such as IBEA, SMS-
EMOA, MO-CMA-ES, or HypE, a third group of aggregation-based algorithms, con-
taining e.g. MSOPS [5] and MOEA/D [17], for solving multi-objective optimization
problems can be identified [14]. Aggregation-based algorithms reformulate the multi-
objective optimization problem as a set of single-objective problems by means of mul-
tiple scalarizing functions [10] that are typically solved independently from each other.
Standard scalarizing functions such as weighted sum or achievement functions are
thereby defining a search direction in the objective space in which the solutions evolve
during the search process. As the a priori definition of these search directions is difficult
if no further information is known about the problem at hand, this paper proposes a new
force-based approach to cooperatively adapt the (single-objective) search directions.

Throughout the paper, we assume the maximization of a vector-valued objective
function φ : X → Z that maps a solution x from the feasible search space X to
φ(x) = (φ1(x), . . . , φM (x)) in the objective space Z ⊆ IRM . We say, an objective
vector z ∈ Z is dominated by objective vector z′ ∈ Z , denoted by z ≺ z′, if for all
i ∈ {1, . . . ,M} zi ≤ z′i and there exists a j ∈ {1, . . . ,M} such that zj < z′j . Similarly,
a solution x ∈ X is dominated by x′ ∈ X , denoted by x ≺ x′, if φ(x) ≺ φ(x′). An

R.C. Purshouse et al. (Eds.): EMO 2013, LNCS 7811, pp. 383–397, 2013.
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objective vector z ∈ Z is non-dominated with respect to a set S if there does not exist
any other objective vector z′ ∈ S such that z ≺ z′. A solution x ∈ X is Pareto optimal
if φ(x) is non-dominated with respect to Z . The set of all Pareto optimal solutions is
the Pareto set and its mapping in the objective space is the Pareto front of which an
approximation is sought.

Contribution Overview. Generally speaking, we consider to evolve a set of solutions
towards the Pareto front by computing, dynamically at each generation, a force-based
direction in the objective space with respect to each solution. Each direction is used
to define a single-objective optimization problem to be optimized by each solution in-
dependently of the others. Inspired by particle physics and more precisely by Newton
laws, we define the direction relative to a solution as an aggregation of forces exerted
by other solutions in the objective space. For each pair of solutions, we propose to
compute their respective forces according to their dominance relation, while adjusting
force magnitudes according to the distance between solutions in the objective space.
One specificity of this approach is to evolve a set of solutions in a dynamic and lo-
cal manner. In fact, search directions are not fixed and evolve throughout generations
in an attempt to adaptively fit the search process and better approach the Pareto front.
Furthermore, while search directions are computed in a cooperative manner depending
on the relative position of solutions at some point of the search, each solution uses its
own direction in parallel to other solutions in order to evolve towards a new solution.
Thus, maintaining the set of solutions is done in a straightforward manner while avoid-
ing sophisticated data structures and costly operations. Besides being extremely simple
to implement, and through extensive experiments on ρMNK landscapes, our approach
is also proved to be efficient in dynamically finding good directions leading to a good
approximation of the Pareto front.

Related Work. While the force-based approach presented in this paper share similar-
ities with particle swarm optimization, there are few other studies that are even more
related and also compute forces among solutions to steer the search and maintain diver-
sity. In [15,16], for example, the authors present a constraint multi-objective artificial
physics optimization algorithm for continuous problems extending on previous single-
objective techniques based on virtual force computations. Such an algorithm considers
to move each individual using a velocity vector driven by the total force from other indi-
viduals in the search space. Similar ideas are investigated in the so-called gravitational
search algorithm [4,11,12]. One can also find other related studies where forces are used
in a problem-specific manner in order to move solutions in the search space [3,8]. How-
ever, the way forces are computed and used by those algorithms differ mainly in the fact
that the approach proposed here is problem-independent. Indeed, it computes the forces
and search directions in the objective space and then evolves individuals adaptively in
a cooperative manner on the basis of those computed directions.

Outline. The paper is organized as follows. Section 2 proposes the general template
of the force-based EMO algorithm together with different instantiations of its compo-
nents. In particular, a number of force-based search direction schemes and different
selection and replacement strategies are introduced. Section 3 presents the setup of the
experimental analysis. Section 4 discusses the dynamics of the algorithm with the aim
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Algorithm 1. Force-Based EMO generic scheme

1 P ← {
x1, x2, . . . , xμ

}
: initial population;

2 Z ← φ(P ) =
{
z1, z2, . . . , zμ

}
: initial outcome vector in the objective space;

3 repeat
4 for i ∈ {1, . . . , μ} do
5

−→
d i ← Force

(
zi, Z \ {zi});

6 for i ∈ {1, . . . , μ} do
7 Si ← Pool

(
xi
) ∪ {

xi
}
/* variation */

8 xi ← Select
(
Si,

−→
d i

)
/* replacement selection */

9 until STOPPING CONDITION;

of better understanding its general behavior. Section 5 gives a detailed experimental
analysis. Finally, Section 6 concludes the paper and discusses further research.

2 Algorithm Description

The basic idea behind our approach is to view the evolution of individuals from one
generation to another as a set of particles moving in the objective space due to vir-
tual forces exerted by other particles in the population. Algorithm 1 gives a high-level
description of such a force-based EMO algorithm. Starting with an initial population,
the algorithm proceeds in generations in which the population is evolved by means of
three main steps. First, for each individual xi, we compute a search direction

−→
d i using

function Force and the position of other particles in the objective space. Then, for each
individual xi, a sample of candidate solutions Si is, independently of the computed
search directions, generated by means of some variation operator(s), denoted by Pool.
Finally, the selection of the new candidate solution from the old individual xi and its
offsprings Si, denoted by Select, is based on an underlying scalar sub-problem defined
by the force-based direction

−→
d i previously computed for xi. In the following, we give

a detailed description of the functions Force and Select. Function Pool is independent
of the direction and typically problem-specific.

2.1 Force-Based Search Direction Strategies

The way we define the search directions
−→
d i, i ∈ {1, . . . , μ}, is crucial to control the

movement of particles, and to efficiently guide them towards the Pareto front. Compared
against a simple strategy where search directions are fixed initially, for instance follow-
ing a random distribution, we consider to dynamically and adaptively compute search
directions following some attraction-repulsion force-based rules. Roughly speaking, the
closer particles corresponding to non-comparable individuals are in the objective space,
the more particles should move away from each others to increase diversity—meaning
that search directions of individuals should, in general, be relatively repulsive. On the
other hand, particles should also move towards better objective function values and



386 B. Derbel, D. Brockhoff, and A. Liefooghe

x1 ⊀ x2

x1 ⊀ x5

x1 ≺ x3, x4

z1

−→
f 1

3

−→
f 1

4

z5

z2

−→
d 1

z3

z4

z1

z3

−→
d 2

z2

−→
f 2

3

−→
f 2

1

−→
f 2

3 +
−→
f 2

1

z�

z1

−→
d′1

||
−→
d′1||

−→
d 1

−→
d 2

−→
d 3

z3

z2

Fig. 1. Illustration of force strategies: D-D (left), NB-D (middle) and BH-D (right)

search directions should be attractive with respect to dominating individuals. In this
study, we use different Force functions in order to compute directions which shall in-
duce different dynamics of the particles, and thus provide different results in terms of
approximation quality. In the following, we assume that we are given a norm function
‖·‖ in the objective space and a scaling factor α ∈ R+. We denote the force exerted

by particle zj (w.r.t. solution xj) on particle zi by
−→
f i
j and define the five following

strategies.

Repulsive Force-Based Directions (R-D). Within R-D forces, particles are pairwisely
repulsive. More precisely, for every i, j ∈ {1, . . . , μ}, we set:

−→
f i

j =
zi − zj

‖zi − zj‖α . (1)
−→
d i =

∑
j∈{1,...,n}\{i}

−→
f i

j . (2)

Repulsive-attractive Directions (RA-D). Here, a particle is attracted by any other
particle which is dominating it and repelled otherwise. More precisely, for every i ∈
{1, . . . , μ}, the direction

−→
d i is given by Eq. 2 and the forces

−→
f i
j are defined as:

−→
f i

j =

⎧⎪⎪⎨⎪⎪⎩
zj − zi

‖zi − zj‖α if xi ≺ xj

zi − zj
‖zi − zj‖α otherwise

. (3)

Dominance-Based Directions (D-D). In the case of the D-D Force function, a parti-
cle, that is dominated by at least one other particle, is attracted only by those particles
dominating it and neither attracted nor repelled by the others. Otherwise, if a particle is
not dominated by any other particle, then its direction is computed following the previ-
ous repulsive-attractive (RA-D) strategy. This strategy is motivated by the intuitive idea
that particles should exclusively follow those that are dominating them, in an attempt to
intensify the search process (see Fig. 1). More formally, let Dom(xi) be true whenever

there exists a k �= i such that xi ≺ xk, and false otherwise. Direction
−→
d i for every

particle is then given by Eq. 2 where forces
−→
f i

j are now defined as follows:
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−→
f i

j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

zj − zi
‖zi − zj‖α if Dom(xi) and xi ≺ xj

0 if Dom(xi) and ¬
(
xi ≺ xj

)
zi − zj

‖zi − zj‖α otherwise

. (4)

Non-backward Directions (NB-D). The repulsive-attractive force-based rule of Eq. 3
can lead to situations where a direction

−→
d i computed for a particle zi, which is not

dominated by other particles, points away from the Pareto front. In the case of Fig. 1, for
example, the direction computed for z2 may lead to a situation where it is replaced by
a dominated particle during the search. To counteract this situation, the NB-D strategy

inverses those directions which are going backward and uses the direction
−→
d i =

−→−1·
−→
d′ i

if
−→
d′ i · zi ≺ zi and

−→
d i =

−→
d′ i otherwise, instead of the standard repulsive-attractive

directions
−→
d′ i computed with Eq. 2 and 3.

Black Hole Directions (BH-D). Here, we consider an imaginary fixed particle which
acts as a black hole attracting all the others. More precisely, we consider a virtual par-
ticle at the position of a utopian point z such that for every i, zi ≺ z [10] which
additionally attracts all other particles when computing search directions. With the di-

rections
−→
d′ i computed via Eq. 3 and Eq. 2, the BH-D strategy then uses the directions:

−→
d i =

−→
d′ i/||

−→
d′ i||+

(
z − zi

)
/
∥∥z − zi∥∥ . (5)

2.2 Selection and Replacement Strategies

Once the direction of each particle is computed, Algorithm 1 proceeds to the compu-
tation of the next generation. Each solution xi is replaced by a new one from set Si,
using its direction

−→
d i and function Select. We shall consider several strategies, which

are essentially a mix between two ideas. Firstly, we shall use one of two scalarizing
(single-objective) functions denoted by W and A to evaluate the candidate solutions.
These two functions are based on a weighted sum and an achievement scalarizing func-
tion [10], where the weighting coefficient vector used for each solution xi is determined
by the corresponding direction

−→
d i =

{
di1, . . . , d

i
M

}
of particle zi =

{
zi1, . . . , z

i
M

}
.

More formally, given a candidate solution x ∈ Si w.r.t. individual xi, we let:

W(x) =
M∑

m=1

dim · φm(x) and A(x) = max
m∈{1,...,M}

{
wi

m ·
(
zim − φm(x)

)}
(6)

where wi
m = 1/dim if dim �= 0 and wi

m = 0 otherwise. Notice that with functionW , the
lines of equal fitness values are orthogonal to the search direction di, no matter the sign
of di components. With A, they are half-lines reaching out from the line through zi in
direction

−→
d i (see Fig. 2).
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d

z

φ2

φ1

φ2

φ1

−→
d

z

Fig. 2. Lines of equal fitness values for functions W
(left), and A (right)

s∗1

−→
d

s∗3

z
s∗2

Fig. 3. Selection strategies (i), (ii), and
(iii) based on a weighted sum scalariz-
ing function with the selected objective
vectors s∗1 for strategy (i), s∗2 for (ii),
and s∗3 for (iii)

Secondly, we shall choose from a subset S′i ⊆ Si of candidate solutions, the so-
lution that optimizes the so-defined scalar problem. We here consider three different
possibilities with an increasing inherent focus towards the Pareto front, (see also Fig. 3
for an example): (i) S′i = Si, (ii) S′i =

{
x ∈ Si | x ⊀ xi

}
the subset of candidate

solutions not dominated by xi, or (iii) S′i = {x ∈ Si | ∀x′ ∈ Si \ {x} , x ⊀ x′}
the set of candidate solutions from Si which are not dominated. The output of function
Select can then be formalized using the simple single-objective problem:

Select
(
Si,

−→
d i
)
= argoptx∈S′i G(x) (7)

whereG ∈ {W ,A} and S′i is one of the previously defined subsets. Notice that overall
we have six possible combinations leading to six variants of function Select.

3 Experimental Design

In order to better understand and compare the different force, selection, and replace-
ment strategies, we follow two separate lines of presentation. In Section 4 we show
some exemplary runs in detail while Section 5 presents quality performance from 30
independent runs and the results of statistical tests. With this section, we provide details
on the experimental design of those comparisons with respect to the used algorithms
and test problem instances, the parameter setting, and performance assessment.

Competing Algorithms. Besides the five force variants R-D, RA-D, NB-D, D-D, and
BH-D with their two different scalarizing functions (weighted sum, achievement) and
the three proposed selection and replacement strategies, we use two baseline algorithms
in our comparisons. On the one hand, we have a simple strategy, denoted by I-D, which
assigns a fixed search direction to each of the μ population members. The search di-
rections are initially fixed to a set of μ direction vectors chosen with equal distances in
the weight space. The same functions Pool and Select as for the force-based strategies
are used for algorithm I-D, except that the weights of the functions W and A are fixed
throughout the search and instead of zi in Eq. 6, a utopian point z is used. This corre-
sponds to the classical way of defining multiple independent scalarizing functions and
allows us to appreciate the gain we get when adapting search directions.
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The second baseline algorithm is a (μ + λ)-SMS-EMOA [2] variant with one-shot
replacement strategy—denoted by SMS. At each iteration of the algorithm, λ solutions
are selected (with replacement) and mutated. The μ solutions forming the population of
the next iteration are chosen from the old μ and the new λ solutions by means of their
hypervolume contributions after a non-dominated sorting and using the contributing
hypervolume as the second-level sorting criterion. All μ solutions are chosen at once
without new hypervolume calculations (one-shot scenario). Compared to our local ap-
proach where each solution of the population is replaced independently of the other
ones, SMS uses a global strategy to evolve the whole population of individuals—thus
allowing us to better appreciate the locality property of our approach.

ρMNK-landscapes. The family of ρMNK-landscapes is a problem-independentmodel
used for constructing multi-objective multi-modal landscapes with objective correla-
tion [13]. It extends single- and multi-objective NK-landscapes [1,7]. Feasible solutions
are represented as binary strings of size N , ie. the decision space is X = {0, 1}N . Pa-
rameter K refers to the number of variables that influence a particular position from
the bit-string (the epistatic interactions). Each objective function φm : {0, 1}N →
[0, 1) is defined by φm(x) = 1

N

∑N
i=1 c

m
i (xi, xi1 , . . . , xiK ) where cmi : {0, 1}K+1 →

[0, 1) defines the multidimensional component function associated with variable i ∈
{1, . . . , N}, and where K < N [13]. By increasing the number of variable interac-
tionsK from 0 to (N − 1), ρMNK-landscapes can be gradually tuned from smooth to
rugged. In this work, we choose the positions of these interactions uniformly at random
and the same for all objective functions. Component values are distributed in the range
[0, 1) and follow a multivariate uniform distribution of dimensionM , defined by a cor-
relation coefficient ρ > −1

M−1 . The positive (resp. negative) data correlation decreases
(resp. increases) the degree of conflict between objectives.

Parameter Setting. In this paper, we consider three bi-objective (M = 2) ρMNK-
landscapes of sizeN=128, non-linearityK=4, and correlation ρ ∈{−0.7, 0.0,+0.7}.
One instance, generated at random, is considered per parameter setting. For all compet-
ing algorithms, we consider an independent bit-flip mutation operator, where each bit is
mutated at random with a probability 1/N . We use the Euclidean distance and α = 2 to
compute forces. The utopia point z is set to (1, 1). For R-D, RA-D, NB-D, D-D, BH-D,
and I-D, the candidate solution set, i.e., Pool, is obtained by mutating each solution N
times. For algorithm SMS, λ is set to N . All force-based algorithms are run for a fixed
number of generations denoted by gen ≤ 128. In order to compare the algorithms in
terms of function evaluations fairly, one generation of Algorithm 1 is equivalent to μ
generations of SMS. For each algorithm run, we use an unbounded archive to record the
computed Pareto front approximations. We shall use μ ∈ {8, 16, 32, 64, 128, 256, 512}
as population sizes. We use the notation F ∈ {W ,A} to refer to weighted sum (F = 0)
and achievement scalarizing function (F = 1). Similarly, S ∈ {0, 1, 2} indicates which
selection strategy of Section 2.2 is used (S = 0: all, S = 1: solutions not dominated by
the parent, S = 2: solutions not dominated by the parent and the offspring).

Performance Assessment. A set of 30 runs per instance is performed for each algo-
rithm using a randomly generated initial population. For each ρMNK-landscape and a
given number of function evaluations, we compute a reference set Z

N containing the
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Fig. 4. Exemplary trajectories of R-D (top) and RA-D (bottom) strategies. From left to right:
ρ = −0.7, ρ = 0.0, and ρ = +0.7. Polygons are obtained by random sampling for an equivalent
number of evaluations. Runs are for μ = 8, F = 0, S = 0, gen = 64. Crosses represent the
reference set Z�

N .

non-dominated points among all solutions visited during all experiments. To measure
the quality of a Pareto front approximationA in comparison to Z

N , we use both the dif-
ference hypervolume indicator (I−H) and the multiplicative epsilon indicator (I×ε ) [18].
The I−H-indicator gives the portion of the objective space that is dominated by Z

N and
not by A. The reference point is set to the origin. The I×ε -indicator gives the minimum
multiplicative factor by which an approximation A has to be translated in each dimen-
sion of the objective space in order to dominate the reference set Z

N (both I−H - and
I×ε -values are to be minimized). The experimental results report the average indicator
value together with the results of pairwise Mann-Whitney tests with a p-value of 0.05.

To explore the difference between the multiple variants of the competing algorithms,
we also consider their empirical attainment functions (EAFs) [9]. The EAF provides the
probability, estimated from several runs, that an arbitrary objective vector is dominated
by, or equivalent to, a solution obtained by a single run of the algorithm. The difference
between the EAFs for two different algorithms enables to identify the regions of the
objective space where one algorithm performs better than another. The magnitude of
the difference in favor of one algorithm is plotted within a gray-colored graduation.

4 Understanding the Algorithm

In this section, we report some exemplary runs to better understand the idea of our
approach and the role of the different selection strategies and search directions.

4.1 Feasible Objective Space vs. Non-dominated Set Approximation

Fig. 4 shows the trajectories of the μ = 8 population members in exemplary runs of the
R-D and RA-D strategies on ρMNK landscapes with different correlation ρ and up to 64
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Fig. 5. Exemplary directions (unitary arrows) at different generations: RA-D (top left), NB-D (top
right), BH-D (bottom left) and D-D (bottom right). Runs are for ρ = 0.0, μ = 16, F = 0, S = 0.

generations. The polygons in the background show the spread1 of gen ·N ·μ = 65, 536
random samples which correspond to the same amount of function evaluations as for
the force-based strategies after gen = 64 generations.

We can make two main observations. First, the attracting forces of the RA-D strat-
egy seem to “boost” the population towards the Pareto front while only using repelling
forces in R-D allows to get a good idea about the feasible objective space region which
can be considered as of independent interest [6]. Secondly, Fig. 4 shows how much more
efficient the force-based algorithms are when compared to naive random sampling. In
the exemplary results, the R-D strategy covers an objective space area more than four
times larger when compared to random sampling while the RA-D variant roughly halves
the distance to the best known Pareto front approximation—independently of the ob-
jective correlation ρ. Note that the plots are conceptionally similar when looking at
different runs or different settings of μ, F, or S.

4.2 Comparing Force-Based Search Directions

In Fig. 5, we report exemplary runs showing how solutions and their directions evolve
through generations. We can observe that the direction distribution of all strategies is
rather stable over time—except for D-D where directions get clustered around the diag-
onal as soon as some dominating solutions are found. However, between the considered

1 The polygon corners are defined by the non-dominated solutions found when maximizing
(minimizing) both objectives and by the non-dominated solutions found when maximizing
one and minimizing the other.
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strategies, differences can be noticed with respect to both population distribution and
directions. It appears that the strategies RA-D and NB-D cover a larger area of the ob-
jective space when compared to BH-D and D-D. The directions produced by RA-D and
NB-D also appear to be more diversified. The D-D strategy has a tendency to cluster
solutions in the middle, while solutions near the extremes of the reference set Z

N are
rare. This is without surprise since the D-D strategy follows the idea that solutions are
attracted by the dominating ones. Another interesting observation is that for BH-D and
NB-D, the search directions appear to be well correlated with the solution positions—
pointing right towards the closest solutions in the reference set. However, compared to
RA-D, solutions are more clustered near the center. As it will be shown later, the rel-
ative performance of our different force strategies are directly related to the behaviors
observed informally in this set of exemplary runs.

5 Experimental Analysis

In this section, we go into a deeper and more detailed experimental analysis of our
approach by considering its performance over multiple runs. We first start with Table 1,
providing the values of indicators I−H and I×ε for the instance with correlation ρ = −0.7,
and for different algorithms under different configurations.

Influence of the Neighborhood Selection Strategy. A very first observation can be
made on the minor effect of the neighborhood selection strategy. In fact, only in excep-
tional cases does the strategy have a strong influence on the indicator values and the
algorithm ranking. For instance, this is the case for a low number of generations or for
the I-D strategy (fixed independent weights) where the strategy of selecting the non-
dominated solutions (S = 2) appears to be better than the two others. When examining
the results for correlations ρ = 0.0 and ρ = 0.7, essentially the same observation can
be made. Thus, for these correlations we show in Table 2 the results using the most
simplest implementation only (S = 0, i.e., selection among all candidates).

Weighted Sum Vs. Achievement Scalarizing Function. When comparing the algo-
rithm variants employing weighted sum (F = 0) with the ones using achievement func-
tion (F = 1), we can clearly see that the weighted sum consistently yields better results
in terms of hypervolume and ε-indicator differences (see Tables 1 and 2). To under-
stand this outperformance, let us again consider the lines of equal utility in Fig. 2. For a
search direction pointing towards the Pareto front, it can be observed that the weighted
sum allows a particle to move to incomparable solutions while with the achievement
function, a particle can only move to a dominating solution. Thus, assuming that for the
ρMNK landscapes, the bit-flip operator is likely to produce more incomparable neigh-
bors than dominating ones, we can reasonably claim that it is more difficult for our
algorithms to escape local optima using the achievement scalarizing function.

Comparison Between the Five Scalarizing Strategies. One observation is that the
algorithm based on N independently fixed scalarizing functions results in the worst
hypervolume and ε-indicator values—except for low and medium numbers of func-
tion evaluations if only the non-dominated portion of the offspring is considered for
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Table 1. Comparison of the different algorithms with respect to indicators I−H and I×ε (lower is
better) for the anti-correlated instance (ρ = −0.7), μ = 128 and gen ∈ {8, 16, 32, 64, 128}. Col-
umn r is the rank of the algorithm under consideration—computed as the number of algorithms
that statistically outperform it with the given indicator. Bold style refers to algorithms that are not
outperformed by any other. Gray cells refer to algorithms which are analyzed in Fig. 8 and Fig. 9.

gen=8 gen=16 gen=32 gen=64 gen=128
F S I×

ε r I−
H r I×

ε r I−
H r I×

ε s I−
H r I×

ε r I−
H r I×

ε r I−
H r

RA-D 0 0 1.211 5 0.148 4 1.118 2 0.073 6 1.082 2 0.050 0 1.057 0 0.036 0 1.043 0 0.028 0
RA-D 0 1 1.207 2 0.146 2 1.118 2 0.072 2 1.083 4 0.051 0 1.059 2 0.038 0 1.044 0 0.028 0
RA-D 0 2 1.207 3 0.145 2 1.119 2 0.072 3 1.079 0 0.051 0 1.057 0 0.038 0 1.044 0 0.029 0
RA-D 1 0 1.224 13 0.156 14 1.135 13 0.084 13 1.100 12 0.067 13 1.083 13 0.055 12 1.070 12 0.049 12
RA-D 1 1 1.222 11 0.154 13 1.135 13 0.085 13 1.100 12 0.067 14 1.083 13 0.057 15 1.070 12 0.050 13
RA-D 1 2 1.221 11 0.155 13 1.135 12 0.085 13 1.099 12 0.069 17 1.083 13 0.059 18 1.069 11 0.051 13

BH-D 0 0 1.215 6 0.147 4 1.121 2 0.071 2 1.080 0 0.050 0 1.062 6 0.039 1 1.049 6 0.031 2
BH-D 0 1 1.208 3 0.145 2 1.116 2 0.069 1 1.077 0 0.050 0 1.057 0 0.037 0 1.049 3 0.031 2
BH-D 0 2 1.211 4 0.147 4 1.126 9 0.073 6 1.082 0 0.052 1 1.058 0 0.039 1 1.051 6 0.032 6
BH-D 1 0 1.290 24 0.181 24 1.192 24 0.118 24 1.166 24 0.109 24 1.155 24 0.104 24 1.146 26 0.096 24
BH-D 1 1 1.284 24 0.179 24 1.193 24 0.117 24 1.164 24 0.107 24 1.151 24 0.102 24 1.146 26 0.097 24
BH-D 1 2 1.290 24 0.181 24 1.201 24 0.121 25 1.167 24 0.109 24 1.150 24 0.102 24 1.146 26 0.096 24

D-D 0 0 1.223 11 0.153 13 1.136 12 0.083 13 1.102 12 0.066 13 1.080 11 0.054 11 1.070 11 0.046 10
D-D 0 1 1.229 15 0.155 13 1.133 12 0.084 13 1.095 11 0.065 13 1.074 10 0.052 10 1.059 10 0.043 10
D-D 0 2 1.215 5 0.149 7 1.125 4 0.076 9 1.086 5 0.058 11 1.065 8 0.046 9 1.053 7 0.037 9
D-D 1 0 1.230 16 0.158 17 1.143 20 0.087 18 1.105 18 0.069 14 1.088 19 0.060 20 1.080 19 0.055 20
D-D 1 1 1.235 14 0.159 18 1.149 22 0.090 21 1.103 17 0.070 17 1.090 19 0.061 20 1.079 19 0.055 20
D-D 1 2 1.234 13 0.156 13 1.142 15 0.089 19 1.109 18 0.073 23 1.089 18 0.061 20 1.077 19 0.053 18

NB-D 0 0 1.205 2 0.145 3 1.119 2 0.071 2 1.083 4 0.052 2 1.057 0 0.037 0 1.043 0 0.027 0
NB-D 0 1 1.209 3 0.146 3 1.120 2 0.071 2 1.079 0 0.049 0 1.057 0 0.036 0 1.045 0 0.029 2
NB-D 0 2 1.203 2 0.144 2 1.115 1 0.071 2 1.079 0 0.051 0 1.056 0 0.038 0 1.043 0 0.029 0
NB-D 1 0 1.220 11 0.154 13 1.132 11 0.083 13 1.099 12 0.066 13 1.082 13 0.056 12 1.071 12 0.050 13
NB-D 1 1 1.222 12 0.156 13 1.134 13 0.084 13 1.099 12 0.066 13 1.083 13 0.056 12 1.070 12 0.050 13
NB-D 1 2 1.227 13 0.155 13 1.134 13 0.085 14 1.100 12 0.070 18 1.082 13 0.057 15 1.070 12 0.052 13

I-D 0 0 1.350 27 0.212 27 1.288 28 0.166 27 1.235 27 0.156 27 1.178 27 0.129 27 1.128 23 0.097 24
I-D 0 1 1.350 27 0.211 27 1.281 27 0.165 27 1.240 29 0.155 27 1.180 27 0.129 27 1.126 23 0.097 24
I-D 0 2 1.200 1 0.140 1 1.111 1 0.067 1 1.085 6 0.053 7 1.075 10 0.050 10 1.067 11 0.047 11
I-D 1 0 1.348 27 0.212 27 1.276 27 0.165 27 1.229 27 0.154 27 1.178 27 0.133 29 1.149 26 0.106 29
I-D 1 1 1.349 27 0.212 27 1.275 27 0.165 27 1.229 27 0.154 27 1.176 27 0.133 29 1.150 26 0.106 29
I-D 1 2 1.193 1 0.143 2 1.129 10 0.071 2 1.105 18 0.057 11 1.095 22 0.052 11 1.085 22 0.049 13

SMS 1.151 0 0.070 0 1.063 0 0.035 0 1.103 12 0.048 0 1.120 23 0.053 11 1.130 23 0.053 18

selection. This indicates that choosing the search directions cooperatively seems to be
a good choice. Secondly, we can observe that, with a few exceptions, in particular for
ρ = 0.7 and larger generations, the D-D variant performs badly when compared to
the other three force-based algorithms. In these exceptional cases where the D-D vari-
ant produces good results for one indicator, the other indicator often shows a medium
performance while typically a high positive correlation between the two indicators can
be reported. When looking more carefully at how this algorithm approaches the Pareto
front (Fig. 5), we can better understand why often the hypervolume values are quite
good but the ε-indicator values are not. In fact, due to the absence of backwards di-
rections and the attraction of dominated by dominating points, the D-D variant loses
diversity during the run and approaches the Pareto front via the diagonal of the objec-
tive space. Like that, the large number of points in the middle of the objective space
results in quite high hypervolume values. However, the absence of extreme solutions in
the population yields lower ε-indicator values.
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Table 2. Comparison of the different algorithms for instance correlation ρ ∈ {0.0, 0.7}. Same
settings and notations than in Table 1 are used. The selection strategy is S = 0.
ρ gen=8 gen=16 gen=32 gen=64 gen=128

F I×
ε r I−

H r I×
ε r I−

H r I×
ε r I−

H r I×
ε r I−

H r I×
ε r I−

H r

0.0

RA-D 0 1.215 5 0.176 3 1.138 7 0.109 9 1.085 6 0.063 9 1.058 9 0.038 1 1.041 6 0.027 4
RA-D 1 1.236 17 0.193 16 1.156 15 0.128 14 1.106 16 0.080 14 1.080 14 0.056 14 1.069 13 0.045 12
BH-D 0 1.207 2 0.174 3 1.123 1 0.105 3 1.072 1 0.057 1 1.047 1 0.037 1 1.041 6 0.030 7
BH-D 1 1.227 11 0.189 14 1.149 12 0.132 18 1.114 20 0.097 24 1.101 23 0.084 24 1.093 23 0.077 24
D-D 0 1.225 11 0.185 13 1.149 12 0.128 14 1.095 13 0.086 18 1.071 12 0.064 21 1.058 12 0.053 20
D-D 1 1.247 22 0.197 21 1.163 21 0.135 19 1.113 20 0.084 18 1.093 20 0.060 18 1.087 20 0.052 19

NB-D 0 1.215 6 0.177 3 1.136 5 0.109 7 1.086 7 0.063 9 1.057 9 0.039 5 1.043 7 0.028 4
NB-D 1 1.235 17 0.192 15 1.154 14 0.128 14 1.102 14 0.079 14 1.081 15 0.055 13 1.070 13 0.045 12
I-D 0 1.339 27 0.252 27 1.289 27 0.221 27 1.238 27 0.191 27 1.186 27 0.156 27 1.136 27 0.117 27
I-D 1 1.338 27 0.253 27 1.292 27 0.222 27 1.256 29 0.193 27 1.223 29 0.158 27 1.177 29 0.120 27
SMS 1.051 0 0.043 0 1.034 0 0.027 0 1.031 0 0.024 0 1.033 0 0.027 0 1.032 0 0.026 0

0.7

RA-D 0 1.208 3 0.180 3 1.118 3 0.103 3 1.060 4 0.048 1 1.040 0 0.035 0 1.032 0 0.024 0
RA-D 1 1.226 22 0.191 20 1.133 21 0.119 20 1.078 21 0.071 18 1.060 14 0.056 16 1.052 13 0.046 14
BH-D 0 1.208 3 0.180 3 1.112 2 0.101 3 1.055 1 0.045 1 1.038 0 0.036 0 1.035 3 0.030 6
BH-D 1 1.212 6 0.184 4 1.119 5 0.108 10 1.068 14 0.062 15 1.060 14 0.058 18 1.055 17 0.053 21
D-D 0 1.212 5 0.183 4 1.117 3 0.106 5 1.060 3 0.053 9 1.041 0 0.037 4 1.034 0 0.031 5
D-D 1 1.219 19 0.189 19 1.125 16 0.115 17 1.071 14 0.065 15 1.063 17 0.058 18 1.058 20 0.053 21

NB-D 0 1.209 4 0.180 3 1.117 3 0.106 5 1.062 5 0.051 5 1.041 1 0.034 0 1.032 0 0.024 0
NB-D 1 1.216 14 0.184 4 1.131 21 0.117 18 1.074 16 0.069 17 1.057 14 0.053 15 1.051 13 0.046 14
I-D 0 1.341 27 0.262 27 1.288 27 0.226 27 1.234 27 0.194 27 1.179 27 0.161 27 1.128 27 0.119 27
I-D 1 1.344 27 0.262 27 1.294 27 0.228 27 1.237 28 0.194 27 1.188 29 0.161 27 1.140 29 0.118 27
SMS 1.052 0 0.048 0 1.037 0 0.030 0 1.034 0 0.027 0 1.037 0 0.032 0 1.036 0 0.031 3
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Fig. 6. Distribution of population members in the objective space for the weighted sum version
of RA-D (left column), and I-D (right) after 128 generations in polar coordinates (x-axis: angles
from 0 to π/2), for ρ = −0.7, S = 0, μ ∈ {8, . . . , 512}. The y-axis refers to the empirical
probability of having a solution in the corresponding angle.

When looking closer at the typical algorithm behavior (Fig. 6 and Fig. 8), one can
also observe another obvious difference between the four force-based strategies: The
BH-D variant produces consistently more solutions in the middle of the Pareto front
while the other strategies, in particular RA-D, are more balanced and outperform the
BH-D variant at the extremes (Fig. 8). Overall, we therefore recommend to use BH-
D when a focus on the middle of the front is desired and RA-D otherwise because of its
simple implementation and the resulting more uniform distribution.

Distribution of the Population Over the Objective Space. Several interesting ob-
servations can be made about the dynamics of the population in polar coordinates. In
Fig. 6, we can see that, for RA-D, solutions are distributed following a bell-shaped



Force-Based Cooperative Search Directions in EMO 395

 0
 20

 40
 60

 80
 100

 120
 140 0

 0.2
 0.4

 0.6
 0.8

 1
 1.2

 1.4
 1.6

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4

 0
 20

 40
 60

 80
 100

 120
 140 0

 0.2
 0.4

 0.6
 0.8

 1
 1.2

 1.4
 1.6

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4

Fig. 7. Empirical distribution of population members over generations for RA-D (left) and I-
D (right). Runs are for ρ = −0.7, μ = 128, F = 0, S = 0.
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Fig. 8. EAF differences for RA-D, D-D, NB-D, and BH-D, with ρ = −0.7, μ = 128, gen = 128,
F = 1 (achievement), S = 0. The plot in row i and column j shows the areas where algorithm i
improves over algorithm j.

distribution , with the mean being the middle of the Pareto front (0.8 - π/4). However,
For I-D, for which the μ directions are uniformly distributed over [0, π/2] and constant,
the distribution of individuals is seemingly different. In fact, since the Pareto front lies
in a smaller range than [0, π/2], searching along more than one fixed search direction
results in reaching the extreme points of the Pareto front, especially for anti-correlated
instances. All this is not only observed after the specific generations of Fig. 6 but it can
also be seen in Fig. 7 that the point distribution converges rather quickly with time and
stays roughly the same after about 60 generations.
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Fig. 9. EAFs comparing (from left to right): SMS with RA-D (F = 0, S = 0), RA-D (F = 0,
S = 0) with SMS, SMS with BH-D (F = 1, S = 0), and BH-D (F = 1, S = 0) with SMS. Runs
are for ρ = −0.7, gen = 128.

Comparison with SMS. From Tables 1 and 2, it appears that SMS outperforms the
other algorithms for few generations while for a larger number of generations, the force-
based approach is competitive with SMS on all instances, and it even outperforms it
for the two instances with positive and negative correlation—although the force-based
approach uses a simpler selection strategy compared to the global one of SMS. Notice
that the differences between SMS and the proposed approach are rather small for both
indicators. When examining the EAF differences between SMS and our approaches, as
depicted in the examples of Fig. 9, we observe that SMS produces substantially less
solutions at one side of the front while performing substantially better at the rest.

In addition, our comparison between SMS and the force-based approach uses the
same number of function evaluations while ignoring the actual costs of maintaining the
population and any other complexity issues. In the current implementation, the actual
runtimes of the two approaches differ by a factor of about two as SMS needs more costly
global operations to evolve the population such as sorting and hypervolume computa-
tions while in the force-based approach the population replacement can be done locally
at the level of each solution once the forces are computed.

6 Conclusion

In this paper, we proposed a force-based EMO paradigm, and we studied its proper-
ties in different configurations. The originality of our approach stems from the fact that
each solution computes, dynamically at each generation, a search direction in the ob-
jective space cooperatively, and in parallel with other solutions. Some variants of our
approach are proved to be efficient in finding those directions that lead to a good cov-
ering of the Pareto front. However, defining what would be the optimal directions that
solutions should follow at each step of the search process is a difficult open question.
Furthermore, our approach is inherently local, in the sense that, although the compu-
tation of the directions are “synchronized” for all solutions, the selection is performed
locally in parallel for the population members. An interesting open question is to design
better direction-based localized strategies, and to come up with inherently distributed
approaches. Last but not least, while being in general directly applicable to problems
with more than two objectives, further investigations on those problems are needed.
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Abstract. Selection plays a key role in a multiobjective evolutionary
algorithm (MOEA). The dominance based selection operators or indi-
cator based ones are widely used in most current MOEAs. This paper
studies another kind of selection, in which a model is firstly built to ap-
proximate the Pareto front and then guides the selection of promising
solutions into the next generation. Based on this idea, we propose two
approximation model guided selection (AMS) operators in this paper: one
uses a zero-order model to approximate the Pareto front, and the other
uses a first-order model. The experimental results show that the new
AMS operators performs well on some test instances.

1 Introduction

A multiobjective optimization problem (MOP) can be formulated as

min F (x) = (f1(x), · · · , fm(x))
s.t x ∈ Ω

where Ω defines the feasible region of the decision space, and x ∈ Ω is a de-
cision variable vector. F : Ω → Rm consists of m objective functions fi(x) ,
i = 1, · · · ,m, and Rm is the objective space. Since the objectives often conflict
with each other, there does not exist a single solution that can optimize all the
objectives at the same time. Instead, a set of the best tradeoff candidate solu-
tions among different objectives, which is called Pareto set (PS) in the decision
space (or Pareto front (PF) in the objective space), is of practical interest to a
decision maker [1, 2].
Many multiobjective optimization methods aim to find an approximation set

which is as diverse as possible and as close to the PF (PS) as possible [2]. Since
an evolutionary algorithm (EA) works with a population of candidate solutions,
it can approximate the PF (PS) of an MOP in a single run. Therefore, EAs are
a natural choice for tackling MOPs and recent years have witnessed the rapid
development of multiobjective evolutionary algorithms (MOEA) [3]. Among dif-
ferent components of an MOEA, the following two are extremely important:
(1) reproduction operator, which generates new trial solutions based on current

R.C. Purshouse et al. (Eds.): EMO 2013, LNCS 7811, pp. 398–412, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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population, and (2) selection operator, which selects promising solutions into
the next generation. For the former, many popular MOEAs directly use those
reproduction operators which were designed for single objective optimization.
Recently, some research work has demonstrated that these operators may not
always work well for MOPs since, by nature, an MOP is quite different from a
single objective optimization problem [4]. Some specific reproduction operators
were therefore proposed for dealing with multiobjective optimization [5]. For
the latter, most research work on evolutionary multiobjective optimization is on
selection operators, and a number of selection operators have been proposed,
which shall be introduced shortly in the next section.

Multiobjective evolutionary algorithm based on decomposition (MOEA/D) is
a new MOEA framework [6, 7]. It decomposes an MOP into a set of single
objective subproblems and optimizes these subproblems simultaneously to ap-
proximate the PF (PS). MOEA/D also provides some possibilities for designing
and improving reproduction and selection operators. In this paper, we focus on
selection and propose an approximation model guided selection (AMS) by bor-
rowing the idea of decomposition from MOEA/D. It should be noted that this
paper is an extension of our previous work in [8, 9].
The rest of the paper is organized as follows: Section 2 reviews some widely

used selection strategies in evolutionary multiobjective optimization. Section 3
presents the proposed selection operators in detail. Section 4 conducts empirical
studies of the proposed selection operators. Finally, Section 5 concludes the paper
with some suggestions for future work.

2 Related Work on Selection Operators

In single objective optimization, there naturally exists a complete order to com-
pare solutions: for any two feasible solutions x and y, either f(x) ≤ f(y) or
f(y) ≤ f(x). However it is not the case in multiobjective optimization. The
Pareto dominance relationship only defines a partial order and not all feasible
solutions can compare with each other. Therefore, additional strategies are re-
quired in MOEAs to differentiate solutions. Some widely used MOEA selection
operators can be classified into the following categories.

2.1 Dominance Based Selection

The dominance based selection operators extend the partial order of Pareto
dominance to a complete order by a two-stage strategy. In the first stage, the
population is partitioned into several groups by using Pareto dominance. A rank
value, xrnk, is assigned to each solution x in this stage. The solutions in the
same group are with the same rank value. In the second stage, each solution x
is assigned a density value xden, which represents the sparseness of the solution.
A complete order, denoted as ≺i, can thus be defined as follows:

x ≺i y, iff (xrnk < yrnk), or
(xrnk = yrnk and xden < yden).
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In the rank assignment stage, three strategies are widely used: (1) dominance
rank [10, 11], (2) dominance count [12], and (3) dominance strength [13, 14]. In
all these strategies, non-dominated solutions in the population will be assigned
the lowest rank value.
The density estimation stage is to maintain and encourage population diver-

sity. Some popular methods used in this stage include: (1) niching and
fitness sharing [10–12, 15], (2) crowding distance [16], (3) K-nearest neigh-
bor method [14], and (4) grading method [17–20] and its variants such as ε-
dominance [21]. The basic idea behind these methods is that solutions in sparse
areas are more important than those in dense areas.

2.2 Indicator Based Selection

The indicator based selection operators define a complete order over populations.
Let I(·) be a quality indicator which assigns a real value to a population. A
complete order, ≺p, is defined as follows:

P ≺p Q iff I(P ) < I(Q),

where P and Q are two populations.
Unlike dominance based selection, indicator based selection considers a pop-

ulation as a whole. This idea was firstly proposed in [22] and it has been proved
that maximization of the S-metric [23] over a population is a necessary and
sufficient condition for the population to be optimal in a sense. An S-metric
guided selection was proposed in [24], and this selection has been widely studied
thereafter [25–29].
Although some attempts have been made to reduce the computational over-

heads [30, 31], a major disadvantage of indicator based selection operators is
that calculation of a quality metric is often very time-consuming especially for
many-objective problems. .

2.3 Model Guided Selection

Model guided selection operators aim to select solutions into the next generation
guided by a model, which approximates the Pareto front. In [32], an estimated
PF was first built and then solutions close to the estimated PF were selected.
This method only works on problems with convex PFs. Later, it was generalized
to generic PFs in [33]. A similar approach called guided hyperplane evolution-
ary algorithm was proposed in [34]. In [8], a utopian PF guided selection was
proposed for bi-objective problems. It uses a line segment to approximate the
PF, some evenly distributed points are sampled in the line segment as the target
points, and these points, which are close to the target points, are selected into
the next generation. Very recently, a reference points guided selection procedure
was introduced in [35, 36]. The reference points can be regarded as some points
in an estimated PF.
A key issue on designing a model guided selection operator is how to build a

model to approximate a PF. It still requires much research effort to develop a
simple yet efficient method to model a PF.
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3 Approximation Model Guided Selection

It is well known that under mild conditions, the PF (PS) of an m-objective con-
tinuous problem forms a piecewise continuous (m−1)-dimensional manifold [37].
This regularity property has been used to design reproduction operators for mul-
tiobjective optimization in [5]. In this paper, we study how to use this property
to design selection operators.
Our basic idea is to build a utopian PF (approximation model) to approximate

the true PF, and then use it to guide selection. More specifically, we firstly build
a utopian PF based on information extracted from the current population, and
then construct a set of single objective functions based on the utopian PF, and
finally select solutions according to these single objective function values. We
call this selection approach approximation model guided selection (AMS).
Let Q be a set of solutions (e.g., a union of the current population and off-

spring population in our experiments), the pseudo code of the AMS operator
for selecting N solutions to form P (new population in our experiments) is as
follows.

Step 0: Set P = ∅.
Step 1: Build a utopian PF by using information extracted from Q to approx-

imate the true PF.
Step 2: Define N single objective functions G = {gi|i = 1, · · · , N} based on

the utopian PF.
Step 3: Randomly choose g ∈ G, and find:

x∗ = argmin
x∈Q

g(x),

set Q = Q\{x∗}, G = G\{g} and P = P ∪ {x∗}.
Step 4: Repeat Step 3 until G = ∅.

It is clear that

– our approach maintains a utopian PF and a set of solutions to approximate
the true PF, and

– the convergence and diversity of the population are achieved under the guide
of the utopian PF and single objective functions.

The proposed AMS operator is an open framework and there might be different
ways to define the utopian PFs and the single objective functions. In the follow-
ing, we develop two models to approximate the PF: one is a zero-order model
and the other is a first-order model.

3.1 Zero-Order Model Guided Selection: AMS0

The simplest model to approximate the PF should be a single point that can
be regarded as a zero-order manifold. In this section, we use the ideal point,
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(a) (b)

Fig. 1. An illustration to approximate the PF by a model in the case of bi-objective
problems: (a) zero-oder model, and (b) first-order model

z∗ = (z∗1 , · · · , z∗m) where

z∗i = min
x∈Ω

fi(x), i = 1, · · · ,m,

for this purpose. However, the exact ideal point is difficult to obtain in practice.
Therefore, we use the best individual objective function values found so far to
approximate the ideal point, i.e.,

z∗i = min
x∈Q

fi(x), i = 1, · · · ,m.

The approximated ideal point is updated at each generation and hopefully con-
verges to the true ideal point.
We use the Tchebycheff approach to define single objective functions. Let

{λi = (λi1, · · · , λim), i = 1, · · · , N} be a set of predefined weight vectors. The
i-th single objective function is

gi(x) = g(x|λi, z∗) = max
1≤j≤m

λij |fj(x) − z∗j |.

Fig. 1(a) illustrates this selection operator in the case of bi-objective problems.
It is clear that the zero-order model does not consider the shape of the PF.
Therefore, the distribution of the final approximation highly depends on the
predefined weight vectors, which are hard to be set properly beforehand in some
cases.

3.2 First-Order Model Guided Selection: AMS1

A first-order model or linear model can approximate the PF better than a zero-
order model. In [8, 9, 38], we introduced a method to construct a utopian PF of
an MOP. We generalize this method in this section.
Under the regularity property of continuous MOPs, we can use an (m− 1)-D

simplex S to approximate the PF. Let NS(Q) be the set that contains all the
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nondominated solutions in population Q, vi = (vi1, . . . , v
i
m), the i−th vertex of

S (i = 1, . . . ,m), is determined as follows:

vij =

⎧⎨⎩
min

x∈NS(Q)
fj(x) if j �= i

max
x∈NS(Q)

fj(x) if j = i

for i, j = 1, · · · ,m.

Fig. 2. Illustration of the calculation of the gi(x) in the case of bi-objective problems

Let R = {ri, i = 1, · · · , N} be a set of N uniformly distributed points in S.
The i-th single objective function is defined as

gi(x) = g(x|ri) = d1 + 2d2,

where d1 =
|LT (F (x)−ri)|

‖L‖ , L is a normal direction of S, d2 is the Euclidean

distance from F (x) to the line with direction L and passing through ri. Fig. 2
illustrates how to calculate gi(x) in the case of two objectives.
We call the selection based on the above modeling method AMS1. Fig. 1(b)

illustrates how it works. It is clear that the first-order model uses more infor-
mation to approximate the PF than the zero-order model, and therefore the
first-order mode is more similar to the PF than the zero-order model.

4 Experimental Results

In this section, the proposed selection operators AMS0 and AMS1 are compared
on a popular domination based selection operator on some test instances.

4.1 Experimental Settings

To assess the performance of the proposed two selection operators, AMS0 and
AMS1, we compare them with the nondominated sorting (NDS) selection oper-
ator [16]. For a fair comparison, the three selection operators are used in RM-
MEDA [5]. RM-MEDA is based on probability models: it builds a probability
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model to capture the population distribution in the decision space, and samples
new trial solutions from the model thus built; then it selects new generation from
the old and new solutions. The process is repeated iteratively until the stopping
condition is satisfied. The main procedure of RM-MEDA is as follows.

Step 0: Initialize a population P randomly from the feasible region of the de-
cision space.

Step 1: Build a probability model to capture the structure of the solutions in
P in the decision space.

Step 2: Sample a set of new solutions Q, which satisfies |Q| = |P |, from the
probability model.

Step 3: Repair the infeasible solutions in Q and evaluate the new solutions.
Step 4: Select the new population P for the next generation from Q ∪ P .
Step 5: Goto Step 1 if the termination condition is not satisfied.

In Step 1 , the regularity property [37] of continuous MOPs is considered for
model building, which differentiates RM-MEDA from other probability model
based MOEAs. In Step 4 , AMS0, AMS1, or NDS is used to do selection. More
details about RM-MEDA are referred to [5].
The problems F1-F8 in [5] are used as test instances. The experimental settings

are as follows.

– Number of decision variables: It is set to be 30 for all the test instances.
– Number of population size: The number of population size is set to be 100
and 200 for bi-objective and tri-objective problems respectively.

– Stopping condition: All the algorithms stop after 200 generations for F1, F2,
F4, F5, F6, and F8, and 1000 generations for F3 and F7.

– Parameter in RM-MEDA Reproduction: The number of cluster is 5 for all
the instances.

– Number of runs: Each algorithm is run on each instances for 30 times inde-
pendently.

The Inverted Generational Distance (IGD) metric [5] is used to assess the al-
gorithm performances in our experimental study. Let P ∗ be a set of uniformly
distributed Pareto optimal points in the PF. Let P be an approximation to the
PF. The IGD metric is defined as follows,

IGD(P ∗, P ) =
∑

v∈P∗ d(v, P )

|P ∗|
where d(v, P ) is a minimum distance between v and any point in P , and |P ∗|
is the cardinality of P ∗. The IGD metric can measure both convergence and
diversity although it may not work well in some cases [39]. To have a low IGD
value, P must be close to the PF and cannot miss any part of the whole PF. In
our experiments, 500 evenly distributed points in PF are generated as the P ∗

for bi-objective problems and 990 points for tri-objective problems.
The statistical IGD values on the test instances over 30 runs are shown in

Table 1. The mean and std. values are provided in this table.
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Table 1. Statistical IGD values (mean±std.) on the test instances over 30 runs

NDS AMS0 AMS1

F1 0.0043 ± 0.0001 0.0039 ± 0.0000 0.0036± 0.0000

F2 0.0041 ± 0.0001 0.0038± 0.0000 0.0038± 0.0000

F3 0.0057 ± 0.0041 0.0154 ± 0.0102 0.0032± 0.0011

F4 0.0494 ± 0.0015 0.0490± 0.0012 0.0830 ± 0.0549

F5 0.0050 ± 0.0002 0.0042 ± 0.0001 0.0038± 0.0001

F6 0.0122 ± 0.0086 0.0094± 0.0205 0.0333 ± 0.0560

F7 0.1365 ± 0.1703 0.1011± 0.0167 0.2044 ± 0.2616

F8 0.0657± 0.0041 0.0769 ± 0.0543 0.0830 ± 0.0405

4.2 Results on Problems with Convex PFs

We firstly consider the bi-objective problems with convex PFs. The final ap-
proximations to the PF are plotted in Fig. 3 and the mean IGD values versus
generations are shown in Fig. 4.
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Fig. 3. The final approximations obtained by NDS (left), AMS0(middle), and
AMS1(right) on F1 (1st row) and F5 (2nd row) respectively

The statistical values in Table 1 show that all the three selection operators
work well on both F1 and F5, and AMS1 performs slightly better than AMS0
andNDS. Fig. 4 indicates that by using AMS0, the population converges slightly
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Fig. 4. The mean IGD values versus generations on F1 and F5. The solid lines are
with NDS, the dashed lines are with AMS0, and the dash-dot lines are with AMS1.

faster than those of using NDS and AMS1. The reason might be that the zero-
order model is more stable than the first-order model.

4.3 Results on Problems with Concave PFs

Both F2 and F6 are bi-objective problems with concave PFs. The final approx-
imations to the PF are plotted in Fig. 5 and the mean IGD values versus gen-
erations are shown in Fig. 6.
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Fig. 5. The final approximations obtained by NDS (left), AMS0(middle), and
AMS1(right) on F2 (1st row) and F6 (2nd row) respectively

The statistical values in Table 1 show that all the three selection operators
work similar on both F2 and F6. On F2, AMS0 and AMS1 have the same per-
formance and on F6, AMS0 works slightly better. From Fig. 5, we can see that
the results on F6 are not as good as those on F2. The reason might be that there
are nonlinear linkages between the variables on F6 while variable linkages on F2

are linear. Therefore, the PS of the F2 is easier to obtain than that of F6. Since
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Fig. 6. The mean IGD values versus generations on F2 and F6. The solid lines are
with NDS, the dashed lines are with AMS0, and the dash-dot lines are with AMS1.

the whole PS could not be obtained in some runs on F6, AMS0 and AMS1 also
fail to approximate its PF.

4.4 Results on Tri-objective Problems

Both F4 and F8 are tri-objective problems with concave PFs. The final ap-
proximations to the PF are plotted in Fig. 7 and the mean IGD values versus
generations are shown in Fig. 8.
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Fig. 7. The final approximations obtained by NDS (left), AMS0(middle), and
AMS1(right) on F4 (1st row) and F8 (2nd row) respectively

The statistical values in Table 1 show that NDS and AMS0 work similar
on both F4 and F8 and they perform better than AMS1. The final results in
Fig. 7 also show that the solutions obtained by NDS and AMS0 are more close
to the PF than those obtained by AMS1. The results indicate that AMS1 is
more sensible to the structure of the PF than AMS0. From Fig. 8, we can also
observe that AMS1 can not always approximate PF successfully. The reason is
that some extreme points, which are used to build the simplex model, mislead
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Fig. 8. The mean IGD values versus generations on F4 and F8. The solid lines are
with NDS, the dashed lines are with AMS0, and the dash-dot lines are with AMS1.

the selection. How to improve the performance of AMS1 on high dimensional
problems is worth further investigating.

4.5 Results on Problems with Complicated Mappings

Mappings between the PS and the PF on both F3 and F7 are complicated, and
a uniform distributed PS does not form a uniform distributed PF. The final
approximations to the PF are plotted in Fig. 9 and the mean IGD values versus
generations are shown in Fig. 10.
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Fig. 9. The final approximations obtained by NDS (left), AMS0(middle), and
AMS1(right) on F3 (1st row) and F7 (2nd row) respectively

The statistical values in Table 1 show that AMS1 works better than NDS and
AMS1 on F3, while AMS0 has the best performance on F7. The final results in
Fig. 9 show that the solutions obtained by AMS1 are closer to the PF than those
obtained by NDS and AMS0. The statical results in Table 1 show that the std.
value of AMS1 on F7 is big. The reason is that in several runs, the algorithm
with AMS1 converged to some small parts of the PF. The results suggest that
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Fig. 10. The mean IGD values versus generations on F3 and F7. The solid lines are
with NDS, the dashed lines are with AMS0, and the dash-dot lines are with AMS1.

the final results are highly influenced by the distribution in the decision space.
If an algorithm can not produce well distributed solutions in the decision space,
the selection operator is not able to approximate the PF well.

5 Conclusion

In this paper, we proposed an approximation model guided selection operator
for evolutionary multiobjective optimization. The basic idea is to build a model
to approximate the PF and then use the model to guide selection process. We
designed two approximation models to implement this idea, one is a zero-order
model and the other is a first-order model, by using the selection strategy in
MOEA/D framework. The proposed selection operators are tested in the RM-
MEDA algorithm on eight test instances with different PF characters.
The experimental results shown that our proposed operators worked slightly

better than the non-dominated sorting based selection operator on most of given
test instances. Comparing the zero-order and first-order models, we could see
that if the first-order model can approximate the PF successfully, it usually
works better than the zero-order model because the first-order model offers more
information about the PF. However, the experimental results have also shown
that our first-order model is more sensitive to the shape of the PF than the
zero-order model. Although we mainly focused on selection in this paper, the
experimental results indicated again that both the reproduction and selection
operators are important for an MOEA.
The work reported in this paper is very preliminary and there are several di-

rections for future work: (1) improving the stability of the first-order model based
operator, (2) approximating the PF with higher-order models, (3) testing the ap-
proaches on more complicated test instances and many-objective optimization
problems.
The Matlab source code of this work can be downloaded from Prof. Zhang’s

home page: http://dces.essex.ac.uk/staff/qzhang/.
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Abstract. Decomposition based evolutionary approaches such as MOEA/D and
its variants have been quite successful in solving various classes of two and three
objective optimization problems. While there have been some attempts to mod-
ify the dominance based approaches such as NSGA-II and SPEA2 to deal with
many-objective optimization, there are few attempts to extend the capability of
decomposition based approaches. The performance of a decomposition based ap-
proach is dependent on (a) the mechanism of reference points generation i.e. one
which needs to be scalable and computationally efficient (b) the method to si-
multaneously deal with conflicting requirements of convergence and diversity
and finally (c) the means to use the information of neighboring subproblems ef-
ficiently. In this paper, we introduce a decomposition based evolutionary algo-
rithm, wherein the reference points are generated via systematic sampling and
an adaptive epsilon scheme is used to manage the balance between convergence
and diversity. To deal with constraints efficiently, an adaptive epsilon formula-
tion is adopted. The performance of the algorithm is highlighted using standard
benchmark problems i.e. DTLZ1 and DTLZ2 for 3, 5, 8, 10 and 15 objectives,
the car side impact problem, the water resource management problem and the
constrained ten-objective general aviation aircraft (GAA) design problem. The
study clearly highlights that the proposed algorithm is better or at par with recent
reference direction based approaches.

Keywords: many-objective optimization, generation of reference points, adap-
tive epsilon comparison, constraint-handling.

1 Introduction

Many objective optimization typically refers to problems with the number of objectives
greater than four [1]. There is significant amount of literature discussing the challenges
involved in solving them and interested readers may refer to [1] for further details.
The commonly used dominance based methods for multi-objective optimization, such
as NSGA-II, SPEA2 etc. are known to be inefficient for many-objective optimization
as non-dominance does not provide adequate selection pressure to drive the population
towards convergence. There has been a number of attempts to modify the underlying
selection pressure through the use of substitute distance measures [2][3], average rank
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domination [4], fuzzy dominance [5], ε-dominance [6][7], adaptive ε-ranking [8] etc.
without great success. In all the above approaches, while the diversity and the conver-
gence of the population improved during the course of evolution, there is no guarantee
that the final non-dominated set spans the entire Pareto surface uniformly.

There are also radically different approaches to deal with many objective optimiza-
tion, such as attempts to identify the reduced set of objectives [9] or corners of the
Pareto front [10] and subsequently solving the problem using these reduced set of ob-
jectives. Other attempts include interactive use of decision makers preferences [11], use
of reference points [12][13] or solution of the problem as a hypervolume maximization
problem [14]. While some progress has been made along these lines, the limiting factors
include the inability to obtain solutions close to Pareto set for an accurate identification
of redundant objectives, decision making burden associated with preference elicitation
and the computational complexity of hypervolume computation.

Decomposition based evolutionary algorithms are yet another class of algorithms
originally introduced as MOEA/D [15], wherein the multiobjective optimization prob-
lem is decomposed into a series of scalar optimization problems. In a decomposition
based approach, one need to generate uniformly distributed reference directions and
adopt a method of scalarization. In the context of many objective optimization, the first
issue relates to the design of a computationally efficient scheme to generate W uniform
reference directions for a M objective optimization problem, where M is typically more
than four and W is of the same order as the population size. The second issue relates
to scalarization, which essentially assigns the f ittest individual to each reference direc-
tion. The notion of f ittest is essentially derived using a tradeoff between convergence
and diversity measured with respect to any given reference direction. One of the early
attempts to generate uniformly distributed reference directions appear in the works of
Hughes [13] . The method was not computationally efficient for problems with more
than six objectives and often resulted in a large number of reference directions that in
turn required a huge population size. More recently, computationally efficient and scal-
able sampling schemes have been used in the context of many-objective optimization.
A systematic sampling [16] scheme has been used in M-NSGA-II [17] while an uni-
form sampling scheme has been used within MOEA/D [18] to deal with many objective
optimization problems.

The second issue related to scalarization has been addressed via two fundamental
means i.e. through a systematic association and niche preservation mechanism as in
M-NSGA-II [17] or through the use of a penalty function(i.e. an aggregation of the pro-
jected distance along a reference direction and the perpendicular distance from a point
to a given reference direction) within the framework of MOEA/D. The performance
of the penalty function based approach is dependent on the penalty parameter, while
the association and the niche preservation process require a careful implementation to
address a number of possibilities.

In this paper, we introduce a decomposition based evolutionary algorithm for many-
objective optimization. The reference directions are generated using systematic sam-
pling, wherein the points are systematically generated on a hyperplane with unit in-
tercepts in each objective axis. The process of reference point generation is the same
as adopted in M-NSGA-II [17]. The fine balance between convergence and diversity
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along a reference direction is managed using an adaptive epsilon model eliminating
the need for the penalty parameter. While M-NSGA-II [17] is a generational model,
our proposed algorithm is a steady state form. Furthermore, to deal with constraints,
an adaptive epsilon level based scheme is introduced which has been demonstrated to
be more effective over feasibility first schemes in the context of constrained optimiza-
tion [19].

The details of the proposed algorithm are presented in Section 2. The performance
of the proposed algorithm on benchmark problems (DTLZ1 and DTLZ2 for 3, 5, 8, 10
and 15 objectives) is presented and compared with MOEA/D-PBI and M-NSGA-II in
Section 3. In addition to the above set of mathematical benchmarks, the performance
of the algorithm is also compared using a number of engineering design problems (car
side impact, water resource management and the constrained ten-objective general avi-
ation aircraft (GAA) design). The final section summarizes the contributions and future
directions for further improvement.

2 Proposed Algorithm

A many-objective optimization problem can be defined as follows:

min. [ f1(x), f2(x), f3(x), ..... fM(x)],x ∈Ω
S.t. g j(x)≤ 0, j = 1,2, .......p (1)

hk(x) = 0,k= 1,2, .......q

where f1(x), f2(x), f3(x), ...... fM(x) are the M objective functions, p is the number of
inequalities and q is the number of equalities.

The pseudocode of the algorithm is presented below and the subsequent components
are discussed in the following subsections.

Algorithm 1. DBEA-Eps
Input: Genmax maximum number of generations, W the number of reference points

1: Generate the reference points and assign their neighborhood
2: Initialize the population P; |P| = W
3: Evaluate the initial population and compute the ideal point z̄ j = ( f min

1 , f min
2 , ....., f min

M ) and intercepts ai’s for i= 1 to M
4: Scale the individuals of the population
5: while (gen≤ Genmax) do
6: for i=1:W do
7: Assign the base parent as Pi

8: I=Select a mating partner for (Pi)
9: Create a child via recombination as Ci
10: Evaluate Ci and compute the distances (d1 and d2) using all reference directions
11: Replace the parent Pk with Ci using single-first encounter, where k denotes the index of the first parent satisfying

the condition of replacement
12: Update the ideal point (z̄), the intercepts and re-scale the population
13: end for
14: end while

The algorithm consists of four major components i.e. (a) generation of reference
directions and assignment of neighborhood (b) computation of distances along and per-
pendicular to each reference direction (c) method of recombination using information
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from neighboring subproblems and finally (d) adaptive epsilon comparison to manage
the balance between convergence and diversity.

2.1 Generation of Reference Points and Assignment of Neighborhood

A structured set of reference points (β ) is generated spanning a hyperplane with unit
intercepts in each objective axis using the algorithm outlined in [16]. The approach
generates W points on the hyperplane with a uniform spacing of δ = 1/p for any num-
ber of objectives M. The process of generation of the reference points is illustrated for
a 3-objective optimization problem i.e. (M=3) and with an assumed spacing of δ = 0.2
i.e (p= 5) in Figure 1. The process results in the generation of 21 reference points.

W = (M+p−1)Cp (2)

(a) (b)

Fig. 1. (a) the reference points are generated computing β s recursively (b) the table shows the
combination of all β s in each column
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Fig. 2. A set of reference points in a normalized hyper-plane for number of objectives, M = 3 and
p= 5

The distribution of the reference points are presented in Figure 2. The reference
directions are formed by constructing a straight line from the origin to each of these
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reference points. The population size of the algorithm is set to the number of reference
points. For every reference point, its neighborhood consists of T closest reference points
computed based on a Euclidean distance amongst them. The initial population consists
of W individuals generated randomly within the variable bounds. Such solutions are
thereafter assigned randomly to a reference direction during the phase of initialization.

2.2 Computation of Distances along and Perpendicular to Each Reference
Direction

Since in a generic many objective optimization problem, the objectives may assume
negative values or values in varying orders of magnitude, it is important to scale them
appropriately. The ideal point of a population is denoted by z̄ j = ( f min

1 , f min
2 , ....., f min

M )
and the extreme point is denoted by z j

e = ( f max
1 , f max

2 , ....., f max
M ). A hyperplane is cre-

ated using the solutions that have led to the coordinates of the extreme point. The in-
tercepts of the hyperplane along the objective axes are denoted by a1,a2, ....,aM . The
generic equation of a plane through these points can be represented using the following
equation

A f1+B f2+ .....+C fM = 1 (3)

where, A, B,....,C are the unit normal of the plane. The intercepts of the plane with the
axis are given by a1 = 1/A, a2 = 1/B,....., and aM = 1/C.

In the event, the number of such solutions are less than M or any of the ai’s are
negative, ai’s are set to f max

i . Every solution in the population is subsequently scaled as
follows:

f
′
j(x) =

f j(x)− z̄ j

a j− z̄ j
,∀ j = 1,2, ...M (4)

For any given reference direction, the performance of a solution can be judged using
two measures d1 and d2 as depicted in Equation 8. The first measure d1 is the Euclidean
distance between origin and the foot of the normal drawn from the solution to the refer-
ence direction, while the second measure d2 is the length of the normal. Mathematically,
d1 and d2 are computed as follows:

d1= wT f
′
j(x) (5)

d2= || f ′j(x)−wT f
′
j(x)w|| (6)

where w is a unit vector along any given reference direction. It is clear that a value of
d2 = 0 ensures the solutions are perfectly aligned along the required reference direction
ensuring perfect diversity, while a smaller value of d1 indicates superior convergence.
These two measures are subsequently used to control diversity and convergence of the
algorithm via an adaptive epsilon scheme.
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2.3 Mating Partner Selection

The information and similarity of neighboring subproblems are exploited via the pro-
cess of parter selection. The mating partner for Pi (where i is the index of the current
individual in a population) is selected using of the following rules i.e. rule 1: select a
parent from the neighborhood with a probability of τ and rule 2: select a random parent
from the population with a probability of (1− τ).

2.4 Method of Recombination

In the recombination process, two child solutions are generated using simulated binary
crossover (SBX) operator [20] and polynomial mutation. The first child is considered
as an individual attempting to replace any parent in the population.

2.5 Adaptive Epsilon Comparison to Manage the Balance between Convergence
and Diversity

Since every solution is assigned to a reference direction, the average deviation εCD for
the population of solutions is computed using Equation 7, where d2i denotes the d2

measure of the ith individual in the population.

εCD =
∑W

i=1 d2i

W
(7)

whenever a child solution is created, its d2 measure is computed along all reference
directions and the child solution replaces a single parent based on the following rule
Equation 8.

(d1,d2)<εCD(d1,d2)⇔

⎧⎨⎩
d1<d2, if d2,d2 < εCD

d1<d2, if d2 = d2

d2<d2, otherwise
(8)

It is also worth noting that this process is a single-first encounter replacement scheme
whereby, the child solution can only replace a single parent and the first encountered
parent meeting the condition is replaced. Whenever a replacement is successful, a check
is performed to identify if there is a need to re-compute the ideal point or the intercepts.
The population needs to be re-scaled in the event the ideal point or the intercepts have
changed.

The possible epsilon comparison scenarios are presented in Fig. 7 as Case 1, Case 2
and Case 3. Let us assume the parent solution is denoted by (s1) and the child solution
is denoted by (s2)). Case 1: Both the solutions have their d2 values less than εCD. One
with the smaller d1 is selected i.e.(s1). Case 2: Both the d2 values are more than εCD.
One with the lower d2 value is selected i.e.(s2). Case 3: One solution has its d2 value
more than εCD and the other has its d2 value less than εCD. One with the smaller d2

value is selected i.e. (s1).
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Fig. 3. (a) Case 1 (b) Case 2 (c) Case 3

2.6 Constraint Handling

The constraint handling approach used in this work is based on epsilon level comparison
and has been reported earlier in [21]. The feasibility ratio (FR) of a population refers to
the ratio of the number of feasible solutions in the population to the number of solutions
(W ). The allowable violation is calculated as follows:

CV =
p

∑
i=1

max(gi,0)+
q

∑
i=1

max(|hi− ε|,0) (9)

CVmean =
1

W

W

∑
j=1
(CVj) (10)

Allowable violation(εCV ) =CVmean ∗FR (11)

An epsilon level comparison using this allowable violation measure is used to compare
two solutions. If two solutions have their constraint violation value less than this epsilon
level, the solutions are compared based on their objective values i.e. via d1 and d2 mea-
sures. Such a constraint handling scheme has been demonstrated to be more efficient
than feasibility first schemes.

3 Experimental Results

In this section, we present the results of proposed decomposition based evolutionary
algorithm (DBEA-Eps) and compare its performance with M-NSGA-II and MOEA/D-
PBI [22] for DTLZ1 and DTLZ2 problems with 3,5,8,10 and 15 objectives.

The population sizes used in this study are the same as those adopted in [22]. In our
proposed algorithm, the probability of crossover is set to 1 and the probability of muta-
tion is set to pm = 1/D, where D is the dimensionality of the problem. The distribution
index of crossover is set to ηc=30 and the distribution index of mutation is set to ηm=20
as in [22]. The probability of selecting parent from its neighborhood (τ) is set to 0.9
and the neighborhood size is set to 20.

To assess the performance, we have selected IGD [23][15] as a performance metric.
The IGD metric in our simulation results is calculated by normalizing the approximated
set with the theoretical ideal and nadir points for the DTLZ problems.
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3.1 Performance on Unconstrained DTLZ Problems

In this comparison, we have reported the best, median and worst IGD results obtained
using 20 independent runs for DTLZ1 and DTLZ2. The results are compared against
M-NSGA-II and MOEA/D-PBI in Table 3. In Fig 4 and Fig 5, the final Pareto front is
shown for three-objective problems of DTLZ1 and DTLZ2.

Table 1. IGD statistics for problems DTLZ1 and DTLZ2 using 20 independent runs

Test Problem Obj. MaxGen Strategy Best Median Worst

DTLZ1 3 400
DBEA-Eps 8.771e-5 9.521e-3 5.854e-1
M-NSGA-II 4.880e-4 1.308e-3 4.880e-3

MOEA/D-PBI 4.095e-4 1.495e-3 4.743e-3

DTLZ1 5 600
DBEA-Eps 1.771e-5 2.183e-4 3.782e-1
M-NSGA-II 5.116e-4 9.799e-4 1.979e-3

MOEA/D-PBI 3.179e-4 6.372e-4 1.635e-3

DTLZ1 8 750
DBEA-Eps 4.387e-5 3.581e-4 1.981e-3
M-NSGA-II 2.044e-3 3.979e-3 8.721e-3

MOEA/D-PBI 3.914e-3 6.106e-3 8.537e-3

DTLZ1 10 1000
DBEA-Eps 7.691e-4 1.504e-3 2.700e-3
M-NSGA-II 2.215e-3 3.462e-3 6.869e-3

MOEA/D-PBI 3.872e-3 5.073e-3 6.130e-3

DTLZ1 15 1500
DBEA-Eps 1.696e-3 2.606e-3 2.686e-3
M-NSGA-II 2.649e-3 5.063e-3 1.123e-2

MOEA/D-PBI 1.236e-2 1.431e-2 1.692e-2

DTLZ2 3 250
DBEA-Eps 2.040e-2 4.138e-2 6.417e-2
M-NSGA-II 1.262e-3 1.357e-3 2.114e-3

MOEA/D-PBI 5.432e-4 6.406e-4 8.006e-4

DTLZ2 5 350
DBEA-Eps 1.199e-3 3.024e-3 2.272e-2
M-NSGA-II 4.254e-3 4.982e-3 5.862e-3

MOEA/D-PBI 1.219e-3 1.437e-3 1.727e-3

DTLZ2 8 500
DBEA-Eps 1.172e-3 2.899e-3 6.915e-3
M-NSGA-II 1.371e-2 1.571e-2 1.811e-2

MOEA/D-PBI 3.097e-3 3.763e-3 5.198e-3

DTLZ2 10 750
DBEA-Eps 3.656e-3 3.657e-3 3.657e-3
M-NSGA-II 1.350e-2 1.528e-2 1.697e-2

MOEA/D-PBI 2.474e-3 2.778e-3 3.235e-3

DTLZ2 15 1000
DBEA-Eps 5.160e-3 5.960e-3 5.960e-3
M-NSGA-II 1.360e-2 1.726e-3 2.114e-2

MOEA/D-PBI 5.254e-3 6.005e-3 9.409e-3

One can observe that our algorithm obtained the best IGD values in 8 instances out
of 10. In terms of the median performance, our algorithm was the best in 6 instances
thereby indicating competitive performance with recently proposed forms.
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Fig. 4. Obtained solutions by (a) M-NSGA-II (b) MOEA/D-PBI (c) DBEA-Eps for DTLZ1

Fig. 5. Obtained solutions by (a) M-NSGA-II (b) MOEA/D-PBI (c) DBEA-Eps for DTLZ2

In order to observe the process of evolution, we computed the average performance
of the population i.e. average of the d1 and d2 values for the individuals for DTLZ1 (3
objectives). One can observe from Figure 6, that the average d2 converges to near zero
(i.e. near perfect alignment to the reference directions) while the average d1 measure
stabilizes at around 0.5 indicating convergence to the Pareto front.
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Fig. 6. (a) the initial population of DTLZ1 test problem for number of objectives 3 (b) the final
Pareto-front of DTLZ1 test problem for number of objectives 3 (c) the convergence of distance
measure over the generations

The association mechanism (i.e. solutions to each reference direction) for a 3-
objective DTLZ1 problem is presented in Figure 7. The figure shows the associations in
generation 1, 200 and 400 using 15 reference points. One can observe that although ini-
tially the association is random, the solutions automatically get associated to the closest
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reference directions during the course of evolution via the pressure induced by d2. This
alleviates the need of an extensive niching and association operation as encountered in
M-NSGA-II [17].

(a) (b) (c)

Fig. 7. (a) the initial population of DTLZ1 test problem for number of objectives 3 with 15 refer-
ence points (b) at generation 200 (c) at final generation 400

4 Constrained Engineering Design Problems

Since the performance of the proposed algorithm was competitive on unconstrained
test problems, we investigated its performance on three constrained engineering de-
sign optimization problems i.e. the three-objective car-side-impact problem [24] with
ten inequality constraints, five-objective water resource management problem [25] with
seven inequality constraints and finally the ten objective general aviation aircraft (GAA)
design problem [7] having a single inequality constraint.

4.1 Car Side Impact Problem

The problem aims to minimize the weight of a car, the pubic force experienced by a
passenger and the average velocity of the V-Pillar responsible for bearing the impact
load subject to the constraints involving limiting values of abdomen load, pubic force,
velocity of V-Pillar, rib deflection etc [24].

The problem is solved using DBEA-Eps and MOEA/D-PBI. The algorithms are run
for 500 generations and the final non-dominated front is shown in Fig 8.It is important
to note that the results of MOEA/D-PBI is derived without scaling which could be a
reason among others for poor performance.

4.2 Water Resource Management Problem

This is a five objective problem having seven constraints taken from the literature [25].
The parallel coordinate plot generate using our proposed algorithm (DBEA-Eps) is pre-
sented in Fig 9. The best IGD value across 20 runs is 3.29e−2 and the IGD is computed
using the reference set of 2429 solutions [26]. A population of 210 solutions has been
used and evolved over 1000 generations.

In Fig 10, a scatter plot-matrix is presented. The results from the DBEA-Eps are
shown in the top-right plots vis-a-vis the known reference set of 2429 solutions (shown
in bottom-left plots).
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4.3 General Aviation Aircraft (GAA) Design Problem

This problem was first introduced by Simpson et al. [27] and has been recently solved
using an evolutionary algorithm [7]. The problem involves 9 design variables i.e. cruise
speed, aspect ratio, sweep angle, propeller diameter, wing loading, engine activity fac-
tor, seat width, tail length/ diameter ratio and taper ratio and the aim is to minimize
the takeoff noise, empty weight, direct operating cost, ride roughness, fuel weight, pur-
chase price, product family dissimilarity and maximize the flight range, lift/ drag ratio
and cruise speed. Previous studies encountered difficulties in obtaining feasible solu-
tions due to tight constraints [27].

In this example, we have used 100 reference points and the population was allowed
to evolve over 5000 generations. A reference set of 412 non-dominated solutions ob-
tained from ε-MOEA and Borg-MOEA is used to compute the IGD metric. The re-
sults of the proposed algorithm are compared with four other algorithms i.e. ε-MOEA,
Borg-MOEA, MOEA/D and ε-NSGA-II [7]. We have also computed the hypervolume
using the ideal point of (i.e.[73.251, 1881.5, 59.114, 1.7977, 359.92, 41879, -2580.2,
-16.823, -204.02, 0.26847]) and the extreme point of (i.e.[74.036, 2011.5, 79.993, 2,
483.13, 44590, -2000, -14.408, -189.3, 1.9844]) obtained from the reference set. The
performance of the algorithms are compared using the hypervolume in Table 2 and IGD
in Table 3. One can observe that the proposed algorithm performs marginally better than
others for this problem.

Figure 11 shows the parallel coordinate plot. The figure clearly shows that DBEA-
Eps is able to find a widely distributed set of nondominated points for 10-objective
GAA design problem.
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Table 2. Performance metric value of product family design problem using 50 independent runs

Algorithm Function Evaluation
Hypervolume

Best Mean Worst Std
DBEA-Eps

50,000

0.02899 0.01715 0.00689 0.04561
ε-MOEA 0.02032 0.01032 0.00259 0.04125

Borg-MOEA 0.02245 0.01013 0.00424 0.02327
MOEA/D 0.00092 0.00087 0.00045 0.00145

ε-NSGA-II 0.01636 0.01005 0.00236 0.05232

Table 3. Performance metric value of product family design problem using 50 independent runs

Algorithm Function Evaluation
IGD

Best Mean Worst Std
DBEA-Eps

50,000

0.62070 0.80123 0.82430 0.09210
ε-MOEA 0.98312 0.99123 0.99678 0.10312

Borg-MOEA 0.98211 0.99113 0.99337 0.02321
MOEA/D 0.99117 0.99587 0.99723 0.02145

ε-NSGA-II 0.98571 0.98872 0.99131 0.72123
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5 Conclusion

In this paper, a decomposition based evolutionary algorithm with adaptive epsilon com-
parison is introduced to solve unconstrained and constrained many objective optimiza-
tion problems. The approach utilizes reference directions to guide the search, wherein
the reference directions are generated using a systematic sampling scheme as introduced
by Das and Dennis [16]. The algorithm is designed using a steady state form. In an at-
tempt to alleviate the problems associated with scalarization(commonly encountered in
the context of reference direction based methods), the balance between diversity and
convergence is maintained using an adaptive epsilon comparison. Such a process also
eliminates the need for a detailed association and niching operation as employed in M-
NSGA-II. In order to deal with constraints, an epsilon level comparison is used which
is known to be more effective than methods employing feasibility first principles. The
performance of the algorithm is presented using DTLZ1 and DTLZ2 problems with
objectives ranging from 3 to 15. Furthermore, three constrained engineering design op-
timization problems with three to seven constraints (car side impact, water resource
management and a general aviation aircraft design problem) have been solved to il-
lustrate the performance of the proposed algorithm. The preliminary results indicate
that the proposed algorithm is able to deal with unconstrained and constrained many-
objective optimization problems better or at par with existing state of the art algorithms
such as M-NSGA-II and MOEA/D-PBI.
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Abstract. Decomposition-based algorithms seem promising for many-
objective optimization problems. However, the issue of selecting a set
of weighting vectors for more than two objectives is still unresolved and
ad-hoc methods are predominantly used. In the present work, a novel con-
cept is introduced which we call generalized decomposition. Generalized
decomposition enables the analyst to adapt the generated distribution of
Pareto optimal points, according to the preferences of the decision maker.
Also it is shown that generalized decomposition unifies the three perfor-
mance objectives in multi-objective optimization algorithms to only one,
that of convergence to the Pareto front.

1 Introduction

Decomposition-based methods have been used traditionally in mathematical pro-
gramming to solve multi-objective problems [1]. These methods use scalarizing
functions to decompose a multi-objective problem into several single objective
subproblems. These subproblems are defined with the help of weighting vectors.
Weighting vectors are k-dimensional vectors with positive components that sum
to one, where k is the number of objectives. The location on the Pareto front to
which each subproblem will tend to converge, depends strongly on the choice of
weighting vectors. Therefore the choice of an appropriate set of weighting vectors
to decompose the multi-objective problem, will determine the distribution of the
final Pareto set approximation along the Pareto front. Although a rigorous defi-
nition of what is considered a good distribution of Pareto optimal solutions does
not exist, there is a consensus about the features that must be present. Firstly,
assuming that a decision maker is not involved prior or during the optimisation
process, the general tendency is to distribute the Pareto approximation along
the entire Pareto front. A second implicit requirement is that Pareto optimal
solutions are distributed evenly across the entire front. This emanates from the
fact that the preference of the decision maker towards a particular region of the
trade off surface is unspecified or unknown. Finally, the distance of the Pareto set
approximation must be as close as possible to the true Pareto front. Convergence
of the optimization algorithm is measured in terms of that distance.

R.C. Purshouse et al. (Eds.): EMO 2013, LNCS 7811, pp. 428–442, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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In decomposition-based multi-objective algorithms, the first two properties
mentioned above are directly controlled by the choice of weighting vectors. So,
naturally there have been several suggestions as to their selection. However, the
choice of weighting vectors is not independent of the scalarizing method used to
decompose the multi-objective problem. Furthermore this problem is non-linear
in itself, so in most instances there is no guarantee that a unique solution can be
found. In this work we show that for a particular class of scalarizing functions
the weighting vectors can be optimally calculated, given a clear definition of
what is meant by well distributed Pareto optimal solutions. Also, knowledge of
the Pareto front geometry can greatly increase the accuracy of the generated
solutions, as will be explained later.
In contrast with mathematical programming, evolutionary algorithms have

tended to use Pareto-based methods to deal with multi-objective problems. How-
ever, recent studies [2] strongly indicate that such methods become impractical
when solving problems with more than three objectives. The reason for this is
that as the dimensionality of the problem is increased, the ability of Pareto-based
methods to discriminate between solutions becomes increasingly more difficult.
This difficulty stems from the fact that Pareto dominance relations, the basis
of Pareto-based methods, induce only a partial ordering. This means that two
objective vectors can be either identical, superior or inferior with respect to the
other or incomparable. In higher dimensions, the number of incomparable ob-
jective vectors increases to such levels that any meaningful selection is simply
impossible [2]. An additional difficulty that Pareto-based algorithms are facing
for many-objective problems is that the closer the Pareto set approximation is to
the Pareto optimal front, the lower the probability that a superior solution will
be generated [3]. These problems encountered with Pareto-based algorithms has
led some researchers to revisit traditional methods, such as scalarizing functions,
to extend algorithms to multi-objective problems. Some examples of promising
evolutionary work on decomposition-based methods for multi-objective problems
are due to Jaszkiewicz [4], Hughes [5] and Zhang and Li [6].
The remainder of this work proceeds as follows. In Section 2 a problem formu-

lation is given along with some fundamental concepts. In Section 3 decomposition
methods are briefly reviewed as well as the methods currently employed in se-
lecting the set of weighting vectors. Generalized decomposition is introduced in
Section 4 and in Section 5 the impact that the choice of weighting vectors has on
the distribution of points on the Pareto front is studied. In Section 6 a generic
reference front geometry is suggested. This work is summarized and concluded
in Section 7.

2 Problem Statement and Definitions

A multi-objective problem (MOP) is defined as,

min
x

F(x) = (f1(x), f2(x), . . . , fk(x))

subject to x ∈ S,
(1)
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where k is the number of scalar objective functions and x is the decision vector
defined in the domain S ⊆ Rn. The set S is called the feasible region or decision
space and the mapping F : S→ Z where Z ⊂ Rk, defines the objective space Z.
The optimization algorithm used to solve (1) depends on the properties of the
function F(·). For instance if F(·) is non-differentiable, gradient-based methods
are automatically excluded. In the present work the only assumption is that F(·)
is a continuous function of x.
Pareto-based methods use Pareto-dominance relations [1], to induce a partial

ordering in the objective space. These relations, initially introduced by Edge-
worth [7] and further expanded by Pareto [8], involve element-wise vector com-
parison. For example for two vectors a,b ∈ Rn, a < b if all the elements in a are
smaller to the corresponding elements in b. This partial ordering, induced by
the ≺ relation, is denoted as a ≺ b, and, in the context of a minimization prob-
lem, this expression is read as: the vector a dominates b. For a more complete
treatment of Pareto-dominance relations the reader is referred to [1].

Definition 1. Given a set of decision vectors A for which F(A) ⊂ Z, the non-
dominated set1 is defined as P = {z : �z̃ ≺ z, ∀z̃ ∈ F(A)}. If A is the entire
feasible region in the decision space, S, then the set P is called the Pareto
optimal set or Pareto Front (PF). A vector z ∈ Z is referred to as objective
vector.

Definition 2. The ideal objective vector, z, is the vector with elements
{inf(f1), . . . , inf(fk)}.

Definition 3. The nadir objective vector, znd, is the vector with elements
{sup(f1), . . . , sup(fk)}, subject to fi be elements of objective vectors in the Pareto
optimal set.

3 Brief Review of Decomposition Methods

Decomposition methods can be classified according to the interaction with the
decision maker. In the present work the focus is on a posteriori methods. In this
paradigm the aim of the optimiser is to generate a Pareto set approximation that
portrays as faithfully as possible the entire Pareto front, prior to introduction
of decision maker preferences. A posteriori methods do have to make certain
assumptions about the decision maker’s preferences. One of these assumptions
is that the decision maker has no particular preference towards any region of the
Pareto front. Following this latter assumption, a reasonable course of action is to
produce solutions across the entire front, if possible. Furthermore, this assump-
tion can be used to infer the definition of a good distribution of solutions on the
front. For instance, some researchers assume that uniformly distributed2 solu-
tions are preferable [4], while others advocate evenly distributed3 solutions [6].

1 Or Pareto Front approximation.
2 Distributed according to the uniform distribution.
3 Even here refers to a distribution of points whose mean distance variance is small.
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However a clear resolution of this matter is impossible as it depends on the de-
cision maker. Nevertheless the ability to change this distribution at will can be
very helpful.

3.1 Fundamental Methods

As mentioned briefly in Section 1, decomposition methods employ scalarizing
functions to divide a multi-objective problem in to a set a single objective sub-
problems. The premise of this approach is that, upon successful optimization of
all the subproblems, a Pareto set will emerge formed by the solutions of these
subproblems. There are several scalarizing functions that are available to the
analyst [9], however in the present work only the most common methods are
discussed.
One of the simplest and perhaps most intuitive scalarizing functions is the

weighted sum method [1]:

min
x

wTF(x)

k∑
i=1

wi = 1, and wi ≥ 0,
(2)

where w = (w1, . . . , wk) is referred to as weighting vector and wi are the weight-
ing coefficients. The weighting coefficients can be viewed as factors of relative
importance of the scalar objective functions in F(·). The issue with the weighted
sum approach is that its ability to produce Pareto optimal solutions depends
strongly on the convexity of the Pareto front. For instance locally concave re-
gions of a Pareto front cannot be produced by this method [1]. However the
weighted sum method is still employed in practice, and a good reason for that
is that (2) preserves differentiability. That is, if the scalar functions fi(·) are
differentiable, then the scalar problem produced by the weighted sum method
will also be differentiable.
Another family of scalarizing functions is based on the weighted metrics

method [9]:

min
x

(
k∑

i=1

wi|fi(x) − zi |p
) 1

p

. (3)

Here, as in (2), the weighting coefficients must be wi ≥ 0 and
∑k

i=1 wi = 1, also
p ∈ [1,∞). However p is usually an integer or equal to∞. The expression (3) can
be read as, minimise the weighted distance of the objective function vector F to
a desired point, where the meaning of the term distance depends on the chosen
norm. A potential drawback of weighted metrics based scalarizing functions is
that the ideal vector, z, has to be known a priori. However this vector can
be estimated adaptively during the process of optimization [6]. For p = ∞ the
Chebyshev scalarizing function is obtained:

min
x
‖w ◦ |F(x) − z| ‖∞. (4)
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The ◦ operator denotes the Hadamard product which is element-wise multiplica-
tion of vectors or matrices of the same size. The key result that makes (4) very
interesting is that for every Pareto optimal solution there exists a weighting
vector with coefficients wi > 0, for all i = 1, . . . , k [1]. Meaning that all Pareto
optimal solutions can be obtained using (4). This result is quite promising, al-
though in current practice the choice of weighting vectors is made primarily using
ad hoc methods, see Section 3.2. Therefore direct control of the distribution of
solutions on the Pareto front is virtually nonexistent.
The normal boundary intersection method (NBI) introduced by Das [10],

presents another formulation of a scalarizing function. The idea in NBI is that
by maximizing the distance of a vector normal to the simplex with vertices {vi :
ei ◦ znd}, where ei is a zero vector with the ith component equal to 1, a solution
that is likely to be Pareto optimal is obtained. Using NBI the distribution of
solutions on the Pareto front are directly related to the distribution of weighting
vectors on the probability simplex4, thus providing the analyst a clear path in
distributing solutions on the Pareto front according to the needs of the decision
maker, if these are known. The NBI method is stated as follows:

min
x
gnbi(x;w, z

) = d

subject to z − d ·w = F(x).
(5)

The equality constraint in the formulation of the NBI method in (5) has to be
satisfied in some way; a method proposed by Zhang and Li [6] is the use of a
penalty function approach. Therefore, an equivalent formulation of (5) is the
following:

min
x
gnbi(x;w

i, z) = d1 + pd2

d1 =
‖(z − F(x))Twi‖2

‖wi‖2
,

d2 = ‖F(x)− (z − d1wi)‖2,

(6)

where p is a tunable parameter which controls the relative importance of conver-
gence, d1, and position, d2, in the penalty function. Unfortunately (6) has three
significant drawbacks. First, the normal-boundary intersection method does not
guarantee that the solutions to the subproblems will be Pareto optimal [10].
Second, NBI has to be solved using a penalty method which introduces one
more parameter that has to be tuned for every problem separately. Lastly, it is
unclear how this decomposition method can be scaled for problems with many
objectives.

3.2 Methods for Generating Weighting Vectors

To solve multi-objective problems using a decomposition method, a set of weight-
ing vectors has to be selected based on the criteria explained in the introduction

4 The simplex with vertices ei for all i = 1, . . . , k, is commonly known as the proba-
bility simplex.
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of Section 3, or perhaps other considerations pertaining to a particular problem.
However the real interest is not actually in the weighting vectors but the Pareto
optimal solutions that will result by solving the corresponding subproblems gen-
erated by the set of weighting vectors. So the question is how to select the
weighting vectors in such a way that the desired distribution of Pareto optimal
solutions is generated. This question is primarily addressed by two methods.
The first, is to generate a set of weighting vectors that are evenly spaced. This

is achieved by discretising every dimension of the objective space so that every
weighting coefficient is allowed to assume every value within the set,{

0

H
,
1

H
, . . . ,

H

H

}
, (7)

subject to
∑k

i=1 wi = 1. This approach, first seen in [11, pp. 234], has been
adopted by Das [10] for use in NBI where a method to generate weighting vectors
for an arbitrary number of objectives is also presented. So for a two objective
problem and for H = 2 the set of weighting vectors is, {(0, 1), (0.5, 0.5), (0, 1)}.
Although this method seems effective when combined with a normal boundary
intersection scalarizing function and perhaps others, its use with the Chebyshev
scalarizing function does not produce Pareto optimal solutions that are evenly
spaced nor uniformly distributed. This can be seen in [6], and is further explored
in Section 5.
The second approach in generating a set of weighting vectors is due to

Jaszkiewicz [4]. The idea is to generate a set of weighting vectors that are
uniformly distributed on the probability simplex. The assumption is that for
a uniformly distributed set of weighting vectors, the corresponding solutions of
the associated subproblems, will be uniformly distributed on the Pareto front.
To generate a set of weighting vectors according to the suggestions in [4], the fol-
lowing equation can be used as many times as the required size of the weighting
vector set,

w = {w1, . . . , wk},

wi = 1−
i−1∑
m=1

wm − (U(0, 1))i−k
, for all i = 1, . . . , k.

(8)

Here, U(0, 1) is a sample from the uniform distribution in the domain [0, 1].
Most other methods either employ the paradigm presented by Das [10], that is,

to evenly space the weighting vectors, or by Jaszkiewicz [4] where the weighting
vectors are generated at random. What is shown in the present work is that
neither approach has the capacity to yield satisfactory results in comparison to
the implicit requirements stated above.

4 Generalized Decomposition

As mentioned in Section 3, decomposition methods have two key components:
first, the scalarizing function and, second, a set of weighting vectors.
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The argument in the present work is that the choice of weighting vectors is
very important with respect to the three main objectives of multi-objective op-
timization. Namely, convergence to the Pareto front, coverage of the entire front
and a well distributed Pareto optimal set. All these aspects are directly con-
trolled by the choice of the set of weighting vectors that is used to decompose
a multi-objective problem to a set of single objective subproblems. A method,
which we refer to as generalized decomposition, is presented below that provides
an exact solution to the choice of this set of weighting vectors. The version pre-
sented here is based on the Chebyshev scalarizing function, due to its guarantee
of producing a Pareto optimal solution for every weighting vector [1]. Extension
of other scalarizing functions is left for future work. Two other interesting works
elaborating on this issue are [12, 13].

4.1 Optimal Selection of the Weighting Vector Set

First, it must be clarified what is meant by optimal selection of the weighting
vector set. The meaning of the term optimal in the present context is that, given
a clear mathematical definition of what a well distributed Pareto optimal set is
and a way to measure the quality of a candidate set against this definition, then,
by using generalized decomposition this quality measure can be maximised. This
is subject to some prior information as explained later.
Starting with the Chebyshev scalarizing function as defined in (4) and given a

set of weighting vectors, a multi-objective optimization problem can be decom-
posed to N subproblems as:

min
x
g∞(x,ws, z) = ‖ws ◦ |F(x)− z| ‖∞

∀ s = {1, . . . , N},
subject to x ∈ S,

(9)
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Fig. 1. A reference Pareto front with linear geometry (left) and the corresponding
optimal weighting vector set (right)
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with wi > 0 for all i = 1, . . . , k and
∑k

i=1 wi = 1, for all w
s. For simplicity, let

us assume that the ideal vector is z = (0, . . . , 0) and that the scalar objective
functions are normalized in the range [0, 1]. This normalization implies that the
nadir vector, znd, is known. Then the question that needs to be answered for
a Pareto optimal decision vector x̃, is whether a weighting vector w̃ exists, for
which the following condition holds,

‖w̃ ◦F(x̃)‖∞ ≤ ‖w ◦ F(x̃)‖∞
w̃,w ∈ W , F(x̃) ∈ P ,

(10)

where W is the convex set defined by the vertices {ei : i = 1, . . . , k}. If such a
solution exists, it can be obtained by the solution of the following mathematical
program,

min
w
‖w ◦ F(x)‖∞,

subject to

k∑
i=1

wi = 1,

and wi ≥ 0, ∀ i ∈ {1, . . . , k},F(x) ≥ 0.

