
Chapter 10

Modelling Binary Outcomes

Logistic Regression

Gail M. Williams and Robert Ware

Abstract This chapter introduces regression, a powerful statistical technique

applied to the problem of predicting health outcomes from data collected on a set

of observed variables. We usually want to identify those variables that contribute to

the outcome, either by increasing or decreasing risk, and to quantify these effects. A

major task within this framework is to separate out those variables that are inde-

pendently the most important, after controlling for other associated variables. We

do this using a statistical model. We demonstrate the use of logistic regression, a

particular form of regression when the health outcome of interest is binary; for

example, dead/alive, recovered/not recovered.

The Generalized Linear Model (GLM)

Statistical models are mathematical representations of data, that is, mathematical

formulae that relate an outcome to its predictors. An outcome may be a mean (e.g.

blood pressure), a risk (e.g. probability of a complication after surgery), or some

other measure. The predictors (or explanatory variables) may be quantitative or

categorical variables, and may be causes of the outcome (as in smoking causes heart

failure) or markers of an outcome (more aggressive treatment may be a marker for

more severe disease, which is associated with a poor health outcome).

Generically, a fitted statistical model is represented by linear equations as shown

in Fig. 10.1. ‘Outcome’ is the predicted value of the outcome for an individual who

has a particular combination of values for predictors 1–3 etc. The coefficients are

estimated from the data and are the quantities we are usually most interested in. The

particular value of a predictor for an individual is multiplied by the corresponding

coefficient to represent the contribution of that predictor to the outcome. So, in
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particular, if a coefficient for a predictor is estimated to be zero then that predictor

makes no contribution to the outcome. The constant coefficient represents the

predicted value of the outcome when the values of all of the predictors are zero.

This may or may not be of interest or interpretable, because zero may not be in the

observable range of the predictor.

So the model predicts values of an outcome from each person’s set of values for

predictors. This, of course, generally does not match that person’s actual observed

value. The difference between the observed value and the predicted value is called

the residual, or sometimes the error. The term error does not imply a mistake but

rather represents the value of a random variable measuring the effects on individual

observed outcome values other than those due to the predictor variables included in

the model. Adding more predictor variables to the model is expected to reduce the

error. Mechanistically, the error or residual for a particular individual is the

difference between the individual’s observed and predicted values. An example is

the difference between an individual’s observed blood pressure and that predicted

by a model that included age and body mass index.

The theory of model fitting and statistical inference from the model requires that

we make an assumption about the distribution of the errors. In many cases, where

we have a continuous outcome variable, the assumed distribution is a normal

distribution. This is the classic regression model. A log-normal distribution might

be used if a continuous variable is positively skewed. However, if we have a binary

variable, we might assume a binomial distribution. Thus, the full theoretical

specification of a model is represented by Fig. 10.2.

Fitting a Model

Fitting a model means finding the parameter estimates within the model equation

that best fits with the observed data. So the parameters referred to in Fig. 10.2 are

estimated from the data to give the coefficients referred to in Fig. 10.1. This may be

done in different ways. One of the earliest methods proposed to do this was the

Method of Least Squares, a general approach to combining observations, developed

by the French mathematician Adrien Marie Legendre in 1805. Effectively, this

identifies the parameter estimates that minimize the sum of squares of the errors as

in Fig. 10.2. In this sense, we estimate the parameters by values that bring the

predicted values as close as possible to the observed values. This works well with

some probability distributions, but not with others. Currently, the statistically

preferred technique is a process called maximum likelihood, or some variant of

Fig. 10.1 A fitted GLM

depicted mathematically
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this, which has the advantage of providing a more general framework covering

different types of probability distributions. This method was pioneered by the

influential English statistician and geneticist, Ronald Fisher, in 1912. The method

selects the values of the parameters that would make our observed data more likely

(under the chosen probability model) to have occurred than any other sets of values

of the parameters. This approach has undergone considerable controversy, applica-

tion and development, but now underlies modern statistical inference across a range

of different situations.

Link Functions

The GLM generalizes linear regression by allowing the linear model to be related to

the outcome variable via a link function and incorporating a choice of probability

distributions which describes the variance of the outcomes. While this chapter

focuses on using the logit link for modelling binary outcomes, it is not the only

possible link function. The logit link (hence logistic regression) is linear in the log

of the odds of the binary outcome and thus can be transformed to an odds ratio.

However, if we want to model probabilities rather than odds, we need to use a log

link rather than a logit link and then this can be transformed to a risk ratio.

However, unlike the logistic regression model, a log-binomial model can produce

predicted values which are negative or exceed one. Another concern is that it is not

symmetric since the relative risks for the outcome occurring and the outcome not

occurring are not the inverse of each other as with an odds ratio. Also, odds ratios

and risk ratios diverge if the outcome is common. If the risk of the outcome

occurring is greater than 50 %, it may be better to model the probability that the

outcome does not occur to avoid producing predicted values which exceed one.

Models for Prediction Versus Establishing Causality

We can use models to establish causality or for prediction or a combination of the

two. For causal models, we are usually interested in ensuring control of

confounding, so we can assert that the exposure of interest (say smoking) is a likely

cause of the outcome (heart failure); that is, that the association is not due to

confounding by social class, diet, etc. In this situation, we usually need to examine

closely the relationships between variables in the model. For prediction we try to

Fig. 10.2 The full general

linear model depicted

mathematically
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produce an inclusive model that considers all relevant causes and/or markers of a

particular outcome to enable us to predict the outcome in a particular individual. A

predictive model thus focuses more on predictor–outcome associations, rather than

being concerned with confounding per se.

Now that we have an understanding of a model and its components, we look at a

type of model commonly used in clinical epidemiology – logistic regression.

