
Chapter 6

Using and Interpreting Diagnostic Tests with

Quantitative Results

The ROC Curve in Diagnostic Accuracy

Suhail A.R. Doi

Abstract Sensitivity and specificity, as defined previously, depend on the cut-off

point used to define positive and negative test results. To determine the best cut-off

point shift that optimizes sensitivity and specificity, the receiver operating charac-

teristic (ROC) curve is often used. This is a plot of the sensitivity of a test versus its

false-positive rate for all possible cut-off points. This chapter outlines its

advantages, its use as a means of defining the accuracy of a test, its construction

as well as methods for identification of the optimal cut-off point on the ROC curve.

Meta-analysis of diagnostic studies is briefly discussed.

Introduction

As we have seen previously, diagnostic test results use a cut-off value based on

either a binary or polychotomous scale to define positive and negative test

outcomes. On a continuous or ordinal scale, the sensitivity (Se, the probability of

a positive test outcome in a diseased individual) and specificity (Sp, the probability

of a negative test outcome in a non-diseased individual) can also be computed for

specific values. Since the diagnostic test considers the results in two populations,

one population with a disease, the other population without the disease, therefore,

for every possible cut-off point or criterion value there will be some cases with the

disease correctly classified as positive (TP, true-positive fraction), and falsely

classified as negative (FN, false-negative fraction). Similarly, cases without the

disease can be correctly classified as negative (TN, true-negative fraction) or as

positive (FP, false-positive fraction). Compared to the binary outcome, on a con-

tinuous scale, the choice of cut-off will affect the degree of false misclassification
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by the test and thus for the same test, different cut-offs will have different operating

characteristics with an inversely related Se and Sp across cut-off values. Thus, for

tests that have an ordinal or continuous cut-off, Se and Sp at a single cut-off value

do not fully characterise the tests performance which varies across other potential

cut-off values. In this situation, a comparison of such diagnostic tests requires

independence from the selected cut-off value and this can be addressed via receiver

operating characteristic (ROC) analysis. The ROC method has several advantages:

• Testing accuracy across the entire range of cut-offs thereby not requiring a

predetermined cut-off point

• Easily examined visual and statistical comparisons across tests

• Independence from outcome prevalence

Example Data

Data from a prospective evaluation of an Australian pertussis toxin (PT) IgG and

IgA enzyme immunoassay are used as an example (May et al. 2012). In this study,

the accuracy of anti-PT IgG and anti-PT IgA (as normalized optical density) is

examined for the diagnosis of pertussis infection with samples taken within 2–8

weeks after onset of symptoms. The gold standard was Bordetella pertussis poly-
merase chain reaction at the first visit.

Basic Principles

The continuous test result is viewed as a multitude of related tests each represented

by a single cut-off with each considered to discriminate between two mutually

exclusive states, so that we end up with a Se and Sp that are specific to a selected

cut-off value. Each cut-off therefore generates a pair of Se and (1 � Sp) and it is

these pairs that are then compared via ROC analysis and at each possible cut-off

value for the test. Se and (1 � Sp) are essentially equivalent to the true-positive and

false-positive proportions, respectively and when we plot Se against (1 � Sp) for

various values of the cut-off across the measurement range, this generates the ROC

curve. The ROC curve is therefore a plot of the FP probability on the x-axis and the TP
probability on the y-axis across several thresholds of a continuous value measured in

each subject, with the positive result being assumed for subjects above the threshold.

Each point on the curve represents a Se/Sp pair corresponding to a particular cut-off;

the latter are also known as the decision threshold or criterion values.

The ROC method is therefore an overall measure (across all possible cut-offs) of

diagnostic performance of a test and can be used to compare the diagnostic

performance of two or more laboratory or diagnostic tests. The perfect test with

perfect discrimination (no overlap in the diseased and healthy distributions) has a
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ROC curve that passes through the upper left corner (100 % sensitivity, 100 %

specificity). Therefore the closer the ROC curve is to the upper left corner, the

higher the overall accuracy of the test. Also, the slope of the tangent line at a cut-

point gives the likelihood ratio (LR) for that value of the test. The ROC curve for PT

IgG is depicted in Fig. 6.1.

