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Abstract. Over the past years several works have proposed access con-
trol models for XML data where only read-access rights over non-recursive
DTDs are considered. A small number of works have studied the access
rights for updates. In this paper, we present a general and expressive
model for specifying access control on XML data in the presence of
the update operations of W3C XQuery Update Facility. Our approach
for enforcing such update specification is based on the notion of query
rewriting. A major issue is that, in practice, query rewriting for recur-
sive DTDs is still an open problem. We show that this limitation can
be avoided using only the expressive power of the standard XPath, and
we propose a linear algorithm to rewrite each update operation defined
over an arbitrary DTDs (recursive or not) into a safe one in order to be
evaluated only over the XML data which can be updated by the user. To
our knowledge, this work is the first effort for securely updating XML in
the presence of arbitrary DTDs, a rich class of update operations, and a
significant fragment of XPath.

Keywords: XML Access control, XML Updating, Query Rewriting,
XPath, XQuery.

1 Introduction

The XQuery Update Facility language [1] is a recommendation of W3C that
provides a facility to modify some parts of an XML document and leave the rest
unchanged, and this through different update operations. This includes rename,
insert, replace and delete operations at the node level. The security requirement
is the main problem when manipulating XML documents. An XML document
may be queried and/or updated simultaneously by different users. For each class
of users some rules can be defined to specify parts of the document which are
accessible to the users and/or updatable by them. A bulk of work has been
published in the last decade to secure the XML content, but only read-access
rights has been considered over non-recursive DTDs [2–5]. Moreover, a few works
have considered update rights [4, 6, 7].

In this paper, we investigate a general approach for securing XML update
operations of the XQuery Update Facility language. Abstractly, for any update
operation posed over an XML document, we ensure that the operation is per-
formed only on XML nodes that can be updated by the user. Addressing such
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Fig. 1. Hospital DTD

concerns requires first a specification model to define update constraints and a
flexible mechanism to enforce these constraints at update time.

We now discuss a motivating example for access control with updates. Con-
sider the recursive DTD1 depicted as a graph in Fig.1. We use ’∗’ on an edge
to indicate a list, ’?’ to indicate optional edge, while dashed edges represent
disjunction. A hospital document conforming to this DTD consists of a list of
departments (dept) defined by a name, and each department has a list of chil-
dren representing patients currently residing in the hospital. For each patient,
the hospital maintains her name (pname), ward number (wardNo), family med-
ical history by means of the recursively defined parent and sibling, as well as
list of symptoms. The hospitalization is marked by the intervention of one or
many doctors depending on their specialty and the patient care requirement. For
each intervention, the hospital also maintains the information of the responsible
doctor (defined with name (dname) and specialty) and the treatment applied. A
treatment is described by its type, a list of result (Tresult), and it is followed by
a diagnosis phase. According to the results of the diagnosis (Dresult), the doctor
may decide to do another treatment. However, if the required treatment is out-
side his area of expertise, then the current doctor would solicit the intervention
of another doctor, specialist, or expert.

An instance of the hospital DTD is given in Fig. 2. Due to space limitation, this
instance is split into two parts. Figure2 (a) represents a simple hospital document
with Cardiology department, Critical care department, as well as some patients
information of these departments2. Figure2 (b) depicts the three interventions
done for patient1: intervention1, intervention2, and intervention3.

1 A DTD is recursive if and only if at least one of its elements is defined (directly or
indirectly) in terms of itself.

2 We use the notation Xi to distinguish between different instances of element type
X, like patient1.
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Fig. 2. Hospital Data: (a) patients information, (b) interventions done for patient1

