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Preface

This book was written to fill the gap that exists in the methods of epidemiology

of interest to clinical researchers. It will enable a reader who is currently under-

taking research to get key information regarding methodology. It will also help

health care personnel from all fields (doctors, nurses, allied health, dentists,

pharmacists, etc.) to obtain an effective understanding of methodology useful to

research in their field as we cover the unique methods not covered properly in

current research methods texts. The classic theoretical focus is avoided because

we believe that research must be based on understanding guided by the reader’s

knowledge of the methodology.

Part I begins by introducing readers to the methods used in clinical agreement

studies. It is written to suit beginners but without turning off intermediate

users. Qualitative and quantitative agreement are presented, and this section

explains how we can utilize these methods and their strengths and weaknesses.

Part II shows readers how they can interpret and conceptualize diagnostic test

methodologies and ends with an introduction to diagnostic meta-analyses.

Part III takes the reader through methods of regression for the binomial family

as well as survival analysis and Cox regression. Here, the focus is on methods of

use to clinical researchers. These methods have different names and multiple

interpretations, which are explained. It is important to know what associations

you are interested in and know what data are available and in what form they

can be used. An in-depth discussion of the use of these methods is presented

with a view to giving the reader a clear understanding of their utility and

interpretation. Part IV deals with systematic reviews and meta-analyses. A step-

by-step approach is used to guide readers through the key principles that must be

understood before undertaking a meta-analysis, with particular emphasis on

newer methods for bias adjustment in meta-analysis, an area in which we have

considerable expertise.
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Clinical Agreement



Chapter 1

Clinical Agreement in Qualitative

Measurements

The Kappa Coefficient in Clinical Research

Sophie Vanbelle

Abstract Agreement between raters on a categorical scale is not only a subject of

scientific research but also a problem frequently encountered in practice. For

example, in psychiatry, the mental illness of a subject may be judged as light,

moderate or severe. Inter- and intra-rater agreement is a prerequisite for the scale to

be implemented in routine use. Agreement studies are therefore crucial in health,

medicine and life sciences. They provide information about the amount of error

inherent to any diagnostic, score or measurement (e.g. disease diagnostic or imple-

mentation quality of health promotion interventions). The kappa-like coefficients

(intraclass kappa, Cohen’s kappa and weighted kappa), usually used to assess

agreement between or within raters on a categorical scale, are reviewed in this

chapter with emphasis on the interpretation and the properties of these coefficients.

Introduction

The problem of rater agreement on a categorical scale originally emerged in human

sciences, where measurements are traditionally made on a nominal or ordinal scale

rather than on a continuum. For example, in psychiatry, the mental illness of a

subject may be judged as light, moderate or severe. Clearly two psychiatrists

assessing the mental state of a series of patients do not necessarily give the

same grading for each patient but we would expect some agreement between

them (inter-rater agreement). In the same way, we could observe some variation

in the assessment of the same patients by a psychiatrist on two occasions (intra-rater

agreement). Agreement studies, therefore, became crucial in health, medicine and
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life sciences. They provide information about the amount of error inherent to any

diagnosis, score or measurement.

Agreement has to be distinguished from the concept of reliability. When

elements (objects, subjects, patients, items) are evaluated by two raters (observers,

judges, methods), agreement refers to the degree of closeness between the two

assessments within an element (i.e. classification of each element in the same

category by the two raters). By contrast, reliability refers to the degree of differen-

tiation between the elements (i.e. the two raters give the same relative ordering of

the elements). Good reliability is essential when the purpose is to assess the

correlation with other measures (e.g. severity of the mental illness and autonomy)

because of the well-known attenuation effect. Good agreement is, on the other

hand, imperative for clinical decision making (e.g. prescribing a treatment for a

specific patient based on the seriousness of the mental illness). Two kinds of

agreement are usually distinguished. Inter-rater agreement refers to a sample of

elements assessed with the same instrument by different raters; the term intra-rater

agreement is used when a sample of elements is assessed on two occasions by the

same rater using the same instrument.

Several coefficients for quantifying the agreement between two raters on a

categorical scale have been introduced over the years. Cohen’s (1960) kappa

coefficient is the most salient and the most widely used in the scientific literature.

Cohen (1968) extended the kappa coefficient to weighted kappa coefficients to

allow for some more important disagreements than others (e.g. disagreements

between the categories light and severe may be viewed as more important than

between light and moderate). Kraemer (1979) defined the intraclass kappa coeffi-

cient by assuming that the two raters have the same marginal probability distribu-

tion. All these coefficients belong to the kappa-like family and possess the same

characteristic: they account for the occurrence of agreement due to chance only.

An example used through this chapter to illustrate the use and the computation of

the various kappa coefficients is presented in the next section. The third section

focuses on binary scales. Kappa coefficients are introduced for nominal and ordinal

scales in the fourth and fifth sections, respectively. Then, before drawing

conclusions, the distinction between the concepts of agreement and association is

illustrated on an example.

Example

Cervical ectopy, defined as the presence of endocervical-type columnar epithe-

lium on the portio surface of the cervix, has been identified as a possible risk

factor for heterosexual transmission of human immunodeficiency virus. Methods

for measuring the cervical ectopy size with precision are therefore needed.

Gilmour et al. (1997) conducted a study to compare the agreement obtained

between medical raters by direct visual assessment and a new computerized

planimetry method. Photographs of the cervix of 85 women without cervical

disease were assessed for cervical ectopy by three medical raters who used both

4 S. Vanbelle



assessment methods. The response of interest, cervical ectopy size, was an ordinal

variable with K ¼ 4 categories: (1) minimal, (2) moderate, (3) large and (4)

excessive. The classification of the 85 women by two of the three raters via direct

visual assessment is summarized in Table 1.1 in terms of frequency. We will

determine the agreement between these two raters on each category separately

and on the four-point scale.

Binary Scale

The simplest case is to determine the agreement between two raters who have to

classify a sample of N elements (subjects, patients or objects) into two exhaustive

and mutually exclusive categories (e.g. diseased/non-diseased). For example,

women can be classified as having (1) or not having (0) an excessive ectopy size.

The observations made by the two raters can be summarized in a 2� 2 contingency

table (Table 1.2), wherenjk is the number of elements classified in category jby rater
1 and categoryk by rater 2,nj: the number of elements classified in category jby rater
1 and n:k the number of elements classified in category k by rater 2. By dividing

these numbers by the total number of observationsN, the corresponding proportions
pjk , pj: , p:k are obtained (j; k ¼ 1; 2). The proportions p1: and p2: determine the

marginal distribution of rater 1 and p:1 and p:2 the marginal distribution of rater 2.

The marginal distribution refers to the distribution of the classification of one rater,

irrespective of the other rater’s classification.

Cohen’s Kappa Coefficient

Intuitively, it seems obvious to use the sum of the diagonal elements in Table 1.2 to

quantify the level of agreement between the two raters. It is the proportion of

elements classified in the same category by the two raters. This simplest agreement

index, usually denoted by po, is called the observed proportion of agreement,

po ¼ n11 þ n22
N

¼ p11 þ p22:

Table 1.1 4� 4 contingency table resulting from the direct visual assessment of cervical ectopy

size by two medical raters on 85 women in terms of frequency

Medical rater 1

Medical rater 2

TotalMinimal Moderate Large Excessive

Minimal 13 2 0 0 15

Moderate 10 16 3 0 29

Large 3 7 3 0 13

Excessive 1 4 12 11 28

Total 27 29 18 11 85

1 Clinical Agreement in Qualitative Measurements 5



However, this coefficient does not account for the fact that a number of

agreements between the two raters can occur purely by chance. If the two raters

randomly assign the elements on a binary scale (e.g. based on the results of a tossed

coin), the proportion of agreement between them is only attributable to chance.

Therefore, Cohen (1960) introduced the proportion of agreement expected by
chance as

pe ¼ n1:n:1 þ n2:n:2
N2

¼ p1:p:1 þ p2:p:2

It is the proportion of agreement expected if rater 1 classifies the elements

randomly with a marginal distribution ( p:1; p:2 ) and rater 2 with a marginal

distribution (p1:; p2: ). Cohen corrected the observed proportion of agreement for

the proportion of agreement expected by chance and scaled the result to obtain a

value 1 when agreement is perfect (all observations fall in the diagonal cells of the

contingency table), a value 0 when agreement is only to be expected by chance and

negative values when the observed proportion of agreement is lower than the

proportion of agreement expected by chance (with a minimum value of �1).

Specifically, Cohen’s kappa coefficient is written as

κ̂ ¼ po � pe
1� pe

: (1.1)

Cohen’s kappa coefficient is more often used to quantify inter-rater agreement

than intra-rater agreement because it does not penalize the level of agreement for

differences in the marginal distribution of the two raters (i.e. when p1: 6¼ p:1 ).
Different marginal distributions are expected in the presence of two raters with

different work experience, background or using different methods.

Intraclass Kappa Coefficient

The intraclass kappa coefficient was derived by analogy to the intraclass correlation

coefficient for continuous outcomes and is based on the common correlation model.

This model assumes that the classifications made by the two raters are interchange-

able. In other words, the two raters are supposed to have the same marginal

probability distribution (i.e. the probability of classifying an element in category

Table 1.2 2� 2 contingency

table corresponding to the

classification of N elements

on a binary scale by two raters

in terms of frequency (left)

and proportion (right)

Rater 1

Rater 2

Rater 1

Rater 2

1 0 Total 1 0 Total

1 n11 n12 n1. 1 p11 p12 p1.
0 n21 n22 n2. 0 p21 p22 p2.
Total n.1 n.2 N Total p.1 p.2 1

6 S. Vanbelle



1 is the same for the two raters). This is typical of a test–retest situation where there

is no reason for the marginal probabilities to change between the two measurement

occasions. The resulting index is algebraically equivalent to Scott’s index of

agreement and can be viewed as a special case of Cohen’s kappa coefficient.

The observed proportion of agreement is the same as in the case of Cohen’s

kappa coefficient

poI ¼ n11 þ n22
N

¼ p11 þ p22 ¼ po

but the proportion of agreement expected by chance is determined by

peI ¼ �p21 þ ð1� �p1Þ2

where �p1 estimates the probability, common to the two raters, of classifying an

element in category 1, namely �p1 ¼ ðp1: þ p:1Þ=2. The intraclass kappa coefficient
is then defined by

κ̂I ¼ poI � peI
1� peI

: (1.2)

Interpretation

Two main criticisms on kappa coefficients were formulated in the literature. First,

like correlation coefficients, kappa coefficients vary between �1 and +1 and have

no clear interpretation, except for 0 and 1 values. Landis and Koch (1977) proposed

qualifying the strength of agreement according to the values taken by the kappa

coefficient. This classification is widely used but should be avoided because its

construction is totally arbitrary and the value of kappa coefficients depends on the

prevalence of the trait studied. It is preferable to consider a confidence interval to

appreciate the value of a kappa estimate; often only the lower bound is of interest.

Several methods were derived to estimate the sampling variability of kappa-like

agreement coefficients. Most of the statistical packages (e.g. SAS, SPSS, STATA, R)

report the sample variance given by the delta method. The formula is given in the

Appendix for the general case of more than two categories.

Second, several authors pointed out that kappa coefficients are dependent on the

prevalence of the trait under study, which indicates a serious limitation when

comparing values of kappa coefficients among studies with varying prevalence.

More precisely, Thompson and Walter (1988) demonstrated that kappa coefficients

can be written as a function of the true prevalence of the trait, as well as the

sensitivity and the specificity of each rater classification. This dependence can

1 Clinical Agreement in Qualitative Measurements 7



lead to surprising results when a high observed proportion of agreement is

associated with a low kappa value.

Some alternatives to the classic Cohen’s kappa coefficient have been proposed to

cope with this problem. For example, the bias-adjusted kappa (BAK) allows

adjustment of Cohen’s kappa coefficient for rater bias (i.e. differences in the

marginal probability distribution of the two raters). The BAK coefficient turns

out to be equivalent to the intraclass kappa coefficient κ̂I defined in Eq. 1.2.

Furthermore, a prevalence-adjusted-bias-adjusted kappa (PABAK), which is

nothing more than a linear transformation of the observed proportion of agreement

(PABAK ¼ 2po � 1), was suggested by Byrt et al. (1993).

Therefore, despite its drawbacks, Cohen’s kappa coefficient remains popular to

assess agreement in the absence of a gold standard. However, it should be kept in

mind that Cohen’s kappa coefficient mixes two sources of disagreement among

raters: disagreement due to bias among raters (i.e. different probabilities to classify

elements in category 1 for the two raters) and disagreement that occurs because the

raters evaluate the elements differently (i.e. rank order the elements differently).

Rater bias can be studied by comparing values of the kappa coefficient and the

intraclass kappa coefficient. Cohen’ kappa coefficient is always larger than the

intraclass kappa coefficient because it does not penalize for rater bias, equivalence

being reached when there is no rater bias (n12 ¼ n21 ). Therefore, the larger the

difference between the two coefficients, the larger the rater bias. On the other hand,

a difference between the intraclass kappa coefficient (BAK) and PABAK indicates

that the marginal probability distributions of the raters depart from the uniform

distribution (�p1 ¼ �p2 ¼ 0:5).

Example

Consider the cervical ectopy data given in Table 1.1, where two medical raters

classify the cervical ectopy size of 85 women. To determine the agreement on each

category separately, 2� 2 tables were constructed by isolating one category and

collapsing all the other categories together (Table 1.3).

When considering the category minimal against all other categories, the

observed proportion of agreement is equal to

po ¼ 13þ 56

85
¼ 0:81:

This means that the two medical raters classify 81 % of the women in the same

category, that is, they agree on 81 % of the women. The proportion of agreement

expected by chance is equal to

pe ¼ 27� 15þ 58� 70

852
¼ 0:62:

8 S. Vanbelle



Therefore, given the marginal distribution of the two medical raters, if they

classify the elements randomly, we expect them to agree on 62 % of the women.

This leads to a Cohen’s kappa coefficient of

κ̂ ¼ po � pe
1� pe

¼ 0:81� 0:62

1� 0:62
¼ 0:51:

In a same way, the intraclass kappa coefficient is equal to 0.49. The results

obtained for the other categories are summarized in Table 1.4.

It can be observed in Table 1.4 that there is a significant positive agreement on

all categories, except on category large (the lower bound of the 95 % confidence

interval is negative). More generally, it is seen that the agreement on extreme

categories (minimal and excessive) is better than the agreement on the middle

categories (moderate and large). This is a well-know phenomenon. When the

marginal distributions of the two raters are the same (see category moderate in

Table 1.3), we have κ̂ ¼ κ̂I, as expected.

Categorical Scale

Cohen’s Kappa and Intraclass Kappa Coefficients

Consider now the situation where two raters have to classify N elements on a

categorical scale with more than two (K > 2) categories (e.g. cervical ectopy size is

rated on a four-category scale). By extension, Cohen (1960) defined the observed
proportion of agreement and the proportion of agreement expected by chance by

Table 1.3 Contingency tables obtained from the classification of the ectopy size of 85 women by

two medical raters with direct visual assessment when isolating each category of the four-category

scale

Category minimal Category moderate

Rater 1

Rater 2

Rater 1

Rater 2

Minimal Other Total Moderate Other Total

Minimal 13 2 15 Moderate 16 13 29

Other 14 56 70 Other 13 43 56

Total 27 58 85 Total 29 56 85

Category large Category excessive

Rater 1

Rater 2

Rater 1

Rater 2

Large Other Total Excessive Other Total

Large 3 10 13 Excessive 11 17 28

Other 15 57 72 Other 0 57 57

Total 18 67 85 Total 11 74 85

1 Clinical Agreement in Qualitative Measurements 9



po ¼
XK
j¼1

njj
N

¼
XK
j¼1

pjj and pe ¼
XK
j¼1

nj:n:j

N2
¼

XK
j¼1

pj:p:j:

This leads to the Cohen’s kappa coefficient

κ̂ ¼ po � pe
1� pe

:

In the same way, we have for the intraclass kappa coefficient

poI ¼
XK
j¼1

pjj; peI ¼
XK
j¼1

pj: þ p:j
2

� �2

and κ̂I ¼ poI � peI
1� peI

:

Interpretation

It has been proven that Cohen’s kappa and the intraclass kappa coefficients

computed for a K � K contingency table are in fact weighted averages of kappa

coefficients obtained on 2� 2 tables, constructed by isolating a single category ½j�
from the other categories (see Table 1.3) (j ¼ 1; . . . ;K). The overall proportion of

observed agreement is in fact the average of the observed proportion of agreement

in the 2� 2 tables and the same applies for the proportion of agreement expected

by chance. More precisely, we have

Table 1.4 Observed

proportion of agreement,

proportion of agreement

expected by chance, kappa

coefficient, standard error and

95 % confidence interval

(95 % CI) of the Cohen’s

kappa coefficient and the

intraclass kappa coefficient

for each 2� 2 table given in

Table 1.3

Category

Cohen’s kappa

po pe κ̂ SEðκ̂Þ 95 % CI

Minimal 0.81 0.62 0.51 0.10 0.31, 0.71

Moderate 0.69 0.55 0.32 0.11 0.11, 0.53

Large 0.71 0.70 0.019 0.11 �0.19, 0.23

Excessive 0.80 0.63 0.47 0.098 0.27, 0.66

Intraclass kappa

poI peI κ̂I SEðκ̂IÞ 95 % CI

Minimal 0.81 0.63 0.49 0.11 0.27, 0.72

Moderate 0.69 0.55 0.32 0.11 0.11, 0.53

Large 0.71 0.70 0.014 0.13 �0.24, 0.27

Excessive 0.80 0.65 0.43 0.11 0.23, 0.64
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κ̂ ¼

PK
j¼1

ðpo½j� � pe½j�Þ

PK
j¼1

ð1� pe½j�Þ
¼ 1

PK
j¼1

ð1� pe½j�Þ

XK
j¼1

ð1� pe½j�Þκ̂½j�:

Example

In the cervical ectopy example, the proportion of observed agreement and the

proportion of agreement expected by chance are respectively equal to

po ¼ ð13þ 16þ 3þ 11Þ=85 ¼ 0:506

and

pe ¼ ð27� 15þ 29� 29þ 18� 13þ 11� 28Þ=852 ¼ 0:247:

Cohen’s kappa coefficient is then equal to

κ̂ ¼ 0:506� 0:247

1� 0:247
¼ 0:34 ð95 % CI 0:21� 0:48Þ:

The average of the observed and expected proportions of agreement in the

2� 2 tables (see Table 1.3) are po ¼ (0.81 + 0.69 + 0.71 + 0.80)/4 ¼ 0.506 and

pe ¼ (0.62 + 0.55 + 0.70 + 0.63)/4 ¼ 0.247, as expected.

In the same way, the overall intraclass kappa coefficient is equal to

κ̂I ¼ ð0:506� 0:263Þ=ð1� 0:263Þ ¼ 0:33 (95 % CI 0.19–0.47).

Ordinal Scale

Weighted Kappa Coefficients

Some disagreements between two raters can be considered more important than

others. For example, on an ordinal scale, disagreements on two extreme categories

are generally considered more important than on neighbouring categories. In the

cervical ectopy example, discordance between minimal and excessive has more

impact than between minimal and moderate. For this reason, in 1968 Cohen

introduced the weighted kappa coefficient. Agreement (wjk) or disagreement (vjk)

weights are a priori distributed in the K2 cells of the K � K contingency table
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summarizing the classification of the two raters, to reflect the seriousness of

disagreement according to the distance between the categories. The weighted

kappa coefficient is then defined in terms of agreement weights

κ̂w ¼ pow � pew
1� pew

(1.3)

with

pow ¼
XK

j¼1

XK

k¼1
wjkpjk and pew ¼

XK

j¼1

XK

k¼1
wjkpj:p:k

(usually 0 � wjk � 1 and wjj ¼ 1), or in terms of disagreement weights

κ̂w ¼ 1� qow
qew

(1.4)

with

qow ¼
XK

j¼1

XK

k¼1
vjkpjk and qew ¼

XK

j¼1

XK

k¼1
vjkpj:p:k

(usually 0 � vjk � 1 and vjj ¼ 0).

Although weights can be arbitrarily defined, two agreement weighting schemes

defined by Cicchetti and Allison (1971) are commonly used. These are the linear

and quadratic weights, given respectively by

wjk ¼ 1� jj� kj
K � 1

and wjk ¼ 1� jj� kj
K � 1

� �2

:

The disagreement weights vjk ¼ ðj� kÞ2 are also used. Note that Cohen’s kappa

coefficient is a particular case of the weighted kappa coefficient where wjk ¼ 1

when j ¼ k and wjk ¼ 0 otherwise.

Interpretation

The use of weighted kappa coefficients was also criticized in the literature, mainly

because the weights are generally given a priori and defined arbitrarily. Quadratic

weights have received much attention in the literature because of their practical

interpretation. For instance, using the disagreement weights vjk ¼ ðj� kÞ2, the
weighted kappa coefficient can be interpreted as an intraclass correlation coefficient
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in a two-way analysis of variance setting (see Fleiss and Cohen (1973); Schuster

(2004)).

By contrast, linear weights possess an intuitive interpretation. The K � K
contingency table can be reduced into a 2� 2 classification table by grouping

the first k categories in one category and the last K � k categories in a second

category (k ¼ 1; . . . ;K � 1). The linearly weighted observed and expected

agreements are then merely the mean values of the corresponding proportions of

all these 2� 2 tables. Therefore, similar to Cohen’s kappa coefficient, the linearly

weighted kappa coefficient is a weighted average of individual kappa coefficients

(see Vanbelle and Albert (2009).

The value of the weighted kappa coefficient can vary considerably for different

weighting schemes used and henceforth may lead to different conclusions. Clear

guidelines for the selection of weights are not yet available in the literature.

However, Warrens (2012) tends to favour the use of the linearly weighted kappa

because the quadratically weighted kappa is not always sensitive to changes in the

diagonal cells of a contingency table.

Example

Consider again the cervical ectopy size example, where women are classified on a

four-category Likert scale by two raters (see Table 1.1). The linear and quadratic

agreement weights corresponding to the four-category scale are given in Table 1.5.

As an illustration, the linear and quadratic weights for the cell (1,2) are equal to

1� 1� 2j j=ð4� 1Þ ¼ 0:67 and 1� 1� 2j j2=ð4� 1Þ2 ¼ 0:89, respectively.
To determine the linearly and quadratically weighted kappa coefficient, we have

to determine the weighted observed agreement and weighted expected agreement

separately. For each of the K � K cells, we have to multiply the proportion of

elements in the cell ðpjkÞ by the corresponding weight ðwjkÞ and then sum these to

obtain pow (Table 1.6). The weighted expected agreement is obtained similarly. For

cell (1,2), we have w12n12=N ¼ 0:67� 2=85 ¼ 0:016 and 0:89� 2=85 ¼ 0:021,
respectively.

The linearly weighted kappa coefficient (�SE) obtained is 0:52� 0:060 (95 %

CI 0.40–0.64) with pow ¼ 0:80 and pew ¼ 0:58. The quadratically weighted kappa

coefficient is 0:67 (95 % CI 0.55–0.78) with pow ¼ 0:91 and pew ¼ 0:72. In this

example, the quadratically weighted kappa coefficient is greater than the linearly

weighted kappa coefficient. However, the reverse could happen in other data sets.

No clear relationship between the two coefficients has been established in the

literature.
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Agreement Versus Association

A frequent mistake is to use the chi-square test to quantify the agreement between

raters. However, the ϕ coefficient, which is equal to Pearson’s correlation coeffi-

cient for two dichotomous variables, is always larger than Cohen’s kappa coeffi-

cient, equality holding only when the marginal distribution of the two raters is

uniform (p1: ¼ p:1 ¼ 0:5). The example of Fermanian (1984) illustrates the misuse

of association instead of agreement. Let two raters classify independently N ¼ 100

patients in three diagnostic categories A, B and C (Table 1.7).

In this example, the value of the chi-square statistic is χ2obs ¼ 38:7with 4 degrees
of freedom. Hence, there is a highly significant association between the two ratings

(p < 0:0001). However, the observed proportion of agreement po ¼ 0:34 and the

proportion of agreement expected by chance pe ¼ 0:34, leading to a Cohen’s kappa
coefficient of κ̂ ¼ ð0:34� 0:34Þ=ð1� 0:34Þ ¼ 0. The other agreement coefficients

reviewed in this chapter are also equal to 0. Therefore, despite the existence of a

strong association between the two ratings, the agreement between the raters is only

to be expected by chance. This example shows that agreement and association

measures answer different research questions and should be use in different

contexts.

Table 1.5 Linear (left) and quadratic (right) weighting schemes for a four-category scale

Rater 1

Rater 2

Rater 1

Rater 2

1 2 3 4 1 2 3 4

1 1.00 0.67 0.33 0.00 1 1.00 0.89 0.56 0.00

2 0.67 1.00 0.67 0.33 2 0.89 1.00 0.89 0.56

3 0.33 0.67 1.00 0.67 3 0.56 0.89 1.00 0.89

4 0.00 0.33 0.67 1.00 4 0.00 0.56 0.89 1.00

Table 1.6 Observed agreement in each cell using the linear (left) and quadratic (right) weighting

schemes in the cervical ectopy example

Rater 1

Rater 2

Rater 1

Rater 2

1 2 3 4 1 2 3 4

1 0.15 0.016 0.00 0.00 1 0.15 0.021 0.00 0.00

2 0.078 0.19 0.024 0.00 2 0.10 0.19 0.031 0.00

3 0.012 0.055 0.035 0.00 3 0.020 0.073 0.035 0.00

4 0.00 0.016 0.094 0.13 4 0.00 0.026 0.13 0.13

Table 1.7 Number of

patients classified in one of

three diagnostic categories

(A, B, C) by two raters

Rater 1

Rater 2

A B C Total

A 16 0 24 40

B 20 6 4 30

C 4 14 12 30

Total 40 20 40 100
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Conclusion

This chapter reviewed the definitions and properties of kappa-like coefficients.

These coefficients quantify the amount of agreement beyond chance when two

raters classify a series of elements on a categorical scale. Cohen’s kappa coefficient

and the intraclass kappa coefficient are used when the scale is binary or nominal,

whereas weighted kappa coefficients are mainly used for ordinal scales. Despite

their controversial properties reviewed in this chapter, kappa coefficients remain

widely used because they are simple to compute. Nevertheless, further research is

needed to provide guidelines on the choice of a weighting scheme for the weighted

kappa coefficient.

The continuation of this chapter is a review of methods to compare several

kappa-like coefficients or more generally to study the effect of a set of predictors

(characteristics of the subjects and/or the raters) on the agreement level in order to

provide researchers practical means to improve the agreement level between raters

(see e.g. Williamson et al. (2000); Vanbelle and Albert (2008); Vanabelle et al.

2012)).

Appendix: Variance of the Kappa Coefficients

The sample variance of Cohen’s kappa coefficient using the delta method is given

by

varðκ̂Þ ¼ poð1� poÞ
Nð1� peÞ2

þ 2ðpo � 1ÞðC1 � 2popeÞ
Nð1� peÞ3

þ ðpo � 1Þ2ðC2 � 4p2eÞ
Nð1� peÞ4

(1.5)

where

C1 ¼
XK
j¼1

pjjðpj: þ p:jÞ and C2 ¼
XK
j¼1

XK
k¼1

pjkðp:j þ pk:Þ2:

With the additional assumption of no rater bias, the sample variance simplifies to

varðκ̂IÞ¼ 1

Nð1�C3Þ2

XK
j¼1

pjj½1�4�pjð1� κ̂IÞ�

þð1� κ̂IÞ2
XK
j¼1

XK
k¼1

pjkð�pjþ �pkÞ2�½κ̂I�C3ð1� κ̂IÞ�2

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

(1.6)

where �pj ¼ ðpj: þ p:jÞ=2 and C3 ¼
PK

j¼1 �pj (j; k ¼ 1; � � � ;K).
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The two sided ð1� αÞ confidence interval for κ is then determined by

κ̂�Qzð1� α=2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
varðκ̂Þp

, where Qzð1� α=2Þ is the α=2 upper percentile of the

standard Normal distribution.

The sample variance of the weighted kappa coefficient obtained by the delta

method is

varðκ̂wÞ¼ 1

N 1�pewð Þ4

XK
j¼1

XK
k¼1

pjk wjk 1�pewð Þ� wj:þw:k

� �
1�powð Þ� �2

� powpew�2pewþpowð Þ2

8>><
>>:

9>>=
>>;

(1.7)

where w:j ¼
PK

m¼1 wmjpm: and wk: ¼
PK

s¼1 wksp:s.
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Chapter 2

Clinical Agreement in Quantitative

Measurements

Limits of Disagreement and the Intraclass Correlation

Abhaya Indrayan

Abstract In clinical research, comparison of one measurement technique with

another is often needed to see whether they agree sufficiently for the new to replace

the old. Such investigations are often analysed inappropriately, notably by using

correlation coefficients, which could be misleading. This chapter describes

alternatives based on graphical techniques that quantify disagreement as well as

the concept of intraclass correlation.

Introduction

Assessment of agreement between two or more measurements has become impor-

tant for the following reasons. Medical science is growing at a rapid rate. New

instruments are being invented and new methods are being discovered that measure

anatomic and physiologic parameters with better accuracy and precision, and at

lower cost. Emphasis is on simple, non-invasive, safer methods that require smaller

sampling volumes and can help in continuous monitoring of patients when required.

Acceptance of any new method depends on a convincing demonstration that it is

nearly as good as, if not better than, the established method. The problem in this

case is not equality of averages but of equality of all individual values.

The term agreement is used in several different contexts. The following discus-

sion is restricted to a setup where a pair of observations (x,y) is obtained by

measuring the same characteristic on the same subject by two different methods,

by two different observers, by two different laboratories, at two anatomic sites, etc.

There can also be more than two. The measurement could be qualitative or

quantitative. Quantitative agreement is between exact values, such as intra-ocular
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pressure in two eyes, and quantitative agreement is between attributes such as the

presence or absence of a minor lesion in radiographs read by two radiologists. The

method of assessing agreement in these two cases is different. This chapter is on

agreement in quantitative measurements. Agreement in qualitative measurements is

discussed in the previous chapter.

Assessment of Quantitative Agreement

Irrespective of what is being measured, it is highly unlikely that the new method

would give exactly the same reading in every case as the old method, even if they

are equivalent. Some differences would necessarily arise – if nothing else, at least

as many as would occur when the same method is used two times on the same

subject under identical conditions. How do you decide that the new method is

interchangeable with the old? The problem is described as one of quantitative

agreement. This is different from evaluating which method is better. The assess-

ment of better is done with reference to a gold standard. Assessment of agreement

does not require any such standard.

Quantitative Measurements

The problem of agreement in quantitative measurement can arise in at least five

different types of situations. (1) Comparison of self-reported values with

instrument-measured values, for example, urine frequency and bladder capacity

using a patient questionnaire and a frequency–volume chart. (2) Comparison of

measurements at two or more different sites, for example, paracetamol concentra-

tion in saliva with that in serum. (3) Comparison of methods, for example, bolus

and infusion methods of estimating hepatic blood flow in patients with liver disease.

(4) Comparison of two observers, for example, duration of electroconvulsive fits

reported by two or more psychiatrists on the same group of patients, or comparison

of two or more laboratories when, for example, aliquots of the same sample are sent

to two different laboratories for analysis. (5) Intraobserver consistency, for exam-

ple, measurement of the anterior chamber depth of an eye segment two or more

times by the same observer using the same method to evaluate the reliability of the

method.

In the first four cases, the objective is to find whether a simple, safe, less

expensive procedure can replace an existing procedure. In the last case, the reli-

ability of the method is being evaluated.
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Statistical Formulation of the Problem

The statistical problem in all these cases is to check whether or not a y ¼ x type of
relationship exists in individual subjects. This looks like a regression setup y ¼
a + bx with a ¼ 0 and b ¼ 1, but that is not really. The difference is that, in

regression, the relationship is between x and the average of y. In an agreement

setup, the concern is with individual values and not with averages. Nor should

agreement be confused with high correlation. Correlation is nearly 1 if there is a

systematic bias and nearly same difference occurs in every subject. Example

1 illustrates the distinction between y ¼ x regression and agreement.

Example : Very Different Values but Regression Is y ¼ x

The following Hb values are reported by two laboratories for the same blood

samples:

Lab I (x) 11.3 12.0 13.9 12.8 11.3 12.0 13.9 12.8

Lab II (y) 11.5 12.4 14.2 13.2 11.1 11.6 13.6 12.4

�x ¼ 12:5; �y ¼ 12:5; r ¼ 0:945

ŷ ¼ x; that is; b ¼ 1 and a ¼ 0

The two laboratories have the same mean for these eight samples and a very high

correlation (0.945). The intercept is 0 and slope is 1.00. Yet there is no agreement in

any of the subjects. The difference or error ranges from 0.2 to 0.4 g/dL. This is

substantial in the context of the present-day technology for measuring Hb levels.

Thus, equality of means, a high degree of correlation and regression y ¼ x are not
enough to conclude agreement. Special methods are required.

The first four values of x in this example are the same as the last four values.

The first four values of y are higher and the last four values are lower by the

same margin. Thus, for each x, �y¼ x giving rise to the regression ŷ¼ x. In this
particular case, the correlation coefficient is also nearly 1.

Quantitative agreement in individual values can be measured either by limits of

disagreement or by intraclass correlation. The details are as follows.
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Limits of Disagreement Approach

This method is used for a pair of measurements and based on the differences

d ¼ (x – y) in the values obtained by the twomethods or observers under comparison.

If the methods are in agreement, this difference should be zero for every subject. If

these differences are randomly distributed around zero and none of the differences

is large, the agreement is considered good. A graphical approach is to plot d versus
(x + y)/2. A flat line around zero is indicative of good agreement. Depending on

which is labelled x and which is y, an upward trend indicates that x is generally more

than y, and a downward trend that y is more than x.
A common sense approach is to consider agreement as reasonably good if, say,

95 % of these differences fall within the prespecified clinically tolerable range and

the other 5 % are also not too far from that. Statistically, when the two methods or

two observers are measuring the same variable, then the difference d is mostly the

measurement error. Such errors are known to follow a Gaussian distribution. Thus

the distribution of d in most cases would be Gaussian. Then the limits �d � 1.96sd
are likely to cover differences in nearly 95 % of subjects where �d is the average and
sd is the standard deviation (SD) of the differences. The literature describes them as

the limits of agreement. They are actually limits of disagreement.

Limits of disagreement : �d � 1:96sd to �d þ 1:96sd (2.1)

If these limits are within clinical tolerance in the sense that a difference of that

magnitude does not alter the management of the subjects, then one method can be

replaced by the other. The mean difference �d is the bias between the two sets of

measurements and sd measures the magnitude of random error. For further details,

see Bland and Altman (1986).

The limitations of the product–moment correlation coefficient are well known.

Consider the following example. Suppose a method consistently gives a level

0.5 mg/dL higher than another method. The correlation coefficient between these

two methods would be a perfect 1.0. Correlation fails to detect systematic bias. This

also highlights the limitations of the limits of disagreement approach. The differ-

ence between measurements by two methods is always +0.5 mg/dL, thus the SD of

the difference is zero. The limits of disagreement in this case are (+0.5,+0.5). This is

in fact just one value and not limits. A naive argument could be that these limits are

within clinical tolerance and thus the agreement is good. To detect this kind of

fallacy, plot the differences against the mean of paired values. This plot can

immediately reveal this kind of systematic bias.
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Example : Limits of Disagreement Between Pulse Oximetry and
Korotkoff Readings

Consider the study by Chawla et al. (1992) on systolic blood pressure (BP) readings

derived from the plethysmographic waveform of a pulse oximeter. This method

could be useful in a pulseless disease such as Takayasu syndrome. The readings were

obtained (a) at the disappearance of the waveform on the pulse oximeter on gradual

inflation of the cuff and (b) at the reappearance on gradual deflation. In addition, BP

was measured in a conventional manner by monitoring the Korotkoff sounds. The

study was done on 100 healthy volunteers. The readings at disappearance of the

waveform were generally higher and at reappearance generally lower. Thus,

the average (AVRG) of the two is considered a suitable value for investigating the

Table 2.1 Results on agreement between AVRGa and Korotkoff BP readings in 100 volunteers

AVRGa Korotkoff

Mean systolic BP (mmHg) 115.1 115.5

SD (mmHg) 13.4 13.2

Mean difference (mmHg) �0.4

P-value for paired t >0.50

Correlation coefficient (r) 0.87

SD of difference, sd (mmHg) 6.7

Limits of disagreement (mmHg) (�13.5, 12.7)

Intraclass correlation coefficient (rI)
(formula given in next section)

0.87

aAverage of readings at the appearance and disappearance of the plethysmographic waveform of a

pulse oximeter

Fig. 2.1 (a) Scatter of the pulse oximeter based (y) and Korotkoff based (x) readings of systolic
blood pressure. For pulse oximeter based readings the average of readings at the disappearance and

reappearance of the waveform respectively were used (labelled AVRG in the left panel). (b) Plot
of d versus (x + y)/2 (d ¼ difference between y and x which are defined as above)
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agreement with the Korotkoff readings. The results are shown in Table 2.1. The

scatter, the line of equality and the plot of d versus (x + y)/2 are shown in Fig. 2.1.

Figure 2.1b shows that the differences were large for smaller values.

Despite the means being nearly equal and r very high, the limits of disagreement

(Table 2.1) show that a difference of nearly 13 mmHg can arise between the two

readings on either side (average of pulse oximetry readings can give either less or

more than the Korotkoff readings). These limits are further subject to sampling

fluctuation, and the actual difference in individual cases can be higher. Now it is for

the clinician to decide whether a difference of such magnitude is tolerable. If it is,

then the agreement can be considered good and pulse oximetry readings can be used

as a substitute for Korotkoff readings, otherwise they should not be used. Thus, the

final decision is clinical rather than statistical when this procedure is used.

Intraclass Correlation as a Measure of Agreement

Intraclass correlation is the strength of a linear relationship between subjects belong-

ing to the same class or the same subgroup or the same family. In the agreement setup,

the twomeasurements obtained on the same subject by two observers or twomethods

is a subgroup. If they agree, the intraclass correlation will be high. This method of

assessing an agreement was advocated by Lee et al. (1989).

In the usual correlation setup, the values of two different variables are obtained on

a series of subjects. For example, you can have the weight and height of 20 girls aged

5–7 years. You can also have the weight of the father and mother of 30 low

birthweight newborns. Both are weights and the product–moment correlation coef-

ficient is a perfectly valid measure of the strength of the relationship in this case.

Now consider the weight of 15 persons obtained on two machines. Any person, say

number 7, may bemeasured bymachine 2 first and then bymachine 1. Othersmay be

measured by machine 1 then bymachine 2. The order does not matter in this setup as

the interest is in finding whether the values are in agreement or not.

Statistically, intraclass correlation is that part of the total variance that is

accounted for by the differences in the paired measurements obtained by two

methods. That is,

Intraclass correlation: ρI ¼
σ2M

σ2M þ σ2e
(2.2)

where σ2M is the variance between methods if methods are to be compared for

agreement and σ2e is the error variance. This formulation does not restrict us to only

two methods. These could be three or more. In the weight example, you can

compare agreement among five machines by taking the weight of each of the

15 persons on these five machines.

The estimate of ρI is easily obtained by setting up the usual analysis of variance

(ANOVA) table. If there are M methods under comparison, the ANOVA table

would look like Table 2.2. The number of subjects is n in this table and other

notations are self-explanatory. E(MS) is the expected value of the corresponding

mean square.
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A little algebra yields the estimate of the intraclass correlation rI:

rI ¼ MSA�MSE

MSAþ ðn� 1ÞMSE
(2.3)

This can be easily calculated once you have the ANOVA table. Statistical

software will give you the value of the intraclass correlation directly.

In terms of the available values, the computation of the intraclass correlation

coefficient (ICC) is slightly different from that of the product–moment correlation

coefficient. In the agreement setup, the interest is in the correlation between two

measurements obtained on the same subject and is obtained as follows.

ICC (a pair of readings):

rI ¼ 2Σiðxi1 � �xÞðxi2 � �xÞ
Σiðxi1 � �xÞ2 þ Σiðxi2 � �xÞ2 (2.4)

where xi1 is the measurement on the ith subject (i ¼ 1,2,. . .,n) when obtained by the
first method or the first observer, xi2 is the measurement on the same subject by the

second method or the second observer, and �x is the overall mean of all 2n
observations. Note the difference in the denominator compared with the formula

for the product–moment correlation.

This was calculated for the systolic BP data described in Example 2 and was

found to be rI ¼ 0.87. A correlation >0.75 is generally considered enough to

conclude good agreement. Thus, in this case, the conclusion on the basis of the

intraclass correlation is that the average of readings at disappearance and appear-

ance of the waveform in pulse oximetry in each person agrees fairly well with the

Korotkoff readings for that person. This may not look consistent with the limits of

disagreement that showed a difference up to 13 mmHg between the two methods.

The two approaches of assessing agreement can sometimes lead to different

conclusions.

Equation (2.4) is used for comparing two methods or two raters. This correlation

can be used for several measurements. For example, you may have the wave

amplitude of electrical waves at M ¼ 6 different sites in the brain of each of

n ¼ 40 persons. For multiple raters or multiple methods, ICC (several readings):

rI ¼ ΣiΣj 6¼kðxij � �xÞðxik � �xÞ
ðM � 1ÞΣiΣjðxij � �xÞ2 ; i ¼ 1; 2; . . . ; n; j; k ¼ 1; 2; . . . ;M (2.5)

where n is the number of subjects and M is the number of observers or the number

of methods to be compared. The mean �x is calculated on the basis of all Mn
observations.

Table 2.2 Structure of ANOVA table in agreement setup

Source df Mean square (MS) E(MS)

Methods (A) M � 1 MSA σ2e þ nσ2M
Subjects (B) n � 1 MSB σ2e þMσ2S
Error (M � 1)(n � 1) MSE σ2e

2 Clinical Agreement in Quantitative Measurements 23



For grading of the strength of agreement, the cutoffs shown in Table 2.3 can be

used.

An Alternative Simple Approach to Agreement Assessment

Neither of the two methods described in the preceding sections is perfect. Let us

first look at their relative merits and demerits and then propose an alternative

method, which may also not be perfect but is relatively simple.

Relative Merits of the Two Methods

Indrayan and Chawla (1994) studied the merits and demerits of the two approaches

in detail. The following are their conclusions on the comparative features of the two

methods:

1. The ICC does not depend on the subjective assessment of any clinician. Thus, it

is better to base the conclusion on this correlation when the clinicians disagree

on the tolerable magnitude of differences between two methods (or two

observers). And clinicians seldom agree on such issues.

2. The 0.75 threshold to label an intraclass correlation high or low is arbitrary,

although generally acceptable. Thus, there is also a subjective element in this

approach.

3. Intraclass correlation is unit free, easy to communicate, and interpretable on a

scale of zero (no agreement) to one (perfect agreement). This facility is not

available in the limits of disagreement approach.

4. A distinct advantage of the limits of disagreement approach is its ability to

delineate the magnitude of individual differences. It also provides separate

estimates of bias ð�dÞ and random error (sd). This bias measures the constant

differences between the two measurements and random error is the variation

around this bias. Also, this approach is simple and does not need much

calculation.

5. The limits of disagreement can be evaluated only when the comparison is

between two measurements. The intraclass correlation, on the other hand, is

fairly general and can be used for comparing more than two methods or more

than two observers (Eq. 2.5).

Table 2.3 Cutoffs for

grading the strength of

agreement

Intraclass correlation Strength of agreement

<0.25 Poor

0.25–0.50 Fair

0.50–0.75 Moderate

0.75–0.90 Good

>0.90 Excellent
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6. Intraclass correlation can also be used for comparing one group of raters with

another group. Suppose you have four male assessors and three female assessors.

Each subject is measured by all seven assessors. You can compare intraclass

correlation obtained for male assessors with that obtained for female assessors.

You can have one set of subjects for assessment by males and another set of

subjects for assessment by females.

A review of the literature suggests that researchers prefer the limits of disagree-

ment approach to the ICC approach for comparing two methods. A cautious

approach is to use both and come to a firm conclusion if both give the same result.

If they are in conflict, defer a decision and carry out further studies.

The following comments might provide better appreciation of the procedure to

assess quantitative agreement:

1. As mentioned earlier, the limits of disagreement �d � 1:96sd themselves are

subject to sampling fluctuation. A second sample of subjects may give different

limits. Methods are available to find an upper bound to these limits. For details,

see Bland and Altman (1986). They call them limits of agreement, but perhaps

they should be called limits of disagreement.

2. The ICC too is subject to sampling fluctuation. For assessing agreement, the

relevant quantity is the lower bound of rI. This can be obtained by the method

described by Indrayan and Chawla (1994). Their method for computing the ICC

is based on ANOVA, but that gives the same result as obtained by Eq. (2.4).

3. Although not specifically mentioned, the intraclass correlation approach

assumes that the methods or observers under comparison are randomly chosen

from a population of methods or observers. This is not true when comparing

methods because they cannot be considered randomly chosen. Thus, the

intraclass correlation approach lacks justification in this case. However, when

comparing observers or laboratories, the assumption of a random selection may

have some validity. If observers or laboratories agree, a generalized conclusion

about consistency or reliability across them can be drawn.

4. Intraclass correlation is also used to measure the reliability of a method of

measurement as discussed briefly by Indrayan (2012).

5. Both these approaches are applicable when both the methods could be in error.

As mentioned earlier, these methods are not appropriate for comparing with a

gold standard that gives a fixed target value for each subject. For agreement with

a gold standard, see Lin et al. (2002).

An Alternative Simple Approach

The limits of disagreement approach just described is based on the average difference

and has the limitations applicable to all averages. For example, this approach does not

work if the bias or error is proportional. Fasting blood glucose levels vary from 60 to

300 mg/dL or more. Five percent of 60 is 3 and of 300 is 15. The limits of
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disagreement approach considers them to be different and ignores that both are 5 %

and proportionately the same. Also, if one difference is 10 and the other is 2, and they

are not necessarily proportional, the limits of disagreement consider only the average.

Individual differences tend to be overlooked. A few unusually large differences

distort the average and are not properly accounted except by disproportional inflation

of the SD.

To account for small and big individual differences as well as proportional bias,

it may be prudent to set up a clinical limit that can be tolerated for individual

differences without affecting the management of the condition. Such limits are

required anyway for the limits of disagreement approach, albeit for the average.

These clinical limits of indifference can be absolute or in terms of a percentage. If

not more than a prespecified percentage (say 5 %) of individual differences are

beyond these limits in a large sample, you can safely assume adequate agreement.

This does not require any calculation of the mean and SD. You may like to add a

condition such as none of the differences should be more than two times the limit of

indifference. Any big difference, howsoever isolated, raises alarm. A plot of y
versus x can track that the differences are systematic or random.

Example : Agreement Between Two Methods of Measuring
Fasting Blood Glucose Levels

Consider the data in Table 2.4. Supposemethod 1 is the current standard although this

can also be in error. Method 2 is extremely cheap and gives instant results. Suppose

also that clinicians arewilling to accept 5% error in view of the distinct advantages of

method 2. Note that this indifference is a percentage and not an absolute value.

In these data, the y versus x plot is on a fairly straight line (Fig. 2.2a) but the plot
of d versus (x + y)/2 (Fig. 2.2b) shows an aberration with a large number of points

on the negative side and following an increasing trend. This shows lack of agree-

ment according to the limits of disagreement approach. This really is not the case as

explained next.

None of the differences exceed the clinical limit of indifference of 5 % in this

sample. Thus, method 2 can be considered in agreement with method 1 although a

larger sample is required to be confident. However, most differences are negative,

indicating that method 2 generally provides lower values. The average difference is

4.2 mg/dL in absolute terms and nearly 3 % of y in relative terms. This suggests the

correction factor for bias. If you decide to subtract 3 % of the level obtained by

method 2, you can reach very close to the value obtained by method 1 in most cases.

Do this as an exercise and verify it for yourself.

Table 2.4 Data on fasting blood sugar levels in 10 blood samples

Method 1 (x) 86 172 75 244 97 218 132 168 118 130

Method 2 (y) 90 180 73 256 97 228 138 172 116 132

d ¼ x � y �4 �8 +2 �12 0 �10 �6 �4 +2 �2

5 % of x 4.30 8.60 3.75 12.20 4.85 10.90 6.60 8.40 5.90 6.50
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Now forget about 5 % tolerance, and note that some differences are small and

some are quite large in Example 3. The value of sd ¼ 4.85 in this case. Thus, the

limits of disagreement are �4.2 � 2 � 4.85, or �13.9 to +5.5. These limits may

look too wide and beyond clinical tolerance, particularly on the negative side.

These limits do not allow a larger error for larger values that proportionate

considerations would allow. Also, these are based on an average and do not

adequately consider individual differences. If 1 out of 20 values shows a big

difference, this can distort the mean and inflate the SD, and provide unrealistic

limits of disagreement. The alternative approach suggested above can be geared to

allow not more than 5 % individual differences beyond the tolerance limit and you

can impose an additional condition that none should exceed, say, by 10 % of the

base value. Since it is based on individual differences and not on an average, this

alternative approach may be more appealing.
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Fig. 2.2 (a) y versus x plot for data in Example 3, and (b) d versus (x + y)/2 plot for the same data.

The variables x and y are the results of glucose measurements on the same sample by two different

methods (mg/dl) and the difference between the results of two methods is given by d
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Chapter 3

Disagreement Plots and the Intraclass

Correlation in Agreement Studies

Suhail A.R. Doi

Abstract Although disagreement and the intraclass correlation have been covered

previously, several variants of both have been proposed. This chapter introduces

readers to several variants of the disagreement plot and the classification of the

intraclass correlation coefficient and the concept of repeatability in agreement

studies.

Variations of the Limits of Disagreement Plot

Several variations have been proposed for the limits of disagreement plot (also

called a Bland–Altman plot). In terms of the x-axis, instead of the average we could
use a geometric mean or even the values on one of the two methods, if this is a

reference or gold standard method (see Krouwer 2008). In terms of the y-axis, the
difference (d) can be expressed as percentages of the values on the average of the

measurements (i.e. proportional to the magnitude of measurements). This helps

when there is an increase in variability of the differences as the magnitude of the

measurement increases. Ratios of the measurements can be plotted instead of d
(avoiding the need for log transformation). This option is also utilized when there is

an increase in variability of the differences as the magnitude of the measurement

increases. All these can be done with the help of routine software such as MedCalc,

which gives a warning when either the ratio or percentage includes zero values.
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Example

Sardinha (1998) designed a study to compare air displacement plethysmography

with dual-energy X-ray absorptiometry (DXA) for estimation of percent body fat

(%BF). The differences between DXA-determined and plethysmography-

determined %BF were compared (Figs. 3.1, 3.2, 3.3, 3.4, and 3.5).

The Special Case of Limits of Disagreement for two Successive
Measurements: Repeatability Coefficient

The repeatability coefficient tells us the maximum difference likely to occur

between two successive measurements when we want to know how good a mea-

surement instrument is.

Fig. 3.1 Regression of DXA

based %body fat versus

PLETH based %body fat

demonstrating a good linear

relationship. However this

does not necessarily mean

there is good agreement

Fig. 3.2 The classic layout of

the Bland–Altman plot

comparing %body fat

measurements by DXA and

PLETH in terms of limits of

disagreement. The limits

suggest that measuring %

body fat by PLETH could

result in an absolute

difference of �2.9 % to

+7.9 % compared with DXA
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Assessment of reproducibility requires starts with measurements per subject as

given in the example (Table 3.1) of glucometer readings in 15 subjects. If the

variance of the differences between the 15 pairs of repeated measurements

¼ 0.1303, the repeatability is then given by:

Fig. 3.4 The ratio layout of the Bland–Altman plot comparing %body fat by DXAwith %body fat

by PLETH in terms of limits of disagreement. The limits suggest that measuring %body fat by

PLETH could result in a value 0.67–1.14 times that of DXA. Again, this option is useful when

there is an increase in variability of the differences as the magnitude of the measurement increases.

However, there must not be a zero value for either one of the two techniques

Fig. 3.3 The % average layout of the Bland–Altman plot comparing $body fat via DXA with

%body fat via PLETH in terms of limits of disagreement. The limits suggest that measuring

%body fat by PLETH could result in a relative difference of �16 % to +37.4 % compared with

DXA. This option is useful when there is an increase in variability of the differences as the

magnitude of the measurement increases
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repeatability ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1303

p
� 1:96 ¼ 0:71

This impiles that for the glucometers, for 95 % of all pairs of measurements on

the same subject, the difference between two replicates may be as much as

0.71 mmol/L just by random measurement error alone. Bland and Altman called

this value of 0.71 mmol/L the repeatability of measurement. Bland and Altman

have proposed this as equivalent to the limits of disagreement for repeated

measures.

We can get a close approximation to the variance of the difference from a

simpler expression:

P
d2

2N

Table 3.1 Differences between glucometer readings on a sample taken from each subject

Subject Glucometer type 1 Glucometer type 2 Difference between readings

1 4.9 5.4 �0.5

2 4.0 4.0 0

3 5.2 5.2 0

4 4.3 4.4 �0.1

5 4.8 5.3 �0.5

6 5.6 5.9 �0.3

7 4.1 4.1 0

8 4.4 5.3 �0.9

9 6.5 7.6 �1.1

10 4.3 5.0 �0.7

11 4.2 4.5 �0.3

12 6.6 7.5 �0.9

13 2.7 2.8 �0.1

14 4.8 5.4 �0.6

15 1.8 2.1 �0.3

Fig. 3.5 Classic layout of the

Bland–Altman plot but using

only DXA measurements on

the horizontal axis rather than

the average of DXA and

PLETH measurements. Here

again, %body fat by PLETH

can be an absolute 2.5 % less

to 7.9 % more than DXA.

This option is utilized if one

of the measurements is a gold

standard
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where d is the difference between successive measurements and N is the number of

pairs of repeated measures. Thus repeatability is the given by:

1:96�
ffiffiffiffiffiffiffiffiffiffiffiP

d2

2N

r

If we use this approximation, it slightly overestimates the repeatability.

Given that the variance of the difference equals the sum of the within subject

variances of each measurement, repeatability can also be defined in terms of the

within subject variance (σ2within) as follows:

1:96�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σ2within

q
¼ 1:96�

ffiffiffi
2

p
� σ2within ¼ 2:77� σ2within

2.77 is called the repeatability coefficient by Bland and Altman.

Further Details on the Intraclass Correlation Coefficient

Use in Rater Evaluation

Results for each sample or subject tested more than once may be considered a

cluster or a class of measurements by different methods or raters. The intraclass

correlation coefficient (ICC) is thus a measure of agreement within these clusters or

classes. For example, if the clusters (or classes) are made up of different physicians’

ratings for individual papers (i.e. they give a quality score to each research paper)

then this can be depicted as shown in Figs. 3.6 and 3.7.

Take the extreme case where each paper receives the same score from both

raters; i.e. no variance within the raters (Fig. 3.6). So, ICC ¼ variance between

class/(variance between class + variance within class) ¼ σB
2/[σB

2 + σ2W] ¼
σ2B/[σB

2 + 0] ¼ 1 ¼ perfect agreement within the cluster (class). Thus, papers

(class/cluster) are more heterogeneous than ratings within clusters (or class).

Alternatively, ratings are more homogeneous (good raters) than the class/cluster.

A different case arises when each paper has raters who give very different scores

(Fig. 3.7); that is, most of the variance is within the raters (difference between papers

(class) are now less than within their ratings). ICC is close to 0 implying bad raters.

When agreement is assessed for repeated measurements or ratings, the data set

for analysis of agreement between methods or raters is usually laid out such that the

rows represent each class/cluster and the columns contain the different

measurements that make up each class/cluster. In general, the ICC approaches 1.0

as the between-class effect (the row effect) is very large relative to the within-class

effect (the column effect), regardless of what the rows and columns represent. In

this way, the ICC is a measure of homogeneity within class; it approaches 1.0 when

any given row tends to have the same values for all columns.
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To take an example, let columns be different glucometers and let rows be subject

samples, and let the attribute measured be blood glucose. If glucometers vary much

more than the glucose levels across samples, then ICC will be low. When the ICC is

low, most of the variation is within the class/cluster (columns – glucometers). In

this case the across class/cluster differences (rows – samples) are less than the

within class/cluster differences (columns – glucometers). In terms of multivariable

analysis of glucometer results, there is less difference between the results from

ordinary regression and multilevel models when the ICC is low. In such cases, it

may be less important to use a statistical model that allows variables for within-

cluster characteristics, for example, different types of glucometers. The ICC is 0.5

when within-group variance equals between-group variance, indicative of the

glucometer having no effect. Although less common, note that the ICC can become

negative when the within-group variance exceeds the between-group variance.

Classification of ICCs

Based on the rating design, Shrout and Fleiss (1979) defined three types of ICCs

(types 1–3):

1. ICC(1,k): each target (e.g. research paper) is rated by different raters. Absolute

agreement (one-way random effects).

2. ICC(2,k): the same but exchangeable raters rate each target. Absolute agree-

ment, because systematic differences are relevant (two-way random effects).

Fig. 3.6 Different physicians’ ratings for individual papers. The ovals are the raters’ and the

rectangles the papers (which form the class or cluster). Each paper has a different average score

Fig. 3.7 Different physicians’ ratings for individual papers. The ovals are the raters’ and the

rectangles the papers (which form the class or cluster). Each paper has a similar average score
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3. ICC(3,k): the same but non-exchangeable raters rate each target. Consistency

because systematic differences between raters are irrelevant (two-way mixed

effects).

For example the paired ratings (20,40), (40,60) and (60,80) are in perfect

consistency (ICC of 1.0), but with an absolute agreement of 0.6667. Consistency

measures whether raters’ scores are highly correlated even if they are not identical

in absolute terms. That is, raters are consistent as long as their relative ratings are

similar. For each of the three cases above, Shrout and Fleiss (1979) further

distinguish two options; K ¼ 1 or K > 1:

• Single measures: this ICC is an index for the reliability of the ratings for one,

typical, single rater (K ¼ 1). Measures whether raters assign the same absolute

score.

