
Chapter 8

An Introduction to Diagnostic Meta-analysis

Marı́a Nieves Plana, Vı́ctor Abraira, and Javier Zamora

Abstract Systematic review, and its corresponding statistical analysis, is becoming

popular in the literature to assess the diagnostic accuracy of a test. When correctly

performed, this research methodology provides fundamental data to inform medical

decision making. This chapter reviews key concepts of the meta-analysis of diag-

nostic test accuracy data, dealing with the particular case in which primary studies

report a pair of estimates of sensitivity and specificity. We describe the potential

sources of heterogeneity unique to diagnostic test evaluation and we illustrate how

to explore this heterogeneity. We distinguish two situations according to the

presence or absence of inter-study variability and propose two alternative

approaches to the analysis. First, simple methods for statistical pooling are

described when accuracy indices of individual studies show a reasonable level of

homogeneity. Second, we describe more complex and robust statistical methods

that take the paired nature of the accuracy indices and their correlation into account.

We end with a description of the analysis of publication bias and enumerate some

software tools available to perform the analyses discussed in the chapter.

Introduction

Diagnosis is one of the most prestigious and intellectually appealing clinical tasks

among physicians and, usually, the first step in clinical care. Furthermore, because a

correct classification of patients according to the presence or absence of a specific

clinical condition is essential for both prognosticating and choosing the right

treatment, an accurate diagnosis is at the core of high-quality clinical practice.

The use of diagnostic tests in clinical practice is generalized. However, introducing
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a test into current diagnostic pathways must be preceded by a systematic assessment

of its diagnostic performance.

Assessing the value of a diagnostic test is a multi-phase process involving the

test’s technical characteristics, its feasibility, accuracy, and impact on different

dimensions (diagnostic thinking, treatment decisions and, most importantly, impact

on patient outcomes). This assessment also includes the social and economic impact

of incorporating the test into the diagnostic pathway. Evaluation studies of diag-

nostic accuracy, in general, and systematic reviews and meta-analyses of studies on

test accuracy, in particular, are instrumental in underpinning evidence-based clini-

cal practice. Meta-analysis is a statistical technique that quantitatively combines

and summarizes the results of several studies that have previously been included as

part of a systematic review of diagnostic tests. A quantitative synthesis of evidence

is not always necessary or possible and it is not uncommon to find very high-quality

systematic reviews of great informational value for clinical practice that do not

include it. Even when a systematic review fails to provide a definite answer

regarding the accuracy of a test, it may still contribute valuable information that

fills existing scientific gaps and/or informs the design of future primary research

studies.

Of the different evaluative dimensions of a diagnostic test, this chapter focuses

on test accuracy. Assessing the diagnostic accuracy of a test consists of analysing its

ability to differentiate, under the usual circumstances, between individuals

presenting with a specific clinical condition (usually a pathology) and those without

the condition. For the purpose of this chapter, we assume that diagnostic test results

are reported either as positive or negative. This may reflect the actual outcome of

the test (e.g. an imaging test result reported as normal or abnormal) or a simplifica-

tion of a result reported in an ordinal or continuous scale that is then dichotomized

into positive/negative using a pre-established cut-off point as with many laboratory

results.

In the next section, we revisit the concept of diagnostic accuracy and how it is

measured. In the third section, we describe the potential sources of heterogeneity

present in systematic reviews of diagnostic test evaluation and how to explore

it. The next two sections present two statistical methodologies to choose from

according to the presence or absence of inter-study variability. The following

section describes publication bias and its analysis. The last section provides a list

of software programs available to perform the analyses discussed in the chapter. An

appendix with the output of two examples is included.

Evaluation of Diagnostic Accuracy

In contrast with randomized clinical trials where the results regarding the effective-

ness of an intervention are reported using a single coefficient (risk ratio, absolute

risk reduction, number needed to treat, etc.), individual studies in evaluations of

diagnostic test accuracy are summarized using two estimates, which are often
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inter-related. The statistical methods used to summarize the systematic review

results must take into account this dual measurement and report both statistical

estimates simultaneously.