(11)

Notice that in (11), the optimization is with respect to w. In this setting, F(x)
is simply a linear transformation of the vector w, which means that since the
weighting vector is convex, then the transformed vector is also part of a convex
set. Additionally all norms preserve convexity, hence the problem stated in (11)
is convex. Subsequently there is a guarantee that a solution w̃ exists [14] and
hence this solution will satisfy (10). The decomposition method that selects the
weighting vector set using (11) we call generalized decomposition.
The assumption in (11) is that there exists a reference Pareto set, Pr, that

exhibits the desired properties described in Section 3. Next the mathematical
program in (11) is solved for every vector in the set Pr, thus obtaining the
optimal weighting vector set. This weighting vector set, in combination with
the Chebyshev scalarizing function (9), can then be used with any optimization
algorithm, in order that a Pareto front with the desired properties to be obtained.
An example of the application of generalized decomposition to a reference Pareto
front is seen in Fig. (1). Any convex optimization problem solver can be used
for (11), however in the present work CVXGEN [15] is used as it is of several
orders of magnitude faster than any other solver. Some alternatives can be found
in [16].

4.2 Practical Considerations

The problem that becomes evident with generalized decomposition is that so-
lutions at the extremities of the Pareto front, that is Pareto optimal points for
which one of the objective functions is very close to 0, seem to be difficult to
obtain. Although this situation is rare in practice, namely it is unusual that one
of the scalar objectives in the objective vectors be reduced to zero, nevertheless
it is important that the reasons behind this behaviour are understood. The cause
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Fig. 2. A reference Pareto front with linear geometry (left) and the corresponding
optimal weighting vector set (right)

of this behaviour is linked to the fact that a scalarizing function is used and that
the weighting vectors that represent solutions with one 0 component are unavoid-
ably weighting vectors with zero components everywhere except at the location
of the 0. For example, in Fig. (2), the left graph illustrates a linear Pareto front.
The solutions that lie on the f1 f2-plane have zero f3 component, so they are
of the form (a, b, 0). Consequently, in this scenario, the mathematical program
described in (11), will yield a weighting vector w = (0, 0, 1) for all solutions of
the form (a, b, 0). The same reasoning applies for solutions on the f1f3-plane and
f2f3-plane. This behaviour is also present for problems with many objectives. In
practical terms this prevents generalized decomposition from obtaining solutions
of this type. This is directly linked to the fact that when using the Chebyshev
scalarizing function, although there is a guarantee that every Pareto optimal so-
lution is obtainable via some weighting vector, there is no guarantee that these
solutions will not be weakly Pareto optimal [1, pp. 99].
A solution to this is to modify the Chebyshev scalarizing function and, by ex-

tension, generalized decomposition. Therefore the problem in (9) can be restated
as [1, pp. 101]:

min
x
g∞(x,ws, z) = ‖ws ◦ (|F(x) − (z − ε)|+ ρ

k∑
i=1

|fi(x)− (zi − ε)|) ‖∞

∀ s = {1, . . . , N},
subject to x ∈ S,

(12)
where ρ and ε are sufficiently small scalars. Assuming that the scalar objective
functions fi are normalized in the range [0, 1], the extra term in (12) will be
constant for all solutions in the case of a linear Pareto front geometry. For dif-
ferent Pareto front geometries, it will vary within bounds, even if all objectives
are normalized. However, if this is applied directly in generalized decomposition
it will have a distorting effect on the relative distances of the points of the ref-
erence Pareto front. To avoid this, therefore, preserving the desired distribution



Generalized Decomposition 437

properties present in the reference front, generalized decomposition is restated
as follows:

min
w
‖w ◦ (F(x) + ρ · C(k))‖∞,

subject to

k∑
i=1

wi = 1,

and wi ≥ 0, ∀ i ∈ {1, . . . , k},F(x) ≥ 0.

(13)

where ρ is a small scalar, as in (12), and C(k) is a linear monotone increasing
function of the number of objectives k. Intuitively, the effect of the ρ ·C(k) term
is that it shifts the reference Pareto front slightly. This, in extension, eradicates
solutions that have identically zero components and preserves the relative posi-
tion of solutions in the reference Pareto front. The penalty for this modification
is that all resulting solutions using the weighting vector set produced by (13),
will be slightly closer to one another. This effect is directly controlled by ρ and
C(k), and can be as small as the machine precision allows for.
An alternative to the modification of generalized decomposition seen in (13),

is to simply remove the solutions in the reference Pareto front that have one zero
component. This way the original definition, seen in (11), can be used. This can
simplify the task, since the extra parameters ρ and C(k) become unnecessary.
However this method reduces the number of solutions, N , that are eventually
obtained by the optimization, which may be undesirable.

5 The Effect of Weighting Vector Choice in Many
Objective Problems

In Section 4 it is stated that the choice of the weighting vector set is very im-
portant, and that this set directly controls the distribution of produced Pareto
optimal points by a multi-objective optimization algorithm. To test this hypothe-
sis, firstly a definition and a measure of well distributed Pareto optimal solutions
is required. A measure that is in common use for evenly distributed points on
k-dimensional manifolds is the Riesz kernel, or s-energy [17], defined as:

E(Z; s) =
∑

1≤i≤j≤N

‖zi − zj‖−s, s > 0

z ∈ Rk, and, Z = {zi : i = 1, . . . , N}.
(14)

It has been shown that for a k-dimensional manifold the s-energy is minimized
when the distribution of points on that manifold is even, if s ≥ k [17]. Therefore,
since the Pareto front of a k-objective problem is at most a (k − 1)-dimensional
manifold [6], the s parameter in the s-energy metric used for the following exper-
iment is set to k − 1, see Table 1. Generalized decomposition is compared with
the methods suggested by [10], and later used by [6] - that is, evenly distributed
weighting vectors, and the method suggested by Jaszkiewicz [4], namely the se-
lection of a weighting vector set generated according to (8). The results, shown
in Fig. (3), are obtained according to the following procedure:
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Table 1. The number of objective vectors, N , for constant H used in the experiment
seen in Fig. (3)

Obj. # 2 3 4 5 6 7 8 9 10 11

s 1 2 3 4 5 6 7 8 9 10
H 8 8 8 8 8 8 8 8 8 8
N 8 36 120 330 792 1716 3432 6435 11440 19448

ρ · C(k) 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

Step 1. A Pareto front of linear geometry has been selected for all test instances.
This is mainly due the fact that it is straightforward to generate a Pareto
front of this geometry with the optimal distribution of solutions, so that
these can be used as a reference. The way that this reference front has
been generated is identical to the generation of weighting vectors described
in Section 3.2. For an example of a Pareto front with this geometry in 3
dimensions, see Fig. (1). This enables a fair comparison with the scheme
employed by Zhang and Li [6]. The number of solutions, N , generated in
every dimension, is controlled by the H parameter (see Section 3.2). Since
this parameter can be seen as the number of subdivisions per dimension,
it has been kept constant, see Table 1, for all dimensions. The idea of this
setting is to isolate only the effect that the dimensional increase has on the
s-energy, and, by extension, the distribution of solutions on the Pareto front.
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Step 2. For every dimension, a set of weighting vectors is generated according
to the suggestions in [4] and [6]. Since the method suggested by Jaszkiewicz
[4] is generating weighting vectors according to the uniform distribution,
the s-energy calculated as described in the next step, is averaged over 50
independent weighting vector sets of size N , in each case. The weighting
vector set for generalized decomposition is generated according to (13), with
ρ · C(k) set as seen in Table 1.

Step 3. A benefit of using a linear Pareto front geometry for test purposes, is
that the solutions that will minimize the subproblems defined by the weight-
ing vector set can be directly calculated by solving the following mathemat-
ical program:

min
F(x)

‖F(x) ◦ w̃‖∞,

subject to

k∑
i=1

fi = 1,

and fi ≥ 0 ,∀ i ∈ {1, . . . , k}.

(15)

Note that (15) is a convex problem for the same reasons described in Sec-
tion 4.1. Therefore, using (15) and a set of weighting vectors, the s-energy
can be calculated for the resulting Pareto set. A reference best case energy
using the actual Pareto front, Eb, is calculated for every problem instance.

Step 4. The log10 of the ratio of the obtained s-energy (expected energy for [4])
according to every method with the base energy Eb is calculated for all
objectives.

From the results shown in Fig. (3), it is apparent that generalized decomposi-
tion can follow very closely the desired distribution of solutions in the Pareto
set. Additionally, the difference with alternative methods is striking, namely in
the range of several orders of magnitude for problems with 3 or more objectives.
These results refute the hypothesis that by selecting an evenly distributed set
of weighting vectors an evenly distributed Pareto front can be obtained. Fur-
thermore, it is shown that the method proposed by Jaszkiewicz [4], performs
consistently better compared to evenly distributed weighting vectors.
The increasing ratio of the s-energy produced by solutions selected using

evenly distributed weighting vectors can provide an explanation for the reason
that MOEA/D [6] and derivative algorithms seem to perform well in many-
objective problems. Namely, for increasing number of objectives MOEA/D-based
algorithms find solutions that are more clustered. This means that, relative to
the entire Pareto front area, such algorithms only focus on a very small part.

6 Reference Pareto Front

A limitation of generalized decomposition seems to be that, since a reference
Pareto set is needed to generate the optimal weighting vectors, if that reference
is unavailable due to lack of information about the Pareto front geometry, then
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Fig. 4. Attained Pareto optimal front for the DTLZ1 and DTLZ2 3-objective problems
by MADE-gD and MOEA/D

the usefulness of the method is restricted. However, this is not entirely true. In
the presence of a reference Pareto optimal set, the precision that can be achieved,
is exceptional. However, even if a linear Pareto front is used to generate the
weighting vectors, very good results can still be obtained regardless of the shape
of the true Pareto front. Good in the sense that the distribution of solutions on
the Pareto front is close to even. This is because the linear Pareto front geometry
seems to be in the middle ground, with respect to the shift in location of the
weighting vectors, of concave and convex geometries. Although this hypothesis
seems intuitive, it is not clear to what extent it is valid. Further investigation of
that matter is left for future research.
To demonstrate that a good distribution of solutions can be obtained using a

linear Pareto front geometry as reference for generalized decomposition, we used
a revised version of MOEA/D [6] with the neighbourhood distance measured in
objective space, instead of the weighting space and weighting vectors generated
according to:
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– Generate N , evenly distributed points on the probability simplex according
to the method described in [10]. Subsequently use generalized decomposition,
(11) or (13), to generate the weighting vector set. The evenly distributed
points are used as the reference Pareto front.

We refer to this algorithm as a many-objective evolutionary algorithm based
on generalized decomposition (MAEA-gD). This is because, as illustrated in
Section 5, generalized decomposition scales very well to many objectives. The
results are shown in Fig. (4), for the 3-objective instances of the test problems
DTLZ1 and DTLZ2 [18].

7 Conclusion

A new concept is proposed, which we refer to as generalized decomposition (gD).
Using gD the optimal distribution of solutions across the Pareto front can be
achieved, given the geometry of the front is known a priori. Furthermore, the
obtained results suggest that the method maintains its favourable qualities even
for many objectives. It has been shown that gD (see Fig. (3)) performs best in
comparison with other methods for selecting the weighting vectors. Therefore,
selection of weighting vectors in an ad-hoc manner can no longer be justified.
Furthermore, gD is not limited to producing evenly distributed solutions.

Given a definition and a measure of what is meant by a well distributed Pareto
set, generalized decomposition can produce optimal results according to that def-
inition. However the assumption that knowledge of the Pareto front geometry
is available is to an extent restrictive. For this reason, if the actual Pareto front
geometry is unknown, it is suggested that the weighting vector set be produced
using a linear Pareto front geometry as the reference front for generalized de-
composition. Some future research directions can be the extension of generalized
decomposition to other interesting scalarizing functions. Additionally, an adap-
tive identification of the front geometry seems possible, as it has been observed
that the general shape of the front is formed well before all the solutions con-
verge. Such a method would uncouple the dependence of gD on prior knowledge
of the Pareto front geometry. Code for generalized decomposition and MAEA-gD
is available at: http://ioannis-giagkiozis.staff.shef.ac.uk.
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Abstract. In some technical applications like multiobjective online con-
trol an evenly spaced approximation of the Pareto front is desired. Since
standard evolutionary multiobjective optimization (EMO) algorithms
have not been designed for that kind of approximation we propose an
archive-based plug-in method that builds an evenly spaced approxima-
tion using averaged Hausdorff measure between archive and reference
front. In case of three objectives this reference font is constructed from a
triangulated approximation of the Pareto front from a previous experi-
ment. The plug-in can be deployed in online or offline mode for any kind
of EMO algorithm.

Keywords: multiobjective optimization, evolutionary multiobjective al-
gorithm, evenly spaced Pareto front approximation, averaged Hausdorff
measure, triangulation.

1 Introduction

In multiobjective optimization several (conflicting) objectives have to be opti-
mized simultaneously. Evolutionary multiobjective optimization algorithms
(EMOA) have proven to be efficient black-box solvers for these kind of prob-
lems. The underlying concept is to generate a finite size approximation of the
true Pareto front of the optimization problem which simultaneously maximizes
the proximity to the true front (convergence) and ensures a sufficiently high
spread of solutions. Several performance indicators (PIs) exist for assessing the
quality of a Pareto front approximation [1]. Indicator-based EMOAs internally
aim at optimizing a specific PI in the course of the algorithm run. A prominent
example is the SMS-EMOA [2] which is based on the dominated hypervolume
indicator. Much effort is spent on analyzing the characteristics of solution sets
of μ points that minimize specific indicators [3,4] which function as benchmark
sets for indicator based EMOA.
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Here, we reverse this approach. We start from the specification of a desired
characteristic of the Pareto front approximation for which we would like to select
an appropriate PI and design an EMOA which aims at generating Pareto front
approximations with the desired characteristics. Specifically, we are interested in
generating Pareto front approximations with evenly spaced points which are e.g.
required in multiobjective control problems [5]: In case of online control prob-
lems it is not possible to fix the control behavior in advance (i.e., offline); rather,
it is necessary to gain additional information from the running system before
the control behavior can be set. Since the optimization of the control usually
cannot be done while the system is running, an offline multiobjective optimiza-
tion taking into account all possible additional information leads to a reference
set of (almost) optimal operating states. These reference states represent the
best solutions depending on the additional information gained in online mode.
When the additional information changes while the system is running the set
of reference states immediately delivers the best possible operating state that is
now possible. It may happen that old and new operating points are far apart.
This may lead to a big discontinuous change in the operating conditions which
in turn may endanger the system’s stability. But if there is an evenly spaced ap-
proximation of the Pareto set (i.e., the reference set) it is possible to construct
a trajectory from old to new operating state with gentle transitions between
consecutive intermediate operating points.
For this purpose we make use of the averaged Hausdorff distance Δp [6] which

measures convergence to and spread of the Pareto front approximation simulta-
neously. Recently, an algorithmic concept based on optimizingΔp was introduced
in [7]. The core of this concept is an external archiving strategy that aims for
low Δp - values using evenly spaced reference fronts sequentially constructed us-
ing the current Pareto front approximation of the EMOA. The approach proved
to be very successful in generating evenly spaced Pareto front approximations
for biobjective problems [7]. In [8], the concept was generalized with special
focus on three-objective problems. However, the required sequential generation
of reference fronts for the Δp - computation in the course of the generations
for more than two dimensions is far from straightforward. Therefore, in [8] the
archiving strategy is transferred to two dimensions via multi-dimensional scaling.
However, although the proposed Δp-EMOA was highly successful in generating
evenly spaced Pareto front approximations for tricriteria problems and outper-
formed state-of-the-art EMOA as well as specialized EMOA for this task, it is
computationally highly complex.
In this paper, we circumvent the transformation in two-dimensional space and

present a sophisticated procedure using specialized triangulation and boundary
detection concepts for approximating the 3D-surface of the considered Pareto
front approximations. Furthermore, the archive update procedure is extremely
accelerated due to a sophisticated strategy for updating Δp.
Section 2 gives an overview about multiobjective optimization. The algorith-

mic framework is then introduced in section 3 followed by a detailed description
of the proposed reference front construction in section 4. The results of the
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conducted experiments are described in section 5 and conclusions together with
perspectives for further research are presented in section 6.

2 Multiobjective Optimization

In the following we consider unconstrained multiobjective optimization problems
(MOPs) of the form min{f(x) : x ∈ Rn} where f(x) = (f1(x), . . . , fd(x))

′ is a
vector-valued mapping with d ≥ 2 objective functions fi : �

n → � for i =
1, . . . , d that are to be minimized simultaneously. The optimality of a MOP is
defined by the concept of dominance [9].

Definition 1.
Let u, v ∈ F ⊆ �

d where F is equipped with the partial order � defined by
u � v ⇔ ∀i = 1, . . . d : ui ≤ vi. If u ≺ v ⇔ u � v ∧ u �= v then v is said to be
dominated by u. An element u is termed nondominated relative to V ⊆ F if there
is no v ∈ V that dominates u. The set ND(V,�) = {u ∈ V | � ∃ v ∈ V : v ≺ u} is
called the nondominated set relative to V .

If F = f(X) is the objective space of some MOP with decision space X ⊆ Rn

and objective function f(·) then the set F ∗ = ND(f(X),�) is called the Pareto
front (PF). Elements x ∈ X with f(x) ∈ F ∗ are termed Pareto-optimal and the
set X∗ of all Pareto-optimal points is called the Pareto set (PS).

Moreover, for some X ⊆ Rn and f : X → Rd the set NDf (X,�) = {x ∈
X : f(x) ∈ ND(f(X),�)} contains those elements from X whose images are
nondominated in image space f(X) = {f(x) : x ∈ X} ⊆ Rd.
Since the PS and the PF can typically not be computed analytically, one

task in multi-objective optimization is to numerically detect a finite size approx-
imation of F ∗ = f(X∗). In this work we are particularly interested in a low
distance between F and F ∗ and a sufficiently good spread which is ensured by
the averaged Hausdorff distance Δp as performance indicator.

Definition 2. The value dH(A,B) := max(d(A,B), d(B,A)) is termed the
Hausdorff distance between two sets A,B ⊂ �n, where d(B,A) := sup{d(u,A) :
u ∈ B} and d(u,A) := inf{‖u − v‖ : v ∈ A} for u, v ∈ �n and a vector norm
‖ · ‖.

The Hausdorff distance is widely used in many fields. It has, however, certain
limitations when measuring the distance of the outcome of an EMOA to the
PF since outliers generated by EMOAs are punished too strongly by dH . As a
remedy, we follow the suggestion of [6] and use the averaged Hausdorff distance.

Definition 3. The value Δp(A,B) = max(GDp(A,B), IGDp(A,B)) with p > 0,

GDp(A,B) =

(
1

|A|
∑
a∈A

d(a,B)p

)1/p

and IGDp(A,B) =

(
1

|B|
∑
b∈B

d(b, A)p

)1/p

is termed the averaged Hausdorff distance between sets A and B.
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The indicator Δp can be viewed as a composition of slight variations of the
Generational Distance (GD, see [10]) and the Inverted Generational Distance
(IGD, see [11]). It is Δ∞ = dH , but for finite values of p the indicator Δp

averages (using the p-vector norm) the distances considered in dH . Hence, as
opposed to dH , Δp does in particular not punish single (or few) outliers in a
candidate set.

3 Algorithmic Framework

Suppose that some EMOA has generated an approximation of the Pareto front
for some MOP. Typically, this approximation does not yield a finite point set in
objective space that is evenly distributed. Therefore, we propose the following
online approach:

1. Use given approximation of Pareto front to construct a reference front R
with evenly spaced elements (see section 4)

2. Run your favorite EMOA with our plug-in using reference front R: as soon
as an offspring is generated and evaluated put a copy into the Δp-archive
updater

3. Print archive after termination of your favorite EMOA

The offline version runs as follows:

1. Use given approximation of Pareto front to construct a reference front R
with evenly spaced elements

2. Run your favorite EMOA with following add-on:
- as soon as an offspring is generated and evaluated store a copy in a file

3. After termination of your favorite EMOA:
- put every offspring from the file into the Δp-archive updater sequentially
- print archive

The idea of the update is as follows: The archive update adds a nondominated
solution to the archive if the removal of an archive element leads to a smaller Δp

distance to the reference set. In this case it removes the archive element leading
to maximum improvement. Needless to say, the archive update must be realized
in an efficient manner.
This naive approach takes Θ(|A| · (|A| · |R| · d)) time units, whereas the quick

update version below (Alg. 2) only needs Θ(|A| · |R| · d) time units: calculating
d(a,R) takes Θ(|R|·d) whereas calculating d(r, A) takes Θ(|A|·d) time. Therefore
the first loop needs Θ(|A| · |R| · d) time, the second loop Θ(|R| · |A| · d) time, and
the third loop Θ(|A|) time. Hence, in total Θ(|A| · |R| ·d) time units are required
for an update.
The construction of the reference front can be done in various ways. In case

of three objectives a triangulation-based method may be used. The description
of this approach is given in the subsequent section.
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Algorithm 1. Δ1-update

Input: archive set A, reference set R, new element x
1: A = NDf (A ∪ {x},�)
2: if |A| > NR := |R| then
3: for all a ∈ A do
4: h(a) = Δ1(A \ {a}, R)
5: end for
6: A∗ = {a∗ ∈ A : a∗ = argmin{h(a) : a ∈ A}}
7: if |A∗| > 1 then
8: a∗ = argmin{GDP (A \ {a}, R) : a ∈ A∗} {ties broken at random}
9: end if
10: A = A \ {a∗}
11: end if

4 Construction of Reference Front

4.1 Parallel Projection of Pareto Front

The Pareto front of problems with three objectives is a surface with dimension-
ality 2 embedded in R3. Therefore, triangulations with triangles are possible in
principle, but standard triangulation algorithms require the availability of the
vertex coordinates in a 2-dimensional coordinate system. The simple projection
in the spirit of a multiview orthographic projection simply sets one dimension
to zero. The problem with this approach is that points which seem to be close
together in 2D can be far apart in 3D. For example, the points (1, 2,−104) and
(2, 1, 104) are close in 2D if they are projected to (1, 2, 0) and (2, 1, 0). If these
projected coordinates are used for a triangulation the resulting surface graph in
3D may be quite poor. In sets with dominated solutions it is also possible that
a point is hidden by this type of projection: (1, 2, 1) and (1, 2, 5) are identical if
they are projected to (1, 2, 0) and (1, 2, 0).
Since Pareto fronts consist of nondominated points we can exploit the property

that no point erroneously appears close to another point if we look from such a
nondominated point in direction (1, 1, 1) or (−1,−1,−1). Therefore, we apply a
parallel projection of the Pareto front approximation in direction (−1,−1,−1)
onto the projection plane that is orthogonal to this direction.
The projection plane is given by v′(x − a) = 0 where v is the normal and a

the support vector. In our case we have v = (1, 1, 1)′ for some a ∈ R3 (a should
be the utopian or ideal point of the Pareto front approximation).
Let x̊ ∈ R3 be a nondominated point that is to be projected. The projected

point x̌ ∈ R3 on the projection plane is the intersection of the line x = x̊ + λ v
for λ ∈ R with the projection plane v′(x−a) = 0. Insertion leads to the solution

x̌ = x̊− v
′ (̊x− a)
v′v

v .

Although all projected points are on the projection plane, they are still embedded
in R3. Therefore we need a change of basis to express the projected points in the
x1x2-plane (with x3 = 0 for all points).
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Algorithm 2. Quick Δ1-update

Input: archive set A, reference set R, new element x
1: A = NDf (A ∪ {x},�)
2: if |A| > NR := |R| then
3: GDp = IGDp = 0
4: for all a ∈ A do
5: GDp(a) = d(a,R) // GDp contribution of archive point a
6: GDp += GDp(a) // add GDp contribution of a
7: IGD1

p(a) = IGD2
p(a) = 0 // initialize for later use

8: end for
9: for all r ∈ R do
10: let a∗ ∈ A such that d(r,A) = d(r, a∗) // closest archive point a∗

11: d1 = d(r, a∗) // distance to closest archive point
12: d2 = d(r,A \ {a∗}) // distance to 2nd closest archive point
13: IGDp += d1 // add IGDp contribution of r
14: IGD1

p(a
∗) += d1 // sum IGDp contributions with a∗ involved

15: IGD2
p(a

∗) += d2 // sum IGDp contributions if a∗ deleted
16: end for
17: dpmin = gdpmin = ∞
18: for all a ∈ A do
19: gdp = GDp −GDp(a) // value of GDp if a deleted
20: igdp = IGDp − IGD1

p(a) + IGD2
p(a) // value of IGDp if a deleted

21: dp = max
{

gdp
|A|−1

, igdp
|R|

}
// Δ1 if a deleted

22: if dp < dpmin ∨ (dp = dpmin ∧ gdp < gdpmin) then
23: dpmin = dp // store smallest Δ1 seen so far
24: dpmin = gdp // store smallest gdp since last improvement of dpmin

25: a∗ = a // save archive point associated with smallest Δ1 seen so far
26: end if
27: end for
28: A = A \ {a∗}
29: end if

4.2 Coordinate Transformation

Let x̌ ∈ R3 be a point in the standard coordinate system. Let B be a matrix
whose columns are the base vectors of the new basis. Then B−1x̌ expresses the
point x̌ in the new coordinate system.
At first, we must identify the basis of the coordinate system in which the

projected points should be transformed. We define that the projection plane
becomes the new x1x2-plane whereas the normal vector of the projection plane
represents the new x3-axis. Due to this construction the x3-value in the new
coordinate system will be zero for all points.
The basis of the new coordinate system is determined as follows: The projec-

tion plane given in normal form v′(x − a) = 0 can be expressed in coordinate
form x1 + x2 + x3 = v

′a or parameter form
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Fig. 1. Example for Viennet: 2D-Projection via parallel projection and coordinate
transformation (left), resulting triangulation in 2D (middle) and 3D (right)

x =

⎛⎝ 0
0

a1 + a2 + a3

⎞⎠+ s
⎛⎝ 1

−2 +
√
3

1−
√
3

⎞⎠+ t
⎛⎝−2 +√31

1−
√
3

⎞⎠ =

⎛⎝ 0
0
3 ā

⎞⎠+ s b1 + t b2
with parameters s, t ∈ R. Notice that both directional vectors b1 and b2 together
with the normal vector b3 := v represent an orthogonal basis. Division of the base
vectors by their lengths leads to an orthonormal basis b01, b

0
2, b

0
3 with b

0
i = bi/‖bi‖.

Let B denote the matrix whose columns are the orthonormal base vectors above
and p = (0, 0, a1 + a2 + a3)

′. Then the linear transformation x̃ = B−1(x − p)
yields points x̃ in the x1x2-plane (i.e., the x3 coordinate is always zero) from x in
the projection plane. After these preparations standard triangulation algorithms
in 2D can be applied. An exemplary visualization is provided in Fig. 1.

4.3 Triangulations

If we use the original 3D coordinates for the triangulation obtained from the
projected and transformed 2D coordinates then it may happen that some edges
(actually: triangles) are at ”false” positions. The reason for this occurrence stems
from the definition of triangulations [12]:

Definition 4. A collection of simplices F with vertices in a finite point set A
in Rd is termed a triangulation of A if
a) all faces of simplices of F are in F ;
b) the intersection of any two simplices of F is a face of both;
c) the union of all these simplices equals the convex hull of A. ��
Since the union of all triangles equals the convex hull of the point set (see Fig. 1),
these ”false” edges appear if the Pareto front in its 2D projection has concave
parts. These false edges must be eliminated next.

4.4 Border Detection of a Triangulation

The aim is to construct a triangulation of a three-dimensional Pareto front
(approximation) based on the projection and transformation presented in
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Fig. 2. Example: Detection of border points of a Pareto front approximation for Vien-
net. Visualized are the three steps of detecting the borders in the three 2D-projections
as well as the resulting border of the overall front approximation.

sections 4.1 and 4.2. The challenge in this case is the detection of the bor-
der of the front by a procedure which appropriately handles concave regions.
Existing methods for detecting so-called ”concave hulls” such as the concept of
α-hulls [13] heavily depend on the setting of internal parameters representing
the desired degree of concavity. As we would like to avoid additional problem-
specific parameters we opt for a different approach which exploits the fact that
the considered set only contains nondominated points.
The border points are determined individually for the three two-dimensional

subsets Si (i=1,. . . ,3) of the point set by the following procedure: For each edge
(u, v) with u, v ∈ Si the neighboring vertices N(u) and N(v) are determined. Iff
|N(u) ∩N(v)| = 1 then both u and v are border vertices.
Depending on the angle of vision and due to the fact that the point set solely

consists of nondominated points, there will always be a convex region in this
two-dimensional space for which the border will be accurately detected. Thus,
by unifying the individual border points an accurate approximation of the border
of the three-dimensional point set is obtained (see Fig. 2).
However, the pure knowledge of the border points alone is not sufficient.

Additionally, the border edges are required in order to allow for ”cutting out”
the desired triangulation in the 2D-projection along the border edges. For this
purpose the determined border points of the Pareto front in 3D are selected
within the 2D-projection. Due to the ”circular” resp. boundary structure of the
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Fig. 3. Detection of border edges of a Pareto front approximation for Viennet. The
border points are mapped to 2D-space by parallel projection and coordinate transfor-
mation. Left: A TSP-solver determines the path of the border edges (red). Middle /
right: The triangulation is clipped to the region within the border edges (red).

resulting point set the detection of the border edges can be transferred to solving
a traveling salesman problem (TSP, [14]) on these points. A TSP solver is applied
to approximate the optimal tour within the considered set. As it was shown in
[15] that for a quite small number of points (i.e. in the range of 25) these kind
of instances are easily solvable for the 2-opt heuristic [16], it can be used as a
computationally fast replacement for an exact solver such as Concorde [17]. An
example is given in the left part of Fig. 3.

4.5 Clipping of False Edges

Let B be the collection of ”true” border edges obtained in the previous step.
By construction, these edges form a circuit in the triangulation that bounds a
compact set in R2. All edges in this bordered set are true edges, whereas those
outside this set are false edges.
The false edges can be identified as follows: For each border edge b ∈ B with

coordinates (x, y) ∈ R2 × R2 detect if and where the line

x+ y

2
+ λ

(
x2 − y2
y1 − x1

)
with λ ∈ R (1)

orthogonal to the line through the border edge (x, y) intersects any other border
edge with coordinates (u, v) ∈ R2 × R2 on the line

u+ γ (v − u) with γ ∈ R. (2)

The solution (λ∗, γ∗) of the set of the two linear equations (1) and (2) reveals
if there is an intersection (0 ≤ γ∗ ≤ 1) and whether the normal vector of the
line along edge b points inward (λ∗ > 0) or outward (λ∗ < 0). Next, we check
for each border edge b ∈ B if there is an intersection along its normal vector in
outward direction. If so, we have found false edges and the associated triangles
must be removed from the triangulation (Fig. 3).
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Fig. 4. Example for Viennet: Points resulting from the subdivision of the triangula-
tion (left), k-means clustering of the points into 100 clusters (middle), reference front
generation by computation of cluster centers (right)

4.6 Division of Triangles

Since we aim at the determination of NR = |R| centroids of disjunct regions Ci

with almost equal size, the surface defined by the clipped triangulation must be
divided in smaller triangles to assure a small variance in the area sizes of the
regions Ci with i = 1, . . . , NR. For this purpose we recursively split each triangle
at the midpoint of its longest side until a targeted area size is reached. The target
size is determined as follows considering the consecutive step of clustering the
resulting point set: Divide the size of the area defined by the clipped triangulation
by the product of the number NR of desired centroids / cluster and the number
of points that should be approximately in each cluster (see Fig. 4).

4.7 Clustering

The subdivision of the triangulation into a huge number of smaller triangles
results in a dense approximation of the surface (see Fig. 1 left) which is repre-
sented by the nodes of the fine grained triangulation. In the next step the desired
number of evenly spaced solutions has to be determined based on this point set.
As a heuristic approach we use k-means clustering [18] for this purpose with
k = NR. The method aims at minimizing the sum of the within-cluster sums of
point-to-cluster-centroid distances over all clusters. The reference front is then
formed by the resulting cluster centroids (Fig. 4 right).

5 Experiments

Experiments were conducted for assessing the performance of the proposed al-
gorithmic concept and for comparing the results to our previous approach [8]
and competitive algorithms. Both computational efficiency as well as the op-
timization of Δp are focussed. In the following, our proposed algorithm, i.e.
the SMS-EMOA as a front-end combined with the new algorithmic framework
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Fig. 5. Best Pareto front approximations of selected algorithms w.r.t. Δp for DTLZ2
(top) and Viennet (bottom). The results for DTLZ3 are very similar to DTLZ2.

and construction of the reference front, is denoted as Δp-T-EMOA (referring to
T riangulation) while the previous one [8] is termed Δp-M-EMOA (referring to
Multi-Dimensional Scaling).

5.1 Setup

The experimental setup coincides with the settings of [8]. Four different test
problems with different shapes of the Pareto front and multimodality character-
istics are addressed, i.e. DTLZ1 (linear), DTLZ2 (concave), DTLZ3 (concave,
multimodal) [19] and Viennet (convex, [20]). The Δp-T-EMOA is contrasted to
theΔp-M-EMOA, the three state-of-the art algorithms SMS-EMOA [2], NSGAII
[21] and MOEA/D [22] as well as a NSGAII variant NSGAII-Seq [23] specifically
designed for generating evenly distributed Pareto front approximations using se-
quential crowding distance updates. Two other respective NSGAII variants were
omitted in this setting as they were found to be outperformed by NSGAII-Seq
on all considered test functions in [8].
The algorithms were independently run ten times on each test functions for

90000 function evaluations using a population size μ = 100. For Δp-T-EMOA,
the archive size equals the population size. Therefore, the number of clusters in
the k-means clustering (sec. 4.7) are set to 100, and the desired number of points
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per cluster was chosen as 20 based on preliminary studies. The Δp-Indicator is
parametrized by p = 1 as by this means the influence of outliers is minimized
and best algorithm performance results [7]. The parameter settings of the other
algorithms can be taken from [8].

5.2 Results

Fig. 6 visualizes the median performance of all considered EMOA in the course
of the optimization run. In order to be able to distinguish between the displayed
lines, results are only shown for later algorithm stages. The visualization of the
complete runs for all algorithms but Δp-T-EMOA can be found in [8].
Performance is assessed by calculating the Δp values w.r.t. a fixed reference

front in the course of the optimization run. Ideal benchmark fronts are composed
of the μ-optimal solution set regarding Δp to the true PF with μ denoting the
population size of the EMOA. However, a procedure to theoretically derive such
a set is not available yet, nor is the approximation of such sets straightforward.
Moreover, it is yet unclear if such distributions are unique. Thus, in line with [8],
we densely sampled the known true Pareto front of the considered test problems
using approximately 10000 points. Proposition 7 taken from [6] justifies this
approach from a theoretical perspective.
It becomes obvious that for DTLZ2, DTLZ3 and Viennet the Δp-T-EMOA

even outperforms the Δp-M-EMOA which already performs significantly better
than all competitors regarding Δp. The boxplots in Figure 6 reflecting the dis-
tribution of Δp values at the final EMOA generation indicate that these results
are also statistically significant. Moreover, the proposed algorithmic concept is
computationally much more efficient than the Δp-M-EMOA. The SMS-EMOA
tends to be superior on DTLZ1, i.e. on the linear Pareto front, but the perfor-
mance differences of Δp-T-EMOA, Δp-M-EMOA and the SMS-EMOA are not
statistically significant based on the Wilcoxon rank sum test. The tendency in
fact is not surprising as it is known that the optimal μ-distribution regarding
the dominated Hypervolume is equally spaced on linear Pareto fronts. But it has
to be kept in mind that a linear Pareto front is a very unlikely special case for
practical problems.
Fig. 5 depicts the best Pareto front approximations of the Δp-T-EMOA,

NSGAII-Seq and the SMS-EMOA. MOEA/D and NSGAII are omitted as they
are outperformed by NSGAII-Seq on DTLZ2 and Viennet. The SMS-EMOA is
included as it is used as the corresponding front-end of the Δp-T-EMOA. While
the Δp-T-EMOA manages to generate roughly evenly spaced solutions on the
Pareto front, the SMS-EMOA focusses on the knee points and accurately ap-
proximates the border of the front. We in fact exploit the latter property within
the procedure for generating the required reference front for the Δp-T-EMOA.
The PF approximations of NSGAII-Seq (as well as MOEA/D and NSGAII) do
not exhibit a specific structure but rather show gaps in an unstructured manner.
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Fig. 6. Median performance results of the considered algorithms w.r.t. Δp for DTLZ2
(1st row), Viennet (2nd row), DTLZ3 (3rd row) and DTLZ1 (last row). Boxplots of
median Δp-values at 90000 FE over all runs for the considered test functions are shown
on the right.
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6 Conclusions

The introduced algorithmic concept together with the innovative approach for
generating the internally required reference front successfully evolved evenly
spread Pareto front approximations within the conducted experimental studies.
It even outperformed our previous approach which already showed significantly
better results regarding Δp than competitive EMOA. Moreover, the computa-
tional efficiency is extremely increased due to a computationally fast procedure
for updating the archive and the conceptual change that the construction of the
reference front now is only required once during the EMOA run rather than
generation-wise as previously.
However, several issues have to be addressed in future studies. First of all, a

theoretical definition of ”uniformity” of points on a surface is still missing and is
strongly required for theoretical analysis and performance assessment of respec-
tive algorithms. An important related aspect is how to appropriately handle the
true border of a point set. It could be either desired to place points ”uniformly”
including the exact border or not while the former case is much more complex to
realize. In our approach we did not aim at exactly representing the border of the
true Pareto front with the evenly spaced point set but used sophisticated border
detectionmethods for generating the reference front.Based on the definition of uni-
formity optimal μ-distributions of points on a surface can be generated while the
uniqueness of such point sets will have to be investigated. The theoretical deriva-
tion of optimal μ-distributions of points w.r.t.Δp and the related uniqueness is an
open issue as well. Furthermore, the generalization of the procedure to higher di-
mensions will be investigated. Triangulations are not applicable in these scenarios
but have to be replaced by appropriate geometric structures.
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Abstract. MOEA/D is a simple but powerful scalarizing function-based EMO 
algorithm. Its high search ability has been demonstrated for a wide variety of 
multiobjective problems. MOEA/D can be viewed as a cellular algorithm. Each 
cell has a different weight vector and a single solution. A certain number of the 
nearest cells are defined for each cell as its neighbors based on the Euclidean 
distance between weight vectors. A new solution is generated for each cell from 
current solutions in its neighboring cells. The generated solution is compared 
with the current solutions in the neighboring cells for solution replacement. In 
this paper, we examine the relation between the neighborhood size and the 
performance of MOEA/D. In order to examine the effect of local mating and 
local replacement separately, we use a variant of MOEA/D with two different 
neighborhoods: One is for local mating and the other is for local replacement. 
The performance of MOEA/D with various combinations of two neighborhoods 
is examined using the hypervolume in the objective space and a diversity 
measure in the decision space for many-objective problems. Experimental 
results show that MOEA/D with a large replacement neighborhood has high 
search ability in the objective space. However, it is also shown that small 
replacement and mating neighborhoods are beneficial for diversity maintenance 
in the decision space. It is also shown that the appropriate specification of two 
neighborhoods strongly depends on the problem. 

Keywords: Evolutionary multiobjective optimization, many-objective 
problems, MOEA/D, neighborhood size.  

1 Introduction 

Evolutionary multiobjective optimization (EMO) has been successfully applied to 
various application fields [4], [5], [26]. Pareto dominance-based algorithms such as 
NSGA-II [6], SPEA [34] and SPEA2 [32] have frequently been used in the literature. 
Recently, a scalarizing function-based EMO algorithm called MOEA/D (Multi-
Objective Evolutionary Algorithm based on Decomposition [30]) has rapidly 
increased the popularity due to its simplicity, high search ability, and computational 
efficiency. In MOEA/D, a multiobjective problem is decomposed into a number of 
single-objective problems using a scalarizing function with different weight vectors. 
Each single-objective problem optimizes the scalarizing function with a different 
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weight vector. Since fitness evaluation for each individual is based on scalarizing 
function calculation, it can be efficiently performed even for many-objective 
problems. High search ability of MOEA/D has been repeatedly reported especially for 
difficult multiobjective problems in the literature [11], [21], [31]. 

The main feature of MOEA/D is the decomposition using a scalarizing function 
with different weight vectors (as its name explicitly shows). Thus the choice of an 
appropriate scalarizing function is important. Different scalarizing functions work 
well on different problems. Different scalarizing functions may be effective in 
different stages of evolution. Adaptive selection of a scalarizing function and the use 
of multiple scalarizing functions were examined [14], [15]. The population size is also 
an important parameter since it determines the granularity of weight vectors [13]. 
Actually the population size is the same as the number of weight vectors in MOEA/D.  

Another important feature of MOEA/D is the use of a kind of a neighborhood 
structure defined by the Euclidean distance between weight vectors. By viewing each 
weight vector as a point in the weight vector space, MOEA/D can be explained as a 
cellular algorithm. Each cell has a different weight vector and a single solution. Each 
cell has a certain number of neighboring cells. A new solution for a cell is generated 
by choosing a pair of parents from the current solutions in its neighboring cells (i.e., 
local mating). The generated solution is compared with those solutions in the 
neighboring cells for solution replacement (i.e., local replacement). 

The number of neighboring cells (i.e., neighborhood size) is an important user-
definable parameter. However, the importance of its appropriate specification has not 
been stressed in the literature. This may be because MOEA/D on two-objective and 
three-objective problems usually has high search ability over a wide range of different 
specifications of the neighborhood size. In this paper, we demonstrate that its search 
ability for many-objective problems strongly depends on the neighborhood size. In 
order to examine the local mating and the local replacement separately, we use a 
variant of MOEA/D with two neighborhoods as in our former studies on MOEA/D 
[11], [13], [15]. A pair of parents is selected from a mating neighborhood, and the 
generated solution is compared with current solutions in a replacement neighborhood. 
Using such a variant, we examine various combinations of two neighborhoods (e.g., a 
small mating neighborhood and a large replacement neighborhood). Performance of 
MOEA/D with two neighborhoods is evaluated with respect to the hypervolume in the 
objective space and a diversity measure in the decision space. 

This paper is organized as follows. First we explain a variant of MOEA/D with two 
neighborhoods in Section 2. In Section 3, we explain two types of many-objective test 
problems. One is many-objective knapsack problems, which are used to evaluate the 
search ability of MOEA/D in the objective space. The other is many-objective 
distance minimization problems, which are used to visually examine the diversity of 
solutions in the decision space. Performance measures in the objective space and 
diversity measures in the decision space are discussed in Section 4. Then we examine 
the relation between the performance of MOEA/D and the specifications of two 
neighborhoods through computational experiments in Section 5. Experimental results 
show that the performance of MOEA/D on many-objective knapsack problems 
strongly depends on the specifications of two neighborhoods. Different specifications 
are needed for hypervolume maximization in the objective space and diversity 
maximization in the decision space. Finally we conclude this paper in Section 6. 
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2 MOEA/D with Two Neighborhoods 

In MOEA/D [30], a multiobjective problem is decomposed into a number of single-
objective problems using a scalarizing function with different weight vectors. A set of 
weight vectors satisfying the following two conditions is used in MOEA/D: 

121 =+⋅⋅⋅++ mλλλ , (1) 

mi
H

H

HH
i ...,,2,1,...,,

2
,

1
,0 =







∈λ , (2) 

where H is a user-definable positive integer. The number of weight vectors can be 
calculated as N=H+m−1Cm−1 (i.e., N= 1

1
−

−+
m

mHC  [30]). For example, we have 101 weight 

vectors for a two-objective problem when H = 100: λ = (0, 1), (0.01, 0.99), ..., (1, 0). In 
Fig. 1, we show 15 weight vectors for a three-objective problem when H = 4. 
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Fig. 1. A set of weight vectors for a three-objective problem (H = 4) 

As a scalarizing function, we mainly use the weighted Tchebycheff in this paper. 
Only for many-objective knapsack problems with six and eight objectives, we use the 
weighted sum since better results were obtained from the weighted sum for those 
problems in our preliminary computational experiments (e.g., see [15]).  

An m-objective maximization problem can be written as  

Maximize ))(...,),(),(()( 21 xxxxf mfff= , (3) 
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where f (x) is the m-dimensional objective vector, fi (x) is the ith objective to be 
maximized, and x is the decision vector.  

The weighted sum of the m objectives is written using a weight vector λ as  

)()()()|( 2211 xxxλx mm
WS fffg ⋅+⋅⋅⋅+⋅+⋅= λλλ . (4) 

The weighted Tchebycheff is written using a reference point )...,,,( ****
21 mzzz=z  

and a weighted vector λ  as follows: 

|})(|{max),|( *

,...,2,1

* xzλx iii
mi

TE fzg −⋅=
=

λ . (5) 

In Zhang and Li [30], the reference point z* was specified for multiobjective knapsack 
problems (which are multiobjective maximization problems) as  

mitfz ii ...,,2,1)},(|)(max{1.1* =Ω∈⋅= xx , (6) 

where Ω(t) shows the tth population. We use this specification. For multiobjective 
function minimization problems, the following specification was used in [30]:  

mitfz ii ...,,2,1)},(|)(min{* =Ω∈= xx . (7) 

We use this specification for multiobjective distance minimization problems. 
As in our former studies [11], [13], [15], we implemented MOEA/D as a cellular 

algorithm with two neighborhoods. As shown in Fig. 1, a set of weight vectors can be 
viewed as a grid in the weight vector space where each weight vector corresponds to a 
cell. Each cell can be viewed as having a weight vector and a single solution. 

Let N be the number of weight vectors, which is the same as the number of cells 
and the population size. We denote N weight vectors as λk, k =1,2, ..., N where λk is a 
weight vector assigned to the kth cell. In the original MOEA/D [30], each weight 
vectors has a set of neighbors. Our variant of MOEA/D has two sets of neighbors. 
That is, each cell has two sets of neighboring cells. One is for local mating and the 
other is for local replacement of solutions. As in the original MOEA/D [30], the 
definition of neighbors is based on the distance between weight vectors.  

When a solution is to be generated in a cell, a pair of solutions is randomly selected 
from its mating neighborhood. A new solution is generated by crossover and 
mutation. The generated solution for the cell is compared with current solutions in its 
replacement neighborhood. At each cell in the replacement neighborhood, the 
generated solution is evaluated using the weight vector in that cell. The solution 
replacement is performed when the generated solution is better than the current one in 
each cell. It should be noted that the comparison is based on the weight vector at each 
cell. Thus it is not likely that many current solutions are replaced with a single new 
solution even when we use a large replacement neighborhood. This is because a new 
solution is not likely to be evaluated as being better than current solutions at many 
cells with totally different weight vectors such as (0.2, 0.8), (0.5, 0.5) and (0.8, 0.2). 
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In the original version of MOEA/D, a parent outside the neighborhood can be 
probabilistically selected. In our variant, we always choose parents from the mating 
neighborhood. The upper bound on the number of replaced solutions with a new 
solution can be specified in the original MOEA/D. We do not use any upper bound on 
the number of replaced solutions in our variant. The original MOEA/D also has an 
option of using an archive population to store non-dominated solutions. We do not 
use any archive population. All of these settings in our variant are to clearly examine 
the effect of the neighborhood size on the performance of MOEA/D. 

It is pointed out in several studies [10], [20], [23] that the recombination of similar 
parents improves the search ability of EMO algorithms on many-objective problems. 
This is because the current population of EMO algorithms has a large diversity in the 
decision space in the case of many objectives [20]. A good solution is not likely to be 
generated from a pair of totally different parents. MOEA/D has two nice properties as 
a many-objective optimizer: One is the scalarizing function-based efficient fitness 
evaluation, and the other is the local mating. It is shown in this paper that an 
appropriate specification of the mating neighborhood is important in the application 
of MOEA/D to difficult many-objective problems. The necessity of local replacement 
is also discussed with respect to the diversity in the decision space. 

3 Many-Objective Test Problems 

It has been pointed out in the literature that many-objective problems are difficult for 
Pareto dominance-based EMO algorithms [8], [19], [22]. When EMO algorithms are 
applied to many-objective problems, almost all solutions in the current population 
become non-dominated with each other within a small number of generations. This 
severely weakens the selection pressure of Pareto dominance-based fitness evaluation 
mechanisms towards the Pareto front. Various approaches have been proposed to 
increase the selection pressure [16], [17], [23]. EMO algorithms with other fitness 
evaluation mechanisms such as indicator-based EMO algorithms (e.g., SMS-EMOA 
[3]) and scalarizing function-based EMO algorithms (e.g., MOEA/D [30]) have been 
actively studied for many-objective problems. Currently evolutionary many-objective 
optimization is a hot topic in the EMO community [1], [2], [24], [35]. 

As test problems, we use two types of many-objective problems. One is knapsack 
problems, which are difficult many-objective problems for Pareto dominance-based 
EMO algorithms. The other is distance minimization problems, which are easy many-
objective problems. We briefly explain those test problems.  

We generated many-objective knapsack problems from the two-objective 500-item 
knapsack problem of Zitzler and Thiele [34]. This problem is written as follows:  

Maximize 
=

=
n

j
jiji xpf

1
)(x ,  ,2,1=i  (8) 

subject to 
=

≤
n

j
ijij cxw

1
,  ,2,1=i  (9) 

=jx 0 or 1, ,...,,2,1 nj =  (10) 
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where n is the number of items (i.e., n = 500), x is a binary string, pij is the profit of 
item j according to knapsack i, wij is the weight of item j according to knapsack i, and 
ci is the capacity of knapsack i. The value of each profit pij is a randomly specified 
integer in [10, 100]. This problem is referred to as the 2-500 problem in this paper. 

We generated additional objectives fi(x) for i = 3, 4, ..., 8 by randomly specifying 
the value of the profit pij as an integer in [10, 100]. In this manner, we generated m-
objective knapsack problems with up to eight objectives. Each of those test problems 
is referred to as the m-500 problem in this paper. It should be noted that all of those 
test problems have the same constraint conditions as the original 2-500 problem. That 
is, all of our multiobjective knapsack problems have the same feasible solution set. As 
a result, the Pareto optimal solutions of the original 2-500 problem are also Pareto 
optimal for the m-500 problems for m = 3, 4, ..., 8. This feature is used to visually 
examine the convergence and the diversity of solutions of many-objective knapsack 
problems by projecting them onto the two-dimensional objective space with f1(x) and 
f2(x). It has been demonstrated that randomly generated many-objective knapsack 
problems are difficult for Pareto dominance-based EMO algorithms [11], [23]. 

We also generated many-objective distance minimization problems with multiple 
Pareto regions to examine the behavior of EMO algorithms in a two-dimensional 
decision space [9], [12]. An example of a four-objective problem is shown in Fig. 2. 
All points in the shaded four squares are Pareto optimal solutions. The ith objective 
fi(x) is the minimum distance from a point x (i.e., solution x) in the two-dimensional 
decision space to the ith vertexes of multiple polygons: 

)},(dis...,),,(dis),,(dismin{)( 21 ikiiif axaxaxx = , i = 1, 2, ..., m, (11) 

where dis(x, aij) is the Euclidean distance between the two points x and aij, aij shows 
the ith vertex of the jth polygon, k is the number of polygons (i.e., j = 1, 2, ..., k), and 
m is the number of objectives (i.e., the number of vertexes: i = 1, 2, ..., m). In Fig. 2, 
the four squares have exactly the same shape and the same size. Thus each square is 
mapped to the same Pareto front in the four-dimensional objective space. 
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Fig. 2. An example of a four-objective distance minimization problem 
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In the same manner as in Fig. 2, we generated distance minimization problems 
with three, five and six objectives as shown in Fig. 3. We also generated four distance 
minimization problems with a single Pareto optimal region as shown in Fig. 4. In our 
test problems in Figs. 2-4, all points in each polygon are Pareto optimal solutions.  
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Fig. 3. Distance minimization problems with multiple Pareto optimal regions 
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Fig. 4. Distance minimization problems with a single Pareto optimal region 

4 Performance Measures and Diversity Measures 

A number of performance measures have been proposed to evaluate a set of non-
dominated solutions in the objective space [33]. We use the hypervolume measure, 
which has been frequently used in the literature. 

With a few exceptions (e.g., Omni-Optimizer [7]), the decision space diversity has 
not been used in EMO algorithms. This is because the diversity maintenance in the 
objective space is very important in EMO algorithms. Recently, the importance of the 
diversity maintenance in the decision space was stressed in some studies [27]-[29] 
where the use of the Solow-Polasky diversity measure [25] was suggested. The use of 
a non-geometric binary crossover was proposed to directly increase the decision space 
diversity [18]. In this paper, we use the average distance between two solutions in the 
decision space as a diversity measure since its meaning can be easily understood. The 
distance between solutions of the knapsack problems (i.e., binary strings) is measured 
by the Hamming distance while the Euclidean distance is used for solutions of the 
distance minimization problems (i.e., two-dimensional real number vectors). Whereas 
we also calculated the Solow-Polasky diversity measure, we only report the average 
distance between solutions due to the page limitation. 
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5 Experimental Results 

We applied our variant of MOEA/D, NSGA-II and SPEA2 to the 2-500, 4-500, 6-500 
and 8-500 knapsack problems using the following parameter specifications: 

Coding: Binary string of length 500 (i.e., 500-bit string), 
Population size in NSGA-II and SPEA2: 200, 
Population size in MOEA/D: 200 (2-500), 220 (4-500), 252 (6-500), 120 (8-500), 
Termination condition: 200× 2000 solution evaluations, 
Parent selection: Random selection from the neighborhood (MOEA/D), 
            Binary tournament selection with replacement (NSGA-II and SPEA2), 
Crossover: Uniform crossover (Probability: 0.8), 
Mutation: Bit-flip mutation (Probability: 1/500), 
Number of runs for each test problem: 100 runs. 

In MOEA/D, we specified the size of the mating neighborhood as α % of the 
population size where α = 1, 2, 4, 6, 8, 10, 20, 40, 60, 80, 100. That is, these 11 
specifications of α  were examined. When α% of the population size was not an 
integer, the non-integer value was rounded down. For example, 1% of the population 
size 220 was handled as 2 by rounding down the calculated value 2.2. The same 11 
specifications were also used for the replacement neighborhood. That is, the size of 
the replacement neighborhood was specified as β % of the population size where β  = 
1, 2, 4, 6, 8, 10, 20, 40, 60, 80, 100. All the 11× 11 combinations were examined in 
our computational experiments. 

The average value of the hypervolume of the final population over 100 runs of our 
variant of MOEA/D for each combination is summarized in Fig. 5. The origin of the 
objective space was used as a reference point in the hypervolume calculation. Good 
results were not obtained for many-objective knapsack problems by NSGA-II and 
SPEA2. For example, their results on the 8-500 problem were 1.10× 1034 (NSGA-II) 
and 1.03× 1034 (SPEA2) whereas the best result in Fig. 5 was 1.55× 1034. From Fig. 
5, we can see that good results were obtained for all the four test problems when the 
size of the two neighborhoods was specified as follows: 2-10% of the population size 
for the mating neighborhood and 20-100% for the replacement neighborhood. We can 
also see from Fig. 5 that the sensitivity of the MOEA/D performance on the 
neighborhood size increases with the number of objectives. Whereas almost the same 
results were obtained from a wide range of parameter specifications for the 2-500 
problem, very good results were obtained from only a few combinations for the 8-500 
problem. These observations suggest that the use of appropriate neighborhoods is 
important in MOEA/D for many-objective knapsack problems. Fig. 5 also shows that 
the use of two different neighborhoods improves the performance of MOEA/D. 

The average distance between solutions in the final population is summarized in 
Fig. 6. High average distances between solutions were obtained from a small mating 
neighborhood for all the six test problems independent of the size of the replacement 
neighborhood. We can see that there is no clear relation between the hypervolume in 
Fig. 5 and the decision space diversity in Fig. 6. In Fig. 7, we show the projection of a 
solution set onto the f1(x)-f2(x) space obtained by a single run of MOEA/D with a 
different setting of two neighborhoods. We can see from Fig. 7 that a large diversity 
in the objective space was obtained from a small mating neighborhood. 
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Fig. 5. Experimental results on the knapsack problems (Hypervolume measure) 
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Fig. 6. Experimental results on the knapsack problems (Average Hamming distance) 
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(a) 1% mating and 100% replacement.     (b) 100% mating and 1% replacement. 

Fig. 7. Projection of a solution set obtained from a single run of MOEA/D with a different 
setting on the 8-500 problem. The dashed line shows the Pareto front of the 2-500 problem. 

In Fig. 8 and Fig. 9, we show experimental results on the four test problems with a 
single Pareto optimal region in Fig. 4. Experimental results on the four test problems 
with four Pareto optimal regions in Fig. 2 and Fig. 3 are shown in Fig. 10 and Fig. 11. 
We can see that the four plots in each figure show somewhat similar patterns: Good 
results were almost always obtained from a small replacement neighborhood in Figs. 
8-11. These observations are totally different from those for the knapsack problems. 
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Fig. 8. Results on the minimization problems in Fig. 4 (Hypervolume measure) 
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Fig. 9. Results on the minimization problems in Fig. 4 (Average distance) 
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Fig. 10. Results on the minimization problems in Fig. 2 and Fig. 3 (Hypervolume measure) 
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Fig. 11. Results on the minimization problems in Fig. 2 and Fig. 3 (Average distance) 
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(a) 1% mating and 100% replacement.     (b) 100% mating and 1% replacement. 

Fig. 12. A solution set from a single run with a different setting (Single hexagon) 

In Fig. 12 and Fig. 13, we show an obtained solution set from a single run of 
MOEA/D with a different setting. Whereas the result in Fig. 12 (a) looks nice, a 
higher hypervolume value was obtained from a small replacement neighborhood in 
Fig. 12 (b) as shown in Fig. 8. Fig. 13 clearly shows that a much larger diversity in 
the decision space was obtained from a small replacement neighborhood (see Fig. 11). 

The average hypervolume values 1.08× 107 and 1.18× 107 were obtained for the 
four-hexagon problem by NSGA-II and SPEA2, respectively, while the best result by 
MOEA/D was 1.16 × 107 in Fig. 10. These results show that our distance 
minimization problems are not difficult for Pareto dominance-based EMO algorithms. 
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(a) 1% mating and 100% replacement.      (b) 100% mating and 1% replacement. 

Fig. 13. A solution set from a single run with a different setting (Four hexagons) 

6 Conclusions 

In this paper, we explained the relation between the performance of MOEA/D on 
many-objective problems and the specification of the size of the two neighborhoods 
(one is for local mating and the other is for local replacement). For many-objective 
knapsack problems, we obtained the following observations: 

(1) Good results with respect to the hypervolume measure were obtained from the 
following combinations: The mating neighborhood size was 2-10% of the 
population size and the replacement neighborhood size was 20-100%. The larger 
the replacement neighborhood was, the better the performance of MOEA/D was.  

(2) Good results with respect to the decision space diversity were obtained when the 
mating neighborhood size was 1% of the population size. The smaller the mating 
neighborhood was, the larger the decision space diversity was. 

Different results were obtained for the distance minimization problems as follows: 

(3) Good results with respect to both the hypervolume measure and the decision space 
diversity were obtained when the replacement neighborhood size was 1%. The 
smaller the replacement neighborhood was, the better the performance was. 

(4) The best results with respect to both the hypervolume measure and the decision 
space diversity were obtained for the five-objective and six-objective problems 
when the size of the two neighborhoods was specified as 1% of the population 
size (whereas the worst results were obtained from this setting for the knapsack 
problems with respect to the hypervolume measure). 

We can see from these observations that an appropriate specification of the two 
neighborhoods is totally problem-dependent. Moreover, good specifications for the 
hypervolume maximization are not always good for the decision space diversity 
maximization. For difficult many-objective problems, high selection pressure toward 
the Pareto front is needed for efficient search. Thus a large replacement neighborhood 
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is beneficial for MOEA/D. For easy many-objective problems, high selection pressure 
is not needed. So a large replacement neighborhood is not needed. One potential 
disadvantage of a large replacement neighborhood is the increase in computation 
load, which should be further discussed in future studies. 
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Abstract. Interaction between criteria and hierarchical structure of cri-
teria are nowadays two important issues in Multiple Criteria Decision
Analysis (MCDA). Interaction between criteria is often dealt with fuzzy
integrals, especially the Choquet integral. To handle the hierarchy of cri-
teria in MCDA, a methodology called Multiple Criteria Hierarchy Pro-
cess (MCHP) has been recently proposed. It permits consideration of
preference relations with respect to a subset of criteria at any level of
the hierarchy. In this paper, we propose to apply MCHP to the Cho-
quet integral. In this way, using the Choquet integral and the MCHP, it
is possible to compare two alternatives not only globally, but also par-
tially, taking into account a particular subset of criteria and the possible
interaction between them.

Keywords: Multiple criteria decision aiding, Choquet integral, Multiple
Criteria Hierarchy Process.

1 Introduction

In a multiple criteria decision problem (see [5] for a comprehensive state of the
art), an alternative a, belonging to a finite set of m alternatives A = {a, b, c, . . .},
is evaluated on the basis of a consistent family of n criteria G = {g1, g2, . . . , gn}.
In our approach we make the assumption that each criterion gi : A → R is an
interval scale of measurement. From here on, we will use the terms criterion gi
or criterion i interchangeably (i = 1, 2, . . . , n). Without loss of generality, we
assume that all the criteria have to be maximized.
The purpose of Multi-Attribute Utility Theory (MAUT) [12] is to represent

the preferences of a Decision Maker (DM) on a set of alternatives A by an overall
value function U : Rn → R with U(g1(a), . . . , gn(a)) = U(a):

– a is indifferent to b ⇔ U(a) = U(b),

– a is preferred to b ⇔ U(a) > U(b).

R.C. Purshouse et al. (Eds.): EMO 2013, LNCS 7811, pp. 475–489, 2013.
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The principal aggregation model of value function is the multiple attribute ad-
ditive utility [12]:

U(a) = u1(g1(a)) + u2(g2(a)) + . . .+ un(gn(a)) for all a ∈ A, (1)

where ui are non-decreasing marginal value functions for i = 1, 2, . . . , n.
As it is well-known from the literature, the underlying assumption of the

preference independence of the multiple attribute additive utility is unrealistic
since in real decision problems criteria often interact. In a decision problem one
usually distinguishes between positive and negative interaction among criteria,
corresponding to synergy and redundancy among criteria, respectively. In partic-
ular, two criteria are synergic (redundant) when the comprehensive importance
of these two criteria is greater (smaller) than the sum of importances of the two
criteria considered separately.
Within Multiple Criteria Decision Analysis (MCDA), the interaction of crite-

ria has been considered in a decision model based upon a non-additive integral,
i.e. the Choquet integral [3] (see [7,9] for a comprehensive survey on the use
of non-additive integrals in MCDA, and [10] for a state-of-the-art survey on
Choquet and Sugeno integrals).
A great majority of methods designed for MCDA assume that all evaluation

criteria are considered at the same level, however, it is often the case that a prac-
tical application is imposing a hierarchical structure of criteria. For example, in
economic ranking, alternatives may be evaluated on indicators which aggregate
evaluations on several sub-indicators, and these sub-indicators may aggregate
another set of sub-indicators, etc. In this case, the marginal value functions may
refer to all levels of the hierarchy, representing values of particular scores of the
alternatives on indicators, sub-indicators, sub-sub-indicators, etc. Considering
hierarchical, instead of flat, structure of criteria, permits decomposition of a
complex decision problem into smaller problems involving less criteria. To han-
dle the hierarchy of criteria, the Multiple Criteria Hierarchy Process (MCHP)
[4] can be applied. The basic idea of the MCHP relies on consideration of pref-
erence relations at each node of the hierarchy tree of criteria. This consideration
concerns both the phase of eliciting preference information, and the phase of an-
alyzing a final recommendation by the DM. For example, in a decision problem
related to evaluation of students, one can say not only that student a is compre-
hensively preferred to student b, i.e. a ' b, but also that a is comprehensively
preferred to b because a is preferred to b on the subset of subjects (subcriteria)
related to Mathematics and Physics, i.e. a 'Mathematics b and a 'Physics b,
even if b is preferred to a on subjects related to Humanities, i.e. b 'Humanities a.
Moreover, one can also say that, for example, a is preferred to b on the subset of
subjects related to Mathematics because, considering Analysis and Algebra as
subjects (sub-criteria) related to Mathematics, a is preferred to b on Analysis,
i.e. a 'Analysis b, and this is enough to compensate the fact that b is preferred
to a on Algebra, i.e. b 'Algebra a.
In this paper, we apply the MCHP to the Choquet integral. Let us remark

that another approach using the Choquet integral on a hierarchy of criteria has
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been presented in [18] (see also [19]), where the evaluation of an alternative a
with respect to a certain criterion Gr is based on the Choquet integrals of a with
respect to all subcriteria of Gr from the subsequent level. This means that the
Choquet integral of a with respect to Gr is computed as the Choquet integral
of other Choquet integrals, one for each subcriterion of Gr from the subsequent
level. For example, let us consider the evaluation of student a with respect to
Science and Humanities, with Mathematics and Physics as subcriteria of Science,
and Literature and Philosophy as subcriteria of Humanities. In order to compute
the comprehensive Choquet integral of a, one has to compute first the Choquet
integral of a with respect to Science and the Choquet integral of a with respect
to Humanities. Then, the comprehensive Choquet integral of a is obtained as
the Choquet integral of the two Choquet integrals previously computed.
In our approach, we do not consider Choquet integrals resulting from aggre-

gation of Choquet integrals representing evaluations at the subsequent level of
the hierarchy. Instead of this, we compute the evaluation of an alternative on
a certain criterion of the hierarchy as the Choquet integral of the evaluations
of the alternative on all elementary criteria descending to the lowest level from
that criterion, using the capacity defined on the whole set of elementary crite-
ria only. Coming back to the above example, the comprehensive evaluation of a
is calculated as the Choquet integral of the evaluations of a on all considered
elementary subjects, i.e. Mathematics, Physics, Literature and Philosophy. The
evaluation with respect to Sciences is obtained as the Choquet integral of the
evaluations on Mathematics and Physics only, as well as, the evaluation with
respect to Humanities is obtained as the Choquet integral of the evaluations
on Literature and Philosophy only. In the approach of [18], the evaluations on
Humanities and Sciences are also Choquet integrals, but our approach differs in
two aspects: we do not need to define two different capacities to compute the
two Choquet integrals, one for Science and one for Humanities; we use the two
Choquet integrals on Science and Humanities to order students on the basis of
Science and Humanities only, and not to aggregate them in order to get the final
comprehensive evaluation.
The paper is organized as follows. In Section 2, we present the basic concepts

relative to interaction among criteria and to the Choquet integral. In Section
3, we describe the MCHP. In Section 4, we put together the MCHP and the
Choquet integral. Section 5 contains a didactic example in which we describe the
application of the new methodology, and we compare it with the approach of [18].
Some conclusions and future directions of research are presented in Section 6.

2 The Choquet Integral Preference Model

Let 2G be the power set of G (i.e. the set of all subsets of G); a fuzzy measure
(capacity) onG is defined as a set function μ : 2G → [0, 1] satisfying the following
properties:
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1a) μ(∅) = 0 and μ(G) = 1 (boundary conditions),
2a) ∀ T ⊆ R ⊆ G, μ(T ) ≤ μ(R) (monotonicity condition).

A fuzzy measure is said to be additive if μ(T ∪ R) = μ(T ) + μ(R), for any
T,R ⊆ G such that T ∩R = ∅. An additive fuzzy measure is determined uniquely
by μ({1}), μ({2}) . . . , μ({n}). In fact, in this case, ∀ T ⊆ G, μ(T ) =

∑
i∈T

μ({i}).

In the other cases, we have to define a value μ(T ) for every subset T of G,
which are as many as 2|G|. Therefore, we have to calculate the values of 2|G|− 2
coefficients, since we know that μ(∅) = 0 and μ(G) = 1.
The Möbius representation of the fuzzy measure μ (see [15]) is defined by the

function m : 2G → R (see [16]) such that:

μ(R) =
∑
T⊆R

m(T ). (2)

Let us observe that if R is a singleton, i.e. R = {i} with i = 1, . . . , n, then
μ({i}) = m({i}). If R is a couple (non-ordered pair) of criteria, i.e. R = {i, j},
then μ({i, j}) = m({i}) +m({j}) +m({i, j}).
In general, the Möbius representation m(R) is obtained by μ(R) in the fol-

lowing way:

m(R) =
∑
T⊆R

(−1)|R\T |μ(T ). (3)

In terms of Möbius representation (see [2]), properties 1a) and 2a) are, respec-
tively, formulated as:

1b) m(∅) = 0,
∑
T⊆G

m(T ) = 1,

2b) ∀ i ∈ G and ∀R ⊆ G \ {i} ,
∑
T⊆R

m(T ∪ {i}) ≥ 0.

Let us observe that in MCDA, the importance of any criterion gi ∈ G should be
evaluated considering all its global effects in the decision problem at hand; these
effects can be “decomposed” from both theoretical and operational points of view
in effects of gi as single, and in combination with all other criteria. Therefore, a
criterion i ∈ G is important with respect to a fuzzy measure μ not only when it
is considered alone, i.e. for the value μ({i}) in itself, but also when it interacts
with other criteria from G, i.e. for every value μ(T ∪ {i}), T ⊆ G \ {i}.
Given a ∈ A and μ being a fuzzy measure on G, then the Choquet integral [3]

is defined by:

Cμ(a) =

n∑
i=1

[(
g(i)(a)

)
−
(
g(i−1) (a)

)]
μ (Ai) , (4)
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where (·) stands for a permutation of the indices of criteria such that
g(1) (a) ≤ g(2) (a) ≤ ... ≤ g(n) (a) , with Ai = {(i), ...., (n)}, i = 1, .., n, and
g(0) = 0.
The Choquet integral can be redefined in terms of the Möbius representation

[6], without reordering the criteria, as:

Cμ(a) =
∑
T⊆G

m(T )min
i∈T

gi (a) . (5)

One of the main drawbacks of the Choquet integral is the necessity of eliciting
and giving an adequate interpretation of 2|G|− 2 parameters. In order to reduce
the number of parameters to be computed and to avoid the difficult description
of the interactions among criteria, which is not realistic in many applications,
the concept of fuzzy k-additive measure has been considered [8].
A fuzzy measure is called k-additive if m(T ) = 0 for T ⊆ G such that |T | > k

and there exists at least one T ⊆ G, with |T | = k, such that m(T ) > 0. We
observe that a 1-additive measure is the common additive fuzzy measure. In
many real decision problems, it suffices to consider 2-additive measures. In this
case, positive and negative interactions between two criteria are modeled with-
out considering the interaction among any p-tuples (with p > 2) of criteria.
From the point of view of MCDA, the use of 2-additive measures is justified by
observing that the information on the importance of the single criteria and the
interactions between two criteria are noteworthy. Moreover, it could be not easy
or not straightforward for the DM to provide information on the interactions
among three or more criteria during the decision procedure. From a computa-
tional point of view, the interest in the 2-additive measures lies in the fact that
any decision model needs to evaluate a number n+

(
n
2

)
of parameters (in terms of

Möbius representation, a value m({i}) for every criterion i and a value m({i, j})
for every couple of distinct criteria {i, j}). With respect to a 2-additive fuzzy
measure, the inverse transformation to obtain the fuzzy measure μ(R) from the
Möbius representation is defined as:

μ(R) =
∑
i∈R

m ({i}) +
∑

{i,j}⊆R

m ({i, j}) , ∀R ⊆ G. (6)

With regard to 2-additive measures, properties 1b) and 2b) have, respectively,
the following formulations:

1c) m (∅) = 0,
∑
i∈G

m ({i}) +
∑

{i,j}⊆G

m ({i, j}) = 1,

2c)

⎧⎪⎨⎪⎩
m ({i}) ≥ 0, ∀i ∈ G,

m ({i}) +
∑
j∈T

m ({i, j}) ≥ 0, ∀i ∈ G and ∀ T ⊆ G \ {i} , T �= ∅.

In this case, the representation of the Choquet integral of a ∈ A is given by:

Cμ(a) =
∑

{i}⊆G

m ({i}) (gi (a)) +
∑

{i,j}⊆G

m ({i, j})min{gi (a) , gj (a)}. (7)
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Finally, we recall the definitions of the importance and interaction indices for
couples of criteria.
The Shapley value [17] expressing the importance of criterion i ∈ G, is given

by:

ϕ({i}) =
∑

T⊆G: i/∈T

(|G \ T | − 1)!|T |!
|G|! · [μ(T ∪ {i})− μ(T )], (8)

while the interaction index [14] expressing the sign and the magnitude of the
synergy in a couple of criteria {i, j} ⊆ G, is given by

ϕ ({i, j}) =
∑

T⊆G: i,j /∈T

(|G \ T | − 2)!|T |!
(|G| − 1)! · τ(T, i, j), (9)

where τ(T, i, j) = [μ(T ∪ {i, j})− μ(T ∪ {i})− μ(T ∪ {j}) + μ(T )].
In case of 2-additive capacities, the Shapley value and the interaction index

can be expressed as follows:

ϕ ({i}) = m ({i}) +
∑

j∈G\{i}

m ({i, j})
2

, i ∈ G, (10)

ϕ ({i, j}) = m ({i, j}) . (11)

3 Multiple Criteria Hierarchy Process (MCHP)

In MCHP, a set G of hierarchically ordered criteria is considered, i.e. all criteria
are not considered at the same level, but they are distributed over l different
levels (see Figure 1). At level 1, there are first level criteria called root criteria.
Each root criterion has its own hierarchy tree. The leaves of each hierarchy tree
are at the last level l and they are called elementary subcriteria. Thus, in graph
theory terms, the whole hierarchy is a forest. We will use the following notation:

– l is the number of levels in the hierarchy of criteria,
– G is the set of all criteria at all considered levels,
– IG is the set of indices of particular criteria representing position of criteria
in the hierarchy,

– m is the number of the first level criteria, G1, . . . , Gm,
– Gr ∈ G, with r = (i1, . . . , ih) ∈ IG , denotes a subcriterion of the first level
criterion Gi1 at level h; the first level criteria are denoted by Gi1 , i1 =
1, . . . ,m,

– n(r) is the number of subcriteria of Gr in the subsequent level, i.e. the direct
subcriteria of Gr are G(r,1), . . . , G(r,n(r)),

– gt : A → R, with t = (i1, . . . , il) ∈ IG , denotes an elementary subcriterion
of the first level criterion Gi1 , i.e. a criterion at level l of the hierarchy tree
of Gi1 ,
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– EL is the set of indices of all elementary subcriteria:

EL = {t = (i1, . . . , il) ∈ IG} where

⎧⎪⎪⎨⎪⎪⎩
i1 = 1, . . . ,m
i2 = 1, . . . , n(i1)
· · · · · ·
il = 1, . . . , n(i1, . . . , il−1)

– E(Gr) is the set of indices of elementary subcriteria descending from Gr, i.e.

E(Gr) = {(r, ih+1, . . . , il) ∈ IG} where

⎧⎨⎩ ih+1 = 1, . . . , n(r)
· · · · · ·
il = 1, . . . , n(r, ih+1, . . . , il−1)

thus, E(Gr) ⊆ EL; in the case Gr ∈ EL, then E(Gr) = Gr,
– when r = 0, then by Gr = G0, we mean the entire set of criteria and
not a particular criterion or subcriterion; in this particular case, we have
E(G0) = EL,

– given F ⊆ G, E(F) = ∪Gr∈FE(Gr), that is E(F) is composed by all ele-
mentary subcriteria descending from at least one criterion in F ,

– given Gr ∈ G, r ∈ IG ∩ Nh
(Gr is a criterion at level h), 1 ≤ h < l, and

k ∈ {h+ 1, . . . , l}, we define:

Gk
r =

{
G(r,w) ∈ G : (r, w) ∈ IG ∩N

k
}

being the set of all subcriteria of criterion Gr at level k. (For example, in
Figure 1, we have that

G2
i1 =

{
G(i1,1), G(i1,2), G(i1,3)

}
and G3

(i1,2)
=
{
g(i1,2,1), g(i1,2,2)

})
Each alternative a ∈ A is evaluated directly on the elementary subcriteria only,
such that to each alternative a ∈ A there corresponds a vector of evaluations:

(gt1(a), . . . , gtn(a)) , n = |EL| .

Gi1

G(i1,1) G(i1,2) G(i1,3)

g(i1,1,1) g(i1,1,2) g(i1,1,3) g(i1,2,1) g(i1,2,2) g(i1,3,1) g(i1,3,2) g(i1,3,3) g(i1,3,4)

Fig. 1. Hierarchy of criteria for the first level (root) criterion Gi1
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Within MCHP, in each nodeGr ∈ G of the hierarchy tree there exists a preference
relation �r on A, such that for all a, b ∈ A, a �r b means “a is at least as good
as b on subcriterion Gr”. In the particular case where Gr = gt, t ∈ EL, a �t b
holds if gt(a) ≥ gt(b).

4 Multiple Criteria Hierarchy Process for Choquet
Integral Preference Model

In this article, we will aggregate the evaluations of alternative a ∈ A with respect
to the elementary subcriteria gt, t ∈ EL, using the Choquet integral as follows.
On the basis of a capacity μ defined on the power set of EL, for all a, b ∈ A,

a � b if Cμ(a) ≥ Cμ(b), where Cμ(a) and Cμ(b) are the Choquet integrals with
respect to μ of the vectors [gt(a), t ∈ EL] and [gt(b), t ∈ EL], respectively.
For all Gr ∈ G, r ∈ IG ∩N

h
(Gr is a criterion at level h), h = 1, . . . , l− 1 and

for all k = h+ 1, . . . , l, we can define the following capacity:

μkr : 2
Gk
r → [0, 1]

such that, for all F ⊆ Gk
r , we have that

μkr (F) =
μ(E(F))
μ(E(Gr))

(12)

In this way, μkr is a capacity defined on the power set of Gk
r , that could be

computed using the capacity μ defined on the power set of EL.
In the following, we shall write μr instead of μ

l
r.

For all a, b ∈ A, a �r b if Cμr(a) ≥ Cμr(b), where Cμr(a) and Cμr(b) are
the Choquet integrals with respect to μr of the vectors [gt(a), t ∈ E(Gr)] and
[gt(b), t ∈ E(Gr)], respectively. Observe that for all a ∈ A,

Cμr(a) =
Cμ(ar)

μ(E(Gr))
(13)

where ar is a fictitious alternative having the same evaluations of a on elementary
criteria from E(Gr) and null evaluation on criteria from outside E(Gr), i.e.
gs(ar) = gs(a) if s ∈ E(Gr) and gs(ar) = 0 if s /∈ E(Gr).
The Shapley value expressing the importance of criterion G(r,w) ∈ Gk

r being
thus a subcriterion of Gr at level k is:

ϕk
r (G(r,w)) =

∑
T⊆Gk

r \{G(r,w)}

(|Gk
r \ T | − 1)!|T |!

|Gk
r |!

·
[
μkr(T ∪

{
G(r,w)

}
)− μkr (T )

]
(14)
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while the interaction index expressing the sign and the magnitude of the synergy
in a couple of criteria G(r,w1), G(r,w2) ∈ Gk

r is given by:

ϕk
r (G(r,w1), G(r,w2)) =

∑
T⊆Gk

r \{G(r,w1),G(r,w2)}
(|Gk

r \ T | − 2)!|T |!
(|Gk

r | − 1)!
· τk

r (T,G(r,w1), G(r,w2))

(15)

where

τkr (T,A,B) =
[
μkr (T ∪ {A,B})− μkr (T ∪ {A})− μkr (T ∪ {B}) + μkr (T )

]
.

In case the capacity μ on {gt, t ∈ EL} is 2-additive, the Shapley value ϕk
r (G(r,w))

and the interaction index ϕk
r (G(r,w1), G(r,w2)), with G(r,w), G(r,w1), G(r,w2) ∈ Gk

r ,
can be expressed as follows:

ϕk
r (G(r,w)) =

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∑

t∈E(G(r,w))

m(gt) +
∑

t1,t2∈E(G(r,w))

m(gt1 , gt2) +
∑

t1∈E(G(r,w))

t2∈E(G k
r\{G(r,w)})

m(gt1 , gt2)

2

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭·
1

μ(E(Gr))

(16)

ϕk
r (G(r,w1), G(r,w2)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

t1∈E(G(r,w1)),

t2∈E(G(r,w2))

m(gt1 , gt2)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ · 1

μ(E(Gr))
. (17)

Taking into account the expression of the Shapley index in equation (14) and
Gs1 , Gs2 ∈ Gk

r1 ∩ Gk
r2 (that is Gs1 and Gs2 are subcriteria of both Gr1 and

Gr2 located at level k), and supposing, without loss of generality, that r2 =
(r1, w) (that is Gr2 is a subcriterion of Gr1), it is worth noting that the following
inequalities could be verified:

ϕk
r1(Gs1) > ϕ

k
r1(Gs2) and ϕk

r2(Gs1) < ϕ
k
r2(Gs2) (or viceversa).

This means that the importance of the criterion Gs1 is greater than the impor-
tance of the criterion Gs2 if they are considered as subcriteria of Gr1 , but the
importance of Gs2 is greater than importance of Gs1 if they are considered as
subcriteria of Gr2 . In fact, in the computation of ϕ

k
r1(Gs1) we take into account

not only the interactions between the elementary criteria descending from Gs1

but also the interactions between elementary criteria descending from Gs1 and
elementary criteria descending from Gr1 . Because we have supposed that Gr2

is a subcriterion of Gr1 , and consequently E (Gr2) ⊆ E (Gr1), in the computa-
tion of ϕk

r1(Gs1) we take into account more interactions than those considered
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in the computation of ϕk
r2(Gs1). For example, evaluating students with respect

to Science according to their scores on Mathematics and Physics, and with re-
spect to Humanities according to their scores on Literature and Philosophy, one
could consider Mathematics more important than Physics whithin Sciences and
Literature more important than Philosophy within Humanities. However, tak-
ing into consideration that there is a great synergy between Philosophy and
Physics, at the comprehensive level, Physics can be considered more important
than Mathematics, as well as, at the same level, Philosophy can be considered
more important than Literature.
Another interesting situation that can happen with respect to preferences

represented by the Choquet integral in case of the hierarchy of criteria is the
following. One can have that alternative a is evaluated better than alternative b
with respect to all the subcriteriaG(r,1), . . . , G(r,n(r)) of criterionGr ∈ G from the
subsequent level, and, nevertheless b can be evaluated better than a on criterion
Gr. For example, student a could be evaluated better than b on Science and
Humanities but b could be evaluated better than a at the comprehensive level.
This is due to the fact that when evaluating a student with respect to Science,
we take into account only the interactions among subcriteria of Science as well
as in the evaluation of a student with respect to Humanities we take into account
only the interactions among subcriteria of Humanities. On the other hand, when
evaluating a student comprehensively, we take into account also the interactions
among the subcriteria of Science and subcriteria of Humanities. Thus, if there
is a strong synergy between one subject from Science (for example, Physics)
and another subject from Humanities (for example, Philosophy), and b is better
evaluated than a in those subjects, this can result in the overall preference of b
over a.
We shall show these situations in the didactic example presented in the next

section.

5 A Didactic Example

Let us consider a set of nine students A = {a, b, c, d, e, f, g, h, k} evaluated on
the basis of two macro-subjects: Science and Humanities. Science has two sub-
subjects: Mathematics and Physics, while Humanities has two sub-subjects: Lit-
erature and Philosophy. The number of levels considered is two.
Using a formal notation, we have G =

{
G1, G2, G(1,1), G(1,2), G(2,1), G(2,2)

}
,

and the elements of G denote respectively, Science, Humanities, Mathematics,
Physics, Literature and Philosophy. The students are evaluated on the basis of
the elementary criteria only; such evaluations are shown in Table 1(a).
In the following, we shall consider a 2-additive capacity determined by the

Möbius measures in Table 1(b).
Applying the expression (13) of the hierarchical Choquet integral introduced

in Section 4, we can compute the evaluation of every student with respect to
macro-subjects Science (G1) and Humanities (G2), while using the expression
(7) of the Choquet integral, we can compute the evaluation of every student with
respect to the whole hierarchy of criteria (see Table 2).
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Table 1. Matrix evaluation and Möbius measures

(a) Matrix evaluation

Science Humanities

Student Mathematics Physics Literature Philosophy

a 18 18 12 12

b 16 16 16 16

c 14 14 18 18

d 18 12 16 16

e 15 15 18 14

f 18 14 14 18

g 15 17 18 16

h 10 20 10 20

k 14 14 14 14

(b) Möbius measures

m(G(1,1)) 0.29

m(G(1,2)) 0.19

m(G(2,1)) 0.29

m(G(2,2)) 0.19

m(G(1,1), G(1,2)) −0.1

m(G(1,1), G(2,1)) 0

m(G(1,1), G(2,2)) 0

m(G(1,2), G(2,1)) 0

m(G(1,2), G(2,2)) 0.24

m(G(2,1), G(2,2)) −0.1

For example, looking at the first three rows in Table 2, we get:

– the Choquet integral of a with respect to Science is equal to 18 and it is com-
puted considering the fictitious alternative a1 having the same evaluations
of a on the elementary criteria descending from Science, and null evaluations
on all other elementary criteria,

– the Choquet integral of a with respect to Humanities is equal to 12 and it
is computed considering the fictitious alternative a2 having the same evalu-
ations of a on the elementary criteria descending from Humanities, and null
evaluations on all other elementary criteria,

– the Choquet integral of a with respect to the whole hierarchy of criteria is
equal to 14.28 and it is computed considering the evaluations of a on all
elementary criteria.

Hereafter we underline the very interesting inversion of preference regarding
alternatives h and k. In fact, looking at Table 2, we can observe that k is
better than h with respect to both macro-subjects Science and Humanities
(Cμ1(k) > Cμ1(h) and Cμ2(k) > Cμ2(h)) but h is comprehensively better than
k (Cμ(h) > Cμ(k)). The reason of this inversion of preference is explained con-
sidering that in the computation of Cμ1(·) and Cμ2(·) we take into account
only the interaction between elementary criteria descending from Science and
Humanities respectively, while in the computation of the comprehensive Cho-
quet integral Cμ(·) we take into account the possible interactions between all
elementary criteria in the hierarchy.
By considering the capacities on the elementary criteria displayed in Table

1(b) and adopting the expression (16) defined in Section 4, we compute the
Shapley values of the elementary criteria G(r,i) with respect to their relative
parent criterion Gr (see Table 3(a)). Then the overall Shapley values of the
elementary criteria (i.e. with respect to G0) are calculated and shown in Table
3(b). Finally, the Shapley values of subcriteriaG1 (Science) andG2 (Humanities)
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Table 2. Choquet integrals with respect to the macro-subjects Science and Humanities
and with respect to the whole hierarchy of criteria

Science Humanities

Mathematics Physics Literature Philosophy Choquet integrals

a1 18 18 0 0 Cμ1(a) 18
a2 0 0 12 12 Cμ2(a) 12
a 18 18 12 12 Cμ(a) 14.28

b1 16 16 0 0 Cμ1(b) 16
b2 0 0 16 16 Cμ2(b) 16
b 16 16 16 16 Cμ(b) 16

c1 14 14 0 0 Cμ1(c) 14
c2 0 0 18 18 Cμ2(c) 18
c 14 14 18 18 Cμ(c) 15.52

d1 18 12 0 0 Cμ1(d) 16.57
d2 0 0 16 16 Cμ2(d) 16
d 18 12 16 16 Cμ(d) 15.26

e1 15 15 0 0 Cμ1(e) 15
e2 0 0 18 14 Cμ2(e) 17.05
e 15 15 18 14 Cμ(e) 15.54

f1 18 14 0 0 Cμ1(f) 17.05
f2 0 0 14 18 Cμ2(f) 16
f 18 14 14 18 Cμ(f) 15.92

g1 15 17 0 0 Cμ1(g) 16
g2 0 0 18 16 Cμ2(g) 17.52
g 15 17 18 16 Cμ(g) 16.58

h1 10 20 0 0 Cμ1(h) 13.5
h2 0 0 10 20 Cμ2(h) 13.5
h 10 20 10 20 Cμ(h) 15.06

k1 14 14 0 0 Cμ1(k) 14
k2 0 0 14 14 Cμ2(k) 14
k 14 14 14 14 Cμ(k) 14

and their interaction index (see the expression (17) introduced in Section 4) are
computed and displayed in Table 4.
As it has been announced in Section 4, in this example, Mathematics is more

important than Physics, when they are considered as subcriteria of Science (see
Table 3(a)) and, conversely, Physics is more important than Mathematics when
they are considered as subcriteria of the whole set of criteria G0 (see Table 3(b)).
In order to illustrate the difference between our approach and that of [18],

in the following we shall compute the comprehensive evaluations of student g
following the approach of [18]. At first, we need to define a capacity for each
node of the hierarchy of criteria, which is not an elementary criterion. Because
in our didactic example the hierarchy is composed of three nodes being different
from the elementary criteria, we need to define three capacities, μ{Sci}, μ{Hum},
and μ{Sci,Hum} on {Math, Phy}, {Lit, Phi} and {Sci,Hum}, respectively. Let
us suppose that the capacities are defined using the Möbius measures shown in
Table 5.
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Table 3. Shapley values

(a) Shapley values of every elementary criterion with
respect to every macro-subject Gr

Science Humanities

Mathematics Physics Literature Philosophy

ϕk
r (G(r,w)) 0.63 0.36 0.63 0.36

(b) Shapley values of the
elementary criteria

ϕk
r (G(r,w))

Mathematics 0.24

Physics 0.26

Literature 0.24

Philosophy 0.26

Table 4. The Shapley values and interaction index of Science (G1) and Humanities
(G2)

ϕk
r (G(r,w))

Science 0.5

Humanities 0.5

ϕk
r (G(r,w1), G(r,w2))

Science and Humanities 0.24

Table 5. Möbius measures

Science Humanities Science,Humanities

m({Math}) 0.7 m({Lit}) 0.5 m({Sci}) 0.4

m({Phy}) 0.5 m({Phi}) 0.6 m({Hum}) 0.4

m({Math, Phy}) -0.2 m({Lit, Phi}) -0.1 m({Sci, Hum}) 0.2

Computing the Choquet integral of g = (15, 17, 18, 16) with respect to criteria
Science and Humanities using the capacities μ{Sci} and μ{Hum}, we get:

C{Sci}(g) = 15m({Math}) + 17m({Phy}) + 15m({Math, Phys}) = 16

C{Hum}(g) = 18m({Lit}+ 16m({Phi}+ 16m({Lit, Phi} = 17
Then, the comprehensive Choquet integral of g is obtained by aggregating the
evaluations (C{Sci}(g), C{Hum}(g)) using the capacity μ{Sci,Hum} :

C{Sci,Hum}(g) = C{Sci}(g)m({Sci}) + C{Hum}(g)m({Hum})+

+min(C{Sci}(g), C{Hum}(g))m({Sci,Hum}) = 16.4.
The remarkable difference between the method presented in [18] and our ap-
proach, is that in the first one, one capacity has to be defined with respect to
each node of the hierarchy of criteria being different from the elementary criteria
(for example in the didactic example we have defined three different capacities)
while in our approach one needs to define only one capacity on the set of all
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elementary criteria, and the capacities at higher levels are calculated according
to formulas given in Section 4.

6 Conclusions

We have proposed the application of the Multiple Criteria Hierarchy Process
(MCHP) to a preference model expressed in terms of Choquet integral, in or-
der to deal with interaction among criteria. Application of the MCHP to the
Choquet integral permits the handling of importance and interactions of criteria
with respect to any subcriterion of the hierarchy. To apply the MCHP to the
Choquet integral in real world problems, it is necessary to elicit preference model
parameters, which in this case are the non-interactive weights represented by a
capacity. The added value of the MCHP is that it permits the DM expressing the
preference information related to any criterion of the hierarchy. When MCHP is
combined with a disaggregation procedure, the DM can say, for example, that
student a is globally preferred to student b, but he can also say that student c is
better than student d in Humanities. DM can also say that criterion Science is
more important than Humanities, or that the interaction between Physics and
Philosophy is greater than the interaction between Mathematics and Literature.
Many multicriteria disaggregation procedures have been proposed to infer a ca-
pacity from those types of preference information, however, without considering
the hierarchy of criteria (see, for example, [13]). Recently, a new multicriteria
disaggregation method has been proposed to take into account that, in general,
more than one capacity is able to represent the preference expressed by the DM:
Non Additive Robust Ordinal Regression (NAROR) [1]. NAROR considers all
the capacities that are compatible with the preference information given by the
DM, adopting the concepts of possible and necessary preference introduced in
[11]. In simple words, a is necessarily or possibly preferred to b, if it is preferred
for all compatible capacities or for at least one compatible capacity, respectively.
In our opinion, application of NAROR to MCHP for the Choquet integral will
permit to take into account interaction among hierarchically structured crite-
ria in a very efficient way, enabling the handling of many complex real world
problems.
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11. Greco, S., Mousseau, V., S�lowiński, R.: Ordinal regression revisited: multiple crite-
ria ranking using a set of additive value functions. European Journal of Operational
Research 191(2), 416–436 (2008)

12. Keeney, R.L., Raiffa, H.: Decisions with multiple objectives: Preferences and value
tradeoffs. J. Wiley, New York (1976)

13. Marichal, J.L., Roubens, M.: Determination of weights of interacting criteria from
a reference set. European Journal of Operational Research 124(3), 641–650 (2000)

14. Murofushi, T., Soneda, S.: Techniques for reading fuzzy measures (iii): interaction
index. In: 9th Fuzzy Systems Symposium, Sapporo, Japan, pp. 693–696 (1993)

15. Rota, G.C.: On the foundations of combinatorial theory I. Theory of Möbius func-
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Abstract. In the context of complex equipment, inspection has an important 
role to play in maintaining operations at a suitable performance. In fact, for this 
kind of system, failures are not immediate. Therefore, the concept of delay time 
is very useful as a two-step failure process, as a basis for constructing inspec-
tion models. Another aspect worth noticing is the fact that, in practice, when the 
decision-maker decides on the time between inspections, he/she takes different 
aspects into account in a non-structured way. This happens because the majority 
of inspection models deal with the problem using an optimization approach, 
where only one aspect is considered. So, the main contribution of this article is 
to put forward a multicriteria decision model in order to aid maintenance plan-
ning. This model takes the decision maker’s preferences into account, as well 
as, the most important aspects, when considering setting the inspection intervals 
for periodic condition monitoring, and which are the cost and downtime asso-
ciated with the inspection policy. 

Keywords: Multi-attribute utility theory, maintenance, inspection.  

1 Introduction 

A multicriteria decision model to aid maintenance planning is investigated in this 
paper. The novelty of the paper lies in the fact that it considers the delay time concept 
under a multicriteria approach. It is assumed that the equipment is complex. 
Therefore, renewal does not take place during maintenance actions. This is because a 
repair or a replacement of an individual component does not renew the whole 
equipment.  

In fact, having an inspection policy is very useful in order to check the real state of 
the system. In practice, this kind of policy is translated into several activities to check 
the state of the system and this might be accomplished with or without instruments. 
The real contribution of this activity is to identify intermediate states before failure. 
Despite the real contribution of an inspection, according to Badia (2002), most 
maintenance policies assume that failures are detected as soon as they occur, and, 
indeed, for continuous operations this is a realistic assumption. On the other hand, 
there are some systems where even when failures are visible they are associated with 
defects that precede them (Cavalcante et al., 2011; Scarf and Cavalcante, 2010). 
Therefore, any kind of procedure that helps identify such defective items is useful to 
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prevent the failure from happening, as well as, to ensure that these items spend as 
little time as possible in the defective state, since  defects cause losses in the 
production process and are often not discovered until they take place or, finally, are 
the cause of failures. 

These processes that help to learn more about the state of the items are often called 
inspection policies. There are many of articles that deal with this problem such as 
(Valdez-Florez and Feldman, 1989). The standard inspection policy consists of 
checks on a unit that operates for an infinite span at successive times TK (k = 1, 2…), 
where T0 = 0. The most common assumption is that any failure is detected at the time 
of the next check and a replacement is immediately made (Barlow and Proschan, 
1965; Nakagawa, 2005). A derivative approach analyzes the delay time. Delay time is 
the time lapse from when a system defect could first have been noticed until the time 
when its repair can no longer be delayed because of unacceptable consequences such 
as a serious catastrophe which might arise due to failure (Christer, 1999). In these 
models, the focus changes to defects rather failure, since they assume that failures are 
preceded by defects. These models are very useful for a large number of different 
situations, since they consider that failures are consequences of two different 
stochastic mechanisms: the delay in itself and the initial point of identifying defects. 

The importance of delay time in maintenance management applications was 
investigated by Wang (2012). Formally,  the delay time concept considers the failure 
process as a two-stage process, where the first  is to do with the emergence of the 
defect, in which case a defect may be first identified by an inspection, and the second 
process is about the time lapse from that point until failure, should the defect not be 
attended to (Wang, 2011) . The time lapse related to the second process, from the 
initial point of an identifiable defect to failure, is called the delay time of the failure. 
The delay time concept is shown in Figure 1. 

