
Chapter 14

Meta-analysis I

Computational Methods

Suhail A.R. Doi and Jan J. Barendregt

Abstract Meta-analysis is now used in a wide range of disciplines, in particular

epidemiology and evidence-based medicine, where the results of some meta-

analyses have led to major changes in clinical practice and health care policies.

Meta-analysis is applicable to collections of research that produce quantitative

results, examine the same constructs and relationships, and have findings that can

be configured in a comparable statistical form called an effect size (e.g. correlation

coefficients, odds ratios, proportions, etc.), that is, are comparable given the

question at hand. These results from several studies that address a set of related

research hypotheses are then quantitatively combined using statistical methods.

This chapter provides an in-depth discussion of the various statistical methods

currently available, with a focus on bias adjustment in meta-analysis.

Introduction

Meta-analysis is now used in a wide range of disciplines, in particular epidemiology

and evidence-based medicine where the results of some meta-analyses have led to

major changes in clinical practice and health care policies. Meta-analysis is appli-

cable to collections of research that produce quantitative results, examine the same

constructs and relationships and have findings that can be configured in a compara-

ble statistical form called an effect size (ES) (e.g. correlation coefficients, odds

ratios, proportions, etc.), that is, are comparable given the question at hand. These

results from several studies that address a set of related research hypotheses are then

quantitatively combined using statistical methods. The set of related research

hypotheses can be demonstrated at a broad level of abstraction; for example,
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where various therapies are lumped together such as laser, wedge resection and

interstitial ablation. Alternatively, it may be at a narrow level of abstraction and

represent pure replications. The closer to pure replications the collection of studies

is, the easier it is to argue comparability. Forms of research suitable for meta-

analysis include group contrasts such as experimentally created groups, that is,

comparison of outcomes between experimental and control groups and naturally or

non-experimentally occurring groups (treatment, prognostic or diagnostic features).

Pre-post contrasts can also be meta-analysed, for example, changes in continuous or

categorical variables. Another area for meta-analysis is central tendency research

such as incidence or prevalence rates and means. Association between variables can

be meta-analysed, such as correlation coefficients and regression coefficients.

The meta-analysis differs from the systematic review in that the focus changes to

the direction and magnitude of the effects across studies, which is what we are

interested in anyway. Direction and magnitude are represented by the ES and

therefore this is a key requirement for, and is what makes meta-analysis possible.

It is a quantitative measure of the strength of the relationship between intervention

and outcome and it encodes the selected research findings on a numeric scale. There

are many different types of ES measures, each suited to different research

situations. Each ES type may also have multiple methods of computation. The

type of ES must be comparable across the collection of studies of interest for meta-

analysis to be possible. This is sometimes accomplished through standardization

when some or all of the studies use different scales (e.g. the standardized mean

difference). A standard error must be calculable for that type of ES because it is

needed to calculate the meta-analysis weights, called inverse variance weights

(more on this later) as all analyses are weighted. Thus, it is important to abstract

ES information from studies if the systematic review is to be followed up with a

meta-analysis. The pooled estimate is usually computed by meta-analysis software

based on the ES input selected. The software we have created is MetaXL (www.

epigear.com) and it also has an option to enter the ES and standard error (SE)

directly or to bypass the SE input thus allowing a multivariable adjusted ES to be

entered directly.

It is therefore evident that combining quantitative data (synthesis) is what is

central to the practice of meta-analysis. The basic underlying premise is that the

pooled results from a group of studies can allow a more accurate estimate of an

effect than an individual study because it overcomes the problem of reduced

statistical power in studies with small sample sizes. However, pooling in meta-

analysis must be distinguished from simple pooling where there is the implication

that there is no difference between individual studies (or subgroups) so that it is

seemingly acceptable to consider that the data from the control group of one study

might just have easily come from the control group of another study. Bravata and

Olkin (2001) point out that in reality, by simple pooling, we are assigning different

weights to intervention and control groups and this can lead to paradoxical results.

Of course, if the individual studies have the same sample size in the intervention

and control groups (studies are balanced) such paradoxes will not occur and this

explains why balanced designs are advocated for randomized controlled trials and
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why simple pooling of centres is sometimes used in such multi-centre trials.

Bravata and Olkin (2001) emphasize that while simple pooling is obtained by

combining first, then comparing, the meta-analytic method compares first, then

combines. Thus, the order in which the operations of combining and comparing are

carried out is the difference between simple pooling and combining data for meta-

analysis and will yield different answers. Combining data via meta-analysis there-

fore provides a safeguard against reversals such as Simpson’s paradox that can

occur from simple pooling.

Common Effect Sizes

Standardized Mean Difference and Correlation

This is commonly used with group contrast research, treatment groups and naturally

occurring groups where the measurements are inherently continuous. It uses the

pooled standard deviation (some situations use control group standard deviation)

and is called Cohen’s “d” or occasionally Hedges “g”. The standardized mean

difference can be calculated from a variety of statistics and calculators are available

for various methods and remember that any data for which you can calculate a

standardized mean difference ES, you can also calculate a correlation type

ES. Standardized mean difference ES has an upward bias when sample sizes are

small but this can be removed with the small sample size bias transformation. If

N ¼ n1 + n2 then

ES0sm ¼ ESsm 1� 3

4N � 9

� �
Correlation has a problematic standard error formula and this is needed for the

meta-analysis inverse variance weight. In this case the Fisher’s Zr transformation is

used:

ESZr ¼ 0:5 ln
1þ r

1� r

� �
and results can be converted back into r with the inverse Zr transformation:

r ¼ e2ESZr � 1

e2ESZr þ 1
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Odds Ratio/Relative Risk

Again this is used with group contrast research but this time there the measurements

are inherently dichotomous. The odds ratio is based on a 2 by 2 contingency table

and is the odds of success in the treatment group relative to the odds of success in

the control group. Odds ratio/RR are asymmetric and have a complex standard error

formula. Negative relationships are indicated by values between 0 and 1. Positive

relationships are indicated by values between 1 and infinity. To solve this imbal-

ance, the natural log of the odds ratio/RR is used in meta-analysis.