Discrimination Between Diseased and Non-diseased

The area under such an ROC curve is used as a measure of how well a test can

distinguish between two diagnostic groups (diseased/normal), independent of any

particular cut-off. The closer the curve follows the left-hand border and then the top

border of the ROC space, the more area there is under the curve and the more

accurate the test. The closer the curve follows the 45� diagonal of the ROC space,

the less accurate the test.

The area under the curve (AUC) is therefore a global (i.e. independent of the cut-

off value) summary statistic of diagnostic accuracy. The AUC is also known as the

c statistic or c index, and can range from 0.5 (random chance or no predictive

ability, which would follow the 45� line on the ROC plot) to 1 (perfect discrimina-

tion/accuracy; the ROC curve reaches the upper left corner of the graph). The

greater the AUC, the more able is the test to capture the trade-off between Se and Sp

over a continuous range. According to an arbitrary guideline, one could then use the

AUC to classify the accuracy of a diagnostic test (Table 6.1).

Fig. 6.1 The ROC curve for

PT IgG. Each point on the

curve represents a single cut-
off, with sensitivity plotted

against 1-specificity (false

positive rate). The central
diagonal is the line of
equality
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The AUC is interpreted as a probability that a randomly drawn individual from

the diseased or abnormal reference sample has a greater test value than a randomly

drawn individual from the healthy or normal reference sample. In is clear that if we

interpret this as a single member of each group (diseased and non-diseased) taking

the test, the probability of a correct answer (the AUC) is not influenced by the

prevalence of disease within the sample because each member of the selected pair

represents a fixed prevalence at 50 %.

The AUC summarizes the whole of the ROC curve, and therefore all parts of the

curve are represented within the AUC. Some parts of the curve can be vertical

(lower left part) or horizontal (upper right part) and their contribution to the AUC is

less useful because they include cut-off values with increasing Se (without loss of

Sp) or increasing Sp (without loss of Se), respectively. Also, we may want to have a

fixed Se or Sp for diagnosis (e.g. that Se is at least 80 %), in which case the AUC

may not be the best way to compare two tests since the part of the ROC curve below

this threshold still contributes to the AUC making this method less optimal for our

diagnostic situation.

The 95 % confidence interval is the interval in which the true (population) area

under the ROC curve lies with 95 % confidence. The P value is the probability that

the sample AUC is found when the true (population) AUC is 0.5 (null hypothesis:

area ¼ 0.5). If P is low (<0.05) then it can be concluded that the AUC is signifi-

cantly different from 0.5 and therefore there is evidence that the laboratory test does

have an ability to distinguish between the two groups. This probability of a correct

ranking is the same quantity that is estimated by the non-parametric Wilcoxon

statistic and can be used to provide rapid closed-form expressions for the approxi-

mate magnitude of the sampling variability, i.e. standard error that one uses to

accompany the area under a smoothed ROC curve. Finally, concerning sample size,

it has been suggested that meaningful qualitative conclusions can be drawn from

ROC experiments performed with a total of about 100 observations. A minimum of

50 cases may be required in each of the two groups, so that one case represents not

more than 2 % of the observations.

Table 6.1 Interpretation of

the AUC in terms of accuracy

of a test

Accuracy AUC

Non-informative AUC ¼ 0.5

Less accurate 0.5 < AUC < 0.7

Moderately accurate 0.7 < AUC < 0.9

Highly accurate 0.9 < AUC < 1

Perfect test AUC ¼ 1

Results for PT IgG

Area under the ROC curve (AUC) 0.798

Standard errora 0.0177

95 % confidence intervalb 0.763–0.832

Z statistic 16.836

Significance level P (area ¼ 0.5) <0.0001
aHanley and McNeil (1982)
bAUC � 1.96 SE
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Determining an Optimum Cut-Off Value

If we use the normal distribution to define a value two standard deviations (2SD)

above the mean of the normal reference sample, this would result in a cut-off value

with a Sp of 97.5 % (since 2SD encompasses 95 % of the population, i.e. 2.5 % on

either side of the distribution). This would however not work for skewed or

multimodal distributions, and also, it ignores the Se, which is a disadvantage. A

better option therefore is to create a table or a plot of Se and Sp for different cut-off

values (plot versus criterion values in MedCalc) which can then provide a useful

visualization and can also be used to derive two optimal cut-off values: One where

good sensitivity is retained and the other where good specificity is retained. This is

depicted in the Fig. 6.2 and Table 6.2. Also, it should be kept in mind that the slope

of the ROC curve gives us the LR of the test value at that particular cut-off and a

table of LR against the cut-off values (see Table 6.2) is an alternative way a cut-off

can be selected. Where we choose to place our optimal cut-off will eventually

depend on the prevalence of disease in the target population and the consequences

of FN versus FP test results (which may differ for every different scenario). For

example, a very low prevalence disease with a high cost of false-positive diagnoses

may require us to select a cut-off that maximizes Sp. If, on the other hand, for a high

prevalence disease where missing a diseased individual has serious consequences, a

cut-off value would be selected to maximize Se.