As mentioned in Chap. 5 on using and interpreting diagnostic tests, there are

several diagnostic accuracy paired measures. These paired estimates are obtained

from a 2 � 2 cross-classification table. The two specific indices conditioned to

disease status are sensitivity (the proportion of test positives among people with

the disease) and specificity (the proportion of test negatives among people without

the disease). Predictive values, positive and negative, are measures conditioned to

test results and are calculated as the proportion of diseased individuals among

people with a positive test result and the proportion of non-diseased individuals

among people with a negative test result, respectively. The well-known impact of

the actual disease prevalence on these predictive values discourages their use as

summary measures of test accuracy. Likelihood ratios (LRs) are another set of

indices obtained directly from sensitivity and specificity. These ratios express how

much more likely a specific result is among subjects with disease than among

subjects without disease. Another measure of test accuracy is the diagnostic odds

ratio (dOR). The dOR expresses how much greater the odds of having the disease

are for the people with a positive test result than for the people with a negative test

result. It is a single indicator of the diagnostic performance of a test because it

combines the other estimates of diagnostic performance in one measure.

Both LRs and dOR index are calculated from the sensitivity and specificity

indices and, except under special circumstances, although usually not affected by

the disease prevalence, they are affected by the disease spectrum. The dOR index is

very useful when comparing the overall diagnostic performance of two tests.

Furthermore, because it is easily managed in meta-regression models, it is a

valuable tool for analysing the effect of predictor variables on the heterogeneity

across studies. However, its use for clinical decision making regarding individual

patients is questionable given it is a single summary measure of diagnostic

accuracy.

Heterogeneity

Before undertaking a meta-analysis of diagnostic accuracy studies as part of a

systematic review, the researcher should ponder the appropriateness and signifi-

cance of the task. Frequently, the large variability present in sensitivity and

specificity indices across the individual studies puts into question the suitability

of a statistical pooling of results. A preliminary analysis of the clinical and

methodological heterogeneity of the studies should provide the necessary informa-

tion regarding the appropriateness of synthesizing the results. The selection of

potential sources of heterogeneity for further exploration must be done a priori,

before starting data analyses, in order to avoid spurious findings. Meta-analysis

should only be performed when studies have recruited clinically similar patients

and have used comparable experimental and reference tests.
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Sources of Heterogeneity

Clinical and Methodological Heterogeneity

In addition to the inherent expected random variability in the results, there can be

additional sources of heterogeneity as a result of differences in the study

populations (e.g. disease severity, presence of comorbidities), the tests under

evaluation (differences in technology or among raters), the reference standards,

and the way a study was designed and conducted.

In systematic reviews of treatment interventions, the individual studies usually

share a standardized study design (randomized controlled trial or RCT), generally

designed with comparable inclusion and exclusion criteria, similar interventions

and methods to measure the intervention effect (i.e. similar clinical outcome). In

contrast, systematic reviews of diagnostic accuracy studies have to contend with a

great deal of variability regarding design, including some studies of questionable

methodological quality (retrospective case series, non-consecutive case series,

case–control studies, etc.). Empirical evidence shows that the presence of certain

methodological shortcomings has a substantial impact on the estimates of diagnos-

tic performance. Pooling results from studies with important methodological

shortcomings that have recruited different patient samples may lead to biased or

incorrect meta-analysis results.

Threshold Effect

A special source of heterogeneity present in the studies of diagnostic accuracy

comes from the existence of a trade-off between sensitivity and specificity. This is a

result of the studies using, implicitly or explicitly, different thresholds to determine

test positivity.

When studies define different positivity criteria, the sensitivity and specificity

change in opposite directions. This effect is known as the threshold effect. As we

discuss later, the presence of this effect requires that the meta-analysis consider the

correlation between the two indices simultaneously while discouraging analytical

strategies based on simple pooling of the sensitivity and specificity measures.

Consequently, the meta-analysis of diagnostic accuracy adds a certain level of

complexity and requires fitting statistical models, taking into account the covari-

ance between sensitivity and specificity.

Study of Heterogeneity

The first step in a meta-analysis is to obtain diagnostic performance estimates from

the individual (or primary) studies included in the review. These data are used to

estimate the level of consistency across the different studies (heterogeneity
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analysis). This description must provide the magnitude and precision of the diag-

nostic performance indices for every individual study. Given that these accuracy

estimates are paired up and are frequently inter-related, it is necessary to report

these indices simultaneously (sensitivity and specificity, or positive LR and nega-

tive LR). For this description one can use numerical tables of results or paired forest

plots (Fig. 8.1) of sensitivity and specificity or of positive and negative LR

(Fig. 8.2) for each study together with the corresponding confidence intervals.