ESLOR ¼ ln OR½ �; ESLRR ¼ ln RR½ �

In this case a negative relationship is <0, no relationship ¼ 0, and a positive

relationship is>0. Results can be converted back into odds ratios/RR by the inverse

natural log function.

Proportion/Diagnostic Studies

This is used in central tendency research e.g. prevalence rates and other proportions

such as sensitivity and specificity. Proportions have an unstable variance and thus

transformed proportions are automatically used by the software. We use the double

arcsine square root transformation in MetaXL (http://www.epigear.com) and more

details are given in the section below on proportions.

Pooling Effect Sizes

The Fixed Effects Model

The standard approach frequently used in weighted averaging for meta-analysis in

clinical research is termed the inverse variance method or FE model based on

Woolf (1955). The average ES across all studies is computed whereby the weights

are equal to the inverse variance of each study’s effect estimator. Larger studies and

studies with less random variation are given greater weight than smaller studies. The

weights (w) allocated to each of the studies are then inversely proportional to the

square of the SE; thus for the ith study

wi ¼ 1

SEi
2

which gives greater weight to those studies with smaller SEs.

232 S.A.R. Doi and J.J. Barendregt

http://www.epigear.com/


As can be seen above, the variability within each study is used to weight each

study’s effect in the current approach to combining them into a weighted average as

this minimizes the variance (assuming each study is estimating the same target). So,

if a study reports a higher variance for its ES estimate, it would get lesser weight in

the final combined estimate and vice versa. This approach, however, does not take

into account the innate variability that exists between the studies arising from

differences inherent to the studies such as their protocols and how well they were

executed and conducted. This major limitation has been well recognized and it gave

rise to the random effects (RE) model approach by DerSimonian and Laird (1986).

The Random Effects Model

A common model used to synthesize heterogeneous research is the RE model of

meta-analysis. Here, a constant is generated from the homogeneity statistic Q and,

using this and other study parameters, a random effects variance component

(REVC) (τ2) is generated. The inverse of the sampling variance plus this constant

that represents the variability across the population effects is then used as the

weight

w�
i ¼

1

SE2
i þ τ2

where w�
i is the RE weight for the ith study. However, because of the limitations of

the RE model, when used in a meta-analysis of badly designed studies, it will still

result in biased estimates even though there is statistical adjustment for ES hetero-

geneity (Senn 2007). Furthermore, such adjustments, based on an artificially

inflated variance, lead to a widened confidence interval, supposedly to reflect ES

uncertainty, but Senn (2007) has pointed out that they do not have much clinical

relevance.

The weight that is applied in this process of weighted averaging with an RE

meta-analysis is achieved in two steps:

• Step 1: Inverse variance weighting

• Step 2: Un-weighting of this inverse variance weighting by applying an REVC

that is simply derived from the extent of variability of the ESs of the underlying

studies.

This means that the greater this variability in ESs (otherwise known as hetero-

geneity), the greater the un-weighting and this can reach a point when the RE meta-

analysis result becomes simply the un-weighted average ES across the studies. At

the other extreme, when all ESs are similar (or variability does not exceed sampling

error), no REVC is applied and the RE meta-analysis defaults to simply a fixed
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effect meta-analysis (only inverse variance weighting). Al Khalaf et al. (2011) have

pointed out that the extent of this reversal is solely dependent on two factors:

1. Heterogeneity of precision

2. Heterogeneity of ES

Since there is absolutely no reason to automatically assume that a larger

variability in study sizes or ESs automatically indicates a faulty larger study or

more reliable smaller studies, the re-distribution of weights under this model bears

no relationship to what these studies have to offer. Indeed, there is no reason why

the results of a meta-analysis should be associated with this method of reversal of

the inverse variance weighting process of the included studies. As such, the changes

in weight introduced by this model (to each study) results in a pooled estimate that

can have no possible interpretation and, thus, bears no relationship with what the

studies actually have to offer.

To compound the problem further, some statisticians are proposing that we take

an estimate that has no meaning and compute a prediction interval around it. This is

akin to taking a random guess at the effectiveness of a therapy and under the false

belief that it is meaningful try to expand on its interpretation. Unfortunately, there is

no statistical manipulation that can replace commonsense. While heterogeneity

might be due to underlying true differences in study effects, it is more than likely

that such differences are brought about by systematic error. The best we can do in

terms of addressing heterogeneity is to look up the list of studies and attempt to un-

weight (from inverse variance) based on differences in evidence of bias rather than

ES or precision that are consequences of these failures.

