
Logic-Oriented Confidentiality Policies
for Controlled Interaction Execution�

Joachim Biskup

Fakultät für Informatik, Technische Universität Dortmund, Germany
joachim.biskup@cs.tu-dortmund.de

Abstract. Controlled Interaction Execution is a specific concept of
inference control for logic-oriented information systems. Interactions
include query answering, update processing and data publishing, and
operational control is based on declarative policies. Complementing a
previous survey on this concept, in this work we treat various forms of
confidentiality policies regarding their syntax, semantics, algorithms and
pragmatics.In each case, we consider an information provider’s interest
in confidentiality as an exception from his general willingness and agree-
ment to share information with a client.

Keywords: availability, confidentiality policy, continuous confidential-
ity, controlled interaction execution, data publishing, disjunctive policy
element, epistemic potential secret, indistinguishability, inference con-
trol, inference-proof view, inference-usability confinement, information
sharing, policy adaptation, possibilistic secrecy, potential secret, query
answering, secrecy, temporary confidentiality, update processing.

1 Introduction

Inference-usability confinement is a specific kind of inference control [3, 32, 34],
solely performed by a data provider without intervening at the site of a client.
The confinement aims at customizing potentially sensitive data to be returned
to an intelligent client such that the manipulated items (1) are still informa-
tive for the recipient but (2) do not enable him to gain more information
than intended. The concept of Controlled Interaction Execution (CIE) [1, 4, 6–
9, 11, 12, 16, 23, 26–28, 30, 36, 39, 44] explores a variety of algorithmic means to
implement inference-usability confinement for logic-oriented information systems
under query answering, update processing and data publishing.

Within this concept, the intended usage of data by a client is described by
two complementary items: on the one hand, a presupposed general permission to
share information according to some application-dependent agreement; on the
other hand, specific exceptions referring to information to be kept confidential

� This work has been supported by the Deutsche Forschungsgemeinschaft (German Re-
search Council) under grant SFB 876/A5 within the framework of the Collaborative
Research Center “Providing Information by Resource-Constrained Data Analysis”.

A. Madaan, S. Kikuchi, and S. Bhalla (Eds.): DNIS 2013, LNCS 7813, pp. 1–22, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 J. Biskup

according to individual or legal requirements. These exceptions are formally
captured by a confidentiality policy:

– Syntactically, the declaration of a policy instance just specifies a set of sen-
sitive pieces of information to be protected against some client who is sus-
pected to be “too curious”.

– Semantically, however, such a declaration requires a sophisticated invariant
to be ensured over the time, for any possible sequence of interactions: as a
data provider, the underlying information system should employ a control
mechanism to confine the information content of all data returned to a client
in such a way that the client will never be able to acquire the sensitive infor-
mation – neither directly, nor by inferences based on a priori knowledge, data
returned to him, and awareness of the control mechanism. Such an invariant
may have different formalizations for different situations and, accordingly, in
each case appropriate policy semantics have to be selected.

– Algorithmically, a policy has to be stepwise enforced by some appropriate
censor as the main component of the control mechanism: at each individual
point in time and for each single interaction request, that censor has to
inspect the specific request and the current situation for compliance with
the overall goal of the policy and to generate a suitable reaction.

– Pragmatically, a security officer should follow tool-supported business rules
to determine a policy instance together with the policy semantics and an
appropriate censor for any specific application.

Complementing a previous survey on CIE [2, 5], see also Figure 1, in this report
we discuss the various forms of confidentiality policies regarding their syntax,
semantics, algorithms and pragmatics. In particular, we list and summarize fun-
damental insight gained so far and point to challenging problems. Figure 2 illus-
trates the main features by an Entity-Relationship model. As a disclaimer, our
contribution concentrates on the fundamental concepts and their formalizations
rather than on empirical studies.

 data provider client

co

nt
ro

l m
ec

ha
ni

sm
 w

ith
 c

en
so

r

 knowledge/belief

confidentiality policy

simulation of postulated
view of client
on provider‘s
knowledge/belief

(actual)
view of client
on provider‘s
knowledge/belief

.

.

.

.

 requests:

 (re)actions:

 queries
(view) updates

 belief revisions

 anwers
 notifications
 refreshments
 published data

Fig. 1. General framework of CIE

Confidentiality Policies 3

 target
 sentence

 evaluation
 extent

sensible
 for

unit of protection

ISA

ISA

potential
 secret

secrecy epistemic
potential secret ...

declared
 for

 instance of
confidentiality policy

 a priori
 knowledge

 kind of
reasoning

computational
 resources

 availability
 requirement

 anticipated knowledge/belief
 state

 uniformity
 requirement interaction

 requirement of indistinguishability/inference-proofness

 query/
 answer

 view update/
 notification

 belief revision/
 notification

 /
 refreshment

 /
 published data

enforced
 by

 control mechanism with censor

ISA

 fundamental
 approach

ISA

 history
 representation

 awareness
 assumption

refusing

 combining
refusals and lies

 lying weakening

 logfile adapted
 policy

 inference
signatures

Fig. 2. ER model of features of a CIE confidentiality policy

2 Syntax: What Could Be Kept Confidential?

The vague question “What could be kept confidential?” gets the brief general
answer “Parts of the data provider’s knowledge or belief, respectively – ”, which
could be extended by “ – as far as these parts can be expressed by means of
a vocabulary agreed by the data provider and the client”. This general answer,
however, might have many different specializations.

4 J. Biskup

2.1 Units of Self-protection

In fact, the particularity of inference-usability confinement by means of CIE
is that the control mechanism is solely located at the data provider, and the
client is not at all hindered in his activities. In particular, the client can ob-
serve the (fictitious) real world by himself, communicate with other agents, and
send any messages to the provider. Consequently, the provider is only able to
self-protect features that strictly belong to herself, namely her own knowledge
or belief, respectively, and to control her own activities, whether spontaneous
or reactive on messages received. Moreover, only those parts of the provider’s
epistemic state are meaningful units of protection that are within the scope of
the communication agreement between the provider and the client.

More precisely, we are modeling the situation sketched above as follows. The
data provider maintains a knowledge/belief base. All interactions refer to this
knowledge/belief base according to a communication agreement, which in partic-
ular describes the underlying logic with its basic vocabulary, including constant
symbols, predicate symbols and logical operators. In principle, any syntactically
admissible sentence saying “The provider knows/believes the sentence ... ” might
be a meaningful target of protection. Moreover, depending on the semantics of
the underlying logic, any evaluation results of relating such a sentence to the ac-
tual knowledge/belief of the provider might form a possible extent of protection.
Thus a unit of protection is the combination of a target with an extent. No-
tably, two syntactically different but semantically equivalent targets will lead to
equally handled protection units, and in this sense information will be protected
independently of its syntactic representation.