 

Fig. 1. Delay time concept (Christer, 1982) 

The main contribution of the delay time concept arises from the fact that if an 
inspection is carried out during the delay time of the failure, the defect present might 
well be detected, and consequently the failure could be avoided. According to Wang 
(2012) the strong appeal of applying this method can be seen by considering the large  
number of articles on case studies involving real situations using the delay time 
concept (Sheils et al (2010);, Berrade, 2012). 
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However, despite the delay time method pointing to promising horizons in terms of 
realistic models, another important aspect of the maintenance context needs to be 
handled in a more effective way; the presence of multiple objectives, in maintenance 
decisions, in most cases, is still being ignored. There are few studies that deal a 
maintenance problem under a mutiple objective approach (see, Almeida 2001; 
Almeida, 2005 and Ferreira 2009).  

Therefore, this paper sets out to illustrate the use of a multicriteria model in order 
to set inspection intervals selection based on multi-attribute utility theory. This model 
provides decision-makers with a broader view which enables them to explore the 
different decision dimensions, which thus leads to a better understanding of the 
conflicts between the criteria, and encourages them to reveal their preferences 
regarding these criteria.  

This paper is organised as follows. A basic introduction and a brief review of the 
literature are presented in Section 1. The building of a multi-attribute decision model 
to set inspection intervals is specified in detail in Section 2, and in Section 3, the 
application of a decision model is presented. Section 4 provides a conclusion of the 
main results of the paper. 

2 Problem Description and Assumptions  

For the specific case of an inspection, of a complex system, managers are interested in 
balancing the costs of the inspection policy with savings arising from improving the 
performance of the system. In fact, depending on the production process that is sup-
ported by a complex system, a very short interruption due to a failure can cause a 
substantial financial loss. In other contexts, a failure can mean much more than cost. 
For example, in a service system, a failure can provoke consequences for the users 
beyond costs. Cavalcante & Almeida (2007) commented on some situations, where 
cost criteria are not suitable with regard to representing the real objective. They ar-
gued that this happens because the policies resulting from aiming only at the mini-
mum cost allow levels of failures that are too high, and therefore unacceptable for 
these contexts. For example, in the contexts of maintaining medical equipment, the 
protection of a country by military means and an oil distribution system, a failure 
could lead to disastrous consequences, and therefore such contexts should not be con-
strained only by the monetary dimension. 

Therefore, the decision about the frequency of inspections should consider all the 
aspects that are important. In this article, an electric energy system is dealt with where 
besides costs, availability is very important. In fact, some consequences related to a 
failure cannot be translated into a monetary scale. Notice that even though considera-
tion of this is complicated, these kinds of consequence, i.e. those beyond cost, should 
be taken in account, since this aspect, sometimes, is the most relevant in a decision 
process that seeks to specify at what intervals an inspection should take place. In the 
electricity sector, the lower the availability, the heavier the fine, but also, in some 
sense, this aspect indirectly represents all the other dimensions of consequence, since 
the greater the availability, the smaller the impact of any other consequences asso-
ciated with the failure. Thus, increasing availability is a way to reduce all the other 
consequences associated with failure. 
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Since the model is based on the concept of delay time, the construction of the  
model should consider the common assumptions defined in the delay time approach. 
For the particular case of a complex system, this article considered electrical equip-
ment. It is emphasized that a replacement or repair of one component of such equip-
ment is not enough to renew the system. Therefore, the failure process is assumed to 
be a non-homogeneous Poisson process. The assumptions associated with this process 
are listed below: 

• An inspection takes place every T time units and lasts di, where di << T; 
• Inspections are perfect in that any defect present within the system will be identi-

fied. Once the defects are identified, the repairs are made immediately after the in-
spection, the repair for each defects lasts dd; 

• The defects arise at a constant rate per unit of time (λ).  
• The delay time (h) is independent of the initial point u; 
• The distribution of the delay time is known, and its probability density function 

fh(h) is known. 

Using these assumptions, the probability of a fault arising as a breakdown is: 
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2.1 The Cost Attribute 

The operational cost of applying an inspection policy can be measured. Based on the 
delay time concept and admitting that the most important assumption that is brought 
from this fundamental approach is cost, a complex system can be modelled by the 
following expression: 
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The assumptions that were assumed are listed below:  

• Inspection cost is  (ci) 
• Cost of repairs under a failure (cf); 
• Cost of  repairing a defect just after the inspection (cd);  

As expected, the cost of inspection is the smallest cost (ci)<(cd) < (cf). 
Regarding the third assumption, it was considered that any necessary repair could 

be planned and made just after the inspection is finished. For a complex system this 
assumption is quite feasible because, during an inspection, many defects are detected. 
Having identified these defects, a team could be sent to fix them. 
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2.2 The Availability Attribute 

In terms of availability, as was already mentioned, this criterion is related to the non-
monetary aspects associated with the failures. This reflects the ability of the system to 
perform under the influence of an inspection policy. Availability is about the percen-
tage of time that the system is available. So, in terms of a service system, this availa-
bility corresponds to the percentage of time that the service is provided to the client. 
Therefore, it is easy to see what the percentage of time is that the client is not served. 
Thus, the lower the availability is, the greater the client’s dissatisfaction.  

The availability of the complex system can be modelled by the following  
expression: 
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The assumptions made are listed below: 

• Inspection time is (di) 
• The mean time of a repair is (df). This time corresponds to repair associated with 

failures. 
• The mean time of  repairing a defect just after the inspection is (dd); 

The availability function can obtain identical values for different times between in-
spections. In short intervals between inspections, high unavailability can occur due to 
high frequency of time spent on inspections. However for long inspection times, there 
will be a high proportion of unavailability due to failures. In this situation, the alterna-
tives have the same value in the utility function considering only this criterion. Let 
A(t1) = A(t2), then U(A(t1)) = U(A(t2)) in their respective unidimensional utility  
functions. 

2.3 The Multi-attribute Utility Theory Model 

A multi-attribute utility theory model is proposed considering that attributes of cost 
and availability are additive independent if and only if the two-attribute utility func-
tion is additive. For these criteria, the additive form may be written either as: 

 ))(())(())(),((max TAukTCukTATCu aacc +=                            (4) 

Once additive independence is observed, the strategy of divide and conquer could be 
thoroughly be explored when assessing the multi-attribute utility function. Therefore, 
each one-dimensional utility function for each respective attribute should be elicited. 
Alternatively, in some cases, a specific analytic function could be used where its 
shape gives an interesting description of a specific instance of the decision-maker’s 
behaviour for a given attribute. A five steps procedure defined by Ferreira et al. 
(2009) is indicated to evaluate the consistency of multi-attribute utility function  
proposed in this paper. 
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Criteria could not be independent preferentially for a given decision maker. In this 
case, specific procedures should be applied for deal with this situation, see Keeney & 
Raiffa (1976). In maintenance management problems, in general, decision makers are 
familiar to think probabilistically and MAUT can facilitate the use of this type of 
problem. Other applications of maintenance management problems using multicriteria 
models are proposed by Brito, et al. (2010), Cavalcante et al. (2010); Alencar & Al-
meida (2010). 

For decision makers who feel difficulty in building one-dimensional utility func-
tions, scale constants and other parameters of multiattribute utility functions other 
methods can be used, such as UTA methods (Jacquet-Lagreze & Siskos 1982) and 
Robust Ordinal Regression methods (Greco, Mousseau and Słowiński, 2008). 

Selection of inspection intervals can be modelled as group decision making prob-
lems when more than one decision makers are involved (Morais & Almeida, 2011; 
Morais & Almeida, 2006; Morais & Almeida, 2010).  

3 Case Study 

This paper proposes an inspection model to a safety valve that is responsible for iso-
lating a section. In particular, we considered that the maintenance of pipelines is very 
complex and depends on high technology tools, since they are underground. Also 
most failures in pipelines are caused not by the natural degradation, but by external 
agents, which are not associated with time (Majid et al, 2012). Therefore, in the con-
text of large expansion the operational readiness of protection systems is very impor-
tant to make sure that, in a leakage situation, the control is manageable and the  
consequences are acceptable.  

We consider a valve as a system comprising the internal parts (trim), body and the 
pilot, which together are responsible for isolating a given section on demand. Thus, 
they form a complex system that has to be inspected in order to mitigate a conse-
quence of failure. The problem is that in each time T, in order to see what is happen-
ing to this system, by inspection, the valve is tested. The inspection lasts di. time. If 
some defects were detected on inspection, the section of gas pipeline is interrupted in 
order to make a minimal repair on the valve, this repair takes dd and is done imme-
diately after the inspection. If a failure is observed the valve undergoes a major repair 
that takes more time (df) and is more expensive than the repair that is done when a 
defect is detected. Notice that for both cases the repair has no effect on the reliability 
of the valve, since it is complex equipment.  

Failures of the operational function of the system are undesirable and incur cost cf, 
when a defect is detected before the failure the cost of a minimal repair (cd) is taken 
and, when nothing is found, the cost of the inspection is ci.  

We suppose that a defect arises prior to failure, that defects are detectable at in-
spection, and that any part that is defective on inspection is immediately repaired.  

Table 1 presents all the parameters associated with the model. 
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Table 1. Parameters of the model 

λ 0.022 faults per day 
h(mean delay time) Exponential  60 days  
di 1  hour 
dd 4  hours 
df 14 hours 
cf US$ 1,200.00 
cd US$ 500.00 
ci US$ 200.00 

 
Based on these parameters from Table 1, the minimum cost is US$ 200,43 for 

T=52 days and the maximum availability is 0,99298 for T=27 days. Thus, the cost 
and availability functions for the efficient frontier are plotted in Figure 2 and Figure 3. 

 

Fig. 2. Behavior of cost attribute as a function of inspection time 

 

Fig. 3. Behavior of availability attribute as a function of inspection time 



 Selection of Inspection Intervals Based on Multi-attribute Utility Theory 497 

MAUT was the approach chosen to deal with the uncertainty and the conflicting 
criteria, as well as to take into account the decision maker’s preferences. According to 
Keeney and Raiffa (1976), there is not an unique series of steps in order to guarantee 
a properly assessed multiattibute utility function. Thus, for the case of two attributes, 
the authors propose a five step process for assessing the multiattibute utility function. 
This process was proposed by the authors in order to provide a better discussion be-
tween the authors involved on the decision process. The sequence of steps is as fol-
lows:  (1) introducing the terminology and idea; (2) identifying relevant independence 
assumptions (3) assessing conditional utility functions; (4) assessing scaling con-
stants; (5) checking for consistency and reiterating. 

As the objective of this process consists of representing the preference of the deci-
sion maker by a model, it is important that the decision maker has no doubt about the 
process, so this first step should not only explain the whole assessment process, but 
also make sure that the consequence space is completely understood. In our specific 
case, the set of alternatives comprises any time on the interval [0, ∞). In fact, the al-
ternatives correspond to inspection time t. For each inspection time, t, there is a con-
sequence in terms of cost, C(t), and Availability, A(t). A graphical representation is a 
relevant instrument to make the decision-maker understand the consequence space. 

Once the consequence space is well understood by the decision-maker, the discus-
sion about the his/her preferences should be addressed in order to make it possible to 
represent these for an utility function. The hypothesis of additive independence was 
verified. Once the additive independence is observed, the strategy of divide and con-
quer could really be explored on the assessment of the multi-attribute utility function. 
In this way, each one-dimensional utility functions for each respective attribute 
should be elicited. Alternatively, in some cases, a specific analytic function could be 
used where its shape is interesting to describe a specific preference behaviour of the 
decision-maker for a given attribute. 

The fourth step consists of assessing scaling constants. As the scaling constants 
form a final expression of the multiattribute utility function, the number and meaning 
of theses constants is affected by the independence relationships that were observed 
between the attributes. As we are supposing an additive independence, for our par-
ticular case of two attributes we will have two scaling constants. The value of kc esti-
mated by lotteries is 0.88. This lottery is represented by u(C*(T), A0(T)) and the value 
of p where the decision maker becomes indifferent between the lottery with u(C*(T), 
A*(T)) and u(C0(T), A0(T)). The inspection interval with maximum utility is 35 days. 

The final step consists of the check of the consistency, so the decision maker has to 
judge some points of the space of consequence in terms of preference, if the multi-
attribute utility function is consistent with these judgments the model is working well. 

4 Conclusions 

This article applied a multi-attribute utility theory to support the planning of an in-
spection policy. The concept of delay time was used to model the failure process of 
the valves. In fact, in practice a valve presents a defect before a failure.  



498 R.J.P. Ferreira, A.T. de Almeida, and C.A.V. Cavalcante 

For the decision-maker, the model allows a broader view of the problem, in addi-
tion to which it weights the alternative that is in accordance with the decision maker's 
preference, in fact when there is a failure some others non-monetary aspects are in-
volved, such as dissatisfaction. Therefore in order to take into account this aspect the 
availability was measured for different alternatives of time inspection. In fact, the 
grater is the unavailability the greater is the dissatisfaction of the decision-maker.  

For the specific case of a protection valve a failure of the valve impact on the num-
ber of the clients whose gas supplies will be interrupted. Furthermore, in the worst 
scenario the failure could have a very bad consequence, since the natural gas could 
cause a explosion in cases where it is not possible to isolate a section with a leakage.    
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Abstract. This paper introduces the concept of a ranking veto based on
two new data provided by decision makers (DMs) in an additive model
approach: the veto threshold and a value reduction factor (VRF). The
use of additive models for aggregating group preferences over available
alternatives implies the existence of compensatory effects in the process.
In traditional approaches, the final result may assign undesirable or un-
acceptable alternatives to higher positions in the ranking, thus causing
conflicts among DMs. The model proposed softens the compensatory ef-
fects on additive models. By way of illustration, a base station allocation
problem for a Telecommunication Company is presented as a numerical
application. In addition to the model proposed being simple to use, it
enables a group to form a collective and/or consensual view on a decision
problem.

Keywords: MAUT, additive models, group decision making, ranking
veto concept, telecommunication.

1 Introduction

The process of aggregating individual opinions is a crucial problem for any soci-
ety [1]. According to [2], three major concerns when individual preferences are
being put forward must be addressed: first, to decide how information about
individual preferences should be collected and represented; secondly, to solve
inconsistencies in preferences given by decision makers (DMs); and thirdly, to
define how to combine individual preferences to achieve a final group recommen-
dation and/or a consensus. A consensus as unanimity may be a target that might
never be reached. This does not mean the absence of a group recommendation.
Group consensus can be achieved by using two types of preference aggregation

methods. In the first, an additive ranking rule is the arithmetic mean of the
rankings made by all n DMs and the second is based on a multiplicative ranking
rule where the product of the rankings made by n DMs is raised to the power
1/n [3]. As to trying to achieve a consensus, several studies in the literature
analyze different aspects, concepts and models such as conflict resolution [4],
fuzzy set theory [5], cost metrics [6,7], ordinal ranking models [8,9,10], imprecise
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information [11], outranking methods [12] and ordinal regression for multiple
criteria group decisions [13].
In most situations people are used to making a decision based on intuitive

judgment, considering more than one objective in an unstructured way [14].
Group multi-criteria decision making methods and group decision support sys-
tems may support decision makers to establishing their criteria, better under-
standing the decision problem to achieve a final recommendation [15].
Additive value and weighted value models are considered classical models and

all variants of these that have been adopted involve the idea of a compensatory
decision process, which can also be found in MAUT (Multi-attribute Utility
Theory). The compensatory effect means that low scores in one criterion may
be compensated by high scores in another. In [16], a group decision model based
on a veto ranking concept was proposed to soften the compensatory effect of
additive models and to support DMs to accept more consensual alternatives.
This paper extends the study presented in [16] by a modification in the way

that a value reduction factor (VRF) is calculated so as to better establish a group
recommendation for a final ranking. This paper is organized as follows. Section 2
describes the model proposed and Section 3 presents a numerical application so
as to illustrate the model better. The last section contains final remarks, draws
some conclusions and makes suggestions for future studies.

2 Model Proposed

One of the major problems of additive models is their compensatory effect where
one alternative could be at least desirable for some DMs and have compensation
from other DMs. Therefore, a non-balance solution may be proposed. Arrow’s
Impossibility Theorem describes five properties which are necessary to achieve a
social welfare function [17] and later studies had been published discussing that
discrete multicriteria problems using additive models for social choices should
at least satisfy three of five properties (i.e, unrestricted domain, independence
from irrelevant alternatives and monotonicity) [18,19]. Note that, with regard
to group decisions, the property of monotonicity may easily be violated [19]. In
order to minimize conflicts among DMs, a ranking veto concept is proposed in
[16] to support a group of DMs in reaching a final recommendation by using
an additive model approach. This model proposes a modification to traditional
additive models which aims to lessen their compensatory effect by penalizing
conflicting alternatives in their ranking positions and, consequently to promote
consensual alternatives to better ranking positions. This model is suitable for
ranking and selection problematics.
For a collaborative group decision problem where DMs are willing to give up

their most preferred alternatives in favor of more consensual ones, the model de-
scribed in [16] was proposed and structured in three steps. The first step consists
of considering the value system of each DM and therefore, each DM’s preference
structure over a set of available alternatives to establish individual rankings
for the alternatives. To do so, Multiple-Attribute Value Theory (MAVT) was
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adopted since no uncertainties over the consequences of the alternatives exist.
Note that, MAVT is a compensatory technique and, thus, the method does al-
low one criterion to be compensated for by another (with a better performance).
Preference indifference among criteria is considered and, in this case, the additive
model as presented in (1) can be adopted:

vDM (a) =

n∑
j=1

kjvj(a) (1)

where, a is an alternative, vj(a) is a value function for each criterion j and kj
represents the scale constant for criterion j. Note that

∑n
j=1 kj = 1. Based on

such data, it is possible to establish the rankings of all alternatives for each
DM. The alternative with the best value is placed first in the ranking, and so
on. If a traditional additive group model is used, then the next step would be
to aggregate all DMs value functions to achieve a final ranking (or selection)
using (2).

vgroup(a) =

n∑
i=1

wivDMi(a) (2)

where a is an alternative, vDMi(a) is a value function for each DMi and wi rep-
resents its degree of importance for each DMi. Note that

∑n
i=1 wi = 1. However,

due to the compensatory effect, the overall assessment of this model might not
represent the opinion of any of the DMs or might promote some alternatives that
some DMs consider are unacceptable or undesirable. With a view to minimizing
this problem, [16] proposed a modification to (2) by including a new parameter
called the Value Reduction Factor (VRF) to penalize conflicting alternatives,
which are allotted to disagreement zones, and where the global values of these
alternatives are higher than the virtual alternative. For a better understanding
of these concepts, let us move on to the next step of the model.
This second step is about identifying agreement and disagreement zones among

DMs, using a vector space and veto thresholds given by DMs. A vector repre-
sentation may be useful so that a space of consensus among DMs may be better
exploited. Furthermore, for up to three DMs, a graphical resource can be used
to visualize DMs’ perception of the problem. For instance, Fig.1 illustrates a
decision scenario comprising three decision makers (DM1, DM2 and DM3) and
four alternatives represented as circles. This form of representation helps DMs
to understand how close or far their opinions are from each other’s. For the an-
alyst who is supporting a group, this representation can give an initial insight
into DMs’ perspectives and how to conduct the decision process so as to reach
a better global recommendation.
After establishing the vector representation of all alternatives, the analyst

should invite all DMs to determine, individually, a veto threshold βi, βi ∈ [0, 1],
which is the minimum acceptable value for DMi in a decision problem. So each
DM must determine a value for which the set of available alternatives will be di-
vided into two subsets, one of which will contain all acceptable alternatives and
the other all unacceptable (or undesirable) alternatives. Thus, any alternatives
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vDM2

1

(vDM1(a), vDM2(a), vDM3(a))

vDM1

vDM3

1

1

Fig. 1. Vector representation for alternatives

for which the individual value is greater than βi should be considered as accept-
able for DMi and, otherwise, considered as unacceptable or undesirable (and
therefore, an alternative of potential conflict). Some DMs may have difficulty in
determining a veto threshold, so in such cases, the analyst may support DMs by
providing their individual ranking of alternatives and the value they assessed for
each alternative. Based on that, the analyst can individually ask them to inform
a value which they fill comfortable to considered that any alternative below it
must be classify as unacceptable (or undesirable). Moreover, the analyst must
conduct a sensitivity analysis for better bear out the decisions of DMs. Note
that the veto threshold concept is not an intensity measure of the groups con-
cordance or discordance like the one proposed by outranking methods. Instead,
it is additional information provided by DMs about their preferences.
Using the given veto threshold it is possible to identify at least four zones of

agreement and disagreement among DMs. Fig. 2 shows these zones both in a
3-dimensional and 2-dimensional spaces (illustrating DMs’ point of views, pair-
wise). There are two agreement zones: a positive one where all DMs are willing
to accept the alternatives assigned to this area; and a negative one where alter-
natives assigned to this area are considered as unacceptable or undesirable for all
DMs. The disagreement zones represent regions where all alternatives assigned
to these areas are considered as unacceptable or undesirable for at least one DM.
The combination of all veto thresholds βi given by the DMs creates a virtual
alternative α.
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Fig. 2. Graphical representation of agreement and disagreement zones in 2 and 3 di-
mensions for 3 decision makers

Due to the compensatory effect, alternatives assigned to disagreement zones
may have a global value greater than others allotted to positive ones. In order
to minimize this problem, a modification to (2) was conducted by introducing a
Value Reduction Factor (VRF) as shown in (3).

v′group(a) = V RF ∗ vgroup(a) = V RF ∗
n∑

i=1

wivDMi(a) (3)

In [16] the global values of all conflicting alternatives which have a global value
greater than the virtual alternative were reduced to the same global value as
the virtual alternative. The major problem of adopting that measure was the
fact that more than one alternative received the same final value, thus creating
ties. This paper proposes another rule for a VRF, where the penalty over the
conflicting alternatives will be proportional to their rejection. The procedure to
calculate the VRF is presented below:

Procedure to calculate the VRF:
Consider vgroup(x) as the global value of alternative x calculated using eq.

(2). Assume that all DMs have the same importance degree.

Step 1: Identify the alternative y among those totally accepted by all DMs which
has the smallest global value. Keep its global value as variable v∗group.
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Step 2: Calculate the global value of the virtual alternative. Keep this value as
variable vvirtual.

Step 3: If (alternative x belongs to a disagreement zone) and (its global value is
greater than vvirtual),
then, V RF = (v∗group − vvirtual) + [(vvirtual)/vgroup(x)]
else, V RF = 1

This reduction factor assures that all possible conflicting alternatives are going to
be penalized by decreasing their global values to one between the last acceptable
alternative for all DMs and the virtual alternative. Moreover, these reductions
should not introduce any ranking order inversion among those alternatives. This
means that, if alternative a was better evaluated (for all DMs) than alternative
b, then the model should take this information in account to do not introduce
any result distortions. Fig.3 illustrates how VRF acts on the proposed group
decision model. Fig. 3(a) indicates no penalty for alternative x (possessed on
disagreement zone), since its original global value vgroup(x) is less than vvirtual.
Fig. 3(b) shows when a penalty for conflicting alternatives should be applied.

0

0

vvirtual v*

vgroup(x)

v'group(x)

VRF=1

0

0

vvirtual v*

vgroup(x)

0<VRF<1

vvirtual

vvirtual

(a) (b)

Fig. 3. Value reduction factor

The last step of the model is to create the final ranking by using the VRF.
In this phase of the model, the analyst must conduct a sensitivity analysis so
as to evaluate better the final group recommendation and also to give DMs
more confidence in the outcomes of the model. Fig. 4 summarizes the proposed
model. Once DMs become familiar with the model and results are presented,
the analyst may need to return to a prior step in the model in order to adjust
some data or to revise the preference model given by DMs. Although the model
proposed can minimize conflicting situations, it is, unfortunately, not immune to
misrepresentation as discussed in [16]. The new rule for VRF put forward in this
paper does not (intentionally) promote ties which is much better for a ranking
decision problem.
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Fig. 4. Group decision model flow

3 Radio Base Station Locations: A Ranking Problem

In order to develop a radio network planning, a telecommunication company
must consider how to configure its network resources to assure satisfactory per-
formance for its clients (or technically, the end-users). Three main quality at-
tributes should be taken into account: coverage, traffic capacity and quality of
service [20]. Several mathematical and heuristic optimization models and algo-
rithms have been proposed in the literature, which consider selected aspects of
network planning [21,22]. Also, there are some factors affecting the choice of
optimum locations for base stations in a cell communication system such as
non-uniform service areas in complex propagation environments, the distances
between base stations (and mutual coverage), signal levels and signal-interference
ratio (SIR) [23]. Commonly this kind of decision problem has been dealt with
from a mono-user perspective, but the increase in the complexity of systems
and of company’s strategic goals is encouraging group decision making. Even in
a collaborative process where DMs are willing to give up their most preferred
alternatives in favor of more consensual ones, divergences may nevertheless still
appear among them. This numerical application illustrates how the model pro-
posed in this study can support a group to reach a more consensual final recom-
mendation. An overall cellular network contains a number of different elements
as illustrated in Fig. 5. Several Mobile Stations (or mobile phones) are linked to
a network infrastructure via a Base Transceiver Station (BTS). Another element
is the Base Station Controller (BSC) which manages the routing of calls and de-
cides which base station is the one best suited to accept an end-user call. The
BSC is often co-located with a BTS and each BSC can control a small group of
BTSs. Other elements are the Mobile Switching Centre (MSC); two location reg-
isters: a Home Location Register (HLR) and a Visitor Location Register (VLR);
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and the link to the public switched telephone network (PSTN) [24]. The geo-
graphical area covered by the telecom service is divided into small cells where
the coverage and size of each cell is defined by matters such as the height of the
tower (or buildings) where antennas are installed, the irregularities of the relief
of the terrain, the power transmission and signal gain of the antennas.

BSC1

MSC

BSC2

Other networks

Fig. 5. Cellular network architecture

For the proposal of this study, a selected set of five alternatives (A1, A2, A3,
A4, and A5) is already established. Several criteria, such as those mentioned
previously, may be considered to define the pre-selected set of alternatives. In
this numerical application, although real data are not used, the data used are
realistic. The decision problem involves multiple objectives and there are three
company senior executives who act as decision makers (DM1, DM2 and DM3)
and whose values are taken into account. The final recommendation will be
used by the telecommunication company to decide on which base station will be
implemented first, second, and so on. An analyst is responsible for conducting
the decision process and supporting DMs in identifying their preference structure
and establishing their value functions. The company had previously decided to
maintain the same equipment suppliers and brands. All locations will receive the
same equipment, such as radio, antennas, etc. So the costs of those devices are
not considered as a criterion. An attribute range was defined for each criterion
and tradeoffs could be evaluated and used as scaling constants. The criteria
adopted for the group decision making are:
C1: coverage area (cell size). The range varies from a radius of 1km (in a

densely populated area) to 10 km (in a sparsely populated area).
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C2: amount of rent/month (in monetary unit) of the area where the items of
equipment are installed. The range varies from 2,000.00 up to 8,000.00.
C3: increased capacity of user data (in percentage terms). The range varies

from 4 to 55%.
Table 1 evaluates each alternative using the criteria selected.

Table 1. Evaluating the alternatives in accordance with each criterion

Alternatives C1 C2 C3

A1 4 8,000 35

A2 9 4,500 40

A3 5 2,000 30

A4 3 3,500 55

A5 10 2,000 4

The values of independence between criteria were considered and an addi-
tive model was adopted. The analyst conducts the first and second steps of the
model proposed which identify the DMs’ value functions and he assigns a veto
threshold for each DM. The DMs’ tradeoffs and the veto thresholds established
are shown in Table 2. The combination of all veto thresholds enables the vir-
tual alternative and its group global value to be established. Furthermore, this
information enables the VRF to be calculated.

Table 2. Decision makers’ tradeoffs

DM Criteria Tradeoffs Veto

C1 C2 C3 threshold

DM1 0.1 0.8 0.1 0.9

DM2 0.25 0.3 0.45 0.57

DM3 0.6 0.3 0.1 0.74

For this numerical application proposal, exponential forms for value functions,
a(1 − b exp(−cx)), were obtained using a regression model. The values for each
parameter a, b, and c are given in Table 3. The DMs’ values for the alternatives
are shown in Table 4. The bold numbers in Table 4 indicate which alternatives
are considered as undesirable or unacceptable for DMs due to their value being
less than the veto threshold set. Table 4 also indicates the group final rankings,
whether or not the VRF was considered, i.e, it shows the traditional additive
model result and the results from the model proposed. Note that all DMs have
the same weight (or degree of importance) for the group decision process.
On using the given veto thresholds, the analyst is able to distribute the al-

ternatives as follows: A2 and A3 are allocated to the positive concordance zone,
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Table 3. Parameters used on DM’s value functions

Criteria Parameter DM1 DM2 DM3

C1 a 0.9 1 1

b 0.7 0.85 0.4

c 0.05 0.1 0.023

C2 a 1 1 0.87

b 0.8 0.77 0.91

c 0.031 0.062 0.01

C3 a 1 0.43 1

b 0.8 0.3 0.07

c 0.04 0.01 0.01

Table 4. DMs’ values for alternatives and rankings involved in the group decision
problem

Ranking Ranking Ranking Ranking Ranking Ranking

Position DM1 DM2 DM3 without
VRF

with VRF

1 A2 0.933678 A2 0.618192 A5 0.763586 A2 0.771017 A2 0.771017

2 A4 0.926911 A5 0.609552 A2 0.761183 A5 0.752251 A3 0.743444

3 A1 0.918692 A3 0.571608 A3 0.741886 A3 0.743444 A5 0.741765

4 A3 0.91684 A1 0.56015 A1 0.737162 A1 0.738668 A1 0.741673

5 A5 0.883617 A4 0.552584 A4 0.732963 A4 0.737486 A4 0.741665

and alternatives A1, A4 and A5 to the disagreement zones. Although well ac-
cepted by two of the DMs, A5 is considered an undesirable alternative by DM1
who ranked it last in his individual ranking. No alternatives are allocated to the
negative concordance zone.
Moreover, the analyst must conduct a sensitivity analysis to evaluate the

robustness of the model or how much the veto threshold could vary without
modifications to the final group recommendation. For this to happen, the value
of the value thresholds informed by DMs may vary in range by 10%. Basically,
the results are still the same if all DMs’ thresholds change simultaneously and
in the same direction. On analyzing individual variations (i.e. modifying only
one DM’s veto threshold and keeping the others the same), it was found that
in a scenario with a 10% variation, the final group ranking remains the same as
that of the traditional additive model (whether or not the VRF is considered) if
only DM1’s or DM3’s veto threshold varies. Unfortunately, it was found that the
model proposed is not immune to misrepresentations, and DMs can manipulate
the veto threshold they set in order to benefit their most preferred alternatives.
It is expected that the analyst can address and overcome this kind of situation.



510 S.F.D. Daher and A.T. de Almeida

4 Final Remarks

In this paper, the concept of a ranking veto based on a veto threshold and
that of a value reduction factor (VRF) were introduced in order to propose a
group decision model for a collaborative decision problem, based on traditional
additive models. The additive function aggregates individual preferences into a
global one. For the purposes of this study all DMs have the same weight and no
power relations are considered. The individual preferences structure is elicited
using MAVT, thus defining a value function for each DM. By considering the
VRF as part of the group final value function, the model softens the compen-
satory effect of additive models and also enables DMs to form a collective view
on the decision problem. As discussed in [16], this model differs from previous
veto models found in the literature and its approach fits better to MCDM addi-
tive models when integrated with an additive group decision aggregation model.
Furthermore, spaces of consensus based on agreement and disagreement zones
are established using the veto threshold established.
Although important for the decision process, defining the set of alternatives

lies outside the scope of the model. To do so, depending on the nature of the prob-
lem, a multi-objective optimization model can be adopted. This kind of model
could be especially interesting if no alternatives appear in the positive concor-
dance zone which means that the set of alternatives could be incomplete and
needs to be reviewed. In such cases, multiple objectives should be put forward
as a number of objective functions which are to be minimized or maximized,
subject to a number of constraints which must be satisfied. As discussed in [25],
Evolutionary Multi-objective Optimization (EMO) and MCDM may work to-
gether to enhance both areas. One possibility is to use EMO to generate a set
of non-dominated solutions and then a MCDM approach can be used to select
the alternative most preferred. Another possibility could be to embed the princi-
ples of MCDM within an EMO through a value (or utility for MAUT approach)
measure.
As to future studies, the authors plan to extend the concept of concordance

zones and discordance zones by creating other spaces of consensus. Therefore,
other methodologies such as robust ordinal regression may be useful. Moreover,
the authors of this article wish to work on how this model acts when different
degrees of importance between DMs are considered.
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Abstract. Automated innovization is an unsupervised machine learning
technique for extracting useful design knowledge from Pareto-optimal so-
lutions in the form of mathematical relationships of a certain structure.
These relationships are known as design principles. Past studies have
shown the applicability of automated innovization on a number of en-
gineering design optimization problems using a multiplicative form for
the design principles. In this paper, we generalize the structure of the
obtained principles using a tree-based genetic programming framework.
While the underlying innovization algorithm remains the same, evolv-
ing multiple trees, each representing a different design principle, is a
challenging task. We also propose a method for introducing dimension-
ality information in the search process to produce design principles that
are not just empirical in nature, but also meaningful to the user. The
procedure is illustrated for three engineering design problems.

Keywords: genetic programming, dimensional awareness, automated
innovization, multi-objective optimization, design principles.

1 Introduction

In recent years there has been a growing interest in the field of post-optimality
analysis. In a single objective scenario, this usually concerns the optimality,
sensitivity and robustness studies on the obtained solution. Multi-objective op-
timization on the other hand, poses an additional challenge in that there are a
multitude of possible solutions (when the objectives are conflicting) which are
all said to be Pareto-optimal. The data-mining of Pareto-optimal solutions has
received particular attention as it can reveal certain characteristic features ex-
clusive to these solutions. In practical problem solving, the knowledge of these
features can give the designer a better understanding of the problem structure.
Most studies in this direction rely on visual means of identifying the features. A
summary of these studies can be found in [1].
Deb and Srinivasan [5] describe the concept of innovization by defining the

special features as commonalities among the Pareto-optimal solutions. These
commonalities (or invariants) are given mathematical forms, called design prin-
ciples, by performing regression between variables and/or objectives using appro-
priate functions. However, regression can only be performed when a correlation
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is observed between the regressed entities. Innovization, in its original form,
required users to identify this correlation visually through two and three dimen-
sional plots. This manual innovization task is therefore limited to features of
Pareto-optimal solutions present in humanly perceivable dimensions.
Automated innovization [2] is an unsupervised machine learning technique

that can identify correlations in any multi-dimensional space formed by vari-
ables, objectives, etc. specified by the user and subsequently performs a selec-
tive regression on the correlated part of the Pareto-optimal dataset to obtain
the design principle ψ(x). The procedure was later extended [1] so that de-
sign principles hidden in all possible Euclidean spaces formed by the variables
and objectives (and any other user-defined functions) can be obtained simulta-
neously without any human interaction. The regression assumes the following
mathematical structure for the design principle,

ψ(x) =

N∏
j=1

φj(x)
ajbj , (1)

where φj ’s are N basis functions (variables, objectives functions, constraints
etc.) specified by the user which can have Boolean exponents aj and real-valued
exponents bj . It has been argued that since many natural, physical, biological and
man-made processes are governed by formulae with the same structure (power
laws [10]), most correlations are expected to be mathematically captured by it.

By definition, ψ(x) is a design principle if it is invariant, i.e.
∏N

j=1 φj(x)
ajbj = c is

true for a majority of the Pareto-optimal solutions, for some constant c. However,
due to the approximate nature of Pareto-optimal datasets, the equality relation
may not hold strictly and hence the extent of commonality of a design principle
ψ(x) is obtained by clustering the set of c-values. The minimization of equal-
weighted sum of (i) number of clusters (C), and (ii) percentage coefficient of
variance (cv = σ/μ) within these clusters, has been proposed in [2] to obtain
design principles. An optimization problem with this objective function,

Minimize C +
C∑

k=1

c(k)v × 100% where c(k)v =
σc
μc

∀ c ∈ k-th cluster, (2)

is formulated with aj ’s represented by an N -bit binary variable string and bj ’s as
N real variables. The algorithmic calculation of the objective function requires
the use of a derivative-free optimization method like genetic algorithms (GA).
The population based approach of GA also enables obtaining multiple design
principles simultaneously using a niching strategy [1]. Given enough GA gener-
ations, the final population will contain all possible design principles that fit the
form in Eq. (1).
The complete details of the above algorithm and a pseudocode can be found

in [1]. In this paper, we generalize the mathematical structure of the design
principles in Eq. (1) using parse tree representation. The overall automated
innovization problem is solved using a system that integrates a GA with a genetic
programming algorithm for handling parse trees.
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2 Genetic Programming for Automated Innovization

At an abstract level, genetic programming (GP) is a weak search algorithm
for automatically generating computer programs to perform specified tasks [9].
Weak search methods do not require the user to know or specify the form or
structure of the solution in advance [8]. Most GP implementations employ an
evolutionary algorithm as the main search engine. However, simulated annealing,
hill climbing approaches and estimation of distribution algorithms (EDAs) have
also been used in literature [12]. Like other evolutionary computation techniques,
a typical GP starts with a population of randomly created individuals, which in
this case are programs. The fitness for each individual is determined by running
the program. High fitness individuals are selected to form the mating pool, on
which primary genetic operations, namely crossover and mutation, are applied
to create a new population of programs. The process is repeated until some
stopping criterion (like maximum number of generations) is met.
Most GP systems evolve programs in a domain-specific language specified

by primitives called functions and terminals. The terminal set (T ) may con-
sist of the program’s external inputs, ephemeral random constants, and nullary
(zero-argument) functions/operators where as the function set (F) may con-
tain operators (arithmetic, Boolean, conditional, etc.), mathematical functions
and constructs (loops, for example) that are defined in the language being used.
Computer programs are traditionally represented in the memory as parse trees
made up of such primitives. Other common ways of expressing programs include
linear and graph-based representations.
The most common application of GP has been to the process of induction

of mathematical models based on observations. This process is known by the
names model induction, system identification and symbolic regression depending
on the purpose. The power of GP algorithms to evolve models in a symbolic form
without assuming the functional form of the underlying relationship can also be
applied to automated innovization. In this paper, we generalize the mathematical
structure of the design principles in Eq. (1) by representing ψ(x) using parse
trees composed of the N basis functions and real-valued ephemeral constants as
terminals, i.e T = {φ1, φ2, . . . , φN ,R} and a user-specified function set F . Fig. 1
shows two examples of parse trees and their corresponding ψ(x) expressions
obtained by inorder depth-first tree traversal. By starting with a population
of such trees and using the objective function in (2), it is possible to evolve
design principles of a generic form using a GP system. In the following sections
we discuss each step of the (GA + SmallGP [11]) system used in this work.
Some of these steps are standard and hence described only briefly, while others
which have been modified to suit the requirements of automated innovization
are explained in more detail.

2.1 Initialization

Two initialization methods are very common in GP, the Full method and the
Grow method [12]. The Full method always generates trees in which all leaves
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(end nodes) are at the same user-specifiedMAXDEPTH value. This is achieved
by randomly selecting nodes only from the F set until the depth limit is reached,
at which nodes are selected from the T set. On the other hand, the Growmethod
creates trees of varied sizes and shapes by randomly selecting nodes from the
full primitive set (F +T ) for all nodes until the depth limit is reached, at which
nodes are chosen from T as in the case of Full method. In Fig. 1, the tree on the
left could have been the result of either the Full or the Grow method, but the
one on the right can only be created by the latter. SmallGP uses a mix of Full
and Grow methods. When selecting from the full primitive set the probability of
choosing from the terminal set is,

p(T ) = |T |
|F |+ |T | × SF,

where |.| denotes the set size and SF is the scaling factor which scales initial-
ization between Full (when SF = 0) and Grow (when SF = 1). It is to be
noted that the ephemeral constants only contribute one virtual terminal symbol
to the T set so that |T | = N + 1. The initialization also takes into account the
maximum program (tree) length MAXLEN which can also be specified by the
user.

2.2 Fitness and Constraint Evaluation

This step involves the use of a grid-based clustering algorithm for evaluating the
fitness function given in (2) for the trees created above. Each tree is decoded to
obtain the design principle ψ(x) that it represents. The resulting mathematical
expression is evaluated for all m trade-off solutions provided as input to the GP
algorithm to obtain the corresponding c-values. Grid-based clustering [2] involves
sorting these c-values into a set C and dividing their range into d equal divisions
(a parameter of the clustering routine). Elements in C which belong to divisions
with less than /m/d0 c-values are categorized as unclustered. Adjacent divisions
with more than /m/d0 c-values are merged to form clusters. Thus, the number
of clusters C and the number of unclustered points U can be obtained and used
in (2) to calculate the fitness for any given tree. Instead of asking the user to
choose the parameter value for d, it is evolved alongside the GP trees using a
GA. Therefore, each population member of the proposed system consists of a
GP tree variable for ψ(x) and an integer variable for d, which is also initialized
(in the range [1,m]) in the previous step. This is the reason for integrating GA
with SmallGP in this paper.
It has been suggested in [2] that for obtaining the most accurate design prin-

ciples, the constraint
U = 0, (3)

should be imposed during clustering. This forces unclustered c-values to form
one-element clusters by increasing the value of d, which in turn causes C and cv
within clusters to increase. The optimization of the weighted objective compen-
sates for this by producing more accurate design principles [1,2].
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+

φ1 φ2 φ3 φ4 φ5

φ3 φ4

φ2 ×

/

Fig. 1. Two examples of parse trees obtained from the Full (left) and Grow (right)
methods for MAXDEPTH = 2. The corresponding ψ(x) expressions and binary
strings are also shown.

A measure for the degree of commonality of ψ(x) is also calculated in this
step. This measure is called the significance S of the design principle and is
defined as,

S =
(m− U ′)
m

× 100%. (4)

Here U ′ is the total number of elements in C which belong to divisions with
less than (/m/d0+ ε) c-values. By choosing a small integer value for ε, c-values
which barely formed clusters due to imposition of (3) can be identified [2].

2.3 Niched-Tournament Selection

In order to maintain multiple design principles in the population, [1] proposes
the use of niched-tournament selection for creating the mating pool. We adopt
a similar niching technique in the present paper. A binary string of length N
is associated with each GP tree. If the l-th basis function is present in a tree
then the l-th bit of the corresponding binary string is assigned a value of 1, else
it takes a value of 0. Tournaments are only allowed between trees which have
exactly the same binary string. This allows different species of design principles
to co-exist in the population, while still promoting the better individual (fitness
wise) when the trees have exactly the same basis functions. Fig. 1 shows such
binary strings for the two trees. Since they are different, both individuals are
equally competent irrespective of their fitness values and tournament selection
is not performed between them.

2.4 Crossover and Mutation Operators

SmallGP uses a size-safe subtree crossover [12] to recombine trees in the mating
pool. It ensures that the created children do not exceed the maximum tree length



518 S. Bandaru and K. Deb

MAXLEN . This is accomplished by first determining the number of nodes by
which the smaller parent tree can be extended. Then, a random subtree satisfying
this requirement is cut from the larger parent tree. Similarly, a random subtree
(whose maximum size is determined by taking the new size of the larger tree
into account) is cut from the smaller tree. The two subtrees are exchanged at
the cut locations to produce the offspring trees. Implementation details can be
found in the manual [11].
Point mutation [12] is the simplest form of mutation in GP where a random

node is selected and the primitive at that node is replaced with a different random
primitive of the same kind (function or terminal) and arity to maintain the
closure property [9]. Like the bit-flip mutation in GAs, point mutation is applied
on a per-node basis, thus allowing multiple nodes to be mutated independently.
The GA variable d is recombined using the discrete version of simulated binary

crossover (SBX) and mutated using the discrete version of polynomial mutation
both of which are suggested in [7].

3 Dimensional Awareness

GP systems are known to produce exceptionally good models in symbolic re-
gression applications, given that an appropriate set of primitives is provided.
This has inspired the use of GP for scientific knowledge discovery from datasets
obtained through physical processes, experiments, phenomena, etc. Computer-
aided scientific knowledge discovery differs from standard symbolic regression in
that the obtained model, in addition to fitting the data well, is also expected
to be novel, interesting, plausible and understandable [14]. The key to achieving
this is to incorporate the semantic content that is encapsulated in the data into
the search process.
The foremost application of automated innovization has been for engineering

problems [2,3]. It may be beneficial in these cases to extract design principles
which are not just empirical in nature but also meaningful to the designer. In
GP this is usually achieved by constraining the tree structures [12]. For example,
if a model is known to be periodic a priori, then the search may be constrained
to models that take the form a× sin(b × t) through strong typing or grammar-
based constraints When no such domain-specific information is available, one
can still generate meaningful and syntactically correct tree structures by taking
into account the most basic requirement for relationships governing all physi-
cal systems, namely dimensional consistency or commensurability, which states:
(i) Only commensurable quantities (quantities with the same dimensions) may
be compared, equated, added, or subtracted and (ii) One may take ratios of
incommensurable quantities (quantities with different dimensions), and multi-
ply or divide them. Previous work on dimensionally-aware genetic programming
proposed a weakly typed or implicit casting approach [8] where dimensionality is
not enforced, but promoted through an additional objective. We incorporate a
similar strategy in the proposed (GA + SmallGP) system using constraints for
penalising dimensional inconsistency.
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Table 1. Transformed terminal operations for
calculating the exponent E from the exponents
ei and ej of two terminals. Note that Z can be
any value greater than Emax.

Operation Transformed Operation

Ti + Tj
E = ei, if ei = ej
E = Z, otherwise

Ti − Tj
E = ei, if ei = ej
E = Z, otherwise

Ti × Tj
E = Z, if max (|ei|, |ej |) > Emax

E = ei + ej , otherwise
Ti
Tj

E = Z, if max (|ei|, |ej |) > Emax

E = ei − ej , otherwise

T
Tj
i

E = eiTj, if |ei| ≤ Emax & ej = 0
E = Z, otherwise

Fig. 2. Two-bar truss configura-
tion showing the cross-sectional ar-
eas x1 and x2 and the vertical
length y. A load of F = 100 kN
is applied.

Datasets obtained from multi-objective optimization of engineering systems
consist of Pareto-optimal values of variables, constraints and objectives, for all
of which the dimensions are known a priori. Each basis function φ(x) provided
as input to the proposed system can therefore also carry its dimensionality in-
formation. For a given tree the dimensional consistency of ψ(x) is checked using
the following procedure. Noting that the largest possible absolute value of the
exponent for any fundamental dimension (mass, length, time, etc.) among all
known physical quantities is four, it can be established that in a tree of depth
MAXDEPTH the maximum absolute value that a dimension exponent can
have in the corresponding ψ(x) is Emax = 4× 2MAXDEPTH . For two terminals
Ti and Tj having dimension exponents ei and ej , undergoing various operations,
the resulting exponent E is calculated using the transformed terminal opera-
tions shown in Table 1. Note that when adding or subtracting incommensurable
quantities, E is assigned an arbitrary value Z greater than Emax. This indicates
to subsequent operations that the tree being evaluated (or ψ(x)) is already di-
mensionally inconsistent. The absolute value of the exponent E obtained after
completely evaluating the tree is constrained to be at or below Emax for all basic
dimensions, thus imposing dimensional consistency.
The optimization problem for (GA + SmallGP) based automated innovization

can now be formulated as,

Minimize
{ψ(x), d}

TS

(
C +

C∑
k=1

c(k)v × 100%
)
where c

(k)
v =

σc
μc

∀ c ∈ k-th cluster,

and c = ψ(x) ∀ m
Subject to

{
1 ≤ d ≤ m; U = 0;S ≥ Sreqd; |E| ≤ Emax ∀ basic dimensions

}
(5)
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The tree-size TS (number of nodes in the tree) is multiplied to the weighted
objective function in (2) in order to promote smaller trees. The minimum sig-
nificance required by the user is specified by Sreqd. Theoretically, a given Sreqd
value should include all design principles that can be obtained with any higher
Sreqd value. However, this is not true in practice owing to limited population size
and generations. Therefore, in general, a high value of Sreqd should be used. If
design principles are not obtained then it may be lowered. In addition, elitism is
introduced by performing niched-tournament selection on the combined parent-
child population. Both MAXDEPTH and MAXLEN values should be set
based on the size of the primitive set. Higher values tend to form longer trees
and hence more redundant design principles than values closer to |F |+ |T |.

4 Results

We now illustrate the working of the proposed algorithm on three engineering
design problems. In all cases the design optimization problem is solved using
NSGA-II [4] with the following parameters: Population size = 500 (truss and
welded-beam), 1000 (metal-cutting); Number of generations = 500; SBX for
real variables with pc = 0.9 and ηc = 10; Polynomial mutation for real variables
with pm = 0.05 and ηm = 50.

4.1 Two-Bar Truss Design

The two-bar truss design problem involves three variables as shown in Fig. 2.
The bi-objective formulation is,

Minimize f1(x) = Volume (V ) = x1
√
16 + y2 + x2

√
1 + y2,

Minimize f2(x) = Max. Stress (S) = max(σAC , σBC),

Subject to

{
S ≤ 105 kPa; 0 ≤ x1, x2 ≤ 0.01 m2 and 1 ≤ y ≤ 3 m

} (6)

NSGA-II givesm = 500 non-dominated solutions at the end 500 generations. For
automated innovization we choose the function set F = {+,−,×,%,∧ } where %
represents protected division and ∧ represents the power function. The objectives
and the variables are chosen as the basis functions, i.e, Φ = {φ1, φ2, φ3, φ4, φ5, } =
{V, S, x1, x2, y}. and so the terminal set is T = {V, S, x1, x2, y,R}. The following
parameters are used in the proposed (GA + SmallGP) algorithm to solve the
optimization problem in (5):

1. Population size = 1000,
2. Number of generations = 100,
3. Discrete SBX for variable d with pc = 0.9 and ηc = 10,
4. Discrete polynomial mutation for variable d with pm = 0.05 and ηm = 50,
5. SmallGP crossover probability = 0.9, mutation probability (per node) = 0.2,
6. Maximum program depth (MAXDEPTH) = 10,
7. Maximum program length (MAXLEN) = 10,
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Table 2. Design principles obtained using (GA + SmallGP) algorithm for truss design
problem

Notation
Design Principle (DP)

Significance
Basic Dimensions

ψ(x) = constant Mass Length Time

DP1 y = constant 86.60% 0.0 1.0 0.0
DP2 S × V = constant 87.00% 1.0 2.0 -2.0
DP3 S × x1 = constant 85.00% 1.0 1.0 -2.0
DP4 S × V × y = constant 87.00% 1.0 3.0 -2.0
DP5 (V × y)/x2 = constant 86.20% 0.0 2.0 0.0
DP6 (V × y)/x1 = constant 88.20% 0.0 2.0 0.0
DP7 V/x1 = constant 86.40% 0.0 1.0 0.0
DP8 V/(S × x1 × x2) = constant 87.20% -1.0 0.0 2.0
DP9 V 2/(x1 × x2) = constant 87.40% 0.0 2.0 0.0
DP10 y/(S × x1) = constant 88.00% -1.0 0.0 2.0
DP11 x2/x1 = constant 83.80% 0.0 0.0 0.0
DP12 (S × V × x2 × y)/x1 = constant 88.00% 1.0 3.0 -2.0
DP13 V/x2 = constant 86.80% 0.0 1.0 0.0
DP14 (S × V 2 × y)/x1 = constant 87.20% 1.0 4.0 -2.0
DP15 (x2 × y)/x1 = constant 86.40% 0.0 1.0 0.0
DP16 x2/(S × x2

1) = constant 86.40% -1.0 -1.0 2.0
DP17 V 2/(x1 × x2 × y) = constant 91.40% 0.0 1.0 0.0
DP18 (S × V 2)/x2 = constant 87.20% 1.0 3.0 -2.0
DP19 S × x2 × y = constant 87.00% 1.0 2.0 -2.0
DP20 (x2 × y)/(S × x2

1) = constant 86.80% -1.0 0.0 2.0

8. Ephemeral constants, R = {−10.0,−9.5,−9.0, . . . , 9.0, 9.5, 10.0},
9. Threshold significance Sreqd = 80%, Clustering constant ε = 3.

Table 2 shows the obtained design principles, their significance values and the
exponents of their basic dimensions. A total of 26 principles were obtained, which
were symbolically simplified in MATLAB and only the unique ones are presented
here.
The truss design problem can be mathematically solved using the identical

resource allocation strategy in order to verify the obtained design principles.
Increasing the cross-sectional area of one member reduces the stress induced in
it and so the second objective takes the other member into account at some point.
But since both the objectives are equally important, this cannot be allowed. A
balance can be obtained only when the stresses in both the members are equal.

S = σAC = σBC ⇒ S =
100

5

√
16 + y2

yx1
=
4× 100
5

√
1 + y2

yx2
. (7)

Following a similar argument for the volumes we get,

V = 2× x1
√
16 + y2 = 2× x2

√
1 + y2. (8)
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Fig. 3. Cluster plot (left) and the mapping of clusters in the objective space (right) for
DP3. 425 out of 500 (85.00%) c-values obtained from ψ(x) = S×x1 form eight clusters
shown in shades of gray. The largest cluster has 307 points and an average c-value of
44.77.

Solving (7) and (8) gives the following relationships, all of which must be true
for Pareto-optimality,

y = 2, x2 = 2x1, V = 4
√
5x1 = 2

√
5x2 Sx1 = 20

√
5, Sx2 = 40

√
5. (9)

All design principles obtained by our approach conform to the above relation-
ships. On the other hand, a dimensionally unaware GP produced relationships
such as,

0.5− (x2 − S)y = constant, S × (V − x2) = constant, (x1 × S) + x2 = constant,
(10)

which, although numerically satisfy the requirements of a design principle, are
of no practical value to the designer.
The next question to investigate is whether the 20 design principles can be

reduced to the few shown in (9). To answer this, we first need to look at the
c-value cluster plots of all design principles. For illustration let us consider DP3
and DP16. In each case, ψ(x) is evaluated for all m = 500 trade-off solutions.
The resulting c-values are sorted and plotted as shown in Figs. 3 and 4.
The right side plot in each figure shows that both design principles are applica-

ble on (approximately) the same part of the trade-off front, indicating that they
can be combined. Indeed reducing DP16 with DP3 results in x2/x1 = constant
which in itself is another design principle (DP11). By considering the largest
clusters of DP16 and DP3, the approximate value of the constant in DP11 is
found to be 0.0444×44.77 = 1.99 ≈ 2, which agrees with the second relationship
in (9). In fact, all design principles in Table 2 form clusters in the same part of
the trade-off front and hence they can be combined in any way to eliminate the
redundant ones.
The tree structures of DP12 and DP16 are shown in Figs. 5 and 6 for

illustration.
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Fig. 4. Cluster plot (left) and the mapping of clusters in the objective space (right)
for DP16. 432 out of 500 (86.40%) c-values obtained from ψ(x) = x2/(S × x2

1) form
five clusters shown in shades of gray. The largest cluster has 406 points and an average
c-value of 0.0444.
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Fig. 5. GP tree for DP12 of truss de-
sign problem. Tree depth = 3 and size (or
length) = 9.
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Fig. 6. GP tree for DP16 of truss de-
sign problem. Tree depth = 3 and size (or
length) = 7.

4.2 Welded Beam Design

As our next example, we consider the bi-objective welded-beam design problem.
It involves the minimization of welding cost C and end deflection D of a welded
cantilever beam carrying an end load of 6000 lb. The design variables (in inches)
are: beam thickness b, beam width t, length of the weld l and weld thickness h.
The allowable bending stress (σ), shear stress (τ) and buckling force (Pc) are
limited by constraints. The problem formulation [5] is:

Minimize f1(x) = C = 1.10471h
2l + 0.04811tb(14.0+ l),

Minimize f2(x) = D =
2.1952
t3b ,

Subject to

{
τ(x) ≤ 13, 600 psi;σ(x) ≤ 30, 000 psi; b ≥ h;Pc(x) ≥ 6, 000 lb
0.125 ≤ h, b ≤ 5.0 in.; 0.1 ≤ l, t ≤ 10.0 in.

}
(11)
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Table 3. Design principles obtained using (GA + SmallGP) algorithm for welded-beam
problem

Notation
Design Principle (DP)

Significance
Basic Dimensions

ψ(x) = constant Mass Length Time Cost

DP1 (D + t) = constant 95.20% 0.0 1.0 0.0 0.0
DP2 t = constant 95.60% 0.0 1.0 0.0 0.0
DP3 D × b = constant 95.00% 0.0 2.0 0.0 0.0
DP4 D × b× t = constant 95.60% 0.0 3.0 0.0 0.0
DP5 σ × b = constant 94.80% 1.0 0.0 -2.0 0.0
DP6 σ × b× t = constant 95.60% 1.0 1.0 -2.0 0.0
DP7 D/σ = constant 95.60% -1.0 2.0 2.0 0.0
DP8 D/(σ × t) = constant 95.60% -1.0 1.0 2.0 0.0
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Fig. 7. Cluster plot (left) and the mapping of clusters in the objective space (right) for
DP2. 478 out of 500 (95.60%) c-values obtained from ψ(x) = t form a single clusters
with an average c-value of 9.999.

where τ(x) =
√
(τ ′)2 + (τ ′′)2 + (lτ ′τ ′′)/

√
0.25(l2 + (h+ t)2),

τ ′ = 6,000√
2hl
, τ ′′ = 6,000(14+0.5l)

√
0.25(l2+(h+t)2)

2[0.707hl(l2/12+0.25(h+t)2)] ,

σ(x) = 504,000
t2b ,

Pc(x) = 64, 746.022(1− 0.0282346t)tb3.
The problem is solved using NSGA-II to obtain m = 500 trade-off solutions.
For automated innovization, we choose the same parameters as before, except
the population size which is increased to 3000. The function set for GP remains
the same. The terminal set is chosen as T = {C,D, b, t, l, h, σ, τ, Pc,R}. An
extra ‘Cost’ dimension is added to the basic dimensions’ set for providing the
dimensional information of C to the algorithm. Table 3 shows the obtained design
principles for Sreqd = 90%.
All relationships are found to be applicable over approximately the same part

of the trade-off front and therefore some of them are redundant. The independent
design principles DP2, DP3 and DP5 have been obtained previously [1,5].
DP1 requires special attention because it exposes a limitation of the current

approach. The deflectionD is of the order of 10−4 whereas the cluster plot of DP2
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Table 4. Design principles obtained using (GA + SmallGP) algorithm for metal-
cutting problem

Notation
Design Principle (DP)

Significance
Basic Dimensions

ψ(x) = constant Mass Length Time Life

DP1 v/(f2 × ξ) = constant 72.70% 0.0 -1.0 -1.0 -1.0
DP2 (a× v)/f = constant 74.60% 0.0 1.0 -1.0 0.0
DP3 v/(f2 × Tp × ξ) = constant 73.40% 0.0 -1.0 -2.0 -1.0
DP4 f = constant 72.90% 0.0 1.0 0.0 0.0
DP5 a/(f × Tp) = constant 72.90% 0.0 0.0 -1.0 0.0
DP6 (a5.5 × f × ξ)/Tp = constant 77.50% 0.0 6.5 -1.0 1.0
DP7 (a× Tp × v)/f = constant 74.20% 0.0 1.0 0.0 0.0
DP8 a5.5 × Tp × ξ = constant 82.60% 0.0 5.5 1.0 1.0
DP9 a× Tp × v = constant 74.10% 0.0 2.0 0.0 0.0
DP10 (a2 × Tp × ξ)/v = constant 74.40% 0.0 1.0 2.0 1.0
DP11 (a2 × ξ)/v = constant 76.00% 0.0 1.0 1.0 1.0
DP12 a5.5 × f × ξ = constant 76.80% 0.0 6.5 0.0 1.0

in Fig. 7 reveals that the value of t is clustered around 10 in. for most solutions.
This leads to an ambiguity where D + t numerically satisfies the requirement
of a design principle. The current approach does not handle these situations. A
possible remedy for future analysis could be to normalize each basis function (φ)
with its order of magnitude.

4.3 Metal-Cutting Process Optimization

Next, we consider the metal-cutting process optimization problem described in
[13]. A steel bar is to be machined using a carbide tool of nose radius rn = 0.8
mm on a lathe with Pmax = 10 kW rated motor to remove 219912 mm3 of
material. A maximum cutting force of Fmax

c = 5000 N is allowed. The motor
has a transmission efficiency η = 75%. The total operation time (Tp) and the
used tool life (ξ) are to be minimized by optimizing the cutting speed (v), the
feed rate (f) and the depth of cut (a) while maintaining a surface roughness of
Rmax = 50μm. The problem is formulated as,

Minimize f1(x) = Tp(x) = 0.15 + 219912

(
1+ 0.20

T (x)

MRR(x)

)
+ 0.05 min

Minimize f2(x) = ξ(x) = 219912
MRR(x)T (x)

× 100%

Subject to

{
P (x) ≤ ηPmax;Fc(x) ≤ Fmax

c ;R(x) ≤ Rmax

250 ≤ v ≤ 400 m/min; 0.15 ≤ f ≤ 0.55 mm/rev; 0.5 ≤ a ≤ 6 mm

}

(12)

where T (x) = 5.48×109

v3.46f0.696a0.460 , MRR(x) = 1000vfa

P (x) = vFc(x)
60000 , Fc(x) =

6.56×103f0.917a1.10

v0.286 , R(x) = 125f2

rn
.

NSGA-II results in 1000 trade-off solutions. (GA + SmallGP) is used with the
same parameters as for truss design problem for Sreqd = 70% to obtain the design
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Fig. 10. Cluster plot (left) and the mapping of clusters in the objective space (right)
for DP6. 775 out of 1000 (77.50%) c-values obtained from ψ(x) = (a5.5 × f × ξ)/Tp

form six clusters shown in shades of gray. The largest cluster has 739 points and an
average c-value of 82.61.

principles shown in Table 4. A new dimension ‘Life’ is introduced to denote used
tool life which is expressed as a percentage of total tool life.
Empirical (and more accurate) forms of DP4 and DP9 have previously been re-

ported in [6]. Here, we sacrifice the accuracy of the design principle in favour of ease
of interpretability for the designer, by making use of a dimensionally-aware GP.
The tree structures of two of the design principles, DP6 and DP11, are shown

in Figs. 8 and 9. Fig. 10 shows the cluster plot for the former.

5 Conclusions

This paper introduced a generalization to the automated innovization frame-
work proposed previously by the authors. A tree-based representation is used to
evolve generic design principles for extracting knowledge from multi-objective
trade-off datasets. The underlying algorithm for automated innovization remains
the same, but introduction of the parse tree representation required the use of
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a genetic programming system. We integrated the SmallGP system with a stan-
dard genetic algorithm for evolving the design principles. In order to obtain only
physically meaningful design principles, we made the (GA + SmallGP) system
dimensionally aware by penalising operations performed between incommensu-
rable quantities. The dimensional consistency is checked at each step of tree
evaluation for all fundamental dimensions. The proposed algorithm was tested
on three engineering design problems. While syntactically correct principles were
obtained in both cases, a limitation concerning different magnitudes of basis
functions was identified.
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Abstract. We propose a new type of multi-objective genetic program-
ming (MOGP) for multi-objective design exploration (MODE). The char-
acteristic of the new MOGP is the simultaneous symbolic regression to
multiple objective functions using correlation coefficients. This method-
ology is applied to non-dominated solutions of the multi-objective design
optimization problem to extract information between objective functions
and design parameters. The result of MOGP is symbolic equations that
are highly correlated to each objective function through a single GP run.
These equations are also highly correlated to several objective functions.
The results indicate that the proposed MOGP is capable of finding new
design parameters more closely related to the objective functions than
the original design parameters. The proposed MOGP is applied to the
test problem and the practical design problem to evaluate the capability.

Keywords: Multi-Objective Genetic Programming, Multi-Objective
Design Explolation, CFD, NSGA-II.

1 Introduction

Multi-objective design exploration (MODE)[1] is proposed as an approach to ex-
tract design information from multi-objective design optimization (MOO) prob-
lems. In MODE, a multi-objective evolutionary algorithm (MOEA) is used to
efficiently find a set of optimal solutions, known as Pareto-optimal solutions or
non-dominated solutions. Then, various data analysis techniques are used to
extract the design information from the non-dominated solutions[2–5]. Design
information includes the trade-off information between objective functions, re-
lationship between objective functions and design parameters, and constraint
conditions among design parameters. It is relatively easy to obtain reasonable
non-dominated solutions using MOEAs when the number of objective functions
and design parameters remains small. However, it is difficult to retrieve the de-
sign information from non-dominated solutions when nonlinear relations between
objective functions and design parameters exist.
Genetic programming (GP) is an evolutionary algorithm that is capable of

automatically revealing the relationship between parameters as expressions in

R.C. Purshouse et al. (Eds.): EMO 2013, LNCS 7811, pp. 528–542, 2013.
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symbolic form without prior knowledge of the problem[6]. The unique feature of
GP is that it finds not only the linear relationship between parameters, but also
the nonlinear relationship automatically.
In MODE, two-objective GP(TOGP) that handle the residual and the number

of nodes can be used as a symbolic regression technique[7]. An input data set of
TOGP is a colloection of an objective function and design parameters of non-
dominated solutions. Two-objective GP is capable of extracting the relationship
between objective functions and design parameters of non-dominated solutions
as symbolic equations. However, if TOGP is used, it should be applied separately
to each objective function. In such a case, symbolic equations that fit to one of
the objective functions of MOO problems are obtained in a single GP run. To
find symbolic equations for all objective functions, TOGP has to be executed as
many times as the number of objective functions, and when the residual measure
is used, TOGP has to optimize not only the terms but also the coefficients and
constants to improve accuracy. Thus, it takes a long time for GP to produce
symbolic equations for all objective functions of MOO problems.
The objectives of this study are to present a new type of multi-objective ge-

netic programming(MOGP) to extract the relationship between objective func-
tions and design parameters from non-dominated solutions and to evaluate the
capability of the new MOGP. One advantage of the proposed MOGP is shorter
computational time than TOGP. Another advantage is that the proposed MOGP
enables us to simultaneously solve the symbolic regression problems for all ob-
jective functions using correlation coefficients and find symbolic equations that
are highly correlated to the multiple objective functions. In this study, the test
problem and the multiobjective aerodynamic design optimization problem of a
bi-conical shape reusable launch vehicle (RLV) are considered to evaluate the
proposed MOGP.

2 Two-Objective Genetic Programming

In [7], two objective functions are considered to produce symbolic equations.
One of the objective functions represents the accuracy of an evolved symbolic
equation, e.g., the sum of absolute error or the mean square error. This objective
function characterizes how well an evolved equation matches the given data set.
Another objective function is the complexity of an evolved equation, e.g., the
order of nonlinearity[8], the depth of the syntax tree(Fig. 1).
Figure 2 shows the flow chart of MODE using TOGP prepesed in [7]. First,

multi-objective evolutionary algorithms are used to find as many non-dominated
solutions as possible. Second, two-objective GP is used as the data analysis
method where it is separately applied to each objective function. Input data set
for TOGP is the objective function and design parameters of the non-dominated
solutions. The objective functions of TOGP are as follows.

Objective function 1: the minimization of the mean absolute error between
one objective function of the MOO problem (the measure of accuracy).
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Objective function 2: the minimization of the number of nodes in the syntax
tree (the measure of complexity).

After one TOGP run, a set of non-dominated ”equations” that fits the ith ob-
jective function of the MOO problem is obtained. One of the non-dominated
equations is as follows.

fi = f̂i(x) (1)

Where fi is the ith objective function of the MOO problem, f̂i is one of the
approximated symbolic equation of the ith objective function for optimization,
x ∈ Rn is the design parameter vector, and n is the number of design parameters.
When the number of objective functions of the MOO problems is M , after M
TOGP runs, a set of approximated symbolic equations for all objective functions
is obtained. Finally, the information such as the relation between all objective
functions and design variables is obtained from symbolic equations. However,
TOGP has to be executed as many times as the number of objective functions.
Thus, it takes a long time to obtain symbolic equations for all the objective
functions.

3 New Multi-Objective Genetic Programming

Here, we propose a new type of multi-objective GP to extract the design informa-
tion from non-dominated solutions more efficiently than the two-objective GP.
The new MOGP is capable of simultaneously finding the approximated symbolic
equations to multiple objective functions. There are two differences between the
proposed MOGP and two-objective GP used in [7].
The first difference is the measure of accuracy. The proposed MOGP does not

use a residual characteristic but the squared correlation coefficient of fitting one
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Fig. 3. Plot of two objective functions and one candidate equation of TOGP

of the multiple objective functions of MOO problems. In the proposed MOGP, it
is important to use the squared correlation coefficient as the measure of accuracy.
When the residual measure is used, it is necessary to optimize not only the
terms but also the coefficients and constants to improve accuracy, and it is
difficult to simultaneously obtain a small mean square error for several objective
functions. However when the squared correlation coefficient is used, it is not
necessary to optimize the coefficients and constants. Moreover, if common terms
between objective functions are found, it is possible to improve correlation for
both objective functions.
For example, two objective functions and one candidate equation are consid-

ered as shown in Fig. 3. In this figure, f1(x) and f2(x) are objective functions,

f̂1(x) is the candidate equation, and x is the design parameter. The objec-
tive functions(f1(x) and f2(x)) have different coefficients(a1, a2) and different
constants(b1, b2) respectively. From Fig. 3(a), when the mean square error be-

tween f̂1(x) and f1(x) is small, the mean square error between f̂1(x) and f2(x)

is large. From Fig. 3(b), when the mean square error between f̂1(x) and f2(x) is

small, the mean square error between f̂1(x) and f1(x) is large. It is difficult to
simultaneously obtain a small mean square error for both objective functions.
In contrast, when squared correlation coefficients are used, it is not necessary

to optimize the all coefficients and constants. If x that is the common term
between the two objective functions is set, the squared correlation coefficient
between f̂1(x) and f1(x) and the squared correlation coefficient between f̂1(x)
and f2(x) are the same. Moreover, if common terms between objective functions
are found, it is possible to simultaneously obtain high correlation for the objective
functions. It is expected that the computational time to obtain the symbolic
equations for all the objective functions will decrease. Therefore, the correlation
coefficient is used as the measure of accuracy in the proposed MOGP.
Second, the number of objective functions of MOGP is different. In the pro-

posed MOGP, the maximization of the squared correlation coefficient between
all the objective functions of the MOO problem and the candidate symbolic
equation is considered. Objective functions characterizes how well an evolved
equation matches all the objective functions of the given data set. The other
objective function minimizes the number of nodes in the syntax tree and char-
acterizes the level of simplicity of the expression of an evolved equation. For
example, when the number of objective functions in the MOO problem is M ,
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the total number of objective functions in the proposed MOGP is M + 1. The
objective functions of the proposed MOGP are as follows.

Objective function 1: the maximization of the squared correlation between
the first objective function of the MOO problem and the candidate symbolic
equation (the measure of accuracy).

Objective function 2: the maximization of the squared correlation between
the second objective function of the MOO problem and the candidate sym-
bolic equation (the measure of accuracy).
...

Objective function M: the maximization of the squared correlation between
theMth objective function of the MOO problem and the candidate symbolic
equation (the measure of accuracy).

Objective function M+1: the minimization of the number of nodes in the
syntax tree (the measure of complexity).

The squared correlation coefficient is

Cor2(fi, f̂) =

⎛⎜⎝ ΣN
j=1(fi,j − f̄i)(f̂j −

¯̂
f)√

(fi,j − f̄i)2
√
(f̂j − ¯̂

f)2

⎞⎟⎠
2

→ max, i = 1, 2, ...,M (2)

f̄i =
ΣN

j=1fi,j

N
,

¯̂
f =

ΣN
j=1f̂j

N
(3)

where N is the number of the given data sets, Cor2(fi, f̂) is the ith objective
function of the proposed MOGP, fi is the ith objective function of the MOO
problem, f̄i is the average value of the ith objective function of the MOO prob-

lem, f̂ is the candidate equation that MOGP generates, and
¯̂
f is the average

value of the candidate symbolic equation. The value of Cor2(fi, f̂) is between
+1 and 0. Figure 4 is the psedo code of MOGP. In Fig. 4, the squared correlation
coefficients and the number of nodes are evaluated in calc objs() function. Other
functions are same as conventional GA.

void gp_evolve() {

create_random_pop(); // Create initial random populations

for (gen=0; gen < gen_max; gen++) {

eval_objs(); // Evaluate the objective functions

calc_pareto(); // Calculate the pareto-ranking

select_parent(); // Select parent population

genetic_operation(); // Create new populations by crossover and mutation

}

}

Fig. 4. Pseudo code for the evaluation of MOGP

As a result of MOGP, a set of non-dominated equations is obtained in a
single GP run. Some non-dominated equations are highly correlated to one of
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the objective functions of the MOO problem. In addition, other non-dominated
equations are highly correlated to some of the objective functions of the MOO
problem at the same time.

4 Test Problem

4.1 Problem Definition

The test problem considered here has three objective functions and three de-
sign parameters. We suppose the non-dominated solutions satisfy the following
relations.

f1(x1, x2, x3) = 10x
3
1 + 5x2x3 + 10 (4)

f2(x1, x2, x3) = 10x
3
2 + 5x3x1 + 10 (5)

f3(x1, x2, x3) = 10x
3
3 + 5x1x2 + 10 (6)

Sample points that imitate non-dominated solutions are randomly created by
substituting values in [−1, 1] to variable x1, x2 and x3. The number of data
set is 40. Figure 5 shows the scatter plots between the objective functions and
design parameters. From Fig. 5, it is difficult to find the relations between each
objective function and the design parameters.
Two type of the two-objective GP(TOGP-MAE, TOGP-SCC) and the pro-

posed multi-objective GP(MOGP-SCC) are applied to the test problem. In the
TOGP-MAE, the minimization of the mean absolute error (MAE) is used as
one of the objective functions for measuring accuracy. In the TOGP-SCC, the
maximization of the squared correlation coefficient (SCC) is used as one of the
objective functions for measuring accuracy.

4.2 Approach

In this study, the symbolic equation of GP is expressed as a syntax tree, which
is composed of terminal and function nodes. The terminal nodes are the design
parameters(x1,x2, and x3) and constants. The function nodes are arithmetic
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operators (+, *, /, and -). The GP procedure is based on the non-dominated
sorting genetic algorithm-II (NSGA-II)[9]. Non-dominated sort ranking is used
as the ranking method. Crowded tournament selection is applied to select pairs.
Subtree crossover[10] and subtree mutation[11] are applied to the selected pairs
to create the population. The size of the population is 1000, and the number of
generation is 1000. The crossover rate is 0.75, and the mutation rate is 0.2. Two-
objective GP(TOGP-MAE, TOGP-SCC) have to be separately applied to each
objective function. The number of each trial is 15. Therefore, the total number
of trials in TOGP is 45, whereas the proposed multi-objective GP(MOGP-SCC)
is simultaneously applied to all objective functions. Therefore, the total number
of trials in MOGP is 15.

4.3 Results and Discussions

Figure 6 shows the history of the most accurate individual of each trial and the
average of that of the trials. The horizontal axis is generation and the vertical
axis is the measure of accuracy. When the mean absolute error is used, the
equations that have the residuals of zero are the most precise ones, and when
the squared correlation coefficient is used, the equations that have the correlation
coefficient of one are the most precise ones. Figures 6 (a), (b), and (c) show the
results of separately applied TOGP-MAE to each objective function. From Figs.
6 (a), (b), and (c), no equation has been found that has the residuals of zero.
The non-dominated equations that have the smallest residuals among all trials
are shown as follows,

f̂1(x1, x2, x3) = 10x
3
1 + 4x2x3 + x1 + x2 − 0.3x1x3 − x1x23 + 10 (7)

f̂2(x1, x2, x3) = 10x
3
2 + 5x1x3 − 0.2x3 + x2x3 + 10 (8)

f̂3(x1, x2, x3) = 11.1x
3
3 + 4x1x2 − x3 + 10 (9)

These equations include not only correct terms such as x31 and x2x3 but also
additional terms such as x1 and x1x

2
3. It is difficult to recognize which terms are

truly included in the original objective functions. Figures 6 (d), (e), and (f) show
the results of separately applied TOGP-SCC to each objective function. From
Figs. 6 (d), (e), and (f), there are some trials in which the squared correlation
coefficient goes to one. The equations that have the squared correlation coef-
ficient is 1 have the correct terms and the correct ratio of coefficients between
each term. The non-dominated equations that have the smallest residuals among
all trials are shown as follows.

f̂1(x1, x2, x3) = x
3
1 + 0.5x2x3 (10)

f̂2(x1, x2, x3) = 2.85x
3
2 + 1.428x1x3 (11)

f̂3(x1, x2, x3) = 6.66x
3
3 + 3.33x1x2 + 3.33 (12)

These equations only have correct terms, and the ratios of the coefficients be-

tween each term(e.g.,
x3
1

x2x3
= 2) coincide with those of the original objective
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functions. However, to obtain the optimal equations for all the objective func-
tions, it is necessary to conduct at least three TOGP runs. Figures 6 (g),(h),
and (i) show the results of applying MOGP-SCC to all the objective function
at one time. From Figs. 6 (g),(h), and (i), there are some trials that in which a
squared correlation coefficient goes to one.

f̂1(x1, x2, x3) = x
3
1 + 0.5x2x3 (13)

f̂2(x1, x2, x3) = 2x
3
2 + x1x3 (14)

f̂3(x1, x2, x3) = 2x
3
3 + x1x2 (15)

From Fig. 6, we see that the convergence velocity of MOGP-SCC is almost the
same as that of TOGP-SCC. Figure 7 shows the computational time of GP
normalized by MOGP-SCC time. Where, the time of MOGP-SCC is 1. From
Fig. 7, the computational time of the proposed MOGP is shorter than that
of TOGP. Table 1 shows the minimum, average and standard deviation of the
accuracy measurement in the last generation. From Table 1, we see that the
search performance of MOGP-SCC is almost the same as that of TOGP-SCC.

Table 1. Minimum, average and standard deviation of the accuracy measurment in the
last generation. In TOGP-MAE, the accuracy measurment is the mean absolute error.
In TOGP-SCC and MOGP-SCC, the accuracy measurment is the squared correlation
coefficient.

(a) f1
TOGP-MAE TOGP-SCC MOGP-SCC

Min. 0.39 1 1

Avg. 0.65 1 0.999

Std. 0.21 0 0.00022

(b) f2
TOGP-MAE TOGP-SCC MOGP-SCC

Min. 0.28 1 1

Avg. 0.69 0.99 0.98

Std. 0.18 0.017 0.022

(c) f3
TOGP-MAE TOGP-SCC MOGP-SCC

Min. 0.28 1 1

Avg. 0.80 0.99 0.98

Std. 0.20 0.0005 0.03
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5 Practical Design Problem

Here, the non-dominated solutions of the multi-objective aerodynamic design
optimization problem of a bi-conical shape reusable launch vehicle (RLV)[12,
13](Fig. 8) is analyzed with MOGP.

5.1 Problem Definition

The following four objective functions are considered in the multi-objective aero-
dynamic design optimization. (1) The aerodynamic drag during the ascending
flight that greatly affects the ascent altitude. (2) and (3) The maximum lift-to-
drag ratios (L/D) during the return phase that greatly affects the downrange.
There are two flight regions to consider for maximum L/D - the subsonic flight
region with Mach number of 0.8 and the supersonic flight region with Mach
number of 2.0. Because the aerodynamic characteristics of the subsonic and su-
personic flight regions differ significantly, both flight regions should be considered
for the maximum lift-to-drag ratio. (4) The maximization of the body volume
that is also necessary to enlarge the on-board capability for payloads, fuel, and
equipment.

Objective function 1: the minimization of the drag at Mach number of 2.0
and zero angle of attack conditions.

Objective function 2: the maximization of the maximum L/D at Mach num-
ber of 0.8(subsonic condition).

Objective function 3: the maximization of the maximum L/D at Mach num-
ber of 2.0(supersonic condition).

Objective function 4: the maximization of the body volume.

The shape of vehicle body is axisymmetric and has one kink, the so-called bi-
conical configuration. Figure 9 shows the body geometry. The lengths in the
figure are non-dimensionalized by the base diameter. The design parameter is
the position of the kink, which is represented in a two-dimensional Cartesian
space, as shown in Fig. 9. The body geometry is defined by the position of the
kink, namely x and y. The exploration range of x is between 0.33 and 3.0 and
that of y is between 0.15 and 0.5.
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5.2 Approach

In [13], 276 non-dominated solutions were obtained. Here, the proposed MOGP is
applied to the non-dominated solutions to obtain many non-dominated equations
that are highly correlated to the objective functions of the MOO problem. The
objective functions for MOGP are summarized as follows.

Objective function 1: the maximization of the squared correlation between
zero-lift drag at supersonic conditions.

Objective function 2: the maximization of the squared correlation between
maximum L/D ratios at subsonic conditions.

Objective function 3: the maximization of the squared correlation between
maximum L/D ratios at supersonic conditions.

Objective function 4: the maximization of the squared correlation between
body volumes.

Objective function 5: the minimization of the number of nodes

The terminal nodes are the design parameters(x and y) and constants. The
function nodes are arithmetic operators (+, *, /, and -). The GP procedure,
crossover and mutation are the same as the test problem. The population size
is 1500, and the generation size is 1500. The crossover probability is 0.8, and
the mutation probability is 0.2. Arithmetic operators ( + , - , * , and / ) are
considered as function nodes. The kink position and constants defined in [−1,
1] are considered as the terminal nodes. The constraint condition is that the
number of nodes is greater than 1. Crowded tournament selection is applied to
select pairs. Subtree crossover and subtree mutation are applied to the selected
pairs to create the population. The number of trials is 15.

5.3 Non-dominated Solutions

Figure 10 shows the results of the multi-objective optimization. Red squares
represent the non-dominated solutions. Grey circles represent the dominated so-
lutions. From Fig. 10, we extract the relationship between the objective functions
and design parameters. However, it is not easy to efficiently extract the relation
between each objective function and the design parameters.
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Fig. 10. Dominated(grey) and non-dominated(red) solutions-scatter plots
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5.4 Results and Discussions

As a result of the proposed MOGP, more than 10000 non-dominated equations
are obtained per trial. Figure 11 shows the non-dominated equations of all tri-
als. The x, y, and z axes are the squared correlation between zero-lift drag at
supersonic condition and the non-dominated equations, the squared correlation
between maximum L/D at subsonic condition and the non-dominated equations,
and the squared correlation between maximum L/D at supersonic condition and
the non-dominated equations, respectively. The plots are colored according to the
squared correlation between the body volume and the non-dominated equations.
Each plot corresponds to an evolved symbolic equation. The symbolic equations
from (A) (B) (C) and (D) in Fig. 11 have the highest squared correlations to
each objective function of the MOO problem. The symbolic equation (E) has
the maximum sum value of all squared correlations.
Equation (A) that has the highest squared correlation coefficient with the

zero-lift drag at supersonic condition is expressed as

f̂A(x, y) = −4.1y + 3.1xy + 2.75x− 2.6x2

−2y2 − x2y + x3 − 1.65 (16)
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Fig. 12. Scatter plots of x, y, θkink, andθr of the non-dominated equations

Table 2. Correlation coefficients between each objective function and the non-
dominated equations

A B C D E

CA,M=2.0,AOA=0 -1.0 -0.44 0.98 0.89 -0.99

(L/D)MAX,M=0.8 0.46 0.97 -0.36 -0.078 0.44

(L/D)MAX,M=2.0 0.98 0.35 -1.0 -0.94 0.98

BodyV olume -0.91 -0.11 0.96 1.0 -0.93

Equation (B) that has the highest squared correlation coefficient with the max-
imum lift-to-drag ratios at subsonic condition is

f̂B(x, y) = 10.3xy − 8.8y2 − 0.48x+ 0.28 +
10xy3

1 + x+ y
(17)

Equation (C) that has the highest squared correlation coefficient with the max-
imum lift-to-drag ratios at supersonic condition is

f̂C(x, y) = 11y + 6.8y
2 − 6.8xy − 5.4x+ 2x+ 3.3 (18)

Equation (D) that has the squared correlation coefficient with the body volume
is

f̂D(x, y) = −2y + 0.2y2 + 0.1xy + x+ 0.3 (19)

Equation (E) that has the maximum sum value of all squared correlations is

f̂E(x, y) = −5.33y + 4.3xy + 4.3x− 1.28x2 + xy2

−0.8x2y − 0.33y2 (20)

From Table. 2, the correlation coefficient between the zero-lift drag at supersonic
condition and Eq. 16 is -1.0. Furthermore Equation 16 is highly correlated to not
only the lift-to-drag ratio at supersonic condition but also the body volume. This
illustrates that Eq. 16 has high squared correlation coefficients between multiple
objective functions at the same time, which demonstrates the importance of this
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equation. From Table. 2, the correlation coefficient between the lift-to-drag ratios
at subsonic condition and Eq. 17 is approximately 1.0. However, Eq. 17 exhibits
low correlation between other objective functions. From Table. 2, Equation 18,
Eq. 19 and Equations 20 are highly correlated to the zero-lift drag at supersonic
condition, the lift-to-drag ratio at supersonic condition and the body volume.
This also shows the importance of these equations to this problem.
In the practical design problem, the good design parameters are highly corre-

lated to the objective functions. However, it is not always clear which parameter
set is good as design parameters. When we have to select design parameters, the
results of the proposed MOGP can be used to point out the more suitable param-
eters. In this study, kink angle(θkin) and aft body angle(θr) are the candidate
design parameters. Figure 12 shows the relation between each non-dominated
equation and the design parameters that include θkin and θr. From Fig. 12,
θkin is highly correlated to the non-dominated equtations. A Taylor expansion
of θkin is

θkin = 180−
18

π
arctan

( y
x

)
+
180

π
arctan

(
0.5− y
3.33− x

)
= (188.53− 16.8y − 0.74y2 +O[y]3)

+

(
180

πy
+ 2.52− 4.83y − 0.64y2 +O[y]3

)
x

+

(
− 60

πy3
+O[y]2

)
+O[x]4 +

(−1)
Floor

(
π+2Arg[X]−Arg[y2]

2π

) (
−90 +O[y]3

)
(21)

Some terms in Eqs. 16, 18, 19, and 20 are included in Eq. 21. These results
imply that θkin has good potential to be a design parameter. θkin has the linear
relationship among three objective functions. Thus when we choose θkin as the
design parameter, the value of objective functions can be easily estimated by θkin.

6 Conclusions

In this study, a new type of MOGP is proposed, which is capable of finding the
symbolic equations to multiple objective functions through one GP run. In the
proposed MOGP, the correlation coefficient is used as the measure of accuracy
and the maximization of the correlation coefficient of each objective function of
the MOO problem is considered simultaneously. One advantage of the proposed
MOGP is shorter computational time than TOGP. Another advantage is that
the proposed MOGP enables us to simultaneously solve the symbolic regres-
sion problems for all objective functions using correlation coefficients and find
symbolic equations that are highly correlated to the multiple objective functions.
We compared the proposed MOGP and traditional two-objective GP in the

test problem. The convergence speed and search performance of the proposed
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MOGP is almost the same as that of two-objective GP. However, the total com-
putational time of the proposed MOGP is shorter than that of TOGP.
In addition, we applied the proposed MOGP to the practical aerodynamic

design optimization problem of a biconical shape reusable launch vehicle. The
results of MOGP are symbolic equations that are highly correlated to each objec-
tive function. These equations are also highly correlated to the kink angle of the
body geometry. Although it is difficult to directly translate the MOGP results
to the kink angle of the body geometry, this implies that MOGP is capable of
finding composite new design parameters from the original design parameters.
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Abstract. Multiobjective approaches to data clustering return sets of solutions
that correspond to trade-offs between different clustering objectives. Here, an
established ensemble technique (evidence-accumulation) is applied to the identi-
fication of shared features within the set of clustering solutions returned by the
multiobjective clustering method MOCK. We show that this approach can be
employed to achieve a four-fold reduction in the number of candidate solutions,
whilst maintaining the accuracy of MOCK’s best clustering solutions. We also
find that the resulting knowledge provides a novel design basis for the visual
exploration and comparison of different clustering solutions. There are clear par-
allels with recent work on ‘innovization’, where it was suggested that the design-
space analysis of the solution sets returned by multiobjective optimization may
provide deep insight into the core design principles of good solutions.

1 Introduction

Data clustering is the problem of identifying groups (clusters) of similar data items
within collections of unlabelled data. One of the key challenges in this respect is the
mathematical description of a good cluster, which may then be used to define an ac-
tual clustering objective. Existing objective functions for data clustering typically make
fairly strong assumptions about the properties of a good cluster, and therefore lack ro-
bustness towards data that are violating those assumptions. Recently, multiobjective ap-
proaches to data clustering have been introduced with the aim of optimizing not one but
several clustering objectives simultaneously. It has been argued that this use of several
objectives facilitates a more natural (and robust) definition of the clustering problem,
and recent work has shown that the sets of optimal trade-off solutions generated by
multiobjective clustering techniques do indeed contain solutions that improve upon the
quality of the solutions obtained by optimizing a single clustering objective only [6, 11].

As the objectives used in multiobjective clustering are typically conflicting, even a
single run of a multiobjective clustering method (for a given number of clusters) will re-
turn a set of different trade-off solutions. Some multiobjective clustering methods, such
as Multiobjective Clustering with Automatic k-Determination (MOCK, [10, 11]) addi-
tionally generate solutions across a range of different numbers of clusters and, therefore,
return solution sets that cover both a range of different numbers of clusters and differ-
ent trade-offs between the clustering objectives. In practical applications, a user of a
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multiobjective clustering technique will select one (or a few) preferred solution from
the final set of optimal trade-off solutions. Evidently, there is a strong need to support
the user during this process of model selection, and dedicated approaches to this end
have been proposed in the literature. For the multiobjective clustering method MOCK,
we previously devised an automated technique of model selection [10] that selects a sin-
gle most promising solution from the set of trade-off solutions. The technique is based
on an analysis of the location of solutions in objective space relative to a background of
unstructured ‘control data’ [see 17]. When applied to the multiobjective clustering tech-
nique MOCK, this approach has been shown to outperform more traditional techniques
of model selection such as the Silhouette Width [15].

A potential criticism of MOCK’s standard model selection approach [10] is the fol-
lowing: The analysis is based entirely in objective space and does not fully utilize the
information captured by the approximation set as a whole. Recent research in the field
of evolutionary multiobjective optimization has shown the potential value of identifying
features in design space that are overrepresented within the approximation set returned
by an EMO algorithm [1, 2]. This raises the question of whether further improvements
in the accuracy, presentation and selection of multiobjective clustering solutions may be
feasible by integrating the information provided from the entire set of optimal trade-off
solutions.

Although not applied to the multiobjective clustering algorithm MOCK before, the
idea of integrating sets of solutions is not novel to the field of clustering and has been
adressed in the form of cluster ensemble techniques [7, 8, 16]. Cluster ensemble tech-
niques typically operate on sets of cluster assignments that are returned by a range of
clustering methods and attempt to integrate these labels into a single ‘consensus clus-
tering’. In this context, the technique of evidence accumulation has been shown to be
particularly effective [7], and this is the method we will adopt in our work. Specifically,
we aim to investigate whether evidence accumulation provides a suitable means of inte-
grating the set of trade-off solutions returned by multiobjective data clustering, whether
this leads to an improvement in solution accuracy, and whether this enables us to obtain
a better understanding of the relationships between solutions and the features shared by
different optimal trade-off solutions.

In the following (Section 2), we briefly review a number of key concepts related
to this work. Section 3 describes the experimental setup, including details of the algo-
rithms and the data sets employed. Section 4 reports our results and discusses the key
findings from our experiments. Finally, Section 5 concludes.

2 Background

In this section, we first discuss the principles of model selection for data clustering.
We then provide some background on multiobjective clustering, and consider the use
of model selection in multiobjective clustering. Finally, ensemble techniques for data-
clustering are reviewed.

2.1 Model Selection

Model selection, i.e., the identification of the most suitable solution or algorithm pa-
rameter, is a fundamental problem in data clustering. When a single, deterministic
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clustering technique is used (and all available partitionings are obtained for the same set
of input features), the problem reduces to that of identifying the number of clusters k
in a data set. More generally, however, the problem of model selection will also include
choices between different possible partitionings with the same number of clusters, such
as different solutions returned (for the same k) by a non-deterministic method such as
k-means, or the results returned (for the same k) by different algorithms.

Model selection in clustering has been addressed using a variety of different tech-
niques [see 9, 12, for reviews]. One of the most common approaches to model selection
is the evaluation of all clustering solutions using a specialized internal validation in-
dex and the subsequent selection of the top scoring solutions. These indices of cluster
validation typically assess the balance between some measure of intra-cluster and inter-
cluster variation, and prominent examples include the Silhouette Width [15], the Dunn
index [3] and the DB-Index [9]. Alternative approaches to model selection consider the
stability of the partitionings under re-sampling [14] or the relative quality of a partition-
ing compared to a partitioning obtained on unstructured data [17].

2.2 Multiobjective Clustering with Automatic K-determination

The multiobjective clustering method MOCK [10] is based on the evolutionary mul-
tiobjective algorithm PESA-II [5] and has been designed for the optimization of two
different clustering criteria. The first of these, overall deviation, measures the compact-
ness of clusters, whereas the second objective, connectivity, considers whether adjacent
data items are placed in the same clusters. See [10] for formal definitions.

A single run of the multiobjective clustering method MOCK returns a set of solutions
that correspond to different trade-offs between these two objectives. One of MOCK’s
parameters is an upper limit on the required number of clusters (typically, k = 25 is
used), but apart from this, the number of clusters is kept open. Many of the solutions
returned by MOCK therefore correspond to different numbers of clusters, in addition to
providing different trade-offs between the clustering objectives.

2.3 Model Selection in Multiobjective Clustering

As multiobjective approaches to data-clustering typically return a set of possible clus-
tering solutions, some previous work on these methods considered automatic ways of
selecting a single preferred clustering solution.

In MOCK, an integrated method of model selection is used [11] which works, briefly,
as follows: Given a data set of interest, MOCK is first run to determine an initial set of
optimal trade-off solutions. MOCK then produces several sets of ‘control data’, which
are unstructured data sets that are generated randomly within the bounds of the original
data set. MOCK determines a set of optimal trade-off solutions for each of these sets
of control data. After a normalization of the objective values, the distances between
the initial solutions and the solutions on the control data can be compared in objective
space. The initial solution that is furthest away from the control points is selected as the
best solution. The approach is described in more detail in [11].

In the context of multiobjective fuzzy clustering, a different approach to model se-
lection has been described by Maulik et al. [13]. For the multiobjective data clustering
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method MOGA (which returns possible partitionings for a single, fixed number of clus-
ters), the authors (ibid.) developed an approach that utilizes an analysis in decision
space: they use a re-labelling strategy to maximize the overlap between all of MOGA’s
output partitionings, and to identify those data points that are consistently assigned to
the same cluster (and also have a significant degree of membership with that cluster).
The cluster labels of those points are then used as the class labels in the training of a
support vector machine, which is applied to the prediction of cluster membership for
all remaining data points. Using this approach, the method was shown to achieve an
improvement in terms of the Silhouette Width of the final clustering solution, though
no external validation of the clustering results was performed.

2.4 Ensemble Techniques

Methods designed for the combination of the output of different clustering techniques
are often referred to as ensemble methods. Similar to bagging and boosting in super-
vised classification [4], clustering ensembles are designed to improve the performance
of clustering techniques by combining the results from several different runs, param-
eterizations or types of algorithms. Ensemble techniques typically operate on sets of
cluster assignments (the outputs from clustering algorithms) only and do not consider
the original input data. One of the best-known groups of ensemble techniques are the
methods introduced by Strehl and Ghosh [16], which use the idea of hypergraphs to col-
lect information from various partitionings; they then apply graph partitioning methods
to obtain a final consensus clustering.

A relatively recent development in ensemble clustering is the technique of evidence
accumulation, introduced by Fred and Jain [7]. Similarly, to Strehl and Ghosh’s ap-
proaches [16], the method starts with the cluster assignments returned by all algorithms,
but the algorithm then proceeds to count co-associations between all data items. This
information is used to construct a new dissimilarity matrix, which can then be parti-
tioned using a standard hierarchical clustering approach. The dendrogram returned by
the hierarchical algorithm can be cut to obtain a pre-specified number of clusters. The
resulting partitioning provides a new consensus clustering, and this approach has been
shown to outperform ensembles based on graph partitioning.

For our purpose, which is the aggregation of the solutions returned by multiobjective
clustering, the method of evidence accumulation is appealing, as (i) it appears to be
one of the best ensemble techniques currently available; (ii) it can be used to combine
partitionings with different numbers of clusters; and (iii) it provides an output with
a straightforward and intuitive interpretation: the height of a branch directly reflects
information about the minimum strength of co-association between data items within
that branch.

3 Method

We experimentally explore the use of evidence accumulation for the aggregation of
solutions in multiobjective clustering. First, we assess the quality of the final solutions
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returned from evidence accumulation on MOCK’s solution sets, and compare the qual-
ity of these solutions to those obtained using alternative approaches. We then discuss the
potential of evidence accumulation to help in the visualization of clustering solutions
and to reduce the problem of model selection in multiobjective clustering.