A Preliminary Analysis

Data-set

The Worcester Heart Attack Study examined factors associated with survival after

hospital admission for acute myocardial infarction (MI). Data were collected during

13 one-year periods beginning in 1975 and extending until 2001, on all MI patients

admitted to hospitals in the Worcester, Massachusetts Standard Metropolitan

Statistical Area. The 500 subjects in the data set are based on a 23 % random

sample from the cohort in the years 1997, 1999 and 2001 yielding 500 subjects.

Of the 500 patients, 215 (43 %) died within their follow-up period. The median

follow-up time was 3.4 years. All patients were followed up for at least 1 year and

138 (27.6 %) died within the first year following the MI. We are interested in

examining the factors that predict death within the first year after the MI as the

500 subjects had complete follow-up to this time point.

Preliminary Results

When we examine the risk of death in the first year according to gender and age, we

see a somewhat higher percentage of deaths in females than males, and that

percentage of deaths increases markedly with age, from 7.2 % (95 % confidence

limits (CL) 2.9, 11.6 %) to 49.4 % (41.7, 57.1 %) (Table 10.1). The 95 % confidence

intervals are wider for smaller subgroups, but the age variation is substantial. Are

these differences statistically significant? Because we are considering two categor-

ical variables, evaluation of statistical significance uses the Pearson chi-square test,

provided there are few small expected frequencies. This test examines the null

hypothesis that the true risk of death is the same across all subgroups. Implicit in

this assertion is an assumption that any observed differences in the estimated risk of

death (e.g. 25.0 % vs. 31.5 % for males vs. females) are due to chance. The P value

associated with the gender comparison is 0.111. Because the P value is not small

enough (the usual criterion being <0.05), we do not reject our null hypothesis and

we conclude the observed differences are not so large that they could not have

occurred by chance. For age, however, P < 0.0001, and we conclude that observed

differences are not consistent with chance variability.
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If we are interested in identifying the significance of a trend for risk of death to

systematically increase with age, we need to use a statistical test that takes into

account how the age categories are ordered. There are various statistical tests and

most are available in standard packages. They vary somewhat in their assumptions

about the way in which the ordered categories are expressed, but they usually give

similar answers, especially in large samples. One of the simplest forms assigns an

ordinal score (1,2,3,. . .) to the categories and examines a linear regression of the

prevalence on the score (as a predictor variable). For age groups, this test yields a

P value < 0.0001.

We can go a step further and examine the relative risks (RRs), that is, the ratio of

the percentage of deaths in a subgroup compared with that in a chosen reference

group (Table 10.2). In anticipation of later analyses, the odds ratios (ORs) are also

given in Table 10.2. Note that ORs are further away from 1 than are relative risks;

for example, RR ¼ 6.81 for the oldest age group compared with the youngest, with

a corresponding OR of 12.49. This will always be the case, and the distance will

increase as the risk of death increases. However, this does not change the formal

statistical inference regarding this comparison. The P value for the difference

between the percentages of deaths is <0.0001, based on a chi-square value of

63.0 (1 df), whether we choose to measure the age effect by an RR, OR, or, indeed

a risk difference (49.4 % � 7.2 % ¼ 42.2 %). Table 10.3 shows a similar analysis

for selected characteristics of the MI.

We now wish to explore these relationships further to determine which factors,

or combinations of them, are the most predictive of death within the first year. We

know that the MI characteristics are associated and that they are also likely to be

related to age group, itself a strong risk factor. We can explore this in several ways.

One approach is to carry out a stratified analysis: we stratify by a (suspected)

confounding variable, and examine the effect of our exposure of interest within

each stratum. Thus, to adjust the effect of congestive heart failure for age, we

stratify by age groups. Before proceeding further, we collapse age into two

categories (<70 years of age and �70 years) to increase the numbers in each

category. Stratified analysis is shown in Table 10.4.

Recall that the RR associated with cardiogenic shock overall was 2.45 (95 % CI

1.73, 3.48) (Table 10.3). We see now that the risk of death is lower in younger

Table 10.1 Percentage of deaths within the first year after an MI, by age group and gender, with

95 % confidence intervals (95 % CI) (N ¼ 500)

Risk factor N Deaths Deaths (%) 95 % CI P value

Gender

Male 300 75 25.0 20.1, 29.9

Female 200 63 31.5 25.1, 37.9 0.111

Age group

<60 years 138 10 7.2 2.9, 11.6

60–69 years 86 12 13.9 6.6, 21.3

70–79 years 114 36 31.6 23.0, 40.1

>80 years 162 80 49.4 41.7, 57.1 <0.0001
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patients (9.8 % vs. 42.0 %). However, within these groups (i.e. controlling for

patient age, at least up to a point) we also see that the risk of death increases with the

presence of cardiogenic shock, although the RRs have decreased, because of the

confounding of the overall effect with age; older patients are more likely to have

cardiogenic shock. However, the CIs for these RRs are now wider, reflecting the

fact that we are now dealing with subgroups of the data, rather than the entire

sample (Table 10.4).