Example 1. (Update Policy for doctors) Suppose that the hospital wants to im-
pose a security policy that authorizes each doctor to update only the information
of treatments that she has done. For instance, the doctor Imine could update
the data of treatment1, treatment2, and treatment4 (like insert new Dresult
sub-tree into the node diagnosis4) but not treatment3. We show in the following
that this update policy, even simple, cannot be enforced by using some existing
update specification languages. �
Problem 1. (Expressiveness of Update Specification Languages) In
some case of recursive DTDs, the existing update access control models are
unable to specify some update policies. In the model proposed by Dami-
ani et al. [4], the update policy is defined by annotating the XML schema
by security attributes. For instance, adding attribute @insert=[test=’Blood
Analysis’] into element type treatment of the hospital DTD specifies that
new sub-tree can be inserted to treatment nodes having ’Blood Analysis ’ as
type. However, only local annotations can be defined (i.e. the update con-
straint concerns only the node and not its descendants) which makes the
proposed model restricted for non-recursive schema/DTD. For instance, the
updates of doctor Imine cannot be discarded for the node treatment3 as
imposed by the update policy defined above. Specifically, adding attribute
@insert=[ancestor::intervention[doctor/dname=’Imine’]] into treatment
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element type makes all treatment nodes updatable by Imine. Since the hospital
DTD is recursive, this update policy cannot be specified by the model proposed
in [4]. To specify the imposed update policy, a plausible solution may be done
by using the transitive closure operator ’* ’. In this case, the adequate update
constraint would be defined by adding the following attribute into treatment
element type:

@insert=[(parent::implies/parent::diagnosis/parent::treatment)∗/
parent::investigation[doctor/dname=$dname]]

Where $dname is treated as a constant parameter; i.e., when a concrete value,
e.g., Imine, is substituted for $dname, the previous annotation defines the up-
date right for doctor Imine. However, the transitive closure operator cannot be
expressed in the standard XPath as outlined in [8].

Due to space constraints, we do not discuss about the limitation of the update
access control model (called XACU) proposed in [6]. For more details, the reader
is referred to our extended version available online 3.

To the best of our knowledge, no model exists for specifying update policies
over recursive DTDs.

Problem 2. (Query Rewriting Limitation) For each update operation, an
XPath expression is defined to specify the XML data at which the update is
applied. To enforce an update policy, the query rewriting principle can be applied
where each update operation (i.e., its XPath expression) is rewritten according
to the update constraints into a safe one in order to be performed only over parts
of the XML data that can be updated by the user who submitted the operation.
However, this rewriting step is already challenging for a small class of XPath.
Consider the downward fragment of XPath which supports child and descendant-
or-self axes, union and complex predicates. In case of recursive DTDs, it was
shown that an XPath expression defined in this fragment cannot be rewritten
safely. More specifically, a safe rewriting of the XPath expression of an update
operation can stand for an infinite set of paths which cannot be expressed in the
downward fragment of XPath (even by using the upward-axes: parent, ancestor,
and ancestor-or-self).

To overcome this rewriting limitation, one can use the ’Regular XPath’
language [9], which includes the transitive closure operator and allows to
express recursive paths. However, it remains a theoretical achievement since no
tool exists to evaluate Regular XPath queries. Thus, no practical solution exists
for enforcing update policies in the presence of recursive DTDs.

Our Contributions. Our first contribution is an expressive model for specify-
ing XML update policies, based on the primitives of the XQuery Update Facility,
and over arbitrary DTDs (recursive or not). Given a DTD D, we annotate ele-
ment types of D with different update rights to specify restrictions on updating
some parts of XML documents that conform to D. Each update right concerns
one update operation (e.g., deny insertion of new nodes of type Tresult under

3 http://hal.inria.fr/hal-00664975

http://hal.inria.fr/hal-00664975
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treatment nodes). Our model supports inheritance and overriding of update
privileges and overcomes expressivity limitations of existing models (see Prob-
lem 1). Our approach for enforcing such update policies is based on the notion of
query rewriting. However, to overcome the rewriting limitation presented above
as Problem 2, we investigate the extension of the downward fragment of XPath
using upward-axes and position predicate. Based on this extension, our second
contribution is a linear algorithm that rewrites any update operation defined in
the downward fragment of XPath into another one defined in the extended frag-
ment to be safely performed over the XML data. To our knowledge, this yields
the first model for specifying and enforcing update policies using the XQuery
update operations and in the presence of arbitrary DTDs.