Another alternative is to select the point on the ROC curve closest to the upper

left corner of the unit square as this would optimize prevalence-independent

summary measures of Se and Sp. The Youden index (Se þ Sp � 1) attempts to

do this and gives us the optimal or criterion value J corresponding to the maximum

of the Youden index; i.e. J ¼ max[SEi þ SPi � 1] where SEi and SPi are the

sensitivity and specificity over all possible threshold values. This value corresponds

with the point on the ROC curve farthest from the diagonal line. The MedCalc

manual (www.medcalc.org) indicates the following pointers for interpretation of

the criterion value:

Fig. 6.2 Plot of Se and Sp for

different cut-off values of

PTIgG (also known as plot

vs. criterion values). The

criterion was the PCR result
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• When you select a lower criterion value, then the true-positive fraction and the

sensitivity increases. On the other hand, the false-positive fraction also

increases, and therefore the true-negative fraction and specificity decrease.

• When you select a higher criterion value, the false-positive fraction decreases

with increased specificity but, on the other hand, the true-positive fraction and

sensitivity decrease.

• If a test is used for the purpose of screening, then a cut-off value with a higher

sensitivity and negative predictive value must be selected. In order to confirm

the disease, the cases positive in the screening test can be tested again with a

different test. In this second test, a high specificity and positive predictive value

are required.

ROC analysis can also be used to evaluate the diagnostic discrimination’ of

logistic regression models in general as they have binary outcomes. In such an

analysis, the power of the model’s predicted values to discriminate between posi-

tive and negative cases is quantified by the AUC, which is sometimes referred to as

the c statistic (or concordance index), and varies from 0.5 (discriminating power not

better than chance) to 1.0 (perfect discriminating power). Essentially, we can save

the predicted probabilities and use this new variable in ROC curve analysis. The

dependent variable used in logistic regression then acts as the classification variable

in the ROC curve analysis.

Table 6.2 Criterion values and coordinates of the ROC curve

Criterion Sensitivity 95 % CI Specificity 95 % CI +LR 95 % CI –LR 95 % CI

�0.01 100.00 99.1–100.0 0.00 0.0–1.7 1.00

>0.05 95.40 92.8–97.2 10.90 7.0–15.9 1.07 0.7–1.6 0.42 0.3–0.7

>0.1 91.30 88.1–93.9 27.49 21.6–34.0 1.26 1.0–1.6 0.32 0.2–0.4

>0.15 89.26 85.8–92.1 41.71 35.0–48.7 1.53 1.3–1.8 0.26 0.2–0.4

>0.2 88.49 84.9–91.5 50.71 43.8–57.6 1.80 1.6–2.1 0.23 0.2–0.3

>0.3 85.17 81.2–88.5 60.66 53.7–67.3 2.17 1.9–2.4 0.24 0.2–0.3

>0.45 79.80 75.5–83.7 71.56 65.0–77.5 2.81 2.5–3.1 0.28 0.2–0.4

>0.64a 74.42 69.8–78.7 77.73 71.5–83.2 3.34 3.0–3.7 0.33 0.2–0.4

>0.7 72.89 68.2–77.2 79.15 73.0–84.4 3.50 3.2–3.8 0.34 0.3–0.5

>0.8 69.31 64.5–73.8 80.09 74.1–85.3 3.48 3.2–3.8 0.38 0.3–0.5

>1.35 48.08 43.0–53.2 90.05 85.2–93.7 4.83 4.3–5.4 0.58 0.4–0.9

>1.91 23.53 19.4–28.1 95.26 91.5–97.7 4.96 4.1–6.0 0.80 0.4–1.5

>2.72 2.56 1.2–4.7 99.05 96.6–99.9 2.70 1.5–5.0 0.98 0.2–3.9

>2.8 2.56 1.2–4.7 99.53 97.4–100.0 5.40 2.9–10.0 0.98 0.1–6.9

>2.95 1.28 0.4–3.0 99.53 97.4–100.0 2.70 1.1–6.4 0.99 0.1–7.0

>2.99 1.28 0.4–3.0 100.00 98.3–100.0 0.99

>3.12 0.00 0.0–0.9 100.00 98.3–100.0 1.00
aCut-off via the Youden index
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Test Comparison