2.2 Epistemic Potential Secrets

This approach is formally elaborated in various ways. Most prominently, as-
suming an incomplete knowledge base under proof-theoretic semantics, a target
sentence can be evaluated to any of the three different values true, false and
undefined . For example, the value undefined for some sentence intuitively says
“The provider does not know that the sentence is true and the provider does
not know that the sentence is false”. Any nonempty subset of the possible eval-
uation values can be selected as an extent that then requires that the client is
not allowed to infer the validity of any of its elements. To achieve the intended
goals, modal logic (of knowledge/belief) is employed, and a protection unit is
represented as a so-called epistemic potential secret [25, 26, 42].

If the provider’s knowledge base is complete, an evaluation returns either true
or false and, accordingly, proof-theoretic semantics of the underlying logic can be
replaced by model-theoretic semantics. So a security officer can decide to either
protect just one value – conveniently only the value true allowing the negation
operator for a target – or both values. In the former case we speak about “po-
tential secrets”, and in the latter case about “secrecies” [1, 6, 7, 39]. If acceptable
by the application, to enable an optimized control in some work potential se-
crets have been restricted to target sentences expressing a so-called “fact” in an

Confidentiality Policies 5

ONF (BCNF + UniqueKey) schema [11, 13], or existentially quantified atomic
sentences [13–15, 17, 18, 36].

Extending CIE to an information system that is based on an advanced logic
might require us to suitably adapt the notion of a unit of protection. For example,
Wiese [44] treats possibilistic knowledge bases employing a “standard possibilis-
tic logic” and then considers necessity-valued units of the form (ϕ, α), where
ϕ is a target sentence and α ∈ (0..1] a necessity weight. In another example,
Biskup/Tadros [23] treat defeasible belief bases employing “ordinal conditional
functions”, and a further extension of this work could consider ranks of sentences.

Modal logics and other advanced logics are often constructed by only extend-
ing an underlying propositional logic, though many applications would suggest
to extend a fragment of first-order logic. Unfortunately, however, in many cases
handling an underlying first-order logic would lead to considerable logic-technical
difficulties; as an alternative, under some conditions an application formalized in
a suitable fragment of first-order logic could be first propositionalized and then
handled by an extension of propositional logic, see [24] for an example.

2.3 Decidability and Finiteness

In an algorithmic treatment, in general each individual unit of protection will
be inspected whether or not it could be violated by a message sent to the client.
There are two basic problems: decidability of violation regarding one unit, and
finite representation of infinitely many units and then overall termination of
control. The former problem will be considered in Section 4. The simplest so-
lution to the latter problem is just to require that the policy instance contains
only finitely many units of protection.

However, an application might require us to specify an infinite set.
For example, dealing with a relational database having a relation scheme
Patient(Name, Disease), we might want to protect targets of the kind
that some patient Bob suffers from whatever disease. Supposing a vo-
cabulary with an unlimited type extension {d1, d2, d3, d4, . . .} for the at-
tribute Disease, we would then get the following infinite set of targets:
{Patient(Bob, d1), Patient(Bob, d2), Patient(Bob, d3), Patient(Bob, d4), . . . }.

Essentially, there are two approaches to come up with a finite representation.
First, we can always slightly strengthen the policy by replacing such an infinite
homogeneous enumeration by a single existentially quantified sentence, which
in our example is (∃x)Patient(Bob, x): if the confidentiality of this sentence is
successfully enforced, then all sentences in the infinite enumeration are kept con-
fidential as well. Second, we can abbreviate an infinite homogeneous enumeration
by using an open formula with free variables that range over the pertinent type
extensions, in our example resulting in the open formula Patient(Bob, x). We
then have to assure that the inspection procedure always terminates after check-
ing a finite subset of the range. Such an assurance has been proved explicitly for
the optimized censors presented in [14, 18].

6 J. Biskup

3 Semantics: What Does Confidentiality Mean?

Having discussed what could be kept confidential, a more challenging question
arises: “What does confidentiality of a unit of protection actually mean?” A brief
answer is “The client cannot exclude a (correct) evaluation of the target outside
the extent”.

Slightly expanded, this answer requires the following: “The client will never be
enabled to exclude the possibility that in the provider’s knowledge/belief the tar-
get of the unit is (correctly) evaluated differently from each value in the extent of
the unit”. Speaking in terms of a belief of the client: “The client will never believe
that the provider’s (correct) knowledge/belief regarding the target is within the
extent”. In yet another words: “The client cannot distinguish the actual (correct)
situation of the data provider from a fictitious alternative situation in which
the target would be evaluated outside the extent”. These already complicated
answers are still in need to be complemented by further specifications:

– the postulated a priori knowledge and computational capabilities that the
client could employ for attempting to violate confidentiality;

– the anticipated interactions between the data provider and the client, to-
gether with the corresponding messages sent and received;

– the states in time of the provider’s knowledge/belief that are considered to
be in need of protection;

– the uniformity of protection, i.e., whether all units in the policy are protected
together or, alternatively, each unit in the policy is treated independently of
the others;

– the requirement on availability to avoid a trivial understanding of confiden-
tiality that would essentially deny to communicate data to the client at all.

3.1 Indistinguishability – From the Client’s Point of View

The answers sketched above to the question about semantics are specializations
of a very general approach: the client should obtain an inference-proof view on
the actual situation in which the provider’s knowledge/belief is hidden from the
client unless parts of the knowledge/belief have been revealed by interactions
between the provider and the client. Basically, the various specializations result
from different notions of a “situation”. The general approach can be outlined as
follows:

For all “situations” held to be possible by the client,
considering a unit of protection in the policy instance,
there exists an alternative possible “situation” such that
– from the point of view of the client –
(1) the actual and the alternative situation are indistinguishable,
in particular all (re)actions of the provider visible to that client are the same,
(2) but in the alternative situation
the evaluation of the target of the unit is not in the extent of the unit.

Confidentiality Policies 7

As exemplarily proved in [20], such a notion of inference-proofness is in the spirit
of extensive related research on “possibilistic secrecy”, as concisely summarized
in [34].

3.2 A Priori Knowledge and Capabilities – As Postulated

Clearly, the notion of a “situation” also includes internal properties and behav-
iors of the client, in particular his a priori knowledge of the provider’s knowl-
edge/belief and his kind of reasoning about the provider’s knowledge/belief and
the corresponding computational capabilities. Though the provider has agreed
to cooperate with the client in principle, the provider nevertheless sees the client
as a potential attacker of her confidentiality interests. Seen as an attacker, the
client presumably will not communicate his own internal properties and behav-
iors to the provider, and thus the provider has to postulate the client’s internal
properties and behaviors.