Table 10.2 Percentage of deaths within the first year after an MI, and RRs and ORs by age group

and gender, with 95 % CIs (N ¼ 500)

Risk factor N Deaths (%) RR 95 % CI for RR OR 95 % CI for OR

Gender

Male 300 25.0 1 1

Female 200 31.5 1.26 0.95, 1.67 1.38 0.93, 2.05

Age group

<60 years 138 7.2 1 1

60–69 years 86 13.9 1.92 0.87, 4.26 2.08 0.86, 5.04

70–79 years 114 31.6 4.36 2.26, 8.39 5.91 2.78, 12.57

>80 years 162 49.4 6.81 3.68, 12.63 12.49 6.12, 25.49

Table 10.3 Percentage of deaths within the first year after an MI, and RRs and ORs by MI

characteristics, with 95 % CIs (N ¼ 500)

Risk factor N Deaths (%) RR 95 % CI for RR OR 95 % CI for OR

Cardiogenic shock

Absent 478 25.9 1 1

Present 22 63.6 2.45 1.73, 3.48 5.00 2.05, 12.20

Congestive heart failure

Absent 345 17.4 1 1

Present 155 50.3 2.89 2.19, 3.82 4.81 3.16, 7.32

MI type

Non-Q wave 347 30.6 1 1

Q wave 153 20.9 0.68 0.48, 0.97 0.60 0.38, 0.94

History of cardiovascular disease

Absent 125 24.0 1 1

Present 375 28.8 1.20 0.85, 1.70 1.28 0.80, 2.04

Atrial fibrillation

Absent 422 26.1 1 1

Present 78 35.9 1.38 0.98, 1.93 1.59 0.95, 2.65

Complete heart block

Absent 489 27.2 1 1

Present 11 45.4 1.67 0.86, 3.24 2.23 0.67, 7.43

Previous MI

Absent 329 25.2 1 1

Present 171 32.2 1.27 0.96, 1.70 1.41 0.94, 2.11
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Using the Mantel–Haenszel technique, we can then pool the stratum-specific

RRs, with weightings that reflect stratum size to obtain adjusted RRs. This provides

us with the best overall estimate (provided the stratum-specific RRs are consistent)

and gives us greater precision, that is, narrow confidence intervals (Table 10.5).

We now see clearly that the effect of adjustment for age appears to have been to

decrease the RR associated with cardiogenic shock, since we have adjusted for the

fact that patients with cardiogenic shock are also older and age carries its own

separate risk.

The Mantel–Haenszel approach to adjustment is an effective method of

adjusting for confounders, and is a useful way of identifying confounders one

variable at a time. However, it is obvious that this will become tedious when we

have multiple confounders to take into account; we would have to construct all the

strata related to all combinations of confounder categories, and then perform an

analysis on each (some strata would be small, with wide confidence intervals for

within-stratum effect estimates) and then pool these estimates. Regression

modelling provides us with an effective approach, but, as we will see, involves

some additional assumptions.

Logistic Regression

As explained earlier, a regression model consists of two major components: (a) a

probability model, which specifies a theoretical distribution (our choice of this is

based partly on empirical observations and partly on our theory about the underly-

ing processes that generated the observations) and (b) specification of relevant

Table 10.4 Percentage of deaths within the first year after an MI, and RRs and ORs by presence

of cardiogenic shock and age group, with 95 % CIs

Age

Cardiogenic

shock N Deaths (%) RR 95 % CI for RR OR 95 % CI for OR

<70 years Absent 218 9.2 1 1

Present 6 33.3 3.63 1.09, 12.14 4.95 0.85, 28.73

Total 224 9.8

�70 years

or more

Absent 260 40.0 1 1

Present 16 75.0 1.88 1.36, 2.58 4.50 1.41, 14.33

276 42.0

Table 10.5 Percentage of deaths within the first year after an MI, and RRs by presence of

cardiogenic shock, with 95 % CIs, unadjusted RR and adjusted by the Mantel–Haenszel method

(RRA) for the effect of age

Cardiogenic shock N Deaths (%) RR 95 % CI for RR RRA 95 % CI for RRA

Absent 478 25.9 1 1 1

Present 22 63.6 2.45 1.73, 3.48 2.02 1.48, 2.76
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predictors based on the research questions or hypotheses we want to examine. We

now require a probability model for an outcome variable that takes only two values,

such as disease/no disease, dead/alive, etc. A further assumption we make is that

our observations are independent in the sense that one person dying within the first

year after MI does not affect the probability that another person dies in the first year

(this may not be true, e.g. if we had included two MI episodes in the study for the

same patient). With this assumption, the number of deaths in the first year out of a

sample of size Nwould be expected to follow a binomial distribution. Apart from N,
this distribution depends on a parameter p, which is the probability of an event

(death in first year). We can estimate this overall by our proportion of deaths,

27.6 % or p ¼ 0.276.

However, as we have seen, the risk of death varies according to age and the

characteristics of the MI itself. Thus, our p parameter is allowed to take various

values, according to various predictors; indeed this is what we want to model. Our

outcome variable is the proportion of events of interest (death), out of a given

number of possible outcomes, when the probability of a single event is p (which

may depend on the predictors of interest).

If we simply model the probability of an event as a function of predictors, it is

possible to obtain predicted values that do not lie between 0 and 1. We could, for

example, predict a prevalence of �0.05 or �5 % or 1.06 or 106 %. This is a very

undesirable feature of a theoretical model.

Several different approaches have been tried to overcome this problem, by

transforming the outcome probability to a quantity that must lie between 0 and 1.

Currently, the most widely used transformation is the logit transformation, first

proposed by Joseph Berkson in 1944. It is effectively a log-odds transformation. If

p is the probability of the event of interest (say disease), the logit of p is given by

logitðpÞ ¼ log
p

1� p

� �
¼ log odds of diseaseð Þ

where log is the logarithm function, to base e.

We can see that this transformation accommodates the constraints on modelling

a proportion. If we invert the transformation, we can see that the probability of the

event, p, is

p ¼ exp logitðpÞð Þ
1þ exp logitðpÞð Þ

where exp is the exponential or antilog function. This is always greater than zero,

because the exponential function cannot take negative values. The denominator is

larger than the numerator, so it can never be greater than 1. So proportions must lie

between 0 and 1.

