
Chapter 15

Meta-analysis II

Interpretation and Use of Outputs

Adedayo A. Onitilo, Suhail A.R. Doi, and Jan J. Barendregt

Abstract Outputs in meta-analysis give us measures of evidence dissemination bias

or graphical representation of the pooled results and their underlying heterogeneity.

This chapter discusses the various outputs with a focus on their utility and interpreta-

tion. Examples focus on the use of MetaXL, which is our own software developed for

meta-analysis and is freely available from www.epigear.com. This is the only

software currently available that can perform a bias-adjusted meta-analysis.

Introduction

The main output of a meta-analysis is the pooled estimate and its confidence

interval. In addition, there are also a number of graphical and numerical outputs

that aid with interpretation of results by presenting information such as study

heterogeneity, detection of publication bias, and other important aspects of the

meta-analysis. Graphical and statistical representation should not replace, but

should be used in addition to narrative description of study design, setting,

methods, follow-up analysis methods as well as the strengths and limitations of

the individual studies pooled together in the meta-analysis. MetaXL is our
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preferred software for meta-analysis (downloadable freely from www.epigear.

com) and all outputs we discuss use MetaXL as far as possible. In addition, bias-

adjusted meta-analyses can only be run using MetaXL.

Individual and Pooled Results

Forest Plot

The forest plot, a graphical presentation of meta-analysis results, first used in 1982

by Lewis and Ellis, has now become standard practice and is arguably the most

important output from a meta-analysis. A forest plot presents individual study

estimates, the pooled estimate, confidence intervals, as well as the weight of each

study in the analysis and heterogeneity statistics. Individual studies used in the

meta-analysis are represented in the plot by horizontal lines; the length of each line

represents the confidence interval around each study estimate. Shorter lines repre-

sent a narrower confidence interval thus higher precision of study effect size (ES),

usually found in larger studies. Conversely, longer lines represent a wider confi-

dence interval and less precision around effect side, usually found in smaller

studies. The point estimate from each study is represented by a shape on the line

such as a dot or box, and the size of this shape represents the weight of the study in

the meta-analysis. A summary estimate of the point estimates is also represented by

a shape at the end of the graph. Most forest plots also have two vertical lines. A

dotted vertical line represents the pooled estimate and a solid vertical line

represents the null estimate. For example, for the odds ratio this is 1 and for the

mean difference the null has a value of 0. Horizontal lines that cross the null vertical

line represent non-significant studies. Most forest plots in meta-analysis will

arrange studies in chronologic order or by subgroups. This allows for further

subgroup analysis or stratification. It can also be a way to represent heterogeneity

in the meta-analysis. The plot can either be on a normal scale or logarithmic scale.

The normal scale is usually used for mean difference and rates, while logarithm

scales are used for ratios.

Figure 15.1 presents the forest plot from a quality effects model analysis of

patient mortality before and after changes to the working hour regulations for

surgeons. The square on the plot for individual studies is proportional to the weight

it has in the meta-analysis; the horizontal lines represent the study’s confidence

interval. The dotted vertical line on the right gives the pooled estimate, the solid

vertical line on the left is the null result, in this case OR ¼ 0. Inspection of the

forest plot can give a good indication of the amount of heterogeneity. In MetaXL,

the forest plot is obtained by choosing Results from the MetaXL menu.

Forest plots are easy to read and interpret, although one drawback is that

attention is often drawn to the least precise study which has the longest horizontal

line and actually carries less weight in the meta-analysis. While the forest plots

254 A.A. Onitilo et al.

http://www.epigear.com/
http://www.epigear.com/


should be considered whenever feasible and appropriate in reporting a meta-

analysis it may not be the most appropriate representation of meta-analysis that

involves too many studies, in this case a summary forest plot or other plots such as

the Galbraith plot should be considered. In the summary forest plot, individual

study results are replaced with pooled results from either different outcomes or

different subgroups. Thus individual points represent meta-analyses rather than

studies.