3.1 Sets of Clustering Solutions

In addition to the solution sets returned by MOCK, we generate alternative sets of solu-
tions using a range of established clustering techniques. This is done in order to compare
the performance of evidence accumulation for inputs derived from a range of different
methods. Overall, five different sets of clustering solutions are used:

– MOCK (M): This set contains the solutions returned by MOCK for k ∈ [1, 25].
For the data sets considered, the output set of MOCK typically contains between
80 to 120 solutions (also see Figure 3 in the Results section). MOCK is run using
standard parameter settings as described in [11].

– k-means (K): This set contains the solutions returned from the standard R imple-
mentation for k-means for k ∈ [1, 25] (i.e., the set contains 25 solutions in total).

– Average-link (A): This set contains the solutions returned from the standard R im-
plementations of average-link hierarchical clustering for k ∈ [1, 25] (i.e., the set
contains 25 solutions in total).

– Single-link (S): This set contains the solutions returned from the standard R im-
plementations of average-link hierarchical clustering for k ∈ [1, 25] (i.e., the set
contains 25 solutions in total).

– Combined (C): This set combines the solutions sets of k-means, average-link and
single-link (above). Overall, this set therefore contains 75 solutions.

3.2 Evidence Accumulation

The next step of the experiments is to process some of the above sets as follows: Each of
the sets is, individually, used as the input to Fred and Jain [7]’s method of evidence ac-
cumulation. We then generate a new set of output solutions by applying the appropriate
cuts to the dendrogram and generating partitionings for k ∈ [1, 25].

As single-link and average-link are hierarchical (and deterministic) methods, the ap-
plication of evidence accumulation to their output alone does not lead to any new clus-
tering solutions. Consequently, sets of inputs based on their individual outputs only are
not used in these experiments. Evidence accumulation therefore generates three new
sets of solutions only, which are denominated as MOCK with Evidence Accumulation
(MEvAcc), k-means with Evidence Accumulation (KEvAcc) and Combined with Evi-
dence Accumulation (CEvAcc), and contain 25 solutions each.

Evidence accumulation is implemented as described by Fred and Jain [7]. Given a
set of input clustering solutions for a data set containingN items (e.g. from a single run
of MOCK), the N ×N co-association matrix is constructed as

C(i, j) =
mij

M
,
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where M gives the number of clustering solutions contained in the set, and mij indi-
cates the number of times (within thoseM partitions) that data items i and j have been
assigned to the same cluster. A new dissimilarity matrix is then obtained as D(i, j) =
1−C(i, j), and two different hierarchical clustering methods (single-link and average-
link agglomerative clustering) are used to construct the consensus partitions of the data.
In line with Fred and Jain [7], the results for single-link agglomerative clustering are
consistently worse than the results for average-link agglomerative clustering, so results
for this are not shown in the experimental section.

3.3 Solution Selection Methods

Using the sets of solutions generated in the previous stages, we further investigate
whether evidence accumulation may present a suitable approach for model selection
in multiobjective clustering. For this purpose, we compare a number of alternative tech-
niques of model selection. The first of these is MOCK’s established approach [11],
which identifies a single partitioning based on distances (in objective space) to random
control data.

As a second option, we explore the use of the solution sets returned by evidence ac-
cumulation: The output from evidence accumulation is, initially, a set of solutions that
contains a single solution for each possible number of clusters (here, k ∈ [1, 25]). As a
result, the spacing of solutions along the Pareto front is more even than the spacing in
the fronts returned directly from multiobjective clustering (which usually contain sev-
eral solutions for each value of k). Knee detection based on the local shape of the Pareto
front may therefore become more feasible, and we test this by calculating the angles be-
tween triplets of adjacent clustering solutions, and selecting the ‘middle’ solution with
the smallest angles as the final solution.

Finally, as a third option, we consider the fact that evidence accumulation uses a
hierarchical clustering algorithm to partition the co-association matrix, and that its out-
put is, therefore, best represented using a dendrogram. In previous work, Fred and Jain
[7] suggest that branch length within this dendrogram can be used for model selection:
they propose to identify the cut that eliminates the longest branch in the dendrogram
and select the associated partitioning as the best solution. We explore the potential of
this approach for the dendrograms returned from evidence accumulation on MOCK’s
clustering solutions.

3.4 Data Sets

The techniques discussed above are compared using a test suite of data sets that contain
multiple Gaussian clusters in various dimensions. These data sets are generated using
the cluster generator described in [11] and available online. The parameterization of the
generator is shown in Table 1. Data sets are generated in three and ten dimensions and
contain four, six or eight Gaussian clusters. Ten different instances are generated for
each combination of dimension and cluster number, resulting in a total of 60 different
instances. Individual instances are denoted as Dd-Cc-noI , where D indicates the di-
mensionality of the data, C indicates the number of clusters and I is the index of the



Evidence Accumulation in Multiobjective Data Clustering 549

Table 1. Parameters of the synthetic data generator, where Nk gives the number of points in the
kth cluster, μkd defines the mean of the kth cluster in the dth dimension and σkd defines the
variance of the kth Gaussian cluster in the dth dimension. The parameters of individual clusters
are generated randomly within the bounds shown below.

Min Nk Max Nk Max μkd Min μkd Min σkd Max σkd

10 100 10 -10 0 20
√
D

instance. All experimental results reported are obtained over 21 independent runs per
algorithm per instance, and the Euclidean distance function is used in all experiments.

3.5 Comparison Metrics

A range of techniques are used to evaluate the quality of the solution sets and indi-
vidual clustering solutions. First, a visualization of the sets of clustering solutions in
bi-objective space is used to understand the actual effect of evidence accumulation. As
we are dealing with sets of clustering solutions in bi-objective space, some of these re-
sults are summarized in the form of attainment fronts. Results are obtained over 21 runs
for each data set, so the first and eleventh attainment front are employed to indicate top
and median performance.

Furthermore, the agreement of the partitionings with the known cluster memberships
is determined using an an external validation technique. The Adjusted Rand Index is
used for this purpose, as it provides an established way of comparing partitionings with
different numbers of clusters [12]. It returns values within the range [0, 1], where a
value of 1 indicates a perfect agreement with the known cluster memberships. During
the evaluation of results, the Adjusted Rand Index is utilized in two different ways. For
the comparison of solution sets, we are interested in evaluating the algorithms perfor-
mance at generating high-quality solutions. Hence, the comparison focuses on the best
clustering solution found within each solution set (i.e., the solution that scores highest
with respect to the Adjusted Rand Index is identified directly). When comparing tech-
niques for model selection, evaluation is based on the Adjusted Rand Index of the final
(single) solution selected.

Finally, we also consider the sizes of the solution sets returned by the different
techniques.

4 Results

Figure 1 shows the evaluation of the solution sets for a three-dimensional data set with
eight clusters. This visualization in bi-objective space (using MOCK’s clustering ob-
jectives) reveals an interesting phenomenon regarding the effect of evidence accumu-
lation: For the solution sets generated by k-means or the combination of algorithms,
evidence accumulation generates results that dominate the original solutions with re-
spect to MOCK’s clustering objectives. Unlike the original input solutions, the solu-
tions resulting from evidence accumulation tend to be mutually non-dominated. This
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Fig. 1. Results for instance 3d-8c-no0. Sets of clustering solutions obtained by a single run of
MOCK, MOCK with evidence accumulation (MOCK EvAcc), k-means (k-means), k-means with
evidence accumulation (k-means EvAcc), the ensemble of three traditional algorithms (Com-
bined), and the ensemble of three traditional algorithms with evidence accumulation (Combined
EvAcc).

is surprising, as the objective of connectivity is not directly optimized by any of these
algorithms. The results suggest that the technique of evidence accumulation produces
solutions that implicitly optimize this measure. Interestingly, the same effect is not seen
when evidence accumulation is applied to MOCK’s solutions: Evidence accumulation
does not generally produce solutions that dominate those contained in MOCK’s origi-
nal approximation front. This may be because MOCK’s solutions are already close to
optimal with respect to both objectives.

To provide a better idea of the stochastic variation in these results, Figure 2 shows
the first and eleventh attainment fronts for all six algorithms on the same data set. It
can be seen that there is no substantial difference in terms of the attainment of MOCK’s
solutions before and after evidence accumulation. On the other hand, it is clear that both
sets of results dominate the solution sets returned by alternative techniques.

Next, we consider the size of the solution sets and the quality of the best solutions
in terms of the known cluster memberships. Summary results over all 60 instances are
show in Figures 3 and 4, in the form of boxplots. Consistent with the observations in ob-
jective space and the results in [7], the application of evidence accumulation results in
improved solutions (compared to the original input solutions) for the use with k-means
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Fig. 2. Attainment fronts on instance 3d-8c-no0 for MOCK, MOCK with evidence accumulation
(MOCK EvAcc), k-means (k-means), k-means with evidence accumulation (k-means EvAcc),
the ensemble of three traditional algorithms (Combined), and the ensemble of three traditional
algorithms with evidence accumulation (Combined EvAcc). (Top) First (best) attainment front.
(Bottom) Eleventh (median) attainment front.
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Fig. 3. Results for 21 runs each across ten different instances with three dimensions and (top) four
clusters; (centre) six clusters; and (bottom) eight clusters. (Left) Adjusted Rand Index of the best
solution in the final set of clustering solutions for each algorithm; (right) Number of solutions in
the final set of clustering solutions. for each algorithm.
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Fig. 4. Results for 21 runs each across ten different instances with ten dimensions and (top) four
clusters; (centre) six clusters; and (bottom) eight clusters. (Left) Adjusted Rand Index of the best
solution in the final set of clustering solutions for each algorithm; (right) Number of solutions in
the final set of clustering solutions. for each algorithm.
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Fig. 6. Visualization of one of MOCK’s clustering solutions for a sub-sampled instance 3d-4c-
no0. The dendrogram structure is obtained based on evidence accumulation of all of MOCK’s
trade-off solutions, wheras the numbers displayed at the leaf nodes reflect the assignments made
by a single, selected clustering solution. Using this visualization, a user can easily identify dis-
crepancies between this particular solution and the ‘majority opinion’: here, the dendrogram is
almost entirely consistent with the labelling provided by the selected solution (it can be seen
that a cut of the dendrogram for k = 4 would result in an almost identical clustering solution),
indicating that the particular solution is in strong agreement with the majority of solutions in
MOCK’s complete set of trade-off solutions. There is one discrepancy in the fourth cluster (note
the single label of “2” within a series of “3”s), which highlights a data point that has been misclas-
sified by the clustering solution selected. The visualization also helps in identifying data items for
which there is particularly low or high uncertainty in the cluster assignment, e.g. the length of the
branches in the dendrogram indicates that, overall, there is higher consensus in the assignments to
clusters 0 and 1, relative to assignments to clusters 2 and 3. This provides additional information
about the level of definition of individual cluster structures in the underlying data.
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solutions. For the output of MOCK and the ensemble of algorithms, we see no such
effect in terms of the accuracy of the best clustering solutions. For MOCK, this result is
consistent with our observations in objective space: It seems that evidence accumulation
is not able to improve upon the solutions returned by multiobjective clustering, which
may be due to the strong performance of MOCK on these data sets.

We next investigate the size of the solution sets in Figures 3 and 4. From these data,
it is evident that the application of evidence accumulation results in a significant (about
four-fold) reduction in the size of MOCK’s solution sets, which is an important advan-
tage. The results also show that this reduction comes at no significant expense in terms
of solution quality: in terms of the Adjusted Rand Index, the best solutions returned by
both MOCK and MOCK EvAcc are usually comparable and reliably outperform the
best solutions returned by the six alternatives considered.

We are further interested whether evidence accumulation will allow for more ef-
fective means of model selection, and Figure 5 shows the related comparisons. The
performance of the three model selection techniques is mixed. While, overall, MOCK’s
original strategy shows the most consistent performance, the angle and the dendrogram-
based technique show very good performances for some of the data sets. The angle
and dendrogram-based techniques are conceptually different and exploit different types
of information, which leads us to hope that, in future work, higher robustness may be
achieved through the integration of both approaches. Compared to MOCK’s established
selection strategy, an important advantage of both of these approaches is reduced com-
putational expense, as they do not rely on the costly generation and clustering of control
data.

Finally, we consider how the information derived from evidence accumulation may
be used to support a user in the exploration of the solution sets returned by a multiobjec-
tive clustering algorithm. Evidence accumulation captures valuable information about
the frequency of co-assignment of different items, which is displayed in the result-
ing dendrogram. We suggest to use this dendrogram for the visualization of individual
clustering solutions. In Figure 6, this concept is illustrated for MOCK’s output on a
four-cluster data set.

5 Conclusion

Evidence accumulation is a state-of-the-art ensemble technique that has been shown to
provide an effective way of combining and improving the results of traditional clus-
tering techniques. This manuscript investigates evidence accumulation as a means to
support the post-processing of the clustering solutions returned by the multiobjective
clustering method MOCK. On the data sets considered, we find that evidence accu-
mulation does not improve the accuracy of MOCK’s clustering solutions, but that it
achieves a substantial reduction in the number of trade-off solutions to be considered
(with no loss of accuracy). We further demonstrate how the knowledge generated by
evidence accumulation may be used in the selection, visualization and analysis of the
solutions returned by multiobjective clustering. Future work may look into the integra-
tion of evidence accumulation into MOCK’s search, as well as the development of more
robust approaches to solution selection.
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Abstract. In this paper two novel methods for projecting high dimen-
sional data into two dimensions for visualisation are introduced, which
aim to limit the loss of dominance and Pareto shell relationships be-
tween solutions to multi-objective optimisation problems. It has already
been shown that, in general, it is impossible to completely preserve
the dominance relationship when mapping from a higher to a lower di-
mension – however, approaches that attempt this projection with min-
imal loss of dominance information are useful for a number of reasons.
(1) They may represent the data to the user of a multi-objective op-
timisation problem in an intuitive fashion, (2) they may help provide
insights into the relationships between solutions which are not immedi-
ately apparent through other visualisation methods, and (3) they may
offer a useful visual medium for interactive optimisation. We are con-
cerned here with examining (1) and (2), and developing relatively rapid
methods to achieve visualisations, rather than generating an entirely
new search/optimisation problem which has to be solved to achieve the
visualisation– which may prove infeasible in an interactive environment
for real time use. Results are presented on randomly generated data, and
the search population of an optimiser as it progresses. Structural insights
into the evolution of a set-based optimiser that can be derived from this
visualisation are also discussed.

Keywords: Dimension reduction, Pareto optimality, data visualisation.

1 Introduction

The visualisation of a set of solutions maintained by modern evolutionary multi-
objective optimisation (EMO) algorithms is of interest to researchers wishing to
track the behaviour of algorithms, decision makers who use the output of EMO
algorithms, and those wishing to develop interactive multi-objective optimisers.
Most EMO practitioners are comfortable with visualising a set of solutions with
2 or 3 objective dimensions as a scatter plot of points, and can rapidly determine
the non-dominated subset (and those associated with dominated shells [5]) from
this. Visualisation of sets with more objectives is often more difficult to inter-
pret via a single scatter plot, and a range of other approaches has been used
to visualise these populations in the multi-objective optimisation literature (e.g.
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parallel coordinate plots [7,15,12] heatmaps [22,25], directed graphs [24], Cher-
noff faces [1], and self-organising maps [21,11]). Dominance relations and shells
are not always apparent in these visualisations however (or are only presented
between adjacent shells). We are concerned with visualising more than just the
estimate of the Pareto front that comes out of most modern EMO algorithms,
but more broadly any general set of points (e.g. a search population), from which
a visualisation thereof can inform us of the structure of the set. Such visualisa-
tions can give us extra information relating to the Pareto front estimation, and
convey to the problem holder visually how an optimisation is progressing.
Here we are concerned with producing a visualisation in the plane, which may

be relatively rapidly computed, and is interpretable quickly by both experienced
practitioners in EMO, and by problem owners who may not be as familiar with
the interpretation of the methods mentioned above. We focus on a single scatter
plot of points representing solutions (unlike pairwise coordinate plots [4], which
uses D(D−1) separate scatter plots). We shall shortly provide a brief discussion
of some existing examples of these, and introduce our two new approaches, but
before this we will more formally define Pareto dominance, which is crucial to
most modern EMO algorithms, and our visualisation approaches.

2 Pareto Dominance

Pareto dominance is used extensively within the search processes of most modern
multi-objective optimisation algorithms [4], and, even if not used explicitly in
the search process (if aggregation techniques are used for fitness assignment for
instance), it is still used to define the properties of the final output set from
the optimisers. EMO algorithms are concerned with exploring a decision space
for design solutions, where an evaluation of a particular design results in an
associated point in objective space. If we consider (without loss of generality)
that all objectives are to be minimised, an objective vector y of D objectives
(y1, . . . , yD) is said to dominate another y

′, written y ≺ y′, iff:

(yi ≤ y′i, ∀i) ∧ (∃i, yi < y′i). (1)

Succinctly, the best set of solutions to a multi-objective problem (the Pareto set)
are the maximal set for which it is impossible (given the problem constraints) to
improve any single objective (or group of objectives) of a set member by varying
its parameters without having to decrease its performance on one or more other
objectives. The image of this set in objective space is known as the Pareto front,
F . Given any objective vector set Y = {yi}Ni=1, the non-dominated subset of
Y is determined as S0 = {y ∈ Y |�z ∈ Y, z ≺ y}. This can be taken one step
further (as for instance in the popular NSGA-II algorithm [5]), where not only is
a dominance relationship put on members of Y (i.e. where any two members are
mutually non-dominating, (y′ ⊀ y)∧ (y ⊀ y′), or one dominates the other), but
also every member of Y is assigned to a Pareto shell. Here members of S0 are said
to be in the zeroth Pareto shell (an estimate of the Pareto front, F̂). Subsequent
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shells are defined iteratively in the same manner, subject to the previous shell
being removed from Y until the empty set ∅ is obtained. That is

Sj = {y ∈ Y ′
j |�z ∈ Y ′

j , z ≺ y} (2)

where Y ′
j = Y \

⋃j−1
k=0 Sk, and Y ′

j = ∅ for j ≥ k∗ with some k∗ ∈ {1, 2, . . .}.
Note that under (1) and (2) it is possible for two members of Y to be mutually
non-dominating, but for one to be in a better shell than the other.

3 Approaches for Visualising Multi-dimensional Solution
Sets Via Scatter Plots

If we wish to project an objective vector y ∈ RD into R2 to enable visualisation
as a point in a plane we must utilise a dimension reduction technique of some
form, and, unless there are redundant or perfectly correlated objectives, some
information loss is inevitable.
One of the most popular linear dimension reduction techniques is principal

component analysis (PCA, [16]), which identifies the directions of objective space
that capture the maximum amount of variance in the solutions. Neuroscale
[20,19] has also been used for multi-objective visualisation [11,8] – but unlike
PCA it provides a non-linear mapping. However, although popular across many
application domains, both Neuroscale and PCA are oblivious to whether solu-
tions dominate each other, or are mutually non-dominating in multi-objective
populations, or what their Pareto shell is. We recently defined a new distance
measure, the dominance distance, that captures the similarity of the dominance
relations of solutions, and we have used this to project mutually non-dominating
sets using multi-dimensional scaling [23,26] to points on the plane [25]. In the
same work we also investigated the use of Radviz [13,14] for this mapping. How-
ever even with these representations is is not geometrically apparent which so-
lutions are in which shell or which dominate others.
In [18] a visualisation is presented which does map the S0 solutions in a multi-

dimensional objective space to a mutually non-dominating shell in R2, with all
other mapped solutions being dominated by members of the planar representa-
tion of S0 (although subsequent shells are not explicitly represented). We will
discuss the method described in [18] further in Sect. 5, as it is conceptually the
close to the methods we propose.

4 Desired Properties When Visualising Shells in the
Plane

Given a set Y D = {yi}Ni=1 ⊂ RD, we wish to find a mapping to Y 2 = {ui}Ni=1 ⊂
R2 such that if yi ≺ yj , then ui ≺ uj , and if yi �≺ yj , then ui �≺ uj . In
general a mapping u = g(y) with this property does not exist (the reader is
directed toward the proof provided in [18] for further details). Instead here we
shall concern ourselves with a mapping with two properties, one of which we can
guarantee, and the second of which we seek a good approximation to, namely:
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1. Ensure that the mapping preserves Pareto shells. That is, if we denote by
SD
j the jth Pareto shell in an ambient space of D dimensions, then u ∈ S2

j

(where u = g(y)). The superscript on Sj denotes the dimensionality of the
space which it inhabits.

2. Minimise dominance misinformation. We describe three ways to quantify
dominance misinformation in Sects. 5, 6 and 7.

Computational methods for quickly determining shells are well-known (see, e.g.
[5]) – and are embedded in many EMO algorithms [4]. Furthermore, ensuring
that shell members are maintained via a projection into a lower dimension is
actually fairly trivial: a very simple approach would be to distribute each shell
as illustrated in Fig. 1. Here there are three shells projected from RD, D > 2,
with the number of members in each shell being |SD

0 | = 4, |SD
1 | = 6 and |SD

2 | = 3.
When projecting these into R2 each shell member is projected to a point in the
positive quadrant, which lies on the circumference of the circle with radius equal
to its shell rank plus one. As long as the mapping is such that the minimum values
of the objectives in both dimensions of S2

j are greater or equal to the minima

in S2
j−1, then this will have the effect that every member of S2

j is dominated

by at least one member of S2
j−1, and the members of each S2

j are mutually
non-dominating as required.

S2
2

S2
0

S2
1

Fig. 1. Simple projection preserving shells but not necessarily dominance relations

This mapping provides the first property mentioned above, but still leads to
the issue of where to place the ui to minimise whichever dominance misinforma-
tion objectives may be defined. It is the definition of this property, and methods
to incorporate it within a planar visualisation we shall now discuss. The first
new approach we consider uses proximity to domination rays to convey dom-
inance. The second we introduce uses a direct geometric transference of the
dominance relation. First however we will describe the visualisation of Köppen
and Yoshida [18].
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Fig. 2. Visualisation using the approach of [18] of 100 randomly generated points in
4 dimensions. Left : Dominance links not shown. Middle: Dotted lines show dominance
relations between the members of adjacent shells. Right : Dotted lines show dominance
relations between all members of Y .

5 Visualisation of Köppen and Yoshida

In [18] the non-dominated set from Y D was mapped to the positive quadrant,
lying on the circumference of a circle whose centre point is the origin, and the
objectives were maximised. In keeping with the rest of this paper, where objec-
tives are to be minimised, we have ‘flipped’ the representation from the original
and project instead to the negative quadrant. Once the non-dominated subset
of Y D is mapped, for every dominated point yi ∈ Y D, the subset of SD

0 which
dominates it is determined, and the worst objective values in the mapping of
this set are used to fix the position of ui in two dimensions. The exact order of
the solutions mapped to S2

0 was treated as a permutation problem for a multi-
objective evolutionary optimiser in [18]. The location of projected solutions on
the curve of S2

0 was determined such that the separation between points was
proportional to the distances of immediate S2

0 neighbours in the original R
D

space. Let π be a permutation of the integers 1, . . . , |SD
0 | describing the order in

which the solutions are arranged along S2
0 , so that uπ1 is placed on the extreme

left, with uπ2 next, and so on. Then the two objectives that Köppen and Yoshida
seek to minimise in the selection of an optimal permutation are

|SD
0 |−1∑
k=1

d(yπk
,yπk+1

) (3)

where d(x, z) is the Euclidean distance between yπk
and yπk+1

, and, denoting
by vl ∈ Y D members of Y D which are dominated by members of SD

0 ,

|{k|∃1 ≤ i < k < j ≤ |SD
0 |,vl with (yπi ≺ vl) ∧ (yπj ≺ vl) ∧ (yπk

⊀ vl)}| (4)

As such, for each element yπk
, 1 < k < |SD

0 |, (4) checks if any two elements lower
and higher in the permuted order both dominate a subset of Y D which the kth
ordered solution does not. The minimisation of (3) and (4) is approximated using
a real-valued sorting encoding in the NSGA-II algorithm [5]. However, how the
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final visualisation permutation is selected from the set of trade-off permutations
is not described.
To illustrate this visualisation, we draw 100 points from an isotropic four-

dimensional Gaussian distribution, and then map them down to R2. We first
optimise the permutation in the same fashion as [18], using the NSGA-II al-
gorithm, with a population size 100, for 500 generations. We then select the
solution on the returned F̂ which minimises (4) as the permutation to use in
the final visualisation. We chose this permutation as this objective is essentially
a form of dominance misinformation, which is one of the key properties we are
concerned with. The resultant visualisation is presented in Fig. 2.

6 Representing Dominance in RD by closeness in R2

Once we have determined the shell membership of solutions in the original space,
the problem is where to place these solutions on their projection to equivalent
shells in the lower dimensional space. The first set of novel transformations we
present are based upon converting the dominance relation in a higher dimension
to a distance relationship in the two dimensional mapping. That is, we attempt
to place dominated solutions close to those solutions which dominate them,
whilst maintaining correct shells. Here we represent the distance to dominating
individuals in a different fashion to [18], which does not require the running of
a multi-objective optimiser to generate the mapping. Each shell is mapped to a
distinct shell (as illustrated in Fig. 1). We then place the solutions, as close as
possible to the solutions which dominate them. One way of conceiving of this
is that each solution is placed on the curve corresponding to their shell and
connected via a spring to all those points which dominate it. These springs act
to pull together points which are dominated by the same solutions.
This approach is illustrated in Fig. 3. As in [18] the problem arises as to how

to distribute the solutions in S2
0 , however, instead of casting this as a problem

to tackle with an evolutionary optimiser, we instead order the solutions using
spectral seriation. For a set of K = |SD

0 | solutions we require a K×K similarity
matrix A describing the similarity between any pair of solutions of this set. Given
A, to place similar solutions together, we seek a permutation π over the solutions
in SD

0 that minimises:

γ(π) =

K∑
j=1

K∑
k=1

Akj(πk − πj)2. (5)

γ(π) is minimised when similar solutions are placed close to each other, and
dissimilar solutions far apart. In general, this is NP-hard because the permuta-
tion is discrete [2]. Instead, [2] suggests finding an approximation obtained by
relaxing the permutation π to a continuous variable w and minimising:

h(w) =
K∑
j=1

K∑
k=1

Akj(wk − wj)
2 (6)
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Fig. 3. Left : Illustration of the initialisation of a distance-based visualisation, domi-
nance relationships between points on adjacent shells are shown via solid connecting
lines. Right : Minimal distance rays are plotted projected from the origin through mem-
bers of Y \ S2

2 , which indicate where on each shell a solution must be placed to be the
minimal distance away from the dominating point.

with respect to w. This relaxed objective is subject to two constraints. Firstly,
to ensure that adding a constant to all wn does not change the order of the
individuals the constraint

∑
n wn = 0 is imposed. Also, in order to avoid the

trivial solution in which all wn = 0, we require
∑

n w
2
n = 1. The solution to the

constrained problem can be found with linear algebra via the graph Laplacian
[10,3] (further details on how to do this efficiently can be found in [17]). The
similarity measure we choose to use here is the dominance similarity, which we
have used previously for MDS visualisations of multi-objective sets [25,9].
The dominance similarity between two solutions yj and yk, relative to a third

solution yp, is defined as being proportional to the number of objectives on
which yj and yk have the same relation (greater than, less than, or equal) to
yp. That is:

S(yk,yj ;yp) =
1

D

D∑
d=1

[
I((ypd < ykd) ∧ (ypd < yjd))

+ I((ypd = ykd) ∧ (ypd = yjd))

+ I((ypd > ykd) ∧ (ypd > yjd))
]

(7)

where I(q) is the indicator function that returns a value of 1 when the proposition
q is true and 0 otherwise.
The dominance similarity across the set Y = {yi}Ni=1 is obtained by averaging

S(yk,yj ;yp) across all the elements of the set:

Akj =
1

N − 2

N∑
p=1

p/∈{k,j}

S(yk,yj ;yp). (8)
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Fig. 4. Visualisation using closeness approach of 100 points randomly generated in 4
dimensions. Top: Initial pass. Bottom: After refinement iterations. Left : No domina-
tion links shown. Middle: Dotted lines show dominance relations between members of
adjacent shells. Right : Dotted lines show dominance relations between all members of
Y D.

Utilising (8) to calculate A for just the SD
0 members of Y D (but averaging across

their similarity to all members of Y D), gives us an order on the elements of SD
0

with minimisation of (6), which we transfer to S2
0 . We space the S2

0 solutions on
the curve proportional to their Euclidean distance in SD

0 (as in [18]).
The distance between shells in the mapping is arbitrary, so we use the angle

of the ray passing through a mapped point and the origin to determine the
placement of dominated solutions. Specifically, the location of a ui is initially
placed on the ray through the origin whose angle is the average of the angles of
the rays associated with the mapped points which dominate it. As the position
of S2

0 is determined using spectral seriation (as detailed above), the rays defining
S2
1 , can be rapidly computed, which, along with S2

0 can then be used to fix S2
2 ,

and so on. A schematic of this is in shown the right-hand panel of Fig. 3, and an
empirical example is provided in the top panels of Fig. 4 (using the same data as
Fig. 2). However, as only the dominating points are considered for determining
the angle of the ray on which a solution resides, if two solutions are dominated
by exactly the same subset of Y D, then they will lie at the same point – even if
the subsets that they both dominate are not the same.
In order to resolve the issue of mapping points to the same location when

their dominance relationships with Y D as a whole are not identical, an iterative
procedure is used to adjust the locations of S2

i points (where i > 1), such that
the mean of the angles in R2 of those points which are dominated in RD, as
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well as those which dominate in RD, are used to set the location angles of S2
i

members. Each shell is evaluated in turn until all the shells have been processed
(S2

0 remaining unchanged). This is repeated until the positions no longer vary.
Empirically the number of complete passes before stabilisation is reached has
proved small – in the example shown here for instance the location changes were
negligible (10−3) within six passes. The bottom panels of Fig. 4 shows the result
of this iterative location smoothing – note how a number of individuals in S2

1

which dominate many elements of S2
2 have been pulled to a more central region

of the S2
1 shell by this process. On the other hand, the refinement process has

left the shells in the same general region as the single pass algorithm, so the
single pass seems to give a reasonable approximation (on this instance) to the
final refined visualisation.

7 Representing Dominance in RD by Dominance in R2

The second new approach we consider here attempts to directly translate the
dominance relationships in the higher dimensional space into the two dimensions
in a way that is conceptually more akin to [18]. Again, the ordering of solutions
mapped to S2

0 is determined via spectral seriation using dominance similarity,
but instead of placing individuals on dominated shells using angles to dominating
and dominated solutions, we attempt to minimise the divergence between the
dominance relations implied by the lower dimensional visualisation and the true
dominance relations in the original space. That is, if an individual u = g(y) has
the relationship y′ ≺ y, then as far as possible we would like u′ ≺ u to hold
(and vice versa). To this end we propose a deterministic iterative procedure
which attempts to arrange the solutions in each S2

j to accomplish this.

When deciding on the placement of the S2
1 individuals, the members of S2

0

effectively delimit a number of regions on the feasible curve for S2
1 . Any point in

one of these regions has an equivalent dominance relation with S2
0 ; that is, any

point in a particular curve segment rk is dominated by the same subset of S2
0 .

This is illustrated in the left panel of Fig. 5 – the members of S2
0 partition S2

1

into 2|S2
0 | − 1 segments into which members of S2

1 can be placed. In selecting
which region to map a solution y ∈ SD

1 to, a natural approach would be to find
the one which yields the smallest dominance error. If we denote by ri any point
in the ith region, and by R1 the set of these points (one point for each region)
for the oneth shell, then we can define a dominance error as having two parts:

e1(ri,y,SD
0 ) = |{y′ ∈ SD

0 |y′ ≺ y ∧ g(y′) ⊀ ri}|, (9)

the number of members of SD
0 which dominate y but fail to dominate ri in their

S2
0 projection and

e2(ri,y,SD
0 ) = |{y′ ∈ SD

0 |y′ ⊀ y ∧ g(y′) ≺ ri}|, (10)

the number of members of SD
0 which do not dominate y but incorrectly dominate

ri in their S2
0 projection. Empirically we find that simply summing these two
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Fig. 5. Left : Illustration of potential intervals for placement of S2
1 individuals, once the

order of S2
0 has been determined. Right : Illustration of potential intervals for placement

of S2
2 individuals, once the order of S2

1 has been determined. Note there are no intervals
on the extremes, as the interval ranges must be dominated by at least one member of
the previous shell.

penalty terms to generate a combined error (to minimise) does not lead to a
satisfying projection. This is because (10) tends to outweigh (9) with the result
that all the solutions in dominated shells tend to be pushed close to the axes.
Therefore, we find the subset of Rj which minimises e1, and then choose the
element of this subset with the lowest e2. By geometry, we can see that e1 = 0
can be achieved for any dominated element Y D projected onto S2

i , as long as
the shell radius for S2

i is
√
2 times the shell radius for S2

i−1, or greater. This
will mean that there is a region on the S2

i curve which is dominated by all
elements of S2

i−1, therefore we choose the shell radii accordingly to guarantee
this.
It is also possible (and indeed inevitable if 2|SD

0 | − 1 < |SD
1 |)1 for some

solutions in S2
1 to be placed in the same region. We would not however wish to

place them on exactly the same point, as they may not dominate the same subset
of Y D. If more than one solution is placed in a region, then they are spaced evenly
across the curve segment that region defines, otherwise it is placed in the centre
of the segment. After the S2

1 shell is assigned, subsequent shells are assigned in
order in a similar way to that described for S2

1 ; that is in (9) and (10) SD
0 is

replaced by
⋃j−1

k=0 SD
k (where the jth shell is being assigned).

This still leaves the problem of how to order multiple solutions mapped to
the same region. This is, however, another permutation problem, and as such
we simply construct the dominance similarity matrix for solutions in this region,
and order them according to the order suggested by spectral seriation.

1 Generally, in the jth shell (j > 0), there are at most 1 +
∑j−1

i=0 2(|S2
i | − 1) regions

where a shell member may be placed, this growth is illustrated in the right panel of
Fig. 5.
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Fig. 6. 100 randomly generated points in 4 dimensions as in previous illustration,
visualisation using dominance approach but with modified minimisation function. Left :
Dominance links not shown. Middle: Dotted lines show dominance relations between
members of adjacent shells. Right : Dotted lines show dominance relations between all
members of Y D.

Table 1. Property comparison of the three scatter plot visualisation methods. yi and
yj are original objective vectors drawn from Y D, and ui and uj are their corresponding
projections using the methods examined into R2.

Köppen & Yoshida Distance-based Dominance-based

(I) If yi ∈ SD
k then ui ∈ S2

k ✗ � �
(II) If yi ≺ yj then ui ≺ uj ✗† ✗ �
(III) If yi ⊀ yj then ui ⊀ uj ✗ ✗ ✗

† If solutions in S2
0 can be arranged so that (4) is equal to zero, then (II) holds for any

pair of points which are not mapped to the same location in R2. If (4) is not equal to
zero then (II) cannot be guaranteed to hold anywhere in the mapping of [18].

The visualisation approach, using our running example, leads to the projection
shown in Fig. 6. All linked points in this visualisation can be seen to dominate
in a geometric sense.

8 Visualisation Comparisons

The dominance and shell properties of the three visualisations we have illustrated
here (that of [18], and our two new visualisations) are presented in Table 1. As-
suming a permutation of S2

0 can be found such that (4) is equal to zero, then the
method of [18] guarantees property (II) through the placement of the dominated
solutions in Y 2 using the worst values of the mapped dominating subset of Y D

0 .
In practice an ordering which obtains (4) equal to zero is rare however, and it
still allows points to be placed on the same location when one dominates the
other. Our distance/angle-based visualisation guarantees (I), however as it rein-
terprets geometric dominance into angles it does not attempt to provide (II) or
(III). Our dominance-based visualisation guarantees both (I) and (II), and tries
to minimise (III) (subject to (II)), by minimising (10) and the corresponding
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Köppen & Yoshida Distance-based Dominance-based

G = 1

G = 10

G = 100

Fig. 7. Visualisation of SPEA2 4-objective problem search populations. G indicates
the generation. Dotted lines show dominance relations between all members of Y D.

objective functions for later shells. Note, other mappings to the plane previously
used in the EMO field (e.g. PCA, MDS, Neuroscale, RadViz) do not guarantee
any of the properties listed in the Table 1.
We now provide a further brief comparison of the two methods we have in-

troduced here, along with the method of [18], using the run time population of
an EMO algorithm. We visualise the combined archive and search population of
the popular SPEA2 algorithm [27] as it progresses through the optimisation of a
4-objective optimisation problem (the DTLZ2 test problem [6]). The algorithm
is run with an archive size of 100 and a population size of 100, and we visualise
the combined population of 200 solutions after 1, 10 and 100 generations in Fig.
7. A number of structural properties are immediately apparent from the runtime
results presented in Fig. 7. The two visualisations introduced here clearly show
the number of shells, and the proportion of points on these can be reasonably
gauged. It is interesting to note that the method for placing dominated indi-
viduals from [18] visually loses many dominated individuals in the population
entirely because it maps them onto the same location as a solution which domi-
nates them. On the other hand, [18] does push the elements of S2

0 (the projection
of the estimated Pareto front, F̂) which do not dominate any other set members
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to the two extremes of the shell, so it is clear which non-dominated members are
structurally unsupported. This is not so immediately determined from the other
two visualisations, however it can be coarsely judged by looking at the number
of S2

0 members which do not have lines attached to them.
All visualisation approaches show that the number of dominated points in

the search population is decreasing as the search progresses, indicating that the
search population is spreading out and advancing slowly (rather than making big
jumps forward – which would lead to a larger proportion of Y being dominated).
The distance- and dominance-based visualisations could be modified to use

more of the plotting space, by making the dominance errors (used in fixing point
locations) concerned with only relationships between adjacent shells – however
this would reduce the structural inference possible from the plots. For example,
it can be seen in the dominance-based visualisation that at G = 1, the members
of shell 4 (and all bar one member of shell 3) are exclusively dominated by
only a small number of members in shell 0, as the members of these shells are
gathered to the top left of the plot, and property (II) means that only members of
shell 0 below and to the left of them can dominate them. This kind of structural
information is not readily apparent in the method of [18], and completely lacking
from approaches which attempt to visualise F̂ alone.

9 Discussion

We have introduced two related novel visualisations of multi-dimensional sets of
points, which endeavour to preserve Pareto shell and dominance information. As
with all point mappings which reduce the dimensionality of the data, there is in-
evitably some loss in information, and assessing the quality of the visualisations
presented is by its nature subjective. However, we believe they are a useful con-
tribution to the group of methods in the field; because they exhibit some useful
properties (listed in Table 1), and have an advantage over some other approaches
in their speed of computation. Of the two, we have a slight preference for the
dominance-based approach. It guarantees two useful relationships in Y D are pre-
served in Y 2 and endeavours to translate the geometric properties practitioners
are already familiar with. That said, as long as the user is comfortable inferring
dominance by angle similarity (and/or links), then the angular/distance-based
approach is generally quicker to compute (as all the various candidate r of the
dominance method do not need to be computed and compared). The method
of Köppen and Yoshida has the advantage of being compact, however shell in-
formation is lost and it can become more cluttered than the other two. It is
also expensive to generate, as (4) is not quick to compute and the ordering of
solutions in S2

0 requires the use of an evolutionary optimiser. We note however
that spectral seriation could be used to obtain a permutation for S2

0 here also.
It is possible that ‘better’ point locations may be found given the fitting ob-

jectives of our two methods using evolutionary optimisation approaches, however
this would likely undermine their speed benefits if used to visualise search popu-
lations during a multi-objective optimisation. There are however further avenues
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of research that may prove useful. There may be useful information that can be
conveyed in the magnitude of the shell radii (as used in [18] to convey the range
and magnitude of SD

0 ). The shape of the shells being mapped to is also arbi-
trary; by allowing a greater freedom in location we may be able to convey more
information, and it may also improve the false positive rate if some solutions can
be closer to their dominating shell and therefore be erroneously dominated by
fewer solutions.
We also look forward to examining the use of these visualisation approaches in

interactive optimisation, for example using the structural information presented
to select population members for further examination and/or variation.

Acknowledgements and Resources. The authors would like to thank the
anonymous reviewers for their very useful and constructive comments.
Matlab code for the work presented here can be obtained from
http://emps.exeter.ac.uk/staff/jefields/.

References

1. Agrawal, G., Lewis, K., Chugh, K., Huang, C.-H., Parashar, S., Bloebaum, C.L.:
Intuitive Visualization of Pareto Frontier for Multi-Objective Optimization in n-
Dimensional Space. In: Proceedings of 10th AIAA/ISSMO Multidisciplinary Anal-
ysis and Optimization Conference (2004)

2. Atkins, J.E., Boman, E.G., Hendrikson, B.: A Spectral Algorithm for Seriation
and the Consecutive Ones Problem. SIAM Journal on Computing 28(1), 297–310
(1998)

3. Chung, F.R.K.: Spectral Graph Theory. American Mathematical Society (1997)

4. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley-
Interscience Series in Systems and Optimization. John Wiley & Sons, Chichester
(2001)

5. Deb, K., Agrawal, S., Pratab, A., Meyarivan, T.: A Fast Elitist Non-Dominated
Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. KanGAL
report 200001, Indian Institute of Technology, Kanpur, India (2000)

6. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Multi–Objective Opti-
mization Test Problems. In: Congress on Evolutionary Computation (CEC 2002),
vol. 1, pp. 825–830 (2002)

7. D’Ocagane, M.: Coordonnées parallles et axiales: Méthode de transformation
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Abstract. Recently, Evolutionary Trace Transform (ETT) has been de-
veloped to extract efficient features (called triple features) for invariant
image identification using multi-objective evolutionary algorithms. This
paper compares two methods of Evolutionary Trace Transform (method
I and II) evolved through similar objectives by minimizing the within-
class variance (Sw) and maximizing the between-class variance (Sb) of
image features. However, each solution on the Pareto front of method I
represents one triple features (i.e. 1D) to be combined with another solu-
tion to construct 2D feature space, whereas each solution on the Pareto
front of method II represents a complete pair of triple features (i.e. 2D).
Experimental results show that both methods are able to produce sta-
ble and consistent features. Moreover, method II has denser solutions
distributed in the convex region of the Pareto front than in method
I. Nevertheless, method II takes longer time to evolve than method I.
Although the Trace transforms are evolved offline on one set of low res-
olution (64 × 64) images, they can be applied to extract features from
various standard 256× 256 images.

Keywords: Evolutionary algorithms, multi-objective optimization,
Pareto optimality, Trace transform, image identification, invariant fea-
ture extraction.

1 Introduction

Identification of digital images is challenging as pictures of the same object will
look very different taken from different angles, distances and lighting conditions.
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Further, images acquired by cheap consumer cameras are usually noisy and dif-
fer by different camera specifications [1]. Therefore, a robust image identification
requires extracting image features independent of the way the objects are pre-
sented in the image.
Correspondingly, extracted features should be insensitive to variations in geo-

metric transformations such as rotation, scale and translation (RST). Addition-
ally, features derived from different samples of the same image class should be
similar. Conversely, features derived from samples of different image classes (see
Fig. 1) should considerably differ from each other.
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Fig. 1. Mapping of two image classes into a 2D invariant feature space

Trace transform (TT) [2] calculates functionals on image pixels along straight
lines projected in different orientations. For example, Fig. 2 depicts an image
and its Trace transform produced by using the first Trace functional in Table
1 (the integral of a function). Refer to Fig. 2, the transform matrix in Fig. 2c
is obtained by tracing the image (Fig. 2b) with straight lines characterized by
a length ρ and an angle θ, and calculating a functional called ”Trace” T over
parameter t (see Fig. 2a). Therefore, the transform matrix is a 2D image of ρ×θ
pixels (Fig. 2c). Different transforms can be obtained by using different Trace
functionals.
With the help of a second functional called ”Diametric” D evaluated along

columns of Trace matrix (i.e. along parameter ρ), a string of numbers is created

Table 1. List of some Trace functional

No. Functional Description

1
∫
f(t)dt Radon transform

2
∫ ∣∣∣f(t)′ ∣∣∣ dt Integral of Gradient

3
(∫ |f(t))|p dt)q p-Norm, p = 0.5, q = 1/p

4 max−min(|f(x)|) Maximum-minimum of the function
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Fig. 2. The Trace Transform

with a length of θ. Finally, a third functional called ”Circus” C is applied to
the final string of numbers (over parameter θ) to produce a scalar value ”real
number”. This number is termed a ”Triple” feature denoted by

∏
and it can be

used to form a unique identifier for the image [3].
To characterize an image, features derived by Trace transform are not neces-

sarily transparent to the human perception such as brightness or color. In fact,
thousand of features can be constructed using different Trace transform func-
tionals by using different combinations of these functionals. Therefore, one may
consider Trace transform as a mathematical tool to represent brain sub-conscious
which we can not usually identify [4].
Trace Transform has been successfully applied to many image processing tasks

such as image database retrieval [2], texture classification [4] and characters
recognition [5]. Evolutionary Trace Transform (ETT) [6] has recently been de-
veloped to construct efficient Trace transform triple features to represent an
image. The main idea is to find optimal combinations of the functionals together
with the number of projections in Trace transform to achieve fast and robust
feature extraction. It has been shown that evolutionary Trace transform is more
robust and efficient than the traditional Trace transform [6].
This paper compares two methods of Evolutionary Trace Transform, method

I and II, developed using multi-objective evolutionary optimization of Trace
transform to produce candidate features of digital images. The remainder of
the paper is organized as follows. Section 2 presents a brief overview of the
ETT. Both methods are given as two different evolutionary methods to evolve
the Trace transform. Section 3 depicts the experimental results for performance
evaluations. Finally, a conclusion is given in Section 4.

2 Evolutionary Trace Transform

A variety of Trace functionals can be employed in Trace transform to extract
features that may represent an image. However, robustness and computational
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speed are two important factors for efficient image analysis. Therefore, it is
crucial to design an algorithm to construct efficient features.
An attempt to use evolutionary algorithms in Trace transform was reported

by Liu and Wang [7] for face recognition. The authors have introduced a hybrid
Trace features from multiple rotation-based Trace functionals and a traditional
Genetic Algorithm (GA) to optimize a scalar variable associated with each trace
feature. In [8] a reinforcement learning algorithm was applied to the weighted
Trace transform (WTT) to find the optimal threshold in the WTT space to
minimize the within-class variance only. Recently, in [6], an Evolutionary Trace
Transform (ETT) is developed for invariant feature extraction. It has been shown
that ETT outperforms the traditional TT in extracting robust triple features
from images.
ETT employs a Pareto optimization method, the NSGA-II to search for op-

timal functional combinations that trade off between minimizing within-class
variance and maximizing between-class variance of triple features represent an
image. However, the extracted features are one-dimensional. If two-dimensional
features are to be extracted from images, then two pairs of functionals need
to be constructed. An alternative is to optimize Trace functionals by directly
extracting two-dimensional features. Therefore, in the following, we will discuss
these two approaches in greater details.

2.1 Method I

In this method, each solution in the Pareto-front represents a single triple fea-
ture. Then, two solutions from the final Pareto-front are randomly selected (de-

noted by
∏(I)

x and
∏(I)

y ) to form a 2D feature space. In the following, the main
components of method I are presented.

– Chromosome: Each chromosome in method I encodes 4 integer parameters
for each triple feature, namely, Trace T 1 , Diametric D1, Circus C1 and θ1.

– Population: The population size is initialized randomly with constraints on
the design variables. For example, there are 14 Trace functionals, then T 1
change from 0 to 13.

– Fitness : The fitness function is characterized by two objectives which are
set for minimization in the evolutionary algorithm. The two objectives are
defined in (1):

f1 = S
I
w (1a)

f2 = 1/(S
I
b + ε) (1b)

where ε is a small quantity to avoid division by zero. SI
w and SI

b are the
within-class variance and between-class variance defined in (2):
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SI
w =

K∑
k=1

Nk∑
j=1

(xjk − μxk)2 (2a)

SI
b =

K∑
k=1

(μxk − μx)2 (2b)

where

μxk =
1

Nk

Nk∑
j=1

xjk, μ
x =

1

K

K∑
k=1

μxk

and K: number of classes, Nk: number of samples in class k, μ
x
k: mean of

class k of x triple features, xjk: the j
th sample of class k of x triple features,

and μx: mean of all classes of x triple features.

2.2 Method II

Pareto-optimal solutions in method II are a set of optimal triple features that

describe an image by extracting a pair of triple features (denoted by
∏(II)

x and∏(II)
y ) instead of a single triple feature. That is, each Pareto-optimal solution

represents a complete 2D feature space. In the following, the main components
of method II are presented.

– Chromosome: Each chromosome in method II encodes 8 integer parameters
instead of 4 only in method I, namely, trace T 1, T 2 , diametric D1, D2, cir-
cus C1, C2 and θ1, θ2 for each triple feature.

– Population: The population size is fixed and similar to method I and initial-
ized randomly with constraints on all design variables. For example, there
are 14 Trace functionals, then T 1 and T 2 change from 0 to 13.

– Fitness : The fitness function in (3) is similar to method I where f1 and f2
are minimized in the evolutionary algorithm. However, the two objectives
SII
w and SII

b are determined based on a pair of triple features defined in (4).

f1 = S
II
w (3a)

f2 = 1/(S
II
b + ε) (3b)

where ε is same as in (1).

SII
w =

K∑
k=1

Nk∑
j=1

(xjk − μxk)2 + (yjk − μ
y
k)

2 (4a)

SII
b =

K∑
k=1

(μxk − μx)2 + (μ
y
k − μy)2 (4b)
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where

μxk =
1

Nk

Nk∑
j=1

xjk, μ
y
k =

1

Nk

Nk∑
j=1

yjk, μ
x =

1

K

K∑
k=1

μxk, μ
y =

1

K

K∑
k=1

μyk

and K: number of classes, Nk: number of samples in class k, μ
x
k: mean of

class k of x triple features, μyk: mean of class k of y triple features, xjk: the
jth sample of class k of x triple features, yjk: the j

th sample of class k of y
triple features, μx: mean of all classes of x triple features and μy: mean of
all classes of y triple features.

The following operations are similar for both methods:

– Selection: Selection operation is performed twice in the evolutionary loop.
The first selection is performed to select parents for mating. It has been
shown [9] that the tournament selection has better or equivalent conver-
gence and computational time complexity compared to any other selection
operators that available in the literature and, therefore, it is adopted in this
work. In a tournament selection, two solutions are chosen from the popu-
lation and a tournament is played, a good solution wins and placed in the
mating pool. This operation repeats and two other solutions are played. The
better solution wins and placed to fill the mating pool. Each solution will
participate twice in the tournament and better solutions will win twice, and
therefore two copies may exist in the population to replace the bad solutions.
The second selection occur after mating to produce new population for the
next generation. The elitist NSGA-II based selection [9] is adopted which
consists of four steps. First, parents and offsprings are merged in one pop-
ulation. Second, a non-dominated sorting (Pareto-front assignment) is per-
formed. Each non-dominated solution is assigned a Pareto-front rank number
1 (first non-dominated front), then the next non-dominated solutions in the
population are identified and assigned Pareto-front rank number 2 (second
non-dominated front). By repeating this procedure, a set of r Pareto-fronts
are generated. The third step involves sorting all solutions in an ascending
order according to the assigned Pareto-front rank number, the solutions that
have the same Pareto rank number are sorted in an decreasing order accord-
ing the the crowding distance, and a solution with larger (better) crowding
distance survives. The reader is referred to [9] for details about Crowding
Distance calculation. Finally, the top individuals that fit the population size
are selected and passed to the next generation.
The selection operation is performed on the combined population to gener-
ate new parents for the next generation. This preserves the good parents to
survive to the next generations.

– Recombination: Two parents are selected for mating by exchanging (cross-
ing over) a portion of information between parents in the mating pool. The
crossover performed in variable ways depending on the position of the allels
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to be exchanged, i.e. at single point (one-point crossover), two points (two-
points crossover) or at an allel level (uniform crossover). In this work we
adopt uniform crossover. Crossover operation occurs during the evolution at
crossover probability Pc.

– Mutation: The next operation during evolution is Mutation operation which
is performed to prevent the population from falling into a local optimum.
The mutation is performed by inverting the gene value in an individual at
mutation probability Pm. Some types of mutation operation includes Flip
bit, Uniform and Gaussian mutations. In this work we adopt the uniform
mutation, the value of the gene is changed between predefined upper and
lower limits.
It is not necessary that good solutions will be created through crossover and
mutation. However, only better solution will survive through the selection
operator [9]. At the end of the evolution, the final non-dominated solutions
are analyzed and used as feature extraction on unseen images.

3 Experiments on Method I and II

For robust image identification, triple features of an image should be very close
to triple features of the distorted version of the same image. On the other hand,
triple features of two different images should differ as much as possible.
In the experiment, a set of trace, diametric and circus functionals are used,

which consists of 14 trace functionals (T ), six diametric functionals (D) and six
circus functionals (C). Some of these functionals are listed in Table 1. Methods
I and II are run individually to search for the best combinations of the Trace
functionals for 200 generations. During the evolutionary stage, a set of five image
classes are used with a low resolution of dimensions 64× 64. Each class contains
four images: original image and three distorted versions: rotated, scaled and
translated (20 images in total). The original five images are displayed in the first
row in Fig. 3. The population size and number of generations in method I and
II are set to 150. There is no classifier training involved in this work. Table 2
depicts the parameters used in method I and II.
It should be mentioned that several independent runs of the two algorithms are

performed and almost the same Pareto-fronts are achieved and the hypervolumes
from different runs are almost the same. However, the final solutions may be
reached at earlier generations but it continue as set to 200 generations. This
conclude the randomness, yet, guided search of the evolutionary algorithms.
The experiments are performed on the same machine with Intel® Core™2Duo

3.1GHz processor with 3GB RAM using Microsoft Visual C++ compiler. The
optimization time using method II took about 62 hours for 200 generations
which is about a double the time in method I, which took about 29 hours. This
is expected due to the double length of chromosomes in method II that requires
running the Trace algorithm twice for each solution in the population. It is
worth mentioning that this is an offline optimization of Trace transform aimed
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at finding out the good combinations of Trace transform functionals that might
produce better triple features for image analysis in the online Trace algorithm
which is itself takes a few seconds to process an image. The Pareto fronts at
the final generation for both methods are depicted in Fig. 4. Undoubtedly, less
solutions from method I are distributed at the convex area compared to method
II which shows greater density in its Pareto front.
After 200 generations, there are nine solutions in total in method I. Each

solution on the Pareto front of method I represents one triple feature to be
combined with another solution to form a 2D feature space, whereas 19 solutions
in the Pareto front of method II, each solution is equivalent to a pair of triple
features which can form a 2D feature space directly. In method I, we construct
up to 36 different pairs from the nine solutions to be evaluated using (4) and
compared with solutions from method II. At this level, Fig. 5a shows the two
equivalent fronts from method I (36 solutions) and method II. Obviously, both
fronts are approximately identical, this can be concluded from the hypervolume
indicator in Fig. 5b, where as little as - 0.11% hypervolume increase in method
II is observed.
In the following, we investigate solutions on Pareto front of method I and

II for the both objectives i.e. the within-class variance Sw and the between-
class variance S−1

b . First, Fig. 6a depicts Sw for solutions from both methods.
A minimum (better) value can be seen from method II, whereas a maximum
value can be identified from method I. Second, a maximum value of S−1

b can be
identified from method II as shown in Fig. 6b. Generally, solutions have minimum
value in one objective are not necessary have a minimum in the second objective.
Additionally, one may also calculate the ratio of the two objectives as Sw/Sb and
are shown in Fig. 7. From the figure, a minimum value can be found in method I,
whereas a greater maximum of this ratio can be found from solutions in method
II. Keeping in mind, the 36 solutions in method I are thoroughly calculated by
all possible combinations

(
9
2

)
= 9!

2(9−2)! from the original nine solutions from

the final Pareto front. This may be an easy task as few (nine) solutions were
found in the final front of method I. However, it would have been a hard task
if there were more solutions in the final front. Consequently, one may choose
any two preferred solutions from the final front of method I to form a pair of
triple features for image analysis, whereas solutions from method II can be used
directly.

Table 2. Parameter Set-up for method I and II

Parameter Value

Population size Np 150
Mutation probability 0.125
Crossover probability 0.9
Number of generations 200

ε 10−5
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Next, we test the two methods on different images from fish database deformed
by random rotation, scale and translation. Figure 3 depicts 20 original images
(20 classes) used in the experiments. At this stage, each image has a standard
dimension 256×256 and is subject to rotation, scaling and translation (distorted
versions are omitted from the figure). Therefore, a total of 80 images are used
(i.e. 20 classes, 4 images in each class).
Recall that the images in rows 2-4 of Fig. 3 (and their distorted versions) were

not used in the evolutionary stage. Only the five images displayed in the first row
of the figure (and their distorted versions) with a low resolution of dimensions
64× 64 were used in the evolutionary stage of each method.
An example of features constructed from one solution picked up from each

method I and II is shown in Fig. 8a and 8b respectively. We scaled these features
to the interval [0,1] by dividing features by a constant number. Assuredly, both
figures show stable features and there is no overlap between any different classes.
Moreover, each class shows compact features for different deformations of images
belong to the same class.

Fig. 3. Fish database [2]. Each image subjected to a random RTS deformation to form
80 image in total.
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Fig. 4. Non-dominated solutions as Pareto fronts in the objective space for method I
and II after 200 generations
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4 Conclusion

Two methods of evolving the Trace transform (method I and II) for robust image
feature extraction are compared. In method I, one combination of functionals
are optimized to extract 1D features. If 2D features are needed, two sets of func-
tionals can be selected from the Pareto solutions to construct two 1D features.
In method II, the Trace transform is optimized to directly extract 2D features.
Therefore, each Pareto-optimal solution represents a pair of combinations of
functionals, which can be applied to extract 2D features. A multi-objective evo-
lutionary algorithm, NSGA-II, is employed to optimize the functionals in Trace
transform. Method I and II uses a small number of low resolution (64 × 64)
images for optimizing the functionals. Nevertheless, the optimized functionals
have shown to work effectively to extract features from images of a high res-
olution. This indicates that functionals optimized offline using an evolutionary
algorithm are able to extract features for robust identification of unseen im-
ages. The two methods are shown comparable results in terms of performance
while method I is faster to evolve than method II. A set of 80 images form the
fish database have been used to verify the effectiveness of method I and II. In
the future, we plan to test the methods on various larger databases, and classi-
fiers ensembles will be built based on the features extracted by ETT for image
identification.

Acknowledgements. The authors would like to thank the anonymous review-
ers for their insightful comments and suggestions that have significantly im-
proved the quality of this paper.
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Abstract. Instrument identification in polyphonic audio recordings is
a complex task which is beneficial for many music information retrieval
applications. Due to the strong spectro-temporal differences between the
sounds of existing instruments, different instrument-related features are
required for building individual classification models. In our work we ap-
ply a multi-objective evolutionary feature selection paradigm to a large
feature set minimizing both the classification error and the size of the
used feature set. We compare two different feature selection methods.
On the one hand we aim at building specific tradeoff feature sets which
work best for the identification of a particular instrument. On the other
hand we strive to design a generic feature set which on average performs
comparably for all instrument classification tasks. The experiments show
that the selected generic feature set approaches the performance of the
selected instrument-specific feature sets, while a feature set specifically
optimized for identifying a particular instrument yields degraded classi-
fication results if it is applied to other instruments.

Keywords: Polyphonic instrument recognition, multi-objective feature
selection.

1 Introduction

Instrument recognition in audio recordings is a basic task in music information
retrieval (MIR) as it further enables many different applications. For instance,
if it is known which instruments are frequently played in songs of certain gen-
res and substyles, the role of instrumentation in those music categories can be
described by corresponding classification models. Furthermore, the structuring
and organization of large song collections can be solved in an automatic way and
instrument-related features may provide interpretable and small feature sets for
supervised learning. Also, the transcription from audio to score or musical source
separation require the exact knowledge of the audio sources.
However, instrument identification remains one of the most challenging tasks

in MIR. On the one hand, a lot of work on the automatic identification of in-
struments for single playing notes has been succesfully carried out in the last
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decade and earlier (please refer to [9] for a list of publications). If on the other
hand several sources are playing at the same time, different harmonic and noise
components (the impact of the latter for the identification of single instrument
samples is investigated in [16]) may interfere with each other at the same frequen-
cies making it more difficult to extract the amplitude contribution of partials
which belong to different instruments. Also, the temporal evolution of frequency
distributions varies for different sources. Moreover, the models built for classify-
ing singular instrument samples are not suitable any more for the identification
of instruments in polyphonic recordings.
A common approach to deal with instrument recognition is to design the

features for categorizing specific instruments. To name just a few important re-
cent works on instrument identification in polyphonic audio, the explicit learning
from both attack and steady-state intervals in polyphonic recordings is discussed
in [22]. Characterization of envelope dynamics by Gaussian models was inves-
tigated in [6]. In [14] the robustness of audio features was measured by their
dependancy on the overlapping sound of different simultaneously played instru-
ments. In our previous study [21] we have successfully applied multi-objective
feature selection for instrument recognition in audio intervals (two tones playing
at the same time) and chords (three and four tones) based on a large up-to-date
feature set. Here the classification error and the subset size were minimized at
the same time.
However, it can be argued that it is also reasonable to search for generic

features which are suitable for training classification models for different in-
struments since the existing number of instruments and digital effects is nearly
unlimited. In this work we therefore extended the study from [21] with the target
to explicitely compare the performance of specific (best features for identification
of a concrete instrument) and generic (best compromise features for different in-
struments) feature sets. As testbed we concentrated on instrument recognition
from chords. It is a good compromise between the easier recognition of instru-
ments in monophonic recordings and the rather complex problem of instrument
detection in recordings with a larger number of playing instruments such as or-
chestra pieces. Another advantage of our data set is that the ground truth for
training the classification model is completely available providing exact learning
in contrast to songs where the exact times of instrument onsets and offsets are
not available (unless the exact score representation is present). In the following
sections, we describe the complete feature set, then introduce the multi-objective
feature selection approach and conclude with the discussion of the experimental
study on the recognition of four instrument groups in chords.

2 Audio Features

For each music tone a so-called attack-decay-sustain-release envelope describes
the progress of energy, timbre and frequency properties [17]: Attack phase is char-
acterized by increasing energy and instrument-dependent non-harmonic com-
ponents (e.g. a violin bow strike). Decay corresponds to the succeeding energy
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decrease and is followed by longer stable sustain phase where the harmonics (fun-
damental frequency which corresponds to perceived pitch and its whole number
multiple frequncies, or overtones) play the most important role. The last release
phase conforms to final energy decrease as the sound quiets down.
The features which are used throughout this study and which are fed into the

multi-objective feature selection stage can be grouped into three categories.
The first feature group consists of mel-frequency cepstral coefficients (MFCCs)

and linear prediction coefficients (LPCs) extracted from a larger frame of 1.3s
by segmentation into several 4096-sample blocks as introduced in [8]. The blocks
should describe the different properties of the starting sound event and the 1.3s
frames are positioned at the beginnings of attack phases previously estimated
by MIR Toolbox [15]. Also the complete spectral envelope amplitudes are saved
for the large frame. The overall number of these features is 353.
The second feature group consists of 265 commonly used and mostly short-

time based signal descriptors extracted from the time, phase, spectral and cep-
stral domains of a music signal which are jointly computed within the AMUSE
(Advanced Music Explorer) framework [19]. They can be divided into timbre
and energy features, harmony features as well as correlation features. Timbre
and energy features comprise e.g. the time domain zero-crossing rate, root mean
square, low energy, normalized energy of harmonic components, tristimulus, var-
ious spectral statistics such as the spectral centroid, irregularity, bandwidth,
skewness, kurtosis, crest factor, flatness measure, extent, flux and brightness,
the spectral slope and features extracted from spectral sub-bands which are
aggregated according to equivalent rectangular bandwidths. Harmony charac-
teristics encompass the fundamental frequency, inharmonicity, the key and its
clarity, different variants of chroma features (frequencies mapped to 12 pitch
classes of an octave), amplitudes of strongest spectral peaks, the tonal centroid
or the harmonic change detection function. Correlation features measure the rel-
ative periodicity and the sum of correlated components. For all these features
we estimate the ‘onset’ frame with the highest energy of chords and save the
features from the middle of the attack interval, the onset frame and the middle
of the release interval separately, so that the final number of feature dimension
for classification is 795.
The third feature group is based on cepstral coefficients derived from a third

octave constant-Q spectral representation which were proposed for music in-
strument identification [5]. In contrast to the commonly used discrete Fourier
transform the constant-Q transform [4] matches the frequencies of musical notes
and yields a spectral estimate with improved spectral resolution for music anal-
ysis while keeping the number of sub-bands comparatively low. Therefore, it can
be argued that cepstral coefficients obtained from a constant-Q spectrum are
better suited to describe timbral characteristics of music instruments. Further,
in order to account for temporal variations of musical timbre we propose to
compute a sliding modulation spectrum of the constant-Q cepstral coefficients
whose magnitude part is averaged over time. A low-rank approximation of the
temporally averaged modulation spectrum is then computed using a singular
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value decomposition, only retaining the first and second order singular values
and vectors which provide 102 features.

3 Multi-objective Feature Selection Framework

Feature selection (FS) is a meaningful process for classification in general and be-
comes essential if a very high number of available numerical data characteristics
exists but it is not clear which of them are relevant for the concrete categoriza-
tion task. For general discussion of FS and method classification please refer to
[12]. As we could verify in a previous study [3], even a classifier with integrated
feature pruning techniques such as decision tree C4.5 [18] may be overwhelmed
by a large amount of features and produce more misclassifications when using a
complete feature set. All of classifiers applied in [21] (C4.5, random forest, naive
Bayes and support vector machine with linear kernel) performed significantly
worse using a complete feature set without FS.
A formal definition of FS is given as [12]

θ∗ = argmax
θ

[I (Y ;Φ(X, θ))] , X ∈ Rd, (1)

where X is the complete feature set, θ are the indices of selected features, Y the
classification target, Φ (X, θ) the selected feature set and I the relevance function
for the reduced feature set, e.g. correct recognition rate or accuracy.
In [20] we discussed several groups of optimization criteria (metrics) which

make sense for MIR classification tasks. Since the optimization of one criterion
often leads to decreased performance with regard to others, the idea behind
the multi-objective optimization (MOO) is to optimize O selected metrics at
the same time and search for the best compromise solutions. In that case the
definition of FS is extended to:

θ∗ = argmax
θ

[I1 (Y ;Φ(X, θ)) , ..., IO (Y ;Φ(X, θ))] ,

X ∈ Rd.
(2)

For the instrument recognition study we selected two criteria to be minimized.
The first one is the mean squared error (MSE), which is defined in general as
follows:

E2 =
1

L

L∑
i=1

(ŝi − si)2 , where (3)

L is the number of chords, si ∈ [0; 1] is the labeled and ŝi ∈ [0; 1] is the predicted
instrument relationship. Since we build exactly one classification instance per
chord and identify binary if a certain instrument in a chord is existing, in that
case si, ŝi ∈ {0; 1}.
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The second is the percentage of selected features from the full set

fr =
|Φ (X, θ)|
|X | (4)

where | · | denotes the size of a feature set.
Whereas the reason for MSE minimization is rather obvious, small fr values

provide also several advantages. Smaller feature sets lead to less storage demands,
which is crucial for mobile devices with limited hardware resources. Furthermore,
smaller feature sets mean faster model training and classification. Also they may
help to avoid overfitting when the models are constructed from large feature sets
and consequently are over-optimized for a concrete data set.
Since both criteria are taken into account, some of the solutions are not di-

rectly comparable - consider e.g. a very small feature set with higher MSE and
another large feature set with a smaller classification error. A dominance rela-
tion is defined for two solutions x′ := Φ(X, θ′),x′′ := Φ(X, θ′′) as follows [7] (x′′

dominates x′):

x′ ≺ x′′ if ∀j ∈ {1, ..., O} : Ij(x′) ≤ Ij(x′′)
and ∃k ∈ {1, ..., O} : Ik(x′) < Ik(x′′) (5)

The ultimate target of multi-objective FS is to find an optimal Pareto front Pf

of trade-off solutions, which are not dominated by any other solution:

x ∈ Pf if �x
′ : x ≺ x′ (6)

In this work we apply the s-metric selection evolutionary multi-objective algo-
rithm (SMS-EMOA) [1] for minimizing both metrics Equ. (3) and Equ. (4). Here
the solutions are rated by areas (for two-objective scenarios) or hypercubes (for
three and more objectives) which are dominated by them as defined in Equ. (5).
The complete solution front can be evaluated by the dominated hypervolume
[23]:

S(x1, ...,xN ) =
⋃
i

vol(xi). (7)

Here vol(xi) corresponds to the hypercube between the solution xi and the
reference point which should be set to the worst possible solution responding to
all metrics (in our case [1;1] corresponding to the maximal feature set and the
maximal classification error). For the optimization of FS we use a binary vector
v of dimensionality |X | as a representation of the current feature subset: vi = 1
means, that the feature i is selected for classification and vi = 0 means, that
the feature is not used. The rough sketch of SMS-EMOA (please refer to [1] for
detailed explanation) is: at first a population of N solutions, or individuals is
created by random initialization of v. In each optimization step a new offspring
solution is created by mutation of a randomly selected parent individual flipping
several bits on or off. Here we use an asymmetric mutation from [13], so that
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the flip probability pm(i) favors the reduction of feature set flipping more bits
off than on:

pm(i) =
γ

|X | |vi − p01|, (8)

where the global probability of switching 0 to 1 p01 = 0.01 and the step size
γ = 32 are set with regard to previous experiments [3,21]. Then the new solution
is evaluated and integrated into the population. From the extended population
with the size N + 1, the solution with the smallest vol(xi) is sorted out and
the process continues with the next offspring generation. We do not apply a
recombination operator since three different crossovers used in [21] did not lead
to any significant improvement of performance.
It is worth to mention the validation of FS algorithms. In [10] it is discussed in

particular for feature selection in MIR, that it is very important to evaluate the
results using an independent test set avoiding the overfitting danger. Overfitting
means here, that some features, which are indeed noisy or irrelevant for a classi-
fication task are recognized as relevant for a concrete set of data instances (here
chords): With larger feature numbers the probability of such situation increases.
Therefore we distinguish between three independent data sets:

– The training set is used for building classification models from the audio
features.

– The optimization set is used for optimizing the feature selection by SMS-
EMOA. The models created from the training set are evaluated for classifi-
cation instances (chords) from the optimization set, and the both criterions
are minimized for this set during the optimization.

– The holdout set is used for the validation of the optimized feature sets and
is neither involved in the model training nor the feature selection: The op-
timization criterions are estimated for the models created from the training
set and optimized for the optimization set.

For an overview of different data mining evaluation techniques in general see
e.g. [2].

4 Experimental Study

The chord database with three or four simultaneously playing tones has been
originally created for our previous work [21] and enables currently four instru-
ment identification tasks: piano, guitar (acoustic and electric), wind (flute and
trumpet) and strings (violin, viola and cello). The original tones were taken from
the McGill1, RWC [11] and Iowa2 sample databases. 2000 chords were used for
training and optimization based on a 10-fold cross-validation principle: at each
fold the classification models were trained on 9/10 of the labeled chord feature

1 http://www.music.mcgill.ca/resources/mums/html
2 http://theremin.music.uiowa.edu
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set and evaluated on the remaining 1/10 during the optimization process. The
averaged MSE Equ. (3) across 10 folds was the 1st optimization criterion and fr
Equ. (4) the 2nd. Another 1000 chords were used for holdout validation.
Behind the four above mentioned classification tasks identifying the ‘specific’

features best matched for the identification of a concrete instrument, we run
experiments with the target to optimize the mean error across several differ-
ent classification tasks in search for ‘generic’ features suitable for classifying the
different instrument groups. In that case the formal definition of the 1st opti-
mization criterion should be extended to:

Ê2 =
1

C

C∑
k=1

⎛⎝ 1
F

F∑
j=1

(
1

L

L∑
i=1

(ŝi − si)2
)⎞⎠ . (9)

Here E2 is at first averaged across F = 10 folds of subsequent partitioning into
training and optimization sets. At the next level, it is averaged also across C = 4
different classification tasks.
Classification instances were created by extracting 1250 features described in

Sect. 2. A random forest classifier was used, since it provided the best com-
promise between speed and quality in [20,21]. The reasonable number of FS
optimization steps by SMS-EMOA was limited to 2000 and the population size
was set to 30 individuals.

5 Discussion of Results

5.1 Optimization Performance

Figure 1 shows the increase of the mean dominated hypervolume size during the
optimization process. At first, it can be clearly seen from the left subfigure, that
the tradeoff solutions become better with respect to both criteria during the
optimization. This process does not saturate at 2000 evaluations. The bottom
figure depicts the hypervolume increase also for the holdout set which was nei-
ther involved in the classification model building nor in the evolutionary feature
selection. Despite of a slightly worse performance on the holdout set compared to
the optimization set, it can be assumed that the classification models are gener-
alizable and perform well on an independent holdout set. Since the small increase
in the dominated hypervolume size can be stated also for the last evaluations,
the situation of over-optimization is avoided: in that case the performance on
the holdout set would decrease whilst the performance on the optimization set
would increase further.
Another observation is the different increase in mean hypervolume size for

the different problems. The attainment of the non-dominated solutions with
the higher dominated hypervolume occurs better for strings (dash-dotted line)
and piano (dashed line) recognition. The optimization experiments in which the
mean MSE across all classification tasks were optimized are marked by circles
and show a performance which - as expected - is in between the performances
of the instrument-specific feature sets.
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Fig. 1. Optimization set (top subfigure) and holdout set (bottom subfigure) dominated
hypervolumes for all classification tasks, averaged across 20 statistical runs

5.2 Analysis of Tradeoff Solutions

For Fig. 2, we have plotted at first the best non-dominated solutions for each of
the four classification tasks (specific features for a current task) after 20 statis-
tical repetitions and connected them by a thin line. E.g. in the upper subfigure
(guitar identification) the best solution responding to MSE has E2 = 0.142 and
requires 0.028% of the total features amount; the smallest feature set has a fea-
ture rate of fr = 0.004 (which corresponds to only 5 features) but E

2 = 0.358
is in that case very high. Even if such solutions may be hardly interesting for
decision maker, many other solutions can be taken into account: for example
the 4th left solution (fr = 0.008, E2 = 0.15) is only slightly worse responding
to E2 than the MSE-best solution but requires almost four times less features.
Such solutions can be interesting especially for classification on devices with
limited resources (less features need to be stored; classification is done faster),
and the models built from smaller feature sets may have reduced danger of be-
ing overfitted. Comparing the smallest classification errors for each task it can be
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Fig. 2. Non-dominated solutions from 20 statistical multi-objective optimization runs
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seen, that wind instrument identification is the most complex task, whereas the
recognition of piano and strings are more simple.
In the next step we took the non-dominated solutions obtained for a specific

instrument, i.e. a set of optimally selected instrument-specific features, and ap-
plied these for classifying other instrument groups for which these features are
not optimal. They are marked by non-connected squares, circles, diamonds and
triangles. One can clearly see, that feature subsets optimized for recognizing a
specific instrument are not suited well for the classification of other instruments.
In other words, instrument-specific FS makes sense, because each categorization
task requires its own features.
The last step was to integrate the generic non-dominated solutions where

Ê2 was used as optimization criterion (pentagrams). We can observe that the
performance of the generic feature set clearly approaches the non-dominated
instrument-specific solutions. Therefore, an important conclusion is that the
generic feature sets are well suited in many instrument classification tasks: for
strings one feature set (bottom subfigure, pentagram at [0.14;0.008]) seems to
perform even significantly better than strings-specific feature sets due to both
criterions - the best MSE solution of specific features [0.14;0.04] has the same
E2 but requires 5 times more features. The possible explanation that a generic
solution is here better than the own specific feature set is that the figures plot the
performance on the holdout chord set which was not involved into optimization
process. For piano and strings the generic features are also rather close to the
original specific feature sets; only for the guitar task the own specialist features
are significantly better than generic features.
Concerning the almost unlimited number of existing real and virtual instru-

ments, we argue that the search of generic features for the identification of dif-
ferent instrument groups is indeed reasonable. The advantages are that the op-
timization is not required for each instrument class and only a small feature set
must be stored. On the other side it is clear, that the adjusted FS optimization
for a concrete instrument identification will produce the smallest errors in almost
all cases. More studies are also required for more precise statements: we cannot
expect a good performance of our generic features for e.g. drums identification,
which differ too much from the instruments involved in our experiments. But we
can recommend to search for such generic features within some group of more
or less similar instruments: e.g. a ‘string generic feature set’ can be convenient
for classification of several instruments of this class which may sound slightly
different.
Figure 3 lists the features from the non-dominated specific and generic feature

sets (selected features are marked by dashes). For each task (separated by hori-
zontal lines), the upper solution (row of dashes) corresponds to the smallest E2

and largest fr. The following solutions (from up to down) require less and less
features but produce on the other side larger errors. Some of the features seem
to be very important for the corresponding task - e.g. the 1st envelope amplitude
for guitar (222) is in 8 of 9 non-dominated sets, and 1.3s-frame MFCC 2 (207)
is in 6 of 9 wind instrument tradeoff sets. However, many features not only from
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Fig. 3. Feature sets from the non-dominated fronts. The groups are separated by
dashed vertical lines from left to right: Blocked LPCs, blocked and overall MFCCs,
envelope amplitudes, timbre and energy features, harmony features, correlation fea-
tures and constant-Q coefficients.

the first MSE-best solution (with the highest feature number and smallest error)
belong to other tradeoff solutions. Therefore it could not be recommended just
to save only the features from these first solutions for each classification task if
the larger region of the non-dominated front should be considered.

6 Conclusions and Outlook

In general, three strategies can be applied for feature design in supervised classi-
fication of music instruments. One can develop category-specific features based
on extensive knowledge of the physical characteristics of a certain instrument.
This approach was beyond our scope, but may indeed help to create the best
suitable classification models. Since it requires a lot of human effort for each new
instrument to categorize, we concentrated rather on automatic feature selection
methods starting from a large feature number in search for instrument-specific
features, which are well suited for the current task. The last approach yields
a generic feature set which omits the FS optimization rerun for each task and
which can be used for the identification of several different instruments. As the
results have shown, the last two methods provide reasonable classification qual-
ity for polyphonic mixtures. Further, the generic features are relatively close in
their performance to the best specific features. However one must keep in mind
that the performance of such generic sets may suffer with the increasing number
of different instruments - for that case a possible solution is to detect a limited
number of ‘representing’ classification tasks.
The optimization of both criteria - classification error and feature subset size -

enabled the search for several tradeoff solutions from which one or more can be
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selected due to concrete application situation and user preferences. One can
then select the proper balance between as small error as possible against small
feature sets, faster classification and less danger of overfitting the models towards
a certain data set.
A part of our current research is to integrate the instrument classification

models as high-level features for prediction of music genres and styles. In future
works, we are going to extend the number of instruments, instrument groups
or certain playing styles (e.g. open or fretted strings) searching for different
specific and generic features. Another important direction is to improve the
models for more robust classification by increasing the number of simultaneously
playing sources or by conducting experiments with strongly varying loudness of
instruments.

Acknowledgments. This work was partly supported by Klaus Tschira
Foundation.
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Abstract. Tool selection for roughing components is a complex problem. At-
tempts to automate the process are further complicated by computationally ex-
pensive evaluations. In previous work we assessed the performance of several 
single-objective metaheuristic algorithms on the tool selection problem in rough 
machining and found them to successfully return optimal solutions using a low 
number of evaluations, on simple components. However, experimenting on a 
more complex component proved less effective. Here we show how search suc-
cess can be improved by multi-objectivizing the problem through constraint re-
laxation. Operating under strict evaluation budgets, a multiobjective algorithm 
(NSGA-II) is shown to perform better than single-objective techniques. Further 
improvements are gained by the use of guided search. A novel method for guid-
ance, “Guided Elitism”, is introduced and compared to the Reference Point me-
thod. In addition, we also present a modified version of NSGA-II that promotes 
more diversity and better performance with small population sizes. 

Keywords: NSGA-II, Guided Elitism, Preferential Search, Micro GA, Tool Se-
lection, Evolutionary Multiobjective Optimization, Evolutionary Multicriterion 
Optimization, Roughing, CAM. 

1 Introduction 

The tool selection problem in Computer Aided Manufacturing (CAM) involves find-
ing the best tool or sequence of tools that will manufacture a component whilst satis-
fying a number of objectives. Common objectives include manufacturing time, sur-
face finish and total cost. The majority of previous attempts to solve this problem use 
single objective search methods (e.g. [1,3,8,14,15,18]). In these cases, objectives are 
weighted and combined into a single aggregate function, or punishment factors are 
added to ensure that solutions with objective values falling outside certain predefined 
regions are filtered out. In previous work [4,5], we used a single objective approach 
that was shown to work well on a relatively simple component. However, in more 
recent experiments we found that it was difficult for the algorithms to find optimum 
solutions for a part with a more complicated structure.  

Here, we investigate multi-objectivization through constraint relaxation as a way of 
escaping local optima and increasing search success. A feature of the tool selection 
problem is that solutions are evaluated using a computationally expensive simulator. 
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While this provides solutions that are much more industrially relevant than other ap-
proaches, the number of fitness function evaluations used becomes an issue of par-
ticular importance. Recognizing this challenge, all of the algorithms tested below 
have their performance analyzed when the number of fitness evaluations are restricted 
to 150, 250, 350 and 500. 

One of the features of multiobjective search is to provide the decision maker with a 
set of solutions. However, in our case we are still looking to find a single solution, the 
one that is globally optimal in the single objective approach. Algorithms that imple-
ment preference guidance are evaluated to see if this improves their ability to find this 
specific solution. NSGA-II [6] is used as the base level multiobjective search tech-
nique and preference guidance is applied using the reference point extension [7] and 
an alternative novel method termed “Guided Elitism”. A correction to the diversity 
protection function in NSGA-II, which under certain conditions is shown to prevent 
diversity in small populations, is also presented and compared to the other techniques. 

2 The Tool Selection Problem in Rough Machining 

A milling machine is used to cut solid materials into a desired shape. The first stage of 
this process is roughing (or rough machining) which attempts to quickly cut a solid 
material until it closely resembles a predefined shape. 

This paper concentrates on the tool selection problem for roughing. We attempt to 
find the sequence of tools that will cut a solid material so that it resembles a specified 
component to within a predefined surface tolerance, in the shortest amount of time. 

Many researchers have tackled the tool selection problem, using a variety of ap-
proaches [1,3,8,14,15,18]. These have mainly restricted machining to use only flat 
end mill cutters, which means that solutions may not be truly relevant to industry. 
Many also do not take tool paths and their related cutting speeds into account (e.g. 
[14,15]), an aspect that leads to the complex search landscape present in real world 
applications of the problem. Existing models, such as those found in [1,14], have also 
made assumptions that can mean that the optimal solution cannot be found when us-
ing multiple cutters types [4]. 

A single objective metaheuristic approach was introduced by the authors in [5]. 
The problems described above were avoided by evaluating solutions using an indu-
strially relevant simulator and applying fewer restrictions on tool sequences. In this 
work (as described in section 3 below) we found a component that creates a highly 
epistatic and difficult to traverse search space, which meant that the metaheuristic 
algorithms used regularly got stuck at suboptimal solutions. 

The main motivation for the multiobjective approach proposed in this paper is to 
improve the search success for this difficult component. There has not been a great 
deal of research into applying multiobjective Evolutionary Algorithms to the tool 
selection problem. A notable exception is found in [13], which uses a combination of 
a micro GA and SPEA2 to calculate a Pareto front formed of three objectives – time, 
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surface tolerance, and surface uniformity. The goal of the search in [13] is to find the 
set of single tools, with associated cutting parameters, that are Pareto optimal with 
respect to the three objectives. In this paper, the problem is expanded to allow a se-
quence of tools but machining parameters are not optimized. 

3 Multi-objectivization 

Multi-objectivization comprises of transforming a single objective problem into one 
with two or more objective functions. This is achieved in three main ways. The first 
technique uses helper objectives, for example in [16]. A second and very common 
method is decomposition [12]. The final method, and the one used in this paper, is 
constraint relaxation. Multi-objectivization has been shown to improve search success 
by creating a more efficient exploration of the search landscape [12]. 

Multi-objectivization was used in this work for two reasons, to allow for a better 
exploration of a highly epistatic and rugged search landscape and to remove the prob-
lem of dealing with constraints. A component was found that created a search space 
that prevented the algorithms in [4,5] from reliably finding the optimum solution.  
Fig. 1 shows the fitness of the final solution returned by a Steepest Ascent Hill 
Climbing algorithm [17], when using each unique feasible solution as a different start-
ing position for the component used in [4] and the component used here. It is clear 
that the second part has a tougher search space, with many more local optima and far 
fewer routes to the optimum. The motivation for the work in this paper was to inves-
tigate whether a multi-objectivization approach to the tool selection problem could 
achieve more successful search on this difficult part. 

The single objective used by the algorithms in the authors’ previous work [4], is: 

       (1) 

where  is a punishment factor determined by the maximum distance of excess stock, 
. If   1 , then   0. If  1  1.5  then   . Otherwise if   1.5  then   2 .  is a user defined constant. In [4],  was set equal to the 

time taken by the smallest single tool in the tool library. Punishment factors are used 
to keep unfeasible solutions within the population as they may have properties that 
help in finding good feasible solutions. However, they can severely distort the search 
landscape. A small change in genotype can have a large change in phenotype and 
neighbors in parameter space are distant in objective space. Another issue is raised by 
how to choose a good value for . It becomes another parameter that must be chosen 
in advance, and one that is difficult to set without prior knowledge of the search 
space. To get around these issues,  was separated into two objective functions: 

      (2) 

       (3) 
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Fig. 1. Pseudo-color plots (created using the imagesc() function in Matlab) showing the fitness 
of the best solution found using Steepest Ascent Hill Climbing from every starting position, for 
the component used in [4,5] (left) and the component used here (right). The ordering of solu-
tions was based on the index of the run and so structure in the images should be ignored. Black 
shows the optimum solution was found, and lighter shades show solutions with worse fitness. 
The left plot shows that the majority of solutions found are optimal. The right plot shows many 
different solutions are found, with few being optimal, suggesting that the search space for this 
component is more complex. 

4 Experimental Setup 

4.1 Test Case 

The task in this experiment was to find a sequence of 5 or fewer tools that, in the 
shortest amount of time, could machine a component so that the maximum vertical 
distance of material (excess stock) that deviates from the desired final shape in any 
one place is less than 1mm. Tools were chosen from a library of 18, consisting of 6 
end mill, 6 ball nosed and 6 toroidal type cutters. The component used is shown in 
Fig. 2(a). The interaction between variable length sequences of different tool types, 
with different cutting speeds makes this a difficult combinatorial problem. 

4.2 Evaluations 

Tool sequences were evaluated using Vero Software’s Machining Strategist CAM 
software, which gave a full tool path for each tool and a 3d representation of the final 
surface of the machined part. Evaluations could take between 10 seconds and 10 mi-
nutes on an Intel Core i7 @ 2.7ghz depending on the length of the tool sequences and 
the size of the tool paths. Caching (only evaluating individual solutions once in an 
independent search run) considerably speeds this up but it is clear that the evaluation 
function is expensive. Consequently, an important part of the experiment was testing 
how algorithms worked with a budget of evaluations. Their performance was tested 
under forced limits of 150, 250, 350 and 500 evaluations. 
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Fig. 2. (a) The part used for the experiments and (b) The Pareto front for this part. The x-axis 
shows total manufacturing time in minutes and the y-axis shows excess stock in mm. The solu-
tion that is optimal in the single objective formulation of the problem, and considered to be the 
optimum is marked with a *. The dotted line separates solutions under 1mm. The two reference 
points used in the R-NSGA-II algorithm are marked with a diamond (RP1) and a square (RP2). 

4.3 Population Sizes, Diversity Protection and Preferential Search 

The algorithms were tested with different population sizes (and in the case of Random 
Restart Stochastic Hill Climbing, different allowed numbers of evaluations within a 
restart), to see how they performed under the different evaluation limits. An intuition 
was that smaller population sizes would converge quicker, which could make them 
more successful under the lower limits. However, the algorithms tested can only re-
turn as many solutions as their population size. Fig. 2(b) shows the Pareto front for 
the part used in the experiments. It contains 16 solutions. As we have no constraints 
on the search, there are solutions on the Pareto front that we are not interested in. To 
overcome this problem preferential strategies were used to guide the search towards 
the region that we are interested in, close to the * in Fig. 2(b). Another method used 
to improve search is an amendment to the crowding distance assignment in NSGA-II, 
which should create more diversity when used with smaller population sizes. 

4.4 Algorithms 

Three main algorithms were tested on the task described above. These are the single 
objective Genetic Algorithm (GA) [9], Random Restart Stochastic Hill Climbing 
(RRSHC) [10], and Non Dominated Sorting Genetic Algorithm II (NSGA-II) [6]. 
Two variations of NSGA-II were tested that included preferences in the search. These 
are the established Reference Point NSGA-II (RP) [7] and a novel method that will be 
referred to as the Guided Elitism NSGA-II (GE). In addition, the crowding distance 
assignment in NSGA-II has been modified to prevent certain duplicate solutions being 
given an infinitely high diversity measure. Algorithms that use this will be denoted 
with a *, e.g. NSGA-II*. All of the algorithms used the same methods for representa-
tion (a string holding 5 elements, each indicating either a specific tool or a blank, 

(a) (b) 
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ordered from left to right), gradual mutation and recombination (this is not present in 
RRSHC). The operators and representation scheme are described in full in [4,5]. 

Single Objective Genetic Algorithm. A standard implementation of a generational 
GA was tested. The GA used mutation and recombination, as well as Roulette Wheel 
Selection and elitism [9]. A more complete description of the algorithm used here is 
given in [4,5]. Many permutations were tested for the mutation and crossover rates, 
over 100 trials and they were set to 0.4 and 0.7 respectively. The search was stopped 
when the evaluation limit was reached. 

Random Restart Stochastic Hill Climbing. RRSHC is a single objective search 
algorithm that executes a Stochastic Hill Climbing (HC) run, restarting from multiple 
starting positions when certain stopping conditions are met [10]. A more complete 
description of the algorithm used in this paper can be found in [4,5]. A new HC run 
was started when the number of evaluations in a run reached a certain limit, with 
many different values being tested in the experiments. The search ended when the 
total evaluations reached a predefined limit. 

Non Dominated Sorting Genetic Algorithm II. NSGA-II is an elitist multiobjective 
algorithm [6]. The algorithm creates an initial population in the same way as a GA but 
ranks each member using Pareto dominance [11] and crowding distance, which is a 
measure of diversity. At each generation, a new population is created using binary 
tournament selection. The new population is added to the old population, and then re-
ranked and sorted. The top members are kept and used in the next generation. Muta-
tion and recombination are used as in the GA. Many different permutations were 
tested for the mutation and crossover rates over 100 runs each, finding the best values 
to be 0.6 and 0.05 respectively. Pseudo-code for NSGA-II can be written as: 

 
Algorithm 1. Pseudo-Code for NSGA-II 

0: create a random population, p 
1: while evaluations < budget, do 
2:  while p’ < pop_size, do 
3:   parents = binary_tournament_selection(p) 
4:   create new offspring through mutation and recombination 
5:   add offspring to p’ 
6:  end while 
7:  p = p + p’ 
8:  assign a Pareto ranking to each member of the population 
9:  assign a crowding distance value to each member of the population 
10:  sort the population using Pareto ranking and then crowding distance 
11:  while new_population < pop_size, do 
12:   remove top ranked members of p and add to new_population 
13:  end while 
14:  p = new_population 
15: end while
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Reference Point NSGA-II. R-NSGA-II is a method used for providing preferences in 
multiobjective search. The decision maker (DM) sets a point in objective space and 
solutions should be returned that are close to this region, therefore giving the DM a 
set of solutions more relevant to their search goal. The algorithm modifies the crowd-
ing distance assignment in NSGA-II, so that solutions are ranked based on how far 
away they are from their closest reference point, rather than their distance from each 
other. In the original NSGA-II, for each Pareto front, pseudo-code for crowding dis-
tance assignment can be written as: 

 
Algorithm 2. Pseudo-Code for the crowding distance assignment in NSGA-II 

0: initialize the crowding distance, cd, to 0 for each solution 
1: for each objective, do 
2:  normalize the objective 
3:  sort the solutions in the Pareto front according to their value for this  
4:  set cd for the first and last solutions to infinity 
5:  for solutions from solutions[start + 1] to solutions[end – 1], do 
6:   subtract the objective value to the left of the solution from the 
7:  end for 
8: end for 

 
The crowding distance assignment in RP changes this to: 
 

Algorithm 3. Pseudo-Code for the crowding distance assignment in RP 
0: initialize the crowding distance, cd, to 0 for each solution  
1: for each solution, do 
2:  set the solution’s crowding distance to the normalized Euclidian distance 
3: end for 

 
In this way, solutions with the same Pareto ranking are treated more favorably if they 
are closer to the DM defined reference point. The choice of reference point is impor-
tant, and in this work two different reference points are compared, referred to in the 
text and figures as RP1 and RP2. It should be noted that the reference point used here 
should not be confused with the reference point used to calculate hypervolumes in 
other multiobjective optimization algorithms. 

Modification to NSGA-II’s Crowding Distance Assignment. In the Crowding Dis-
tance Assignment method seen above, for each objective the highest and lowest solu-
tions have a crowding distance score (CD) set to infinity. For these solutions, the 
crowding distance will remain infinite no matter what their other objective values are. 
In the original algorithm there is no explicit sorting between duplicate solutions, 
which we consider to be solutions with identical objective values. This can lead to a 
case where non-dominated duplicate solutions that score best in one objective and 
worst in another can both have their crowding distance set to infinity, meaning that 
are guaranteed to remain in the population. This is seen in an example run of NSGA-
II used with a population of 6 in Fig. 3. Solutions 0 and 1 are duplicates, as are  
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Fig. 3. Tables showing in grey shading which members of the population, marked by their id, 
are set to infinity when using NSGA-II’s crowding distance assignment 

4 and 5. This gives 4 unique solutions out of the six members of the population. As no 
explicit method is specified for sorting, duplicate solutions can be given an arbitrary 
ordering amongst themselves. To correct this, we propose an additional procedure that 
ensures that only one of the duplicate solutions is given an infinite crowding distance. 
For example, in fig. 3 where solutions 0, 1, 4 and 5 would be given infinite crowding 
distance normally, our procedure assigns this value only to solutions 0 and 5. 

Guided Elitism Applied to NSGA-II. The Reference Point method applies DM pre-
ferences in the selection mechanism, both in binary tournaments and in sorting new 
populations. Pareto dominance takes precedence over the DM’s preferences. One 
problem with RP is that an extra parameter needs to be set – the reference point. 
Without a full understanding of the search space this can be difficult to set. Also, 
changing points can significantly affect search success, from the DM’ perspective. 

In this work, we have made a single objective problem multiobjective by treating 
our constraint, the amount of excess material, as its own objective. By relaxing con-
straints it means that the NSGA-II may return some undesirable but Pareto optimal 
solutions, e.g. those with large amounts of excess stock but short machining times. 
The evaluation function in the single objective version, described in section 3 above, 
puts constraints on these undesirable solutions but made it difficult to traverse the 
search space. As an alternative to the Reference Point method, a novel strategy was 
devised to guide search using the original evaluation function, combining the advan-
tages of the single and multiobjective techniques. This is introduced at the elitism 
stage. At the point in NSGA-II where it creates a new population by merging the pre-
vious generation with a population of new children, in our version we sort the popula-
tion according to the single objective evaluation function. The best  members are 
removed from this temporary population and added into the population of the next 
generation. Solutions are then added to this new population using the normal NSGA-
II methods. The value of y is set using: 

     
 (4) 

We refer to this method as “Guided Elitism”. Pseudo-code for this stage in NSGA-II 
can be expressed as: 

Id  
0 1951.4 0.4 
1 1951.4 0.4 
2 641.7 1.5 
3 1395.1 1.3 
4 403.7 3.2 
5 403.7 3.2 

Id 
4 403.7 
5 403.7 
2 641.7 
3 1395.1 
0 1951.4 
1 1951.4 

Id  
0 0.4 
1 0.4 
3 1.3 
2 1.5 
4 3.2 
5 3.2 

Unsorted Population Sorted by  Sorted by  
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Algorithm 4. Pseudo-Code for Guided Elitism applied to NSGA-II 
0: append the newly generated child population to the old population, p 
1: initialize new_population as an empty list 
2: sort p using the single objective evaluation function 
3: while size(new_population) < y, do 
4:  remove top ranked members from p and add to new_population 
5: Pareto rank the modified population, p 
6: assign crowding distances to the modified population, p
7: re-sort p according to Pareto rank and crowding distance 
8: while new_population < pop_size, do 
9:  remove top ranked members of p and add to new_population 
10: end while

4.5 Performance Assessment 

The algorithms were tested on the task described above in section 4.1. Due to the 
stochastic nature of these search techniques, 1000 independent executions were per-
formed, for each population size (or restart evaluation limit) and function evaluation 
budget, on a cached version of the search space. RRSHC was tested with 16 different 
restart evaluation limits, 10 – 160 evaluations in an independent run, in increments of 
10. The other algorithms were tested with 16 different population sizes from 5 – 15 in 
increments of 1 and additionally 20, 25, 30 and 40. These population sizes were cho-
sen based on the tight evaluations budgets. The algorithms were judged on how many 
times they were able to find the solution, which is marked with a * in Fig. 2(b). It 
should be noted that while in normal multiobjective optimization the goal is to find a 
set that finds a good approximation of the Pareto optimal front, here we are applying 
multiobjective techniques to find the solution that is optimal under the single objec-
tive formula, which we refer to as the optimum throughout the rest of the paper. 