The main reason for the popularity of this transformation, however, is the

consequent interpretation of the regression coefficients when it is used. Putting
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this transformation together with a model based on age group (reverting to four age

groups), we have the logistic regression model as follows:

logit Probability of deathð Þ ¼ log odds of deathð Þ
¼ aþ b1 � 60� 69 yearsð Þ

þ b2 � 70� 79 yearsð Þ
þ b3 � 80 years and overð Þ

where the notation following the coefficients means: if the statement inside the

brackets is true, the value inside the brackets takes the value 1, otherwise it takes the

value 0. These are sometimes referred to as indicator variables. This is a compact

way of indicating that the coefficients b1, b2, b3 are associated with the categories

60–69 years to 70 years or older, in order, and that the omitted category,<60 years,

is the reference category. The above model fits the framework give in Fig. 10.1,

where the predicted outcome is the logit(Probability of death), the coefficients are

a, b1, b2, b3, and the values of the predictors are given by the indicator variables for
each age group.

To further clarify the interpretation of the coefficients, and the role of the reference

category, consider a patient who is less than 60 years of age. This patient’s predictive

model is as follows:

log odds deathð Þð Þ; if patient < 60 years ¼ a

A patient who is 60–69 years of age has the following predictive model:

log odds deathð Þð Þ if patient 60� 69 years ¼ aþ b1

Subtracting these last two expressions (the first from the second), we see that

log odds deathð Þð Þ if patient 60� 69 years

� log odds deathð Þð Þ if patient < 60 years

¼ b1

Using the fact that (logA � logB) ¼ log(A/B), we see that

b1 ¼ log
odds deathð Þ if patient 60� 69 years

odds deathð Þ if patient < 60 years

� �

¼ log
odds ratio of death for patient aged 60� 69 years;
compared with patient aged < 60 years

� �

So the regression coefficients are directly interpretable as log(ORs) and we can

then obtain the actual OR by exponentiation or antilogs of the parameter estimates.
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Fitting the logistic regression model is done using maximum likelihood estima-

tion of the model parameters (a, b1, b2, b3 in the age group model), as has been

described previously. It is not important to understand the details of this process,

but it is important to understand that the process does not always work, in the sense

that a solution may not be found, often due to sparseness of data or unusual

distributions. Depending on the software you use, you may receive a warning that

convergence has not been attained, or you may simply observe results that look

meaningless, such as extremely large standard errors of estimates. You should

always scrutinize parameter estimates and their standard errors (or CLs) to look

for values that differ greatly from your single variable or preliminary analyses.

Again (Table 10.6) we see that the trend for ORs from the logistic regression, as

for RRs (Table 10.2), increases as age increases. However, we see that the ORs

from the logistic regression are exactly the same as those in Table 10.2. This is

because they are mathematically equivalent; this equivalence does not hold as we

include more variables in the analysis. The parameters b1, b2, b3 thus represent the
outcome (death) log ORs for each group, compared with the reference group, which

is the group omitted from the parameter list in the model. The parameter a is usually
not of interest; it represents the log(odds) of the event, within the reference category.

In this case, the reference category is the youngest age group, and the odds of death

for this group is 10/(138 � 10) ¼ 0.078 ¼ e(�2.55).

We can also calculate what our model predicts for the probability of death for

each age group by substituting for the parameters a, b1, b2, b3.

Probability of death ¼ exp logitðpÞð Þ
1þ exp logitðpÞð Þ

¼ exp �2:55ð Þ
1þ exp �2:55ð Þ ¼ 0:072 if patient < 60 years

¼ exp �2:55þ 0:73ð Þ
1þ exp �2:55þ 0:73ð Þ ¼ 0:139 if patient 60� 69 years

¼ exp �2:55þ 0:1:78ð Þ
1þ exp �2:55þ 1:78ð Þ ¼ 0:316 if patient 70� 79 years

¼ exp �2:55þ 2:52ð Þ
1þ exp �2:55þ 2:52ð Þ ¼ 0:494 if patient � 80 years

Table 10.6 Parameter estimates from logistic regression of death in the first year, with age group

as a predictor

Parameter Value Parameter estimate OR 95 % CL for OR P value

Intercept a �2.55

Age at MI Reference: Age < 60 years

b1 60–69 years 0.73 2.08 0.86, 5.04 0.106

b2 70–79 years 1.78 5.91 2.78, 12.57 <0.0001

b3 �80 years 2.52 12.49 6.12, 25.49 <0.0001

150 G.M. Williams and R. Ware



We see that the univariable model replicates the observed proportions, which is

what we would expect.

Multivariable Logistic Regression

Categorical Predictors

Although univariate logistic regression gives the same results as a simple cross-

tabulation, the major advantage of embarking on a logistic regression approach

obviously comes from the ability to include additional variables, either as

confounders, or as risk factors or predictors in their own right. Later, we also deal

with interactions, but for now we examine a logistic regression model that includes

age group as a possible confounder to the cardiogenic shock effect. This may be

written out exactly as we have done previously, by adding additional terms and

regression coefficients to the right-hand side of the model equation:

logit Probability deathð Þ
¼ log odds deathð Þð Þ
¼ aþ b1 � 60� 69 yearsð Þ

þ b2 � 70� 79 yearsð Þ
þ b3 � � 80 yearsð Þ
þ c� ðcardiogenic shock presentÞ

The maximum likelihood estimates are given in Table 10.7.

The coefficients and ORs for age group have now changed because of the

inclusion of an additional variable, cardiogenic shock. They are now the estimated

effects, after adjusting (controlling) for the effect of cardiogenic shock. Recipro-

cally, the effects of cardiogenic shock have been adjusted for age group. To see this,

consider a patient who is 60–69 years of age and does not have cardiogenic shock.