Sensitivity Analysis

Sensitivity analysis explores the ways in which the main findings are changed by

varying the selection criteria for studies that are combined. The sensitivity analysis

is executed by running the meta-analysis across categories of selected studies; for

example, published versus unpublished studies or other selection criteria based on

patient group, type of intervention or setting. A meta-analysis can also be

performed by leaving out one study at a time to see if any single study has a

large influence on the pooled results. Sensitivity analysis can also be done by

running different meta-analysis models to examine the robustness of the method

utilized in the meta-analysis. Usually if there is no significant heterogeneity in the

studies used, most methods should yield comparable summary estimates. When

dose–response or open-ended variables are examined in the meta-analysis, a sensi-

tivity analysis can limit the range in the dose–response or open-ended variable that

produce most of the effect. In meta-analyses without sensitivity analyses, the likely

Fig. 15.1 The forest plot from a quality effects model analysis of mortality after (compared with

before) the ACGME (Accreditation Council for Graduate Medical Education) regulations that

reduced working hours for surgeons. The dotted vertical line indicates the pooled effect size. Q is

the Cochran Q statistic for heterogeneity and I2 is the I2 statistic and both are discussed below
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impact of these important factors on the key finding is ignored and thus the results

are less robust. An example of a leave-one-out sensitivity analysis is given in

Table 15.1 and also depicted in the forest plot for 2�/week versus 1�/week

comparisons after electroconvulsive therapy (ECT) for depression (Fig. 15.2).

Heterogeneity

One of the most important aspects of meta-analysis is to determine whether

heterogeneity exists in the studies combined in the analysis and investigate the

source of such heterogeneity. It underscores the use of meta-analysis as a means of

Table 15.1 Leave-one-out sensitivity analysis results (Charlson et al. 2012)

Study excluded

Meta-analysis results with study excluded Weight (%)

of the study

in the

complete

analysisES

Lower 95 %

confidence

limit

Higher 95 %

confidence

limit

Gangadhar �0.897 �1.540 �0.255 18.8

Vieweg �0.190 �0.907 0.527 14.2

Lerer and Segman �0.138 �0.846 0.570 17.8

Shapira 0.497 �0.084 1.078 25.5

Kellner 0.892 �0.027 1.811 8.0

Janakiramaiha (L) 1.169 0.220 2.117 9.6

Janakiramaiha (H) 2.236 0.944 3.528 6.0

Fig. 15.2 Forest plot comparing 3�/week ECT with 2�/week (upper subgroup) or 1�/week

(lower subgroup). It is evident that the 1�/week frequency results in a greater difference from 3�/

week compared with 2�/week (Data from Charlson et al. 2012). Heterogeneity is diminished

within subgroups suggesting that ECT frequency contributes to overall heterogeneity
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generating a summary estimate, lends conclusiveness to otherwise inconclusive

clinical situations and extends meta-analysis to explain differences between the

combined studies. Heterogeneity can be clinical or statistical. Clinical heterogene-

ity is based on the characteristics of studies combined (e.g., study design, follow-up

length, duration of therapy) and characteristics of subjects in the studies. Thus

clinical heterogeneity can be within or between studies. Statistical heterogeneity

refers to situations when the estimates from different studies deviate considerably

from each other. Below we describe some of the formal statistical tests and plots for

assessing heterogeneity.

Cochran’s Q

Cochran’s Q is a heterogeneity statistic. It is the classical measure of heterogeneity

and is given by

Q ¼
X
i

wi θi � θp
� �2

where i is an index for the study, wi is the fixed effect weight of study i, θi is

the estimate from study i, and θp is the fixed effect pooled estimate. The Q
statistic follows a chi-squared distribution with k � 1 degrees of freedom under

the null hypothesis of homogeneity, where k is the number of studies in the meta-

analysis. If the probability of the value of Q occurring by chance is low (p < 0.05),

the null hypothesis is rejected and heterogeneity is assumed. Unfortunately, the Q
statistic is not very sensitive when the number of studies is not large. In that case,

some authors prefer a critical value for p of 0.1 instead of 0.05. When the number of

studies is large, the Q statistic becomes too sensitive. In MetaXL the MACochranQ

function returns the Q statistic in the spreadsheet. The test can then be performed

using Excel’s CHIDIST function. The Q statistic and its test result are also

presented in the forest plot and tabular output.

The magnitude of the computed Q is dependent on the weight and the number of

studies in the meta-analysis. If there are limited number of small studies (<20

studies), it has been shown that the asymptotic Q statistic gives the correct type I

error under the null hypothesis but has low power (Takkouche et al. 1999) and null

for heterogeneity is not likely to be rejected. Whereas if there are large number of

studies or large sample size studies in the meta-analysis, irrespective of true clinical

heterogeneity Q has too much power and null for heterogeneity is likely to be

rejected. For this reason, it is always important to examine the studies in the meta-

analysis for clinical heterogeneity.
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I2

The I2 statistic is another means to detect heterogeneity, and is derived from the Q
statistic. The I2 examines the percentages of variation across studies due to hetero-

geneity rather than by chance and it is given by

I2 ¼ 100 Q�df
Q if > 0

0 otherwise

�

where df ¼ k � 1 is degrees of freedom. Confidence intervals for I2 can be derived
as follows:

Define H ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q=ðk � 1Þp

. Then,

SE lnðHÞ½ � ¼
1
2

lnðQÞ�ln k�1ð Þffiffiffiffiffi
2Q

p
� ffiffiffiffiffiffiffiffi

2k�3
p if Q > kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2 k�2ð Þ 1� 1

3 k�2ð Þ2
� �n or

otherwise

8><
>:

95 % confidence intervals for H are then derived by

exp lnH � 1:96SE lnðHÞ½ �ð Þ

Since

I2 ¼ H2 � 1

H2

the confidence intervals for I2 are derived from those of H. The I2 statistic is thus a
number between 0 and 100. A rule of thumb is that heterogeneity is low for an I2 of
25, moderate for an I2 of 50, and high for an I2 of 75. In MetaXL the MAISquare

function returns the I2 statistic in the spreadsheet. It is also presented in the forest

plot and tabular output; the latter includes the confidence interval. Effectively, I2 is
(Q � (k � 1)) divided by Q where k denotes the number of studies. I2 has the same

problem of low statistical power with small numbers of studies. Specifically, the

confidence intervals around I2 behave very similarly to tests of Q in terms of type I

error and statistical power. Also, I2 increases with the number of subjects included

in the studies in a meta-analysis. It thus seems counterintuitive to criticize Q as

having low power on the one hand and to define a measure (and an assessment rule)

that would require the heterogeneity test to be even more significant. From the point

of view of validity, power and computational ease, the Q statistic is probably a

better choice compared with I2. Unlike the Q statistic, the I2 statistic does not vary
based on the number of studies included in the meta-analysis, it is possible to

compare the statistical heterogeneity of meta-analyses with different numbers of

studies. However, I2 will tend to increase artificially as evidence accumulates since
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it increases with number of subjects included in the meta-analysis. Additionally, as

I2 is the percentage of variability that is due to between-study heterogeneity, 1 � I2

is the percentage of variability that is due to sampling error. When the studies

become very large, the sampling error tends to 0 and I2 tends to 1 (Rucker et al.

2008). Such heterogeneity may not be clinically relevant and studies with relatively

large I2 in this situation may still be usefully pooled if other measures such as

τ2 remain relatively small and clinically relevant heterogeneity is unlikely to be

present.

τ2

Yet another statistic is τ2, which is the random effects variance component calcu-

lated as part of a random effects meta-analysis. The τ2 statistic examines the

between-study variance and is given by

τ2 ¼ Q� k � 1ð Þ
P

wi �
P

w2
iP

wi

� 	

which is set to zero if Q < k � 1, and wi is the inverse variance weight. The

τ2 statistic is the variance of the presumed normally distributed individual study

estimates under the assumptions of the random effects model.

In MetaXL the MATauSquare function returns the τ2 statistic in the spreadsheet,
and it is also presented in the tabular output of random effects analyses. It may also

be used as a marker of heterogeneity if its value is greater than zero. Similar to theQ
and I2 statistic the τ2 statistic has its limitation; it is not very powerful if the number

of studies is small or if the conditional variances between the studies are large. The

advantage, however, is that it does not depend on the number or size of studies in

the meta-analysis, i.e., it can be kept fixed with increasing subjects in the meta-

analysis. Furthermore, since τ2 is measured on the same scale as the outcome, it can

therefore be directly used to quantify variability. Note that assessment of τ2 does
not give us a p value but rather a yes/no answer only, and certainly there will be

little heterogeneity if τ2 ¼ 0 regardless of the value of I2. We must keep in mind

however that τ2 assumes normality of the random effects and the error terms.

Q Index

The Q index is applicable to the quality effects model only. It expresses the

percentage of study weight that is re-distributed in the quality effects analysis. It

is given by
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Qindex ¼ 100
X
i

wi
1� qið ÞP
j

wj

0
B@

1
CA

where qi is the quality score of study i and wi is the inverse variance weight.

In MetaXL the MAQIndex function returns the Q index statistic in the spread-

sheet, and it is also presented in the tabular output of quality effects analyses. The Q

index is the only measure that inputs study quality as a source of heterogeneity. It

therefore has the advantage of imputing clinical heterogeneity in statistical terms, a

strength not seen in any other statistical test for heterogeneity.