5 Results 

5.1 Single Objective Algorithms 

The boxplot in Fig. 4 shows the number of times that the optimum solution was 
found, from each of the 16 configurations that the algorithms were tested with. Look-
ing firstly at the single objective algorithms, it is clear that they compare favorably at 
the 150 evaluations limit (which we will notate as 150-EL) but are greatly outper-
formed at higher evaluation levels. In terms of the scores from the best configurations, 
seen in the bar chart in Fig. 5, and the median score from all the configurations, the 
GA is more successful than RRSHC until 350-EL where RRSHC narrowly wins. At 
500-EL, a large gap emerges between the two algorithms. In the best configurations, 
RRSHC finds the optimum 540 times compared to 413 by the GA. There is only a 
small improvement in the GA’s search success when moving from 350-EL to 500-EL, 
which implies that the algorithm has had enough time to converge but struggles with 
this search space. 



 Multi-objectivization of the Tool Selection Problem on a Budget of Evaluations 609 

 

Fig. 4. Box plots showing the median radius of catchment areas for all 16 configurations of the 
8 algorithms (box: 25th and 75th percentile; central line: median; whiskers: extent of the data; 
crosses: outliers, defined as points that are beyond the quartiles by more than 1.5 times the 
inter-quartile range). The y-axis displays the number of times that the optimum solution was 
found out of 1000 runs for each algorithm. 

 

Fig. 5. Bar charts showing on the y-axis the number of optimum solutions found by the best 
configuration of the algorithm labeled on the x-axis 

From the pseudo-color plots in Fig. 6, we can see that both of the single objective 
algorithms have a lot less variability in terms of the different configurations compared 
to their multiobjective compatriots. Within each evaluation band there is much less 
variation in shade. This means that there is a lot less reliance on choosing optimal 
parameters, which can be difficult when there is no great advance knowledge of the 
search space. 
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Fig. 6. Pseudo-color plots showing for each algorithm, the number of optimum solutions found 
for each population size (or number of evaluations in a run for RRSHC). Population size is on 
the y-axis and the evaluations limit is on the x-axis. Black shows low search success, while 
white shows high success. 

 

Fig. 7. Pseudo-color plots showing on the left, the number of optimum solutions found for each 
population size by RP2 subtracted by RP1 (top) and GE (bottom). Population size is on the y-axis 
and the evaluations limit is on the x-axis. White shows that RP2 performs much better, while 
black represents a much worse performance. On the right, the plots show for each population size 
if RP2 is better (white), worse (black), or the same (grey) as RP1 (top) or GE (bottom). 
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5.2 Multiobjective Algorithms 

Moving on to the multiobjective algorithms, we will look at NSGA-II first. Concen-
trating on the best configurations, the algorithm achieves a good rate of optimal solu-
tions compared to the single objective techniques. Whilst comparable to the GA at 
150-EL, success increases greatly at higher evaluations, achieving 56%, 87% and 
100% at 250-EL, 350-EL and 500-EL respectively. However, as with the other mul-
tiobjective algorithms, there is great variability between the success rates of different 
population sizes. As can be seen in the dark patches in the heat map in Fig. 6, NSGA-
II performs particularly badly with small populations and cannot find the optimum a 
single time with a population of 5, regardless of the number of evaluations used. This 
is likely to be due to the crowding distance problem described above. The modified 
version, NSGA-II*, improves on the worst scores of NSGA-II and achieves much 
better median and upper quartile scores, with comparable best scores, at all evaluation 
levels. Looking at Fig. 6, NSGA-II* has lighter regions in the smaller population 
sizes, and less variability, which is also reflected in the boxplot. 

Incorporating “Guided Elitism” (GE) into the NSGA-II has created significant im-
provements. Median and 3rd quartile scores are higher than NSGA-II and NSGA-II* 
for all evaluation limits and the best configuration can reach the optimum almost 97% 
of the time with 350 evaluations compared to 87% for NSGA-II and 39% for the GA. 
The color plot and boxplot shows that there is a lot of variability created by the differ-
ent population sizes but less so than with NSGA-II. Similarly GE also performs badly 
with very small populations. Applying the sorting modification in GE* improves the 
performance on the smallest populations, with much lighter bands on the color plot. 
GE* performs better at 150-EL, which is likely to be due to working better with these 
populations. However, unlike with NSGA-II*, GE* is much less successful than GE 
at 150-EL, 250-EL and 500-EL in terms of best, median and 3rd quartile scores. 

Two reference points were tested for the R-NSGA-II, which are labeled in the fig-
ures as RP1 and RP2. The optimum solution takes 1153 minutes, with 0.7mm of 
excess stock. RP1 uses a reference point very close to this with 1000 minutes and 
0.8mm of excess stock. RP2 uses an unreachable point, 500 minutes and 0.95mm 
excess stock. Our intuition was that RP1 would outperform RP2 because it is closer to 
the optimum solution. However, the results went against this. RP2 performs far better 
than RP1 in terms of best, median and 3rd quartile scores. The best configuration of 
RP2 beats GE for every evaluation limit. This includes very high scores of 82% and 
99% at 250-EL and 350-EL. The variability between population sizes is similar to GE 
and GE* and much improved on NSGA-II*. RP2 deals well with smaller population 
sizes, although it does not perform well with a population size of 5. 

RP1 performs worse than all the other multiobjective algorithms, apart from at the 
lowest evaluation limit, where it is beaten only by RP2. This is especially the case at 
250-El and 350-EL. The only advantage to RP1 seems to be its consistently good 
performance with smaller populations. This is seen in the color plot and also in its 
worst scores, which are often better than the other multiobjective algorithms. In Fig. 
7, two color plots are shown, where the number of optimums found by RP1 are sub-
tracted from RP2. If we look at the top right of Fig. 7, light areas show populations 
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where RP2 outperforms RP1. This occurs almost everywhere apart from with a popu-
lation of 5, where RP2 performs badly and with a population of 40 at 150 and 250-EL. 

A similar analysis is shown in the bottom half of Fig. 7, where GE’s scores are 
subtracted from RP2. In the bottom right of Fig. 7, white patches signify RP2 per-
forming better, black patches where GE dominates and grey patches where they are 
equal. It appears that GE outperforms RP2 in more places. RP2 performs better than 
GE with the smallest population sizes, which is likely to be due to the sorting problem 
in NSGA-II. RP uses a different method for crowding distance, tied to the reference 
point, so it does not suffer from this problem. The bottom left of Fig. 7 shows how 
much better the algorithm performs. There are few extremely dark or light areas, 
which means that generally the algorithms do not greatly outperform each other. 

6 Discussion and Future Work 

The results in section 5 show that multi-objectivization is very successful in improv-
ing search success rates on the difficult search space used in this work. This is par-
ticularly the case for higher evaluation limits and success is still rather small at the 
150 evaluations level, with the best algorithms finding the optimum solution around 
30% of the time. With a limit of 350 evaluations, the best results showed a success 
rate above 90% and at 500 evaluations all of the multiobjective algorithms could find 
the optimum solution at least 99% of the time. 

NSGA-II search performed admirably on this problem but the modifications intro-
duced in this paper, “Guided Elitism” and the sorting correction achieved an even 
better success rate. The modified algorithm NSGA-II* could be applied to any exist-
ing problems that NSGA-II has been used on, so it would be interesting to evaluate it 
on standard benchmarks. This is likely to make more of a difference when using small 
evaluation budgets. The color plots in Fig. 6 show for this problem, smaller popula-
tion sizes are more effective when using tight evaluation limits.  

GE performed very well on this problem and was considerably more successful 
than NSGA-II. This shows that, in this problem instance, it is a very good method for 
providing search preferences. It is likely that improvements gained over NSGA-II are 
created by increasing the survival rate of solutions that may only weakly dominate or 
be indifferent to others but contain useful properties. More analysis of the algorithm is 
needed to see how it performs in a more general setting. 

The difference in success between the two reference points in RP1 and RP2 is a 
cause for concern. The worse method uses a reference point that is very close to the 
optimum but the algorithm seems to converge on suboptimal regions of search space. 
However, RP2 is arguably the most successful search algorithm, so the reference 
point method is an important tool for this type of problem. We would like to further 
explore the effect that different reference points have on search success and discover 
what causes the surprising difference in performance between the two used here, 
which we believe is likely to be due to RP1 guiding search towards regions of the 
search space which contain difficult routes to the optimum solution. 
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For this problem, it could be argued that “Guided Elitism” is a better strategy to 
use than the reference point method because it has fewer parameters and could be 
more practical when there is not enough time available to tune parameters. It seems to 
be particularly well suited for multi-objectivization problems, where a single objec-
tive evaluation function already exists. A future area of research we would like to 
explore is testing “Guided Elitism” on other problem domains. 

Population size had a large effect on all of the multiobjective algorithms, which is 
very noticeable in the pseudo-color plots in Fig. 6. More work is needed on setting 
guidelines or creating a function to recommend population sizes to use with a given 
evaluation limit. 

7 Conclusions 

To the best of the authors’ knowledge this paper presents the first use of multiobjec-
tive algorithms to optimize the selection and sequence of multiple tools in rough ma-
chining. The results show that this approach is successful. The difference between 
single and multi objective search becomes particularly pronounced with a limit of 250 
evaluations and above. A modification to the crowding distance assignment method in 
NSGA-II is also shown to improve performance, particularly when using small popu-
lations. This could be useful to micro-GA researchers. 

Using preferences accelerates convergence time. This is likely to be useful in 
multi-objectivization cases where we are looking for a specific single solution or a set 
of solutions in a small, well-defined region of the search space. This could also be 
helpful for dealing with expensive evaluation functions by using small population 
sizes. The success of the reference point method has been shown to be dependent on 
choosing a good value for the reference point, which could make it unreliable. More 
research is needed to analyze this further. The novel “Guided Elitism” method is very 
successful, and with one fewer parameter setting could be seen as more reliable and 
stable than the reference point method, in this problem domain. We would like to 
investigate the success of this method with different problems to see if the trend 
continues. 
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Abstract. Resin Transfer Molding (RTM) and Compression RTM (CRTM) are 
popular methods for high volume production of superior quality composite parts. 
However, the design parameters of these methods must be carefully chosen in 
order to reduce cycle time, capital layout and running costs, while maximizing 
final part quality. These objectives are principally governed by the filling and 
curing phases of the manufacturing cycle, which are strongly coupled in the case 
of completely non-isothermal processing. Independently optimizing either phase 
often leads to conditions that adversely affect the progress of the other. In light 
of this fact, this work models the complete manufacturing cycle as a static Stack-
elberg game with two virtual decision makers (DMs) monitoring the filling and 
curing phases, respectively. The model is implemented through a Bi-level Multi-
objective Genetic Algorithm (BMOGA), which is integrated with an Artificial 
Neural Network (ANN) for rapid function evaluations. The obtained results  
are thus efficient with respect to the objectives of both DMs and provide the 
manufacturer with a diverse set of solutions to choose from. 

Keywords: Bi-level Multi-objective Optimization, Composite Manufacturing. 

1 Introduction  

Resin Transfer Molding (RTM) and Compression RTM (CRTM) together form a  
sub-category of composites manufacturing methods, commonly known as rigid-tool 
Liquid Composite Molding (LCM) processes. These processes can be described over 
four phases: preform (fibrous reinforcement) preparation, partial mold closure (or dry 
fiber compaction), mold filling and finally resin cure. For RTM, the mold filling 
phase consists of injecting a liquid thermosetting resin into a completely closed mold 
containing the fibrous reinforcement. In case of CRTM, the mold filling phase is  
subdivided into parts: resin injection and complete mold closure (or wet fiber com-
paction). The filling and curing phases are the focus of the present study as they  
determine the efficiency of the manufacturing cycle and the final part quality. 
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A successful process design depends on an appropriate combination of a large 
number of process variables which are primarily distributed over the filling and cur-
ing phases. For an entirely non-isothermal process these phases are strongly coupled 
to one another through the resin cure and temperature distributions reached within the 
part at the end of filling. A majority of the published papers dealing with comprehen-
sive optimization of LCM processes concentrate solely on the curing phase by assum-
ing minimal resin polymerization during filling and a uniform temperature profile [1]. 
Such simplifications are rendered invalid in generic situations involving preheated 
molds and/or resin systems, which lead to significant cure and temperature variations 
within the part. Another common feature of most optimization algorithms suggested 
in the literature is that they convert the multi-objective optimization problem into a 
single objective one by using a weighted sum of the normalized objective values  
[1; 2]. Deciding on such weights implies some prior knowledge of the behavior  
of the objective functions over the design space, which is often not available to the 
manufacturer. 

The design of the filling phase of the process governs the fill time, the magnitude 
of clamping forces (force requirements determine the capacity and cost of manufac-
turing equipment) [3] and the existence of dry spots due to partial fiber impregnation 
[4]. On the other hand, the design of the curing phase affects the total time required 
for the resin to cure satisfactorily and the generation of residual stresses within the 
part due to large temperature gradients [1; 2]. Although the objectives of both phases 
seem largely disparate, they are fundamentally linked to each other in the case of fully 
non-isothermal processing. Optimization of the filling phase, without considering the 
cure phase, can lead to thermal conditions which adversely affect the progress of the 
cure phase. Moreover, the generally weak interactions between the majority of the 
process variables of one phase and objectives of the other, preclude a classical, centra-
lized optimization approach. This difficulty is overcome by designing a decentralized, 
game-theoretic framework to model the problem. Two virtual decision makers (DMs) 
are assumed to monitor the critical phases and interact as the players of a static Stack-
elberg game. The DM controlling the cure phase (called the upper level problem) is 
assumed to be the leader, while the one controlling the fill phase (called the lower 
level problem) is assumed to be the follower. The design variables are distributed 
among the DMs such that final solutions are not skewed in favor of the objectives of 
either phase. 

In order to implement the game-theoretic framework a Bi-level Multi-objective 
Genetic Algorithm (BMOGA), based on the popular elitist Non-dominated Sorting 
Genetic Algorithm (NSGA-II) [5], is developed. Taking a multi-objective approach 
leads to the final result being produced as a set of Pareto efficient solutions [6]. Prior 
weights need not be assigned to the objective functions, thereby making any a priori 
knowledge of the problem unnecessary. However, it is noted that a GA typically re-
quires a few thousand function evaluations to find good solutions. Using a mold-
filling simulation code for the function evaluations of the lower level problem would 
render the approach infeasible in terms of solution time. This obstacle is overcome by 
implementing an Artificial Neural Network (ANN) as a surrogate to the original si-
mulation code. 
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This paper is organized as follows. Section 2 introduces the differential equations 
governing the resin flow and heat transfer phenomena, along with various empirical 
models, including the fiber compaction model. Section 3 contains brief descriptions of 
the simulation algorithm and the surrogate model. A mathematical description of the 
bi-level multi-objective optimization problem is presented in Section 4. It is also 
shown that under the given formulation the composite manufacturing process fits 
perfectly into this framework. Section 5 describes the BMOGA for solving the bi-
level optimization problem, which is then applied to a test case in Section 6. The last 
section concludes the work presented. 

2 Governing PDEs and Empirical Models 

2.1 Equation of Fluid Flow 

Darcy’s law is commonly used to model viscous flow through porous media. When 
combined with the equation for mass conservation it takes the following form for a 
process with temporally varying thickness:  .       0 . (1) 

Here, the thickness h, resin pressure p and the permeability K are in general coupled. 
The viscosity µ  is likely to vary spatially with the temperature and degree of resin 
conversion. This response can be captured by the following widely used rheological 
model: 

 ⁄  , (2) 

where αg is the resin gel conversion, Eµ is the activation energy, R is the universal gas 
constant, Tabs is the absolute resin temperature, α is the instantaneous resin conver-
sion. Aµ, a and b are determined experimentally.  

2.2 Energy Equation 

Assuming that the resin and fiber phases have the same local temperatures, the vo-
lume averaged energy equation is written as:    .   .    . (3) 

The material properties ρ, Cp and k represent, respectively, the average density, specif-
ic heat capacity and thermal conductivity of the resin-fibre system. T is the local tem-
perature, u is the volume averaged (or Darcy) velocity, φ is the local reinforcement 
porosity and  is a source term representing the thermal energy generated by the 
resin as it cures. 
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2.3 Species Equation 

The volume averaged species equation can be expressed as follows:  .    . (4) 

To solve Eq. 4 the rate of resin polymerization (Rα) must be accurately modeled. The 
following general model is widely used to describe the polymerization reaction:   .   ⁄  .   ⁄ .  . 1   , (5) 

where A1 and A2 are constants; E1 and E2 are activation energies; m1 and m2 are cata-
lytic constants.  

2.4 Fiber Compaction Model 

An accurate prediction of the mold clamping force requires a fiber compaction model 
which mimics the response of the fibrous reinforcement to applied load. Although the 
fibrous preform generally behaves in a viscoelastic manner, a mixed-elastic model [7] 
is simple and works well. The mixed-elastic model describes the behavior of a single 
material using four nonlinear stress-volume fraction curves –“Dynamic & Dry”, “Dy-
namic & Wet”, “Static & Dry” and “Static & Wet”. A five-term polynomial (Eq. 6) 
provides excellent fit to the experimental data for a wide range of fiber volume frac-
tions and may subsequently be implemented for the force simulations. 

 , (6) 

where σ is the fiber compaction stress, Vf  is the fiber volume fraction. , , ,  
and  are experimentally determined constants for the particular material in use. The 
values of these constants for a glass-fiber chopped strand mat (CSM) are given in 
Table 1. 

Table 1. Mixed-elastic compaction model parameters [7] 

 Dynamic dry Dynamic wet Static dry Static wet 

a’ 4.68e+7 2.96e+7 2.97e+7 4.55e+7 

b’ -5.14e+7 -2.65e+7 -3.60e+7 -5.80e+7 

c’ 2.27e+7 9.50e+7 1.72e+7 2.84e+7 

d’ -4.62e+6 -1.54e+6 -3.68e+6 -6.17e+6 

e’ 3.58e+5 9.03e+4 2.943e+5 4.95e+5 
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3 Simulation and Surrogate Modeling 

The filling phase of the process is modeled using a hybrid Finite Element/Finite Dif-
ference methodology. However, since the simulation code is too expensive to be con-
sidered for every lower level function evaluation, a trained ANN is employed as a 
computationally efficient surrogate for rapid function evaluations. During meta-
modeling and optimization, it is considered desirable to have an automated frame-
work which requires minimum interactions with the manufacturer. In order to achieve 
this, the Cascade-Correlation Learning Architecture Neural Network [13] is used as it 
builds its own neural topology according to the requirements of the problem (a more 
detailed discussion on the construction, training and verification of the network is 
available elsewhere [3; 14]).  

The simulation of the cure phase is inexpensive and is integrated with the 
BMOGA. To predict the evolution of the thermal field, Eq. 3 and Eq. 4 (without the 
convection terms) are solved using an unconditionally stable Finite Difference 
scheme. Ordinarily, the initial condition for the cure phase, i.e. the temperature and 
cure distribution, is obtained through the fill simulation. However, since the BMOGA 
does not use the actual fill simulation for the lower level function evaluations, the 
temperature and cure distributions at the end of filling are also predicted through  
the ANN. 

4 Bi-level Multi-objective Optimization 

The mathematical description of a bi-level multi-objective minimization problem is as 
follows [8; 9]:  , ,       | 0, 0 , , 0, , 0, (7) , … . , ;  , … . , ,    , 1, … , .  

In the description, F and f are the objective function vectors of the upper and lower 
level problem. G, H and g, h are, respectively, the upper and lower level constraints. 
xu and xl are the upper and lower level design vectors that together form x (x = (xu, 
xl)), which is the n dimensional design vector of the overall problem. It is important to 
note that the lower level problem is optimized with respect to xl only, while xu acts as 
a fixed parameter. Therefore xl can be considered to be a function of xu.  

This formulation of the problem corresponds to an optimistic approach [8] wherein 
it is assumed that the DM of the lower level problem chooses among all Pareto effi-
cient solutions, that which is best suited for the upper level. It can be argued that in 
general this approach is overly optimistic. Several points on the Pareto front of the 
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lower level problem may be totally undesirable to the lower level DM. For example, 
in case of the composites manufacturing problem, minimization of the clamping 
forces and the resin fill time are considered as the lower level objectives. It is possible 
to have very low fill times at the cost of unrealistically large clamping forces, or vice 
versa, but such a configuration is unlikely to be chosen by the manufacturer. There-
fore, it would be incorrect to include such solutions as feasible solutions for the upper 
level problem, even if they are Pareto optimal. As an alternative, we propose a more 
subdued-optimistic approach by introducing a slight modification to the mathematical 
description:      | 0, 0  : , (8) 

where RI represents a region of interest in the objective space of the lower level DM. 
Therefore only those Pareto efficient solutions which lie within the region of interest 
are considered feasible for the upper level problem. Although it is difficult to make an 
a priori prediction of the region of interest, in [10] it was noted that “from practical 
experience… the user or designer usually picks a point on the middle of the sur-
face…where the Pareto surface bulges out the most”. Mathematically it was defined 
to be a point on the Pareto front, below and farthest from the convex hull defined by 
the individual function minima. This point, also designated as the “knee”, is assumed 
to be the center of the region of interest, the extent of which can be manually altered. 
It should be noted that selecting the knee as a unique solution of the lower level prob-
lem is also a viable option; however it may be too restrictive for the upper level DM. 
Selecting a set of equally desirable solutions within a preferred region lends greater 
robustness to the final Pareto set. 

 

Fig. 1. Manufacturing problem summary. Bold solid blocks contain objective functions; Dotted 
blocks contain design variables; Arrow heads indicate dependency. 
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A summary of the manufacturing problem structure is depicted in Fig. 1. Clearly, it 
is possible for the filling phase to be optimized without taking the cure phase into 
account (as discussed in the introduction, this may lead to skewed results). Vice versa 
is not always true as the progress of the cure phase depends on the temperature and 
cure distributions at the end of filling.  

One possible simplistic approach to optimize the complete problem would be to in-
clude all the objectives, i.e. the maximum clamping force required, the total cycle 
time and the maximum temperature gradient, into a single (centralized) tri-objective 
minimization algorithm.  However, it should be observed that the objectives of the 
fill phase are completely independent of the design variables of the cure phase. Simi-
larly, a majority of the design variables of the fill phase have little, if any, effect on 
the objectives of the cure phase. It is only the thermal conditions of the injected resin 
and the preheated mold that interlink the two phases. For such a scenario, adopting a 
decentralized decision making methodology is more compatible with the requirements 
of the problem at hand. Moreover, the different objectives of either phase lead to a 
situation which is best addressed by game theory. 

In order to design such a decentralized system which maintains the link between 
the phases it is important to redistribute the design variables among the DMs such that 
the objectives of the fill phase may be affected by the choices of the upper level DM. 
To this end, it is considered that the mold temperature profile for the entire process, 
including the filling phase, is controlled by the upper level DM. In other words, the 
mold temperature profile may be viewed as xu while all other design variables consti-
tute xl. The objectives of the lower level DM are to minimize the fill time and the 
clamping force requirements, whereas the upper level DM attempts to minimize the 
cycle time (fill time + cure time) and reduce residual stresses by minimizing the 
through-thickness temperature gradients within the part during processing.  

5 The BMOGA 

Fig. 2 shows a diagrammatic summary of the steps involved in the proposed 
BMOGA. It is constructed by nesting one NSGA-II simulation within another. The 
outer simulation corresponds to the cure phase (upper level problem) whereas the 
inner simulation corresponds to the filling phase (lower level problem). For the sake 
of brevity, usual concepts such as non-dominated sorting, crowding distances, selec-
tion, cross-over, mutation etc. are not discussed; details can be found in [5]. 

The algorithm starts with the generation of a population of mold temperature pro-
files at the upper level. During every function evaluation at the upper level, the mold 
temperature profile is sent to the lower level NSGA-II simulation. The mold tempera-
ture during filling is extracted from the profile and it acts as a constant parameter 
according to which the lower level design variables are optimized. Once convergence 
onto the lower level Pareto front is achieved, the knee is used as a reference point  
to migrate the Pareto efficient solutions such that they satisfy Eq. 8 (algorithms  
that allow such migration have been suggested in [11; 12]). These solutions are re-
turned to the upper level. Therefore, a single mold temperature profile leads to a large 
subpopulation of solutions. 
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Fig. 2. The proposed BMOGA procedure 

Cure simulations are carried out on each member of every subpopulation, based on 
the initial conditions of temperature and cure prescribed by the lower level design 
variables, to obtain the upper level objective functions. Further, all subpopulations at 
the upper level are concatenated and the usual NSGA-II procedure is performed to 
assign each member of every subpopulation a non-dominated rank and crowding dis-
tance, based on the upper level objectives only. A particular mold temperature profile 
is recognized by the lowest (best) non-dominated rank among members of its subpo-
pulation and the highest crowding distance among solutions with the lowest rank (all 
solutions in the subpopulation with higher ranks are eliminated). Selection operations 
at the upper level are based on these values of recognition. Cross-over and mutation 
operations are performed on selected temperature profiles to generate new popula-
tions of solutions which are evaluated by recalling the lower level NSGA-II simula-
tion. This procedure is repeated for a prescribed number of generations or till conver-
gence to the Pareto front is achieved. 

Although a nested approach may be deemed computationally more intensive, as 
compared to an intertwined approach (suggested in [9]), it is found to be necessary 
when lower level preference information, in its present form, is incorporated into the 
algorithm. 

6 A Test Case 

The proposed framework is now applied to a test case for the manufacture of an axi-
symmetric part of moderate thickness by the CRTM process. The chopped strand mat 
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(CSM), the compaction model for which is detailed in Table 1, is taken to be the pre-
form material. The permeability of this material is expressed by the following empiri-
cal exponential relation: 3.07 10 .   , (9) 

where Vf  is the fibre volume fraction. Thermal properties of the CSM and the reactive 
epoxy resin system considered can be found in [3; 13]. The diameter of the part is 1 m 
with a central injection hole of 2 cm. The final part thickness is 1.5 cm and the final 
fibre volume fraction is approximately 35%. 

Prior to building the ANN a preliminary study is conducted over the design space 
in order to determine feasible bounds of the design variables within which the resin is 
unlikely to gel prematurely. Details of these bounds and other constraints considered 
in this study are given in Table 2. For simplicity only a single temperature ramp is 
considered during the cure phase. For complex resin systems, a more intricate mold 
temperature profile, with multiple ramps and dwelling periods, is often applied. The 
phase specific enlargement of the design variable space that this would entail, further 
justifies the decentralized decision making approach being used. 

While running the NSGA-II simulation the following parameter setting is used: 
crossover probability of 90%, mutation probability of 10%, distribution indices for the 
real-coded genetic operators are chosen to be 15 and 5 for the crossover and mutation 
operators, respectively. The lower level solutions are evolved using a population size 
of 40 individuals, initially over 60 generations to obtain a rough approximation of the 
complete Pareto front, and then for 30 further generations to focus the search within 
the region of interest. For the upper level problem a population size of 30 individuals 
is considered, which is evolved over 75 generations. 

Table 2. Design variable bounds and constraints 

Lower level design variables (Xl) 

Injection pressure (Pinj) [200, 500]  kPa 

Injection height (Hinj) [1.6, 2] cm 

Wet compaction velocity (Vwet) [0.5, 2.5] 
mm/min 

Resin temperature [293, 348] K  

Upper level design variables (Xu) 

Mold temperature during filling [293, 333] K  

Mold heat rate [2, 30] K/min 

Final mold temperature [393, 433] K  

Maximum exothermic temperature   
allowed 

500 K 
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Fig. 3. Results of lower level NSGA-II performed for two different mold temperatures 

Figs. 3a and 3b show the results obtained from the lower level NSGA-II by consi-
dering the mold temperature to be a constant parameter. The figure also depicts the 
evolution of the solutions over three steps: the initial population; solutions converged 
onto the Pareto front and finally, Pareto efficient solutions migrated within the region 
of interest around the knee.  

In this study the cure simulations at the upper level are continued until a minimum 
of 90% cure is reached. Fig. 4 shows the Pareto efficient solution set obtained after 
the complete bi-level optimization procedure. The figure also depicts the solutions of 
the initial upper level population. The initial population is seen to form several clus-
ters, each corresponding to a lower level NSGA-II simulation call. All of these solu-
tions are far away from the obtained Pareto front, thus highlighting the importance of 
the optimization study.  
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Fig. 4. Results after complete BMOGA simulation 

 

 

Fig. 5. Force (a & c) and temperature (b & d) evolution curves of the solutions representing the 
individual function minima in Fig. 4 
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Figs. 5a-5d depict the force and the mid-radius temperature evolution curves for 
the solutions representing the individual function minimum of the upper level prob-
lem. In Fig. 5b although the resin curing time is high, the temperatures at the surface 
and core of the part evolve uniformly, which minimizes residual stresses within the 
part. On the other hand, in Fig. 5d, although the resin rapidly reaches the desired cure 
level, large temperature gradients are induced which may cause high residual stresses 
within the part. 

7 Conclusions 

In this study a multi-objective evolutionary game-theoretic framework is proposed for 
the optimization of non-isothermal CRTM processes. Modeling the problem in the 
form of a Stackelberg game prevents the final solutions from being skewed in favor of 
the objectives of either the filling or curing phase. These final solutions may be re-
garded as sub-game perfect Nash Equilibria, but not in the traditional sense as a 
unique objective, and consequently a unique course of action/strategy, cannot be de-
fined. Crucially, presenting the final result as a diverse set of Pareto efficient solutions 
allows the manufacturer to choose the most preferred solution a posteriori, without 
requiring any prior knowledge of the problem.  
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Abstract. In the automotive industry the calibration of the engine
control unit is getting more and more complex because of many vari-
ous boundary conditions, like the demand on CO2 and fuel reduction.
One important calibration problem is the parameter estimation for the
model of the intake system of the combustion engine. This system is
modeled by a physically motivated system, which can be parameterized
by black-box models, like neural nets and characteristic diagrams, whose
parameters must be set by an intelligent optimizer. Further, two contra-
dictory aims must be considered and the engineer expects at the end of
the optimization a pareto-front, where he can choose the best settings
for the application from the pareto-optimal parameter estimations. To
solve this multi-criteria optimization task an evolutionary algorithm is
used, which is a combination of a genetic algorithm and an evolutionary
strategy. This evolutionary algorithm is like all other stochastic search-
ing methods leaned on the naturally biological evolution. It combines the
well-known covariance matrix adaption for the mutation of the individu-
als with the S-metric selection for the multi-criteria fitness assignment of
the individuals. It also improves these combination by the use of many
subpopulations, which work parallel on various clusters, and by the use
of an intelligent DoE-strategy for the initialization of the start individu-
als. With these improvements the developed evolutionary algorithm can
easily fit the model of the intake system to test bed measurements and
can provide the user a pareto-optimal set of parameters, on which he can
choose on his own that ones, which he find most plausible.

Keywords: Evolutionary algorithms, Multi-criteria optimization, Adap-
tive algorithm, intake system, Automobile industry, Engine modeling,
Global optimization, Simulation, Engine control.

1 Introduction

The automobile manufacturers have to meet the requirements of customers (con-
sumption, dynamic performance) and the legislative body (consumption, emis-
sions). Power train development makes a crucial contribution to reach these

R.C. Purshouse et al. (Eds.): EMO 2013, LNCS 7811, pp. 628–640, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Multi-criteria Optimization for Parameter Estimation of Physical Models 629

partly opposed goals. For a given power train it is important to find optimal
settings for the engine to reach high efficiency and low emissions. Thus, the
calibration process from data acquisition at the test bed to control unit param-
eterization is crucial for the engine performance.
In the last years the complexity of the combustion engine has grown con-

tinually and the development cycles became shorter. The increased flexibility
implicates a more challenging and time consuming calibration process and thus
new calibration and optimization techniques are required to cope with the grown
complexity in reasonable time.
One possible approach to reduce the measurement and calibration effort is

to use physical models. A physical model adapted to the measurements can be
used to calculate the optimal settings for given control tasks. The challenge is
the estimation of the model parameters. Usually it is not straight forward to say
which parameters are the best ones and an experienced engineer has to choose
the best settings from different parameter sets.
The example discussed in this contribution is the intake system of the com-

bustion engine. The fuel pedal position and the ancillary units determine the
required torque to realize the requested performance. Thereby, the torque pro-
vided by the engine depends directly on the injected amount of fuel. Modern
combustion engines use an air-fuel ratio equal one at most operating points. This
means, exactly enough air is provided to completely burn all of the fuel. There-
fore, the air provided is proportional to the torque and thus a very important
factor that in series-production vehicles cannot be measured. To estimate the
available air in the cylinders a physically motivated model of the intake system
is used that must be fitted to test bed measurements. Beside the model quality
the plausibility of the parameters is essential. Some of the parameters are stored
in characteristic diagrams and it is known that the characteristic diagrams have
to be smooth to be feasible. On the other hand, smooth characteristic diagrams
usually result in inferior models and therefore a tradeoff between model quality
and maps smoothness has to be found. The goal is to provide a pareto-front for
the engineer such that the best settings can be chosen from the pareto-optimal
parameter estimations.
The rest of the paper is organized as follows. First, the model of the intake

system is described and the optimization problem is formulated. Then the opti-
mization algorithm used to solve the optimization problem is presented. Next the
optimization results are discussed and finally the main results are summarized.

2 Optimization Problem

As mentioned in the introduction, the goal of the optimization is the identifi-
cation of an accurate model of the air flow through the intake system. Since
a direct measurement of the fresh air mass in series-production vehicles is not
possible the only way is the use of an accurate model. The physically motivated
model of the intake system described in the next section is parameterized by
neural nets and characteristic diagrams whose parameters have to be adapted
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to the measurement data. Since the characteristic maps can be physically inter-
preted, the model quality is evaluated by the fitting quality of the model and
the feasibility of the parameters. Only a model with plausible parameters can
be expected to provide accurate estimations of the fresh air mass in any driving
situation. Therefore, the optimization process has to provide an accurate model
and also alternative solutions so that the calibration engineers are able to choose
the best compromise between model fitting and most plausible parameters.
Next, the model is described roughly and then the criteria for plausible

parameters are formulated.

2.1 Physically Motivated Model of the Intake System

The model of the intake system in the control unit is a physically motivated
observer model that calculates the fresh air in the cylinders using values of the
calibration unit and values that can be measured with justifiable effort in any
series-production vehicle. These are the valve timing of the intake and exhaust
valves, the valve lift of the intake valve, the exhaust gas back pressure, the
manifold pressure and the engine speed. The model plays a central role in the
control unit calibration because the output of the model is used for example to
calculate the injected fuel mass, the start of injection and the ignition timing.
Basically, the model of the intake system describes the relation between the

manifold pressure and the relative filling of the cylinders under consideration
of the mentioned values. The relative filling is the fraction of the mass of the
maximal cylinder volume filled with air under standard condition and the current
fresh air mass. The characteristic curve of the relative filling can be explained by
superposition of two effects. First, the mechanical work required to pump fresh
air in and out of the cylinder is almost proportional to the manifold pressure
if the other quantities remain constant and no exhaust-gas turbo charging is
taking place. This results in the relation displayed on the left side of figure 1.
The second effect is caused by the residual gases since it is not possible to

pump out all the exhaust gas after the combustion without turbo charging. The
exhaust gas back pressure and residuals due to the clearance volume inhibits
a complete filling of the cylinder with fresh air. These effects are also called
reflow. However, the turbo charging can also cause the contrary effect. If the
intake and exhaust valve are open simultaneously and the pressure in the intake
manifold is higher than in the exhaust manifold, the exhaust gas is scavenged
out completely and the fresh air mass in the cylinder is higher than the maximal
cylinder volume under standard condition. The offset due to the back pressure
and clearance volume and the nonlinearity because of scavenging are the reasons
for the characteristic nonlinear curve as displayed on the right side of figure 1.
The resulting characteristic curve (figure 2), which originates from the super-

postion of the pump and the overflow/reflow model, can be determined by four
parameters. The first parameter is the intake manifold pressure where the curve
intersects the axis of abscissa (theoretical value). The second is the slope of the
linear part. The other both parameter are the scavenging rate as well as the cur-
vature. The shape of the curve and therefore the parameters depend mainly on
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Fig. 1. Superposition of the two effects of the characteristic curve. Left: The linear
pump model. Right: The nonlinear overflow and reflow model.

the engine speed, the valve timing of the intake and exhaust valves, the intake
valve lift and the exhaust gas back pressure. The dependence of the four pa-
rameters of the curve on the described quantities is stored in two characteristic
diagrams and two neural networks. To fit the intake model to the measurement
data the optimization algorithm has to adapt the characteristic diagrams and
the parameters of the neural networks.
The resulting model has the following form:

rf =
θ1(u)

pn − θ2(u)

(
pi − θ2(u)

pn
+ θ3

(
v1
v2
+ θ4(v)

))
, u ∈ R5, v ∈ R2,

where rf is the relative filling, pi and pn are the intake manifold and ambient
pressure, θ are the parameters of the curve and u, v the quantities on which θ
depend. Thereby, θ1(u), θ2(u) are neural networks and θ3(v), θ4(v) are char-
acteristic diagrams. A more detailed description of the model can be found
in [5].
The values of the characteristic diagrams can be interpreted and have to meet

the criteria described in the next paragraph to be plausible.

2.2 Criteria for Physical Plausible Model Parameters

After the description of the model it is important to define the optimization
criteria, which have to be optimized. The first criterion for the optimization
algorithm is the model error D in respect of the model output zM and test bed
measurements ztr, which are also called training data. The model error D can
be defined as the mean absolutely relative error:



632 S. Zaglauer and M. Deflorian

Fig. 2. Characteristic curve of the relation intake manifold pressure and relative filling

D(θ1, θ2, θ3, θ4) =
1

N

N∑
i=1

∣∣∣∣∣z(i)tr − z(i)M

z
(i)
tr

∣∣∣∣∣ , (1)

where N is the number of measurements. Beside the model error we have a
second criterion to be optimized. It is known that the characteristic diagrams
have to be smooth to be feasible, so the smoothness is the second optimization
criterion. As reference value for the smoothness we take the energy of the char-
acteristic diagrams.

Definition: For two adjacent matrix dots xi, xj and a characteristic map F the
connection energy xi − xj in the characteristic diagram is given by

E(i,j)(F ) = 1|y(i)−y(j)|>c

where the connection energy is 1, if the y-distance is greater than a constant c
and otherwise 0. Without restrictions we set c = 1

2 .

Definition: The energy of the characteristic map F is then given by the sum of
all connection energies:

E(F ) =
∑

i<jadjacent

E(i,j)(F ).

This definition has a natural interpretation in practice: Is the distance between
two adjacent matrix dots greater than a certain limit value, so the corresponding
regulating variable cannot be adapted in real time, if a change of the operating
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point take place with a given speed. Summarizing we have the final optimization
problem:

Optimization Problem

min
θ1,θ2,θ3,θ4

D(θ1, θ2, θ3, θ4), E(θ3, θ4) (2)

3 Optimization Algorithm

To solve this optimization problem an evolutionary algorithm is used. Evolution-
ary algorithms are characterized by a multiple of changeable parameters. This
includes the choice of a suitable representation of the problem, the various evo-
lutionary operators within the parameters, the right population size and also the
weighting function itself. The parameters allow on the one hand a high adapt-
ability of the algorithm to the given problem but on the other hand they can
make the algorithm very sensitive about changed properties of the optimization
problem. In the following the structure and the design and the various compo-
nents of the used algorithm for the multi-criteria parameter optimization of the
model of the intake system are presented.

3.1 Structure and Design of the Algorithm

As mentioned before the configuration of the parameters is not easy and the
parameters cannot usually be understood as individual and independent con-
trollers but they build a connected network. The modification of any parameter
has an essential effect on other parameters. Good parameter settings are differ-
ent for each problem and cannot be transferred to other algorithms with other
evolutionary operators. For the given problem the used algorithm is divided
into the components initialization, fitness assignment, selection, recombination,
mutation, reinsertion and termination (see figure 3), in which a few of the compo-
nents are taken from literature and a few are developed by ourselves, for example
the initialisation. Also this combination of components does not exist in litera-
ture and many other additional features are implemented in the algorithm, like
a treatment with various constraints.

3.2 Initialisation of the Individuals

At the beginning of the algorithm the individuals of the start population must
be calculated. In many other evolutionary algorithms this is done on the basis
of a random initialization in the input space. But we have asked ourselves how
the measuring points, the initial individuals, should be distributed efficiently in
the experimental space. The answer to this question is provided by the Design of
Experiments (DoE). The goal is to identify the connections between target and
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Fig. 3. Structure and design of the evolutionary algorithm

influence factors systematically with as few experiments as possible. This means
to achieve a maximum of information of the system under investigation with
every measurement. The kind of DoE determines the distribution of the initial
individuals in the experimental space. In this contribution we explain the Latin-
Hypercube and the S-optimal Design, because a combination of both have the
best performance in practice (see [6]). They also do not require any derivatives
from the technical design problem, which we do not have, and they do not care
about the used problem structure and try to cover the input space as equal as
possible (space filling designs).

The Latin Hypercube Design. The Latin Hypercube design is a statistical
sampling method and in this scheme only one sampling point is in every column
and row of a grid. For this purpose one sampling position is placed randomly in
every cell along the grid diagonal. After this the rows of the grid are changed in
that way, that a chosen criteria, like the maximizing of the minimal distance of
the points, is fulfilled:

Fig. 4. Representation of the maxmin Latin-Hypercube-Distribution for the choice of
the design points

The Latin Hypercube design makes sure that the ensemble of random numbers
represents the real oscillations and the points are distributed well in the input
space.
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S-Optimal Design. The S-optimal design is a distance-based criterion, which
is based on the distance d(x,A) from a point x in the p-dimensional Euclidean
space Rp to a set A ⊂ Rp. This distance is defined as follows:

d(x,A) = min
y∈A

‖x− y‖ ,

where ‖x− y‖ is the usual p-dimensional Euclidean distance:

‖x− y‖ =
√
(x1 − y1)2 + ...+ (xp − yp)2.

S-optimality seeks to maximize the harmonic mean distance from each design
point to all the other points in the design:

max
y∈C

ND∑
y∈D 1

d(y,D−y)

,

where C is the set of candidate points and D is the set of design points. For an
S-optimal design, the distances d(y,D− y) are large, so the points are as spread
out as possible. Since the S-optimality criterion depends only on the distances
between design points, it is usually easier to compute and optimize than other
distance-based criteria, like the U-optimal one, which depends on the distances
between all pairs of candidate points.
For the parameter estimation of the model of the intake system a combination

between the Latin-Hypercube and the S-optimal design is used. Therefore, the
rows of the Latin-Hypercube grid are changed in that way, that the harmonic
mean distance from each design point to all the other points in the design is
maximized.

3.3 Fitness Assignment

After the initialization the individuals must be evaluated on the basis of a defined
fitness function. Therefore the fitness assignment defines how many offsprings
every individual produces. Generally the distribution of the fitness values should
guarantee, that less good individuals produce no exorbitant number of offsprings
and with many good individuals a significant distinction of the fitness values of
the good individuals still take place. A robust solution, which is also implemented
in the used algorithm, is the nonlinear ranking [1] and in use of multi-criteria
problems the S-metric or hypervolume measure [3].

3.4 Selection and Recombination

The direct selection of the individuals is implemented in the next step. At this
step, the selection, the individuals, who serve as parents for the next generation,
are chosen according to their fitness. The selection probability of an individual
is calculated by its fitness normalized by the whole fitness of the selection pool
(stochastic universal sampling [2]).
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After the selection follows the recombination, in which the information of the
parents is combined and the offsprings are created of the parents. For the param-
eter optimization a discrete recombination is used. For every variable position i
it must be chosen from which parent (par1 or par2) the variable value (var) of
the offspring (off) is used:

varoffi = varpar1i · ai + varpar2i · (1− ai) i ∈ (1, 1, ..., N),

ai ∈ {0, 1} with the same probability and ai for every i new calculated.

3.5 Mutation

After the recombination the mutation of the offsprings is performed. There-
fore, the variables of the offsprings are changed by little disturbances (mutation
step). In the used algorithm a mutation of real variables with adaption of the
step sizes is realized, which is known as covariance matrix adaption [4]. This
mutation method learns the direction and the step size by adaption. To store
these step sizes and directions additional variables are attached to the individu-
als. In addition, this mutation operator works with a huge population, in which
only the best individuals produce offsprings. Nearly all parents are replaced by
the offsprings, which build the new population. This allows a good evaluation
because all offsprings are in the population at least for a short time.
To solve the given multi-criteria optimization problem described in section 2

the covariance matrix adaption is improved through the initialization of a few
subpopulations, which find various parts of the pareto-front. At the end of the
optimization we have therefore many parts of the pareto-front and all together
are a good approximation of it.

3.6 Reinsertion and Termination

After the offsprings are produced and evaluated, they are included into the
population. This is done by the reinsertion. This step is particularly important
if the offsprings not easily replace the parents. It is decided by the reinsertion
which offsprings are reinserted in the population and which individuals of the
population are replaced (”‘die”’). A selection of the offsprings must only be done
if not all produced offsprings are reinserted in the population. The parameter
therefore is the reinsertion rate. How many offsprings are produced depends on
the parameter generation gap. Both parameters decide how many offsprings are
reinserted. Is the reinsertion rate ≥ the generation gap, then all offsprings are
reinserted in the population. If the reinsertion rate is < the generation gap, then
only a part of the offsprings are reinserted.
Then the algorithm continues as long as a fixed termination criterion is ful-

filled. The maximum number of generations (or objective value calculations) is
the most popular termination criterion in the use of evolutionary algorithms.
Its advantage is the good manageability and the guaranteed termination of the
optimization.
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3.7 Parallelization of the Algorithm

A huge advantage of evolutionary algorithms is the time saving through the great
performance for parallelization. One possibility of parallelization is the coarse-
grained parallelization, at which more than one subpopulations work parallel on
different clusters. The management of the population, the selection, the recom-
bination and the mutation take place for every subpopulation on a different slave
processor. On the master processor the migration operator serves to exchange
individuals between the subpopulations. This kind of parallelization is simple
to implement and is worth if the objective value calculation is very time inten-
sive. It also gives a better performance in terms of diversity and processing time
than other parallelization methods like the farming model. In picture 5 the par-
allelization of various clusters and processor is shown by a multi agent system
(MAS). Thereby, this is a system, which consists of many similar or different
acting units, which solve the underlying problem collectively.

Fig. 5. Schematic Representation of the MAS (multi agent system)

4 Results

In the following the introduced evolutionary algorithm is evaluated by fitting the
model for the intake system of the combustion engine to the measurement data.
Therefore, the parameters of the neural nets and characteristic diagrams are op-
timized with the goal of smooth characteristic diagrams and a low model error
(see equation (2)). To initialize the model with good parameters, the character-
istic maps of a predecessor engine are used. Thus, at first only the parameters
of the neural nets are optimized (one-criteria optimization) and then only the
characteristic diagrams are fitted (multi-criteria optimization). Finally, the whole
model of the intake system with both the neural nets and the characteristic dia-
grams are optimized (multi-criteria optimization). This three step optimization
has proven to be advantageous. Due to this three different optimizations the
paramter settings of the optimizer change for each optimization.
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In the first optimization the selection pressure is 1, the generation gap is 5
and a population with 5 individuals is used. The optimization is terminated after
2000 generations. In the second and third optimization the selection pressure is
17, the generation gap is 0.9 and 2 subpopulations with 25 individuals each are
used. Every subpopulation is calculated parallel on one cluster and has the same
components described in the last chapter and after 50 generations they compete
with each other and exchange the best individuals. Finally the optimization is
terminated after 1000 generations.
After these three optimization runs the user have the choice of many graphical

plots. One of these shows the finally pareto front.
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Fig. 6. Pareto-optimal points regarding model error and smoothness

On figure 6 the pareto optimal points of the last optimization, the optimization
of all parameters, are presented. The ”‘stars”’ show the pareto optimal points
and the ”‘points” show the dominated individuals of the best individuals per
subpopulations. On the x-axis the model error is represented and on the y-axis
the energy of the characteristic diagrams is shown. There a low value indicates a
high smoothness and vice versa. As you can see, with the subpopulation strategy
we achieve a very good diversity of the solution and a good representation of
the pareto front. All together we get 16 different pareto optimal points on the
pareto front, where now the application engineer can choose the best point for
him and his application task.
In figure 7 the true-predicted compares the output of the intake model with

the measurement data for the absolute filling. A perfect model would match noise
free measurements exactly and all dots would be located on the main diagonal.
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Fig. 7. Representation of the true-predicted plots

In this example the measurement noise is correlated with the measurement and
therefore higher measurement errors can be expected if the absolute filling is
higher. Thus, the model quality is measured relatively to the measurement values
(see also equation (1)). The dashed lines show the 10% tolerance∣∣∣∣∣z(i)tr − z(i)M

z
(i)
tr

∣∣∣∣∣ < 0.1.
This tolerance level specified by the engineers is the basis for the evaluation
of the model quality. Within a large region the dots are located on the main
diagonal. The relative error for 75% of the data is less than 18% and for 50%
less than 9%. This is a quite good result since the measurement data is quite
noisy and also outliers are present (in the range 55-65 some measurements are
positively biased). For low absolute fillings the measurement noise is higher than
the required model quality of 10%. For example, absolute fillings of 5 would
require a measurement accuracy of 0.5. This measurement accuracy cannot be
reached in practice. As a result of the model error shown in figure 6 is quite high
(around 14%). The model accuracy for low relative filling compared to higher
filling seems to be worse, but the relative error is clearly higher in the presence
of measurement noise for minor filling values.
The good representation of the pareto front and the satisfactory model quality

show the performance of the presented optimization algorithm. The presented
optimization strategy facilitates the work of the calibration engenieer because
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he gets a set of pareto-optimal model. Based on his experience he can choose
the best model for his application from the pareto-optimal set and is not longer
forced to find a good weighting between model error and characteristic diagram
smoothness.

5 Conclusion

In this contribution the model of an intake system of a combustion engine is
discussed. This model is fitted to test bed measurements whereby the tradeoff
between model quality and characteristic diagram smoothness has to be found.
This multi-criteria optimization problem is solved by an evolutionary algorithm.
The structure and the design of this algorithm are presented and all new compo-
nents are explained. It combines the well-known covariance matrix adaption for
the mutation of the individuals with the S-metric selection for the multi-criteria
fitness assignment of the individuals. It also improves these combination by the
use of many subpopulations, which work parallel on various clusters, and by the
use of an intelligent DoE-strategy for the initialization of the start population.
The results are very promising and show the good performance of the algoritm.
The intake model can be fitted adequately to the test bed measurements under
consideration of the smoothness of the characterisitc diagrams. A comparison
with other evolutionary algorithms, like MOEA or NSGA-II, is not necessary
up to now because the developed algorithm can find robustly the optima of the
given problems in practice and the optimizer provides as result a pareto-front for
the engineer such that the best settings can be chosen from the pareto-optimal
parameter estimations.
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Abstract. In this paper a real-world automotive engine calibration problem has 
been distilled into a ten-objective many-objective optimisation problem. The 
objectives include dynamic measures of combustion quality as well as sensitivi-
ty quantities related to a control system actuator, which exhibits significant  
variation. To address the computational demands of such a high-dimensional 
problem, use was made of parallel computing. The objective reduction process 
consisted of four stages and progressively reduced objective dimensionality 
where evidence of local objective harmony existed. It involved the advice of the 
calibration engineer at various stages on objective priorities and on whether to 
discard clusters containing solutions of no apparent interest. This process cul-
minated in two sub-problems, one of three and one of four conflicting objec-
tives. From the corresponding Pareto-optimal populations (POPs), visualisation 
together with objective priorities was used to identify preferred solutions. A 
comparison of the resulting POP, preferred solution and an independently gen-
erated, manually tuned calibration was made for each of the two sub-problems. 
In general, the preferred solution outperformed the independent calibration. 

Keywords: Many-objective, optimization, decision-making, high-dimensional, 
objective reduction, engine calibration. 

1 Introduction 

With ever more stringent emission standards being imposed upon passenger vehicles, 
calibration approaches that minimise emissions during start and immediately after 
start or ‘run-up’ are becomingly increasingly important to vehicle manufacturers  
[1]. Minimisation of hydrocarbon (HC) emissions during start-up, prior to the exhaust 
catalyst achieving a sufficiently high working temperature, is of particular  
significance [2]. 

Due to the many degrees of freedom associated with typical Gasoline Direct Injec-
tion (GDI) controls, significant time and effort is needed to develop an engine start 
and run-up characterised by: an instantaneous first fire, followed by a stable and  
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reliable engine run-up, while simultaneously minimising the delivered fuel quantity in 
an attempt to lower HC emissions. Apart from geometric design variables, such as the 
spark plug and injector location, it is essential to optimise calibration parameters such 
as injection pressure, injection and ignition timing. 

Ideally, at any temperature, the start profile should remain repeatable, regardless of 
the background variation or noise, e.g. fuel type, engine age or variations in fuel pres-
sure. Hence, from a user-perspective, the objective is to discover a robust calibration, 
i.e. one which shows relatively low, or ideally no, variation to this background noise. 
Such effects can be formulated as noise sensitivities and can conflict with their per-
formance counterparts. This justifies the application of multi-objective optimisation 
approaches. 

Furthermore, the inclusion of robustness measures in the optimisation process sig-
nificantly increases the number of objectives. To reduce the dimensionality in this 
problem to a manageable level, engineering knowledge is applied a priori to limit the 
focus to robustness measures associated with the dominant noise variable, which is 
considered to be fuel pressure. Nevertheless, even with this simplification a con-
strained ten-objective optimisation problem results. 

This paper extends the application of the complexity reduction strategy, proposed 
in Lygoe et al. [3], to a high-dimensional real-world study, comprising ten objectives 
and one constraint. Three important enhancements are also introduced. The principle 
behind the proposed process together with a literature review of relevant approaches 
is provided in Section 2. Section 3 describes the complexity reduction process with 
enhancements outlined in Section 4. The optimisation problem formulation and re-
sults are presented in Section 5 followed by conclusions and next steps in Section 6. 

2 Background 

The proposed objective reduction process is based on the principle that for many-
objective problems, there may exist local objective harmony or redundancy [4]. In 
other words, for the Pareto-optimal solutions within the Decision Maker’s (DM’s) 
region of interest, there may be objectives which are sufficiently positively correlated. 

To reveal any local dependency between objectives, it is necessary to partition or 
cluster the Pareto-optimal front into groups of like-solutions. A suitable clustering 
algorithm should be able to efficiently generate the correct number and location of 
clusters in high-dimensional objective space. The k*-Means algorithm [5] is such an 
algorithm as evidenced by simulation testing carried out in Lygoe [6]. 

Subsequently, any objective dependency needs to be identified and quantified to 
justify potential objective dimension reduction. Surveys of dimension reduction me-
thods exist, e.g. Fodor [7], and are categorised into linear and non-linear methods. 
With regard to linear dimension reduction approaches, Factor Analysis [8] assumes 
that there is some random error in the data being analysed when there is no such com-
ponent in the mathematical models, which are evaluated to generate solutions. By 
contrast, Principal Components Analysis (PCA) does not make such an assumption, 
but is cited [9] as not being suitable for non-linear data such as that typical of  
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Pareto-optimal fronts. Higher order methods which allow for non-Gaussian data, can 
be computationally expensive or may rely on other methods [10]. With non-linear 
methods, the DM may need to specify additional information such as the non-linear 
transform required or distributional assumption. In addition, there are known prob-
lems with i) Multi-Dimensional Scaling [11] not being able to project onto lower 
dimensions, with ii) Self-Organising Maps [12], which have issues with subjectivity 
involved in hierarchical clustering, convergence and interpretation, and with iii) Vec-
tor Quantisation, where the DM must specify target dimension a priori and no consid-
eration is given to objective harmony and conflict [13]. 

PCA may still be useful in identifying local harmony for objective reduction how-
ever, if the Pareto-optimal front is first partitioned into groups of like-solutions. This 
reason, together with its widespread usage and computational efficiency, justified 
using PCA to help identify any objective redundancy. 

3 Process 

To place the process enhancements in context, it is necessary to recall the Multi-
Objective Optimisation Decision-Making (MOODM) process first published and fully 
detailed in Lygoe [6], which comprises a number of steps: 

1. Generate the Pareto-optimal population (POP). 
2. Cluster the POP using the k*-Means algorithm [5]. Verify the number and location 

of clusters using verification rules. 
3. For each cluster, apply Principal Components Analysis (PCA) to identify local 

harmony and conflict for potential objective reduction. Use heuristic rules includ-
ing objective priorities, if specified, to retain only the dominant/preferred conflict-
ing objectives. 

4. If no objective reduction is achieved, the process terminates. 
5. If objective reduction is achieved, then continue optimisation within each cluster 

with reduced objectives, but constrained by the cluster boundary in an attempt to 
preserve objective correlations. 

6. Go to Step 2  and continue until no further objective reduction is achieved. 

A number of observations from the previous application of the MOODM process to 
the diesel calibration problem [3] have relevance to higher dimensional optimisations: 

• This six-objective optimisation involved only one stage of objective reduction. It is 
possible that for problems with a larger number of objectives, the number of stages 
increases also. In such a scenario, the application of the clustering verification and 
objective reduction rules will become lengthy. A more compact form for these 
rules, which lends itself to being automated, would be useful. 

• Higher-dimensional problems may require larger populations to provide effective 
search. Larger populations in more objectives may generate more clusters. Both 
place significant demands on computational efficiency. Parallel computing is one 
approach to address this requirement. 
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• As the number of objectives increases so does the number of Principal Components 
(PCs). A PCA on a larger number of objectives may reveal a finer gradation in the 
percentage of variation represented by the PCs. In other words, it may be possible 
that the threshold for selecting PCs could be varied slightly from the suggested 
95% to retain a different number of PCs and potentially, a different degree of ob-
jective reduction. 

4 Enhancements 

The complexity reduction strategy is extended with several significant enhancements 
to support higher-dimensional multi-objective problems. These are: 

• The introduction of sensitivity objectives. These have been added to the problem 
formulation so that the optimiser simultaneously searches for solutions, which are 
optimal for performance and which minimise the sensitivity to background noise. 

• Variations on thresholds for reducing the number of objectives. Varying the 
threshold used for selecting Principal Components may affect the number of objec-
tives retained using the objective reduction rules. This can provide flexibility in the 
dimension reduction process. 

• The use of parallel computing methods. The computational demands on the 
process under investigation are now sufficiently high to justify a parallel compu-
ting approach. A parallel MOEA has been developed to evaluate large populations 
distributed across a cluster of processors. Batch processing in parallel has also been 
utilised to accelerate the clustering task. 

However, fundamentally the concept of local harmony is exploited to allow various 
degrees of complexity reduction in several local domains of the POP. The resultant 
sequence of optimisations, clustering and objective reduction processes enables the 
decision maker, working in conjunction with an experienced calibration engineer, to 
propose potential solutions. These results, developed systematically using the me-
thods described, are shown to out-perform the existing calibration developed using 
empirical approaches. 

5 Cold Start Engine Calibration Optimisation 

5.1 Implementation of Process Enhancements 

More information is now provided on the implementation of the previously described 
process enhancements with full details available in Lygoe [6]. 

As with many engineering problems, in engine calibration studies it is desirable to 
achieve a solution that is not only optimal in some sense, but also robust to variation. 
For the purposes of this study, a robust, optimal calibration is defined as some optimal 
trade-off of competing engine responses, for which the solution is relatively insensi-
tive to noise, i.e. piece-to-piece variation in control system sensors and actuators, 
external environmental factors and customer duty [14]. In practice, it may not be 
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possible to simultaneously achieve optimal performance and low sensitivity to noise 
and therefore some compromise may be necessary. The primary aim for this problem 
is to include sensitivity and engine response objectives in the optimisation problem 
formulation so that both can be simultaneously searched for Pareto-optimal solutions. 
Requirements to achieve this aim comprise a computationally efficient, easy-to-
implement approach, which can be integrated into the optimisation and is sufficiently 
general for engine calibration optimisation problems. The Direct Derivatives method 
(e.g. finite difference methods [15]) most closely matches these requirements and is 
the selected sensitivity analysis approach for this problem. A review of sensitivity 
analysis approaches together with a definition of the sensitivity functions used is pro-
vided in Lygoe [6]. 

As previously described, the main purpose of using PCA is to reduce the dimen-
sionality of the problem by replacing the objectives by a smaller number of PCs 
which account for most of the variation. Several rules have been developed to identify 
this smaller number of PCs including ad hoc rules of thumb, rules based on hypothe-
sis tests and statistically-based rules [16]. For this study, a cumulative percentage of 
variation threshold is used where the number of PCs retained is the smallest number 
of PCs whose cumulative percentage of variation exceeds this threshold. Varying this 
threshold can change the number of objectives retained and so it may be possible to 
reduce this threshold by a relatively small amount (whilst still accounting for most of 
the variation) to achieve greater objective reduction. 

Historically, parallel or distributed computing has been an important initiative in 
solving time-consuming real-world optimisation problems. The proportion of non-
dominated solutions in the Pareto-optimal front becomes large as the number of ob-
jectives is increased [17], and the selection pressure correspondingly reduces. In addi-
tion, in order to generate a diverse Pareto-optimal front, a large population is required, 
which can be computationally expensive with serial Multi-Objective Evolutionary 
Algorithms (MOEAs), but may be much less time-consuming with parallel MOEAs 
(pMOEAs). There are three broad paradigms for parallelisation: the Master-Slave 
model, the Island model and the Diffusion model [18]. Due to the fact that a compute 
cluster was available and the execution speed of the objective functions used is very 
fast (i.e. msecs), the most suitable approach that could be applied to this research is 
the island-based pMOEA. As a result, a parallelized version of NSGAII was devel-
oped. A validation test was carried out on the six-objective problem in Lygoe [3], 
resulting in good agreement between the POPs from the serial and the parallel 
NSGAII and a significant speed-up was achieved (~x80) reducing execution time 
from approximately 21h to 15min [6]. This speed-up was achieved through the paral-
lelisation (20 processors used) and the resulting efficiency of cache speed-up arising 
from the parallel configuration. 

5.2 Problem Formulation 

The objective functions used in the cold start case study were based on empirical 
engine models. These were developed from experimental data taken from a 2-litre  
in-line four cylinder turbocharged direct injection gasoline passenger car engine.  
The data comprised a series of cold start tests each from an initial engine coolant tem-
perature of 20 deg. C. After each start, the engine was fully warmed-up to a stabilised 
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temperature to burn off any residual hydrocarbon emissions and fuel in the oil [19]. 
The engine was then switched off and chilled back down to the initial coolant temper-
ature in preparation for the next start. Fifty-seven starts were conducted as part of a 
designed experiment with ten validation tests. 

The engine test facility used was a dynamic dynamometer encapsulated test cell, a 
photograph of which is shown in Fig. 1. Such facilities can provide very efficient, cost 
effective and realistic testing on a rig as opposed to building expensive prototype 
vehicles, which require specialised vehicle-based test facilities or testing in remote 
cold climate locations. 

The optimisation was formulated as a ten-objective, single constraint problem as 
follows: 

Minimise the objectives listed in Table 1. 

Table 1. Objective description 

Label Description Units 

Obj1 Combustion variation metric for cycles 2-5 Bar 
Obj2 Combustion variation metric for cycles 6-12 Bar 
Obj3 Negative run-up combustion intensity for cycles 2-5 Bar 
Obj4 Negative run-up combustion intensity for cycles 6-12 Bar 
Obj5 Fuel quantity Unitless 
Obj6 Maximum engine speed flare after start RPM 
Obj7 Absolute value of sensitivity of combustion variation metric 

for cycles 2-5 to Fuel Pressure 
Bar/MPa 

Obj8 Absolute value of sensitivity of combustion variation metric 
for cycles 6-12 to Fuel Pressure 

Bar/MPa 

Obj9 Absolute value of sensitivity of run-up combustion intensity 
for cycles 2-5 to Fuel Pressure 

Bar/MPa 

Obj10 Absolute value of sensitivity of run-up combustion intensity 
for cycles 6-12 to Fuel Pressure 

Bar/MPa 

 
These are subject to a constraint on the mild extrapolation of valid domain or 

boundary of the models. This model boundary is an envelope wrapped around the 
boundary of the data used to build the models and allows, in this case, mild extrapola-
tion [20]. The constraint is defined as model boundary ≤ 0.15. 

All models had the following inputs, all of which were used as decision variables: 

• AIR - inducted air mass flow (kg/h) as controlled by the engine throttle. 
• DEC - exponential decay (unitless) in injected fuel quantity. 
• SPK2 - crankshaft angle timing (degrees before piston top dead centre) of ignition. 
• F - injected fuel quantity, expressed as a factor (unitless). 
• FP - fuel pressure (MPa). Limited control on this control system actuator is availa-

ble during cold start operation. 
• EOI - crankshaft angle timing (degrees before piston top dead centre) of end of  

fuel injection. This was fixed at a value of 75 degrees BTDC from a previous  
optimisation. 
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Fig. 1. Encapsulated dynamic dynamometer cell 109 in the West Wing Laboratory at the Ford 
Dunton Technical Centre, Essex, U.K. 

The pMOEA previously described was used with the following options and  
parameters specified: 

• Number of generations: 50000. 
• Population size: 20000. (Both of these first two parameters were chosen to provide 

a reasonable computational effort and a reasonably large initial population is used 
to allow cluster-based sub-sampling consistent with the cluster verification rules.) 

• External archive used and updated every 1 generation. 
• Number of migrants: 2% of island population. 
• Migration frequency: every 1 generation. 
• Selection operator: tournament of size 2. 
• Crossover operator: SBX [21] with probability: 0.7 and distribution index: 20. 
• Mutation operator: polynomial [22] with probability: 0.17 and distribution index: 

20 [23]. 
• Minimum and maximum range limits on the decision variables are listed in  

Table 2. These were not explicitly included in the problem formulation. Instead, a 
so-called boundary constraint model (referred to as model_bdry) was incorporated, 
which represents a convex hull envelope around the data. Beyond this model_bdry, 
models built from the data are extrapolated. 

• Initially, all the objectives were minimised subject to the constraint, which corres-
ponds to the constrained minimisation formulation in the Progressive Preference 
Articulation method of Fonseca and Fleming [24] (PPAFF). The resulting initial 
goals and priorities are shown in Table 3. 
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Table 2. Decision variable ranges 

Decision 
Variable 

Units 
Ranges 

Minimum Maximum 

AIR  25 45 
DEC  0 0.104 
SPK2 °BTDC -10 10 

F  1.49 3.49 
FP MPa 2.02 3.5 

Table 3. Initial goals and priorities for the ten-objective cold start problem, where the last row 
represents the constraint 

Objective Goal Priority 

Obj1 -∞ 1 
Obj2 -∞ 1 
Obj3 0 1 
Obj4 0 1 
Obj5 0 1 
Obj6 0 1 
Obj7 0 1 
Obj8 0 1 
Obj9 0 1 
Obj10 0 1 
model_bdry 0.15 2 

5.3 Results 

Results from the optimisation, comprising three stages of successive objective reduc-
tions process, are presented here. The analysis involved is summarised in a flowchart 
representation. For clarity, only the results from the 1st stage of objection reduction 
after the initial optimisation are described and depicted in the flowchart in Fig. 4. Full 
details are provided in Lygoe [6]. The resulting POP from the optimisation generated 
18,552 solutions, which were robustly clustered, suitable sub-sample clusters deter-
mined and then PCA applied to potentially reduce the number of objectives within 
each cluster. Mathematical notations are used in the clustering and objective reduction 
blocks, with an example of the former provided. 

Clustering and Verification 

• Establish Reference Clusters. The first step was to cluster the reference POP 
generated from the initial optimisation. The results can be summarised using the 
notation, V1

10(18552, lr, cs, 5000, 0.1) = 4. That is, the reference clustering analy-
sis in ten objectives, of the reference POP of 18,552, from various learning rates, 
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lr, and initial number of clusters, cs, maximum iterations of 5000 and a conver-
gence tolerance of 0.1 generated a reference solution of four converged clusters. 

• Establish sub-sampled POP size. Subsequently, the reference solution was ran-
domly sub-sampled per cluster to generate smaller POPs of 10000, 5000, 2000 and 
1000. Clustering was run on all of the sub-sampled POPs to test for agreement with 
the reference solution clusters. As a result, it was decided that the POP of 10,000 
was the smallest sub-sampled POP that provided acceptable agreement with the 
reference POP. This is denoted by: 

─ V2
1(10000, lr, cs, 5000, 0.1) = [4, 4, 4] - a clustering analysis on a sub-sampled 

POP of 10,000 with various lr and cs resulted in three alternative solutions of 
four clusters. A run with the best convergence was selected from those in the 
first solution, which was the most frequently occurring solution within the batch 
of clustering runs. 

─ {2Di ⊂ 1Di}
4

i=1 ∧ Ω2(0.04) ≤ 0.05 ∧ Φ2(0.06) ≤ 0.1 – with respect to the corres-
ponding reference clusters (1Di), the selected sub-sampled 10,000 POP clusters 
(2Di) are a subset AND have cluster centres (Ω) in close agreement AND have 
cluster correlation matrices (Φ) in close agreement. 

• Check cluster bounds. The only engineering limit that was specified by the Cold 
Start calibration engineer, was applied to Objective 6 (Peak Flare Speed), where 
only solutions in the 1300 to 1500rpm range were of interest. The Peak Flare 
Speed data within Cluster 1 violated this limit and so was discarded, while the oth-
er clusters satisfied this limit and were retained. 

PCA and Potential Objective Reduction 

The objective reduction rules were applied to each cluster to identify any opportunity 
for potential objective reduction. In the process of discussing and selecting clusters to 
be retained, the Cold Start calibration engineer provided revised objective priorities 
and these were taken into account, where necessary, when applying the objective 
reduction rules. Due to space constraints, a detailed explanation of how these rules are 
applied cannot be included (see [6] for a full description). Nevertheless, as an exam-
ple, six objectives were retained (denoted by the set I) in cluster 2: 1, 3, 6, 7, 9  
and 10 and therefore, the remainder discarded (denoted by the set E), i.e. objectives: 
2, 4, 5 and 8. 

The Effect of a Reduced Percentage of Variation on Objective Reduction 

Consequently, it was decided to consider two further such scenarios where PCs are 
retained that account for approximately 90% and 86% of the variation. The results 
from the objective reduction process for varying thresholds of cumulative percentage 
of variation are collated in Table 4. It can be seen that while some objective reduction 
was achieved using a threshold of 95%, using 86% gives significantly more reduction. 
As a result, it was decided to proceed with retaining the objectives per cluster  
corresponding to the 86% threshold in subsequent optimisations. This stage culmi-
nated in three Clusters (2, 3 and 4) with six, seven and five objectives being retained, 
respectively. 
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Table 4. 1st Stage retained objectives from objective reduction process for varying thresholds 
of cumulative percentage of total variation 

Threshold for cumulative 
% of total variation 

No. of objectives retained 

Cluster 2 Cluster 3 Cluster 4 

95 7 10 7 
90 6 8 7 
86 6 7 5 

 

Fig. 2. Flowchart of the results from objective reduction - 1st stage: clusters 2, 3 and 4 are 
retained leading to 6, 7 and 5 objectives being retained, respectively. This flowchart starts after 
the first optimisation has been completed. 
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5.4 Conclusions from the Objective Reduction Process 

The results from the final objective reduction (from the 3rd Stage) are displayed in 
Table 5, which shows the number of objectives retained in each cluster at each stage. 

Table 5. Number of objectives retained at each stage of the objective reduction process 

Objective reduction 
Stage 

No. of objectives retained 

Cluster 2 Cluster 3 Cluster 4 

1st 6 7 5 

   Cluster 4_1 Cluster 4_2 
2nd 4 5 4 4 
3rd 4 4 4 3 

 
A Parallel Coordinates plot of the POPs per cluster generated and resulting from 

the final objective reductions is shown in Figure 3. This plot was reviewed with the 
Cold Start calibration engineer and the following conclusions were arrived at: 

• In Cluster 3: 

─ Obj5 was in the range 1.5-1.6. At these low levels of Fuel quantity, the engine 
cold start performance was erratic when lower quality fuels (available in some 
markets) were tested. 

─ While Obj2 was relatively high, (combustion intensity for cycles 6-12 was 
strong), this was at the expense of Obj1, which was comparatively low (weak 
combustion intensity for cycles 2-5). 

─ When the sensitivity objective, Obj10 is plotted next to the objective to which it 
relates (Obj2), the resulting sensitivity values for Obj10 are in some cases al-
most as large for those for Obj2, indicating that these solutions show high sensi-
tivity. 

•  The resulting POPs in Clusters 4_1 and 4_2 display somewhat similar parallel 
coordinates profiles, which is to be expected given that they have the same parent 
cluster. Nevertheless, it can be seen that Cluster 4_1 (red) performs worse in the 
sensitivity objectives than Cluster 4_2 (gold). In this case, more sensitivity means 
the start performance is less robust to variations in Fuel Pressure, which is not 
tightly controlled. In a mass-production environment, this variation is likely to in-
crease and may lead to poor customer satisfaction with start performance and po-
tentially, warranty cost. 

Consequently, it was decided, in consultation with the calibration engineer, to discard 
Clusters 3 (green) and 4_1 (red) and to select preferred solutions from the retained 
Clusters 2 (blue) and 4_2 (gold). 

In Cluster 2, of the retained objectives, Obj6 (Peak_Flare_Speed) was the highest 
priority. A preferred solution (no. 271) that was relatively insensitive as measured by 
Obj7 and Obj10 and also with a relatively low value of Obj5 (Fuel quantity - a surro-
gate measure for HC emissions) was selected. 
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In Cluster 4_2, of the retained objectives, the highest priority objective was Obj5 
(Fuel quantity), then Obj6, then Obj8 (sensitivity of cycles 6-12 combustion variation 
to fuel pressure). A preferred solution (no. 355) that was relatively insensitive as 
measured by Obj8 was selected. 

 

Fig. 3. Parallel Coordinates plot of the final POPs resulting from objective reduction in each 
cluster. The objectives have been re-ordered so that each sensitivity objective is adjacent to the 
objective to which it relates1. 

Of further interest was a comparison of these solutions against their respective par-
ent cluster of solutions and against a recent calibration generated by the Cold Start 
calibration engineer using a manual, iterative tuning process. Parallel Coordinates 
plots of this data are shown for Cluster 2 and 4_2 in Figs. 6 and 7, respectively. For 
each figure, the final POP (labelled as Cluster 2 and Cluster 4_2 data) resulting from 
objective reduction, the selected solution and an independently, manually generated 
calibration are overlaid. For both clusters, it can be seen that the calibration is inferior 
with respect to the POP and the selected solutions. The exception is in Cluster 2, 
where the calibration is slightly better (smaller) than selected solution 271 with  
respect to Obj1. 

                                                           
1 Colour version of plot available in [6]: Fig. 6.11, p.165. 
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Fig. 6. Cluster 2, selected solution no. 271   Fig. 7. Cluster 4_2, selected solution no. 355 

In summary, the selected solution is a significant improvement compared to the ca-
libration in respect of: 

• In Cluster 2: Obj6 (Peak_Flare_Speed) and Obj7 (combustion variation sensitivi-
ty for cycles 2-5). The former is considered to be very important for customer sa-
tisfaction with the starting process and the latter indicates much improved start 
robustness and quality. 

• In Cluster 4_2: Obj5 (Fuel quantity) and Obj6 (Peak_Flare_Speed). Fuel quantity 
is very important with regard to ever-increasing customer expectations of good 
fuel economy. Also, as fuel quantity has been used as a surrogate for legislated 
HC emissions, reducing fuel reduces HC. So, in this case, significantly reduced 
HC emissions is considered especially important as the vast majority of HC emis-
sions are produced before the exhaust after-treatment system (e.g. catalytic con-
vertor) has reached operating temperature, i.e. at, and after, engine start. 

6 Conclusions and Future Work 

Based on previous work [6,3], the MOODM process has been extended and applied to 
a real-world automotive engine problem of increased complexity, i.e. that of a ten-
objective engine cold start optimisation. The process enhancements comprised defin-
ing and embedding sensitivity objectives into the optimisation to yield a robust cali-
bration; application of parallel computing to make the process efficient and the use of 
varying PC thresholds to explore the potential to achieve greater objective reduction. 

In general, the preferred solutions that resulted from this MOODM process com-
pared favourably to those generated from a manual tuning calibration approach. 

Although significant objective reduction and favourable optimisation solutions 
have been realised with this complexity reduction process, there are a number of en-
hancements which can be made. Improvements to the existing process include: 

• Revisit the objective reduction process where there is evidence of independence 
between objectives. In such scenarios, an increased number of lower dimension 
optimisations may result. 
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• Explore alternative migration settings and schemes for the island-based pMOEA 
implementation. 

• While the k*-Means clustering algorithm automatically determines the number of 
output clusters, its parameters may require a lot of calibration, i.e. lots of runs, to 
generate converged clusters. Other clustering approaches should be evaluated. 

• The two main stages of the search (evolution of an initial population for cluster-
ing and further evolution of populations within clusters) have involved many 
thousands of objective function evaluations. Further research is required to de-
termine whether this significant computational investment is justified or whether 
fewer objective function evaluations would suffice. 

More general many-objective optimisation research opportunities include: 

• Implement mathematical notation for the Clustering verification and Objective 
reduction Rules in software. This will make a high dimensional multi-stage ob-
jective reduction process more efficient, less error-prone and potentially fully au-
tomated including documentation of results at each stage. Different degrees of 
objective reduction and different objective priority orders could easily be ex-
plored, which may be subject to available computational resources. 

• This software could be implemented as a collection of routines underlying a 
Graphical User Interface in for example, a MATLAB© Toolbox. This could be 
designed to easily allow alternative optimisation, clustering or dimension reduc-
tion algorithms to be ‘plugged-in’ as well as being able to interface to a parallel 
computing facility. 

• The ‘toolbox’ software concept could be extended into a more general ‘Many-
Objective Optimisation’ Toolbox, which not only supported the proposed dimen-
sion reduction process, but also provided for other processes, based on alternative 
methods to be implemented. Furthermore, the Toolbox could provide a conve-
nient and easy-to-use capability to compare the results of various alternative  
approaches to optimising the same problem. 

Acknowledgments. The first two authors are grateful to Ford Motor Company Limited 
for their resources and support to research, develop and apply this MOODM process. 
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Abstract. An multi-objective optimization (MOO) and knowledge
extraction were conducted for a structural design of a regional jet hori-
zontal tail using Multi-Objective Design Exploration (MODE). MODE
reveals the structure of the design space from the trade-off information
and visualizes it as a panorama for a Decision Maker. The present form
of MODE consists of Kriging model, Adaptive Range Multi-Objective
Genetic Algorithm and Self-Organizing Map (SOM). Combination be-
tween the stringer-pitch and the rib-pitch was optimized based on de-
tailed buckling evaluation and MSC/NASTRAN static analysis using
realistic aircraft structural model. The resulting Kriging model provided
several solutions with improvements, both in the structural weight and
the number of structural components, compared with the baseline design.
Furthermore, SOM divided the design space into clusters with specific
design features. The acquired design knowledge from the present applica-
tion has been utilized for the horizontal tail design of Mitsubishi Regional
Jet (MRJ).

1 Introduction

Recently, an multidisciplinary design optimization (MDO) has become one of
the essential tools for aircraft design. A typical MDO problem involves multi-
ple competing objectives. While single objective problems may have a unique
optimal solution, multi-objective problems (MOPs) have a set of compromis-
ing solutions, largely known as the trade-off surface, Pareto-optimal solutions
or non-dominated solutions. These solutions reveal trade-off information among
different objectives. They are optimal in the sense that no other solutions in the
search space are superior to them when all objectives are taken into considera-
tion. A designer will be able to choose a final design with further considerations.
Multi-objective optimization obtains only non-dominated solutions. However, it
is essential for designers to have information regarding the design space, such
as the relations between design variables and objective functions. The design
information directly helps the designer determine the next geometry.

R.C. Purshouse et al. (Eds.): EMO 2013, LNCS 7811, pp. 656–668, 2013.
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An MDO system denoted multi-objective design exploration (MODE) was
proposed in [1] and is illustrated in Fig. 1. The MODE is not intended to pro-
vide an optimal solution. The MODE reveals the structure of the design space
from trade-off information and visualizes it as a panorama for a decision maker.
The form of MODE in [1] consists of the Kriging model [2–4], Adaptive Range
Multi Objective Genetic Algorithms (ARMOGAs), analysis of variance and a
self-organizing map (SOM) [5]. An ARMOGA is one of Evolutionary algorithms
(EAs) [6] suitable for finding many Pareto-optimal solutions. To alleviate the
computational burden of EAs, the Kriging model has been introduced as a sur-
rogate model [7]. An SOM divides the design space into clusters. Each cluster
represents a set of designs containing specific design features. A designer may
find an interesting cluster with good design features. Such design features are
composed of a combination of design variables. If a particular combination of
design variables is identified as a sufficient condition belonging to a cluster of in-
terest, it can be considered as a design rule. Obayashi and Sasaki investigated de-
sign tradeoffs for two multi-objective aerodynamic design problems of supersonic
transport by using visualization and cluster analysis of the non-dominated solu-
tions based on the SOMs [8]. They successfully revealed correlation of the cluster
of design variables with aerodynamic objective functions and their relative im-
portance. However, actual aircraft design requires not only aerodynamic but also
structural evaluation since pure aerodynamic optimization provides wings with
a low-thickness-to-chord ratio and a high aspect ratio, suffering lack of strength
and undesirable aeroelastic phenomena from the low bending and torsional
stiffness.
In 2003, Mitsubishi Heavy Industries, Ltd. (MHI) started an R&D project

to develop an environmentally friendly high performance small jet aircraft. The
purpose of this project was to build a prototype aircraft using advanced technolo-
gies, such as low-drag wing design, and lightweight composite structures, which
were necessary for the reduction of environmental burdens. In March 2008, MHI
decided to bring this conceptual aircraft into commercial use. This commercial
jet aircraft, named the Mitsubishi Regional Jet (MRJ, Fig. 2), has a capacity
of about 70-90 passengers. This project focused on environmental issues, such
as reduction of exhaust emissions and noise. Moreover, in order to bring the jet
to market, lower-cost development methods using computer-aided design were
also employed in this project. Under this project, Tohoku University partici-
pated as a collaborator and applied the MODE approach to the wing design
[9, 10] and the engine-wing integration [11]. In these applications, not only aero-
dynamic performance such as aerodynamic drag under cruising conditions but
also structural weight were optimized with constraints of strength and flutter
requirements, and the useful knowledge regarding aerodynamic and structural
wing design was successfully extracted. However, structural design knowledge
obtained in these applications was not so practical as to be directly utilized
in the actual aircraft structural design because the wing structural models used
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in these applications were simplified, where the skin and the stringer were in-
tegrated and treated as an equivalent plate element. Moreover, in these appli-
cations, strength evaluation was also simplified, where compressive and tensile
stress on the skin-stringer equivalent plate, spar plate and rib plate were roughly
evaluated without considering detailed buckling modes that were important for
actual aircraft structural design [12, 13].
In this paper, the MODE approach based on detailed buckling evaluation

using realistic aircraft structural model is presented and applied to a structural
design of regional jet horizontal tail in order to obtain knowledge that can be
directly utilized in the actual aircraft structural design. In the present study,
combination between the stringer-pitch and the rib-pitch is optimized for two
objective functions, along with interactive criteria for various buckling modes.
This multi-criterion optimization requires the capability of finding global optimal
solutions and it will provide a good application field for Evolutionary Multi-
Criterion Optimization (EMO).

Fig. 1. Flowchart of MODE with component algorithms

Fig. 2. Mitsubishi Regional Jet (MRJ)
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2 Multi-Objective Structural Design Exploration for the
Regional Jet Horizontal Tail

The MODE approach shown in Fig. 1 was applied to a structural design opti-
mization of a regional jet horizontal tail. It should be noted that the optimized
tail is not the exact MRJ tail; rather, the acquired design knowledge from the
present application has been utilized for the MRJ tail design. The main steps of
the present application are as follows:

1. Define a design space (design parameters, objective functions and constrains,
etc.).

2. Choose initial sample points using Latin hypercube method.

3. Calculate objective functions for each sample point based on a strength eval-
uation and then construct the Kriging model. The correlation function used
in the current Kriging model [2] is the Gaussian function. From the theoreti-
cal point of view, the correlation function in Kriging model should be deter-
mined according to the variogram of sample points. However, the variogram
analysis requires tremendous number of sample points. Thus, in real-world
application, the Gaussian function is widely used as correlation function of
Kriging model without the variogram analysis [14]. The strength evaluation
used in the present application is described in detail in later section.

4. Find the non-dominated front of expected improvements using an ARMOGA
developed by Sasaki et. al [15]. ARMOGA can find non-dominated solutions
efficiently because of the focused search in design space, while maintaining
diversity. The population size is set to sixteen in one generation and the
population is re-initialized at every five generations for the range adaptation.
The total evolutionary computation of 200 generations is carried out in the
present application.

5. Check the Kriging model and the front, and then choose additional samples
if necessary to improve the Kriging model accuracy.

6. Extract the design knowledge from the design space based on the Kriging
model using a SOM.

2.1 Definition of Optimization Problem

The present application is a structural optimization for a regional jet horizontal
tail made of composite materials. Use of composite materials is gaining great
importance in recent commercial aircraft to reduce airframe weight and to lower
the maintenance costs. As for MRJ, composite materials are used for the em-
pennage and the control surfaces, and the weight fraction of composite structure
is about 12% of the aircraft. Combination between stringer-pitch and rib-pitch
is a key issue in aircraft structural design in order to realize not only weight re-
duction but also decrease of number of structural components for manufacturing
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cost saving. To find the best combination between them, the structural optimiza-
tion has been conducted based on realistic strength evaluation with considering
various buckling modes. The following design objectives are considered here.

– Objective functions

Minimize

• Structural weight of the horizontal tail
• Number of the main structural components (= Number of stringers +
Number of ribs)

– Design variables (see Fig. 3)

• Stringer-pitch = 1 variable
• Rib-pitch = 1 variable

2 variables in total

– Assumptions for structural sizing

• Material properties
∗ 1 ply thickness = 0.188mm
∗ Density = 1.6× 10−6 kgf/mm3

∗ Poisson’s ratio = 0.34
∗ EL = 14, 131 kgf/mm

2, ET = 773 kgf/mm
2, GLT = 471 kgf/mm

2

where EL , ET and GLT are longitudinal, transverse elastic
modulus and longitudinal shear modulus, respectively.

• Laminate configurations
∗ Stacking sequence:
[0◦/± 45◦/90◦] = [X%/Y%/Z%] = specified value

∗ Stiffness ratio:
EAskin/(EAskin + EAstringer) = specified value

where EAskin and EAstringer are cross-sectional stiffness of skin
and stringer, respectively.

∗ Stringer configuration: (see Fig. 4)
T-type, tb = tw , Wb = specified value, Hin = specified value

• Sizing criteria
∗ Material allowable strain: εc = specified value
∗ Assumed buckling modes:
Euler and skin buckling, stringer crippling, stiffened panel buckling,
spar web shear buckling

– Constraints

• Stringer thickness = tw = tb > specified value
• Strain margin > specified value
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It should be noted that the present optimization was simplified by assuming
that the aerodynamic shape and design loads were previously given and not
changed in the optimization process. The design loads were estimated based on
gust and maneuver load computations and the SMT (Shear, Moment, Torque)
loads introduced into the tail-box structure were obtained. Fig. 5 and Fig. 6
present the load definition and the resulting design load distributions, respec-
tively. As presented in Fig. 6, seven load conditions were applied to the present
application.

Fig. 3. Design variables for the tail
optimization

Fig. 4. Cross-sectional definition of
T-type stringer

Fig. 5. Design load definition
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(a) Shear (b) Bending Moment (c) Torque

Fig. 6. Design load distributions

2.2 Strength Evaluation

In the present strength evaluation, main buckling modes such as Euler and skin
buckling, stringer crippling, stiffened panel buckling and spar web shear buck-
ling, are considered based on a static analysis using detailed structural Finite
Element Model (FEM). The flowchart of the present strength evaluation is pre-
sented in Fig. 7. Given the design parameters (stringer and rib pitches) for each
sample point, the FEM of the horizontal tail (Fig. 8) is generated automati-
cally by a model generator and then automated structural sizing is conducted to
realize minimum weight with constraints imposed on strain, buckling and min-
imum thickness using both MSC/NASTRAN [16] static analysis (Fig. 9) and a
structural sizing code. The strain and buckling strength for each component are
evaluated from the internal stress computed by the static analysis together with
sizing criteria for spar web shear buckling [17] and the other buckling modes
[12, 13]. In the sizing process, thickness of each structural component such as
skin, stringer, rib and spar is increased or decreased, depending on whether each
strength margin is smaller or larger than required value. Iterating the sizing pro-
cess together with updating the FEM, thickness and weight of the each structural
component are converged. The numbers of stringers and ribs are also evaluated
in the automated FEM generation.

3 Optimization Results

During the optimization, the update of the Kriging model was performed
twice. A total of 36 sample points were used. Fig. 10(a) and Fig. 10(b) present the
resulting response surface model of the weight and the expected improvement
of the weight, respectively. Expected improvement of the weight in Fig. 10(b)
showed maximum value around minimum weight region in Fig. 10(a) indicating
that the Kriging model was well constructed using the sample points. Fig. 11
shows the objective functions of the baseline design and those of additional
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Fig. 7. Flowchart of the present strength evaluation

Fig. 8. FEM of the regional jet horizontal tail

sample points at every Kriging model update. As the update progressed, sam-
ple points moved toward the optimum direction indicating that the additional
sample points for update were selected successfully. Several solutions with im-
provements in both objective function values compared with the baseline design
were obtained. One of the solutions was improved by 5.5 kg in weight and by
10 in number of the structural components compared with those of the baseline
design.
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Fig. 9. NASTRAN static analysis for structural sizing

(a) Weight (b) Expected improvement of the
weight

Fig. 10. Response surface model for design variables

4 Visualization of Design Space

In order to visualize the design space, SOMs proposed by [5] were
employed. The following SOMs were generated by Viscovery SOMine
(http://www.viscovery.net/somine. accessed July 16, 2012). Once a user
specifies the size of the map, this software automatically initializes the map
based on the first two principle axes. The aspect ratio of the map is also de-
termined according to the ratio of the corresponding principle components. The
size of the map is usually 2000 neurons, which provides a reasonable resolution
within a reasonable computational time.
Solutions uniformly sampled from the design space were projected onto the

two-dimensional SOM. In the present application, the SOMs were calculated
on the Kriging model. Fig. 12 shows the resulting SOM with 8 clusters consid-
ering not only total weight (one of the objective functions) but also inboard
and outboard weight of the horizontal tail. It should be noted that in the
present study, focusing on extracting design knowledge regarding weight reduc-
tion, the second objective function (number of the structural components) was

http://www.viscovery.net/somine
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Fig. 11. Comparison of objective function among the baseline and sample points
through Kriging updates

not considered for the SOM generation. Fig. 13 shows the same SOM colored by
the total, the inboard and the outboard weight. These color figures show that
the SOM indicated in Fig. 12 can be grouped as follows:

– The region between the center and the right area corresponds to the designs
containing light total weight and light inboard weight.

– The left region corresponds to designs with light outboard weight.

Fig. 14 shows the same SOM colored by the stringer-pitch and the rib-pitch.
In Fig. 14(a) colored by the stringer-pitch, the yellow-green-colored pitch values
can be found in the middle area across the left and the right side and they
cover the whole areas of the light total, inboard and outboard weight. This indi-
cates that an optimum stringer-pitch can be selected around this yellow-green-
colored-values to minimize the inboard and the outboard weight simultaneously.
Furthermore, in Fig. 14(b) colored by the rib-pitch, smaller and larger rib-pitch
values can be found at the right and the left side, respectively. These areas cor-
respond to the light inboard and the light outboard weight, respectively. This
signifies that smaller and larger rib-pitch are effective to reduce the inboard and
the outboard weight, respectively. This design knowledge suggests that larger
outboard rib-pitch compared to the inboard rib-pitch could lead to additional
weight reduction from the present design candidates whose ribs are placed at
regular intervals.



666 H. Morino and S. Obayashi

Fig. 12. Self-organizing map based on the total, the inboard and the outboard weight
of the horizontal tail uniformly sampled from the design space

(a) Total weight (b) Inboard weight (c) Outboard weight

Fig. 13. Self-organizing map based on the total, the inboard and the outboard weight
of the horizontal tail colored by each weight

(a) Stringer-pitch (b) Rib-pitch

Fig. 14. Self-organizing map based on the total, the inboard and the outboard weight
of the horizontal tail colored by stringer-pitch and rib-pitch
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5 Conclusions

We discussed the application of MODE to the structural design optimization
for the regional jet horizontal tail. The resulting Kriging model provided several
solutions with improvements, both in the structural weight and the number of
structural components, compared with the baseline design. Furthermore, visual
data mining for the design space was performed using SOM. SOM divided the
design space into clusters with specific design features. As for the stringer-pitch,
the particular pitch size has been found effective to reduce both the inboard and
the outboard weight. On the other hand, the smaller and the larger rib-pitch
has been effective to reduce the inboard and the outboard weight, respectively.
The acquired design knowledge from the present application had been utilized

in the MRJ horizontal tail design.
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Abstract. This paper presents a satellite constellation refueling opti-
mization problem. The design variables, composed of both serial integers
and real numbers, are the refueling sequence, service time and orbital
transfer time, while the objectives are the mean mission completion time
and propellant consumed by orbital maneuvers. The problem is solved
by a mixed-integer version of the MOAA, a recently introduced multi-
objective variant of the Alliance Algorithm. This approach is compared,
using the epsilon and hypervolume indicators, with a hybrid-encoding
genetic algorithm (GA) composed of NSGA-II and an integer-coded GA
for classical traveling salesman problems (TSP). The results show that
the MOAA is able to outperform the hybrid approach based on NSGA-II
by finding a better Pareto front which provides more useful information
to the decision-maker.

Keywords: Multi-objective optimization, Evolutionary Algorithms,
MOAA, NSGA-II, Satellite Constellation Refueling.

1 Introduction

Satellite constellation technologies are now widely used in satellite communi-
cation, Earth observation and satellite navigation, while on-orbit refueling is
an important direction of development for the aerospace industry due to its
considerable economic value [1]. It can be economically advantageous to refuel
multiple satellites in a constellation with one service spacecraft. Constellation
service missions have been studied as combinatorial optimization problems by
[2–5]. These studies sought to minimize only one objective (the total propel-
lant consumption). However, a constellation refueling mission is by its nature a
mixed-integer nonlinear programming (MINLP) problem because the refueling
sequence of satellites is combinatorial while the time of flight of each refueling
activity is a continuous variable. Designers usually want to complete the refuel-
ing mission as soon as possible while consuming as little propellant as possible.

R.C. Purshouse et al. (Eds.): EMO 2013, LNCS 7811, pp. 669–684, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Two conflicting design objectives, the total time of flight and total propellant
consumption, need to be minimized simultaneously. In consequence, a multi-
objective MINLP technology should be employed. Metaheuristic approaches are
particularly good for the resolution of complex real-world problems and many
multi-objective evolutionary algorithms have been created for the purpose. In
books such as [6] and [7] some of the most widely used multi-objective evolu-
tionary algorithms, such as NSGA-II [8] and SPEA 2 [9], are introduced.
The Alliance Algorithm (AA) is a recently developed single-objective op-

timization algorithm that has been applied successfully to different problems
[10–13]. These promising results motivated the development of a multi-objective
variant [14], the performance of which has been compared with NSGA-II [8] and
SPEA 2 [9]. That study revealed a certain complementarity because the three
approaches offered superior performance for different classes of problems.
In this paper a mixed-integer version of MOAA is presented with hybrid

components that enable it to outperfom another hybrid method based on NSGA-
II. The use of hybrid approaches, which combine different methodologies that are
complementary in their strengths and weaknesses, has improved the performance
of many metaheuristics, as shown in [15] and [16] where metaheuristic approaches
are combined with local search in order to improve convergence.
The rest of the paper is structured as follows: Section 2 introduces the satel-

lite constellation refueling mission; Section 3 describes the optimization model;
Section 4 presents the mixed-integer MOAA; Section 5 provides details of the
specific problem studied and introduces the indicators and statistical test used
for performance comparison; Section 6 reports the MOAA’s performance, a com-
parison with the approach based on NSGA-II and discusses the results; Section
7 concludes the paper and suggests possible future work.