This patient’s predictive model is as follows.

log odds deathð Þð Þ; if patient 60� 69 years does not have cardiogenic shock

¼ aþ b1

A patient who is 60–69 years of age and has cardiogenic shock has the following

predictive model:

log odds deathð Þð Þ if patient 60� 69 years has cardiogenic shock

¼ aþ b1 þ c
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Subtracting these last two expressions (the first from the second), we see that

log odds deathð Þð Þ if patient 60� 69 years has cardiogenic shock

� log odds deathð Þð Þ if patient 60� 69 years does not have cardiogenic shock

¼ c

Using the fact that (logA � logB) ¼ log(A/B), we see that

b1 ¼ log
odds deathð Þ if patient 60� 69 years has cardiogenic shock

odds deathð Þ if patient 60� 69 years does not have cardiogenic shock

� �

¼ log

�
OR of death associated with having

cardiogenic shock in patient aged 60� 69 years

�

So we have controlled for age by virtue of holding it constant at 60–69 years. It is

easy to see that had we held age constant at some other age group, 70–79 years say,

then the same result would have been obtained for the age-adjusted effect of

cardiogenic shock. This is an assumption that we make: the effects of variables

are constant across values of other variables in the model. This assumption can be

relaxed at the cost of making the model more complex; see later section on effect

modification.

Returning to the results, we now see similar effects to those we saw with the

Mantel–Haenszel analysis for the association between death and cardiogenic shock

for age: the effect decreases. We can also see that age is a significant predictor of

death. Although these results are consistent with the effects we saw in the

Mantel–Haenszel process, they are not the same, largely because ORs are not the

same as RRs (except when the outcome rate is very low), but also partly because

the method of adjustment by logistic regression is mathematically different from

the Mantel–Haenszel approach.

Regression modelling using maximum likelihood fitting also produces likeli-

hood ratio tests, which examine the significance of variables overall. These tests

each compare two models: a model that excludes the variable of interest, and one

that includes it. The chi-square statistic is a measure of the difference between the

Table 10.7 Parameter estimates and 95 % CIs from logistic regression of death, with age and

presence of cardiogenic shock

Parameter Value Parameter estimate OR 95 % CL for OR P value

Intercept a �2.59

Age group Reference: <60 years

b1 60–69 0.66 1.94 0.79, 4.75 0.147

b2 70–79 1.73 5.63 2.63, 12.04 <0.0001

b3 � 80 2.48 11.98 5.85, 24.55 <0.0001

Cardiogenic shock Reference: Absent

c Present 1.49 4.46 1.68, 11.82 0.0027
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models and thus can be assessed for statistical significance. These are shown in

Table 10.8, and confirm the significance of each of the risk factors independently of

the other.

Continuous Predictors

In the above analysis we have grouped age into categories. However, risk increases

with increasing age and so it may make sense to treat age as a continuous variable.

A simple logistic regression model relating death in the first year to age at MI is

then as follows:

logit Probability of deathð Þ
¼ log odds of deathð Þ
¼ aþ b� Age at MI ðyearsÞ

Again we see the meaning of the regression coefficients by considering particu-

lar values, say a patient who is 65 years at the MI episode.

logit Probability of deathð Þ65
¼ log odds of deathð Þ
¼ aþ b� 65 ðyearsÞ

Compare this with a patient who is 64 years at the MI episode.

logit Probability of deathð Þ64
¼ log odds of deathð Þ
¼ aþ b� 64 ðyearsÞ

Subtracting these, we have

log odds of death if patient is 65 yearsð Þ
� log odds of death if patient is 64 yearsð Þ

¼ b

Using the fact that logA � logB ¼ log(A/B), we see that

Table 10.8 Likelihood ratio

tests for logistic regression of

death, with patient age group

and presence of cardiogenic

shock as predictors

Source df Chi-square P value

Patient age group 3 77.70 <0.0001

Cardiogenic shock 1 9.61 0.0019
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b ¼ log
odds of death if patient is 65 yearsð Þ
odds of death if patient is 64 yearsð Þ

� �

¼ log odds ratio for death for a 1-year increase in age at MIð Þ

Again we see that the regression coefficient is interpretable as a log(OR). Here,

however, we do not have a fixed reference group: the OR refers to a fixed increase

of 1 unit of the predictor variable. It follows that we cannot interpret the coefficient

for a continuous variable unless we know the units in which it is measured. To then

get the actual OR we need to exponentiate or antilog the coefficient. Fitting the

model for age in years yields Table 10.9.

The OR associated with age is 1.09 or an increase in odds of death by around

9 %. This seems very modest until we remember that this represents the increase

associated with only 1 year of age. The predicted increase in risk for an increase of

10 years of age (similar to the age groups we used earlier) can be calculated as

follows:

Increase in logðodds deathÞ for 1 year of age ¼ 0:084

Increase in logðodds deathÞ for 10 years of age ¼ 0:084� 10 ¼ 0:84

Increase in ðodds deathÞ for 10 years of age ¼ e0:84 ¼ 2:32

Thus, a decade increase in age at MI increases the odds of death in the first year

by 2.32-fold.

We need to be extremely careful in interpreting ORs as RRs. It is well known

that ORs approximate RRs when the risk of the outcome is small. Small usually

means less than about 15 %. The OR is further from 1 than is the RR, as we can see

from Tables 10.2 and 10.3. Thus, if the OR is uncritically interpreted as an

approximate RR, it will consistently overestimate the strength of the association.

Let us now examine the predictions from our model. Our fitted model

(Table 10.9) is

logit Probability of deathð Þ
¼ log odds of deathð Þ
¼ �6:86þ 0:084� Age ðyearsÞ

When we do the algebra to express the probability of death in terms of age at MI

we get

Table 10.9 Parameter estimates and 95 % CLs from logistic regression of death, with age in years

as a continuous predictor

Parameter Value Parameter estimate OR 95 % CL for OR P value

Intercept a �6.86

Age (years) b per year 0.080 1.08 1.06, 1.11 <0.0001
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Probability of death ¼ exp �6:86þ 0:084� Ageð Þ
1þ exp �6:86þ 0:084� Ageð Þ

While this may look a little complex, it is relatively easy to calculate given any

particular value of age. Most statistical software programs that fit regression models

can calculate these values for all values of predictors that occur in the sample used

for fitting the model. We see these in Fig. 10.3 for the current example.