Problems with These Conventional Models

One problem with meta-analysis is that differences between trials, such as sources

of bias, are not addressed appropriately by current meta-analysis models. Bailey

(1987) lists several reasons for such differences: chance, different definitions of

treatment effects, credibility-related heterogeneity (quality), and unexplainable and

real differences. An important explainable difference is credibility-related hetero-

geneity (quality) and this has been defined by Verhagen et al. (2001) as the

likelihood of the trial design generating unbiased results that are sufficiently precise

to allow application in clinical practice. The flaws in the design of individual

studies have obvious relevance to creating heterogeneity between trials as well as

an influence on the magnitude of the meta-analysis results. If the quality of the

primary material is inadequate, this may falsify the conclusions of the review,

regardless of the presence or absence of ES heterogeneity. The need to address

heterogeneity in trials via study-specific assessment has been obvious for a long

time and the solution involves more than just inserting a random term based on ES

heterogeneity as is done with the RE model.
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Previous studies that have attempted to investigate incorporation of some study-

specific components in the weighting of the overall estimate concluded that

incorporating such information into weights provided inconsistent adjustment of

the estimates of the treatment effect. Although these authors follow the same

assumption as we do that studies with deficiencies are less informative and should

have less influence on overall outcomes, methodology was flawed and such

attempts therefore did not reduce bias in the pooled estimate, and may have resulted

in an increase in bias.

A study score-adjusted model that overcomes several limitations has been

introduced by Doi and Thalib (2008, 2009). The rationale was that in a group of

homogeneous trials, it is assumed that because the ESs are homogeneous, the

studies are all estimating the same target effect (we can call this a type A trial).

In this situation, the inverse variance weights of Woolf (1955) will minimize the

variance since the mean squared error (MSE) ¼ expected(estimate � true)2 ¼
variance + (bias)2. Bias is zero if the underlying true ESs are equal and thus

minimizing variance is optimal and the weighted MSE ¼ variance. It is thought

that the inverse variance-weighted analysis tests the null hypothesis that all studies

in the meta-analysis are identical and show no effect of the intervention under

consideration regardless of homogeneity. This requires the assumption that trials

are exchangeable so that if one large trial is null and multiple small trials show an

effect, the large trial essentially decreases evidence against the null hypothesis.

Exchangeability, however, is likely to be conditional only, as discussed later, and

thus this is a big assumption. Therefore, if we do not believe the trials are

exchangeable then, in this situation, we have two alternatives: either the trials

have been affected by bias even though the underlying true effects are identical

(we can call these type B trials) or the trials represent different underlying true

effects (we can call these type C trials). In the former case, the trial ES from a

biased trial might seem like it is coming from a different underlying true effect, thus

giving the impression that the trials represent different underlying true effects. In

type B trials, inverse variance weights do not minimize the variance, it just

exaggerates it and creates gross bias in these situations. Furthermore, any set of

weights in a type A situation estimates the same target, but in a type B situation each

set of weights estimates a different target. Thus, inverse variance weights in the

latter situation just increase bias and are not optimal for type B trials. Thus, in type

B trials, we would want to use situation-specific weights.

One such situation-specific weight that has been suggested for type B trials is

weighting according to the probability (Qi) of credibility (internal validity or

quality) of the studies making up the meta-analysis. Although this can correct for

distortions due to systematic error, it can also introduce errors of another type. For

example, a study of a small sample that is not representative of the underlying

population may get a large quality weighting and this can skew the data. It might

thus be informative to weight according to precision and then redistribute the

weights according to situation-specific requirements. In this case, the importance

of smaller good quality studies are upgraded only if the larger or more precise

studies are deemed poor by its situation-specific weight.
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This line of thought is not new as this is precisely what the RE model attempts to

do. The unfortunate thing, however, is that the situation-specific weight used in this

particular model is an index of the variability of the ESs across trials and the same

situation-specific weight is applied to all trials (the RE model). It becomes quite

clear that the type B meta-analysis differ from the RE model in that between-study

variability is visualized as a fixed rather than a random effect and thus represents an

extension of a fixed effects model that can address heterogeneity. In type B trials,

the expectation is that the expected value of the study estimate differs from the

grand (real) mean (μ) by an amount βj and the true (study-specific) mean (θj) for
study j is given by θj ¼ μ + βj. The divergence, however, is that the βj are not

interpreted as a random effect with type B studies and thus do not have a common

variance. The philosophy behind the random effect construct is that it presupposes

that the study effects are randomly sampled from a population with a varying (σ2τ
> 0) underlying parameter of interest. Overton (1998) thus has stated that if the

studies included in the meta-analysis differ in some systematic way from the

possible range in the population (as is often the case in the real world), they are

not representative of the population and the RE model does not apply, at least

according to a strict view of randomization in statistical inference.

In addition, with the RE model, the weight of the larger studies are redistributed

to smaller studies but τ2 has a decreasing effect as study precision declines. The size
of τ2 is determined by how heterogeneous the ESs are and if τ2 is zero, the RE model

defaults to the FE model. If we focus on the largest study, the bigger its difference

from other studies, the bigger the τ2 and the decrease in weight of this study. Al

Khalaf et al. (2011) demonstrates that τ2 has a U-shaped association with ES in the

largest study, being minimal when the largest study conforms to other study ESs,

and as this ES departs from that of other studies, τ2 increases. The weight of the

largest study then declines as τ2 increases. However, while the biggest individual

study weight decrements associated with bigger τ2 follow a predictable pattern, the

impact of different τ2 values on the pooled estimate is unpredictable. This happens

because, although individual study weight changes are predictable from τ2 , the
relationship of weight gain across smaller studies bears no relationship to which

study shows the most ES heterogeneity, or indeed any tangible information from

the study.