Related Work. During the last years, several works have proposed access con-
trol models to secure XML content, but only read-access has been considered
over non-recursive DTDs [2–4]. There has been a few amount of work on secur-
ing XML data by considering the update rights. Damiani et al. [4] propose an
XML access control model for update operations of the XUpdate language. They
annotate the XML schema with the read and update privileges, and then the
annotated schema is translated into two automatons defining read and update
policies respectively, which are used to rewrite any access query (resp. update
operation) over the XML document to be safe. However, the update policy is
expressed only with local annotations which is not sufficient to specify some up-
date rights (see Problem 1 ). Additionally, the automaton processing cannot be
successful when rewriting access queries (resp. update operations) defined over
recursive schema (i.e., recursive DTD). Fundulaki et al. [6] propose an XML
update access control model, called XACU, for the XQuery update operations. A
set of XPath-based rules is used to specify, for each update operation, the XML
nodes that can be updated by the user using this operation. In the presence
of non-recursive DTD only, the XACU rules can be translated into annotations
over element types of the DTD to present an annotation-based model called
XACUannot.

The view-based access control for XML data has received an increased atten-
tion [2,5,10]. However, a major issue arises in the case of recursive security views
when XPath query rewriting becomes not possible. To overcome this problem,
some authors [10, 11] propose rewriting approaches based on the non-standard
language, “Regular XPath” [9], which is more expressive than XPath and makes
rewriting possible under recursion. However, no system exists for evaluating reg-
ular XPath queries in order to demonstrate the practicality of the proposed
approaches. Thus, the need of a rewriting system of XPath queries (resp. update
operations) over recursion remains an open issue.

Plan of the Paper. The paper is organized as follows. Section 2 reviews some
basic notions tackled throughout the paper. We describe in Section 3 our specifi-
cation model of update. Our approach for securing update operations is detailed
in Section 4. Finally, we conclude this paper in Section 5.
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2 Background

This section briefly reviews some basic notions tackled throughout the paper.

DTDs. Without loss of generality, we represent a DTD D by (Ele, Rg, root),
where Ele is a finite set of element types ; root is a distinguished type in Ele
called the root type; Rg is a function defining element types such that for any A
in Ele, Rg(A) is a regular expression α defined as follows:

α := str | ε | B | α’,’α | α’|’α | α* | α+ | α?

where str denotes the text type PCDATA, ε is the empty word, B is an element
type in Ele, α’,’α denotes concatenation, and α’|’α denotes disjunction. We refer
to A → Rg(A) as the production of A. For each element type B occurring in
Rg(A), we refer to B as a sub-element type (or child type) of A and to A as
a super-element type (or parent type) of B. The sub-elements structure can be
specified using the operators ’*’ (set with zero or more elements), ’+’ (set with
one or more elements), and ’?’ (optional set of elements). A DTD D is recursive
if some element type A is defined in terms of itself directly or indirectly.

As depicted in Fig. 1, our DTD graph representation is specified with solid
edges (which represent conjunction), dashed edges (which represent disjunction).
These edges can be labeled with one of the operators ’*’, ’+’, or ’?’. This simple
graph representation suffices to depict our hospital DTD. However, for a com-
plete representation of DTDs, a special DTD graph structure can be used, along
the same lines as [3].

XML Trees. We model an XML document with an unranked ordered finite
node-labeled tree. Let Σ be a finite set of node labels, an XML document T
over Σ is a structure defined as [9]: T=(N,R↓, R→, L), where (N,R↓) is a finite
rooted tree with child relation R↓ ⊆ N ×N , R→ ⊆ N×N is a successor relation
on (ordered) siblings, and L : N → Σ is a function assigning to every node its
label. We use the term XML Tree for this type of structures.

An XML tree T = (N,R↓, R→, L) conforms to a DTD D = (Ele,Rg, r) if the
following conditions hold: (i) the root of T is the unique node labeled with r ;
(ii) each node in T is labeled either with an Ele type A, called an A element,
or with str, called a text node; (ii) for each A element with k ordered children
n1, ..., nk, the word L(n1), ..., L(nk) belongs to the regular language defined by
Rg(A); (iv) each text node carries a string value (PCDATA) and is the leaf of the
tree. We call T an instance of D if T conforms to D.