A certain level of variability is expected by chance, but the presence of other

sources of variation will increase the heterogeneity. These forest plots present the

studies ordered from higher to lower sensitivity or specificity (see Fig. 8.4). This

format may help analyse consistency among studies and the potential correlation

between sensitivity and specificity. However, the best way of illustrating the

Fig. 8.1 Forest plot of sensitivity and specificity. The box sizes are proportional to the weights

assigned and the horizontal lines depict the confidence intervals

Fig. 8.2 Forest plot of positive and negative LRs. The box sizes are proportional to the weights

assigned and the horizontal lines depict the confidence intervals
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covariance between these indices is to present the pairings of estimates for each

study on a receiver operator characteristic (ROC) plot (Fig. 8.3). The x-axis of the
ROC plot displays the false-positive rate (1-specificity). The y-axis shows the

corresponding true-positive rate (sensitivity). The higher the diagnostic perfor-

mance of a study, the closer it is to the upper left quadrant of the ROC plot where

both sensitivity and specificity are close to 1. This graphical representation displays

a shoulder arm pattern when sensitivity and specificity are correlated, for example,

as a result of the presence of a threshold effect or as a result of a different spectrum

of the disease among the patients included in the studies. In such situations,

sensitivity and specificity are inversely correlated, that is, the true-positive rate

(TPR) and the false-positive rate (FPR) are directly correlated.

Specific univariate statistical tests for homogeneity of accuracy estimates have

been proposed. However, heterogeneity tests may lack the necessary statistical

power to detect heterogeneity when a meta-analysis includes a small number of

studies. Conversely, when a meta-analysis includes a large number of studies,

heterogeneity tests may detect and interpret slight inter-study variations as strong

evidence of heterogeneity by yielding highly significant values, especially when the

studies include large sample sizes. In addition, these univariate approaches to

heterogeneity analysis do not account for heterogeneity due to the correlation

between sensitivity and specificity. The inconsistency index (I2) may be used to

quantify the proportion of total variation across studies beyond what would be

expected by chance alone although these estimates must be interpreted with

caution.

The results of the heterogeneity analysis must guide the researcher’s next step in

the completion of the meta-analysis. There are two alternative approaches: (1)

Fig. 8.3 The ROC plane: Plot of 1-specificity against sensitivity
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perform separate univariate analyses of the diagnostic accuracy indices; and (2)

calculate a pooled estimate of both indices using the appropriate statistical model.

Below we describe the two approaches and the circumstances under which one or

the other is more appropriate.

Estimate of the Overall Summary Performance of a Diagnostic

Test in the Absence of Variability Across Results

The first analytical approach may be used in the special circumstance in which

measures of sensitivity, specificity (or both) of the individual studies show a

reasonable level of homogeneity. In this scenario, summary estimates of diagnostic

accuracy may be obtained through basic meta-analysis techniques with no need for

more complex analytical models. Under this approach, two separate poolings of

sensitivities and specificities are performed by univariate meta-analysis with fixed

or random effects models as deemed appropriate. For added precision, we recom-

mend the use of the logit transformation for sensitivity and specificity to perform

the meta-analysis.1 Once the estimates are averaged, they should be back-

transformed to the original scale.

It is important to emphasize that the univariate analysis approach can only be

used when there is evidence of homogeneity across estimates. Both sensitivity and

specificity indices – and the explicit thresholds defining test positivity, if applicable

– must be homogeneous. In this scenario, the correlation between these indices will

approach zero and the results of simple pooling will be comparable with those from

more advanced models such as bivariate and hierarchical models, discussed later in

the chapter. An interesting study concluded that summary indices of diagnostic

accuracy calculated with separate simple pooling did not differ significantly from

those generated by more statistically robust methods and that the small differences

were not clinically relevant.

In the absence of variability across thresholds for test positivity, positive and

negative LRs could also be pooled using standard methods such as meta-analysis

with fixed or random effects. However, there is some evidence that pooling

diagnostic LRs in systematic reviews is not appropriate as the summary LRs

generated could correspond to summary sensitivities and specificities outside the

valid range from 0 to 1. Instead, it is recommended to calculate the LRs from

summary sensitivity and specificity indices estimated using bivariate or hierarchical

methods (see below).