The Quality Effects Model

In order to rectify this situation, an alternative approach was proposed by Doi and

Thalib (2008) and subsequently modified in 2011 and 2012. The main reasoning

was: suppose there are K studies in a set of studies that belong to a meta-analysis

and xj and wj are random variables representing the ES and normalized (sum to 1)

weights, respectively, with the study labels j ¼ 1,. . .,K. The expected value of xj
was taken to be the underlying parameter (μ) being estimated. However, in this

situation, the ESs are assumed to be similar in the sense that the study labels
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(j ¼ 1,. . .,K) convey no information and are thus considered independent and

identically distributed (IID). The reality is that each of these labels (representing

independent studies) is associated with specific information about the likelihood of

systematic bias (βj) and thus for all j the xj are in fact only conditionally IID and

would be estimating a specific biased parameter. Assuming that heterogeneity

derives from essentially non-random systematic error and randomness is only

obtained via a random permutation of the indices 1,2,. . .,K, then details about the

design of study j do provide information about these systematic errors and can be

represented by a hierarchical model for each study:

βj � Nðβ;ϕ2Þ ðbias effectsÞ

ðxj j dμþ βjÞ �indepNð dμþ βj; σj
2 þ ϕ2

j Þ ðstudyÞ

The bottom level of underlying effects, the study level of the hierarchical model,

says that because of relevant differences in methodology and systematic errors,

each study has its own underlying treatment effect μþ βj , and the observed ES

differences xj are like random draws from a normal distribution with mean dμþ βj
and variance σj2 þ ϕ2

j (the normality is reasonable because of the central limit

theorem). Thus, a suitable linear model for the jth study (not considering across all

studies) can be written as

xj ¼ dμþ βj þ εj (14.1)

and for each study

EðxjÞ ¼ dμþ βj

Also, under the assumption of no prior information about weights (wj) except

that they sum to 1, they will be equally distributed with the expected value of wj

being 1/K for all j. If c ¼ Covðwj; xjÞ is the covariance of these random quantities

across all studies, then

EðwjxjÞ ¼ Covðwj; xjÞ þ EðxjÞEðwjÞ ¼ cþ dμþ βj=K

and thus summing across all studies,

E
XK
j¼1

ðwjxjÞ
 !

¼ μþ 1

K

X
βj þ Kc

since E(wj) ¼ 1/K.
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Thus, it is clear that if we use empirical weights, c is not zero,Σβj is also not zero
and the meta-analytic estimate for μ is biased. It is probably true, as suggested by

Shuster (2010), that the unweighted estimate is a less biased estimate in situations

where wj and xj are correlated. However, it is clear that an unbiased estimate of μ
will not be provided unless the average βj ¼ 0, so systematic error also leads to

increase in bias.

Everything hinges on the variance and, therefore, the mere observation that the

unweighted estimate is likely to be unbiased does little to reaffirm our confidence in

its utility without a simultaneous measure of its global error (with respect to its

parameter). The MSE thus has to be minimized and the fact that bias is included as a

component is important because the judgment of the performance of the model

depends on the trade-off between the amount of bias and the variability.

It may be noted that for a particular study,

VarðxjwjÞ ¼ ðσ2j þ ϕ2
j Þw2

j

Therefore,

Var
X

xjwj

� �
¼
X

ðσ2j þ ϕ2
j Þw2

j (14.2)

Also, under the constraint that Σw ¼ 1 and only if σj2 þ ϕ2
j was equal for all K

studies, does the variance attain its minimum value for equal weights, and its

maximum when all weights except one are zero. This is not the case from

Eq. 14.2 and the naturally weighted average is expected to have a poor

bias–variance trade-off. The only logical solution therefore is to discount studies

that are expected to have an inflated value for βj. This can be achieved by linking βj
to the probability that a study is credible as follows. If β ¼ 0 and if

XK
j¼1

β2j =K ¼ ϕ2

then

Qj ¼ ϕ2=ðϕ2 þ ϕ2
j Þ

which can be interpreted as the probability that study j is credible as described

previously by Spiegelhalter and Best (2003) or Turner et al. (2009). Therefore,

ϕ2
j ¼ ðϕ2 � Qjϕ

2Þ=Qj
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What this means is that as Qj and the individual study bias variance (ϕ2
j ) are

inversely related and thus an inverse discounting system for such studies based on

Qj should be optimal if the expected increase in bias ends up being traded off by

larger decreases in variance. This is a logical conclusion also reiterated by Burton

et al. (2006) as any method that results in an unbiased estimate but has large

variability cannot be considered to be have much practical use.

To discount by quality requires computation of an adjusted Qj first as follows

(See Doi et al. 2011, 2012):

Qj adjð Þ ¼

PK
j¼1

Qj

 !
τj

PK
j¼1

τj

 !
K � 1ð Þ

0BBBB@
1CCCCAþ Qj if 9Qj

� �
Qj < 1

Qj otherwise:

8>>>>>>><>>>>>>>:
where

τj ¼ iwj � ðiwj � QjÞ
K � 1

and iwj is the inverse variance weight of study j, Qj is the credibility of study j
ranging from 0 to 1 and K is the number of studies in the meta-analysis. From the

adjusted quality parameter, a quality adjustor is then computed given by

τ̂j ¼
XK
j¼1

τj

 !
K

QjðadjÞPK
j¼1

QjðadjÞ

0BBB@
1CCCA� τj

This is then used to compute the study bias-specific variance component Q̂j as

follows:

Q̂j ¼ Qj þ τ̂j
iwj

� 	
What these equations do is replace the REVC with study-specific variance

components so that the target this meta-analysis is estimating becomes meaningful.