Then the effectiveness of the notion of inference-proofness as given above cru-
cially depends on a fundamental simulation assumption: The provider postulates
the client’s actual internal properties and behaviors correctly, or at least approx-
imates them appropriately. Consequently, in charge of constructing the control
mechanism for the provider, a security engineer has to design and implement a
suitable simulation of the client at the site of the provider, and this simulation
has to be effective without any assistance of the client.

Regarding the a priori knowledge of the client, the provider has to make a
“good guess”. Regarding the kind of reasoning of the client, the provider has to
postulate the client’s perspective of how the provider forms her hidden knowl-
edge/belief. So, in principle, we would have to consider a mutual recursive model:
First, of course, the provider is fully aware of how she herself forms her knowl-
edge/belief; the client has his private perspective on this formation; in turn the
provider has to simulate how the client perceives the formation of the provider’s
knowledge/belief; and the client might argue about this simulation; In prac-
tice, however, we somehow have to terminate the recursion smoothly: this is
exactly the purpose of the simulation assumption.

In most of our work, for the sake of simplicity, the provider and the client
are supposed to employ the same classical logic, whether propositional logic, a
feasible fragment of first-order logic or, more generically, a logic just described
by some natural properties. In these cases, the simulation assumption holds by
default. In our recent work on multiagent systems [22, 23], however, the provider
is modeled to employ some fixed reasoning with defeasible conclusions under
belief revisions, and the client is postulated to use a skeptical entailment operator
based on a specific class of defeasible conclusions: the provider then simulates
exactly this usage. In a first version [23], that class is semantically specified by
considering all ordinal conditional functions; in a forthcoming version [22], that
class can be selected more generally by an axiomatization satisfying dedicated
“allowance properties”.

Finally, not only the client’s kind of reasoning is important but his actual
capabilities in terms of computational resources as well. To be on the safe side,

8 J. Biskup

as usual in security engineering, so far we always postulate the client to be com-
putationally omnipotent, i.e., not restricted to a feasible class of algorithms.
Clearly, more advanced considerations taking care of the achievements of com-
plexity theory would be highly worthwhile.

3.3 Anticipated Interactions

The notion of a “situation” also refers to sequences of interactions between the
data provider and the client, actually executed in the past and potentially per-
formed in the future. In our work, interactions include query answering, update
processing, belief revision and data publishing.

A client may send a message containing a query request to the provider, who
will return a message with an answer. The query might be closed, essentially
asking for the evaluation of a communicated query sentence by the provider’s
knowledge/belief. A query might also be open, essentially asking for the eval-
uations of all sentences that result from some substitution of free variables by
constant symbols in a communicated query formula. Clearly, closed queries can
be seen as a special case of open queries. However, there is a crucial feature
of open queries that does not apply for closed queries: given an infinite set of
constant symbols, infinitely many sentences arise from considering all possible
substitutions, and so we need assumptions and conventions to guarantee that
answers are finitely representable.

Employing a well-known approach for relational databases, we treat open
queries based on the following assumptions and conventions [9]: (1) The finitely
many atoms represented by the stored relation instances are evaluated positively
(regarded as true). (2) Seeing the database as providing complete information,
by means of a closed-world assumption all remaining atoms are assumed to
be evaluated negatively (regarded as false). (3) Each query sentence must be
domain-independent and thus safe, to guarantee that only finitely many substi-
tuted sentences are evaluated positively. (4) All remaining substituted sentences
are assumed to be evaluated negatively. (5) The infinite set of remaining sen-
tences is finitely represented by an appropriate completeness sentence that can
be expressed in first-order logic. Most crucially, in general the control mechanism
necessarily has to inspect not only the positive part of an answer but also the
pertinent completeness sentence. A first step towards dealing with open queries
to an incomplete information system applies a suitable propositionalization of
the first-order constructs under the restrictive assumption of having only finitely
many constant symbols [24].

Regarding updates [12, 21], a client might send a view update request on which
the data provider reacts by returning a notification about the actions internally
taken to reflect the update in her knowledge/belief. If the knowledge/belief is ac-
tually modified, other clients – if there are any – should get informed by suitable
refreshments of previously released data. Furthermore, the data provider herself
can initiate an update of her knowledge/belief, and then send refreshments to
the clients. Basically, there are two kinds of threats regarding confidentiality.

Confidentiality Policies 9

First, a notification about a successful or rejected update contains answers
to implicit queries, namely whether or not the new information was already
present before and whether or not the semantic constraints are satisfied after a
requested modification. Clearly, these answers have to be controlled similarly as
answers to explicit queries to prevent a violation of confidentiality. Moreover, it
makes a difference whether not only single updates but also whole transactions
are handled: in the latter case, new and already available information could
be mixed, and semantic constraints are enforced by finally either aborting or
committing all steps, while in between some constraints might temporarily not
be satisfied. Second, in principle the client could gain hidden information by
comparing and relating refreshed information with aged information, which again
has to be controlled.

In advanced cases, when the provider forms her knowledge/belief by means of
some defeasible and thus non-monotonic reasoning, the data provider might also
accept requests of belief revision [22, 23], and then notifies the client whether or
not the communicated revision is in conflict with her unchangeable belief and
thus must be rejected (and in current work we also treat conflict resolution and
corresponding notifications about how accepted revisions are performed).

An interaction might also occur in a degenerated form, namely as data pub-
lishing autonomously initiated by the data provider [16, 27, 28]. Afterwards, a
client can use the published data at his own discretion. Basically, data publish-
ing can be seen as responding to a query about the pertinent part of the data.
So far, however, we have studied only the case that just this single query is
treated, leaving iterated releases and their potential threats for future work, see,
e.g., [41, 45, 46].

More generally, in principle it would be worthwhile to consider arbitrarily
mixed sequences formed by all kinds of interactions. Extending the remark above,
however, so far we only treated some special cases, and each case results in a
different notion of possible “situations”.

3.4 Knowledge/Belief States under Protection

An important aspect of a “situation” is the knowledge/belief of the data provider.
If no updates occur and only queries are considered, the initial knowledge/belief
state remains invariant over the time. Accordingly, this fixed state is referred to
in the definition of indistinguishability given in Subsection 3.1. However, if there
are updates and revisions, then a “situation” comprises a sequence of knowl-
edge/belief states, started with the initial knowledge/belief state, exhibiting
the stepwise produced intermediate states, and ending with the current knowl-
edge/belief. In that case, we distinguish when the evaluation of a target of a unit
of protection is required to be outside the extent: either temporarily only in the
current (last) state or continuously in all states of the sequence [12, 21].