Galbraith Plot

The Galbraith plot (Fig. 15.3) presents standardized effect estimate on the vertical

axis plotted against the inverse of the standard error on the horizontal axis. It is a

linear regression constrained through the origin of the standardized treatment

effects (treatment effect divided by its standard error) on their inverse standard

errors which yields a regression line. Typically a dotted line is used at �2SD

confidence interval above and below this line. The slope of the regression line

provides details of the unstandardized effect estimates. Galbraith plots facilitate

examination of heterogeneity, including detection of outliers. With a fixed effect

model, 95 % of studies in a meta-analysis should be found on this plot to be within

the two confidence interval lines and the more precise studies are farthest from the

origin of the linear regression line. Different symbols can be used in the plots to

represent sub-sets or stratification thus making identification of the source of

heterogeneity easier. Also the graph can be labelled to show the direction the effect

the estimate favors. Compared to the forest plot, the Galbraith plot is able to display

more studies that cannot be easily done by the forest plot and it also has the

additional advantage that it gives a better representation of heterogeneity.

L’Abbé Plot

The L’Abbé plot is used to present the results of multiple clinical trials with

dichotomous outcomes showing for each study; the observed event rate in the

experimental group plotted against the observed event rates in the control group.

It is used to view the range of event rates among the trials and highlight excessive

heterogeneity. The L’Abbé plot is also ideally suited to diagnostic meta-analyses

(Fig. 15.4) where diseased (group 1) and healthy (group 2) rates of test positivity

can be compared across studies. The shape representing each study is usually

proportional to the size of each study (or study weights) since unlike the forest
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plot or Galbraith plot there is no information about the precision of the studies on

the plotted axes. The L’Abbé plot should be considered when outcomes are

dichotomous across studies (treatment vs. control) or for diagnostic studies (sensi-

tivity vs. false-positive rates).

Publication Bias

Publication bias refers to the phenomenon whereby studies with significant

outcomes are more likely to be submitted for publication compared to null result

or non-significant studies. This is usually assessed by several statistical and graphi-

cal (quasi-statistical) means.

Funnel Plot

Funnel plots assess publication bias or heterogeneity by plotting the trials’ effect

estimates against a measure of precision, Asymmetrical plots are interpreted to

suggest that selection biases are present. The use of such a plot is based on the fact

that precision in estimating the underlying treatment effect will increase as the

precision of the study increases and thus results from small studies will scatter

widely at the bottom of the plot, with the spread narrowing with increasing

Fig. 15.3 A Galbraith Plot with standardized effect estimate on the vertical axis plotted against

the inverse of the standard error as a measure of precision on the horizontal axis. The intercept is

constrained to zero. Solid lines represent the unweighted regression line constrained at 0 with a

slope equal to the overall effect size of a fixed effects meta-analysis, and its 95 % confidence

intervals (dashed line). The position of the studies on the y-axis indicates their contribution to the

Q statistic for heterogeneity. The position of the studies on the x-axis indicates the weight of each

study in the meta-analysis
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precision. In the absence of selection bias, the plot is expected to resemble a

symmetrical inverted funnel. It usually recommended that ratio measures of inter-

vention effect should be plotted on a logarithmic scale, so that effects of the same

magnitude but opposite directions (e.g., odds ratios of 0.5 and 2) are equidistant

from 1.0.

Figure 15.5 shows the funnel plot from the meta-analysis of fibrinolysis in

myocardial infarction study. The vertical line represents the pooled estimate from

the inverse variance model; the funnel sides represent the 95 % confidence intervals

around the pooled estimate, given the standard error on the y-axis; and the dots

represent the individual study results. The aim of the funnel plot is to examine

publication bias. When the study dots are largely symmetrical around the pooled

estimate, there is no evidence for publication bias. In the present case, there is a

large degree of asymmetry, which suggests publication bias is present. Funnel plots

can look quite different, depending on the choice of y-axis. MetaXL offers three

options: inverted standard error (default, and used in Fig. 15.5), precision, and

inverse variance. For the log of risk or odds ratio, the inverted standard error is

recommended. In MetaXL the funnel plot is obtained by choosing Results from the

MetaXL menu.