Given that the final weight for the study iswδ
j ¼ iwjQ̂j, the final summary estimate is

then given by
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�xQE ¼
P ðwδ

j � xjÞP
wδ
j

¼
P ðQ̂j � iwj � xjÞP ðQ̂j � iwjÞ

where �x is the pooled ES measure and it has a variance (V) given by

VQE ¼
X

σ2j
wδ
jP
wδ
j

 !2

Given that iwj ¼ 1=σ2j , this reduces to:

VQE ¼
P ðQ̂j

2 � iwjÞP ðQ̂j � iwjÞ
� �2

However, there is expected to be significant overdispersion and thus this vari-

ance estimate underestimates the true variance and can lead to a confidence interval

with poor coverage. To rectify this, a correction factor (CF) has been proposed for

overdispersion based on iterative simulation studies using the Q statistic (χc ) as
follows (Doi et al. 2011):

CF ¼ 1�max 0;
χc � ðK� 1Þ

χc

� �� 	0:25

For computation of the variance of the weighted average, the variance of each

study is then inflated to the power CF as follows:

iw0
j ¼ 1

σ2j

� �CF if σ2j < 1 or iw0
j ¼ 1

σ2j

� �ð2�CFÞ if σ2j � 1

This can then be used to update VQE as follows:

VQE ¼
P ðQ̂j

2 � iw0
jÞP ðQ̂j � iw0

jÞ
� �2

Assuming the distribution of these estimates are asymptotically normal, the 95 %

confidence limits are easily obtained by

95% CI ¼ ES� 1:96ð ffiffiffiffiffiffiffiffiffi
VQE

p Þ
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It becomes quite clear, that the quality-based method differs from the RE model

in that between-study variability is visualized as a fixed rather than a random effect

and thus represents an extension of a fixed effects model that can address heteroge-

neity. In both the classic random effect method and the quality-based method, the βj
is taken to be the difference between the grand (real) mean (μ) and the true (study-

specific) mean (xj) for study j (βj ¼ xj � μ). The divergence, however, is that the βj
are not interpreted as a random effect with the quality-based method and thus do not

have a common variance. The philosophy behind the random effect construct is that

it presupposes that the xj values are randomly sampled from a population with a

varying underlying parameter of interest (τ2 > 0). However, if the studies included

in the meta-analysis differ in some systematic way from the possible range in the

population (as is often the case in the real world), they are not representative of the

population and the RE model does not apply, at least according to a strict view of

randomization in statistical inference (Overton 1998). The quality-based method

therefore corrects this by interpreting the βj as a fixed effect related to the study

itself (based on systematic or related errors) and thus the effect of a varying target

created by this bias can be minimized by discounting studies where within-study

bias variance (ϕ2
j ) is likely to be large relative to between-study bias variance (ϕ2).

Such discounting requires a robust mechanism to avoid increasing bias and to

simultaneously allow incorporation of sampling errors into the model as detailed

above based on previous work on this subject. As mentioned by Eisenhart (1947),

which situation applies to the model is the deciding factor in determining whether

effects are to be considered as fixed or random and when inferences are going to be

confined to the effects in the model, the effects are considered fixed.

While with this model we assume that non-credibility leads to bias in the ES, this

supposition is backed by clear evidence from several authors such as Balk et al.

(2002), Conn and Rantz (2003), Egger et al. (2003), Moher et al. (1998),

Schulz et al. (1995) and others suggesting that inadequate methodology correlates

with bias in the estimation of treatment effects. However, there could be instances

where lack of credibility does not lead to bias in the estimation of treatment effects

(or alternatively where such biases may have been obscured by the lack of credibil-

ity). In such cases, the quality effects (QE) model is still valid and credibility

information results simply in decreased confidence (wider confidence intervals) in

the pooled estimate. We do not delete lower quality studies because every study has

something to add to the weighted estimate. We do not know what the relationship of

study-specific scores are to the magnitude or direction of bias. However, if this

weighting is not based on study- or goal-specific attributes, then the weighted

estimate loses meaning. A sensitivity analysis, on the other hand, can only tell us

that subgroups are heterogeneous but not what the true estimate is likely to be. In

studies that vary due to systematic error, study-specific scores can lead to the best

approximation of the true ES. The letter would not be possible with either the RE

model or sensitivity analyses.

When weighting study estimates by their study-specific scores, we must keep in

mind that these scores do not tell us the direction or magnitude of the change in ES
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that is attributable to that score. The QE method of Doi and Thalib (2008), is not

constrained by this limitation, because, unlike previous methods, it does not adjust a

study weight directly but redistributors it in relation to all other study weights based

on its quality status. This is exactly what the RE model does too, the major

difference being that the latter adds on weight to smaller studies without any

rationale for doing so and the process ultimately becomes random. This is because

τ2 is not individualized to each study as τ̂i is in the QE model. A gradual increase in

weight of smaller studies with quality is seen but not with ES heterogeneity. This

also explains why previous attempts by Berard and Bravo (1998) or Tritchler

(1999) to incorporate study-specific scores into weights have failed to provide

sufficient adjustment of the estimates of treatment effects as they failed to consider

ramdom error or counterintuitively decided to incorporate study-specific scores

over the random redistribution in an RE model.