As described above, the AUC represents a summary statistic of the overall diagnos-

tic performance of a test. It makes sense therefore to use the AUC to compare the

discriminatory abilities of different tests overall and independent of any specific

cut-offs they may have. However, the AUC gives equal weights to the entire ROC

curve and it could happen that two tests that differ in terms of optimal sensitivity

and specificity have a similar AUC. This may happen when ROC curves cross each

other though they may have similar AUC estimates.

The non-parametric area under the plots for the above example (Fig. 6.3) is

shown in Tables 6.3 and 6.4. The difference (and 95 % confidence interval) from

MedCalc output is shown. The confidence interval for the differences between the

tests does not include zero and it can be concluded that there is a statistically

significant difference in the AUC estimates and thus the performance of the two

tests for pertussis (PT IgG and PT IgA). The better test (PT IgG) is the test with the

higher dome and thus greater AUC. It can be seen however that the curves overlap

at both ends, suggesting that at these cut-offs, the tests characteristics are identical.

Fig. 6.3 ROC curves

comparing plots for PT IgG

and PT IgA. Each point on the

curve represents a single cut-
off. The diagonal is the line of
equality and the higher the

plot above this line, the higher

its discriminative capacity

Table 6.3 Area under the

ROC curves (AUC) for PT

IgG and PT IgA

AUC SEa 95 % CIb

PT IgG 0.798 0.0177 0.763–0.832

PT IgA 0.720 0.0206 0.680–0.761
aHanley and McNeil (1982)
bAUC � 1.96SE
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Meta-Analysis of Diagnostic Studies

The ROC approach can also be applied to combine multiple estimates of Se and Sp

for one test across several primary evaluation studies. The procedure is known as

meta-analysis of diagnostic tests. This sort of summary ROC pooling for meta-

analysis occurred due to the explosion in the discussion surrounding the implicit

threshold across studies of the same radiological investigation, so much so that

diagnostic meta-analysis moved from univariate pooling of sensitivity and specific-

ity to summary ROC curves as first defined by Moses et al. (1993) and methods

for these have subsequently evolved into hierarchical and bivariate sROC models

(see Arends et al. 2008; Reitsma et al. 2005; Rutter and Gatsonis 2001). The basic

reasoning was that sensitivity and specificity across studies are negatively

correlated and thus study investigators must be using different implicit diagnostic

thresholds and thus fit in at different points on an ROC curve. These models were

thought to account for the potential presence of a (negative) correlation between

sensitivity and specificity within studies and address this explicitly by incorporating

this correlation into the analysis. However, Simel and Bossuyt (2009) demonstrate

that results from univariate and bivariate methods may be quite similar.

The problem with such an approach is that in reality there may be no implicit

diagnostic threshold at play. On the contrary, radiologists might make a diagnosis

based on an implicit information size threshold based on the amount of obvious

information available to the average radiologist on the image. If images are from

very sick persons, they will tend to have a lot more information, thus making it both

more likely for a true diagnosis to be made as well as for a false diagnosis to be

made. On the other hand, subjects that are not as sick have less information on the

image and thus the radiologist will meet the implicit information threshold with

difficulty. Thus, while the true-positive rate decreases, so too does the false-positive

rate. If we have a set of studies from a varying spectrum of subjects, the Se and Sp

are negatively correlated simply on the basis of the varying spectrum of disease – a

spectrum effect. There is no change in the implicit diagnostic threshold and chasing

such a threshold using sROC models is a questionable pursuit since the goal is

ill-defined.

A recent study by Willis (2012) that grouped images by high probability or not

according to a trained radiographer and then interpreted by junior doctors revealed

exactly this phenomenon. Images with more information content (high probability

group) were interpreted with higher Se and lower Sp than the low probability group.