The shaded area at the bottom of the graph in Fig. 10.3 shows the distribution of

age, with the three vertical lines showing cut-offs at 60, 70 and 80 years. The RR,

comparing two values of the predictor is simply the ratio of the heights of the curve

at those outcomes. These values can be read from the graph or calculated from the

formula given above. Table 10.10 shows these values, as well as the calculated ORs

and RRs, comparing each increase in risk (whether measured by the odds or the

proportion of deaths) associated with 1 year increase in age.

Table 10.10 confirms that the OR is constant; this is not surprising because this is

a condition of the model. It also confirms that when the predicted probability of

death is small (less than 15 %), the RR is very close to the value of the

OR. However, as age increases and the predicted risk of death correspondingly

increases, the RR diminishes, although it is always >1.

Figure 10.3 is also revealing in terms of the strength of the association between

age and death. We see that if a patient is 80 years old or more at the MI, he or she

has at least a 50 % chance of dying in the first year after the MI. A patient in the

ninth decade of life has an 80 % chance of death in the first year after MI.

Using age as a continuous variable implies that we are fitting a linear effect (on

the logit scale) for age; that is, the OR is constant. We may be interested in testing
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Fig. 10.3 Logistic regression model giving the probability of death in the first year after MI, as

predicted by age at MI. The figure shows the classic S-shaped logistic curve; the probability of the

outcome increases with the predictor, slowly at first, then increasingly so, and then flattening out. It

also shows 95 % CLs for the predicted proportions with the outcome, the risk of the outcome. The

dots show the observed risk of death within a centred 5-year age group
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whether this is a reasonable fit to the data. We can do this by including a square or

quadratic term in the model. It is usually helpful to centre continuous variables

before including them in polynomial or interaction terms. Centring means

subtracting a central value (mean or median) from each value. When we do this

we obtain Table 10.11.

We see that the quadratic term is clearly non-significant, indicating the linearity

assumption is supported.

Table 10.10 Logistic regression model of death with age as a predictor: predicted probabilities,

ORs and RRs for each year of age, compared to year below

Age at MI (years)

Predicted probability

of death in first year

OR (death) comparing

age with age � 1

RR (death) comparing

age with age � 1

55 0.08014 1.08 1.08

56 0.08627 1.08 1.08

57 0.09282 1.08 1.08

58 0.09981 1.08 1.08

59 0.10727 1.08 1.07

60 0.11522 1.08 1.07

61 0.12367 1.08 1.07

62 0.13265 1.08 1.07

63 0.14218 1.08 1.07

64 0.15227 1.08 1.07

65 0.16294 1.08 1.07

66 0.17421 1.08 1.07

67 0.18608 1.08 1.07

68 0.19856 1.08 1.07

69 0.21167 1.08 1.07

70 0.22539 1.08 1.06

71 0.23974 1.08 1.06

72 0.25470 1.08 1.06

73 0.27026 1.08 1.06

74 0.28641 1.08 1.06

75 0.30312 1.08 1.06

76 0.32036 1.08 1.06

77 0.33812 1.08 1.06

78 0.35634 1.08 1.05

79 0.37498 1.08 1.05

80 0.39401 1.08 1.05

81 0.41336 1.08 1.05

82 0.43298 1.08 1.05

83 0.45282 1.08 1.05

84 0.47280 1.08 1.04
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Combining Categorical and Continuous Predictors

We can combine categorical and continuous predictors in a model provided we

keep in mind the appropriate interpretation of the regression coefficients. We now

add the effect age as a continuous variable to a model incorporating cardiogenic

shock and gender (both categorical variables), as follows:

logit Probability of deathð Þ
¼ log odds of deathð Þ
¼ aþ b� Age at MI ðyearsÞ

þ c� Patient is maleð Þ
þ d � ðCardiogenic shock is presentÞ

The maximum likelihood estimates of the model parameters are now given in

Table 10.12.

The inclusion of age as a continuous variable and gender has reduced the effect

of cardiogenic shock as a predictor of death, but only slightly. Although females

have a higher odds of death than males, this was not significant, and it is likely that

the adjustment to the effect of cardiogenic shock was largely due to the strong effect

of age, which appears unaffected by adjusting for gender and cardiogenic shock.

Likelihood ratios tests also show the overall significance of effects (Table 10.13),

and confirm the predominance of the age and cardiogenic shock effects.

Effect Modification

The models considered so far assume that the effects of predictors are additive on a

logit scale; there is only one parameter for the effect of cardiogenic shock, for

example, and its effects are assumed to be the same over all age groups. If we wish

to allow for effects to vary across values of another variable we need to incorporate

an interaction term, which allows for effect modification.

To see how this works, consider the effect of congestive heart failure stratified

by age group. Again, for simplicity we divide age into two groups: <70 years and

�70 years. The stratified analysis is given in Table 10.14.

Table 10.11 Logistic regression model of death with age as a predictor and a quadratic term

Parameter Value Parameter estimate OR 95 % CL for OR P value

Intercept a �1.26

Age at MI

Age � 70 b per year 0.08 1.08 1.06, 1.10 <0.0001

(Age � 70)2 c per (year)2 0.0002 1.00 1.00, 1.00 0.772
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We see that the effect of congestive heart failure is much greater in those who are

<70 years of age. Note again that the ORs are further away from 1 than are the RRs.