XPath Queries. We consider a small class of XPath [12] queries, referred to as
X and defined as follows:

p := α::ntst | p [q ] | p /p | p ∪ p

q := p | p =’c’ | q ∧ q | q ∨ q | ¬ (q )

α := ε | ↓ | ↓+ | ↓∗
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where p denotes an XPath query and it is the start of the production, ntst is a
node test that can be an element type, ∗ (that matches all types), or function
text() (that tests whether a node is a text node), c is a string constant, and ∪, ∧,
∨, ¬ denote union, conjunction, disjunction, and negation respectively; α stands
for XPath axis relations and can be one of ε, ↓, ↓+, or ↓∗ which denote self, child,
descendant, and descendant-or-self axis respectively. Finally the expression q is
called a qualifier or predicate. The result of the evaluation of an X query p at
a context node n of an XML Tree T , is the set of nodes reachable via p from n,
denoted by n〚p〛. We denote by n � q a qualifier q that is valid at a node n.

Authors of [10] have shown that in the case of recursive security views, the
fragment X (called downward fragment) is not closed under query rewriting.
This means that is not always possible to rewrite XPath queries on views to be
safely evaluated on the source. Consequently, it is also the problem of update
operations rewriting since fragment X is the core of XQuery, XSLT and XML
Schema. Our solution to make possible the update operations rewriting is based
on the following extension:

p := α::ntst | p [q ] | p /p | p ∪ p | p [n ]

q := p | p =’c’ | q ∧ q | q ∨ q | ¬ (q )

α := ε | ↓ | ↓+ | ↓∗ | ↑ | ↑+ | ↑∗

we enrich X by the position predicate and the upward-axes presented by parent
axis (↑), ancestor axis (↑+), and ancestor -or -self axis (↑∗). The position predi-
cate, defined with [n](n ∈ N), is used to return the nth node from an ordered
set of nodes. For instance, the query ↓::∗[2] at a node n of an ordered returns its

second child node. We denote this extended fragment with X⇑
[n].

In our case, fragment X is used only to formulate update operations and to
define our security policies. While we will explain later how the fragment X⇑

[n]

defined above can be used to avoid the rewriting limitation.

XML Update Operations. We review some update operations of the W3C
XQuery Update Facility recommendation [1]. We study the use of the following
operations: insert, delete, and replace. For each update operation, an XPath
target expression is used to specify the set of XML node(s) in which the update
is applied. In a delete operation, target specifies the XML nodes to be deleted
(denoted target-nodes). For insert, and replace operations, target must specify a
single node (denoted target-node); otherwise a dynamic error is raised. Moreover,
the latter operations require a second argument source representing a sequence of
XML nodes. The order defined between the nodes of source must be preserved
during the insertion and replacement. In the following, names in brackets are
abbreviations of the different operations.

Insert. We distinguish different types of insert operation depending on the po-
sition of the insertion:

• insert source as first/last into target [insertAsFirst/insertAsLast ]:
Here target-node must evaluate to a single element node; otherwise a dynamic
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error is raised. This operation inserts the nodes in source as first/last children
of target-node respectively.

• insert source before/after target [insertBefore/insertAfter ]: Inserts the
nodes in source as preceding/following sibling nodes of target-node respectively.
In this case, target-node must have a parent node; otherwise a dynamic error is
raised.

• insert source into target [insertInto ]: Inserts the nodes in source as chil-
dren of the single element node target-node (otherwise a dynamic error is raised).
Note that the positions of the inserted nodes among the children of target-node
are implementation-dependent 4. Thus, the effect of executing an insertInto

operation on target-node can be that of insertAsFirst/insertAsLast ex-
ecuted on target-node, or that of insertBefore/insertAfter executed at
children of target-node.

Delete. The operation “delete target” [delete ] deletes all target-nodes along
with their descendant nodes.

Replace. The operation “replace target with source” [replace ] replaces
target-node with the nodes in source. Here target-node must have a parent
node; otherwise a dynamic error is raised. If target-node is an element or text
node, then source must be a sequence of elements or text nodes respectively.
The target-node is deleted along with its descendants and replaced by the nodes
in source together with their descendants.

3 Update Access Control Model

This section describes our access control model for XML update.