We also discourage the practice of averaging predictive values (positive and

negative) due to the well-documented effect the prevalence of the disease has on the

results. To make matters worse, this prevalence may vary across studies adding an

1 The standard error of a logit transformed proportion p is computed as the square root of

1/(np(1 � p)).
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additional source of heterogeneity to the estimates. The summary predictive value

is estimated for unknown average disease prevalence. However, in some cases, it is

the only index available given the design characteristics of the studies in which

reference standards were performed on test positives but not on test negatives

(partial verification bias). A typical example of this scenario is when histopathology

is used to confirm imaging findings, and no histological sample can be obtained

after a negative image result.

Estimate of the Overall Summary Performance of a Diagnostic

Test in the Presence of Variability Across Results

(sROC Curve)

It is common for researchers performing meta-analyses to run into substantial

variability in diagnostic accuracy indices. This second analytical approach

addresses the issue of heterogeneity across individual studies. Part of this variability

could well originate in differences in the thresholds of positivity used, either

explicit or implicit, across studies. Other source of variation could be a differential

spectrum of patients across studies. In these cases, separate pooling is not the

appropriate method to calculate a summary measure of test accuracy. Instead, the

analysis must start by fitting a summary ROC (sROC) curve modelling the rela-

tionship between test accuracy measures. Of the different parameters that have been

proposed to summarize a sROC curve, the most common is the area under the curve

(AUC). This statistic summarizes the diagnostic test performance with only one

figure: a perfect test achieves an AUC close to 1, whereas the AUC is near 0.5 for a

useless test. This figure may be interpreted as the probability of the test correctly

classifying two random individuals, a diseased and a non-diseased subject. Thus,

the AUC may be also a useful tool to compare the performance of various

diagnostic tests. Another statistic suggested for this task is the Q* index, defined

as the point of the curve in which sensitivity equals specificity. In a symmetric

curve, this is the point closest to the upper left corner of the ROC space. The fitted

sROC curve may also be used to calculate a sensitivity estimate from a given

specificity or vice versa. Two methods for fitting a sROC curve are discussed

below.

Moses–Littenberg Model

The Moses–Littenberg method, initially developed to generate sROC curves easily,

is the simplest and most popular method for estimating test performance as part of

meta-analyses of diagnostic tests. The shape of the ROC curve depends on the

underlying distribution of the test results in patients with and without the disease.
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There are two methods of fitting the ROC curve. Diagnostic tests where the dOR is

constant regardless of the diagnostic threshold have symmetrical curves around the

sensitivity ¼ specificity line. When the dOR changes with diagnostic threshold, the

ROC curve is asymmetrical. The Moses–Littenberg method is used to study dOR

variation according to threshold and thereby generates symmetrical or asymmetri-

cal curves.

The method consists of studying this relationship by fitting the straight line:

D ¼ aþ bS

D ¼ logitðsensitivityÞ � logitð1� specificityÞ

S ¼ logitðsensitivityÞ þ logitð1� specificityÞ

where D is the natural logarithm (ln) of the diagnostic odds ratio (dOR) and S is a

quantity related to the overall proportion of positive test results. S can be considered
as a proxy for the test threshold because S will increase as the overall proportion of
test positives increases both in the diseased and non-diseased groups. The contrast

in test performance variability (measured by dOR) according to threshold is

equivalent to the contrast on the model’s parameter b. When b ¼ 0 there is no

variation and the model generates a symmetrical sROC curve; whereas when

b 6¼ 0, performance varies according to the threshold and the resulting sROC

curve is asymmetrical. The fitting of the previous linear model can be weighted

using the inverse variance of ln(dOR) to account for inter-study differences in the

sampling error in D.
The model may be expanded to analyse the effect of other factors on diagnostic

performance (dOR) as a supplement to the exploration of heterogeneity described

here. Such factors, which would be included in the model as covariates, may

capture characteristics related to the study design, the patients, or the test.

The Moses–Littenberg model, although very useful for studies of an exploratory

nature, is not adequate for drawing statistical inferences. Thus, it should be used

keeping in mind some important limitations. First, the model does not take into

account either the correlation between sensitivity and specificity or the different

precision with which the indices were estimated. In addition, the model’s indepen-

dent variable is random and, thus, its inherent measurement error violates the basic

assumption of linear regression models. Finally, the model must be empirically

adjusted to avoid empty cells by adding an arbitrary correction factor (0.5).