• Average measures: this ICC is an index for the reliability of different raters

averaged together (K > 1). This ICC is always higher than the single

measures ICC.

Example of ICC(1,k)

ICC(1,k): 100 radiology centres are recruited for a study to assess computer-

assisted volumetric quantification of human maxillary sinuses and each computed

tomography (CT) scan is reported by the four centres closest to the originating

centre. Here, the raters are different but exchangeable and thus systematic

differences are relevant. Hypothetical data from six subjects are used to illustrate

MedCalc output for this scenario. Each of these six scans had measurements four

times from 4 of the 100 possible radiology centres (Table 3.2).

MedCalc Output

Number of subjects (n) 6

Number of raters (k) 4

Model Raters for each subject are selected at random

One-way random effects model

Type Absolute agreement

Measurements R1

R2

R3

R4

Intraclass correlationa 95 % confidence interval

Single measuresb 0.8524 0.6050–0.9744

Average measuresc 0.9585 0.8597–0.9935
aThe degree of absolute agreement among measurements
bEstimates the reliability of single ratings (ICC 1, 1)
cEstimates the reliability of averages of k ratings (ICC 1, 4)
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Example of ICC(2,k)

ICC(2,k): four equally experienced nurses rate six patients on a 10-point scale.

Here, the raters are a random sample of nurses who will use the scale in the future

and to which the assessed interobserver agreement is intended to relate. Thus, using

approach 2,k would yield a suitable coefficient of agreement (Table 3.3).

MedCalc Output

Number of subjects (n) 6

Number of raters (k) 4

Model The same raters for all subjects

Two-way model

Type Absolute agreement

Measurements Nurse1

Nurse2

Nurse3

Nurse4

Absolute agreement Intraclass correlationa 95 % confidence interval

Single measuresb 0.2898 0.01879–0.7611

Average measuresc 0.6201 0.07114–0.9272
aThe degree of absolute agreement among measurements
bEstimates the reliability of single ratings (ICC 2, 1)
cEstimates the reliability of averages of k ratings (ICC 2, 4)

Table 3.2 Data for Example

ICC(1,k)
Subject First Second Third Fourth

1 Perth Orange Sydney Melbourne

2 Brisbane Hobart Melbourne Darwin

3 Sydney Melbourne Perth Hobart

4 Darwin Toowoomba Orange Sydney

5 Brisbane Canberra Perth Melbourne

6 Adelaide Townsville Sydney Perth

Subject R1 R2 R3 R4

1 9 9 7 7

2 4 5 5 5

3 2 3 4 3

4 7 7 7 6

5 8 8 6 8

6 4 5 5 4
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Example of ICC(3,k)

ICC(3,k): four different brands of glucometers are used to assess glucose levels on

each blood sample (Table 3.4). The resulting intermeasure conformity concerns

only these four brands and thus approach 3,k would yield a suitable coefficient of

consistency.

MedCalc Output

Number of subjects (n) 6

Number of raters (k) 4

Model The same raters for all subjects

Two-way model

Type Consistency

Measurements GM 1

GM 2

GM 3

GM 4

Consistency Intraclass correlationa 95 % confidence interval

Single measuresb 1.0

Average measuresc 1.0
aThe degree of absolute agreement among measurements
bEstimates the reliability of single ratings (ICC 3, 1)
cEstimates the reliability of averages of k ratings (ICC 3, 4)

Table 3.3 Data for Example

ICC(2,k)
Patients Rater 1 Rater 2 Rater 3 Rater 4

1 9 2 5 8

2 6 1 3 2

3 8 4 6 8

4 7 1 2 6

5 10 5 6 9

6 6 2 4 7

Table 3.4 Data for Example

ICC(3,k)
Patients GM 1 GM 2 GM 3 GM 4

1 2 3 4 5

2 3 4 5 6

3 4 5 6 7

4 5 6 7 8

5 6 7 8 9

6 7 8 9 10
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Chapter 4

The Coefficient of Variation as an Index

of Measurement Reliability

Orit Shechtman

Abstract This chapter focuses on the use of the coefficient of variation (CV) as an

index of reliability or variability in the health sciences (medical and biological

sciences) for the purpose of clinical research and clinical practice in the context of

diagnostic tests, human performance tests, and biochemical laboratory assays.

Before examining the use of the CV as an index of measurement reliability or

variability, there is a need to define basic terms in measurement theory such as

reliability, validity, and measurement error. A discussion and examples of use of

the CV as a measure of reliability or variability are also provided.

Validity, Reliability and Measurement Error

Validity is the extent to which a test or an instrument measures what it is intended to

measure. Reliability is the extent to which a test or an instrument measures a

variable consistently. A valid test or instrument must be reliable. Reliability has

many synonymous terms, including consistency, repeatability, reproducibility,

stability, and precision (accuracy).

Measurement error interferes with the reproducibility of a test result or score

when the measurement is repeated, which compromises reliability and affects the

ability to measure change; for example, the serum level of a hormone during

progression of a disease. In reality, clinical measurements are rarely completely

reliable because some degree of error tends to exist in measurement instruments and

in tests. Thus, an observed result is composed of a true result plus an error.

Consequently, reliable clinical tests and instruments must have an acceptable

amount of measurement error rather than being perfectly reliable.
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This uncertainty is composed of both a systematic error (bias) and a random

error. Systematic error is predictable and it occurs in one direction only; random

errors are unpredictable, are due to chance, are termed noise and are due to a

sampling error. Sampling errors may occur for many reasons such as instrument-

dependent mechanical variation, participant-dependent biological variation,

examiner-dependent human error in measurement, and inconsistencies in the mea-

surement protocol (e.g. not controlling for posture during strength measurements).

Reliability may be categorized into two types: relative reliability and absolute

reliability. Relative reliability is the extent to which individuals maintain their

position in a sample over repeated measurement and is assessed with correlation

coefficients such as the intraclass correlation coefficient (ICC). Absolute reliability

is the extent to which repeated measurements vary for an individual and is

expressed by statistical methods such as the standard deviation, variance, standard

error of the measurement (SEM), or the CV (See Baumgarter 1989).

The Coefficient of Variation

The CV is a statistical measure of the variability of a distribution of repeated

measurements or scores (data set). A larger CV value reflects larger variability

between repeated measures and therefore a smaller consistency across repeated

measurements. The CV can be used as a measure of reliability because it assesses

the stability of a measurement across repeated trials. Consequently, a small CV

value indicates a more reliable (consistent) measurement.

The CV is a ratio between the standard deviation and the mean of a distribution

of values (data set); it expresses the within-subject standard deviation as a propor-

tion of the within-subject mean. In the special case of the distribution of the

variability between repeated measurements, the CV can be defined as follows:

Given that n is the number of data pairs and x1 and x2 are duplicate measurements

for the ith pair, the formulae used to derive the within-subject SD, mean and CV are

SDi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x2Þ2 2=

q

�xi ¼ ðx1 þ x2Þ 2=

CVi ¼ SDi

�xi

CVð%Þ ¼ 100�
P

CVi

n
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As can be seen, this ratio is multiplied by 100 to give a percentage CV. The CV

of a pair of repeated measurements is a unit-less or dimensionless measure because

the units cancel out mathematically in the formula. An advantage of such a

dimensionless measure is that it allows one to make a direct comparison between

the reliability (consistency, precision) of measurements irrespective of the scale or

calibration. Therefore, it permits comparison of reliability across instruments and

assays (See Hopkins 2000).

The CV is a measure of relative variability (dispersion). In contrast, the common

statistical measures of dispersion such as range, variance, and standard deviation

are measures of the absolute variability of a data set. The CV is thus useful only if

the magnitude of these measures of absolute variability change as a function of the

magnitude of the data (mean). In this case, the standard deviation is inappropriate

for comparing data sets of different magnitudes. On the other hand, the CV, as a

measure of relative variation, expresses the standard deviation as a ratio (or a

percentage) of the mean. In other words, the CV quantifies error variation relative

to the mean and hence it can be used to compare the variability of data of different

magnitudes. When the within-subject standard deviation is not proportional to the

mean value, then there is not a constant ratio between the within-subject standard

deviation and the mean and therefore, there is not one common CV. In this

situation, estimating the “average” coefficient of variation is not meaningful.

Comparing Variability Across Repeated Measurements

(Reliability)

The CV is used appropriately for this purpose only when the mean and standard

deviation of the measurements change proportionally: the greater the mean, the

greater the standard deviation. This is also called the heteroscedasticity of the data

and implies that the individuals who have the highest values on a specific test also

display the highest variability (standard deviation), that is, the greatest amount of

measurement error. On the other hand, the data are homoscedastic when there is no

relationship between the magnitude of the score and the variability.

Examples of such use include reliability of various assays, for example, blood

concentrations of glucose and hormones. When glucose is measured in repeated

blood sampling, the greater the mean glucose levels in the blood, the greater the

SD. Also, in an enzyme-linked immunosorbent assay (ELISA), the means and

standard deviation of the assay usually change proportionally, either increasing or

decreasing together. The CV is a good measure of reliability in this case because it

standardizes the standard deviation (by dividing it by the mean), which allows

comparison of the variability of the chemical being analysed irrespective of the

magnitude of its concentration.

Since the CV indicates the degree of variability in repeated tests conducted on

either a particular biochemical assay or a specific person, it may be used for quality
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control, for example, to monitor for calibration and/or a long-term drift in repeated

lipid laboratory assays of cholesterol and triglycerides. In this case, the CV is used

to determine if dissimilar assay results are due to assay variability or true

differences. In other words, the CV is used to establish the magnitude of differences

expected in the assay due to measurement error. Similarly, the CV can be used to

determine if the same person has undergone true change when two assay results are

separated by an intervention such as a treatment. An intervention effect would be

indicated when the two assays differ by more than expected from the variability

inherent in the assay (See Reed et al. 2002).

Another paradigm is measuring change in human performance between repeated

measurements over time. In this case, the CV can be used to determine if dissimilar

human performance test scores are due to random variability or true differences.

During rehabilitation, for example, repeated range of motion (ROM) tests are

performed to quantify the outcome measures of an intervention program. The

goal is to measure change in mean ROM scores before and after treatment to

determine whether or not the intervention was successful in improving functional

performance. Each ROM test is composed of three repeated trials (within-test

sampling error) and the test is administered twice, before and after treatment

(between-test change). In this case, the CV can be used to assess the reliability

(precision) of ROM scores to determine if true change in mean ROM occurred due

to a treatment effect. A large CV for each test (the within-test sampling error)

indicates compromised reliability (precision) due to large typical error, making the

documentation of true change due to an intervention effect questionable.

Comparing Variability Across Sets of Measurements

on Different Scales

The CV can also be used to compare dispersion between sets of dissimilar data, for

example, sets of data that are different in magnitude. As a measure of relative

variability, the CV compensates for the difference in the magnitude of the data

(mean). Because the magnitude of the standard deviation is a function of the

magnitude of the data, dividing it by the mean to calculate the CV is an attempt

to establish a measure that could be used to compare between dispersions of

populations of different magnitude. The CV is appropriately used as an index of

variability of different measurements only under certain conditions and when these

conditions are not met, it becomes an invalid measure of reliability. Generally, the

CV is validly used for this purpose only under the following conditions:

1. When describing continuous data measured on a ratio scale (not on an interval

scale).

2. When comparing the variability of data sets of different magnitudes, such as data

recorded in different units or on different scales.

3. When the mean difference (magnitude) and standard deviation (variability) of

the measurements change (increase or decrease) proportionately. This is also

called heteroscedasticity of the data.
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Ratio Scale

The CV may only be used with continuous data on a ratio scale (that starts at an

absolute zero) when ratio statements such as twice as big or half as much can be

made. A common example from the health sciences is the measurement of blood

concentrations of drugs. The CV is not valid for interval scales, where the zero

value is arbitrary and ratios between numbers are not meaningful. An example of an

interval scale would be temperature recorded in degrees Celsius or Fahrenheit.

Also, blood pressure, heart rate and weight do not have an absolute zero in living

persons. According to Allison (1993), without an absolute zero value, the mean,

which is the denominator of the CV, becomes an arbitrary value, which renders the

CV invalid.

Different Magnitudes

The range, variance and standard deviation cannot be used in the case of different

magnitudes as they are measures of absolute variability and thus their magnitude

depends on the scale of the data. Since the CV is a dimensionless (unitless)

statistical measure, it can be validly used to compare the variability of data recorded

in different units or magnitudes.

A simple example of using different scales is making a comparison between

organ size in various species, such as the nose length of elephants and mice. The

nose lengths of these two species are very different, that is, several feet for

elephants versus a fraction of an inch for mice. Thus, the absolute variability, for

example, standard deviation, can be expected to be much larger for a distribution of

elephant nose lengths than for a distribution of mouse nose lengths. Shechtman

(2000) gave a numerical example of a distribution of nose lengths (expressed as

mean � standard deviation), assuming elephant nose length to be 72 � 6 inches

and mouse nose length to be 0.07 � 0.005 inches. To correctly compare the

variability between the two species, the mean nose length has to be taken into

account because the absolute variability (standard deviation) is much larger for

the elephant than for the mouse nose length (6 inches vs. 0.005 inches, respec-

tively). On the other hand, the relative variation as expressed by the CV (CV ¼
SD/mean � 100) is 8.3 % and 7.1 % for the elephant and mouse nose lengths,

respectively. Consequently, the CV, which expresses the standard deviation as a

percent of the mean, is a more valid comparison of variability between the two

distributions.
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Heteroscedasticity

The CV is not a valid measure of reliability with homoscedastic data because it

becomes inflated. For example, when the mean of one distribution is smaller

compared with the mean of another distribution, but the standard deviations of

the two distributions are similar, the CV becomes inflated. With homoscedastic data

sets, the premise that a larger CV indicates more variability in the data is incorrect.

When calculating the CV, the standard deviation is the nominator and the mean is

the denominator (CV ¼ SD/mean), so the CV becomes larger due to either a larger

standard deviation or a smaller mean. If an experiment is being conducted to

compare grip strength between an injured and uninjured hand, because grip strength

is reduced in one hand due to hand injury, the larger CV is due to the decrease in the

mean and not as a result of a true increase in variability, because the standard

deviation is similar for the injured and uninjured hands. Similarly, in a study

comparing the variability of ROM of different joints, Bovens et al. (1990) state

that the CV of ankle eversion is large because the mean ROM is small. Thus, the use

of the CV is valid only when comparing distributions in which the mean changes

proportionally to the standard deviation (variability) of measurements.

Examples

Examples of variability of human performance measurements include determining

the variability of hand-held dynamometry for measuring muscle strength. Because

various muscle groups have different magnitudes of strength (mean force ranging

from 4.8 to 13.7 kg), the CV can be used to determine the variability of hand-held

dynamometry for measuring strength across the different muscle groups (see Wang

et al. 2002). Another example is comparing the variability of excursion of back

extension in centimetres versus degrees when assessing spinal flexibility with

different instruments. An additional example is comparing the variability in blood

cholesterol concentrations with the variability in blood vessel diameter. In a

different study, Mannerkorpi and Co-authors (1999) assessed the variability of

seven different tests in a test battery for functional limitations in fibromyalgia

syndrome using the CV. In a study with a narrower scope Montgomery and Gardner

(1998) used the CV to determine test–retest reliability of different measures derived

from the 6-min walk test, that is, the number of steps taken versus the total walking

distance. In the above examples, it is valid to use the CV because it measures the

relative spread of the data and it adjusts the scales that are represented in different

units.

In the case of large, multicenter, epidemiological studies in which multiple tests

and multiple examiners are necessary, consistency and precision in data collection

are critical, and the CV may be used to assess the variability (reliability) of the

various data sets. For example, Klipstein-Gnobusch et al. (1997) compared the
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variability of data sets collected by 17 different raters recording multiple anthropo-

metric measurements using the CV and other measures of reliability. The authors

used the CV to assess both inter-rater and intra-rater measurement error and to

describe the precision of data collection for both the different raters and the various

tests. As expected, the CVs were smaller for the more objective tests, such as body

weight and height, compared with the more subjective circumference and skin-fold

tests. The smaller CVs indicated smaller variability for the objective tests as well as

a smaller intra-rater than inter-rater variability. In this study, the CV was used to

express the measurement error inherent in these tests as a proportion of the mean, to

reflect the variability of the scores as independent of the between-subject variance.

Invalid Use of the CV for Comparing Variability Across

Data Sets

Using the CV for comparing variability where the three conditions set out are not

met can result in invalid comparisons. The measure of sincerity of effort is a good

example of such invalid use. The CV is widely used to determine the sincerity of

effort of grip strength measurements. Grip strength scores are often used to deter-

mine the extent of an injured worker’s disability and the amount of the subsequent

financial compensation. Grip strength measurements, however, are objective, reli-

able, and valid only when an individual exerts a sincere maximal effort. Intentional

exertion of an insincere, feigned, and submaximal effort could lead to unnecessary

medical procedures and lack of response to intervention, and thus could lead to

rising health care costs.

The rationale for using a measure of variability to assess sincerity of effort is

based on the motor unit recruitment model, which suggests that repeated maximal

efforts are expected to be more consistent than repeated submaximal efforts

(Kroemer and Marras 1980). According to this model, it should be easy to achieve

consistent repetitions of maximal muscular contractions because simple motor

control is required for maximal firing frequency and maximal motor unit recruit-

ment. On the other hand, consistent repetitions of submaximal efforts should be

more difficult to accomplish because higher levels of motor control are necessary

for grading muscular contraction, including constant corrections of motor signals

based on delicate proprioceptive feedback.

As a test of sincerity of effort, the CV is used to compare the variability of at

least three repeated grip strength trials between the injured hand and the uninjured

hand. The premise is that a sincere maximal effort should be more consistent than

an insincere submaximal effort regardless of hand injury, and therefore repeated

maximal efforts should have smaller CVs. Several studies investigating the validity

of using the CV as a measure of sincerity of effort suggest that the reason for the

larger CV of submaximal efforts is the smaller mean grip force and not a true

increase in the variability of the data set (Shechtman 2000).
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For the CV to validly indicate the variability of repeated grip strength trials, the

data set must be heteroscedastic, which means that a stronger person (with greater

mean grip strength) must have greater variability (standard deviation) than a weaker

person. In other words, the stronger person must be less consistent in repeating

strength trials than the weaker person. Otherwise, the CV would be inflated for the

weaker person as previously discussed.

Shechtman (1999) presented case studies of three patients who were tested for

grip strength before carpal tunnel release surgery and then at 6, 13, and 26 weeks

after surgery, each performing three repeated grip trials at each time point. The

study clearly demonstrated homoscedastic data sets: although the mean grip

strength for each participant decreased after surgery and slowly recovered with

time, the standard deviation of the three grip trials remained essentially the same.

To demonstrate the problem of using the CV with homoscedastic data, consider

the data sets presented in Figs. 4.1, 4.2, and 4.3. The data in these figures show no

relationship between the mean and standard deviation, as the mean (Fig. 4.1)

changes without a corresponding proportional change in the standard deviation

(Fig. 4.2). As a consequence, the CV of the weaker patient (patient 2) is inflated,

especially at 6 and 13 weeks after surgery (Fig. 4.3). These large CVs are due to a

smaller mean rather than to a true increase in variability (standard deviation). The

lack of proportional change between the means and standard deviations is

demonstrated for both within-subject and between-subject grip strength scores, as

the standard deviation values are similar throughout the data sets (Fig. 4.2).

In a study with a larger sample size, Shechtman (2001a) again demonstrated that

repeated grip strength trials produce homoscedastic data sets. Healthy participants

(n ¼ 146) performed five repeated grip strength trials twice, once exerting maximal

effort and once exerting submaximal effort. The data showed that larger mean

torques did not yield larger standard deviations: the mean torque of the submaximal

efforts was 50 % smaller than that of the maximal efforts and the standard deviation

of the submaximal efforts was 5 % larger than that of the maximal efforts. This lack

of relationship between the means and standard deviations violates the statistical

principle of heteroscedasticity of data, resulting in biased outcomes expressed as

inflated CVs for the submaximal efforts. The author concluded that the CV is not an

appropriate measure of variability for determining sincerity of effort of grip

strength because the increased CVs associated with submaximal efforts were not

due to a true increase in variability. The increased CV values were due to a decrease

in the mean, and thus did not indicate a lack of consistency or insincerity. When CV

values are inflated, a person may be wrongly accused of feigning an effort.

Mistakenly labelling a sincere effort as insincere may result in inappropriate

diagnosis and treatment, reduced financial compensation and job loss, all of

which have a negative impact on the individual patient.

An additional problem that may arise when using the CV is that the cut-off value

used to indicate what is an acceptable variability in a data set is often chosen

arbitrarily. In the specific case of sincerity of effort, the cut-off value found in the

related literature varies greatly; it ranges from 7.5 % to 20 %. The most commonly

used CV cut-off value is 15 %. Instead of arbitrarily choosing a cut-off value,

Shechtman (2001b) calculated sensitivity and specificity values for the entire range
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of CV cut-off values. The author concluded that the CV lacked a sufficient

combination of sensitivity and specificity values necessary for detecting sincerity

of effort of grip strength in clinical practice.

Fig. 4.1 Mean grip strength

(kg) of three repeated trials

performed by two patients

before carpal tunnel surgery

and at 6, 13, and 26 weeks

after surgery

Fig. 4.2 Standard deviation

of three repeated grip strength

trials (kg) performed by two

patients before carpal tunnel

surgery and at 6, 13, and

26 weeks after surgery

Fig. 4.3 Coefficients of

variation of three repeated

grip strength trials (%)

performed by two patients

before carpal tunnel surgery

and at 6, 13, and 26 weeks

post surgery
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Conclusions

The advantages of the CV as a measure of data reliability are that it is simple to

calculate and it is dimensionless (unitless). As a unitless measure, the CV is used to

compare numerical distributions that are measured on different scales because it

does not vary with changes in the magnitude of a measurement. The CV permits

direct comparison of variability of different measurements without the need to take

into account either calibration or the magnitude of scores. Therefore, the CV allows

comparison of variability across various instruments, testers (raters), and study

samples (populations). In addition, the CV can be used to evaluate whether or not

differences between two measurements are due to random variation and thus

enabling true changes to be tracked in clinical settings. Although the existence of

statistical tests to measure significant differences between CVs was disputed, Tian

(2005) proposed a statistical method for comparing between CVs.

The limitations of the CV as an index of measurement reliability stem from

using it incorrectly by violating the three conditions of valid use. The CV is not

valid when used with data sets that are: (1) not recorded as ratio scales; (2) not of

different magnitudes or units; or (3) not heteroscedastic (the mean and standard

deviation do not change proportionally). Some authors also caution against using an

arbitrarily chosen cut-off value for the CV when determining the variability of

data sets.
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Part II

Diagnostic Tests



Chapter 5

Using and Interpreting Diagnostic Tests

with Dichotomous or Polychotomous Results

Cristian Baicus

Abstract In order to use and interpret diagnostic tests, we need to know the

operating characteristics of the test (sensitivity, specificity, predictive values and

likelihood ratios), and the prevalence of the disease. Sensitivity is the probability

that a sick person tests positive, and a very sensitive test is useful when negative, to

rule out the disease. Specificity is the probability of a healthy person to test

negative, and a very specific test is useful when positive, to rule in the diagnosis.

The positive predictive value is the probability that a person whose test is positive

has the disease; the negative predictive value is the probability that a person whose

test is negative is healthy. The predictive values depend on the prevalence of

disease (pretest probability) so that, for the same predictive values, the probability

of disease is higher in settings with a higher prevalence of disease than in those with

a lower prevalence (Bayes’ rule). The likelihood ratios of a test, which may be

calculated from its sensitivity and specificity, are stable for different prevalences,

can deal with both dichotomous and polychotomous (multilevel) test results, and

can also be used to calculate the post-test probability. For a valid diagnostic study,

consider the standards for reporting of diagnostic accuracy (QUADAS) criteria.

Sensitivity and Specificity

Disease is a categorical variable that can have two values (the patient either has or has

not the disease), therefore it is a dichotomous variable. The diagnostic test can also be

a dichotomous variable (e.g. imaging) or an interval variable (e.g. laboratory testing
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for haemoglobin, serum glucose, prostate-specific antigen, etc.), which can be

transformed into dichotomous variables by using a cut-off level.1

Therefore, when comparing two dichotomous variables, we use a 2 by 2 contin-

gency table (Table 5.1), with the outcome variable (disease) in the columns, and the

predictive variable (result of the diagnostic test) in the rows. There are four possible

situations: the patient has the disease and the test is positive (true-positive); the

patient has the disease but the test is negative (false-negative); the patient does not

have the disease and the test is negative (true-negative); and the patient does not

have the disease but the test is positive (false-positive).

The accuracy of a test is the proportion of correct diagnoses (true-positives and

true-negatives) among all tested patients (Table 5.2).

The sensitivity (Se) of a test is the probability of a positive test when the person

is sick, or the proportion with a positive test among all people with the disease

(people with the disease who have a positive test divided by all the people with the

disease; positive in disease, PID); therefore, the sensitivity is calculated on the

people who have the disease.

The sensitivity represents the power of a test to discover the disease. The more

sensitive the test, the less the risk for patients with the disease going undiscovered

(1 � Se ¼ the false-negative rate: the higher the sensitivity, the less the false-

negatives). A very sensitive test (close to 100 %) is most useful when it is negative.

The proportion of false-negatives is very small, therefore we can rule out the

disease (SnOUT) (Sackett et al. 1991).

The specificity (Sp) is the probability of a healthy individual testing negative, or

the proportion of people with a negative test among the healthy persons. Therefore,

the specificity is calculated in healthy people.

A very specific test (close to 100 %) is useful when it is positive, because it rules

in the disease (SpIN); specificity is inversely correlated with the false-positive rate

(1 � Sp ¼ false-positive rate).

The ideal test is sensitive and specific at the same time, because it is useful to

rule in the disease when it is positive and rule out the disease when it is negative.

Because sensitivity and specificity are calculated on sick people and healthy

people, respectively, they do not depend on the prevalence of the disease; therefore

these characteristics remain constant in any setting.2

Table 5.1 A 2 � 2 contingency table with the four possibilities concerning the results of a

diagnostic test

Test

Disease (gold standard)

Present Absent

Positive TP FP

Negative FP TN

FN false-negative, FP false-positive, TN true-negative, TP true-positive

1 For the evaluation of tests with an interval scale, the choice of a cut-off level and the utilization of

tests with more than two levels, see Chap. 6.
2 At least theoretically. In fact, the sensitivity of a test is higher at the tertiary care level because the

patients have more advanced disease than in primary care.
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The Predictive Values of Tests

The sensitivity and specificity, although important parameters of the diagnostic tests,

do not help us in clinical practice, except when they are close to 100 % and we apply

the SnOUT and SpIN rules. This happens because their definition is the reverse of the

diagnostic approach. In medical practice, we do not know if the patient is sick or

healthy; we are trying to find out the probability of the sick or healthy patient testing

positive or negative respectively (the definitions of sensitivity and specificity). Con-

versely, we are applying a diagnostic test and we want to know, depending on its result,

what is the probability of disease. This is the definition of predictive values.

The positive predictive value (PPV) is the probability that a person with a

positive test is a true-positive. The negative predictive value (NPV) is the probabil-

ity that a person with a negative test does not have the disease (Last 2001).

We can compute the predictive values using the same 2 � 2 contingency table

(Table 5.2). The predictive values (positive ¼ a/(a + b) and negative ¼ d/(c + d)),
unlike sensitivity and specificity, are calculated on the horizontal lines, therefore

they depend on the prevalence of the disease (¼ (a + c)/(a + b + c + d)). This
means that, while sensitivity and specificity are relatively constant in different

setting with different prevalences, the predictive values are highly dependent on

prevalence. This is the Bayes’ theorem: the post-test (or posterior) probability

depends on the pretest (or prior) probability; or the probability of disease given

this diagnostic test depends not only on how good the test is (sensitivity and

specificity), but also on the prevalence of the disease in the tested population.

This is summarized by the following formulas:

PPV ¼ Se� Prevalence

Se� Prevalenceþ ð1� SpÞ � ð1� PrevalenceÞ

NPV ¼ Sp� ð1� PrevalenceÞ
Sp� ð1� PrevalenceÞ þ ð1� SeÞ � ðPrevalenceÞ

Table 5.2 A 2 � 2 contingency table for the assessment of a diagnostic test

Diagnostic test

Disease

TotalPresent Absent

Positive a b a + b

Negative c d c + d

a + c b + d a + b + c + d

a true-positives, b false-positives, c false-negatives, d true-negatives

Accuracy ¼ (a + d)/(a + b + c + d)
Sensitivity (Se) ¼ a/(a + c)
Specificity (Sp) ¼ d/(b + d)
Pretest probability ¼ prevalence of disease ¼ (a + c)/(a + b + c + d)
Positive predictive value (PPV) ¼ a/(a + b)
Negative predictive value (NPV) ¼ d/(c + d)
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Therefore, a low prevalence determines the decrease in the PPV and the increase

in the NPV; a high prevalence has the opposite effect.

Table 5.3 presents how a very good test (with Se ¼ Sp ¼ 95 %) changes the

post-test probability, for different prevalences of a disease. For very high (95–99 %)

or very low (1–5 %) prior probabilities, the test is useless, because the shift from

pre-test to post-test probability is not large enough to change the classification of

the patient from having the disease to not having the disease and vice versa. If

the patient has a 95 % pretest probability of having a disease, we know he has the

disease, and other tests are not necessary; for a 5 % pretest probability, we already

know he does not have the disease, and other tests are not necessary. A test is useful

when applied to patients with average prior probabilities (with the largest shift of

probability for a 50 % prior probability: from 50 % to 95 % if the test is positive, or

from 50 % to 5 % if the test is negative).

Unfortunately, the diagnostic tests are rarely so good, and for a weaker test

(smaller Se and Sp), the probability shifts determined by the test are smaller too

(Table 5.4).

Calculating the Post-Test Probability (PPV) of a Given Test for

Variable Prevalences

According to Bayes’ theorem, we need the pretest probability in order to calculate

the post-test probablility (¼ PPV). How can we find this?

We can never know it for sure, but it can be estimated. For primary care, it is

equal to the prevalence of the disease in the local population, and if we do not know

this, we can extrapolate it from studies in similar populations. We can find these

prevalences in the literature by searching for descriptive studies documenting the

Table 5.3 Post-test probability for a very good diagnostic test (Se ¼ Sp ¼ 95 %)

Prev 99 95 90 80 70 60 50 40 30 20 10 5 1

PPV 99.9 99.7 99.4 99 98 97 95 93 89 83 68 50 16

NPV 16 50 68 83 89 93 95 97 98 99 99.4 99.7 99.9

NTP 84 50 32 17 11 7 5 3 2 1 0.6 0.3 0.1

Prev prevalence ¼ pretest probability, PPV positive predictive value ¼ post-test probability

(positive test), NPV negative predictive value, NTP post negative test probability ¼ 100 � NPV

Table 5.4 Post-test probabilities for a diagnostic test with Se ¼ Sp ¼ 90 % (diagnostic criteria

for giant cell arteritis)

Prev 99 95 90 80 70 60 50 40 30 20 10 5 1

PPV 99.8 99.4 98.7 97 95 90 90 86 79 69 50 32 8.3

NPV 8.3 32 50 69 79 86 90 93 95 97 98.7 99.4 99.9

NTP 81.7 58 50 31 21 14 10 7 5 3 1.3 0.6 0.1

Prev prevalence ¼ pretest probability, PPV positive predictive value ¼ post-test probability

(positive test), NPV negative predictive value, NTP post negative test probability ¼ 100 � NPV
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pretest probabilities for diseases with underlying signs and symptoms similar to

those presented by our patient. Another way to find the prevalence is to look at the

prevalence of the disease among the patients in our practice or service in recent

years.

Once the prevalence is established, we need to find in the literature the

parameters (Se and Sp) for the diagnostic test we are interested in. If they were

calculated in an environment similar to that in which we work (the same disease

prevalence), then we can use the predictive values calculated in that article.

Otherwise, relying on the fact that Se and Sp remain constant regardless of the

prevalence, we can calculate the post-test probability (or PPV) by the back calcula-

tion method, using a 2 � 2 table again (see Table 5.2). If a test has Se ¼ 95 % and

Sp ¼ 90 %, and the prevalence of the disease is 5 % in our setting, we can calculate

the PPV and NPV for our patient after he tests positive or negative, respectively.

First, we give an arbitrary value to the cell with the total number of patients in

the lower right corner (e.g. a + b + c + d ¼ 1,000; Table 5.5). Knowing the

prevalence of the disease, which is (a + c)/(a + b + c + d), we find the value for

a + c. For a prevalence of 5 % in our setting, there will be 50 patients with the

disease (a + c) and 950 people without the disease (1,000 � 50), and we can

complete all the cells at the bottom of the table.

Then, starting from the known value of the Se ¼ 95 %, we calculate the values

in the column for the patients who have the disease: Se ¼ 0.95 ¼ a/(a + c) ¼ a/50,
which means a ¼ 0.95 � 50 ¼ 47.5, rounded to 47 true-positives; therefore

the number of false-negatives c is 50 � 47 ¼ 3, and we have the first column

completed (Table 5.6).

Knowing that Sp ¼ 0.90, we calculate the number of true-negatives ¼ d ¼
950 � 0.90 ¼ 855, and the number of false-positives ¼ 950 � 855 ¼ 95, and we

have the contingency table completed. Therefore we can proceed to the calculation

of the predictive values: PPV ¼ 47/142 ¼ 0.33, and the NPV ¼ 855/858 ¼ 0.997.

A simpler method to calculate the predictive values according to prevalence is by

using likelihood ratios (see later).

Table 5.5 Calculation of the predictive values for a test knowing the prevalence, the sensitivity

and the specificity (the back calculation method)

Diagnostic test

Disease

TotalPresent Absent

Positive a b a + b

Negative c d c + d

a + c b + d a + b + c + d

a true-positives, b false-positives, c false-negatives, d true-negatives

We know that the pretest probability (prevalence) ¼ (a + c)/(a + b + c + d) ¼ 5 %. Se ¼
a/(a + c) ¼ 0.95; Sp ¼ d/(b + d) ¼ 0.90. We do not know: PPV ¼ a/(a + b); NPV ¼ d/(c + d)
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Dichotomizing Categories of a Diagnostic Test

Dichotomizing leads to loss of information so the true-positive and false-positive

rates tend to become closer together. Dichotomization thus increases the risk of a

positive result being a false-positive. Individuals close to but on opposite sides of

the cut-off point are characterized as being very different rather than very similar.

Using two groups conceals any non-linearity in the relationship between the

variable and outcome. Also, if dichotomization is used, where should the cut-off

point be? For a few variables there are recognized cut-off points, such as body mass

index (BMI, calculated as weight in kilograms divided by the square of height in

meters) > 25 kg/m2 defines overweight. In the absence of a prior cut-off point

(e.g. for disease X in Table 5.7), this is an arbitrary process. Therefore, in such

situations, it is preferable to compute the sensitivity and specificity for each

category (used as the decision threshold) or, better still, to compute the likelihood

ratios (see later).

Multiple Testing

As most diagnostic tests are far from being perfect, a single test is generally not

enough. For this reason, physicians use multiple diagnostic tests, administered

either in parallel (simultaneously) or serially (sequentially).

In parallel testing, the tests are done simultaneously. The test battery is consid-

ered negative when all the tests are negative, and positive when at least one of the

Table 5.6 The back

calculation of the values in

the contingency table to adapt

the predictive values of a test

to a different prevalence

Diagnostic test

Disease

TotalPresent Absent

Positive 47 95 142

Negative 3 855 858

50 950 1,000

PPV ¼ 0.33; NPV ¼ 0.997

Table 5.7 An example of a biochemical test used to diagnose disease X

Serum levels for

biochemical test

Disease

present

Disease

absent

Serum levels for

biochemical test

Disease

present Disease absent

�18 47 2 �45 70 15

19–45 23 13 70/85 ¼ 0.824 15/150 ¼ 0.1

Sensitivity 1 � specificity

46–100 7 27 >45 15 135

>100 8 108 15/85 ¼ 0.176 135/150 ¼ 0.9

1 � sensitivity Specificity

Totals 85 150 Totals 85 150
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tests is positive. Using parallel testing, there is a gain in sensitivity at the expense of

a loss in specificity compared with either of the tests used alone. For example, we

could say that a patient with arthritis has systemic lupus erythematosus (SLE) if she

has any one of malar rash, nephrotic syndrome, thrombocytopenia, pleural effusion

or antinuclear antibodies (ANA), and we can decide she does not have SLE if she

has none of these symptoms. We will miss very few patients with lupus, but

probably we will have more false-positives.

By applying the same tests serially, we decide that the patient has SLE only if

she has, concomitantly, malar rash, nephrotic syndrome, thrombocytopenia, pleural

effusion and ANA. We rule out the disease if the patient does not have all of these

symptoms. Using this method, we increase the specificity (we are sure that a patient

with all these symptoms has SLE) but lose sensitivity (a lot of patients will not have

all the symptoms so there will be many false-negatives).

Most of the time, tests are done sequentially, beginning with the most specific (if

the tests pose equal risk & cost to the patient) or, in daily practice, from the simplest

to the most expensive or invasive: history, clinical examination, and laboratory

tests. The tests are done in parallel when a rapid assessment is necessary, for

example, in an emergency or in hospitalized patients.

Table 5.8 presents data on anaemia, erythrocyte sedimentation rate and weight

loss as diagnostic tests for cancer, and the variations in sensitivity and specificity

that appear with the parallel or serial use of these tests.

Parallel and serial testing do not use the value of every test in the battery of tests,

but only the battery as a whole: for parallel testing, if only one of the tests is positive

or all are positive, we consider the battery positive and the disease present (“believe
the positive”); for serial testing, if one test is negative or all are negative, we

consider the battery negative and the disease absent (“believe the negative”).
For more complex evaluations where the value of every test is taken into

account, multivariable analysis (logistic regression) can be used, and diagnostic

or prognostic models and scores or clinical prediction rules can be developed.

The Gold (Reference) Standard

To estimate classification accuracy using diagnostic tests, the disease status for each

patient has to be measured without error (i.e. the end point has to be defined without

uncertainty; however, this is sometimes not the case). The presence or absence of

Table 5.8 Anaemia,

erythrocyte sedimentation

rate (ESR) and involuntary

weight loss as diagnostic tests

for cancer (Baicus et al.

1999): parallel testing

increases the sensitivity;

serial testing increases the

specificity

Test Se (CI) Sp (CI)

Anaemia 37 (36–39) 92 (91–93)

ESR 52 (51–54) 89 (88–90)

Weight loss 46 (45–48) 94 (93–94)

Parallel testing 87 (86–88) 79 (78–81)

Serial testing 9 (9–10) 99.6 (99–100)

CI confidence interval
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the disease state is defined according to some, sometimes arbitrarily selected, gold

standard. Because, in reality, there is no perfect test, some people call this the

reference standard. Thus, the true disease status is often inferred from the reference

standard or the gold standard. The reference standard may be available from clinical

follow-up, surgical verification, biopsy and autopsy. For certain diseases, there is no

single test that can constitute the gold standard, and in this case, the investigators

build one relying on multiple tests or on clinical evolution. In the latter situation, a

set of criteria defining the outcome has to be set before the start of the study, and the

outcome should be evaluated by an independent committee of experts or in partic-

ular situations by the use of results of multiple imperfect tests (referred to as a

composite reference standard). The nature of the reference standard can itself be a

cause for debate.

The reference standard is generally the most expensive or invasive of all

available tests, and this is the reason why researchers try to find new, cheaper or

less invasive tests, with the hope of demonstrating that are comparable with the

reference standard, in diagnostic research studies. In the event that a new test is

better than the reference standard, the usual diagnostic study design will not be able

to reveal this, because, for example, diseased individuals correctly detected only by

the new test will be falsely labeled as false-positives.

Diagnostic Test Research: Study Design and Validity Criteria

The classic study design is a cross-sectional study in which both the diagnostic test

and the reference standard are applied in every patient, concomitantly and indepen-

dently. If the test is a prognostic one (or the reference standard is clinical evolution),

then the design is a cohort study.

The case–control design, in which people with and without the disease are

sampled separately, usually compares people with clear disease with healthy

people, and thus the results of the study are over optimistic concerning the discrim-

inative power of the diagnostic test because the test is not assessed on a clinically

realistic spectrum of patients. For that reason, case–control diagnostic studies are

less valid, and they should be reserved for rare diseases or as a first stage diagnostic

study, knowing that if low sensitivity and/or specificity are found, it is not worth-

while continuing with a more valid type of study.

In order to be valid, a diagnostic test study has to meet the following criteria:

1. There must be an independent, blind comparison with a reasonable reference

standard. Independent means that there must not be common items in the

diagnostic test and the reference standard, and the results of the reference

standard must be independent of the results of the evaluated test (incorporation

bias). Blind means that the investigators who interpret the test must not be aware

of the results of the reference standard, and those who interpret the reference

standard must not be aware of the results of the test.
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2. The reference standard must be applied to all the patients included in the study,

even if the evaluated test is negative, in order to detect the false-negatives (for

invasive tests, there are alternatives such as clinical follow-up).

3. The studied test must be evaluated for reproducibility (see Chaps. 1 and 2 on the

kappa statistic and clinical agreement).

4. The study population must be similar to the population to be tested (in order to

avoid spectrum bias). For this purpose, a cross-sectional design must be used,

and all consecutive patients suspected of the disease for which the test is

evaluated must be included. This kind of study (unlike the case–control

approach) will reproduce the true prevalence of the disease in that setting, and

the predictive values will be true (for that setting).

5. The sample size must be calculated (see Chap. 7) in order to have acceptable

precision for the sensitivity, specificity and likelihood ratios without large

confidence intervals, which would make the results of the study uninterpretable

(no wider than � 10 %).

Generally, for a valid diagnostic study, it is better to consider the standards for

reporting of diagnostic accuracy (STARD) initiative (http://www.stard-statement.

org), which was published in 2003 in several leading medical journals.

But diagnostic testing is only an intermediate end point, and one cannot be sure

that by using a better diagnostic test, the patient will live longer or better. The

answer to this question is given only by randomized controlled studies, in which

patients are randomized to receive either the standard diagnostic tests or the new

diagnostic tests, and then they are treated according to the results of the diagnostic

work-up. Using this kind of design, if the new test is better than the reference

standard used, this can be found.

At the end, even if the diagnostic model fulfills all the validity criteria, it can

only be trusted after validation in a second sample (and ideally in different settings).

Until this kind of validation (external), which requires a new sample and may be a

new study, has been done, one could be content with an internal validation,

achieved by simulation of a second data set and using the statistical techniques of

split sampling, jackknifing or bootstrapping.

The Likelihood Ratio

A likelihood ratio (LR) is the ratio of the probability of a positive test (LR+) or

negative test (LR�) in the diseased over the healthy. Thus, an LR > 1 means that

the test result is more likely to result in disease; LR < 1 means the test result is

more likely to result in no disease; LR ¼ 1 means that the test result is equally

likely in the diseased and non-diseased. LRs describe how much the odds change

after applying the results of a test.

LRþ ¼ Se= 1� Spð Þ; LR� ¼ 1� Seð Þ=Sp
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The LRs tell us by how much a given diagnostic test result will increase or

decrease the pretest assessment of the chance of the target disorder by the physician.

Thus:

• An LR of 1 means that the post-test probability is exactly the same as the pretest

probability.

• LR > 1.0 increases the probability that the target disorder is present, and the

higher the LR, the greater is this increase.

• LR < 1.0 decreases the probability of the target disorder, and the smaller the

LR, the greater is the decrease in probability and the smaller is its final value.

Unlike sensitivity and specificity, LRs can deal with both dichotomous and

polychotomous test results. Collapsing multilevel tests into two levels, however,

moves LRs closer to 1 and thus results at the extremes will appear less powerful in

changing disease probability (see Table 5.9). For a test with only two outcomes,

LRs can be calculated directly from sensitivities and specificities. The positive LR

is the proportion with disease X who were positive (sensitivity) divided by the

proportion without disease X who were positive (1 � specificity). The negative LR

is the proportion with disease X who were negative (1 � sensitivity) divided by the

proportion without disease X who were negative. However, unlike sensitivity and

specificity, computation of LRs does not require dichotomization of test results as

depicted in the tables.

Using LRs for Prediction of Disease

We can convert the pretest probability to an odds [probability ¼ odds/(odds + 1)].

We can use Bayes’ theorem to convert pretest odds to post-test odds [post-test

odds ¼ pretest odds � LR]. Odds can then be converted to probabilities [odds ¼
probability/(1 � probability)] as follows:

• Estimate probability before the test

• Calculate odds before the test

Apply the test

• Calculate odds after the test

• Calculate probability after the test

PPVs and NPVs can also be used to do the same thing, but LRs are easier. LRs

have advantages over PPV and NPV because

• They are less likely to change with the prevalence of the disorder

• They can be calculated for several levels of the symptom/sign or test

• They can be used to combine the results of multiple diagnostic tests

• They can be used to calculate the post-test probability for a target disorder.
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Diagnostic Odds Ratio

The diagnostic odds ratio (DOR) can be used as a single indicator of test perfor-

mance. Just like the odds ratio it is the odds of positivity in the abnormal reference

group relative to the odds of positivity in the normal reference group.

DOR is given by

DOR ¼ TP=FP

FN=TN
¼ LRðþÞ

LRð�Þ

The DOR can range between 0 and infinity on a numerical scale and the higher

its value, the better the discriminatory performance of the test. Just like the odds

ratio, a value of 1 is the null value and implies a non-discriminatory test. Values

between 0 and 1 means that the abnormal reference group are more likely to have

negative tests than the normal reference group and thus implies a wrong test

implementation. The DOR increases steeply when the sensitivity or specificity

becomes near perfect (Fig. 5.1). One useful property of the DOR is that it can be

derived from binary outcome logistic models (see Chap. 10) that allows the

inclusion of additional variables to adjust for heterogeneity. It can also be pooled

in meta-analysis but just like the sROC approaches, the true-positive and false-

positive rates are modeled simultaneously.
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Chapter 6

Using and Interpreting Diagnostic Tests with

Quantitative Results

The ROC Curve in Diagnostic Accuracy

Suhail A.R. Doi

Abstract Sensitivity and specificity, as defined previously, depend on the cut-off

point used to define positive and negative test results. To determine the best cut-off

point shift that optimizes sensitivity and specificity, the receiver operating charac-

teristic (ROC) curve is often used. This is a plot of the sensitivity of a test versus its

false-positive rate for all possible cut-off points. This chapter outlines its

advantages, its use as a means of defining the accuracy of a test, its construction

as well as methods for identification of the optimal cut-off point on the ROC curve.

Meta-analysis of diagnostic studies is briefly discussed.

Introduction

As we have seen previously, diagnostic test results use a cut-off value based on

either a binary or polychotomous scale to define positive and negative test

outcomes. On a continuous or ordinal scale, the sensitivity (Se, the probability of

a positive test outcome in a diseased individual) and specificity (Sp, the probability

of a negative test outcome in a non-diseased individual) can also be computed for

specific values. Since the diagnostic test considers the results in two populations,

one population with a disease, the other population without the disease, therefore,

for every possible cut-off point or criterion value there will be some cases with the

disease correctly classified as positive (TP, true-positive fraction), and falsely

classified as negative (FN, false-negative fraction). Similarly, cases without the

disease can be correctly classified as negative (TN, true-negative fraction) or as

positive (FP, false-positive fraction). Compared to the binary outcome, on a con-

tinuous scale, the choice of cut-off will affect the degree of false misclassification
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by the test and thus for the same test, different cut-offs will have different operating

characteristics with an inversely related Se and Sp across cut-off values. Thus, for

tests that have an ordinal or continuous cut-off, Se and Sp at a single cut-off value

do not fully characterise the tests performance which varies across other potential

cut-off values. In this situation, a comparison of such diagnostic tests requires

independence from the selected cut-off value and this can be addressed via receiver

operating characteristic (ROC) analysis. The ROC method has several advantages:

• Testing accuracy across the entire range of cut-offs thereby not requiring a

predetermined cut-off point

• Easily examined visual and statistical comparisons across tests

• Independence from outcome prevalence

Example Data

Data from a prospective evaluation of an Australian pertussis toxin (PT) IgG and

IgA enzyme immunoassay are used as an example (May et al. 2012). In this study,

the accuracy of anti-PT IgG and anti-PT IgA (as normalized optical density) is

examined for the diagnosis of pertussis infection with samples taken within 2–8

weeks after onset of symptoms. The gold standard was Bordetella pertussis poly-
merase chain reaction at the first visit.

Basic Principles

The continuous test result is viewed as a multitude of related tests each represented

by a single cut-off with each considered to discriminate between two mutually

exclusive states, so that we end up with a Se and Sp that are specific to a selected

cut-off value. Each cut-off therefore generates a pair of Se and (1 � Sp) and it is

these pairs that are then compared via ROC analysis and at each possible cut-off

value for the test. Se and (1 � Sp) are essentially equivalent to the true-positive and

false-positive proportions, respectively and when we plot Se against (1 � Sp) for

various values of the cut-off across the measurement range, this generates the ROC

curve. The ROC curve is therefore a plot of the FP probability on the x-axis and the TP
probability on the y-axis across several thresholds of a continuous value measured in

each subject, with the positive result being assumed for subjects above the threshold.

Each point on the curve represents a Se/Sp pair corresponding to a particular cut-off;

the latter are also known as the decision threshold or criterion values.

The ROC method is therefore an overall measure (across all possible cut-offs) of

diagnostic performance of a test and can be used to compare the diagnostic

performance of two or more laboratory or diagnostic tests. The perfect test with

perfect discrimination (no overlap in the diseased and healthy distributions) has a
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ROC curve that passes through the upper left corner (100 % sensitivity, 100 %

specificity). Therefore the closer the ROC curve is to the upper left corner, the

higher the overall accuracy of the test. Also, the slope of the tangent line at a cut-

point gives the likelihood ratio (LR) for that value of the test. The ROC curve for PT

IgG is depicted in Fig. 6.1.

Discrimination Between Diseased and Non-diseased

The area under such an ROC curve is used as a measure of how well a test can

distinguish between two diagnostic groups (diseased/normal), independent of any

particular cut-off. The closer the curve follows the left-hand border and then the top

border of the ROC space, the more area there is under the curve and the more

accurate the test. The closer the curve follows the 45� diagonal of the ROC space,

the less accurate the test.

The area under the curve (AUC) is therefore a global (i.e. independent of the cut-

off value) summary statistic of diagnostic accuracy. The AUC is also known as the

c statistic or c index, and can range from 0.5 (random chance or no predictive

ability, which would follow the 45� line on the ROC plot) to 1 (perfect discrimina-

tion/accuracy; the ROC curve reaches the upper left corner of the graph). The

greater the AUC, the more able is the test to capture the trade-off between Se and Sp

over a continuous range. According to an arbitrary guideline, one could then use the

AUC to classify the accuracy of a diagnostic test (Table 6.1).

Fig. 6.1 The ROC curve for

PT IgG. Each point on the

curve represents a single cut-
off, with sensitivity plotted

against 1-specificity (false

positive rate). The central
diagonal is the line of
equality
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The AUC is interpreted as a probability that a randomly drawn individual from

the diseased or abnormal reference sample has a greater test value than a randomly

drawn individual from the healthy or normal reference sample. In is clear that if we

interpret this as a single member of each group (diseased and non-diseased) taking

the test, the probability of a correct answer (the AUC) is not influenced by the

prevalence of disease within the sample because each member of the selected pair

represents a fixed prevalence at 50 %.

The AUC summarizes the whole of the ROC curve, and therefore all parts of the

curve are represented within the AUC. Some parts of the curve can be vertical

(lower left part) or horizontal (upper right part) and their contribution to the AUC is

less useful because they include cut-off values with increasing Se (without loss of

Sp) or increasing Sp (without loss of Se), respectively. Also, we may want to have a

fixed Se or Sp for diagnosis (e.g. that Se is at least 80 %), in which case the AUC

may not be the best way to compare two tests since the part of the ROC curve below

this threshold still contributes to the AUC making this method less optimal for our

diagnostic situation.

The 95 % confidence interval is the interval in which the true (population) area

under the ROC curve lies with 95 % confidence. The P value is the probability that

the sample AUC is found when the true (population) AUC is 0.5 (null hypothesis:

area ¼ 0.5). If P is low (<0.05) then it can be concluded that the AUC is signifi-

cantly different from 0.5 and therefore there is evidence that the laboratory test does

have an ability to distinguish between the two groups. This probability of a correct

ranking is the same quantity that is estimated by the non-parametric Wilcoxon

statistic and can be used to provide rapid closed-form expressions for the approxi-

mate magnitude of the sampling variability, i.e. standard error that one uses to

accompany the area under a smoothed ROC curve. Finally, concerning sample size,

it has been suggested that meaningful qualitative conclusions can be drawn from

ROC experiments performed with a total of about 100 observations. A minimum of

50 cases may be required in each of the two groups, so that one case represents not

more than 2 % of the observations.

Table 6.1 Interpretation of

the AUC in terms of accuracy

of a test

Accuracy AUC

Non-informative AUC ¼ 0.5

Less accurate 0.5 < AUC < 0.7

Moderately accurate 0.7 < AUC < 0.9

Highly accurate 0.9 < AUC < 1

Perfect test AUC ¼ 1

Results for PT IgG

Area under the ROC curve (AUC) 0.798

Standard errora 0.0177

95 % confidence intervalb 0.763–0.832

Z statistic 16.836

Significance level P (area ¼ 0.5) <0.0001
aHanley and McNeil (1982)
bAUC � 1.96 SE
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Determining an Optimum Cut-Off Value

If we use the normal distribution to define a value two standard deviations (2SD)

above the mean of the normal reference sample, this would result in a cut-off value

with a Sp of 97.5 % (since 2SD encompasses 95 % of the population, i.e. 2.5 % on

either side of the distribution). This would however not work for skewed or

multimodal distributions, and also, it ignores the Se, which is a disadvantage. A

better option therefore is to create a table or a plot of Se and Sp for different cut-off

values (plot versus criterion values in MedCalc) which can then provide a useful

visualization and can also be used to derive two optimal cut-off values: One where

good sensitivity is retained and the other where good specificity is retained. This is

depicted in the Fig. 6.2 and Table 6.2. Also, it should be kept in mind that the slope

of the ROC curve gives us the LR of the test value at that particular cut-off and a

table of LR against the cut-off values (see Table 6.2) is an alternative way a cut-off

can be selected. Where we choose to place our optimal cut-off will eventually

depend on the prevalence of disease in the target population and the consequences

of FN versus FP test results (which may differ for every different scenario). For

example, a very low prevalence disease with a high cost of false-positive diagnoses

may require us to select a cut-off that maximizes Sp. If, on the other hand, for a high

prevalence disease where missing a diseased individual has serious consequences, a

cut-off value would be selected to maximize Se.

Another alternative is to select the point on the ROC curve closest to the upper

left corner of the unit square as this would optimize prevalence-independent

summary measures of Se and Sp. The Youden index (Se þ Sp � 1) attempts to

do this and gives us the optimal or criterion value J corresponding to the maximum

of the Youden index; i.e. J ¼ max[SEi þ SPi � 1] where SEi and SPi are the

sensitivity and specificity over all possible threshold values. This value corresponds

with the point on the ROC curve farthest from the diagonal line. The MedCalc

manual (www.medcalc.org) indicates the following pointers for interpretation of

the criterion value:

Fig. 6.2 Plot of Se and Sp for

different cut-off values of

PTIgG (also known as plot

vs. criterion values). The

criterion was the PCR result
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• When you select a lower criterion value, then the true-positive fraction and the

sensitivity increases. On the other hand, the false-positive fraction also

increases, and therefore the true-negative fraction and specificity decrease.

• When you select a higher criterion value, the false-positive fraction decreases

with increased specificity but, on the other hand, the true-positive fraction and

sensitivity decrease.

• If a test is used for the purpose of screening, then a cut-off value with a higher

sensitivity and negative predictive value must be selected. In order to confirm

the disease, the cases positive in the screening test can be tested again with a

different test. In this second test, a high specificity and positive predictive value

are required.

ROC analysis can also be used to evaluate the diagnostic discrimination’ of

logistic regression models in general as they have binary outcomes. In such an

analysis, the power of the model’s predicted values to discriminate between posi-

tive and negative cases is quantified by the AUC, which is sometimes referred to as

the c statistic (or concordance index), and varies from 0.5 (discriminating power not

better than chance) to 1.0 (perfect discriminating power). Essentially, we can save

the predicted probabilities and use this new variable in ROC curve analysis. The

dependent variable used in logistic regression then acts as the classification variable

in the ROC curve analysis.