The logistic regression model incorporating age group and congestive heart failure

is:

logit Probability of deathð Þ ¼ log odds of deathð Þ
¼ aþ b� ðAge � 70 yearsÞ þ c� Congestive heart failure is presentð Þ

If we fit this logistic regression (first without allowing for an interaction), we get

the results in Table 10.15. The OR for the association of age and death is 5.52 and

95 % CI (3.29, 9.24). The OR for the association of congestive heart failure and

death is 3.85 (2.47, 6.01). We see that the logistic regression estimate for congestive

heart failure falls between the two age stratum-specific estimates in Table 10.15.

Thus, the model averages in some way over the stratum-specific estimates, as it has

only one parameter.

Table 10.12 Logistic regression model of death, with patient age (as a continuous variable) and

gender, and presence of cardiogenic shock

Parameter Value Parameter estimate OR 95 % CL for OR P value

Intercept a �7.15

Age

b Years 0.08 1.09 1.06, 1.11 <0.0001

Gender Reference: Males

c Females 0.19 1.21 0.77, 1.90 0.404

Cardiogenic shock Reference: Absent

d Present 1.46 4.29 1.62, 11.33 0.003

Table 10.13 Likelihood

ratio tests for logistic

regression model of death

with patient age (as a

continuous variable) and

gender, and presence of

cardiogenic shock

Source df Chi-square P value

Age (years) 1 85.2 <0.0001

Gender 1 0.70 0.403

Cardiogenic shocks 1 9.13 0.0025

Table 10.14 Percentage of deaths within first year after an MI, and RRs and ORs by presence of

congestive heart failure and age group, with 95 % confidence intervals

Age

Congestive

heart failure N Deaths (%) RR 95 % CI for RR OR 95 % CI for OR

<70 years Absent 181 5.0 1 1

Present 43 30.2 6.08 2.78, 13.30 8.28 2.94, 23.75

Total 224 9.8

�70 years Absent 164 31.1 1 1

Present 112 58.0 1.87 1.41, 2.46 3.06 1.80, 5.21

276 42.0
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The next step is to estimate effects of congestive heart failure within age groups.

This is achieved in logistic regression by including additional terms in the predictor

part of the model. These additional parameters allow an increment to the congestive

heart failure effect for the older age group compared with the younger age group,

These parameters are denoted by the d parameter in the following formula:

logit Probability of deathð Þ
¼ log odds of deathð Þ
¼ aþ b� ðAge � 70 yearsÞ

þ c� Congestive heart failure is presentð Þ
þ d � ðAge � 70 yearsÞ � ðCongestive heart failure is presentÞ

After maximum likelihood fitting of the interaction model we have the results in

Table 10.16.

Table 10.16 shows that the interaction parameter d falls just short of signifi-

cance, although as it is very close, we may still be interested in reporting the result.

We need to take care in interpreting the above parameter estimates. The antilog of

the c parameter for age group (ec) is the OR for those with congestive heart failure

compared with those without, within the reference category for age (patients <70

years). It does not represent the overall effect of congestive heart failure (indeed we

have assumed there is no overall effect, because it is modified by age). To get the

estimated OR for congestive heart failure for those 70 years of age, we add the

parameters c and d together and then antilog to obtain 3.06. Equivalently we can

multiply the OR associated with the reference category for age (8.28) by the OR

calculated for the interaction parameter (0.37). We usually present model output

involving an interaction as in Table 10.17. This table shows the separate ORs for

each age group explicitly (which Table 10.16 does not), and the results of the test

for interaction. Notice that no overall effects are given for variables involved in the

interaction.

As a final example, Table 10.18 displays a model combining cardiogenic shock,

age group and congestive heart failure, incorporating the effect modification of

congestive heart failure by age group. To demonstrate the parameterization of the

model, the model equation is given below.

Table 10.15 Parameter estimates, ORs and 95 % CIs from logistic regression of death, with age

and presence of congestive heart failure

Parameter Value Parameter estimate OR 95 % CL for OR P value

Intercept a �2.60

Age group Reference: <70 years

b �70 years 1.71 5.52 3.29, 9.24 <0.0001

Congestive heart failure Reference: Absent

c Present 1.35 3.85 2.47, 6.01 <0.0001
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logit Probability of deathð Þ
¼ log odds of deathð Þ
¼ aþ b� Cardiogenic shock is presentð Þ

þ c� ðAge � 70 yearsÞ
þ d � Congestive heart failure is presentð Þ
þ e� ðAge � 70 yearsÞ � ðCongestive heart failure is presentÞ

The way in which the effect of cardiogenic shock is presented has not changed,

because it is not involved in an interaction. However, its value has reduced

somewhat from its previous value (Table 10.7). This is because of the additional

adjustment for congestive heart failure. In the presence of an interaction in the

model, other coefficients will be adjusted for all combinations of the interacting

variable (equivalent in this case to stratifying by age group and congestive heart

failure simultaneously (four groups) and examining the cardiogenic shock effect

within each).

Table 10.16 Parameter estimates, ORs and 95 % CIs from logistic regression of death, with age

and presence of congestive heart failure (CHF) and interaction effects

Parameter Value Parameter estimate OR 95 % CL for OR P value

Intercept a �2.95

Age group Reference: <70 years

b �70 years 2.15 8.63 4.09, 18.21 <0.0001

CHF Reference: Absent

c Present 2.11 8.28 3.25, 21.08 <0.0001

Age � CHF d Reference: Age < 70 years or CHF absent

Age < 70 years and

CHF present

�0.99 0.37 0.13, 1.07 0.066

Table 10.17 Logistic regression model of death within first year after an MI with age group and

presence of congestive heart failure as predictors, allowing for effect modification

Parameter Value

Parameter

estimate OR 95 % CL for OR P value

Age group

<70 years

Congestive heart failure Reference category: absent

c Present 2.11 8.28 3.25, 21.08 <0.0001

� 70 years

Congestive heart failure Reference category: absent

c + d Present 1.12 3.06 1.86, 5.05 <0.0001

Age � Congestive heart failure Reference category: <70 years. No congestive heart

failure

�70 years, No congestive heart

failure

d 2.15 8.63 4.09, 18.21 <0.0001
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Likelihood ratio tests are available for each of the terms in our model. For the

model in Table 10.18 these are given in Table 10.19.