10 J. Biskup

3.5 Uniformity of Indistinguishability

The indistinguishability property outlined in Subsection 3.1 somehow vaguely
refers to “considering a unit of protection in the policy instance”. Clearly, it
makes a great difference how this wording is formalized precisely: either “for
each unit of protection there exists an alternative situation (possibly different
for each unit) with the wanted properties regarding that particular unit” or
“there exists an alternative situation with the wanted properties uniformly for
all units of protection”.

The semantic difference has also been captured in a syntactic way: either
the policy instance contains several units with unrelated targets or, w.l.o.g., the
policy instance consists of just one disjunctive target formed from all sentences
identified to be in need of protection. In fact, all algorithms following the lying
approach as discussed in Section 4.1 need to protect the disjunction of all targets
anyway, see, e.g., [7, 9, 26–28, 30].

3.6 Availability Requirements

In general, we have to balance interests in confidentiality on the one hand with
legitimate interests in availability of information needed on the other hand. While
an interest in confidentiality is basically represented by the data provider, an
interest in availability is mainly but not exclusively held by the client. Requests
for availability can be successively expressed in at least three layers:

– Explicitly and extensionally, by listing a set of sentences that definitely
should never be distorted, see, e.g., [10, 26–28, 40, 42, 43]: we then have
to ensure that this listing is not in conflict with the instance of the confiden-
tiality policy, either by removing or weakening at least one of the sentences
being in conflict, or by ranking conflicting requirements.

– Implicitly and intensionally, by applying some kind of meta-rule that the
data provider may distort data to be communicated to the client only if this
is strictly necessary for preserving confidentiality within the given setting, as
followed in all work surveyed in this report: mostly, the meaning of “strictly
necessary” is captured by an heuristic that otherwise some straightforward
violation of confidentiality could be exhibited.

– Measured, by requiring a minimum distance between functionally correctly
executed interactions and controlled interactions, see [27, 28, 43]: we then
have to find a convincing notion of distance and will face additional chal-
lenges to master the resulting optimization problem.

4 Algorithms: How to Decide on a Single Request?

Once both a policy instance – declaring what should be kept confidential – and
the wanted policy semantics – describing what the client should invariantly not
believe now and in future – have been specified, for each single interaction the
data provider has to decide the question “What should be said to the client

Confidentiality Policies 11

if the correct reaction was harmful?”. There are two fundamental approaches
which can also be combined: “Refuse to show a meaningful reaction!” or “Tell a
plausible lie!”. Furthermore, a more informative variant of the refusal approach
suggests “Suitably weaken the reaction!”.

More generally, to comply with the semantics of the policy instance, the data
provider needs a control mechanism that stepwise censors each individual re-
quest issued by the client and generates an immediate reaction returned to him.
The main challenge is to determine individual reactions that taken together do
not violate the policy, and will not contribute to do so in future! Clearly, the
construction of an appropriate censor will strongly depend on the policy seman-
tics including the accompanying specifications chosen for an application. Besides
the intended semantics the following issues are most important:

– The selection of a fundamental approach has a crucial impact: refusing re-
quires the data provider to carefully consider options of the client to profit
from meta-inferences; lying needs care to avoid running into a hopeless state
of affairs in the future; combining refusals and lies might be helpful to avoid
both meta-inferences and hopeless situations; weakening attempts to only
return harmless information that is true but, as far as possible, more expres-
sive than just a refusal notification.

– Though we always postulate that the client is fully aware of both the overall
approach of inference-usability confinement and the specific policy semantics
in operation, we might distinguish whether or not the client is assumed to
be aware of the actual policy instance.

– Facing the worst case that the client might remember the complete history
of all previous interactions, the data provider has to represent the history,
too, whether directly by keeping a logfile or indirectly by adapting the policy
instance or by employing some mixed form.

– There might be options to select optimized censors for different classes of
policy instances. In this case, we could take advantage of relating the static
expression complexity of a policy instance and possibly further items to the
dynamic runtime complexity of a censor.

4.1 Refusing, Lying, Combining Refusals and Lies, and Weakening

The refusal approach appears to be a most natural way to prevent a violation
of confidentiality by an interaction initiated by the client: the data provider just
denies to return a meaningful reaction to the client but instead notifies the client
about the detection of a potential threat [1, 4, 6, 7, 9, 11, 23, 26, 36, 39]. However,
to avoid enabling the client to perform meta-inferences based on the refusal
notification, the provider has to employ so-called additional refusals in cases
that seem to be non-critical at first glance. In a nutshell, from the point of view
of the client, a refusal should always have an explanation in terms of a “harmless
situation” that is indistinguishable from a potential “harmful situation”.

The lying approach could be seen controversial by ethical reasons or practi-
cal interests in availability: whether interactively or by own initiative, the data

12 J. Biskup

provider delivers data that might not faithfully reflect the evaluation(s) in her
actual knowledge/belief state(s), clearly without revealing an actual deviation
from the correct information [6, 7, 9, 12, 26–28, 30, 44]. However, in general the
data provider has to treat more information as sensitive than originally seen to
be units of protection, in order to avoid running into a hopeless state of affairs
in the future. Such a bad event would arise if the client has acquired knowl-
edge about a positive evaluation of a disjunction of target sentences all of which
are protected; the client could then query all theses sentences, would get lies
returned and could then detect an inconsistency in the provider’s reactions.

The combined approach aims at avoiding the technical shortcomings of uni-
form refusals and uniform lies, namely blocking of meta-inferences and protecting
disjunctions of sensitive data, respectively, [8, 9, 26]. In an interaction with the
client, if the correct reaction is harmful, the data provider first checks whether a
lie would be harmless and actually returns it only in that case; otherwise, if both
correct and lied information would lead to a violation of confidentiality, a refusal
notification is returned. In this way, meta-inferences are avoided, since the client
cannot discriminate the correct case and the lied case, and disjunctions need no
special consideration, since lies are explicitly checked.

Instead of just refusing, equivalently only returning a tautology, the weaken-
ing approach aims at returning only true information – in particular to avoid
the ethical concerns and availability problems of lies – but as much as possible
without violating confidentiality [14, 16, 19]. Accordingly, the provider gener-
ates return data such that the corresponding information can be seen as an
entailment of the correct information, in an extreme case just a tautology as a
trivial entailment. This approach has only preliminarily been explored for CIE
and will be inspected more closely in forthcoming work. A crucial problem is the
client’s kind of awareness of weakenings, and his related options to profit from
meta-inferences.