Table 6.2 Criterion values and coordinates of the ROC curve

Criterion Sensitivity 95 % CI Specificity 95 % CI +LR 95 % CI –LR 95 % CI

�0.01 100.00 99.1–100.0 0.00 0.0–1.7 1.00

>0.05 95.40 92.8–97.2 10.90 7.0–15.9 1.07 0.7–1.6 0.42 0.3–0.7

>0.1 91.30 88.1–93.9 27.49 21.6–34.0 1.26 1.0–1.6 0.32 0.2–0.4

>0.15 89.26 85.8–92.1 41.71 35.0–48.7 1.53 1.3–1.8 0.26 0.2–0.4

>0.2 88.49 84.9–91.5 50.71 43.8–57.6 1.80 1.6–2.1 0.23 0.2–0.3

>0.3 85.17 81.2–88.5 60.66 53.7–67.3 2.17 1.9–2.4 0.24 0.2–0.3

>0.45 79.80 75.5–83.7 71.56 65.0–77.5 2.81 2.5–3.1 0.28 0.2–0.4

>0.64a 74.42 69.8–78.7 77.73 71.5–83.2 3.34 3.0–3.7 0.33 0.2–0.4

>0.7 72.89 68.2–77.2 79.15 73.0–84.4 3.50 3.2–3.8 0.34 0.3–0.5

>0.8 69.31 64.5–73.8 80.09 74.1–85.3 3.48 3.2–3.8 0.38 0.3–0.5

>1.35 48.08 43.0–53.2 90.05 85.2–93.7 4.83 4.3–5.4 0.58 0.4–0.9

>1.91 23.53 19.4–28.1 95.26 91.5–97.7 4.96 4.1–6.0 0.80 0.4–1.5

>2.72 2.56 1.2–4.7 99.05 96.6–99.9 2.70 1.5–5.0 0.98 0.2–3.9

>2.8 2.56 1.2–4.7 99.53 97.4–100.0 5.40 2.9–10.0 0.98 0.1–6.9

>2.95 1.28 0.4–3.0 99.53 97.4–100.0 2.70 1.1–6.4 0.99 0.1–7.0

>2.99 1.28 0.4–3.0 100.00 98.3–100.0 0.99

>3.12 0.00 0.0–0.9 100.00 98.3–100.0 1.00
aCut-off via the Youden index
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Test Comparison

As described above, the AUC represents a summary statistic of the overall diagnos-

tic performance of a test. It makes sense therefore to use the AUC to compare the

discriminatory abilities of different tests overall and independent of any specific

cut-offs they may have. However, the AUC gives equal weights to the entire ROC

curve and it could happen that two tests that differ in terms of optimal sensitivity

and specificity have a similar AUC. This may happen when ROC curves cross each

other though they may have similar AUC estimates.

The non-parametric area under the plots for the above example (Fig. 6.3) is

shown in Tables 6.3 and 6.4. The difference (and 95 % confidence interval) from

MedCalc output is shown. The confidence interval for the differences between the

tests does not include zero and it can be concluded that there is a statistically

significant difference in the AUC estimates and thus the performance of the two

tests for pertussis (PT IgG and PT IgA). The better test (PT IgG) is the test with the

higher dome and thus greater AUC. It can be seen however that the curves overlap

at both ends, suggesting that at these cut-offs, the tests characteristics are identical.

Fig. 6.3 ROC curves

comparing plots for PT IgG

and PT IgA. Each point on the

curve represents a single cut-
off. The diagonal is the line of
equality and the higher the

plot above this line, the higher

its discriminative capacity

Table 6.3 Area under the

ROC curves (AUC) for PT

IgG and PT IgA

AUC SEa 95 % CIb

PT IgG 0.798 0.0177 0.763–0.832

PT IgA 0.720 0.0206 0.680–0.761
aHanley and McNeil (1982)
bAUC � 1.96SE
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Meta-Analysis of Diagnostic Studies

The ROC approach can also be applied to combine multiple estimates of Se and Sp

for one test across several primary evaluation studies. The procedure is known as

meta-analysis of diagnostic tests. This sort of summary ROC pooling for meta-

analysis occurred due to the explosion in the discussion surrounding the implicit

threshold across studies of the same radiological investigation, so much so that

diagnostic meta-analysis moved from univariate pooling of sensitivity and specific-

ity to summary ROC curves as first defined by Moses et al. (1993) and methods

for these have subsequently evolved into hierarchical and bivariate sROC models

(see Arends et al. 2008; Reitsma et al. 2005; Rutter and Gatsonis 2001). The basic

reasoning was that sensitivity and specificity across studies are negatively

correlated and thus study investigators must be using different implicit diagnostic

thresholds and thus fit in at different points on an ROC curve. These models were

thought to account for the potential presence of a (negative) correlation between

sensitivity and specificity within studies and address this explicitly by incorporating

this correlation into the analysis. However, Simel and Bossuyt (2009) demonstrate

that results from univariate and bivariate methods may be quite similar.

The problem with such an approach is that in reality there may be no implicit

diagnostic threshold at play. On the contrary, radiologists might make a diagnosis

based on an implicit information size threshold based on the amount of obvious

information available to the average radiologist on the image. If images are from

very sick persons, they will tend to have a lot more information, thus making it both

more likely for a true diagnosis to be made as well as for a false diagnosis to be

made. On the other hand, subjects that are not as sick have less information on the

image and thus the radiologist will meet the implicit information threshold with

difficulty. Thus, while the true-positive rate decreases, so too does the false-positive

rate. If we have a set of studies from a varying spectrum of subjects, the Se and Sp

are negatively correlated simply on the basis of the varying spectrum of disease – a

spectrum effect. There is no change in the implicit diagnostic threshold and chasing

such a threshold using sROC models is a questionable pursuit since the goal is

ill-defined.

A recent study by Willis (2012) that grouped images by high probability or not

according to a trained radiographer and then interpreted by junior doctors revealed

exactly this phenomenon. Images with more information content (high probability

group) were interpreted with higher Se and lower Sp than the low probability group.

Table 6.4 Pairwise

comparison of ROC curves
PT IgG ~ PT IgA

Difference between areas 0.0775

Standard errora 0.0183

95 % confidence interval 0.0417–0.113

Z statistic 4.244

Significance level P < 0.0001
aHanley and McNeil (1982)
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The two groups were said to fit perfectly on the ROC curve and were thus

incorrectly interpreted as representing doctors changing their implicit diagnostic

threshold rather than a change in the information size from the images making it

more difficult for low probability radiographs to meet the information threshold

required of the doctors. In such a scenario, the real Se and Sp would actually be the

combined Sp and Se based on all radiographs, not high versus low probability on an

ROC curve if there are no implicit thresholds.

The same author has previously stated that the Se and Sp may vary between

different patient subgroups even when the test threshold remains constant, and this

lies at the heart of the concept of the spectrum effect (Willis 2008). The latter effect

has not only been mixed up with the concept of an implicit threshold but has also

been misleadingly called the spectrum bias (Mulherin and Miller 2002). Such

subgroup variation is not a bias and just contributes to heterogeneity across studies;

these will lead to estimates of test performance that are not generalizable if the

studies are mostly non-representative of their relevant clinical populations.

It has been suggested by Goehring et al. (2004) that in some situations this

spectrum effect may lead to a spectrum bias, that is, a distortion of the posterior

probability, which can potentially affect the clinical decision. It has been shown

that spectrum bias on either a positive or a negative test result can be expressed as

the subgroup-specific LR divided by the LR in the overall population of patients

(ratio of LR or RLR) and this assessment of spectrum bias has been shown to be

independent of the pretest probability. In the usual situation in which sensitivity

increases from one patient subgroup to another but the specificity simultaneously

decreases, the LRs remain constant and thus while spectrum effects are quite

common, spectrum bias is usually not an issue. Nevertheless, despite the absence

of bias, sensitivity and specificity on their own may not reflect values that are

generalizable to the overall populations that the studies are trying to represent. It

has therefore been suggested by Moons et al. (2003) that Se and Sp may have no

direct diagnostic meaning because they vary across patient populations and

subgroups within populations and thus there is no advantage for researchers in

pursuing estimates of a test’s Se and Sp rather than post-test probabilities. However,

the study by Goehring et al. (2004) clearly demonstrates that the subgroup/population

RLR (and thus post-test probability) will not change across subgroups simply due to a

spectrum effect because Se and Sp change simultaneously. There is an advantage

in pursuing Se and Sp over and above post-test probabilities, and that is to determine,

for an average subject of the types represented in the trials, what the expected

false-positive and false-negative rates likely to be.

If what we need is the best estimate of Se and Sp across studies that reflects a

generalizable population value, then a weighted average of the spectrum of effects

across the studies themselves is not necessarily bad. What may lead to spectrum

bias, however (as opposed to the spectrum effect), is the methodological rigueur

with which the study was conducted and thus a quality assessment is necessary.

This is preferable to simply considering the varying effects across studies as

random changes because the set of studies cannot be visualized as a random subset

from a population of all studies, and therefore the random effects model does not
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apply, at least according to a strict interpretation of randomization in statistical

inference. Until recently, there was no simple way of bias adjustment in meta-

analysis, but there is currently a quality effects method and software (MetaXL) that

implements this (http://www.epigear.com). MetaXL uses a double arcsin square

root transformation to stabilize variances of proportions for meta-analysis and

provides a method for bias adjustment in addition to the usual inverse variance

adjustment.

If we take the example of standard ultrasound data presented by Whiting et al.

(2005) for the diagnosis of vesico-ureteral reflux in children, the results of a

univariate analysis of Se and Sp are shown in Fig. 6.4. Using the metandi procedure
in Stata, we can also compute bivariate results and the resulting sROC plot is shown

Fig. 6.4 Forest plots depicting the results of univariate bias adjusted meta-analyses of sensitivity

and specificity. The box sizes are proportional to the weight given to each study for pooling. The

horizontal lines are the confidence intervals and the diamond depicts the summary sensitivity or

specificity. Q ¼ the Cochran Q statistic I2 ¼ the I2 statistic
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in Fig. 6.5. The bivariate summary sensitivity was 49 % (95 % CI 30.6–67.7) and

the summary specificity was 78.1 % (95 % CI 64.8–87.3). Clearly, these are quite

similar to the univariate results in Fig. 6.4 and the added advantage of the univariate

plots would be the obvious depiction of the spectrum of effects as well as their

correlation with bias, if any.
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Chapter 7

Sample Size Considerations for Diagnostic

Tests

Application to Sensitivity and Specificity

Rajeev Kumar Malhotra

Abstract Innovations in diagnostic techniques are increasing worldwide. Sensitiv-

ity and specificity are used to measure the accuracy of new dichotomous outcome

diagnostic tests in the presence of an existing gold standard. The first question to be

dealt is what number of subjects is sufficient to attain adequate power in the case of

hypothesis testing. This chapter explains sample size issues for estimating the

sensitivity and specificity and compares sensitivity and specificity under different

goals for two commonly used study designs, case–control and prospective designs

in paired and unpaired subjects. The chapter also explains and compares the three

methods to control uncertainty under the prospective design.

Introduction

New innovations in diagnostic techniques are increasing due to advancements in

technology. Researchers develop newer diagnostic techniques as surrogates for

existing gold standards that are difficult to adopt in practice, expensive, not widely

available, invasive, risky, and time consuming. For example, the diagnosis of

pancreatic carcinoma can be confirmed only by invasive methods such as laparot-

omy or at autopsy. New diagnostic screening tests for detecting disease should be

tested against existing reference diagnostic methods or with an established gold

standard. The gold standard may be a more expensive diagnostic method or a

combination of tests (combined reference standard) or may be available from

clinical follow-up, surgical verification, biopsy, autopsy or a panel of experts. As

we have seen in previous chapters, sensitivity and specificity are two indices that

measure the accuracy of dichotomous outcome diagnostic tests with respect to an
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existing gold standard. The first question to be dealt with is what is an adequate

number of subjects needed for valid estimation of the diagnostic indices (sensitivity

or specificity) or to attain adequate power in case of hypothesis testing. This chapter

explains the sample size for sensitivity and specificity based on various goals and

study designs. Sample size estimation is important not only for adequate power but

also for other estimates such as costs and duration of the study. Arbitrary sample size

based on convenience fails to achieve adequate power. Small sample sizes produces

imprecise estimates and an unduly large sample is a waste of resources especially

when the new method is expensive or leads to inconvenience when invasive.

Factors That Influence Sample Size

Four parameters influence the sample size: (1) type I error (probability of rejecting

the null hypothesis when it is true), also known as the significance level and denoted

by alpha (α) conventionally fixed at 5 %; (2) power, the probability of rejecting the

null hypothesis when an alternative hypothesis is true, denoted by (1 � β); beta (β)
is a type II error and normally assumed to be 0.20 or 0.10 to get 80 % or 90 %

power, respectively; (3) expected sensitivity/specificity under the null and alterna-

tive hypotheses; this can be obtained from previous studies, a pilot study, or expert

opinion; (4) precision or clinically important difference (effect size). The power

parameter only influences hypothesis testing. Other factors that may affect the

sample size are the study design (case–control, prospective design), paired or

unpaired subjects, sampling methods (random or cluster), non-response and cost.

This chapter describes sample size estimation for both types of studies

(case–control and prospective design) under different goals considering only the

four parameters listed above.

Basic Design Considerations

Case–Control Versus Prospective Design

The accuracy of a new diagnostic test can be assessed using a case–control or

prospective design. In case–control design, the subjects are required to have true

disease status (cases) or non-disease (controls) before conducting the study. In other

words, the disease status is known before the new diagnostic test is applied.

However, in a prospective design, the status of disease is unknown before

conducting the study and subjects are randomly drawn from the population

suspected to have the disease. For example, to apply a new diagnostic test (mag-

netic resonance imaging (MRI)) for the detection of prostate cancer, the researcher

should apply both the gold standard, such as histopathology, or new diagnostic MRI
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to a randomly selected group of patients suspected to have prostate cancer. In a

prospective design, the gold standard is determined subsequent to the study. A

comparison between case–control and prospective designs is shown in Table 7.1.

Paired and Unpaired Designs

Another important issue arises when the goal is to compare two new diagnostic test

indices in the presence of the existing gold standard. In paired designs, both tests are

applied to each subject, whereas, in the case of unpaired designs, different subjects

are assigned to each test. Generally, a paired design is preferable to an unpaired

design because it reduces the sample size and eliminates subject-to-subject varia-

tion. A paired study is usually statistically more powerful than an unpaired study.

However, the results are biased if the researcher already knows the result of one

test. Thus, to avoid such bias, tests should be performed by two independent experts

with comparable experience.

Unpaired designs are useful when one or both of the tests are either invasive or

inconvenient. In such situations, a parallel design is ideal. In a parallel design,

Table 7.1 Comparison of case–control and prospective designs in diagnostic studies

Case–control design Prospective design

Sample size Small sample size is required

because disease status is

already known. Thus, the

researcher has control over

the sample size

Large sample size is required because

sample size depends on the

prevalence of disease, especially

when the prevalence of disease is

low

Estimated

indicators

Only sensitivity and specificity

are valid indicators

Apart from sensitivity and specificity,

positive and negative predictivity

can also be calculated

Effect of

severity of

disease on

the study

The severity of disease can affect

the sensitivity and specificity.

This bias is called spectrum bias.

Nevertheless, this bias can be

improved by using a nested

case–control study, e.g. the stage

of cancer may affect the new

diagnostic accuracy. The new

diagnostic test may be more

sensitive in advanced stages of

cancer than in initial stages of

cancer. Accuracy in such

situations needs to be checked

for each cancer stage separately

Since the cohort is a random sample

from the population, it is free from

spectrum bias

Cost of

diagnostic

test

Less costly because true status of

disease is already known

More costly because both the gold

standard and the new diagnosis test

are applied to each randomly

selected subject
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subjects are randomized to the diagnostic test they receive and care must be taken

with the factors that can influence the results of test. These factors could be the

severity of disease (cancer stage), experience of the tester, age, sex, race, region etc.

Notation

In this chapter, the sample size formulas are presented for two-tailed hypotheses

(two-tailed is a common selection process; it is used to test whether sensitivities

differ irrespective of which proportion is larger); for a one-tailed hypothesis, the

researcher should use Z1�α instead of Z1�α=2. Assuming the large sample theory, a

normal approximation to binomial distribution is used in all situations except the

exact case. Table 7.2 presents the common notation used in the sample size

formulas throughout this chapter.

Table 7.2 Common notation used in sample size formulas and their explanation

Notation Explanation

nD Number of subjects with the disease or condition required for the study. i.e. cases

nND Number of subject with non-disease or without the condition required for the study,

i.e. controls

n Total sample size for the study

SN0 Pre-specified value of sensitivity under the null hypothesis

SN Expected sensitivity of a diagnostic test

SN1 Sensitivity of first diagnostic test

SN2 Sensitivity of second diagnostic test

SP0 Pre-specified value of the specificity under the null hypothesis

SP Expected specificity of a diagnostic test

SP1 Specificity of the first diagnostic test

SP2 Specificity of the second diagnostic test

Z1 � α/2 Percentile of standard normal distribution at the α level of significance (two-tailed)

Z1 � β Percentile of standard normal distribution at β, where β is the type II error and 1 � β
is the power

ω Proportion of disagreement in case of a paired design study

Prev Anticipated prevalence of disease in population suspected to have the disease

L Precision (half the length of the confidence interval)
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Sample Size for a Case–Control Design

Sample Size for Estimating Diagnostic Indices (Sensitivity or
Specificity or Both) with a Given Precision

Sample size is necessary to estimate the expected sensitivity or specificity of a new

diagnostic test in the presence of a gold standard and is calculated using the

confidence interval (CI) approach:

SN � Z1�α=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SN � ð1� SNÞ

nD

s

This CI shows that the true value of the sensitivity can be as low as

SN � Z1�α=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SN � ð1� SNÞ

nD

s

and as high as

SN þ Z1�α=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SN � ð1� SNÞ

nD

s

The sample size formula based on normal approximation to binomial in a

case–control design is

nD ¼
Z2
1�α=2 � SN � ð1� SNÞ

L2
(7.1)

The experimenter specifies the desired width of the CI with an α confidence level
normally taken as 95 %. Continuity correction applies when continuous distribution

is used as an approximation to a discrete distribution such as normal approximation

to binomial. The CI with 100(1 � α)% with continuity correction is

SN � Z1�α=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SN � ð1� SNÞ

nD

s
þ 1

2nD

" #

To calculate the sample size with continuity correction, sample size software

such as NCSS PASS version-11 or MS Excel 2007 can be used. Normal approxi-

mation formula may not be adequate when the sensitivity or specificity is more than

0.95. In this situation, an exact binomial method described later in this chapter

should be applied. Table 7.3 in the Appendix provides the sample size for different

values of sensitivity or specificity using exact, normal approximation, and with
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Table 7.3 Number of subjects with disease (or without disease) for estimation of the expected

sensitivity (or specificity) ranging from 0.50 to 0.99

Sensitivity/

specificity

Sample size based on exact (Clopper–Pearson)

�0.01 �0.02 �0.03 �0.04 �0.05 �0.06 �0.07 �0.08 �0.09 �0.10

0.50 9,701 2,449 1,098 623 402 281 208 160 127 104

0.55 9,605 2,425 1,088 617 398 279 206 159 126 103

0.60 9,317 2,353 1,056 599 397 271 200 154 123 100

0.65 8,837 2,233 1,002 569 367 257 191 147 117 95

0.70 8,165 2,065 928 527 341 239 177 137 109 89

0.75 7,301 1,849 832 473 306 215 159 123 98 80

0.80 6,245 1,585 715 407 264 186 138 107 85 70

0.85 4,997 1,273 576 330 215 151 113 88 70 58

0.90 3,557 914 417 241 158 112 84 66 53 44

0.95 1,927 508 238 140 94

0.96 1,578 422 200 119

0.97 1,223 334 161

0.98 861 245

0.99 497

Sensitivity/

specificity

Sample size based on normal approximation to binomial

�0.01 �0.02 �0.03 �0.04 �0.05 �0.06 �0.07 �0.08 �0.09 �0.10

0.50 9,604 2,401 1,068 601 385 267 196 151 119 97

0.55 9,508 2,377 1,057 595 381 265 195 149 118 96

0.60 9,220 2,305 1,025 577 369 257 189 145 114 93

0.65 8,740 2,185 972 547 350 243 179 137 108 88

0.70 8,068 2,017 897 505 323 225 165 127 100 81

0.75 7,203 1,801 801 451 289 201 147 113 89 73

0.80 6,147 1,537 683 385 246 171 126 97 76 62

0.85 4,898 1,225 545 307 196 137 100 77 61 49

0.90 3,458 865 385 217 139 97 71 55 43 35

0.95 1,825 457 203 115 73

0.96 1,476 369 164 93

0.97 1,118 280 125

0.98 753 189

0.99 381

Sensitivity/

specificity

Sample size based on normal approximation to binomial (with continuity

correction)

�0.01 �0.02 �0.03 �0.04 �0.05 �0.06 �0.07 �0.08 �0.09 �0.10

0.50 9,704 2,451 1,101 625 404 284 211 163 130 106

0.55 9,608 2,427 1,090 619 401 281 209 161 129 105

0.60 9,320 2,355 1,058 601 389 273 203 157 125 102

0.65 8,840 2,235 1,005 571 370 260 193 149 119 98

0.70 8,167 2,067 930 529 343 241 179 139 111 91

0.75 7,303 1,851 834 475 308 217 161 125 100 82

0.80 6,246 1,587 716 409 266 188 140 109 87 72

0.85 4,998 1,274 578 331 216 153 114 89 72 59

0.90 3,557 914 417 241 158 113 85 66 54 45

0.95 1,924 505 235 138 92

0.96 1,574 418 196 116

(continued)
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continuity correction. The sample size obtained using continuity correction was

close to the sample size calculated the using exact method. When the goal is to

estimate the specificity, just replace SN by SP and nD by nND.
If sensitivity is important for the study, determine the number of disease positive

subjects for the expected sensitivity and select the same number of disease negative

subjects. If the specificity is important, determine the number of disease negative subjects

for the expected specificity and select the same number of disease positive subjects.

However, when sensitivity and specificity are equally important and have different

expected values, determine the number of subjects based on both indices separately;

the study sample size is the sum of the sample sizes obtained by these indices.

In some situations, it is not possible to estimate the sensitivity or specificity in

advance. Then, the safest option for determining the sample size is to assume the

expected sensitivity or specificity is 0.50 with 0.05 or 0.10 absolute precision either

side because that gives the maximum sample size. This works well when the

anticipated sensitivity or specificity lies between 10 % and 90 %. However, it

should not be used when the expected sensitivity or specificity is >0.95; the exact

binomial method is preferred to determine the sample size in this case.

Example 1 Estimate an adequate sample size to determine diagnostic accuracy of

computed tomography (CT) for prostate cancer in males greater than 60 years of age.

Previous literature shows that CT has 85 % sensitivity and 90 % specificity. Absolute

precision either side of the 95%confidence level is 5%.Both sensitivity and specificity

are equally important. The gold standard to diagnosis prostate cancer is histopathology.

Solution Using Eq. 7.1 and Z1 � α/2 ¼ 1.96, SN ¼ 0.85, L ¼ 0.05, the number of

subjects with disease confirmed required is

nD ¼
Z2
1�α=2 � SNð1� SNÞ

L2
¼ 1:962 � 0:85 ð1� 0:85Þ

0:052
¼ 196

The number of non-disease subjects required is

nND ¼
Z2
1�α=2SP ð1� SPÞ

L2
¼ 1:962 � 0:90 ð1� 0:90Þ

0:052
¼ 139

Thus, 335 subjects would be needed to estimate the sensitivity/specificity with

95 % confidence level and estimates within�0.05 of the true value. With continuity

correction, there is a need for 374 subjects (216 with disease and 158 without

disease subjects) for the study.

Table 7.3 (continued)

Sensitivity/

specificity

Sample size based on normal approximation to binomial (with continuity

correction)

�0.01 �0.02 �0.03 �0.04 �0.05 �0.06 �0.07 �0.08 �0.09 �0.10

0.97 1,216 328 156

0.98 850 236

0.99 476

NCSS PASS software was used to calculate the sample size
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Sample Size for Detecting a Minimum Clinically Important
Difference in the Sensitivity/Specificity of a Single Test

Sensitivity SN follows binomial distribution (n, SN0) under the null hypothesis and
binomial distribution (n, SN1) under an alternative hypothesis. Normal approxima-

tion is assumed for this binomial distribution (assuming large n). The sample size

formula for sensitivity under the hypotheses H0: SN ¼ SN0 and HA: SN 6¼ SN0
(two-tailed) is described by Arkin and Wachtel (1990).

nD ¼ Z1�α=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SN0ð1� SN0Þ

p þ Z1�β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SN1ð1� SN1Þ

p� �2
SN1 � SN0ð Þ2 (7.2)

Example 2 A study plans to test the sensitivity of breast ultrasonography to detect

breast cancer considering histopathology as the gold standard. The previous litera-

ture showed that the sensitivity is 0.80 and specificity is 0.85. The investigator

wants to know the total sample size to detect a difference of 0.05 in sensitivity and

specificity rejecting the null hypothesis with probability 0.9 (90 % power) and

keeping the level of significance at 0.05 (95 % CI).

Solution H0: SN ¼ 0.80 and Ha: SN 6¼ 0.80. Using Eq. 7.2 and Z1 � α/2 ¼ 1.96,

SN0 ¼ 0.80, SN1 � SN0j j ¼ 0:05, the number of subjects with disease confirmed is

nD ¼ 1:96� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:8� 0:2

p þ 1:28
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:85� 0:15

p� �2
0:052

¼ 616

Using Eq. 7.2 and changing SN0 to SP0 and nD to nND with SP1 � SP0j j ¼ 0:05, the
sample size for the specificity is

nND ¼ 1:96� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:85� 0:15

p þ 1:28
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:90� 0:10

p� �2
0:052

¼ 470

Thus, 616 diseased subjects would be needed to detect a difference 0.05 in

sensitivity, with 90 % power and 95 % confidence level. Similarly, 470 non-

diseased subjects would be required to detect a difference of 0.05 in specificity

from the expected specificity of 0.85 with 90 % power and 95 % confidence level.

The study sample (n) would be 1,086.

Sometimes, investigators fix the lower CI limit of a new diagnostic test. The null

hypothesis H0: SN ¼ SNL against the alternative hypothesis Ha: SN > SNL. SNL is

the lower limit for sensitivity with 1 � α confidence. The other situation, SN <
SNL, may not arise because our concern is that the new diagnostic test does not

perform better than the other method. The sample size formula suggested by

Machin et al. (1997) is
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nD ¼ Z1�β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SNð1� SNÞ

p þ Z1�α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SN � δð Þð1� SN þ δÞp� �2

δ2

The expected sensitivity of the diagnostic test is SN and we wish for 1 � α lower

confidence for SN to be more than SN � δ with power 1 � β. δ is the difference

between SN and SNL. Flahault et al. (2005) provide a sample size table to find the

number of subjects using the exact method.

Example 3 The expected sensitivity of a diagnostic test is 0.90. Consider the lower

limit for expected sensitivity should not fall below 0.80 with 80 % power and 95 %

level of confidence. Calculate the number of disease positive subjects required for

the study.

Solution The expected sensitivity SN ¼ 0.90, 1 � β ¼ 0.90 and Z1 � β ¼ 1.28,

1 � α ¼ 0.95 and Z1 � α ¼ 1.645, δ ¼ 0.10

nD ¼ 1:28� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:90� 0:10

p þ 1:645� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:80� 0:20

p� �2
0:102

¼ 109

Thus, 109 confirmed subjects are needed so that the sensitivity does not fall

below 0.80 with 90 % power and 95 % confidence level.

Sample Size Formula to Compare Two Diagnostic Tests in the
Presence of a Gold Standard

Unpaired Design

The sample size determination for comparison of two diagnostic tests indices is

different in unpaired and paired studies. The formulas for the specificity are similar,

therefore, only the formula and method for the sensitivity is presented in this

chapter. SN1 and SN2 are the sensitivities of two diagnostic tests. The null and

alternative hypotheses are H0: SN1 ¼ SN2 versus HA: SN1 6¼ SN2 for a large sample

and normal approximation. The formula recommended for determination of the

sample size is

nD ¼
Z1�α=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�SNð1� �SNÞ

p
þ Z1�β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SN1 1� SN1ð Þ þ SN2ð1� SN2Þ

ph i2

SN1 � SN2ð Þ2 (7.3)

where the mean of two expected sensitivities �SN ¼ ðSN1 þ SN2Þ=2.
Casagrande and Pike (1978) recommended a continuity correction in the above

formula
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nD Continuity correctionð Þ ¼
nD � 1þ 1þ 4=ð SN1 � SN2ð Þj j � nDÞf g1=2

h i2

4

A similar formula is used for the specificity; SN1 and SN2 are replaced by SP1 and
SP2, respectively, and nD is replaced by nND.

When a diagnostic test has already been performed or the investigator has fixed

the number of subjects for the diagnostic test in advance, the sample size for another

diagnostic test can be determined by first applying Eq. 7.3 to determine sample size

nD and then applying the formula suggested by Cohen (1977) to get the sample size

for the other diagnostic test:

sample size for second test ¼ nD �m

2�m� nD

wherem is number of subjects already fixed by the researcher for the first diagnostic

test. If the specificity is important, change the notation accordingly.

Sample Size for a Paired Design

The sample size method for a paired design proposed by Conner (1987) for

McNemar’s test comparing the two proportions is applied to determine the sample

size for comparing sensitivities or specificities. The null hypothesis is H0: SN1
¼ SN2 and the alternative hypothesis Ha: SN1 6¼ SN2 . The sample size formula as

proposed by Conner (1987) is

nD ¼
Z1�α=2 � ω1=2 þ Z1�β � ðω� SN1 � SN2ð Þ2Þ1=2
h i2

ðSN1 � SN2Þ2
(7.4)

where nD is number of subjects with confirmed disease, SN1 and SN2 are the

expected sensitivities and SN1 � SN2 is the absolute difference under the alternative
hypothesis.ω is the proportion of disagreement. The proportion of disagreement can

be estimated from the previous literature, but when the investigator has no idea

about this, Conner (1987) proposed an approximation formula to obtain the mini-

mum and maximum proportion of disagreement:

ω ¼ SN1 � SN2j j ðminimum proportion of disagreementÞ

ω ¼ SN1 1� SN2ð Þ þ SN2 1� SN1ð Þ ðmaximum proportion of disagreementÞ

The value of ω close to or equal to the maximum proportion of disagreement

produces a large sample of estimates and one can use the mid-point level that lies

between the minimum and maximum proportion of disagreement:
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ω ¼ SN1 � SN2ð Þ þ SN1 1� SN1ð Þ þ SN2ð1� SN2ð Þð Þ
2

A similar formula can be applied for the specificity in a paired study design:

nND ¼
Z1�α=2 � ω1=2 þ Z1�β � ðω� SP1 � SP2ð Þ2Þ1=2
h i2

ðSP1 � SP2Þ2
(7.5)

where nND is the number of subjects with confirmed disease, SP1 and SP2 are the

expected sensitivities and SP1 � SP2 is the absolute difference under the alternative
hypothesis.

ω ¼ SP1 � SP2j j ðminimum proportion of disagreementÞ

ω ¼ SP1 1� SP2ð Þ þ SP2 1� SP1ð Þ ðmaximum proportion of disagreementÞ

Both sensitivity and specificity formulas assumes that the status of disease and

non-disease is already known. In a case–control study where both sensitivity and

specificity are important criteria, the study sample size for a paired designed is the

sum of diseased subjects and non-diseased subjects nD þ nND.

Example 4 An investigator wants to compare the sensitivity of two diagnostic

tests: total adenosine deaminase activity (ADA) and lymphocyte test with cut-off

values of >39 U/L and >89 %, respectively, for diagnosing tuberculosis. The

expected sensitivity of the ADA and lymphocyte tests is 80 % and 10 % absolute

difference in the expected sensitivity of lymphocytes test is considered significant

with 80 % power and a 5 % level of significance. The gold standard is a combina-

tion of existing methods such as bacteriology and histopathology findings. Compare

the sample size obtained from both unpaired and paired designs with minimum,

maximum, and mid-point proportion of disagreement, assuming the investigator

does not have any idea about the proportion of disagreement.

Solution The absolute difference between the two sensitivities is 10 %. Then H0:

SN1 ¼ SN2 ¼ 0.80 and under the alternative hypothesis Ha: SN1 ¼ 0.75 and

SN2 ¼ 0.85. The value of the minimum proportion of disagreement is ω ¼ 0.10

and the maximum disagreement is

ω ¼ 0:85� 1� 0:75ð Þ þ 0:75� 1� 0:85ð Þ ¼ 0:325

Assuming the lowest proportion of agreement, the estimate for the sample size

for sensitivity using Eq. 7.4 for ω ¼ 0.10, SN1 � SN2 ¼ 0:10 , Z1�α=2 ¼ 1:96 at

α ¼ 0.05, and Z1�β ¼ 0:845 for β ¼ 0.20 is
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nD ¼
Z1�α=2 � ω1=2 þ Z1�β � ðω� SN1 � SN2ð Þ2Þ1=2
h i2

ðSN1 � SN2Þ2

nD ¼
1:96� ð0:1Þ1=2 þ 0:845� 0:1� ð0:1Þ2

� �1=2
	 
2

0:12
¼ 76:27 ffi 77

Round to the nearest integer to ensure 80 % power, 77 subjects would be needed

at the lowest level of proportion of agreement between the two diagnostic methods.

The sample size requirement for a paired study, assuming the maximum dis-

agreement ω ¼ 0.325 with the same power, confidence level and absolute differ-

ence, is

nD ¼
1:96� ð0:325Þ1=2 þ 0:845� 0:325� ð0:1Þ2

� �1=2
	 
2

0:12
¼ 253:33 ffi 254

Thus, 254 subjects would be required to detect a difference of 0.10 between the

two diagnostic tests for sensitivity with 80 % power and 5 % type I error. The

sample size based on the mid-point level is 165 subjects. The mid-point level

sample size is a compromise between the maximum and minimum sample size.

The sample size requirement for an unpaired study design using Eq. 7.3 is

nD¼
1:96� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�0:8� 1�0:2ð Þp þ0:845
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:85�ð1�0:85Þþ0:75�ð1�0:75Þp� �2

0:12

nD ¼ 1:1087þ 0:4743½ �2
0:01

¼ 251

Thus, for an unpaired study design, a sample of 502 (251 in each group) would

be required per diagnostic test with similar power, level of significance, and

difference. After applying continuity correction, a sample size of 271 per group is

required to detect a difference of 0.10 between the sensitivities with 80 % power

and 95 % confidence level.

Example 5 Suppose an ADA test has already been performed in 300 patients and

the investigator needs an adequate sample for a lymphocytes test to compare the

diagnostic sensitivity of ADA with lymphocytes as discussed in Example 4.

Solution Using the formula for sample size for a second test,

sample size for second test ¼ nD � m

2� m� nD
¼ 251� 300

2� 300� 251
¼ 75600

349
¼ 216
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Thus, a sample size of 300 and 216 confirmed subjects for test 1 and test

2, respectively, is required to detect a difference of 0.1 between the sensitivities

with 80 % power and 95 % confidence level.

Sample size for comparison of two sensitivities for a paired design may require

at least 77 subjects (for minimum proportion of disagreement) and as many as

254 subjects (for maximum proportion of disagreement). Thus, sample size

depends on the proportion of disagreement between two diagnostic tests. However,

in an unpaired study design, the sample size for a similar problem would be

502 (251 for ADA and 251 for lymphocytes). Thus, the paired design requires

248–425 less disease subjects than the unpaired design.

In the absence of any exact proportion of disagreement, it is advisable to use a

sample close to 254 to ensure adequate power of the study. When the diagnostic

tests have higher cost, it is beneficial to perform a pilot study to estimate the

proportion of disagreement and get the adequate sample size or use the mid-point

level approach.

Sample Size Estimation in a Prospective Design

The sample size formula for both case–control and prospective designs are similar

except for the role of prevalence. In the case–control study the researcher has

control over the disease positive and disease negative cases in advance, whereas

in a prospective design, the researcher has no prior control over the disease positive

and disease negative subjects. Thus, in a prospective design, prevalence plays a

vital role in calculating the sample size. In such situations, first estimate the sample

size using the case–control formula and then consider the prevalence effect. When

sensitivity and specificity are equally important for the study, determine the sample

size separately for both and use the larger sample size. Uncertainty of prevalence in

the prospective design can be dealt with using three approaches: the naive

approach, the normal distribution approach, and the exact binomial approach. A

brief description of these approaches is as follows.

Naive Approach

The naive approach was proposed by Buderer (1996) and the sample size of the

study (n) is determined by dividing (nD) by the expected prevalence of disease for

sensitivity. In the case of specificity, divide nND by (1 � prevalence). This

approach is less conservative because it does not incorporate the variation

associated with true prevalence and provide the average disease positive number

of subjects. In other words, there is approximately 0.50 probability that the number

of diseased subjects will be adequate for the study, that is Pððn� prevÞ � nD=n;
prevÞ ¼ 0:50 (approximate). Malhotra and Indrayan (2010) devised a nomogram

for estimation of sensitivity and specificity of medical tests for various prevalences

and for four absolute precisions �0.03, �0.05, �0.07, �0.10.
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Normal Distribution

The true prevalence of disease may be smaller than anticipated and consequently,

the study may have fewer numbers of diseases positive subjects compared with the

required number of disease positive subjects (i.e. n� prev < nD ) and affect the

power of the study. To get the sufficient number of diseased subjects, the researcher

has to find the minimum total sample size n such that the probability n� prev > nD
is not less than φ. To control the uncertainty, the following formula, which is an

approximation of the binomial distribution (n, prev) to the standard normal distri-

bution was proposed by Schatzkin et al. (1987)

Zφ ¼ nD � n� prevffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
prev� ð1� prevÞ � n

p

where n is the total sample size after adjusting for the uncertainty in the prevalence

of the study, prev is the prevalence of disease in suspected subjects, φ is the

preselected probability to ensure the number of diseased subjects and Zφ is the

standard normal variate corresponding to the upper tail of probability φ. The above
equation can be easily solved using the MS Excel 2007 Goal Seek command

described in detail in the Appendix.

Exact Binomial

To calculate the total sample size so that the sample ensures that, with probability φ,
nD is greater than the target, solves this equation in n to obtain nD.

Pððn� prevÞ � nD=n; prevÞ ¼ φ

This equation can also be solved using the MS Excel 2007 Goal Seek command,

but sometimes Goal Seek fail to get the exact solution. The procedure to solve the

exact binomial is given in detail in the Appendix.

Example 6 Using the same parameters as in Example 1 and taking an anticipated

prevalence of 30 % for suspected subjects of prostate cancer, what is the total

sample size required using the naı̈ve, normal and exact binomial approaches?

Solution The number of disease subjects required in Example 1 is 196 and the

anticipated prevalence is 0.3.

Total sample (n) for sensitivity:
nD
prev

¼ 196

0:3
ffi 654

Total sample (n) for specificity:
nND

1� prev
¼ 139

0:7
¼ 198:57 ffi 199
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The sample size is larger for sensitivity than specificity, thus the total sample

size for the study is 654 subjects which is adequate for a prospective design.

Normal Approximation Method

To get a total sample size such that the number of diseased subjects (nD) is greater
than 196 with probability (φ ¼ 0.95) and anticipated diseased prevalence ¼ 0.30.

Since φ ¼ 0.95, then Zφ ¼ �1:645

� 1:645 ¼ 196� n� 0:3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:3� ð1� 0:7Þ � n

p

The total sample size using the normal approximation approach is 721 (approxi-

mate). In the case of specificity, the total study subjects is calculated such that the

number of non-disease subjects is greater than 139 with preselected probability of

0.95 and anticipated prevalence of 0.7.

� 1:645 ¼ 139� n� 0:7ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:7� ð1� 0:3Þ � n

p

When specificity is important, 214 subjects are needed. However, if both indices

are important, then the higher of the two sample sizes is the total sample size (n).

Exact Binomial Approach

Under similar conditions as described for the normal approximation method,

φ ¼ 0.95 and Bin(n,0.3)

Pððn� 0:3 � 196=n; 0:3Þ ¼ 0:95

For the total sample size using the exact binomial approach, 720 subjects is

sufficient with 0.95 probability that the diseased subjects in the study would be

196 or more. Table 7.4 in the Appendix provides the sample sizes for different

ranges of sensitivities and various prevalence rates.

Sample Size to Test the One-Sided Equivalence

(Non-inferiority) of Two Sensitivities (Paired Design)

The equivalence of sensitivities between a new diagnostic test and the gold standard

or between two diagnostic tests sensitivities can be tested. This situation commonly

arises if the standard test is expensive, invasive, or inconvenient. The physician or
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investigator can decide how much loss in sensitivity can be borne by applying the

new diagnostic procedure. The equivalence does not mean that both tests have

equal sensitivities but it is acceptable for a certain range of difference that seems

either clinically unimportant or has more gain in term of cost-effectiveness or any

other reasons. For example, the sensitivity of MRI in diagnosing breast cancer is

Table 7.4 Study sample size for estimating the sensitivity in prospective design using the naive

method, normal approximation, and exact binomial

Expected

sensitivity Prevalence

Method 1(naı̈ve) Method 2(normal) Method 3(exact)

�0.05 �0.07 �0.10 �0.05 �0.07 �0.10 �0.05 �0.07 �0.10

0.60 0.05 7,380 3,780 1,860 8,023 4,248 2,196 8,007 4,231 2,180

0.10 3,690 1,890 930 4,003 2,118 1,094 3,995 2,110 1,087

0.15 2,460 1,260 620 2,662 1,407 726 2,657 1,403 721

0.20 1,845 945 465 1,992 1,052 542 1,990 1,049 538

0.25 1,476 756 372 1,590 839 432 1,587 836 429

0.30 1,230 630 310 1,322 697 358 1,320 694 356

0.35 1,054 540 266 1,130 595 305 1,129 593 304

0.40 923 473 233 986 519 262 985 517 264

0.70 0.05 6,460 3,300 1,620 7,063 3,739 1,936 7,047 3,723 1,918

0.10 3,230 1,650 810 3,523 1,863 964 3,515 1,856 956

0.15 2,153 1,100 540 2,343 1,238 639 2,339 1,233 635

0.20 1,615 825 405 1,753 926 477 1,749 921 473

0.25 1,292 660 324 1,399 738 380 1,396 736 378

0.30 1,077 550 270 1,162 613 315 1,160 610 313

0.35 923 471 231 994 523 269 992 521 268

0.40 808 413 203 867 486 234 866 455 232

0.80 0.05 4,920 2,520 1,240 5,450 2,907 1,520 5,483 2,891 1,502

0.10 2,460 1,260 620 2,718 1,448 756 2,710 1,440 748

0.15 1,640 840 413 1,807 962 501 1,802 957 496

0.20 1,230 630 310 1,351 719 374 1,348 715 370

0.25 984 504 248 1,078 573 298 1,075 569 295

0.30 820 420 207 896 475 247 894 473 244

0.35 703 360 177 765 406 210 764 404 208

0.40 615 315 155 668 353 183 666 353 181

0.90 0.05 2,780 1,420 700 3,185 1,718 918 3,168 1,700 900

0.10 1,390 710 350 1,587 865 456 1,579 847 447

0.15 927 473 233 1,054 567 302 1,049 562 296

0.20 695 355 175 788 423 225 784 419 221

0.25 556 284 140 628 367 179 625 333 175

0.30 463 237 117 521 279 148 519 277 146

0.35 397 203 100 445 238 126 442 236 124

0.40 348 178 88 308 207 109 386 206 107

Method 1 divides the sample size of diseased subject (nD), calculated by the approximation normal

estimation formula, by the disease prevalence rate (prev). Method 2 includes uncertainty in the

prevalence using the approximation normal method to find the smallest number n with probability
0.95 to get equal to or more than nD disease subjects. Method 3 is similar to Method 2 except exact

binomial distribution is used. Since MS Excel 2007 was used to determine the sample size for

Methods 2 and 3, there may be small variations compared with other statistical software
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SN0 ¼ 0.90, whereas another test (CT) to diagnose breast cancer will be accepted if

its sensitivity is 0.80 (δ0 ¼ 0:10) but will be rejected if the sensitivity is only 0.70

(i.e. δ1 ¼ 0:20). δ0 is an acceptable difference in the sensitivities. The null and

alternative hypotheses are:

H0 : SN0 � SN þ δ0

HA : SN0 > SN þ δ0 ¼> SN þ δ1

δ1 is the unacceptable difference of two sensitivities δ1 > δ0. Lu and Bean (1995)
derived the sample size for the maximum, minimum, and mid-point level of P11 in

conditional and unconditional formulas. P11 is the probability of being diagnosed

by both tests. Since P11 indicates agreement between two tests with respect to the

positivity of the test, of equivalence, there is an inverse relationship between nD and

P11 or, in other words, P11 is a decreasing function with sample size. A conditional

formula is generally recommended for calculation of the sample size. A conditional

formula with normal approximation considers disconcordant pairs. The uncondi-

tional formula suggested by Conner (1987), which was based on an assumption of

conditional independence between the diagnostic tests, in other words, an uncondi-

tional formula, does not consider disconcordant pairs. A conditional formula has

less sample size than an unconditional formula for similar conditions, which shows

that the former method is more powerful than the latter. However, when the

probability of discordance is small, the conditional formula is less powerful than

the unconditional formula. Lachenbruch (1992) suggests the mid-value approach

for choosing P11 to determine the sample size instead of the minimum and maxi-

mum. The mid-point level of

P11 ¼ max SN0 � δ1 � 1� SN0ð Þ
2

;
SN0 � δ1ð Þ

2

� �

The sample size formula to determine the number of diseased subjects is

nD ¼
Z1�α 2 SN0 � P11ð Þ � δ1½ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SN0 � P11 � δ0ð Þp
þZ1�β 2 SN0 � P11ð Þ � δ0½ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SN0 � P11 � δ1ð Þp
 �2

SN0 � P11ð Þ 2 SN0 � P11ð Þ � δ1½ � δ1 � δ0ð Þ2

Table 7.5 in the Appendix provides the sample size for one-side equivalence at

different sensitivities and various acceptable and unacceptable differences for

80–90 % power and 95 % confidence level.

Example 7 A study is planned to test the one-side equivalence (non-inferiority) of

CT in diagnosing breast cancer. The sensitivity of MRI in diagnosing breast cancer

is 0.90, whereas a sensitivity of 0.80 is said to be non-inferior. Reject CT if the

sensitivity is less than 0.70. Histopathology is considered as the gold standard.

Determine the number of subjects required under the conditional formula and mid-

point level approach considering 95 % confidence with 80–90 % power.
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Solution MRI sensitivity SN0 ¼ 0.90; the acceptable difference between

sensitivities δ0 ¼ 0:10; the unacceptable difference δ1 ¼ 0:20. The value of P11 is

max(0.65,0.35). Using Table 7.5, the sample size is 125 subjects with 90 % power

and 95 subjects with 80 % power.

Exact Sample Size

The sample size based on the exact binomial distribution is always higher than for

the normal approximation. When the expected proportion is closer to 1, the differ-

ence in these two methods is substantially significant (Table 7.3). For example, for

the sample size for sensitivity of 0.99 with �0.01 error, and 95 % confidence level,

the normal approximation method gives a sample size of 381 subjects; whereas the

method based on exact binomial suggests 497 subjects. However, the continuity

correction produces a sample size closer to the exact value of 476 subjects.

The Clopper–Pearson method of exact CI estimation has been considered as the

standard method and is usually known as the exact method. The sample size in the

exact method is obtained by the solving the following equation:

XnD
k¼x

nD
k

� �
SkNLð1� SNLÞnD�k ¼ α

2

and

Xx
k¼0

nD
k

� �
SkNUð1� SNUÞnD�k ¼ α

2

where SNL and SNU are the lower and upper limit of the CI of the sensitivities; x and
n are the number of true-positives and total number of diseased subjects (Table 7.1).

To determine the sample size, fix the lower and upper limit of the CI and alpha, then

find n by solving the above equation. Each equation yields a different sample size.

The sample size for the study would be the larger of these two sample sizes. For a

prospective design, the investigator can apply the prospective design methods as

described earlier in the chapter. Fosgate (2005) suggested a modified exact sample

size for a binomial proportion and provided sample size tables. Flahault et al.

(2005) provide sample size tables for the one-sided exact binomial to test sensitivity

with given 5 % alpha and 80 % power.
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Software for Determining Sample Size for Sensitivity and

Specificity

Almost all the sample size software has provision to calculate the sample size for a

case–control design because proportion formulas are applicable. The most fre-

quently used and reliable sample size software packages are NCSS PASS and

nQuery. However, prospective design and equivalence for sensitivity and specific-

ity are generally not available in statistical software. PASS-11 uses the naive

approach to calculate sample size for sensitivity and specificity in prospective

designs for different goals. There are several other programs and calculators

available on the Internet. The reliability of this free software is not guaranteed. It

is advisable to use NCSS PASS software, which is widely accepted. It is a licensed

software but can be downloaded for a free 7-day trial from the following website:

http://www.ncss.com. It is difficult to determine the sample size manually using

exact methods. These methods need a computer or reliable software

Appendix: How to Use the Goal Seek Command Available

in the What if Analysis Tool in the Data Menu for Solving

Equations Using MS Excel 2007

To solve the equation:

1. Open an Excel spreadsheet and write the value for case–control sample size

obtained (cell B1)

2. Write the value of the sample size obtained using the naive approach in cell B2

3. Write the anticipated prevalence of disease in cell B3

4. Calculate the value of the standard normal distribution using the function

NORMSINV for the desired probability; for example, the upper tail for proba-

bility 0.95 under the standard normal distribution is �1.645

5. Put the equation B1�B3�B2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B3�ð1�B3Þ�B2

p in cell B5
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From the Excel menu bar, click Data, locate the Data tool panel and then What if

analysis item; from What if analysis select Goal Seek. The Goal Seek dialogue box

appears

1. Set cell: insert B5 (the equation as described above)

2. To value: write the value of the standard normal of the preselected probability

using the NORMSINV function

3. By changing cell: insert B2

Goal Seek changes the value of cell B2 until the desired solution of the equation

is obtained, i.e. �1.64485. The final value of n appears in cell B2.

How to Use the Goal Seek Command to Solve the Exact Binomial
Using MS Excel 2007

1. Open an Excel spreadsheet and write the value of the sample size obtained using

the naive approach in cell B1 (to avoid convergence problem)

2. Write the value for the case–control sample size obtained (cell B2)

3. Write the anticipated prevalence of disease in cell B3

4. Write the function ¼ 1 – BINOMDIST (x, n, prev, 1) where x is number of

successes, n ¼ sample size, Prev is the probability, 1 is the cumulative probability

100 R.K. Malhotra



From the Excel menu bar, click Data, locate the Data tool panel and then the

What if analysis item; from what if analysis, select Goal Seek. The Goal Seek

dialogue box appears

1. Set cell: insert B4, the expression as described above

2. To value: insert the value of the preselected probability ¼ 0.95

3. By changing cell: insert B1

Goal Seek changes the value of cell B1 until 1 – BINOMSDIT is 0.95 and the

final value of n appears in cell B1. Sometimes you may not find the exact solution;

the user may try other adjacent values of sample size based on the naive approach.
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Chapter 8

An Introduction to Diagnostic Meta-analysis

Marı́a Nieves Plana, Vı́ctor Abraira, and Javier Zamora

Abstract Systematic review, and its corresponding statistical analysis, is becoming

popular in the literature to assess the diagnostic accuracy of a test. When correctly

performed, this research methodology provides fundamental data to inform medical

decision making. This chapter reviews key concepts of the meta-analysis of diag-

nostic test accuracy data, dealing with the particular case in which primary studies

report a pair of estimates of sensitivity and specificity. We describe the potential

sources of heterogeneity unique to diagnostic test evaluation and we illustrate how

to explore this heterogeneity. We distinguish two situations according to the

presence or absence of inter-study variability and propose two alternative

approaches to the analysis. First, simple methods for statistical pooling are

described when accuracy indices of individual studies show a reasonable level of

homogeneity. Second, we describe more complex and robust statistical methods

that take the paired nature of the accuracy indices and their correlation into account.

We end with a description of the analysis of publication bias and enumerate some

software tools available to perform the analyses discussed in the chapter.

Introduction

Diagnosis is one of the most prestigious and intellectually appealing clinical tasks

among physicians and, usually, the first step in clinical care. Furthermore, because a

correct classification of patients according to the presence or absence of a specific

clinical condition is essential for both prognosticating and choosing the right

treatment, an accurate diagnosis is at the core of high-quality clinical practice.

The use of diagnostic tests in clinical practice is generalized. However, introducing
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a test into current diagnostic pathways must be preceded by a systematic assessment

of its diagnostic performance.

Assessing the value of a diagnostic test is a multi-phase process involving the

test’s technical characteristics, its feasibility, accuracy, and impact on different

dimensions (diagnostic thinking, treatment decisions and, most importantly, impact

on patient outcomes). This assessment also includes the social and economic impact

of incorporating the test into the diagnostic pathway. Evaluation studies of diag-

nostic accuracy, in general, and systematic reviews and meta-analyses of studies on

test accuracy, in particular, are instrumental in underpinning evidence-based clini-

cal practice. Meta-analysis is a statistical technique that quantitatively combines

and summarizes the results of several studies that have previously been included as

part of a systematic review of diagnostic tests. A quantitative synthesis of evidence

is not always necessary or possible and it is not uncommon to find very high-quality

systematic reviews of great informational value for clinical practice that do not

include it. Even when a systematic review fails to provide a definite answer

regarding the accuracy of a test, it may still contribute valuable information that

fills existing scientific gaps and/or informs the design of future primary research

studies.

Of the different evaluative dimensions of a diagnostic test, this chapter focuses

on test accuracy. Assessing the diagnostic accuracy of a test consists of analysing its

ability to differentiate, under the usual circumstances, between individuals

presenting with a specific clinical condition (usually a pathology) and those without

the condition. For the purpose of this chapter, we assume that diagnostic test results

are reported either as positive or negative. This may reflect the actual outcome of

the test (e.g. an imaging test result reported as normal or abnormal) or a simplifica-

tion of a result reported in an ordinal or continuous scale that is then dichotomized

into positive/negative using a pre-established cut-off point as with many laboratory

results.

In the next section, we revisit the concept of diagnostic accuracy and how it is

measured. In the third section, we describe the potential sources of heterogeneity

present in systematic reviews of diagnostic test evaluation and how to explore

it. The next two sections present two statistical methodologies to choose from

according to the presence or absence of inter-study variability. The following

section describes publication bias and its analysis. The last section provides a list

of software programs available to perform the analyses discussed in the chapter. An

appendix with the output of two examples is included.

Evaluation of Diagnostic Accuracy

In contrast with randomized clinical trials where the results regarding the effective-

ness of an intervention are reported using a single coefficient (risk ratio, absolute

risk reduction, number needed to treat, etc.), individual studies in evaluations of

diagnostic test accuracy are summarized using two estimates, which are often
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inter-related. The statistical methods used to summarize the systematic review

results must take into account this dual measurement and report both statistical

estimates simultaneously.

As mentioned in Chap. 5 on using and interpreting diagnostic tests, there are

several diagnostic accuracy paired measures. These paired estimates are obtained

from a 2 � 2 cross-classification table. The two specific indices conditioned to

disease status are sensitivity (the proportion of test positives among people with

the disease) and specificity (the proportion of test negatives among people without

the disease). Predictive values, positive and negative, are measures conditioned to

test results and are calculated as the proportion of diseased individuals among

people with a positive test result and the proportion of non-diseased individuals

among people with a negative test result, respectively. The well-known impact of

the actual disease prevalence on these predictive values discourages their use as

summary measures of test accuracy. Likelihood ratios (LRs) are another set of

indices obtained directly from sensitivity and specificity. These ratios express how

much more likely a specific result is among subjects with disease than among

subjects without disease. Another measure of test accuracy is the diagnostic odds

ratio (dOR). The dOR expresses how much greater the odds of having the disease

are for the people with a positive test result than for the people with a negative test

result. It is a single indicator of the diagnostic performance of a test because it

combines the other estimates of diagnostic performance in one measure.

Both LRs and dOR index are calculated from the sensitivity and specificity

indices and, except under special circumstances, although usually not affected by

the disease prevalence, they are affected by the disease spectrum. The dOR index is

very useful when comparing the overall diagnostic performance of two tests.

Furthermore, because it is easily managed in meta-regression models, it is a

valuable tool for analysing the effect of predictor variables on the heterogeneity

across studies. However, its use for clinical decision making regarding individual

patients is questionable given it is a single summary measure of diagnostic

accuracy.

Heterogeneity

Before undertaking a meta-analysis of diagnostic accuracy studies as part of a

systematic review, the researcher should ponder the appropriateness and signifi-

cance of the task. Frequently, the large variability present in sensitivity and

specificity indices across the individual studies puts into question the suitability

of a statistical pooling of results. A preliminary analysis of the clinical and

methodological heterogeneity of the studies should provide the necessary informa-

tion regarding the appropriateness of synthesizing the results. The selection of

potential sources of heterogeneity for further exploration must be done a priori,

before starting data analyses, in order to avoid spurious findings. Meta-analysis

should only be performed when studies have recruited clinically similar patients

and have used comparable experimental and reference tests.
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Sources of Heterogeneity

Clinical and Methodological Heterogeneity

In addition to the inherent expected random variability in the results, there can be

additional sources of heterogeneity as a result of differences in the study

populations (e.g. disease severity, presence of comorbidities), the tests under

evaluation (differences in technology or among raters), the reference standards,

and the way a study was designed and conducted.

In systematic reviews of treatment interventions, the individual studies usually

share a standardized study design (randomized controlled trial or RCT), generally

designed with comparable inclusion and exclusion criteria, similar interventions

and methods to measure the intervention effect (i.e. similar clinical outcome). In

contrast, systematic reviews of diagnostic accuracy studies have to contend with a

great deal of variability regarding design, including some studies of questionable

methodological quality (retrospective case series, non-consecutive case series,

case–control studies, etc.). Empirical evidence shows that the presence of certain

methodological shortcomings has a substantial impact on the estimates of diagnos-

tic performance. Pooling results from studies with important methodological

shortcomings that have recruited different patient samples may lead to biased or

incorrect meta-analysis results.

Threshold Effect

A special source of heterogeneity present in the studies of diagnostic accuracy

comes from the existence of a trade-off between sensitivity and specificity. This is a

result of the studies using, implicitly or explicitly, different thresholds to determine

test positivity.

When studies define different positivity criteria, the sensitivity and specificity

change in opposite directions. This effect is known as the threshold effect. As we

discuss later, the presence of this effect requires that the meta-analysis consider the

correlation between the two indices simultaneously while discouraging analytical

strategies based on simple pooling of the sensitivity and specificity measures.

Consequently, the meta-analysis of diagnostic accuracy adds a certain level of

complexity and requires fitting statistical models, taking into account the covari-

ance between sensitivity and specificity.