3.1 Update Specifications

We follow the idea of security annotations presented in [2] and the update access
types notion introduced in [13] to define a language for specifying expressive and
fine-grained XML update policies in the presence of DTDs. An update specifica-
tion Sup expressed in the language is a simple extension of the document DTD
D associating element types with update annotations (XPath qualifiers), which
specify for any XML tree T conforms to D, the parts of T that can be updated
by the user through a specific update operation.

Definition 1. Given a document DTD D, an update type (ut) defined over
D is of the form insertInto [Bi], insertAsFirst [Bi], insertAsLast [Bi],
insertBefore [Bi,Bj ], insertAfter [Bi,Bj ], delete [Bi], and replace [Bi,Bj ],
where Bi and Bj are element types of D. �
4 For instance, in the DataDirect XQuery implementation, available at
http://www.cs.washington.edu/research/xmldatasets/, insertInto opera-
tion has the same effect as insertAsLast.

http://www.cs.washington.edu/research/xmldatasets/
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Table 1. Semantics of the update annotations Y , N , and [Q]

Annotation Semantic
annup(A,insertInto[Bi]) = Y |N |[Q] for a node n of type A, one can (Y )/cannot (N)/can if

n � Q, insert nodes of type Bi in an arbitrary position
children of n.

annup(A,insertAsFirst[Bi]) =
Y |N |[Q]

for a node n of type A, one can (Y )/cannot (N)/can if
n � Q, insert nodes of type Bi as first children of n.

annup(A,insertBefore[Bi,Bj]) =
Y |N |[Q]

for a node n of type A, one can (Y )/cannot (N)/can if
n � Q, insert nodes of type Bj as preceding sibling nodes
of any child node of n whose type is Bi.

annup(A,delete[Bi]) = Y |N |[Q] for a node n of type A, one can (Y )/cannot (N)/can if
n � Q, delete children of n whose type is Bi.

annup(A,replace[Bi,Bj]) = Y |N |[Q] for a node n of type A, one can (Y )/cannot (N)/can if
n � Q, replace children of n of type Bi by some nodes of
type Bj .

Intuitively, each update type ut represents an update operation that is restricted
to be applied only for specific element types. For example, the update type
replace [Bi,Bj ] represents the update operations “replace target with source”
where target-node is of type Bi and nodes in source are of type Bj.

Based on this notion of update type, we define our update specifications as
follows:

Definition 2. An update specification Sup is a pair (D, annup) where D is a
DTD and annup is a partial mapping such that, for each element type A in D and
each update type ut defined over element types of D, annup(A, ut), if explicitly
defined, is an annotation of the form:

annup(A,ut) ::= Y | N | [Q] | Nh | [Q]h

where Q is a qualifier in our XPath fragment X . �
An update specification Sup is an extension of a DTD D associating update
annotations with element types of D. In a nutshell, a value of Y , N , or [Q] for
annup(A,ut) indicates that, for A elements in an instantiation of D, the user
is authorized, unauthorized, or conditionally authorized respectively, to perform
update operations of type ut at A (case of insertInto, insertAsFirst, or inser-
tAsLast operations) or at children of A (case of the remaining operations). Table
1 presents more specifically the semantics of the update annotations Y , N , and
[Q]5.

Our model supports inheritance and overriding of update annotations. If
annup(A,ut) is not explicitly defined, then an A element inherits from its parent
node the update authorization that concerns the same update type ut. On the
other hand, if annup(A,ut) is explicitly defined it may override the inherited au-
thorization of A that concerns the same update type ut. All update operations
are not permitted by default.

5 The semantics of annotations with the update types annup(A,insertAslast [Bi])

and annup(A,insertAfter [Bi,Bj]) are defined in a similar way as
annup(A,insertAsFirst [Bi]) and annup(A,insertBefore [Bi,Bj]) respec-
tively.
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Table 2. Semantics of downward-closed annotations (ut can be any update type)

Downward-closed
Annotation

Semantic

annup(A,ut) = Nh Same principle as annup(A,ut) = N of Table 1. Moreover,
for a node n of type A, all annotations of type ut defined
over descendant types of A are discarded regardless their
truth values.

annup(A,ut) = [Q]h Same principle as annup(A,ut) = [Q] of Table 1. More-
over, for a node n of type A, if n � Q then all annotations
of type ut defined over descendant types of A are discarded
regardless their truth values.