Greenland (1994) suggested more than a decade ago that quality scoring merges

objective information with arbitrary judgments in a manner that can obscure

important sources of heterogeneity among study results. He gave the example of

dietary quality scoring in the Nurses Health Study and states that the result would

likely indicate no diet effects associated with disease if the effects of important

quality items are confounded within strata of the summary quality score. The

problem is to use the information regarding quality in this way. If we viewed the

diet quality score as the probability that a nurse’s diet is accurately measured, we

would be able to rank nurses from best to worst reliability of dietary information.

Even if this ranking is subjective or poor, we would still be more confident about the

relationship between diet and disease in high scorers than in low scorers. This is the

correct use of quality scores, but cannot be demonstrated with conventional meta-

analysis models (Al Khalaf et al. 2011) given that the spread of precision and ES

take precedence over stratification by quality score. The fact that previous authors

used scores as exclusion criteria or to sequentially combine trial results using these

models would only increase bias by altering the range of precision and ES

differences among stratified studies. This is probably the reason why many authors

such as Balk et al. (2002), Herbison et al. (2006), Juni et al. (1999) and Whiting

et al. (2005) all report that stratification of meta-analyses by quality score has no

clear impact on the pooled estimate.

Study-specific assessment has not, until now, found an acceptable means of

becoming an important part of meta-analyses. More than half of published meta-

analyses do not specify in the methods whether and how they would use study-

specific assessment in the analysis and interpretation of results, and only about 1 in

1,000 systematic reviews consider weighting by quality score (Moja et al. 2005).

This is probably because of the lack, until now, of an adequate model to do so and

therefore those meta-analyses that had an a priori conceptualization of quality

simply linked it to the interpretation of results or to limit the scope of the review.

Although there is no gold standard and we still do not know how best to measure

quality, this is not an obstacle to QE analysis because it works with any quality

score. Given that we have demonstrated that the RE model randomly adjusts
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estimates of treatment effects in a meaningless fashion, it may now be time to

switch from observed random statistical ES heterogeneity to models that are based

on measured study-specific estimates of their heterogeneity.

The Special Case with Proportions in Meta-analysis

Just about all epidemiologists habitually speak of the prevalence rate, but preva-

lence is defined as a proportion: the number of cases in a population divided by the

population number. This definition implies that (1) prevalence is always between

0 and 1 (inclusive), and (2) the sum over categories always equals 1.

The definition of prevalence is the same as the definition of the binomial

distribution (number of successes in a sample), and therefore the standard assump-

tion is that prevalence follows a binomial distribution. With the main meta-analysis

methods based on the inverse variance method (or modifications thereof), the

binomial equation for variance (expressed as a proportion) can be used to obtain

the individual study weights:

VarðpÞ ¼ pð1� pÞ
N

where p is the prevalence proportion and N is the population size.

With the variance of the individual studies nailed down, the pooled prevalence

estimate P then becomes (according to the inverse variance method)

P ¼
P

i
pi

VarðpiÞP
i

1
VarðpiÞ

with SE

SEðPÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

1

VarðpiÞ

s
(14.3)

The confidence interval of the pooled prevalence can then be obtained by

CIγðPÞ ¼ P� Zα=2SEðPÞ

where Zα=2 denotes the appropriate factor from the standard normal distribution for

the desired confidence percentage (e.g. Z0.025 ¼ 1.96).

While this works fine for prevalence proportions around 0.5, increasing

problems arise when the proportions get closer to the limits of the 0. . .1 range.

The first problem is mostly cosmetic: the equation for the confidence interval does
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not preclude confidence limits outside the 0. . .1 range. While this is annoying, the

second problem is much more substantial: when the proportion becomes small or

big, the variance of the study is squeezed towards 0 (see Eq. 14.3). As a conse-

quence, in the inverse variance method, the study gets a large weight. A meta-

analysis of prevalence according to the method described above therefore puts

undue weight on the studies at the extreme of the 0. . .1 range.

One way to avoid the problem of variance instability with extremes of preva-

lence is to estimate the SE, not using the individual proportions, but the overall

proportion:

VarðpicÞ ¼
ptotalð1� ptotalÞ

Nic

The numerator is now the same for every study and there is no longer the

problem where studies with proportions near 50 % get much smaller weights than

studies with proportions much smaller or much larger than 50 %. This approach

also avoids the problem where a study has 100 % prevalence proportion.

wic ¼ Nic

pCtotalð1� pCtotalÞ

where c ¼ 1,. . .,k denotes a particular category out of k categories. In a fixed effect
model, use of the pooled proportion to get individual variances would be exactly the

same as using individual proportions for variances because the SE of the pooled

prevalence in category c becomes

1P
wic

¼ pCtotalð1� pCtotalÞP
Nic

Since each study gets the same weight across categories, this method ensures

that the pooled category prevalences sum to 1. However, the confidence interval

does not preclude confidence limits outside the 0. . .1 range, so that problem

persists.