Study of Heterogeneity

The first step in a meta-analysis is to obtain diagnostic performance estimates from

the individual (or primary) studies included in the review. These data are used to

estimate the level of consistency across the different studies (heterogeneity
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analysis). This description must provide the magnitude and precision of the diag-

nostic performance indices for every individual study. Given that these accuracy

estimates are paired up and are frequently inter-related, it is necessary to report

these indices simultaneously (sensitivity and specificity, or positive LR and nega-

tive LR). For this description one can use numerical tables of results or paired forest

plots (Fig. 8.1) of sensitivity and specificity or of positive and negative LR

(Fig. 8.2) for each study together with the corresponding confidence intervals.

A certain level of variability is expected by chance, but the presence of other

sources of variation will increase the heterogeneity. These forest plots present the

studies ordered from higher to lower sensitivity or specificity (see Fig. 8.4). This

format may help analyse consistency among studies and the potential correlation

between sensitivity and specificity. However, the best way of illustrating the

Fig. 8.1 Forest plot of sensitivity and specificity. The box sizes are proportional to the weights

assigned and the horizontal lines depict the confidence intervals

Fig. 8.2 Forest plot of positive and negative LRs. The box sizes are proportional to the weights

assigned and the horizontal lines depict the confidence intervals
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covariance between these indices is to present the pairings of estimates for each

study on a receiver operator characteristic (ROC) plot (Fig. 8.3). The x-axis of the
ROC plot displays the false-positive rate (1-specificity). The y-axis shows the

corresponding true-positive rate (sensitivity). The higher the diagnostic perfor-

mance of a study, the closer it is to the upper left quadrant of the ROC plot where

both sensitivity and specificity are close to 1. This graphical representation displays

a shoulder arm pattern when sensitivity and specificity are correlated, for example,

as a result of the presence of a threshold effect or as a result of a different spectrum

of the disease among the patients included in the studies. In such situations,

sensitivity and specificity are inversely correlated, that is, the true-positive rate

(TPR) and the false-positive rate (FPR) are directly correlated.

Specific univariate statistical tests for homogeneity of accuracy estimates have

been proposed. However, heterogeneity tests may lack the necessary statistical

power to detect heterogeneity when a meta-analysis includes a small number of

studies. Conversely, when a meta-analysis includes a large number of studies,

heterogeneity tests may detect and interpret slight inter-study variations as strong

evidence of heterogeneity by yielding highly significant values, especially when the

studies include large sample sizes. In addition, these univariate approaches to

heterogeneity analysis do not account for heterogeneity due to the correlation

between sensitivity and specificity. The inconsistency index (I2) may be used to

quantify the proportion of total variation across studies beyond what would be

expected by chance alone although these estimates must be interpreted with

caution.

The results of the heterogeneity analysis must guide the researcher’s next step in

the completion of the meta-analysis. There are two alternative approaches: (1)

Fig. 8.3 The ROC plane: Plot of 1-specificity against sensitivity
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perform separate univariate analyses of the diagnostic accuracy indices; and (2)

calculate a pooled estimate of both indices using the appropriate statistical model.

Below we describe the two approaches and the circumstances under which one or

the other is more appropriate.

Estimate of the Overall Summary Performance of a Diagnostic

Test in the Absence of Variability Across Results

The first analytical approach may be used in the special circumstance in which

measures of sensitivity, specificity (or both) of the individual studies show a

reasonable level of homogeneity. In this scenario, summary estimates of diagnostic

accuracy may be obtained through basic meta-analysis techniques with no need for

more complex analytical models. Under this approach, two separate poolings of

sensitivities and specificities are performed by univariate meta-analysis with fixed

or random effects models as deemed appropriate. For added precision, we recom-

mend the use of the logit transformation for sensitivity and specificity to perform

the meta-analysis.1 Once the estimates are averaged, they should be back-

transformed to the original scale.

It is important to emphasize that the univariate analysis approach can only be

used when there is evidence of homogeneity across estimates. Both sensitivity and

specificity indices – and the explicit thresholds defining test positivity, if applicable

– must be homogeneous. In this scenario, the correlation between these indices will

approach zero and the results of simple pooling will be comparable with those from

more advanced models such as bivariate and hierarchical models, discussed later in

the chapter. An interesting study concluded that summary indices of diagnostic

accuracy calculated with separate simple pooling did not differ significantly from

those generated by more statistically robust methods and that the small differences

were not clinically relevant.

In the absence of variability across thresholds for test positivity, positive and

negative LRs could also be pooled using standard methods such as meta-analysis

with fixed or random effects. However, there is some evidence that pooling

diagnostic LRs in systematic reviews is not appropriate as the summary LRs

generated could correspond to summary sensitivities and specificities outside the

valid range from 0 to 1. Instead, it is recommended to calculate the LRs from

summary sensitivity and specificity indices estimated using bivariate or hierarchical

methods (see below).

We also discourage the practice of averaging predictive values (positive and

negative) due to the well-documented effect the prevalence of the disease has on the

results. To make matters worse, this prevalence may vary across studies adding an

1 The standard error of a logit transformed proportion p is computed as the square root of

1/(np(1 � p)).
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additional source of heterogeneity to the estimates. The summary predictive value

is estimated for unknown average disease prevalence. However, in some cases, it is

the only index available given the design characteristics of the studies in which

reference standards were performed on test positives but not on test negatives

(partial verification bias). A typical example of this scenario is when histopathology

is used to confirm imaging findings, and no histological sample can be obtained

after a negative image result.

Estimate of the Overall Summary Performance of a Diagnostic

Test in the Presence of Variability Across Results

(sROC Curve)

It is common for researchers performing meta-analyses to run into substantial

variability in diagnostic accuracy indices. This second analytical approach

addresses the issue of heterogeneity across individual studies. Part of this variability

could well originate in differences in the thresholds of positivity used, either

explicit or implicit, across studies. Other source of variation could be a differential

spectrum of patients across studies. In these cases, separate pooling is not the

appropriate method to calculate a summary measure of test accuracy. Instead, the

analysis must start by fitting a summary ROC (sROC) curve modelling the rela-

tionship between test accuracy measures. Of the different parameters that have been

proposed to summarize a sROC curve, the most common is the area under the curve

(AUC). This statistic summarizes the diagnostic test performance with only one

figure: a perfect test achieves an AUC close to 1, whereas the AUC is near 0.5 for a

useless test. This figure may be interpreted as the probability of the test correctly

classifying two random individuals, a diseased and a non-diseased subject. Thus,

the AUC may be also a useful tool to compare the performance of various

diagnostic tests. Another statistic suggested for this task is the Q* index, defined

as the point of the curve in which sensitivity equals specificity. In a symmetric

curve, this is the point closest to the upper left corner of the ROC space. The fitted

sROC curve may also be used to calculate a sensitivity estimate from a given

specificity or vice versa. Two methods for fitting a sROC curve are discussed

below.

Moses–Littenberg Model

The Moses–Littenberg method, initially developed to generate sROC curves easily,

is the simplest and most popular method for estimating test performance as part of

meta-analyses of diagnostic tests. The shape of the ROC curve depends on the

underlying distribution of the test results in patients with and without the disease.
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There are two methods of fitting the ROC curve. Diagnostic tests where the dOR is

constant regardless of the diagnostic threshold have symmetrical curves around the

sensitivity ¼ specificity line. When the dOR changes with diagnostic threshold, the

ROC curve is asymmetrical. The Moses–Littenberg method is used to study dOR

variation according to threshold and thereby generates symmetrical or asymmetri-

cal curves.

The method consists of studying this relationship by fitting the straight line:

D ¼ aþ bS

D ¼ logitðsensitivityÞ � logitð1� specificityÞ

S ¼ logitðsensitivityÞ þ logitð1� specificityÞ

where D is the natural logarithm (ln) of the diagnostic odds ratio (dOR) and S is a

quantity related to the overall proportion of positive test results. S can be considered
as a proxy for the test threshold because S will increase as the overall proportion of
test positives increases both in the diseased and non-diseased groups. The contrast

in test performance variability (measured by dOR) according to threshold is

equivalent to the contrast on the model’s parameter b. When b ¼ 0 there is no

variation and the model generates a symmetrical sROC curve; whereas when

b 6¼ 0, performance varies according to the threshold and the resulting sROC

curve is asymmetrical. The fitting of the previous linear model can be weighted

using the inverse variance of ln(dOR) to account for inter-study differences in the

sampling error in D.
The model may be expanded to analyse the effect of other factors on diagnostic

performance (dOR) as a supplement to the exploration of heterogeneity described

here. Such factors, which would be included in the model as covariates, may

capture characteristics related to the study design, the patients, or the test.

The Moses–Littenberg model, although very useful for studies of an exploratory

nature, is not adequate for drawing statistical inferences. Thus, it should be used

keeping in mind some important limitations. First, the model does not take into

account either the correlation between sensitivity and specificity or the different

precision with which the indices were estimated. In addition, the model’s indepen-

dent variable is random and, thus, its inherent measurement error violates the basic

assumption of linear regression models. Finally, the model must be empirically

adjusted to avoid empty cells by adding an arbitrary correction factor (0.5).

Bivariate and Hierarchical Models

Two models have been put forward to overcome the limitations ascribed to the

Moses–Littenberg model: the bivariate model and the hierarchical sROC model

(HSROC). These random effects models are substantially more robust from the
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statistical point of view than the Moses–Littenberg model. The methodological

literature relevant to this area of research proposed these models as the gold

standard in meta-analyses of diagnostic accuracy studies. The differences between

the two models are small and, in the absence of covariates, both approaches simply

amount to different parameterizations of the same model.

The bivariate model is a random effects model based on the assumption that logit

(sensitivity) and logit (specificity) follow a normal bivariate distribution. The

model allows for the potential correlation between the two indices, manages the

different precision of the sensitivity and specificity estimates, and includes an

additional source of heterogeneity due to inter-study variance. The second model

the methodological literature proposes is known as the hierarchical model or

HSROC. It is similar to the previous model except that it explicitly addresses the

relationship between sensitivity and specificity using the threshold. Similar to the

previous model, this one also accounts for the inter-study heterogeneity.

Both models allow fitting an sROC curve and provide a summary estimate of

sensitivity and specificity with the corresponding confidence and prediction

intervals. After fitting either of these models, we have to select the most appropriate

result to report. It depends on the variability of the results of the individual studies.

When sensitivities and specificities of these studies vary substantially, it is advis-

able to forego average indices and, instead, report the sROC curve. In contrast,

when the variability across indices is small, the recommendation is to report the

average sensitivity and specificity as calculated based on the bivariate (or the

hierarchical) model with its 95 % confidence interval. This is much preferred to

the alternative, which would entail risking extrapolating to the ROC space a curve

that may misrepresent the test diagnostic accuracy. Summary LRs can be calculated

from the pooled estimates of sensitivity and specificity generated by these models.

It is worth noting that when an average sensitivity and specificity point is reported

over the sROC curve, the position represents the midpoint of the results of the

studies calculated based on the average threshold for test positivity, or the average

spectrum of the disease, observed in the sample.

Publication Bias

Identifying articles about diagnosis is more cumbersome than finding published

clinical trials for a review of intervention performance. Although the MeSH

(Medical Subject Heading) term “randomized controlled trial” effectively describes

and leads researchers to studies describing clinical interventions, there is no com-

parable term for the specific literature describing the design of such studies. We

should take into account, however, that many studies on diagnosis are based on

observations of actual clinical practice in the absence of protocols recorded and/or

approved by research ethics committees. For this reason, it is difficult not only to

follow up these studies but also to get their results published at the level of detail

necessary to be fully useful. If the studies identified in the search were to differ
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systematically from unpublished manuscripts, the meta-analysis would yield biased

estimates that would fail to reflect the real value of diagnostic accuracy.

Similarly, it is also more complex to assess publication bias regarding studies

about diagnosis than about treatment. Graphical tools (funnel plots) and the tradi-

tional statistical comparisons to evaluate the asymmetry of these graphs were

developed to assess publication bias in systematic reviews of clinical trials. Thus,

their validity to assess bias in reviews of diagnostic tests is questionable. Deeks and

colleagues have adapted the statistical tests of asymmetry of funnel plots to address

the issues inherent to meta-analyses of test accuracy. In this version, the funnel plot

represents the dOR versus the inverse of the square root of the effective sample size

(ESS), which ultimately is a function of the number of diseased and non-diseased

individuals. The degree of asymmetry in the plot is statistically evaluated by a

regression of the natural logarithm of dOR against 1/ESS1/2, weighted by ESS.

Software

There is a great variety of statistical packages able to perform the analyses

described. Some, like SAS and STATA, are packages for general statistical

purposes that facilitate the calculations mentioned by means of a series of macros

and user-written commands. The best known user-written commands are the

STATA commands MIDAS and METANDI and the SAS macro named

METADAS. In addition, the package DiagMeta (http://www.diagmeta.info) was

developed for the R environment and it also performs the analyses described.

Additional programs specific to the meta-analysis of diagnostic test accuracy

studies are Meta-DiSc and Review Manager (RevMan) by the Cochrane Collabo-

ration. Both perform the basic analyses described in this chapter and RevMan also

allows the user to enter parameters obtained from bivariate and hierarchical models

and produce corresponding sROC plots.

Appendix

Example 1

For this example we selected the 17 studies included in Scheidler et al.’s meta-

analysis (Table 8.1). In their meta-analysis, they evaluated the diagnostic accuracy

of lymphangiography (LAG) to detect lymphatic metastasis in patients with cervi-

cal cancer.

First, the indices of diagnostic accuracy, sensitivity and specificity (Fig. 8.1) or

the positive and negative LRs (Fig. 8.2) of the reviewed studies are described for

exploratory purposes using paired forest plots as obtained with Meta-DiSc.
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Second, still within the graphical data exploration, we can illustrate the TPR or

sensitivity, the FPR (i.e. 1 � specificity), and the LRs (LR + and LR�) organized

by one of these indices (Fig. 8.4) or illustrate the pairing indices on a ROC space

(Fig. 8.3). At this exploratory phase, all graphical representations should not

include pooled estimates of accuracy.

To perform these exploratory analyses, we can use free software (Meta-DiSc,

RevMan or the DiagMeta package in the R environment) or any other commercial

software.

Table 8.1 The studies

included in Scheidler et al.’s

meta-analysis

id Study Year Test tp fp fn tn

1 Kindermann 1970 LAG 19 1 10 81

2 Lecart 1971 LAG 8 9 2 13

3 Piver 1971 LAG 41 1 12 49

4 Piver 1973 LAG 5 1 2 18

5 Kolbenstvedt 1975 LAG 45 58 32 165

6 Leman Jr 1975 LAG 8 6 2 32

7 Brown 1979 LAG 5 8 1 7

8 Lagasse 1979 LAG 15 17 11 52

9 Kjorstad 1980 LAG 16 11 8 24

10 Ashraf 1982 LAG 4 8 2 25

11 deMuylder 1984 LAG 8 12 10 70

12 Smales 1986 LAG 10 4 4 55

13 Feigen 1987 LAG 2 5 6 23

14 Swart 1989 LAG 7 10 7 30

15 Heller 1990 LAG 44 50 12 135

16 Lafianza 1990 LAG 8 3 1 37

17 Stellato 1992 LAG 4 3 0 14

From Scheidler et al. (1997)

Fig. 8.4 Forest plot with studies sorted by FPR: Heterogeneity is evident
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In this example, and looking at the forest plot generated, we cannot rule out the

presence of heterogeneity across the studies included in the review; thus, the

analysis should focus on fitting an sROC model.

Given the limitations of the Moses–Littenberg model, we fit a bivariate model

using the DiagMeta package. The output is presented below:

> bivarROC(Scheidler)

ML MCMC lower limit upper limit

average TPR% 67.38561 67.59189 60.52091 74.75159

average FPR% 16.22516 16.05203 9.25013 25.49491

SD logit TPR 0.34943 0.31889 0.04271 0.87571

SD logit FPR 0.90087 1.06136 0.63934 1.84290

correlation �0.23882 �0.53898 �0.99999 0.59240

Because the estimated correlation between logit (sensitivity) and logit (specific-

ity) is small and it cannot be ruled out that it is not different from zero, the results

estimated by the bivariate model do not significantly differ from those obtained

through separate pooling of sensitivity and specificity. Based on the same example,

the results using a simple pooling with a fixed or random effects model according to

the variability of each of the indices are as follows:

> twouni(subset(Scheidler,GROUP¼¼’LAG’))

TPR TPR lower limit upper limit

Fixed effects 0.6711590 6.218139e-01 0.7169960

Random effects from ML 0.6763973 6.056993e-01 0.7398633

Random effects from MCMC 0.6729242 6.148178e-01 0.7327660

SD of REff 0.0692814 5.935713e-07 0.7516062

FPR FPR lower limit upper limit

Fixed effects 0.1996143 0.1764147 0.2250311

Random effects from ML 0.1619847 0.1059149 0.2397768

Random effects from MCMC 0.1631190 0.1035210 0.2426649

SD of REff 0.9576528 0.5716529 1.5829222

Figure 8.5 shows the sROC curve fitted with a STATA bivariate model, together

with the estimated summary point and confidence and prediction intervals.

Example 2

For this illustration we used Fahey et al.’s data (Table 8.2). The goal of their study

was to estimate the accuracy of the Papanicolaou (Pap) test for detection of cervical

cancer and precancerous lesions.

The sensitivity and specificity forest plots (data not shown) confirm the presence

of substantial heterogeneity, in both indices, across the studies included in the

review. Figure 8.6 shows the representation of the studies in the ROC space.
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The slight curvilinear pattern of their distribution suggests the presence of a

correlation between sensitivity and specificity.

Using Meta-DiSc we calculated the Spearman correlation coefficient between

the TPR and FPR logits and obtained a positive and statistically significant correla-

tion of 0.584 (p < 0.001) which confirms the results of the bivariate adjustment

obtained using the package DiagMeta:

Estimates and 95 % confidence intervals from mcmc samples

ML MCMC median lower limit upper limit

average TPR% 65.56718 64.93881 57.58497 72.49102

average FPR% 25.38124 25.27866 18.74132 32.57494

SD logit TPR 1.21834 1.27374 1.04000 1.59237

SD logit FPR 1.22834 1.27623 1.02968 1.60834

correlation 0.77408 0.77709 0.61593 0.87730

Posterior probability that rho positive 1

Correlation positive - threshold model appropriate

Fig. 8.5 Fitted SROC

curve: Study estimates are

shown as circles sized
according to the total number

of individuals in each study.

Summary sensitivity and

specificity are depicted by the

square marker and the 95 %

confidence region for the

summary operating point is

depicted by the small oval in
the centre. The larger oval is

the 95 % prediction region

(confidence region for a

forecast of the true sensitivity

and specificity in a future

study). The summary curve is

from the HSROC model
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With this information in hand, we conclude that the most appropriate method to

summarize the results of the meta-analysis is using an sROC curve (Fig. 8.7). This

curve was fitted using the bivariate model produced by the macro METANDI in

STATA. Figure 8.8 shows the results of a comparable analysis with Meta-DiSc

using the Moses–Littenberg model which, in this case, has generated a practically

identical sROC curve to that in Fig. 8.7.

Table 8.2 Data from Fahy et al.’s study

id Study tp fp fn tn id Study tp Fp fn tn

1 Ajons-van K 31 3 43 14 31 Morrison BW 23 50 10 44

2 Alloub 8 3 23 84 32 Morrison EAB 11 1 1 2

3 Anderson 1 70 12 121 25 33 Nyirjesy 65 13 42 13

4 Anderson 2 65 10 6 6 34 Okagaki 1,270 927 263 1,085

5 Anderson 3 20 3 19 4 35 Oyer 223 22 74 83

6 Andrews 35 92 20 156 36 Parker 154 30 20 237

7 August 39 7 111 271 37 Pearlstone 6 2 12 81

8 Bigrigg 567 117 140 157 38 Ramirez 7 4 3 4

9 Bolger 25 37 11 18 39 Reid 12 5 11 60

10 Byrne 38 28 17 37 40 Robertson 348 41 212 103

11 Chomet 45 35 15 48 41 Schauberger 8 4 11 34

12 Engineer 71 87 10 306 42 Shaw 12 2 6 0

13 Fletcher 4 0 36 5 43 Singh 95 9 2 1

14 Frisch 2 2 3 21 44 Skehan 40 18 20 19

15 Giles 1 5 9 3 182 45 Smith 71 13 20 18

16 Giles 2 38 21 7 62 46 Soost 1205 186 454 250

17 Gunderson 4 2 16 31 47 Soutter 1 40 20 17 27

18 Haddad 87 13 12 9 48 Soutter 2 35 9 12 12

19 Hellberg 15 3 65 15 49 Spitzer 10 31 5 32

20 Helmerhorst 41 1 61 29 50 Staff 3 5 3 15

21 Hirschowitz 76 12 11 12 51 Syrjanen 118 40 44 183

22 Jones 1 3 0 5 1 52 Szarewski 13 3 82 17

23 Jones 2 10 4 48 174 53 Tait 38 14 13 62

24 Kashimura 1 28 11 28 77 54 Tawa 16 25 67 291

25 Kashimura 2 79 26 13 182 55 Tay 12 14 6 12

26 Kealy 61 20 27 35 56 Upadhyay 238 52 2 16

27 Kooning 1 62 20 16 49 57 Walker 111 44 20 39

28 Kooning 2 284 31 68 68 58 Wetrich 491 164 250 702

29 Kwikkel 66 25 20 44 59 Wheelock 48 16 38 31

30 Maggi 40 43 12 47

From Fahey et al. (1995)
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Chapter 9

Health Technology Assessments of Diagnostic

Tests

Bridging the Gap Between Research Findings and

Diagnostic Decision Making

Rosmin Esmail

Abstract Evidence-informed decision making with respect to health technology

involves considering the best evidence, including the evidence on efficacy, effec-

tiveness and cost-effectiveness of that technology. Health technology assessment

(HTA) provides a mechanism to bridge the gap between evidence and decision

making through a standard process of formal assessment of this evidence. HTA has

been defined by the International Network of Agencies for Health Technology

Assessment “as the systematic evaluation of properties, effects, and/or impacts of

health care technology, that is, safety, effectiveness, feasibility, cost, cost-

effectiveness, and potential social, legal and ethical impact of a technology. It

may address the direct, intended consequences of technologies as well as their

indirect, unintended consequences”. This chapter provides an overview on HTA, its

history and methods to conduct a HTA. It also describes how HTAs can be used to

assess screening and diagnostic tests to reduce uncertainty and improve appropri-

ateness. A case study on the clinical effectiveness and cost-effectiveness of trans-

cutaneous bilirubin devices for screening and diagnosis of hyperbilirubinemia

jaundice illustrates how HTA was applied to assess the evidence on this

screening test.

Case Scenario

A newborn baby in Calgary, Alberta, is visually assessed for neonatal jaundice.

Based on this assessment, the physician orders the gold standard test for screening

neonatal jaundice: a total serum bilirubin (TSB) test. The baby cries and the parents
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are unhappy that their child has to undergo an invasive test. Reviewing the litera-

ture, the physician becomes aware of a new test that is less invasive called

transcutaneous bilirubin (TcB) point-of-care testing. For the next newborn baby

who may have jaundice, he orders both screening tests TcB and TSB. However, it is

soon realized that this test is not available everywhere in Alberta and that there is

variation in practice with respect to screening for neonatal jaundice.

There are numerous questions that arise from this scenario. What are some of the

considerations that need to be made with respect to the precision and accuracy of

the new test (TcB) versus the gold standard (TSB)? Is it ethical to use an invasive

test when a less invasive one is available? How efficacious and cost-effective is this

new device compared with the gold standard? Do clinicians understand how the

new device should be used in screening? What are some of the variations in practice

with respect to screening for neonatal jaundice? In trying to ensure an accurate

screening and diagnosis, will this lead to ordering unnecessary, costly, and dupli-

cate tests? These are some of the questions that are faced by physicians today when

deciding which screening or diagnostic test to use for a particular clinical scenario.

Health care organizations and governments may also be interested in similar

questions including cost considerations. As stated by Pluddemann et al. (2010),

health care purchases and providers have to assess the importance and role that a

new diagnostic or screening technology will play in the clinical context.

Evidence-based medicine has been defined as “the conscientious, explicit, and

judicious use of the best evidence in making decisions about the care of individual

patients” (Sackett et al. 1996). Evidence-informed decision making with respect to

health technology involves considering the best evidence including the evidence on

efficacy, effectiveness and cost-effectiveness of that technology. When making a

decision to fund the technology, therefore, it is vital to have a standard process of

formal assessment that can be applied to both screening and diagnostic tests. This

chapter focuses on what health technology assessment (HTA) is and how HTAs can

be used to assess screening and diagnostic tests to reduce uncertainty and improve

appropriateness of use.

History of HTA

The term technology assessment originated in 1965 in the US House of

Representatives. In 1973, the Congressional Office of Technology Assessment

was founded to review and assess technologies that were used in space. The formal

processes for HTA occurred in the mid-1970s with the US Office of Technology

Assessment publishing its first report on the subject in 1976. HTA then began to

spread around the world with the formation of the Swedish Council on Technology

Assessment in Health Care in the late 1980s. Since that time, numerous HTA

agencies have been established worldwide including agencies in European

countries, Latin America, Asia and Canada. Membership organizations have also

been formed including Health Technology Assessment International (HTAi) and
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the International Network of Agencies for HTA (INAHTA). This is an overarching

organization that provides linkage and exchange mechanisms to share results from

systematic reviews that agencies undertake. To date, there are 59 members in

29 countries worldwide that are committed to HTA. For further information,

Banta and Jonsson (2009) provide an excellent overview of the history of HTA.

What Are Technology, Health Technology, Technology

Assessment and HTA?

Definitions of technology, health technology, technology assessment and HTA are

described below. The US Congress Office of Technology Assessment defines

technology as “the techniques, drugs, equipment, and procedures used by health

care professionals in delivering medical care to individuals and the systems within

which such care is delivered” (Banta et al. 1981). INAHTA provides a similar defini-

tion on health technologies: “prevention and rehabilitation, vaccines, pharmaceuticals

and devices, medical and surgical procedures, and the systems within which health is

protected and maintained” (International Network of Agencies for Health Technology

Assessment 2012).

The US Institute of Medicine’s definition of technology assessment is “any

process of examining and reporting properties of a medical technology used in

health care, such as safety, efficacy, feasibility, and the indications for use, cost, and

cost-effectiveness, as well as social, economic, and ethical consequences, whether

intended or unintended” (Rettig 1991).

The Canadian Agency for Drugs and Technology in Health (CADTH 2012)

defines HTA as “systematically reviewing the research available on technologies

with respect to clinical efficacy/effectiveness and/or cost-effectiveness and/or

potential service impact. Technologies are defined as drugs, medical devices,

medical procedures and health systems used in the maintenance, treatment and

promotion of health”. The International Network of Agencies for Health Technol-

ogy Assessment (2012) defines health technology assessment “as the systematic

evaluation of properties, effects, and/or impacts of health care technology, that is,

safety, effectiveness, feasibility, cost, cost-effectiveness, and potential social, legal

and ethical impact of a technology. It may address the direct, intended

consequences of technologies as well as their indirect, unintended consequences”.

Its main purpose is to inform technology-related policy decisions in health care.

This is the definition used for the purposes of this chapter. Topics for assessment

should be relevant and important to society. The information from a HTA should

affect change with respect to making a decision around a policy.
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What Are the Steps Involved in Conducting a HTA?

The most recognized source of how to conduct an HTA can be found through

Clifford Goodman’s text, HTA 101-Introduction to Health Technology Assessment
published in 2004. Key steps in conducting a HTA are:

1. Identify assessment topics

2. Specify the assessment problem

3. Determine locus of assessment

4. Retrieve evidence

5. Collect new primary data (as appropriate)

6. Appraise/interpret evidence

7. Integrate/synthesize evidence

8. Formulate findings and recommendations

9. Disseminate findings and recommendations

10. Monitor impact

Methodologies that are used to conduct systematic reviews are usually used for

steps 1–7 above. For example, the Cochrane Collaboration Handbook which has

been described in other chapters can be useful in conducting systematic reviews of

the literature. In addition, an excellent resource document developed by the Insti-

tute for Health Economics entitled, HTA on the Net describes various organizations
and resources on HTA and is available at http://www.ihe.ca. Step 8 involves

making decisions based on the evidence and is usually undertaken by a multidisci-

plinary team or advisory committee (see next section). Step 9 focuses on the

development of an implementation plan and key knowledge management and

knowledge transfer strategies to disseminate and share the findings. Step 10 refers

to the aspect of whether HTAs are making an impact through monitoring and

evaluation.

Another framework that is offered for conducting a HTA is the one by Busse

(2002) from the European Collaboration for Health Technology Assessment. The

framework is as follows:

• Submission of an assessment request/identification of an assessment need

• Prioritization

• Commissioning

• Conducting the assessment

• Definition of policy question(s)

• Elaboration of HTA protocol

• Collecting background information/determination of the status of the technology

• Definition of the research questions

• Sources of data, appraisal of evidence, and synthesis of evidence for each of:

– Safety

– Efficacy/effectiveness

– Psychological, social, ethical
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– Organizational, professional

– Economic

• Draft elaboration of discussion, conclusions, and recommendations

• External review

• Publishing of final HTA report and summary report

• Dissemination

• Use of HTA (how effectively were the results adopted and applied?)

• Update of the HTA

Both frameworks have similar steps and either one can be used as a guide to

conduct a HTA. Ultimately, what is produced in a HTA is an evaluation of the

safety, effectiveness, and cost-effectiveness plus impact of the technology. HTA

also considers the social, ethical, environmental, and legal impact of the technol-

ogy. Therefore, a HTA usually begins with a systematic review (see Chap. 12 for

more details) but also considers those aspects that are also part of contextualizing

the HTA to the local setting. Unfortunately, many HTAs do not have all of these

components because the methodology, which is primarily focused on summarizing

qualitative information, has not yet been fully developed.

HTAs also provide the cost-effectiveness of a technology based on economic

evaluation. Moreover, economic evaluation is used for determining how we should

allocate scarce resources (i.e. each dollar of our budget) to ascertain the best

possible outcome (i.e. patient health); HTA within this context helps us to deter-

mine the technical and efficient use of resources.

The notion of perspective is also important. A HTA can take on the perspective

of the provider, patient, institution or society. Depending on what perspective is

taken, the outcomes of the HTA will be different. Therefore, it is important when

conducting a HTA that perspective is also considered.

HTA in Canada and Alberta

CADTH “is an independent agency funded by Canadian federal, provincial, and

territorial governments to provide health care decision makers with credible,

impartial advice and information about the effectiveness and efficiency of drugs

and other health technologies” (CADTH 2012). It is a member of INAHTA. HTAs

that are produced are context free. HTA reports are prepared by staff, external

researchers, or may be collaborative projects between internal and external

researchers, both in Canada and internationally. These context-free reports are

provided to the organization requesting the report. They are also posted on its

website at http://www.cadth.ca. However, these reports need to be contextualized to

the setting in which they are going to be used. This involves health technology

appraisal or the consideration of context-sensitive issues. Moreover, having sys-

tematically reviewed primary and secondary research evidence on whether the

technology works and is safe, health technology appraisal addresses the question
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of will the technology work here in this setting and context and how can it work

optimally? It also addresses the issue of whether resources are available to imple-

ment the technology and whether additional staff and staff training are required.

Alberta Health Services is an organization of 117,000 staff and 7,400 physicians;

it services a population of 3.7 million in the province. In April 2009, the province

amalgamated nine health authorities and three provincial entities into one health

region that delivers health care services. The Health Technology Assessment and

Innovation (HTAI) department was formed in November 2009 (see website: http://

www.albertahealthservices.ca/4122.asp). Its mandate is to support teams in manag-

ing health technologies through an evidence-informed decision model that helps to:

• Identify, prioritize, and assess health technologies (devices and processes,

excluding drugs) expected to significantly affect patient safety, clinical/cost-

effectiveness, health outcomes, clinical practice, human resources, and/or policy

• Investigate innovative alternatives for current health technology to improve

safety, quality, and/or outcomes

• Promote the effective and appropriate uptake of technologies

• Validate the effectiveness of promising health technologies with access through

evidence development initiatives

The HTAI department does not conduct HTAs but can commission HTAs

through CADTH and other HTA partners including the Institute for Health Eco-

nomics and the Universities of Alberta and Calgary. The department also works

with the government of Alberta (Alberta Health), and its Advisory Committee on

Health Technologies for reviews of health technologies that may be funded at the

provincial level. The HTAI department assists in the development of policy by

determining what impact this technology will have if introduced into the organiza-

tion, at the hospital or unit level through operational financial impact assessment

(OFIAs). These assessments review the staffing and budget requirements that may

be needed to use the technology in practice.

The Role of Regulation of Health Technologies

Regulation also plays a key role in determining whether a particular technology, or

diagnostic and screening test in this case, is safe and efficacious. This chapter does

not go into detail on how a particular diagnostic or screening test undergoes the

testing requirements to ensure safety. Unlike the rigorous testing and clinical trials

required for drugs, the same is not true for medical devices. Health Canada does

provide licensure for medical devices including screening and diagnostic tests

based on efficacy and safety data that are available at the time.
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How are HTAs on Diagnostic Tests Prioritized?

HTAs cannot be done on every new diagnostic device that comes on the market or

is introduced into the health care system. Moreover, even if the diagnostic or

screening test has passed regulatory approval, it may not be known if it is necessar-

ily effective or cost-effective. Pluddemann et al. (2010) has described prioritization

criteria to use when assessing new diagnostic technologies based on an expert

consensus process. These are described in Fig. 9.1 and can be applied to assess

and prioritize diagnostic test as they come to market by health care or other

organizations.

Who Uses HTAs?

HTAs can be commissioned and used by:

• Regulatory agencies

• Government and private sector payers

• Managed care organizations

• Health professional organizations

• Hospital and health care networks

• Patient and consumer organizations

• Government, private sector

• Academic health centres

• Insurance companies

• Biomedical research agencies

• Health product companies and venture capital groups

Usually a multidisciplinary working group is formed. This could include the

following as members: clinicians, physicians, managers and administrators, labora-

tory technicians, other technicians, pharmacists, patients/public, epidemiologists,

biostatisticians, economists, social scientists, public health and health services

researchers, lawyers, ethicists, technology experts, information specialists and

members of the public or patients. This working group plays a key role in under-

standing the issue, determines current practices and formulates the question.

Who Produces HTAs?

The development of a HTA on a particular technology can be completed relatively

quickly by commissioning it through several organizations, some of which are

listed in Table 9.1. These organizations are usually at arms length, transparent and

have individuals skilled in the areas of information sciences, biostatistics,
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Does the 
Technology Meet the 

Criterion?

High Priority
Yes No Unsure 

1. The potential that the technology will have an impact on 

morbidity and/or mortality of the disease or target condition.

2. The new technology reduces the number of people falsely  

diagnosed with the disease or target condition.

3. Improved diagnostic precision using the technology would lead 

to improvements in the delivery of treatment (e.g. shorter  

time to initiating treatment, reduction in morbidity or mortality).

4. The new technology improves the ability to rule out the disease  

or target condition.

5. This disease or target condition to which the diagnostic 
technology will be applied can be clearly defined. 

6. There is evidence of test accuracy in the setting in which the 

new diagnostic technology will be applied.

7. The new technology would enhance diagnostic efficiency or be 

more coot effective than the current diagnostic approach.

Intermediate Priority

1. The prevalence or incidence of the disease or target condition. 

2. The accuracy of the current diagnostic approach tor the  

disease target condition is problematic.

3. There is variation in treatment or patient outcome resulting from  

current diagnostic variability.

4. The current diagnostic pathway for the disease or target 

condition could be improved by obtaining information in a less  
risky fashion or in a manner more acceptable to patients.

5. The safety profile of the new technology has been established. 

6. The technology improves the ability to rule in the disease or  

target condition.

7. The new technology has a clearly defined role in the diagnostic  

pathway, e.g. replacing an existing test, as a triage tool, or after 

the diagnostic pathway as an add-on test. 

8. The relevance of the disease or target condition to current 
regional or national health policies and/or priorities.

9. It would  be feasible to change current practice to incorporate 
this technology (e.g. additional training, infrastructure, or quality 
control). 

Fig. 9.1 Proposed criteria for the prioritization of diagnostic technologies (Reprinted with

permission from Pluddemann et al. (2010))
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epidemiology, modelling analysis, economics, etc. They provide the expertise in

systematically searching, reviewing and appraising the literature and conducting

the economic analysis.

What Is a Diagnostic Test?

Diagnostic and screening technologies are used to provide information that may be

used to inform providers whether certain interventions may be used. A diagnostic

test can be defined as an information gathering exercise in health care delivery. The

purpose of a diagnostic test is to provide information on the presence or absence of

a disease. A test can create value in three areas: medical (to inform clinical

treatment); planning (to inform patients’ choices on reproduction, work, retirement,

long-term health, financial plans, etc.); and psychic value (directly changing

patients’ sense of satisfaction for both positive or negative value). The distribution

of value across these dimensions varies from test to test. This in turn affects health

outcomes.

Efficacy and Effectiveness of Diagnostic Tests

Health care administrators need to understand and know how health care

interventions affect health outcomes. Diagnostic technologies need to demonstrate

their efficacy (how well something works in a controlled situation) or effectiveness

(how well something works in a population or real setting) to provide information

for health care administrators who make decisions on interventions. Goodman

(2004) has presented a chain of inquiry that leads from the technical capacity of a

technology to changes in patient health outcomes to cost-effectiveness. This is

described as follows:

Table 9.1 International organizations that are involved in HTAs

International HTA societies and agencies

International HTA organizations that

conduct HTAs

Health Technology Assessment (HTAi)

international: http://www.htai.org

Emergency Care Research Institute: http://

www.ecri.org

The International Network of Agencies for Health

Technology Assessment: http://www.inahta.org

Canadian Agency for Drugs and

Technologies in Health: http://www.

cadth.ca

National Institute for Health and Clinical

Excellence: http://www.nice.org.uk/
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1. Technical capacity. Does the technology perform reliably and deliver accurate

information?

2. Diagnostic accuracy. Does the technology contribute to making an accurate

diagnosis?

3. Diagnosis impact. Do the diagnostic results influence use of other diagnostic

technologies? For example, does it replace other diagnostic technologies?

4. Therapeutic impact. Do the diagnostic findings influence the selection and

delivery of treatment?

5. Patient outcome. Does use of the diagnostic technology contribute to improved

health of the patient?

6. Cost-effectiveness. Does use of the diagnostic technology improve the cost-

effectiveness of health care compared with alternative interventions?

Figure 9.2 depicts the important features to determine the usefulness of a

diagnostic test. This hierarchy uses six possible end points to determine a test’s

utility. The criteria are based on Pearl’s work (1999). The more criteria in the

schema that are fulfilled, the more useful the test; and the less criteria that are

fulfilled, the less useful the test.

What Is a Screening Test?

Screening is “the presumptive identification of unrecognized disease or defect by

the applications of tests, examinations or other procedures which can be applied

rapidly” (US Commission on Chronic Illness 1957). Based on Wilson and Junger’s

work (1968), a guide to the rational development of a screening program can be

based on following these six questions:

• Is there an effective intervention?

• Does intervention earlier than usual improve outcome?

• Is there an effective screening test that recognizes disease earlier than usual?

• Is the test available and acceptable to the target population?

• Is the disease one that commands priority?

• Do the benefits exceed the costs?

1. Technical aspects: reliable and precise, accurate, operator dependence, 
feasibility and acceptability, interference and cross-reactivity, inter-and
intra-observer reliability

2. Diagnostic accuracy: validity and the “gold standard”
3. Diagnostic thinking
4. Therapeutic effectiveness
5. Patient outcomes
6. Societal outcomes

Fig. 9.2 Important features to determine the usefulness of a diagnostic test (Extracted from Pearl

(1999))
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Tests can be used for diagnosis or screening. The basic difference between the two

is that diagnosis is conducted on patients who have symptoms, whereas screening is a

diagnostic test conducted on patients who do not have symptoms. The goal of all

screening tests is to diagnose the disease at a stage that is early enough for it to be

cured. This is usually when the patient is asymptomatic and becomes the reason for

doing the diagnostic test to validate the screening test. Therefore, the role of screening

is to avoid unnecessary diagnostic tests. A screening test aims to have better prognosis

(outcome) for individuals; protects society from contagious disease; allows for rational

allocation of resources and research.

Other chapters in this book have reviewed the definitions and concepts of using and

interpreting diagnostic tests including sensitivity, specificity and likelihood ratios.

As with diagnostic tests, sensitivity (or true-positives), specificity (true-negatives)

and both positive and negative predictive values also apply to assess the performance

of a screening test (Table 9.2).

Reporting and Assessing the Quality of Diagnostic and

Screening Tests

Previously, studies on diagnostic and screening tests were not published in a

standard format, often leaving readers with many unanswered questions. This led

to the development of a set of standards and methods for reporting studies on

diagnostic tests, called the Standard for Reporting of Diagnostic Accuracy

(STARD). It is a 25-item checklist that can serve as a guide to improve the quality

of reporting of a diagnostic study and it has been adopted for preparing journal

articles. The Quality Assessment of Diagnostic Accuracy Studies (QUADAS) tool

is primarily used to evaluate the quality of a research study that describes a

diagnostic test. With respect to screening tests, an article in JAMA on “Users

guide to the medical literature” by Barratt et al. (1999) provides guidelines on

critically appraising studies of screening tests.

Table 9.2 2 � 2 table validating the screening test (Source: Bhopal 2002, p. 149)

Screening test Disease present Disease absent Total

Positive a b a + b

Negative c d c + d

Total a + c b + d a + b + c + d

Sensitivity or true-positive rate ¼ a/a + c. Predictive power of a positive test ¼ a/a + b
Specificity or true-negative rate ¼ d/b + d. Predictive power of a negative test ¼ d/c + d

9 Health Technology Assessments of Diagnostic Tests 131



Application to Case Scenario

Referring back to the neonatal jaundice example given at the beginning of the

chapter, the HTAI department facilitated undertaking a project in spring 2011 that

reviewed the clinical and cost-effectiveness of TcB devices for screening and

diagnosis of hyperbilirubinemia jaundice. The following case study illustrates

how HTA was applied to review this screening test.

Background

Hyperbilirubinemia is the most common cause of neonatal hospital readmissions

within Alberta, Canada, and North America. Hyperbilirubinemia jaundice occurs in

60–80 % of normal newborns and nearly all preterm infants. The testing and

admission for management of hyperbilirubinemia is a common issue in the care

of newborns. It is a complex issue that includes acute care, community providers,

primary and tertiary care. It involves a significant burden to the system and requires

coordination among these care providers.

Jaundice is due to increased unconjugated and/or conjugated bilirubin levels.

Bilirubin is produced by the breakdown of heme-containing proteins including

erythrocyte haemoglobin (75 %) and breakdown of other proteins such as myoglo-

bin, cytochromes, catalase, and peroxidases (25 %). Bilirubin must be bound to a

form, usually albumin (conjugated), that the body can excrete. Circulating bilirubin

that is not bound to albumin is called free bilirubin (unconjugated), which can then

enter the brain and cause neonatal injury. Treatment usually involves phototherapy,

exchange transfusion for extreme hyperbilirubinemia that is unresponsive to pho-

totherapy, or chemoprevention.

Jaundice is seen in almost all newborns. This is due to a number of factors

including increased production of bilirubin (8–10 mg/kg of bilirubin per day); this

is twice the amount produced by adults. There is also a decrease in transport and

hepatic uptake by the liver, decreased ability to conjugate, and decreased excretion.

For these reasons, all newborns experience a rise and then a fall in TSB levels. In

normal term infants, bilirubin levels can increase to 5–7 mg/dL found on days 3 and

5 and then decline by day 7–10. These numbers can be different based on gesta-

tional age, race and breastfeeding.

Two practice guidelines by the American Academy of Pediatrics have been issued

on the management of hyperbilirubinemia and recommend that all infants should be

assessed routinely for the development of jaundice (American Academy of Pediatrics

Provisional Committee for Quality Improvement and Subcommittee on Hyper-

bilirubinemia 1994). Furthermore, the Academy of Pediatrics Guidelines (2004)

recommends proven prevention strategies for severe neonatal hyperbilirubinemia.

Initially, a visual assessment is conducted in a well-lit room and is performed by

blanching the skin of the newborn with slight finger pressure and noting the skin

colour. Jaundice is usually visible on the face first, progressing to the trunk and
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extremities. The next step is to screen for serum bilirubin, which requires measuring

the TSB or TcB or a combination of both. Pre-discharge bilirubin screening

identifies infants (age 18–48 h) with bilirubin levels >75th percentile for age in

hours and tracks those infants with rapid rates of bilirubin, i.e. >0.2 mg/100 ml per

hour. These measurements are plotted on an hour-specific nomogram that identifies

risk zones and assessment of areas.

TSB remains the gold standard for screening hyperbilirubinemia in newborns.

The predictive accuracy of this test has been validated in studies. Non-invasive TcB

measurements have been developed for screening newborn infants for hyperbilir-

ubinemia. The BiliCheckTM System and Drager Jaundice Meter JM-103 have been

approved by Health Canada and have also been used in the United States. Numer-

ous studies have validated the accuracy of these instruments and values are usually

within 2–3 mg/dL of the TSB if the TSB level is less than 15 mg/dL. The accuracy

and precision of TcB >15 mg/dL is unproven in comparison with TSB. So,

although TcB can be used as a screening tool in the evaluation of hyperbiliru-

binaemia, it may not replace laboratory measurements of serum bilirubin at higher

TSB levels.

Current practices in Alberta for screening and diagnosis of hyperbilirubinemia

among newborns are not standardized and vary across zones and urban/rural areas.

Most urban areas provide both TcB and TSB, but rural areas are more likely to rely

on TSB testing. There is no common nomogram to indicate what TcB threshold

should be used for referring a newborn to TSB testing. Practices in communities are

even more diversified as there are no guidelines for nurse visits at home or at

community clinics to decide under what indications a newborn should be referred to

a laboratory for TSB testing, referred to a family physician or hospital. The actual

cost for TSB testing is usually less than a dollar for the laboratory assay of a blood

sample. There may be additional costs to ensure accuracy. The costs for TcB

devices is about ($2,000–4,000) with disposable probes available at a cost of $5

each. There are also additional costs of ensuring and maintaining quality assurance

checks of the devices.

Initially an environmental scan was conducted by laboratory services to deter-

mine the current practices for testing hyperbilirubinemia in the province. There was

no prioritization process conducted by laboratory services to determine if this test

indeed should be reviewed. The environmental scan showed that there was no

standard practice for TSB/TcB testing in the province and provided the impetus

to focus on this topic.

A multidisciplinary team was formed in August 2011 consisting of clinicians,

physicians, administrators, laboratory services, contracting and procurement, mid-

wifery, and members of the HTAI team. This team had representation across the

province from both urban and rural settings as well as across the continuum of care.

It was chaired by laboratory services. Formal terms of reference were developed

and meetings were held at least once per month. Assistance on the systematic

literature review and cost-effectiveness analysis as part of the HTA was provided

by the Institute for Health Economics. The perspective that was undertaken was that
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from a provider, clinician/provider point of view. Steps in the Busse framework

(2004) were used to conduct the HTA.

As stated, HTA is a form of both primary and secondary published research and

systematically reviews the existing evidence to inform a policy question. Therefore,

it is important to ensure that the policy question is clearly defined. As with a

research study or systematic review, usually the PICO methodology is used (i.e.

population, intervention, comparator and outcomes). The possible outcomes (effec-

tiveness) of the study were: reducing false-positive and false-negative diagnosis of

a newborn with hyperbilirubinemia, reducing readmissions to hospital, and

jaundice-related health outcomes.

The following policy question was developed: What is the cost-effectiveness for

use of TcB devices for screening and diagnosis of hyperbilirubinemia based on best

practices among newborns in Alberta within the first week after birth?

Initially a systematic review of the safety and effectiveness of the screening

technology was undertaken. Electronic searches of the literature from 2000 to

January 2012 were conducted on the following databases: MEDLINE (including

in process), EMBASE, CINAHL, and the Cochrane Database of Systematic

Reviews, CRD Databases, and Web of Science. References were also searched.

The grey literature was also searched for HTAs, or evidence-based reports, clinical

trial registries, clinical practice guidelines, position statutes and regulatory and

coverage status. The search was limited to English language articles. Inclusion

and exclusion criteria were applied. Title and abstracts were screened and the full

text of relevant articles was retrieved. About 40 studies met the inclusion criteria

(most were accuracy studies). Theses studies also underwent a quality assessment.

A literature review of the economic studies regarding the cost implications or cost-

effectiveness of TcB and/or TSB testing was also undertaken. The electronic search

covered the period from 2000 to December 2011. The same electronic databases

were searched as above including Econlit. References lists within the retrieved

articles were also reviewed. There were five studies that met the inclusion/exclusion

criteria. Data analysis and synthesis was completed on these. Quality assessment

was not conducted. Both literature reviews were completed by June 30, 2012.

The determination of cost-effectiveness for TcB testing is currently underway by

the HTAI department. Costs relevant to screening and diagnosis of hyperbilir-

ubinemia are currently being collected including the cost of TcB and TSB tests,

quality assurance of TcB and TSB, physician visit, nurse home visit, transportation

of blood sample and readmission to hospital. A decision analysis will be developed

and cost-effectiveness ratio will be calculated. Together the systematic literature

review and cost-effectiveness analysis will inform the practice of using TcB testing

in newborns in Alberta. Recommendations from this HTA will be implemented

through the development of a standardized provincial clinical pathway for manag-

ing neonatal jaundice.
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Conclusion

This chapter reviewed what HTA is and how HTAs can be used to assess screening

and diagnostic tests to reduce uncertainty and improve appropriateness of use. A

case example was shared where an HTA was conducted to inform a policy question.

In our quest for attaining diagnostic certainty, physicians may continue to order

more and more tests; some may be useful and others may not. Screening and

diagnostic tests are useful if the results of the test changes the course of the

treatment. HTA provides a mechanism to evaluate these tests in a rigorous and

methodological way so that decisions are informed by evidence and transparent. It

considers the safety, efficacy, effectiveness and cost-effectiveness of the technol-

ogy, so that decisions on the use of a technology can be made with certainty and that

the technology is used appropriately. However, it may be that certainty, particularly

when it comes to diagnostic and screening tests, is a concept that may not be

attainable and as researchers and clinicians we will need to understand and come to

terms with this.

Acknowledgements The author would like to acknowledge and sincerely thank Dr. Don

Juzwishin, Director, Health Technology Assessment and Innovation, Alberta Health Services;

Dr. Mahmood Zarrabi, Senior Health Economist, Health Technology Assessment and Innovation

Team, Alberta Health Services; and Ms. Christa Harstall, Director, HTA, Institute for Health

Economics, Alberta, Canada, for their editorial feedback and guidance.

Bibliography

American Academy of Pediatrics Provisional Committee for Quality improvement and Subcom-

mittee on Hyperbilirubinemia (1994) Practice parameter: management of hyperbilirubinemia

in healthy newborn. Pediatrics 114:297–316

Banta D, Jonsson E (2009) History of HTA: introduction. Int J Health Technol Assess Health Care

25(Suppl 1):1–6

Banta HD, Behney CJ, Willems JS (1981) Toward rational technology in medicine. Springer,

New York, p 5

Barratt A, Irwig I, Glasziou P, Cumming RG, Raffle A, Hicks N, Gray JA, Guyatt GH (1999)

Users’ guides to the medical literature. XVII. How to use guidelines and recommendations

about screening. JAMA 281:2029–2034

Bhopal R (2002) Concepts of epidemiology: an integrated introduction to ideas, theories,

principles and methods of epidemiology. Oxford University Press, Oxford, pp 145–156

Bhutani VK, Vilms RJ, Hamerman-Johnson L (2010) Universal bilirubin screening for severe

neonatal hyperbilirubinemia. J Perinatol 30:S6–S15

Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig LM et al (2003) Towards

complete and accurate reporting of studies of diagnostic accuracy: the STARD initiative. Ann

Intern Med 138:40–44

Busse (2002) ECHTA Working group 4 Report. http://inahta.episerverhotell.net/upload/HTA_

resources/AboutHTA_Best_Practice_in_undetaking_and_reporting_HTAs.pdf

9 Health Technology Assessments of Diagnostic Tests 135

http://inahta.episerverhotell.net/upload/HTA_resources/AboutHTA_Best_Practice_in_undetaking_and_reporting_HTAs.pdf
http://inahta.episerverhotell.net/upload/HTA_resources/AboutHTA_Best_Practice_in_undetaking_and_reporting_HTAs.pdf
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Modeling Binary and Time-to-Event
Outcomes



Chapter 10

Modelling Binary Outcomes

Logistic Regression

Gail M. Williams and Robert Ware

Abstract This chapter introduces regression, a powerful statistical technique

applied to the problem of predicting health outcomes from data collected on a set

of observed variables. We usually want to identify those variables that contribute to

the outcome, either by increasing or decreasing risk, and to quantify these effects. A

major task within this framework is to separate out those variables that are inde-

pendently the most important, after controlling for other associated variables. We

do this using a statistical model. We demonstrate the use of logistic regression, a

particular form of regression when the health outcome of interest is binary; for

example, dead/alive, recovered/not recovered.

The Generalized Linear Model (GLM)

Statistical models are mathematical representations of data, that is, mathematical

formulae that relate an outcome to its predictors. An outcome may be a mean (e.g.

blood pressure), a risk (e.g. probability of a complication after surgery), or some

other measure. The predictors (or explanatory variables) may be quantitative or

categorical variables, and may be causes of the outcome (as in smoking causes heart

failure) or markers of an outcome (more aggressive treatment may be a marker for

more severe disease, which is associated with a poor health outcome).

Generically, a fitted statistical model is represented by linear equations as shown

in Fig. 10.1. ‘Outcome’ is the predicted value of the outcome for an individual who

has a particular combination of values for predictors 1–3 etc. The coefficients are

estimated from the data and are the quantities we are usually most interested in. The

particular value of a predictor for an individual is multiplied by the corresponding

coefficient to represent the contribution of that predictor to the outcome. So, in
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particular, if a coefficient for a predictor is estimated to be zero then that predictor

makes no contribution to the outcome. The constant coefficient represents the

predicted value of the outcome when the values of all of the predictors are zero.

This may or may not be of interest or interpretable, because zero may not be in the

observable range of the predictor.

So the model predicts values of an outcome from each person’s set of values for

predictors. This, of course, generally does not match that person’s actual observed

value. The difference between the observed value and the predicted value is called

the residual, or sometimes the error. The term error does not imply a mistake but

rather represents the value of a random variable measuring the effects on individual

observed outcome values other than those due to the predictor variables included in

the model. Adding more predictor variables to the model is expected to reduce the

error. Mechanistically, the error or residual for a particular individual is the

difference between the individual’s observed and predicted values. An example is

the difference between an individual’s observed blood pressure and that predicted

by a model that included age and body mass index.

The theory of model fitting and statistical inference from the model requires that

we make an assumption about the distribution of the errors. In many cases, where

we have a continuous outcome variable, the assumed distribution is a normal

distribution. This is the classic regression model. A log-normal distribution might

be used if a continuous variable is positively skewed. However, if we have a binary

variable, we might assume a binomial distribution. Thus, the full theoretical

specification of a model is represented by Fig. 10.2.

Fitting a Model

Fitting a model means finding the parameter estimates within the model equation

that best fits with the observed data. So the parameters referred to in Fig. 10.2 are

estimated from the data to give the coefficients referred to in Fig. 10.1. This may be

done in different ways. One of the earliest methods proposed to do this was the

Method of Least Squares, a general approach to combining observations, developed

by the French mathematician Adrien Marie Legendre in 1805. Effectively, this

identifies the parameter estimates that minimize the sum of squares of the errors as

in Fig. 10.2. In this sense, we estimate the parameters by values that bring the

predicted values as close as possible to the observed values. This works well with

some probability distributions, but not with others. Currently, the statistically

preferred technique is a process called maximum likelihood, or some variant of

Fig. 10.1 A fitted GLM

depicted mathematically
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this, which has the advantage of providing a more general framework covering

different types of probability distributions. This method was pioneered by the

influential English statistician and geneticist, Ronald Fisher, in 1912. The method

selects the values of the parameters that would make our observed data more likely

(under the chosen probability model) to have occurred than any other sets of values

of the parameters. This approach has undergone considerable controversy, applica-

tion and development, but now underlies modern statistical inference across a range

of different situations.

Link Functions

The GLM generalizes linear regression by allowing the linear model to be related to

the outcome variable via a link function and incorporating a choice of probability

distributions which describes the variance of the outcomes. While this chapter

focuses on using the logit link for modelling binary outcomes, it is not the only

possible link function. The logit link (hence logistic regression) is linear in the log

of the odds of the binary outcome and thus can be transformed to an odds ratio.

However, if we want to model probabilities rather than odds, we need to use a log

link rather than a logit link and then this can be transformed to a risk ratio.

However, unlike the logistic regression model, a log-binomial model can produce

predicted values which are negative or exceed one. Another concern is that it is not

symmetric since the relative risks for the outcome occurring and the outcome not

occurring are not the inverse of each other as with an odds ratio. Also, odds ratios

and risk ratios diverge if the outcome is common. If the risk of the outcome

occurring is greater than 50 %, it may be better to model the probability that the

outcome does not occur to avoid producing predicted values which exceed one.

Models for Prediction Versus Establishing Causality

We can use models to establish causality or for prediction or a combination of the

two. For causal models, we are usually interested in ensuring control of

confounding, so we can assert that the exposure of interest (say smoking) is a likely

cause of the outcome (heart failure); that is, that the association is not due to

confounding by social class, diet, etc. In this situation, we usually need to examine

closely the relationships between variables in the model. For prediction we try to

Fig. 10.2 The full general

linear model depicted

mathematically
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produce an inclusive model that considers all relevant causes and/or markers of a

particular outcome to enable us to predict the outcome in a particular individual. A

predictive model thus focuses more on predictor–outcome associations, rather than

being concerned with confounding per se.

Now that we have an understanding of a model and its components, we look at a

type of model commonly used in clinical epidemiology – logistic regression.