Bivariate and Hierarchical Models

Two models have been put forward to overcome the limitations ascribed to the

Moses–Littenberg model: the bivariate model and the hierarchical sROC model

(HSROC). These random effects models are substantially more robust from the
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statistical point of view than the Moses–Littenberg model. The methodological

literature relevant to this area of research proposed these models as the gold

standard in meta-analyses of diagnostic accuracy studies. The differences between

the two models are small and, in the absence of covariates, both approaches simply

amount to different parameterizations of the same model.

The bivariate model is a random effects model based on the assumption that logit

(sensitivity) and logit (specificity) follow a normal bivariate distribution. The

model allows for the potential correlation between the two indices, manages the

different precision of the sensitivity and specificity estimates, and includes an

additional source of heterogeneity due to inter-study variance. The second model

the methodological literature proposes is known as the hierarchical model or

HSROC. It is similar to the previous model except that it explicitly addresses the

relationship between sensitivity and specificity using the threshold. Similar to the

previous model, this one also accounts for the inter-study heterogeneity.

Both models allow fitting an sROC curve and provide a summary estimate of

sensitivity and specificity with the corresponding confidence and prediction

intervals. After fitting either of these models, we have to select the most appropriate

result to report. It depends on the variability of the results of the individual studies.

When sensitivities and specificities of these studies vary substantially, it is advis-

able to forego average indices and, instead, report the sROC curve. In contrast,

when the variability across indices is small, the recommendation is to report the

average sensitivity and specificity as calculated based on the bivariate (or the

hierarchical) model with its 95 % confidence interval. This is much preferred to

the alternative, which would entail risking extrapolating to the ROC space a curve

that may misrepresent the test diagnostic accuracy. Summary LRs can be calculated

from the pooled estimates of sensitivity and specificity generated by these models.

It is worth noting that when an average sensitivity and specificity point is reported

over the sROC curve, the position represents the midpoint of the results of the

studies calculated based on the average threshold for test positivity, or the average

spectrum of the disease, observed in the sample.

Publication Bias

Identifying articles about diagnosis is more cumbersome than finding published

clinical trials for a review of intervention performance. Although the MeSH

(Medical Subject Heading) term “randomized controlled trial” effectively describes

and leads researchers to studies describing clinical interventions, there is no com-

parable term for the specific literature describing the design of such studies. We

should take into account, however, that many studies on diagnosis are based on

observations of actual clinical practice in the absence of protocols recorded and/or

approved by research ethics committees. For this reason, it is difficult not only to

follow up these studies but also to get their results published at the level of detail

necessary to be fully useful. If the studies identified in the search were to differ
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systematically from unpublished manuscripts, the meta-analysis would yield biased

estimates that would fail to reflect the real value of diagnostic accuracy.

Similarly, it is also more complex to assess publication bias regarding studies

about diagnosis than about treatment. Graphical tools (funnel plots) and the tradi-

tional statistical comparisons to evaluate the asymmetry of these graphs were

developed to assess publication bias in systematic reviews of clinical trials. Thus,

their validity to assess bias in reviews of diagnostic tests is questionable. Deeks and

colleagues have adapted the statistical tests of asymmetry of funnel plots to address

the issues inherent to meta-analyses of test accuracy. In this version, the funnel plot

represents the dOR versus the inverse of the square root of the effective sample size

(ESS), which ultimately is a function of the number of diseased and non-diseased

individuals. The degree of asymmetry in the plot is statistically evaluated by a

regression of the natural logarithm of dOR against 1/ESS1/2, weighted by ESS.

Software

There is a great variety of statistical packages able to perform the analyses

described. Some, like SAS and STATA, are packages for general statistical

purposes that facilitate the calculations mentioned by means of a series of macros

and user-written commands. The best known user-written commands are the

STATA commands MIDAS and METANDI and the SAS macro named

METADAS. In addition, the package DiagMeta (http://www.diagmeta.info) was

developed for the R environment and it also performs the analyses described.

Additional programs specific to the meta-analysis of diagnostic test accuracy

studies are Meta-DiSc and Review Manager (RevMan) by the Cochrane Collabo-

ration. Both perform the basic analyses described in this chapter and RevMan also

allows the user to enter parameters obtained from bivariate and hierarchical models

and produce corresponding sROC plots.