Finally, the semantics of the specification values Nh and [Q]h are given in
Table 2. The annotation annup(A,ut)=Nh indicates that, for a node n of type
A, update operations of type ut cannot be performed at any node of the sub-
tree rooted at n, and no overriding of this authorization value is permitted for
descendants of n. For instance, if n has a descendant node n′ whose type is A′,
then an update operation with the same type ut cannot be performed at/un-
der n′ even though the annotation annup(A

′,ut)=Y is explicitly defined (resp.
annup(A

′,ut)=[Q′] with n′ � Q′). As for the annotation annup(A,ut)=[Q]h, qual-
ifier Q must be valid at A elements, otherwise no annotation with update type
ut can override the false evaluation of Q. For instance, let n and n′ be two
nodes of type A and A′ respectively, and let n′ be a descendant node of n.
The annotation annup(A

′,ut)=[Q′] indicates that an update operation of type
ut can be performed at (children of) n′ iff: n′ � Q′. Moreover, if the annotation
annup(A,ut)=[Q]h is explicitly defined then the annotation annup(A

′,ut)=[Q′]
takes effect at descendant node n′ of n only if n � Q. This means that an update
operation of type ut can be performed at (children of) n′ iff: (n � Q ∧ n′ � Q′).
We call annotation with value Nh or [Q]h as downward-closed annotation.

Example 2. Suppose that each nurse is attached to only one department and only
one ward within this department (denoted $nurseDept and $nurseWardNo
resp.). Now, the hospital wants to impose an update policy that allows a nurse
to update data of only patients having the same ward number as her (Rule1 )
and which are being treated at her department (Rule2 ). Moreover, all sibling
data cannot be updated (Rule3 ). This policy can be specified by the following
update annotations (ut denotes a general update type):

R1: annup(department,ut)=[↓::name=$nurseDept]h
R2: annup(patient,ut)=[↓::wardNo=$nurseWardNo]
R3: annup(sibling,ut)=Nh

Consider the case of the nurse having the ward number 421 and working at Crit-
ical care department, and let ut be delete [symptom]. This nurse can delete all
symptoms of Fig. 2 except: symptom2 (since patient2 has ward number 318 ),
symptom4 (representing part of sibling data), and symptom5 (although patient5
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has ward number 421, he is attached to ENT department). Notice that the an-
notations R1 and R3 must be defined as downward-closed to enforce the im-
posed policy, otherwise annotation R2 overrides at nodes patient4 and patient5
the negative authorizations inherited respectively from the nodes sibling1 and
department2, which violates the imposed policy and makes possible the deletion
of the nodes symptom4 and symptom5. �
3.2 Rewriting Problem

As will be seen shortly, in the case of recursive DTDs, update operations rewrit-
ing is already challenging for the small fragment X of XPath. Recall the update
policy defined in Example 1. In our case, this policy can be specified by defining
only the following update annotation:

annup(intervention, ut) = [↓::doctor/↓::dname=$DName]

Where $DName is a constant parameter representing doctor’s name, and ut can
be any update type relevant to the update rules of Example 1. Now, let $DName
be Imine and ut be delete [Tresult]. The update operation delete ↓+::
treatment[↓::type=’chemotherapy’]/↓::Tresult cannot be rewritten in X to be
safe. Indeed, the Tresult nodes that doctor Imine is authorized to delete can be
represented by an infinite set of paths. This latter can be captured by rewriting
the previous update into the following one: delete ↓+::intervention[↓::doctor/↓::
dname=$DName]/(↓::treatment/↓::diagn-osis/↓::implies)*/↓::treatment[↓::
type=’chemotherapy’]/↓::Tresult, defined in Regular XPath and which, when
evaluated on the XML tree of Fig. 2, delete only the node Tresult2. However,
the Kleene star cannot be expressed in XPath [9].

We explain in the next section how the extended fragment X⇑
[n], defined in

Section 2, can be used to overcome this rewriting limitation of update operations.