A Preliminary Analysis

Data-set

The Worcester Heart Attack Study examined factors associated with survival after

hospital admission for acute myocardial infarction (MI). Data were collected during

13 one-year periods beginning in 1975 and extending until 2001, on all MI patients

admitted to hospitals in the Worcester, Massachusetts Standard Metropolitan

Statistical Area. The 500 subjects in the data set are based on a 23 % random

sample from the cohort in the years 1997, 1999 and 2001 yielding 500 subjects.

Of the 500 patients, 215 (43 %) died within their follow-up period. The median

follow-up time was 3.4 years. All patients were followed up for at least 1 year and

138 (27.6 %) died within the first year following the MI. We are interested in

examining the factors that predict death within the first year after the MI as the

500 subjects had complete follow-up to this time point.

Preliminary Results

When we examine the risk of death in the first year according to gender and age, we

see a somewhat higher percentage of deaths in females than males, and that

percentage of deaths increases markedly with age, from 7.2 % (95 % confidence

limits (CL) 2.9, 11.6 %) to 49.4 % (41.7, 57.1 %) (Table 10.1). The 95 % confidence

intervals are wider for smaller subgroups, but the age variation is substantial. Are

these differences statistically significant? Because we are considering two categor-

ical variables, evaluation of statistical significance uses the Pearson chi-square test,

provided there are few small expected frequencies. This test examines the null

hypothesis that the true risk of death is the same across all subgroups. Implicit in

this assertion is an assumption that any observed differences in the estimated risk of

death (e.g. 25.0 % vs. 31.5 % for males vs. females) are due to chance. The P value

associated with the gender comparison is 0.111. Because the P value is not small

enough (the usual criterion being <0.05), we do not reject our null hypothesis and

we conclude the observed differences are not so large that they could not have

occurred by chance. For age, however, P < 0.0001, and we conclude that observed

differences are not consistent with chance variability.
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If we are interested in identifying the significance of a trend for risk of death to

systematically increase with age, we need to use a statistical test that takes into

account how the age categories are ordered. There are various statistical tests and

most are available in standard packages. They vary somewhat in their assumptions

about the way in which the ordered categories are expressed, but they usually give

similar answers, especially in large samples. One of the simplest forms assigns an

ordinal score (1,2,3,. . .) to the categories and examines a linear regression of the

prevalence on the score (as a predictor variable). For age groups, this test yields a

P value < 0.0001.

We can go a step further and examine the relative risks (RRs), that is, the ratio of

the percentage of deaths in a subgroup compared with that in a chosen reference

group (Table 10.2). In anticipation of later analyses, the odds ratios (ORs) are also

given in Table 10.2. Note that ORs are further away from 1 than are relative risks;

for example, RR ¼ 6.81 for the oldest age group compared with the youngest, with

a corresponding OR of 12.49. This will always be the case, and the distance will

increase as the risk of death increases. However, this does not change the formal

statistical inference regarding this comparison. The P value for the difference

between the percentages of deaths is <0.0001, based on a chi-square value of

63.0 (1 df), whether we choose to measure the age effect by an RR, OR, or, indeed

a risk difference (49.4 % � 7.2 % ¼ 42.2 %). Table 10.3 shows a similar analysis

for selected characteristics of the MI.

We now wish to explore these relationships further to determine which factors,

or combinations of them, are the most predictive of death within the first year. We

know that the MI characteristics are associated and that they are also likely to be

related to age group, itself a strong risk factor. We can explore this in several ways.

One approach is to carry out a stratified analysis: we stratify by a (suspected)

confounding variable, and examine the effect of our exposure of interest within

each stratum. Thus, to adjust the effect of congestive heart failure for age, we

stratify by age groups. Before proceeding further, we collapse age into two

categories (<70 years of age and �70 years) to increase the numbers in each

category. Stratified analysis is shown in Table 10.4.

Recall that the RR associated with cardiogenic shock overall was 2.45 (95 % CI

1.73, 3.48) (Table 10.3). We see now that the risk of death is lower in younger

Table 10.1 Percentage of deaths within the first year after an MI, by age group and gender, with

95 % confidence intervals (95 % CI) (N ¼ 500)

Risk factor N Deaths Deaths (%) 95 % CI P value

Gender

Male 300 75 25.0 20.1, 29.9

Female 200 63 31.5 25.1, 37.9 0.111

Age group

<60 years 138 10 7.2 2.9, 11.6

60–69 years 86 12 13.9 6.6, 21.3

70–79 years 114 36 31.6 23.0, 40.1

>80 years 162 80 49.4 41.7, 57.1 <0.0001
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patients (9.8 % vs. 42.0 %). However, within these groups (i.e. controlling for

patient age, at least up to a point) we also see that the risk of death increases with the

presence of cardiogenic shock, although the RRs have decreased, because of the

confounding of the overall effect with age; older patients are more likely to have

cardiogenic shock. However, the CIs for these RRs are now wider, reflecting the

fact that we are now dealing with subgroups of the data, rather than the entire

sample (Table 10.4).

Table 10.2 Percentage of deaths within the first year after an MI, and RRs and ORs by age group

and gender, with 95 % CIs (N ¼ 500)

Risk factor N Deaths (%) RR 95 % CI for RR OR 95 % CI for OR

Gender

Male 300 25.0 1 1

Female 200 31.5 1.26 0.95, 1.67 1.38 0.93, 2.05

Age group

<60 years 138 7.2 1 1

60–69 years 86 13.9 1.92 0.87, 4.26 2.08 0.86, 5.04

70–79 years 114 31.6 4.36 2.26, 8.39 5.91 2.78, 12.57

>80 years 162 49.4 6.81 3.68, 12.63 12.49 6.12, 25.49

Table 10.3 Percentage of deaths within the first year after an MI, and RRs and ORs by MI

characteristics, with 95 % CIs (N ¼ 500)

Risk factor N Deaths (%) RR 95 % CI for RR OR 95 % CI for OR

Cardiogenic shock

Absent 478 25.9 1 1

Present 22 63.6 2.45 1.73, 3.48 5.00 2.05, 12.20

Congestive heart failure

Absent 345 17.4 1 1

Present 155 50.3 2.89 2.19, 3.82 4.81 3.16, 7.32

MI type

Non-Q wave 347 30.6 1 1

Q wave 153 20.9 0.68 0.48, 0.97 0.60 0.38, 0.94

History of cardiovascular disease

Absent 125 24.0 1 1

Present 375 28.8 1.20 0.85, 1.70 1.28 0.80, 2.04

Atrial fibrillation

Absent 422 26.1 1 1

Present 78 35.9 1.38 0.98, 1.93 1.59 0.95, 2.65

Complete heart block

Absent 489 27.2 1 1

Present 11 45.4 1.67 0.86, 3.24 2.23 0.67, 7.43

Previous MI

Absent 329 25.2 1 1

Present 171 32.2 1.27 0.96, 1.70 1.41 0.94, 2.11
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Using the Mantel–Haenszel technique, we can then pool the stratum-specific

RRs, with weightings that reflect stratum size to obtain adjusted RRs. This provides

us with the best overall estimate (provided the stratum-specific RRs are consistent)

and gives us greater precision, that is, narrow confidence intervals (Table 10.5).

We now see clearly that the effect of adjustment for age appears to have been to

decrease the RR associated with cardiogenic shock, since we have adjusted for the

fact that patients with cardiogenic shock are also older and age carries its own

separate risk.

The Mantel–Haenszel approach to adjustment is an effective method of

adjusting for confounders, and is a useful way of identifying confounders one

variable at a time. However, it is obvious that this will become tedious when we

have multiple confounders to take into account; we would have to construct all the

strata related to all combinations of confounder categories, and then perform an

analysis on each (some strata would be small, with wide confidence intervals for

within-stratum effect estimates) and then pool these estimates. Regression

modelling provides us with an effective approach, but, as we will see, involves

some additional assumptions.

Logistic Regression

As explained earlier, a regression model consists of two major components: (a) a

probability model, which specifies a theoretical distribution (our choice of this is

based partly on empirical observations and partly on our theory about the underly-

ing processes that generated the observations) and (b) specification of relevant

Table 10.4 Percentage of deaths within the first year after an MI, and RRs and ORs by presence

of cardiogenic shock and age group, with 95 % CIs

Age

Cardiogenic

shock N Deaths (%) RR 95 % CI for RR OR 95 % CI for OR

<70 years Absent 218 9.2 1 1

Present 6 33.3 3.63 1.09, 12.14 4.95 0.85, 28.73

Total 224 9.8

�70 years

or more

Absent 260 40.0 1 1

Present 16 75.0 1.88 1.36, 2.58 4.50 1.41, 14.33

276 42.0

Table 10.5 Percentage of deaths within the first year after an MI, and RRs by presence of

cardiogenic shock, with 95 % CIs, unadjusted RR and adjusted by the Mantel–Haenszel method

(RRA) for the effect of age

Cardiogenic shock N Deaths (%) RR 95 % CI for RR RRA 95 % CI for RRA

Absent 478 25.9 1 1 1

Present 22 63.6 2.45 1.73, 3.48 2.02 1.48, 2.76
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predictors based on the research questions or hypotheses we want to examine. We

now require a probability model for an outcome variable that takes only two values,

such as disease/no disease, dead/alive, etc. A further assumption we make is that

our observations are independent in the sense that one person dying within the first

year after MI does not affect the probability that another person dies in the first year

(this may not be true, e.g. if we had included two MI episodes in the study for the

same patient). With this assumption, the number of deaths in the first year out of a

sample of size Nwould be expected to follow a binomial distribution. Apart from N,
this distribution depends on a parameter p, which is the probability of an event

(death in first year). We can estimate this overall by our proportion of deaths,

27.6 % or p ¼ 0.276.

However, as we have seen, the risk of death varies according to age and the

characteristics of the MI itself. Thus, our p parameter is allowed to take various

values, according to various predictors; indeed this is what we want to model. Our

outcome variable is the proportion of events of interest (death), out of a given

number of possible outcomes, when the probability of a single event is p (which

may depend on the predictors of interest).

If we simply model the probability of an event as a function of predictors, it is

possible to obtain predicted values that do not lie between 0 and 1. We could, for

example, predict a prevalence of �0.05 or �5 % or 1.06 or 106 %. This is a very

undesirable feature of a theoretical model.

Several different approaches have been tried to overcome this problem, by

transforming the outcome probability to a quantity that must lie between 0 and 1.

Currently, the most widely used transformation is the logit transformation, first

proposed by Joseph Berkson in 1944. It is effectively a log-odds transformation. If

p is the probability of the event of interest (say disease), the logit of p is given by

logitðpÞ ¼ log
p

1� p

� �
¼ log odds of diseaseð Þ

where log is the logarithm function, to base e.

We can see that this transformation accommodates the constraints on modelling

a proportion. If we invert the transformation, we can see that the probability of the

event, p, is

p ¼ exp logitðpÞð Þ
1þ exp logitðpÞð Þ

where exp is the exponential or antilog function. This is always greater than zero,

because the exponential function cannot take negative values. The denominator is

larger than the numerator, so it can never be greater than 1. So proportions must lie

between 0 and 1.

The main reason for the popularity of this transformation, however, is the

consequent interpretation of the regression coefficients when it is used. Putting
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this transformation together with a model based on age group (reverting to four age

groups), we have the logistic regression model as follows:

logit Probability of deathð Þ ¼ log odds of deathð Þ
¼ aþ b1 � 60� 69 yearsð Þ

þ b2 � 70� 79 yearsð Þ
þ b3 � 80 years and overð Þ

where the notation following the coefficients means: if the statement inside the

brackets is true, the value inside the brackets takes the value 1, otherwise it takes the

value 0. These are sometimes referred to as indicator variables. This is a compact

way of indicating that the coefficients b1, b2, b3 are associated with the categories

60–69 years to 70 years or older, in order, and that the omitted category,<60 years,

is the reference category. The above model fits the framework give in Fig. 10.1,

where the predicted outcome is the logit(Probability of death), the coefficients are

a, b1, b2, b3, and the values of the predictors are given by the indicator variables for
each age group.

To further clarify the interpretation of the coefficients, and the role of the reference

category, consider a patient who is less than 60 years of age. This patient’s predictive

model is as follows:

log odds deathð Þð Þ; if patient < 60 years ¼ a

A patient who is 60–69 years of age has the following predictive model:

log odds deathð Þð Þ if patient 60� 69 years ¼ aþ b1

Subtracting these last two expressions (the first from the second), we see that

log odds deathð Þð Þ if patient 60� 69 years

� log odds deathð Þð Þ if patient < 60 years

¼ b1

Using the fact that (logA � logB) ¼ log(A/B), we see that

b1 ¼ log
odds deathð Þ if patient 60� 69 years

odds deathð Þ if patient < 60 years

� �

¼ log
odds ratio of death for patient aged 60� 69 years;
compared with patient aged < 60 years

� �

So the regression coefficients are directly interpretable as log(ORs) and we can

then obtain the actual OR by exponentiation or antilogs of the parameter estimates.
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Fitting the logistic regression model is done using maximum likelihood estima-

tion of the model parameters (a, b1, b2, b3 in the age group model), as has been

described previously. It is not important to understand the details of this process,

but it is important to understand that the process does not always work, in the sense

that a solution may not be found, often due to sparseness of data or unusual

distributions. Depending on the software you use, you may receive a warning that

convergence has not been attained, or you may simply observe results that look

meaningless, such as extremely large standard errors of estimates. You should

always scrutinize parameter estimates and their standard errors (or CLs) to look

for values that differ greatly from your single variable or preliminary analyses.

Again (Table 10.6) we see that the trend for ORs from the logistic regression, as

for RRs (Table 10.2), increases as age increases. However, we see that the ORs

from the logistic regression are exactly the same as those in Table 10.2. This is

because they are mathematically equivalent; this equivalence does not hold as we

include more variables in the analysis. The parameters b1, b2, b3 thus represent the
outcome (death) log ORs for each group, compared with the reference group, which

is the group omitted from the parameter list in the model. The parameter a is usually
not of interest; it represents the log(odds) of the event, within the reference category.

In this case, the reference category is the youngest age group, and the odds of death

for this group is 10/(138 � 10) ¼ 0.078 ¼ e(�2.55).

We can also calculate what our model predicts for the probability of death for

each age group by substituting for the parameters a, b1, b2, b3.

Probability of death ¼ exp logitðpÞð Þ
1þ exp logitðpÞð Þ

¼ exp �2:55ð Þ
1þ exp �2:55ð Þ ¼ 0:072 if patient < 60 years

¼ exp �2:55þ 0:73ð Þ
1þ exp �2:55þ 0:73ð Þ ¼ 0:139 if patient 60� 69 years

¼ exp �2:55þ 0:1:78ð Þ
1þ exp �2:55þ 1:78ð Þ ¼ 0:316 if patient 70� 79 years

¼ exp �2:55þ 2:52ð Þ
1þ exp �2:55þ 2:52ð Þ ¼ 0:494 if patient � 80 years

Table 10.6 Parameter estimates from logistic regression of death in the first year, with age group

as a predictor

Parameter Value Parameter estimate OR 95 % CL for OR P value

Intercept a �2.55

Age at MI Reference: Age < 60 years

b1 60–69 years 0.73 2.08 0.86, 5.04 0.106

b2 70–79 years 1.78 5.91 2.78, 12.57 <0.0001

b3 �80 years 2.52 12.49 6.12, 25.49 <0.0001
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We see that the univariable model replicates the observed proportions, which is

what we would expect.

Multivariable Logistic Regression

Categorical Predictors

Although univariate logistic regression gives the same results as a simple cross-

tabulation, the major advantage of embarking on a logistic regression approach

obviously comes from the ability to include additional variables, either as

confounders, or as risk factors or predictors in their own right. Later, we also deal

with interactions, but for now we examine a logistic regression model that includes

age group as a possible confounder to the cardiogenic shock effect. This may be

written out exactly as we have done previously, by adding additional terms and

regression coefficients to the right-hand side of the model equation:

logit Probability deathð Þ
¼ log odds deathð Þð Þ
¼ aþ b1 � 60� 69 yearsð Þ

þ b2 � 70� 79 yearsð Þ
þ b3 � � 80 yearsð Þ
þ c� ðcardiogenic shock presentÞ

The maximum likelihood estimates are given in Table 10.7.

The coefficients and ORs for age group have now changed because of the

inclusion of an additional variable, cardiogenic shock. They are now the estimated

effects, after adjusting (controlling) for the effect of cardiogenic shock. Recipro-

cally, the effects of cardiogenic shock have been adjusted for age group. To see this,

consider a patient who is 60–69 years of age and does not have cardiogenic shock.

This patient’s predictive model is as follows.

log odds deathð Þð Þ; if patient 60� 69 years does not have cardiogenic shock

¼ aþ b1

A patient who is 60–69 years of age and has cardiogenic shock has the following

predictive model:

log odds deathð Þð Þ if patient 60� 69 years has cardiogenic shock

¼ aþ b1 þ c
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Subtracting these last two expressions (the first from the second), we see that

log odds deathð Þð Þ if patient 60� 69 years has cardiogenic shock

� log odds deathð Þð Þ if patient 60� 69 years does not have cardiogenic shock

¼ c

Using the fact that (logA � logB) ¼ log(A/B), we see that

b1 ¼ log
odds deathð Þ if patient 60� 69 years has cardiogenic shock

odds deathð Þ if patient 60� 69 years does not have cardiogenic shock

� �

¼ log

�
OR of death associated with having

cardiogenic shock in patient aged 60� 69 years

�

So we have controlled for age by virtue of holding it constant at 60–69 years. It is

easy to see that had we held age constant at some other age group, 70–79 years say,

then the same result would have been obtained for the age-adjusted effect of

cardiogenic shock. This is an assumption that we make: the effects of variables

are constant across values of other variables in the model. This assumption can be

relaxed at the cost of making the model more complex; see later section on effect

modification.

Returning to the results, we now see similar effects to those we saw with the

Mantel–Haenszel analysis for the association between death and cardiogenic shock

for age: the effect decreases. We can also see that age is a significant predictor of

death. Although these results are consistent with the effects we saw in the

Mantel–Haenszel process, they are not the same, largely because ORs are not the

same as RRs (except when the outcome rate is very low), but also partly because

the method of adjustment by logistic regression is mathematically different from

the Mantel–Haenszel approach.

Regression modelling using maximum likelihood fitting also produces likeli-

hood ratio tests, which examine the significance of variables overall. These tests

each compare two models: a model that excludes the variable of interest, and one

that includes it. The chi-square statistic is a measure of the difference between the

Table 10.7 Parameter estimates and 95 % CIs from logistic regression of death, with age and

presence of cardiogenic shock

Parameter Value Parameter estimate OR 95 % CL for OR P value

Intercept a �2.59

Age group Reference: <60 years

b1 60–69 0.66 1.94 0.79, 4.75 0.147

b2 70–79 1.73 5.63 2.63, 12.04 <0.0001

b3 � 80 2.48 11.98 5.85, 24.55 <0.0001

Cardiogenic shock Reference: Absent

c Present 1.49 4.46 1.68, 11.82 0.0027
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models and thus can be assessed for statistical significance. These are shown in

Table 10.8, and confirm the significance of each of the risk factors independently of

the other.

Continuous Predictors

In the above analysis we have grouped age into categories. However, risk increases

with increasing age and so it may make sense to treat age as a continuous variable.

A simple logistic regression model relating death in the first year to age at MI is

then as follows:

logit Probability of deathð Þ
¼ log odds of deathð Þ
¼ aþ b� Age at MI ðyearsÞ

Again we see the meaning of the regression coefficients by considering particu-

lar values, say a patient who is 65 years at the MI episode.

logit Probability of deathð Þ65
¼ log odds of deathð Þ
¼ aþ b� 65 ðyearsÞ

Compare this with a patient who is 64 years at the MI episode.

logit Probability of deathð Þ64
¼ log odds of deathð Þ
¼ aþ b� 64 ðyearsÞ

Subtracting these, we have

log odds of death if patient is 65 yearsð Þ
� log odds of death if patient is 64 yearsð Þ

¼ b

Using the fact that logA � logB ¼ log(A/B), we see that

Table 10.8 Likelihood ratio

tests for logistic regression of

death, with patient age group

and presence of cardiogenic

shock as predictors

Source df Chi-square P value

Patient age group 3 77.70 <0.0001

Cardiogenic shock 1 9.61 0.0019
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b ¼ log
odds of death if patient is 65 yearsð Þ
odds of death if patient is 64 yearsð Þ

� �

¼ log odds ratio for death for a 1-year increase in age at MIð Þ

Again we see that the regression coefficient is interpretable as a log(OR). Here,

however, we do not have a fixed reference group: the OR refers to a fixed increase

of 1 unit of the predictor variable. It follows that we cannot interpret the coefficient

for a continuous variable unless we know the units in which it is measured. To then

get the actual OR we need to exponentiate or antilog the coefficient. Fitting the

model for age in years yields Table 10.9.

The OR associated with age is 1.09 or an increase in odds of death by around

9 %. This seems very modest until we remember that this represents the increase

associated with only 1 year of age. The predicted increase in risk for an increase of

10 years of age (similar to the age groups we used earlier) can be calculated as

follows:

Increase in logðodds deathÞ for 1 year of age ¼ 0:084

Increase in logðodds deathÞ for 10 years of age ¼ 0:084� 10 ¼ 0:84

Increase in ðodds deathÞ for 10 years of age ¼ e0:84 ¼ 2:32

Thus, a decade increase in age at MI increases the odds of death in the first year

by 2.32-fold.

We need to be extremely careful in interpreting ORs as RRs. It is well known

that ORs approximate RRs when the risk of the outcome is small. Small usually

means less than about 15 %. The OR is further from 1 than is the RR, as we can see

from Tables 10.2 and 10.3. Thus, if the OR is uncritically interpreted as an

approximate RR, it will consistently overestimate the strength of the association.

Let us now examine the predictions from our model. Our fitted model

(Table 10.9) is

logit Probability of deathð Þ
¼ log odds of deathð Þ
¼ �6:86þ 0:084� Age ðyearsÞ

When we do the algebra to express the probability of death in terms of age at MI

we get

Table 10.9 Parameter estimates and 95 % CLs from logistic regression of death, with age in years

as a continuous predictor

Parameter Value Parameter estimate OR 95 % CL for OR P value

Intercept a �6.86

Age (years) b per year 0.080 1.08 1.06, 1.11 <0.0001
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Probability of death ¼ exp �6:86þ 0:084� Ageð Þ
1þ exp �6:86þ 0:084� Ageð Þ

While this may look a little complex, it is relatively easy to calculate given any

particular value of age. Most statistical software programs that fit regression models

can calculate these values for all values of predictors that occur in the sample used

for fitting the model. We see these in Fig. 10.3 for the current example.

The shaded area at the bottom of the graph in Fig. 10.3 shows the distribution of

age, with the three vertical lines showing cut-offs at 60, 70 and 80 years. The RR,

comparing two values of the predictor is simply the ratio of the heights of the curve

at those outcomes. These values can be read from the graph or calculated from the

formula given above. Table 10.10 shows these values, as well as the calculated ORs

and RRs, comparing each increase in risk (whether measured by the odds or the

proportion of deaths) associated with 1 year increase in age.

Table 10.10 confirms that the OR is constant; this is not surprising because this is

a condition of the model. It also confirms that when the predicted probability of

death is small (less than 15 %), the RR is very close to the value of the

OR. However, as age increases and the predicted risk of death correspondingly

increases, the RR diminishes, although it is always >1.

Figure 10.3 is also revealing in terms of the strength of the association between

age and death. We see that if a patient is 80 years old or more at the MI, he or she

has at least a 50 % chance of dying in the first year after the MI. A patient in the

ninth decade of life has an 80 % chance of death in the first year after MI.

Using age as a continuous variable implies that we are fitting a linear effect (on

the logit scale) for age; that is, the OR is constant. We may be interested in testing
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Fig. 10.3 Logistic regression model giving the probability of death in the first year after MI, as

predicted by age at MI. The figure shows the classic S-shaped logistic curve; the probability of the

outcome increases with the predictor, slowly at first, then increasingly so, and then flattening out. It

also shows 95 % CLs for the predicted proportions with the outcome, the risk of the outcome. The

dots show the observed risk of death within a centred 5-year age group
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whether this is a reasonable fit to the data. We can do this by including a square or

quadratic term in the model. It is usually helpful to centre continuous variables

before including them in polynomial or interaction terms. Centring means

subtracting a central value (mean or median) from each value. When we do this

we obtain Table 10.11.

We see that the quadratic term is clearly non-significant, indicating the linearity

assumption is supported.

Table 10.10 Logistic regression model of death with age as a predictor: predicted probabilities,

ORs and RRs for each year of age, compared to year below

Age at MI (years)

Predicted probability

of death in first year

OR (death) comparing

age with age � 1

RR (death) comparing

age with age � 1

55 0.08014 1.08 1.08

56 0.08627 1.08 1.08

57 0.09282 1.08 1.08

58 0.09981 1.08 1.08

59 0.10727 1.08 1.07

60 0.11522 1.08 1.07

61 0.12367 1.08 1.07

62 0.13265 1.08 1.07

63 0.14218 1.08 1.07

64 0.15227 1.08 1.07

65 0.16294 1.08 1.07

66 0.17421 1.08 1.07

67 0.18608 1.08 1.07

68 0.19856 1.08 1.07

69 0.21167 1.08 1.07

70 0.22539 1.08 1.06

71 0.23974 1.08 1.06

72 0.25470 1.08 1.06

73 0.27026 1.08 1.06

74 0.28641 1.08 1.06

75 0.30312 1.08 1.06

76 0.32036 1.08 1.06

77 0.33812 1.08 1.06

78 0.35634 1.08 1.05

79 0.37498 1.08 1.05

80 0.39401 1.08 1.05

81 0.41336 1.08 1.05

82 0.43298 1.08 1.05

83 0.45282 1.08 1.05

84 0.47280 1.08 1.04
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Combining Categorical and Continuous Predictors

We can combine categorical and continuous predictors in a model provided we

keep in mind the appropriate interpretation of the regression coefficients. We now

add the effect age as a continuous variable to a model incorporating cardiogenic

shock and gender (both categorical variables), as follows:

logit Probability of deathð Þ
¼ log odds of deathð Þ
¼ aþ b� Age at MI ðyearsÞ

þ c� Patient is maleð Þ
þ d � ðCardiogenic shock is presentÞ

The maximum likelihood estimates of the model parameters are now given in

Table 10.12.

The inclusion of age as a continuous variable and gender has reduced the effect

of cardiogenic shock as a predictor of death, but only slightly. Although females

have a higher odds of death than males, this was not significant, and it is likely that

the adjustment to the effect of cardiogenic shock was largely due to the strong effect

of age, which appears unaffected by adjusting for gender and cardiogenic shock.

Likelihood ratios tests also show the overall significance of effects (Table 10.13),

and confirm the predominance of the age and cardiogenic shock effects.

Effect Modification

The models considered so far assume that the effects of predictors are additive on a

logit scale; there is only one parameter for the effect of cardiogenic shock, for

example, and its effects are assumed to be the same over all age groups. If we wish

to allow for effects to vary across values of another variable we need to incorporate

an interaction term, which allows for effect modification.

To see how this works, consider the effect of congestive heart failure stratified

by age group. Again, for simplicity we divide age into two groups: <70 years and

�70 years. The stratified analysis is given in Table 10.14.

Table 10.11 Logistic regression model of death with age as a predictor and a quadratic term

Parameter Value Parameter estimate OR 95 % CL for OR P value

Intercept a �1.26

Age at MI

Age � 70 b per year 0.08 1.08 1.06, 1.10 <0.0001

(Age � 70)2 c per (year)2 0.0002 1.00 1.00, 1.00 0.772
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We see that the effect of congestive heart failure is much greater in those who are

<70 years of age. Note again that the ORs are further away from 1 than are the RRs.

The logistic regression model incorporating age group and congestive heart failure

is:

logit Probability of deathð Þ ¼ log odds of deathð Þ
¼ aþ b� ðAge � 70 yearsÞ þ c� Congestive heart failure is presentð Þ

If we fit this logistic regression (first without allowing for an interaction), we get

the results in Table 10.15. The OR for the association of age and death is 5.52 and

95 % CI (3.29, 9.24). The OR for the association of congestive heart failure and

death is 3.85 (2.47, 6.01). We see that the logistic regression estimate for congestive

heart failure falls between the two age stratum-specific estimates in Table 10.15.

Thus, the model averages in some way over the stratum-specific estimates, as it has

only one parameter.

Table 10.12 Logistic regression model of death, with patient age (as a continuous variable) and

gender, and presence of cardiogenic shock

Parameter Value Parameter estimate OR 95 % CL for OR P value

Intercept a �7.15

Age

b Years 0.08 1.09 1.06, 1.11 <0.0001

Gender Reference: Males

c Females 0.19 1.21 0.77, 1.90 0.404

Cardiogenic shock Reference: Absent

d Present 1.46 4.29 1.62, 11.33 0.003

Table 10.13 Likelihood

ratio tests for logistic

regression model of death

with patient age (as a

continuous variable) and

gender, and presence of

cardiogenic shock

Source df Chi-square P value

Age (years) 1 85.2 <0.0001

Gender 1 0.70 0.403

Cardiogenic shocks 1 9.13 0.0025

Table 10.14 Percentage of deaths within first year after an MI, and RRs and ORs by presence of

congestive heart failure and age group, with 95 % confidence intervals

Age

Congestive

heart failure N Deaths (%) RR 95 % CI for RR OR 95 % CI for OR

<70 years Absent 181 5.0 1 1

Present 43 30.2 6.08 2.78, 13.30 8.28 2.94, 23.75

Total 224 9.8

�70 years Absent 164 31.1 1 1

Present 112 58.0 1.87 1.41, 2.46 3.06 1.80, 5.21

276 42.0
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The next step is to estimate effects of congestive heart failure within age groups.

This is achieved in logistic regression by including additional terms in the predictor

part of the model. These additional parameters allow an increment to the congestive

heart failure effect for the older age group compared with the younger age group,

These parameters are denoted by the d parameter in the following formula:

logit Probability of deathð Þ
¼ log odds of deathð Þ
¼ aþ b� ðAge � 70 yearsÞ

þ c� Congestive heart failure is presentð Þ
þ d � ðAge � 70 yearsÞ � ðCongestive heart failure is presentÞ

After maximum likelihood fitting of the interaction model we have the results in

Table 10.16.

Table 10.16 shows that the interaction parameter d falls just short of signifi-

cance, although as it is very close, we may still be interested in reporting the result.

We need to take care in interpreting the above parameter estimates. The antilog of

the c parameter for age group (ec) is the OR for those with congestive heart failure

compared with those without, within the reference category for age (patients <70

years). It does not represent the overall effect of congestive heart failure (indeed we

have assumed there is no overall effect, because it is modified by age). To get the

estimated OR for congestive heart failure for those 70 years of age, we add the

parameters c and d together and then antilog to obtain 3.06. Equivalently we can

multiply the OR associated with the reference category for age (8.28) by the OR

calculated for the interaction parameter (0.37). We usually present model output

involving an interaction as in Table 10.17. This table shows the separate ORs for

each age group explicitly (which Table 10.16 does not), and the results of the test

for interaction. Notice that no overall effects are given for variables involved in the

interaction.

As a final example, Table 10.18 displays a model combining cardiogenic shock,

age group and congestive heart failure, incorporating the effect modification of

congestive heart failure by age group. To demonstrate the parameterization of the

model, the model equation is given below.

Table 10.15 Parameter estimates, ORs and 95 % CIs from logistic regression of death, with age

and presence of congestive heart failure

Parameter Value Parameter estimate OR 95 % CL for OR P value

Intercept a �2.60

Age group Reference: <70 years

b �70 years 1.71 5.52 3.29, 9.24 <0.0001

Congestive heart failure Reference: Absent

c Present 1.35 3.85 2.47, 6.01 <0.0001
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logit Probability of deathð Þ
¼ log odds of deathð Þ
¼ aþ b� Cardiogenic shock is presentð Þ

þ c� ðAge � 70 yearsÞ
þ d � Congestive heart failure is presentð Þ
þ e� ðAge � 70 yearsÞ � ðCongestive heart failure is presentÞ

The way in which the effect of cardiogenic shock is presented has not changed,

because it is not involved in an interaction. However, its value has reduced

somewhat from its previous value (Table 10.7). This is because of the additional

adjustment for congestive heart failure. In the presence of an interaction in the

model, other coefficients will be adjusted for all combinations of the interacting

variable (equivalent in this case to stratifying by age group and congestive heart

failure simultaneously (four groups) and examining the cardiogenic shock effect

within each).

Table 10.16 Parameter estimates, ORs and 95 % CIs from logistic regression of death, with age

and presence of congestive heart failure (CHF) and interaction effects

Parameter Value Parameter estimate OR 95 % CL for OR P value

Intercept a �2.95

Age group Reference: <70 years

b �70 years 2.15 8.63 4.09, 18.21 <0.0001

CHF Reference: Absent

c Present 2.11 8.28 3.25, 21.08 <0.0001

Age � CHF d Reference: Age < 70 years or CHF absent

Age < 70 years and

CHF present

�0.99 0.37 0.13, 1.07 0.066

Table 10.17 Logistic regression model of death within first year after an MI with age group and

presence of congestive heart failure as predictors, allowing for effect modification

Parameter Value

Parameter

estimate OR 95 % CL for OR P value

Age group

<70 years

Congestive heart failure Reference category: absent

c Present 2.11 8.28 3.25, 21.08 <0.0001

� 70 years

Congestive heart failure Reference category: absent

c + d Present 1.12 3.06 1.86, 5.05 <0.0001

Age � Congestive heart failure Reference category: <70 years. No congestive heart

failure

�70 years, No congestive heart

failure

d 2.15 8.63 4.09, 18.21 <0.0001
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Likelihood ratio tests are available for each of the terms in our model. For the

model in Table 10.18 these are given in Table 10.19.

P values for likelihood ratio tests in Table 10.19 are slightly different from those

for parameter estimates given in Table 10.18; for example, the P value for the

interaction term is P ¼ 0.066 in Table 10.18 and 0.051 in Table 10.19. This is

because these are estimated in different ways. The likelihood ratio tests are based

on the likelihood function for the interaction model compared with the non-

interaction model, whereas the P values for individual parameters are based on

Wald statistics, which relate to the parameter estimates themselves and their

standard errors. The likelihood ratio test is generally preferred for various statistical

reasons, but both usually give similar answers. It is important to remember that

calculation of each of these and indeed many P values is an approximate process

that relies on large enough sample sizes and is based on assumptions that are

sometimes slightly different.

Extensions and Variations of Logistic Regression

Case–Control Studies

Case–control studies address questions of associations between risk factors, com-

monly called exposures, and health outcomes. Typically a series of cases is first

defined. These are persons experiencing the event of interest, for example, success-

ful recovery from an illness. A series of controls is then chosen, according to criteria

such that a selected control would have become a case, had he or she had the

Table 10.18 Logistic regression model of death within first year after an MI with cardiogenic

shock, age group and presence of congestive heart failure as predictors, allowing for effect

modification

Parameter Value

Parameter

estimate OR 95 % CL for OR P value

Cardiogenic shock Reference category: absent

b Present 1.27 3.57 1.26, 10.10 0.016

Age group

<70 years

Congestive heart failure Reference category: absent

d Present 2.10 8.13 3.18, 20.81 <0.0001

� 70 years

Congestive heart failure Reference category: absent

d þ e Present 1.04 2.83 1.70, 4.70 <0.0001

Age � Congestive heart failure Reference category: <70 years, No congestive heart

failure

� 70 years, No congestive

heart failure

e 2.17 8.75 4.13, 18.53 <0.0001
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particular health outcome of interest. An example might be a series of patients

experiencing a nosocomial infection during a hospital stay, with controls being

chosen from other in-patients who did not experience an infection. In such a case,

the variable indicating caseness (case/control) is used as the outcome variable and

potential risk factors are included in the logistic regression model in the usual way.

If the controls are matched in some way to the cases (e.g. by age, type of ward,

admission diagnosis) then a technique called conditional logistic regression is

needed to take the matching into account.

Multinomial and Ordinal Regression

The logistic regression model can be extended to the situation when the outcome

variable has more than two categories (multinomial regression) and when these

categories fall into a natural order (ordinal regression). These models are very

similar to the logistic regression but allow the incorporation of additional

hypotheses concerning these additional categories of outcome. In many instances

it is possible to address the questions dealt with by these more complex models, by

using a series of simpler logistic regressions.

Conclusion

Logistic regression is a very general model that can be used to analyse the

determinants or predictors of a binary outcome arising in a process in which events

are independent. Because of the nature of the logit transformation, the model gives

rise to regression coefficients that are interpretable as log(ORs), which allows a

useful interpretation, after exponentiation.

As with other regression models, multivariate models can be built up by includ-

ing additional predictor variables, such that effects are mutually adjusted.

Logistic regression may be applied to continuous variables, or a mix of continu-

ous and categorical variables. Detailed examination of relationships with continu-

ous variables may be valuable in detecting curvilinear effects.

Caution must be exercised in interpreting ORs as RRs. When the outcome

becomes more common (at least 15 %), this interpretation may be misleading.

Table 10.19 Likelihood

ratio tests for logistic

regression model of obesity,

at the 21-year follow-up, with

maternal smoking and child’s

exercise at age 14 years as

predictors, with interaction

effects

Source df Chi-square P value

Cardiogenic shock 1 6.21 0.0127

Age group 1 44.12 <0.0001

Congestive heart failure 1 19.04 <0.0001

Age � Congestive heart failure 1 3.81 0.051
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Chapter 11

Modelling Time-to-Event Data

Kaplan-Meier Survival Analysis and Cox Regression

Gail M. Williams and Robert Ware

Abstract Much clinical research involves following up patients to an adverse

outcome, which could be death, relapse, an adverse drug reaction or the develop-

ment of a new disease. In these studies, time to event needs to be modelled such that

factors that delay such events can be determined. The set of statistical procedures

used to analyze such data is collectively termed survival analysis and is a very

useful tool in clinical research. This chapter introduces the different tools of

survival analysis.

Introduction

Survival analysis is concerned with describing and predicting the time to the

occurrence of a binary event of interest, such as recovery or non-recovery from

an illness, or development of a complication after surgery. This contrasts with

logistic regression, which is concerned with the predictors of a binary event,

irrespective of when it occurs. Survival analysis is typically more powerful than

logistic regression, particularly when a high proportion of subjects experience the

event, as it uses more information on the outcome.

In discussing these techniques, the time an event takes to occur is interchange-

ably referred to as survival time or failure time or time to event, and we refer

to the event we are interested in as our outcome. This may be the achievement

of any particular status: examples include death, death from a specific cause,

relapse, recovery, or completion of a vaccination schedule. If a subject does not

experience an event of interest in the follow-up period, the survival time is said to

be censored.
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Example 1

The AIDS Clinical Trials Group carried out a randomized double-blind clinical trial

on 1,151 patients with human immunodeficiency virus (HIV) infection. This trial

compared the three-drug regimen of indinavir, zidovudine or stavudine, and

lamivudine with the two-drug regimen of zidovudine or stavudine and lamivudine.

Patients were eligible for the trial if they had no more than 200 CD4 cells/cm3 and

at least 3 months of prior zidovudine therapy. Because of the importance of CD4

cell counts in progression from HIV infection to AIDS, randomization was

stratified by CD4 cell count at the time of screening. The primary outcome measure

was time to a diagnosis of AIDS, or death from any cause.

Table 11.1 shows some relevant variables for the first 20 observations

of data. The variable TIME is the survival time for the patient in days. The

variable CENSOR identifies the outcome at the end of the follow-up period: if

CENSOR ¼ 1 the patient has died or been diagnosed with AIDS and the survival

time is the follow-up time at the time of the event; if CENSOR ¼ 0 then neither of

these has occurred during the total follow-up time, and the survival time is the total

duration of follow-up. Failure may still occur (at some time later than the follow-up

time), but we do not know when. More specifically, this is sometimes referred to as

right-censoring since the unknown values are at the right-hand end of the distribu-

tion of survival times. The variable TX records the treatment group: TX ¼ 1 if the

treatment included the third drug (indinavir) and TX ¼ 0 if it did not. STRAT2 ¼ 1

if CD4 cell counts were greater than 50/mm3 and STRAT2 ¼ 0 if not. So, for

example, the patient with ID ¼ 1 was followed for 189 days without progressing to

a diagnosis of AIDS or death. Patient with ID ¼ 14 progressed to a diagnosis of

AIDS on day 206. Both patients who progressed to AIDS or died (ID ¼ 14, 17)

were in the low CD4 cell count group and did not receive the additional drug.

A Descriptive Analysis: The Kaplan–Meier Estimator

At first sight it might appear that we could simply estimate the mean survival time

for the two treatment groups. The problem is that we only know this for those who

experience the event, that is, 96 of the 1,151 patients in the trial. In the two-drug

group, 63/577 ¼ 10.9 % experienced an event and in the three-drug group it was

33/574 ¼ 5.8 %; the mean survival times (time to AIDS or death) were 110 and

94 days, respectively. However, these times are an underestimate of survival time,

because they are biased towards those who experience the event early; the longer

survival times have yet to occur, and longer survival times will be more likely to occur

in the more successful treatment group (if there is one).

It certainly appears that the three-drug treatment is more successful than the

two-drug treatment, but we need a method that combines event occurrence and time.

The solution to this problem lies in dividing the follow-up period into small time
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periods and comparing groups within each of these time periods. However, for

now we examine the survival curve itself, using a technique that involves basic

probability, to obtain an estimate of the probability of surviving to a specified time

period. This is called the survivorship or just survival function.

We examine the 577 patients on the two-drug treatment. We set out the relevant

data as in Table 11.2. As this table shows, we start at time ¼ 0 with 577 patients, all

yet to experience the event. For each time period (1 day), we count the number of

patients whose follow-up ends (because they experience the event or are lost to

follow-up at that point). For day 1, there are two such patients: one who was lost to

follow-up (censored) and one who experienced the event (failed: diagnosis of AIDS

or death). This leaves 575 who have data for times beyond day 1. Only one patient

(who experienced the event) had a follow-up time of 2 days, leaving 574 patients;

on day 3, one patient was lost to follow-up, and so on. This tabulation continues

until the last time period – in this case day 364.

The reasoning used to get the survivorship function is as follows: we want the

probability of surviving to a particular time period from a time t ¼ 1,2,. . . to the

end of the period. If we had complete data on everyone’s survival, we could simply

get the total number surviving to that day and divide by the number at the start.

However, our at-risk denominator is changing due to censoring, so we use a simple

probability model as follows:

The probability of surviving to time t

¼ the probability of surviving to time t� 1

� the probability of surviving the time period t� 1 to t

¼ the probability of surviving to time t� 1

� 1� the probability of failing in the time period t� 1 to tð Þ

The reason this works is that the second part on the right-hand side of the

equation can be estimated easily from the number at risk of an event at time

t � 1 and the number who failed from t � 1 to t and the first part on the right-

hand side is simply the survival probability for the previous time t � 1.

Table 11.1 Example of survival data: AIDS trial

ID TIME CENSOR TX STRAT2 ID TIME CENSOR TX STRAT2

1 189 0 0 1 11 334 0 1 0

2 287 0 0 1 12 285 0 1 1

3 242 0 1 0 13 265 0 1 1

4 199 0 0 1 14 206 1 0 0

5 286 0 1 0 15 305 0 0 1

6 285 0 1 0 16 110 0 0 0

7 270 0 0 1 17 298 1 0 0

8 285 0 1 1 18 287 0 1 1

9 276 0 0 1 19 103 0 0 0

10 306 0 0 1 20 291 0 0 1
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At the start of day 1, no one has experienced an event so our survivor function is

1. We begin by working out the probability of surviving to the end of day 1. This is

the probability of surviving to day 0 (1), multiplied by the probability of surviving

to the end of day 1 (1 � 1/577 ¼ 0.9983) ¼ 0.9983. For the probability of surviv-

ing to the end of day 2, we have the probability of surviving to the end of day

1 (0.9983), multiplied by the probability of surviving day 2 (1 � 1/

575 ¼ 0.9983) ¼ 0.9965. For the probability of surviving to the end of day 3, we

have the probability of surviving to the end of day 2 (0.99653), multiplied by the

probability of surviving day 3 (1) ¼ 0.99653. We continue in this way to the end of

the time period (Table 11.3). Note that the survival function only changes when at

least one event occurs.

This process was first presented by Kaplan and Meier in 1958 and is referred to

as the Kaplan–Meier or product–moment method for survival curves. The results

can be plotted. Figure 11.1 shows how the first part of such a graph relates to the

above data.

Circles indicate deaths and triangles indicate censored observations. The flat

parts of the curve represent periods when no additional failures occur, and the down

steps represent points at which failures occur. Note that censoring does not affect

the occurrence of down steps but will affect the magnitude of the step because, if a

large number of losses to follow-up occur, the following down step will be larger, as

losses are removed from the at-risk denominator.

The formula for the standard error of the survival function at time ti is

σ̂ðŜðtiÞÞ ¼ ŜðtiÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xi

j¼1

dj
njsj

vuut

where ŜðtiÞ is the survival function at time i, nj is the number at risk at time j, dj is the
number of failures at time j, and sj ¼ nj � dj.

Table 11.2 Aggregation of survival data to get the survival curve for 577 patients over 364 days

of follow-up: first and last 10 days

Day

Number left at

start of day Censored Failed Day

Number left at

start of day Censored Failed

1 577 1 1 . . . .

2 575 0 1 356 2 0 0

3 574 1 0 357 2 0 0

4 573 1 0 358 2 0 0

5 572 0 0 359 2 0 0

6 572 0 0 360 2 0 0

7 572 1 1 361 2 0 0

8 570 0 0 362 2 1 0

9 570 0 1 363 1 0 0

10 569 1 0 364 1 1 0
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This can be used to obtain confidence limits for the survival function. Figure 11.2

shows the complete survival curve, with 95 % confidence limits for the estimated

survival at each time point. This particular survival curve shows a more or less

steady decline in survival over time.

It is sometimes useful to look at the cumulative incidence of events; this is just

the inverse of the survival function, and can be calculated using the formula:

Cumulative Incidence ¼ 1� Survival

Figure 11.3 shows the estimated cumulative proportion of persons experiencing

the event over time. Notice the vertical axis has been reduced in scale, allowing

more detail to be shown, compared with the survival curve, which typically uses a

vertical axis from 0 to 1.

Table 11.3 Survival function (estimated proportion surviving) for 577 patients over 364 days of

follow-up: first and last 10 days

Day

Number

left at

start of

day Failed

Proportion

failed

Survival

function Day

Number

left at

start of

day Failed

Proportion

failed

Survival

function

0 577 1 . . . . .

1 577 1 0.00173 0.9983 355 2 0 0 0.8692

2 575 1 0.00347 0.9965 356 2 0 0 0.8692

3 574 0 0 0.9965 357 2 0 0 0.8692

4 573 0 0 0.9965 358 2 0 0 0.8692

5 572 0 0 0.9965 359 2 0 0 0.8692

6 572 0 0 0.9965 360 2 0 0 0.8692

7 572 1 0.00695 0.9930 361 2 0 0 0.8692

8 570 0 0 0.9930 362 2 0 0 0.8692

9 570 1 0.00870 0.9913 363 1 0 0 0.8692

10 569 0 0 0.9913 364 1 0 0 0.8692
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Fig. 11.1 Survival function

(estimated proportion

surviving), for 577 patients

over the first 30 days
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Let us now return to our primary research question: is there a difference between

the two drug treatments in terms of patient progression to AIDS, or death? We need

to compare the two treatment groups. We first plot the survival curve for each

group, with 95 % confidence limits.

Figure 11.4 shows that the survival (alive or free of a diagnosis of AIDS) is better

for the three-drug treatment. By the end of the period of observation, the survival

Fig. 11.2 Survival curve: time to AIDS diagnosis or death for two-drug treatment group, with

95 % confidence limits

Fig. 11.3 Cumulative incidence of AIDS diagnosis or death for two-drug treatment group, after

recruitment, with 95 % confidence limits
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for the two-drug treatment group is around 87 %; for the three-drug treatment it is

around 93 %. The 95 % confidence limits also begin to separate at about 6 months

after treatment. Figure 11.5 shows the relative cumulative incidence of AIDS

diagnosis or death for the three-drug treatment group, compared with the two-

drug treatment group. This is simply the ratio of the cumulative incidence in the

three-drug group to that in the two-drug group. We see that this is quite variable up

to about 2 months (due to the small number of events) and then the three-drug

treatment becomes progressively more protective until the relative efficacy

stabilizes at about 50 % from about 6 months.

We can also proceed to a statistical test to examine formally whether this

difference in survival is due to chance.

Log-Rank Test for Comparisons of Groups

The formal test to determine whether survival is different for two treatment groups

is the log-rank test. The null hypothesis for this test is that the distributions of

survival times within the two treatment groups are the same, the alternative

hypothesis being that they differ in some way. This test is a non-parametric test;

it makes no assumptions about any particular distribution of survival times. It

involves calculating the expected numbers of events (say deaths) in each group,

under the assumption that the two survival distributions are the same. It does this by

calculating the total number of deaths at each time period, then splitting this number

of deaths at each time period according to the numbers at risk in each comparison

group, thereby forming expected numbers of deaths, under the assumption the null

hypothesis is true. For example, if there were four deaths on day 100, with group

Fig. 11.4 Survival curves: time to AIDS diagnosis or death for the two-drug treatment group

(tx ¼ 0), compared with the three-drug treatment group (tx ¼ 1) with 95 % confidence limits
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1 having 500 people still at risk (after deaths and dropouts before day 100) and

group 2 having 300 people still at risk, then the expected deaths would be 2.5

(¼ 4 � 500/800) in group 1 and 1.5 in group 2. (Note that fractional expected

events are permitted). All expected deaths are then added up within each group to

get the overall expected deaths for each group. These are compared with the

observed number of deaths. If the numbers of expected and observed deaths are

similar, this supports the null hypothesis. If they are quite different, this would be

regarded as evidence against the null hypothesis.

Table 11.4 shows these calculations for the first 30 days of the AIDS trial: for

example, the three deaths on day 14 (1 in the two-drug group and 2 in the three-drug

group) are split according to the ratio of persons in the study on those days: 566:570

or 1.49–1.51. A chi-squared-like formula based on the differences between

observed and expected events in the two groups is then used to get the test statistic,

which is then referred to a chi-squared distribution. For the AIDS study, this yields

chi-squared ¼ 10.54, with 1 df, giving P ¼ 0.0012, indicating a statistically sig-

nificant difference in survival between the groups.

Quantification of the difference in survival is a little problematic, because the

Kaplan–Meier method is a non-parametric method and does not involve any natural

epidemiological measures of effect, such as relative risks. However, we can note

that the survival curves demonstrate 6-month survival of 90.4 % (95 % CI

87.8–94.0 %) in the two-drug group and 94.9 % (95 % CI 93.0–96.8 %) in the

three-drug group, with 12-month survivals of 86.9 % (95 % CI 83.7–90.1 %) and

93.2 % (95 % CI 90.8–95.6 %), respectively. This amounts to an approximate

doubling of the cumulative incidence at each of these time points. In general,

however, such comparisons may result in different relative cumulative incidence

at each time period.

Fig. 11.5 Relative cumulative incidence of AIDS diagnosis or death for the three-drug treatment

group, compared with the two-drug treatment group, with 95 % confidence limits (lighter plots)
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The log-rank test generalizes to more than two groups, yielding chi-squared tests

with df ¼ the number of groups being compared � 1.

Example 2

As a second example, Fig. 11.6 shows the survival curve for a series of 500 patients

from the Worcester Heart Attack Study, which examined factors associated with

survival rates following hospital admission for acute myocardial infarction (MI).

Data were collected during 13 one-year periods beginning in 1975 and extending

until 2001, on all MI patients admitted to hospitals in the Worcester, Massachusetts

Standard Metropolitan Statistical Area.

Of the 500 patients, 215 (43 %) died within their follow-up period, with a

median survival time of 5.5 months, and 285 were censored (still alive at the end

of their follow-up period), with a median follow-up time of 3.4 years. Notice that

mortality is highest immediately after the initial MI, with only about 70 % surviving

the first year, but flattens out a little at about 2 years. This analysis yields more

information than simply examining mortality rates. This survival curve can also be

used to estimate the median survival, which is the length of time corresponding to

50 % survival: draw a horizontal line at survival ¼ 0.5, then project this vertically

to the horizontal axis to give an estimate of years; thus, an estimated 50 % of

persons survive to 5 years or more (or the 5-year survival is 50 %) (Fig. 11.6). Other

quantiles can be estimated similarly. For example, the 75 % survival is about

Table 11.4 Calculations for expected events

Time

Observed

deaths: two

drugs

Observed

deaths: three

drugs

Total

deaths

At risk:

two

drugs

Expected

deaths: two

drugs

At risk:

three

drugs

Expected

deaths: three

drugs

1 1 0 1 577 0.5013032 574 0.4986968

2 1 0 1 575 0.5008711 573 0.4991289

7 2 1 3 572 1.5000000 572 1.5000000

9 1 0 1 570 0.4995618 571 0.5004382

13 1 1 2 567 0.9964851 571 1.0035149

14 1 2 3 566 1.4947183 570 1.5052817

15 1 0 1 565 0.4986761 568 0.5013239

16 1 0 1 564 0.4982332 568 0.5017668

17 0 1 1 563 0.4977896 568 0.5022104

18 1 2 3 562 1.4946809 566 1.5053191

20 1 1 2 561 0.9982206 563 1.0017794

24 1 0 1 561 0.4995548 562 0.5004452

25 1 1 2 559 0.9973238 562 1.0026762

26 1 0 1 557 0.4982111 561 0.5017889

Total over

364 days

63 33 96 47.1 48.9
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6 months and the 25 % survival is 6.5 years. There may be a dramatic drop at the

end of the series (corresponds to the death of the one person remaining in the study,

all others having died or been lost to follow-up). This is not seen in Fig. 11.6

because time on the X-axis has been truncated at 2000 days.

Additional Comments on Censoring

The above examples involve censoring as a consequence of loss to follow-up.

However, it is possible to have censoring for other reasons. Essentially, whenever

a participant experiences an event that precludes them from experiencing the event

of interest, they are censored at that point. For example, if in the Worcester Heart

Attack Study our event of interest is death from cardiovascular disease, then a

patient who experiences death from cancer is considered censored at the time of his/

her death.

We also assume that censoring is independent; that is, observations that are

censored have the same future risk as those that are not censored. This is quite a

strong assumption. For example, suppose we are examining survival of patients

admitted to an intensive care unit. If follow-up ceases at discharge then, given that

those discharged are more likely to have a better prognosis than those not, censored

observations would be likely to have a lower risk. If dropouts differ from non-

dropouts, then this is also likely to lead to dependent censoring. In the Worcester

Heart Attack Study, it may be that patients experiencing complications following

MI would be more likely to be in contact with a medical practitioner and thus less

likely to be lost to follow-up.

Fig. 11.6 Survival curve: time to death following an MI for 500 patients in the Worcester Heart

Attack Study, with 95 % confidence limits
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A specific example of this occurs in ‘competing risk’ models. In the example

given above for death from cardiovascular disease, and censoring by death from

cancer, we would need to consider whether a person who dies from cancer would

have the same future risk (had s/he not died from cancer) of death from cardiovas-

cular disease. This may seem plausible. However if, in a series of patients with

obesity, the event of interest is death from cardiovascular disease, then death from

diabetes would be a competing event, since it is likely that risks of these outcomes

would be associated. In such instances it is argued that the methods described above

would result in biased estimates of survival. The appropriate analyses are complex,

essentially involving the joint analysis of the cumulative incidence of both the event

of interest and any competing event(s).

Multivariable Survival Analysis

The Kaplan–Meier method allows us to examine and compare survival across

groups. It does so by stratification into groups and using the log-rank test to make

formal statistical comparisons. This approach is very flexible but not suitable for

multivariable situations when we have a large number of variables, particularly

confounders, for which we need to adjust. A modelling approach that combines

traditional regression methods with the technique applied for the Kaplan–Meier

estimates provides an effective strategy. The follow-up time is divided into small

periods, and then effects (relative risks of the event) are averaged over these time

periods, within which a model is applied. An important assumption underlies this

approach – that of proportional hazards – and modifications may be applied when

this assumption is questionable.

Example 2 (Continued)

We return to the data from the Worcester Heart Attack Study, which recruited

patients at the time of a first MI. The primary outcome measure for this trial was

time to death. We would aim to identify factors that predict survival after MI. One

of these might be the absence of complications at the time of the MI. In particular,

we look at the presence or absence of congestive heart failure (CHF) complications.

Of the 500 persons entered into the study, 155 (31 %) had CHF complications; of

the 215 deaths, 110 (51 %) were in the CHF complications group, indicating higher

mortality in the CHF group. Of the 285 censored events (follow-up finished before

death occurred), 45 (29 %) were in the CHF group, indicating an equal rate of

censoring for both groups.

The Kaplan–Meier survival curves are shown in Fig. 11.7, with 95 % confidence

limits. It is clear that those without complications experience far better survival

following their MI. Moreover, it appears that this may vary somewhat over time;
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those with complications appear to have even greater mortality soon (up to around

2 years) after the MI, after which the survival curves are approximately parallel.

The log-rank test confirms the higher mortality in the CHF complications group,

with a chi-squared of 84.6, 1 df, and P < 0.0001.

We now introduce alternative approaches to examining such data, so that we can

(a) quantify difference in risks and (b) examine multiple risk factors simulta-

neously, allowing for adjustments by confounding factors or other risk factors.

Hazard Function and Hazard Ratio

To proceed with a modelling approach, we require the concept of a hazard function,

defined as the short-term event rate for participants who have not yet experienced

the event of interest. The hazard function, for example, describes the probability of

death on a particular day in our case study of the Worcester Heart Attack Study. We

saw that the hazard function depended on time; it appeared that the risk of death was

higher in the immediate post-MI period and then decreased thereafter (Fig. 11.6).