Appendix

Example 1

For this example we selected the 17 studies included in Scheidler et al.’s meta-

analysis (Table 8.1). In their meta-analysis, they evaluated the diagnostic accuracy

of lymphangiography (LAG) to detect lymphatic metastasis in patients with cervi-

cal cancer.

First, the indices of diagnostic accuracy, sensitivity and specificity (Fig. 8.1) or

the positive and negative LRs (Fig. 8.2) of the reviewed studies are described for

exploratory purposes using paired forest plots as obtained with Meta-DiSc.
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Second, still within the graphical data exploration, we can illustrate the TPR or

sensitivity, the FPR (i.e. 1 � specificity), and the LRs (LR + and LR�) organized

by one of these indices (Fig. 8.4) or illustrate the pairing indices on a ROC space

(Fig. 8.3). At this exploratory phase, all graphical representations should not

include pooled estimates of accuracy.

To perform these exploratory analyses, we can use free software (Meta-DiSc,

RevMan or the DiagMeta package in the R environment) or any other commercial

software.

Table 8.1 The studies

included in Scheidler et al.’s

meta-analysis

id Study Year Test tp fp fn tn

1 Kindermann 1970 LAG 19 1 10 81

2 Lecart 1971 LAG 8 9 2 13

3 Piver 1971 LAG 41 1 12 49

4 Piver 1973 LAG 5 1 2 18

5 Kolbenstvedt 1975 LAG 45 58 32 165

6 Leman Jr 1975 LAG 8 6 2 32

7 Brown 1979 LAG 5 8 1 7

8 Lagasse 1979 LAG 15 17 11 52

9 Kjorstad 1980 LAG 16 11 8 24

10 Ashraf 1982 LAG 4 8 2 25

11 deMuylder 1984 LAG 8 12 10 70

12 Smales 1986 LAG 10 4 4 55

13 Feigen 1987 LAG 2 5 6 23

14 Swart 1989 LAG 7 10 7 30

15 Heller 1990 LAG 44 50 12 135

16 Lafianza 1990 LAG 8 3 1 37

17 Stellato 1992 LAG 4 3 0 14

From Scheidler et al. (1997)

Fig. 8.4 Forest plot with studies sorted by FPR: Heterogeneity is evident
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In this example, and looking at the forest plot generated, we cannot rule out the

presence of heterogeneity across the studies included in the review; thus, the

analysis should focus on fitting an sROC model.

Given the limitations of the Moses–Littenberg model, we fit a bivariate model

using the DiagMeta package. The output is presented below:

> bivarROC(Scheidler)

ML MCMC lower limit upper limit

average TPR% 67.38561 67.59189 60.52091 74.75159

average FPR% 16.22516 16.05203 9.25013 25.49491

SD logit TPR 0.34943 0.31889 0.04271 0.87571

SD logit FPR 0.90087 1.06136 0.63934 1.84290

correlation �0.23882 �0.53898 �0.99999 0.59240

Because the estimated correlation between logit (sensitivity) and logit (specific-

ity) is small and it cannot be ruled out that it is not different from zero, the results

estimated by the bivariate model do not significantly differ from those obtained

through separate pooling of sensitivity and specificity. Based on the same example,

the results using a simple pooling with a fixed or random effects model according to

the variability of each of the indices are as follows:

> twouni(subset(Scheidler,GROUP¼¼’LAG’))

TPR TPR lower limit upper limit

Fixed effects 0.6711590 6.218139e-01 0.7169960

Random effects from ML 0.6763973 6.056993e-01 0.7398633

Random effects from MCMC 0.6729242 6.148178e-01 0.7327660

SD of REff 0.0692814 5.935713e-07 0.7516062

FPR FPR lower limit upper limit

Fixed effects 0.1996143 0.1764147 0.2250311

Random effects from ML 0.1619847 0.1059149 0.2397768

Random effects from MCMC 0.1631190 0.1035210 0.2426649

SD of REff 0.9576528 0.5716529 1.5829222

Figure 8.5 shows the sROC curve fitted with a STATA bivariate model, together

with the estimated summary point and confidence and prediction intervals.

Example 2

For this illustration we used Fahey et al.’s data (Table 8.2). The goal of their study

was to estimate the accuracy of the Papanicolaou (Pap) test for detection of cervical

cancer and precancerous lesions.