4 Securely Updating XML

In this section we focus only on update rights and we assume that every node is
read-accessible by all users. Given an update specification Sup=(D, annup), we
discuss the enforcement of such update constraints where each update operation
posed over an instance T of D must be performed only at the nodes of T that
can be updated by the user w.r.t. Sup. We assume that the XML tree T remains
valid after the update operation is performed, otherwise the update is rejected.
In the following, we denote by Sut the set of annotations defined in Sup with
the update type ut and by |Sut| the size of this set. Moreover, for an annotation
function ann, we denote by {ann} the set of all annotations defined with ann,
and by |ann| the size of this set.

4.1 Updatability

We say that a node n is updatable w.r.t. update type ut if the user is granted to
perform update operations of type ut either at node n (case of insert operations)
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or over children nodes of n (case of delete and replace operations). For instance,
if a node n is updatable w.r.t. insertInto [B], then some nodes of type B can
be inserted as children of n. Moreover, Bi children of n can be replaced with
nodes of type Bj iff n is updatable w.r.t. replace [Bi,Bj ].

Definition 3. Let Sup=(D, annup) be an update specification and ut be an up-
date type. A node n in an instantiation of D is updatable w.r.t. ut if the following
conditions hold:

i) The node n is concerned by a valid annotation6 with type ut; or, no anno-
tation of type ut is defined over element type of n and there is an ancestor
node n′ of n such that: n′ is the first ancestor node of n concerned by an
annotation of type ut, and this annotation is valid at n′ (called the inherited
annotation).

ii) There is no ancestor node of n concerned by an invalid downward-closed
annotation of type ut. �

Given an update specification Sup=(D, annup), we define two predicates U1
ut

and U2
ut (expressed in fragment X⇑

[n]) to satisfy the conditions (i) and (ii) of

Definition 3 with respect to an update type ut:

U1
ut := ↑∗::∗[∨(annup(A,ut)=Y |N |[Q]|Nh|[Q]h)∈Sut

ε::A][1]
[∨(annup(A,ut)=Y )∈Sut

ε::A ∨(annup(A,ut)=[Q]|[Q]h)∈Sut
ε::A[Q]]

U2
ut := ∧(annup(A,ut)=Nh)∈Sut

not (↑+::A)
∧(annup(A,ut)=[Q]h)∈Sut

not (↑+::A[not(Q)])

The predicate U1
ut has the form ↑∗::∗[qual1][1][qual2]. Applying ↑∗::∗[qual1] on a

node n returns an ordered set S of nodes (node n and/or some of its ancestor
nodes) such that for each one an annotation of type ut is defined over its element
type. The predicate S[1] returns either node n, if an annotation of type ut is
defined over its element type; or the first ancestor node of n concerned by an
annotation of type ut. Thus, to satisfy condition (i) of Definition 3, it amounts
to check that the node returned by S[1] is concerned by a valid annotation of
type ut; checked by the predicate S[1][qual2] (i.e., n � U1

ut). The second predicate
is used to check that all downward-closed annotations of type ut defined over
ancestor nodes of n are valid (i.e., n � U2

ut).

Definition 4. Let Sup=(D, annup), ut, and T be an update specification, an
update type and an instance of DTD D respectively. We define the updatabil-
ity predicate Uut which refers to an X⇑

[n] qualifier such that, a node n on T is

updatable w.r.t. ut iff n � Uut, where Uut := U1
ut ∧ U2

ut. �
For example, the XPath expression ↓+::∗[Uut] stands for all nodes which are
updatable w.r.t. ut. As a special case, if Sut = φ then Uut = false.

6 Note that an annotation annup(A, ut)=value is valid at a node n if this latter is of
type A and either value=Y ; or, value=[Q]/[Q]h and n � Q.
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Property 1. For an update specification Sup=(D, annup) and an update type ut,
the updatability predicate Uut can be constructed in at most O(|annup|) time.
Moreover, |Uut|=O(|annup|). �
Example 3. Consider the three update annotations R1, R2, and R3 defined in
Example 2, and let the update type ut be delete [symptom]. According to these
annotations, the predicate Uut := U1

ut ∧ U2
ut is defined with:

U1
delete [symptom] := ↑∗::∗[ε::department ∨ ε::patient ∨ ε::sibling][1]

[ε::department[↓::name=$nurseDept]
∨ ε::patient[↓::wardNo=$nurseWardNo]]