2 Satellite Constellation Refueling Mission

A typical refueling mission for a satellite constellation is illustrated in Fig. 1.
Several satellites belonging to a constellation run on a near-circular orbit, their
propellant has been exhausted, and some of them have drifted from their nominal
constellation positions. These satellites are referred to as target satellites and
need propellant refueling. Let p ∈ [1, 2, · · · , Q] be the serial numbers of the target
satellites, where Q is their total number. A chaser, i.e. the service spacecraft, also
runs on this near-circular orbit and is required to visit and refuel target satellites
one by one. Each refueling mission consists of three steps. First, the chaser
maneuvers to rendezvous with one target satellite. Second, the chaser serves and
resupplies propellant to this target. Third, the chaser moves on and maneuvers to
rendezvous with the next target, while the resupplied target maneuvers to return
to a desired constellation reconfiguration position. These steps are repeated until
each target has been visited. After these operations, the normal configuration
and capability of the constellation can be restored. Let s ∈ [1, 2, · · · , Q] be the
serial numbers of reconfiguration positions.
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Fig. 1. A refueling and reconfiguration mission for a satellite constellation

The initial and final times of the qth rendezvous operation are given by
equations (1) and (2), where t0 is the initial time of the entire task, durq and
serq are the rendezvous orbital transfer time and service time respectively, and
k ∈ [1, 2, · · · , q − 1] denotes the serial numbers of the refueling missions already
completed.

tq0 = t0 +

q−1∑
k=1

(durk + serk) (1)

tqf = tq0 + durq (2)

The initial and end times of the qth reconfiguration operation are shown in
equations (3) and (4), where dur

′
q is the reconfiguration orbital transfer time.

t
′
q0 = tqf + serq (3)

t
′
qf = t

′
q0 + dur

′
q (4)

2.1 Orbital Transfer

The state of a spacecraft can be expressed as follows:

E = (a, u, ξ, η, iinc, Ω)
T (5)

Here: a is the semi-major axis; iinc is the orbital inclination; Ω is the right as-
cension of ascending node (RAAN); u is the argument of latitude; ξ = e cos(ω)
and η = e sin(ω) are the modified orbital elements suitable for describing near-
circular orbits, where e is the eccentricity and ω is the argument of perigee.
Let EC(t0) be the initial state of the chaser, ETp(t0) be the initial state of the
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target numbered p, and ERs(t0) be the initial state of the reconfiguration posi-
tion numbered s. In the qth refueling mission, let pq and sq be the target serial
number and the corresponding reconfiguration position serial number respec-
tively, and then the target’s initial and end states for each rendezvous operation
are functions of its initial state and the time:

ETpq (tq0) = G[ETpq (t0), tq0 − t0] (6)

ETpq (tqf ) = G[ETpq (t0), tqf − t0] (7)

In equations (6) and (7): G is the function propagating orbital states by solving
Kepler’s equation [17]. The chaser’s initial state for the first rendezvous operation
is EC(t0) and that for the qth (q > 1) rendezvous operation is equal to the
target’s state during the (q − 1)th refueling mission at the chaser’s departure
time:

EC(tq0) =

{
EC(t0) (q = 0)

G[ETpq−1 (t0), tq0 − t0] (q > 0)
(8)

The initial and end states of the reconfiguration position are given by equations
(9) and (10):

ERsq (t
′
q0) = G[ERsq (t0), t

′
q0 − t0] (9)

ERsq (t
′
qf ) = G[ERsq (t0), t

′
qf − t0] (10)

The target’s initial state for the qth reconfiguration operation is:

ETpq (t
′
q0) = G[ETpq (t0), t

′
q0 − t0] (11)

When the initial and end states of an orbital transfer are specified, a linear
dynamics model is used to calculate maneuver impulses. The state variable used
to express orbital differences between the chaser and a target is shown in equation
(12), where the subscript r denotes the reference orbit, Δa is the difference
in semi-major axis, Δθ is the difference in argument of latitude, Δiinc is the
difference in orbital inclination, ΔΩ is the difference in RAAN, and Δξ and Δη
give the differences in the eccentricity vector.

X = (Δa/ar, Δθ,Δξ,Δη,Δiinc, ΔΩ)
T (12)

Using first-order approximations, the orbital transfer of the qth rendezvous op-
eration can be expressed as described in [18] and [19]:

Φ(Δtq0)X0 +

2∑
j=1

Φv(Δtqj , uqj)Δvqj = X(tqf ) = 01×6 (13)
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Φ(Δtq0) =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 0 0

− 3
2nrΔtq0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ (14)

Φv(Δtqj , uqj) =

⎡⎢⎢⎢⎢⎢⎢⎣
0 2 0
0 −3nrΔtqj 0

sin(uqj) 2 cos(uqj) 0
− cos(uqj) 2 sin(uqj) 0

0 0 cos(uqj)
0 0 sin(uqj)/ sin(ir)

⎤⎥⎥⎥⎥⎥⎥⎦ (15)

Here: the subscript ‘0’ denotes the initial state; Δtq0 = tqf − tq0 = durq is
the orbital transfer time; tq1 = 0 and tq2 = durq are the two burn times;
Δtqj = tqf − tqj (j = 1, 2); uqj and Δvqj (j = 1, 2) are the argument of latitude
and the impulse of the jth maneuver respectively; nr =

√
μ/a3r is the mean

angular motion rate, where μ is the geocentric gravitation constant. Equation
(13) is a linear dynamics equation-set, with six unknown impulse components
for six equations in total, and its solution can be obtained using Gaussian elim-
ination. Let t

′
qj and Δv

′
qj (j = 1, 2) be the burn time and impulse of the jth

reconfiguration transfer maneuver. The reconfiguration impulses are calculated
using the dynamics model given above.

2.2 Propellant Consumption

Let mp0 be the initial mass of the target numbered p, Δmp0 be the propellant
required for each target’s daily operation, and mcqf be the chaser’s mass after
the qth refueling mission. Using the Tsiolkovsky rocket equation [17], the target’s
mass at the initial time of the qth reconfiguration operation is calculated based on
its dry mass, daily operation propellant and reconfiguration maneuver impulses:

mpq (t
′
q0) = (mpq0 +Δmp0) exp

(∑2
j=1 ‖Δv

′
qj‖

g0Isp

)
(16)

Here: g0 is the sea-level standard acceleration of gravity and Isp is the specific
impulse of thrusters. Therefore, the propellant resupplied from the chaser to this
target is expressed by:

Δmpq = mpq (t
′
q0)−mpq0 (17)

The chaser’s mass after the (q−1)th refueling mission is equal to its initial mass
in the qth mission, and can be calculated based on the maneuver impulses of the
qth rendezvous operation as:

mc(q−1)f = mcq0 = (mcqf +Δmpq ) exp

(∑2
j=1 ‖Δv

′
qj‖

g0Isp

)
(18)
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In consequence, the chaser’s initial mass for the entire task is given by:

mc0 = (mc1f +Δmp1) exp

(∑2
j=1 ‖Δv

′
1j‖

g0Isp

)
(19)

3 Optimization Model

There are two types of design variable. A solution Y is made up of two groups of
serial integers Y1 and Y2 and a set of real numbers Y3 that consists of rendezvous
orbital transfer times, service times and reconfiguration orbital transfer times:

Y = (Y1, Y2, Y3) (20)

where

Y1 = (p1, p2, · · · , pQ)
Y2 = (s1, s2, · · · , sQ)
Y3 = (dur1, dur2, · · · , durQ; ser1, ser2, · · · , serQ; dur

′
1, dur

′
2, · · · , dur

′
Q)

(21)

The sequence of the elements of Y1 represents a refueling order. The search space
of Y1 is therefore discrete and its elements must be manipulated in combination.
These characteristics also apply to Y2. The first objective is to minimize the
mean mission completion time (equation (22)); the second is to minimize the
propellant consumed by orbital maneuvers (equation (23)):

min f1 = t
′
Qf/Q (22)

min f2 = mc0 −mcQf −QΔmp0 (23)

In equation (23): mcQf is the chaser’s mass after the last refueling mission and
also denotes the chaser’s dry mass in this study.

4 Multi-Objective Alliance Algorithm

The MOAA is a metaheuristic optimization algorithm based on the metaphori-
cal idea of a number of tribes struggling to conquer an environment that offers
resources that enable them to survive. The tribes are characterized by two fea-
tures: the skills and resources necessary for survival. Tribes try to improve skills
by forming alliances, which are also characterized by the skills and resources
needed, but these now depend on the tribes within an alliance. The two main
search elements of the algorithm are the formation of alliances and the creation
of new tribes. One AA cycle ends when the strongest possible alliances of ex-
isting tribes have been created. The algorithm then begins a new cycle starting
with new tribes whose creation is influenced by the previous strongest alliances.
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4.1 The Main Entities

Two main entities play important roles in the MOAA: the tribes and the al-
liances. A tribe t is a tuple (xt, st, rt, at) composed of:

– a point in the solution space xt;
– a set of skills st = [st,1, st,2, . . . , st,NS ] dependent on the values of the NS

objective functions S = [S1, S2, . . . , SNS ] evaluated at xt:

st,i = Si(xt) ∀ i = 1, 2, . . . , NS (24)

– a set of resource demands rt = [rt,1, rt,2, . . . , rt,NR ] dependent on the values
of the NR constraint functions:

rt,i = Ri(xt) ∀ i = 1, 2, . . . , NR (25)

– an alliance vector at containing the IDs of the tribes allied to tribe t. Initially
an alliance is composed of just one tribe, thus at(1) = IDt.

An alliance is a mutually disjoint partition of tribes. The tribes within an alliance
perform actions as a unique entity. Each alliance a forms a new point xa in
the solution space defined by the tribes in the alliance. The sets of skills sa
and resource demands ra of the alliance consist of the objective and constraint
functions S and R evaluated at xa.

4.2 Algorithm Steps

The procedure followed by the MOAA can be divided into several steps which can
be performed differently according to the problem at hand and user preference.
For reasons of space, only the differences between this mixed-integer version of
the MOAA and the previous version (described fully in [14]) are detailed.

Solution Generation. In the MOAA’s first cycle the continuous variables of
the tribes (solutions) are chosen randomly (with a uniform distribution), as
shown in equation (26); the discrete variables are composed of two groups of
random serial integers (Y1 and Y2), as shown in equation (27):

xt,i = U(Li, Hi) ∀ i = 1, 2, . . . , 3Q (26)

xt,Y1 = (p1, p2, · · · , pQ) xt,Y2 = (s1, s2, · · · , sQ) (27)

Here: xt,i is the ith continuous variable of tribe t, and Li and Hi are respectively
the lower and upper bounds on this variable; xt,Y1 and xt,Y2 are respectively the
random sequences for Y1 and Y2; p and s are vectors where each element has a
unique number from 1 to Q.
In subsequent MOAA cycles, new continuous solutions are sampled from

a normal distribution with defined mean and standard deviation σ described
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in equation (28), and new discrete solutions modify the sequences of the non-
dominated solutions found, as shown in equation (29):

varpos(i) = Ud(1, 3Q) ∀ i ∈ [1, 2, . . . , Nvar]

If ∃ j ∈ varpos j = 1, 2, . . . , 3Q : xt,j = N(br,j, σ)

else : xt,j = br,j

(28)

nchange,i = Ud(1, Q) npos,i = Ud(1, Q− nchange) ∀ i = 1, 2
xt,Yi = br,Yi xt,(npos,i,npos,i+nchange,i) = inv(xt,(npos,i,npos,i+nchange,i))

(29)

In equation (28): Nvar is the number of possible changes to a tribe’s variables;
varpos is a vector of the positions of the variables to be modified; Ud(1, 3Q) is the
discrete uniform distribution between 1 and 3Q; r is a random integer between 1
and NP , the number of Pareto-optimal (PO) points found; br,j is the normalized
jth variable of the rth PO solution found.
In equation (29): i is the number of the sequence (Y1 or Y2); nchange,i is the

number of discrete variables in sequence i that need to be inverted; npos,i is the
start position for the inversion of sequence i; br,Yi is the sequence Yi of the rth
PO point found; inv(start, end) is the function that inverts the discrete variables
(i.e. [1324]→ [4231]). This cycle is repeated until all N tribes are generated.

Formation of an Alliance. An alliance/tribe (A/T) is chosen randomly and
given the chance to forge an alliance by being given a token. Meanwhile all the
other A/Ts wait their turn. The A/T t with the token chooses another tribe to
become an ally, thus forming a new alliance (a movement in solution space).
The alliance formed is composed of variables from the tribes within the al-

liance: given an alliance composed of Na tribes, every continuous variable has
1/Na probability to be equal to the corresponding variable of any tribe within
the alliance:

c = Ud(1, Na)

xa,i = xc,i
(30)

Here: c is the index of the chosen tribe within the alliance; Ud(1, Na) is the
discrete uniform distribution between 1 and Na; xa,i is the value of the ith
component of the alliance; xc,i is the value of the ith component of the chosen
tribe. This is repeated until all continuous components of the alliance are defined.
The case of the discrete variables is different: the components of the sequences

Y1 and Y2 of tribes within the alliance are summed and then ranked so the
component with the smallest sum is 1 and that with the largest Q. Ties in
ranking are broken randomly.

xtot,Yi =

Na∑
t=1

xt,Yi ∀ i = 1, 2

xa,Yi = rank(xtot,Yi )

(31)
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Here: i is the number of the sequence (Y1 or Y2); xt,Yi is the ith sequence of tribe
t within the alliance; xtot,Yi is the summation of ith sequences; rank(x) is the
function that ranks components of a given sequence; xa,Yi is the ith sequence of
the alliance.
The new alliance will only be confirmed if the skills sa of xa are all individually

better than (or at least as good as) the skills st1 of the solution representing the
A/T with the token xt1 and the skills st2 of the tribe chosen to become an ally,
i.e. if solution xa dominates xt1 and xt2 .
The resource function R(x) plays no role here because the problem tackled in

this particular study is unconstrained.

Alliance and Data Structure Update. There are two possible outcomes from
the previous actions: the chosen tribe joins the entity with the token forming a
new alliance, or the tribe does not join and the new alliance is not confirmed.
Next there is an update of the data structures necessary for the low level system
to function, such as the necessity to provide a unique ID to created alliances. The
cycle termination conditions are also checked. The cycle finishes when each A/T
has tried to form a new alliance with every other tribe and remains unchanged
(because there is no advantage in changing). If this condition is not met, the
token is given to another A/T.

Selection of the Strongest Alliances and Termination. At the end of
the interactions between tribes, many alliances will have been formed but only
the strongest A/Ts will conquer the environment. Therefore the A/Ts selected
are the non-dominated points in objective space. These correspond to the best
solutions to the problem found thus far. They can be used as the input to another
MOAA cycle or, if the algorithm has ended, they represent the final results.
Generally, there is a limit n to the number of best solutions saved in the

archive of PO solutions, but for this problem no limit has been set, allowing as
many solutions as possible to be saved in order to provide a clear picture of the
Pareto front. The MOAA is terminated when a specified limit on the number
of solution evaluations is reached. The output of the algorithm is then the best
solutions and the Pareto front found.

Support Functions. This version of the algorithm is supported by several func-
tions that hybridize it. These functions generate new solutions and the archive
of PO solutions is updated appropriately. The functions used here are:

– Differential Search: Two PO solutions are randomly selected. The integer
part is created randomly (as in the first cycle of Solution Generation). The
continuous part is set equal to the absolute difference between the continuous
parts of the two selected solutions divided by 2; component values below
lower bounds assume the values of the bounds.

– Local Search: One PO solution is randomly selected. The components of
two randomly selected positions in sequence Y1 are swapped. This process is
repeated for Y2. The continuous part of the solution is not modified.
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– Sequence Search: One PO solution is randomly selected. The integer parts
of this solution (Y1 and Y2) are replaced in turn by the integer parts of all
the other PO solutions. The integer parts giving the best f2 result are then
substituted into all the other PO solutions.

– Single Variation Search: One PO solution is randomly selected. The integer
part remains unchanged, while one component of the continuous part is
changed with a uniform distribution.

– Gap Filling Search: The PO solutions are ordered according to their f1
values. The pair of consecutive solutions that are furthest apart in objective
space is identified. A number of new solutions are generated. These inherit
the integer parts (Y1 and Y2) of the first of the pair, while the components
of the continuous part are generated randomly in the range spanned by
the corresponding components of the pair. Taking these new solutions into
account, this process is repeated a number of times. This function exploits
a characteristic of the problem under consideration, whereby solutions that
lie between others in solution space also lie between them in objective space.

These functions introduce new solutions that are used by the MOAA for the cre-
ation of new tribes and alliances: Differential Search helps to create new types
of solutions, especially on the edges of objective space; Local Search helps to im-
prove the characteristics of one particular solution by introducing small changes
in the discrete solution space; Sequence Search helps to find new sequences that
could benefit all the population in order to improve overall convergence; Single
Variation Search helps to improve the characteristics of one particular solution
by changing one continuous variable; Gap Filling Search helps to fill in the gaps
between solutions creating a well-spaced Pareto front.

5 The Problem and Performance Indicators

In this section details of the specific problem studied and of the indicators and
statistical test used to compare the performance of the two approaches are given.

5.1 Problem Configuration

The initial time of the entire task in Gregorian universal coordinated time
(UTCG) format is 1 June 2015 00:00:00.00. The target spacecraft run on an
orbit similar to the operational orbit of the Globalstar constellation [13]: Q = 8,
ar = 7792.137 km and ir = 52◦. The initial arguments of latitude of the
target spacecraft and reconfiguration positions are provided in Table 1. The
chaser’s initial argument of latitude and RAAN are 20◦ and 100◦ respectively.
The initial RAANs of the target spacecraft are all equal to 100◦. The dry
mass of the chaser mcQf = 500 kg, the initial mass of each target spacecraft
mp0 = 350 kg, the propellant used for each target’s daily operation Δmp0 =
100 kg, and the capacity of each target’s propellant tank Δmmax = 200 kg. The
thruster parameter g0Isp = 3000 m/s, and the geocentric gravitation constant
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Table 1. Initial target spacecraft and reconfiguration position arguments of latitude

Serial Target Reconfiguration
number spacecraft position

1 10◦ 0◦

2 55◦ 45◦

3 100◦ 90◦

4 145◦ 135◦

5 190◦ 180◦

6 235◦ 225◦

7 280◦ 270◦

8 325◦ 315◦

μ = 3.986004418×1014 m3/(kgs2). The reference orbital period T0 = 6845.353 s,
and the bounds on rendezvous orbital transfer time, service time and recon-
figuration orbital transfer are durq ∈ [10T0, 600T0], serq ∈ [10T0, 600T0] and

dur
′
q ∈ [10T0, 600T0] respectively.

5.2 Indicators and Statistical Test

The performance measures chosen to evaluate the algorithms are the epsilon
indicator [20] and hypervolume indicator [21] taken from the PISA package [22].
Given a reference set of points (ideally the true Pareto front, if available) the
epsilon indicator measures the minimum amount ε necessary to translate all
the points of the found Pareto front to weakly dominate the reference set. The
hypervolume indicator [21] measures the hypervolume of the space dominated
by the found Pareto front and compares it to the hypervolume of the space
dominated by a reference set (again, ideally the true Pareto front). This indicator
needs a reference point which is dominated by all the found points in order to
bound the hypervolume.
The statistical test chosen for result evaluation is the Mann-Whitney test,

provided in the PISA package [22]. This is a non-parametric rank-based test
that can be used to compare two independent sets of sampled data. It outputs
p-values that estimate the probability of rejecting the null hypothesis of the study
question when that hypothesis is true. Here the p-values can be interpreted as
the probability that the performance of one algorithm is superior with statistical
significance to that of the other.

6 The Tests

In this section the performance of the mixed-integer version of MOAA is com-
pared with that of the hybrid algorithm based on NSGA-II. The latter is a com-
bination of an integer-coded GA for classical TSP [23] and the real-coded version
of NSGA-II [8]. The design variable vector Y = (Y1, Y2, Y3) is used directly as
the chromosome of an individual: the arithmetical crossover and non-uniform
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mutation operators are applied to Y3 [8], while the ordered crossover (OX) and
three-point displacement mutation operators are both applied to Y1 and Y2 [23].
An elitist strategy is employed alongside tournament selection during the algo-
rithm’s selection phase.
The two algorithms were tested with limits of 1000 and 2000 function evalua-

tions. Every test was repeated 20 times. The reference set used for the compari-
son was composed of the PO solutions found by both algorithms. The algorithm
parameters used are shown in Table 2. The same MOAA parameter values were
used in both cases. For the hybrid NSGA-II the number of generations was
changed. In MOAA Gap Filling Search 5 solutions were generated for 20 gaps.

Table 2. Algorithms parameters

Mixed-integer MOAA Hybrid NSGA-II

Parameter Value Parameter Value

Number of tribes 8 Population size 40
Standard deviation used 0.2 Number of generations 25 (1)
for the creation of tribes 50 (2)

Maximum number of 3 Tournament selection 3
variations in new tribes scale

Solutions created by 20 Crossover probability 0.8
Differential Search of real variables

Solutions created by 40 Crossover probability 0.7
Local Search of integer variables

Solutions created by 100 Mutation probability 0.4
Single Variation Search of real variables

Solutions created by 100 Mutation probability 0.3
Gap Filling Search of integer variables

Table 3 shows the means and standard deviations of the epsilon and hyper-
volume indicators. It is evident that the mixed-integer MOAA has outperformed
the hybrid NSGA-II with respect to both indicators, for both of which smaller
values indicate better performance.

Table 3. Performance comparison between the two algorithms

Mixed-integer MOAA Hybrid NSGA-II
Epsilon Hypervolume Epsilon Hypervolume

Evaluations Mean Std Mean Std Mean Std Mean Std

1000 0.0460 0.0171 0.0238 0.0111 0.0959 0.0227 0.1490 0.0357
2000 0.0266 0.0091 0.0114 0.0093 0.0384 0.0103 0.0249 0.0147

The 20 values of the epsilon and hypervolume indicators after 1000 function
evaluations (top two graphs) and 2000 function evaluations (bottom two graphs)
sorted from best to worst are shown in Fig. 2. In all the graphs there is a clear
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Fig. 2. Comparison of the two indicators for both algorithms on both tests

Table 4. Mann-Whitney test between the two algorithms

p(A > B) p(A > B)
Evaluations epsilon hypervolume

1000 0.99 0.99
2000 0.99 0.99

gap between the MOAA and hybrid NSGA-II lines; this is particularly apparent
in the hypervolume graph for 1000 evaluations.
Table 4 shows the probability that the mixed-integer MOAA (A) performs

better than the hybrid NSGA-II (B) applying the Mann-Whitney test to the re-
sults obtained for the epsilon and hypervolume indicators by the two approaches.
This test confirms that the MOAA is consistently better (probability very near
to 1) in both tests for both indicators.
Fig. 3 shows the results (PO solutions found in individual runs) combined for

the 20 runs of the two algorithms after 1000 (on the left) and 2000 (on the right)
function evaluations. In both cases many MOAA solutions dominate the hybrid
NSGA-II solutions, showing better convergence. This characteristic is confirmed
in Fig. 4 where it is shown that the non-dominated solutions found by the MOAA
dominate those found by the hybrid NSGA-II, providing the decision-maker with
higher quality solutions to choose from.
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Fig. 3. Comparison of the algorithm results from 20 runs in both tests
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Fig. 4. Comparison of the non-dominated solutions found in both tests

7 Conclusions and Future Work

The paper has presented a satellite constellation refueling optimization problem.
The problem was solved by a mixed-integer version of the MOAA, a recently
introduced multi-objective variant of the Alliance Algorithm. This performance
is compared with that of a hybrid-encoding GA, which combines NSGA-II and
an integer-coded GA for classical TSP. The results show that the MOAA is able
to outperform the hybrid approach based on NSGA-II over runs of 1000 and
2000 function evaluations’ duration. Although the number of function evalutions
was limited, MOAA was able to identify a useful set of solutions, making the
algorithm a sensible choice for the type of problem under consideration.
In future work the performance of the algorithm will be tested with an in-

creased allowed number of function evaluations, on more advanced forms of
satellite constellation refueling optimization problem with more practical dy-
namics models and considering engineering constraints, and the properties of
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the refueling orders in PO solutions will be analyzed. Moreover, other types of
support functions will be tested in order to seek further improvements in overall
performance.
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Abstract. The problem of design optimisation for planetary landing systems, 
which must address multiple criteria and constraints covering, for example, 
mass, trajectory, risk, and the cost of technology developments, is introduced. 
The approach used to solve this problem in the context of the real world issues 
faced and the decisions made is presented, and we demonstrate a tool which has 
been used in this way to explore the parametric space of possible landing sys-
tems for a number of planned and possible European missions to Mars, for use 
in early phase sizing studies. 

Keywords: Entry descent and landing systems, parametric optimization. 

1 Introduction 

Planetary science depends on in situ measurements. In the case of Mars, bringing a 
probe safely to rest on the surface provides a number of challenges, including a signif-
icant gravity, and an atmosphere which is thin but not negligible [1]. The entry, des-
cent and landing system (EDLS) is responsible for meeting these challenges, as the 
probe goes from hypersonic speeds at the top of the atmosphere to landing on the 
surface without damaging the fragile scientific equipment it carries. The design of this 
subsystem is essentially a multi-criteria constrained optimization task. 

1.1 Entry, Descent and Landing Systems Design 

A number of conflicting driving requirements must be considered in the design of  
the EDLS: 

• Minimise mass: At heart, the objective is to minimise the total mass of the EDLS: 
given that the mass which can be delivered to Mars is limited, every extra kilogram 
of EDLS mass means an equivalent reduction in the scientific payload. 

• Constrain height loss: The EDLS must slow the probe down sufficiently for safe 
landing in the available height between entering the atmosphere and reaching the 
ground. 
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• Constrain volume: Stowage constraints are also significant: the system must be 
able to fit on the launcher. 

• Reliability/complexity: There are potentially a number of single points of failure, 
and so the overall system design must consider the risk of mission loss. 

• Cost: This is also an issue, both that required in developing a particular technology 
under consideration to bring it to a sufficient Technology Readiness Level for use 
on a planned mission, and manufacturing costs. 

• Schedule: For any given mission, the timescales required to develop needed tech-
nologies, and the schedule risks this brings, must also be considered. 

• Landing Site Accuracy: For planetary science, another requirement is: how close 
to a selected site of scientific interest can the lander be placed? 

Different EDLS configurations can be considered. Atmospheric entry is always ef-
fected using a heat shield, which aerodynamically slows the probe from interplanetary 
speeds and dissipates the heat generated. In most cases, the entry phase is followed by 
deployment of a parachute once the probe has reached a sufficiently low speed, slow-
ing it even further. Different parachute systems have been used, which may include 
one or multiple parachute stages, and use parachutes of different types. Retro-rockets 
may be used at this point to reduce the speed even further. Finally, touch-down on the 
surface may be effected using airbags, crushable structures, or landing legs. 

Each of the different components carries out a different task within the overall 
EDLS. For example a heatshield is suitable for use at hypersonic speeds, but to reduce 
the speed adequately to transition to airbags, as drag is proportional to frontal area, 
would require heatshield far larger that could realistically be launched; a parachute 
can provide the required drag area for much less mass, and can be packed to take up 
only a relatively small volume. 

The overall EDLS design needs to be self-consistent. The final velocity that is 
achieved by one component needs to be compatible with the conditions at which the 
next component can be safely triggered. Likewise the sections of the trajectory for 
each stage of the descent must join up consistently, ensuring that there is enough alti-
tude to reach the final velocity and that the atmosphere density at each stage is consis-
tent with that assumed for sizing. 

The mass of the EDLS can be comparable to the mass of the landed payload, and 
so the mass of EDLS components being carried must be allowed for when sizing oth-
er components. In some cases, the self-mass term can also be significant: a parachute 
must support both the payload and its own mass. 

1.2 Previous Mission Experience 

Different past missions have chosen different EDLS configurations. The first success-
ful NASA landers, the Viking missions of the 1970’s, used a heatshield followed by a 
small parachute, and then used rockets to bring them to a soft landing on landing legs 
[1]. More recent NASA missions (Mars Pathfinder [2], Mars Exploration Rovers  
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(MER, the Spirit and Opportunity rovers) [3]) have used a heatshield followed by a 
single stage parachute and retro-rockets, but used airbags for landing.1 The unsuccess-
ful European Beagle 2 lander, on the other hand, used a two-stage parachute system 
and airbags without an intervening rocket stage [5]. NASA’s most recent mission, 
Mars Science Laboratory (MSL, the Curiosity rover), used a single-stage parachute 
followed by an innovative “sky-crane” system which lowered the lander to the ground 
from a rocket-propelled carrier [1]. 

The different choices of EDLS have been driven by several different factors. The 
optimum system is heavily dependent on the lander mass: the best system to use for a 
small lander is different to that for a large lander. For example, scaling the airbag 
system successfully used for MER for the considerably heavier MSL was determined 
to be impossible: the airbag mass grew much more rapidly than the lander mass. Im-
provements in knowledge about Mars and in technology have also led to evolution in 
descent and landing systems. The Viking mission added greatly to our knowledge of 
the Martian atmosphere, reducing the margins required for the landing system. Over 
the same period, airbag technology improved significantly, mainly driven by automo-
tive applications. 

1.3 Planned Missions 

We have thus shown that the problem of designing and entry, descent and landing 
system for a planetary mission is driven by multiple requirements, and that the optim-
al solution for one mission may look quite different to that for another. Within this 
paper we consider particularly the missions to Mars that the European Space Agency 
(ESA) is considering over the next decade: 

• ExoMars: the planned European / Russian mission which aims to search for signa-
tures of past or present life on Mars, which will deliver a 600 kg surface platform 
in October 2016 [6].2 

• Mars Network Science Mission: a mission to place three small (~ 150 kg) landers 
onto the Martian surface, to make simultaneous measurement from multiple loca-
tions for seismology, geodesy and meteorology studies, which is currently under-
going early-phase concept studies [7]. 
 

                                                           
1 All Mars missions which have used airbags have used the non-vented type, commonly re-

ferred to as “bouncy ball airbags”, which entirely surround the lander, and where the lander 
will bounce multiple times before coming to rest. Airbags which are designed to release gas 
on impact and so only have a single impact (“vented airbags”) have been studied, but not 
flown; such designs have more in common with the airbag systems used in aircraft and auto-
mobiles, and have the advantage of only needing to cover one face of the lander [4]. 

2 ExoMars consists of several spacecraft to be sent to Mars on two separate launches, in 2016 
and 2018. The entry, descent and landing system for the 2016 mission is the responsibility of 
ESA. The entry, descent and landing system for the 2018 mission is joint the responsibility of 
the Russian Federal Space Agency, Roscosmos, and ESA. The 2018 mission is not considered 
in detail here. 
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• Mars Sample Return, a long-term objective of the science community to return 
macroscopic samples to Earth, which would use one or more larger landers. A 
number of studies of various technological developments which will be needed for 
sample return are ongoing [8]. 

Each of these future missions has quite different requirements in terms of the mass to 
be landed, the landing site accuracy required, tolerance of risk and development cost, 
and so on, demonstrating the advantages of a tool which can be used for trade-offs in 
support of early-phase sizing studies, identifying the regions of parameter space 
where each should focus their efforts. 

1.4 EDLS Design Problem 

Overall, the EDLS design question can be split into two parts. Firstly, sizing calcula-
tions are used to find the masses for all components, canopy sizes, airbag designs, 
etc., for a self-consistent design. These calculations can look at different overall con-
figurations (e.g. single-stage vs two-stage parachute, and with or without retro-
rockets) to find the optimal design within each configuration, for example varying the 
size of the two parachutes and the amount of retro fuel to find the system which mi-
nimises the overall EDLS mass and stowed volume. The overall optimum design is 
then found by comparing different configurations. Secondly, the proposed design 
must be tested through trajectory simulation. The ideal design process would have 
tight integration of the two parts, using trade-off studies and optimisation to rapidly 
converge on best design, and then feeding the results of simulation into improved 
design, to find the best overall choice of design parameters. 

Such design trade offs are needed in many engineering problems. Initial trade-off 
studies, using simplified models, can be used to get a rapid understanding of the com-
plete parameter space. For this purpose, the models need the right balance between 
detail and complexity: they must capture the essential aspects of the real-world prob-
lem, while being simple enough to allow rapid evolution of design. The choice of 
parameters to trade off is critical, allowing identification of the most promising re-
gions of parameter space, providing a starting point for more detailed investigation. 

The decision maker in this case is typically an experienced EDLS engineer, need-
ing to provide supporting justification to the engineering team responsible for the 
overall mission. The design process required is therefore one which keeps the deci-
sion maker very much at the centre, allowing a wide range of designs to be explored 
and traded off, rather than focusing on the detailed numerical optimisation. 

2 Parametric Sizing Tool 

The Parametric EDLS Sizing and Design Optimisation tool (PESDO) provides a 
framework for the design of Entry, Descent and Landing Systems (EDLS). PESDO 
can be used to perform parametric sizing and end-to-end trade-off studies of entry, 
descent and landing systems, to estimate component sizes and masses, and to consider 
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trade-offs, such as between mass and landing site accuracy, and finding the optimal 
balance between the parachute and retro rocket systems. Such trade-offs must be 
made in the choice of an optimal system. 

PESDO is intended for use in relatively early-phase system studies, to explore  
a wide range of potential mission options. In such studies, PESDO can be used to 
compare different possible EDLS configurations (e.g. comparing different types of 
parachutes or different strategies for powered descent) and broadly identify preferred 
regions within the parameter space of all possible EDLS designs. 

PESDO is based on an internal tool developed at Tessella over a number of years 
to support EDLS design work on missions including Beagle 2 and ExoMars, and for 
studies such as the Robust Entry, Descent and Landing Guidance and Control Tech-
niques study.3 Its original form was based on Excel and incorporated engineering 
estimates, sizing approaches and input data gathered from considerable previous work 
and expertise in the field (both in and out of the space industry). The tool was up-
graded during 2006 to a MATLAB-based form, built on Tessella’s generic simulator 
structure. This has enormously expanded the capabilities of the tool, allowing very 
large parameter spaces of design points to be investigated easily. The underlying 
structure brings complete traceability and repeatability and greatly reduces the risk of 
errors in setting up the calculations. Where possible, the calculations have been vali-
dated against independently determined design points, such as past missions. 

Having recognised that this capability would prove valuable in studies for a wide 
range of future missions, ESA asked Tessella to turn PESDO from an internal tool 
into a deliverable piece of software suitable for use internally by ESA. Tessella have 
also investigated ESA’s general requirements for EDLS design and optimisation ca-
pabilities, in view of expected and possible future missions. In recent years, the tool 
has been used on preliminary studies being run by ESA in preparation for the Net-
work Science and Sample Return missions. During the evolution of the tool, new 
capabilities have been added to PESDO based on feedback from decision makers 
regarding the requirements of different missions. 

The central concept of the tool is the “design point”, a mapping from some speci-
fied inputs (such as the chosen EDLS sequence, masses of non-EDLS elements, re-
quired triggering values) to the outputs (masses and sizes of the EDLS elements, land-
ing accuracy achieved). By examining suitable ranges and grids of the input values, 
the sensitivity of the design to these variations can be established, allowing trade-offs 
to be examined and optimal designs to be identified. 

PESDO is not limited to considering obvious parameters such as mass and stowed 
volume but can also include such aspects as development cost and risk. The sensor 
requirements for the different designs can also be studied. 

The EDLS components available in PESDO include single- and two-stage para-
chute systems using a number of parachute types, retro-rocket systems including sol-
id- and liquid-fuelled rockets, and landing system, including vented and non-vented 

                                                           
3 For technical background on the EDLS problem and an overview of the role that Tessella’s 

parametric analyses played in ExoMars, the reader is directed to Ref. [9]. 
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airbags.4 By selecting an appropriate set of components, end-to-end sizing calcula-
tions for many different EDLS configurations can be performed. 

A simple trajectory model is used to determine a figure of merit for landing site ac-
curacy or height loss performance. The trajectory calculation can also check that the 
system reaches near-terminal velocity under the parachute, in order to evaluate 
whether duration of the parachute phase was long enough (i.e. that deployment was 
high enough). Different triggers for parachute deployment (e.g. timer based, accelera-
tion based or range based) can be considered, and their impact on the dispersion as-
sessed. The calculation can also look at the effects of atmospheric variability, sensor 
errors and wind unpredictability on landing site accuracy as well as height loss per-
formance. These calculations are not intended to be used for evaluation of the actual 
system performance (which requires more accurate trajectory simulations), but simply 
to give a measure of comparison between the different design points. This provides 
qualitative understanding of the effects of the input parameters on the trajectory per-
formance in a consistent way, a key input for the error budgeting, and indicates 
invalid areas of the parameter space. 

PESDO is designed to be a flexible tool, able to cope with the needs of different 
users to consider different missions and to perform studies for several phases within a 
particular mission. It is extensible: the user can define and use new components, al-
lowing the use of PESDO on a wide range of future missions involving as-yet unde-
termined EDLS components. Existing tools can be easily interfaced to the PESDO 
framework. 

2.1 Example PESDO Visualisations 

Some typical PESDO outputs are shown in the following figures. These are the types 
of outputs which are used by the decision maker to understand the effect that chang-
ing the input design parameters has on the outputs (mass, size, etc.) as part of the 
overall design process as controlled by the decision maker. 

Figure 1 shows how the tool can be used to find the mass of the different EDLS 
components as two key input parameters are varied: the acceleration being provided 
by the first stage (drogue) parachute when the second (main) parachute is triggered (a 
measure of drogue size), and the ratio between the ballistic coefficients of the main 
parachute and the heatshield (a measure of main parachute size). Because the initial 
position and velocity are the same in all cases, and the three components must be-
tween them reduce the velocity to zero just before landing, adjusting these two para-
meters allows the user to perform a three-way trade-off between the two parachutes 
and the retro system. As can be seen from the figure, the different components change 
mass at different rates: using a bigger parachute means that less fuel is required for 
the retro system, and vice versa. Hence the total descent and landing system mass 
varies, making it possible to select control parameters to produce the lightest system. 

                                                           
4 The PESDO tool excludes the entry phase, and does not at present consider heatshield sizing, 

as the entry phase is quite decoupled from the descent phase, and the solution is largely the 
same for all missions. 
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Fig. 1. EDLS component masses as a function of ballistic coefficient ratio and drogue decelera-
tion at main parachute deployment: drogue parachute mass (cyan), main parachute mass 
(green), retro system mass (red) 

It should be noted that PESDO is a tool for early-stage design work. As such, it 
tends to be used to explore a wide range of the available parameter space, rather than 
to “optimise” the design parameters to a high level of precision. Beyond the level of 
accuracy shown here, the differences between the final built system and the sizing 
estimate will become more significant than the differences between nearby design 
points, particularly as any engineering design evolves over the course of a lengthy 
project. 

In order to get meaningful sizing estimates of the different EDLS elements, the tool 
needs to have engineering models of an appropriate level of fidelity. Figure 2 demon-
strates the non-vented airbag model; the sizing estimates are based on scaling from 
the design used by NASA’s successful Mars Expedition Rovers, which used six in-
flated spheres on each face of an approximately tetrahedral lander. The airbag model 
selects the number of lobes on each face and the size of the lobes, based on the mini-
mum stroke length (minimum distance that the deceleration must take place over in 
order to keep the loads on the lander below the permitted value, which in this case 
means a deceleration of less than 40 g) and the size of the lander. The different  
layers of material (bladder layers, abrasion layers and restraint layers) are treated 
separately, as is the inflation system needed to produce the gas to inflate the airbag 
system. 
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Fig. 2. Airbag design. To show the relative size of the airbags, the lander without airbags is 
shown on the left. 

The tool considers a degree of local optimisation within individual EDLS compo-
nents. In the case of the airbags, this means selecting the optimal number of lobes per 
side which gives the lightest overall system. In the MER case shown above, there are 
6 lobes per side, arranged in billiard rack formation. It would be possible instead to 
come up with a design with 3 or 10 lobes instead. In this case, a system using 10 
spherical lobes is not possible: the spheres are all smaller, reducing the stroke length 
below the minimum. Three large lobes would be possible, but leads to a heavier air-
bag system. Having only a small number of options to choose from, this local optimi-
sation is carried out simply by running the sizing calculation for each option and pick-
ing the one which gives the lowest mass. We refer to this question as a local optimisa-
tion because the number of lobes in an airbag system is decoupled from all of the 
other EDLS components, unlike the trade-off between parachute and retro mass dis-
cussed previously where the choice of control parameter has direct consequences 
across the entire descent sequence. 

The outputs shown in Figure 1 are smoothly varying functions of the inputs, which 
is relatively common for the EDLS sizing calculations performed in PESDO. Howev-
er, Figure 2 demonstrates an example of a system which will have step changes in the 
results: adding an extra row of lobes will lead to a discontinuity in the system proper-
ties. Other discrete quantities include the number of layers of material used in the 
airbags, or the number of lines used in a parachute. Similarly, it is usually necessary 
to make certain components out of commercially-available materials such as para-
chute fabrics and cables. There are only a limited range of these available, and so, for 
example, as the shock load at deployment is increased, we reach a point when we 
need to make the parachute using a stronger, and hence heavier, fabric, thus step 
changes occur in the parachute mass. 
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Fig. 3. Trade off between total descent system mass and the height loss performance. The plot 
shows all of the points in parameter space requested by the decision maker, including both 
dominated and non-dominated results. The lines between points are drawn to guide the eye. 

Figure 3 shows how the tool can be used to study the trade off between descent and 
landing system mass and the height loss performance that can be achieved, as the 
sizes of the first and second parachute stages (the same parameters as in Figure 1, 
corresponding to different lines and different points on the same line respectively) are 
varied. Systems with bigger main parachutes (on the right) are heavier; however, they 
also tend to provide more deceleration throughout and hence less height loss. General-
ly a heavier system can stop in less altitude, permitting its use at higher altitude land-
ing sites, although it can be seen that the curves “turn around” at the left side: making 
the second-stage parachute smaller leads to more mass being required for the retro 
system, which beyond a certain point leads to a heavier system overall. 

The ideal system would be as close to the bottom left corner as possible. A clear 
Pareto frontier can be seen in the plot: to get any particular height loss performance 
requires a minimum EDLS mass; other systems require higher EDLS mass to achieve 
the same height loss performance. For the present purpose, it is found to be sufficient 
to produce a plot such as Figure 3 so that the Pareto frontiers can be identified by eye; 
the plot is useful in that it aids the decision maker directly, rather attempting to pro-
vide an “automatically” optimised decision. 

The types of investigation discussed above allow the user to compare different de-
sign points within a single configuration (a two-stage parachute system followed by 
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retro-rockets and airbags in the example shown). PESDO also allows the user to try 
out different configurations, to see which one can give the best overall design. 

In section 1.1 we listed a number of driving requirements which the tool must ad-
dress. Of these, the outputs shown above have looked mainly at mass and height loss. 
Packed volume and landing site accuracy are included similarly. As the tool is cur-
rently used, issues such as cost, schedule and reliability are are treated more qualita-
tively, as matters for the decision maker to consider when choosing between different 
overall designs, rather than being quantified within the tool. 

2.2 Optimisation 

We have demonstrated above how PESDO can be used to find “optimal” solutions 
which consider both local optimisation (within a single EDLS component, i.e. able to 
be decoupled from the wider problem) and the global picture. 

As noted previously, the results of the sizing calculations tend to be relatively 
smoothly varying functions of the inputs, though sometimes with (a relatively small 
number of) step discontinuities. Numerical optimisation on such a function is general-
ly not difficult. However, the problem that we face here is that it would be difficult to 
define a single numerical measurement for optimality, taking into account the differ-
ent drivers: mass, stowage volume, performance, cost, development required, sche-
dule risk, etc. Although it might be possible to define such a measurement for a spe-
cific mission, the balance required between the driving factors varies between mis-
sions, and hence a different single measurement would be appropriate for each mis-
sion. A tool such as PESDO can provide valuable support to expert users in the 
process, enabling them to understand and justify the design choices made, rather than 
attempting to provide the user with a single “answer”. As such there is a balance to be 
found between what the tool can do and what the user needs to do. 

3 Conclusions 

We have demonstrated that the problem of systems engineering for planetary entry, 
descent and landing is driven by multiple, sometimes conflicting, criteria. We have 
demonstrated an approach, and a supporting software tool, which is being successful-
ly used on a number of planned ESA missions to Mars. We have also discussed the 
limitations to this approach, both engineering (the limits to the accuracy with which it 
is sensible to model the system) and in terms of the desire of decision makers to have 
a tool which they can use to investigate and understand trade-offs, rather than to pro-
vide a definitive (but actually quite debatable) answer. 
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Abstract. We compare the ability of single and multi-objective evo-
lutionary algorithms to evolve tunable self-sustained genetic oscillators.
Our research is focused on the influence of objective setup on the suc-
cess rate of evolving self-sustained oscillations and the tunability of the
evolved oscillators. We compare temporal and frequency domain fitness
functions for single and multi-objective evolution of the parameters in
a three-gene genetic regulatory network. We observe that multiobjec-
tivization can hinder convergence when decomposing a period specific
based single objective setup in to a multi-objective setup that includes a
frequency specific objective. We also find that the objective decomposi-
tion from a frequency specified single objective setup to a multi-objective
setup, which also specifies period, enable the synthesis of oscillatory dy-
namics. However this does not help to enhance tunability. We reveal
that the use of a helper function in the frequency domain improves the
tunability of the oscillators, compared to a time domain based single
objective, even if no desired frequency is specified.

Keywords: Gene regulatory networks, in silico evolution, sustained
oscillation, evolutionary algorithms, multiobjectivization.

1 Introduction

An important area of computational science is systems biology, and over recent
years there have been many contributions to the field of biology from computer
scientists and mathematicians. Many biological systems lack a global theoretical
basis and one way to improve our understanding is to analyse the dynamics of
the system in silico, i.e. in a computational environment. The evolutionary syn-
thesis, or production, of these dynamics can be tested in computational simula-
tions to investigating biological hypothesis that may be subject to experimental,
theoretical and timescale limitations.
Nature is full of complex biological systems and those that are of interest to

biologists and computer scientists often consist of large numbers of interacting
genes. These complex networks can be broken down into smaller subnetworks

R.C. Purshouse et al. (Eds.): EMO 2013, LNCS 7811, pp. 696–709, 2013.
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often containing repeating patterns that appear more often than they would in
a random network [1, 2]. These repeating patterns are known as network motifs
and are believed to be the building blocks of complex biological networks, which
are modular in structure [1, 2]. Motifs that produce self-sustained oscillations
are particularly important in biological systems [3, 4] and are involved in circa-
dian rhythms [5] and the active transport of hydrogen ions [6]. The ability to
accurately tune the period of a genetic oscillator is vital in biological modelling
due to the range of oscillator periods observed. Biological oscillatory time scales
range from seconds for neuronal and cardiac rhythms [5], to minutes for mitosis
cell cycles [7], to hours for the sleep/wake cycle [8] and circadian rhythms [6],
to weeks for the ovarian cycle [5] and to years for predator-prey population cy-
cles [9]. Further examples and details about biological oscillations can be found
in [5, 10, 11].
To produce oscillations, biochemical systems require negative (repressive) reg-

ulatory circuits [4], which also improves robustness to environmental perturba-
tions [12], a necessity of many biological systems [1]. Moreover negative auto-
regulation (NAR), where a gene will repress its own protein production, results
in a rapid response to an input signal which is important for biological systems
and are common in biology as it can help reduce noise [1]. Positive feedback
loops have been demonstrated to enhance frequency tunability in biological os-
cillators, with little cost to amplitude, biological systems therefore often contain
both positive and negative regulatory circuits [13].
Gene regulatory networks (GRNs) can be modelled through gene-protein in-

teractions, where genes produce proteins, which interact with genes and affect
protein production. The dynamics and structure of GRNs is important in the
understanding of natural evolution [3] and the analysis of GRN motifs is a grow-
ing area of importance in systems biology [1, 14]. A common way to model gene
regulatory dynamics is to use differential equations [15]. To generate typical reg-
ulatory dynamics in silico, evolutionary algorithms (EAs) have widely been used
to evolve the parameters and structure of GRNs [3, 16, 17, 18, 19]. However, it is
noted that the evolution of oscillatory dynamics is non-trivial and many different
objective functions have been suggested to facilitate the evolution of oscillation
[3, 16].
In this work, we investigate the use of techniques such as multi-objective

optimisation and multiobjectivization to improve the success rate and tunability
in evolving sustained genetic oscillators, which have been used to accelerate
convergence speed and obtain the global optimum [20, 21, 22].
The differential equations describing the dynamics of the genetic networks

studied in this work are introduced in Section 2. Various single and multi-
objective fitness setups are proposed in Section 3. The description of the single-
and multi-objective EAs adopted in this work is given in Section 4, followed by
the experimental results and discussions in Section 5. Section 6 concludes the
paper and suggests a few topics for future work.
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2 Gene Regulatory Networks

Here we model the GRN, shown in Fig. 1, using the interaction of the genes
through their protein production. The GRN contains a negative feedback loop,
as this can generate sustained oscillations for interacting genes, and a positive
feedback loop, which has been demonstrated to aid evolvability, robustness and
tunability of the oscillator when used with a negative loop [13]. All genes in the
network also use negative auto-regulation (NAR), where the protein of a gene
represses its own production [3]. The use of NAR can decrease response time
to an input signal [1], which is an essential function in biological systems. This
functionality is important in many prokaryotic transcription networks, such as
E. coli, which uses NAR in up to 56% of it’s expressed transcription factors [23].

x3x1

x2

Fig. 1. A consistently regulated motif consisting of three genes with x2 as the target
gene. Here arrows and lines with bar ends represent activating and repressor inter-
actions between the genes respectively. All the genes here also have negative auto-
regulations (not shown).

Here we model the protein interactions between the genes using the following
differential equations,

ẋ1 = a12H12(x2)− a11x1 , (1)

ẋ2 = a23L
(
H23(x3), H21(x1)

)
− a22x2 , (2)

ẋ3 = a32H32(x2)− a33x3 . (3)

Where ẋi is the time derivative of xi, x2 is the target gene, aij are regulatory
parameters, Hij(xj) is the Hill function and L

(
H23(x3), H21(x1)

)
represents the

logic function which combines the interaction of two regulatory genes to the
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target gene. The Hill function can represent either an activating, Ha
ij(xj), or

repressive gene interaction, Hr
ij(xj), as shown in (4).

Ha
ij(xj) =

βxnj
θni + x

n
j

; Hr
ij(xj) =

β

1 + (xj/θi)n
, (4)

where i and j represent the gene interaction pair, xi and xj , n is the Hill coeffi-
cient, β is the production rate and θi is the threshold for gene xi. The interactions
from x1 and x3 to x2 are combined using summation logic, L(x, y) =

1
2 (x + y).

3 Single Objective versus Multi-objective Approach

3.1 Single Objective

Time Domain. It is possible to produce self-sustained oscillations in (1), (2)
and (3) by reducing the error between the dynamics of only the target gene,
described by (2), and a desired oscillatory state of a specified period. As an
oscillation can be described using a simple sine wave, we define the desired state
of the target gene as

xdtg(t) = sin

(
2πt

T

)
, (5)

where T is the period of the oscillator. Using this desired state we define the
mean specified time domain fitness, fts , for R number of runs of each individual
as

fts =
1

R

R∑
r=1

N∑
t=0

(
xitg(r, t)− xdtg(t)

)2
. (6)

Here r is the run number, N is the number of time steps and xitg(r, t) is the
state of the target gene for the ith generation of run r at time t. This mean
squared error (MSE) method provides a simple, tunable fitness function in the
time domain.

Frequency Domain. One difficulty with the MSE method in the time domain
is that an individual solution that produces a sustained oscillation that is out
of phase with the desired state, given in (5), will lead to a high MSE. This is
a consequence of the simple fitness function defined in (6). This high MSE may
lead to these individuals being removed from the population, possibly in favour
of solutions with a lower MSE value that do not produce oscillations. In order
to avoid this potential loss of desired solutions, a fitness function based on the
frequency of the oscillation is required. We perform a Fourier Transform on (5)
to determine the frequency of the oscillation using the FFTW3 algorithm, as it
has been demonstrated to be very efficient for discrete Fourier Transforms [24].
The maximum value in the frequency spectrum denotes the main frequency
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component of the wave, which is equal to the integral of the curve for a pure
sine wave. For the GRN dynamics there may be some chaotic behaviour initially
in the temporal plane so the distribution of frequencies may not be a delta-like
function as in the case for a pure wave. Therefore in order to produce a sustained
oscillation we first define the desired frequency for the target gene,

ωd
tg =MAX

{
F̂

[
sin

(
2πt

T

)]}
, (7)

where MAX denotes the peak in the frequency domain, F̂ [sin (2πt/T )] is the
Fourier Transform of the desired state of the target gene from (5). To determine
the fitness for solution i, we apply a Fourier Transform to the target gene and
calculated the MSE as in (6),

fωs =
1

R

R∑
r=1

N∑
t=0

(
F̂
[
xitg(r, t)

]
− ωd

tg

)2
, (8)

where xitg(r, t) is the state of the target gene. This is a slightly more complex ob-
jective setup than for the time domain, however, due to the efficiency of FFTW3,
there is no noticeable effect in computational performance.

3.2 Multi-objective

Time and Frequency Domains. Here we use the MSE fitness definition for
both the time and frequency domains in a multi-objective setup. Here we use
two objectives, f1 and f2, which are equivalent to (6) and (8) respectively. These
objectives have the same goal due to the inverse relationship between frequency
and period. This setup can therefore be considered a decomposition of the single
objectives described in Section 3.1, in to a multi-objective setup. This decomposi-
tion is referred to as multiobjectivization and has been shown to aid convergence
for certain problems [25, 26].

Time Domain and Non-Specific Fourier Transform. We also investigate
a multi-objective setup which uses a Fourier Transform, but not for a specified
frequency. In this method we use the MSE fitness function for the time domain
as defined in (6) and a frequency domain fitness different from (8). Here we use
the Fourier Transform not to specify a desired frequency, but simply to produce
an oscillation. To produce an oscillation of a non-specific frequency we use the
following fitness function with no need for a desired state

fωu =
1

R

R∑
r=1

1

MAX {ĝ (r, ω)}

∫
ĝ (r, ω) dω , (9)

where ĝ (r, ω) is the Fourier Transform of the target gene dynamics for the rth
set of random initial conditions,
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ĝ (r, ω) = F̂
[
xitg (r, t)

]
. (10)

The oscillator is tuned using the time domain fitness function, whereas the
Fourier Transform is to improve the oscillator success rates and remove the
non-oscillatory solutions. In this setup the two objectives are given by (6) and
(9) for f1 and f2 respectively. Again this is an example of multiobjectivization as
the addition of the frequency objective, although it does not specify a frequency,
is a helper function that could aid the algorithm in converging to oscillatory
solutions. This could help avoid solutions with a low fitness in the time domain
objective, such as an equilibrium that corresponds to the point of highest gra-
dient for the oscillations. As with objective decomposition, multiobjectivization
through adding helper functions has been shown to aid convergence [25, 27] and
may also provide more non-dominated solutions with no extra cost to functional
evaluation [22].

4 The Evolutionary Algorithms

To ensure fairness of the comparison of the single and multi-objective fitness
setups, we use the same crossover and mutation operators in the single and
multi-objective EAs. In addition, both algorithms adopt an elitism strategy.
The main difference is that in the single objective optimisation, a deterministic
elitism similar to the plus strategy in evolution strategies is adopted, whereas in
the multi-objective case, elitist non-dominated sorting operations are used, i.e.
NSGA-II [21]. NSGA-II has been shown to be successful at solving a wide range
of optimisation problems. In the following, we will present the details of the
two EAs.

4.1 Genetic Variations

Simulated Binary Crossover. The standard recombination operator used in
binary genetic algorithms (GAs) is the crossover operator, in which segments
are taken from the string of values of the parents to form the offspring. For
real-coded GAs, however, a simulated binary crossover (SBX) operation can be

used. For parent solutions x
(1,t)
i and x

(2,t)
i to produce offspring solutions x

(1,t+1)
i

and x
(2,t+1)
i first a random number, ui, between 0 and 1 is chosen and used to

determine

βqi =

⎧⎨⎩ (2ui)
1

n+1 if ui ≤ 0.5(
1

2(1−ui)

) 1
n+1

otherwise .
(11)

The offspring solutions are then calculated as follows:

x
(1,t+1)
i = 0.5

[
(1 + βqi)x

(1,t)
i + (1− βqi) x(2,t)i

]
, (12)
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x
(2,t+1)
i = 0.5

[
(1− βqi)x(1,t)i + (1 + βqi) x

(2,t)
i

]
. (13)

In all simulations we set the recombination probability to 0.9.

Polynomial Mutation. For binary coded algorithms, which are encoded by a
fixed length string, discrete mutation operations are used [28]. These operations
use a mutation probability to determine if the value of the parameter is flipped.
However for real-coded GAs, a polynomial mutation operator is used. For these
operations the mutation probability is based on the number of dimensions, Δ,
in the problem pm = Δ−1. The distribution of a spread factor is defined as,

P (βmi) = 0.5 (n+ 1) (1− |βmi|)n , (14)

where βmi is given by,

βmi =

{
(2ui)

1
n+1 − 1 if ui ≤ 0.5

1− (2 (1− ui))
1

n+1 otherwise .
(15)

If a mutation in the individual occurs, the parameter value is given as

x′ = x+ (α− δ)βmi , (16)

where α and δ are the upper and lower bounds for the mutation values respec-
tively. Further details of both the SBX and polynomial mutation operations can
be found in [29].

4.2 Single-Objective Selection

For the single objective (SO) setup we use an elitist strategy known as (μ+ λ),
where after each generation μ parents and λ offspring solutions are combined and
ranked in terms of their fitness. The fittest λ solutions of this combination are
selected as the parent population for the next generation. We adopt this strategy
for both the objective problems given in (6) and (8) and use a population size
of 100 for both parent and offspring solutions. This strategy ensures that good
solutions are not discarded after each generation, and has been demonstrated to
aid convergence in many optimisation problems [17, 21, 30]. It has been widely
reported that elitist strategies can lead to premature convergence at local, rather
than global, optima for some optimisation problems. However, here we are in-
terested in the production of self-sustained oscillations rather than obtaining
a global optimal solution and therefore all solutions that produce oscillatory
dynamics are considered successful.

4.3 Multi-objective Selection

The two multi-objective (MO) setups described in Section 3.2 are solved us-
ing the elitist non-dominated operations in NSGA-II. Here, after fitness evalua-
tion, parent and offspring solutions are combined and sorted into non-dominated
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fronts, where front 1 is comprised of non-dominated solutions, front 2 is com-
prised of solutions that are only dominated by the solutions on front 1, etc.
Next the crowding distance operation is applied to all solutions, which is the
average distance between a solution and its nearest neighbours on the same
non-dominated front. A new population of size μ is then filled from the non-
dominated fronts starting with the solutions on front 1, then from successive
fronts if there are spaces in the new population. If there are more solutions on
a front than spaces in the population the most diverse solutions, i.e. those with
the largest crowding distance, are selected. Once this new population is full, two
randomly selected solutions are compared in a tournament selection, with a low
front wining the tournament. In the case that the solutions are from the same
front, the solution with the higher crowding distance is selected as the better
solution to promote the diversity of the population. The resulting solutions from
the tournament selection form the mating pool for the next generation and the
crossover and mutation operations described in Section 4.1 are applied to pro-
duce the next generation of offspring solutions. Further details on this algorithms
and the operations used can be found in [21].

5 Result and Analysis

5.1 Success Rates: Untuned Oscillators

Single Objective. All objective setups are simulated 50 times for different ran-
dom number seeds to investigate the success rates of the method at producing
self-sustained oscillations. We run all simulations for 100 generations. Oscilla-
tions, of varying periods, are observed in 31 runs for the time domain fitness
setup described in Section 3.1. For the frequency domain setup, also described
in Section 3.1, no oscillations of any period were observed. Although the single
objective time domain setup can potentially lead to the loss of oscillatory so-
lutions due to phase shifts, it is still successful at producing oscillations. The
frequency domain method is not only unable to avoid the potential problem of
phase shift in the time domain, it is unable to lead to oscillatory dynamics at
all, sustained or damped.

Multi-objective. For the multi-objective setups, the combination of the time
and frequency domain single objectives described in Section 3.2, lead to 24 ob-
served oscillations out of the 50 test cases. The decrease in observed oscillations
may be due to the frequency domain objective, which is unable to produce os-
cillations unaided. To further test the effect of multiple objectives in oscillation
production success rates, we also used the setup of the single objective time
domain fitness and an untuned Fourier Transform fitness as described in Sec-
tion 3.2. Here we observed 22 oscillations of the 50 simulations, showing a slight
decrease compared to the other multi-objective setup.
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Fig. 2. Tunability of the oscillator for single objective (SO) and multi-objective (MO)
setups. The objective setup is indicated by ts, ωs and ωu for (6), (8) and (9) respectively.
Here Included is a y = x line for clarity.

5.2 Success Rates: Tuned Oscillators

We also investigated the tunability of the oscillator period using the four setups
detailed in Section 3. Here we simulate oscillator periods varying from 1 to 20
for 50 test cases. The oscillators are tuned according to (6) and (8), however the
observed oscillations produced appear to vary in period for each test case. The
periods of the successful oscillations are measured and compared to the desired
oscillator period shown in Fig. 2. Here we compare the observed oscillator periods
for all setups against the desired periods. The single objective frequency domain
method is not included as there were no observed successful oscillations. The
multi-objective (MO) setups provide more solutions than the single objective
(SO) setup because the MO simulations contain an archive of solutions which
cannot be compared directly and so all oscillatory solutions are plotted. For a
given MO simulation there may be several solutions in the archive that produce
oscillations, but not necessarily all. This leads to a range of observed periods for
each simulation at each desired period. For MO simulations with more than one
oscillatory solution, the observed periods are averaged to give the datum point
in Fig. 3. The error bars are the maximum and minimum periods observed in
that simulation and represent the spread of that values. For the MO simulations
that only have one successful solution a single point only is included.
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Fig. 3. Averages for multi-objective (MO) results. The MO points represent the average
oscillator periods and the error bars represent the maximum and minimum values for
each simulation; see text for details.

These results indicate that neither the single or multiple objective setups
are tunable for the small three gene configuration, Fig. 1, used here. The SO
setup in the time domain appears to be tunable for low period oscillations T ≤
9. At higher oscillator periods however, this setup becomes less tunable and
begins to diverge from the desired period. The MO methods both demonstrate
a large spread of periods for successful runs. Though the average values appear
to follow a similar pattern to the single objective setup, with the exception of
a few outliers, this does not indicate a tunable oscillator. Average values are
used here as there is no direct way to compare archive solutions from the MO
setup and so we cannot say if a solution is better than another without further
analysis. Even when including all MO archive solutions only two solutions fall
on the line indicating the observed period is the desired period in Fig. 2. These
two solutions are at T = 11 and T = 12 and are the only oscillatory solutions
from the archive for their respective runs. This is represented by the fact that
they do not have bars on the values in Fig. 3. It is however worth noting that
the SO setup was unable to produce an oscillation at the period.

5.3 Discussion

No objective setup investigated in this work is able to reliably produce tun-
able oscillations. One notable observation here was the inability for a simple
frequency based objective function to produce an oscillation when an equivalent
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time domain objective is successful. This may be a result of the desired state
used as the Fourier Transform of a pure sine wave will produce a single peak
in the frequency domain. However the dynamics of a randomly initialised GRN
may initially be completely different and thus the EA is not able to find a pa-
rameter set that is able to produce a pure sine wave and therefore a single peak
in the frequency plane. When considering these aspects, and that the fitness only
determines the location of the peak with no width constraints, this objective is
more complex than the time domain objective. This is in contrast to (9), where
the width constraint comes from the minimisation of the MSE and therefore
the area of the curve. Thus, for the specified frequency objective, very broad
peaks that have low maximum values are considered good solutions if they peak
at the correct frequency regardless of the rest of the frequency profile. Adding
other objectives such as minimising the width of the peak could also be used.
However incorporating this into an objective that also specifies the location of
the peak, and thus the frequency, may be nontrivial. Further investigation in to
the frequency domain objective setup is needed in order to tune the oscillator.
The addition of a second objective based on an unspecified frequency, (9),

leads to a spread in the observed oscillator period. This is a consequence of the
second objective not specifying an oscillator period. Solutions that are oscillatory,
but not of the required period, will be retained if the value of (9) is low despite
the value of the other objective, (6). This gives an indication as to why there is
a large spread of observed oscillations and is likely to be a consequence of the
selection operations in NSGA-II. The crowding distance operation used in the
non-dominant sorting part of NSGA-II favours more diverse solutions to provide
a wide-spread Pareto front. This, however, will ultimately lead to solutions with
a low value for the unspecified frequency objective, (9), even at the cost of
a more optimal time domain objective. Thus in the Pareto optimal solutions
there may be many different oscillator periods representing the optimal solutions
for the unspecified frequency based objective. The addition of this objective
has however aided the convergence to tuned oscillators. It is able to produce
solutions that are close to the desired period for a larger range than the SO
setup using the same time domain objective. The improvement can be seen for
periods T = 5, 6, 10, 11, 12 and 14, with only a slight decrease in desired period
for T = 8 and 9 compared with the SO setup (see Fig. 2). However there are
potentially more solutions for this setup due to the Pareto front, thus more
analysis is required for this method than for a SO method.
In comparison with the above setups, the MO method, which specifies the

period and frequency, should help remove the spread of observed periods. How-
ever, this is not the case, and this setup performs worse with increasing oscillator
period. This cause of failure is likely to be the same as the SO specific frequency
setup. However it is interesting that the addition of another objective, that speci-
fies the period, enables this set to produce oscillations, though does not improve
tunability. This demonstrates that the decomposition of a SO problem into a
MO one can aid convergence for the case of the SO frequency domain objective
compared with the MO time and specified frequency domain setups. Here the
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SO frequency domain was unable to produce any oscillations but the addition of
a time domain objective enabled oscillatory dynamics to be produced from the
GRN.

6 Conclusions and Future Work

Both the decomposition of a single objective problem into a multiple objective
problem and the use of a helper function have effects on the convergence of the
problem investigated here. For the case of objective decomposition, we find that
the addition of a specified frequency based method to a time based setup does
not aid convergence, and performs worse in some cases. However for the case of
adding a time based objective to a frequency based setup, objective decomposi-
tion enables the evolution of oscillations though does not aid tunability. We also
observe that the use of an unspecified frequency based helper objective to a time
based objective shows improvements in tunability at some periods compared with
the single objective setup. This indicates that the effect of multiobjectivization
on performance is dependent on the problem and a general statement on the
effects cannot be made, which was also observed in [22, 25]. The results here
also indicate that the effects of multiobjectivization may also depend on the
objective setup and fitness domain used in the optimisation problem.
Objective setup in the in silico evolution of oscillatory dynamics of gene regu-

latory networks requires much more investigation, particularly the single objec-
tive frequency domain objective. Further investigation into objective setup could
lead to a tunable oscillator using a small gene regulatory networks and evolu-
tionary algorithms. Network size and loop combination have also been shown to
be important in tuning oscillators [13], therefore a wider range of gene regulatory
network structures, such as gene number, logic functions, auto-regulation and
feedback setups should also be investigated.
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Abstract. In this paper, a multicriteria approach for ranking the performance of 
the economic sectors of the Sinaloa economy is proposed, and the most attrac-
tive sectors are identified. To achieve this goal, the software SADAGE was 
used for solving ranking problems, which require one to rank a set of alterna-
tives - given evaluations in terms of several criteria - in decreasing order of  
preference. The approach uses the ELECTRE III method to construct a valued 
outranking relation and then a multiobjective evolutionary algorithm (MOEA) 
to exploit the relation to obtain a recommendation. The retail and manufactur-
ing sectors were ranked first in all the rankings; the utilities sector was ranked 
second in all the rankings; the mining sector and the management of companies 
and enterprises sector were ranked lowest. The results of this application can be 
useful for investors, business leaders, and policy-makers. This study also con-
tributes to an important, yet relatively new, body of application-based literature 
that investigates multicriteria approaches to decision making that use fuzzy 
theory and evolutionary multi-objective optimization methods. 

Keywords: Multicriteria Decision Analysis, Economic Sectors, Ranking  
Problem, ELECTRE III, Multiobjective Evolutionary Algorithms. 

1 Introduction 

One of the most important requirements for planning the economic development of 
developing countries is to be able to promote different economic sectors appropriately 
to contribute most effectively toward solving social, economic and other related prob-
lems. (Sudaryanto, 2000). 

The Mexican economy, like economies in other parts of the world, must address 
the new realities, challenges, and opportunities presented by the globalization of busi-
ness activities.  

Firms, industries and entire sectors operating within the Mexican economy have 
experienced varying degrees of success in coping with the competitive global eco-
nomic environment. Therefore, investors and policy-makers must assess economic 
performance in a relatively new context. 
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The relative performance of sectors within a given economy can be assessed using 
different types of traditional methods. It is important to select a method that is syste-
matic, practical and proven. Such an evaluation method should be multicriteria in 
nature because of the multidimensional nature of economic and business performance.  

This paper addresses the application of a Multicriteria Decision Aiding (MCDA) 
method to the evaluation of the relative performance of sectors in the Sinaloa econo-
my. The multicriteria analysis is intended to offers stakeholders (in particular, policy-
makers, investors and business leaders) a structured approach for the evaluation of the 
relative performance of economic sectors. To do this, specific economic indicators are 
considered and thus the assessment of the relative performance of economic sectors is 
made more transparent. The decision analysis performed by this approach aids the 
decision-making process because it permits a relatively large problem to be broken 
down into a set of less complex situations (Autran et al., 2011). 

In recent years, multicriteria-based methods have been employed to assess the per-
formance of economic sectors and have yielded decision-making implications (e.g., 
Augusto et al., 2005; Balezentis et al., 2012; Sudaryanto, 2000). However, such appli-
cations are still limited in number and scope. This relatively small number of applica-
tions is interesting because multicriteria methods can be adapted to the economic and 
social sciences (Treadwell, 1995).  

This study utilizes a multicriteria approach to construct an aggregation model of 
preferences and then a multiobjective evolutionary algorithm to exploit the model to 
rank the performance of economic sectors of the Sinaloa economy. While such an 
application has practical implications, the method has not yet been sufficiently devel-
oped. This study also contributes to an important, yet relatively new, body of applica-
tion-based literature that concerns a multicriteria, and multiobjective evolutionary 
approach to decision-making. 

This paper is organized as follows: the second section presents a brief description 
of the relevant literature concerning the performance of economic sectors. The third 
section describes a study and focuses on the procedure and method used. The fourth 
section describes a sensitivity analysis of the final result. The fifth section presents 
results and a brief discussion. The final section presents concluding comments. 

2 Literature Review 

Most social, economic, biological and environmental systems are complex in nature; 
therefore, measuring their performance is a multifaceted and difficult task (Augusto et 
al., 2005). Thus, economic sectors are not easy to compare. In practice, several ap-
proaches can be used to measure the performance of economic systems. These ap-
proaches include multiple criteria optimization (Steuer, 1986), multiple attribute deci-
sion theory (Keeney and Raiffa, 1993) and multicriteria decision aiding (Roy, 1996). 
The ELECTRE methods (Roy, 1996) are a group of well-known decision aiding  
methods. In recent years, a vast number of applications with ELECTRE methods to 
performance ranking problems were developed (Karagiannidis and Moussiopoulos, 
1997; Rogers and Bruen, 1998; Salminen et al., 1998; Teng and Tzeng, 1994;  
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Martel et al., 1988; Beccali et al., 1998; Georgopoulou et al., 1997; Siskos and Hu-
bert, 1983; Blondeau et al., 2002; Colson, 2000; Augusto et al., 2005; Leyva, 2005). 

Fuzzy set theory (Zadeh, 1965) is also significant in the social sciences and human-
ities because it can treat ambiguities, uncertainties, and vagueness that cannot be 
treated by methods that use crisp values. Balezentis et al. (2012) presented an inte-
grated assessment of Lithuanian economic sectors based on financial ratios and fuzzy 
Multicriteria Decision Making (MCDM) methods. Three fuzzy MCDM methods were 
applied in this study: VIKOR (Kaya and Kahraman 2011), TOPSIS (Yu and Hu, 
2010), and ARAS (Turskis and Zavadskas, 2010). 

Sudaryanto (2000) described the application of a fuzzy multi-attribute decision-
making model for the empirical identification of the key sectors of the Indonesian 
economy. Diaz et al (2006) presented a fuzzy clustering approach to identify the key 
sectors of the Spanish economy. Furthermore, Misiūnas (2010) analyzed the perfor-
mance of Lithuanian economic sectors using financial analysis. As demonstrated in 
previous studies (Xidonas and Psarras 2009; Xidonas et al. 2009, 2010), the applica-
tion of multicriteria decision making methods significantly improves the robustness of 
financial analysis and business decisions. Balezentis et al (2012) proposed a method 
of inter-sectoral comparison based on financial indicator analysis that uses multicrite-
ria decision aiding methods. 

Finally, evolutionary algorithms are beginning to be used in the outranking ap-
proach to address large-scale problems and to mitigate the complexity of some com-
putations in the outranking methods; the complexity is primarily due to the non-
linearity of the formulas used in these methods (Figueira et al., 2010). 

3 The Study 

3.1 Research Framework 

A decision-aiding method is only relevant for decision processes that involve decision 
makers. In this paper, we will focus our attention on the set of activities (steps) occur-
ring within such a setting. Tsoukias (2007) called such a set of activities a “decision 
aiding process”. The ultimate objective of this process is to arrive at a consensus be-
tween the decision maker and the analyst. The decision maker has domain knowledge 
concerning the decision process. In contrast, the analyst has methodological, domain-
independent knowledge. Given the decision maker’s domain knowledge and the ana-
lyst’s methodological knowledge, the analyst must interpret the decision maker’s 
concerns and knowledge so that he or she can improve his or her perceived position 
compared with the reference decision process. Such an interpretation ought to be 
“consensual” (Tsoukias, 2007). 

The multicriteria approach utilized in this study combines the logic of outranking 
models (the ELECTRE III procedure (Roy, 1996)) with multiobjective evolutionary 
algorithms (MOEA) (Leyva and Aguilera, 2005), aided by the SADAGE Software 
(Leyva et al., 2008), to solve the ranking problem. 
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Configuration of the Decision Aid Process. In a systematic decision aid process, 
there is a continuous flow of activities between the different phases, but at any phase, 
there may be a return to a previous phase (this is referred to as feedback). The general 
scheme of the ELECTRE III–MOEA method is schematically represented in Figure 1. 
A decision aiding process is not a linear process where the stages follow one another. 
Instead, it should be noted that the procedure is iterative rather than simply sequential. 
If the decision maker is unsatisfied with the result at any stage, he or she may return 
to any step and redo it. 

 

 

Fig. 1. General scheme of the ELECTRE III–Multiobjective Evolutionary Algorithms 

3.2 Data Source  

The data used in this study were obtained from a database supplied by The National 
Institute of Statistics and Geography (Instituto Nacional de Estadística y Geografía, 
INEGI, http://www.inegi.gob.mx), which performs the economic census in Mexico. 
The data are part of the 2009 Economic Census.  

The objective of the census is to obtain updated and reliable basic statistical data 
about establishments that manufacture goods, trade merchandise and render services 
to generate various detailed geographic, sectoral, and thematic economic indicators 
for Mexico. The classification used for the census is the North American Industry 
Classification System (NAICS) 2007. 

Table 1 presents the dominant economic sectors in Sinaloa, Mexico. 

Set of alternatives 

Performance of the alternatives, indifference and prefe-
rence thresholds

Set of criteria

Veto threshold 
Concordance index by 

criterion

Discordance index by criterion 

Weights 

Concordance relation

Fuzzy outranking relation  
Multiobjective 

 evolutionary algorithm 
parameters 

Multiobjective  
evolutionary algorithm 

1 total preorder 

Exploitation 
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Table 1. Dominant economic sectors in Sinaloa, Mexico 

Sector code (alternative) Economic sector 

1A  21 (212) Mining (except Oil and Gas) 

2A  22 Utilities (Electricity, Water and Gas Distribution to Final Customer) 

3A  23 Construction 

4A  31-33 Manufacturing 

5A  42 Wholesale trade 

6A  44-45 Retail trade 

7A  48-49 Transportation and Warehousing 

8A  51 Information 

9A  52 Finance and Insurance 

10A  53 Real Estate and Rental and Leasing 

11A  54 Professional, Scientific and Technical services 

12A  55 Management of Companies and Enterprises 

13A  56 Administrative and Support and Waste Management and Remediation Services 

14A  61 Educational services 

15A  62 Health Care and Social Assistance 

16A  71 Arts, Entertainment, and Recreation 

17A  72 Accommodation and Food Services 

18A  81 Other Services (except Public Administration) 

3.3 Criteria 

According to Bouyssou (1990) the criteria family should be legible (containing suffi-
ciently small number of criteria), operational, exhaustive (containing all points of 
view), monotonic and non-redundant (each criterion should be counted only once). 
These rules provide a coherent family of criteria. The criteria family used to rank the 
economic sectors are primarily economic. The criteria used in this study are reported 
in Table 2. These criteria are designed to capture the multidimensional nature of the 
performance of the studied sectors. These criteria include the following, where the 
last six are expressed in millions of Mexican pesos and all of them are defined with 
increasing preference direction in Table 2: 

• Number of employees 
• Remunerations 
• Total gross production 
• Intermediate consumption 
• Gross fixed capital formation 
• Gross value added 
• Total fixed assets 
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Table 2. Values of the criteria for each economic sector 

Sector 
code  
(alter-
native) 

Economic sector Number 
of  
em-
ployees 

Remu
nera-
tions  

Total 
gross  
pro-
duc-
tion 

Inter-
me-
diate 
con-
sump-
tion 

Gross 
fixed  
capital 
forma
tion 

Gross 
value 
add-
ed 

 

Total 
fixed 
as-
sets 

1A  
21 (212) Mining (except Oil and Gas) 1192 64 400 156 83 243 373 

2A  
22 Utilities (Electricity, Water and Gas 
Distribution to Final Customer) 

6257 1235 15607 7137 904 8469 3962
4 

3A  
23 Construction 22440 1172 11150 6910 188 4240 2384 

4A  
31-33 Manufacturing 58804 2729 35553 24376 824 11176 1447

8 

5A  
42 Wholesale trade 32044 1933 13103 4915 386 8187 5779 

6A  
44-45 Retail trade 130186 3031 17728 8625 2344 9103 1958

8 

7A  
48-49 Transportation and Warehousing 22529 976 6708 3396 275 3312 5832 

8A  
51 Information 5869 914 7897 4668 407 3229 4618 

9A  
52 Finance and Insurance 3906 3471 1329 938 17 390 238 

10A  
53 Real Estate and Rental and Leasing 6331 198 2473 970 36 1502 1575 

11A  
54 Professional, Scientific and Technical 
Services 

9710 527 1797 574 42 1223 656 

12A  
55 Management of Companies and 
Enterprises 

931 0 433 257 3 176 29 

13A  
56 Administrative and Support and Waste 
Management and Remediation Services 

17789 956 2424 810 288 1613 1423 

14A  
61 Educational Services 11941 835 2102 498 45 1604 999 

15A  
62 Health Care and Social Assistance 14461 304 1378 605 32 772 1122 

16A  
71 Arts, Entertainment, and Recreation 6286 128 1199 558 47 640 1017 

17A  
72 Accommodation and Food Services 43916 1082 6348 3889 235 2458 4406 

18A  
81 Other Services (except Public Adminis-
tration) 

32533 663 2890 1422 92 1467 2987 

 
Table 2 reports the values of the criteria for sector. The results in Table 2 unders-

core the differences that exist among the studied sectors based on the different meas-
ures used.  

3.4 Procedure and Methodology 

Multiple factors motivated the selection of the ELECTRE III method for the assess-
ment of the performance of the economic sectors of Sinaloa, Mexico.  

First, Leyva and Aguilera (2005) presented a MOEA to exploit a valued outranking 
relation, but it is interesting to demonstrate the functionality of the combination of 
ELECTRE III and MOEA to a real-world application. This method was systematized 
using the SADAGE software (Leyva et al., 2008), which was used to analyze the 
problem addressed in this study. 

Second, there exist a set of discrete alternatives and a set of economic dimensions 
that can be easily converted into a set of criteria. Additionally, the problem type ad-
dressed in this study can be modeled as a ranking problem. Based on the literature, the 
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ELECTRE family of methods is considered appropriate for addressing a problem type 
such as the one addressed in this study (see Roy, 1996). This is especially true for the 
ELECTRE III method. 

Third, ELECTRE was originally developed by Roy to incorporate the fuzzy (im-
precise and uncertain) nature of decision-making by using thresholds of indifference 
and preference. This feature is appropriate for solving this problem. 

Fourth, the decision maker is required to assign numerical values to the inter-
criteria parameters associated with the different criteria (Roy, 2006). 

Fifth, another feature of ELECTRE that distinguishes it from many multicriteria 
solution methods is that it is fundamentally non-compensatory. This means that  
good scores on some criteria cannot compensate for a very bad score on a different 
criterion.  

Finally, another feature is that ELECTRE models allow incomparability. Incompa-
rability, which should not be confused with indifference, occurs between some  
alternatives a and b when there is no clear evidence in favor of some type of  
preference or indifference. 

Two important concepts that underline the ELECTRE approach, thresholds and 
outranking will now be discussed. Assume that there exist defined criteria 

rjg
j

,...2,1, =  and a set of alternatives A. Traditional preference modeling assumes that 
the following two relations hold for the two alternatives Aba ∈, : 

)()()(

)()()(

bgagbtotindifferenisaaIb

bgagbtopreferredisaaPb

=⇔
>⇔

 

In contrast, the ELECTRE methods introduce the concept of an indifference thre-
shold, q; then, the preference relations are redefined as follows: 

qbgagbtotindifferenisaaIb

qbgagbtopreferredisaaPb

≤−⇔
+>⇔

)()()(

)()()(
 

Whereas the introduction of this threshold partially accounts for how a decision mak-
er actually feels when making real comparisons, a problem remains. Namely, there is 
a point at which a decision maker changes from indifference to strict preference. Con-
ceptually, it is justified to introduce a buffer zone between indifference and strict 
preference that corresponds to a decision maker hesitating between preference and 
indifference. This zone of hesitation is referred to as weak preference; it is also a bi-
nary relation like P and I above and is modeled by introducing a preference threshold, 
p. Thus, we have a double threshold model with an additional binary relation Q that 
measures weak preference: 

qbgagatobandbtotindifferenisaaIb

pbgagqbtopreferredweaklyisaaQb

pbgagbtopreferredstronglyisaaPb

≤−⇔
≤−<⇔

>−⇔

)()();(

)()()(

)()()(
 

The choice of thresholds intimately affects whether a particular binary relation holds. 
Although the choice of appropriate thresholds is not easy, in most realistic decision-
making situations, there are good reasons for choosing non-zero values for p and q. 

Note that we have only considered the simple case where thresholds p and q are 
constants instead of functions of the values of the criteria; the latter is the case of 



 An Application of a Multicriteria Approach to Compare Economic Sectors 717 

variable thresholds. While the simplification of using constant thresholds aids the 
utilization of the ELECTRE method, it may be worth using variable thresholds in 
cases where criteria with larger values lead to larger indifference and preference thre-
sholds. In this study, a government official acted as the decision maker and the au-
thors of this paper acted as the analyst. Table 3 reports the indifference and preference 
thresholds for the criteria used in this study. The veto threshold was not considered. 

Using thresholds, the ELECTRE method seeks to build an outranking relation S. 
aSb means that according to the global model of decision-maker preferences, there are 
good reasons to believe that “a is at least as good as b” or “a is not worse than b”. 
Each pair of alternatives a and b is then tested to check whether the assertion aSb is 
valid. This yields one of the following four situations:aSb and not(bSa);   not(aSb) 
and bSa;    aSb and bSa;   not(aSb) and not(bSa). 

The third situation corresponds to indifference, whereas the fourth corresponds to 
incomparability. 

Table 3. Indifference (q) and preference (p) threshold values 

 Criterion )( jg  Indifference )( jq  Preference )( jp  

1g  Number of employees 6000 14000 

2g  Remunerations  250 400 

3g  Total gross production 200 500 

4g  Intermediate consumption 300 600 

5g  Gross fixed capital formation 200 400 

6g  
Gross value added 

 
250 500 

7g  Total fixed assets 1100 2100 

 
Using thresholds, the ELECTRE method seeks to build an outranking relation S. 

aSb means that according to the global model of decision-maker preferences, there are 
good reasons to believe that “a is at least as good as b” or “a is not worse than b”.  

The thresholds and weights represent the subjective input provided by the decision 
maker. Weights used in the non-compensatory ELECTRE model are significantly 
different from weights used in compensatory decision modeling approaches. Weights 
in ELECTRE are “coefficients of importance” and, as Vincke (1992) notes, they can 
be considered votes for each of the criterion “candidates.” Roger et al. (2000) re-
viewed existing weighting schemes for ELECTRE and provided a useful discussion 
of the weighting concept in ELECTRE. Care also must be taken in determining thre-
shold values, which must relate specifically to each criterion and reflect the prefe-
rences of a decision maker. Procedures for choosing appropriate threshold values 
were addressed by Roger and Bruen (1998). The decision maker was assisted in de-
fining the 7 criteria weights, which are shown in Table 4. Personal Construct Theory 
(PCT), as suggested by Rogers et al. (2000), was used for the weight definition. 
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Table 4. Criteria weights 

1g  

2g  

3g  4g  

5g  

6g  

7g  
RtG  1+RtG  

Final Weight 

1g  ----- O X O X O O 2 3 1.07 

2g  X ----- X O X X O 4 5 1.79 

3g  O O ------ O X O O 1 2 0.71 

4g  X X X ------ X X O 5 6 2.14 

5g  O O O O ------ O O 0 1 0.36 

6g  X O X O X ------ O 3 4 1.43 

7g  X X X X X X ------ 6 7 2.50 

Total 21 28 10.00 

 
Notes 

1. 1+← RtGRtG to account for criterion 5. 
2. For every cell ij, {X, E, O} signifies that criterion 

ig  is {more, equal, less} impor-

tant than criterion 
j

g . 

3. The weight for every criterion 
ig  is obtained by dividing 1+iRtG  by the total. 

The input data used in the calculations are the values presented in Table 2 (the per-
formances of the alternatives). All compared alternatives and criteria have been used 
in the calculation. Information about the preferences of the decision maker – namely, 
the values of the indifference and preference thresholds for each criterion and the 
values of the relative importance of the criteria – are presented in Table 3 and Table 4. 
The values of the relative importance of the criteria indicate that the total fixed  
assets (

7g ) and the intermediate consumption (
4g ) criteria are most important to the 

decision maker. 
The computation has been performed on the input data (Table 2) and on the infor-

mation about the preferences of the decision maker (Table 3 and Table 4) using the 
ELECTRE III method. According to the additional information noted above, we ap-
plied ELECTRE III to construct a valued outranking relation, which has been omitted 
for the lack of space. 

This concludes the construction of the outranking model. The next step in the out-
ranking approach is to exploit the model and produce a ranking of alternatives from 
the valued outranking relation. Our approach for exploitation is to use a multiobjec-
tive evolutionary algorithm-based heuristic method, which is explained in the work by 
Leyva and Aguilera (2005). 

The valued outranking relation was processed using the MOEA to derive the final 
ranking and systematized using the SADAGE software. The MOEA used the follow-
ing parameters: the number of generations was set to 10,000; the population size was 
set to 40; the crossover probability was 0.85; and the mutation probability was 0.35. 
The restricted Pareto front, restricted

knownPF , that was determined and the associated final set 

of solutions returned by the MOEA at termination, restricted

knownP , are presented in Table 5. 

u , f , and λ are the objective functions of the MOEA.   
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Table 5. Restricted Pareto front determined and the associated individuals of the solution space 

Ran
king 1

~p  2
~p  3

~p  4
~p  5

~p  6
~p  7

~p  8
~p  9

~p  10
~p 11

~p 12
~p 13

~p 14
~p 15

~p 16
~p

1 
 6A  

4A  4A  6A  6A  6A  2A  4A  2A  6A  6A  4A  6A  6A  4A  17A
2 
 4A  6A  6A  4A  5A  4A  6A  2A  4A  4A  4A  5A  5A  8A

 6A  6A  

3 
 2A  2A  2A  2A  4A  5A  4A  6A  6A  2A  2A  3A 8A 7A  2A  13A
4 
 5A  5A  5A  5A  2A  3A 5A  5A  5A  5A  17A 6A  4A  4A  8A

 4A  

5 
 3A

 3A 3A
 3A

 3A
 2A  3A 3A 7A  3A 5A  2A  2A  2A  5A  14A

6 
 8A

 8A 8A
 8A

 8A
 7A  8A 8A 3A 8A 3A 8A 3A 18A 1A

 11A
7 
 7A  7A  7A  7A  7A  8A 7A  7A  8A 7A  8A 7A  7A  5A  3A

 2A  

8 
 17A 17A 17A  17A 17A  17A 17A 17A 17A 17A 7A  17A 17A 3A  7A  10A
9 

 18A 18A 18A  18A 18A  18A 18A 13A 18A 13A 18A 18A 18A 17A 17A  15A
10 
 13A 13A 13A  13A 13A  13A 13A 18A 13A 18A 13A 13A 11A 13A 18A  5A  

11 
 14A 14A 14A  14A 14A  14A 11A 14A 14A 15A 14A 14A 13A 14A 13A  3A

 
12 
 11A 11A 11A  11A 11A  11A 14A 11A 11A 14A 11A 11A 14A 11A 14A  8A

 
13 
 10A 10A 10A  10A 10A  10A 10A 10A 10A 11A 10A 10A 10A 10A 11A  7A  

14 
 15A 15A 15A  15A 15A  15A 15A 15A 15A 10A 15A 15A 15A 15A 10A  18A

15 
 9A  9A  9A  9A  9A  9A  9A  9A  9A  9A  9A  9A  9A  9A  15A  9A  

16 
 16A 16A 16A  16A 16A  16A 16A 16A 16A 16A 16A 16A 16A 16A 9A  16A

17 
 12A 12A 12A  12A 12A  12A 12A 12A 12A 12A 12A 12A 12A 12A 16A  12A

18 
 1A

 1A 1A
 1A

 1A
 1A 1A 1A 1A 1A 1A 1A 1A 1A

 12A  1A
 

                 

u  0 0 0 1 2 2 2 3 3 3 4 4 6 11 12 36 

f
 0 1 2 3 0 1 2 0 1 3 2 3 3 1 1 3 

λ  0.56

960 

0.63

880 

0.71

870 

0.73

780 

0.57

000 

0.63

960 

0.71

880 

0.57

000 

0.63

990 

0.73

880 

0.72

000 

0.73

960 

0.73

990 

0.64

000 

0.64

000 

0.74

000 

fit-
ness

 37.0

0851 

37.0

0851 

37.0

0851 

37.0

0851 

37.0

0851 

37.0

0851 

37.0

0851 

37.0

0851 

37.0

0851 

37.0

0851 

37.0

0851 

37.0

0851 

34.3

0998 

18.7

1453 

17.1

5499 

5.71

8329 

 
Table 6 shows the number ),1(),,( mjijiT ≤≤ , of times (i.e., the position frequen-

cies) that an alternative was found at a certain place in the ranking of the individual 

ip~  associated with the members of the final restricted Pareto front. Based on Table 6, 

we found a compromise solution using the following procedure: because the ranking 
of the alternatives is of significant importance, the number of times that an alternative 
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is found at a certain place in the ranking is weighted according to the importance of 

the alternatives to be ranked. Then, we calculate the weighted sum 
=

m

i
i

jiTw
1

),( , j=1,2, 

…, m. Finally, we obtain a succession in decreasing order of preference generated in 
this manner and a recommendation for the decision maker. 

Table 6. The number of times that an alternative was found at a certain place in the ranking 

Weight wi 

 

Rank 1A 2A 3A 4A 5A 6A 7A 8A 9A 10A 11A 12A 13A 14A 15A 16A 17A 18A
18 1 0 2 0 5 0 8 0 0 0 0 0 0 0 0 0 0 1 0 
17 2 0 1 0 6 3 5 0 1 0 0 0 0 0 0 0 0 0 0 

16 3 0 7 1 2 1 2 1 1 0 0 0 0 1 0 0 0 0 0 

15 4 0 1 1 3 8 1 0 1 0 0 0 0 0 0 0 0 1 0 

14 5 0 4 8 0 2 0 1 0 0 0 0 0 0 1 0 0 0 0 

13 6 1 0 3 0 0 0 1 9 0 0 1 0 0 0 0 0 0 1 

12 7 0 1 1 0 1 0 0 3 0 0 0 0 0 0 0 0 0 0 

11 8 0 0 1 0 0 0 2 0 0 1 0 0 0 0 0 0 12 0 

10 9 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 0 2 11 

9 10 0 0 0 0 1 0 0 0 0 0 1 0 11 0 0 0 0 3 

8 11 0 0 1 0 0 0 0 0 0 0 1 0 2 11 1 0 0 0 

7 12 0 0 0 0 0 0 0 1 0 0 11 0 0 4 0 0 0 0 

6 13 0 0 0 0 0 0 1 0 0 13 2 0 0 0 0 0 0 0 

5 14 0 0 0 0 0 0 0 0 0 2 0 0 0 0 13 0 0 1 

4 15 0 0 0 0 0 0 0 0 15 0 0 0 0 0 1 0 0 0 

3 16 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 15 0 0 

2 17 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 1 0 0 

1 18 15 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 


=

m

i
i jiTw

1

),(
 28 248 213 269 236 276 191 208 63 99 119 31 151 130 87 47 185 155 

Minimum λ: 

 0.5696    
 

Table 6 suggests the following final ranking: 

1121691510

11141318177835246

AAAAAA

AAAAAAAAAAAA




   

(1) 

The above multicriteria method was performed 50 times using the SADAGE software 
with the same data (performance matrix, inter-criteria parameters and MOEA parame-
ters) to produce 50 rankings. Then, using the same procedure as in the above para-
graph, we calculated the number ),1(),,( mjijiT ≤≤ , of times (i.e., the position  

frequencies) that an alternative was found at a certain place in the 50 rankings, which 
are shown in Table 7. 
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Table 7. The number of times that an alternative was found at a certain place in the 50 rankings 

Weight wi 

 
 

Rank 1A 2A  3A  4A  5A 6A 7A 8A 9A 10A 11A 12A 13A 14A 15A 16A 17A 18A
18 1 0 0 0 24 0 26 0 0 0 0 0 0 0 0 0 0 0 0 
17 2 0 0 0 26 0 24 0 0 0 0 0 0 0 0 0 0 0 0 

16 3 0 44 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 

15 4 0 6 1 0 43 0 0 0 0 0 0 0 0 0 0 0 0 0 

14 5 0 0 46 0 1 0 0 2 0 0 0 0 0 0 0 0 1 0 

13 6 0 0 2 0 0 0 7 37 0 0 0 0 0 0 0 0 4 0 

12 7 0 0 1 0 0 0 27 7 0 0 0 0 0 0 0 0 15 0 

11 8 0 0 0 0 0 0 15 4 0 0 0 0 0 0 0 0 27 4 

10 9 0 0 0 0 0 0 1 0 0 1 0 0 7 2 0 0 3 36 

9 10 0 0 0 0 0 0 0 0 0 12 7 0 11 10 1 0 0 9 

8 11 0 0 0 0 0 0 0 0 4 7 9 0 19 8 2 0 0 1 

7 12 0 0 0 0 0 0 0 0 6 16 7 0 8 11 2 0 0 0 

6 13 0 0 0 0 0 0 0 0 6 5 11 0 3 11 12 2 0 0 

5 14 0 0 0 0 0 0 0 0 10 4 8 2 2 7 11 6 0 0 

4 15 8 0 0 0 0 0 0 0 11 2 4 2 0 1 10 12 0 0 

3 16 4 0 0 0 0 0 0 0 9 3 3 10 0 0 8 13 0 0 

2 17 16 0 0 0 0 0 0 0 4 0 1 19 0 0 3 7 0 0 

1 18 22 0 0 0 0 0 0 0 0 0 0 17 0 0 1 10 0 0 

          


=

m

i
i jiTw

1

),(
 98 794 697 874 755 876 590 637 239 353 317 103 405 356 237 153 573 493 

Minimum λ:  

0.5016    

 
Table 7 suggests the following final ranking: 

},{},{},{},{ 112161591110141318177835246 AAAAAAAAAAAAAAAAAA     (2) 

4 Sensitivity Analysis of the Final Result 

In most cases, arriving at the final ordering accepted by the decision maker does not 
conclude the decision aiding process. The analyst can additionally propose perform-
ing a sensitivity analysis. Examples of employing a sensitivity analysis have also been 
presented elsewhere (Briggs et al., 1990; Goicoechea et al., 1982; Rios Insua and 
French, 1991, Leyva 2005). 