The Logit Transformation

To address this issue of estimates falling outside the 0. . .1 range, the logit transfor-

mation was proposed and, at that time, it was thought that it would address both the

problems mentioned above. It is given by

logitðpÞ ¼ ln
p

1� p

� 	
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with variance

VarðlogitðpÞÞ ¼ 1

Np
þ 1

Nð1� pÞ

The logit of a proportion has an approximately normal distribution, and as it is

unconstrained, it was thought it would avoid the squeezing of the variance effect.

The meta-analysis is then carried out on the logit transformed proportions, using the

inverse of the variance of the logit as the study weight. For the final presentation,

the pooled logit and its confidence interval are back transformed to a proportion

using

P ¼ expðlogitðPÞÞ
expðlogitðPÞÞ þ 1

While the logit transformation solves the problem of estimates falling outside

the 0. . .1 limits, unfortunately, it does not succeed in stabilizing the variance; rather

there is a reversal of the variance instability of the non-transformed proportions and

studies with proportions close to 0 or 1 get their variance estimates grossly

magnified and vice versa for proportions around 0.5. The variance instability that

plagued non-transformed proportions thus persists even after logit transformation.

It has therefore been suggested that, as a rule of thumb, the logit transformation

should be used when prevalences are less than 0.2 or more than 0.8.

The Freeman–Tukey Variant of the Double Arcsine Square Root
Transformation

The Freeman–Tukey transformation addresses both the problems mentioned above.

It is given by

t ¼ sin�1

ffiffiffiffiffiffiffiffiffiffiffiffi
xi

ni þ 1

r
þ sin�1

ffiffiffiffiffiffiffiffiffiffiffiffi
xi þ 1

ni þ 1

r
with variance

VarðtÞ ¼ 1

ni þ 0:5

The Freeman–Tukey transformed proportion has an approximately normal dis-

tribution, and, by being unconstrained, avoids the squeezing of the variance effect.

A meta-analysis can be carried out on the transformed proportions, using the

inverse of the variance of the transformed proportion as the study weight. For
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final presentation, the pooled Freeman–Tukey transformed proportion and its

confidence interval are back transformed to a proportion using

�Pð�tÞ ¼ 0:5f1� sgnðcos �tÞ½1� ðsin�tþ ðsin�t� 1= sin �tÞ=½1=v̂�Þ2�0:5g if p=v̂ � 2

½sinð�t=2Þ�2 otherwise:

(

where �P is the pooled prevalence, �v is the pooled variance and �t is the pooled t.
The lower (LCL) and upper (UCL) confidence limits of the pooled prevalence

are given by

LCL¼ 0:5 1� sgn cos tð Þ 1� sin tþ sin t� 1=sin tð Þ= 1=v̂
� �� �2h i0:5
 �

if p=v̂� 2

0 otherwise:

8><>:
UCL¼ 0:5 1�sgn cos tð Þ 1� sin tþ sin t�1=sin tð Þ= 1=v̂

� �� �2h i0:5
 �
if 1�pð Þ=v̂�2

1 otherwise:

8><>:

Multi-category Prevalence

The discussion so far has implicitly been about two categories (disease present or

absent). But in some instances k-category prevalences may be meta-analysed where

k > 2 (e.g. mild, moderate and severe disease), and this complicates matters.

Using the previously mentioned non-transformed and logit transformed

proportions, it would not be possible to meta-analyse each category separately,

since the variance of both p and logit(p) depends on p itself; this implies that the

same study could get a different weight in each category, which seems hard to

justify. Moreover, the sum over the pooled category prevalences would not add up

to 1; another drawback.

To correct this problem, we can use the double arcsine square root transformed

proportion where the SE is no longer dependent on the size of the proportion, so that

both equal weights across categories and confidence limits within the 0. . .1 range

are achieved without the need for overall proportions.

However, we again have a problem with the RE and QE models in that we need a

common study estimate for Cochran’s Q that can be used in weighting with the RE

model and overdispersion correction with the QE model if we are to interpret the

pooled proportions as dependent proportions that add to 1. This was not too difficult

to conceptualize because if we believe that the ES variations across studies in one

category of proportions is not independent of variations in the other categories, the
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maximum category Q value would be the best and most conservative estimate of a

common study Q that can be applied to categorical prevalences that would allow

pooled prevalences to be considered dependent and thus sum to 1. Thus, with three

or more categories, the actual study heterogeneity Q value can be determined by the

category with the most heterogeneity.

The onlyminor drawback is that pooled prevalences do not add exactly to 1 across

categories when back transformed to the actual proportion because the non-linear

nature of the double arcsine transformation causes the sum over the back-

transformed category prevalences to become unequal to 1 (since the transformed

proportion (t) can have several values (albeit close together) for the same value of

prevalence). Thus, while the sum of back-transformed pooled proportion comes

close to 1, it would still not exactly add to 1, unlike the standard prevalences. The

error is small and thus can be corrected simply by adjusting the pooled prevalence (P̂)
in each category after pooling and back transformation:

Adjusted P̂c ¼ P̂cPk
c¼1

P̂c

This is then the final prevalence in each category. The confidence intervals

however need no adjustment. This procedure is available in MetaXL (www.

epigear.com).

Prevalence Studies from Different Populations

One further consideration is type C trials, which usually deal with the burden of

disease where true differences across populations are expected. A study of, for

example, 1,000 respondents is equally useful for examining the mortality in a

country with ten million inhabitants as it would be in a country with a population

of only one million. Without weighting, any figures that combine data for two or

more countries would overrepresent smaller countries at the expense of larger ones.