U2
delete [symptom] := not (↑+::department[not (↓::name=$nurseDept)]) ∧

not (↑+::sibling)
Consider the case of the nurse having the ward number 421 and working at Criti-
cal care department. The predicate ↑∗::∗[ε::department ∨ ε::patient ∨ ε::sibling]
over the node patient3 of Fig. 2 returns the ordered set S={patient3, patient2,
patient1, department1} of nodes (each one is concerned by an annotation of type
delete [symptom]); S[1] returns patient3 and the predicate [ε::department[↓::
name=’Critical care’] ∨ ε::patient[↓::wardNo=’421 ’]] is valid at node patient3
(i.e. patient3 � U1

delete [symptom]). Also, we can see that patient3 � U2
delete [symptom].

Consequently, the node patient3 is updatable w.r.t. delete [symptom]
(i.e., patient3 � Udelete [symptom]). This means that the nurse is granted to delete
symptom elements of patient3 (e.g. node symptom3). However, for node patient5
we can check that the predicate U1

delete [symptom] is valid, while it is no longer the

case for the predicateU2
delete [symptom] (patient5 has an ancestor node department2

with name �= ’Critical care’). Thus, the nurse is not allowed to delete the node
symptom5. �
4.2 Rewriting of Update Operations

Finally, we detail here our approach for enforcing update policies based on the
notion of “query rewriting”. Given an update specification Sup=(D, annup). For
any update operation with target defined in the XPath fragment X , we translate
this operation into a safe one by rewriting its target expression into another
one target′ defined in the XPath fragment X⇑

[n], such that evaluating target′

over any instance T of D returns only nodes that can be updated by the user
w.r.t. Sup. We describe in the following the rewriting of each kind of update
operation considered in this paper, where DTD D = (Ele,Rg, root) and source
is a sequence of nodes of type Bj .

• “ delete target ”: For any node n of type Bi referred to by target, parent node
n′ of n must be updatable w.r.t. delete [Bi] (i.e., n

′ � Udelete [Bi]). To satisfy
this, we rewrite target expressions of delete operations into: target[∨Bi∈Ele

ε::Bi[↑::∗[Udelete [Bi]]]].

• “ replace target with source ”: A node n of type Bi referred to by target can
be replaced with the nodes in source iff its parent node n′ is updatable w.r.t.
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replace [Bi,Bj ] (i.e., n
′ � Ureplace[Bi,Bj ]). Thus, target expressions of replace

operations can be rewritten into:
target[∨Bi∈Ele ε::Bi[↑::∗[Ureplace[Bi,Bj ]]]].

• “ insert source before/after target ”: For any node n referred to by target,
the user can insert nodes in source as preceding sibling nodes of n iff its parent
node n′ is updatable w.r.t. insertBefore [Bi,Bj ] (i.e., n

′ � UinsertBefore[Bi,Bj]).
To satisfy this, target expressions of insertBefore operations can be rewritten
into: target[∨Bi∈Ele ε::Bi[↑::∗[UinsertBefore[Bi,Bj]]]]. The same principle is applied
for insertAfter operations.

• “ insert source into target ”: For any node n referred to by target, the user
can insert nodes in source as children of n (in an implementation-dependent
position), provided that he holds the insertInto [Bj ] right on this node (i.e.,
n � UinsertInto[Bj ]). To check this, target expressions of insertInto operations
can be simply rewritten into: target[UinsertInto[Bj ]]. The same principle is applied
for insertAsFirst and insertAsLast operations.

Theorem 1. For any update specification Sup=(D, annup) and any update op-
eration with target expression defined in X , there exists an algorithm “Updates
Rewrite” that translates target into a safe one target’ (defined in X⇑

[n]) in at

most O(|D| + |annup|) time. Moreover, |target′|=O(|target|+ |annup|). �

5 Conclusion

We have proposed a general model for specifying XML update policies based on
the primitives of the XQuery Update Facility. To enforce such policies, we have
introduced a rewriting approach to securely updating XML over arbitrary DTDs
and for a significant fragment of XPath. To our knowledge, this paper presents
the first work for securely updating XML data over general DTDs.
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