For example, originally designed as a kind of refusal, the treatment of open
queries in relational databases [14] is based on switching from closed world evalu-
ations to open world evaluations. Then a missing sentence in the answer returned
to the client has the following weakened meaning: either the provider’s knowl-
edge/belief evaluates the sentence to false or the provider’s control mechanism
has removed it for the sake of confidentiality. This two-sided disjunction can be
seen as a weakening of the first side.

For another example, treating XML documents as incomplete data (in an
open world), inference-proof publishing of XML documents removes directly or
indirectly sensitive nodes from an XML tree but then needs to modify the un-
derlying DTD before showing it to the client [16]. Here, weakening occurs in two
forms: nodes not shown to the client may be “either not present or discarded”,
and the new DTD basically expresses less requirements than the original DTD.

Fragmentations of relational data into a projection visible to a client and a
projection kept hidden by the provider have been shown to be inference-proof in
the sense of our notion of indistinguishability under some reasonable but restric-
tive assumptions [19]. Here, a (hidden) value of an attribute not shown in the

Confidentiality Policies 13

visible projection can be interpreted as being replaced by its type as declared in
the schema. And the type of a value can be seen as a weakening of that value,
expressible again as a disjunction or by means of existential quantification, de-
pending on the cardinality of the type extension. In ongoing work, we are further
exploring weakenings for CIE by means of disjunctions inspired by approaches
proposed for achieving k-anonymity and l-diversity of published relational data,
see, e.g., [31, 33, 37]. Here a “generalized value” can also be seen as a disjunction
of the original values that contribute to the generalization.

4.2 Awareness of Policy Instance

In most cases, we follow the conservative assumption that the policy instance is
known by the client, i.e., the client is aware about the dedicated sentences to be
kept secret to him.

A more relaxed assumption is that the policy instance is unknown to the
client [1, 7, 8, 14, 39, 42], such that the client’s uncertainty about the provider’s
actual knowledge/belief also extends to the policy instance. Accordingly, in rea-
soning about “situations”, the client has to consider more possibilities. The in-
creased variety then offers additional options for the control mechanism to hide
the secret part of the actual situation. In fact, under the assumption of an
unknown policy instance, the necessary control tends to be essentially less re-
strictive. For example, for a complete information system and potential secrets
as units of protection, the control basically has to consider only those parts of
a policy instance that are true in the provider’s knowledge/belief, whereas the
remaining false parts can be neglected. Moreover, the optimized censor for open
queries presented in [14] would fail to preserve confidentiality for a known policy
instance in some cases.

4.3 Representing the History

A straightforward solution to the data provider’s task of representing the history
of preceding interactions with a client is keeping a logfile of all messages and
a repository containing the time-stamped sequence of knowledge/belief states.
Then, in principle, the provider could always reconstruct all her observations,
simulations and actions over the time. Often, more efficient solutions can be
designed.

For example, if only queries about complete information can occur [7] it suf-
fices that the provider retains only the sentences returned to the client as an-
swers. These sentences together with the sentences describing the postulated a
priori knowledge of the client then appropriately simulate the client’s view on
the provider’s knowledge/belief. Moreover, the set of all these sentences might
contain redundancies which can be removed. In particular, since tautologies are
redundant, there is no need to retain refusal notifications. Notably, however,
answers to queries about possibly incomplete information have to be converted
into sentences in modal logic of knowledge [26].

14 J. Biskup

If updates are also anticipated and therefore refreshments have to be sent to
clients [12], it does not suffice to store a non-redundant set of sentences that
is equivalent to the set of sentences returned as answers. Rather we need to
remember the order in time of their disclosure to the client to generate inference-
proof refreshments, since refreshments have to be produced by re-evaluating the
corresponding sentences in the order of their original processing. Moreover, if the
client himself may request view updates, the last point in time of processing such
a request defines a special event, which is treated similarly as an initialization.

Besides explicitly logging all messages or at least the modal sentences repre-
senting the provider’s reactions, the provider can also treat the history in some
kind of a preprocessed form. Roughly outlined, inspecting a possible reaction,
the provider’s censor has to relate the following two items: the simulated, dynam-
ically evolving view of the client on her knowledge/belief tentatively augmented
with sentences representing the reaction on the one hand, and the units of protec-
tion declared in the instance of the confidentiality policy beforehand or suitably
derived sentences on the other hand. The pertinent relationship is given by an
entailment operator that is appropriate for the underlying logic. Accordingly, a
main task of the censor is algorithmic theorem proving for that logic.

More precisely, the censor has to find formal proofs of harmful entailments,
pertinent to the selected fundamental approach and further parameters. Sen-
tences in the simulated view of the client are treated as assumptions of an en-
tailment, and a sentence under protection as a conclusion. If such a formal proof
can be successfully completed, indicating that the entailment actually holds, then
the inspected reaction is forbidden to be shown to the client. Otherwise, if all
attempts to find a proof of a harmful entailment fail, the reaction can be shown
to the client safely and the simulated view could be incremented accordingly.

However, following an alternative way referred to as policy adaptation [4], the
provider might aim at profiting from previous unsuccessful proof attempts: the
missing parts of an attempted but failed proof are seen as indicating proof obli-
gations still to be inspected for future interactions. Under some assumptions,
the censor might gather all relevant proof obligations and suitably convert them
into an adapted policy instance and then discard the sentences used as assump-
tions. More generally, instead of simply employing a logfile, a history could be
represented by at least two dynamically updated components that suitably com-
plement each other: (1) a logfile containing sentences of the simulated view of
the client as far as they are still needed in future for the censor’s inspections and
(2) an adapted instance of the confidentiality policy representing the currently
postulated proof obligations of the client.

In the straightforward solution, the logfile is always incremented by all sen-
tences returned to the client, and the policy instance remains fixed; for the special
case investigated in [4], the logfile is not needed any more. In another special case,
controlling queries to relational data constrained by template dependencies [15],
a mixed approach is followed: in a static preprocessing phase all possible formal
proofs of harmful entailments are generated, and subsequently, in the dynamic
control phase, these precomputed proofs are employed like intrusion signatures,

Confidentiality Policies 15

stepwise marking the actual progress the client could achieve for these proofs based
on the sentences returned to him.

Clearly, for the sake of high efficiency, we would like to get rid of theorem
proving at all: neither keeping a logfile, nor adapting the policy instance, only
comparing an inspected sentence with sentences specified in units of protection
by means of simple string operations, preferably even expressible in standard
SQL in the case of a relational database.

4.4 Optimized Censors

The efficiency goal sketched above can actually be achieved for some restrictive
cases of relational data. Our considerations focus on the refusal approach, as-
suming that the client is aware of the policy instance. Basically, we explore four
cases, where the first case is the standard one without any optimization. In all
cases, we have to find a sufficient and “reasonably necessary” control condition.