While there has been much focus on selection biases in relation to the associa-

tion between size and effect in a meta-analysis, it must be kept in mind that

asymmetry can also occur for reasons other than selection biases due to selective
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Fig. 15.4 L’Abbé plot demonstrating true-positive (group 1) and false-positive (group 2) rates in

diseased and healthy subjects, respectively, in a diagnostic meta-analysis (Data used fromWhiting

et al. 2005)
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publication or selective outcome reporting. These other factors related to study size

include study quality (smaller usually thought to be worse), presence of true

heterogeneity (e.g. different baseline risks in small and large studies), an associa-

tion between the intervention effect and its standard error (artefactual) or even

chance. Despite the initial expectations, assessment of publication bias using the

classic funnel plot continues to misrepresent bias because the appearance of the

standard funnel plot has been shown to be misleading. Furthermore, it has been

demonstrated that discrepancies between large trials and corresponding meta-

analyses and heterogeneity in meta-analyses may also be largely dependent on

the arbitrary choice of the method used to construct the classic funnel plot. In

particular, the shape of the plot in the absence of bias changes with the choice of

axes and it has been suggested that funnel plots of meta-analyses should generally

be limited to using standard error as the measure of study size and ratio measures of

treatment effect. Even when this is adhered to, the visual and quantitative assess-

ment of asymmetry is flawed. It has been suggested that funnel plot asymmetry

detected using measures of impact such as the risk difference (measures that are

correlated with baseline risk) may be artefactual and thus funnel plots and related

tests using risk differences should not be undertaken.

Egger’s Regression

The most popular formal statistical test of funnel plot asymmetry is the Egger’s test.

Its power is limited, particularly for moderate amounts of bias or meta-analyses

based on a small number of small studies. Egger’s regression is essentially a linear

regression on the standardized ESs (Zi) with precision (1=σi2)as predictor where θi
is the ES and the standardized ES is then given by

Fig. 15.5 The funnel plot from the fibrinolysis in myocardial infarction meta-analysis (Yusuf

et al. 1985). The ES is the LnOR. The central line depicts the fixed effects pooled estimate and the

limbs of the funnel are made up by the limits of the confidence interval around the pooled estimate

being computed successively based on the standard error of each study
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zi ¼ θi
σi

Egger’s regression is then

zi ¼ αþ β
1

σi

With no publication bias present, the intercept (α) should not be significantly

different from zero. This is similar to regression of a Galbraith plot not constrained

to the origin (see above).

Doi Plot

Another plot that is more objective uses the approach of a linear ranking to assess

study asymmetry using the same scale for the ES on which its standard error exists.

Essentially, each subject in every trial within the meta-analysis is assigned the ES

of their trial and ranked serially. As all subjects in a trial have the same ES, they will

have the same rank and thus each trial has a single final rank based on the number of

subjects (N) in the study. However, because N does not capture the trials’ informa-

tion content completely (the number of observed events in each arm of a study is

often more important in driving the precision of the estimate than the study size per

se), an updated N (designated N0) is used to incorporate this. The final ranking is

then converted to a percentile and then a z-score using the method detailed below.

First, N0 is generated as follows:

N0
i ¼ int Ni �

maxfSEi
2Nig

� �
SEi

2Ni

� 	

where SE is the standard error of the ES. If there are k studies in a meta-analysis

numbered serially as i ¼ 1,. . .,k each with an ES and study-adjusted patient-

information study size (N0), the k studies can then be ranked by ES and the N0

subjects in these k trials are serially numbered consecutively. The last subject

number in each study (Ai) is determined by summing the N0
i across trials with ES

smaller than or equal to the ES under consideration then (using indicator functions):

Ai ¼
X

ðN0
1 � 1fES1�ESigÞ; . . . ; ðN0

k � 1fESk�ESigÞ

 �

If we assign all subjects in a trial to the ES of their trial, the final rank (Ri) of each

study based on ES and number of subjects is computed as follows:
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Ri ¼
max ðA1 � 1fES1<ESigÞ; . . . ; ðAk � 1fESk<ESigÞ


 �þ Ai

2

Ri is then converted into a percentile (Pi) as follows:

Pi ¼ Ri � 0:5ð Þ
Pk
i¼1

Ni

Finally the percentile is converted into a z-score [z ¼ NORMINV(Pi,0,1)].

This new measure of precision is now the absolute value of the z-score and the

ES is then plotted against this absolute value of the z-score to create the new

mountain plot. With symmetrical studies, the most precise trials will define the

mid-point around which results should scatter, and thus they will be close to mid-

rank and will be close to zero on the z-score axis. Smaller less precise trials will

produce an ES that scatters increasingly widely, and the absolute z-score will

gradually increase for both smaller and larger ES’s on either side of that of the

precise trials. Thus, a symmetrical triangle is created with a z-score close to zero at

its peak. If the trials are homogeneous and not affected by selection or other forms

of bias, the plot will therefore resemble a symmetrical triangle with the studies

themselves making up the limbs of the plot (Fig. 15.6).
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