The advantage of now defining this more generally is that we can extend our

framework to include a hazard function that depends on a number of variables,

such as risk factors or confounders, setting the scene for multivariate analysis. Note

the difference between the hazard function and cumulative failure. The hazard

function represents risk at a point in time, the cumulative failure represents risk

up to a point in time.

Let us consider patients who experienced CHF complications, compared with

those who did not. Figure 11.7 shows that the mortality was considerably lower for

Fig. 11.7 Kaplan–Meier survival curves: time to death, comparing those with (chf ¼ 1) and

without (chf ¼ 0) CHF complications, with 95 % confidence limits
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patients without complications, compared with those with complications, and that

the gap between these two groups arose quite quickly after the initial heart attack.

After about 2 years, the survival courses become approximately parallel.

We now define the hazard ratio as the ratio of these two hazard functions, as

follows.

Hazard ratio ¼ Hazard function for patients with complications at time t

Hazard function for patients without complications at time t

Cox Proportional Hazards Model

The Cox proportional hazards model is a widely used method for multivariate

analysis of survival data. It can be thought of as a combination of the Kaplan–Meier

method, which involves dividing the follow-up time into small intervals, and the

regression model approach, which formulates a model within each of these time

periods.

Let us suppose our follow-up time is divided into intervals determined by the

time points t1, t2, t3, etc. We imagine a regression model within each of these

intervals (t1, t2) etc., relating the probability of death within the interval to a risk

factor, such as CHF complications. From such a model we can obtain an effect

estimate (a relative risk of death in this case, associated with having CHF

complications) for that time interval. In general, this relative risk varies over

time; we have seen a suggestion of this in the CHF complications example.

However, we begin by making a simplifying assumption, for the time being, that

the hazard ratio is constant over time. For now, we can think of this constant hazard

ratio as the average hazard ratio over time, and we explore variability later. Note

that we can allow the hazard functions to vary over time; we only require that the

hazard ratio is a constant (i.e. does not depend on time). This assumption is called

the proportional hazards assumption.

We now consider a particular model, to cover the time period from t to t + 1, as

follows.

logðNumber of deaths at time tÞ
¼ aðtÞ þ b� ðCHF ¼ PresentÞ þ logðPTAR within time tÞ

The term a(t) corresponds to the usual intercept term (depends on the time t) and
the term b is the usual slope estimate attached to the predictor variable, which in this

case is presence/absence of complications. The term (CHF ¼ Present) takes the

value 1 when the statement within parentheses is true and is zero otherwise. It is

thus a dummy variable for the presence of complications. The PTAR is the person-

time at risk within the time period t. If we have 1 – day time periods and t ¼ 100,
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then PTAR in days ¼ the number of persons still in the study at the start of the

100th day. The terms involving a and b are the usual intercept and regression

coefficients used in previous regression models. We note the log transform on the

left-hand side. If we reorganize a little we have the following:

log
Number of deaths at time t

PTAR within time t

� �
¼ logðDeath rate at time tÞ

¼ aðtÞ þ b� ðCHF ¼ PresentÞ

Conceptually, this model is then fitted for each time period (with the constraint

that b is the same for each period). This occurs by a process called partial

likelihood. The resultant parameter b is then the log of the hazard ratio, defined

above.

The usual form of the model expresses the intercept as a log of a baseline hazard,

this being the predicted death rate for the reference category of the predictor

variable.

logðDeath rate at time tÞ ¼ logD0ðtÞ þ b� ðCHF ¼ PresentÞ

In general the baseline hazard is the predicted death rate at a particular time

when an individual is in the reference category for all predictor variables. Thus, the

hazard ratio gives the multiplier of the baseline hazard associated with being in a

particular risk group. You can see that the hazard ratios multiply, because the above

model, after taking the exponential of both sides, becomes

Death rate at time t ¼ D0ðtÞ � expðb� ðCHF ¼ PresentÞÞ

When we fit the model, we find the following (Table 11.5). The parameter

estimate is the estimate of b in the above model, and the hazard ratio is obtained

by taking the exponential of the parameter estimate.

The hazard ratio is 3.31 with 95 % confidence limits of 2.53–4.34. It should be

emphasized that the hazard ratio tells us nothing about how fast a person dies.

Accordingly, a hazard ratio of 3.31 should not be interpreted as showing that

patients in the CHF group died about three times as fast as those without CHF. In

survival terms, it does not imply that the median survival time was cut to a third by

the treatment nor that three times as many patients were likely to have died on or by

a particular day or that the CHF group was likely to have died three times as rapidly

as those without CHF. The correct interpretation is that for any randomly selected

Table 11.5 Cox regression for mortality after an MI by the presence or absence of CHF

complications

Parameter Parameter estimate P value Hazard ratio (HR) 95 % CI for HR

CHF complications Reference category: Absent

Present b 1.198 <0.0001 3.31 2.53 4.34
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pair of patients, one from the CHF group and one from the group without CHF who

have not died by a certain time, the hazard ratio of 3.31 represents the chance of

death in the patient from the CHF group at the next point in time compared to the

patient from the group without CHF.

We may consider it likely that CHF complications might be distributed differ-

ently over age at MI and sex, and these factors may also affect survival. Let us

examine the effect of the patient’s sex by fitting a Cox model. This yields

Table 11.6.

Thus females have a higher risk of death after MI, on average, than males.

Age could be examined in two ways: as a continuous variable (assuming a linear

effect on the log-risk scale) or in groups. The models for these are written as

follows:

logðDeathrateat time tÞ ¼ logD0ðtÞ þ b� Age

logðDeath rate at time tÞ ¼ logD0ðtÞ þ b1 � ðAge ¼ 65-79 yearsÞ
þ b2 � ðAge 80 years or greaterÞ

See Table 11.7 for results of the Cox regression for each of these.

Thus there is a fourfold increase in risk of mortality for persons aged 65–79 years

and an eightfold increase in risk of mortality for persons 80 years of age or older,

compared with those less than 65 years. These increases are all clearly significant,

with 95 % confidence limits that exclude 1.

Since presence of CHF may be associated with age and sex, which themselves

relate to survival, we now wish to consider a multivariable model which examines

the effect of CHF, after adjusting for age and sex. This model may be written as

follows.

logðDeath rate at time tÞ ¼ logD0ðtÞ þ b� ðCHF ¼ PresentÞ
þ c� Age

þ d � ðSex ¼ FemaleÞ

We see that the age effect remains much as before – a slightly increased (6 %)

risk of mortality per year of age. The sex effect, however, has reduced, so that

females now have a lower mortality than males, although this is not significant. The

adverse effect of CHF complications remains, although reduced to a hazard ratio of

2.4 from 3.3 (Table 11.8).

A comparison of males and females shows the following (Table 11.9).

Table 11.6 Cox regression for mortality after an MI by patient’s sex

Parameter Parameter estimate P value Hazard ratio (HR) 95 % CI for HR

Patient sex b Reference category: male

Female 0.381 0.0056 1.46 1.12 1.92
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Thus females were older than males and more likely to have CHF. Both of these

characteristics increase the risk of mortality. When adjusted for these additional

risks, males and females had similar post-MI survival.

Testing the Proportional Hazards Assumption

Recall the proportional hazard assumption, which assumes a constant rate (here

3.31). We might conclude from our earlier Kaplan–Meier and Life Table analyses

that the proportional hazards assumption is likely to be violated in the case of CHF,

and that a better-fitting model would take this into account and allow a different

hazard ratio in the first 2 years and the remaining 2years. We can examine this

formally within the Cox regression approach.

We do this by adding a time-dependent term to our model. A time-dependent

term is one that varies over time: CHF complications at the start of the study is a

non-time-dependent factor; it remains constant. However, time since follow-up

obviously varies with time; other factors that vary with time might be age or

subsequent complicating conditions. Note that some variables might be treated as

either; for example, age at baseline is not time dependent, age at follow-up time

Table 11.7 Cox regression for mortality after a myocardial infarct by patient age

Parameter Parameter estimate P value Hazard ratio (HR) 95 % CI for HR

Patient age

Age in years b 0.066 <0.0001 1.068 1.056 1.081

Age group Reference category: Age < 65 years

65–79 years b1 1.411 <0.0001 4.10 2.57 6.53

80+ years b2 2.078 <0.0001 7.99 5.09 12.55

Table 11.8 Cox regression for mortality after an MI by patient age at MI, sex and presence/

absence of CHF complications

Parameter Parameter estimate P value Hazard ratio (HR) 95 % CI for HR

CHF complications Reference category: Absent

Present b 0.878 <0.0001 2.41 1.82 3.19

Patient age (years) c 0.060 <0.0001 1.062 1.049 1.075

Patient sex Reference category: Male

Female d �0.155 0.273 0.86 0.65 1.13

Table 11.9 Characteristics

of males and females
Males Females

N 300 200

Mean age (range) in years 66.6 (30–102) 74.7 (32–104)

CHF complications, n (%) 75 (25) 80 (40)
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is. How we use a particular variable depends on how we frame our research

question.

The particular term we add is an interaction term: we first define a time-

dependent variable as follows:

Period ¼ 0 if follow-up time at time t is less than 2:5 years

Period ¼ 1 if follow-up time at time t is 2:5 years or more

We then add an interaction term Period � CHF, which has the effect of allowing

the effect of CHF to vary between the two periods defined above. A model is now

written as follows.

logðDeath rate at time tÞ ¼ logD0ðtÞ þ b� ðCHF ¼ PresentÞ
þ c� ðCHF ¼ PresentÞ � ðPeriod ðtÞ ¼ 1Þ

Note that the model formulation makes explicit that the value of Period depends

on the follow-up time. Recall that a proportional hazards model involves splitting

the follow-up time into small intervals of time, and fitting a model within each of

those times. Thus the value of Period will be zero for all intervals falling within the

follow-up period up to 2.5 years and 1 subsequently. The b parameter represents the

effect of CHF complications on mortality within the first 2.5 years, and the c
parameter represents the difference between the CHF effects for the two time

periods. This can be seen by noting that the model becomes

logðDeath rate at time tÞ ¼ logD0ðtÞ þ b� ðCHF ¼ PresentÞ

for any time before 2.5 years, and

logðDeath rate at time tÞ ¼ logD0ðtÞ þ ðbþ cÞ � ðCHF ¼ PresentÞ

for any time after 2.5 years.

The results of fitting this model are shown in Table 11.10.

These results must be interpreted carefully. Remember that interactions are

included in models to allow the effects of variables to differ. We include the

CHF � Period interaction because we want to examine the possibility of different

CHF effects in the two time periods. Thus, by definition, there is no single

parameter that measures the CHF effect. The first hazard ratio (3.78) given in

Table 11.10 is that for the first period, up to 2.5 years. The second hazard ratio

(0.45) is the ratio of the hazard ratio in the second period, compared with that in the

first. So the hazard ratio for the second period is 0.45 � 3.78 ¼ 1.70. The P value

of 0.044 for the interaction term informs us that the two hazard ratios (for the first

and second period) are statistically significantly different. We then obtain 95 %

confidence limits for the estimate of 1.70 in period 2 as (0.83–3.48), indicating it is

not statistically significant. We can express our final results as in Table 11.11.
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Sometimes a lack of proportional hazards may be caused by omission of an

important covariable in the analysis. Age at MI is certainly an important covariable

in relation to mortality and age is related to risk of CHF complications: the

percentages of CHF complications in age groups under 65, 65–79, and over

80 years were 14.5 %, 34.3 % and 45.1 %, respectively. So we might consider

whether a model which includes age would better satisfy the proportional hazards

assumption. This model is written as

logðDeath rate at time tÞ ¼ logD0ðtÞ þ b� ðCHF ¼ PresentÞ
þ c� ðCHF ¼ PresentÞ � ðPeriod ðtÞ ¼ 1Þ
þ d � Age

Table 11.12 shows the result of a model including age and the time-dependent

interaction between CHF and follow-up time less than or greater than 2.5 years, and

Table 11.13 shows the stratified presentation of this model. Although we still see a

lower hazard ratio in the period after 2.5 years, this difference is no longer signifi-

cant (P ¼ 0.178, Table 11.12). Note that the inclusion of age in the model has

reduced the CHF effect (in both time periods, but more noticeably in the first time

period), as we would expect, given the association of age with both mortality and

the presence of CHF complications.

Conclusion

The Kaplan–Meier method is a flexible informative technique for estimating

survival over time, particularly when data are censored. Care must be taken in

considering whether censoring is dependent on factors that may affect survival.

Table 11.10 Cox regression for mortality after an MI by the presence or absence of CHF

complications, allowing a time-dependent interaction between CHF complications and follow-

up time up to less or greater than 2.5 years (Period)

Parameter Parameter estimate P value Hazard ratio 95 % CI for HR

CHF complications Reference category: Absent

Up to 2.5 years: Present b 1.328 <0.0001 3.78 2.80 5.09

CHF � Period c �0.800 0.044 0.45 0.21 0.98

Table 11.11 Cox regression for mortality after an MI by the presence or absence of CHF

complications before and after 2.5 years

Parameter Parameter estimate P value Hazard ratio 95 % CI for HR

CHF complications Reference category: Absent

Present: up to 2.5 years b 1.328 <0.0001 3.78 2.80 5.09

Present: after 2.5 years b + c 0.528 0.150 1.70 0.83 3.48
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A regression-based extension of the Kaplan–Meier method is the Cox proportional

hazards model, which can be used to assess the effect of multiple covariates on

survival. It is a very flexible method for handling clinical data, especially for

prognostic clinical research in which the influence of multiple variables on survival

is to be evaluated.

Bibliography

Cox DR (1972) Regression models and life tables. J R Stat Soc 34:187–220

Hammer SM, Squires KE, Hughes MD, Grimes JM, Demeter LM, Currier JS, Eron JJ Jr, Feinberg

JE, Balfour HH Jr, Deyton LR et al (1997) A controlled trial of two nucleoside analogues plus

indinavir in persons with human immunodeficiency virus infection and CD4 cell counts of

200 per cubic millimeter or less. AIDS Clinical Trials Group 320 Study Team. N Engl J Med

337:725–733

Kalbfleisch JD, Prentice RL (1980) The statistical analysis of failure time data. Wiley, New York

Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. J Am Stat

Assoc 53:457–481

Spruance SL, Reid JE, Grace M, Samore M (2004) Hazard ratio in clinical trials. Antimicrob

Agents Chemother 48:2787–2792

Tonne C, Schwartz J, Mittleman M, Melly S, Suh H, Goldberg R (2005) Long-term survival after

acute myocardial infarction is lower in more deprived neighbourhoods. Circulation

111:3063–3070

Table 11.12 Cox regression for mortality after an MI by the presence or absence of CHF

complications, allowing a time-dependent interaction between CHF complications and follow-

up time up to less or greater than 2.5 years (Period), and including age at MI

Parameter Parameter estimate P value Hazard ratio (HR) 95 % CI for HR

CHF complications Reference category: Absent

Present: up to 2.5 years b 0.949 <0.0001 2.58 1.90 3.52

CHF � Period c �0.539 0.178 0.583 0.27 1.28

Patient age (years) d 0.058 <0.0001 1.060 1.047 1.072

Table 11.13 Cox regression for mortality after an MI by the presence or absence of CHF

complications before and after 2.5 years, adjusting for age at MI

Parameter Parameter estimate P value Hazard ratio (HR)

95 % CI for

HR

CHF complications Reference category: Absent

Present: up to 2.5 years b 0.949 <0.0001 2.58 1.90 3.52

Present: after 2.5 years b + c 0.410 0.267 1.51 0.73 3.11

Patient age (years) d 0.058 <0.0001 1.060 1.047 1.072
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Part IV

Systematic Reviews and Meta-analysis



Chapter 12

Systematic Reviewing

Introduction, Locating Studies and Data Abstraction

Justin Clark

Abstract A systematic review is essentially a systematic investigation of existing

research data identified via a reproducible systematic search leading to data

abstraction, appraisal of methodological quality, clinical relevance and consistency

of published evidence on a specific clinical topic in order to provide clear

suggestions for a specific health care problem. This can be followed by a quantita-

tive synthesis, which, preserving the identity of individual studies, tries to provide

an estimate of the overall effect of an intervention, exposure or diagnostic strategy.

The latter is called a meta-analysis. This chapter outlines the procedure that needs

to be followed to execute a standard systematic review.

Introduction

The systematic review process begins with the definition of a question and a

hypothetical solution. There is then a problem formulation (population, interven-

tion or exposure, comparison, outcome [PICO]), data search, data abstraction and

appraisal, data analysis � quantitative synthesis, and finally result interpretation

and dissemination. After definition of the question according to the PICO approach,

the appropriate keywords are used to search several databases. Useful resources

include PubMed Central, Clinicaltrials.gov, EMBASE, LILACS, PubMed, confer-

ence proceedings, cross-referencing (hand searching) and contact with experts. It is

critical to have explicit inclusion and exclusion criteria: The broader the research

domain, the more detailed they tend to become and it is good to refine criteria as you

J. Clark (*)

University of Queensland, Brisbane, Australia

e-mail: j.clark4@Uq.edu.au

S.A.R. Doi and G.M. Williams (eds.), Methods of Clinical Epidemiology,
Springer Series on Epidemiology and Public Health,

DOI 10.1007/978-3-642-37131-8_12, © Springer-Verlag Berlin Heidelberg 2013

187

mailto:j.clark4@Uq.edu.au


interact with the literature. The components of detailed criteria are distinguishing

features, research respondents, key variables, research methods, cultural and lin-

guistic range, time frame and publication types. We do not only include peer-

reviewed studies because significant findings are more likely to be published than

non-significant findings; therefore, look for unpublished non-significant studies,

e.g. abstracts in conferences. It is critical to try to identify and retrieve all studies

that meet your eligibility criteria. Potential sources for identification of documents

include computerized bibliographic databases, authors working in the research

domain, conference programs, dissertations, review articles, hand searching rele-

vant journal articles, government reports, bibliographies and clearing houses. In

summary, the systematic review process requires definition of a focused question, a

pre-specified protocol with strict inclusion and exclusion criteria, selection of the

right type of studies, a comprehensive information-finding strategy, a detailed and

objective data abstraction form, quality appraisal of all included studies and finally

synthesizing and summarizing the information with a meta-analysis (if appropriate)

followed by interpretation.

The systematic review imposes a discipline on the process of summing up

research findings, represents findings in a more differentiated and sophisticated

manner than conventional reviews, is capable of finding relationships across studies

that are obscured in other approaches, protects against over-interpreting differences

across studies and most important, can handle a large numbers of studies (this

would overwhelm traditional approaches to review). Unfortunately, it also requires

a good deal of effort; mechanical aspects do not lend themselves to capturing more

qualitative distinctions between studies. There is the “apples and oranges” criticism

and most systematic reviews include blemished studies to one degree or another

(e.g. a randomized design with attrition). Also, selection bias poses a continual

threat. Studies for which there were negative or null findings that were not reported

are also a threat.

Locating Studies: A Step by Step Guide

This section takes you through the steps of constructing a clinical question and then

makes use of that question to guide your search of the medical literature via the

various databases available. Some key components of this data extraction process

are examined via a step by step approach using a systematic review co-written by

the author as an example.

When undertaking a systematic review, there are important things to be taken

into consideration when searching for studies. These include:

1. Searching broadly

2. Ensuring your results can be reproduced

Searching broadly means that you should try to capture as much information on

your topic as possible. Without a broad search of the literature you may miss
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potential information that you need in order to arrive at as accurate a result as

possible.

Ensuring that your results are reproducible by others is a staple of research.

Whether it is an experiment in a laboratory, gathering information from the field or,

as in this case, finding and amalgamating information from other sources, it is

detrimental to the believability and credibility of your research if it is not possible

for someone else to come along, follow the same steps that you took and not get the

same result. This section provides a step by step guide on how to do exactly that. It

covers how best to layout your search, where to search and what is needed to ensure

others can check your findings.

The Clinical Question

The first step in a systematic review is to construct a clinical question. This is a

succinct statement laying out exactly what question you hope to answer with your

systematic review. For example:

1. Does vitamin C help to prevent the common cold?

2. Does Tamiflu help to prevent the flu?

3. Does St Johns Wort help to prevent depression?

A clinical question should cover the following four areas, the type of person

involved (normally associated with the health problem they are faced with), the

type of exposure that the person has experienced (which could be a risk factor,

prognostic factor, intervention, or diagnostic test), the type of control or comparison

with which the exposure is being compared and the outcomes to be addressed. It is

common practice, especially for those new to the systematic review process, to

write it out using the following format:

• (P) the types of population or participants

• (I) the types of interventions

• (C) the types of comparisons

• (O) the types of outcomes

This is known as the PICO format and is used as a guide to ensure you have

covered the topics required to answer your question. For example, the PICO format

for our above questions is:

• P: People with a cold

• I: Vitamin C

• C: No vitamin C

• O: Reduction in cold symptoms and/or duration

• P: People with the flu

• I: Tamiflu

• C: No Tamiflu
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• O: Reduction in flu symptoms and/or duration

• P: People with depression

• I: St Johns Wort

• C: No St Johns Wort

• O: Reduction in depressive episodes

The above are purposefully simplistic to provide an easy to follow example of

the clinical question and the PICO format. In this chapter, we use a more compli-

cated clinical problem to illustrate how to search the literature and locate studies.

The problem is this. Radioiodine (131I) is widely used for the diagnosis and

treatment of benign thyroid diseases. Observational studies have not been conclu-

sive about the carcinogenic potential of 131I and therefore we wish to undertake a

systematic review and meta-analysis to determine if we can answer this question.

To begin, we lay out the problem in the PICO format.

• P: Patients with benign thyroid disease

• I: Exposure to radioactive iodine in a medical setting, i.e. at a hospital

• C: No exposure to radioactive iodine

• O: Increase in cancer incidence

From this we can construct the following clinical question: Does medical

exposure to radioactive iodine in benign thyroid disease increase the risk of cancer?

We started with a problem; we broke this problem up into some individual

components using the PICO method to ensure that we covered the required infor-

mation and then constructed an answerable question we can now use to guide the

next steps of our systematic review and meta-analysis.

Constructing the Search

It is now time to let our question guide our search of the medical literature. You

cannot just type the entire search string into the database and use whatever comes

up. You need to break down the clinical question into individual search components

capable of being inserted into the databases. These can be individual words or a

combination of two or three words.

We begin by consulting our clinical question: Does medical exposure to radio-

active iodine in benign thyroid disease increase the risk of cancer? From our

question, we identify the key components, words or concepts that we are going to

use to create our search. For this process, the PICO table you may have created can

be used to help. We see that cancer is an important element that we need to search

for. Exposure to radioactive iodine is also important. Benign thyroid disease is also

a key component that we need to ensure is part of the search criteria. This gives us

three key search criteria for use in the database:

1. Cancer

2. Radioactive iodine

3. Benign thyroid disease
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You may have noticed that we had “no exposure to radioactive iodine” in our PICO

format. At this point, we will not be using this as one of our search criteria as we are

interested in all papers that discuss radioactive iodine exposure and cancer and do not

want to potentially miss articles on this topic just because they do not mention that they

have not compared patients who were exposed with patients who were not. Unfortu-

nately, there is no way to be sure about whether or not some words should be used. It is

always best to start with fewer terms so you get as broad a set of results as possible.

After testing the search, it may well be that you will need to include more terms; but to

begin with, three or four separate terms are all you should need. We now have three

terms we can put into the database or databases of our choice. The next stage is to

ensure that we have covered the various ways that these terms can be described.

Expanding and Improving Your Search Terminology

Every word or component that you draw out of your clinical question needs to be

individually looked at and checked to see if there are multiple words (or synonyms)

for it or if it needs to be pluralized. For example, if you are looking for articles about

children you may also want to include the word ‘child’ in your search criteria. This

idea can be expanded further so you could end up looking for children, child, infant,

infants, baby, babies, teen, teens, teenager, teenagers, adolescent or adolescents.

There is no hard and fast rule about how many terms you should include.

Common sense is the best guide in this process. There are obviously many different

ways to look for ‘children’ but if you are looking for articles on vitamin C, you are

reasonably limited in your choice of terms; ascorbic acid is the only other term you

would use in your search. We also need to make sure we have the correct indexed or

subject term for our search. We do this by looking up the thesaurus for the

databases. In this case, we will use the Medical Subject Headings (MeSH) database.

The MeSH database is the National Library of Medicine’s (NLM) controlled

vocabulary thesaurus used to describe journals articles contained in the PubMed

database.

There are many important reasons to use a controlled vocabulary of terms in

order to search the literature. The most important is that finding the correct term

used by the indexers means that you will have a greater chance of finding as many

relevant papers on your topic as possible. It will also increase the number of terms

you will be searching for as controlled vocabularies allow for explosion of search

terms. This means you will not only search for the term listed but all of the narrower

terms that may fall under the main term. The MeSH database contains numerous

potential synonyms that we can use to expand our search terminology. In this case,
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we start by looking for ‘cancer’. This is a good term to use as an example as it

covers the major reasons for using the MeSH database:

1. Locating the correct term

2. Identifying different synonyms for the term

3. Using the explode functionality to search for multiple terms

First, access the MeSH database at http://www.ncbi.nlm.nih.gov/mesh. Then, in

the search box type in the word you are looking for. In this case, ‘cancer’. The first

thing you will notice is a list of 319 terms (at the time of writing). The term we are

interested in is Neoplasms. Following this link through to its entry page, there are a

number of points of information of interest to us. The first thing to look at is the

description of the term. This is called a scope note and is found just beneath the

heading. This description is what the NLM thinks the term Neoplasms means. It is

important to read this to ensure that the term you have selected is accurate. In this

case, the scope note reads: “New abnormal growth of tissue. Malignant neoplasms

show a greater degree of anaplasia and have the properties of invasion and metas-

tasis, compared to benign neoplasms” If you scroll down the page you will see the

heading: Entry Terms. Entry terms are synonyms, alternate forms, and other closely

related terms in a given MeSH record that are generally used interchangeably with

the preferred term. So we see that under the entry terms is the word ‘cancer’.

Therefore we can now be certain that Neoplasms is the preferred terminology used

by the NLM and it is the appropriate subject or MeSH term to use when searching

the MEDLINE database.

Now that we have the correct term, we need to find the other various synonyms

we may need to ensure our search is as broad as possible. The list of entry terms is

the best place to look for these. Scanning through the list, we see the following:

• Neoplasm

• Tumors

• Tumor

• Cancer

• Cancers

• Benign Neoplasms

• Neoplasms, Benign

• Benign Neoplasm

• Neoplasm, Benign

From this list we select those we think should be used to increase our search

terms. In this case the following terms could be selected: Neoplasm, Tumors,

Tumor, Cancer and Cancers. As this is a US database, we should look for the

English spelling of terms. So for Tumor (American spelling), we should make sure

we also search for Tumour (English spelling).

We need to ensure that we do a subject heading, or MeSH, search so that our

term is exploded. What the explosion of our search will do is to search for all of the

narrower terms for Neoplasms. You can see the narrower terms by looking beneath

the entry terms at the MeSH categories.
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Under the Neoplasms term is Cysts, Hamartoma, Neoplasms by Histologic

Type, Neoplasms by Site, Neoplasms Experimental, and so on. Under all of these

terms are even narrower terms. So under Cysts we see Arachnoid Cysts, Bone

Cysts, Branchioma, Breast Cyst, and so on again. There may be even more terms

under these. So by exploding our term we not only search for our original term but

all of the various and more specific terms at the same time.

There are various ways to ensure that you do a subject term search and this can

change from database to database. There are many online tutorials available as well

as help pages for each of them. You can consult these or you can seek assistance

from your local librarian on how to effectively utilize a subject term search in each

of the databases available. In this case, we will focus on how to do a subject search

in the PubMed database.

Make sure you enter the term properly into the search box and type the word

mesh or mh in square brackets following the term. They should look like this.

Neoplasms[mesh] or Neoplasms[mh]
The format is not case sensitive so capitalization is not needed. With the

appropriate term found, the various synonyms identified and our search configured

to explode the search term, it is time to put all facets together, ensuring that the

Boolean operator ‘OR’ is between each term:

Neoplasms[Mesh] OR Neoplasms OR Neoplasm OR Tumors OR
Tumor OR Tumours OR Cancer OR Cancers
The word ‘OR’ does not need to be capitalized but it is quite useful to do so as it

makes it easier to identify each individual word. The author has constructed

hundreds of search strategies during his time as a librarian and has found that

capitalizing the Boolean operators used not only helps keep track of the terms but

also helps any research partners review the search. Our first search string is now

ready to be entered into the database. The process above is repeated with each of the

individual search components. Along with same refinement strategies discussed a

later in the chapter, this gives us the following search strings.

“Iodine Radioisotopes”[Mesh] OR “Iodine Radioisotopes”
OR “Radioactive iodine” OR Radioiodine OR “radio-iodine” OR
“Iodine-131” OR “Iodine 131” OR RAI OR 131I

and

“Hyperthyroidism”[Mesh] OR “Graves Disease” OR Basedow
OR “Exophthalmic Goiter” OR “Exophthalmic Goiters”
OR hyperthyroidism OR thyrotoxicosis
If searching for more than one word, such as Graves disease, place quotation

marks (“”) around the words to ensure that the database searches for it as a phrase.

A phrase search means that it will search for when the word Graves comes directly

before the word disease. If you do not put quotation marks around the terms then the

database may search for them as individual terms, this means papers that contain

the word Graves and the word disease will be found irrespective of their location in

the article, title or abstract.

With our three individual search strings completed, it is now time to run the

search. We use the Boolean search operator ‘AND’ to combine our different search
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strings. Although you can combine them into one massive search string with ‘AND’

between them and brackets enclosing each individual concept, it is far wiser to use

the advanced search features available in databases to do this. In the PubMed

database, this is known as the PubMed Advanced Search Builder, although in

other databases it is also commonly referred to as your search history. Once again

look for online tutorials or seek the help of a librarian or other experienced user to

help you do this. The concept is the same for each database. You enter and search

for each component separately and then use the search builder or search history to

do this.

In our case, we would search in the following way. Enter the search string

Neoplasms[Mesh] OR Neoplasms OR Neoplasm OR Tumors
OR Tumor OR Tumours OR Cancer OR Cancers

Click the search button. Then enter the second search string

“Iodine Radioisotopes”[Mesh] OR “Iodine Radioisotopes”
OR “Radioactive iodine” OR Radioiodine OR “radio-iodine”
OR “Iodine-131” OR “Iodine 131” OR RAI OR 131I

Click search again. Then enter the final search string

“Hyperthyroidism”[Mesh] OR “Graves Disease” OR Basedow
OR “Exophthalmic Goiter” OR “Exophthalmic Goiters”
OR hyperthyroidism OR thyrotoxicosis

Click search again. Go into the search builder and combine the searches with the

‘AND’ operator. Your search should then look like this.

Search Query

Items

found

#4 Search ((#1) AND #2) AND #3 1,109

#3 Search “Hyperthyroidism”[Mesh] OR “Graves Disease” OR Basedow OR

“Exophthalmic Goiter” OR “Exophthalmic Goiters” OR hyperthyroidism

OR thyrotoxicosis

43,627

#2 Search “Iodine Radioisotopes”[Mesh] OR “Iodine Radioisotopes” OR

“Radioactive iodine” OR Radioiodine OR “radio-iodine” OR “Iodine-

131” OR “Iodine 131” OR RAI OR 131I

60,974

#1 Search Neoplasms[Mesh] OR Neoplasms OR Neoplasm OR Tumors OR

Tumor OR Tumours OR Cancer OR Cancers

2,940,477

Our initial search has now been completed and we have found 1,109 journal

articles that contain something about cancer, radioactive iodine and benign thyroid

disease. Now it is time for the next step in the search process.

Refine Your Search

Although the protocol of your review should be set up before doing any searching,

this is only looking at correlations between populations, interventions and

outcomes. The search you use does not have to be, and should not be, set in stone

194 J. Clark



at the very outset. You need to build and run a search, as we have done above, check

the results and look at the results you have found to help further improve your

search.

Now is a good time to draw upon any personal expertise or the expertise of your

review group. The first thing you need to do is to have your colleagues identify key

articles or authors they may be aware of and ensure that your search has found these

articles or authors. If key articles in the field have not been found, then you need to

identify why not and modify your search in such a way as to capture them. Second,

have your colleagues look over your search results and identify a few articles that

they consider to be worth including in the review. You then need to look at the

titles, abstracts and subject terms (MeSH terms) of these articles. See if there are

any words or terms used in these articles that you have not included in your search

strategy. If they are missing, then you will need to add them to the appropriate

search string. For instance, in our case we may find that ‘carcinoma’ appears quite

often in the literature and therefore we would add it to our cancer search string.

Finally, have your colleagues look over your search terms and see if they have

further suggestions to add to your search string. In our example above, the term

‘radioiodine’ and the acronym ‘RAI’ came from checking other papers and finding

they were used in abstracts. Ensuring Graves disease was included as a keyword

search came from the opinion of an expert.

Save Your Search Strategy

When searching, it is important to make sure you keep a record of the search you

undertake. It is also useful to record changes you make as they occur and the

reasoning behind the changes. As your search changes and is modified, it will be

useful to report to any co-authors, why you made the changes and revisions that you

did. Once your search is finalized and has been run, it is vitally important to make

sure you have saved it. This can be done in most databases using the save search

feature. But it is also very useful to copy and paste it into a word document.

Generally, the search occurs very early in the systematic review process and

there is a lot of work done afterwards in reviewing the results, excluding the

irrelevant articles, then extracting the data and running the meta-analysis. It could

be 6 months or more before it is time to submit your article for publication and, if

you do not have a copy of your search, you will be unable to report it in any real

detail in your article. This will then damage the credibility of your article as other

people will not be able to duplicate your methodology.
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Select Your Databases

Now you have created a strong broad search and have saved a copy of it, you need

to broaden your search to include other sources. This means searching for studies in

additional databases. An important question is how many and which ones. The

answer is as many as are relevant and you have the resources to search. Although

there may be a desire to use as many databases as possible to maximize your

coverage, the decision on howmany and what databases you search should really be

based on the resources you have available. For instance, if you are doing the project

alone then there is not a lot of point searching ten databases as you will not have the

capacity to deal with the number of results. By the same token, if you have a team of

five people, then only searching MEDLINE will not be adequate.

The topic of your search is also a determining factor in what to use. If you are

searching for surgical studies then you may want to search MEDLINE, Embase and

CENTRAL. If you are looking for wound healing or patient care studies, then you

should search the CINAHL database as well.

According to the Cochrane Handbook for Systematic Reviews of Interventions,
you should search at least MEDLINE, Embase and CENTRAL when undertaking a

systematic review. But dependent on the sort of information you are looking for,

you may wish to search additional databases, dissertations or government web sites.

The main databases that should be searched when undertaking a systematic review

are:

• PubMed/MEDLINE: provides access to abstracts of the biomedical literature

including research, clinical practice, administration, policy issues, and health

care services. This database should always be searched if undertaking a system-

atic review.

• EMBASE: provides access to abstracts of biomedical and pharmacological

journals. It has more coverage of European medical journals than MEDLINE.

A good secondary database to search. Should be used in most instances when

undertaking a systematic review.

• CENTRAL: the Cochrane Central Register of Controlled Clinical trials is a

database containing all controlled trials found by the Cochrane Collaboration

in MEDLINE, EMBASE, Review Groups, Specialized Registers and the

Cochrane Hand Search Results Register. Should be searched especially if

undertaking a systematic review of interventions.

• CINAHL: the Cumulative Index to Nursing and Allied Health Literature

provides access to abstracts from nursing or allied health literature. Also covers

materials from biomedicine, management, behavioural sciences, health sciences,

librarianship, education and consumer health. This database needs to be included

if undertaking a systematic review in nursing or allied health.

• PsycINFO: provides access to literature in psychology, psychiatry and related

disciplines. Provides access to journals, books, reports, theses and dissertations.

Needs to be included in your search strategy if looking at any topic regarding

mental health.
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Additional databases that can be searched are:

• Clinicaltrials.gov: developed to provide current information about clinical

research studies, it can be used to identify unpublished studies and whether a

study that is in progress could influence the findings of your systematic review.

• AMED: provides access to citations on alternative treatments to conventional

medicine. Should be searched if conducting a systematic review about comple-

mentary or alternative medicine.

• Scopus: covers literature and quality Web sources in chemistry, physics, mathe-

matics, engineering, life and health sciences, psychology, economics, social

sciences, and biological and agricultural sciences.

• Web of Science: a multidisciplinary database that covers the literature from the

sciences, social sciences, arts, and humanities.

• BIOSIS Previews: contains a lot of meetings and some medical journals. Con-

trolled vocabulary is not suitable for medical searching.

• LILACS: health science literature published by Latin American and Caribbean

authors.

• AIM: the African Index Medicus provides access to African health literature.

• Sociological Abstracts: provides coverage of sociological literature. Could be

used when conducting reviews around community-based interventions.

• Current Contents Connect: covers research journals in the sciences, social

sciences, and arts and humanities.

If searching for dissertations, there are three main places you can look.

• ProQuest Digital Dissertations: the primary search interface for dissertations. It

is a subscription database, so you will need to check if your library has access

to it.

• Google Scholar: not a very refined search interface and it does bring back many

irrelevant results, but it has very broad coverage and is extremely useful,

especially for those searchers who do not have access to a dedicated academic

or hospital library that can afford a ProQuest Digital Dissertations subscription.

• WorldCat: provided by the Online Computer Library Center (OCLC) is a

database of the holdings of a large number of libraries from around the world.

Its coverage has a heavy western or English-speaking focus.

Searching for government reports can be a very time-consuming process, but a

large amount of relevant information can be gained from them. The most effective

way to search for government reports is to compile a list of relevant government

departmental Web sites from the areas of the world you are interested in. Then use

the Google advanced search feature to search a specific site or domain; for instance,

if searching for reports by the World Health Organization (WHO), you would put

www.who.int/ into the site or domain box in Google. To speed up the process, you

should copy your search into a word document. You can then copy and paste the

search into Google and modify the site you are searching. Searching this way,

means you can cover quite a large number of Web sites in a reasonably short time

frame.
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Modifying Your Search Strategy

It is important to ensure you modify your search strategy so that it works in the

various databases you are going to use. This means changing the subject terms in

the controlled vocabulary; for instance, changing the MeSH term you have used in

the MEDLINE database to an Emtree term, the controlled terms used in the Embase

database. This is done in exactly the same way as finding a term. Sometimes the

terms will be identical and sometimes they will be different. In this case, we will

search for the MeSH term ‘Neoplasms’ in the Emtree controlled vocabulary.

Typing Neoplasms into the Emtree search box, we find that it returns the term

Neoplasm. Not a huge difference but an important one in terms of our search

structure. Now it is simply a matter of ensuring that the database searches for the

Emtree term Neoplasm as well as the rest of our keywords. There are ways to do

this in the database and once again it is suggested that you check for online tutorials,

help pages or consult a search expert to learn how to do this effectively.

For the Embase.com search platform, the correct format for conducting a subject

term, or Emtree, search, is as follows.

‘neoplasm’/exp
This means it will search for the term neoplasm as an Emtree term and also explode

the search, meaning we will capture all of the narrower terms that fall under it in the

Emtree heading. So if you compare the two searches they will look like this.

• PubMed MEDLINE search:

Neoplasms[Mesh] OR Neoplasms OR Neoplasm OR Tumors OR
Tumor OR Tumours OR Cancer OR Cancers

• EMBASE search

‘neoplasm’/exp OR Neoplasms OR Neoplasm OR Tumors OR Tumor
OR Tumours OR Cancer OR Cancers

If we do a similar thing in the CINAHL database we get the following formatted

subject term search.

(MH “Neoplasms+”)
This also means we will be searching for Neoplasms as a subject, or CINAHL

headings, search and it will be exploded. If the database you wish to search does not

include subject headings or a controlled vocabulary, such as Scopus, then remove

the subject term from your search. Therefore a Scopus search would look like this.

Neoplasms OR Neoplasm OR Tumors OR Tumor OR Tumours OR
Cancer OR Cancers
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Resolving Duplicate Results

Once your search is finalized and you have run it, you will find some duplicate

results. This is due to the crossover in journal coverage in the databases. Manually

checking for duplicates and removing them is a time-intensive process and a far

easier way to check for and remove duplicates is to use bibliographic software such

as EndNote. You can use the automated duplicate finding ability of bibliographic

software to identify and remove the duplicate results in your search results. It is also

a very useful tool to store the citations and full text of the articles that you have

found. When the time comes to write your article, bibliographic software is also

useful as it will look after your citations for you and automatically generate your

reference list.

Hand Searching

Hand searching is the process of looking through the reference list of journal

articles and reports and identifying any further articles of interest that you did not

find during your electronic searching of the databases. The process is simple.

Identify all of the relevant articles that you will be using to conduct your systematic

review and meta-analysis. Then look through the reference list of each of them and

identify any relevant articles that you have not yet identified. If there are any, you

will need to access the full text versions and read them to see if they need to be

included.

Reporting Your Search Strategies

Every systematic review should have the search strategies used incorporated into

the article. This can be done by giving a brief overview of the key terms and

databases used in your methodology and supplying the complete search structure in

the appendix or as supplementary data. The search structure should, if possible, be

copied and pasted directly from the database that you used. This means if you

searched five databases you should have five searches in the appendix or supple-

mentary material. If this is not possible due to space or word requirements, then you

should copy and paste your primary search, in our case the PubMed search, and then

provide information about how each search differed in each database. If we use our

example, we would have:
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The following search modifications were used in the different databases.

• EMBASE:

Changed the MeSH terms

Neoplasms[Mesh], “Iodine Radioisotopes”[Mesh] and“Hyper-
thyroidism”[Mesh]

to the Emtree terms

‘neoplasm’/exp, ‘hyperthyroidism’/exp and ‘radioactive
iodine’/exp

All other terms were included and remained the same.

• CINAHL:

Changed the MeSH terms

Neoplasms[Mesh], “Iodine Radioisotopes”[Mesh] and“Hyper-
thyroidism”[Mesh]

to the CINAHL headings

(MH “Neoplasms+”), (MH “Iodine Radioisotopes”) and (MH
“Hyperthyroidism+”)

All other terms were included and remained the same.

• Web of Science and Scopus:

Removed the MeSH subject terms. All other terms were used and remained

the same.

Anyone reading the above can see our primary search and replicate it exactly in

the PubMed database. They can also then modify it reasonably easily with the same

modifications that we used and run them in the same databases. This means they can

exactly replicate our methodology and get identical results, which is one of the

primary goals of a systematic review.

Selection of Studies and Data Abstraction

With the search done the next step is to look though all of the results you have found

and decide which papers you need to keep and which can be discarded due to not

meeting your criteria for inclusion. Although the process of determining inclusion

PubMed search

Search Query

Items

found

#4 Search ((#1) AND #2) AND #3 1,109

#3 Search “Hyperthyroidism”[Mesh] OR “Graves Disease” OR Basedow OR

“Exophthalmic Goiter” OR “Exophthalmic Goiters” OR hyperthyroidism

OR thyrotoxicosis

43,627

#2 Search “Iodine Radioisotopes”[Mesh] OR “Iodine Radioisotopes” OR

“Radioactive iodine” OR Radioiodine OR “radio-iodine” OR “Iodine-

131” OR “Iodine 131” OR RAI OR 131I

60,974

#1 Search Neoplasms[Mesh] OR Neoplasms OR Neoplasm OR Tumors OR

Tumor OR Tumours OR Cancer OR Cancers

2,940,477
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and exclusion criteria and selecting which studies you should include is a compli-

cated process. The following two basic questions cover all of the complexities of

this process in a nutshell:

• Is the study relevant to the review’s purpose?

• Is the study acceptable for review?

Using these questions as a guide will help you to work out the best criteria as to

whether a study should or should not be included in your review. Inclusion and

exclusion criteria for each individual review will be unique but the criteria will fall

into the one of the following categories.

• Subjects or population involved

• Interventions being used

• Outcomes being of relevance

• Time period of the study

• Language of the study

• Methodological quality of the study

For the purposes of our systematic review and meta-analysis on radiodine we

developed the following criteria. Studies were included if they reported on humans

who had received radioiodine for diagnostic and therapeutic purposes, were pro-

spective or retrospective cohort studies and compared cancer incidence in subjects

that did and did not receive radioiodine. Studies were excluded if they used 131I for

treatment of thyroid cancers or for diagnostic purposes in thyroid cancer, studies

that examined the relationship between cancer and 131I exposure in nuclear

accidents, descriptive studies, non-human studies, opinion papers, editorials and

clinically irrelevant abstracts. With your criteria developed it is time to go through

your results and select which you keep and which you discard. It is recommended

that this process is undertaken by two independent people and then their results

compared. A third person, preferably on the review team, should be called in if

there are any discrepancies.

With a broad search across multiple databases you can expect to have a large

number of results to go through, we found 2,929 studies in our search. When you

consider that you can be expected to discard over 90 % of the studies you find it is

unfeasible to obtain the full text of each individual paper. Therefore you should

begin by excluding the obviously irrelevant studies. The following common steps

should be followed when excluding studies.

Step 1: Discard duplicate results

If you searched more than a single database you will have found that the same

studies have been found more than once. The first thing you should do is to

remove these duplicates from your results. The best way to do this is to use a

bibliographic software to do this automatically.

Step 2: Discard studies based on titles and abstracts

A great many of the studies you find will be obviously irrelevant and you should

begin by going through and instantly discarding those studies by reading the title
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and if necessary the abstract. Look for common and easily determined reasons

for exclusion, such as if they are written in a language that you will not be able to

read or interpret, are an animal study (if you are after human studies) or are of a

study type irrelevant to you (such as if it is a case series when you only want

randomized controlled trials).

Step 3: Re-examine the titles and abstracts

After your first pass through your results revisit the remainder and spend more

time analyzing the titles and abstracts. Now you remove the articles that with a

slightly longer inspection of the titles and abstracts do not meet your criteria. If

there is any doubt leave them in and make a decision later in the process.

Step 4: Retrieve the full text of the remaining studies

Now you will need to find the full text of any articles that have made it past the

first three steps of the process. This can sometimes take time so do not think you

need to wait until all the studies are available before moving to the next step.

Step 5: Exclude due to a failure to meet the criteria

With the full text of the article you can determine if the paper truly meets the

exclusion and inclusion criteria you have set for your review. This can be a time-

consuming process as excluding papers that made it this far into the process

should be done carefully and you should keep a note of why each paper was

excluded.

Step 6: Exclude due to other reasons

At this point you exclude all of the studies that although they meet the inclusion

criteria and do not meet any of the exclusion criteria may need to be excluded for

other reasons. This could be due to insufficient statistics for working out effect

sizes or possibly studies which report incomplete or ambiguous results

(reviewers may have sought further information from the authors before decid-

ing to exclude it). It is important to record and report in your review why any

paper was eventually excluded.

Throughout the entire process it is important to keep track of the numbers that

were excluded at each step. Some reviews record the number of duplicate studies

included and some do not. In our case we opted not to report the number of

duplicates that we found. Commonly, steps 2 and 3 are combined into a single

number. When reporting it is common practice to show the step by step process as a

flow chart. See Fig. 12.1. The PRISMA flow diagram, available from their website,

is growing in common usage and is a good format to follow when undertaking a

systematic review. Next, you will need to extract the required data from the studies

so that you can display summary findings in tables for your readers as well as run a

meta-analysis.
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What Data to Extract

There is a large potential body of data that could be extracted from an article, so it is

important to have a firm understanding of what you want to extract once you have

collected your studies. According to the Cochrane Collaboration, the data that will

be collected should be outlined in your protocol to match the outcomes of interest in

your systematic review. Although the specific data collected changes for each

systematic review, the types of data fall into four broad categories. These are the

study design and details, specific details about subjects, the treatments they were

exposed to and the outcomes that were obtained. These categories can be

remembered by the following acronym, DOES.

D: Design of study and other characteristics

O: Outcome data/results

E: Exposure/intervention and setting

S: Subject/participant characteristics

So long as your data extraction form, (covered later in this chapter), is designed

to extract all relevant information in these four categories you should have collected

all the necessary data you will need for your systematic review and subsequent

meta-analysis. A list of data that can be collected based on the Committee on

Standards for Systematic Reviews of Comparative Effectiveness Research is shown

in Box 12.1.

The list of data that is required should be created with experts, such as clinical

staff and statisticians, to ensure that all data of interest to the readers of the

systematic review as well as all the data required to run the meta-analysis are

collected.

Fig. 12.1 Flow diagram of literature search for the systematic review/meta-analysis
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Box 12.1.Types of Data Extracted from Individual Studies

General Information

1. Researcher performing data extraction

2. Date of data extraction

3. Identification features of the study:

• Record number (to uniquely identify study)

• Author

• Article title

• Citation

• Type of publication (e.g. journal article, conference abstract)

• Country of origin

• Source of funding

D: Design of study and other characteristics

1. Aim/objectives of the study

2. Study design

3. Study inclusion and exclusion criteria

4. Recruitment procedures used (e.g. details of randomization, blinding)

5. Unit of allocation (e.g. participant, general practice, etc.)

S: Subject/participant Characteristics

1. Characteristics of participants at the beginning of the study, such as:

• Age

• Gender

• Race/ethnicity

• Socioeconomic status

• Disease characteristics

• Comorbidities

2. Number of participants in each characteristic category for intervention and

comparison group(s) or mean/median characteristic values (record

whether it is the number eligible, enrolled, or randomized that is reported

in the study)

E: Exposure / Intervention and Setting

1. Setting in which the intervention is delivered

2. Description of the intervention(s) and control(s) (e.g. dose, route of

administration, number of cycles, duration of cycle, care provider, how

the intervention was developed, theoretical basis where relevant)

3. Description of co-interventions
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O: Outcome Data/Results

1. Unit of assessment/analysis

2. Statistical techniques used

3. For each pre-specified outcome:

• Whether reported

• Definition used in study

• Measurement tool or method used

• Unit of measurement (if appropriate)

• Length of follow-up, number and/or times of follow-up measurements

4. For all intervention group(s) and control group(s):

• Number of participants enrolled

• Number of participants included in the analysis

• Number of withdrawals and exclusions lost to follow-up

• Summary outcome data, e.g. dichotomous (number of events, number

of participants), continuous (mean and standard deviation)

5. Type of analysis used in study (e.g. intention to treat, per protocol)

6. Results of study analysis, e.g. dichotomous (odds ratio, risk ratio and

confidence intervals, p value), continuous (mean difference, confidence

intervals)

7. If subgroup analysis is planned, the above information on outcome data

or results will need to be extracted for each patient subgroup

8. Additional outcomes

9. Record details of any additional relevant outcomes reported

10. Costs

11. Resource use

12. Adverse events

Quality Assessment

During the data extraction process it is valuable to assess the methodological

quality of each of the studies you will use (see Chap. 13). If a quality score is

assigned, this should be reported in the data abstraction table. Usually the quality is

assessed via a suitable methodological quality checklist. The checklist you use

should be reported in your review and it is considered desirable to have two

reviewers independently assign a quality score to each study with any discrepancies

or disagreements resolved through a third reviewer if necessary.

There are many checklists available and if you use a pre-existing checklist you

should ensure that it is customized to the specific needs of your review. The

systematic review that was undertaken by the author used a modified version of a

general checklist created by Doi and Thalib (Table 12.1). It was customized to
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include seven parameters reflecting the quality of the studies that were sought for

this review: Prospective data collection, attrition (proportions excluded or inacces-

sible), selection bias, the distribution of risk factors for cancer between groups,

ascertainment bias for both exposure and outcome, and duration of follow-up.

Table 12.1 Example of a methodological quality checklist for the meta-analysis of cancer risk

after medical exposure to radioactive iodine in benign thyroid diseases

Items Score

1. Was the data prospectively collected?

0 ¼ Retrospective cohort design

1 ¼ Prospective cohort study

2. Were excluded (attrition) or inaccessible proportions < 20 %?

1 ¼ No

0 ¼ Yes or not reported

3. Were the non-exposed 131-I cohort drawn from the same population base as the

exposed cohort?

0 ¼ No or no description

1 ¼ Yes

4. Were the distribution of risk factors for cancer between groups balanced/matched

for (or adjusted for in the analysis):

(1) Sex

(2) Age at exposure

(3) Latency (follow-up)

(4) Any other factor balanced

1 point for each balanced/adjusted item

5. Was there a clear ascertainment of exposure of I-131 and were they clearly defined

and precisely reported?

1 ¼ Yes, from hospital records

0.5 ¼ self reports from patients or no description

6. Was there a clear ascertainment of cancer as an outcome and were it clearly defined

and precisely reported?

1 ¼ Yes: diagnosis from any of following sources: physician, pathologists or hospital

records

0.5 ¼ self reports from patients or not reported

7. Was timing of cancer assessment adequate for cancer to occur?

0: <5 years

0.5: 5–10 years

1: >10 years

Total ¼ _______/10
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Data Collection Forms

To collate all the relevant data necessary from the original studies you have found

into a format that you can use for your systematic review, a data extraction form is

used. This is a form filled out by the data extractors that is standardized with all the

necessary categories of data listed. Because all the required data has been decided

beforehand, all the data extractors need is to find the necessary data in each of the

studies and insert it into the appropriate place in the form. This means your data

extractors do not need to be specialized in the field or qualified statistics experts.

The design of the form is straightforward and is generally a simple spreadsheet

or paper form with the details of the article on the left hand side making up the rows

and the data collected for each article on the top, making up the columns. To ensure

that the data form works for the purpose of your systematic review, you should test

it early in the review process with a small sample of relevant studies. This could

save large amounts of time later. If the forms are found to be either too unwieldy,

and therefore take too long to fill in, or do not cover enough data, this can pose

serious problems if you are halfway through the data extraction. When designing

the forms, you need to ensure you complete them in such a way that not only the

experts involved in the review understand them but also that they can be easily

understood by others who may be involved. It is unlikely that that the experts

involved in the review will be the ones extracting the data so you need to ensure that

other people can use the form. There is also the possibility that people will leave

your review team or others may join at some stage in the process, so people not

involved at the beginning of the review may be called upon to help extract data.

Wherever possible, you should try to use standardized answers. This will not be

possible in every instance but, for example, with yes/no questions (e.g. were the

researchers blinded), do not leave a blank for people to fill out. Instead have a yes/

no option where they can tick or select the answer. The decision on whether to use

paper or electronic forms can come down to the personal preference of the data

extractors. But it is recommended that paper only data extraction should be avoided

due to the possibility of mistakes occurring during the transfer of the paper records

into electronic format. Also paper forms add an extra step to the data extraction

process, which can increase the time it takes. It is suggested that paper forms be

used during the trial process of creating and testing the forms, and convert the form

into an electronic format for the data extraction proper.

In our example “Cancer risk after medical exposure to radioactive iodine in

benign thyroid diseases”, it was determined that we required the following infor-

mation to conduct a meta-analysis.

• Types of cancer reported

• Time frame of study

• Number of subjects included

• Outcome

• Years of follow-up

• Methods of ascertainment of outcome
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• Reason for exposure to 131I

• Number of exposed subjects in final cohort

• Activities of 131I used (mean)

• Comparison group

• Exposed group

Therefore, a data extraction table was created (Table 12.2). Some of the data

entered is free text and in these cases you have no choice but to allow the extractor

to fill in the details as they see fit. But for others, you could have a selection of

possible fields. For instance, in the reasons for exposure to 131I column, there are

only two possible responses: diagnostic or therapeutic. Therefore, by having only

these two options available to the extractor reduces the possibility of inaccurate

data being entered. An extreme example of the benefit of this approach is that the

extractor may write ‘to determine if they had cancer’. This could be how it is

referred to in the article but all that is needed for the purposes of the systematic

review is for them to choose diagnostic. Another example of how to contain

unwanted information is the choice of the words in the heading, “years of follow-

up”. Although it could be assumed that, in this case, follow-up is measured in years,

for people new to the research environment this is not necessarily intrinsic knowl-

edge and you may end up with months being recorded instead. If this happens you

can convert months to years but this is more time spent and more possibility for

mistakes to occur. A well-designed form with the requirements of data extraction

clearly outlined will save time later and decrease the potential for mistakes.

Missing Data

Missing data could cause problems in the accuracy of your review. Not all of the

articles you find will report all the data that you want or need to undertake your

analysis. The only real recourse in this situation is to e-mail the authors of the paper

and ask them to supply the missing data. Obviously this request should be as polite

as possible and it never hurts to acknowledge them in your article if they do supply

the missing data, especially if it was hard to track down. If you cannot find the

missing data, you will have to decide if you can include the study in your analysis or

whether you need to exclude the article from your systematic review. For example,

in the above scenario you could still include articles if they did not report on the

activity of radioiodine administered but if they did not include the effect size for a

subgroup of interest, you would need to exclude it.
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Data Analysis, Results and Interpretation

Data analysis is the next step if data allows a meta-analysis to be performed (see

Chaps. 14 and 15). Otherwise, extracted data is tabulated and a descriptive sum-

mary created for the results section. Findings are summarized based on the strength

of the individual studies and the data abstracted so that conclusions may be reached

based on best available scientific evidence from individual studies. All the aspects

previously abstracted and summarized under the results section should be followed

by a succinct discussion section focusing on strengths, weaknesses and applicability

of the information to a health care setting. Recommendations regarding the inter-

vention/exposure and implications for health care would also be important to

discuss. Finally, it would be prudent to point out deficient areas to focus future

research efforts and resources on.
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Chapter 13

Quality Assessment in Meta-analysis

Assessing the Validity of Study Outcomes

Maren Dreier

Abstract Quality assessment of primary studies to evaluate the reliability of study

results is an essential and mandatory part of meta-analyses. It refers to the internal

validity of a study and is described more precisely as assessing the risk of bias.

Potential biases derive from selection of participants, data collection, analysis and

selective reporting of study results. Quality assessment tools systematically collect

information about study characteristics that may lead to bias in order to estimate the

overall risk of bias. There are numerous tools available; they can be classified into

checklists, scales and component ratings. Focusing on tools for assessing

randomized controlled studies, an overview of covered elements of six selected

generic tools is given. The Cochrane Collaboration’s tool is described in more

detail because it incorporates some important features. Practical aspects of

conducting quality assessments are discussed including the meaning and impor-

tance of detailed and precise guidance.