P values for likelihood ratio tests in Table 10.19 are slightly different from those

for parameter estimates given in Table 10.18; for example, the P value for the

interaction term is P ¼ 0.066 in Table 10.18 and 0.051 in Table 10.19. This is

because these are estimated in different ways. The likelihood ratio tests are based

on the likelihood function for the interaction model compared with the non-

interaction model, whereas the P values for individual parameters are based on

Wald statistics, which relate to the parameter estimates themselves and their

standard errors. The likelihood ratio test is generally preferred for various statistical

reasons, but both usually give similar answers. It is important to remember that

calculation of each of these and indeed many P values is an approximate process

that relies on large enough sample sizes and is based on assumptions that are

sometimes slightly different.

Extensions and Variations of Logistic Regression

Case–Control Studies

Case–control studies address questions of associations between risk factors, com-

monly called exposures, and health outcomes. Typically a series of cases is first

defined. These are persons experiencing the event of interest, for example, success-

ful recovery from an illness. A series of controls is then chosen, according to criteria

such that a selected control would have become a case, had he or she had the

Table 10.18 Logistic regression model of death within first year after an MI with cardiogenic

shock, age group and presence of congestive heart failure as predictors, allowing for effect

modification

Parameter Value

Parameter

estimate OR 95 % CL for OR P value

Cardiogenic shock Reference category: absent

b Present 1.27 3.57 1.26, 10.10 0.016

Age group

<70 years

Congestive heart failure Reference category: absent

d Present 2.10 8.13 3.18, 20.81 <0.0001

� 70 years

Congestive heart failure Reference category: absent

d þ e Present 1.04 2.83 1.70, 4.70 <0.0001

Age � Congestive heart failure Reference category: <70 years, No congestive heart

failure

� 70 years, No congestive

heart failure

e 2.17 8.75 4.13, 18.53 <0.0001
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particular health outcome of interest. An example might be a series of patients

experiencing a nosocomial infection during a hospital stay, with controls being

chosen from other in-patients who did not experience an infection. In such a case,

the variable indicating caseness (case/control) is used as the outcome variable and

potential risk factors are included in the logistic regression model in the usual way.

If the controls are matched in some way to the cases (e.g. by age, type of ward,

admission diagnosis) then a technique called conditional logistic regression is

needed to take the matching into account.

Multinomial and Ordinal Regression

The logistic regression model can be extended to the situation when the outcome

variable has more than two categories (multinomial regression) and when these

categories fall into a natural order (ordinal regression). These models are very

similar to the logistic regression but allow the incorporation of additional

hypotheses concerning these additional categories of outcome. In many instances

it is possible to address the questions dealt with by these more complex models, by

using a series of simpler logistic regressions.

Conclusion

Logistic regression is a very general model that can be used to analyse the

determinants or predictors of a binary outcome arising in a process in which events

are independent. Because of the nature of the logit transformation, the model gives

rise to regression coefficients that are interpretable as log(ORs), which allows a

useful interpretation, after exponentiation.

As with other regression models, multivariate models can be built up by includ-

ing additional predictor variables, such that effects are mutually adjusted.

Logistic regression may be applied to continuous variables, or a mix of continu-

ous and categorical variables. Detailed examination of relationships with continu-

ous variables may be valuable in detecting curvilinear effects.

Caution must be exercised in interpreting ORs as RRs. When the outcome

becomes more common (at least 15 %), this interpretation may be misleading.

Table 10.19 Likelihood

ratio tests for logistic

regression model of obesity,

at the 21-year follow-up, with

maternal smoking and child’s

exercise at age 14 years as

predictors, with interaction

effects

Source df Chi-square P value

Cardiogenic shock 1 6.21 0.0127

Age group 1 44.12 <0.0001

Congestive heart failure 1 19.04 <0.0001

Age � Congestive heart failure 1 3.81 0.051

162 G.M. Williams and R. Ware



Bibliography

Hosmer DW, Lemeshow S (2000) Applied logistic regression. Wiley, New York

Kirkwood BR, Sterne JAC (2003) Essential medical statistics, 2nd edn. Blackwell Science,

Malden, Part C

Kleinbaum DG, Kupper LK, Muller KE (1988) Applied regression analysis and other multivari-

able methods, 2nd edn. PWS-Kent, Boston, Chapters 21–25

Tonne C, Schwartz J, Mittleman M, Melly S, Suh H, Goldberg R (2005) Long-term survival after

acute myocardial infarction is lower in more deprived neighbourhoods. Circulation

111:3063–3070

Vittinghoff E, Glidden DV, Shiboksi SC, McCulloch CE (2005) Regression methods in biostatis-

tics: linear, logistic, survival, and repeated measures models. Springer, New York, Chapter 6.1,

6.2

10 Modelling Binary Outcomes 163


	Chapter 10: Modelling Binary Outcomes
	The Generalized Linear Model (GLM)
	Fitting a Model
	Link Functions
	Models for Prediction Versus Establishing Causality

	A Preliminary Analysis
	Data-set
	Preliminary Results

	Logistic Regression
	Multivariable Logistic Regression
	Categorical Predictors
	Continuous Predictors
	Combining Categorical and Continuous Predictors
	Effect Modification

	Extensions and Variations of Logistic Regression
	Case-Control Studies
	Multinomial and Ordinal Regression

	Conclusion
	Bibliography