So a population size weight is needed to make an adjustment to ensure that each

country risk is represented in the pooled estimate proportional to its population size.

Although such weighting has been attempted previously by Batham et al. (2009), it

has been improperly applied. The best method is to assign a proportional weight

between 0 and 1 for each study in relation to the largest based on the underlying

population size. The population size weight (P(weight)) is thus the proportional

weight P(size)i/P(size)max. However, we must emphasize that inverse variance

weights have no rule here and this may more appropriately be considered “risk

adjustment” or standardization rather than meta analysis (see Appendix 2).

14 Meta-analysis I 247



Appendix 1: Need for an Overdispersion Correction

In a study with overdispersed data, the mean or expectation structure (θ) is adequate
but the variance structure [σ2(θ)] is inadequate. Individuals in the study can have

the outcome with some degree of dependence on study-specific parameters unre-

lated to the intervention. If such data are analysed as if the outcomes were

independent, then sampling variances tend to be too small, giving a false sense of

precision. One approach is to think of the true variance structure as following the

form [φ(θ)σ2(θ)]; however, it is complex to fit such a form. As a simpler approach,

we suppose φ(θ) ¼ c, so that the true variance structure [cσ2(θ)] is some constant

multiplier of the theoretical variance structure. A common method of estimating c
suggested used by Lindsey (1999) or Tjur (1998) is to use the observed chi-squared

goodness of fit statistic for the pooled studies divided by its degrees of freedom:

c ¼ χ2=df

If there is no overdispersion or lack of fit, c ¼ 1 (because the expected value of

the chi-squared statistic is equal to its degrees of freedom) and if there is, then

c > 1. In a meta-analysis, this goodness of fit chi-squared divided by its df is equal

to H2 as defined by Higgins and Thompson (2002).

The problem of using the overdispersion parameter as a constant multiplier of

the variances of each study in the meta-analysis presupposes that, for a constant

increase in this parameter, there is a constant increase in variance. This means that

the impact of the parameter is not capped and a point is eventually reached where

there is overinflation of the variances for a given level of overdispersion resulting in

overcorrection and confidence intervals that are too wide. In order to reduce the

impact of large values of H2, we can transform H2 to its reciprocal and use this to

proportionally inflate the variances. Higgins and Thompson (2002) also defined an

I2 parameter, which is an index of dispersion that is restricted between 0 (no

dispersion) and 1. If we reverse the I2 scale (by subtracting it from 1) so that no

dispersion (only sampling error) is now 1 as opposed to 0, then (1 � I2) is indeed
the reciprocal of H2. We thus used (1 � I2) as an exponent to proportionally inflate
study variances < 1. For variance > 1, we used 2 minus this overdispersion

parameter (which reduces to [I2 + 1]) as the inflation factor. Additional rescaling

was done by scaling (1 � I2) to various roots and using the simulation described

above to see the impact on coverage of the confidence interval. The fourth root was

found to result in an acceptable simulated coverage of the confidence interval

around 95 %. We thus used [(1 � I2)1/4] as the final overdispersion correction

factor. This is also equivalent to (1/H2)1/4. This correction was then used to inflate

the variances of individual studies resulting in a more conservative meta-analysis

pooled variance. Even if the accuracy of this approximation is questionable,

common sense suggests that it is better to perform this correction, implicitly making

the (more or less incorrect) assumption that the distribution of c is approximated

well enough by a χ2 distribution with k � 1 degrees of freedom than not to perform
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any correction at all, implicitly making the (certainly incorrect) assumption that

there is no overdispersion in the data (Tjur 1998). This adjustment in the QE model

corrects for overdispersion within studies that affect the precision of the pooled

estimate, not for heterogeneity between studies that affect the estimate itself.

Appendix 2: Quality Scores and Population Impact Scores

For a QE type of meta-analysis, a reproducible and effective scheme of quality

assessment is required. However, any quality score can be used with the method and

thus we are not constrained to any one method. There are many different quality

assessment instruments and most have parameters that allow us to assess the

likelihood for bias. Although the importance of such quality assessment of experi-

mental studies is well established, quality assessment of other study designs in

systematic reviews is far less well developed. The feasibility of creating one quality

checklist to apply to various study designs has been explored by Downs and Black

(1998), and research has gone into developing instruments to measure the method-

ological quality of observational studies in meta-analyses (see Chap. 13). Never-

theless, there is as yet no consensus on how to synthesize information about quality

from a range of study designs within a systematic review, although many quality

assessment schemes exist. Concato (2004) suggests that a more balanced view of

observational and experimental evidence is necessary. The way Qi is computed

from the score for each study and the additional use of population weights (for

burden of disease or type C studies) is depicted in Table 14.1. The population

weights are applied as a method of standardization of the group pooled estimates

where there is a single estimate per group. The population weighted analysis does

not use inverse variance weighting and if a rate is being pooled would give an

equivalent result to direct standardization used in epidemiology. Rates have a

problematic variance but can be based on a normal approximation to the Poisson

distribution:

Varrate ¼ O� K

P

� 	2

where O are the observed events, P is the person-time of observation and K is a

constant multiplier. In the computation, zero rates can be imputed to have variances

based on a single observed event as a continuity correction.
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