Introduction to Quality Assessment

Quality assessment of primary studies to evaluate the reliability of the study results

is an essential and mandatory part of meta-analyses. It has been shown that different

levels of study quality are associated with different study results. Thus, systematic

quality assessment is essential for clinicians and policy makers to make appropriate

health care decisions without harming patients, wasting resources, and misleading

future research.

No one standard exists for assessing study quality, as true results are unknown.

Assessing study quality is a challenging process that needs rigorous methodological
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knowledge. A wide variety of tools are available for assessing study quality. This

chapter describes the underlying rationale for quality assessments, the available

tools and their application as well as the limitations of quality assessment.

The Definition of Study Quality

There are various definitions of the concept of study quality. Most regard study

quality as internal validity defined as the extent of systematic distortion in the study

results due to confounding or bias. For this reason, the term assessment of the risk of

bias instead of study quality is more precise in this context, because a study may be

performed to the highest possible quality standards, but nevertheless has an

increased risk of bias. This may be the case, if, for example, blinding of participants

is impossible as in studies that compare surgical versus non-surgical interventions.

Here, we use the term study quality synonymously with risk of bias. The term

methodological quality is also common in this context.

Quality assessment in the context of meta-analysis is described more pre-

cisely as assessing the risk of bias and refers to the internal validity of a study.

Study Quality Versus Reporting Quality

Towards the end of the 1990s, the first checklist for reporting quality in randomized

controlled trials (RCT), CONSORT, was published, followed by further design-

specific lists such as STARD, STROBE and PRISMA (see http://www.equator-

network.org) aiming to enhance the reporting quality, which was often criticized as

being inadequate. The target group for these checklists include authors, reviewers,

editors and readers of published studies.

Adequate comprehensive reporting of a study is a necessary prerequisite for

assessing the study quality. The reporting quality of a trial describes whether

information about the design, the conduct and the analysis is available and complete

in the original paper without assessing the resulting implications for the validity of

the study results. Reporting quality addresses, for example, if loss to follow-up is

described in detail (number/proportion/characteristics of loss to follow-up). In

terms of quality assessment on the other hand, assessment of the appropriateness

of the loss to follow-up with regard to the risk of bias (the extent of loss to follow-

up, differential loss to follow-up) will be looked at. Consequently, studies with

equal reporting quality may result in huge differences in the risk of bias. Neverthe-

less, numerous quality assessment tools are mixed up with items of reporting

quality, and that can lead to a misinterpretation of the study quality.
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Quality assessment is based on adequate reporting quality. Relevant unreported

methodological aspects cannot contribute to the quality assessment, and thus the

study quality may be systematically underestimated. To solve this problem,

contacting the authors of original papers to obtain missing information to gain

greater accuracy in quality assessment seems to be a good idea at first sight, but

should be done very cautiously, because the answers may be too favourable and

difficult to verify.

Adequate reporting quality is a prerequisite for assessing the risk of bias.

However, reporting quality should never serve as a surrogate for the risk

of bias.

The Rationale of Quality Assessments

As the true answer to a study question is unknown, the aim is to estimate the

reliability of the study results by using specific study characteristics that are

supposed to affect internal validity. Several studies have shown that the results

of meta-analyses are associated with the quality attributed to the studies included

suggesting that more biased studies show (more) deviant results from the true

results. The observed effects varied. Moher et al. (1999) demonstrated that high

quality studies result in lesser effects of interventions compared with low quality

studies, while Odgaard-Jensen et al. (2011) demonstrated that effect sizes can

change in either direction but again generally in the direction of larger estimates

of effect for lower quality studies. Thus, a meta-analysis with many low quality

studies may lead to an overestimation of the effect and may, therefore, have an

undesirable impact on clinical practice and health policy decisions.

To minimize the extent of bias in study results, several methodological safe-

guards, such as randomization and allocation concealment, have been developed.

These are described in detail in the following sections. Quality assessment tools are

designed to systematically collect information about study characteristics that may

lead to bias in order to estimate the overall risk of bias.

The results of the quality assessments can be incorporated in different ways into

meta-analyses. One strategy is to define a threshold for the inclusion of studies by

restricting the analysis to studies with a low risk of bias. Another method is to

stratify by study quality or perform a sensitivity analysis by first including only

studies with a low risk of bias and subsequently adding the others. Finally an overall

quality score can be computed that can be used for comparison across studies but

has to be utilized carefully – see below.
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Bias Affecting Internal Validity

Internal validity refers to the extent to which study results are true. Results can

differ from the true effect because of random or systematic errors. Random errors

affect the precision of the study results estimated with confidence intervals and P
values, and depend on the sample size and the variation in measurements. System-

atic errors such as bias or confounding can arise from how the study is conducted

(selection of participants, performance, data collection and analysis, as well as

selective publication) and lead to results that systematically over- or underestimate

the true relationship between an intervention and its specific outcome. Quality

assessment focuses on the potential threats from bias. Thus, it is important to

distinguish between random and systematic errors.

The main principles to produce highly valid study results are equivalence of study

groups, performance and data collection (Table 13.1). In the following, the most

important sources of bias and the correspondingmethods to avoid them are described.

Confounding and Selection Bias

Imbalanced Study Groups

Ideally, study groups should differ only in the intervention of interest and not in other

personal or environmental characteristics, especially not in (potential) prognostic

Table 13.1 Principles of internal validity and its potential threats

Principles of internal

validity Aims Methods Potential threats

Equivalence of study

groups (avoiding

selection bias and

confounding)

Study groups do not differ in

their known and unknown

baseline characteristics

Random sequence

generation

Selection bias

Allocation

concealment

Attrition bias

(Exclusion

bias)Intention-to-treat

analysisa

Equivalence of

performance

(avoiding

information bias)

Preferably no recognizable

differences in intervention,

and no differences in co-

interventions, care and

setting

Blinding of

participants

and personnel

Performance bias

Standardization Attrition bias

Equivalence of data

collection process

(avoiding

information bias)

Identical assessment of baseline

characteristics, outcomes

and adverse effects in all

study groups

Blinding of

participants,

personnel and

outcome

assessors

Detection/

measurement

bias

Standardization Attrition bias

Training of

assessors
aThis is not true for non-inferiority or equivalence studies
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factors such as age, sex or stage of disease, to ensure that study results can be

attributed causally to differences between intervention and control conditions (and

not, for example, to the intervention group being younger than the control group).

Differences in the characteristics of the study groups can give rise to confounding.

The gold standard to avoid baseline imbalances is randomization with each partici-

pant having an equal chance of being assigned to one of the study groups and the

allocation not being predictable. A successful randomization results in equivalence

of the study groups not only of known but also of unknown characteristics and can be

corroborated by equal baseline characteristics of the study groups.

The randomization process can be divided into two parts: random sequence

generation and its unbiased implementation, which is assured by allocation conceal-

ment. Concealing the allocation sequence from those involved in enrolment avoids

breaking of the randomization code. Otherwise, sicker patients could, for example,

be chosen for the new treatment more frequently because the allocating doctor

expects better effects for them, which may lead to underestimation of the true effect.

Attrition Bias

It is very important that the study groups remain as complete as possible throughout

the study with little or no withdrawals or participants lost to follow-up. This is

essential, because the study participants who withdraw may be different from the

remaining participants; for example, they may be sicker or benefit less from the

intervention, which may lead to biased study results. An attrition bias can also result

from excluding participants despite available outcome data (exclusion bias).

To avoid biased study results, the analyses should primarily follow the intention-

to-treat (ITT) principle, which analyses all participants according to their randomly

assigned group, regardless of whether they were compliant with the study protocol

or not. The main reason for ITT analyses is to maintain the randomized study

groups, although the true effects are likely to be underestimated. Nevertheless, ITT

analyses do not minimize bias from missing values in study outcomes. Methods to

minimize loss to follow-up are important throughout the study. Even participants

who give up their assigned intervention should be assessed for outcome variables

until the end of the study to avoid missing values. An important method to avoid a

differential loss to follow-up causing an attrition bias is blinding, for example,

blinding the participants may avoid participants in the control group dropping out

because they do not expect any benefit, and blinding of the personnel may ensure

that they make equal efforts to convince patients to remain in the study.

Information Bias

Performance Bias

Performance bias results from systematic differences between the study groups in

the care that is provided and the setting where the study takes place, for example,
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different monitoring, co-interventions, and diagnostic procedures. The main

methods to avoid performance bias include blinding participants and study person-

nel to make sure that the allocated intervention remains unknown, and thus has no

effect on the participants’ and study personnel’s behaviour.

Detection Bias

Detection bias, also called measurement bias, can arise from systematic differences

in the outcome assessment between the study groups, especially, if subjective end

points will be collected. This type of bias can be minimized by using standardized

methods and blinding of both the participants and the outcome assessors. For some

interventions, the intended blinding may not be effective due to (side) effects, such

as lowering of the heart rate caused by beta-blockers or a specific taste of a drug.

This may be avoided by comparing drugs with similar side effects or using an active

placebo. However, guessing the allocated study group correctly can simply reflect a

better outcome of the intervention of interest. Ineffective blinding can also induce

performance bias.

Other Sources of Bias

Selective Reporting Bias

More recently, research has focused not only on bias arising from trial conduct but

from publication of studies. There is increasing empirical evidence that within one

published study, the outcomes may be reported depending on the nature and

direction of the results. This selective reporting bias, also called outcome reporting

bias, can be viewed as a kind of publication bias (defined as selective reporting of

entire trials, see Chap. 15) within a study but not on study level. Others define both

selective reporting bias and publication bias among others as reporting bias.

Examples of selective reporting include unreported harms, negative results

presented more favourably or conclusions not supported by the actual study results.

Moreover, it was found that in a substantial number of studies, primary outcomes

were newly added, left out, or modified compared with the study protocol. How-

ever, in practice the study protocol may not be available for every study, making it

difficult to address selective reporting in the quality assessment.

Conflict of Interest

Authors’ conflict of interests is of growing major concern because there is evidence

that it can lead to biased study results. For example, reviews that do not find an

association between second-hand smoking and health risks are more often written

by authors with ties to the tobacco industry. Studies in the field of dental research
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showed more favourable results in industry-sponsored studies. There is also evi-

dence suggesting that pharmaceutical-sponsored drug studies are more likely to

report outcomes in favour of the sponsored product than non-industry-funded

studies. This could not be explained by the reported methodological quality, but

by inappropriate control interventions and publication bias.

It is not clear how to best deal with potential conflicts of interest. Simply

excluding industry-sponsored studies may not be practicable, especially not for

drug studies because those are often sponsored by industry. Efforts are focused on

higher transparency and decreasing the sponsor’s influence on study conduct and

publication.

Overview of Quality Assessment Tools

There are numerous tools to assess the study quality that show great variability in

the development process, the number of items included, time and effort required

and content characteristics. Tools can be divided into generic versus topic-specific

tools for specific diseases or health technologies. Most of the tools have been

developed for a specific design. This chapter focuses on tools for assessing

randomized controlled trials (RCT), which are considered the gold standard for

studies investigating the effectiveness or efficacy of different preventive or thera-

peutic interventions. In addition, diagnostic studies and screening studies are prone

to additional specific bias affecting the validity of the study results and have specific

checklists, for example, QUADAS for diagnostic studies suggested by Whiting

et al. (2004).

Types of Tools

The tools can be classified into checklists, scales and component ratings

(Table 13.2). Checklists and component ratings are qualitative tools, whereas scales

provide a quantitative assessment. The first checklist was published in 1961

followed by nine others before1993. The first scale was published in 1981 and a

total of 24 before 1993. Component ratings have been developed more recently; one

well-known tool, the risk of bias tool, was introduced by the Cochrane Collabora-

tion in 2008.

Quantitative Tools: Scales

In scales, each item is attributed a numerical score that will be combined to provide

a sum score. Adding the single scores leads to an implicit weighting of the single

items with each item being assigned the same weight. Some scales include
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weighting methods derived from the attributed importance of the single items for

the internal validity. Two of the best known scales were developed by Jadad et al.

(1996) and Downs and Black (1998). The short six-item scale of Jadad et al. covers

mainly aspects of the reporting quality rather than of conduct and thus cannot be

recommended for a thorough quality assessment. The scale of Downs and Black

includes elements that rate the internal validity as well as the external validity and

reporting, and addresses RCTs and observational studies (see Table 13.3).

Using a summary score to characterize the level of study quality may be

tempting by its simplicity: different studies can be easily compared with only one

parameter that can also be used as a threshold for the inclusion of studies, as a

weighting factor or for stratifying the studies in the meta-analysis. However, the

main argument against using scales is that an empirical proof for the implicit or

explicit weighting of the components included is missing, but this might now have

been addressed (see Chap. 14).

Qualitative Tools: Checklists and Components Ratings

A checklist is a list with at least two items without a numerical scoring system.

Tools with a component rating, also called domain-based evaluation, include

components or domains such as randomization or blinding that were rated qualita-

tively. The single components usually include several single methodological

elements and thus need detailed and precise guidance to achieve an unambiguous

assessment.

Some qualitative tools provide a qualitative rating of groups of several items

resulting in a qualitative overall assessment, or do a qualitative overall assessment

defined by specific criteria in the first place. There is great variety in doing and

incorporating summary assessments. However, there is no evidence that qualitative

overall assessment of study quality is associated with the study results.

Table 13.2 Types of tools

Type of tool Definition Examples of tools

Scale Every item is assigned a numerical

score combined to a summary score

Six-Item scale of Jadad et al. (1996)

Scale of Downs and Black (1998)

Checklist A list of at least two items without a

numerical rating system

Critical appraisal for therapy articles from

the Centre for Evidence Based

Medicine (CEBM)

MERGE (Method for Evaluating

Research and Guideline Evidence)

checklist for RCT (Liddle1996)

Component

rating

Components such as randomization or

blinding are assessed without a

numerical rating

Cochrane Collaboration’s risk of bias tool

(Higgins et al. 2011a)
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The Cochrane Collaboration’s Risk of Bias Tool

The Cochrane Collaboration’s tool is described in more detail as an example of a

component rating because it is widely discussed and incorporates some important

features. In 2008, the Cochrane Collaboration published a new tool developed in

Table 13.3 Covered elements of selected generic quality assessment tools with guidance

aD&B bCochrane cEBHPP dCASP eLBI fMERGE gCEBM

Type of tool Sc Co Co Cl Cl Cl Cl

Number of items/components 27 6 6 10 9 10 7

Overall assessment NSS QCR NSS – QOR QOR –

QOC

Randomization ● ● ● ● ● ● ●
Allocation concealment ● ● ● ●
Comparable groups ● ● ● ● ● ●
Blinding of participants ● ● ● ● ● ● ●
Blinding of outcome assessors ● ● ● ● ● ● ●
Blinding of personnel ● ● ●
Equivalence of performance ● ● ●
Placebo comparable with

verum

●

Co-interventions ●
Contamination ● ●
Compliance ● ●
Valid methods ●
Reliable methods ● ●
Follow-up ●
Follow-up contemporary ●
Adequate analyses ● ● ● ●
ITT analysis ● ● ● ● ●
Missing values ● ●
Confounding ● ● ●
Loss to follow-up ● ● ● ● ● ●
Differential loss to follow-up ●
Selective reporting ● ● ● ●
Financial funding

Cl checklist, Co component rating tool, NSS numerical sum score, QCR qualitative rating on level

of components, QOR qualitative overall rating, Sc scale
aDowns and Black, UK, 1998. For RCTs and observational studies, before and after studies
bRisk of bias tool (2nd version) from the Cochrane Collaboration, 2011. Further elements than

those marked may be covered by a component for other bias
cEffective Public Health Practice Project (EPHPP): quality assessment tool from MacMaster

University, Canada, 2004
dCritical Appraisal Skills Programme (CASP) from the Public Health Resource Unit, UK, 2006
eLudwig-Boltzmann Institute, Austria, 2007. German language
fMERGE (Method for Evaluating Research and Guideline Evidence) checklist for RCT
gCritical Appraisal for Therapy Articles from the Centre for Evidence Based Medicine (CEBM),

University of Oxford, UK, 2005
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expert meetings to harmonize quality assessments in Cochrane reviews. This risk of

bias tool became the recommended method throughout the Cochrane Collaboration.

The first version was followed by an evaluation by Higgins et al. (2011) resulting in

slight differences. The tool includes six bias domains with a total of seven sources

of potential bias: random sequence generation, allocation concealment, blinding of

participants and personnel, blinding of outcome assessors, incomplete outcome

data, selective reporting, and anything else, ideally prespecified. Each of these

items has to be assigned a low, high or unclear risk of bias with the reasons for

the judgement being documented to make the assessment process transparent. Items

that are not sufficiently reported to be judged are rated as having an unclear risk of

bias. Detailed guidance for making judgements is provided in the Cochrane Hand-

book and described by Higgins et al. (2011a).

As the assessment of the risk of bias is based partly on judgements that include

much room for interpretation, the reported inter-rater reliabilities are not as high as

for other tools. This can partly be explained by not giving exact thresholds for a

high risk rating, (e.g. more than 15 % missing values for rating the component

“incomplete outcome data”), because there is no evidence for these thresholds, and

thus, the respective items need more subjective assessment. The relatively high

amount of subjective judgement in the risk of bias tool remains challenging for the

reviewers and requires profound methodological knowledge.

If multiple outcomes are examined in meta-analysis, one important new princi-

ple applied in the risk of bias tool involves an outcome-specific evaluation of the

blinding items and missing outcome data. Whereas the risk of bias of the reported

methods of sequence generation and allocation concealment have an impact on all

study outcomes, the effect of blinding on the risk of bias depends on the subjectivity

of the specific outcome and can be assumed to be lower in more objective

outcomes. The outcome-specific assessment takes into account that different

outcomes incorporate different levels of risk of bias, for example, the risk of bias

of not blinding outcome assessors of all-cause mortality may be judged as low in

contrast to the risk of bias of self-reported outcomes. Missing values may vary

between different outcome variables, for example, at different points of time, and

thus lead to different judgements of the resulting risk of bias.

The overall risk of bias within a study is estimated qualitatively and should be

given for each important outcome based on the magnitude and the direction of bias.

Depending on the research topic, the judgement is focused on the components

defined as most important, also called key domains. A low risk of bias in all key

domains results in an overall low risk of bias that is unlikely to alter the study results

seriously, whereas a high risk of bias for one or more key domains leads to an

overall high risk of bias that may affect the results considerably.
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Elements of Quality Assessment Tools

Moher et al. (1995) and West et al. (2002) have compared available tools with

respect to their formal and methodological characteristics and content. Based on

these reviews, study elements were selected that have either demonstrated empiri-

cal evidence of an effect on the study results, such as randomization, allocation

concealment, blinding, ITT analysis, selective reporting bias, or its distorting effect

(see studies by Kjaergard, Odgaard-Jensen, Pildal, Wood and Porta in the bibliog-

raphy for more information). Table 13.3 provides an overview of the elements

covered in several generic tools that also provide guidance for the reviewer on how

to rate the items or components (derived from Dreier et al. (2010)). Table 13.3

raises no claim on selection of the best tools or on completeness. The following

elements are considered to characterize the tools: randomization method, allocation

concealment, comparability of study groups at baseline, blinding of the

participants, outcome assessors and study personnel, equivalence of performance

except of the intervention, placebo comparable with verum, co-interventions,

contamination, compliance, statistical methods, ITT analysis, incomplete outcome

data, selective reporting, and source of funding.

The component rating tool from the Cochrane Collaboration has already been

described. As it provides a component for other bias, further elements than those

indicated may be covered. The Effective Public Health Practice Project (EPHPP)

Quality Assessment Tool can be used to evaluate not only RCTs but also observa-

tional studies. It covers six components rated as strong, moderate or weak derived

from a numerical scoring of the single items that is averaged across the components

to the final sum score. Based on their sum score, studies are assessed as having a

weak, moderate or strong quality. This numerical scoring characterizes this tool as a

quantitative tool. The evidence that scales do not correctly rate the study quality, as

well as the fact that there is no rationale for the implicit weighting of elements, also

apply for the EPHPP tool. However, without the recommended numerical rating,

the tool can be classified as a component rating system.

The scale by Downs and Black (1998) was developed for assessing RCTs and

observational studies and includes explicitly designated items of internal validity,

external validity and reporting quality. Like for all scales, using the tool without

numerical rating and restricting to items of internal validity is recommended.

The other tools in the table are checklists; two of them provide a qualitative

overall assessment. The MERGE checklist for RCTs has been developed by the

New South Wales Department of Health, which also provides further design-

specific checklists. It is used by the Scottish Intercollegiate Guidelines Network

and is available in A Guidelines Developer’s Handbook. Each item can be rated as

well covered, adequately addressed, poorly addressed, not addressed, not reported,

or not applicable. An overall assessment of how well the study was done to

minimize bias has to be coded “++”, “+”, or “�”, as well as the likely direction

in which bias might affect the study results. Another checklist developed by the

Ludwig-Boltzmann Institute, Austria, is available in German in a manual on doing
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health technology assessments. The items can be rated as yes, no, not reported, not

applicable resulting in an overall assessment of internal validity being good,

sufficient, or insufficient. Two further checklists, one from the Centre of Evidence

Based Medicine, and another one from the Critical Appraisal Skills Programme,

provide no explicit overall assessment. The Critical Appraisal for Therapy articles

assesses the internal validity of the study results. Each item can be rated as yes, no,

or unclear; free text is provided for additional comments. The tool of the Critical

Appraisal Skills Programme starts with two screening questions to restrict the

assessment to RCTs. From the remaining eight items, four address not the risk of

bias, but random errors and external validity.

Selecting a Tool for Assessing Study Quality

The choice of a quality assessment tool should be based on how comprehensively a

tool covers the important elements for the specific research topic. Tools with a

numerical scoring system should not be used without a proper quantitative frame-

work (see Chap. 14). The elements of the tool should not be mixed up with

parameters to assess reporting quality or external validity. An accompanying

guide with details on the operationalizations of the items or components is

recommended to support the rating. It might be practical to select a generic tool

that can be applied for different meta-analyses, and to adjust it to the specific

requirements of the respective research topic and studies.

Conducting the Quality Assessment

Assessing study quality is a subjective process that is prone to reviewer bias and

may lead to systematically distorted results. It is generally accepted that two

reviewers should independently assess study quality and that discrepant ratings be

solved by consensus, preferably including at least one additional person. In some

reviews, the first reviewer rates and a second reviewer confirms these ratings.

However, as Buscemi et al. (2006) demonstrates that in? data extraction, the latter

method, although time-saving, produces more errors compared with both reviewers

first rating the risk of bias independently of each other. There are no such studies for

quality assessment, but since quality assessment is typically more subjective than

data extraction, the advantage of independent concurrent ratings could be even

greater.

Blinding reviewers to avoid reviewer bias means that the reviewers assess the

studies without knowing any identifying characteristics (such as title, authors, and

journal). Nevertheless, reviewer blinding is not common and may be impossible in

cases where reviewers have profound knowledge of the review topic. The effec-

tiveness of reviewer blinding is not clear because empirical studies examining the
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effect of reviewer blinding on quality assessment by Clark et al. (1999), Jadad et al.

(1999), Moher et al. (1998) and Zaza et al. (2000) show inconsistent results.

Further methods to minimize the subjectivity of evaluations include

standardization of the process to assure a high agreement in ratings. This can be

measured by the inter-rater reliability. Oxman (1994) has shown that higher agree-

ment is usually prevalent in items that provide less room for interpretation. For

example, for the Cochrane Collaboration tool, it was shown by Hartling et al.

(2009) that the inter-rater reliability was lower for components that need more

subjective ratings. This finding supports the need for a detailed guidance on how to

rate the single items and/or reviewer training in order to achieve consistent ratings.

Preferably, the chosen tool should be piloted in advance to determine if the

guidance for the assessment needs to be supplemented or modified to make sure

that criteria are applied consistently. Three to six studies that cover a broader range

of study quality are recommended for the piloting process.

A quality assessment tool should be used together with a detailed and precise

guide to minimize the subjectivity of the rating and to ensure that reviewers

know exactly how to rate the items or components. A piloting process is

recommended to adjust the guide to the studies that are being analysed.

A recently introduced principle involves outcome-specific assessment of the risk

of bias for the items blinding and incomplete outcome data. These items can have

different impacts on the risk of bias depending on the specific outcome. An outcome-

specific assessment, at least for groups of outcomes, is explicitly required in the

Cochrane Collaboration’s tool. This useful principle might also be implemented

when using other tools.

When assessing multiple outcomes, the risk of bias should be rated separately

for each outcome (outcome-specific risk of bias assessment).

Derived from the Cochrane Collaboration’s tool, it is recommended that the

study characteristics that were used for judgements are documented. Although this

approach may be time consuming, it may hasten consensus, and importantly, ensure

the transparency of the quality assessment.

In summary, reviewers should have rigorous methodological knowledge. It is

useful to include experts on the review topic (with sufficient methodological

knowledge) to perform the quality assessment or to advise on the clinical aspects

and specific methodological problems. Some analytical methods may go beyond

the reviewers’ expertise; in those cases it may be necessary to recruit additional

experts to assess the appropriateness of complex statistical analyses, for example,

multivariable models and other methods used in special study designs.
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Quality assessment is a lengthy process that includes the preparation (choice of

tool, the operationalization process of the single items or components, and a priori

decision on how to integrate the results of the quality assessment), the actual rating,

and formulation of the final consensus. Therefore, for reliable quality assessment

being a key part in meta-analysis with far-reaching implications on health care

decisions, it is crucial to have realistic time expectations and sufficient resources

and personnel.
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Huwiler-Müntener K, Jüni P, Junker C, Egger M (2002) Quality of reporting of randomized trials

as a measure of methodologic quality. JAMA 287:2801–2804

Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, Gavaghan DJ, McQuay HJ (1996)

Assessing the quality of reports of randomized clinical trials. Is blinding necessary? Control

Clin Trials 17:1–12

Juni P, Witschi A, Bloch R, Egger M (1999) The hazards of scoring the quality of clinical trials for

meta-analysis. JAMA 282:1054–1060

Juni P, Altman DG, Egger M (2001) Systematic reviews in health care: assessing the quality of

controlled clinical trials. BMJ 323:42–46

Kjaergaard LL, Villumsen J, Cluud C (2001) Reported methodologic quality and discrepancies

between large and small randomized trials in meta-analyses. Ann Intern Med 135:982–989

Kunz R, Oxman AD (1998) The unpredictability paradox. Review of empirical comparisons of

randomised and non-randomised clinical trials. BMJ 317:1185–1190

Lexchin J, Bero LA, Djulbegovic B, Clark O (2003) Pharmaceutical industry sponsorship and

research outcome and quality: systematic review. BMJ 326:1167–1170

Liddle J, Williamson M, Irwig L (1996) Method for evaluating research and guideline evidence.

New South Wales Department of Health, Sydney

Lohr KN, Carey TS (1999) Assessing “best evidence”. Issues in grading the quality of studies for

systematic reviews. Jt Comm J Qual Improv 25:470–479

Ludwig-Boltzmann Institut HTA. (Internes) Manual–Abläufe und Methoden Tl. 2. 2007. Wien,
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Chapter 14

Meta-analysis I

Computational Methods

Suhail A.R. Doi and Jan J. Barendregt

Abstract Meta-analysis is now used in a wide range of disciplines, in particular

epidemiology and evidence-based medicine, where the results of some meta-

analyses have led to major changes in clinical practice and health care policies.

Meta-analysis is applicable to collections of research that produce quantitative

results, examine the same constructs and relationships, and have findings that can

be configured in a comparable statistical form called an effect size (e.g. correlation

coefficients, odds ratios, proportions, etc.), that is, are comparable given the

question at hand. These results from several studies that address a set of related

research hypotheses are then quantitatively combined using statistical methods.

This chapter provides an in-depth discussion of the various statistical methods

currently available, with a focus on bias adjustment in meta-analysis.

Introduction

Meta-analysis is now used in a wide range of disciplines, in particular epidemiology

and evidence-based medicine where the results of some meta-analyses have led to

major changes in clinical practice and health care policies. Meta-analysis is appli-

cable to collections of research that produce quantitative results, examine the same

constructs and relationships and have findings that can be configured in a compara-

ble statistical form called an effect size (ES) (e.g. correlation coefficients, odds

ratios, proportions, etc.), that is, are comparable given the question at hand. These

results from several studies that address a set of related research hypotheses are then

quantitatively combined using statistical methods. The set of related research

hypotheses can be demonstrated at a broad level of abstraction; for example,
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where various therapies are lumped together such as laser, wedge resection and

interstitial ablation. Alternatively, it may be at a narrow level of abstraction and

represent pure replications. The closer to pure replications the collection of studies

is, the easier it is to argue comparability. Forms of research suitable for meta-

analysis include group contrasts such as experimentally created groups, that is,

comparison of outcomes between experimental and control groups and naturally or

non-experimentally occurring groups (treatment, prognostic or diagnostic features).

Pre-post contrasts can also be meta-analysed, for example, changes in continuous or

categorical variables. Another area for meta-analysis is central tendency research

such as incidence or prevalence rates and means. Association between variables can

be meta-analysed, such as correlation coefficients and regression coefficients.

The meta-analysis differs from the systematic review in that the focus changes to

the direction and magnitude of the effects across studies, which is what we are

interested in anyway. Direction and magnitude are represented by the ES and

therefore this is a key requirement for, and is what makes meta-analysis possible.

It is a quantitative measure of the strength of the relationship between intervention

and outcome and it encodes the selected research findings on a numeric scale. There

are many different types of ES measures, each suited to different research

situations. Each ES type may also have multiple methods of computation. The

type of ES must be comparable across the collection of studies of interest for meta-

analysis to be possible. This is sometimes accomplished through standardization

when some or all of the studies use different scales (e.g. the standardized mean

difference). A standard error must be calculable for that type of ES because it is

needed to calculate the meta-analysis weights, called inverse variance weights

(more on this later) as all analyses are weighted. Thus, it is important to abstract

ES information from studies if the systematic review is to be followed up with a

meta-analysis. The pooled estimate is usually computed by meta-analysis software

based on the ES input selected. The software we have created is MetaXL (www.

epigear.com) and it also has an option to enter the ES and standard error (SE)

directly or to bypass the SE input thus allowing a multivariable adjusted ES to be

entered directly.

It is therefore evident that combining quantitative data (synthesis) is what is

central to the practice of meta-analysis. The basic underlying premise is that the

pooled results from a group of studies can allow a more accurate estimate of an

effect than an individual study because it overcomes the problem of reduced

statistical power in studies with small sample sizes. However, pooling in meta-

analysis must be distinguished from simple pooling where there is the implication

that there is no difference between individual studies (or subgroups) so that it is

seemingly acceptable to consider that the data from the control group of one study

might just have easily come from the control group of another study. Bravata and

Olkin (2001) point out that in reality, by simple pooling, we are assigning different

weights to intervention and control groups and this can lead to paradoxical results.

Of course, if the individual studies have the same sample size in the intervention

and control groups (studies are balanced) such paradoxes will not occur and this

explains why balanced designs are advocated for randomized controlled trials and
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why simple pooling of centres is sometimes used in such multi-centre trials.

Bravata and Olkin (2001) emphasize that while simple pooling is obtained by

combining first, then comparing, the meta-analytic method compares first, then

combines. Thus, the order in which the operations of combining and comparing are

carried out is the difference between simple pooling and combining data for meta-

analysis and will yield different answers. Combining data via meta-analysis there-

fore provides a safeguard against reversals such as Simpson’s paradox that can

occur from simple pooling.

Common Effect Sizes

Standardized Mean Difference and Correlation

This is commonly used with group contrast research, treatment groups and naturally

occurring groups where the measurements are inherently continuous. It uses the

pooled standard deviation (some situations use control group standard deviation)

and is called Cohen’s “d” or occasionally Hedges “g”. The standardized mean

difference can be calculated from a variety of statistics and calculators are available

for various methods and remember that any data for which you can calculate a

standardized mean difference ES, you can also calculate a correlation type

ES. Standardized mean difference ES has an upward bias when sample sizes are

small but this can be removed with the small sample size bias transformation. If

N ¼ n1 + n2 then

ES0sm ¼ ESsm 1� 3

4N � 9

� �

Correlation has a problematic standard error formula and this is needed for the

meta-analysis inverse variance weight. In this case the Fisher’s Zr transformation is

used:

ESZr ¼ 0:5 ln
1þ r

1� r

� �

and results can be converted back into r with the inverse Zr transformation:

r ¼ e2ESZr � 1

e2ESZr þ 1
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Odds Ratio/Relative Risk

Again this is used with group contrast research but this time there the measurements

are inherently dichotomous. The odds ratio is based on a 2 by 2 contingency table

and is the odds of success in the treatment group relative to the odds of success in

the control group. Odds ratio/RR are asymmetric and have a complex standard error

formula. Negative relationships are indicated by values between 0 and 1. Positive

relationships are indicated by values between 1 and infinity. To solve this imbal-

ance, the natural log of the odds ratio/RR is used in meta-analysis.

ESLOR ¼ ln OR½ �; ESLRR ¼ ln RR½ �

In this case a negative relationship is <0, no relationship ¼ 0, and a positive

relationship is>0. Results can be converted back into odds ratios/RR by the inverse

natural log function.

Proportion/Diagnostic Studies

This is used in central tendency research e.g. prevalence rates and other proportions

such as sensitivity and specificity. Proportions have an unstable variance and thus

transformed proportions are automatically used by the software. We use the double

arcsine square root transformation in MetaXL (http://www.epigear.com) and more

details are given in the section below on proportions.

Pooling Effect Sizes

The Fixed Effects Model

The standard approach frequently used in weighted averaging for meta-analysis in

clinical research is termed the inverse variance method or FE model based on

Woolf (1955). The average ES across all studies is computed whereby the weights

are equal to the inverse variance of each study’s effect estimator. Larger studies and

studies with less random variation are given greater weight than smaller studies. The

weights (w) allocated to each of the studies are then inversely proportional to the

square of the SE; thus for the ith study

wi ¼ 1

SEi
2

which gives greater weight to those studies with smaller SEs.
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As can be seen above, the variability within each study is used to weight each

study’s effect in the current approach to combining them into a weighted average as

this minimizes the variance (assuming each study is estimating the same target). So,

if a study reports a higher variance for its ES estimate, it would get lesser weight in

the final combined estimate and vice versa. This approach, however, does not take

into account the innate variability that exists between the studies arising from

differences inherent to the studies such as their protocols and how well they were

executed and conducted. This major limitation has been well recognized and it gave

rise to the random effects (RE) model approach by DerSimonian and Laird (1986).

The Random Effects Model

A common model used to synthesize heterogeneous research is the RE model of

meta-analysis. Here, a constant is generated from the homogeneity statistic Q and,

using this and other study parameters, a random effects variance component

(REVC) (τ2) is generated. The inverse of the sampling variance plus this constant

that represents the variability across the population effects is then used as the

weight

w�
i ¼

1

SE2
i þ τ2

where w�
i is the RE weight for the ith study. However, because of the limitations of

the RE model, when used in a meta-analysis of badly designed studies, it will still

result in biased estimates even though there is statistical adjustment for ES hetero-

geneity (Senn 2007). Furthermore, such adjustments, based on an artificially

inflated variance, lead to a widened confidence interval, supposedly to reflect ES

uncertainty, but Senn (2007) has pointed out that they do not have much clinical

relevance.

The weight that is applied in this process of weighted averaging with an RE

meta-analysis is achieved in two steps:

• Step 1: Inverse variance weighting

• Step 2: Un-weighting of this inverse variance weighting by applying an REVC

that is simply derived from the extent of variability of the ESs of the underlying

studies.

This means that the greater this variability in ESs (otherwise known as hetero-

geneity), the greater the un-weighting and this can reach a point when the RE meta-

analysis result becomes simply the un-weighted average ES across the studies. At

the other extreme, when all ESs are similar (or variability does not exceed sampling

error), no REVC is applied and the RE meta-analysis defaults to simply a fixed
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effect meta-analysis (only inverse variance weighting). Al Khalaf et al. (2011) have

pointed out that the extent of this reversal is solely dependent on two factors:

1. Heterogeneity of precision

2. Heterogeneity of ES

Since there is absolutely no reason to automatically assume that a larger

variability in study sizes or ESs automatically indicates a faulty larger study or

more reliable smaller studies, the re-distribution of weights under this model bears

no relationship to what these studies have to offer. Indeed, there is no reason why

the results of a meta-analysis should be associated with this method of reversal of

the inverse variance weighting process of the included studies. As such, the changes

in weight introduced by this model (to each study) results in a pooled estimate that

can have no possible interpretation and, thus, bears no relationship with what the

studies actually have to offer.

To compound the problem further, some statisticians are proposing that we take

an estimate that has no meaning and compute a prediction interval around it. This is

akin to taking a random guess at the effectiveness of a therapy and under the false

belief that it is meaningful try to expand on its interpretation. Unfortunately, there is

no statistical manipulation that can replace commonsense. While heterogeneity

might be due to underlying true differences in study effects, it is more than likely

that such differences are brought about by systematic error. The best we can do in

terms of addressing heterogeneity is to look up the list of studies and attempt to un-

weight (from inverse variance) based on differences in evidence of bias rather than

ES or precision that are consequences of these failures.

Problems with These Conventional Models

One problem with meta-analysis is that differences between trials, such as sources

of bias, are not addressed appropriately by current meta-analysis models. Bailey

(1987) lists several reasons for such differences: chance, different definitions of

treatment effects, credibility-related heterogeneity (quality), and unexplainable and

real differences. An important explainable difference is credibility-related hetero-

geneity (quality) and this has been defined by Verhagen et al. (2001) as the

likelihood of the trial design generating unbiased results that are sufficiently precise

to allow application in clinical practice. The flaws in the design of individual

studies have obvious relevance to creating heterogeneity between trials as well as

an influence on the magnitude of the meta-analysis results. If the quality of the

primary material is inadequate, this may falsify the conclusions of the review,

regardless of the presence or absence of ES heterogeneity. The need to address

heterogeneity in trials via study-specific assessment has been obvious for a long

time and the solution involves more than just inserting a random term based on ES

heterogeneity as is done with the RE model.
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Previous studies that have attempted to investigate incorporation of some study-

specific components in the weighting of the overall estimate concluded that

incorporating such information into weights provided inconsistent adjustment of

the estimates of the treatment effect. Although these authors follow the same

assumption as we do that studies with deficiencies are less informative and should

have less influence on overall outcomes, methodology was flawed and such

attempts therefore did not reduce bias in the pooled estimate, and may have resulted

in an increase in bias.

A study score-adjusted model that overcomes several limitations has been

introduced by Doi and Thalib (2008, 2009). The rationale was that in a group of

homogeneous trials, it is assumed that because the ESs are homogeneous, the

studies are all estimating the same target effect (we can call this a type A trial).

In this situation, the inverse variance weights of Woolf (1955) will minimize the

variance since the mean squared error (MSE) ¼ expected(estimate � true)2 ¼
variance + (bias)2. Bias is zero if the underlying true ESs are equal and thus

minimizing variance is optimal and the weighted MSE ¼ variance. It is thought

that the inverse variance-weighted analysis tests the null hypothesis that all studies

in the meta-analysis are identical and show no effect of the intervention under

consideration regardless of homogeneity. This requires the assumption that trials

are exchangeable so that if one large trial is null and multiple small trials show an

effect, the large trial essentially decreases evidence against the null hypothesis.

Exchangeability, however, is likely to be conditional only, as discussed later, and

thus this is a big assumption. Therefore, if we do not believe the trials are

exchangeable then, in this situation, we have two alternatives: either the trials

have been affected by bias even though the underlying true effects are identical

(we can call these type B trials) or the trials represent different underlying true

effects (we can call these type C trials). In the former case, the trial ES from a

biased trial might seem like it is coming from a different underlying true effect, thus

giving the impression that the trials represent different underlying true effects. In

type B trials, inverse variance weights do not minimize the variance, it just

exaggerates it and creates gross bias in these situations. Furthermore, any set of

weights in a type A situation estimates the same target, but in a type B situation each

set of weights estimates a different target. Thus, inverse variance weights in the

latter situation just increase bias and are not optimal for type B trials. Thus, in type

B trials, we would want to use situation-specific weights.

One such situation-specific weight that has been suggested for type B trials is

weighting according to the probability (Qi) of credibility (internal validity or

quality) of the studies making up the meta-analysis. Although this can correct for

distortions due to systematic error, it can also introduce errors of another type. For

example, a study of a small sample that is not representative of the underlying

population may get a large quality weighting and this can skew the data. It might

thus be informative to weight according to precision and then redistribute the

weights according to situation-specific requirements. In this case, the importance

of smaller good quality studies are upgraded only if the larger or more precise

studies are deemed poor by its situation-specific weight.
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This line of thought is not new as this is precisely what the RE model attempts to

do. The unfortunate thing, however, is that the situation-specific weight used in this

particular model is an index of the variability of the ESs across trials and the same

situation-specific weight is applied to all trials (the RE model). It becomes quite

clear that the type B meta-analysis differ from the RE model in that between-study

variability is visualized as a fixed rather than a random effect and thus represents an

extension of a fixed effects model that can address heterogeneity. In type B trials,

the expectation is that the expected value of the study estimate differs from the

grand (real) mean (μ) by an amount βj and the true (study-specific) mean (θj) for
study j is given by θj ¼ μ + βj. The divergence, however, is that the βj are not

interpreted as a random effect with type B studies and thus do not have a common

variance. The philosophy behind the random effect construct is that it presupposes

that the study effects are randomly sampled from a population with a varying (σ2τ
> 0) underlying parameter of interest. Overton (1998) thus has stated that if the

studies included in the meta-analysis differ in some systematic way from the

possible range in the population (as is often the case in the real world), they are

not representative of the population and the RE model does not apply, at least

according to a strict view of randomization in statistical inference.

In addition, with the RE model, the weight of the larger studies are redistributed

to smaller studies but τ2 has a decreasing effect as study precision declines. The size
of τ2 is determined by how heterogeneous the ESs are and if τ2 is zero, the RE model

defaults to the FE model. If we focus on the largest study, the bigger its difference

from other studies, the bigger the τ2 and the decrease in weight of this study. Al

Khalaf et al. (2011) demonstrates that τ2 has a U-shaped association with ES in the

largest study, being minimal when the largest study conforms to other study ESs,

and as this ES departs from that of other studies, τ2 increases. The weight of the

largest study then declines as τ2 increases. However, while the biggest individual

study weight decrements associated with bigger τ2 follow a predictable pattern, the

impact of different τ2 values on the pooled estimate is unpredictable. This happens

because, although individual study weight changes are predictable from τ2 , the
relationship of weight gain across smaller studies bears no relationship to which

study shows the most ES heterogeneity, or indeed any tangible information from

the study.

The Quality Effects Model

In order to rectify this situation, an alternative approach was proposed by Doi and

Thalib (2008) and subsequently modified in 2011 and 2012. The main reasoning

was: suppose there are K studies in a set of studies that belong to a meta-analysis

and xj and wj are random variables representing the ES and normalized (sum to 1)

weights, respectively, with the study labels j ¼ 1,. . .,K. The expected value of xj
was taken to be the underlying parameter (μ) being estimated. However, in this

situation, the ESs are assumed to be similar in the sense that the study labels
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(j ¼ 1,. . .,K) convey no information and are thus considered independent and

identically distributed (IID). The reality is that each of these labels (representing

independent studies) is associated with specific information about the likelihood of

systematic bias (βj) and thus for all j the xj are in fact only conditionally IID and

would be estimating a specific biased parameter. Assuming that heterogeneity

derives from essentially non-random systematic error and randomness is only

obtained via a random permutation of the indices 1,2,. . .,K, then details about the

design of study j do provide information about these systematic errors and can be

represented by a hierarchical model for each study:

βj � Nðβ;ϕ2Þ ðbias effectsÞ

ðxj j dμþ βjÞ �indepNð dμþ βj; σj
2 þ ϕ2

j Þ ðstudyÞ

The bottom level of underlying effects, the study level of the hierarchical model,

says that because of relevant differences in methodology and systematic errors,

each study has its own underlying treatment effect μþ βj , and the observed ES

differences xj are like random draws from a normal distribution with mean dμþ βj
and variance σj2 þ ϕ2

j (the normality is reasonable because of the central limit

theorem). Thus, a suitable linear model for the jth study (not considering across all

studies) can be written as

xj ¼ dμþ βj þ εj (14.1)

and for each study

EðxjÞ ¼ dμþ βj

Also, under the assumption of no prior information about weights (wj) except

that they sum to 1, they will be equally distributed with the expected value of wj

being 1/K for all j. If c ¼ Covðwj; xjÞ is the covariance of these random quantities

across all studies, then

EðwjxjÞ ¼ Covðwj; xjÞ þ EðxjÞEðwjÞ ¼ cþ dμþ βj=K

and thus summing across all studies,

E
XK
j¼1

ðwjxjÞ
 !

¼ μþ 1

K

X
βj þ Kc

since E(wj) ¼ 1/K.
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Thus, it is clear that if we use empirical weights, c is not zero,Σβj is also not zero
and the meta-analytic estimate for μ is biased. It is probably true, as suggested by

Shuster (2010), that the unweighted estimate is a less biased estimate in situations

where wj and xj are correlated. However, it is clear that an unbiased estimate of μ
will not be provided unless the average βj ¼ 0, so systematic error also leads to

increase in bias.

Everything hinges on the variance and, therefore, the mere observation that the

unweighted estimate is likely to be unbiased does little to reaffirm our confidence in

its utility without a simultaneous measure of its global error (with respect to its

parameter). The MSE thus has to be minimized and the fact that bias is included as a

component is important because the judgment of the performance of the model

depends on the trade-off between the amount of bias and the variability.

It may be noted that for a particular study,

VarðxjwjÞ ¼ ðσ2j þ ϕ2
j Þw2

j

Therefore,

Var
X

xjwj

� �
¼
X

ðσ2j þ ϕ2
j Þw2

j (14.2)

Also, under the constraint that Σw ¼ 1 and only if σj2 þ ϕ2
j was equal for all K

studies, does the variance attain its minimum value for equal weights, and its

maximum when all weights except one are zero. This is not the case from

Eq. 14.2 and the naturally weighted average is expected to have a poor

bias–variance trade-off. The only logical solution therefore is to discount studies

that are expected to have an inflated value for βj. This can be achieved by linking βj
to the probability that a study is credible as follows. If β ¼ 0 and if

XK
j¼1

β2j =K ¼ ϕ2

then

Qj ¼ ϕ2=ðϕ2 þ ϕ2
j Þ

which can be interpreted as the probability that study j is credible as described

previously by Spiegelhalter and Best (2003) or Turner et al. (2009). Therefore,

ϕ2
j ¼ ðϕ2 � Qjϕ

2Þ=Qj
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What this means is that as Qj and the individual study bias variance (ϕ2
j ) are

inversely related and thus an inverse discounting system for such studies based on

Qj should be optimal if the expected increase in bias ends up being traded off by

larger decreases in variance. This is a logical conclusion also reiterated by Burton

et al. (2006) as any method that results in an unbiased estimate but has large

variability cannot be considered to be have much practical use.

To discount by quality requires computation of an adjusted Qj first as follows

(See Doi et al. 2011, 2012):

Qj adjð Þ ¼

PK
j¼1

Qj

 !
τj

PK
j¼1

τj

 !
K � 1ð Þ

0
BBBB@

1
CCCCA

þ Qj if 9Qj

� �
Qj < 1

Qj otherwise:

8>>>>>>><
>>>>>>>:

where

τj ¼ iwj � ðiwj � QjÞ
K � 1

and iwj is the inverse variance weight of study j, Qj is the credibility of study j
ranging from 0 to 1 and K is the number of studies in the meta-analysis. From the

adjusted quality parameter, a quality adjustor is then computed given by

τ̂j ¼
XK
j¼1

τj

 !
K

QjðadjÞ
PK
j¼1

QjðadjÞ

0
BBB@

1
CCCA� τj

This is then used to compute the study bias-specific variance component Q̂j as

follows:

Q̂j ¼ Qj þ τ̂j
iwj

� 	

What these equations do is replace the REVC with study-specific variance

components so that the target this meta-analysis is estimating becomes meaningful.

Given that the final weight for the study iswδ
j ¼ iwjQ̂j, the final summary estimate is

then given by
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�xQE ¼
P ðwδ

j � xjÞP
wδ
j

¼
P ðQ̂j � iwj � xjÞP ðQ̂j � iwjÞ

where �x is the pooled ES measure and it has a variance (V) given by

VQE ¼
X

σ2j
wδ
jP
wδ
j

 !2

Given that iwj ¼ 1=σ2j , this reduces to:

VQE ¼
P ðQ̂j

2 � iwjÞ
P ðQ̂j � iwjÞ
� �2

However, there is expected to be significant overdispersion and thus this vari-

ance estimate underestimates the true variance and can lead to a confidence interval

with poor coverage. To rectify this, a correction factor (CF) has been proposed for

overdispersion based on iterative simulation studies using the Q statistic (χc ) as
follows (Doi et al. 2011):

CF ¼ 1�max 0;
χc � ðK� 1Þ

χc

� �� 	0:25

For computation of the variance of the weighted average, the variance of each

study is then inflated to the power CF as follows:

iw0
j ¼ 1

σ2j

� �CF if σ2j < 1 or iw0
j ¼ 1

σ2j

� �ð2�CFÞ if σ2j � 1

This can then be used to update VQE as follows:

VQE ¼
P ðQ̂j

2 � iw0
jÞ

P ðQ̂j � iw0
jÞ

� �2

Assuming the distribution of these estimates are asymptotically normal, the 95 %

confidence limits are easily obtained by

95% CI ¼ ES� 1:96ð ffiffiffiffiffiffiffiffiffi
VQE

p Þ
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It becomes quite clear, that the quality-based method differs from the RE model

in that between-study variability is visualized as a fixed rather than a random effect

and thus represents an extension of a fixed effects model that can address heteroge-

neity. In both the classic random effect method and the quality-based method, the βj
is taken to be the difference between the grand (real) mean (μ) and the true (study-

specific) mean (xj) for study j (βj ¼ xj � μ). The divergence, however, is that the βj
are not interpreted as a random effect with the quality-based method and thus do not

have a common variance. The philosophy behind the random effect construct is that

it presupposes that the xj values are randomly sampled from a population with a

varying underlying parameter of interest (τ2 > 0). However, if the studies included

in the meta-analysis differ in some systematic way from the possible range in the

population (as is often the case in the real world), they are not representative of the

population and the RE model does not apply, at least according to a strict view of

randomization in statistical inference (Overton 1998). The quality-based method

therefore corrects this by interpreting the βj as a fixed effect related to the study

itself (based on systematic or related errors) and thus the effect of a varying target

created by this bias can be minimized by discounting studies where within-study

bias variance (ϕ2
j ) is likely to be large relative to between-study bias variance (ϕ2).

Such discounting requires a robust mechanism to avoid increasing bias and to

simultaneously allow incorporation of sampling errors into the model as detailed

above based on previous work on this subject. As mentioned by Eisenhart (1947),

which situation applies to the model is the deciding factor in determining whether

effects are to be considered as fixed or random and when inferences are going to be

confined to the effects in the model, the effects are considered fixed.

While with this model we assume that non-credibility leads to bias in the ES, this

supposition is backed by clear evidence from several authors such as Balk et al.

(2002), Conn and Rantz (2003), Egger et al. (2003), Moher et al. (1998),

Schulz et al. (1995) and others suggesting that inadequate methodology correlates

with bias in the estimation of treatment effects. However, there could be instances

where lack of credibility does not lead to bias in the estimation of treatment effects

(or alternatively where such biases may have been obscured by the lack of credibil-

ity). In such cases, the quality effects (QE) model is still valid and credibility

information results simply in decreased confidence (wider confidence intervals) in

the pooled estimate. We do not delete lower quality studies because every study has

something to add to the weighted estimate. We do not know what the relationship of

study-specific scores are to the magnitude or direction of bias. However, if this

weighting is not based on study- or goal-specific attributes, then the weighted

estimate loses meaning. A sensitivity analysis, on the other hand, can only tell us

that subgroups are heterogeneous but not what the true estimate is likely to be. In

studies that vary due to systematic error, study-specific scores can lead to the best

approximation of the true ES. The letter would not be possible with either the RE

model or sensitivity analyses.

When weighting study estimates by their study-specific scores, we must keep in

mind that these scores do not tell us the direction or magnitude of the change in ES
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that is attributable to that score. The QE method of Doi and Thalib (2008), is not

constrained by this limitation, because, unlike previous methods, it does not adjust a

study weight directly but redistributors it in relation to all other study weights based

on its quality status. This is exactly what the RE model does too, the major

difference being that the latter adds on weight to smaller studies without any

rationale for doing so and the process ultimately becomes random. This is because

τ2 is not individualized to each study as τ̂i is in the QE model. A gradual increase in

weight of smaller studies with quality is seen but not with ES heterogeneity. This

also explains why previous attempts by Berard and Bravo (1998) or Tritchler

(1999) to incorporate study-specific scores into weights have failed to provide

sufficient adjustment of the estimates of treatment effects as they failed to consider

ramdom error or counterintuitively decided to incorporate study-specific scores

over the random redistribution in an RE model.

Greenland (1994) suggested more than a decade ago that quality scoring merges

objective information with arbitrary judgments in a manner that can obscure

important sources of heterogeneity among study results. He gave the example of

dietary quality scoring in the Nurses Health Study and states that the result would

likely indicate no diet effects associated with disease if the effects of important

quality items are confounded within strata of the summary quality score. The

problem is to use the information regarding quality in this way. If we viewed the

diet quality score as the probability that a nurse’s diet is accurately measured, we

would be able to rank nurses from best to worst reliability of dietary information.

Even if this ranking is subjective or poor, we would still be more confident about the

relationship between diet and disease in high scorers than in low scorers. This is the

correct use of quality scores, but cannot be demonstrated with conventional meta-

analysis models (Al Khalaf et al. 2011) given that the spread of precision and ES

take precedence over stratification by quality score. The fact that previous authors

used scores as exclusion criteria or to sequentially combine trial results using these

models would only increase bias by altering the range of precision and ES

differences among stratified studies. This is probably the reason why many authors

such as Balk et al. (2002), Herbison et al. (2006), Juni et al. (1999) and Whiting

et al. (2005) all report that stratification of meta-analyses by quality score has no

clear impact on the pooled estimate.

Study-specific assessment has not, until now, found an acceptable means of

becoming an important part of meta-analyses. More than half of published meta-

analyses do not specify in the methods whether and how they would use study-

specific assessment in the analysis and interpretation of results, and only about 1 in

1,000 systematic reviews consider weighting by quality score (Moja et al. 2005).

This is probably because of the lack, until now, of an adequate model to do so and

therefore those meta-analyses that had an a priori conceptualization of quality

simply linked it to the interpretation of results or to limit the scope of the review.

Although there is no gold standard and we still do not know how best to measure

quality, this is not an obstacle to QE analysis because it works with any quality

score. Given that we have demonstrated that the RE model randomly adjusts
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estimates of treatment effects in a meaningless fashion, it may now be time to

switch from observed random statistical ES heterogeneity to models that are based

on measured study-specific estimates of their heterogeneity.

The Special Case with Proportions in Meta-analysis

Just about all epidemiologists habitually speak of the prevalence rate, but preva-

lence is defined as a proportion: the number of cases in a population divided by the

population number. This definition implies that (1) prevalence is always between

0 and 1 (inclusive), and (2) the sum over categories always equals 1.

The definition of prevalence is the same as the definition of the binomial

distribution (number of successes in a sample), and therefore the standard assump-

tion is that prevalence follows a binomial distribution. With the main meta-analysis

methods based on the inverse variance method (or modifications thereof), the

binomial equation for variance (expressed as a proportion) can be used to obtain

the individual study weights:

VarðpÞ ¼ pð1� pÞ
N

where p is the prevalence proportion and N is the population size.

With the variance of the individual studies nailed down, the pooled prevalence

estimate P then becomes (according to the inverse variance method)

P ¼
P

i
pi

VarðpiÞP
i

1
VarðpiÞ

with SE

SEðPÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

1

VarðpiÞ

s
(14.3)

The confidence interval of the pooled prevalence can then be obtained by

CIγðPÞ ¼ P� Zα=2SEðPÞ

where Zα=2 denotes the appropriate factor from the standard normal distribution for

the desired confidence percentage (e.g. Z0.025 ¼ 1.96).

While this works fine for prevalence proportions around 0.5, increasing

problems arise when the proportions get closer to the limits of the 0. . .1 range.

The first problem is mostly cosmetic: the equation for the confidence interval does
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not preclude confidence limits outside the 0. . .1 range. While this is annoying, the

second problem is much more substantial: when the proportion becomes small or

big, the variance of the study is squeezed towards 0 (see Eq. 14.3). As a conse-

quence, in the inverse variance method, the study gets a large weight. A meta-

analysis of prevalence according to the method described above therefore puts

undue weight on the studies at the extreme of the 0. . .1 range.

One way to avoid the problem of variance instability with extremes of preva-

lence is to estimate the SE, not using the individual proportions, but the overall

proportion:

VarðpicÞ ¼
ptotalð1� ptotalÞ

Nic

The numerator is now the same for every study and there is no longer the

problem where studies with proportions near 50 % get much smaller weights than

studies with proportions much smaller or much larger than 50 %. This approach

also avoids the problem where a study has 100 % prevalence proportion.

wic ¼ Nic

pCtotalð1� pCtotalÞ

where c ¼ 1,. . .,k denotes a particular category out of k categories. In a fixed effect
model, use of the pooled proportion to get individual variances would be exactly the

same as using individual proportions for variances because the SE of the pooled

prevalence in category c becomes

1P
wic

¼ pCtotalð1� pCtotalÞP
Nic

Since each study gets the same weight across categories, this method ensures

that the pooled category prevalences sum to 1. However, the confidence interval

does not preclude confidence limits outside the 0. . .1 range, so that problem

persists.