Case 1. As long as decidability is achieved, any a priori knowledge, policy in-
stance and closed (yes/no-)queries (of the relational calculus) are admitted (also
extended to safe open queries with closed-world semantics). While maintaining
and employing a logfile that represents the a priori knowledge and the answers to
previous queries, we have to ensure that adding neither the correct answer to the
current query nor the negation of the correct answer will be harmful; additional
refusals for harmful negations of correct answers guarantee that an observed
refusal notification cannot be traced back to its actual cause by exploiting the
system awareness [6, 9].

Case 2. The a priori knowledge may only comprise a schema declaration with
functional dependencies that lead to Object normal form, i.e., Boyce-Codd nor-
mal form with a unique minimal key. Confidentiality policies are restricted to
select-project sentences – having an atomic body with constant symbols (for
selection) and existentially quantified variables (for projection) – of a special
kind referring to “facts”, and queries are restricted to arbitrary select-project
sentences. Without maintaining a logfile, it suffices to ensure that the query
sentence does not “cover” any policy element [11].

Case 3. The a priori knowledge is restricted to only comprise a schema declara-
tion with functional dependencies (without further restrictions). Policy instances
are restricted to (arbitrary) select-project sentences, whereas queries must be
closed select-queries – being an atomic formula with constant symbols but with-
out existentially quantified variables. Without maintaining a logfile, it suffices
to ensure that the query sentence does not “cover” any policy element [18].

Case 4. The a priori knowledge is restricted to only comprise a schema dec-
laration with functional dependencies and full join dependencies (without any
further restrictions). Confidentiality policies and queries are restricted to (ar-
bitrary) select-project sentences. We have to ensure two conditions: (1) The
query sentence does not “cover” any policy element. (2) Previous positive an-
swers together with a positive answer to the current query do not “instantiate”
any template dependency that is both implied by the schema dependencies and
“covering” an element of the confidentiality policy [14, 15].

16 J. Biskup

5 Pragmatics: How to Fit an Application?

Being well-trained in the variety of options for policy instances, policy semantics
and algorithmic censors and charged with the responsibility for an application,
a security officer still faces the task “How to fit the application most appropri-
ately?”. Our general advice is twofold: “Follow tool-supported business rules, and
rely on automatic optimizations”. Clearly, suitable tools and optimizations have
to be constructed and included in the overall control mechanism beforehand.

5.1 Tools for Policy Administration

In an ongoing project we are implementing a prototype for CIE, based on the un-
derlying Oracle database management system and the theorem prover Prover9,
see [5]. Basically, the prototype can be used in two modes: in the administration
mode, a security officer can register a user as a client, in particular declaring all
parameters for the pertinent confidentiality requirements imposed on the user;
in the user mode, the interactions with each registered client are automatically
controlled according to the security officer’s declarations.

We are currently designing comprehensive tools for assisting the security offi-
cer, and integrating them into the administration mode of the prototype. Figure 3
outlines the overall workflow of these tools. The figure mainly shows the config-
uration activities of the security officer as a human individual followed by the
computations of the data provider’s server which finally result in various items
maintained by the database. The security officer bases his work on the accom-
plishments of the database administrator who declares the application schema
including the semantic constraints and creates the initial instance of the data
provider’s knowledge/belief.

The security officer starts his own activities by letting the server create a
database for the items needed for the control. Additionally, to prepare for open
queries under potential lies, the security officer may specify dictionaries for “con-
vincingly inventing” constant symbols that are not occurring in the actual in-
stance, see [9, 28] for further details. Then the security officer possibly itera-
tively performs four subactivities: setting up published or common knowledge
to be included into the a priori knowledge of every client; defining generic user
roles for facilitating the administration of many users; modeling a particular user
including his postulated a priori knowledge beyond the published and common
knowledge and imposing a dedicated policy instance on him; tentatively selecting
a censor for later on controlling the interactions of a particular user.

All these subactivities are coordinated by the server, often in an interactive
way asking the security officer for approvals or alternatives. In particular, the
server automatically checks whether the gathered a priori knowledge and the pol-
icy instance are in conflict, and whether all further preconditions of a considered
censor are satisfied.

Finally, for each particular user, the security officer can commit all his deci-
sions and thereby transfer the actual control activities to the server, which then
will communicate with the respective client in user mode.

Confidentiality Policies 17

Fig. 3. Workflow for configuration of the CIE prototype including policy administration

18 J. Biskup

5.2 Automatic Optimization

In general, the security officer will select and finally confirm all parameters per-
tinent for a client, and then the control mechanism will automatically inspect
and confine all interactions with that client accordingly. Nevertheless, over the
time it might turn out that the declarations are not fully adequate and could
be improved in some way, in particular a more suitable censor could be chosen.
We are currently designing a semi-automatic optimization component, and in-
tegrating it into the user mode of the prototype, foreseeing interventions of the
security officer as far as needed. Figure 4 outlines the overall workflow of the
optimization component.

Fig. 4. Workflow of an automaton for optimized censor selection

6 Conclusions and Challenges

In our work on CIE we favor a control mechanism that is based on a logic-
oriented confidentiality policy: essentially, a security officer specifies what in-
formation should be kept confidential to a particular client, and then the data
provider’s control mechanism automatically enforces the declaration over the
time when interacting with that client and communicating data to him. As a
first insight conveyed by this report, we emphasize that the security officer has
to carefully consider many subtle details and further aspects beyond just the

Confidentiality Policies 19

“what”: semantics and algorithms also need to be configured suitably. Accord-
ingly, effective administration tools appear to be mandatory. So far, we only
studied a relatively small set of parameter selections taken from a still widely
unexplored and huge range of options.

The overall approach of CIE aims at achieving confidentiality regarding a
client solely by confining the information content of messages communicated by
the data provider to that client, who is supposed to be an intelligent agent. As
a second insight, we emphasize that the provider’s control mechanism has to
appropriately model and simulate that client. Clearly, modeling and simulation
are based on postulates about the client, who is suspected to (maliciously) exploit
principally permitted information sharing for goals not covered by an agreement
with the data provider. Thus the client cannot be expected to be cooperative
in finding a simulation that matches the potential or even the actual behavior.
Accordingly, achieving confidentiality crucially depends on the quality of those
necessarily uncertain postulates.

Moreover, since in the CIE approach the data provider will not at all intervene
at the site of the client, the provider can only protect her own knowledge/belief
about the “mini-world” of an application. In contrast, she cannot prevent the
client from learning from other sources or even colluding with other agents.
Accordingly, all such possibilities have to be captured by good postulates, for
example regarding other sources by declaring specific a priori knowledge, and
regarding collusion by treating a suspicious group of clients like a single client.