A sensitivity analysis is used to characterize the influence of changing the values 
of parameters, which consist of information about the decision maker’s preferences 
(the various methods use different parameters to reflect the decision maker’s prefe-
rences), on the final result. Sensitivity analysis is useful for interpreting results that 
have been achieved by modifying the values of the appropriate parameters reflecting 
the decision maker’s preferences and in estimating the influence of the modifications 
on the final result. The decision maker supplies a range of values that he considers 
still consistent with his preferences. 
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Using this input, the range of sensitivity analysis is defined. The analysis considers 
the following types of changes in the parameters: 

• changes in the values of the relative importance (w) of a single criterion, 
• simultaneous changes in the values of the relative importance (w) of multiple 

criteria, 
• changes of the values for threshold functions, which include the thresholds 

of indifference (q) and preference (p), for a single criterion, and 
• simultaneous changes of the values for the thresholds of indifference (q) and 

preference (p) for multiple criteria. 

The results of the sensitivity analysis performed, which depend on the allowed range 
of values for the selected parameters that describe the decision maker’s preferences, 
are not presented in this paper for lack of space.  

Changing the values of the relative importance of a criterion, w, had the least influ-
ence on the final order of alternatives. Of the 17 cases in which changes were intro-
duced, in the majority of the cases, the final result typically preserved the final rank-
ing selected by the decision maker (but the alternatives were not always in the same 
rank). For the ranges of changes in the values of parameters suggested by the decision 
maker, the sensitivity of the final result (the ranking) was insignificant. 

The final ranking, shown in (2), was still achieved when the values of relative im-
portance (w) were changed for both a single criterion and for multiple criteria simul-
taneously. Basing on the sensitivity analysis, we conclude the following: the decision 
maker can accept a different final ranking when the influence of the parameter 
changes on the final result can be justified and when the result changes only slightly 
compared with the final ranking accepted by the decision maker before the sensitivity 
analysis was performed. Performing a sensitivity analysis ends the decision aiding 
process.  

5 Results and Discussion 

Table 7 presents a summary of the results of this study. Based on these results and the 
proposed final ranking given in (2), we find the following: 

• the retail trade ( 6A ) and manufacturing ( 4A ) sectors were consistently ranked first; 

• the utilities sector ( 2A ) was ranked second; 

• the wholesale trade sector ( 5A ) was consistently ranked third; 

• the mining sector ( 1A ) and the management of companies and enterprises sector 

( 12A ) were consistently ranked at the bottom of the ranking; 

• the art, entertainment, and recreation sector ( 16A ) was consistently ranked in one 

of the lowest positions, just above the 1A  and 12A  sectors; and 

• the remaining sectors were consistently ranked in the middle. 
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Based on these results, the retail trade and manufacturing sectors are the most attrac-
tive for potential investors. The weak performance of the mining sector may be attri-
buted to the lack of technological innovations and infrastructure investment. Howev-
er, in the last 5 years, there has been an important revival of this sector, which is  
primarily due to direct foreign investment. In contrast, the weak performance of the 
management of companies and enterprises sector may be attributed to the centralized 
economic activity in some Mexican states. Thus, private and public policy initiatives 
aimed at improving the performance of these subsectors are needed. 

The art, entertainment, and recreation sector ranks low in terms of its attractiveness 
to investors because of the lack of infrastructure investment and the violent crime and 
public insecurity in Sinaloa in the last 10 years. Business innovations and policy-
making linked with the federal government of Mexico are needed to stop the deteri-
oration of this sector. In the middle of the ranking, we find a large set of economic 
sectors. These sectors present stable investment opportunities.  

6 Concluding Comments 

The aim of this study was to offer a novel procedure for integrated assessment and 
comparison of Sinaloa economic sectors using a Multicriteria Decision Aiding Ap-
proach. The proposed procedure for multicriteria comparison of economic sectors 
uses the ELECTRE III method to construct a valued outranking relation and then a 
multiobjective evolutionary algorithm (MOEA) to exploit it to obtain a ranking of the 
economic sectors in decreasing order of performance. The results suggested that the 
best-performing sector is the retail sector. Furthermore, enterprises operating in the 
sectors of manufacturing industries, wholesale trade, utilities, and construction work 
more efficiently than an average Sinaloa enterprise. In contrast, the mining sector; the 
arts, entertainment and recreation sector; and the management of companies and en-
terprises sector were ranked below the average alternative. 

The multicriteria method utilized in this study to rank the Sinaloa economic sectors 
is both practical and adequate. The proposed multicriteria assessment framework can 
provide a rationale for interested stakeholders, including government institutions and 
policy-makers; investors, financial institutions, and businessmen; employees and 
trade unions; and clients and suppliers related to certain sectors.  

The application presented in this study underscores the applicability of multiobjec-
tive evolutionary algorithms to real-life business problems in a multicriteria decision-
al context. Thus, this study contributes to a growing body of application-based know-
ledge, which was until very recently the exclusive domain of engineering and the 
natural sciences. 
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Abstract. Social cost benefit analysis often involves consideration of
non-monetary outcomes. Multi-objective optimisation is an appropriate
method for handling problems of this type, but many decision-makers
have a strong mistrust of the approach. Reflections by the authors on
real experiences supporting decision-makers suggest that the key barriers
to using multi-objective methods for social cost benefit analysis include:
(i) the inadequacy of current social systems models for measuring the
end benefits provided by a candidate solution; (ii) the lack of appro-
priate societal preference estimates for resolving the inherent trade-offs
between objectives; and (iii) the lack of practical examples, case studies
and guidance which demonstrate that the approach works well.

Keywords: multi-objective optimisation, decision support systems.

1 Introduction

Social cost benefit analysis is concerned with appraising the effects on society
of potential government investments or policies. This type of analysis is the
orthodoxy for decision-making in many Western economies, including the United
Kingdom [1]. The ultimate aim is to estimate, for each investment or policy
option of interest, the net benefit of that option to society in cash terms, taking
account of the value and timing of all the outcomes (costs and benefits) that
arise [2]. However decision-makers are often faced with situations in which some
aspects of option quality cannot readily be converted to monetary terms. The
concept of multi-objective optimisation offers an appropriate means for dealing
with these non-monetary outcomes [3,4].
Despite the advantages that multi-objective optimisation offers, in terms of

transparency and auditability, it is still often regarded as an avant-garde alter-
native to traditional approaches. It is more often the case that decision-makers
will prefer to engage in a deliberative discussion based on rhetoric, or weigh such
aspects in an internal manner (cognitively speaking), or simply ignore these out-
comes altogether (thereby implicitly assuming they have no value).
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This paper seeks to explore the possible reasons why multi-objective optimi-
sation is not regarded as the standard choice for social cost benefit analysis. The
exploration is based on reflections by the authors on our attempts to use multi-
objective optimisation in helping decision-makers to resolve the real problems
facing them. We describe our experiences through a fictionalised example:

Imagine a tribe living on a small, forested, island. Some of the tribes-
people are gatherers - they cultivate small market gardens in the forest
and harvest the crops using scythes. Other tribespeople are hunters -
they roam the forest looking for animals to catch and kill using spears.
The tribe can survive by eating either the crops or the meat from the an-
imals. A disadvantage of the crops is that each year there is a small risk
that the crops will fail, leaving the gatherers with insufficient produce
to feed the whole tribe. A disadvantage of the meat is that it cannot be
eaten directly, but must be given to the tribal chefs who produce edible
food by either cooking or curing the raw meat delivered by the hunters.
Sometimes the animals caught by the hunters turn out to be inedible.

Up until now, both the heads for the scythes used by the gatherers
and the heads for the spears used by the hunters have been produced
by a forge on the island, smelting copper ore mined from one of the
hills. The demand for new scythe heads and spearheads is high, due to
population growth and damage to old tools, but the supply of copper
ore to the forge is running out. The tribal elders predict that within five
years there will be no functioning scythes or spears on the island, with
dire consequences for the tribespeople.

Recently, the tribe has discovered a source of iron ore in another
large hill on the island. This iron ore could be used to smelt new scythe
heads and spearheads, but to do this would require an upgrade to the
island’s forge. It would be relatively straightforward to upgrade the forge
to smelt iron scythe heads - the tribe elders believe that the gods would
require a reasonably small number of blood sacrifices to give their bless-
ings to this forge. However, additional forge complexity would be needed
to smelt spearheads, and the elders believe that substantially more blood
sacrifices would be needed in this case. To operate the new forge without
the required sacrifices would be heresy and, as such, is inconceivable.

The elders are now faced with a decision. They can carry on using
the existing copper forge - this would avoid the need for any blood sac-
rifices but would mean that the tribe faces starvation in five years’ time.
Alternatively, the elders can sanction a new iron forge to smelt scythe
heads for the gatherers, either with or without the capability to smelt
spearheads for the hunters. This is a difficult decision for the elders, with
potentially major repercussions for the wellbeing of the tribe. The tribe
only has a limited number of virgins available for sacrifice in any year
and the elders need to be sure that the blood sacrifices spent on the forge
could not be better used on other areas of tribal life where the gods must
also be appeased.
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The remainder of the paper takes our story into those parts of the multi-objective
optimisation process that are, in our experience, crucial to the success or failure
of the enterprise. In Section 2, we consider the overall governance arrangements
for multi-objective optimisation, highlighting the roles of decision-makers and
stakeholders. In Section 3, we look at the process of identifying a set of objectives
against which the performance of the various solution options is to be appraised,
whilst in Section 4 we look at the challenge of measuring performance against
those objectives. In Section 5 we consider the thorny issue of preferences. In
Section 6 we conclude.

2 On Governance

Problems requiring solutions and decisions tend not to exist in splendid isolation
from the rest of the world; rather they are situated in complex organisational
and social contexts that need to be accounted for in the optimisation process.
In the UK, the Office of Government Commerce (OGC) imposes a formal pro-
cess on solution development and decision-making for major public investment
decisions. Decision-makers and stakeholders are required to develop compelling
and robust business cases for change. A business case develops in an incremental
fashion, with the OGC imposing a set of formal assessments (known as gate-
ways) which the business case must successfully pass through before a decision
is finally approved. Gateway processes can be found in many organisations in
both the public and private sectors across Western economies.
Business cases in the UK follow a five case model [5], with the five dimensions

being:

strategic case explains why solving the problem is essential in supporting the
strategic objectives of the sponsoring organisation (in this case, the objec-
tives for society in the UK, as expressed through the goals of the Govern-
ment).

economic case estimates the overall impact of each solution option, in terms
of costs and benefits. Ideally the impact should be expressed as a scalar
quantity in monetary terms (in current prices): a net present value (NPV).

commercial case describes the different options for how solutions will be pro-
cured.

financial case estimates the affordability of preferred solutions, in terms of the
impact on the organisation’s financial accounts.

management case describes how the solution will be implemented, how risks
and issues will be handled, and what evaluation processes will be enacted to
measure the actual costs and benefits of the recommended solution.

The cost benefit analysis lies at the heart of the economic case. However costs
also form the basis for the financial case (through the translation of theoretical
opportunity costs into practical budgetary implications), with benefits forming
the basis for the rhetoric of the strategic case. Whilst the ultimate decision is
made at the level of the five cases, it is likely that some devolved decision-making,
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and expressions of preference, will be made during the design and economic
assessment of the solution options.
The wider context around the cost benefit analysis (and, by implication, any

supporting multi-objective optimisation) means that engagement with stake-
holders is important. These include the designers of the solution options, the in-
dividuals or organisations who are expected to deliver the benefits, those whose
budgets will be impacted by the solution’s costs, colleagues involved in the other
dimensions of the business case, and the assessors whom the business case must
satisfy. This engagement should be ongoing and used to help steer the analysis.
For example, it is wise to check that the assessors are comfortable with any
intended use of multi-objective methods.

The elders decided that they needed more information before mak-
ing a decision, and instructed the tribal thinkers to appraise the costs
and benefits of each option. Some of the hunters and gatherers were ir-
ritated when they learned of the elders’ actions – surely the thinkers
knew nothing about either hunting or gathering? Nevertheless, when the
thinkers asked for representatives from each group of hunters and gath-
erers to join a working party to appraise the options, no group wanted
to be left out.

3 On Objectives

From their initial conversations with the elders, the thinkers knew
that the strategic objective for the forge problem was the maintenance
of a healthy tribe. They also knew that there were essentially two func-
tional requirements for the forge: to smelt scythe heads and to smelt
spearheads. But how did the availability of scythe heads and spearheads
actually go on to support a healthy tribe?

The objectives for a problem are those aspects of solution quality against which
all the candidate solutions will be judged. Developing a coherent set of objectives
for a government investment or policy problem can be challenging, because the
effects of such interventions are played out in the social world, which is inher-
ently complex [6]. We adopt, at least in spirit, the approach of Hammond et al.
[7], which is to steadily progress from intermediate outcomes to end outcomes
by successively asking “why?” until the question no longer has an answer. In
practice, the end outcomes will typically be some subset of an organisation’s
strategic objectives. An effective communication tool, especially when working
with stakeholders to understand the problem environment, is to visually map out
the flow of cause-and-effect, from the functional requirements of a solution (often
known as enablers), through the intermediate chain of benefits, to the strategic
objectives. These visual representations are known as benefit dependency maps
or, simply, benefits maps [8].
Note that the strategic objectives will not necessarily be the objectives used in

the multi-objective optimisation. Strategic objectives can be difficult to appraise
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or evaluate in practice, and so more tangible intermediate benefits close (in a
causal sense) to the strategic objectives may be selected instead. There is often
a tendency, particularly when working with solution designers, to define the
objectives in a region of the benefits map close to the enablers. This is natural,
since this is the part of the problem that is most well understood and easily
quantifiable, but these objectives offer no guarantee of being good proxies for
the actual value that a solution offers to an organisation or society.
Human factors are also important considerations when constructing a set of

objectives. Human decision-makers have limited cognitive abilities in processing
information and therefore large numbers of simultaneous objectives are to be
avoided where possible (although the golden rule of having no more than seven
categories may not be as robust as once thought [9]). Also, particularly where
causal pathways are tortuous, stakeholders may have ownership only of interme-
diate benefits close to the enabler end of the benefits map, but be expecting to
see these benefits explicitly represented as objectives.

The thinkers visited one of the forest gardens and mapped out with
the gatherers how a forge would help to keep the tribe fed. Then the
thinkers went through the same process with the hunters. A consolidated
benefits map, shown in Fig. 1, was constructed.

With the map finalised, the thinkers convened the working party in
a clearing in a forest to sit down and agree on the objectives for the
forge problem. The thinkers arrived at the clearing with a proposal:
there should be two objectives: (1) the cost of the forge; (2) based on
the benefits map, the health of the tribe (denoted feed tribe). The
hunters were not impressed: it was their job to catch and kill animals,
but it was down to the chefs to prepare the food that fed the tribe.
The chefs always expressed satisfaction with the quality of the hunters’
catch, but what the chefs actually did with the animals was up to them.
Given that the thinkers didn’t appear to have invited any chefs to join
the working party, argued the hunters, it was essential that the capacity
of the hunters to catch and kill animals be included as an objective.
The thinkers had not expected this opposition to their proposal and
were placed on the back foot. They knew that the methods they were
about to use would be sensitive to double-counting of objectives and so
wanted to resist the hunters’ demands, but they were also worried about
their own ability to quantify the link between the catch of the hunters
and the food produced by the chefs. Reluctantly, the thinkers conceded
that the capacity to catch and kill animals – denoted kill animals –
be included as an objective. This decision, in turn, upset the gatherers.
Initially happy with just the feed tribe objective, since they could see
exactly how the harvest fed the tribe, the gatherers now demanded parity
with the hunters: that their labour – harvest crops – be included as
an objective. Faced with the otherwise unappetising prospect of telling
the elders that the objectives could not be agreed, the thinkers conceded
to the gatherers’ demands as well.
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4 On Models

Optimisation methods tend to rely on mathematical models that enable the per-
formance of each option against each objective to be estimated quantitatively.
In our experience, decision-makers often prefer to simply commission a model,
implemented as a user-friendly software tool, that they can experiment with in
order to find satisficing solutions to their problem, rather than also commission-
ing the extra work required to perform a formal optimisation of the solution.
Without a clear demonstration of the benefits of optimality (or, in reality, an
approximation to it), satisficing is – by definition – likely to be seen as good
enough.
Mathematical models for the appraisal of government investment and pol-

icy options can be challenging to build when working under limited resource
constraints, due to the complex nature of the social systems they are seeking
to represent. Even if resource were available to synthesise all the available pri-
mary evidence, the gaps in that evidence base tend to produce high levels of
modelling uncertainty when attempting to link the enablers all the way through
to the strategic objectives. Modelling of intermediate benefits may be a more
realistic prospect, but assessors will need to be convinced that these benefits
are reasonable proxies for estimating solution value. An alternative approach is
to use expert opinion to score the solutions against the objectives. The lack of
transparency is a key concern here, particularly where pilot or prototype evalua-
tions are not possible. Such legitimacy issues may undermine the whole analysis.
A further disadvantage is that the burden on the experts increases with the num-
ber of competing options, although it may be possible to mitigate the burden
through the use of meta-modelling techniques to estimate scores for intermediate
solutions.
A notable modelling issue in UK Government decisions is that estimates of

costs must be explicitly increased (and also estimates of benefits correspondingly
reduced) to account for the demonstrated tendency of project appraisals to be
overly optimistic in their assessments [10]. This phenomenon is known as opti-
mism bias. The adjustments are based on historical data of business case evalua-
tions, and their magnitude may be reduced (but not eliminated entirely) through
demonstrable good practice in estimation and implementation, and through suc-
cessively more detailed iterations of the business case.

Early in their conversations with the hunters and the gatherers, the
thinkers realised that building a mathematical model of the relationship
between forge requirements and tribe health was going to be difficult.
The actual locations and number of forest gardens was unknown. The
hunters refused to reveal anything about their activities for fear the
thinkers would come crashing in and scaring the animals. The supply
networks through which the garden produce and meats reached the hun-
gry tribespeople had never been formally recorded. And the thinkers
hadn’t even begun to consider the role of the chefs. Knowing that the el-
ders needed information quickly, the thinkers decided to ask each hunter
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and gatherer group for their expert opinion on how well each option for
the new forge would satisfy the three benefit-related objectives. They
also consulted the tribal shaman for estimates of the number of blood
sacrifices that would be required to separately bless the scythe and spear
functionality, and increased these estimates to account for the suspected
optimism of the shaman.

Next, the thinkers went to the beach and collected five shells. Then,
for each option – no forge, scythe-only forge, and scythe-and-spear
forge – the thinkers asked the groups to indicate with shells how well
the option would support the objectives compared to the current cop-
per forge: 0 shells = no support, 1 = very limited support, 2 = limited
support, 3 = slightly limited support, 4 = same support, 5 = better
support. At this stage it became clear that both the hunters and gather-
ers had other means of delivering their benefits than using scythes and
spears. The gatherers could collect berries using their bare hands but
this would need an increase in the number of berry pickers. The hunters
could catch fish in the reefs surrounding the island but this would also
mean more rafts would need to be built. The shaman was able to es-
timate the cost of blessing these alternative activities. The mitigations
provided two further options: no forge (mitigated) and scythe-only
forge (mitigated). The thinkers took an average of the opinions across
the various groups of hunters and gatherers to produce the benefit scores
shown in Table 1.

Table 1. Benefit scores for forge options

Option kill animals harvest crops feed tribe

no forge 0 0 0
no forge (mitigated) 1 1 1
scythe-only forge 0 4 2
scythe-only forge (mitigated) 1 4 3
scythe-and-spear forge 4 4 4

5 On Preferences

It is typically quite rare in a multi-objective problem that there will be a single
logically ‘optimal’ solution offering equal or superior performance across every
objective, when compared to every other possible option. Rather, there will
exist a trade-off surface of ‘Pareto-optimal’ solutions for which improvement in
one or more objectives cannot be made without performance sacrifices in other
objectives. In these circumstances, to identify a single solution to recommend, we
need to understand the relative worth of a particular level of performance across
one or more objectives compared to some other level of performance across one or
more objectives. These value judgments are known as decision-maker preferences.
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The inescapably subjective nature of preferences, by contrast to the ostensibly
objective nature of the objectives, options, and the models that estimate per-
formance of options against objectives, serves to make the elicitation and use of
preferences arguably the most challenging aspect of multi-objective
optimisation.
Having noted that preferences are difficult to avoid, the next question is whose

are the preferences that are to be elicited and used. In social cost benefit anal-
ysis, a working definition given by the UK’s Department for Communities and
Local Government (DCLG) is that the preferences should be “the informed
preferences of people as a whole, to the extent that these preferences can be
measured and averaged” [11]. Such preferences may be elicited directly from a
representative sample of the population or may be reflected through the views
of experts or officials. Interesting examples of both the former [12] and latter
[13] approaches can be seen in the area of healthcare resource allocation.
In our experience, preferences are likely to be incorporated into the decision

process in a staged and hierarchical manner, reflective of the governance ar-
rangements. Specifically, preferences for differing levels of performance between
the benefit-related objectives may be delegated by senior decision-makers (in
the higher echelons of government) to experts in the field. The aim is to reduce
the dimensionality of these objectives to a scalar overall benefit score, where the
underpinning vector of performance remains available for inspection if required.
The senior decision-makers are then in a position to examine the critical trade-off
between cost and overall benefit.

At sunrise the elders found the thinkers sat in a small circle on the
beach, apparently messing around with some animal bones and a heap
of pebbles. Due to emerging strategic considerations elsewhere in the
life of the tribe, the elders explained to the thinkers, a decision on the
forge would be needed earlier than first anticipated – could the thinkers
find out from the hunters and gatherers the relative importance of the
kill animals, harvest crops and feed tribe objectives before sun-
set? The thinkers felt under-prepared: from their earlier experiences with
the hunters and gatherers, they knew that obtaining a single expression
of preference might be difficult. Nevertheless, the elders’ wisdom was not
to be challenged; dragging the skull of a shark out from under a pile of
driftwood, the thinkers hastily made their final preparations.

The most conventional expression of preference is to use a non-negative weight,
wi, to describe the relative importance of each objective, i. The weights are then
incorporated into a functional form that provides the overall value of an option;
the most common function is the weighted sum of individual performance across
each objective, where the weights are normalised to sum to unity (less formally,
the overall value can be seen as a measure of average performance). The use of
the weighted sum is theoretically troublesome because it cannot find solutions in
concave regions of trade-off surfaces and also, if the problem is non-convex, offers
no guarantee of finding solutions even in the convex regions [3]. The method is
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also prone to double-counting biases, but it has a simplicity that is easy to
communicate to stakeholders and, during procurement exercises, the potential
suppliers of solutions.
Weight-based methods involve the forced cohesion of non-commensurate ob-

jectives, thus requiring the objectives to be normalised. If the normalisation is
done without preferences (which is usually the case since the bounds of what is
good and bad are not known a priori with certainty) then the importance of an
objective cannot exist independently from the range of performance exhibited for
that objective. For this reason, weight-based approaches tend to elicit and apply
preferences after the performance of each option is known. Swing weights are
used in which the decision-maker is firstly asked to specify the objective with the
most important observed variation between worst performance and best perfor-
mance (combined across all options); and secondly to weight the importance of
the variation seen in other objectives relative to this reference objective [14]. This
approach is prone to the perception that the weights are being manipulated by
participants to fix the results of the analysis to a pre-determined, favoured, solu-
tion. For this reason, in multi-objective optimisation approaches where providers
must compete to offer solutions, it is often a regulatory requirement to deter-
mine and publish the weights in advance. However, without a priori knowledge
of the range of solution performance, there is a risk of using weights that are
an incorrect expression of decision-maker preferences, potentially leading to the
selection of undesirable solutions. Publishing the weights in advance can also
lead to potential gaming by suppliers.
A major discomfort that decision-makers and stakeholders tend to have is

the difficulty to state preferences precisely. This leads to a sense of arbitrari-
ness about the method and undermining of confidence in the results. Sensitivity
analysis on the preferences can help reduce such anxieties – by showing how
much preferences would have to change before the ordering of options by overall
benefit would change [14].

In order to elicit the swing weights for the three benefit-related objec-
tives, the thinkers asked the elders to invite five hunters and five gather-
ers to a special meeting in a clearing in the forest, close to the entrance
to a cave. Inside the cave, the thinkers placed three skulls: those of a
wolf, a boar, and a shark to represent, respectively, the kill animals,
harvest crops and feed tribe objectives. Each hunter and gatherer
was then given a polished stone, where the stones were selected to be as
indistinguishable from each other as possible.

Next, the thinkers revealed to the ten tribespeople the consolidated
benefit scores for the five forge options, as shown in Table 1. The tribes-
people were then asked to consider: (i) the nadir outcome of no support
to killing animals, or harvesting crops, or feeding the tribe; and (ii) the
ideal outcome of full support for these three benefits. The thinkers then
asked the tribespeople to imagine a situation in which they could im-
prove just one objective from its worst position to its best position. Each
tribesperson was invited in turn to enter the cave and place his or her
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stone inside the skull that symbolised the most important objective to
improve.

The hunters and gatherers looked at each other in disbelief. Yes, they
were experts in hunting and gathering, but surely the judgment of which
objective was the most important was a matter for the whole tribe?
Shouldn’t it be for the elders to make this decision? Then again, it was
the elders who had invited them to this crazy meeting. The hunters and
gatherers decided to humour the thinkers, at least for the time-being,
and prepared themselves to enter the cave.

The hunters knew that the feed tribe objective was ultimately the
most important but were worried that the elders might opt for a scythe-
only forge and so decided to put all their stones into the wolf skull rather
than the shark skull. Meanwhile the gatherers, whilst sympathetic to the
extra resilience that spears would bring, were worried that if the benefits
of a scythe-only forge were seen as tiny compared to a scythe-and-spear
forge then the elders, balking at the number of blood sacrifices required

Table 2. Social cost benefit analysis results

Option Blood sacrifices Overall benefit score

no forge 0 1
3
× 0 + 1

3
× 0 + 1

3
× 0 = 0

no forge (mitigated) 2 1
3
× 1 + 1

3
× 1 + 1

3
× 1 = 1

scythe-only forge 5 1
3
× 0 + 1

3
× 4 + 1

3
× 2 = 2

scythe-only forge (mitigated) 6 1
3
× 1 + 1

3
× 4 + 1

3
× 3 = 8

3

scythe-and-spear forge 20 1
3
× 4 + 1

3
× 4 + 1

3
× 4 = 4

Fig. 2. Forge options cost-benefit scatterplot
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for the latter, would choose not to build any new forge at all. So the
gatherers placed all their stones into the boar skull.

When the voting was complete, the thinkers retrieved the three skulls
from the cave and counted out the results in front of the ten tribespeo-
ple: five stones for the kill animals objective and five stones for the
harvest crops objective. The thinkers looked nervous. They asked if
any of the hunters and gatherers would like to say how they had voted
and explain their reasons why. The tribespeople looked at their feet.
Then one of the gatherers spoke up: why didn’t the gatherers have more
stones than the hunters, given that, on the island, they outnumbered
them by a factor of ten to one? Without blinking, the thinkers replied
that the stones were equally balanced to reflect the equal expertise of the
two roles. The tribespeople were then asked to consider the initial results
and subsequent discussion, and to vote once more for the most impor-
tant objective to improve. The tribespeople entered the cave and placed
their stones once more. The thinkers emerged again with the results:
five stones in the wolf skull and five stones in the boar skull, precisely
as before. The thinkers shrugged their shoulders and declared that both
objectives had been assessed as equally the most important.

Next, the thinkers gave to each of the ten tribespeople ten tiny pol-
ished pebbles. The tribespeople were asked to think about how impor-
tant it was to improve the remaining feed tribes objective from its
worst position to its best position, compared to the two most impor-
tant objectives already identified. Each hunter and gatherer was then
invited to enter the cave as before, and to place into the shark skull
as many tiny pebbles as they felt were proportional to the comparative
importance of the feed tribes objective, where 0 pebbles = no impor-
tance and 10 pebbles = equal importance. The hunters and gatherers
again complained that it was not their place to judge the importance
of feeding the tribe, relative to other matters. However, even a tribal
youngling could easily grasp that feeding the tribe was an important
outcome which (since the hunters and gatherers had already each se-
cured the importance of the intermediary benefits that they brought)
should be associated with a lot of pebbles. Each tribesperson entered
the cave and placed all ten pebbles inside the shark skull. The thinkers
staggered out of the cave carrying the laden shark skull. After a few
minutes, they were able to announce that the skull contained all one
hundred possible pebbles and so the feed tribes objective had equal
importance to the kill animals and harvest crops objectives.

With the preferences for the three benefit-related objectives finally
elicited as w1 = w2 = w3 =

1
3 , the thinkers were able to compute the

overall benefit score for each option. The thinkers now also revealed to
the tribespeople what the estimated number of blood sacrifices was in
each case. The results are shown in Table 2. The thinkers laid out two
twigs perpendicularly to each other on the forest floor to indicate scales
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of benefit and sacrifice, and then used the leaves of different plants to
indicate the bi-objective outcomes for each option. This scatterplot is
shown in Fig. 2.

Tired and unhappy, the hunters and gatherers studied the pattern of
twigs and leaves on the ground. The thinkers were allegedly quite clever,
but did they really think the elders would be using this information to
make any kind of decision about the forge? Shaking their heads, the
hunters and gatherers returned to their homes.

6 Conclusion

The thinkers invited the elders to the cave entrance to present the
findings of the analysis. The elders studied the collection of twigs and
leaves on the forest floor. They understood the benefits scores and were
satisfied with the process by which they had arisen – the hunters and
gatherers did a good job of serving the tribe’s needs and their estimates
and preferences could be respected. The elders had heard rumblings of
complaint about the thinkers – particularly about the meeting at the
cave – but everything here appeared to be in order. Well, that was
life. The elders felt that it was important to invest in the four-shell
scythe-and-spear forge that maintained existing capability, since the
tribe should be protected wherever possible against starvation, and so
the required number of blood sacrifices would just have to be managed.

The elders were less comfortable with the estimates presented by the
thinkers for the blood sacrifices. If they were to sanction the scythe-and-
spear forge option then it would be very important to develop afford-
able proposals, particularly since budgets for blood sacrifices in other
areas of tribe life would need to be cut back. The shaman had a noto-
rious track record in under-estimating the number of sacrifices required
to appease the gods. Whilst the thinkers claimed to have accounted for
the over-optimism of the shaman, the elders were not convinced. They
asked the thinkers to return to the shaman and work with him again to
obtain improved sacrifice estimates. When this was done, declared the
elders, a plan for sacrifices could be put in place and the new iron forge
could at last be sanctioned.

In this paper, we have reflected on our practical experiences of supporting real-
world decision-making. The discussions in the preceding sections, and particu-
larly the events arising in the fictionalised account, all point towards the critical
role that human factors play in multi-objective optimisation. Most government
decision-makers, at least in the UK, are schooled and skilled in rhetoric; these
people are wary of formal analytical methods. “Over-analysis” is a common crit-
icism of government business cases, whilst the term “over-writing” would be seen
as an oxymoron. There is a cultural barrier that leads to a basic mistrust of the
findings of multi-objective optimisation.
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This cultural barrier can lead to reluctance on the part of analysts to use
multi-objective methods, even when to do so would clearly be appropriate. Typ-
ically, analysts are rewarded for business case progression; there is an incentive
to pragmatically choose methods that are likely to see business cases pass suc-
cessfully over the hurdles of the governance process (such as the OGC gateways),
even when these methods are known to be poor.
The OGC process does tend to force large programmes into grand solutions

requiring complex assessment under great uncertainty, which is discouraging to
quantitative analysis. It may be wiser to take time to consider any activities
that could resolve some of the uncertainty. This type of analysis is sometimes
seen in medical decision-making, where formal value of information methods are
used to identify useful activities, at least in cases where the uncertainty can be
parameterised [15]. Such activities could be performed prior to the decision, or
progressively built into the solution itself via evaluation [16].
To overcome the lack of confidence that many decision-makers have in multi-

objective methods, analysts need to demonstrate that the methods are robust to
repeated application. These demonstrations must be accessible to non-experts,
and should include practical examples, case studies and guidance. Arguably, the
main messages that a decision-maker would receive from browsing a copy of the
current manual [11] is that the methods are complex and can only be understood
through, or applied to, the most trivial of examples: the selection of a toaster.
Whilst human factors are important considerations, they are not the only key

barriers to the uptake of multi-objective optimisation methods for social cost
benefit analysis. It can be difficult to measure the performance of a candidate
solution in terms of benefits rather than functional requirements. The causal
chain by which a solution supports strategic objectives is often not well under-
stood. There are a lack of available methods for the mathematical modelling of
social systems, where the issue of causality remains a major area of debate [17].
In the story, to model the relationship between the requirements for the forge
and the survival of the tribe would have required a major research project in its
own right, in terms of both methodological development and application.
A further key barrier is the lack of societal preference estimates for use in

trading-off performance levels between objectives. Experts are often very reluc-
tant to express preferences between benefits, since their expertise tends to lie
in the functional requirements and the preferences are fundamentally societal in
nature. An alternative to using experts is to sample a broader cross-section of
society, separately to the optimisation process, and build a model of preferences
that can, in principle, be applied to multiple decisions. This type of approach
has been explored perhaps the most in the area of health economics, although
the research is still in its infancy (see, for example, [12]). A remaining issue is
that part of the advantage of multi-objective optimisation is that it permits pro-
gressive preference articulation - that is, it permits the philosophical assumption
that preferences are actually some function of available performance.
In summary, multi-objective optimisation has real potential for supporting

government decision-makers in making informed choices for investment and



740 R.C. Purshouse and J. McAlister

policy decisions. The choices are informed to the extent that a solution should be
Pareto-optimal and the performance against the multiple objectives should be
reflective of societal preferences. Whilst there has been much work on the devel-
opment of methods for multi-objective optimisation, application to real problems
with real decision-makers is somewhat limited, at least to the extent that these
applications are documented in the literature. We have sought to identify and
discuss some of the reasons for this, and look forward with optimism to future
practical implementations informed by developments in the academy.
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Abstract. The protection of the environment against pollutants pro-
duced by aviation is of great concern in the 21st century. Among the
multiplicity of proposed solutions, modifying flight profiles for existing
aircraft is a promising approach. The aim is to deliver and understand
the trade-off between environmental impact and operating costs. This
work will illustrate the optimisation process of aircraft trajectories by
minimising fuel consumption and flight time for the climb phase of an
aircraft that belongs to A320 category. To achieve this purpose a new
variant of a multi-objective Tabu Search optimiser was evolved and inte-
grated within a computational framework, called GATAC, that simulates
flight profiles based on altitude and speed.

Keywords: trajectory optimisation, multi-disciplinary design optimisa-
tion, optimisation framework, Tabu Search.

1 Introduction

The protection of the environment is of great concern in the 21st century. The
continuous operation of aircraft severely affects the climate, environment and
humans, especially in the vicinity of the airports. Numerous studies confirm
that the produced emissions and noise are an important threat. Currently, air-
transport is the world’s fastest growing sector. Aviation is responsible for 2%
of man-made CO2 and aircraft production increases approximately by 5% per
year. Due to continuous and increasing air-traffic the emissions will reach 3%
by 2050. These pollutants have also great impact on health. In order to be
environmentally and human friendly, the energy trends in aviation industry are
related to reduction in noise footprint, improvement of fuel consumption and
CO2 efficiency[1].
There are three possible options in order to reduce pollution [2] : a) decrease

the overall number of operations, b) change aircraft type, c) alter aircraft tra-
jectories. The first option is not feasible, as discussed in [1, 3]. Therefore, a
combination of the last two options seems a viable approach with respect to the
initial problem. However, changing the type of the aircraft is a difficult task and
will significantly affect the aircraft operations as a whole. So, this turns out just
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to be an alternative solution in the long-run. One can find several studies carried
out that discuss the feasibility of setting new or modifying operational rules, reg-
ulations and procedures that decrease the impact of aircraft to the environment
and climate, for instance [4]. Hence, the optimisation of trajectories could be
readily performed as a more promising short-term target. This is a straightfor-
ward technique that could considerably reduce the effect of aircraft operation on
the environment without the need to change1 any of the participating entities
of aviation industry (aircraft, airports, human resources, other equipment, etc.).
This research activity focuses on this direction by employing the most modern
computational methods and tools in this multi-disciplinary field.
Aviation problems are governed by multiple disciplines [5, 6]; overhead, var-

ious types of costs, multiple performance metrics, further desired properties,
etc. Definitely, aircraft-trajectory optimisation belongs to this category and Air
Traffic Management (ATM) is an important issue. Several studies focus on flight
efficiency factors such as noise and fuel consumption, advanced trajectory tech-
nologies such as prediction and management, and other air-transport economics.
Ultimately, all these technologies aim at mitigating environmental impact by
relieving over-crowed airspace and airports[1, 7].
Besides academia and research centres, industrial sectors show high interest

in trajectory optimisation. In 2001, European Union started CLEAN SKY [8],
which is a Joint Technology Initiative (JTI), with focus on the sustainability of
the increasing air-traffic demand while developing breakthrough technologies so
as to drastically reduce the environmental impact by the aviation industry. This
work is carried out under Systems for Green Operations (SGO), one of the six
Integrated Technology Demonstrators (ITDs) that compose CLEANSKY, which
attempts to improve the contribution of the aircraft systems and reduce their
impact to the environment.
Following the purposes of SGO that coincide with the research goals of Ad-

visory Council for Aviation Research in Europe (ACARE), the target is to min-
imise CO2 and NOx emissions by determining more efficient trajectories for all
the flight phases. This is achieved by employing a computational framework
named Greener Aircraft Trajectories under ATM Constraints (GATAC)[9]. It is
developed in collaboration between Cranfield University and University of Malta.
This work contributes to the improvement of the framework by developing a new
optimisation module, which will be available in the future versions of GATAC
and is expected to bring significant benefits to aircraft trajectory optimisation.
More specifically, aircraft flight trajectories are optimised considering that the
aircraft/engine configuration is already designed and in operation.
The purpose of this work is to investigate and assess the performance of a

new variant of Multi-Objective Tabu Search (MOTS), called (MOTS2), in the
field of trajectory optimisation and present a new methodology to tackle this
type of problems. The test case includes the optimisation of the trajectory of a
single commercial passenger aircraft of the A320 family under the climb phase,
which is the most demanding and important in terms of energy requirements

1 In some cases minor changes might occur.
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and pollutants production. The performance of the newly developed optimiser
will be compared against the existing one, which belongs to Genetic Algorithms
(GAs). The tools and methods employed are intended to be further improved
and integrated into an aircraft so as to carry out trajectory optimisation in
real time, while in flight. The ultimate goal is to help in shaping the future of
aviation.

2 Aircraft Trajectory Simulation

A trajectory is defined by the area navigation (RNAV) method, which is based on
coordinates. Aircraft trajectory denotes the RNAV route an aircraft flies on while
passing through specified geographical locations, which are called waypoints. It
is assumed that the aircraft passes through a waypoint at a certain speed without
deviating. The trajectory breaks down into smaller parts/periods - also known as
phases of flight. The most usual phases are take-off, landing, climb (or ascent),
cruise, descent. The first two are the shortest parts of the flight and heavily
depend on the current environmental conditions, ATM constraints (imposed by
local authority) and pilot’s judgement[7]. So, there is no point in optimising
these parts. The remaining phases could be automated and relative to take-off
and landing are significantly larger. Therefore, they attract higher interest since
it is less intuitive for the pilot to take into consideration all of the parameters
and operate the aircraft in the most optimal way in terms of fuel consumption
and flight time. Since climb is the most fuel consuming flight phase, this work
will focus on that part of the flight.
The formulation of the trajectory, type and number of waypoints involved,

affects the complexity of the optimisation process. In reality, these trajectories
are 3D paths of curvilinear shape. In this work, a simplified trajectory approach
has been employed: The considered trajectories are in 2D, hence vertical trajec-
tories, and the range - distance flown on a given amount of fuel - is split in small
straight-line-segments. In fact, the third dimension is mainly used for turning
and will be considered in future studies in the next phase of CLEANSKY project.
Each segment is defined between two waypoints. The target trajectory is formed
by connecting these segments in a very specific order so that the total energy
at the boundaries of two adjacent segments is the same. Moreover, the following
segment depends on the end of the previous one, a principle from control theory.
Considering that the waypoints and respective speed values have been set

for a single phase, the performance indices that characterise the flight are re-
solved by the Aircraft Performance Model(APM) and the Engine Performance
Model(EPM). These models are coupled and applied on every segment and the
corresponding indices are aggregated for the whole phase. Based on the aircraft
performance characteristics (size, lift, etc.), the APM used in this study (pro-
vided by University of Malta [10]) calculates the required thrust throughout
the target segment and the respective flight time. Then, the EPM (provided by
Cranfield University [11]) is invoked to calculate the fuel consumption of the
engine over the same flight period. This method is iteratively repeated for ev-
ery segment. It is important to mention that at the end of the simulation of a
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single segment, the APM calculates the exiting flight path angle and the EPM
computes the mass of the consumed fuel. These values will be used as input for
the simulation of the following segment for the entering flight path angle and
the new (reduced) total aircraft mass, respectively. Therefore, a single phase of
the flight has been simulated. This procedure (Fig. 1a), which is automatically
handled by GATAC, will be called evaluation of the trajectory, or simply evalu-
ation. It will be repeated several times under different altitude and speed values
in order to obtain the optimum behaviour.
The number of segments to which the trajectory breaks down is an important

factor, which is related to the complexity of the case, as it increases the dimen-
sionality. The trajectory simulation consists of two types of parameters; control
and state parameters. Initially, the state variables (such as aircraft weight, range
number of segments) are pre-defined by the user and the control variables (al-
titude and airspeed) are handled systematically by an external algorithm (the
optimiser).
In this work, 4-segment trajectories will be simulated, where each segment

is defined between two waypoints. Although five waypoints compose the trajec-
tory, the beginning and end waypoint and their speed values remain constant.
Therefore, the 4-segment trajectory is parametrized by setting 6 variables; 3 for
the altitude (ATL1, ALT2, ALT3) and 3 for the speed (SPD1, SPD2, SPD3).
This set of 6 variables will be the design vector. The range of each segment is
constant and equals 40000m. During each segment the speed remains constant at
the originally set value. The simulated aircraft belongs to A320 category, which
carries two typical two spool, high bypass turbofan air-engines with separate
exhaust, model CFM56-5B4, and weights of 70 tonnes.
When all the aforementioned variables are set, the simulation generates a

vertical trajectory and calculates two performance indices; the weight of the
consumed fuel and the respective endurance. These are the considered objectives
for this work. However, fuel efficiency is related to endurance, and vice-versa.
It seems obvious that saving up fuel and shortening the endurance - maximum
length of flight time - are conflicting objectives. The targets are to minimise
fuel consumption and endurance. Hence, this is a multi-objective optimisation
problem, which will be resolved by employing native multi-objective optimisers.

3 Multi-objective Aircraft Trajectory Optimisation

When calculating optimal flight profiles, complex optimisation techniques have
to be used. The optimisation of aircraft trajectories is a constrained, non-linear,
multi-disciplinary and multi-objective problem. The parameters are dynamic,
deterministic and real-valued. In addition, it involves principles of optimal con-
trol theory. The integration of trajectory simulations along with optimisation
algorithms under GATAC has been presented in [12–14]. Currently, the frame-
work provides a variety of trajectory simulation models, but only one optimiser.
This work expands the portfolio of optimisation algorithms available to the user
by adding a new optimiser. This is common practice and more flexibility is
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provided to the end-user to choose between the two optimisers for different cases,
because no optimiser is equally good for every possible scenario [15].
In the majority of published literature, flight paths are optimised by trans-

forming the original problem into an optimal control problem, such as [16]. Then,
the new problem is resolved by employing standard techniques from optimal
control theory. This method is partially chosen because it is easy to access the
formulae that describe the problem which then turns out to be one of numerical
analysis. However, the necessary information is not always available, mainly due
to the complexity of the simulation and the number of participating factors (indi-
viduals and codes). Here, the authors follow a different approach, which is more
flexible and easily extensible. For a given trajectory, the aforementioned APM
and EPM are coupled together and deliver the output metrics. Then, MOTS2
collects and handles this pair of input and output for the optimisation phase.
This is therefore a modular approach of three individual modules, which are
managed by GATAC. Each part operates independently of the other part and
can be manipulated separately, as described above.
Following the description of the trajectory simulation in Sect. 2, which repre-

sents the objective function evaluation of the design vector in terms of optimi-
sation, the case specification is presented in Table 1. The aircraft is subject to a
number of constraints regarding its structural (e.g. maximum travel speed) and
operational (e.g. maximum angle of attack) limitations and ATM restrictions
(e.g. flight within certain altitude margin). All these constraints affect the range
of components of the design vector. Furthermore, for climb, a continuous ascend-
ing altitude must be used. The lower and upper bounds for both altitude and
speed delimit the design space, wherein the optimiser should locate the best de-
signs based on the objective values. In addition, hard constraints are imposed by
the APM and EPM whenever the design vector produces irregular trajectories.
Regarding the trajectory optimisation, the combination of the parameters

ALT1, ALT2, ALT3, SPD1, SPD2 and SPD3 defines the design. Each component
of the design varies within a continuous range of real numbers, which denotes the
design space, R6. In an analogous way, the objectives fuel consumption (FUEL)
and endurance (TIME) belong to a different space, namely objective space, R2.
Any single point of the design space maps to a point of the objective space. The
aim of the optimiser is to try different combinations of these variables on the
given simulation model and detect which areas express the best performance,
defined by the objectives. Following a number of successful iterations through
the optimisation phase, the best discovered Pareto Front is presented to the
designer to choose the final design. This is known as the decision phase. The
time required in order to establish the variables-to-objectives mapping is the
evaluation time of the given variables via the simulation. This is the most critical
part of the optimisation process, as it affects the overall execution time of the
whole optimisation and can take several days. In fact, the overall execution time
can be expressed as the summation of multiples of the execution time required
for a single evaluation and the overhead of the optimiser, which is practically
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negligible. In this case, each design evaluation can take up to 2 minutes, which
is prohibitive for real time optimisation.
The communication time among the participating modules is an important

factor, too. The interface between the optimisers and the trajectory simulation
is handled by GATAC, as depicted in Fig. 1a. Part of evaluation time is spent
in exchanging files among the modules, which will be improved by employing
direct communication methods. The (black box) communication is achieved by
using special dictionaries of extensible mark-up language (XML) and via directly
exchanging files. Using sampling techniques and parallelism can significantly
speed-up the optimisation process.
In this work, two native multi-objective optimisers will be used on the same

test case, as discussed in Sect. 2, and their performance will be analysed and
assessed. Handling all of the objective functions at the same time, without us-
ing any other kind of transformation is of paramount importance, since this
can deliver an unbiased trade-off[17]. The first optimiser, called Non-dominated
Searching Genetic Algorithm - Multi-Objective (NSGAMO)[13], is a variant of
the Non-Dominated Sorting Genetic Algorithm (NSGA-II)[18]. The second op-
timiser is based on Multi-Objective Tabu Search (MOTS)[19, 20] and will be
described below. Both optimisers can operate in constrained and unconstrained
problems and they will run for 20000 objective function evaluations. The con-
figuration settings (Table 2) were chosen based on authors’ experience so as to
explore the design spaces sufficiently and generate feasible trajectories.

Table 1. 4 segments climb case specification

node Range Min Altitude Max Altitude Min Speed Max Speed

0 0 m 1500 m 1500 m 130 m/s CAS 130 m/s CAS

1 40000 m 3000 m 5500 m 130 m/s CAS 190 m/s CAS

2 80000 m 3500 m 6000 m 130 m/s CAS 190 m/s CAS

3 120000 m 5500 m 6000 m 140 m/s CAS 190 m/s CAS

4 160000 m 6000 m 6000 m 0.8 Mach 0.8 Mach

3.1 Multi-Objective Tabu-Search 2

Tabu search methods can be classified as stochastic search optimisers. The orig-
inal and multi-objective versions were presented in [20] and [19], respectively. A
new variant, namely MOTS2, has been evolved by the lead author, based on the
original MOTS scheme developed and deployed to a range of aerodynamic op-
timisations [21–24]. In general, the design space is explored in a stochastic way,
while recently visited points (stored in a Tabu memory) are avoided so as to guar-
antee more exploitation of the unknown design space. In fact, the local search
scheme (Hooke and Jeeves [25]), which is particularly efficient for continuous pa-
rameters, is combined with stochastic elements. Different hierarchical memories
(Short-term, Medium-term, Long-term and Intensification2) are used to assist

2 This memory was defined in [19].
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critical decisions during the optimisation process. It also keeps track of certain
statistics during the process, which direct the search according to the discovered
landscape of the design space. In addition, the optimiser employs a mechanism
for local (Intensification Move) and global (Diversification Move) search. The
statistics detect design points around the current search point, within relatively
short distance, whereas the search mechanisms attempt to discover good design
points in the entire design space. The outline of MOTS2 is depicted in Fig. 1b.
In addition, MOTS2 includes the improvements (local search enhancements for
Diversification Move) discussed in [21] and, given any parallel framework such
as GATAC, it can operate in parallel mode saving elapsed time.

(a) Layout (b) MOTS2 flow diagram (adapted by [19])

Fig. 1. Optimisation Process

The search is guided by the current base point and the aforementioned mem-
ory containers. Around the base point, adjacent candidate design points are
investigated and evaluated. Then, the corresponding objective values are sorted
according to domination criteria of multi-objective optimisation [26] into the ap-
propriate containers for the current iteration and the next base point is resolved.
The previous base point and all the recently generated points are inserted into
the appropriate memory containers. Aggregated information (e.g. multiplicity of
certain objectives) will be used in future steps, when certain conditions (e.g. ex-
ceed a predefined threshold) are met. The optimisation process keeps repeating
until stopping criteria (such as number of evaluations) are met. During every
iteration a fraction of the flow of the algorithm is executed every time, and the
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rest runs when certain conditions are met. During the execution of MOTS2,
several statistics are gathered to monitor the optimisation progress and explain
the functionality of the optimiser.

3.2 The GA Optimiser in GATAC

The development of NSGAMO was discussed in [13] and it performance was
demonstrated in [12–14]. It has been considered to be the state-of-the-art GA
for multi objective optimisation, appropriate for trajectory optimisation. The
method is designed for lower computational complexity during Non-dominated
sorting using the concept of Elitism which improves the ability to retain good
solutions. Compared to the original NSGA-II, NSGAMO uses a different selec-
tion process so as to form the mating pool and an entirely different sequence of
genetic operators, as listed in Table 2.
The main flow of the algorithm consists of the following stages:

1. The algorithm begins with an initial population of N individuals and multi-
plies it with an initialisation ratio for the 1st generation.

2. This population is sorted based on the principle of Constraint Non-dominated
sort to form the initial generation Pt.

3. If after sorting, individuals exceed N, then N individuals are selected based
on Crowding Distance from the final Front.

4. Using Constrained Crowded Tournament Selection, a mating pool is created
from Pt.

5. The genetic operators (Mutation and Crossover) are then used to form an
Offspring Population Qt.

6. On the merged set Rt = (Qt + Pt), steps 2 to 3 are performed to form the
next generation.

4 Optimal Aircraft Trajectories - Results and Discussion

Both optimisers ran for 20000 evaluations under their individual settings listed
in Table 2 and the final Pareto Front is shown in Fig. 2. Among the discovered
designs one from each optimiser is selected approximately from the middle of the
plane and the corresponding trajectory, also known as the compromise design, is
visualised. The designs of the Pareto Front revealed by NSGAMO spread almost
uniformly over the Objective Space, whereas the ones discovered by MOTS2 lie
on two narrower regions but their population is larger. So, depending on the
requirements of the application, it is impossible to chose one optimiser from the
other. In general, NSGAMO delivered a large range of designs, which informs the
user about the performance of the aircraft in many different scenarios. Contrary,
the designs revealed by MOTS2 are denser and very close to each other. So, there
is information about near-similar performance on different settings of altitude
and speed.
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Table 2. Configuration settings for trajectory optimisation

(a) MOTS2

diversify after 15 iterations

intensify after 10 iterations

reduce after 30 iterations

search step {0.3,0.3,0.3,0.1,0.1,0.1}
search step retained factor 0.5

6random samples

6 variables

2 objectives

4 regions in Long Term Memory

Tabu Memory size 15

(b) NSGAMO

% for creep mutate with decay 0.01

% for dynamic vector mutate 1.01

% covered dynamic vector mutate 0.75

% covered for Vector mutate 1

% covered for element mutate 0.6

Convergence Fitness Tolerance 1.0E-6

Inflationary scheme population limit 3

Inflationary scheme starting point 1.6

Initialization Factor 30

Maximum Generations 150

Population Size 100

Element mutation Probability 0.05

Creep mutate Probability 0.1

SBX Distribution Coefficient 1.0

Selection Pressure 2.0
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Fig. 2. Comparing the trade-offs and the compromise designs

Despite the difference in the shape of Pareto Front, the trajectory of the
compromise design generated by MOTS2 is slightly lower in altitude and quicker
than NSGAMO’s but the difference in objective values is negligible, as shown in
Fig. 3. Hence, the compromise design behaves equally well in both cases. It is
obvious, that the margin between the extreme designs for NSGAMO is larger.
This is expected, since the variation of the variables is wider and the extrema
are quite distant.
Two methods that will assist in assessing the performance between the opti-

misers are the Principal Component Analysis (PCA)[27] and the hypervolume
indicator [28]. The first is applied only to the design vectors of the Pareto Front
for each optimiser. This method can detect which components of the design
vector are the most energetic. This is achieved by calculating which parameter
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Table 3. Statistics

Principal Components Analysis Hypervolume Indicator
ALT1 ALT2 ALT3 SPD1 SPD2 SPD3 (reference : {1253.8, 858.1})

NSGAMO 0.9316 0.0658 0.0024 0.0001 0.0000 0.0000 15109.666
MOTS2 0.8958 0.1011 0.0028 0.0003 0.0001 0.0000 12579.178
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(a) NSGAMO altitude vs range
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(b) MOTS2 altitude vs range
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(c) NSGAMO speed vs range
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(d) MOTS2 speed vs range

Fig. 3. Generated trajectories

has the highest variance. Consequently, these parameters are mainly responsible
for the current instance of the trade-off and their importance is quantified. The
left part of Table 3 presents the variance of the score of PCA for each param-
eter over the total variance. So, ALT1 contains by far the highest percentage
of variance for both cases and it is considered the most significant parameter.
Hence, the optimisation process should mainly focus the search based on this
parameter. This has a double implication: either the search step could be very
fine for the specific parameter, or the optimisation could be performed again
with fewer variables, which would suppress the dimensionality and speed-up the
process. Because the number of iterations is very large, setting ALT1 as the most
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Fig. 4. Design variables to objective functions/metrics relationships

important variable seems to be a safe choice, but this is not guaranteed to be
true until the whole search space is explored. The hypervolume indicator (right
part of Table 3) is related to the objective space and is used to quantitatively
compare the performance of the trade-off. More specifically, the richness and
the span of the Pareto Front are combined in one metric; the higher the value
is, the better the trade-off. The reference point used is the combination of the
worst objectives from both Pareto Fronts. According to hypervolume indicator,
NSGAMO achieved a higher value against MOTS2. However, by definition, the
indicator favours the trade-off that spreads over the design space. Therefore the
user is informed about the importance of the discovered variables and the overall
performance of the revealed Pareto Front.
The pairwise relationship between each variable against each objective for

each optimiser is depicted in Fig. 4. The situation for NSGAMO is straightfor-
ward. Whenever the altitude increases the fuel consumption is reduced and the
flight time is longer and vice versa, not in linear way. The same statement is true
for speed, but with smoother response. It is noteworthy that, since ALT1 was
identified as the most significant variable, for less than 1200 kg of consumed fuel
the second and third altitude parameter are almost constant. Similarly, if flight
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(a) NSGAMO

(b) MOTS2

Fig. 5. Parallel coordinates projection

time is longer than 750s the same components remain constant. Interpreting the
results from MOTS2 is less intuitive. Although the Pareto Front is denser, the
design variables to objective functions relationship presents two separate zones
of performance. Again, as ALT1 increases fuel consumption drops and flight time
increases. Then as speed increases more fuel is consumed and the flight is shorter.
However, trends appear smoother. This is partly true because the trade-off is not
as wide as with NSGAMO. Hence, the reduced distance between the extrema
explains this behaviour. In both cases, the response of speed parameters against
FUEL seems to follow a linear pattern.
The revealed Pareto Fronts are further investigated by using the Parallel Co-

ordinates Projection[29], which is illustrated in Fig. 5. It is confirmed again
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that NSGAMO’s trade-off is wider and equally spaced, whereas MOTS2 discov-
ered two rich and different zones of performance. The domain is clustered based
on the fuel efficiency high and low consumption. Moreover the user is informed
about which regions each optimiser explored.
Parallel Coordinates can interpret the behaviour of the optimal profiles. Ini-

tially, for NSGAMO, the population (which is 36% of the whole set) of trajec-
tories that belongs to the upper-half of FUEL corresponds to a very thin range
for TIME. This means that increasing the fuel consumption does not equally
improve the flight time. Besides the ALT3 axis, the majority of designs do not
mix and thus the flight performance could be easily separated. NSGAMO dis-
covered designs at a larger fraction of the axes, which also justifies the span of
the Pareto Front.
Two distinct zones of performance were recognised by MOTS2 with compli-

cated interactions between the variables. In terms of the range of objectives,
Tabu-Search is more balanced. The local search scheme also affects the (mixed)
shape of the Parallel Coordinates plot, where the concentration of coordinates
is more intense from region to region of the axes.
In general, the ratio of high to low fuel efficiency for NSGAMO is 64/36

whereas the same ratio for MOTS2 is 112/217. Although the designs seem scram-
bled, the classification of FUEL can be directly resolved from ALT1. In addition,
both cases revealed that fuel-efficient (lower half FUEL axis) trajectories present
very small variation in ALT2 and ALT3. Also, a similar pattern between ALT1
and ALT2 axis is presented.

5 Conclusions

This work demonstrated that the newly developed MOTS2 is a competitive
alternative against NSGAMO when applied on aircraft trajectory optimisation
problems, with very distinct results. The performance of these optimisers was
compared in a 4 segments climb of commercial passenger aircraft of the A320
family and different zones of performance were highlighted, which necessitate the
need for further exploration. Although the revealed Pareto Front is not as wide
as NSGAMO’s, the discovered designs seem to be more focused within a short
range. Compromise and extreme designs were discovered and discussed. It was
found that the first variable (ALT1) is by far the most significant parameter for
4-segments climb trajectory and severely affects the performance of the flight.
The findings are in agreement with the flight physics and provide additional
insight between the control parameters and the objective values.
Future work will involve more segments and more flight phases, so as to

optimise more realistic trajectories. This leads to the development of optimi-
sation algorithms that can manage large number of design parameters. Since
the ultimate goal is to carry out optimisation in real-time, further developments
that eliminate the evaluation cost are required. This can be achieved either
by developing/adapting new algorithms or by employing alternative computer
architectures.
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Abstract. Several methods were developed to solve cost-extensive
multi-criteria optimization problems by reducing the number of function
evaluations by means of surrogate optimization. In this study, we apply
different multi-criteria surrogate optimization methods to improve (tune)
an event-detection software for water-quality monitoring. For tuning two
important parameters of this software, four state-of-the-art methods
are compared: S-Metric-Selection Efficient Global Optimization (SMS-
EGO), S-Metric-Expected Improvement for Efficient Global Optimiza-
tion SExI-EGO, Euclidean Distance based Expected Improvement
Euclid-EI (here referred to as MEI-SPOT due to its implementation
in the Sequential Parameter Optimization Toolbox SPOT) and a multi-
criteria approach based on SPO (MSPOT).

Analyzing the performance of the different methods provides insight
into the working-mechanisms of cutting-edge multi-criteria solvers. As
one of the approaches, namely MSPOT, does not consider the prediction
variance of the surrogate model, it is of interest whether this can lead
to premature convergence on the practical tuning problem. Furthermore,
all four approaches will be compared to a simple SMS-EMOA to validate
that the use of surrogate models is justified on this problem.

1 Introduction

The time required for a process feedback can play a crucial role in many fields
of industrial optimization. Complex and expensive real-world processes or time
consuming simulations lead to large evaluation times. This restricts optimiza-
tion processes to only a very limited number of such evaluations. Moreover,
almost all industrial optimization tasks feature more than one quality criterion.

R.C. Purshouse et al. (Eds.): EMO 2013, LNCS 7811, pp. 756–770, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Multi-Criteria Optimization under Limited Budgets 757

Techniques from multi-criteria decision making, evolutionary multi-criteria op-
timization (EMO) in particular, were developed during the last decade to solve
such tasks. The necessity to combine EMO techniques and optimization meth-
ods such as EGO [13] or SPO [1], which require a very small number of function
evaluations only, should be self-evident. The application of such methods to real-
world problems in industrial optimization provides a reasonable way to assess
their feasibility. In contrast to artificial test functions, it allows for an assessment
of the practical relevance for these kinds of problems.
In this paper we focus on four different tuning methods which are applied to

tune an anomaly detection software for water quality management. This problem
is usually handled by receiver operator characteristic (ROC) analysis. Due to
specific limitations of the software concerned, this can not be applied in the
classical way. Rather, the ROC curve should be approximated by Multi-Criteria
Optimization (MCO) methods. That means, the ROC curve can be interpreted
as a Pareto front. Interpreting ROC curves from the multi-criteria optimization
perspective is an established approach in computational intelligence, see, e.g.,
[17].
In Sec. 2, we will summarize the former work performed in relevant research

fields. The specific problem is presented in Sec. 3. The tuning algorithms (based
on different SPO and EGO implementations) are described in Sec. 4. Section 5
describes the experimental setup, whereas the analysis is presented in in Sec. 6.
Finally, Sec. 7 gives a summary of findings and an outlook on future work.

2 Former Research

Surrogate modeling is not a new topic in optimization. Jin [12] provides a
comprehensive overview of single-objective optimization with surrogate models.
While methods like EGO or SPO for single criteria optimization are well estab-
lished, the application of surrogate modeling procedures for multiple objectives
is more recent.

2.1 Surrogate Modeling in Multi-Criteria Optimization

In MCO, several approaches employ surrogate modeling. One example is the
well established ParEGO by Knowles [15]. An overview of surrogate modeling
in MCO is given by Knowles and Nakayama [16]. To balance exploration and
exploitation in case of a limited budget, several methods employ infill criteria
based on expected improvement (EI). Two things are required for defining such
a criterion: the definition of the improvement and an algorithm to compute
its expectation [22]. Since negative improvements are not possible, dominated
solutions should yield an improvement of zero. As large variances potentially
result in large improvements and large deteriorations are not penalized, these
criteria also focus on the exploration of uncovered areas of the search space. It is
of interest to see if this kind of additional exploration is desirable for the problem
at hand. In particular, it remains to be seen whether there is already sufficient
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exploration done due to the initial design or due to the requirement of covering
a whole set of Pareto optimal points.

2.2 ROC Analysis

This work deals with tuning the event detection software CANARY [10,19]1

which tries to detect anomalies in water quality data. The core algorithm in
CANARY compares the difference between a predicted value and the most re-
cently measured value to a user defined threshold. If the threshold is exceeded,
an alarm is triggered. ROC provides means to select a threshold of a classi-
fier based on trade-off between its True Positive Rate (TPR) and False Positive
Rate (FPR). In the case of CANARY, TPR is the hit rate which is based on the
number of correctly recognized events. FPR on the other hand is the false alarm
rate. False alarms occur whenever the algorithm detects an event when actually
none exists.
The ROC curve shows the trade-off between TPR and FPR. Usually, it is

drawn based on the threshold value of the classifier. This means, depending on
the chosen threshold value one receives different pairs of TPR/FPR values which
can be connected to a curve. To evaluate the performance of a classifier, the Area
Under Curve (AUC) can be used. The worst possible classifier will have an AUC
of 0.5, since all pairs of TPR and FPR will be on the straight line between the
two extreme points of the curve. This performance would be equal to random
guessing. The best possible classifier will have an AUC of 1, which means there is
a configuration where no false alarms occur, all events are identified (cf. Fig. 1).

False Positive Rate0 1
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Fig. 1. ROC curves for classifiers of different quality. Leftmost is the case of perfect
classification, the rightmost is random guessing.

In the case of CANARY, this form of measuring the performance can not be
used, since the threshold value used in CANARY cannot be chosen indepen-
dently. Therefore, each different setting of the threshold has to be considered as

1 For documentation, manuals and source code of CANARY see:
https://software.sandia.gov/trac/canary
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a new classifier. The ROC curve can then be used to compare performance of the
different classifiers. Consequently, the threshold value is one of the parameters
to be optimized.

2.3 MCO in ROC Analysis

The ROC curve can be interpreted as a Pareto front, although it would classi-
cally only represent the Pareto front of an MCO problem with one dimensional
decision space (i.e. the decision threshold being the only decision variable). How-
ever, it is reasonable to apply MCO methods for other cases, for instance when
different classifiers are to be compared, or the threshold is not independent of
the classification process. This is the case in the problem described in this paper.
Applying MCO for ROC analysis is not a new topic. Kupinski and Anasta-

sio [17] considered performances of the solutions returned from a multi-criteria
objective genetic optimization as series of optimal (sensitivity, specificity) pairs,
which can be thought of as operating points on a ROC curve. Fieldsend and
Everson [7] used MCO to construct the ROC curve for a vector of parameters
(including the threshold) of a binary classifier, thus analyzing several different
classifiers. In a second study they discuss the application of MCO for the ROC
analysis of a multi class problem [5]. A survey of MCO in ROC analysis can be
found in the work of Everson and Fieldsend [6].

3 Problem Description

The problem to be solved in this paper is the tuning of a software designed for
anomaly detection in water quality management: CANARY. It was developed to
detect anomalies (or events) in water quality time series data. It implements sev-
eral different algorithms for time series prediction, pattern matching, and outlier
detection. The main concept is to employ a time series algorithm to predict the
next time step, and afterwards to distinguish whether the real value deteriorates
from the predicted value sufficiently to declare it an outlier or anomaly.
We will tune the two relevant parameters window size and threshold value.

The window size defines how many values are used for the prediction, while the
threshold value defines how much deviation between measured and predicted
value are sufficient to declare an outlier. Both parameters have previously been
tuned in different ways. Firstly, they have been tuned by a step-by-step proce-
dure [19] which unfortunately does not consider interactions between parameters.
Secondly, another study [23] tuned them with model based optimization, con-
sidering interactions, but only used a single criteria approach, which basically
combined the objectives False Alarm Rate and Hit Rate to a weighted sum.
Usually, as described by Murray et al. [19], a classical ROC analysis would be

performed. The AUC would be used as a single quality criterion. This approach
is not perfectly viable in this case, as the threshold value is not independent of
the prediction process. Therefore, it is a more reasonable approach to add the
threshold to the list of tuned parameters and apply multi-criteria optimization.
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For this reason, we will mainly use MCO-terminology in the following (e.g.,
Pareto front instead of ROC curve).

4 Algorithm Description

Four different tuning algorithms are in the focus of this study. Due to the sim-
ilarity to the AUC, the hypervolume is applied as a criterion in all but one
of these approaches. Two of them are based on R-code (SPOT package), two
are MATLAB implementations (SMS-EGO and SExI-EGO). All four share the
following basic workflow:

1. Evaluate an initial design of n points on the target problem (CANARY)
2. Build models (here: Kriging) for each objective
3. Use models to determine the next design point to be evaluated, based on a
certain infill criterion

4. Evaluate design point and update non dominated set
5. Iterate 2-4

The four tuning algorithms differ in the type of the invoked infill criterion. Three
algorithms use different multi-criteria EI concepts. The fourth is a straightfor-
ward approach that, instead of aggregating the objective values from the models,
tries to optimize these separately with common MCO methods.

4.1 MEI-SPOT

This multi-criteria expected improvement approach is the only approach that
does not use hypervolume as a criterion. The implementation is based on MAT-
LAB code of Forrester et al. [9]. MEI-SPOT is based on the integration over the
non-dominated area and an Euclidean distance to the next point on the front.
While Forrester et al. use a dominating variant (e.g. improvement considers
only points that dominate existing Pareto-optimal solutions), the implementa-
tion used here uses an augmenting variant (i.e. improvement is also reported
when a point is added to the front, without dominating an existing Pareto-
optimal solution). The different formulations for this distinction are detailed
by Keane [14]. This approach is time consuming due to the integration. It can
also have issues with the scaling of different objectives, since it is based on the
Euclidean distance.

4.2 SExI-EGO

The S-Metric Expected Improvement [3] computes the expected increment in
hypervolume for a point, given a non-dominated set. Its exact computation is
described in [4]. It is differentiable, rewards high variances [4], and is continuous
over the whole search domain. A disadvantage is the high effort of its exact
computation, in particular when more than two objectives are considered.
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4.3 SMS-EGO

SMS-EGO, as suggested by Ponweiser et al. [20], employs a hypervolume based
infill criterion as well. Thereby, a potential solution is computed using the lower
confidence bound ŷpot = ŷ − αŝ, where ŷ is the mean value predicted by the
Kriging model, ŝ is the variance, α is a gain factor for the variance. This approach
may also explore unvisited regions of the design space, but without requiring
the tedious integration of the previous approaches. It thus scales better with
increasing objective dimension.
If the resulting ŷpot is ε-dominated or dominated, SMS-EGO will assign a

penalty value. If it is non-dominated, the hypervolume contribution will be used.
This approach avoids plateaus of the criterion, but integrates non differentiable
parts. For more details see Ponweiser et al. [20] and Wagner et al. [22].

4.4 MSPOT

MSPOT is a multi-criteria approach based on the Sequential Parameter Opti-
mization Toolbox SPOT (cf. Zaefferer et al. [24]). It does not employ any form of
expected improvement, or other forms of using the variance for exploration. The
surrogate models of the different objectives are exploited by using a multi-criteria
optimization algorithm (for instance: SMS-EMOA or NSGA-II).
This will yield a population of promising points. One or more points of these

are chosen for evaluations on the real target function. This selection is based
on non-dominated sorting and the individual hypervolume contribution. As the
original approach [24] could lead to clustering of solutions in the objective space,
the available points have to be considered when calculating the hypervolume con-
tributions. For this purpose, the known points are reevaluated on the surrogate
model.
In contrast to the other approaches in the study, this one does not promote

exploration as much, since the variance measure computed by the Kriging model
will not be used. On the other hand, the approach is not limited to surrogate
modeling methods that yield a variance for each candidate. Of course, the vari-
ance can easily be added to MSPOT, as well as be removed from SMS-EGO
(α = 0) or the integration-based algorithms (ŝ = 0).
The optimization process of MSPOT is not a completely new idea. Espe-

cially, two similar approaches suggested previously have to be mentioned. Firstly,
Voutchkov and Keane [21] employed NSGA-II to generate promising solutions in
a quite similar optimization loop. In contrast to MSPOT, they used Euclidean
distance to ensure evenly spaced points on the front. Instead of considering dis-
tance to known points, they suggest a larger number points in each loop, which
also ensures a wider spread on the final front. The second similar approach is
presented by Jeong and Obayashi [11]. While they also optimize the objectives
separately, they employ the single objective EI criterion for each objective, thus
optimizing a vector of EI values.
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4.5 SMS-EMOA

In addition to the four approaches above, a simple SMS-EMOAwill be considered
(cf. Beume et al. [2]). The results from this optimizer are used as a baseline for
the comparison. In general, surrogate optimization methods are expected to
outperform a non-surrogate SMS-EMOA, particularly on small budgets.

5 Experimental Setup

The following research questions are to be treated for the CANARY problem in
this study.

1. Can multi-criteria methods produce a front of parameter settings that help
an operator to choose parameters for the CANARY event detection software?

2. Which kind of tuner is recommendable?
3. What aspects of a tuner affect its performance?
4. Is the use of surrogate models advantageous?
5. Can previous findings about the tuners be confirmed?
6. How are Pareto optimal solutions spread in the design space?

To answer these questions, several experiments were conducted. Their setup is
described in the following.

5.1 Time Series Data

Two different sets of raw data are used. The first set is used to train CANARY
(i.e. to tune the parameters), the second is used for validation of the resulting
settings on unseen data. Additionally, from each of those sets, 3 different in-
stances are generated, where each contains simulated (i.e. superimposed) events
to be detected by CANARY. The data sets considered are available within the
CANARY software package.

Training Data. The data recorded over a first month at a specific measurement
station is used as training data. Four different sensor values are used (pH-Value,
Conductivity, Total Organic Carbon, Chlorine). The time interval between mea-
surements is five minutes. This results in about 9 000 time steps for each of the
four sensors.
As the data-set contains no events known beforehand (which is a typical

problem for any available real-world data), events have to be simulated and
incorporated in the time series. Therefore, 3 data sets are created from the raw
data, each containing superimposed square waves (with smoothed transition) of
different event strengths: 0.5, 1, and 1.5. These strengths indicate the amplitude
of the events, and are multiplied to the standard deviation of the original signal.
Figure 2 presents raw data and data with events for two sensor value as an
example.
As can be seen from the left part of Fig. 2, the raw data (i.e. without events)

is rather strongly affected by background changes. In general, these background
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Fig. 2. Example of time series data as used in the experiments. Raw data without
events (left) and with superimposed events of strength 1.5(right). CL2 is Chlorine,
TOC the Total Organic Carbone.

changes are irregularly distributed over time and always switch back and forth
for each of the signals. Obviously, such changes make event detection extremely
difficult.

Validation Data. The validation data is similar to the training data, as it is the
second month of data from the same measurement station. As could be expected,
it provides a very similar background behavior with some sudden jumps. These
jumps, however, are more numerous than in the training data, which is expected
to lead to higher false alarm rates on the validation data.

5.2 Optimization Problem Configuration

As mentioned earlier, three different data sets are considered, each with a differ-
ent event strength. Additionally, CANARY is tuned in 3 different configurations,
where each configuration uses a different time series prediction algorithm. These
are: Time Series Increment TSI, Linear Prediction Correction Filter LPCF and
Multi-Variate Nearest Neighbor MVNN. For more details on these algorithms,
which are implemented in CANARY, see the corresponding documentation [19]
and the manual [10]. Therefore, 3 × 3 = 9 instances are to be optimized. The
optimization problem is multi-objective, where both decision and solution space
are two dimensional: The window size and the threshold are tuned, to yield a
minimal FPR and a maximal TPR value. Since all tuning methods in this study
do minimization, TPR is negated. The problem is not noisy, as the algorithms
employed in the event detection software are deterministic.
There are two nice features of the problem, which avoid issues of algorithm

configuration.

1. The choice of the reference point. With this problem the worst case is known:
Zero for TPR and one for FPR. To avoid extreme points overlapping with
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the reference point, the latter was chosen to be [0.1,1.1] since TPR ranges
from -1 to 0 due to the negation.

2. Scaling of objective space is not an issue here, as both objectives have the
same range. They only differ in that way, that TPR is maximized and FPR
minimized. Scaling has not to be considered in the algorithms.

5.3 Tuning Methods Configuration

All algorithms are configured to use approximately the same settings, i.e.:

– initial design size: 21
– number of points added in each step: 1
– number of maximal evaluations of the target function: 80
– surrogate model: DACE-Kriging [18]

The optimization method to find the best point (with or without expected im-
provement) differs. Some criteria aggregate the different objectives into a single-
objective infill criterion, which is then optimized. Therefore, SExI-EGO, SMS-
EGO and MEI-SPOT invoke a local optimization method, restarting in several
partitions of the design space. In contrast to this, MSPOT uses SMS-EMOA
to optimize the surrogate models of the objectives without aggregating their
information.
While both the R and the MATLAB implementations use DACE-Kriging [18] there

are small differences in the implementations. This includes differences between
the inbuilt local optimization methods (e.g. simplex, gradient based) used during
model building and optimization.
The SMS-EMOA employed as a baseline comparison is configured to also use

a starting population of 21 points. All other settings are left at defaults.

6 Analysis

The results of the experiments are depicted in Fig. 3. It shows the resulting
hypervolume of each tuner for each problem instance. The hypervolume values
are recalculated with respect to the reference point [0, 1] to have the ranges
comparable to the AUC values. Plots with the original reference point used
during tuning look alike and do not show major differences. As can be seen, there
are no significant differences between the performance of SMS-EGO, MSPOT,
and SExI-EGO. In comparison, MEI-SPOT and SMS-EMOA perform worse.
For the SMS-EMOA, this was expected and can be blamed to not invoking a
surrogate model. The Euclidean EI criterion employed in MEI-SPOT, on the
other hand, was already reported to be less viable due a non-monotonicity with
the dominance relation [22].
It can be observed that the event strength has an improving influence on

the detection performance of the Pareto optimal solutions. This is expected, as
stronger events should be easier to identify. The same can be observed for the
algorithm MVNN, which provides best overall detection results. Both observa-
tions are in line with earlier reported behavior in the work on tuning CANARY
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single objectively [23]. An optimal performance would be leading to a hypervol-
ume of exactly one. Realistically, this is not obtainable. The gap between the
best front’s hypervolume and the theoretical optimum is largely due to the fact
that the FPR rate is strongly affected by the sudden jumps in the time series
data. Besides this, the results are in a similar range of TPR and FPR values as
found in the earlier mentioned single-objective tuning of CANARY.
The results discussed above have been received on the training data set only.

To validate our findings, we invoked the validation data set as well. All points
of the final Pareto front were re-evaluated on the validation data set. It can be
observed that performance differences become smaller while variances increase.
The former particularly holds for incorporating MVNN in CANARY. In general,
it can be noticed that the received hypervolume decreases on the validation data.
This can mainly be blamed on a slightly different background behavior of the
validation data set, as described in Sec. 5.1. While there is a strong performance
drop for nearly all instances, the results for MVNN and an event strength of
1.5 only decrease slightly. A similar behavior was observed for single-objective
tuning of CANARY in an earlier work by Zaefferer [23]. Still, the validation
data shows the same relations as the training data, considering the performance
of different tuners. In the briefness of this paper we focus on the training data
results, since differences can mainly be blamed on different background behavior
in the two time frames (e.g. more sudden jumps in the second month, compared
to the first month).
Table 1 provides the average number of points on a single Pareto front. Note,

that 30 to 50 percent of the points on a front are actually dominated, if being
re-evaluated on the validation data.

Table 1. Average number of points on a Pareto front. The second line shows how
many of those points remain, after being reevaluated on validation data.

MEI-SPOT MSPOT SMS-EGO SExI-EGO SMS-EMOA

Training Data 38.70 29.27 23.11 22.92 21.00

Validation Data 22.91 18.13 14.54 14.27 12.54

As mentioned above, MSPOT, SMS-EGO, and SExI-EGO do not show signif-
icant differences in their results. One main distinction between these approaches
is that MSPOT does not make use of the variance produced by the DACE model,
and therefore lacks exploration. It might therefore be the case that MSPOT
performs as good as the other methods, because the initial design already pro-
vides enough exploration of the design space so that it is sufficient to spent all
sequential evaluations on purely exploiting the surrogate models prediction.
To test this, two additional experiments are performed. Firstly, the MSPOT

experiment is repeated with a much smaller initial design of just 5 points (la-
beled MSPOTSMALL), to validate whether a smaller initial design can deterio-
rate results. Secondly, the SMS-EGO experiment was repeated disregarding any
variance information. To this end, the gain α is set to zero. Therefore, instead of
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Fig. 3. Boxplot of first results on training data. The hypervolume is computed with
a reference point of zero for TPR and one for FPR. Larger hypervolumes are better.
emax is the event strength, atype is the algorithm type used in CANARY.
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the lower confidence bound ŷpot = ŷ−αŝ the potential solution will be ŷpot = ŷ.
This approach will be labeled as SMS-EGOg0. The resulting hypervolumes on
training data are depicted in Fig. 4. The smaller initial design in fact decreases
performance of MSPOT, however, the margin is quite small. Furthermore, a
comparable performance of SMS-EGO with or without taking the variance in
consideration is observed.
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Fig. 4. Boxplot of additional results on training data, comparing results of follow-up
experiments (i.e. MSPOTSMALL and SMSEGOg0). The hypervolume is computed
with a reference point of zero for TPR and one for FPR. Larger hypervolumes are
better. emax is the event strength, atype is the algorithm type used in CANARY.



768 M. Zaefferer et al.

In some instances SMS-EGO even performs better without incorporating the
variance information. There seems to be no strong need for the additional ex-
ploration in this case. Such observations are normally expected for unimodal
problems, while more exploration should be profitable on multi modal problems.
It might further be considered that additional exploration is already inherent in
the selection process as not one single optimum, but a set of points is demanded.
To visualize the problem landscape, Fig. 5 shows contour plots of reference DACE-

models for each objective. These models were built by combining the designs of all
algorithms and selecting some representatives based on the distance to an opti-
mized Latin hypercube design. Whereas, the models seem to have a rather uni-
modal shape, there are clusters of optimal solutions due to a slightly oscillating
behavior in the plateau regions. This effect can be observed using the model pre-
dictions and the actual data. As a consequence, the approximation of the knee re-
gion with window sizes between 200 and 400 and a threshold between 1.0 and 1.5
should be easy, whereas the extreme ones might become a multimodal problem.

Fig. 5. Problem landscape of both objectives. Contours show DACE-model based on
representatives from all evaluations on this instance (Algorithm MVNN and event
strength 1.5). Black dots show all real pareto optimal solutions found. Grey dots show
Pareto optimal solutions on the model, yielded with grid sampling.

7 Summary and Outlook

In this study, we tested different approaches based on surrogate optimization
to tune an event detection software. Most of the analysis was focused on the
results of training data, since the results on validation data mainly provided
similar results as on the training data. The surrogate optimization approaches
are mostly able to outperform a baseline SMS-EMOA. The MEI-SPOT approach
proved to be the exception from this observation, which confirms earlier findings
by Wagner et al. [22]. This approach of calculating the expected improvement
for multiple criteria seems to be unfavorable.
There was no decisive difference between the other tested approaches, regard-

less whether variance was used in the approach (SMS-EGO and SExI-EGO)
or not (MSPOT and SMS-EGO with zero gain). Plots of the model structures
seem to indicate an almost unimodal fitness landscape for both objectives. This
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indicates that the additional exploration by variance might not be needed here,
since the fitness landscape is easy to approximate without additional exploration
of the design space. Since it was neither a disadvantage, it might be interesting
to test the lower confidence bound in MSPOT for future experiments.
This study showed that the problem of tuning CANARY can reasonably be

solved by multi-criteria methods. The produced results yield reasonable FPR
and TPR values, which are comparable to previous results achieved by single-
objective optimization. Here, however, the approximation of a Pareto front offers
more flexibility for the operator in charge.
It has to be noted that only points on the convex hull of the ROC curve can

be considered to be optimal in some sense. Any point below that hull might be
considered to be improvable [8]. Future work should investigate if concavities in
the ROC curve can be repaired for the application described here.
The concentration on certain regions of a Pareto front might be a topic for

future research as well. An operator might be more interested in the knee region
of the Pareto front, and less on extreme values, which might cause intolerable
numbers of false alarms. Focusing on a subset of the Pareto front might also
reduce the required budget.
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Abstract. The network reconfiguration for service restoration in dis-
tribution systems is a combinatorial complex optimization problem that
usually involves multiple non-linear constraints and objectives functions.
For large networks, no exact algorithm has found adequate restoration
plans in real-time, on the other hand, Multi-objective Evolutionary Al-
gorithms (MOEA) using the Node-depth enconding (MEAN) is able to
efficiently generate adequate restorations plans for relatively large distri-
bution systems. An MOEA for the restoration problem should provide
restoration plans that satisfy the constraints and reduce the number of
switching operations in situations of one fault. For diversity of real-world
networks, those goals are met by improving the capacity of the MEAN
to explore both the search and objective spaces. This paper proposes a
new method called MEA2N with Strength Pareto table (MEA2N-STR)
properly designed to restore a feeder fault in networks with significant
different bus sizes: 3 860 and 15 440. The metrics R2, R3, Hypervol-
ume and ε-indicators were used to measure the quality of the obtained
fronts.

1 Introduction

There are many Multi-objective optimization problems (MOP) in real world such
as: vehicle routing [1], phylogenetic reconstruction [2] and service restoration in
distribution systems [3]. MOP are characterized by the presence of multiple
objective functions to be optimized simultaneously, since such objectives can be
conflicting and there is no single optimal solution that satisfies all objectives
equally [4].

In order to find feasible solutions for MOP, Multi-objective Evolutionary Algo-
rithms (MOEAs), such as Nondominated Sorting Genetic Algorithm II (NSGA-II)
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[5] and Strength-Pareto Evolutionaty Algorithm 2 (SPEA2) [6] were proposed
in the literature. These algorithms search for an approximated Pareto-optimal
set and both are based on elitism, i.e. the best solutions in the population are
preserved to the next generation. Despite the similarities, these techniques differ
in the way that they implement the elitism and in the strategy used to select the
best solutions according to multiple objective functions. The NSGA II based on
Non-dominated Sorting (NS), usually, fails in combinatorial optimization prob-
lems with many objectives [7, 8].

To improve the performance of MOEAs for large-scale network design prob-
lems, new dynamic data structures (encodings) that exclusively generate feasible
solutions have been investigated [9]. Those encodings allow a suitable exploration
of the search space, increasing the quality of solutions provided by MOEAs.
Among the encondigs from the literature, the Node-depth encoding (NDE) [10]
better scales, enabling its use for optimization methods applied to large net-
works. In this sense, some MOEAS using NDE have been investigated: MoEA
with Node-depth encoding (MEAN) [3], NSGA-II with NDE (NSGAN) [11] and
MEAN with Non-dominated subpopulation table (MEA2N) [12]. The MEAN
and MEA2N uses subpopulation table [12] store the best found solutions ac-
cording to distinct evaluation criteria. The MEAN and MEA2N have a common
feature, they search for solutions that simultaneously optimize each objective
separately and one or more aggregation function(s) combining objectives. The
MEA2N includes features of NSGA-II in the MEAN by adding a subpopulation
tables that stores non-dominated solutions. NSGAN and MEA2N have shown
to be able to solve combinatorial problems with two or more objectives.

Those approaches have been evaluated for network design problem called DS
reconfiguration. The Network reconfiguration of a DS is a combinatorial opti-
mization problem, which consists in the process of opening and closing some
switches to modify the topology of the network that represents the distribution
system. The network reconfiguration for Service Restoration (SR) is classified as
an NP-Hard problem, which it is i) highly combinatorial, due to the large number
of switching elements; ii) nonlinear, since the equations governing the electrical
system are in general nonlinear; iii) non-differentiable, because a switch status
change may result in crisp variations of values in objectives and constraints; iv)
constrained, due to the electrical and operational restrictions; v) multi-objective,
considering that the plan should maximize the number of restored costumers and
minimize the number of switching operations and, when not conflicting with the
two previous objectives, Ohmic losses are also considered. Thus, the design of an
optimal network configuration for SR require the investigation of several switch-
ing status vectors.

To obtain a Pareto-optimal front with better convergence and also preserving
the diversity, this paper proposes a new method called MEA2N with subpop-
ulation table related to solution STRength (MEA2N-STR), which extends the
strategy of the subpopulations tables of MEA2N and incorporates a table of
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non-dominated solutions based on SPEA21 to improve the capacity of inves-
tigating the objective space. Besides obtaining adequate restoration plans for
large DS, MEA2N-STR also finds plans for small or relatively large networks
with similar quality.

This paper is structured as follows: Section 2 describes the Service Restoration
Problem Formulation; Section 3 explains the NDE; Section 4 presents the main
concepts of Multi-objective Evolutionary Algorithms (MOEAs); Section 5 shows
the test problems and experimental results and, finally, Section 6 presents the
conclusions.

2 Service Restoration Problem Formulation

The Network reconfiguration for the Service Restoration Problem is the process
of opening and closing of some switches to modify the topology of a distribution
network modeled by a forest. Fig. 1 (a) illustrates an example of SR in a DS
with three feeders that are represented by nodes 1, 2 and 3. Each feeder supplies
a subset of consumer load points (sectors) represented by other nodes . The
sectors are interconnected by edges that indicate the switches (feeder lines). The
switches can be Normally Closed (NC) (solid lines) and Normally Opened (NO)
(dotted lines). Each tree of the forest corresponds to a feeder with its sectors
and Normally Closed switches.

Assuming that a fault occurred in sector 10 (Fig. 1 (a)), all the switches
connected to sector 10 (switches 10-11, 10-7 and 10-9) must be opened in order
to isolate the sector in fault, thus, Sectors 11, 9 and 28 are in an out-of-service
area. One way to restore energy for those sectors is by closing the switches 24-28
and 28-11 (Fig. 1 (b)).

The SR problem emerges after the faulted areas has been identified and iso-
lated. Its solutions is the minimal number of switching operations that results in
a configuration with minimal number of out-of-service loads, without violating
the DS operational and radialily constraints. The minimization of the number
of switching operations is important since the time required by the restoration
process depends on the number of switching operations. The SR problem can be
formalized as follows:

Min. φ(G), γ(G) and ψ(G,G0)
s.a.

Ax = b
X(G) ≤ 1
B(G) ≤ 1
V (G) ≤ 1
G is a forest,

(1)

1 Individuals in the table based on SPEA2 correspond to the best found solutions
according to the strength value, i.e. the strength of dominance of an individual in
relation to other individuals.
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Fig. 1. DS modeled by a graph, a fault is simulated in the sector 10 (a) and then is
restored energy for Sectors 11, 9 and 28 by closing the switches 24-28 and 28-11 (b)

where G is a spanning forest of the graph representing a system configura-
tion [13]; φ(G) is the number of consumers that are out-of-service in a configu-
ration G (considering only the reconnectable system); ψ(G,G0) is the number
of switching operations to reach a given configuration G from the configuration
just after the isolation of the fault G0; γ(G) are the power losses of configura-
tion G; A is the incidence matrix of G [14]; x is a vector of line current flow; b
is a vector containing the load complex currents (constant) at buses with bi ≤ 0
or the injected complex currents at the buses with bi > 0 (substation); X(G)
is called network loading of configuration G, that is, X(G) is the highest ratio
xj/xj , where xj is the upper bound of current magnitude for each line current
magnitude xj on line j; B(G) is called substation loading of configuration G,
that is, B(G) is the highest ratio bs/bs, where bs is the maximum current injec-
tion magnitude provided by a substation (s means a bus in a substation); V (G)
is called the maximal relative voltage drop of configuration G, that is, V (G) is
the highest value of |vs − vk|/δ, where vs is the node voltage magnitude at a
substation bus s in pu and vk the node voltage magnitude at network bus k
obtained from a SLFA for DSs, and δ is the maximum acceptable voltage drop.
Formulation of Eq. (1) can be synthesized by considering:

i ) Penalties for violated constraints X(G), B(G) and V (G);
ii ) The use of the NDE [3], i.e. an abstract data type [15] for graphs that can

efficiently manipulate a network configuration (spanning forest) and
guarantee that the performed modifications always produce a new
configuration G that is also a spanning forest (a feasible configuration);

iii ) The nodes are arranged in the Terminal-Substation Order (TSO) for each
produced configuration G in order to solve Ax = b using an efficient SLFA
for DSs. The NDE stores nodes in the TSO;

iv ) φ(G) = 0. The NDE always generates forests that correspond to networks
without out-of-service consumers in the reconnectable system.
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Eq. (1) can be rewritten as follows:

Min. ψ(G,G0), γ(G) and
ωxX(G) + ωbB(G) + ωvV (G)

s.a.
Load flow calculated using the NDE,
G is a forest generated by the NDE,

(2)

where ωx, ωb and ωv are weights balancing among the network operational con-
straints. In this paper, these weights are set as follows:

ωx =

{
1, if, X(G) > 1
0, otherwise;

ωb =

{
1, if, B(G) > 1
0, otherwise;

ωv =

{
1, if, V (G) > 1
0, otherwise.

3 Node-Depth Encoding

A graph can be seen as a mathematical formalism for system modeling, where
each element of the system is called node (in general graphically drawn as a
dot or a circle) and the potential relationships between nodes are called edges
(represented by a straight line connecting the nodes). The whole set of nodes
and edges involved in a system composes the graph of the system. Formally, a
graph G is a pair of two sets, V containing the nodes and E containing the edges
of G. A DS can be modeled by a kind of graph called tree2, which the nodes
represent sectors3 and the edges represent the sectionalizing and tie-switches.
For large systems, only subsystems must be connected.

These systems can be represented by an dynamic data structure called Node-
Depth Encoding (NDE). Basically, the NDE consists of a linear list containing
a pair of values (nx, dx), where (nx) are the tree nodes and (dx) their depths4.
The order in which the pairs are disposed in the array can be obtained by a
Depth Search Algorithm [15]. Thus, the NDE of a tree is an array of nodes
(with the corresponding depths) in the order the Depth Search Algorithm visits
each node when traversing the tree. This processing can be executed off-line.
2 A tree structure is a connected and acyclic subgraph of a graph and we can access

all nodes from any other node and there is no cycles, i.e. there exists only one route
to reach each node.

3 A sector corresponds to a group of buses and lines without sectionalizing and tie-
switches.

4 The depth of a node is the number of nodes in the path from it to the root (a
reference node) of tree, where path is a sequence of nodes with each adjacent pair
connected by an edge.
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The proposed forest representation is composed of the union of the encodings
of all trees that compose the forest. Therefore, the forest data structure can be
easily implemented using an array of pointers, where each pointer indicates the
NDE of a tree. Fig. 2(a) presents a graph and highlights one spanning forest,
which has three trees (T1, T2 and T3). Straight lines represent edges of a tree
and dotted lines are edges of the graph not used by any tree. Nodes 1, 2 and 3
are the root nodes of trees T1, T2 and T3 respectively. Fig. 2(b) illustrates the
NDE corresponding to each spanning tree.

T1 T2

T3

(a) Example of a spanning forest with
three trees: T1, T2 and T3.

1

2

3

(b) Node-Depth Encoding.

Fig. 2. NDE arrays for three trees of the spanning forests

From the NDE, two operators were developed to efficiently manipulate a for-
est producing a new one: the Preserve Ancestor Operator (PAO) and Change
Ancestor Operator (CAO). Each operator performs modifications on an NDE
that are equivalent to prune and graft a forest generating a new forest. The
CAO produces more complex modifications than PAO in a forest, as described
in [3]. Both operators are computationally efficient, requiring O(

√
n) average

time to construct a new NDE [16].

4 Multi-Objective Evolutionary Algorithms

Multi-Objective Evolutionary Algorithms (MOEAs) are stochastic search meta-
heuristics based on principles of Evolutionary Theory [17] and strategies used
for multi-objective optimization. MOEAs can deal with multiple objective func-
tions, which may be multimodal, non-continuous or non-differentiable. Similarly
to an usual evolutionary algorithm [18], MOEAs search for the optimal solution
of a problem by manipulating multi-sets (populations) of candidate solutions
(individuals) [18].

Usually the first population is randomly generated. Then, a subset of the
population is selected to apply operators that modify individuals of the subset
producing a new population. The MOEA literature [17] has shown that an ad-
equately designed algorithm can find the optimal or a near-optimum solutions
for hard optimization problems.
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The fundamental feature of a MOEA is the strategy used to select promising
solutions when considering multiple objective functions. One of the most suc-
cessfull strategies is the Non-dominated Sorting (NS) used by the NS Genetic
algorithm II (NSGA-II) proposed by [5]. In NSGA II, for each solution a NS is
used to obtain a Pareto ranking. The NS consists in dividing a set ofM solutions
into several fronts (F1,F2, ...,Fk, where k is the number of fronts) according to
the dominance ranks of each solution. NSGA II has a fitness assignment based
on the estimation density of a solution. The density estimation of NSGA II is
performed by a truncation operator based on crowding distance which for each
individual of the population computes values relative to distance between two
points on either side of this point along each of the objectives [5].

Another MOEA used is the Strength-Pareto Evolutionaty Algorithm 2
(SPEA2) proposed by [6]. It is an improved version of SPEA [19]. In SPEA2,
each solution is associated to a strength value that defines the strength of dom-
inance of an individual in relation to other individuals. The individuals with
higher strength values are preserved and maintained in the population. SPEA2
also uses the nearest neighbor as a density estimation technique [6].

The NSGA-II and other approaches based on NS in general fail for combi-
natorial optimization problems with many objectives [7, 8]. Recently methods,
as MOAE/D [8] and MEAN [20, 3, 12] have shown to be able to solve such
problems. In fact, both methods have a common feature, i.e. they search for so-
lutions that simultaneously optimize each objective separately, and one or more
aggregation function(s) combining objectives. This paper investigates advances
from the MEAN, since it has been successfully employed as search technique in
approaches for reconfiguration of DS [21, 3].

4.1 Multi-Objective EA with NDE and Strength Pareto

The proposed method, called Multi-objective EA with NDE and Strength Pareto
(MEA2N-STR), combines the main characteristics of MEA2N and SPEA2.

MEA2N-STR explores the objective space using the concept of subpopulation
tables, i.e. each subpopulation stores the best solutions found according to an
objective or an aggregation function of objectives. The MEA2N-STR possesses
subpopulation tables which store different levels of non-dominated solutions and
incorporates a strength Pareto table based on SPEA2 to provide more diversity
among solutions.