The Logit Transformation

To address this issue of estimates falling outside the 0. . .1 range, the logit transfor-

mation was proposed and, at that time, it was thought that it would address both the

problems mentioned above. It is given by

logitðpÞ ¼ ln
p

1� p

� 	
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with variance

VarðlogitðpÞÞ ¼ 1

Np
þ 1

Nð1� pÞ

The logit of a proportion has an approximately normal distribution, and as it is

unconstrained, it was thought it would avoid the squeezing of the variance effect.

The meta-analysis is then carried out on the logit transformed proportions, using the

inverse of the variance of the logit as the study weight. For the final presentation,

the pooled logit and its confidence interval are back transformed to a proportion

using

P ¼ expðlogitðPÞÞ
expðlogitðPÞÞ þ 1

While the logit transformation solves the problem of estimates falling outside

the 0. . .1 limits, unfortunately, it does not succeed in stabilizing the variance; rather

there is a reversal of the variance instability of the non-transformed proportions and

studies with proportions close to 0 or 1 get their variance estimates grossly

magnified and vice versa for proportions around 0.5. The variance instability that

plagued non-transformed proportions thus persists even after logit transformation.

It has therefore been suggested that, as a rule of thumb, the logit transformation

should be used when prevalences are less than 0.2 or more than 0.8.

The Freeman–Tukey Variant of the Double Arcsine Square Root
Transformation

The Freeman–Tukey transformation addresses both the problems mentioned above.

It is given by

t ¼ sin�1

ffiffiffiffiffiffiffiffiffiffiffiffi
xi

ni þ 1

r
þ sin�1

ffiffiffiffiffiffiffiffiffiffiffiffi
xi þ 1

ni þ 1

r

with variance

VarðtÞ ¼ 1

ni þ 0:5

The Freeman–Tukey transformed proportion has an approximately normal dis-

tribution, and, by being unconstrained, avoids the squeezing of the variance effect.

A meta-analysis can be carried out on the transformed proportions, using the

inverse of the variance of the transformed proportion as the study weight. For
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final presentation, the pooled Freeman–Tukey transformed proportion and its

confidence interval are back transformed to a proportion using

�Pð�tÞ ¼ 0:5f1� sgnðcos �tÞ½1� ðsin�tþ ðsin�t� 1= sin �tÞ=½1=v̂�Þ2�0:5g if p=v̂ � 2

½sinð�t=2Þ�2 otherwise:

(

where �P is the pooled prevalence, �v is the pooled variance and �t is the pooled t.
The lower (LCL) and upper (UCL) confidence limits of the pooled prevalence

are given by

LCL¼ 0:5 1� sgn cos tð Þ 1� sin tþ sin t� 1=sin tð Þ= 1=v̂
� �� �2h i0:5 �

if p=v̂� 2

0 otherwise:

8><
>:

UCL¼ 0:5 1�sgn cos tð Þ 1� sin tþ sin t�1=sin tð Þ= 1=v̂
� �� �2h i0:5 �

if 1�pð Þ=v̂�2

1 otherwise:

8><
>:

Multi-category Prevalence

The discussion so far has implicitly been about two categories (disease present or

absent). But in some instances k-category prevalences may be meta-analysed where

k > 2 (e.g. mild, moderate and severe disease), and this complicates matters.

Using the previously mentioned non-transformed and logit transformed

proportions, it would not be possible to meta-analyse each category separately,

since the variance of both p and logit(p) depends on p itself; this implies that the

same study could get a different weight in each category, which seems hard to

justify. Moreover, the sum over the pooled category prevalences would not add up

to 1; another drawback.

To correct this problem, we can use the double arcsine square root transformed

proportion where the SE is no longer dependent on the size of the proportion, so that

both equal weights across categories and confidence limits within the 0. . .1 range

are achieved without the need for overall proportions.

However, we again have a problem with the RE and QE models in that we need a

common study estimate for Cochran’s Q that can be used in weighting with the RE

model and overdispersion correction with the QE model if we are to interpret the

pooled proportions as dependent proportions that add to 1. This was not too difficult

to conceptualize because if we believe that the ES variations across studies in one

category of proportions is not independent of variations in the other categories, the
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maximum category Q value would be the best and most conservative estimate of a

common study Q that can be applied to categorical prevalences that would allow

pooled prevalences to be considered dependent and thus sum to 1. Thus, with three

or more categories, the actual study heterogeneity Q value can be determined by the

category with the most heterogeneity.

The onlyminor drawback is that pooled prevalences do not add exactly to 1 across

categories when back transformed to the actual proportion because the non-linear

nature of the double arcsine transformation causes the sum over the back-

transformed category prevalences to become unequal to 1 (since the transformed

proportion (t) can have several values (albeit close together) for the same value of

prevalence). Thus, while the sum of back-transformed pooled proportion comes

close to 1, it would still not exactly add to 1, unlike the standard prevalences. The

error is small and thus can be corrected simply by adjusting the pooled prevalence (P̂)
in each category after pooling and back transformation:

Adjusted P̂c ¼ P̂c

Pk
c¼1

P̂c

This is then the final prevalence in each category. The confidence intervals

however need no adjustment. This procedure is available in MetaXL (www.

epigear.com).

Prevalence Studies from Different Populations

One further consideration is type C trials, which usually deal with the burden of

disease where true differences across populations are expected. A study of, for

example, 1,000 respondents is equally useful for examining the mortality in a

country with ten million inhabitants as it would be in a country with a population

of only one million. Without weighting, any figures that combine data for two or

more countries would overrepresent smaller countries at the expense of larger ones.

So a population size weight is needed to make an adjustment to ensure that each

country risk is represented in the pooled estimate proportional to its population size.

Although such weighting has been attempted previously by Batham et al. (2009), it

has been improperly applied. The best method is to assign a proportional weight

between 0 and 1 for each study in relation to the largest based on the underlying

population size. The population size weight (P(weight)) is thus the proportional

weight P(size)i/P(size)max. However, we must emphasize that inverse variance

weights have no rule here and this may more appropriately be considered “risk

adjustment” or standardization rather than meta analysis (see Appendix 2).
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Appendix 1: Need for an Overdispersion Correction

In a study with overdispersed data, the mean or expectation structure (θ) is adequate
but the variance structure [σ2(θ)] is inadequate. Individuals in the study can have

the outcome with some degree of dependence on study-specific parameters unre-

lated to the intervention. If such data are analysed as if the outcomes were

independent, then sampling variances tend to be too small, giving a false sense of

precision. One approach is to think of the true variance structure as following the

form [φ(θ)σ2(θ)]; however, it is complex to fit such a form. As a simpler approach,

we suppose φ(θ) ¼ c, so that the true variance structure [cσ2(θ)] is some constant

multiplier of the theoretical variance structure. A common method of estimating c
suggested used by Lindsey (1999) or Tjur (1998) is to use the observed chi-squared

goodness of fit statistic for the pooled studies divided by its degrees of freedom:

c ¼ χ2=df

If there is no overdispersion or lack of fit, c ¼ 1 (because the expected value of

the chi-squared statistic is equal to its degrees of freedom) and if there is, then

c > 1. In a meta-analysis, this goodness of fit chi-squared divided by its df is equal

to H2 as defined by Higgins and Thompson (2002).

The problem of using the overdispersion parameter as a constant multiplier of

the variances of each study in the meta-analysis presupposes that, for a constant

increase in this parameter, there is a constant increase in variance. This means that

the impact of the parameter is not capped and a point is eventually reached where

there is overinflation of the variances for a given level of overdispersion resulting in

overcorrection and confidence intervals that are too wide. In order to reduce the

impact of large values of H2, we can transform H2 to its reciprocal and use this to

proportionally inflate the variances. Higgins and Thompson (2002) also defined an

I2 parameter, which is an index of dispersion that is restricted between 0 (no

dispersion) and 1. If we reverse the I2 scale (by subtracting it from 1) so that no

dispersion (only sampling error) is now 1 as opposed to 0, then (1 � I2) is indeed
the reciprocal of H2. We thus used (1 � I2) as an exponent to proportionally inflate
study variances < 1. For variance > 1, we used 2 minus this overdispersion

parameter (which reduces to [I2 + 1]) as the inflation factor. Additional rescaling

was done by scaling (1 � I2) to various roots and using the simulation described

above to see the impact on coverage of the confidence interval. The fourth root was

found to result in an acceptable simulated coverage of the confidence interval

around 95 %. We thus used [(1 � I2)1/4] as the final overdispersion correction

factor. This is also equivalent to (1/H2)1/4. This correction was then used to inflate

the variances of individual studies resulting in a more conservative meta-analysis

pooled variance. Even if the accuracy of this approximation is questionable,

common sense suggests that it is better to perform this correction, implicitly making

the (more or less incorrect) assumption that the distribution of c is approximated

well enough by a χ2 distribution with k � 1 degrees of freedom than not to perform
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any correction at all, implicitly making the (certainly incorrect) assumption that

there is no overdispersion in the data (Tjur 1998). This adjustment in the QE model

corrects for overdispersion within studies that affect the precision of the pooled

estimate, not for heterogeneity between studies that affect the estimate itself.

Appendix 2: Quality Scores and Population Impact Scores

For a QE type of meta-analysis, a reproducible and effective scheme of quality

assessment is required. However, any quality score can be used with the method and

thus we are not constrained to any one method. There are many different quality

assessment instruments and most have parameters that allow us to assess the

likelihood for bias. Although the importance of such quality assessment of experi-

mental studies is well established, quality assessment of other study designs in

systematic reviews is far less well developed. The feasibility of creating one quality

checklist to apply to various study designs has been explored by Downs and Black

(1998), and research has gone into developing instruments to measure the method-

ological quality of observational studies in meta-analyses (see Chap. 13). Never-

theless, there is as yet no consensus on how to synthesize information about quality

from a range of study designs within a systematic review, although many quality

assessment schemes exist. Concato (2004) suggests that a more balanced view of

observational and experimental evidence is necessary. The way Qi is computed

from the score for each study and the additional use of population weights (for

burden of disease or type C studies) is depicted in Table 14.1. The population

weights are applied as a method of standardization of the group pooled estimates

where there is a single estimate per group. The population weighted analysis does

not use inverse variance weighting and if a rate is being pooled would give an

equivalent result to direct standardization used in epidemiology. Rates have a

problematic variance but can be based on a normal approximation to the Poisson

distribution:

Varrate ¼ O� K

P

� 	2

where O are the observed events, P is the person-time of observation and K is a

constant multiplier. In the computation, zero rates can be imputed to have variances

based on a single observed event as a continuity correction.
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Chapter 15

Meta-analysis II

Interpretation and Use of Outputs

Adedayo A. Onitilo, Suhail A.R. Doi, and Jan J. Barendregt

Abstract Outputs in meta-analysis give us measures of evidence dissemination bias

or graphical representation of the pooled results and their underlying heterogeneity.

This chapter discusses the various outputs with a focus on their utility and interpreta-

tion. Examples focus on the use of MetaXL, which is our own software developed for

meta-analysis and is freely available from www.epigear.com. This is the only

software currently available that can perform a bias-adjusted meta-analysis.

Introduction

The main output of a meta-analysis is the pooled estimate and its confidence

interval. In addition, there are also a number of graphical and numerical outputs

that aid with interpretation of results by presenting information such as study

heterogeneity, detection of publication bias, and other important aspects of the

meta-analysis. Graphical and statistical representation should not replace, but

should be used in addition to narrative description of study design, setting,

methods, follow-up analysis methods as well as the strengths and limitations of

the individual studies pooled together in the meta-analysis. MetaXL is our
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preferred software for meta-analysis (downloadable freely from www.epigear.

com) and all outputs we discuss use MetaXL as far as possible. In addition, bias-

adjusted meta-analyses can only be run using MetaXL.

Individual and Pooled Results

Forest Plot

The forest plot, a graphical presentation of meta-analysis results, first used in 1982

by Lewis and Ellis, has now become standard practice and is arguably the most

important output from a meta-analysis. A forest plot presents individual study

estimates, the pooled estimate, confidence intervals, as well as the weight of each

study in the analysis and heterogeneity statistics. Individual studies used in the

meta-analysis are represented in the plot by horizontal lines; the length of each line

represents the confidence interval around each study estimate. Shorter lines repre-

sent a narrower confidence interval thus higher precision of study effect size (ES),

usually found in larger studies. Conversely, longer lines represent a wider confi-

dence interval and less precision around effect side, usually found in smaller

studies. The point estimate from each study is represented by a shape on the line

such as a dot or box, and the size of this shape represents the weight of the study in

the meta-analysis. A summary estimate of the point estimates is also represented by

a shape at the end of the graph. Most forest plots also have two vertical lines. A

dotted vertical line represents the pooled estimate and a solid vertical line

represents the null estimate. For example, for the odds ratio this is 1 and for the

mean difference the null has a value of 0. Horizontal lines that cross the null vertical

line represent non-significant studies. Most forest plots in meta-analysis will

arrange studies in chronologic order or by subgroups. This allows for further

subgroup analysis or stratification. It can also be a way to represent heterogeneity

in the meta-analysis. The plot can either be on a normal scale or logarithmic scale.

The normal scale is usually used for mean difference and rates, while logarithm

scales are used for ratios.

Figure 15.1 presents the forest plot from a quality effects model analysis of

patient mortality before and after changes to the working hour regulations for

surgeons. The square on the plot for individual studies is proportional to the weight

it has in the meta-analysis; the horizontal lines represent the study’s confidence

interval. The dotted vertical line on the right gives the pooled estimate, the solid

vertical line on the left is the null result, in this case OR ¼ 0. Inspection of the

forest plot can give a good indication of the amount of heterogeneity. In MetaXL,

the forest plot is obtained by choosing Results from the MetaXL menu.

Forest plots are easy to read and interpret, although one drawback is that

attention is often drawn to the least precise study which has the longest horizontal

line and actually carries less weight in the meta-analysis. While the forest plots
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should be considered whenever feasible and appropriate in reporting a meta-

analysis it may not be the most appropriate representation of meta-analysis that

involves too many studies, in this case a summary forest plot or other plots such as

the Galbraith plot should be considered. In the summary forest plot, individual

study results are replaced with pooled results from either different outcomes or

different subgroups. Thus individual points represent meta-analyses rather than

studies.

Sensitivity Analysis

Sensitivity analysis explores the ways in which the main findings are changed by

varying the selection criteria for studies that are combined. The sensitivity analysis

is executed by running the meta-analysis across categories of selected studies; for

example, published versus unpublished studies or other selection criteria based on

patient group, type of intervention or setting. A meta-analysis can also be

performed by leaving out one study at a time to see if any single study has a

large influence on the pooled results. Sensitivity analysis can also be done by

running different meta-analysis models to examine the robustness of the method

utilized in the meta-analysis. Usually if there is no significant heterogeneity in the

studies used, most methods should yield comparable summary estimates. When

dose–response or open-ended variables are examined in the meta-analysis, a sensi-

tivity analysis can limit the range in the dose–response or open-ended variable that

produce most of the effect. In meta-analyses without sensitivity analyses, the likely

Fig. 15.1 The forest plot from a quality effects model analysis of mortality after (compared with

before) the ACGME (Accreditation Council for Graduate Medical Education) regulations that

reduced working hours for surgeons. The dotted vertical line indicates the pooled effect size. Q is

the Cochran Q statistic for heterogeneity and I2 is the I2 statistic and both are discussed below
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impact of these important factors on the key finding is ignored and thus the results

are less robust. An example of a leave-one-out sensitivity analysis is given in

Table 15.1 and also depicted in the forest plot for 2�/week versus 1�/week

comparisons after electroconvulsive therapy (ECT) for depression (Fig. 15.2).

Heterogeneity

One of the most important aspects of meta-analysis is to determine whether

heterogeneity exists in the studies combined in the analysis and investigate the

source of such heterogeneity. It underscores the use of meta-analysis as a means of

Table 15.1 Leave-one-out sensitivity analysis results (Charlson et al. 2012)

Study excluded

Meta-analysis results with study excluded Weight (%)

of the study

in the

complete

analysisES

Lower 95 %

confidence

limit

Higher 95 %

confidence

limit

Gangadhar �0.897 �1.540 �0.255 18.8

Vieweg �0.190 �0.907 0.527 14.2

Lerer and Segman �0.138 �0.846 0.570 17.8

Shapira 0.497 �0.084 1.078 25.5

Kellner 0.892 �0.027 1.811 8.0

Janakiramaiha (L) 1.169 0.220 2.117 9.6

Janakiramaiha (H) 2.236 0.944 3.528 6.0

Fig. 15.2 Forest plot comparing 3�/week ECT with 2�/week (upper subgroup) or 1�/week

(lower subgroup). It is evident that the 1�/week frequency results in a greater difference from 3�/

week compared with 2�/week (Data from Charlson et al. 2012). Heterogeneity is diminished

within subgroups suggesting that ECT frequency contributes to overall heterogeneity
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generating a summary estimate, lends conclusiveness to otherwise inconclusive

clinical situations and extends meta-analysis to explain differences between the

combined studies. Heterogeneity can be clinical or statistical. Clinical heterogene-

ity is based on the characteristics of studies combined (e.g., study design, follow-up

length, duration of therapy) and characteristics of subjects in the studies. Thus

clinical heterogeneity can be within or between studies. Statistical heterogeneity

refers to situations when the estimates from different studies deviate considerably

from each other. Below we describe some of the formal statistical tests and plots for

assessing heterogeneity.

Cochran’s Q

Cochran’s Q is a heterogeneity statistic. It is the classical measure of heterogeneity

and is given by

Q ¼
X
i

wi θi � θp
� �2

where i is an index for the study, wi is the fixed effect weight of study i, θi is

the estimate from study i, and θp is the fixed effect pooled estimate. The Q
statistic follows a chi-squared distribution with k � 1 degrees of freedom under

the null hypothesis of homogeneity, where k is the number of studies in the meta-

analysis. If the probability of the value of Q occurring by chance is low (p < 0.05),

the null hypothesis is rejected and heterogeneity is assumed. Unfortunately, the Q
statistic is not very sensitive when the number of studies is not large. In that case,

some authors prefer a critical value for p of 0.1 instead of 0.05. When the number of

studies is large, the Q statistic becomes too sensitive. In MetaXL the MACochranQ

function returns the Q statistic in the spreadsheet. The test can then be performed

using Excel’s CHIDIST function. The Q statistic and its test result are also

presented in the forest plot and tabular output.

The magnitude of the computed Q is dependent on the weight and the number of

studies in the meta-analysis. If there are limited number of small studies (<20

studies), it has been shown that the asymptotic Q statistic gives the correct type I

error under the null hypothesis but has low power (Takkouche et al. 1999) and null

for heterogeneity is not likely to be rejected. Whereas if there are large number of

studies or large sample size studies in the meta-analysis, irrespective of true clinical

heterogeneity Q has too much power and null for heterogeneity is likely to be

rejected. For this reason, it is always important to examine the studies in the meta-

analysis for clinical heterogeneity.
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I2

The I2 statistic is another means to detect heterogeneity, and is derived from the Q
statistic. The I2 examines the percentages of variation across studies due to hetero-

geneity rather than by chance and it is given by

I2 ¼ 100 Q�df
Q if > 0

0 otherwise

�

where df ¼ k � 1 is degrees of freedom. Confidence intervals for I2 can be derived
as follows:

Define H ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q=ðk � 1Þp

. Then,

SE lnðHÞ½ � ¼
1
2

lnðQÞ�ln k�1ð Þffiffiffiffiffi
2Q

p
� ffiffiffiffiffiffiffiffi

2k�3
p if Q > k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2 k�2ð Þ 1� 1

3 k�2ð Þ2
� �n or

otherwise

8><
>:

95 % confidence intervals for H are then derived by

exp lnH � 1:96SE lnðHÞ½ �ð Þ

Since

I2 ¼ H2 � 1

H2

the confidence intervals for I2 are derived from those of H. The I2 statistic is thus a
number between 0 and 100. A rule of thumb is that heterogeneity is low for an I2 of
25, moderate for an I2 of 50, and high for an I2 of 75. In MetaXL the MAISquare

function returns the I2 statistic in the spreadsheet. It is also presented in the forest

plot and tabular output; the latter includes the confidence interval. Effectively, I2 is
(Q � (k � 1)) divided by Q where k denotes the number of studies. I2 has the same

problem of low statistical power with small numbers of studies. Specifically, the

confidence intervals around I2 behave very similarly to tests of Q in terms of type I

error and statistical power. Also, I2 increases with the number of subjects included

in the studies in a meta-analysis. It thus seems counterintuitive to criticize Q as

having low power on the one hand and to define a measure (and an assessment rule)

that would require the heterogeneity test to be even more significant. From the point

of view of validity, power and computational ease, the Q statistic is probably a

better choice compared with I2. Unlike the Q statistic, the I2 statistic does not vary
based on the number of studies included in the meta-analysis, it is possible to

compare the statistical heterogeneity of meta-analyses with different numbers of

studies. However, I2 will tend to increase artificially as evidence accumulates since
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it increases with number of subjects included in the meta-analysis. Additionally, as

I2 is the percentage of variability that is due to between-study heterogeneity, 1 � I2

is the percentage of variability that is due to sampling error. When the studies

become very large, the sampling error tends to 0 and I2 tends to 1 (Rucker et al.

2008). Such heterogeneity may not be clinically relevant and studies with relatively

large I2 in this situation may still be usefully pooled if other measures such as

τ2 remain relatively small and clinically relevant heterogeneity is unlikely to be

present.

τ2

Yet another statistic is τ2, which is the random effects variance component calcu-

lated as part of a random effects meta-analysis. The τ2 statistic examines the

between-study variance and is given by

τ2 ¼ Q� k � 1ð Þ
P

wi �
P

w2
iP

wi

� 	

which is set to zero if Q < k � 1, and wi is the inverse variance weight. The

τ2 statistic is the variance of the presumed normally distributed individual study

estimates under the assumptions of the random effects model.

In MetaXL the MATauSquare function returns the τ2 statistic in the spreadsheet,
and it is also presented in the tabular output of random effects analyses. It may also

be used as a marker of heterogeneity if its value is greater than zero. Similar to theQ
and I2 statistic the τ2 statistic has its limitation; it is not very powerful if the number

of studies is small or if the conditional variances between the studies are large. The

advantage, however, is that it does not depend on the number or size of studies in

the meta-analysis, i.e., it can be kept fixed with increasing subjects in the meta-

analysis. Furthermore, since τ2 is measured on the same scale as the outcome, it can

therefore be directly used to quantify variability. Note that assessment of τ2 does
not give us a p value but rather a yes/no answer only, and certainly there will be

little heterogeneity if τ2 ¼ 0 regardless of the value of I2. We must keep in mind

however that τ2 assumes normality of the random effects and the error terms.

Q Index

The Q index is applicable to the quality effects model only. It expresses the

percentage of study weight that is re-distributed in the quality effects analysis. It

is given by
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Qindex ¼ 100
X
i

wi
1� qið ÞP
j

wj

0
B@

1
CA

where qi is the quality score of study i and wi is the inverse variance weight.

In MetaXL the MAQIndex function returns the Q index statistic in the spread-

sheet, and it is also presented in the tabular output of quality effects analyses. The Q

index is the only measure that inputs study quality as a source of heterogeneity. It

therefore has the advantage of imputing clinical heterogeneity in statistical terms, a

strength not seen in any other statistical test for heterogeneity.

Galbraith Plot

The Galbraith plot (Fig. 15.3) presents standardized effect estimate on the vertical

axis plotted against the inverse of the standard error on the horizontal axis. It is a

linear regression constrained through the origin of the standardized treatment

effects (treatment effect divided by its standard error) on their inverse standard

errors which yields a regression line. Typically a dotted line is used at �2SD

confidence interval above and below this line. The slope of the regression line

provides details of the unstandardized effect estimates. Galbraith plots facilitate

examination of heterogeneity, including detection of outliers. With a fixed effect

model, 95 % of studies in a meta-analysis should be found on this plot to be within

the two confidence interval lines and the more precise studies are farthest from the

origin of the linear regression line. Different symbols can be used in the plots to

represent sub-sets or stratification thus making identification of the source of

heterogeneity easier. Also the graph can be labelled to show the direction the effect

the estimate favors. Compared to the forest plot, the Galbraith plot is able to display

more studies that cannot be easily done by the forest plot and it also has the

additional advantage that it gives a better representation of heterogeneity.

L’Abbé Plot

The L’Abbé plot is used to present the results of multiple clinical trials with

dichotomous outcomes showing for each study; the observed event rate in the

experimental group plotted against the observed event rates in the control group.

It is used to view the range of event rates among the trials and highlight excessive

heterogeneity. The L’Abbé plot is also ideally suited to diagnostic meta-analyses

(Fig. 15.4) where diseased (group 1) and healthy (group 2) rates of test positivity

can be compared across studies. The shape representing each study is usually

proportional to the size of each study (or study weights) since unlike the forest
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plot or Galbraith plot there is no information about the precision of the studies on

the plotted axes. The L’Abbé plot should be considered when outcomes are

dichotomous across studies (treatment vs. control) or for diagnostic studies (sensi-

tivity vs. false-positive rates).

Publication Bias

Publication bias refers to the phenomenon whereby studies with significant

outcomes are more likely to be submitted for publication compared to null result

or non-significant studies. This is usually assessed by several statistical and graphi-

cal (quasi-statistical) means.

Funnel Plot

Funnel plots assess publication bias or heterogeneity by plotting the trials’ effect

estimates against a measure of precision, Asymmetrical plots are interpreted to

suggest that selection biases are present. The use of such a plot is based on the fact

that precision in estimating the underlying treatment effect will increase as the

precision of the study increases and thus results from small studies will scatter

widely at the bottom of the plot, with the spread narrowing with increasing

Fig. 15.3 A Galbraith Plot with standardized effect estimate on the vertical axis plotted against

the inverse of the standard error as a measure of precision on the horizontal axis. The intercept is

constrained to zero. Solid lines represent the unweighted regression line constrained at 0 with a

slope equal to the overall effect size of a fixed effects meta-analysis, and its 95 % confidence

intervals (dashed line). The position of the studies on the y-axis indicates their contribution to the

Q statistic for heterogeneity. The position of the studies on the x-axis indicates the weight of each

study in the meta-analysis

15 Meta-analysis II 261



precision. In the absence of selection bias, the plot is expected to resemble a

symmetrical inverted funnel. It usually recommended that ratio measures of inter-

vention effect should be plotted on a logarithmic scale, so that effects of the same

magnitude but opposite directions (e.g., odds ratios of 0.5 and 2) are equidistant

from 1.0.

Figure 15.5 shows the funnel plot from the meta-analysis of fibrinolysis in

myocardial infarction study. The vertical line represents the pooled estimate from

the inverse variance model; the funnel sides represent the 95 % confidence intervals

around the pooled estimate, given the standard error on the y-axis; and the dots

represent the individual study results. The aim of the funnel plot is to examine

publication bias. When the study dots are largely symmetrical around the pooled

estimate, there is no evidence for publication bias. In the present case, there is a

large degree of asymmetry, which suggests publication bias is present. Funnel plots

can look quite different, depending on the choice of y-axis. MetaXL offers three

options: inverted standard error (default, and used in Fig. 15.5), precision, and

inverse variance. For the log of risk or odds ratio, the inverted standard error is

recommended. In MetaXL the funnel plot is obtained by choosing Results from the

MetaXL menu.

While there has been much focus on selection biases in relation to the associa-

tion between size and effect in a meta-analysis, it must be kept in mind that

asymmetry can also occur for reasons other than selection biases due to selective
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Fig. 15.4 L’Abbé plot demonstrating true-positive (group 1) and false-positive (group 2) rates in

diseased and healthy subjects, respectively, in a diagnostic meta-analysis (Data used fromWhiting

et al. 2005)
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publication or selective outcome reporting. These other factors related to study size

include study quality (smaller usually thought to be worse), presence of true

heterogeneity (e.g. different baseline risks in small and large studies), an associa-

tion between the intervention effect and its standard error (artefactual) or even

chance. Despite the initial expectations, assessment of publication bias using the

classic funnel plot continues to misrepresent bias because the appearance of the

standard funnel plot has been shown to be misleading. Furthermore, it has been

demonstrated that discrepancies between large trials and corresponding meta-

analyses and heterogeneity in meta-analyses may also be largely dependent on

the arbitrary choice of the method used to construct the classic funnel plot. In

particular, the shape of the plot in the absence of bias changes with the choice of

axes and it has been suggested that funnel plots of meta-analyses should generally

be limited to using standard error as the measure of study size and ratio measures of

treatment effect. Even when this is adhered to, the visual and quantitative assess-

ment of asymmetry is flawed. It has been suggested that funnel plot asymmetry

detected using measures of impact such as the risk difference (measures that are

correlated with baseline risk) may be artefactual and thus funnel plots and related

tests using risk differences should not be undertaken.

Egger’s Regression

The most popular formal statistical test of funnel plot asymmetry is the Egger’s test.

Its power is limited, particularly for moderate amounts of bias or meta-analyses

based on a small number of small studies. Egger’s regression is essentially a linear

regression on the standardized ESs (Zi) with precision (1=σi2)as predictor where θi
is the ES and the standardized ES is then given by

Fig. 15.5 The funnel plot from the fibrinolysis in myocardial infarction meta-analysis (Yusuf

et al. 1985). The ES is the LnOR. The central line depicts the fixed effects pooled estimate and the

limbs of the funnel are made up by the limits of the confidence interval around the pooled estimate

being computed successively based on the standard error of each study
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zi ¼ θi
σi

Egger’s regression is then

zi ¼ αþ β
1

σi

With no publication bias present, the intercept (α) should not be significantly

different from zero. This is similar to regression of a Galbraith plot not constrained

to the origin (see above).

Doi Plot

Another plot that is more objective uses the approach of a linear ranking to assess

study asymmetry using the same scale for the ES on which its standard error exists.

Essentially, each subject in every trial within the meta-analysis is assigned the ES

of their trial and ranked serially. As all subjects in a trial have the same ES, they will

have the same rank and thus each trial has a single final rank based on the number of

subjects (N) in the study. However, because N does not capture the trials’ informa-

tion content completely (the number of observed events in each arm of a study is

often more important in driving the precision of the estimate than the study size per

se), an updated N (designated N0) is used to incorporate this. The final ranking is

then converted to a percentile and then a z-score using the method detailed below.

First, N0 is generated as follows:

N0
i ¼ int Ni �

maxfSEi
2Nig

� �
SEi

2Ni

� 	

where SE is the standard error of the ES. If there are k studies in a meta-analysis

numbered serially as i ¼ 1,. . .,k each with an ES and study-adjusted patient-

information study size (N0), the k studies can then be ranked by ES and the N0

subjects in these k trials are serially numbered consecutively. The last subject

number in each study (Ai) is determined by summing the N0
i across trials with ES

smaller than or equal to the ES under consideration then (using indicator functions):

Ai ¼
X

ðN0
1 � 1fES1�ESigÞ; . . . ; ðN0

k � 1fESk�ESigÞ

 �

If we assign all subjects in a trial to the ES of their trial, the final rank (Ri) of each

study based on ES and number of subjects is computed as follows:
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Ri ¼
max ðA1 � 1fES1<ESigÞ; . . . ; ðAk � 1fESk<ESigÞ


 �þ Ai

2

Ri is then converted into a percentile (Pi) as follows:

Pi ¼ Ri � 0:5ð Þ
Pk
i¼1

Ni

Finally the percentile is converted into a z-score [z ¼ NORMINV(Pi,0,1)].

This new measure of precision is now the absolute value of the z-score and the

ES is then plotted against this absolute value of the z-score to create the new

mountain plot. With symmetrical studies, the most precise trials will define the

mid-point around which results should scatter, and thus they will be close to mid-

rank and will be close to zero on the z-score axis. Smaller less precise trials will

produce an ES that scatters increasingly widely, and the absolute z-score will

gradually increase for both smaller and larger ES’s on either side of that of the

precise trials. Thus, a symmetrical triangle is created with a z-score close to zero at

its peak. If the trials are homogeneous and not affected by selection or other forms

of bias, the plot will therefore resemble a symmetrical triangle with the studies

themselves making up the limbs of the plot (Fig. 15.6).
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Appendix: Stata Codes

Chapter 1

Table 1.4

kap rater1A rater2A, tab
kap rater1B rater2B, tab
kap rater1C rater2C, tab
kap rater1D rater2D, tab

Categorical Scale Example

kap rater1 rater2, tab

Table 1.5

kap rater1 rater2, tab wgt(w)
kap rater1 rater2, tab wgt(w2)
(note that w implies linear weight and w2 implies quadratic weight)

S.A.R. Doi and G.M. Williams (eds.), Methods of Clinical Epidemiology,
Springer Series on Epidemiology and Public Health,
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Chapter 10

Table 10.1

bysort gender: ci death_yr, binomial wald
tab gender death_yr, chi2 nofreq
bysort age_group: ci death_yr, binomial wald
tab age_group death_yr, chi2 nofreq

Table 10.2

cs death_yr gender, or
cs death_yr age_group if age_group¼¼0 | age_group¼¼1, or
cs death_yr age_group if age_group¼¼0 | age_group¼¼2, or
cs death_yr age_group if age_group¼¼0 | age_group¼¼3, or

Table 10.3

foreach var of varlist sho chf mitype cvd afb av3 miord{
cs death_yr v̀ar’, or
}
(Please note that the second line syntax is v̀ar’ not ‘var’)

Table 10.4

recode age (min/69 ¼ 0) (70/max ¼ 1), gen(age_70)
cs death_yr sho if age_70¼¼0, or woolf
cs death_yr sho if age_70¼¼1, or woolf

Table 10.5

cs death_yr sho, by(age_70)
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Table 10.6

xi: logit death_yr i.age_group
xi: logit death_yr i.age_group, or

Table 10.7

xi: logit death_yr i.age_group sho
xi: logit death_yr i.age_group sho, or

Table 10.8

xi: logit death_yr i.age_group sho
estimates store age_shock
xi: logit death_yr i.age_group
estimates store age
lrtest age_shock age
xi: logit death_yr sho
estimates store shock
lrtest age_shock shock

Table 10.9

logit death_yr age
logit death_yr age, or

Table 10.10

logit death_yr age
sort age
preserve
drop if age[_n] ¼¼ age[_n-1]
gen predicted_index ¼ 0
gen predicted_prob ¼ 0
gen odds ¼ 0
forvalues age ¼ 55/84 {
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replace predicted_index ¼ _b[_cons] + (_b[age]*age)
replace predicted_prob ¼ exp(predicted_index)/ (1+exp
(predicted_index))
}
forvalues age ¼ 55/84 {
replace odds ¼ predicted_prob/(1-predicted_prob)
}
gen oddsratio ¼ odds[_n]/odds[_n-1]
gen relativerisk ¼ predicted_prob[_n]/predicted_prob
[_n-1]
list age predicted_prob oddsratio relativerisk if
age>¼55 & age<¼84
restore

Table 10.11

generate age_centred ¼ age - 70
generate age_quadratic ¼ (age - 70)^2
logit death_yr age_centred age_quadratic
logit death_yr age_centred age_quadratic, or

Table 10.12

logit death_yr age 0.gender sho, or

Table 10.13

logit death_yr age gender sho
estimates store age_gender_shock
logit death_yr age gender
estimates store age_gender
logit death_yr age sho
estimates store age_shock
logit death_yr gender sho
estimates store gender_shock
lrtest age_gender_shock age_gender
lrtest age_gender_shock age_shock
lrtest age_gender_shock gender_shock
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Table 10.14

cs death_yr chf if age_70¼¼0, or
cs death_yr chf if age_70¼¼1, or

Table 10.15

xi: logit death_yr i.age_70 i.chf
xi: logit death_yr i.age_70 i.chf, or

Table 10.16

logit death_yr i.age_70##i.chf
logit death_yr i.age_70##i.chf, or

Table 10.17

logit death yr i.age 70#i.chf i.age 70, or

Table 10.18

logit death_yr i.sho i.chf#i.age_70 i.age_70
logit death_yr i.sho i.chf#i.age_70 i.age_70, or

Chapter 11

Table 11.1

list id time censor tx strat2 in 1/20
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Table 11.2

ltable time censor if tx¼¼0

Table 11.3

stset time, failure(censor¼¼1)
sts list if tx¼¼0, at(0/364)
sts graph if tx¼¼0, tmax(30)lost

Figure 11.2

sts graph if tx¼¼0, ci risktable ytitle(Survival) xtitle
(Time (days)) legend(off) title(Survival curve for two-
drug therapy)

Figure 11.3

sts graph if tx¼¼0, failure ci risktable yscale(range
(0 0.2)) ylabel(0(0.05)0.2) ytitle(Cumulative incidence)
xtitle(Time (days)) legend(off) title(Failure curve for
two-drug therapy)

Figure 11.4

sts graph, by(tx) ci yscale(range(0.8 1)) ylabel(0.8(0.5)1)
ytitle(Survival) xtitle(Time (days)) title(Survival curve
for both therapies)

Table 11.4

sts test tx
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Figure 11.6

stset lenfol, failure(fstat¼¼1)
sts graph, ci risktable ytitle(Survival) xtitle(Time
(days)) title(Survival curve) tmax(2000)

Figure 11.7

sts graph, by(chf) ci risktable ytitle(Survival)
xtitle(Time (days)) title(Survival curves comparing
CHF Complications) tmax(2000)

Table 11.5

stcox i.chf, nohr
stcox i.chf

Table 11.6

stcox i.gender, nohr
stcox i.gender

Table 11.7

recode age (min/64¼1) (65/79¼2) (80/max¼3), gen
(age_category)
stcox i.age_category
stcox age

Table 11.8

stcox i.chf age i.gender
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Table 11.9

tabstat age, by(gender) stat(n mean min max)
tab chf gender, col

Table 11.10

stset lenfol, failure(fstat¼¼1)id(id)
stsplit period, at(1) after(_t¼((2.5*365.25)-1))
stcox i.chf##i.period

Table 11.11

stcox i.chf#i.period i.period

Table 11.12

stcox i.chf##i.period age

Table 11.13

stcox i.chf##i.period i.period age
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Index

A

Absolute reliability, 40

ADA. See Adenosine deaminase activity

(ADA)

Adenosine deaminase activity (ADA), 89–91

African Index Medicus (AIM) database, 197

AMED database, 197

Area under the curve (AUC), 72

confidence interval, 70

global summary statistics, 69

interpretation, 69, 70

probability, 70

PT IgG and PT IgA, 73

sROC curve, 110

Attrition bias, 217

AUC. See Area under the curve (AUC)

B

Binary scale

Cohen’s kappa coefficient

cervical ectopy example, 8–10

diagonal elements, 5, 6

interpretation, 7–8

inter-rater agreement, 6

observed proportion of agreement, 5

proportion of agreement, 6

intraclass kappa coefficient

cervical ectopy example, 8–10

interpretation, 7–8

marginal probability distribution, 6

observed proportion of agreement, 7

proportion of agreement, 7

BIOSIS Previews database, 197

Bland–Altman plot. See Limits

of disagreement plot

C

Case–control design, 60

clinically important difference

detection, 86–87

diagnostic indices estimation, 83–85

paired design

ADA vs. lymphocyte tests, 89–91

alternative hypothesis, 89

McNemar’s test, 88

minimum and maximum proportion

of disagreement, 88–89

null hypothesis, 88

vs. prospective design, 80–81, 91
unpaired design, 87–88

Categorical scale

Cohen and intraclass kappa coefficients

cervical ectopy example, 11

interpretation, 10–11

observed proportion of agreement,

9–10

proportion of agreement, 9–10

Stata codes, 267

Censoring, 167, 168, 174–175

Clinical agreement

vs. association, 14
definition, 4

emphasis method, 17

qualitative measurements

binary scale (see Binary scale)

categorical scale (see Categorical scale)
cervical ectopy, 4–5

inter-rater agreement, 4

intra-rater agreement, 4

ordinal scale (see Weighted kappa

coefficients)

quantitative agreement, 17–18

quantitative measurements

S.A.R. Doi and G.M. Williams (eds.), Methods of Clinical Epidemiology,
Springer Series on Epidemiology and Public Health,

DOI 10.1007/978-3-642-37131-8, © Springer-Verlag Berlin Heidelberg 2013
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alternative simple approach, 25–27

intraclass correlation (see Intraclass
correlation coefficient (ICC))

limits of disagreement approach (see
Limits of disagreement approach)

statistical problem, 19

types of situations, 18

Clinical heterogeneity, 257, 260

Clinicaltrials.gov database, 197

Clopper–Pearson method, 98

Cochrane Central Register of Controlled

Clinical trials (CENTRAL)

database, 196

Cochran’s Q, 246, 255, 257

Coefficient of variation (CV)

advantages and disadvantages, 48

definition, 40

error variation, 41

invalid use, data sets, 45–47

relative and absolute variability, 41

repeated measurements, 41–42

sets of measurements

different magnitudes, 43

excursion variability, 44

hand-held dynamometry, 44

heteroscedasticity, 44

inter-rater and intra-rater measurement

error, 45

ratio scale, 43

validation conditions, 42

unit-less/dimensionless measure, 41

Cohen’s kappa coefficients

binary scale

cervical ectopy example, 8–10

diagonal elements, 5, 6

interpretation, 7–8

inter-rater agreement, 6

observed proportion of agreement, 5

proportion of agreement, 6

categorical scale

cervical ectopy example, 11

interpretation, 10–11

observed proportion of agreement, 9–10

proportion of agreement, 9–10

variance, 15

Concordance (c) index. See Area under
the curve (AUC)

Cox proportional hazards model

baseline hazard, 178

CHF group, 178–179

follow-up time, 177

MI and sex, 179

mortality

by age, sex and CHF complications,

179, 180

males and females characteristics, 180

by patient age, 179, 180

by patient’s sex, 179

proportional hazards assumption, 177,

180–183

PTAR, 177–178

reference category, predictor variable, 178

Cox regression. See Cox proportional hazards

model

Criterion values, 67, 68

and coordinates, 71–72

vs. plot, 71
Cumulative Index to Nursing and Allied

Health Literature (CINAHL)

database, 134, 196, 198, 200

Current Contents Connect database, 197

CV. See Coefficient of variation (CV)

D

Decision threshold. See Criterion values

Detection bias, 218

Diagnostic accuracy, 112, 113, 130

evaluation, 104–105

indices, 109, 110, 113

ROC curve (see Receiver operating
characteristic (ROC) curve)

systematic reviews, 106

threshold effect, 106

Diagnostic meta-analysis, 74

1-specificity vs. sensitivity plot, 115, 118

absence of variability across thresholds,

109–110

DiagMeta package, 115

exploratory analysis, 114

Fahy et al.’s study, 113, 116

fitted SROC curve

bivariate model, 115–118

Moses–Littenberg model, 117, 119

FPR plot, 114

heterogeneity (see Heterogeneity)
lymphangiography (LAG), 113, 114

Meta-DiSc, 113, 116

Papanicolaou (Pap) test, 115

presence of variability across thresholds

area under the curve (AUC), 110

bivariate and hierarchical models,

111–112, 115

Moses–Littenberg method, 110–111, 115

sROC curve, 110

publication bias, 112–113
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Review Manager (RevMan), 113

SAS and STATA software, 113

sensitivity and specificity forest plots, 115

Diagnostic odds ratio (DOR), 64, 105, 111, 113

Diagnostic tests

case–control design, 60

continuous/ordinal scale, 67

cut-off value, 67–68

definition, 129

dichotomization, 58

dichotomous variable, 53–54

DOR, 64

efficacy and effectiveness, 129–130

gold (reference) standard, 59–60

health technology assessments (see Health
technology assessments (HTA))

hypothesis testing, 80

interval variable, 53

likelihood ratio (see Likelihood ratio (LR))

meta-analysis (see Diagnostic
meta-analysis)

multiple testing, 58–59

predictive values, 55–56

quality report and assessment, 131

ROC method (see Receiver operating
characteristic (ROC) curve)

sample size estimation (see Sample

size estimation)

sensitivity, 54–55

sensitivity and specificity, 67

specificity, 54–55

systematic assessment, 104

validity criteria, 60–61

variable prevalence, 56–58

Doi plot, 264–265

DOR. See Diagnostic odds ratio (DOR)

E

Effect size (ES), 80, 202, 209, 215, 247

definition, 229

direction and magnitude, 230

Doi plot, 264–265

Egger’s regression, 263

fixed effects model, 232–233, 236

forest plot, 254

funnel plot, 262, 263

heterogeneity, 234, 236

homogeneous, 235

inverse variance weights, 235

odds ratio/relative risk, 232

proportion/diagnostic studies, 232

QE model (see Quality effects (QE) model)

random effects model, 233–234, 236

standardized mean difference

and correlation, 231

type C trials, 235–236

types, 230

Egger’s regression, 263–264

EMBASE database, 134, 187, 196, 198, 199

Emphasis method, 17

ES. See Effect size (ES)
Evidence-based medicine, 122, 229

Evidence-informed decision making, 122, 126

F

Fixed effects (FE) model, 232–233, 236, 241,

244, 260

Funnel plot, 113, 261–263

G

Galbraith plot, 255, 260, 261, 264

Generalized linear model (GLM)

coefficients, 141–142

fitted statistical model, 141, 142

linear regression, 143

outcome, 141–142

predictors, 141–142

Google Scholar, 197

Grip strength measurements, 45–47

H

Health technology assessments (HTA)

in Canada and Alberta, 125–126

conducting steps, 124–125

definitions, 123

history, 122–123

hyperbilirubinemia jaundice case

scenario, 132–134

prioritization, 127, 128

producers, 127, 129

regulation, 126

users, 127

Heterogeneity, 75, 110–112, 115

clinical and methodological, 105, 106

Cochran’s Q, 247, 257

credibility-related heterogeneity, 234

diagnostic performance, 106

DOR, 64

ES, 233, 234, 236, 242, 243

false-positive rate (FPR), 108
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Heterogeneity (cont.)
forest plot, 247–258

FPR, 114

Galbraith plot, 260

I2, 258–259
inconsistency index, 108

indices estimation, 109

L’Abbé plot, 260–261

positive and negative LR forest plot, 107

potential sources, 105

of precision, 234

Q index, 259–260

ROC plane, 108

sensitivity and specificity forest plot, 107

τ2, 259
threshold effect, 106

true-positive rate (TPR), 108

univariate analysis, 109

Heteroscedasticity, 41, 42, 44, 46

Hierarchical sROC (HSROC) model, 111–112

Homoscedastic data, 44, 46

HTA. SeeHealth technology assessments (HTA)

I

I2 heterogeneity, 258–259
ICC. See Intraclass correlation coefficient (ICC)
International Network of Agencies for HTA

(INAHTA), 123, 125

Inter-rater agreement, 3, 4, 6

Intraclass correlation coefficient (ICC)

advantages, 24–25

ANOVA table, 22, 23

average measures, 35

ICC(1,k), 34–36

ICC(2,k), 34, 36–37

ICC(3,k), 35, 37

multiple raters, 23

rater evaluation, 33–34

single measures, 35

strength of agreement, 23, 24

total variance, 22

weights and product–moment correlation

coefficient, 22

Intraclass kappa coefficients

binary scale

cervical ectopy example, 8–10

interpretation, 7–8

marginal probability distribution, 6

observed proportion of agreement, 7

proportion of agreement, 7

categorical scale

cervical ectopy example, 11

interpretation, 10–11

observed proportion of agreement, 9–10

proportion of agreement, 9–10

Intra-rater agreement, 3, 4, 6

K

Kaplan–Meier estimator, 175

event occurrence and time, 166

log-rank test (see Log-rank test)

mean survival time, 166

probability of surviving, 167–168

relative cumulative incidence, 171, 172

standard error, 168

survival data aggregation, 167, 168

survival function, 167

confidence limits, 169, 170

cumulative incidence, 169, 170

first and last 10 days, 168, 169

over first 30 days, 168, 169

two-drug vs. three-drug treatment,

170, 171

Worcester Heart Attack Study, 173–176

L

L’Abbé plot, 260–262

Likelihood ratio (LR)

computation, 62, 63

definition, 61

dichotomous and polychotomous test

results, 62

disease prediction, 62

meta-analysis, 75

positive and negative forest plot, 107

pretest assessment, 62

LILACS database, 197

Limits of disagreement approach

advantages, 24–25

clinical tolerance, 20

Gaussian distribution, 20

graphical approach, 19–20

pair of measurements, 19

product–moment correlation coefficient, 20

pulse oximetry vs.Korotkoff readings, 20–21
Limits of disagreement plot

air displacement plethysmography, 30–32

measurement ratios, 29

reference/gold standard method, 29

repeatability coefficient (see Repeatability
coefficient)

Link functions, 143

Locating studies
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broad search, 188–189

clinical question, 189–190

database selection, 196–197

hand searching, 199

refining search, 195

reproducible results, 189

resolving duplicate results, 199

search construction, 190–191

search strategy

modification, 198

reporting, 199–200

saving, 195

search terminology (see Search terminology)

Logistic regression, 59, 72, 165

case–control studies, 161–162

components, 147–148

event probability, 148

indicator variables, 149

logit, 148

log-odds transformation, 148

multinomial and ordinal regression, 162

multivariable (see Multivariable

logistic regression)

parameter estimates, 150

patient’s predictive model, 149

probability of death, 150

reference category, 150

regression coefficients, 149

Log-rank test, 175, 176

alternative hypothesis, 171

chi-squared distribution, 172

cumulative incidence, 172

expected events calculation, 172, 173

non-parametric test, 171

null hypothesis, 171–172

LR. See Likelihood ratio (LR)

Lymphocyte tests, 89–91

M

MACochranQ function, 257

MAISquare function, 258

Mantel–Haenszel technique, 147, 152

MAQIndex function, 260

MATauSquare function, 259

Maximum likelihood, 142, 150–152, 157, 159

Measurement error, 20, 32, 39, 41, 42, 45, 111

Medical subject headings (MeSH) database,

191–192, 195, 198–200

Meta-analysis

central tendency research, 230

credibility-related heterogeneity, 234

effect size (see Effect size (ES))

heterogeneity

clinical, 257

Cochran’s Q, 257

Galbraith plot, 260, 261

I2, 258–259
L’Abbé plot, 260–262

Q index, 259–260

statistical, 257

τ2, 259
individual and pooled results

forest plot, 254–255

sensitivity analysis, 255–256

level of abstraction, 229–230

overdispersion correction, 248–249

pre-post contrasts, 230

prevalence

binomial equation, 243

confidence interval, 243–244

different populations, 247–248

Freeman–Tukey transformation,

245–246

logit transformation, 244–245

multi-category, 246–247

pooled, 244

proportion, 244

publication bias

definition, 261

Doi plot, 264–265

Egger’s regression, 263–264

funnel plot, 261–263

quality assessment (see Quality
assessment)

simple pooling, 230–231

MetaXL, 76, 230, 232, 253, 254, 257–260, 262

Modelling binary outcomes

generalized linear model (see Generalized
linear model (GLM))

logistic regression (see Logistic regression)
model fitting, 142–143

myocardial infarction (MI) death

percentage

by age group and gender, 144–146

by cardiogenic shock presence and age

group, 146, 147

Mantel–Haenszel technique, 147

by MI characteristics, 145–146

prediction vs. establishing causality,

143–144

Stata codes, 268–271

Modelling time-to-event data

AIDS trial, 166, 167

Cox proportional hazards model (see Cox
proportional hazards model)
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Modelling time-to-event data (cont.)
hazard function and hazard ratio, 176–177

Kaplan–Meier estimator

(see Kaplan–Meier estimator)

Stata codes, 271–274

survival analysis, 165

Moses–Littenberg method, 110–112, 115,

117, 119

Multivariable logistic regression

categorical predictors

chi-square statistic, 152–153

coefficients and ORs, 151

combining continuous predictors,

157, 158

likelihood ratio tests, 152, 153

Mantel–Haenszel process, 152

maximum likelihood estimation,

151, 152

patient’s predictive model, 151–152

continuous predictors

combining categorical predictors,

157, 158

death probability with age, 155

logit, 153

odds ratios (ORs), 154–156

parameter estimation, 154

quadratic term, 156, 157

relative risks (RRs), 154–156

effect modification, congestive heart failure

by age group, 157, 158

cardiogenic shock, 159–161

interaction effects, 159, 160

likelihood ratio tests, 161, 162

stratum-specific estimation, 158, 159

vs. univariate logistic regression, 151
Multivariable survival analysis, 175

N

Negative predictive value (NPV), 55–57,

62, 72, 131

O

Online Computer Library Center (OCLC), 197

Ordinal scale. SeeWeighted kappa coefficients

P

Parallel testing, 58–59

Performance bias, 217–218

PICO format, 189–190

Positive predictive value (PPV), 55–56, 62

Probability distributions, 142–143

ProQuest Digital Dissertations, 197

Prospective design

vs. case–control design, 80–81, 91
exact binomial, 92–94

naive approach, 91

normal distribution, 92, 93

PsycINFO database, 196

PubMed/MEDLINE database, 196, 198–200

Q

QE model. See Quality effects (QE) model

Q index, 259–260

Quality assessment

clinicians and policy makers, 213

conducting, 224–225

internal validity

conflict of interest, 218–219

confounding and selection bias, 216–217

information bias, 217–218

principles, 216

random errors, 215

selective reporting bias, 218

systematic errors, 216

rationale, 215

study quality

definition, 214

vs. reporting quality, 214–215

tools

checklists and components ratings, 220

Cochrane Collaboration, 221–222

elements, 223–224

generic vs. topic-specific tools, 219
scales, 219–221

selection, 224

types, 219, 220

Quality Assessment of Diagnostic Accuracy

Studies (QUADAS) tool, 131

Quality effects (QE) model

95 % confidence limits, 240

bias-specific variance component, 239

bias–variance trade-off, 238

correction factor (CF), 240

credibility of study, 239

expected value, 236

final summary estimate, 239–240

heterogeneity, 243

hierarchical model, 237

independent and identically distributed

(IID), 237

non-random systematic error and

randomness, 237
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population impact scores, 249, 250

quality adjustor, 239

quality score, 242–243, 249

vs. RE model, 241–242

sensitivity analysis, 241

study-specific scores, 241–242

Quantitative agreement, 19

assessment, 18, 25

attributes, 17–18

exact values, 17

R

Random effects (RE) model, 233–234, 236

Random error, 20, 24, 40, 215, 224

Range of motion (ROM) tests, 42, 44

Receiver operating characteristic (ROC) curve

advantages, 68

anti-PT IgG and anti-PT IgA, 68

diseased vs. non-diseased
discrimination, 69–70

meta-analysis

bivariate summary sensitivity and

specificity, 76–77

hierarchical and bivariate sROC

models, 74

implicit diagnostic threshold, 74, 75

implicit information threshold, 74

LR, 75

metandi procedure, 76, 77

MetaXL, 76

randomization, 76

spectrum bias, 75

univariate bias, 76

optimum cut-off value, 71–72

principles, 68–69

sROC curve, 110–112, 115–119

test comparison, 73–74

Relative reliability, 40

Reliability, 18, 25, 99, 213, 215

absolute, 40

CV (see Coefficient of variation (CV))

definition, 4, 39

dietary information, 242

inter-rater, 225

relative, 40

single and average measures, 35

Repeatability coefficient

glucometer readings, 30–32

subject variance, 33

variance of difference, 32–33

S

Sample size estimation

case–control design (see Case–control
design)

exact method, 98

Goal Seek command

Data menu, 99–100

exact binomial, 100–101

gold standards, 79

influencing parameters, 80

NCSS PASS software, 99

notation, 82

nQuery software, 99

one-sided equivalence

conditional and unconditional

formula, 95

mid-point level, 95–97

null and alternative hypotheses, 95

P11 probability, 95

sensitivity equivalence, 93–94

paired design, 81–82

prospective design (see Prospective design)
unpaired design, 81–82

Sampling errors, 40, 42, 111, 233, 241, 248, 259

Scopus database, 197, 198, 200

Screening test, 72, 79, 122, 126, 127, 130–132

Search terminology

Boolean operator

‘AND’, 194

‘OR’, 193

common sense, 191

entry terms, 192

MeSH database, 191–192

more than one word, 193

Neoplasms, 192–193

PubMed database, 193, 194

scope note, 192

search builder/search history, 194

Sensitivity and specificity (Se and Sp)

bivariate summary, 77

continuous/ordinal scale, 67

cut-off values, 68, 71

negative correlation, 74

plot, 71

sample size estimation (see Sample

size estimation)

spectrum bias, 75

univariate bias, 76

Youden index, 71

Serial testing, 59

Sociological Abstracts database, 197
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Standard for Reporting of Diagnostic Accuracy

(STARD), 61, 131, 214

Stata codes

kappa coefficient, 267

modelling binary outcomes, 268–271

modelling time-to-event data, 271–274

Statistical heterogeneity, 257, 258

Survival function, 167

confidence limits, 169, 170

cumulative incidence, 169, 170

first and last 10 days, 168, 169

over first 30 days, 168, 169

two-drug vs. three-drug treatment, 170, 171

Survivorship. See Survival function
Systematic error, 40, 215, 216, 234, 235, 237,

238, 241

Systematic reviewing

data abstraction/extraction

data collection forms, 207–209

data types, 203–205

missing data, 209

quality assessment, 205–206

data analysis, results and

interpretation, 210

locating studies (see Locating studies)

question and hypothetical solution,

187–188

research findings, 188

studies selection

exclusion steps, 201–202

inclusion and exclusion criteria, 200–201

literature search flow diagram, 202, 203

radioiodine, 201

T

τ2 heterogeneity, 259
Total serum bilirubin (TSB) test, 121–122,

132–134

Transcutaneous bilirubin (TcB), 122,

132–134

V

Validity, definition, 39

W

Web of Science database, 134, 197, 200

Weighted kappa coefficients

ordinal scale

agreement weights, 12

cervical ectopy example, 13, 14

disagreement weights, 12

interpretation, 12–13

K2 cells, 11–12

linear and quadratic weights, 12

variance, 16

WorldCat, 197

Y

Youden index, 71
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