Finally, even if the challenges mentioned above can be mastered, computa-
tional complexity and in particular scalability remain urgent problems. Indeed,
as a third insight, we emphasize that the unavoidable subtask of simulating an
intelligent agent in general requires us to employ sophisticated knowledge engi-
neering including costly theorem proving.

Obviously, inference control – and CIE in particular – are dealing with only
one aspect of a more general security problem, namely to bind the sharing of a
specific piece of information to a dedicated purpose determined by the subject
of the information. Accordingly, many further control mechanisms together with
pertinent policies have been designed. We only exemplarily mention two lines
of research. Based on a commonly accepted infrastructure, e.g., as supplied by
trusted computing, obligation and usage control employs a tamper-proof security
component at each site to block unwanted activities on data tagged with a policy
statement, see, e.g., [35, 38]. Taking advantage of the large amount of data and
the corresponding information available in the Semantic Web, reactive policies
allow to guide and control the behavior of an agent in the web, see, e.g., [29].

Acknowledgments. I would like to sincerely thank Marcel Preuß and Cornelia
Tadros for continuous and fruitful cooperation on many aspects of CIE. More-
over, I am indebted to the current members of the “Task Force CIE” formed
by the master students Martin Bring, Katharina Diekmann, Dirk Schalge, and
Jaouad Zarouali: they are successfully elaborating and implementing the ideas
on tools and optimization to be included into a CIE prototype.

20 J. Biskup

References

1. Biskup, J.: For unknown secrecies refusal is better than lying. Data Knowl.
Eng. 33(1), 1–23 (2000)

2. Biskup, J.: Usability Confinement of Server Reactions: Maintaining Inference-Proof
Client Views by Controlled Interaction Execution. In: Kikuchi, S., Sachdeva, S.,
Bhalla, S. (eds.) DNIS 2010. LNCS, vol. 5999, pp. 80–106. Springer, Heidelberg
(2010)

3. Biskup, J.: Inference control. In: van Tilborg, H.C.A., Jajodia, S. (eds.) Encyclo-
pedia of Cryptography and Security, 2nd edn., pp. 600–605. Springer, Heidelberg
(2011)

4. Biskup, J.: Dynamic policy adaption for inference control of queries to a proposi-
tional information system. Journal of Computer Security 20, 509–546 (2012)

5. Biskup, J.: Inference-usability confinement by maintaining inference-proof views
of an information system. International Journal of Computational Science and
Engineering 7(1), 17–37 (2012)

6. Biskup, J., Bonatti, P.A.: Lying versus refusal for known potential secrets. Data
Knowl. Eng. 38(2), 199–222 (2001)

7. Biskup, J., Bonatti, P.A.: Controlled query evaluation for enforcing confidentiality
in complete information systems. Int. J. Inf. Sec. 3(1), 14–27 (2004)

8. Biskup, J., Bonatti, P.A.: Controlled query evaluation for known policies by com-
bining lying and refusal. Ann. Math. Artif. Intell. 40(1-2), 37–62 (2004)

9. Biskup, J., Bonatti, P.A.: Controlled query evaluation with open queries for a
decidable relational submodel. Ann. Math. Artif. Intell. 50(1-2), 39–77 (2007)

10. Biskup, J., Burgard, D.M., Weibert, T., Wiese, L.: Inference Control in Logic
Databases as a Constraint Satisfaction Problem. In: McDaniel, P., Gupta, S.K.
(eds.) ICISS 2007. LNCS, vol. 4812, pp. 128–142. Springer, Heidelberg (2007)

11. Biskup, J., Embley, D.W., Lochner, J.-H.: Reducing inference control to access
control for normalized database schemas. Inf. Process. Lett. 106(1), 8–12 (2008)

12. Biskup, J., Gogolin, C., Seiler, J., Weibert, T.: Inference-proof view update trans-
actions with forwarded refreshments. Journal of Computer Security 19, 487–529
(2011)

13. Biskup, J., Hartmann, S., Link, S., Lochner, J.-H.: Chasing after secrets in rela-
tional databases. In: Foundations of Data Management, AMW 2010. CEUR Work-
shop Proceedings, vol. 619, pp. 13.1–13.12 (2010)

14. Biskup, J., Hartmann, S., Link, S., Lochner, J.-H.: Efficient Inference Control for
Open Relational Queries. In: Foresti, S., Jajodia, S. (eds.) Data and Applications
Security and Privacy XXIV. LNCS, vol. 6166, pp. 162–176. Springer, Heidelberg
(2010)

15. Biskup, J., Hartmann, S., Link, S., Lochner, J.-H., Schlotmann, T.: Signature-
Based Inference-Usability Confinement for Relational Databases under Functional
and Join Dependencies. In: Cuppens-Boulahia, N., Cuppens, F., Garcia-Alfaro, J.
(eds.) DBSec 2012. LNCS, vol. 7371, pp. 56–73. Springer, Heidelberg (2012)

16. Biskup, J., Li, L.: On inference-proof view processing of XML documents.
IEEE Transactions on Dependable and Secure Computing, 1–20 (2012),
doi:10.1109/TDSC.2012.86

17. Biskup, J., Lochner, J.-H.: Enforcing Confidentiality in Relational Databases by
Reducing Inference Control to Access Control. In: Garay, J.A., Lenstra, A.K.,
Mambo, M., Peralta, R. (eds.) ISC 2007. LNCS, vol. 4779, pp. 407–422. Springer,
Heidelberg (2007)

Confidentiality Policies 21

18. Biskup, J., Lochner, J.-H., Sonntag, S.: Optimization of the Controlled Evaluation
of Closed Relational Queries. In: Gritzalis, D., Lopez, J. (eds.) SEC 2009. IFIP
AICT, vol. 297, pp. 214–225. Springer, Heidelberg (2009)

19. Biskup, J., Preuß, M., Wiese, L.: On the Inference-Proofness of Database Fragmen-
tation Satisfying Confidentiality Constraints. In: Lai, X., Zhou, J., Li, H. (eds.) ISC
2011. LNCS, vol. 7001, pp. 246–261. Springer, Heidelberg (2011)

20. Biskup, J., Tadros, C.: Policy-based secrecy in the Runs & Systems Framework
and controlled query evaluation. In: International Workshop on Security (Short
Papers), IWSEC 2010, pp. 60–77. Information Processing Society of Japan (2010)

21. Biskup, J., Tadros, C.: Inference-Proof View Update Transactions with Minimal
Refusals. In: Garcia-Alfaro, J., Navarro-Arribas, G., Cuppens-Boulahia, N., de
Capitani di Vimercati, S. (eds.) DPM 2011 and SETOP 2011. LNCS, vol. 7122,
pp. 104–121. Springer, Heidelberg (2012)