Reproduction operators used to generate new individuals (as for example,
PAO and CAO, Section 3) are applied to solutions that are selected as follows:
first a subpopulation Si is randomly chosen, then, an individual from Si is also
randomly taken. A new generated individual (Inew) is included in the subpop-
ulation table Si if this table is not full (since it subpopulation has a fixed size)
or if Inew is better (according to the objective or criterion associated with Si)
than the worst solution in Si, then replacing it.
Si is related to non-dominance and filled according to Pareto fronts. Solu-

tions from F1 (non-dominated solutions considering the whole population) are
stored in table SF1 . SF2 maintains the non-dominated solutions in F2; while SF3
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stores solutions from F3. Finally, the strength Pareto table are filled according
to number of the solutions that each individual dominates. It is considered the
best individual who dominates most solutions. If the size of the strength Pareto
table exceeds a predefined limit, the worst individual is deleted.

Table 1 summarizes the main features of NSGA-II, SPEA2, MEAN, NSGAN,
MEA2N and MEA2N-STR.

Table 1. Main features among MEAN, NSGAN, MEA2N and MEA2N-STR

MOEA External set Genetic operator
MEAN Uses subpopulation tables PAO and CAO (NDE)
NSGAN Truncation uses crownding dis-

tance
PAO and CAO (NDE)

MEA2N Uses subpopulation tables with
3 tables of nondominated solu-
tions

PAO and CAO (NDE)

MEA2N-STR Uses subpopulation tables simi-
lar to MEA2N, but it is included
a Strenght Pareto table based
on SPEA2

PAO and CAO (NDE)

4.2 Performance Assessment

The performance between MOEAs is usually assessed by the quality of the ap-
proximated Pareto fronts found by the algorithms. In general, three charac-
teristics are taken into account to evaluate an approximated Pareto front: 1)
proximity to the Pareto-optimal front, 2) diversity of solutions along the front
and 3) uniformity of solutions along the front. These three criteria guide the
search to a high-quality and diversified set of solutions which enable the choice
of the most appropriate solution in a posterior decision-making process [2].

To quantify these three characteristics in a set of non-dominated solutions,
various measures have been developed, as example, Error Ratio [22], Genera-
tional Distance [22], the R2 and R3 [23] Hypervolume (HV) [24] and ε-indicator
[24]. In this paper, R2, R3, HV and ε indicators are used to assess the perfor-
mance of the proposed algorithm, each of them is based on different preference
information, then by using them all we provide a range of comparisons intead of
just one point-of-view.

Considering two approximation sets (A and B) and some utility function U
aggregating k objective functions, u : Rk → R, the R2 measure calculates the
expected E(.) difference value in the utility of an approximation A in relation
to another one B, considering B as an estimative of the true Pareto front P.
Formally, R2 evaluates the proximity of A in relation to P [2], as follows.
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R2(A,B,U, p) = E(u(λ,A)) − E(u(λB)),
R3(A,B,U, p) = (E(u(λ,A)) − E(u(λB)))/E(uλB),

The utility u(λ,A) of the approximation set A, on the scalarizing vector λ is
the minimum distance from A to the reference point B according all scalarizing
vectors λ (uniformly distributed across the objective space). The R3 measure is
very similar, however, instead of using the minimum distance the ratio is used.
In both cases lower values of Rk measure the mean distance of the attainment
sufraces A and B from a user-defined reference point p.

Another relevant quality indicator is the HV [25, 26], which uses the covered
volume dominated by an approximated Pareto Front A as a measure of quality
of such front. The calculus of the covered volume requires a reference point,
which usually consists of an anti-optimal point or “worst values” point in the
objective space [27]. For each generated decision vector veci a hypercube voli is
constructed in relation to the reference point, after this, the hypercubes of all
decision vectors are joined. Higher values of hypervolume are expected to mean
a larger scattering of solutions and a better convergence to the true Pareto front.
The HV is given by Eq. (3) [2].

Hypervolume =
∑
i

voli, veci ∈ PFknown (3)

Another quality indicator used in this paper is the unary ε-indicator. Basically,
it quantifies a value ε by which we can multiply each objective value of an
approximated front A, such that the resulting front is still weakly-dominated
by another approximated front B. Consequently, the ε-indicator measures how
much an approximation set is worse than another with respect to all objects.

5 Test Problems and Results

In order to analyze how the methods MEA2N, MEAN, NSGAN and MEA2N-
STR performs for SR problem, the real DS Sao Carlos city (called System 1)
was used to compose other DS with size of four times the original DS (called
System 2). System 2 is composed of four Systems 1 interconnected by 49 NO
new additional switches (the data of the two DSs are available in [28]).

These DSs have the following general characteristics:

System 1 (S1): 3860 buses, 532 sectors, 632 switches (509 NC and 123 NO
switches), three substations, and 23 feeders;

System 2 (S2): 15 440 buses, 2128 sectors, 2577 switches (2036 NC and 541
NO switches), 12 substations, and 92 feeders.
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A fault in the largest feeder of Systems 1 and 2 interrupts the service for the
whole feeder. Note that a single fault in System 2 increases the complexity of
searching the best solution due to the size of the system.

The experiments carried out using both DSs evaluates the methods according
to: a) the relative performance of those MOEAs concerning R2, R3, HV and
ε-indicators; b) the performance of them for SR problem.

Table 2 synthesizes the results of four approaches for the SR point of view.
They were run 50 times, then the averages and each objective and constraint
were calculated. Observe that MEA2N-STR obtained a better average for lower
switching operations than NSGAN, MEAN and MEA2N. Note that such objec-
tive is the most important one for SR if all constraints have been satisfied.

Table 2. Simulation Results - Single Fault in Systems 1 and 2

MEAN NSGAN MEA2N MEA2N
STR

Avg1 Dev.2 Avg Dev. Avg Dev. Avg Dev.

S1

Power Losses 299.13 7.38 361.79 38.96 356.71 33.65 370.54 36.68
Voltage Ratio(%) 3.25 0.01 4.21 0.83 3.89 0.84 4.15 0.86
Network Loading (%) 77.79 3.23 86.57 8.18 82.24 5.71 80.52 5.82
Transformer Loading (%) 55.15 7.38 52.77 3.02 52.93 2.20 53.24 2.21
Switching Operations 24 2.27 16 12.21 11 2.73 9 2.11
Running Time 14.38 1.32 5.11 0.23 9.17 0.13 14.68 1.27

S2

Power Losses 1014.24 27.84 1165.22 28.76 1170.92 40.50 1170.02 44.11
Voltage Ratio(%) 5.76 2.43 4.11 0.99 4.18 0.87 3.86 0.72
Network Loading (%) 92.45 8.15 92.11 8.01 88.71 9.17 86.70 9.31
Transformer Loading (%) 70.00 27.84 55.16 2.38 61.41 9.95 44.82 2.24
Switching Operations 87 15.88 50 32.79 28 16.26 24 14.41
Running Time 21.67 2.42 6.52 0.58 9.46 0.54 16.13 0.71

1Average.
2Standard Deviation.

Moreover, analyses of the results according to metrics used to compare MOEAs
show that the MEA2N-STR outperforms MEAN, NSGAN and MEA2N for both
test problems (System 1 and 2) in terms of approximating the Pareto optimal
set while preserving a diverse, evenly-distributed set of nondominated solutions.
Figs. 3(a) and 3(b) indicates that MEA2N-STR is able to evolve individuals near
to the Reference Front ( which is composed using solutions of all found fronts
obtained from 50 trials with each method)when compared with the approaches
MEAN, NSGAN and MEA2N.
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Fig. 3. Pareto fronts obtained from Systems 1 and 2

Table 3. Rank of each method in 50 trials for System 1

MEAN NSGAN MEA2N MEA2N-STR
Hypervolume -94 -24 0 118
ε-indicator -74 -6 -16 96
R2 -102 -26 12 116
R3 -102 -26 12 116

Table 4. Rank of each method in 50 trials for System 4

MEAN NSGAN MEA2N MEA2N-STR
Hypervolume -112 -86 54 144
ε-indicator -102 -86 56 132
R2 -140 -60 60 140
R3 -138 -62 60 140

The distribution of the performance metrics R2, R3, HV and ε-indicators for
System 1 are shown in Figs 4(a), 4(b), 4(c) and, 4(d), respectively. The MEA2N-
STR can find in average a front that is diverse and uniformly distributed for
System 1 when compared with other approaches.

Moreover, Figs 5(a), 5(b), 5(c) and, 5(d) corroborate such performance for
System 2.
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Fig. 4. Box plots for metrics R2, R3, HV and ε-indicators obtained using System 1

Finally, the method performances are summarized in Table 3, which shows
the dominance ranking among the four evaluated methods, which describes the
number of experiments in which each algorithm has been found the best Pareto
approximation. Tables 3 and (4) shows the ranks (the number of wins subtracted
by the number of losses in 50 trials) using System 1 and (System 2) [29]. Results
from both tables clearly indicate that MEA2N-STR superates other methods in
the performed test.
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Fig. 5. Box plots for the metrics R2, R3, HV and ε-indicators obtained in System 2

6 Conclusions

This paper presented a new MOEA using NDE to solve the SR problems in
large-scale DSs (i.e., DSs with thousands of buses and switches).

The proposed approach, called MEA2N-STR, combines the main character-
istics of MEAN, NSGA2 and SPEA2. Similarly MEAN, MEAN-STR is based
on the idea of subpopulation tables. However, it has additional subpopulation
tables to store non-dominated solutions called non-dominated subpopulation
tables (similar MEA2N) and incorporates a table of non-dominated solutions
based on SPEA2, where each individual is associated to a strength value, which
means the strength of dominance of an individual in relation to other individ-
uals. These tables ensure diversity among the solutions significantly improving
the performance of MOEAs for SR problem.

In the experiments four approaches, named NSGAN, MEAN, MEA2N and
MEA2N-STR were applied to four test DSs. The results show that they enabled
SR in large-scale DSs and solutions were found where: energy was restored to
the entire out-of-service area, the operational constraints were satisfied, and
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a reduced number of switching operations was obtained. Moreover, from the
relatively low running time required to restoration plans for the Systems 1 and
2, we can conclude that those approaches can generate appropriately SR plans
for large-scale DSs.

A statistical analysis performed using 50 experiments for each approach shows
MEA2N-STR performs better than NSGAN, MEAN and MEA2N for SR prob-
lem, since MEA2N-STR has obtained the best average results for lower switching
operations, converging to the true Pareto optimal solution set while preserving
the diversity of solutions.

To measure the quality of obtained solutions of MOEAs using NDE, the met-
rics R2, R3, HV and ε-indicators were used. According to the simulation re-
sults, MEA2N-STR showed a better performance in terms of R2, R3, HV and
ε-indicators in relation to other approaches analyzed.

Finally, this study forms a good basis for combining promising aspects of
different algorithms into a new approach that shows good performance on all
DSs used.
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Abstract. This paper presents a real world application that lead to the construc-
tion of a decision support system built to support maintenance planning in an 
electrical power distribution company. The outcome of the DSS is to determine 
the order of priority in which potential failure repair orders should be con-
ducted. This company-specific problem has been structured and is similar to 
that of most electrical power distribution companies, since this company has a 
complex distribution network with different types of customers which leads it to 
considering different criteria such as income losses, the probability of service 
interruptions, national regulation criteria, and so forth. There is a specific budg-
et for potential failure repair orders, while functional failure repairs are not 
modeled at this managerial level since once the service should not be inter-
rupted and involves long term planning. During periodical inspections the entire 
distribution network is inspected and a database with all this data is maintained. 
Thereafter, the potential failures in the distribution network are converted into 
maintenance orders which typically amount to more than 4 times the annual 
sum allocated for potential failure repairs budget. After having structured the 
problem, a DSS was built to support maintenance planning that will result in an 
annual maintenance plan based on the company´s strategic criteria and national 
regulations. 

Keywords: Maintenance Planning, MCDM, Promethee.  

1 Introduction 

Maintenance is a fertile field which provides several research modeling opportunities 
for practical problems. Usually uncertainty is inherent in the modeling due to factors 
such as failure probabilities and reliability nature. In addition, Multiple Criteria Deci-
sion Making (MCDM) is also been considered once there are several factors besides 
costs to be evaluated in real applications, such as availability, quality, dependability 
and other issues that may affect the company’s image or the service perception. 

In this paper is presented a real problem and the modeling to deal with this situa-
tion, resulting on a Decision Support System (DSS) built to aid managers in this  
particular problem of maintenance planning in an electrical power distributor. 
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This paper is structured in five sections, starting with an introduction and followed 
by the problem context description. In the third part there is a discussion on the 
MCDM approach adopted with a brief description of the Promethee II method, fol-
lowed by the presentation of the DSS, finally final remarks are presented with future 
work directions with Evolutionary Multiple Objective to be incorporated in the  
model. 

2 Problem Context 

One of the main characteristics of this real problem is its size. The electrical power 
distributor network comprehends 128,412.5 km supplying almost 200 cities, which 
means about 98,546.70 km² with almost 3.1 million customers consuming 12,266,246 
MWh per year. 

Along this power distribution network there is large number of components (vol-
tage transformers, isolators,…) subjected to weather conditions and the increasing age 
of components. The maintenance policy adopted follows a schedule for some preven-
tive maintenance services and an inspection schedule to assess components health 
state, identifying potential failures. 

The particular maintenance policy adopted follows some concepts described in 
Moubray (1994), considering three typical states related to a failure mode: the normal 
state, a defect state and a failure state. Depending on the outcome of an item failure 
mode on the system functioning, the failure mode is classified in a potential failure or 
a functional failure. 

A potential failure is an observable condition that will anticipate a functional fail-
ure, in other words, if no preventive action is taken a functional failure will occur. 
The potential failure is a defect that changes the equipment operation characteristics 
but is not enough to interrupt the system operability but may reduce its efficiency.  

Moubray (1994) points that a functional failure is the inability of an item to per-
form a specific function within desirable operational limits, thus leads to a disruption 
on the system operability. 

Considering this maintenance culture there is a backlog of preventive maintenance 
services of about 25 thousand orders to repair potential failure built based on the 
company inspection calendar and recorded in the company’s database for its enter-
prise resource planning (ERP) system. The inspection calendar covers the entire pow-
er distribution network in a period of 10 years, which is based in periodical inspection 
activities that take place at one, two, five and ten year intervals. 

After each inspection the state of equipment is updated on the maintenance module 
of the company’s ERP. Functional failures are not recorded from these inspections 
because it causes service disruptions and a corrective maintenance service is per-
formed to restore the system. Due to the service characteristics there is no budget 
limit to restore the system. Although potential failure does not cause an immediate 
service disruption, this is just a matter of time in the while to the defect state turn into 
a functional failure.  
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In order to assure the quality of service there is a budget for preventive mainten-
ance orders of potential failures. However the budget is not enough to perform the 
entire maintenance orders for the set of potential failures. Thus is necessary to priorit-
ize the items which have more impact on the perceived quality of service, revenue and 
other operational performance indexes, in other words, is necessary to avoid disrup-
tion to the service and its consequences to strategic and operational objectives. 

The Brazilian electric power market is regulated by Aneel, a Brazilian Government 
agency responsible for the regulation of electrical power generation, transportation 
and distribution. Aneel is responsible to set operational and service performance le-
vels for companies involved with electrical power generation, transportation and dis-
tribution, regulating also the electric power market negotiation and tariffs. In its attri-
butions, Aneel may levy fines according with regulatory rules and has also the power 
to set electrical power tariff based on the quality of the service provided. Thus,  
improving the service level and Aneel performance indexes reflects directly on the 
company’s income (Aneel, 2012). 

The main performance indexes considered by Aneel to measure quality of service 
are the DEC and FEC. DEC is related to the duration of service disruptions 
whenever these occur and FEC considers the frequency of disruption to the 
service (Aneel, 2012). 

In this particular situation, repairs are usually carried out under an outsourcing con-
tract and for a matter of the contract structure geographical issues are not considered 
for the repairs cost, which means that there is no difference in the costs of two repairs 
if it takes place in the same neighborhood or in different cities. Since there is no inte-
raction between maintenance orders, for this particular problem there is not mandato-
ry to model it as a portfolio problem. The backlog of maintenance orders is evaluated 
under multiple criteria that represent operational and strategic objectives, establishing 
a complete ranking of this potential failure maintenance orders set.  

In the following sections, the MCDA structure used to evaluate alternatives priority 
is presented followed by DSS characteristics. 

3 MCDM Approach 

MCDA methods are tools to combine preferences over multiple criteria or multiple 
objectives. There is a set of methods available in the literature and different methods 
based on the same paradigm concepts such as the ELECTRE methods and 
PROMETHEE methods (Roy, 1996; Brans and Mareschal, 2002). 

Applications using MCDA are frequent in several areas such as maintenance (Al-
meida and Souza, 1993; Almeida and Bohoris, 1995; Almeida, 2001; Almeida 2005; 
Cavalcante et. al, 2010), risk evaluation (French et. al, 2005; Brito and Almeida, 
2009; Alencar and Almeida, 2010; Brito et. al, 2010), outsourcing and logistics  
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(Almeida, 2005; Brito et. al, 2010), project management (Mota and Almeida, 2011; 
Mota et. al, 2009; Alencar and Almeida, 2010), water resources management (Morais 
and Almeida, 2006; Morais and Almeida, 2010; Silva et. al, 2010; Morais and Almei-
da, 2011) and many others. 

According to Campos et al (2011) since the aim of organizations is to become or 
remain competitive in a global society, there is a need to consider many aspects in the 
decision process, which justifies the development of models and applications which 
highlights decision makers’ preferences over several objectives. 

For this specific DSS, the Promethee II method was used. This is one of the me-
thods of the Promethee family which have been evolving since 1982 (Brans and Ma-
reschal, 1984; Brans and Mareschal, 2002). The choice of this method is justified as it 
can provide a complete ranking order that considers a wide range of value functions 
that may be available to the decision maker by means of a DSS. One important factor 
in choosing this MCDA method is related to the simplicity with which it elicits para-
meters. This is important as it consolidates the decision maker’s readiness to use the 
DSS. Another characteristic is the calculation process. Given that there are about 25 
thousand alternatives and that this number may grow, an MCDM method needs to be 
able to give a response within an appropriate interval of time so decision makers may 
build scenarios and conjectures and use sensitivity analysis. 

The Promethee family consists mainly of Promethee I (which provides a partial 
pre-order), Promethee II (which provides a complete pre-order), Promethee III (which 
extends the notion of indifference and provides an interval order), Promethee IV 
(which provides a complete pre-order and is an extension of Promethee II for a conti-
nuous case), Promethee V (an extension of Promethee I and II for portfolio problems 
given a set of constraints), Promethee VI (an extension of Promethee I and II consi-
dering partial information in its parameters) and Promethee Gaia (an extension with 
visual and interactive procedures using Promethee elements) (Brans and Mareschal, 
1984; Brans and Mareschal, 2002). 

Recently some consistency issues have been identified in Promethee V (portfolio 
problematic), some of which were reported on by Vetschera and Almeida (2012). 
Vetschera and Almeida (2012) also proposed a c-optimal portfolio concept to improve 
this method. Almeida and Vetschera (2012) presented an analysis on the scale trans-
formations used in Promethee V by evaluating how it influences the results obtained 
by the Promethee V procedure. 

In the literature Promethee II is often questioned regarding rank reversal new alter-
natives are added to the sets of alternatives due to the pairwise comparison process, 
although Mareschal et al (2008) presented conditions when this situation may occur, 
which is restricted to very limited situations. 

The Promethee II method allows the decision maker to choose between six differ-
ent value functions, namely, defining each criterion as the usual criterion, a u-shape 
criterion, a v-shape criterion, a level criterion, a v-shape with an indifference criterion 
or a Gaussian criterion (Brans and Mareschal, 1984; Brans and Mareschal, 2002). 
Promethee II is based on pairwise comparisons and on aggregated preference indices 
and outranking flows. 
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4 Decision Support System 

A DSS is an information system (IS) used to support decision makers at any organiza-
tional or strategic level for semi-structured or non-structured problems (Davis and 
Olson, 1985; Shim et al, 2002). The main reasons that justify building a DSS are: the 
complexity of the decision process; the interactive relation between the DSS and the 
decision maker, and the alternative; to provide simplicity through a friendly interface; 
to process data in a decision model and build information, scenarios and solutions for 
a semi-structured or non-structured problem. 

According to Sprague and Watson (1989) and Bidgoli (1989), the architecture of a 
DSS usually consists of a data base to support the system, a model base to provide 
analytics and dialogs to support interaction between the user and the system. 

The data base is responsible for the physical storage of consistent data which are of 
significant value to an organization. In this case, the DSS data base comprises data 
provided from the organization’s ERP maintenance module and deals with equipment, 
maintenance services, resources required for these maintenance services, service 
costs, performance of managerial objectives, decision model parameters which 
represent the decision maker’s preferences and the decision environment including 
information about the decision maker. 

The base of the DSS model consists of a multiple criteria decision model based on 
the Promethee II method, including a module to build scenarios and sensitivity analy-
sis. Dialog is an important component and is based on the simplicity of the principles 
and a friendly interface. It is drawn up so that it works in an integrated way with the 
ERP maintenance modules using spreadsheet reports to import and export data as far 
as the existing systems are concerned. The flexibility in the DSS dialog allows the 
decision maker improves the interactions of the decision process. 
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The main output from the DSS is preventive maintenance orders sequenced ac-
cording to the objectives and take the decision maker’s preferences into account. On 
importing data, the DSS is supplied with all the data on observed potential failures 
such as location, equipment, local network consumption, revenue losses including 
from disruptions to the service, regulatory fines, emergency and healthcare services 
affected by the specific failure, an expert´s prior estimation for the mean time to func-
tional failure and other factors. 

The main sets of criteria identified for the decision model are: Degree of Damage 
(to installation and people, verbal scale), Average Affected Consumption, Electric 
Charge, % of Regional Network Electric Charge (considering the network branch), 
Special Clients Affected (subjected to regulatory special rules), Healthcare Services, 
Slack on DEC (difference between branch DEC and Aneel target for DEC), Slack on 
FEC (difference between branch FEC and Aneel target for FEC), Political  
Consequences of a Failure. 

In addition to the MCDA methodology which considers more than one criterion 
simultaneously , all concepts have been adjusted to the company’s maintenance cul-
ture. This is related to Moubray’s reliability-centered maintenance critical levels 
which uses verbal scales to determine the level of degradation of the equipment.  
Figure 1 shows the DSS main screen for the decision model. 

 

 

Fig. 1. DSS main screen for decision model 
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After inputting data into the fields required for the decision model and performing 
the Promethee II method to obtain the sequencing of the priority given to preventive 
maintenance orders, the decision maker can generate reports regarding preventive 
maintenance covered by the budget constraint and analytics over sensitivity analysis. 

Next, the scenarios are evaluated using the DSS support graphs to compare the ef-
fectiveness of each action while considering costs and the managerial objectives 
(DEC and FEC). Figure 2 presents one of these graphs that considers the costs to 
perform the preventive maintenance order over potential failures and its losses (such 
as, to revenue and in fines) as a consequence of the functional failure. 

 

Fig. 2. Preventive maintenance order over the effect of potential failures 

It is interesting to observe that some prioritized maintenance actions may not prove 
to be financially effective. However, thy do prevent losses in other dimensions, such 
as service quality which is monitored by the regulatory agency (Aneel) or any special 
clients affected, for example. 

5 Conclusions 

This paper presented a DSS to support maintenance planning in an electrical power 
distribution company. There are several studies in the literature that present models to 
establish preventive maintenance intervals, inspection intervals and optimal mainten-
ance policies, mostly with regard to a single piece of equipment or a single subsys-
tem. Nevertheless, drawing up a schedule for the maintenance department and pro-
gramming activities are hard tasks and depend on some strategic and operational ob-
jectives being in place. In this specific case, there were thousands of activities to be 
scheduled and prioritized in a complex distribution network. 

The decision maker regarding this specific problem in the power distribution com-
pany felt satisfied within the decision process, however other issues may be consi-
dered in future, such as the interaction amongst service orders location, which may be 
addressed with an evolutionary multiobjective approach. 
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Abstract. In the process of multi-objective optimization of real-world
systems, uncertainties have to be taken into account. We focus on a par-
ticular type of uncertainties, related to uncertain objective functions.
In the literature, such uncertainties are considered as noise that should
be eliminated to ensure convergence of the optimization process to the
most accurate solutions. In this paper, we adopt a different point of view
and propose a new framework to handle uncertain objective functions
in a Pareto-based multi-objective optimization process: we consider that
uncertain objective functions are not only biasing errors due to the opti-
mization, but also contain useful information on the impact of uncertain-
ties on the system to optimize. From the Probability Density Function
(PDF) of random variables modeling uncertainties of objective functions,
we determine the ”Uncertain Pareto Front”, defined as a ”tradeoff prob-
ability function” in objective space and a ”solution probability function”
in decision space. Then, from the ”Uncertain Pareto Front”, we show
how the reliable solutions, i.e. the most probable solutions, can be iden-
tified. We propose a Monte Carlo process to approximate the ”Uncertain
Pareto Front”. The proposed process is illustrated through a case study
of a famous engineering problem: the welded beam design problem aimed
at identifying solutions featuring at the same time low cost and low de-
flection with respect to an uncertain Young’s modulus.

Keywords: Multi-objective optimization - Objective function uncer-
tainty - Reliable solutions - Engineering design problem.

1 Introduction

To solve Multi-objective Optimization Problems (MOP), the Pareto optimality
approach is usually employed in order to identify a set of Pareto optimal solutions
that make it possible to obtain the best tradeoffs between different objectives.
Such a set is defined according to the Pareto dominance notion: a solution S,
defined by specific decision variable values, dominates another solution S′ if
and only if S is better than S′ for all objectives and if there exists at least
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one objective for which S is strictly better than S′. The set of non-dominated
solutions is called Pareto optimal. The image of the Pareto optimal solution set
in objective space is known as the Pareto Front and delimits the feasible and
unfeasible tradeoffs [1].
Real-world case studies are usually affected by different kinds of uncertainties

that should be taken into account in the optimization process. Jin and Branke
[2] present four categories of uncertainties in Evolutionary Computation: noise
on evaluations of objective functions, uncertainties on decision variables and en-
vironmental parameters, approximation errors on objective functions in use of
meta-model and dynamic environments. In engineering, errors and uncertainties
appear during designing, manufacturing and operating processes. The devoted
optimization technics are aimed at studying the expected performances of solu-
tions that can actually be obtained in real-world under these uncertainties [3]. So,
in the related literature, uncertainties are taken into account in the optimization
process in such a way that optimal solutions are identified in the uncertain envi-
ronment. In MOP, such uncertainties are described by perturbations on decision
variables or on environmental parameters [4, 5]. In this context, the target is to
develop methods that determine the most robust solutions, i.e. the less sensitive
solutions to these perturbations. Robust solutions present low variations of their
performances in objective space while undergoing variations in decision space or
in environmental parameter values. In previous work, two approaches have been
proposed. The first one consists in determining a robust front, by optimizing
effective functions [3, 4, 6], or by optimizing initial objective functions under
constraints on variations of performances [4, 7, 8]. In the second approach, the
goal is to identify the best tradeoffs between optimal performances and robust-
ness. Thus, additional objective functions related to robustness are introduced
in the MOP [9–11]. Robustness measures rely mostly on neighbourhood per-
formances average [4, 9] or variance [10]. However, in the related literature, no
method has been proposed to deal with uncertainties affecting solution perfor-
mances, inherent to the solution and for which the exact value is unknown in
the real-world. Uncertainties directly related to objective functions are handled
in the literature about optimization in noisy environment. The noise usually
appears when the objective function evaluation device is not deterministic (e.g.
measurement errors, stochastic simulations, uncertainties on model parameters,
use of neural network, etc.). So different performances can be assigned to the
same solution during the optimization run. In this case, contradictory evalua-
tions can appear during the run producing convergence troubles. Thus, some
methods introduced in previous work are aimed at reducing noise effects in or-
der to converge to the most accurate solutions. Random sampling (using Monte
Carlo approach) is employed to estimate the correct value of performances of
each solution [2, 12–14]. However, these approaches implementing Explicit Av-
eraging are time-consuming ; strategies are still being investigated with the aim
to avoid sampling of every individual of every generation in evolutionary algo-
rithm. Instead of random sampling, Implicit Averaging is aimed at increasing the
population size, assuming that there are individuals close to each other at each
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generation, and thus at the end of the run the best individuals are evaluated
many times [2, 15–17]. Modification of the selection process is also investigated
[12, 18–21], by means of a modified Pareto-dominance that allows to take into
account the PDF of additional noise on candidate values for fitness evaluation
and selection in Evolutionary Computation [19, 21]. In all these methods, uncer-
tainties on objective functions are handled as biasing errors to be removed before
determining the most accurate set of optimal solutions. Moreover, there is a loss
of information due to the fact that the influence of uncertainties is somewhat
aggregated at a stage of the algorithm.
In this paper, we adopt a different point of view and consider that some

uncertainties affecting objective functions cannot be reduced to biasing errors
in the results of the optimization process, but are inherently part of the system
to optimize. This positioning leads to the proposal of a new framework aimed
at preserving all the information along with presenting impacts of uncertain
objective functions on optimization results in an all-comprehensive way.
For that purpose, in section 2 we first introduce a new framework and its im-

plementation method, that we will call the ”Uncertain Pareto Front” defined as
a ”tradeoff probability function” in objective space and a ”solution probability
function” in decision space. The first one allows to determine the probability for
each tradeoff in objective space to be one of the best tradeoffs according to un-
certain objective functions. The second one, the ”solution probability function”,
is defined in decision space and provides the probability for each possible solu-
tion to be Pareto optimal according to uncertain objective functions. Then, the
method is illustrated through an engineering problem introduced in section 3 and
processed in section 4. Finally, the method relevance is discussed in section 5.

2 New Formalisation and Implementation Method

2.1 ”Uncertain Pareto Front”

The uncertain objective function can be defined as a random variable X dis-
tributed according to its PDF. The use of a function Xi as an objective function
to optimize in the optimization algorithm results in one Pareto Front Fi and one
set of Pareto optimal solutions SFi, each defined by a vector of decision variable
values, related to the function Xi. Thus, the obtained Pareto Front and the set
of Pareto optimal solutions can be respectively defined as random variable F
and SF as illustrated in Figure 1. The ”Uncertain Pareto Front” corresponds
to the set of all possible Pareto Fronts when uncertain objective functions vary
according to their PDFs. The explanation above is presented in the case of one
uncertain objective function but it can easily be generalized: for more than one
uncertain objective function, the PDF of X is determined by the product of the
PDF of each uncertain objective function. Table 1 includes all the notations used
in Equations 1-12.
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Table 1. Notations used in Equations 1-12

Objective space Decision space

Continuous space T : tradeoff (a vector function) S: solution (a vector)

Discretized space px: discrete element sx: discrete element

One draw Fi : Pareto Front SFi Set of Pareto optimal solutions
corresponding to a given Fi

n draws F : ”Uncertain Pareto Front” SF : Uncertain Optimal Set of solutions

Probability Pt: ”Tradeoff probability function” Pd: ”Solution probability function”

n: the number of Monte Carlo draws
i.e. each draw corresponds to one possible objective function according to its PDF

Fig. 1. ”Uncertain Pareto Front”.(a) Proposed approach (b) Illustrative example.

”Tradeoff Probability Function”
In objective space, the probability Pt for each tradeoff T to be one of the best
tradeoffs, i.e. belonging to possible Pareto Fronts defined by a random variable
F , is expressed as:

Pt(T ) =

∫
X/T∈F

PDF (X)dX (1)

Equation 1 is the theoretical formulation of the ”tradeoff probability function”.
It means that the probability for a tradeoff T to be one of the best tradeoffs
is deduced from the probability of the realizations of the random variable X
modeling the uncertain objective functions, that results in the Pareto Fronts
which include the tradeoff T . An illustrative example is given in Figure 1 with
the point T .
In order to approximate the ”Uncertain Pareto Front”, we introduce a method

based on the integration of Monte Carlo method [22] along with the optimization
process. The Monte Carlo method allows to estimate the occurrence of specific
Pareto Fronts in the ”Uncertain Pareto Front”. To that purpose, a discretisation
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of the objective space is employed (e.g. in two dimensions, the space is divided
in pixels). For each Monte Carlo draw, the counter of discrete elements (e.g.
pixels in two dimensions) crossed by Pareto Front Fi is increased by one. The
goal is to determine for each discrete element px of the objective space the
occurrence of the proposition ”Best tradeoffs are included in the discrete element
px” (or ”Pareto Front Fi crosses the discrete element px”). Thus, the ”tradeoff
probability function” can be approximated: probability Pt of obtaining Pareto
Fronts in the discrete element px is expressed as follows:

Pt(px) =

n∑
i

δFi,px

n
with δFi,px =

{
1 if Fi ∈ px
0 if otherwise

(2)

Equation 2 can be seen as the discrete form of Equation 1.

”Solution Probability Function”
In the decision space, the probability Pd for each solution S, defined by a vector
of decision variable values, to belong to the set of Pareto optimal solutions SF
can be determined according to Equation 3.

Pd(S) =

∫
X/S∈SF

PDF (X)dX (3)

Equation 3 is the theoretical formulation of ”solution probability function”. An
illustrative example is given in Figure 1 with S.
A Monte Carlo approach can be employed to approximate the ”solution prob-

ability function”. The decision space is discretised and probability Pd for each
discrete element sx to belong to the set of Pareto optimal solutions SFi is ex-
pressed as follows:

Pd(sx) =

n∑
i

δSFi,sx

n
with δSFi,sx =

{
1 if SFi ∈ sx
0 if otherwise

(4)

Equation 4 can be seen as the discrete form of Equation 3.

2.2 Approaches to Extract Information from ”Uncertain Pareto
Front”

Much more information can be derived from the ”Uncertain Pareto Front”.

Information Extracted from the ”Solution Probability Function” in
Decision Space: Reliable Solutions
In presence of uncertain objective functions, every solution in the decision space
can achieve different performances in objective space. Depending on its perfor-
mances, which are dependent on each probable uncertain objective function, a
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Example of reliable solutions
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Fig. 2. (a) Approaches to obtain information through the ”solution probability func-
tion” (b) Illustrative example of reliable solutions

given solution may or may not allow to obtain a best tradeoff between the ob-
jective functions. Reliable solutions can be defined as solutions that are Pareto
optimal for many different realisations of the random variable X (i.e. for differ-
ent values of uncertain objective functions). The ”Solution probability function”
provides the probability for each solution Pd(S) to be Pareto optimal in decision
space. An example of this approach is illustrated in Figure 2(b), where S1 is
more reliable than S2 because it belongs to the set of Pareto optimal solutions
for more different realisations of random variable X .
As presented in Figure 2(a), a decision maker could go through the following

steps:

1. First, identify the most reliable solutions in decision space from Pd(S) de-
scribed in Equation 3 and approximated in Equation 4;

2. Then, obtain in objective space the probability P (T/S) (approximated by
P (px/sx)) for each tradeoff T to be a best tradeoff achieved with S as a
Pareto optimal solution as follows:

P (T/S) =

∫
X/S∈SF ∧ T∈F

PDF (X)dX

Pd(S)
(5)

P (px/sx) =

n∑
i

(δSFi,sx ∗ δFi,px)

n∑
i

δSFi,sx

(6)
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3. Finally, obtain the probability of the couple (S,T ), i.e. the probability
P (S ∩ T ) (approximated by P (sx ∩ px))for S to be Pareto optimal AND
to allow to obtain tradeoff T as follows:

P (S∩T ) = Pd(S)∗P (T/S) (7) P (sx ∩ px) =

n∑
i

(δSFi,sx ∗ δFi,px)

n
(8)

Consequently, the decision maker will know for each solution the probability of
being Pareto optimal Pd(S), the probability of obtaining the optimal perfor-
mances P (T/S), and the probability of obtaining a given optimal solution with
a given tradeoff P (S ∩ T ).

Information Extracted from the ”Tradeoff Probability Function” in
Objective Space: Most Probable Tradeoffs
From the ”tradeoff probability function Pt(T )” formalized in Equation 1, the
tradeoffs that present the highest probability of being one of the best tradeoffs
can be found in objective space and will be called ”most probable tradeoffs” in
the remainder of the paper.
As presented in Figure 3(a)&(b), in practice, if a decision maker selects one

tradeoff in objective space, the user will be able to:

1. First, directly assess the probability Pt(T ) for this tradeoff T to be one of
the best tradeoffs under uncertainties from Equation 2;

(b) 
Example of most probable tradeoffs
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Fig. 3. (a) Theoretical approaches to obtain information through the ”tradeoff proba-
bility function” (b) Illustrative example of most probable tradeoffs
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2. Then, identify Pareto optimal solutions in decision space that allow to ob-
tain this specific tradeoff T . The probability P (S/T ) (approximated by
P (sx/px)) for each Pareto optimal solution S to obtain the given trade-
off T (i.e. f(S)=T) and to be Pareto optimal with these performances can be
derived as follows:

P (S/T ) =

∫
X/T∈F ∧ S∈SF

PDF (X)dX

Pt(T )
(9)

P (sx/px) =

n∑
i

(δFi,px ∗ δSFi,sx)

n∑
i

δFi,px

(10)

3. Finally, compute the probability of obtaining the couple (T ,S), i.e. the prob-
ability P (T ∩ S) (approximated by P (px ∩ sx)) of obtaining the tradeoff T
with the given Pareto optimal solution S, expressed as follows:

P (T ∩ S) =

⎧⎪⎪⎨⎪⎪⎩
Pt(T ) ∗ P (S/T )∫
X/T∈F ∧ S∈SF

PDF (X)dX

P (S ∩ T )

(11)

P (px ∩ sx) =

n∑
i

(δFi,px ∗ δSFi,sx)

n

(12)

The couple (T ,S) with the highest probability P (T ∩ S) is the most reliable.

3 Application of the Method

The proposed method is implemented on an engineering problem and the purpose
is to identify optimal and reliable solutions.

3.1 Case Study

The method is applied to the welded beam design problem illustrated in Fig-
ure 4, which has already been studied in multi-objective optimization in uncer-
tain environment [4, 23, 24]. The goal is to design a welded beam that min-
imize the cost and the deflection. In reality, the Young’s modulus E is inher-
ently uncertain, thus the deflection (objective function f2 defined in System
13) is also uncertain. In this study, E is implemented as a normal distribution
(i.e. E ∼ Normal(μE , σ2E) illustred in Figure 5).
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Fig. 4. The welded beam design problem Fig. 5. Distribution of values of E with
μE = 30.106 psi and σE = 3.106 psi
(20.000 draws)

Decision Variables
In what follows, the four decision variables are : h the thickness of the weld, l
the length of the weld, t the width of the beam and b the thickness of the beam.

Constraints
Four nonlinear constraints related to normal stress, shear stress, buckling limi-
tations and geometry are used (see System 14).

Environmental Parameters
The beam carries a fixed load F (F=6000 lb) and the overhang portion of the
beam (noted L) has a fixed length of 14 inches (see Figure 4).
The lower bound of h and b (resp. l,t) is 0.125 inch (resp. 0.1 inch) and the

upper bound is 5 inches (resp. 10 inches).

Objective Functions. The problem is a two-objective optimization problem :

– f1 is the fabrication cost in $ (to minimize);
– f2 is the uncertain end deflection of the structure in inches (to minimize).

f1 and f2 are defined in System 13.

Table 2. Settings of NSGA-II

Population size Number of generations Crossover rate Mutation rate
200 200 0.9 0.25
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⎧⎪⎨
⎪⎩

f1(x) = 1.104h2l + 0.048tb(14 + l)

f2(x) =
2.1952

t3b
=

4FL3

Et3b

(13)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g1(x) = 13600 − τ(x) ≥ 0

g2(x) = 30000 − σ(x) ≥ 0

g3(x) = Pc(x) − 6000 ≥ 0

g4(x) = b − h ≥ 0

with

τ(x) =

√
(τ ′)2 + (τ ′′)2 +

lτ ′τ ′′√
0.25(l2 + (h + t)2

where

τ ′ =
6000√
2hl

τ ′′ =
6000(14 + 0.5l)

√
0.25(l2 + (h + t)2)

2(0.707hl(
l2

12
+ 0.25(h+ t)

2
))

σ(x) =
504000

t2b
Pc(x) = 64746.022(1 − 0.0282346t)tb3

(14)

3.2 Evolutionary Multi-objective Optimization Algorithm

The genetic algorithm NSGA-II (Non-dominated Sorting Genetic Algorithm- II)
was used. It was developed by Deb and al. [25]. NSGA-II Matlab code available
online was employed with the real-coded GA. Each gene corresponds to one
decision variable. The settings of NSGA-II algorithm are summarized in Table 2.

4 Results of Multi-objective Optimization with Uncertain
Objective Function (f2)

To go further, the objective space and the decision space are discretized. The
size of discrete elements is indicated in Table 3.
Figure 6 shows the ”Uncertain Pareto front” and Figure 7 represents the set

of solutions obtained with 20.000 draws (μE = 30.106 psi, σE = 4.5.106 psi).
Note that the decision space is a four-dimensional space which is represented by
two two-dimensional spaces in Figure 7.
The decision maker can go throuh the steps presented in section 2.2.

Table 3. Pixel size used for ”Uncertain Pareto Front” approximation

Objective space Decision space (inch)

f1($) f2(inch) h l t b
0.5 0.0001 0.1
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Fig. 6. ”Approximation of Uncertain Pareto front” (20.000 draws μE = 30.106

psi,σE = 4.5.106 psi)

Fig. 7. Projections of Set of optimal solutions (20.000 draws μE = 30.106 psi,σE =
4.5.106 psi)

Information Extracted from the ”Tradeoff Probability Function” in
Objective Space: Most Probable Tradeoffs.

1. In objective space, the most probable tradeoff given by Pt(px) for each pixel
can be determined. Figure 8 shows the ”tradeoff probability function”, the
third axis representing the probability Pt(px).
The pixel noted T1 [69,5] (i.e. a cost between 34$ and 34,5$ and a deflexion
between 0.0004 and 0.0005 inch) is the most probable tradeoff with Pt(T1)
= 0.85635.
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2. In decision space, we can find the solution S to maximize P(S/T1). The
discrete element noted S1 [13,2,100,50] (i.e. h ∈ [1.2;1.3] inch, l ∈ [0.1;0.2]
inch, t ∈ [9.9;10] inch, b ∈ [4.9;5] inch) is the most probable solution that is
bound to the tradeoff T1 with P(S1/T1) =0.9990.

3. Finally, we obtain the probability of the most probable couple (T1 ∩ S1) =
Pt(T1)*P(S1/T1) = 0.8555.

Information Extracted from the ”Solution Probability Function” in
Decision Space: Reliable Solutions

1. In decision space, the most reliable solution can be determined by Pd(sx).
The discrete element noted S2 [13,2,100,50] is the most reliable solution with
Pd(S2) =1.

2. In objective space, we can find the best tradeoff T that maximizes P(T/S2).
The pixel noted T2 [69,5] is the most probable tradeoff that allows S2 to be
a Pareto optimal and P(T2/S2) =0.8554.

3. Finally, we obtain the probability of the most probable couple (S2 ∩ T2)=
Pd(S2)*P(T2/S2)=0.8554.

This example is a specific case because the analysis results with T1=T2 and
S1=S2. The analysis presented above has been made with the most probable
tradeoff and with the most probable solution but it can be conducted for any
tradeoff and any solution.

Fig. 8. Pt(px) : most reliable solutions with the ”Uncertain Pareto front”
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In conclusion, the decision maker learned that :

1. the most probable tradeoff is T1 and Pt(T1) (85,63%);
2. the most reliable solution is S1 and Pd(S1) (100%);
3. with S1 as Pareto optimal solution, T1 has a probablity to be the best tradeoff
equal to P (T1/S1) = 85.54%;

4. with T1 as tradeoff, S1 has a probablity to be Pareto optimal solution equal
to P (S1/T1) = 99.90%;

5. the probability to obtain T1 (Pareto optimal front) and S1 (Pareto optimal
solution) is equal to P (S1 ∩ T1) = 85.55%.

Pratical Advantages and Additional Results
The decision maker can set the cost to a certain value and search for the most
probable tradeoff :
with f1 fixed at 20 $, tradeoff T3 is the most probable with Pt(T3)= 62.54

% in pixel [40,8] (cf. Figure 9). In decision space, the discrete element noted
S3 [13,2,100,29] is the most probable solution that is bound to tradeoff T3 with
P(S3/T3) = 35.83 %. The probability of the couple (T3 ∩ S3) = 22.41 %.

Fig. 9. Section of Pt(px) (10$ ≤ f1 ≤ 20$) Fig. 10. Section of P (px/S3)

Amajor advantage of the proposedmethod lies in the fact that for a given trade-
off, we can not only get the Pareto optimal solution thatmaximizes statistically the
chances of obtaining this tradeoff, but also obtain other Pareto optimal solutions
that achieve this tradeoff. Reciprocally, for a chosen Pareto optimal solution, we
know the most probable tradeoff and also the other probable tradeoffs and there-
fore the worst possible performance. Figure 10 illustrate that with S3, the maxi-
mum deflexion is 0.0011 inch (99.99% to be lower than 0.0011 inch, 99.89 % to be
lower than 0.0010 inch, 97.63 % to be lower than 0.0009 inch, 69.34 % to be lower
than 0.0008 inch and 9.15 % to be lower than 0.0007 inch).

5 Discussion and Conclusion

A new framework, based on the ”Uncertain Pareto front”, has been introduced in
this paper to handle multi-objective optimization under uncertain objective func-
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tions. It provides all-comprehensive information about the influence of uncertainty
on the system to optimize, including range values of all possible tradeoffs and all
possible Pareto optimal solutions. Moreover, it gives the probability of achieving
each tradeoff and indicates the most reliable solutions to the decision maker.
A Monte Carlo based implementation was integrated in the optimization pro-

cess in order to approximate the ”Uncertain Pareto front” from random draws.
The proposed method can be applied to real-world systems that are inherently
uncertain. This framework could be useful with objective functions natively un-
certain in real-world: objective functions estimated from data collected from a
panel of persons, prices, experimental measures, environmental parameters, etc.
Therefore, this method was applied to the study of the welded beam to identify
the most probable couples of tradeoffs and solutions. This point is crucial for the
decison maker. Last but not the least, the user may know exactly the probability
of his choice and the most reliable solutions.
Also, this method is generic and any evolutionary algorithm can be used (for

example here NSGA-II was employed). Even though the number of draws re-
quested by this method is large, solutions are already investigated to accelerate
the computation time. Approximately 20 hours are required to compute 10 000
draws using non-optimised Matlab code and one processor (3 GHz) with a pop-
ultation of 100 and 100 generations (this duration is proportional to the number
of generation and to the square of the population, the evolution of the error in
Monte Carlo process is in 1/

√
n according to the number of draws n). C code

may be about 50 times faster than Matlab code and Monte Carlo method is
highly parallelisable. GPU implementation could also be considered to further
improve the applicability of the method. That may lead to computing time of
few minutes. However, more efficient numeric schemes will be investigated to
reduce computation time.
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Abstract. This work presents a methodology for modeling the infor-
mation concerning preferences which is acquired from a Decision-Maker
(DM), in the course of one run of an interactive evolutionary multi-
objective optimization algorithm. Specifically, the Interactive Territory
Defining Evolutionary Algorithm (iTDEA) is considered here. The pref-
erence model is encoded as a Neural Network (the NN-DM) which is
trained using ordinal information only, as provided by the queries to
the DM. With the NN-DM model, the preference information becomes
available, after the first run of the interactive evolutionary multiobjec-
tive optimization algorithm, for being used in other decision processes.
The proposed methodology can be useful in those situations in which a
recurrent decision process must be performed, associated to several runs
of a multiobjective optimization algorithm over the same problem with
different parameters in each run, assuming that the utility function is not
dependent on the changing parameters. The main point raised here is:
the information obtained from the DM should not be discarded, leading
to a new complete interaction with the DM each time a new run of a
problem of the same class is required.

Keywords: progressive preference articulation, preference model, neu-
ral networks, interactive multiobjective optimization.

1 Introduction

It is well-known that the process of optimizing two or more conflicting objectives
usually leads to a set of solutions, the Pareto-optimal solutions, which cannot
be ordered by the simple comparison of their objective function values. These
incomparable solutions, also called the non-dominated solutions, are delivered
by the multiobjective optimization algorithms. The first canonical versions of
algorithms for evolutionary multiobjective optimization were intended to deliver
a detailed uniform sampling of the Pareto front [1,2,3]. Once this sampling was
available, it was assumed that a Decision-Maker (DM) would compare those
solutions, indicating the preferred one as the final solution of the problem.
In recent years, a new approach started to receive a growing attention. Due

to the high cardinality of a detailed sampling of the entire Pareto front in some
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problems, with particular emphasis on the cases with more than three objec-
tives, some works have proposed procedures that concentrate the sampling in
some regions of the Pareto front, based on information which is obtained from
interaction between the optimization algorithm and the DM [4,5].
Among the algorithms which consider the DM interaction with the optimiza-

tion process, the work by Karahan and Köksalan [5] receives a special mention
here. That work proposed the Interactive Territory Defining Evolutionary Algo-
rithm (iTDEA), a preference-based multi-objective evolutionary algorithm which
identifies the preferred region interacting with the DM on pre-determined gen-
erations. In each interaction with the DM, a new best individual is chosen and a
new preferred region is stipulated, with a smaller territory for each individual in
that region. Individuals falling in that region are assigned smaller territories than
those located elsewhere, making the sampling density of the preferred regions
higher.
It should be noticed that the information extracted from the DM by the

iTDEA is useful only within the scope of the optimization process in which such
information is obtained. Whenever the same (or a similar) problem needs to be
solved, the DM has to answer the queries about the same region again. However,
it should be noticed that, very often, a multiobjective optimization problem
might be solved for slightly different conditions, which makes the Pareto-front
to become different from one run to the other, with the DM’s preferences kept
unchanged. For instance, a product may be produced in different instances with
different constraints in the resources availability, or with different parameters in
some objective functions.
The work by Pedro and Takahashi [6] proposed the construction of a model

for the DM’s preferences considering the utility function level sets, the NN-DM.
The preference information extracted from the DM involves ordinal description
only, and is structured using a partial ranking procedure. An artificial neural
network is constructed to approximate the DM’s preferences in a specific domain,
approximating the level sets of the underlying utility function. The proposed
procedure was stated with the aim of helping in situations in which recurrent
decisions are to be performed, with the same DM considering different sets of
alternatives.
This paper presents the results of the hybridization of the iTDEA with an

enhanced version of NN-DM. Using the same amount of preference informa-
tion required by the iTDEA, the NN-DM is able to construct a model for the
DM’s preferences, so that no more queries are required from the DM related
to that specific region of the objective space. This model can now solve sim-
ilar decision-making problems that comes from optimization problem leading
to Pareto-optimal fronts in the same region of the space. Once this preference
model is adjusted, it can be used inside the optimization process to guide the
search without demanding more information from the DM.
This paper is organized as follow. Section 2 presents some introductory dis-

cussion about decision-making theory and multi-objective optimization. Section
3 presents the Interactive Territory Defining Evolutionary Algorithm (iTDEA),
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according to [5]. At each interaction with the DM, the iTDEA requires the indi-
cation of a best solution to guide the optimization process. Considering the same
DM’s availability, Section 4 introduces the NN-DM, which constructs a model
for the DM’s preferences that can be used during the optimization process and
which can be re-used in similar optimization problems without the need of fur-
ther interaction with the DM. Section 5 studies the complexity of iTDEA and
NN-DM, concerning the number of DM calls. Section 6 provides the solutions
for illustrative multi-objective optimization problems using the iTDEA and ex-
hibits the final model for the DM’s preferences in the considered cases. Section
7 brings forward a discussion about the results and some future works.

2 The Multi-objective Optimization Problem and the
Decision-Maker

A multi-objective optimization problem can be written as

min f(X) = (f1(X), f2(X), . . . , fm(X))

subject to
gi(X) ≤ 0, i = 1, 2, . . . , k
hi(X) = 0, i = 1, 2, . . . , r

where the fi are the objective functions, the gi are the inequality constraints, the
hi are the equality constraints and X = (x1, x2, . . . , xN ) is the vector of decision
variables. The minimization is performed with regard to the partial ordering
established by the ≤ operator, which it is defined, for vectors, as resulting true
when the inequality is true for each vector component. The minimal elements
of this partial ordering are the solutions for this problem – those solutions are
called Pareto-optimal solutions, or non-dominated solutions.
A multicriteria decision making problem considers multiple criteria in decision-

making situations and involves the following basic elements: a set A of alterna-
tives, each one with its attributes; a DM, with its associated preferences; and
a decision procedure which formulates queries to de DM, obtaining preference
information. Usually, it is not possible to assume that the DM would be able
to inform the cardinal value of the preference on any alternative; instead, the
DM is usually able to furnish only ordinal information, stating that A is better
than B or that B is better than A, or yet that the DM is indifferent to those
alternatives. Also, the DM is usually able to perform comparisons about a set
with some few alternatives only, being unable to process large sets properly.
It is assumed that there is a utility function U which encodes the preference

relations among all alternative pairs, such that if U(A) > U(B) then A is better
than B, under the DM’s viewpoint. The best alternative x∗ ∈ A is the one that
maximizes the function U in the set A.
In the context of the multi-objective optimization problems, the Pareto-

optimal set is not ordered with regard to the objective functions. Therefore, the
choice of one alternative within this set becomes a decision problem, in which
the most preferred solution should be chosen by a DM.
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3 The Interactive Territory Defining Evolutionary
Algorithm

The Territory Defining Evolutionary Algorithm (TDEA) [7] was proposed by
Karahan and Köksalan. The TDEA is a steady-state elitist evolutionary algo-
rithm to approximate the Pareto-optimal front in multi-objective optimization
problems based on a territory around each individual. Introducing the DM’s
preferences a priori in TDEA, the preference-based TDEA (prTDEA) [7] is an
algorithm that obtains a detailed approximation of the desired regions within the
entire Pareto-optimal front. Improving this idea, the authors proposed the In-
teractive Territory Defining Evolutionary Algorithm (iTDEA) [5], an algorithm
that interacts with the DM during the course of optimization at predetermined
generations, finding the best recent solution and guiding the search toward the
neighborhood of that solution. The next paragraphs present a brief explana-
tion about these three algorithms. For further information about these methods,
including a detailed overview of the algorithms, check the reference [4].
The Territory Defining Evolutionary Algorithm (TDEA) is an algorithmwhich

maintains two populations: a regular population, which has a fixed size, and an
archive population, which has flexible size and contains the non-dominated indi-
viduals copied from the regular population. In each generation, a single offspring
is created and tested using the dominance for the acceptance in the regular pop-
ulation. If the offspring is accepted in the regular population, the individuals in
the archive population dominated by the offspring are removed from the archive.
If the offspring is dominated by one individual in the archive population, it is
rejected, otherwise a territory is defined around the individual closest to the
offspring. The offspring is accepted in the archive population only if it does not
violate this territory.
Let y = (f1, f2, . . . , fm) be an individual in the archive population. The ter-

ritory of the individual y is defined as the region within a distance τ of y in
each objective among the regions that neither dominate nor are dominated by
y. Mathematically, the territory of y contains all points in V defined by

V = {y′ : |fj − f ′j | < τ, for j = 1, 2, . . . ,m ∧
y and y′ do not dominate each other} (1)

where fj and f
′
j are the j-th objective values of y and y

′, respectively, and τ
determines the territory size.
This territory defining property is responsible for the archive population di-

versity, since each individual in the archive population controls a territory and
disallows other individuals in its territory. The idea of favorable weights is em-
ployed to identify the location of an individual. The favorable weights of an
individual are a set of weights that minimize its weighted Tchebycheff distance
from the ideal point.
In TDEA, the parameter τ defines the territory size, which bounds the maxi-

mum number of individuals in the archive population. By changing the territory
size parameter τ , the authors introduce a version of TDEA, the preference-based
TDEA (prTDEA).
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The prTDEA possesses a mechanism to incorporate the DM’s preference and
to modify the territory size of an individual depending on its location on the
Pareto-optimal front. Before the optimization, the algorithm requires the DM
to specify her/his preferred region RP , defined by a set of Tchebycheff weight
ranges, and sets the remaining space as RU . Therefore, two values for the param-
eter τ are stipulated, respectively: τP and τU . The usage of a small τP maintains
more individuals from the preferred region in the archive population, while in-
dividuals located elsewhere have the eventual neighbors eliminated by a larger
τU . The prTDEA still requires a change in the acceptance procedure for the
archive population: the τ value is now determined by the region that contains
the offspring. An illustration of different territory sizes is given in Figure 1.

Fig. 1. Different territory sizes. (Figure of [7])

Improving the prTDEA, the authors developed the Interactive Territory Defin-
ing Evolutionary Algorithm (iTDEA), an interactive approach that converges to
the preferred solutions by progressively obtaining preference information from
the DM.
The iTDEA identifies the preferred region interacting with the DM at pre-

determined generations. Interaction stages h = 1, 2, . . . , H are scheduled at the
generations G1, G2, . . . , GH , respectively. The starting territory size is τ0 and
the final is τH , with the intermediate τ values calculated by an exponential de-
crease. A filtering procedure that utilizes a modified dominance scheme similar
to ε-dominance is employed for selecting individuals to be presented to the DM.
For m objectives, the number of solutions in each interaction stage is P = 2m,
except in the first and in the last stage, in which P = 4m.
At interaction stage h, the DM chooses the preferred individual among the

filtered sample of individuals found so far by the algorithm. The preferred indi-
vidual determines the preferred weight region Rh, which is defined by a set of
Tchebycheff weight ranges and it has a specific τ value, τh. Individuals falling
in these regions are assigned smaller territories than those located elsewhere,
so that the density of the preferred regions is higher. For the acceptance in the
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archive population, the algorithm determines all Rh regions to which the off-
spring belongs and selects the last created region k, which has the smallest τk.
The DM’s preferences are simulated using Tchebycheff, linear and quadratic

underlying utility functions. The algorithm is tested in three problems with two
and three objectives and the number of interactions with the DM is 4 or 6 times.
The runs are made with and without filtering and tests are performed with the
incorporation of a Gaussian noise in the utility function calculations. The iTDEA
converges to the final preferred region of the DM interactively in all selected test
problems.

4 The Decision-Maker Model

Pedro and Takahashi [6] introduced the NN-DM, a representation for the DM’s
preferences using neural networks that has the purpose of reproducing the order-
ing of alternatives that would be delivered by the utility function U in a specific
domain. The goal of the NN-DM is to find a representation Û that models the
DM’s preferences using ordinal information obtained from queries presented to
the DM. The Û function must preserve the ordinal relationship between any two
points, which is equivalent to stipulate that the level sets of U and Û must be
the same. As only ordinal information can be obtained from the DM about U , a
partial ranking procedure is employed in order to establish the problem of find-
ing Û as a regression problem, which is settled using an artificial neural network.
The role of such a function is to replace the DM in new instances of the same
multi-objective optimization problem, avoiding the formulation of new queries.
The proposed methodology consists of three main steps:

Step 1: Choose the domain A for approximation.
Step 2: Build a partial ranking, assigning a scalar value to each alternative and

finding a partial sorting for the alternatives.
Step 3: Construct an artificial neural network Û which interpolates the results

and approximates the DM utility function U .

A more detailed description of those steps is presented now:

Step 1: As the decision problem is related to the choice of a final solution of
a multiobjective optimization problem, the domain for Û is induced from the
domain of the Pareto-optimal available estimative during the optimization pro-
cess. The domain is defined as the box constructed considering the minimum and
maximum values of the Pareto-optimal alternatives in each problem dimension.
In this domain, a simulated decision-making problem is built, in which the alter-
natives are randomly located considering an uniform distribution. The queries
to the DM are presented over these simulated alternatives. The number of ran-
dom alternatives is related to the quality of the approximation Û : the larger this
number, the better the approximation, but, in this case, many queries will be
asked to the DM. An estimate of this trade-off is presented in section 6.
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Step 2: The partial ranking is a technique used to find a partial sorting for
the alternatives, assigning a scalar value to each alternative. Considering a set
A with n alternatives, this process is performed through the following steps:

- Choose randomly p = logn alternatives1 from the set A; these alternatives
are called pivots.

- Sort the pivots in ascending order of the DM’s preferences, using ordinal
information obtained from yes/no queries. A rank is assigned to each pivot,
corresponding to its position in this sorted list.

- For each one of the n − p remaining alternatives, assign a rank that is the
same one of the pivot immediately better than the alternative, in the DM’s
preference. If the current alternative is better than the rank p pivot, it re-
ceives rank p+1, and p is increased. Each remaining alternative is compared
with the middle pivot and, based on the result, compared with the middle
pivot of the higher or lower sub-partition. This process continues until a rank
is assigned.

This procedure creates a partition of the set A in at least p disjunct subsets. As
the number of pivots is less than the number of alternatives, many alternatives
should have the same ranking, providing a partial sorting. The ranking-based
classification offers a quantitative (cardinal) way to compare the alternatives, a
kind of information which is not provided directly by the DM. In any case, an
alternative which is assigned a level i + 1 is necessarily better than an alterna-
tive with a level i, although two alternatives with the same level i may be not
equivalent under the utility function U .

Step 3: In this paper, the regression technique used is the radial basis function
(RBF) networks. A radial basis function (RBF) is a real-valued function whose
value depends only on the distance from the origin, so that φ(x) = φ(‖x‖); or
alternatively on the distance from some other point xi, called a center, so that
φ(x, xi) = φ(‖x − xi‖). Sums of radial basis functions are typically used to ap-
proximate given functions. This approximation process can also be interpreted as
a kind of artificial neural network. Radial basis functions networks are typically
used to build up function approximations of the form

y(x) =
N∑
i=1

wi · φ(‖x− xi‖),

where the approximating function y(x) is represented as a sum of N radial basis
functions, each one associated with a different center xi, and weighted by an
appropriate coefficient wi. The weights wi can be estimated using linear least
squares, since the approximating function is linear in those weights.
It can be shown that any continuous function on a compact interval can be

interpolated with arbitrary accuracy by a sum of this form, if a sufficiently large

1 The log x is used as the same of log2 x.
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number of radial basis functions is used. In this paper, a commonly used type of
radial basis function is employed, a Gaussian given by

φ(r) = e−r2, where r = ‖x− xi‖.

For training the RBF network Û which approximates the utility function U ,
the alternatives within the domain are used as inputs and the ranking level
of each alternative, as outputs. It is not necessary to model U exactly, be-
cause the partial ranking keeps the partial sorting of the alternatives, provid-
ing a resulting function whose level sets are similar to the ones of U . Figure 2
presents an example of an underlying utility function and the model found by the
NN-DM.
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Fig. 2. Underlying utility function: (a) level sets (b) surface. Resulting estimated
utility function: (c) level sets (d) surface.

4.1 Algorithm

The following algorithm presents the pseudocode for the DM model construction.
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program NN-DM

{Construction of the DM model}

1. Find the domain

2. Create n random alternatives

3. Select the pivots

4. Sort the pivots in ascending order

5. Assign a rank to each pivot

6. Assign a rank to each n - p remaining alternatives

7. Train the artificial neural network

8. Measure the efficiency

end

5 Number of DM Calls

This section discusses the number of calls of the DM, while interacting with
iTDEA and NN-DM methodologies. The DM is considered able to provide only
ordinal information about the alternatives. For comparing the methodologies,
an estimate of the average number of queries presented to the DM is calculated
considering both models.

5.1 DM Calls in NN-DM

In the generation of NN-DM model, the interaction with the DM is necessary in
two occasions: the pivot total sorting and the position selection of each remaining
alternative. From now on, consider n as the total number of alternatives and
p = logn the number of pivots for the partial sorting.

Pivot Total Sorting. The number of queries the DM has to answer is equal
to the number of comparisons that a sorting algorithm must execute. A method
as Quicksort is known to perform, on average, p · log p comparisons between the
alternatives to sort them, therefore this value represents a good estimate for the
number of queries presented to the DM for the total sorting of the pivots.

Position Selection of Each Remaining Alternative. For selecting the po-
sition of each remaining alternative, the alternative must be compared with the
pivot alternatives. Using a tournament procedure, on average log p queries are
required for each alternative. So, as there are n− p remaining alternatives, then
(n− p) · log p queries are made, on average, during this procedure.
Therefore, the average total of queries to the DM is given by

A(n) = p · log p+ (n− p) · log p
= p · log p+ n · log p− p · log p
= n · log p
= n · log(log n).
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Now another advantage of this methodology is pointed out. By considering the
alternatives in a domain instead of the Pareto-optimal solutions only, the dom-
inance can be used to replace the DM in some decisions, making the process
cost-effective. Considering the answers provided by the dominance, only the in-
formation about non-dominated solutions is required from the DM, reducing the
total number of queries. The results presented in Section 6 are in agreement with
the value n · log(logn) as an upper bound for the number of queries presented
to the DM.

5.2 The iTDEA

In iTDEA, the DM is required to interact with the optimization process at
predetermined generations. The chosen number of interactions with the DM is
4 or 6 times and those interactions are used to identify the preferred regions.
Form objectives, the number of solutions presented to the DM in each interac-

tion stage is P = 2m, except in the first and in the last stages, in which P = 4m.
The DM is required to find the best solution among those P filtered solutions.
Considering that only ordinal information is available with binary comparisons,
for each set of n elements, at least n− 1 queries are made to the DM [8]. Thus,
a lower bound for the number of queries presented to the DM is 10m − 4 in 4
interactions and 14m − 6 in 6 interactions. Those estimates were used, in this
work, as a reference for the number of queries that may be used to construct the
model for the DM’s preference.

6 Computational Experiments

Some computational experiments in problems with 2 and 3 objectives are re-
ported in this section. The parameters employed in the algorithms are displayed
in Table 1.

Table 1. Test parameters

2D 3D

Ideal vector, f∗ (0, 0) (0, 0, 0)
Number of interactions H 4 4
Population size 200 200
τ0 0.1 0.1
τH 0.001 0.001
Number of iterations T 10 000 10 000
Number of replications T 50 50
Number of training points T 12 18
Estimate number of queries 20 44
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In all cases, the DM utility function is simulated, considering the following
function:

U(p) = exp(−p ·A · pt) (2)

6.1 Bi-objective Optimization

As a first example, the following bi-objective optimization problem with two
decision variables is considered:

p = {p1, p2}, f = (f1, f2), (3)

fi(p) = (p− μi) ·M · (p− μi)t, i = 1, 2 (4)

M =

[
1 0
0 1

]
μ1 = [1 0]
μ2 = [0 1]

The utility function U is instantiated with:

A10 =

[
1 0
0 0

]
A11 =

[
1 0
0 1

]
(5)

The resulting samplings of the Pareto-optimal fronts are presented in figure 3,
both for the Territory algorithm and for the NN-DM algorithm. This figure does
not present any relevant difference between the results of the two algorithms.
The NN-DM network has a Kendal-Tau Distance2 of 0.1 in relation to the ideal
utility function U , with error of ±1%, with a number of calls of the DM which
is similar to the one performed by the iTDEA algorithm.

6.2 Three-Objective Optimization

An optimization problem with three objectives and three variables is also con-
sidered:

p = {p1, p2, p3}, f = (f1, f2, f3), (6)

fi(p) = (p− μi) ·M · (p− μi)t, i = 1, 2, 3 (7)

with:

M =

⎡⎣1 0 00 1 0
0 0 1

⎤⎦ μ1 = [1 0 0]
μ2 = [0 1 0]
μ3 = [0 0 1]

The utility function U is instantiated with:

A100 =

⎡⎣1 0 00 0 0
0 0 0

⎤⎦ A111 =

⎡⎣1 0 00 1 0
0 0 1

⎤⎦ (8)

2 The Kendal-Tau Distance is a measure of preference inversions, counted over a set
of alternatives.
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Fig. 3. Resulting samples of the Pareto-optimal front from the Territory algorithm and
from the NN-DM algorithm
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6.3 Number of Queries

The figure 5 presents a comparison between the total number of queries presented
to the DM, the number of queries solved by the dominance, and the expected
number of queries, calculated from the complexity analysis.
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Fig. 5. Number of queries for solving the A11 instance. Blue: number of queries pre-
sented to the DM. Green: number of queries solved by dominance. Red: total number
of queries (blue + green). Magenta line: expected number of queries.

7 Conclusion

This work presented a methodology that allows to get the information concern-
ing preferences which is acquired from a Decision-Maker (DM), in the course
of one run of an interactive evolutionary multiobjective optimization algorithm,
such that this information becomes available, after that specific run, for being
used in other decision processes. The preference information is stored in a Neu-
ral Network (the NN-DM), which is trained using ordinal information only, as
provided by the queries to the DM. The NN-DM is intended to approximate the
level sets of an underlying utility function associated to the DM.
The proposed methodology can be useful in those situations in which a recur-

rent decision process must be performed, associated to several runs of a multiob-
jective optimization algorithm over the same problem with different parameters
in each run, assuming that the utility function is not dependent on the chang-
ing parameters. Some examples of such a situation should be mentioned: (i)
the choice of the operation point of an electric power system, under different
load constraints (intra-day or intra-week periods); (ii) the manufacturing of a
compound which may be composed of different raw materials, under different
relative prices of such materials; (iii) the choice of routes, in any routing prob-
lem, under different situations of the costs associated to the problem arrows,
or under situations of unavailability of some arrows; etc. The main point raised
here is: the information obtained from the DM should not be discarded, leading
to a new complete interaction each time a new run of this class of problems is
required. It is also straightforward to notice that it is possible to perform either
a refinement of the NN-DM model or its validation, through some interaction
with the DM in new runs of the algorithm.
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The authors are currently investigating the possibility of usage of the NN-
DM structure for a stronger interaction with interactive EMO algorithms, as an
attempt to enhance the convergence properties of such algorithms.
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Abstract. An algorithm that returns as low-cost solutions as possible
at any moment of its execution is said to have a good anytime behaviour.
The problem of optimising anytime behaviour can be modelled as a bi-
objective non-dominated front, where the goal is to minimise both time
and cost. Using a unary quality measure such as the hypervolume in-
dicator, the analysis of the anytime behaviour can be converted into a
single-objective problem. In this manner, available automatic configura-
tion tools can be applied to improve the anytime behaviour of an algo-
rithm. If we want to optimise the anytime behaviour of multi-objective
algorithms, we may apply again unary quality measures to obtain a
scalar value for measuring the obtained approximation to the Pareto
front. Thus, for multi-objective algorithms, the anytime behaviour may
be described in terms of the curve of the hypervolume over time, and
the quality of this bi-objective tradeoff curve be evaluated according to
its hypervolume. Using this approach, we can automatically improve the
anytime behaviour of multi-objective evolutionary algorithms (MOEAs).
In this article, we first introduce this approach and then experimentally
study the improvements obtained considering three MOEAs, namely,
IBEA, NSGA-II and SPEA2.

1 Introduction

In many real world problems, the quality of solutions is evaluated according to
multiple objective functions. The goal of algorithmic approaches to their solution
typically is to provide an as good as possible approximation to the unknown
Pareto front of tradeoff solutions. Among the most successful such algorithmic
approaches are multi-objective evolutionary algorithms (MOEAs).
In practical settings, the user will have a limited time to run an MOEA, and

the available amount of time is not always known in advance when deciding
for the MOEA’s parameter settings. Thus, a goal in the design of MOEAs and
other multi-objective optimizers is to find algorithm parameter settings that
allow finding the best possible Pareto front approximations for any stopping
criterion. More in general, algorithms that provide as good solutions as possible
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independent of a specific termination criterion are referred to as having good
anytime behaviour [18].
In this paper, our goal is to examine and, in particular, to improve the anytime

behaviour of MOEAs by automatic algorithm configuration techniques [2,6,9,11,
13]. To this aim, we need to model the anytime behaviour of MOEAs. For single
objective algorithms, the anytime behaviour may be modelled as a bi-objective
non-dominated front, where both solutions quality and computation time must
be considered [15, 16]. By using a unary quality measure of the obtained non-
dominated front, the analysis of the anytime behaviour is converted into a single-
objective problem [16]. Here, we follow [16] and use the hypervolume indicator
for this task [22].
In addition, we need to determine the quality of the set of solutions returned

by the MOEA. For this task, again the hypervolume indicator can be used and
each pair of (time, hypervolume) represents an improvement of the best so-
lutions found at a particular time since the algorithm start. The objective of
optimising the anytime behaviour reduces then to find MOEA configurations
that produce the best possible set of sequences of points (time, hypervolume).
Hence, by making this double usage of the hypervolume, we can apply standard
algorithm configuration techniques for the automatic configuration of MOEAs.
We analyse the impact of automatic configuration on the anytime behaviour

of MOEAs. In particular, we selected three classical MOEAs: the indicator-based
evolutionary algorithm (IBEA) [19], the nondominated sorting genetic algorithm
(NSGA-II) [4], and the strength Pareto evolutionary algorithm (SPEA2) [20].
These algorithms are among the best-known MOEAs and they have been thor-
oughly studied in the literature.
This paper is organized as follows. Section 2 introduces basic notions of multi-

objective optimization and MOEAs. In Section 3, we describe the method used
for tuning anytime behaviour of MOEAs. The experimental setup and the results
are described in Sections 4 and 5, respectively. We conclude in Section 6.

2 Multi-objective optimization

A multiobjective optimization problem (MOP) can be formulated as

minimize f(x) = (f1(x), . . . , fm(x))
T subject to x ∈ Ω

where Ω is the search space, f : Ω → Rm consists of m real-valued objective
functions and Rm is called objective space. A continuous MOP is an MOP where
each of the D variables is a continuous variable with xi ∈ R ∀xi, i = 1, . . . , D
and possible constraints restrict the set of feasible solutions.
Typically, the objectives of an MOP are conflicting and there is no solution

x ∈ Ω that minimizes all objectives simultaneously. The solutions representing
the best compromise between the objectives can be defined in terms of Pareto
optimality. Let u, v be two vectors in Rm; u is said to dominate v if and only if
ui ≤ vi for every i ∈ 1, . . . ,m and uj < vj for at least one index j ∈ 1, . . . ,m.
This definition applies without loss of generality to minimization problems. A
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point x∗ ∈ Ω is Pareto optimal if there is no point x ∈ Ω such that f (x)
dominates f(x∗). A Pareto set is the set of all Pareto optimal points and the
Pareto front is the set of the objective vectors of all Pareto optimal points.
In order to measure the quality of a Pareto front, we can use the hypervolume

indicator [22]. The unary hypervolume indicator measures the quality of a set
P of n non-dominated objective vectors produced in a run of a multiobjective
optimizer. For a minimization problem involving m objectives, this indicator
measures the region that is simultaneously dominated by P and bounded above
by a reference point r ∈ Rm such that r > (maxp p1, . . . ,maxp pm), where p =
(p1, . . . , pm) ∈ P ⊂ Rm.

3 Anytime Optimization

An anytime algorithm returns as high quality solutions as possible at any mo-
ment of its execution [18]. One characteristic of anytime algorithms is that, inde-
pendently of the termination criterion, the best solution found so far is steadily
improved, eventually finding the optimal. This implies that anytime algorithms
should keep exploring the search space and avoid getting trapped in local op-
tima. Moreover, good solutions should also be discovered as early as possible.
This implies that the algorithm should converge to good solutions as fast as
possible.
Normally, there is a trade-off between the quality of the solution and the run-

time of the algorithm. There are two classical views when analyzing this trade-
off. One view defines a number of termination criteria and analyzes the quality
achieved by the algorithm at each termination criterion. In this quality-versus-
time view, the anytime behaviour is often analyzied as a plot of the (average)
solution quality over time, also called SQT curve (e.g., Fig. 1). A different view
defines a number of target quality values and analyzes the time required by the
algorithm to reach each target. In this time-versus-quality view, algorithms are
often analyzed in terms of their runtime distribution [10, Chapter 4].
We consider here a third view that does not favor time over quality or vicev-

ersa, but models the anytime behaviour as a bi-objective problem [16] where
the first objective, the solution quality, has to be maximized, while the second,
the time, has to be minimized. If we consider the points (quality, time) that
describe at which time the quality of the best solution has been improved by
the algorithm, then the set of points that describe a run of an algorithm is, by
definition, a nondominated set of solutions. Moreover, we can definitely compare
the anytime behaviour of two algorithms by comparing their respective nondom-
inated sets of (quality, time) points.1 If the nondominated set of one algorithm
dominates (in the Pareto-optimality sense) the nondominated set of another al-
gorithm, we say that the anytime behaviour of the former is better than the

1 In our approach, we do not give more importance to either time or quality, and,
hence, the order in which they are plotted is irrelevant. However, we visualize later
the results in terms of SQT curves, and, hence, the order (quality, time) is more
natural for such purpose.
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Fig. 1. An example of SQT curve

anytime behaviour of the latter. More importantly, this model allows us to ap-
ply the same unary quality measures used in multi-objective optimization to
evaluate the anytime behaviour of algorithms. In particular, we have identified
the hypervolume measure [22] as being the most suitable for this purpose [16].
In the case of single-objective optimisers, the output of an algorithm is a single

solution, and its quality is a unique scalar value. In the proposal described above,
their anytime behaviour is evaluated as a bi-objective problem with two objec-
tives (quality, time). In the case of multi-objective optimisers such as MOEAs,
the output of the algorithm is a nondominated set of points, and, hence, we need
an additional step that assigns a unique scalar quality value to each nondomi-
nated set by means of a unary quality measure. Once each nondominated set is
assigned a scalar quality value, we can proceed as described above and evaluate
the anytime behaviour of MOEAs as the hypervolume of the nondominated set
of points (quality,time) that describes a run of an algorithm.
In summary, our proposal for assessing the anytime behaviour of a run of a

MOEA consists of two main steps:

– Compute the quality of the best nondominated set found by a run of an
algorithm at each moment of its execution. This entails recording every im-
provement of the best nondominated set. Since this may turn out to be
computationally expensive for long runs, a good approximation is to record
improvements of the best nondominated set only at specific time intervals.
Then, we may compute the quality of these nondominated sets by means of
any unary quality measure. For simplicity, we have chosen here the hypervol-
ume measure. In this way, we obtain a nondominated set of (quality, time)
points that describe the anytime behaviour of the run of the algorithm.

– Compute the quality of the anytime behaviour curve. At the end of the run
of an algorithm, its anytime behaviour is evaluated by computing the hyper-
volume measure of the nondominated set of (quality, time) points obtained
in the previous step. In the case of a fixed frequency of time steps, the hyper-
volume computation in this step can be simplified as the sum of the qualities
over each time step. However, the use of the hypervolume is more general
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and it allows the introduction of preference information [16], although we do
not examine this possibility in this paper.

Although one may use a different quality measure in the first step than the
hypervolume measure used in the second step, we have chosen to use the hyper-
volume in both steps for simplicity. In this case, the above steps are equivalent
to extending the original multi-objective problem with an additional objective
(time) and replacing the two steps above by simply computing the hypervolume
of the extended problem. We prefer the two-step approach described above be-
cause it clearly separates between the computation of the quality of a solution
(set) to the multi-objective problem at hand, and the evaluation of the anytime
behaviour of the algorithm.
A practical application of the above proposal is the automatic configuration

of the anytime behaviour of MOEAs. In all parametrized algorithms, such as
MOEAs, the search behaviour is heavily influenced by their parameter setting.
The goal of automatic algorithm configuration is to determine the settings of
both numerical and categorical parameters before the algorithm is actually de-
ployed in order to have an algorithm that is as high performing as possible. Au-
tomatic algorithm configuration is crucial in the design phase of parametrized
algorithms. It is also relevant in practical applications when known algorithms
are applied to specific classes of problems, in order to find the parameter settings
that optimise performance for such problems.
Automatic algorithm configuration consists of two main phases:

– tuning phase: the algorithm is tuned on a representative set of problem
instances;

– production (or testing) phase: a chosen algorithm configuration is used to
solve unseen problem instances.

In recent years, a number of automatic configuration methods have been devel-
oped and recent overviews are available in the literature [2, 6, 8, 9]. The method
proposed above to automatically improve the anytime behaviour of MOEAs is
mostly independent of the automatic configuration method used. In this paper,
we use as automatic configuration method the implementation of I/F-Race [2]
provided by the irace software package [13]. We combine this method with a
publicly available implementation of the hypervolume measure [7] to tune the
anytime behaviour of MOEAs.

4 Experimental Setup

In this section, we first present the three analysed MOEAs, explain the main
parameters, and introduce the benchmark problems used in the experiments.

NSGA-II [4] uses nondominated sorting and a density estimator to rank the
generated solutions and to construct a fixed-size elite population.

SPEA2 [20] keeps the best solutions in an fixed-size elite archive. After each
generation, the archive is either truncated with an operator based on k-th nearest
neighbour or completed with dominated solutions from the current population.
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Table 1. Parameter space for tuning of IBEA, NSGA-II and SPEA2

Parameter Role Type Range Default

pc probability of mating two solutions real (0.0,1.0) 1.0
pextm probability of mutating a solution real (0.0,1.0) 1.0
pintm probability of mutating a variable in a

solution
real (0.0,1.0) 0.0833

N number of solutions integer [10, 1000] 20
DIc distance between children and their

parents
integer [0, 100] 15

DIm distribution of the mutated values integer [0, 100] 20
l scaling factor (IBEA) real (0.0, 1.0) 0.05

N archive size (SPEA2) integer [10, 1000] 100
k k-th nearest neighbour (SPEA2) integer [1, 50] 10

IBEA [19] uses a binary quality indicator, in particular, the binary additive
ε-indicator, in order to assign a fitness value to each solution and to keep a
fixed-size elite population.

In this paper, we use the implementation of these three algorithms available in
ParadisEO [12], a software framework dedicated to the flexible design of meta-
heuristics. For the experiments in this paper, all algorithms use the simulated
binary crossover (SBX) operator [3] and polynomial mutation.

MOEAs Parameters. Table 1 summarises the parameters of the three MOEAs
tested (IBEA, NSGAII and SPEA2), their default values and the range con-
sidered for tuning. The default values are the ones used in the ParadisEO
framework [12], and mostly correspond to the values suggested in the litera-
ture [4,5,19,20,21]. There are six common parameters: the population size (N);
the probability of crossover (pc); the probability of external mutation (p

ext
m ),

which determines whether a solution will be mutated; the probability of in-
ternal mutation (pintm ), which determines which variables of a solution will be
mutated; the crossover distribution index (DIc), which determines the amount
of exploration outside the parents, and the mutation distribution index (DIm),
which determines the distance between the original and the mutated value of
a variable. Besides these common parameters, IBEA has a parameter l called
the fitness scaling factor, which is used for computing the fitness values and it
depends on the indicator used in the algorithm. SPEA2 has two additional pa-
rameters: the archive size N̄ , and the k-th nearest neighbour, which affects the
density estimation operator.

Benchmark Problem Instances. As benchmark instances, we consider real-
valued functions from two well-known benchmark sets: ZDT [21] and DTLZ [5].
The original ZDT set contains six bi-objective functions, but ZDT5 was not
included in our setup. From the DTLZ set we used the seven functions with
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three objectives. Note that these benchmark sets are scalable to any number
of decision variables (D) and they pose different difficulties to multi-objective
algorithms such as non-convex fronts or discontinuous fronts.

Monotonicity of Hypervolume in MOEAs. MOEAs store the best non-
dominated set found in an elite population that acts as an archive of solutions.
Ideally, the quality of this archive should monotonically increase over time. How-
ever, MOEAs often limit the size of this archive. Most archiving algorithms, e.g.
the one used by SPEA2 and NSGA-II, are not monotonic with respect to dom-
inance [14], and even if the archiving algorithm is monotone with respect to
dominance, such as the one of IBEA, the hypervolume of the archive does not
need to be strictly monotonic (see below).
Figure 2 shows SQT curves of the three MOEAs considered here, in terms of

hypervolume development over the number of function evaluations. In the left
column, we plot the SQT curve corresponding to the elite population, whereas
the right column corresponds to the SQT curve of an external, unbounded
archive that stores all the dominated solutions found so far within a single run.
The plots show that an unbounded archive results in a monotonic increase of
the hypervolume over time. Moreover, the quality of the unbounded archive is
significantly better than the quality of the elite population. Therefore, in the
following, we always make use of an external unbounded archive.

Tuning Setup. We use Iterated F-race [2], as implemented by the irace soft-
ware [13], to tune the parameters of the MOEAs. Each tuned parameter config-
uration is obtained by running irace with a budget of 2 000 runs of the MOEA
being tuned. Each MOEA run is stopped after 100D function evaluations, where
D is the number of variables of the problem.
In order to increase the effectiveness of the tuning, each run of irace was

repeated 10 times with different random seed, and the ten resulting MOEA
configurations were compared using F-race [2] in order to select the best one.
Each MOEA is tuned separately on each set of benchmark instances, namely,

one run of irace uses DTLZ instances and another ZDT instances. Due to the
diversity of the benchmark sets, the training instances are setup in a special
way. We split each benchmark set into training instances used for tuning and
testing instances used for comparing the configurations obtained after tuning.
For tuning, the input of irace is a stream of instances that is structured in
blocks, each block containing one function of each type (5 functions for ZDT
and 7 functions for DTLZ) and random D ∈ [10, 100]. We setup irace in such
a way that configurations are run at least on two blocks of instances before
discarding any configuration, and we only discard configurations after evaluating
each surviving configuration on a whole block of instances. For testing, we select
each function with D ∈ {20, 35, 50, 65, 80, 95} (these values for D are excluded
from the training set).
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(a) ZDT1 with a fixed-sized archive (b) ZDT1 with an unbounded archive

(c) DTLZ1 with a fixed-sized archive (d) DTLZ1 with an unbounded archive

(e) DTLZ3 with a fixed-sized archive (f) DTLZ3 with an unbounded archive

Fig. 2. Monotonicity preservation of the hypervolume through an unbounded external
archive

5 Experimental Results

Tuning for Anytime Behaviour. Figure 3 illustrates the difference between
the results obtained with the default values and with the best configuration
tuned for the anytime behaviour. The values plotted represent the hypervol-
ume value of the SQT curves for each test problem (that is, for each function
in each of D ∈ {20, 35, 50, 65, 80, 95}). Each point represents the mean quality
value obtained after 15 runs of a particular configuration. A larger hypervolume
value indicates a better anytime behaviour. The plots clearly show that, as ex-
pected, the hypervolume of the SQT curves obtained by the MOEAs improve
significantly after tuning.
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Fig. 3. Anytime behaviour quality for the default configuration versus configurations
tuned for anytime behaviour. Each point represents an “unseen” instance from the ZDT
set or the DTLZ set and gives the mean hypervolume of the SQT curves (measured
across 15 runs) for the default configuration (y-axis) and the anytime tuned configura-
tion (x-axis). A point below the diagonal indicates better results by the anytime tuned
configuration.

In order to assess whether improving the hypervolume of the SQT curve re-
sults in a visible improvement of the anytime behaviour of the MOEAs, we plot
in Fig. 4 the mean SQT curve over 15 runs of each MOEA on individual bench-
mark instances. Moreover, we plot for each curve the 95% confidence interval
around the mean as a grey shadow to give an idea of the variation over multiple
runs. In all cases, the anytime behaviour of the MOEAs visibly improves after
tuning over default settings. The improvement is very strong for NSGA-II and
SPEA2, which shows that their default parameters are far from ideal.
Next, we examine whether the final quality of the non-dominated set ob-

tained at the maximum termination criterion (100 · D) is improved or not by
tuning for anytime behaviour. Figure 5 compares the hypervolume of this fi-
nal non-dominated set when generated by the default configuration versus the
one generated by the configuration tuned for anytime behaviour. In the case of
NSGA-II and SPEA2, the final quality is improved in most cases. In the case of
IBEA, the final quality is clearly improved in a few cases, but the differences are
often rather small.
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Fig. 4. Variation of the quality of the Pareto front obtained for the three different
configurations: the default parameter set, the best parameter set tuned for the anytime
behaviour and the best parameter set tuned for the quality of the final Pareto front.
The instance DTLZ1 with 30 variables was executed 15 times for each MOEAs.
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Fig. 5. Final Pareto front quality for the default configuration versus configurations
tuned for anytime behaviour. Each point represents an “unseen” instance from the
DTLZ set and gives the mean hypervolume of the final Pareto front approximation
(measured across 15 runs) for the default configuration (y-axis) and the anytime tuned
configuration (x-axis). A point below the diagonal indicates better results by the any-
time tuned configuration.

Tuning for Final Quality. We also evaluate the MOEAs tuned for anytime
behaviour relative to how much improvement could be reached by tuning for
final quality, the latter being a more traditional approach. When tuning for
final quality, the tuning procedure ignores the SQT curve and only takes into
account the quality of the non-dominated set obtained after 100 · D function
evaluations. We measure the quality of this final non-dominated set according
to the hypervolume. Otherwise, we follow the same tuning setup as described
above. After tuning, we obtain a parameter configuration for each MOEA and
each benchmark set and run the configurations 15 times on each test instance.
Figure 6 compares the configurations tuned for anytime behaviour and the

configurations tuned for final quality when evaluated with respect to their any-
time behavior for the three MOEAs and the two benchmark function sets. (The
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Fig. 6. Difference for anytime behaviour quality obtained for the best parameter
set tuned for anytime behaviour and the best parameter set tuned for quality of the
final Pareto front. Each point represents an “unseen” instance from the ZDT and the
DTLZ benchmark sets.

configurations tuned for anytime behaviour and final quality turned out to be
far better than the default configurations and therefore the plots comparing to
the default configurations are omitted here.) As the plots show, the configura-
tions tuned for anytime behaviour obtain generally better results for the anytime
behaviour than those tuned for the final quality.
Figure 7 shows that, in terms of final quality, the differences between the

configurations tuned for the anytime behaviour and the configurations tuned for
the final quality are only slightly in favor of the latter with the exception of few
outliers in the cases of NSGA-II on the DTLZ set and IBEA and SPEA2 on the
ZDT sets. Thus, the improved anytime behaviour does not necessarily incur a
strong loss with respect to the final quality reached.
By comparing the three MOEAs on the same function (here as example

DTLZ1, D = 30), we can observe that IBEA is typically the best perform-
ing algorithm for the default settings, and the configurations tuned for anytime
behaviour or final quality (Fig. 8). However, while for the default settings the
advantage of IBEA is often substantial, after tuning NSGAII and SPEA2 are
typically strongly improved and can become competitive.
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Fig. 7. Difference for the quality of the final Pareto front obtained the best param-
eter set tuned for anytime behaviour and the best parameter set tuned for quality of
the final Pareto front. Each point represents an “unseen” instance from the ZDT and
the DTLZ benchmark sets.

The differences in the behaviour of the algorithms before and after tuning
may be explained by the different parameter settings. Table 2 shows the de-
fault configuration, and the parameter configurations found when tuning for
anytime behaviour and when tuning for final quality. The most notable differ-
ences with respect to the default parameters is the larger population size for the
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Fig. 8. Variation of the quality of the Pareto front approximation obtained by the
three MOEAs with default parameter sets (left plot), parameter sets tuned for anytime
behaviour (middle plot) and parameter sets tuned for final quality (right plot).
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Table 2. Best values of the tuned parameters for IBEA, NSGAII and SPEA2. Fo each
algorithm and benchmark set the tuned values for optimising the anytime behavior
(any) or the final quality (final) are given together with the default values.

IBEA NSGAII SPEA2
Para- default DTLZ ZDT DTLZ ZDT DTLZ ZDT
meter values any final any final any final any final any final any final
pc 1.0 0.824 0.844 0.935 0.915 0.928 0.755 0.398 0.843 0.172 0.190 0.823 0.790
pext
m 1.0 0.468 0.371 0.799 0.796 0.131 0.066 0.290 0.921 0.027 0.099 0.823 0.743

pint
m 0.083 0.848 0.756 0.915 0.779 0.578 0.894 0.807 0.966 0.099 0.130 0.876 0.857
N 20 23 60 32 60 39 72 46 79 101 123 49 71
DIc 15 81 71 96 69 94 99 65 31 30 87 69 37
DIm 20 18 69 0 1 15 11 1 0 20 36 0 0
l 0.05 0.136 0.065 0.317 0.148 - - - - - - - -

N 100 - - - - - - - - 184 482 209 340
k 10 - - - - - - - - 11 16 20 41

configurations optimising anytime behaviour and final quality. Interestingly, when
optimising performance for final quality, the population sizes are in all cases
larger than when optimising for anytime behaviour. This suggests to us that an
incremental population approach could probably help to improve the anytime
behaviour of these MOEAs. The effect of other parameters is more difficult to
interpret, but the lack of a clear trend suggests that simple time-varying param-
eter adaptation strategies may not be successful. A more profound analysis, for
example, by tuning the parameters for various termination criteria, could help to
reveal some exploration versus exploitation trade-offs. A more direct approach
would be to implement a large number of parameter variation strategies and find
the best strategy by means of the technique demonstrated in this paper, that is,
by automatic configuration with respect to anytime behaviour.

6 Conclusions

In this article, we have shown that the quality of the anytime behaviour of
MOEAs can be improved significantly by using the combination of Iterated
F-race [2,13] and the hypervolume quality measure. For this task, the hypervol-
ume measure is used in two places. First, to measure the quality of the Pareto-
front approximations generated by the MOEAs; second, to measure the quality
of the anytime behaviour as defined by the trade-off curve of the solution quality
over time. We have applied the resulting methodology to three different MOEAs:
IBEA, NSGA-II and SPEA2.
We have combined the above approach with an automatic configuration

method (irace) in order to automatically improve the anytime behaviour of
the MOEAs. However, the proposed method is not restricted to irace, and
other automatic configuration methods could be used for this purpose. Future
work should investigate whether some configuration methods are more suited for
this task than others.
The experimental results presented in this paper showed that a considerable

improvement of the anytime behaviour could be obtained for all three algorithms.
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Additionally, tuning for the anytime behaviour improves also (with respect to
anytime behaviour) over a version of the three algorithms that is tuned for
optimising the quality of the final Pareto front approximation. This can be seen
as a confirmation that the optimisation goal of improving anytime behaviour
actually leads to algorithms configurations that are more robust to different
termination criteria without sacrificing much of the solution quality that may be
obtained by the algorithm. Most importantly, these improvements are obtained
by an automatic method, which is saving substantial human effort.
In initial research efforts, we have considered the automatic tuning and con-

figuration of the anytime behaviour of single objective optimisation algorithms
[15, 16]. This here is the first attempt to apply the automatic configuration of
the anytime behaviour to multi-objective algorithms, especially MOEAs. There
are several directions that can be taken to extend this work. A first one is to
extend the analysis of the impact of automatic tuning to others MOEAs, such
as SMS-EMOA [1] or MOEA/D [17]. The quality of the anytime behaviour can
be tested also with others benchmark problems, with more complicated objec-
tive functions. A second direction is to consider more parameters, including also
categorical parameters such as the choice of the cross-over and the mutation op-
erators. In this paper, we only consider static parameters as done in the original
MOEAs. A promising approach when dealing with anytime optimization is to
consider parameter variation strategies, and automatically configure the param-
eters of such strategies w.r.t. anytime behaviour [16]. Moreover, we have limited
ourselves to parameters independent of problem instance features. Nevertheless,
it would be straightforward to define parameters as functions of instance fea-
tures and tune the parameters that define such functions. A more challenging
question is how to detect automatically which features should influence which
parameters. We are convinced that further work in the directions indicated here,
will lead to the design of multi-objective algorithms that are more robust with
respect to the choice of specific termination criteria and, thus, will improve the
practice of multi-objective evolutionary algorithms.
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J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS,
vol. 3242, pp. 832–842. Springer, Heidelberg (2004)

20. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evo-
lutionary algorithm for multiobjective optimization. In: Giannakoglou, K., et al.
(eds.) Evolutionary Methods for Design, Optimisation and Control, pp. 95–100.
CIMNE, Barcelona (2002)

21. Zitzler, E., Thiele, L., Deb, K.: Comparison of multiobjective evolutionary algo-
rithms: Empirical results. Evolutionary Computation 8(2), 173–195 (2000)

22. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.:
Performance assessment of multiobjective optimizers: an analysis and review. IEEE
Trans. Evol. Comput. 7(2), 117–132 (2003)



Author Index

Aguirre, Hernán 322
Akedo, Naoya 459
Albukhanajer, Wissam A. 573
Allmendinger, Richard 6
Almeida, Adiel T. de 490, 500, 787
Almeida-Filho, Adiel 787
Angilella, Silvia 475
Asafuddoula, Md 413
Avigad, Gideon 21, 246

Bandaru, Sunith 513
Bartz-Beielstein, Thomas 756
Basseur, Matthieu 185
Bickerton, Simon 615
Bonetti, Davide 685
Branke, Jürgen 2
Braun, Marlon Alexander 66, 156
Briffa, Johann A. 573
Brockhoff, Dimo 81, 383

Cary, Mark 641
Cavalcante, Cristiano A.V. 490
Chantler, Mike J. 51
Churchill, Alexander W. 600
Coello Coello, Carlos A. 215, 291
Corne, David Wolfe 51
Corrente, Salvatore 475

Daher, Suzana de França Dantas 500
Deb, Kalyanmoy 4, 307, 513
Deflorian, Michael 628
Delbem, Alexandre Cláudio Botazzo
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