The sensitivity and specificity forest plots (data not shown) confirm the presence

of substantial heterogeneity, in both indices, across the studies included in the

review. Figure 8.6 shows the representation of the studies in the ROC space.
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The slight curvilinear pattern of their distribution suggests the presence of a

correlation between sensitivity and specificity.

Using Meta-DiSc we calculated the Spearman correlation coefficient between

the TPR and FPR logits and obtained a positive and statistically significant correla-

tion of 0.584 (p < 0.001) which confirms the results of the bivariate adjustment

obtained using the package DiagMeta:

Estimates and 95 % confidence intervals from mcmc samples

ML MCMC median lower limit upper limit

average TPR% 65.56718 64.93881 57.58497 72.49102

average FPR% 25.38124 25.27866 18.74132 32.57494

SD logit TPR 1.21834 1.27374 1.04000 1.59237

SD logit FPR 1.22834 1.27623 1.02968 1.60834

correlation 0.77408 0.77709 0.61593 0.87730

Posterior probability that rho positive 1

Correlation positive - threshold model appropriate

Fig. 8.5 Fitted SROC

curve: Study estimates are

shown as circles sized
according to the total number

of individuals in each study.

Summary sensitivity and

specificity are depicted by the

square marker and the 95 %

confidence region for the

summary operating point is

depicted by the small oval in
the centre. The larger oval is

the 95 % prediction region

(confidence region for a

forecast of the true sensitivity

and specificity in a future

study). The summary curve is

from the HSROC model
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With this information in hand, we conclude that the most appropriate method to

summarize the results of the meta-analysis is using an sROC curve (Fig. 8.7). This

curve was fitted using the bivariate model produced by the macro METANDI in

STATA. Figure 8.8 shows the results of a comparable analysis with Meta-DiSc

using the Moses–Littenberg model which, in this case, has generated a practically

identical sROC curve to that in Fig. 8.7.

Table 8.2 Data from Fahy et al.’s study

id Study tp fp fn tn id Study tp Fp fn tn

1 Ajons-van K 31 3 43 14 31 Morrison BW 23 50 10 44

2 Alloub 8 3 23 84 32 Morrison EAB 11 1 1 2

3 Anderson 1 70 12 121 25 33 Nyirjesy 65 13 42 13

4 Anderson 2 65 10 6 6 34 Okagaki 1,270 927 263 1,085

5 Anderson 3 20 3 19 4 35 Oyer 223 22 74 83

6 Andrews 35 92 20 156 36 Parker 154 30 20 237

7 August 39 7 111 271 37 Pearlstone 6 2 12 81

8 Bigrigg 567 117 140 157 38 Ramirez 7 4 3 4

9 Bolger 25 37 11 18 39 Reid 12 5 11 60

10 Byrne 38 28 17 37 40 Robertson 348 41 212 103

11 Chomet 45 35 15 48 41 Schauberger 8 4 11 34

12 Engineer 71 87 10 306 42 Shaw 12 2 6 0

13 Fletcher 4 0 36 5 43 Singh 95 9 2 1

14 Frisch 2 2 3 21 44 Skehan 40 18 20 19

15 Giles 1 5 9 3 182 45 Smith 71 13 20 18

16 Giles 2 38 21 7 62 46 Soost 1205 186 454 250

17 Gunderson 4 2 16 31 47 Soutter 1 40 20 17 27

18 Haddad 87 13 12 9 48 Soutter 2 35 9 12 12

19 Hellberg 15 3 65 15 49 Spitzer 10 31 5 32

20 Helmerhorst 41 1 61 29 50 Staff 3 5 3 15

21 Hirschowitz 76 12 11 12 51 Syrjanen 118 40 44 183

22 Jones 1 3 0 5 1 52 Szarewski 13 3 82 17

23 Jones 2 10 4 48 174 53 Tait 38 14 13 62

24 Kashimura 1 28 11 28 77 54 Tawa 16 25 67 291

25 Kashimura 2 79 26 13 182 55 Tay 12 14 6 12

26 Kealy 61 20 27 35 56 Upadhyay 238 52 2 16

27 Kooning 1 62 20 16 49 57 Walker 111 44 20 39

28 Kooning 2 284 31 68 68 58 Wetrich 491 164 250 702

29 Kwikkel 66 25 20 44 59 Wheelock 48 16 38 31

30 Maggi 40 43 12 47

From Fahey et al. (1995)
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