22. Biskup, J., Tadros, C.: Preserving confidentiality while reacting on iterated queries
and belief revisions (2012) (submitted)

23. Biskup, J., Tadros, C.: Revising Belief without Revealing Secrets. In: Lukasiewicz,
T., Sali, A. (eds.) FoIKS 2012. LNCS, vol. 7153, pp. 51–70. Springer, Heidelberg
(2012)

24. Biskup, J., Tadros, C., Wiese, L.: Towards Controlled Query Evaluation for In-
complete First-Order Databases. In: Link, S., Prade, H. (eds.) FoIKS 2010. LNCS,
vol. 5956, pp. 230–247. Springer, Heidelberg (2010)

25. Biskup, J., Weibert, T.: Confidentiality Policies for Controlled Query Evaluation.
In: Barker, S., Ahn, G.-J. (eds.) Data and Applications Security 2007. LNCS,
vol. 4602, pp. 1–13. Springer, Heidelberg (2007)

26. Biskup, J., Weibert, T.: Keeping secrets in incomplete databases. Int. J. Inf.
Sec. 7(3), 199–217 (2008)

27. Biskup, J., Wiese, L.: Preprocessing for controlled query evaluation with availabil-
ity policy. Journal of Computer Security 16(4), 477–494 (2008)

28. Biskup, J., Wiese, L.: A sound and complete model-generation procedure for consis-
tent and confidentiality-preserving databases. Theoretical Computer Science 412,
4044–4072 (2011)

29. Bonatti, P.A., Kärger, P., Olmedilla, D.: Reactive Policies for the Semantic Web. In:
Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral,
L., Tudorache, T. (eds.) ESWC 2010, Part I. LNCS, vol. 6088, pp. 76–90. Springer,
Heidelberg (2010)

30. Bonatti, P.A., Kraus, S., Subrahmanian, V.S.: Foundations of secure deductive
databases. IEEE Trans. Knowl. Data Eng. 7(3), 406–422 (1995)

31. Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Samarati, P.: K-anonymity.
In: Secure Data Management in Decentralized Systems. Advances in Information
Security, vol. 33, pp. 323–353. Springer (2007)

32. Farkas, C., Jajodia, S.: The inference problem: A survey. SIGKDD Explo-
rations 4(2), 6–11 (2002)

33. Fung, B.C.M., Wang, K., Chen, R., Yu, P.S.: Privacy-preserving data publishing:
A survey of recent developments. ACM Comput. Surv., 42(4) (2010)

34. Halpern, J.Y., O’Neill, K.R.: Secrecy in multiagent systems. ACM Trans. Inf. Syst.
Secur., 12(1), 5.1–5.47 (2008)

35. Kelbert, F., Pretschner, A.: Towards a policy enforcement infrastructure for dis-
tributed usage control. In: Atluri, V., Vaidya, J., Kern, A., Kantarcioglu, M.
(eds.) Access Control Models and Technologies, SACMAT 2012, pp. 119–122. ACM
(2012)

22 J. Biskup

36. Lochner, J.-H.: An Effective and Efficient Inference Control System for Rela-
tional Database Queries. PhD thesis, Technische Universität Dortmund (2011),
http://hdl.handle.net/2003/27625

37. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: l-diversity:
Privacy beyond k-anonymity. TKDD, 1(1) (2007)

38. Pretschner, A., Hilty, M., Basin, D.A., Schaefer, C., Walter, T.: Mechanisms for
usage control. In: Information, Computer and Communications Security, ASIACCS
2008, pp. 240–244. ACM (2008)

39. Sicherman, G.L., de Jonge, W., van de Riet, R.P.: Answering queries without
revealing secrets. ACM Trans. Database Syst. 8(1), 41–59 (1983)

40. Tadros, C., Wiese, L.: Using SAT-Solvers to Compute Inference-Proof Database In-
stances. In: Garcia-Alfaro, J., Navarro-Arribas, G., Cuppens-Boulahia, N., Roudier,
Y. (eds.) DPM 2009. LNCS, vol. 5939, pp. 65–77. Springer, Heidelberg (2010)

41. Wang, K., Fung, B.C.M.: Anonymizing sequential releases. In: Eliassi-Rad, T.,
Ungar, L.H., Craven, M., Gunopulos, D. (eds.) Knowledge Discovery and Data
Mining, KDD 2006, pp. 414–423. ACM (2006)

42. Weibert, T.: A Framework for Inference Control in Incomplete Logic
Databases. PhD thesis, Technische Universität Dortmund (2008),
http://hdl.handle.net/2003/25116

43. Wiese, L.: Preprocessing for Controlled Query Evaluation in Complete First-Order
Databases. PhD thesis, Technische Universität Dortmund (2009),
http://hdl.handle.net/2003/26383

44. Wiese, L.: Keeping Secrets in Possibilistic Knowledge Bases with Necessity-Valued
Privacy Policies. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010.
LNCS, vol. 6178, pp. 655–664. Springer, Heidelberg (2010)

45. Xiao, X., Tao, Y.: M-invariance: towards privacy preserving re-publication of dy-
namic datasets. In: Chan, C.Y., Ooi, B.C., Zhou, A. (eds.) Management of Data,
SIGMOD 2007, pp. 689–700. ACM (2007)

46. Yao, C., Wang, X.S., Jajodia, S.: Checking for k-anonymity violation by views. In:
Böhm, K., Jensen, C.S., Haas, L.M., Kersten, M.L., Larson, P.-Å., Ooi, B.C. (eds.)
Very Large Data Bases, VLDB 2005, pp. 910–921. ACM (2005)

http://hdl.handle.net/2003/27625
http://hdl.handle.net/2003/25116
http://hdl.handle.net/2003/26383

	Logic-Oriented Confidentiality Policiesfor Controlled Interaction Execution
	Introduction
	Syntax: What Could Be Kept Confidential?
	Units of Self-protection
	Epistemic Potential Secrets
	Decidability and Finiteness

	Semantics: What Does Confidentiality Mean?
	Indistinguishability -- From the Client's Point of View
	A Priori Knowledge and Capabilities -- As Postulated
	Anticipated Interactions
	Knowledge/Belief States under Protection
	Uniformity of Indistinguishability
	Availability Requirements

	Algorithms: How to Decide on a Single Request?
	Refusing, Lying, Combining Refusals and Lies, and Weakening
	Awareness of Policy Instance
	Representing the History
	Optimized Censors

	Pragmatics: How to Fit an Application?
	Tools for Policy Administration
	Automatic Optimization

	Conclusions and Challenges
	References