Table 6.4 Pairwise

comparison of ROC curves
PT IgG ~ PT IgA

Difference between areas 0.0775

Standard errora 0.0183

95 % confidence interval 0.0417–0.113

Z statistic 4.244

Significance level P < 0.0001
aHanley and McNeil (1982)
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The two groups were said to fit perfectly on the ROC curve and were thus

incorrectly interpreted as representing doctors changing their implicit diagnostic

threshold rather than a change in the information size from the images making it

more difficult for low probability radiographs to meet the information threshold

required of the doctors. In such a scenario, the real Se and Sp would actually be the

combined Sp and Se based on all radiographs, not high versus low probability on an

ROC curve if there are no implicit thresholds.

The same author has previously stated that the Se and Sp may vary between

different patient subgroups even when the test threshold remains constant, and this

lies at the heart of the concept of the spectrum effect (Willis 2008). The latter effect

has not only been mixed up with the concept of an implicit threshold but has also

been misleadingly called the spectrum bias (Mulherin and Miller 2002). Such

subgroup variation is not a bias and just contributes to heterogeneity across studies;

these will lead to estimates of test performance that are not generalizable if the

studies are mostly non-representative of their relevant clinical populations.

It has been suggested by Goehring et al. (2004) that in some situations this

spectrum effect may lead to a spectrum bias, that is, a distortion of the posterior

probability, which can potentially affect the clinical decision. It has been shown

that spectrum bias on either a positive or a negative test result can be expressed as

the subgroup-specific LR divided by the LR in the overall population of patients

(ratio of LR or RLR) and this assessment of spectrum bias has been shown to be

independent of the pretest probability. In the usual situation in which sensitivity

increases from one patient subgroup to another but the specificity simultaneously

decreases, the LRs remain constant and thus while spectrum effects are quite

common, spectrum bias is usually not an issue. Nevertheless, despite the absence

of bias, sensitivity and specificity on their own may not reflect values that are

generalizable to the overall populations that the studies are trying to represent. It

has therefore been suggested by Moons et al. (2003) that Se and Sp may have no

direct diagnostic meaning because they vary across patient populations and

subgroups within populations and thus there is no advantage for researchers in

pursuing estimates of a test’s Se and Sp rather than post-test probabilities. However,

the study by Goehring et al. (2004) clearly demonstrates that the subgroup/population

RLR (and thus post-test probability) will not change across subgroups simply due to a

spectrum effect because Se and Sp change simultaneously. There is an advantage

in pursuing Se and Sp over and above post-test probabilities, and that is to determine,

for an average subject of the types represented in the trials, what the expected

false-positive and false-negative rates likely to be.

If what we need is the best estimate of Se and Sp across studies that reflects a

generalizable population value, then a weighted average of the spectrum of effects

across the studies themselves is not necessarily bad. What may lead to spectrum

bias, however (as opposed to the spectrum effect), is the methodological rigueur

with which the study was conducted and thus a quality assessment is necessary.

This is preferable to simply considering the varying effects across studies as

random changes because the set of studies cannot be visualized as a random subset

from a population of all studies, and therefore the random effects model does not
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apply, at least according to a strict interpretation of randomization in statistical

inference. Until recently, there was no simple way of bias adjustment in meta-

analysis, but there is currently a quality effects method and software (MetaXL) that

implements this (http://www.epigear.com). MetaXL uses a double arcsin square

root transformation to stabilize variances of proportions for meta-analysis and

provides a method for bias adjustment in addition to the usual inverse variance

adjustment.

If we take the example of standard ultrasound data presented by Whiting et al.

(2005) for the diagnosis of vesico-ureteral reflux in children, the results of a

univariate analysis of Se and Sp are shown in Fig. 6.4. Using the metandi procedure
in Stata, we can also compute bivariate results and the resulting sROC plot is shown

Fig. 6.4 Forest plots depicting the results of univariate bias adjusted meta-analyses of sensitivity

and specificity. The box sizes are proportional to the weight given to each study for pooling. The

horizontal lines are the confidence intervals and the diamond depicts the summary sensitivity or

specificity. Q ¼ the Cochran Q statistic I2 ¼ the I2 statistic
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in Fig. 6.5. The bivariate summary sensitivity was 49 % (95 % CI 30.6–67.7) and

the summary specificity was 78.1 % (95 % CI 64.8–87.3). Clearly, these are quite

similar to the univariate results in Fig. 6.4 and the added advantage of the univariate

plots would be the obvious depiction of the spectrum of effects as well as their

correlation with bias, if any.
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